
On Computing Sparse Generalized Inverses and
Sparse-Inverse/Low-Rank Decompositions

by

Victor K. Fuentes

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2019

Doctoral Committee:
Professor Jon Lee, Chair
Assistant Professor Laura Balzano
Professor Marina Epelman
Professor Marcia Fampa

Victor K. Fuentes
vicfuen@umich.edu

ORCID iD: 0000-0002-9874-554X

© Victor K. Fuentes 2019

Dedication
I dedicate my dissertation to Betty S. Keesey and Maureen Keesey Fuentes.

ii

Acknowledgments
There are many people that have earned my gratitude and appreciation for
their contributions to my time in graduate school. More specifically, I would
like to extend thanks to a number of groups of people, without whom this
thesis (and graduate experience) would not have been in the slightest bit
possible.

First, I am indebted to my advisor, Jon Lee, for providing an experience
unlike any else that has changed me for the better. On an academic level,
Jon provided an environment with which to explore what it means to be
researcher, one which allowed me the opportunity to both develop my un-
derstanding of the vastness that is the field of optimization and experience
firsthand the difficulties that come with the territory. On a personal level, I
found (and continue to find) myself fortunate to have a person such as Jon
to serve as inspiration during my time here, providing a sounding board
on how to configure (and then re-configure) the delicate balance of being a
graduate student, a researcher, and your own person (as well as how those
are not necessarily mutually exclusive). Given the holes I dug for myself,
and the efforts needed to recover from them, I must attribute much of what
I have accomplished and who I have become during my time here to Jon.
A variant on a sentence I perhaps write too much in my emails: As always,
thank you for your time and patience Jon, I truly appreciate all that you
have done for me.

Besides my advisor, I would like to thank the rest of my defense committee
members (Laura Balzano, Marina Epelman, Marcia Fampa) for agreeing to
be a part of this process.

It would be remiss if I were to omit acknowledgement for my colleagues
within the IOE department. From the 2014 cohort to my officemates to

iii

the countless number of incredible individuals with whom I have had the
honor of crossing paths with in class, in the hallways or the commons, I have
been the most fortunate of beneficiaries in experiencing your passion and
knowledge firsthand. Thank you all for adding so much to this experience.

Thank you to the University of Michigan, in particular the Rackham
Graduate School, for the opportunity to pursue my doctorate through the
Rackham Merit Fellowship (RMF). Additional thanks to Jon Lee for pro-
viding funding to cover the summers and academic years not covered by
RMF.

Last but not least, I would like to express my sincerest gratitude to the
following people without whom I would not be where I am today: my mother
Maureen Fuentes, my late grandmother Betty Keesey, my brother Roland
Fuentes, the late Ken Bystrom (former highschool math teacher), and my
former undergraduate instructors/mentors Rick West, Duane Kouba, and
Jesús De Loera.

iv

Table of Contents
Dedication ii

Acknowledgments iii

List of Figures viii

List of Tables ix

Abstract x

Chapter 1. Introduction 1
1.1 Definitions . 1
1.2 Chapter overviews . 2

Chapter 2. Sparse Pseudoinverses via LP relaxation 4
2.1 Pseudoinverses . 5
2.2 Sparse left and right pseudoinverses 6
2.3 Sparse generalized inverses based on the Moore-Penrose

properties . 8
2.4 Computational experiments 9
2.5 Conclusions and ongoing work 16

Chapter 3. Computationally dealing with the non-linear prop-
erty of the Moore-Penrose Pseudoinverse 18
3.1 Toward computationally dealing with (P2) 19
3.2 A lighter version of (P1) 22
3.3 Quadratic tightening of (P1) 23

v

3.4 Penalizing “big” ℋ𝑖𝑗 with quadratic penalties 24
3.5 Quadratic PSD-cuts . 25
3.6 Pre-computed quadratic PSD-cuts 28
3.7 2-by-2 cuts . 28
3.8 Reformulation Linearization Technique (RLT) 29
3.9 Non-symmetric lifting . 32
3.10 Modeling our problem . 37
3.11 Diving heuristic . 42

3.11.1 Weighted branching-point analysis and selection . . 45
3.11.2 Impact of diving heuristic on combinations of (P3)

and (P4) . 53
3.11.3 Changes in solution norm ratios 57

3.12 Conclusions and further questions 61

Chapter 4. Sparse-inverse/low-rank Decomposition via Woodbury 63
4.1 Introduction . 63

4.1.1 Convex approximation 65
4.1.2 Generating test problems via the recovery theory . 66

4.2 Sparse-inverse/low-rank decomposition 68
4.2.1 An algorithmic approach via the Woodbury identity 68
4.2.2 Generating test problems without a recovery theory 69

4.3 Computational experiments 70
4.4 Conclusions . 73

Chapter 5. Computational Techniques for Sparse-Inverse/Low-
Rank Decomposition 74
5.1 SDP Approach . 74
5.2 A convex relaxation . 76

5.2.1 An SDP relaxation 76
5.2.2 The dual SDP . 82
5.2.3 Disjunctive programming 84

5.3 Remarks . 92

Appendix 93

vi

Bibliography 98

vii

List of Figures
2.1 Absolute value function |𝑥|, Indicator function for 𝑥 ≠ 0 . 6
2.2 Average least-squares ratio vs. rank 15
2.3 Average 2-norm ratio vs. rank 16

3.1 Impact on ||𝐻||1 using the midpoint of [𝛼, 𝛽] 47
3.2 Impact on (P2) viol. of 𝐻134 using the midpoint of [𝛼, 𝛽] 48
3.3 Diving impact on ||𝐻||1 using 𝑡𝑀𝑃𝑃 ∈ [𝛼, 𝛽] 49
3.4 Impact on (P2) viol. of 𝐻134 using 𝑡𝑀𝑃𝑃 ∈ [𝛼, 𝛽] 50
3.5 Tradeoff between ||𝐻||1 and (P2) violation of 𝐻134 51
3.6 Comparison of 25/75 weighting using MPP and MID . . . 53
3.7 Obj. val. vs. (P2) violation of 𝐻1 55
3.8 Obj. val. vs. (P2) violation of 𝐻13 56
3.9 Obj. val. vs. (P2) violation of 𝐻14 57
3.10 2-norm solution ratios: 𝐻13 vs. 𝑀𝑃𝑃 60
3.11 Least-squares norm solution ratios: 𝐻14 vs. 𝑀𝑃𝑃 61

4.1 𝑓(̄𝜏) vs ̄𝜏 (𝑛 = 75) . 71
4.2 𝑛 = 75, 𝑘 = 15 . 72

viii

List of Tables
2.1 Sparsity vs quality (𝑚 = 𝑛 = 40) 13
2.2 Sparsity vs quality (𝑚 = 𝑛 = 40) 14

ix

Abstract
Pseudoinverses are ubiquitous tools for handling over- and under-determined
systems of equations. For computational efficiency, sparse pseudoinverses
are desirable. Recently, sparse left and right pseudoinverses were intro-
duced, using 1-norm minimization and linear programming. We introduce
several new sparse generalized inverses by using 1-norm minimization on
a subset of the linear Moore-Penrose properties, again leading to linear
programming. Computationally, we demonstrate the usefulness of our ap-
proach in the context of application to least-squares problems and minimum
2-norm problems.

One of the Moore-Penrose properties is nonlinear (in fact, quadratic),
and so developing an effective convex relaxation for it is nontrivial. We
develop a variety of methods for this, in particular a nonsymmetric lifting
which is more efficient than the usual symmetric lifting that is normally
applied to non-convex quadratic equations. In this context, we develop
a novel and computationally effective “diving procedure” to find a path
of solutions trading off sparsity against the nice properties of the Moore-
Penrose pseudoinverse.

Next, we consider the well-known low-rank/sparse decomposition prob-
lem

min { ̄𝜏‖𝐴‖0 + (1 − ̄𝜏)rank(𝐵) ∶ 𝐴 + 𝐵 = ̄𝐶} ,

x

where ̄𝐶 is an 𝑚 × 𝑛 input matrix, 0 < ̄𝜏 < 1, ‖ ⋅ ‖0 counts the number of
nonzeros, and 𝐴 and 𝐵 are matrix variables. This is a central problem in the
area of statistical model selection, where the sparse matrix can correspond to
a Gaussian graphical model, and the low-rank matrix can capture the effect
of latent, unobserved random variables. There is a well-known recovery
theory for this problem, based on a well-studied convex relaxation, and
we use it to devise test instances for the low-rank/sparse-inverse problem.
The low-rank/sparse-inverse decomposition problem can be related to that
of identifying a sparse ”precision matrix”. We use the Woodbury matrix
identity to construct an algorithmic procedure for this problem, based on a
procedure used in the ordinary low-rank/sparse decomposition setting. This
gives us a computationally effective method for generating test instances for
this type of problem, without a supporting recovery theory.

Finally, we present an SDP formulation of the low-rank/sparse-inverse
decomposition problem. We further consider a relaxation to deal with the
nonconvex (quadratic) constraints, describing our extension to the origi-
nal formulation, providing primal and dual SDP relaxations, and examine
some relevant properties. In dealing with the nonconvex constraint, we pro-
pose the construction of disjunctive cuts, describing how these cuts can be
generated as well as considerations for tuning them.

xi

Chapter 1

Introduction

1.1 Definitions
We briefly set some notation.

• 𝐼𝑛 (respectively 0𝑛) denotes an 𝑛 × 𝑛 identity (all zero) matrix.

• ⃗0𝑛 ∈ ℝ𝑛 denotes a zero vector.

• 𝑒 denotes an all-one vector.

• For an 𝑀 ∈ ℝ𝑚×𝑛, ‖𝑀‖0 denotes the number of nonzeros in 𝑀 ,

• rank(𝑀) denotes the rank of 𝑀 ,

• ‖𝑀‖1 ≔ ∑𝑖,𝑗 |𝑚𝑖𝑗| denotes the matrix 1-norm of 𝑀 , and

• ‖𝑀‖∗ ≔ ∑min{𝑚,𝑛}
𝑖=1 𝜎𝑖(𝑀) denotes the nuclear norm of 𝑀 , where

𝜎1(𝑀) ≥ 𝜎2(𝑀) ≥ … ≥ 𝜎min{𝑚,𝑛}(𝑀) ≥ 0 are the singular values of
𝑀 .

• If 𝑀 is square, then we denote the trace of 𝑀 by tr(𝑀) ≔ ∑𝑚
𝑖=1 𝑚𝑖𝑖.

1

• For 𝑀 , 𝑁 ∈ ℝ𝑚×𝑛, the matrix inner product is ⟨𝑀, 𝑁⟩ ≔ tr(𝑀 ′𝑁)
= ∑𝑖,𝑗 𝑚𝑖𝑗𝑛𝑖𝑗.

1.2 Chapter overviews
In Chapter 2 we define the notion of pseudoinverse and generalized inverse
(§2.1), as well as establish motivation for sparsity in this context (§2.2).
In §2.3 we delve into developing tractable sparse generalized inverses based
on different characterizations of the properties of the Moore-Penrose pseu-
doinverse (MPP), while also proving some useful results regarding these
solutions under different column/row rank and Moore-Penrose (M-P) prop-
erty assumptions. In §2.4 computational experiments are designed and run
to explore inducing sparsity in solutions that satisfy various combinations
of the linear M-P properties, along with some relational metrics to compare
the quality of the solution with that of the true MPP.

In Chapter 3 we propose a collection of different methods to computa-
tionally deal with the nonlinear (nonconvex) M-P property (P2). §3.3 -
§3.7 cover some of the ideas considered, although they were not explored
as extensively as the techniques in later sections. Of the many methods
we describe, we focus much of our energy in §3.8 expanding on the use of
Reformulation Linearization Technique (RLT) and in §3.9 applying non-
symmetric lifting equations/inequalities to approximate (P2). We provide
an overview of how to model our problem in §3.10. In our exploration of
the efficacy of these techniques, we examine in §3.11 the tradeoff between
generating a sparse pseudoinverse (or generalized inverse) and a solution
that satisfies (P2) via a diving heuristic that iteratively strengthens our re-
laxation by refining the bounds of our variables. We describe the premise
and setup of this diving heuristic, as well as explore computationally the

2

impact of different weighted combinations in the branching point selection
process.

In Chapter 4 we shift from the discussion of sparse generalized inverses,
where in §4.1 we begin by considering a variant of the traditional sparse/low-
rank matrix decomposition problem, focusing on sparse-inverse/low-rank
decomposition. In §4.1.1 we discuss how to generate test problems for
the traditional decomposition problem using the recovery theory dealing
with convex relaxations, and describe the difficulties in describing a simi-
lar recovery theory in the sparse-inverse/low-rank case, which results in a
nonconvex relaxation. In §4.2 we utilize the Woodbury matrix identity to
establish a correspondence between the convex and non-convex relaxations
and introduce an algorithmic approach to generating test problems without
an explicit recovery theory. In §4.3 we further provide some computational
results for our heuristic and comment on its efficacy in generating test prob-
lems that exhibit ”significant” recovery in §4.4.

In Chapter 5 (§5.1) we present a modeling approach for the sparse-
inverse/low-rank decomposition problem, as well provide an in-depth de-
scription of a possible SDP relaxation. In §5.2, with the hopes of dealing
with the non-convexity that arises from our relaxation and subsequent refor-
mulation, we propose a means to construct a disjunctive cutting plane that
tightens our original relaxation and describe how to generate valid linear
inequalities that iteratively strengthen the relaxation.

3

Chapter 2

Sparse Pseudoinverses via LP
relaxation

This chapter is based on [FFL16b]

Introduction
Pseudoinverses are a central tool in matrix algebra and its applications.
Sparse optimization is concerned with finding sparse solutions of optimiza-
tion problems, often for computational efficiency in the use of the output
of the optimization. There is usually a tradeoff between an ideal dense
solution and a less-ideal sparse solution, and sparse optimization is often
focused on tractable methods for striking a good balance. Recently, sparse
optimization has been used to calculate tractable sparse left and right pseu-
doinverses, via linear programming. We extend this theme to derive several
other tractable sparse pseudoinverses, employing linear and convex relax-
ations.

In §2.1, we give a very brief overview of pseudoinverses, and in §2.2, we

4

describe some prior work on sparse left and right pseudoinverses. In §2.3,
we present new sparse pseudoinverses based on tractable convex relaxations
of the Moore-Penrose properties. In §2.4, we present preliminary computa-
tional results. Finally, in §2.5, we make brief conclusions and describe our
ongoing work.

2.1 Pseudoinverses
When a real matrix 𝐴 ∈ ℝ𝑚×𝑛 is not square or not invertible, we consider
pseudoinverses of 𝐴 (see [RM71] for a wealth of information on this topic).
For example, there is the well-known Drazin inverse for square and even
non-square matrices (see [CG80]) and the generalized Bott-Duffin inverse
(see [Che90]).

The most well-known pseudoinverse of all is the Moore-Penrose (M-P)
pseudoinverse, independently discovered by E.H. Moore and R. Penrose.
If 𝐴 = 𝑈Σ𝑉 ′ is the real singular value decomposition of 𝐴 (see [GV96],
for example), then the M-P pseudoinverse (MPP) of 𝐴 can be defined as
𝐴+ ∶= 𝑉 Σ+𝑈 ′, where Σ+ has the shape of the transpose of the diagonal
matrix Σ, and is derived from Σ by taking reciprocals of the non-zero (di-
agonal) elements of Σ (i.e., the non-zero singular values of 𝐴). The M-P
pseudoinverse is calculated, via its connection with the real singular value
decomposition, by the Matlab function pinv.

The MPP, a central object in matrix theory, has many concrete uses.
For example, we can use it to solve least-squares and minimum 2-norm
problems, as well as, together with a norm, to define condition numbers of
matrices.

5

2.2 Sparse left and right pseudoinverses
It is well known that in the context of seeking a sparse solution in a convex
set, a surrogate for minimizing the sparsity is to minimize the 1-norm. In
fact, if the components of the solution have absolute value no more than
unity, a minimum 1-norm solution has 1-norm no greater than the number
of nonzeros in the sparsest solution. This is due to the fact that the absolute
value function is an underestimator of the indicatior function for 𝑥 ≠ 0 on
the domain [−1, 1].

Figure 2.1: Absolute value function |𝑥|, Indicator function for 𝑥 ≠ 0

With this in mind, [DKV13] defines sparse left and right pseudoinverses in
a natural and tractable manner (also see [DG17]). For an “overdetermined
case”, a sparse left pseudoinverse can be defined via the convex formulation

min {‖𝐻‖1 ∶ 𝐻𝐴 = 𝐼𝑛} . (𝒪)

For an “underdetermined case”, a sparse right pseudoinverse can be defined

6

via the convex formulation

min {‖𝐻‖1 ∶ 𝐴𝐻 = 𝐼𝑚} . (𝒰)

These definitions emphasize sparsity, while in some sense putting a rather
mild emphasis on the aspect of being a pseudoinverse. We do note that if
the columns of 𝐴 are linearly independent, then the M-P pseudoinverse is
precisely (𝐴′𝐴)−1𝐴′, which is a left inverse of 𝐴. Therefore, if 𝐴 has full
column rank, then the MPP is a feasible 𝐻 for (𝒪). Conversely, if 𝐴 does
not have full column rank, then (𝒪) has no feasible solution, and so there is
no sparse left inverse in such a case. On the other hand, if the rows of 𝐴 are
linearly independent, then the M-P pseudoinverse is precisely 𝐴′(𝐴𝐴′)−1,
which is a right inverse of 𝐴. Therefore, if 𝐴 has full row rank, then the
MPP is a feasible 𝐻 for (𝒰). Conversely, if 𝐴 does not have full row rank,
then (𝒰) has no feasible solution, and so there is no sparse right inverse in
such a case.

These sparse pseudoinverses are easy to calculate, by linear programming:

min {∑𝑖𝑗∈𝑚×𝑛 𝑡𝑖𝑗 ∶ 𝑡𝑖𝑗 ≥ ℎ𝑖𝑗, 𝑡𝑖𝑗 ≥ −ℎ𝑖𝑗, ∀𝑖𝑗 ∈ 𝑚 × 𝑛; 𝐻𝐴 = 𝐼𝑛}
(𝐿𝑃𝒪)

for the sparse left pseudoinverse, and

min {∑𝑖𝑗∈𝑚×𝑛 𝑡𝑖𝑗 ∶ 𝑡𝑖𝑗 ≥ ℎ𝑖𝑗, 𝑡𝑖𝑗 ≥ −ℎ𝑖𝑗, ∀𝑖𝑗 ∈ 𝑚 × 𝑛; 𝐴𝐻 = 𝐼𝑚}
(𝐿𝑃𝒰)

for the sparse right pseudoinverse. In fact, the (𝐿𝑃𝒪) decomposes row-wise
for 𝐻, and (𝐿𝑃𝒰) decomposes column-wise for 𝐻, so calculating these sparse
pseudoinverses can be made very efficient at large scale. These sparse pseu-
doinverses also have nice mathematical properties (see [DKV13], [DG17]).

7

2.3 Sparse generalized inverses based on the
Moore-Penrose properties

We seek to define different tractable sparse pseudoinverses, based on the
the following nice characterization of the MPP.

Theorem 1. For 𝐴 ∈ 𝑅𝑚×𝑛, the MPP 𝐴+ is the unique 𝐻 ∈ ℝ𝑛×𝑚

satisfying:

𝐴𝐻𝐴 = 𝐴 (P1)
𝐻𝐴𝐻 = 𝐻 (P2)
(𝐴𝐻)′ = 𝐴𝐻 (P3)
(𝐻𝐴)′ = 𝐻𝐴 (P4)

If we consider properties (P1) - (P4) that characterize the M-P pseudoin-
verse, we can observe that properties (P1), (P3) and (P4) are all linear in
𝐻, and the only non-linearity is property (P2), which is quadratic in 𝐻.
Another important point to observe is that without property (P1), 𝐻 could
be the all-zero matrix and satisfy properties (P2), (P3) and (P4). Whenever
property (P1) holds, 𝐻 is called a generalized inverse. So, in the simplest
approach, we can consider minimizing ‖𝐻‖1 subject to property (P1) and
any subset of the properties (P3) and (P4). In this manner, we get several
(four) new sparse generalized inverses which can all be calculated by linear
programming.

We made some tests of our ideas, using CVX/Matlab (see [GB15], [GB08]).
Before describing our experimental setup, we observe the following results.

Proposition 2. Given 𝐴 ∈ ℝ𝑚×𝑛 and generalized inverse 𝐻 ∈ ℝ𝑛×𝑚:

8

(i) If 𝐴 has full column rank and 𝐻 satisfies (P1), then 𝐻 is a left inverse
of 𝐴, and 𝐻 satisfies (P2) and (P4).

(ii) If 𝐴 has full row rank and 𝐻 satisfies (P1), then 𝐻 is a right inverse
of 𝐴, and 𝐻 satisfies (P2) and (P3).

Proof. Suppose that 𝐴 has full column rank and H satisfies (P1) and (P3).

(i) Because 𝐴 has full column rank, via elementary row operations, we
can reduce P1 to

[𝐼
𝑀] 𝐻𝐴 = [𝐼

𝑀] .

This implies that 𝐻𝐴 = 𝐼 , that is 𝐻 is a left inverse of 𝐴. Multiplying
on the right by 𝐻, we immediately have 𝐻𝐴𝐻 = 𝐻, that is (P2).
Additionally, 𝐻𝐴 = 𝐼 immediately implies (P4).

(ii) The proof is similar.

Corollary 3. If 𝐴 has full column rank and 𝐻 satisfies (P1) and (P3),
then 𝐻 = 𝐴+. If 𝐴 has full row rank and 𝐻 satisfies (P1) and (P4), then
𝐻 = 𝐴+.

2.4 Computational experiments
Due to the results in §2.3, we decided to focus our experiments on matrices 𝐴
with rank less than min{𝑚, 𝑛}, testing some of our ideas using CVX/Matlab
(see [GB15], [GB08]). We generated random dense 𝑛 × 𝑛 rank-𝑟 matrices
𝐴 of the form 𝐴 = 𝑈𝑉 , where each 𝑈 and 𝑉 ′ are 𝑛 × 𝑟, with 𝑛 = 40,

9

and five instance for each 𝑟 = 4, 8, 16, … , 36. The entries in 𝑈 and 𝑉 were
iid uniform (−1, 1). We construct our problem instances in this manner so
that we have a structured way to control the rank, as well as the magnitude
of the entries of the matrices 𝐴 and its pseudoinverse 𝐴+. We then scaled
each 𝐴 by a multiplicative factor of 0.01, which had the effect of making
𝐴+ fully dense to an entry-wise zero-tolerance of 0.1. In computing various
sparse generalized inverses, we used a zero-tolerance of 10−5. We measured
sparsity of a sparse pseudoinverse as the number of its nonzero components
divided by 𝑛2. We measured quality of a sparse generalized inverse 𝐻,
relative to the MPP 𝐴+ in two ways:

• least-squares ratio (‘lsr’): ‖𝐴𝐻𝑏 − 𝑏‖2/‖𝐴𝐴+𝑏 − 𝑏‖2, with arbitrarily
𝑏 ∶= ⃗1𝑚. (Note that 𝑥 ∶= 𝐴+𝑏 always minimizes ‖𝐴𝑥 − 𝑏‖2.)

• 2-norm ratio (‘2nr’): ‖𝐻𝐴 ⃗1𝑛‖2/‖𝐴+𝐴 ⃗1𝑛‖2. (Note that 𝑥 ∶= 𝐻𝐴 ⃗1𝑛 is
always a solution to 𝐴𝑥 = 𝐴 ⃗1𝑛, whenever 𝐻 satisfies (P1), and one
that minimizes ‖𝑥‖2 is given by 𝑥 ∶= 𝐴+𝐴 ⃗1𝑛.)

Proposition 4. If 𝐻 satisfies (P1) and (P3), then 𝐴𝐻 = 𝐴𝐴+.

Proof.

𝐴𝐻𝐴 = 𝐴𝐴+𝐴 (by (P1))
𝐻′𝐴′𝐴 = (𝐴+)′𝐴′𝐴 (by (P3))
𝐴′𝐴𝐻 = 𝐴′𝐴𝐴+

(𝐴+)′𝐴′𝐴𝐻 = (𝐴+)′𝐴′𝐴𝐴+

𝐴𝐻 = 𝐴𝐴+,

the last equation following directly from a well-known property of 𝐴+.

10

Corollary 5. If 𝐻 satisfies (P1) and (P3), then 𝑥 ∶= 𝐻𝑏 (and of course
𝐴+𝑏) solves min{‖𝐴𝑥 − 𝑏‖2 ∶ 𝑥 ∈ ℝ𝑛}.

Similarly, we have the following two results:

Proposition 6. If 𝐻 satisfies (P1) and (P4), then 𝐻𝐴 = 𝐴+𝐴.

Proof.

𝐴𝐻𝐴 = 𝐴𝐴+𝐴 (by (P1))
𝐴′𝐻′𝐴 = 𝐴′(𝐴+)′𝐴 (by (P4))
𝐴′𝐻𝐴 = 𝐴′𝐴+𝐴

(𝐴+)′𝐴′𝐻𝐴 = (𝐴+)′𝐴′𝐴+𝐴
𝐻𝐴 = 𝐴+𝐴,

the last equation following directly from a property of 𝐴+.

Corollary 7. If 𝐻 satisfies (P1) and (P4), and 𝑏 is in the column space of
𝐴, then 𝐻𝑏 (and of course 𝐴+𝑏) solves min{‖𝑥‖2 ∶ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℝ𝑛}.

So in the situations covered by Corollaries 5 and 7, we can seek and use
sparser pseudoinverses than 𝐴+. Our computational results are summarized
in Table 2.1 and Table 2.2, where ‘1nr’ (1-norm ratio) is simply ‖𝐻‖1/‖𝐴+‖1,
and ‘sr’ (sparsity ratio) is simply ‖𝐻‖0/‖𝐴+‖0. Note that the entries of 1
reflect the results above; in particular the results of Corollary 5 are reflected
in the column ‘lsr’ (defined earlier)for solutions where (P1) + (P3) are
enforced, while the results of Corollary 7 are reflected in the column ‘2nr’
(defined earlier) for solutions where (P1) + (P4). When enforcing (P1) +
(P3) + (P4), the results of Corollaries 5 and 7 are reflected by entries of 1
in ‘lsr’ and ‘2nr’. We observe that sparsity can be gained versus the MPP,

11

often with a modest decrease in quality of the generalized inverse, and we
can observe some trends as the rank varies.

For sake the of clarity and succinct notation, let us define 𝐻1, 𝐻13,
𝐻14, and 𝐻134 to denote solutions 𝐻 that satisfy (P1), (P1) + (P3), (P1)
+ (P4), and (P1) + P3) + (P4), respectively.

As illustrated in Figure 2.2, as the rank of 𝐴 increases we see that when
enforcing (P1) or (P1) + (P4) there is a noticeable decrease in the quality
of 𝐻 as a least-squares minimizers (illustrated as an increase in the least-
squares ratio). However, when enforcing (P1) + (P3) or (P1) + (P3) +
(P4), we observe that the sparse solutions 𝐻 generated are consistent with
the MPP as least-squares minimizers (follows from Corollary 5).

Similarly in Figure 2.3, when we enforce (P1) or (P1) + (P3) there is some
observable variability in the quality of 𝐻 as a 2-norm minimizer, resulting
in a sparser, but non-optimal solution to the 2-norm problem. Furthermore,
when enforcing a combination of either (P1) + (P4) or (P1) + (P3) + (P4),
the resulting sparse solution 𝐻 is consistent with that of the MPP, as they
both serve as minimizers of the 2-norm problem (follows from Corollary 7).

12

Table 2.1: Sparsity vs quality (𝑚 = 𝑛 = 40)
P1 P1+P3 P1+P4 P1+P3+P4

r ‖𝐴+‖1 1nr sr lsr 2nr 1nr sr lsr 2nr 1nr sr lsr 2nr 1nr sr lsr 2nr
4 586 0.44 0.01 1.07 2.27 0.60 0.10 1 1.43 0.64 0.10 1.02 1 0.75 0.19 1 1
4 465 0.46 0.01 1.07 1.82 0.63 0.10 1 1.43 0.63 0.10 1.01 1 0.77 0.19 1 1
4 500 0.44 0.01 1.08 1.82 0.62 0.10 1 1.46 0.62 0.10 1.01 1 0.76 0.19 1 1
4 503 0.41 0.01 1.28 2.00 0.62 0.10 1 1.31 0.62 0.10 1.06 1 0.75 0.19 1 1
4 511 0.45 0.01 1.10 2.36 0.63 0.10 1 1.55 0.64 0.10 1.09 1 0.78 0.19 1 1
8 855 0.53 0.04 1.17 1.63 0.69 0.20 1 1.28 0.68 0.20 1.05 1 0.80 0.36 1 1
8 851 0.53 0.04 1.22 1.60 0.69 0.20 1 1.33 0.69 0.20 1.07 1 0.80 0.36 1 1
8 841 0.53 0.04 1.25 1.70 0.69 0.20 1 1.34 0.69 0.20 1.07 1 0.80 0.36 1 1
8 761 0.52 0.04 1.05 1.70 0.69 0.20 1 1.32 0.68 0.20 1.09 1 0.81 0.36 1 1
8 864 0.52 0.04 1.09 1.40 0.69 0.20 1 1.21 0.68 0.20 1.04 1 0.80 0.36 1 1

12 1150 0.60 0.09 1.26 1.68 0.74 0.30 1 1.26 0.75 0.30 1.12 1 0.86 0.51 1 1
12 1198 0.59 0.09 1.20 1.70 0.75 0.30 1 1.25 0.75 0.30 1.05 1 0.85 0.51 1 1
12 1236 0.59 0.09 1.10 1.28 0.75 0.30 1 1.17 0.75 0.30 1.24 1 0.86 0.51 1 1
12 1134 0.60 0.09 1.38 1.43 0.75 0.30 1 1.19 0.74 0.30 1.09 1 0.85 0.51 1 1
12 1135 0.60 0.09 1.20 1.44 0.75 0.30 1 1.21 0.75 0.30 1.14 1 0.85 0.51 1 1
16 1643 0.67 0.16 1.36 1.85 0.79 0.40 1 1.30 0.80 0.40 1.17 1 0.90 0.64 1 1
16 1421 0.65 0.16 1.20 1.61 0.79 0.40 1 1.29 0.79 0.40 1.31 1 0.90 0.64 1 1
16 1518 0.65 0.16 1.33 1.38 0.79 0.40 1 1.20 0.80 0.40 1.30 1 0.89 0.64 1 1
16 1512 0.66 0.16 1.45 1.68 0.80 0.40 1 1.34 0.79 0.40 1.16 1 0.89 0.64 1 1
16 1539 0.65 0.16 1.18 1.25 0.79 0.40 1 1.19 0.79 0.40 1.29 1 0.89 0.64 1 1
20 2147 0.72 0.25 1.51 1.33 0.84 0.50 1 1.15 0.84 0.50 1.42 1 0.94 0.75 1 1
20 2111 0.72 0.25 1.81 1.44 0.83 0.50 1 1.35 0.84 0.50 1.48 1 0.93 0.75 1 1
20 2148 0.71 0.25 2.08 1.49 0.84 0.50 1 1.32 0.83 0.50 1.45 1 0.93 0.75 1 1
20 2061 0.72 0.25 1.50 1.49 0.84 0.50 1 1.35 0.84 0.50 1.31 1 0.93 0.75 1 1
20 2283 0.72 0.25 1.61 1.47 0.83 0.50 1 1.47 0.84 0.50 1.20 1 0.94 0.75 1 1

‘1nr’ (1-norm ratio) is ‖𝐻‖1/‖𝐴+‖1.
‘sr’ (sparsity ratio) is ‖𝐻‖0/‖𝐴+‖0.
‘lsr’ (least-squares ratio) is ‖𝐴(𝐻 ⃗1𝑚) − ⃗1𝑚‖2/‖𝐴(𝐴+ ⃗1𝑚) − ⃗1𝑚‖2.
‘2nr’ (2-norm ratio) is ‖𝐻𝐴 ⃗1𝑛‖2/‖𝐴+𝐴 ⃗1𝑛‖2.

13

Table 2.2: Sparsity vs quality (𝑚 = 𝑛 = 40)

P1 P1+P3 P1+P4 P1+P3+P4

r ‖𝐴+‖1 1nr sr lsr 2nr 1nr sr lsr 2nr 1nr sr lsr 2nr 1nr sr lsr 2nr

24 2865 0.77 0.36 1.86 1.24 0.87 0.60 1 1.18 0.87 0.60 1.51 1 0.96 0.84 1 1
24 3228 0.78 0.36 2.17 1.34 0.87 0.60 1 1.37 0.88 0.60 1.90 1 0.96 0.84 1 1
24 2884 0.77 0.36 2.27 1.72 0.87 0.60 1 1.32 0.87 0.60 1.55 1 0.96 0.84 1 1
24 2853 0.78 0.36 1.50 1.66 0.88 0.60 1 1.50 0.87 0.60 1.53 1 0.96 0.84 1 1
24 2944 0.78 0.36 1.72 1.48 0.87 0.60 1 1.64 0.88 0.60 1.64 1 0.96 0.84 1 1
28 4359 0.82 0.49 1.69 1.65 0.90 0.70 1 1.63 0.91 0.70 1.89 1 0.98 0.91 1 1
28 4268 0.83 0.49 2.27 1.98 0.91 0.70 1 1.79 0.91 0.70 2.08 1 0.98 0.91 1 1
28 4069 0.83 0.49 2.35 1.51 0.91 0.70 1 1.43 0.91 0.70 2.25 1 0.98 0.91 1 1
28 3993 0.83 0.49 2.30 1.58 0.90 0.70 1 1.27 0.91 0.70 2.19 1 0.97 0.91 1 1
28 4387 0.83 0.49 2.54 1.78 0.91 0.70 1 1.34 0.91 0.70 2.76 1 0.98 0.91 1 1
32 6988 0.88 0.64 4.08 1.60 0.94 0.80 1 1.81 0.94 0.80 3.54 1 0.99 0.96 1 1
32 6493 0.89 0.64 3.00 1.75 0.94 0.80 1 1.79 0.94 0.80 2.35 1 0.99 0.96 1 1
32 11445 0.89 0.64 4.50 4.82 0.94 0.80 1 2.58 0.94 0.80 7.18 1 0.99 0.96 1 1
32 8279 0.89 0.64 5.08 2.72 0.95 0.80 1 2.31 0.94 0.80 3.39 1 0.99 0.96 1 1
32 5069 0.89 0.64 2.14 1.90 0.95 0.80 1 1.74 0.94 0.80 2.26 1 0.99 0.96 1 1
36 18532 0.94 0.81 11.16 2.88 0.97 0.90 1 1.85 0.97 0.90 9.80 1 1.00 0.99 1 1
36 16646 0.94 0.81 10.91 2.53 0.97 0.90 1 3.04 0.97 0.90 8.07 1 1.00 0.99 1 1
36 11216 0.95 0.81 4.56 1.50 0.97 0.90 1 1.60 0.97 0.90 4.93 1 1.00 0.99 1 1
36 10299 0.95 0.81 6.12 1.45 0.98 0.90 1 2.14 0.97 0.90 5.37 1 1.00 0.99 1 1
36 11605 0.94 0.81 5.70 1.56 0.97 0.90 1 2.17 0.98 0.90 5.65 1 1.00 0.99 1 1

‘1nr’ (1-norm ratio) is ‖𝐻‖1/‖𝐴+‖1.
‘sr’ (sparsity ratio) is ‖𝐻‖0/‖𝐴+‖0.
‘lsr’ (least-squares ratio) is ‖𝐴(𝐻 ⃗1𝑚) − ⃗1𝑚‖2/‖𝐴(𝐴+ ⃗1𝑚) − ⃗1𝑚‖2.
‘2nr’ (2-norm ratio) is ‖𝐻𝐴 ⃗1𝑛‖2/‖𝐴+𝐴 ⃗1𝑛‖2.

14

Figure 2.2: Average least-squares ratio vs. rank

15

Figure 2.3: Average 2-norm ratio vs. rank

2.5 Conclusions and ongoing work
We have introduced four tractable generalized inverses based on using 1-
norm minimization to induce sparsity and making linear-programming re-
laxations based on the M-P properties. It remains to be seen if any of these

16

new generalized inverses will be found to be valuable in practice. There is a
natural tradeoff between sparsity and closeness to the M-P properties, and
where one wants to be on this spectrum may well be application dependent.

We note that (P2) is a nonlinear property and it is nontrivial to handle
it in a useful way by convex relaxation. We address this in Chapter 3 via a
variety of computational methods.

Another idea that we are exploring is to develop update algorithms for
sparse generalized inverses. The Sherman-Morrison-Woodbury formula gives
us a convenient way to update a matrix inverse of 𝐴 after a low-rank mod-
ification, where by extending that formula, 𝐴+ can be updated efficiently
(see [Mey73] and [Rie92]). It is an interesting challenge to see if we can
take advantage of a sparse generalized inverse (or pseudoinverse) of 𝐴 in
calculating a sparse generalized inverse (or pseudoinverse) of a low-rank
modification of 𝐴.

17

Chapter 3

Computationally dealing with the
non-linear property of the

Moore-Penrose Pseudoinverse

This chapter is motivated by work from [FL18b], [FL18a], and based on
work from [FFL19].

Introduction
As we saw in the previous chapter, we can construct various sparse gener-
alized inverses via combinations of linear properties of the Moore-Penrose
pseudoinverse (MPP). Although solutions were demonstrably sparser than
the MPP, especially in the low-rank settings, the question remains what
the cost would be to enforce (P2). Any solution of (P1) has rank at least
that of 𝐴. But a solution of (P1) and (P2) has rank equal to that of 𝐴.
Thus it may be that a solution of (P1) is sparser than the MPP, but with a
rank greater than or equal to that of the MPP, which can reflect how well

18

the solution satisfies (P2). So, instead of searching for a solution that sat-
isfies (P2) exactly, we may instead explore approaches that, starting with
an initial sparse generalized inverse, approximates (P2) and provides a se-
quence of solutions that illustrates the impact on the solution sparsity as
the approximations are strengthened.

In the search for ways to approximate (P2), we consider a variety of
frameworks for formulating the property in a convex setting, with particular
focus on linear and convex quadratic lifting techniques. Once we establish
the model formulations, we establish the quality of the solutions generated
by utilizing performance measures ’lsr’ and ’2nr’ (as seen in Chapter 2);
while in exploring the tradeoff of sparsity and violation of (P2), we measure
sparsity using the matrix 1-norm and violation using the Frobenius norm.
We present some preliminary computational results (and illustrations) us-
ing these techniques and discuss some further questions born from these
experiments.

3.1 Toward computationally dealing with (P2)
The Moore-Penrose (M-P) property (P2) is not convex in 𝐻. So we cannot
incorporate it in convex relaxations. But, (P2) is quadratic in 𝐻, and there
are standard approaches for handling nonconvex quadratics to consider.

We can view property (P2) as

ℎ𝑖⋅𝐴ℎ⋅𝑗 = ℎ𝑖𝑗, (3.1)

for all 𝑖𝑗 ∈ 𝑚 × 𝑛. So, we have 𝑚𝑛 quadratic equations to enforce, which

19

we can be expressed as

1
2 (ℎ𝑖⋅, ℎ′

⋅𝑗) [0𝑚 𝐴
𝐴′ 0𝑛

] (ℎ′
𝑖⋅

ℎ⋅𝑗
) = ℎ𝑖𝑗, (3.2)

for all 𝑖𝑗 ∈ 𝑚 × 𝑛. We can view these quadratic equations (3.2) as

1
2 ⟨𝑄, (ℎ′

𝑖⋅
ℎ⋅𝑗

) (ℎ𝑖⋅, ℎ′
⋅𝑗)⟩ = ℎ𝑖𝑗,

for all 𝑖𝑗 ∈ 𝑚 × 𝑛, where

𝑄 ∶= [0𝑚 𝐴
𝐴′ 0𝑛

] ∈ ℝ(𝑚+𝑛)×(𝑚+𝑛),

and ⟨⋅, ⋅⟩ denotes element-wise dot-product.
Now, we lift the variables to matrix space, defining matrix variables

ℋ𝑖𝑗 ∶= (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗) ∈ ℝ(𝑚+𝑛)×(𝑚+𝑛),

for all 𝑖𝑗 ∈ 𝑚 × 𝑛. So, we can see (3.2) as the linear equations

1
2 ⟨𝑄, ℋ𝑖𝑗⟩ = ℎ𝑖𝑗, (3.3)

for all 𝑖𝑗 ∈ 𝑚 × 𝑛, together with the non-convex equations

ℋ𝑖𝑗 − (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗) = 0𝑚+𝑛, (3.4)

for all 𝑖𝑗 ∈ 𝑚 × 𝑛. Next, we relax the equations (3.4) via the convex semi-

20

definiteness constraints:

ℋ𝑖𝑗 − (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗) ⪰ 0𝑚+𝑛, (3.5)

for all 𝑖𝑗 ∈ 𝑚 × 𝑛. So we can relax the M-P property (P2) as (3.3) and
(3.5), for all 𝑖𝑗 ∈ 𝑚 × 𝑛.

To put (3.5) into a standard form for semi-definite programming, we
create variables vectors 𝑥𝑖𝑗 ∈ ℝ𝑚+𝑛, and we have linear equations

𝑥𝑖𝑗 = (ℎ′
𝑖⋅

ℎ⋅𝑗
) . (3.6)

Next, for all 𝑖𝑗 ∈ 𝑚 × 𝑛, we introduce symmetric positive semi-definite
matrix variables 𝑍𝑖𝑗 ∈ ℝ(𝑚+𝑛+1)×(𝑚+𝑛+1), interpreting the entries as follows:

𝑍𝑖𝑗 = [𝑥(0)
𝑖𝑗 𝑥′

𝑖𝑗
𝑥𝑖𝑗 ℋ𝑖𝑗

] . (3.7)

Then the linear equation
𝑥(0)

𝑖𝑗 = 1 (3.8)

and 𝑍𝑖𝑗 positive semi-definite precisely enforce (3.5).
Finally, we re-cast (3.3) as

1
2 ⟨�̄�, 𝑍𝑖𝑗⟩ = ℎ𝑖𝑗, (3.9)

where

�̄� ∶= [0 ⃗0′
𝑚+𝑛

⃗0𝑚+𝑛 𝑄] ∈ ℝ(𝑚+𝑛+1)×(𝑚+𝑛+1). (3.10)

21

In principle, we can consider minimizing ‖𝐻‖1 subject to property (P1)
and any subset of (P3), (P4), and (3.3)+(3.5) for all 𝑖𝑗 ∈ 𝑚 × 𝑛 (though
we would reformulate (3.3)+(3.5) as above, so it is in a convenient form for
semi-definite programming solvers used in CVX). In doing so, we get further
new sparse generalized inverses which are all tractable via semi-definite
programming.

Of course all of these relaxations have feasible solutions, because the
Moore-Penrose pseudoinverse (MPP) 𝐴+ always gives a feasible solution.
An important issue is whether there is a strictly feasible solution — the
Slater condition(/constraint qualification) — as that is sufficient for strong
duality to hold and affects the convergence of algorithms (e.g., see [BV04]).
Even if the Slater condition does not hold, there is a facial-reduction algo-
rithm that can induce the Slater condition to hold on an appropriate face
of the feasible region (see [Pat13]).

3.2 A lighter version of (P1)
While linear-optimization solvers are well equipped for handling redundant
linear equations, there is some evidence that quadratic and SDP solvers
are not so well equipped. So, it is useful to handle such redundancies at
the modeling level1. M-P property (P1) involves 𝑚𝑛 equations 𝐴𝐻𝐴 = 𝐴.
Considering the singular value decomposition 𝐴 = 𝑈Σ𝑉 ′, if 𝐴 has rank 𝑟,
then we can take 𝑈 , Σ and 𝑉 to be 𝑚 × 𝑟, 𝑟 × 𝑟, and 𝑛 × 𝑟, respectively.
Then we can reduce (P1) to the 𝑟2 (≤ 𝑚𝑛) linear equations

(Σ𝑉 ′) 𝐻 (𝑈Σ) = Σ. (3.11)

1for example, per Erling Andersen with regard to the conic solver MOSEK

22

3.3 Quadratic tightening of (P1)
We can view (P1) as

𝑛
∑
𝑘=1

𝑚
∑
𝑙=1

𝑎𝑖𝑘𝑎ℓ𝑗ℎ𝑘ℓ = 𝑎𝑖𝑗,

for 𝑖 = 1, … 𝑚, 𝑗 = 1, … , 𝑛. For 𝑝 = 1, … , 𝑛 and 𝑞 = 1, … 𝑚, we can
multiply by ℎ𝑝𝑞 to get

𝑛
∑
𝑘=1

𝑚
∑
𝑙=1

𝑎𝑖𝑘𝑎ℓ𝑗ℎ𝑘ℓℎ𝑝𝑞 = 𝑎𝑖𝑗ℎ𝑝𝑞. (3.12)

Next, it is easy to see that

ℎ𝑘ℓℎ𝑝𝑞 = (ℋ𝑘𝑞)𝑚+𝑝,ℓ (and symmetrically)

and so we arrive at the valid linear equations

𝑛
∑
𝑘=1

𝑚
∑
𝑙=1

𝑎𝑖𝑘𝑎ℓ𝑗 (ℋ𝑘𝑞)𝑚+𝑝,ℓ = 𝑎𝑖𝑗ℎ𝑝𝑞. (3.13)

We note that we could apply this same idea to (3.11), the lighter version
of (P1).

23

3.4 Penalizing “big” ℋ𝑖𝑗 with quadratic
penalties

The convex semi-definiteness constraints (3.5):

ℋ𝑖𝑗 − (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗) ⪰ 0𝑚+𝑛

are not useful by themselves because for any choice of 𝐻, they are satisfied
by simply choosing ℋ𝑖𝑗 to be “big enough in the positive semi-definite
sense” (e.g., choose ℋ𝑖𝑗 ∶= 𝜆𝐼 , where 𝜆 is the greatest eigenvalue of

(ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗) .

Because ℋ𝑖𝑗 appears nowhere else, relaxing (3.4) to (3.5) is like throwing
(P2) out entirely. However, we can bring it back into play by replacing our
objective min ‖𝐻‖1 with

min 𝜏‖𝐻‖1 + (1 − 𝜏) ∑
𝑖,𝑗

tr (ℋ𝑖𝑗) , (3.14)

Because of (3.5), we can add the further restriction that each diagonal entry
of

ℋ𝑖𝑗 − (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗)

should be non-negative. That is, for all 𝑖 and 𝑗, we have the following
convex constraints:

(ℋ𝑖𝑗)ℓℓ − ℎ2
𝑖ℓ ≥ 0, for ℓ = 1, … , 𝑚, (3.15)

24

and
(ℋ𝑖𝑗)𝑚+ℓ,𝑚+ℓ − ℎ2

ℓ𝑗 ≥ 0, for ℓ = 1, … , 𝑛, (3.16)

Note that it is really necessary to do something like (3.15)-(3.16), or else
(3.14) will be unbounded.

Of course we have to find a suitable value for 𝜏 . It may well be advis-
able to dynamically alter 𝜏 , starting with very small 𝜏 , and then gradually
increasing 𝜏 (emphasizing sparsity of 𝐻) as we come closer to satisfying
(3.5).

3.5 Quadratic PSD-cuts
One idea for getting away from having to impose semi-definiteness con-
straints is to outer approximate them. We follow such an approach from
the literature (see [SBL10a], for example).

For any 𝑣 ∈ ℝ𝑚+𝑛, by (3.5), we have the valid inequality

𝑣′ (ℋ𝑖𝑗 − (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗)) 𝑣 ≥ 0.

Equivalently, we have the quadratic PSD-cut

⟨𝑣𝑣′, ℋ𝑖𝑗⟩ − ((ℎ𝑖⋅, ℎ′
⋅𝑗) 𝑣)2 ≥ 0, (3.17)

which we can easily see are convex quadratics. By letting 𝑣 be an eigenvector
of

ℋ̂𝑖𝑗 − (ℎ̂′
𝑖⋅

ℎ̂⋅𝑗
) (ℎ̂𝑖⋅, ℎ̂′

⋅𝑗)

corresponding to a negative eigenvalue, the corresponding quadratic PSD-

25

cut, which we now refer to as an eigen-cut, will be violated by �̂�𝑖𝑗, ℎ̂𝑖⋅,
ℎ̂⋅𝑗.

Schur complements

Using the above, we can see how to get violated quadratic PSD-cuts from
negative eigenvalues of appropriate matrices. For convenience, let

𝑋 ∶= ℋ𝑖𝑗,

and let

𝑥 ∶= (ℎ′
𝑖⋅

ℎ⋅𝑗
) .

We think of �̂� and ̂𝑥 as fixed at this point — a solution of a relaxation.
And then if 𝑣 is an eigenvector of �̂� − ̂𝑥 ̂𝑥′ with negative eigenvalue, then
𝑣′ (𝑋 − 𝑥𝑥′) 𝑣 ≥ 0 is a valid quadratic PSD-cut that is violated by �̂�, ̂𝑥.

Now we can also consider

̂𝑍 ∶= (1 ̂𝑥′

̂𝑥 �̂�
) .

It is appealing to consider the matrix variable 𝑍 because PSD-cuts for 𝑍
are linear (rather than convex quadratic).

It is helpful to also consider

�̂� ∶= (0 ⃗0′

⃗0 �̂� − ̂𝑥 ̂𝑥′) .

Note that bordering �̂� − ̂𝑥 ̂𝑥′ with zeros includes an additional zero eigen-
value into the set of eigenvalues of �̂� − ̂𝑥 ̂𝑥′.

26

Let 𝜆𝑛 ≥ ⋯ ≥ 𝜆2 ≥ 𝜆1 be the decreasingly ordered list of eigenvalues
of ̂𝑍, and let 𝜇𝑛 ≥ 𝜇𝑛−1 ≥ ⋯ ≥ 𝜇2 ≥ 𝜇1 be the decreasingly ordered list
of eigenvalues of �̂� . Then, there is a nice interlacing principle here (see
[Zha05, Theorem 2.1]):

𝜆𝑛 ≥ 𝜇𝑛 ≥ 𝜆𝑛−1 ≥ 𝜇𝑛−1 ≥ ⋯ ≥ 𝜆2 ≥ 𝜇2 ≥ 𝜆1.

Note that 𝜇1 does not appear here. We can conclude:

1. if �̂� (or �̂� − ̂𝑥 ̂𝑥′) has 𝑘 negative eigenvalues then ̂𝑍 has either 𝑘 or
𝑘 − 1 negative eigenvalues;

2. if ̂𝑍 has 𝑘 negative eigenvalues then �̂� (or �̂� − ̂𝑥 ̂𝑥′) has 𝑘 or 𝑘 + 1
negative eigenvalues.

This might suggest that, ignoring the time to solve relaxations, it could
be better to work with �̂� − ̂𝑥 ̂𝑥′ rather than ̂𝑍. Certainly when 𝑘 = 0 we
can see that if ̂𝑍 has 𝑘 = 0 negative eigenvalues then �̂� has 0 negative
eigenvalues. But we can say more. Consider the following definition.

Definition 8. The inertia of an 𝑛 × 𝑛 Hermitian matrix 𝑄 is the ordered
triple In(𝑄) ∶= (𝑝(𝑄), 𝑞(𝑄), 𝑧(𝑄)), in which 𝑝(𝑄), 𝑞(𝑄), and 𝑧(𝑄) are the
numbers of the positive, negative, and zero eigenvalues of 𝑄, respectively
(including multiplicities) (see [Zha05, Section 1.3]).

We have

̂𝑉 ∶= (1 ⃗0′

⃗0 �̂� − ̂𝑥 ̂𝑥′) = (1 ⃗0′

− ̂𝑥 𝐼
) ̂𝑍 (1 − ̂𝑥′

⃗0 𝐼
) .

So based on [Zha05, Theorem 1.5], In(̂𝑉)=In(̂𝑍). Therefore ̂𝑉 and ̂𝑍 have
the same number of negative eigenvalues. Also, based on [Zha05, Theorem
1.6], we have

27

In(̂𝑍) = In([1]) + In(�̂� − ̂𝑥 ̂𝑥′).

Therefore, ̂𝑍 and �̂� − ̂𝑥 ̂𝑥′ have the same number of negative eigenvalues.

3.6 Pre-computed quadratic PSD-cuts
We have seen very slow convergence with eigen-cuts, and we have found it
useful to pre-compute some quadratic PSD-cuts. A useful set of quadratic
PSD-cuts appears to come from choosing 𝑣 to be all choices of non-zero
vectors with only ±1 as non-zeros and at most two such non-zeros (see
[AH17], for example). Because there is no need to include the negative of
any utilized 𝑣, the number of such 𝑣 (which would give us cuts for each 𝑖
and 𝑗) is 𝑚 + 𝑛 + (𝑚+𝑛

2).

3.7 2-by-2 cuts
Besides quadratic PSD-cuts, which enforce that the diagonal entries of

ℋ𝑖𝑗 − (ℎ′
𝑖⋅

ℎ⋅𝑗
) (ℎ𝑖⋅, ℎ′

⋅𝑗)

be non-negative, we can additionally seek to enforce that the 2-by-2 princi-
ple submatrices of the ℋ𝑖𝑗 be positive semi-definite (see [KK03]). Letting

𝑀 ∶= (𝑎 𝑐
𝑐 𝑏)

28

denote a principle submatrix of ℋ𝑖𝑗, we can easily see that 𝑀 ⪰ 0 is
equivalent to

𝑎𝑏 − 𝑐2 ≥ 0, 𝑎 ≥ 0, 𝑏 ≥ 0. (3.18)

This solution set of (3.18) may not appear to be convex, but it is — being
just a rotated second-order cone.

3.8 Reformulation Linearization Technique
(RLT)

The Reformulation-Linearization-Technique (RLT) (see [SA99]) is a method
that generates strengthened linear programming relaxations. We can take
any pairs of inequalities 𝛼′𝑥 ≥ 𝛽 and 𝛾′𝑥 ≥ 𝛿 and consider the valid inequal-
ity (𝛼′𝑥 − 𝛽) (𝛾′𝑥 − 𝛿) ≥ 0. Expanding this we have ∑𝑖 ∑𝑗 𝛼𝑖𝛾𝑗𝑥𝑖𝑥𝑗 −
(𝛿𝛼′ + 𝛽𝛾′) 𝑥 + 𝛽𝛿 ≥ 0, which we then linearize by replacing 𝑥𝑖𝑥𝑗 by a new
variable 𝑦𝑖𝑗.

In our context, we assume that we can put box constraints on the ℎ𝑖𝑗,
say

𝜆𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝜇𝑖𝑗, (3.19)

for 𝑖𝑗 ∈ 𝑛 × 𝑚, and then applying RLT to them.
Now, consider for all 𝑝𝑞 ∈ 𝑛 × 𝑚 and 𝑘ℓ ∈ 𝑛 × 𝑚, the valid inequalities

derived from the box constraints:

(ℎ𝑝𝑞 − 𝜆𝑝𝑞)(ℎ𝑘ℓ − 𝜆𝑘ℓ) ≥ 0,
(ℎ𝑝𝑞 − 𝜆𝑝𝑞)(𝜇𝑘ℓ − ℎ𝑘ℓ) ≥ 0,
(𝜇𝑝𝑞 − ℎ𝑝𝑞)(𝜇𝑘ℓ − ℎ𝑘ℓ) ≥ 0.

Equivalently, we have the following inequalities.

29

For all 𝑝𝑞 ∈ 𝑛 × 𝑚 and 𝑘ℓ ∈ 𝑛 × 𝑚:

ℎ𝑝𝑞ℎ𝑘ℓ − 𝜆𝑘ℓℎ𝑝𝑞 − 𝜆𝑝𝑞ℎ𝑘ℓ + 𝜆𝑝𝑞𝜆𝑘ℓ ≥ 0,
−ℎ𝑝𝑞ℎ𝑘ℓ + 𝜇𝑘ℓℎ𝑝𝑞 + 𝜆𝑝𝑞ℎ𝑘ℓ − 𝜆𝑝𝑞𝜇𝑘ℓ ≥ 0,
ℎ𝑝𝑞ℎ𝑘ℓ − 𝜇𝑘ℓℎ𝑝𝑞 − 𝜇𝑝𝑞ℎ𝑘ℓ + 𝜇𝑝𝑞𝜇𝑘ℓ ≥ 0.

(3.20)

For all 𝑗 = 1, … 𝑚 and 𝑘ℓ ∈ 𝑛 × 𝑚:

ℎ𝑘𝑗ℎ𝑘ℓ − 𝜆𝑘ℓℎ𝑘𝑗 − 𝜆𝑘𝑗ℎ𝑘ℓ + 𝜆𝑘𝑗𝜆𝑘ℓ ≥ 0,
−ℎ𝑘𝑗ℎ𝑘ℓ + 𝜇𝑘ℓℎ𝑘𝑗 + 𝜆𝑘𝑗ℎ𝑘ℓ − 𝜆𝑘𝑗𝜇𝑘ℓ ≥ 0,
ℎ𝑘𝑗ℎ𝑘ℓ − 𝜇𝑘ℓℎ𝑘𝑗 − 𝜇𝑘𝑗ℎ𝑘ℓ + 𝜇𝑘𝑗𝜇𝑘ℓ ≥ 0.

For all 𝑖 = 1, … 𝑛 and 𝑝𝑞 ∈ 𝑛 × 𝑚:

ℎ𝑝𝑞ℎ𝑖𝑞 − 𝜆𝑖𝑞ℎ𝑝𝑞 − 𝜆𝑝𝑞ℎ𝑖𝑞 + 𝜆𝑝𝑞𝜆𝑖𝑞 ≥ 0,
−ℎ𝑝𝑞ℎ𝑖𝑞 + 𝜇𝑖𝑞ℎ𝑝𝑞 + 𝜆𝑝𝑞ℎ𝑖𝑞 − 𝜆𝑝𝑞𝜇𝑖𝑞 ≥ 0,
ℎ𝑝𝑞ℎ𝑖𝑞 − 𝜇𝑖𝑞ℎ𝑝𝑞 − 𝜇𝑝𝑞ℎ𝑖𝑞 + 𝜇𝑝𝑞𝜇𝑖𝑞 ≥ 0.

From (3.4), we have the following identities for all 𝑘 = 1, … 𝑛, 𝑞 =
1, … , 𝑚.

For 𝑝 = 1, … 𝑛, ℓ = 1, … , 𝑚:

ℎ𝑝𝑞ℎ𝑘ℓ = (ℋ𝑘𝑞)𝑚+𝑝,ℓ (and symmetrically),

and
ℎ𝑘ℓℎ𝑝𝑞 = (ℋ𝑝ℓ)𝑚+𝑘,𝑞 (and symmetrically).

For 𝑗 = 1, … 𝑚, ℓ = 1, … , 𝑚:

ℎ𝑘𝑗ℎ𝑘ℓ = (ℋ𝑘𝑞)𝑗,ℓ (and symmetrically).

30

For 𝑝 = 1, … 𝑛, 𝑖 = 1, … , 𝑛:

ℎ𝑝𝑞ℎ𝑖𝑞 = (ℋ𝑘𝑞)𝑚+𝑝,𝑚+𝑖 (and symmetrically).

So we can linearize the valid inequalities above in the lifted space, as:

For all 𝑝 = 1, … , 𝑛, 𝑞 = 1, … 𝑚, 𝑘 = 1, … , 𝑛, ℓ = 1, … , 𝑚:

(ℋ𝑘𝑞)𝑚+𝑝,ℓ − 𝜆𝑘ℓℎ𝑝𝑞 − 𝜆𝑝𝑞ℎ𝑘ℓ + 𝜆𝑝𝑞𝜆𝑘ℓ ≥ 0,
− (ℋ𝑘𝑞)𝑚+𝑝,ℓ + 𝜇𝑘ℓℎ𝑝𝑞 + 𝜆𝑝𝑞ℎ𝑘ℓ − 𝜆𝑝𝑞𝜇𝑘ℓ ≥ 0,
(ℋ𝑘𝑞)𝑚+𝑝,ℓ − 𝜇𝑘ℓℎ𝑝𝑞 − 𝜇𝑝𝑞ℎ𝑘ℓ + 𝜇𝑝𝑞𝜇𝑘ℓ ≥ 0,

and
(ℋ𝑝ℓ)𝑚+𝑘,𝑞 − 𝜆𝑘ℓℎ𝑝𝑞 − 𝜆𝑝𝑞ℎ𝑘ℓ + 𝜆𝑝𝑞𝜆𝑘ℓ ≥ 0,
− (ℋ𝑝ℓ)𝑚+𝑘,𝑞 + 𝜇𝑘ℓℎ𝑝𝑞 + 𝜆𝑝𝑞ℎ𝑘ℓ − 𝜆𝑝𝑞𝜇𝑘ℓ ≥ 0,
(ℋ𝑝ℓ)𝑚+𝑘,𝑞 − 𝜇𝑘ℓℎ𝑝𝑞 − 𝜇𝑝𝑞ℎ𝑘ℓ + 𝜇𝑝𝑞𝜇𝑘ℓ ≥ 0.

For all 𝑞 = 1, … , 𝑚, 𝑗 = 1, … , 𝑚, 𝑘 = 1, … , 𝑛, ℓ = 1, … , 𝑚:

(ℋ𝑘𝑞)𝑗,ℓ − 𝜆𝑘ℓℎ𝑘𝑗 − 𝜆𝑘𝑗ℎ𝑘ℓ + 𝜆𝑘𝑗𝜆𝑘ℓ ≥ 0,
− (ℋ𝑘𝑞)𝑗,ℓ + 𝜇𝑘ℓℎ𝑘𝑗 + 𝜆𝑘𝑗ℎ𝑘ℓ − 𝜆𝑘𝑗𝜇𝑘ℓ ≥ 0,
(ℋ𝑘𝑞)𝑗,ℓ − 𝜇𝑘ℓℎ𝑘𝑗 − 𝜇𝑘𝑗ℎ𝑘ℓ + 𝜇𝑘𝑗𝜇𝑘ℓ ≥ 0.

Note that from the first equations on this last group, we have for all
𝑗 = 1, … , 𝑚:

(ℋ𝑘𝑞)𝑗,𝑗 ≥ 𝜆𝑘𝑗ℎ𝑘𝑗 + 𝜆𝑘𝑗ℎ𝑘𝑗 − 𝜆𝑘𝑗𝜆𝑘𝑗

≥ 2𝜆𝑘𝑗𝜆𝑘𝑗 − 𝜆𝑘𝑗𝜆𝑘𝑗 = 𝜆2
𝑘𝑗 ≥ 0.

31

For all 𝑘 = 1, … , 𝑛, 𝑖 = 1, … , 𝑛, 𝑝 = 1, … , 𝑛, 𝑞 = 1, … , 𝑛:

(ℋ𝑘𝑞)𝑚+𝑝,𝑚+𝑖 − 𝜆𝑖𝑞ℎ𝑝𝑞 − 𝜆𝑝𝑞ℎ𝑖𝑞 + 𝜆𝑝𝑞𝜆𝑖𝑞 ≥ 0,
− (ℋ𝑘𝑞)𝑚+𝑝,𝑚+𝑖 + 𝜇𝑖𝑞ℎ𝑝𝑞 + 𝜆𝑝𝑞ℎ𝑖𝑞 − 𝜆𝑝𝑞𝜇𝑖𝑞 ≥ 0,
(ℋ𝑘𝑞)𝑚+𝑝,𝑚+𝑖 − 𝜇𝑖𝑞ℎ𝑝𝑞 − 𝜇𝑝𝑞ℎ𝑖𝑞 + 𝜇𝑝𝑞𝜇𝑖𝑞 ≥ 0.

Note that from the first equations on this last group, we have for all
𝑖 = 1, … , 𝑛:

(ℋ𝑘𝑞)𝑚+𝑖,𝑚+𝑖 ≥ 𝜆𝑖𝑞ℎ𝑖𝑞 + 𝜆𝑖𝑞ℎ𝑖𝑞 − 𝜆𝑖𝑞𝜆𝑖𝑞

≥ 2𝜆𝑖𝑞𝜆𝑖𝑞 − 𝜆𝑖𝑞𝜆𝑖𝑞 = 𝜆2
𝑖𝑞 ≥ 0.

3.9 Non-symmetric lifting
In previous sections we have considered modeling property (P2) by using
𝑛𝑚 symmetric matrix variables ℋ𝑖𝑗 ∈ ℝ(𝑚+𝑛)×(𝑚+𝑛) in the constraints (3.3)
and (3.4). The motivation for this formulation is to relax (P2), or more
specifically, to relax (3.4) using semi-definite programming. Although semi-
definite relaxations are mathematically appealing and lead to interesting
results, lifting to the 𝑛𝑚 symmetric matrix variables ℋ𝑖𝑗 ∈ ℝ(𝑚+𝑛)×(𝑚+𝑛)

is rather heavy.
Aiming to avoid the computational/numerical difficulty introduced with

this heavy lifting, we alternatively consider modeling (P2) by the 𝑛𝑚 non-
symmetric quadratic equations (3.1), and investigate possible convex re-
laxations of these equations. We seek to avoid re-casting each quadratic
equation (3.1) as a symmetric quadratic equation (3.2). To do this, we
work with matrices in ℝ𝑚×𝑛 rather than in ℝ(𝑚+𝑛)×(𝑚+𝑛) so we are still
lifting, but in a lighter manner. In the heavier situation that we previously
considered, for each of the 𝑚𝑛 symmetric matrix variables in ℝ(𝑚+𝑛)×(𝑚+𝑛),

32

there are (𝑚+𝑛
2) independent scalar variables. In the approach that we now

suggest to investigate, for each of the 𝑚𝑛 non-symmetric matrix variables
in ℝ𝑚×𝑛, there are 𝑚𝑛 scalar variables. For 𝑚 = 𝑛, this is a savings of
about half the number of scalar variables of the lifting.

General non-symmetric quadratic forms

Our approach may well have other applications when one has general non-
symmetric quadratic, so we present it more generally.

Consider a general quadratic form 𝑓(𝑥, 𝑦) ∶= 𝑥′𝑅𝑦, with 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛,
𝑅 ∈ ℝ𝑚×𝑛. Though we write 𝑥 and 𝑦 as if they are disjoint vectors of
variables, it can well be that the scalar variables that 𝑥 and 𝑦 each comprise
overlap. In fact, this will be the case for our application to (3.1), where ℎ𝑖⋅
and ℎ⋅𝑗 overlap on the variable ℎ𝑖𝑗.

We assume that we have or can derive reasonable box constraints on 𝑥
and 𝑦: �̂�𝑥 ≤ 𝑥 ≤ ̂𝜇𝑥 and �̂�𝑦 ≤ 𝑦 ≤ ̂𝜇𝑦.

We can see our general quadratic form as

𝑓(𝑥, 𝑦) = 𝑥′𝑅𝑦 = ⟨𝑅, 𝑥𝑦′⟩ .

Now, we can lift to non-symmetric matrix space by defining 𝑊 ∶= 𝑥𝑦′ ∈
ℝ𝑚×𝑛. So we model 𝑓(𝑥, 𝑦) as

𝑓(𝑥, 𝑦) = ⟨𝑅, 𝑊⟩,

and we focus on relaxing

𝑊 − 𝑥𝑦′ = 0𝑚×𝑛. (3.21)

33

Emulating Saxena et al.

Suppose that we have solved a relaxation and have values �̂� , ̂𝑥, ̂𝑦, violating
(3.21). We can consider the associated SVD:

𝑈 ′(�̂� − ̂𝑥 ̂𝑦′)𝑉 = Σ,

where a violation of (3.21) means that there is at least one non-zero singular
value 𝜎. So, for the associated columns 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , we have

𝑢′(�̂� − ̂𝑥 ̂𝑦′)𝑣 = 𝜎 ≠ 0.

This motivates looking at the violated valid equation

⟨𝑊, 𝑢𝑣′⟩ − (𝑢′𝑥)(𝑣′𝑦) = 0. (3.22)

To emphasize, note that in (3.22) the variables are 𝑊 , 𝑥, and 𝑦, while 𝑢
and 𝑣 are fixed. The non-linearity in (3.22) is only in the single product of
𝑢′𝑥 with 𝑣′𝑦. To deal with it, we can induce separability by defining

𝑡1 ∶= (𝑢′𝑥 + 𝑣′𝑦)/2,
𝑡2 ∶= (𝑢′𝑥 − 𝑣′𝑦)/2.

So,
𝑢′𝑥 = 𝑡1 + 𝑡2,
𝑣′𝑦 = 𝑡1 − 𝑡2,

and then we have
(𝑢′𝑥)(𝑣′𝑦) = 𝑡2

1 − 𝑡2
2.

34

In this manner, we may replace (3.22) with

⟨𝑊, 𝑢𝑣′⟩ − 𝑡2
1 + 𝑡2

2 ≤ 0, (3.23)
− ⟨𝑊, 𝑢𝑣′⟩ + 𝑡2

1 − 𝑡2
2 ≤ 0. (3.24)

Then we can treat the quadratic terms of (3.23-3.24) via the technique of
Saxena et al. [SBL10a]. That is, (i) we either leave the convex +𝑡2

𝑖 terms
as is or possibly linearize via lower-bounding tangents, and (ii) we make
secant inequalities and disjunctive cuts on the concave −𝑡2

𝑖 terms, which
requires first calculating lower and upper bounds on the 𝑡𝑖. Note that we
can either derive bounds on the 𝑡𝑖 from the box constraints on 𝑥 and 𝑦, or we
can get potentially better bounds by solving further (convex) optimization
problems.

Note that if we simultaneously treat the two concave terms (−𝑡2
𝑖) via the

disjunctive technique of Saxena et al., we are led to a 4-way disjunction.

McCormick instead of Saxena et al.

Another possible way of relaxing (3.22) is to apply a McCormick convexifi-
cation. Let

⎧{
⎨{⎩

𝑠 ∶= ⟨𝑊, 𝑢𝑣′⟩ ,
𝑝1 ∶= 𝑢′𝑥 ,
𝑝2 ∶= 𝑣′𝑦 .

(3.25)

35

We first calculate bounds [𝑎𝑖, 𝑏𝑖], for 𝑝𝑖 (𝑖 = 1, 2). Then we carry out the
associated McCormick relaxation of 𝑠 = 𝑝1𝑝2:

𝑠 ≤ 𝑏2𝑝1 + 𝑎1𝑝2 − 𝑎1𝑏2 (I.1)
𝑠 ≤ 𝑎2𝑝1 + 𝑏1𝑝2 − 𝑎2𝑏1 (I.2)
𝑠 ≥ 𝑎2𝑝1 + 𝑎1𝑝2 − 𝑎1𝑎2 (I.3)
𝑠 ≥ 𝑏2𝑝1 + 𝑏1𝑝2 − 𝑏1𝑏2 (I.4)

Substituting back in (3.25), we obtain

⟨𝑊, 𝑢𝑣′⟩ ≤ 𝑏2𝑢′𝑥 + 𝑎1𝑣′𝑦 − 𝑎1𝑏2 (I.1’)
⟨𝑊, 𝑢𝑣′⟩ ≤ 𝑎2𝑢′𝑥 + 𝑏1𝑣′𝑦 − 𝑎2𝑏1 (I.2’)
⟨𝑊, 𝑢𝑣′⟩ ≥ 𝑎2𝑢′𝑥 + 𝑎1𝑣′𝑦 − 𝑎1𝑎2 (I.3’)
⟨𝑊, 𝑢𝑣′⟩ ≥ 𝑏2𝑢′𝑥 + 𝑏1𝑣′𝑦 − 𝑏1𝑏2, (I.4’)

and we can hope that these are violated by �̂� , ̂𝑥, ̂𝑦.
Backing up a bit to compare with Saxena et al., here we are relaxing

𝑠 = 𝑝1𝑝2. If 𝑝1 = 𝑝2 =∶ 𝑝 (the Saxena et al. case), then we have 𝑠 = 𝑝2,
whereupon we can distinguish the two “sides”:

𝑠 ≥ 𝑝2 (convex)
𝑠 ≤ 𝑝2 (concave)

Then Saxena et al. use (i) the convex side directly (or a linearization of it),
and (ii) disjunctive programming on the concave side.

The question now begs, can we take (I.1–I.4) and do disjunctive program-
ming in some nice way? It is convenient to work with box domains, so we
could pick 𝜂𝑖 in [𝑎𝑖, 𝑏𝑖], for 𝑖 = 1, 2. Then we get four boxes, by pairing one

36

of
[𝑎1, 𝜂1], [𝜂1, 𝑏1],

and one of
[𝑎2, 𝜂2], [𝜂2, 𝑏2].

For each box, we get a new McCormick convexification (in the spirit of
I.1–I.4). And so, as in the technique of the previous subsection, we have a
4-way disjunction to base a disjunctive cut upon.

3.10 Modeling our problem
As stated, we can write (P2) as the following 𝑛𝑚 non-symmetric quadratic
equations

ℎ𝑖⋅𝐴ℎ⋅𝑗 = ℎ𝑖𝑗,

which can also be expressed as

⟨𝐴, ℎ′
𝑖⋅ℎ′

⋅𝑗⟩ = ℎ𝑖𝑗,

for all 𝑖𝑗 ∈ 𝑛 × 𝑚.
We lift to non-symmetric matrix space, defining the matrix variables

𝒦𝑖𝑗 ∶= ℎ′
𝑖⋅ℎ′

⋅𝑗 ∈ ℝ𝑚×𝑛,

for all 𝑖𝑗 ∈ 𝑛 × 𝑚.
Property (P2) can then be modeled by the linear equations

⟨𝐴, 𝒦𝑖𝑗⟩ = ℎ𝑖𝑗, (3.26)

37

together with the non-convex equations

𝒦𝑖𝑗 − ℎ′
𝑖⋅ℎ′

⋅𝑗 = 0𝑚×𝑛, (3.27)

for all 𝑖𝑗 ∈ 𝑛 × 𝑚.
For all 𝑖𝑗 ∈ 𝑛 × 𝑚 and 𝑘ℓ ∈ 𝑚 × 𝑛, we now have

(𝒦𝑖𝑗)𝑘,ℓ = ℎ𝑖𝑘ℎℓ𝑗,

and we relax these non-convex equations with the McCormick/RLT inequal-
ities derived from the box constraints on the ℎ𝑖𝑗 (3.19) and the valid inequal-
ities (3.20).

Linearizing (3.20), we now obtain:

(𝒦𝑖𝑗)𝑘,ℓ − 𝜆ℓ𝑗ℎ𝑖𝑘 − 𝜆𝑖𝑘ℎℓ𝑗 + 𝜆𝑖𝑘𝜆ℓ𝑗 ≥ 0,
− (𝒦𝑖𝑗)𝑘,ℓ + 𝜇ℓ𝑗ℎ𝑖𝑘 + 𝜆𝑖𝑘ℎℓ𝑗 − 𝜆𝑖𝑘𝜇ℓ𝑗 ≥ 0,
(𝒦𝑖𝑗)𝑘,ℓ − 𝜇ℓ𝑗ℎ𝑖𝑘 − 𝜇𝑖𝑘ℎℓ𝑗 + 𝜇𝑖𝑘𝜇ℓ𝑗 ≥ 0,

for all 𝑖𝑗 ∈ 𝑛 × 𝑚 and 𝑘ℓ ∈ 𝑚 × 𝑛.
We can also consider applying the equations for the quadratic tightening

of (P1); that is, (3.12):

𝑛
∑
𝑖=1

𝑚
∑
𝑘=1

𝑎𝑝𝑖𝑎𝑘𝑞ℎ𝑖𝑘ℎℓ𝑗 = 𝑎𝑝𝑞ℎℓ𝑗,

for ℓ𝑗 ∈ 𝑛 × 𝑚 and 𝑝𝑞 ∈ 𝑚 × 𝑛. Linearizing them, we obtain:

𝑛
∑
𝑖=1

𝑚
∑
𝑘=1

𝑎𝑝𝑖𝑎𝑘𝑞(𝒦𝑖𝑗)𝑘,𝑙 = 𝑎𝑝𝑞ℎℓ𝑗. (3.28)

38

We further consider the valid inequalities (3.23) and (3.24). Following
the discussion in §3.9, let 𝑢𝑖𝑗 ∈ ℝ𝑚 and 𝑣𝑖𝑗 ∈ ℝ𝑛 be the vectors such that

𝑢𝑖𝑗′(�̂�𝑖𝑗 − ℎ̂′
𝑖⋅ℎ̂′

⋅𝑗)𝑣𝑖𝑗 ≠ 0.

for given values �̂�𝑖𝑗, ℎ̂𝑖⋅, ℎ̂⋅𝑗, for all 𝑖𝑗 ∈ 𝑛 × 𝑚.
Considering this notation, the valid inequalities (3.23) and (3.24) are now

⟨𝒦𝑖𝑗, 𝑢𝑖𝑗𝑣𝑖𝑗′⟩ + 𝑤1𝑖𝑗 + 𝑡2
2𝑖𝑗 ≤ 0,

− ⟨𝒦𝑖𝑗, 𝑢𝑖𝑗𝑣𝑖𝑗′⟩ + 𝑡2
1𝑖𝑗 + 𝑤2𝑖𝑗 ≤ 0,

where the concave terms −𝑡2
𝑝𝑖𝑗 have been replaced with the linear terms

+𝑤𝑝𝑖𝑗, for 𝑝 = 1, 2. Assuming lower and upper bounds on 𝑡𝑝𝑖𝑗 (𝛼𝑝𝑖𝑗 ≤
𝑡𝑝𝑖𝑗 ≤ 𝛽𝑝𝑖𝑗), the new variables 𝑤𝑝𝑖𝑗 are then constrained to satisfy the
secant inequalities

− ((𝑡𝑝𝑖𝑗 − 𝛼𝑝𝑖𝑗)
𝛽2

𝑝𝑖𝑗 − 𝛼2
𝑝𝑖𝑗

𝛽𝑝𝑖𝑗 − 𝛼𝑝𝑖𝑗
+ 𝛼2

𝑝𝑖𝑗) ≤ 𝑤𝑝𝑖𝑗 .

Interval bounds [𝛼𝑝𝑖𝑗, 𝛽𝑝𝑖𝑗] on 𝑡𝑝𝑖𝑗 can be directly derived from the bounds
on ℎ𝑖𝑗 (𝜆𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝜇𝑖𝑗). As

𝑡1𝑖𝑗 = (𝑢𝑖𝑗′ℎ′
𝑖⋅ + 𝑣𝑖𝑗′ℎ⋅𝑗)/2,

𝑡2𝑖𝑗 = (𝑢𝑖𝑗′ℎ′
𝑖⋅ − 𝑣𝑖𝑗′ℎ⋅𝑗)/2,

39

we have

𝛼1𝑖𝑗 = 1
2 (

𝑚
∑
ℓ=1

(min{(𝑢𝑖𝑗)ℓ𝜆𝑖ℓ, (𝑢𝑖𝑗)ℓ𝜇𝑖ℓ}) +
𝑛

∑
ℓ=1

(min{(𝑣𝑖𝑗)ℓ𝜆ℓ𝑗, (𝑣𝑖𝑗)ℓ𝜇ℓ𝑗})) ,

𝛽1𝑖𝑗 = 1
2 (

𝑚
∑
ℓ=1

(max{(𝑢𝑖𝑗)ℓ𝜆𝑖ℓ, (𝑢𝑖𝑗)ℓ𝜇𝑖ℓ}) +
𝑛

∑
ℓ=1

(max{(𝑣𝑖𝑗)ℓ𝜆ℓ𝑗, (𝑣𝑖𝑗)ℓ𝜇ℓ𝑗})) ,

𝛼2𝑖𝑗 = 1
2 (

𝑚
∑
ℓ=1

(min{(𝑢𝑖𝑗)ℓ𝜆𝑖ℓ, (𝑢𝑖𝑗)ℓ𝜇𝑖ℓ}) −
𝑛

∑
ℓ=1

(max{(𝑣𝑖𝑗)ℓ𝜆ℓ𝑗, (𝑣𝑖𝑗)ℓ𝜇ℓ𝑗})) ,

𝛽2𝑖𝑗 = 1
2 (

𝑚
∑
ℓ=1

(max{(𝑢𝑖𝑗)ℓ𝜆𝑖ℓ, (𝑢𝑖𝑗)ℓ𝜇𝑖ℓ}) −
𝑛

∑
ℓ=1

(min{(𝑣𝑖𝑗)ℓ𝜆ℓ𝑗, (𝑣𝑖𝑗)ℓ𝜇ℓ𝑗})) .

Though, we could also seek to tighten these bounds by casting and solving
appropriate optimization problems.

We note that, as we discussed in §3.9, the vectors 𝑢𝑖𝑗 and 𝑣𝑖𝑗 can be
obtained from the columns of the matrices 𝑈 𝑖𝑗 and 𝑉 𝑖𝑗 in the SVD:

𝑈 𝑖𝑗′(�̂�𝑖𝑗 − ℎ̂′
𝑖⋅ℎ̂′

⋅𝑗)𝑉 𝑖𝑗 = Σ𝑖𝑗.

Also, as discussed in §3.6, it might be beneficial to pre-compute some of
these vectors, before finding cuts iteratively via SVD, although this is not
something we decided upon exploring further.

The quadratic model derived for our problem is as follows:

40

min ‖𝐻‖1 ,

Linear equations on 𝐻:
𝐴𝐻𝐴 = 𝐴 (P1), or the lighter version: (Σ𝑉 ′) 𝐻 (𝑈Σ) = Σ ,
(𝐴𝐻)′ = 𝐴𝐻 (P3) (optional) ,
(𝐻𝐴)′ = 𝐻𝐴 (P4) (optional) ,

Lifting equations:
⟨𝐴, 𝒦𝑖𝑗⟩ = ℎ𝑖𝑗 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,

𝑛
∑
𝑖=1

𝑚
∑
𝑘=1

𝑎𝑝𝑖𝑎𝑘𝑞(𝒦𝑖𝑗)𝑘,𝑙 = 𝑎𝑝𝑞ℎℓ𝑗 ∀𝑝𝑞 ∈ 𝑚 × 𝑛 , ∀ℓ𝑗 ∈ 𝑛 × 𝑚 ,

McCormick lifting inequalities:
𝜆𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝜇𝑖𝑗 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,
(𝒦𝑖𝑗)𝑘,ℓ − 𝜆ℓ𝑗ℎ𝑖𝑘 − 𝜆𝑖𝑘ℎℓ𝑗 + 𝜆𝑖𝑘𝜆ℓ𝑗 ≥ 0 , ∀𝑘ℓ ∈ 𝑚 × 𝑛 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,

− (𝒦𝑖𝑗)𝑘,ℓ + 𝜇ℓ𝑗ℎ𝑖𝑘 + 𝜆𝑖𝑘ℎℓ𝑗 − 𝜆𝑖𝑘𝜇ℓ𝑗 ≥ 0 , ∀𝑘ℓ ∈ 𝑚 × 𝑛 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,

(𝒦𝑖𝑗)𝑘,ℓ − 𝜇ℓ𝑗ℎ𝑖𝑘 − 𝜇𝑖𝑘ℎℓ𝑗 + 𝜇𝑖𝑘𝜇ℓ𝑗 ≥ 0 , ∀𝑘ℓ ∈ 𝑚 × 𝑛 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,

Quadratic lifting inequalities; for various choices of 𝑢𝑖𝑗 and 𝑣𝑖𝑗:
(note that the 𝛼𝑝𝑖𝑗 and 𝛽𝑝𝑖𝑗 depend on 𝑢𝑖𝑗 and 𝑣𝑖𝑗)
𝑡1𝑖𝑗 ∶= (𝑢𝑖𝑗′ℎ′

𝑖⋅ + 𝑣𝑖𝑗′ℎ⋅𝑗)/2, [substitute below] ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,
𝑡2𝑖𝑗 ∶= (𝑢𝑖𝑗′ℎ′

𝑖⋅ − 𝑣𝑖𝑗′ℎ⋅𝑗)/2, [substitute below] ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,
⟨𝒦𝑖𝑗, 𝑢𝑖𝑗𝑣𝑖𝑗′⟩ + 𝑤1𝑖𝑗 + 𝑡2

2𝑖𝑗 ≤ 0 , [convex quadratic] ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,
− ⟨𝒦𝑖𝑗, 𝑢𝑖𝑗𝑣𝑖𝑗′⟩ + 𝑡2

1𝑖𝑗 + 𝑤2𝑖𝑗 ≤ 0 , [convex quadratic] ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,

− ((𝑡𝑝𝑖𝑗 − 𝛼𝑝𝑖𝑗)
𝛽2

𝑝𝑖𝑗 − 𝛼2
𝑝𝑖𝑗

𝛽𝑝𝑖𝑗 − 𝛼𝑝𝑖𝑗
+ 𝛼2

𝑝𝑖𝑗) ≤ 𝑤𝑝𝑖𝑗 , [secant] for 𝑝 = 1, 2 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 ,

𝛼𝑝𝑖𝑗 ≤ 𝑡𝑝𝑖𝑗 ≤ 𝛽𝑝𝑖𝑗 , for 𝑝 = 1, 2 , ∀𝑖𝑗 ∈ 𝑛 × 𝑚 .
41

To reduce to a model fully linear model, we can replace the convex
quadratic terms +𝑡2

𝑝𝑖𝑗 with lower-bounding linearizations. That is, we can
replace +𝑡2

𝑝𝑖𝑗 with
𝜂2

𝑝𝑖𝑗 + 2𝜂𝑝𝑖𝑗(𝑡𝑝𝑖𝑗 − 𝜂𝑝𝑖𝑗),

at one or more values 𝜂𝑝𝑖𝑗 ∈ [𝛼𝑝𝑖𝑗, 𝛽𝑝𝑖𝑗] in the interval domain of 𝑡𝑝𝑖𝑗. More
specifically, we can consider substitutions of the form:

+𝑡2
1𝑖𝑗 ← 𝜂2

𝑝𝑖𝑗 + 2𝜂1𝑖𝑗 ((𝑢𝑖𝑗′ℎ′
𝑖⋅ + 𝑣𝑖𝑗′ℎ⋅𝑗)/2 − 𝜂1𝑖𝑗) ,

and
+𝑡2

2𝑖𝑗 ← 𝜂2
2𝑖𝑗 + 2𝜂2𝑖𝑗 ((𝑢𝑖𝑗′ℎ′

𝑖⋅ − 𝑣𝑖𝑗′ℎ⋅𝑗)/2 − 𝜂2𝑖𝑗) .

In this manner, we can work with a linear rather than quadratic model.

3.11 Diving heuristic
Material from this section is to appear in [FFL19].

The mathematical-programming models that we have been considering
in this chapter are rather heavy, and it is not practical to include all of
the inequalities that we have introduced. Moreover, it may not even be
desirable to include all of the inequalities. The inequalities relax (P2), but
we probably do not want to fully enforce (P2). Instead, we understand
that there is a trade-off to be made between sparsity, as measured by ‖𝐻‖1,
and satisfaction of (P2), as measured say by ‖𝐻 − 𝐻𝐴𝐻‖F. In this sec-
tion we propose a “diving” procedure for progressively enforcing (P2) while
heuristically narrowing the domain of our feasible region.

Diving is well known as a key primal heuristic for mixed-integer linear op-

42

timization, in the context of branch-and-bound (see, for example, [Ber06],
[Ber08], [Ach07], [DRL05], [EN07]). The idea is easy to implement within a
mixed-integer linear-optimization solver that already has the infrastructure
to carry out branch-and-bound. Iteratively, via a sequence of continuous
relaxations, variables that should be integer in feasible solutions are heuris-
tically fixed to integer values. This is a bit akin to “reduced-cost fixing”
(for mixed-integer linear-optimization), where variables are fixed to bounds
in a provably correct manner. Diving heuristics employ special (heuris-
tic) branching rules, with the aim of tending towards (primal) feasibility
and not towards a balanced subdivision of the problem (as many branching
rules seek to do). That these heuristics “quickly go down” the branch-and-
bound tree (in the sense of depth-first search) gives us the term diving. The
heuristic is so important in the context of mixed-integer linear-optimization
solvers that most of them, as a default, do a sequence of dives at the begin-
ning of the solution process, so as to quickly obtain a good feasible solution
which is very important for limiting the branching exploration. Applying
this type of idea in continuous non-convex global optimization appears to
be a fairly recent idea (see [GKL17]).

Our diving heuristic is closely related to this idea, but there is an im-
portant difference. Diving in the context of global optimization is aimed
at hoping to get lucky and branch directly toward what will turn out to
be a globally-optimal solution. Our context is different, our “target” that
we will aim at is the MPP 𝐴+. But our goal is not to get there; rather,
our goal is find good solutions along the way that trade off sparsity against
satisfaction of (P2).

We consider a diving procedure that iteratively increases the enforce-
ment of property (P2), while heuristically localizing our search, inevitably
showing its impact on the sparsity (approximately measured by ‖𝐻‖1) of a

43

computed generalized inverse 𝐻.
The procedure is initialized with the solution of problem 𝒫, where we

minimize ‖𝐻‖1 subject to: (P1), and any subset of (P3) and (P4), the
lifting equations ⟨𝐴, 𝒦𝑖𝑗⟩ = ℎ𝑖𝑗, for all 𝑖𝑗 ∈ 𝑛 × 𝑚, and the McCormick
lifting inequalities. We denote the solution of 𝒫 by (�̂�, �̂�). We define
bounds for ℎ𝑖𝑗 (𝜆𝑖𝑗 ≤ ℎ𝑖𝑗 ≤ 𝜇𝑖𝑗), such that [𝜆𝑖𝑗, 𝜇𝑖𝑗] is the smallest interval
that contains ℎ̂𝑖𝑗 and 𝐴+

𝑖𝑗. By including the current �̂� in the box, we hope
to remain localized to a region where there is a somewhat-sparse solution.
By including the MPP 𝐴+ in the box, we guaranteed that at every step we
will have a feasible solution to our domain-restricted relaxation.

Next, for a fixed number of iterations, we consider the last solution (�̂�,
�̂�) of 𝒫, and we append to 𝒫 the following inequalities, for all 𝑖𝑗 such that
�̂�𝑖𝑗 − ℎ̂′

𝑖⋅ℎ̂′
⋅𝑗 ≠ 0𝑚×𝑛.

⟨𝒦𝑖𝑗, 𝑢𝑖𝑗𝑣𝑖𝑗′⟩ + 𝑤1𝑖𝑗 + 𝑡2
2𝑖𝑗 ≤ 0,

− ((𝑡1𝑖𝑗 − 𝛼1𝑖𝑗)
𝛽2

1𝑖𝑗 − 𝛼2
1𝑖𝑗

𝛽1𝑖𝑗 − 𝛼1𝑖𝑗
+ 𝛼2

1𝑖𝑗) ≤ 𝑤1𝑖𝑗 .

𝛼1𝑖𝑗 ≤ 𝑡1𝑖𝑗 ≤ 𝛽1𝑖𝑗,

where 𝑢𝑖𝑗 ∈ ℝ𝑚 and 𝑣𝑖𝑗 ∈ ℝ𝑛 are respectively, left- and right-singular
vectors of �̂�𝑖𝑗 − ℎ̂′

𝑖⋅ℎ̂′
⋅𝑗, corresponding to its largest singular value. This

amounts to iteratively tightening violated non-convex quadratic equations
via secant inequalities.

Finally, we execute our “diving procedure”, where at each iteration, we
select 𝑖𝑗 ∈ 𝑛×𝑚, and cut the interval [𝛼1𝑖𝑗, 𝛽1𝑖𝑗] where a variable 𝑡1𝑖𝑗 varies
into two parts. Between the two, the new interval is selected to contain 𝐴+

𝑖𝑗.
The branching point can be the midpoint of the interval, the current value
of ℎ̂𝑖𝑗, or a weighted combination of both. We select 𝑖𝑗 at each iteration

44

corresponding to the non-convex inequality

𝑢𝑖𝑗′(𝒦𝑖𝑗 − ℎ′
𝑖⋅ℎ′

⋅𝑗)𝑣𝑖𝑗 ≤ 0,

that is most violated by the last solution computed for 𝒫. We note that
by reducing the size of the interval [𝛼1𝑖𝑗, 𝛽1𝑖𝑗], we reduce the size of the
interval where the secant of −𝑡2

1𝑖𝑗 is defined, leading to a new secant that
better approximates the concave function, and therefore, strengthening the
relaxation of (P2) on the new interval. The stopping criterion for the diving
procedure is a given maximum violation 𝜖 for (P2), i.e., the algorithm stops
when ‖𝐻𝐴𝐻 − 𝐻‖F ≤ 𝜖.

3.11.1 Weighted branching-point analysis and selection
In an effort to explore the potential of selecting different branching points,
we tested a variety of weighted combinations to compare the impact of that
selection on the rate of convergence to the MPP when (P1), and any subset
of (P3) and (P4), are enforced. For a given solution 𝐻 we measured the
impact of the choice of weighted combination through observation in the
change of objective function ||𝐻||1 and the enforcement of property (P2).
Recalling the notation from Chapter 1, let us again define 𝐻134 to denote
a solution 𝐻 that satisfies M-P properties (P1) + (P3) + (P4), with 𝐻1,
𝐻13, and 𝐻14 denoting solutions that satisfy (P1), (P1) + (P3), and (P1)
+ (P4), respectively. In this section all experiments conducted assume 𝐻
(and �̂�) correspond to 𝐻134 if not written explicitly.

The data matrix 𝐴 ∈ ℝ10×5 was generated for this experiment with
rank(𝐴) = 3. The entries of 𝐴 are generated iteratively using vectors 𝑟𝑘 :=
−1+2𝑥𝑚 and 𝑠𝑘 = 1+2𝑥𝑛, with 𝑥𝑚 ∈ ℝ𝑚, 𝑥𝑛 ∈ ℝ𝑛, and 𝑘 = 1,...,rank(𝐴).
The entries of 𝑥𝑚, 𝑥𝑛 are drawn from the standard uniform distribution on

45

the open interval (0,1).
The goal of this experiment is two-fold: (1) to decide upon which weighted

combination would be most effective in illustrating the tradeoff between the
sparsity of a solution (approximated by ||𝐻||1) and the violation (enforce-
ment) of property (P2), and (2) whether to use the midpoint of [𝛼, 𝛽] or the
point 𝑡𝑀𝑃𝑃 ∈ [𝛼, 𝛽] using the definition of the intermediary variables 𝑡𝑝𝑖𝑗
in combination with the relaxation solution �̂�, would provide a “better”
branching point selection for our proposed diving heuristic.

In the following two figures, we illustrate the results of five different
weighted combinations of the midpoint (MID) of [𝛼, 𝛽] and previous re-
laxation solution �̂�, shown as weighted pairs 25/75, 50/50, 75/25, 90/10,
and 100/0. The midpoint of the interval [𝛼1𝑖𝑗, 𝛽1𝑖𝑗] and corresponding 𝑡1𝑖𝑗
∶= (𝑢𝑖𝑗′ℎ̂′

𝑖 +𝑣𝑖𝑗′ℎ̂𝑗)/2, are both derived from the relaxation solution �̂� from
the previous dive iterate. Figure 3.1 provides a comparison in the rates of
increase of the objective value ||𝐻||1, while Figure 3.2 provides a comparison
in the rate of reduction of the violation of (P2).

Figures 3.3 and 3.4 illustrate the results from testing a similar collection
of weighted combinations, but instead, for selected interval [𝛼1𝑖𝑗, 𝛽𝑖𝑗], we
use the corresponding 𝑡1𝑖𝑗 ∶= (𝑢𝑖𝑗′ℎ̂′

𝑖 + 𝑣𝑖𝑗′ℎ̂𝑗)/2 and 𝑡𝑀𝑃𝑃 ∶= (𝑢𝑖𝑗′(𝐴+)′
𝑖 +

𝑣𝑖𝑗′(𝐴+)𝑗)/2, with 𝑡𝑀𝑃𝑃 derived from the always feasible MPP, denoted as
𝐴+.

46

Figure 3.1: Impact on ||𝐻||1 using the midpoint of [𝛼, 𝛽]

47

Figure 3.2: Impact on (P2) viol. of 𝐻134 using the midpoint of [𝛼, 𝛽]

48

Figure 3.3: Diving impact on ||𝐻||1 using 𝑡𝑀𝑃𝑃 ∈ [𝛼, 𝛽]

49

Figure 3.4: Impact on (P2) viol. of 𝐻134 using 𝑡𝑀𝑃𝑃 ∈ [𝛼, 𝛽]

Figure 3.5 illustrates the relationship between the change in the violation
of (P2) and the change in ||𝐻||1 via a scatterplot representation of the
diving heuristic for various weighted combinations used in the branching
point selection process.

50

Figure 3.5: Tradeoff between ||𝐻||1 and (P2) violation of 𝐻134

51

With regards to our first goal, from the selection of weighted combina-
tions we found that using a 25/75 weighting (25% midpoint/MPP, 75%
relaxation) roughly defines the pareto frontier with regards to the trade-
off in the satisfaction of (P2) and objective value ||𝐻||1, as can be seen
in Figure 3.5. In the few extended weighted combinations we tested using
the midpoint, 10/90 and 1/99, although these weighted pairs offer a more
comprehensive visualization of relationship between ||𝐻||1 and violation of
(P2), they come at a much larger cost with regards to computation time.

Interestingly, 25/75 is the default weighting for the spatial branch-and-
bound software ANTIGONE, and a similar 30/70 for BARON (see [SL18]).
Of course, it should be noted that they are doing actual spatial branch-and-
bound software, while our diving heuristic is only inspired by the idea of
spatial branch-and-bound software.

In hopes of addressing our second goal, Figure 3.6 presents a comparison
of the impact in choosing the midpoint versus the MPP when using the
25/75 weighted combination. Both options generate similar tradeoffs, with
the use of the midpoint resulting in a slightly larger increase in ||𝐻||1 with
similar enforcement of property (P2). Given the similarity, we are unable to
definitively say that the selection of one is better than the other given our
goal to find a branching point weighted combination that best illustrates
the tradeoff between solution sparsity and (P2) enforcement. Given these
findings, in the following sections we make an arbitrary designation to use
the midpoint rather than the MPP.

52

Figure 3.6: Comparison of 25/75 weighting using MPP and MID

3.11.2 Impact of diving heuristic on combinations of (P3)
and (P4)

Given that the initial experiment explores the impact of the diving heuristic
when enforcing all of the linear Moore-Penrose properties (P1), (P3), and
(P4), we consider the tradeoffs between ||𝐻||1 and the violation of (P2) when

53

enforcing subsets of the full set of linear M-P properties. In particular we
seek to explore how the iterative strengthening of the relaxation of (P2) via
the diving heuristic may change the tradeoff when starting with solutions
that satisfy (P1) and a proper subset of (P3) and (P4).

For each of these tests we use the same data matrix 𝐴, with the only dif-
ference being in which of the linear M-P properties are enforced (along with
the inclusion of box constraints and the McCormick lifting inequalities).

As a means of quick comparison, Figures 3.7, 3.8, and 3.9 use weighted
combinations 25/75 and 50/50 for the branching points (as well as using
the midpoint). When only enforcing (P1), we see that 25/75 weighting
provides a thorough visualization of the tradeoff between ||𝐻||1 and the
violation of (P2). When enforcing (P1) in combination with either (P3) or
(P4), the impact of the weighted combinations considered is less conclusive,
with Figure 3.8 exhibiting a more consistent tradeoff trend while Figure 3.9
illustrates a considerable amount of volatility in the relationship between
||𝐻||1 and (P2) violation.

54

Figure 3.7: Obj. val. vs. (P2) violation of 𝐻1

55

Figure 3.8: Obj. val. vs. (P2) violation of 𝐻13

56

Figure 3.9: Obj. val. vs. (P2) violation of 𝐻14

3.11.3 Changes in solution norm ratios
As seen in Chapter 2 with Figures 2.2 and 2.3, 𝐻13 and 𝐻14 represented
solutions that satisfied combinations of the linear M-P properties resulting
in a least-squares or 2-norm solution minimizer, with 𝐻134 representing a
solution that generates a minimizer for both types of problems. In particu-

57

lar, we defined least-squares and 2-norm ratios to measure the quality of a
sparse generalized inverse against the true MPP. Solutions 𝐻 that satisfy
M-P properties (P1) and (P3) resulted in a least-squares ratio equal to one
and 2-norm ratio greater than one, signifying a solution of lesser quality
than the MPP. Similarly, solutions 𝐻 that satisfy the M-P properties (P1)
and (P4) resulted in a 2-norm ratio equal to one and least-squares ratio
greater than one (again signifying a solution of lesser quality than the MPP
with respect to the least-squares problem). Therefore, a natural extension
would be to explore the impact of our relaxation of (P2), along with the
subsequent strengthening via our diving heuristic, in relation to the least-
squares and 2-norm ratios when considering solutions 𝐻13 and 𝐻14.

The experiment focuses on two weightings for the branching point selec-
tion using the midpoint, using weighted combinations of 25/75 and 50/50
to provide a preliminary comparison.

For the setup of this experiment, the box constraints used in the re-
laxation (denoted by 𝛿) are defined as the maximal entry-wise difference
between the MPP of 𝐴 (denoted as 𝐴+) and given solution 𝐻

Figure 3.10 illustrates the impact of the 25/75 weight on the 2-norm
solution ratio for 𝐻13, where within the first 50 dive iterates, there is a
reduction in the ratio from 15% to 1%. Conversely, the 50/50 weight
exhibits a large amount of volatility in the 2-norm solution ratio, reaching
values close 25%, before settling close to a ratio of one after approximately
60 dive iterates.

Moving to Figure 3.11, the impact of the branching point weighted com-
binations appears to be much more pronounced with respect to the least-
squares solution norm, with the 25/75 weighted pair exhibiting a much more
gradual reduction in the ratio and the 50/50 weighted pair again appearing
to generate some volatility in the norm solution ratio (although ultimately

58

settling close to a ratio of one).
With these preliminary observations, much more exploration and testing

will be necessary to get a sense of how our relaxation of (P2), along with
the proposed strengthening method, might prove useful in understanding
the relationship between maintaining the relative sparsity of initial solutions
like 𝐻13 and 𝐻14 while also improving upon their 2-norm and least-squares
ratios, respectively.

59

Figure 3.10: 2-norm solution ratios: 𝐻13 vs. 𝑀𝑃 𝑃

60

Figure 3.11: Least-squares norm solution ratios: 𝐻14 vs. 𝑀𝑃𝑃

3.12 Conclusions and further questions
We have provided convex settings to approximate (P2), such as convex semi-
definiteness constraints, reformulation linearization techniques, and convex

61

quadratic/secant lifting inequalities. Of the various methods considered,
such as McCormick/RLT and the quadratic/secant lifting inequalities, we
implemented a diving heuristic to iteratively strengthen the relaxations,
generating a sequence of solutions which allowed for an illustration of the
tradeoff between solution sparsity and violation of (P2) with respect to the
Frobenius norm. The choice of branching-point weight selection provides a
collection of solutions converging to the MPP, and where one wants to be
on this spectrum would be dependent on the application in question.

We note that our experiments were focused on the change in sparsity as
we iteratively strengthened the approximations of (P2), but not (directly)
on the rank, even though we used singular value information to construct
the cuts, determine which secant cuts to refine in the diving heuristic, and
as a means to measure violation of (P2). Further exploration into how the
rank of a given solution 𝐻 changes as violation of (P2) decreases, and how
to define that in a numerical setting, would be a natural extension.

Although not emphasized in this chapter, some of the greatest limitations
are due to scalability and/or numerical stability; so further work would re-
quire a more balanced, system-specific approach with regards to the formu-
lation and implementation of these models. In particular, given the heavy
nature of the constraint sets considered in all of these models, it would
be an interesting next step to focus on methods to reduce the number of
constraints in a structured and systematic way, as well as compare against
some of the semi-definite programming (SDP) formulations, as they provide
a more natural framework for working with rank.

62

Chapter 4

Sparse-inverse/low-rank
Decomposition via Woodbury

This chapter is based on [FFL16a]

4.1 Introduction
We wish to consider general matrix decomposition problems of the form:

minimize
𝐴1...𝐴𝑛

𝑁
∑
𝑘=1

̄𝜏𝑘‖𝜎(𝜙𝑘(𝐴𝑘))‖0

subject to
𝑁

∑
𝑘=1

𝐴𝑘 = ̄𝐶,
(4.1)

with real input data ̄𝐶 ∈ ℝ𝑛×𝑛, ̄𝜏𝑘 > 0, ∑𝑁
𝑘=1 ̄𝜏𝑘 = 1, and 𝜙𝑘 : ℝ𝑛×𝑛 →

ℝ𝑛𝑘×𝑛𝑘 given, where each 𝑛𝑘 is specific to 𝜙𝑘, for 𝑘 = 1, 2, … , 𝑁 , 𝜎(⋅) denotes
the vector of singular values, and ‖⋅‖0 counts the number of nonzeros. If 𝜙𝑘 is
the identity map, then ‖𝜎(𝜙𝑘(𝐴𝑘))‖0 = rank(𝐴𝑘). Let dvec(𝐴𝑘) ∈ ℝ𝑛2×𝑛2 be

63

a diagonal matrix with the 𝑛2 components of 𝐴𝑘 on the diagonal. If 𝜙𝑘(𝐴𝑘)
= dvec(𝐴𝑘), then ‖𝜎(𝜙𝑘(𝐴𝑘))‖0 = ‖𝐴𝑘‖0 — the sparsity of 𝐴𝑘. Indeed,
in this manner, we can see as a special case the well-known rank-sparsity
decomposition problem [Cha+11]:

min { ̄𝜏‖𝐴‖0 + (1 − ̄𝜏)rank(𝐵) ∶ 𝐴 + 𝐵 = ̄𝐶} , (𝒟0)

We are particularly interested in situations in which some of the 𝜙𝑘 are
nonlinear, and we initially focus our attention on 𝜙1(𝐴1) = dvec(𝐴−1), and
𝜙2 the identity map, arriving at

minimize ̄𝜏 ‖𝐴−1‖0 + (1 − ̄𝜏)rank(𝐵)
subject to 𝐴 + 𝐵 = ̄𝐶,

(𝒫)

where 0 < ̄𝜏 < 1.
The estimation of a covariance matrix is an important problem in many

areas of statistical analysis. For a covariance matrix ̄𝐴, its inverse �̄� is called
a precision matrix or a concentration matrix, but note that the definition can
vary (see [CLL11], for example). If ̄𝐴 is the covariance matrix of Gaussian
random variables 𝑋1, 𝑋2, … , 𝑋𝑛, then the interpretation of ℎ̄𝑖𝑗 = 0 is that
𝑋𝑖 and 𝑋𝑗 are conditionally independent (conditioning on the other 𝑛 − 2
random variables); see appendix (A.1) for details. It is common to consider
the situation where the precision matrix �̄� = ̄𝐴−1 has an unknown, but
sparse structure (see [CLL11], [FHT08], and [Hsi+11]). We can reasonably
consider the situation in which we observe data which we summarize via
the sample covariance matrix ̄𝐶 as the sum of a true covariance matrix ̄𝐴,
with the assumption that �̄� = ̄𝐴−1 has unknown but sparse structure, and

̄𝐴 is obscured by low rank noise �̄�. Our goal is to recover ̄𝐴 (and �̄�). We
note that in the literature, it is �̄� that is assumed to be subject to the low

64

rank noise.
A closely related viewpoint is that of recovery, where ̄𝐴 and �̄� are known,

with our goal being to recover these exactly, or with some established tol-
erable range [Cha+11]. To establish the recovery framework, we have input
matrices �̄� and �̄�, where �̄� is sparse and �̄� has low rank. We define ̄𝐴 ≔
�̄�−1, and ̄𝐶 ≔ ̄𝐴 + �̄�. In the context of recovery, we apply some optimiza-
tion method with ̄𝐶 as the input matrix. The outputs are values 𝐴 and 𝐵,
where from 𝐴 we define 𝐻 ≔ 𝐴−1. From this output, we are interested in,
for example, whether

1) 𝐻 is sparse and, by some appropriate measure (e.g. Frobenius norm),
is close to �̄�,

2) 𝐵 is low rank and, by some appropriate measure (e.g. comparing the
singular values and singular vectors), is close to �̄�.

4.1.1 Convex approximation
The problem 𝒟0 is ordinarily approached by using the (element-wise) 1-
norm as an approximation of ‖ ⋅ ‖0 and using the nuclear norm (sum of
the singular values) as an approximation of rank. So we are led to the
approximation

min { ̄𝜏‖𝐴‖1 + (1 − ̄𝜏)‖𝐵‖∗) ∶ 𝐴 + 𝐵 = ̄𝐶} , (𝒟1)

where ‖𝐴‖1 ∶= ∑𝑖,𝑗 |𝑎𝑖𝑗| and ‖𝐵‖∗ denotes the sum of the singular values of
𝐵. This approach has some very nice features. First of all, because we have
genuine norms now in the objective function, this approximation 𝒟1 is a
convex optimization problem, and so we can focus our attention on seeking
a local optimum of 𝒟1 which will then be a global optimum of 𝒟1. Still,

65

the objective function of 𝒟1 is not differentiable everywhere, and so we are
not really out of the woods. However, the approximation 𝒟1 can be re-cast
(see [Cha+11, Appendix A]) as a semidefinite-optimization problem

min ̄𝜏e′𝑆e + (1 − ̄𝜏)1
2 (tr(𝑊1) + tr(𝑊2))

𝐴 + 𝐵 = ̄𝐶, −𝑆 ≤ 𝐴 ≤ 𝑆, (𝑊1 𝐵
𝐵′ 𝑊2

) ⪰ 0,

which is efficiently solvable in principle (see [WSV00]). We note that
semidefinite-optimization algorithms are not at this point very scalable.
Nonetheless, there are first-order methods for this problem that do scale
well and allow us to quickly get good approximate solutions for large in-
stances (see [Boy+10]).

Also, it is interesting to note that to solve 𝒟0 globally (with additional
natural constraints bounding the feasible region), a genuine relaxation of
𝒟0 closely related to 𝒟1 should be employed (see [LZ14]).

4.1.2 Generating test problems via the recovery theory
Another extremely nice feature of the convex approximation 𝒟1 is a “re-
covery theory”. Loosely speaking it says the following: If we start with a
sparse matrix ̄𝐴 that does not have low rank, and a low-rank matrix �̄� that
is not sparse, then there is a non-empty interval ℐ ∶= [̄𝜏ℓ, ̄𝜏𝑢] ⊂ [0, 1] so that
for all ̄𝜏 ∈ ℐ, the solution of the approximation 𝒟1 is uniquely 𝐴 = ̄𝐴 and
𝐵 = �̄�.

The recovery theory suggests a practical paradigm for generating test
problems for algorithms for 𝒟1.

Procedure 1

66

1. Generate a random sparse matrix ̄𝐴 that with high probability will not
have low rank. For example, for some natural number ℓ ≪ min{𝑚, 𝑛},
randomly choose ℓ ⋅ min{𝑚, 𝑛} entries of ̄𝐴 to be non-zero, and give
those entries values independently chosen from some continuous dis-
tribution.

2. Generate a random low-rank matrix �̄� that with high probability will
not be sparse. For example, for some natural number 𝑘 ≪ min{𝑚, 𝑛},
make an 𝑚 × 𝑘 matrix ̄𝑈 and a 𝑘 × 𝑛 matrix ̄𝑉 , with entries chosen
independently from some continuous distribution, and let �̄� ∶= ̄𝑈 ̄𝑉 .

3. Let ̄𝐶 ∶= ̄𝐴 + �̄�.

4. Perform a search on [0, 1] to find a value ̄𝜏∗ so that the solution of 𝒟1
with ̄𝜏 = ̄𝜏∗ is 𝐴 = ̄𝐴 and 𝐵 = �̄�.

5. Output: ̄𝐶, ̄𝜏∗.

The recovery theory tells us that there will be a value of ̄𝜏∗ for which the
solution of 𝒟1 with ̄𝜏 = ̄𝜏∗ is 𝐴 = ̄𝐴 and 𝐵 = �̄�. What is not completely
clear is that there is a disciplined manner of searching for such a ̄𝜏∗ (step
4). Let 𝐴 ̄𝜏 , 𝐵 ̄𝜏 be a solution of 𝒟1, with the notation emphasizing the
dependence on ̄𝜏 . We define the univariate function

𝑓(̄𝜏) ∶= ‖ ̄𝐴 − 𝐴 ̄𝜏‖𝐹 = ‖�̄� − 𝐵 ̄𝜏‖𝐹 = 1
2 (‖ ̄𝐴 − 𝐴 ̄𝜏‖𝐹 + ‖�̄� − 𝐵 ̄𝜏‖𝐹) .

Clearly, for ̄𝜏 = 0, the solution of 𝒟1 will be 𝐵 = 0, 𝐴 = ̄𝐶 and 𝑓(0) =
‖�̄�‖𝐹 . Likewise, for ̄𝜏 = 1, the solution of 𝒟1 will be 𝐴 = 0, 𝐵 = ̄𝐶 and
𝑓(1) = ‖ ̄𝐴‖𝐹 . For ̄𝜏∗ ∈ ℐ, 𝑓 is minimized with 𝑓(̄𝜏∗) = 0, And we can hope
that 𝑓 is quasiconvex and we may quickly find a minimizer via a bisection
search.

67

4.2 Sparse-inverse/low-rank decomposition
Now, we turn our attention to a closely related problem — which is our main
focus in the present chapter. We assume now that ̄𝐺 is an order-𝑛 square
input matrix, 0 < ̄𝜏 < 1, and our goal is to solve the Sparse-inverse/low-
rank decomposition problem:

min { ̄𝜏‖𝐸−1‖0 + (1 − ̄𝜏)rank(𝐹) ∶ 𝐸 + 𝐹 = ̄𝐺} . (ℋ0)

Note that, generally, it may be that ̄𝐺 is not invertible, but in the approach
that we present here, we will assume that ̄𝐺 is invertible.

The problem ℋ0 can capture an interesting problem in statistics. In
that setting, ̄𝐺 can be a sample covariance matrix. Then 𝐸 can be the true
covariance matrix that we wish to recover. In some settings, the inverse
of 𝐸 (known as the precision matrix) can be of unknown sparse structure
— a zero entry in the inverse of 𝐸 identifies when a pair of variables are
conditionally (on the other 𝑛 − 2 variables) independent. We do note that
for this application, because the sample covariance matrix and the true co-
variance matrix are positive semidefinite, there are alternative approaches,
based on convex approximations, that are very attractive (see [SMG10] and
the references therein). So our approach can best be seen as having its main
strength for applications in which ̄𝐺 is not positive semidefinite.

4.2.1 An algorithmic approach via the Woodbury identity
The algorithmic approach that we take is as follows.

Procedure 2

1. Let ̄𝐶 ∶= ̄𝐺−1.

68

2. Apply any approximation method for 𝒟0, yielding some 𝐴 (and 𝐵).
For example, we can solve 𝒟1.

3. Output 𝐸 ∶= 𝐴−1 and 𝐹 ∶= ̄𝐺 − 𝐸.

Our methodology is justified by the Woodbury matrix identity (see [Hag89]).
In step 2, we find a decomposition 𝐴 + 𝐵 = ̄𝐺−1, with 𝐴 sparse and 𝐵 low
rank. Now, suppose that rank(𝐵) = 𝑘. Then it can be written as 𝐵 = 𝑈𝑉 ,
where 𝑈 is 𝑛 × 𝑘 and 𝑉 is 𝑘 × 𝑛. By the Woodbury identity, we have

̄𝐺 = ̄𝐶−1 = (𝐴+𝐵)−1 = (𝐴+𝑈𝑉)−1 = 𝐴−1 −𝐴−1𝑈(𝐼 +𝑉 𝐴−1𝑈)−1𝑉 𝐴−1.

Because 𝐴 is sparse, we have that 𝐸−1 is sparse. Finally, we have 𝐹 =
−𝐴−1𝑈(𝐼 + 𝑉 𝐴−1𝑈)−1𝑉 𝐴−1 which has rank no more than 𝑘.

4.2.2 Generating test problems without a recovery theory
We could try to work with the approximation

min { ̄𝜏‖𝐸−1‖1 + (1 − ̄𝜏)‖𝐹‖∗) ∶ 𝐸 + 𝐹 = ̄𝐺} (ℋ1)

of ℋ0, but ℋ1 is not a convex optimization problem, and there is no direct
recovery theory for it. But we can exploit the correspondence (via the
Woodbury identity) with 𝒟1 to generate test problems for the non-convex
problem ℋ1. In analogy with Procedure 1 of §4.1.2, we employ the following
methodology, which incorporates our heuristic Procedure 2.

Procedure 3

1. Generate a random sparse square invertible matrix ̄𝐴. This may have
to be done with a few trials to ensure that ̄𝐴 is invertible. Let ̄𝐸 ∶=

̄𝐴−1.

69

2. Generate a random low-rank square matrix �̄� ∶= ̄𝑈 ̄𝑉 that with high
probability is not sparse, as described in step 2 of Procedure 1.

3. Let ̄𝐹 ∶= − ̄𝐴−1 ̄𝑈(𝐼 + ̄𝑉 ̄𝐴−1 ̄𝑈)−1 ̄𝑉 ̄𝐴−1, and let ̄𝐺 ∶= ̄𝐸 + ̄𝐹 .

4. Let ̄𝐶 ∶= ̄𝐺−1. Search on [0, 1] to find a ̄𝜏∗ seeking to minimize
𝑓(̄𝜏) ∶= ‖ ̄𝐴 − 𝐴 ̄𝜏‖𝐹 = ‖�̄� − 𝐵 ̄𝜏‖𝐹 .

5. Output: ̄𝐺, ̄𝜏∗.

Because of the way we have engineered ̄𝐹 in Procedure 3, we take advan-
tage of the ordinary recovery theory for 𝒟1.

4.3 Computational experiments
We carried out some preliminary computational experiments for Procedure
3, using 𝑛 = 75. We did six experiments, each with the rank of �̄� at
𝑘 = 3, 6, 9, 12, 15, 18. For each value of 𝑘, we chose ̄𝐴−1 to have (𝑘 + 1)𝑛
non-zeros. So, as 𝑘 increases, the rank of �̄� is increasing and the number of
non-zeros in ̄𝐴−1 is increasing. Therefore, we can expect that as 𝑘 increases,
the “window of recovery” (i.e., the set of ̄𝜏 so that 𝑓(̄𝜏) = 0) gets smaller and
perhaps vanishes; and once it vanishes, we can expect that the minimum
value of 𝑓(̄𝜏) is increasing with 𝑘. We can see that this is all borne out in
Fig. 4.1. Next, we focus on the 𝑘 = 15 case, where the minimum of 𝑓(̄𝜏) is
substantially above 0. Even in such a case, we can see in Fig. 4.2 that there
is substantial recovery, attesting to the efficacy of our heuristic Procedure
2.

70

𝑘 = 3

𝑘 = 6

𝑘 = 9

𝑘 = 12

𝑘 = 15

𝑘 = 18

Figure 4.1: 𝑓(̄𝜏) vs ̄𝜏 (𝑛 = 75)

71

Singular values: input ̄𝐹 ; output ̄𝐺 − 𝐴−1
�̄�

Entries: sorted input �̄�−1 vs. output 𝐴�̄�

Figure 4.2: 𝑛 = 75, 𝑘 = 15

72

4.4 Conclusions
We presented a heuristic and a means of generating test problems for the
sparse-inverse/low-rank decomposition problem on invertible input. Our
method can also be used for generating a starting point for local optimiza-
tion of ℋ1.

We are presently working on a new approach to ℋ0 based on a con-
vex relaxation of ℋ1. This new approach is much more computationally
intensive than the method that we presented here, which we leverage for
validating our new approach. Our new approach does not require that the
input matrix be invertible. In fact, it can equally apply to even-more-general
sparse-pseudoinverse/low-rank decomposition problems (see [FFL16b]).

73

Chapter 5

Computational Techniques for
Sparse-Inverse/Low-Rank

Decomposition

In this chapter, we develop convex relaxation ideas for the sparse-inverse/low-
rank decomposition model (𝒫).

5.1 SDP Approach
Using a now standard idea, we can approximate (𝒫) from §4.1 with

minimize ̄𝜏 ‖𝐴−1‖1 + (1 − ̄𝜏)‖𝐵‖∗

subject to 𝐴 + 𝐵 = ̄𝐶.
(ℛ)

74

Employing a known technique (see [Cha+11], for example), we can refor-
mulate (ℛ) as

minimize ̄𝜏𝑒′𝑆𝑒 + 1
2(1 − ̄𝜏)(𝑡𝑟(𝑊1) + 𝑡𝑟(𝑊2))

subject to 𝐴 + 𝐵 = ̄𝐶
− 𝑆 ≤ 𝐻 ≤ 𝑆
𝐻𝐴 = 𝐼𝑛

[𝑊1 𝐵
𝐵′ 𝑊2

] ⪰ 02𝑛,

(ℛ′)

where the 𝑛 × 𝑛 matrix variable 𝐻 models 𝐴−1.
The main difficulty that we face is that 𝐻 and 𝐴 are both variables, and

so the constraint 𝐻𝐴 = 𝐼𝑛 is not convex. It should be noted that we do
not know whether the relaxation would be improved by also using 𝐴𝐻 =
𝐼𝑚.

75

5.2 A convex relaxation

5.2.1 An SDP relaxation
We wish to relax the constraint 𝐻𝐴 = 𝐼𝑛, as it is not convex. We propose
to relax (ℛ′) as the convex optimization problem

minimize ̄𝜏𝑒′𝑆𝑒 + 1
2(1 − ̄𝜏)(𝑡𝑟(𝑊1) + 𝑡𝑟(𝑊2)) (𝒮)

subject to 𝐴 + 𝐵 = ̄𝐶 (5.1)
𝐻 + 𝑆 ≥ 0𝑛 (5.2)
− 𝐻 + 𝑆 ≥ 0𝑛 (5.3)

[𝑊1 𝐵
𝐵′ 𝑊2

] ⪰ 02𝑛 (5.4)

1
2⟨�̄�, 𝑋𝑖𝑗⟩ = 𝛿𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛 (5.5)

𝑥𝑖𝑗 = (ℎ′
𝑖

𝑎𝑗
) ∀𝑖, 𝑗 = 1, … , 𝑛, (5.6)

𝑋𝑖𝑗 − 𝑥𝑖𝑗𝑥′
𝑖𝑗 ⪰ 02𝑛 ∀𝑖, 𝑗 = 1, … , 𝑛 (5.7)

where 𝑋𝑖𝑗 ∈ 𝕊2𝑛×2𝑛, �̄� ∈ ℝ2𝑛×2𝑛 has the form

�̄� = [0𝑛 𝐼𝑛
𝐼𝑛 0𝑛

] ,

and ℎ𝑖 is the 𝑖th row of 𝐻 and 𝑎𝑗 is the 𝑗th column of 𝐴. The motivation
for the constraints (5.5) and (5.7) come from a re-expession of ℎ𝑖𝑎𝑗 = 𝛿𝑖𝑗.
The matrix inner product on the left-hand side of (5.5) can be re-expressed

76

as

1
2 (ℎ𝑖, 𝑎′

𝑗) [0𝑛 𝐼𝑛
𝐼𝑛 0𝑛

] (ℎ′
𝑖

𝑎𝑗
) = 1

2 (𝑎′
𝑗, ℎ𝑖) (ℎ′

𝑖
𝑎𝑗

) = ℎ𝑖𝑎𝑗. (5.8)

(5.8) may be written as

𝑥′
𝑖𝑗�̄�𝑥𝑖𝑗 = ⟨�̄�, 𝑥𝑖𝑗𝑥′

𝑖𝑗⟩. (5.9)

The outer product 𝑥𝑖𝑗𝑥′
𝑖𝑗 defines a matrix 𝑋𝑖𝑗 i.e., 𝑋𝑖𝑗 = 𝑥𝑖𝑗𝑥′

𝑖𝑗, but such a
constraint is not convex, therefore we consider the relaxation 𝑥𝑖𝑗𝑥′

𝑖𝑗 ⪯ 𝑋𝑖𝑗,
which can be expressed as the positive-semidefiniteness constraint 𝑋𝑖𝑗 −
𝑥𝑖𝑗𝑥′

𝑖𝑗 ⪰ 02𝑛 or equivalently

[1 𝑥′
𝑖𝑗

𝑥𝑖𝑗 𝑋𝑖𝑗
] ⪰ 02𝑛+1. (5.10)

Therefore we have a linear constraint with respect to variables 𝑋𝑖𝑗 in (5.5)
and a convex constraint relating 𝑋𝑖𝑗 to 𝑥𝑖𝑗 in (5.7).

Lemma 9. (𝒮) has a strictly feasible solution.

Proof. A strictly feasible solution to (𝒮) can be constructed as follows:

(1) For (5.1), choose an arbitrary split of ̄𝐶 with 𝐴 invertible and 𝐵 = ̄𝐶
− 𝐴.

(2) For (5.2), (5.3), set 𝐻 = 𝐴−1, and choose 𝑆 such that 𝑠𝑖𝑗 > |𝐻𝑖𝑗| for
all 𝑖, 𝑗 = 1, … , 𝑛.

(3) For (5.4), choose 𝑊1, 𝑊2 such that

𝑊1 = 𝑊2 = Δ1𝐼𝑛,

77

for sufficiently large Δ1 > 0. Then 𝑊 will be strictly diagonally
dominant and positive definite.

(4) For (5.7), let 𝑥𝑖𝑗 = (ℎ′
𝑖

𝑎𝑗
) for all 𝑖, 𝑗 = 1, … , 𝑛.

(5) For (5.5), define

𝑋𝑖𝑗 = (ℎ′
𝑖

𝑎𝑗
) (ℎ𝑖 𝑎′

𝑗) + Δ2𝐼2𝑛 ∀𝑖, 𝑗 = 1, … , 𝑛,

with Δ2 > 0.

We define matrices �̄�+, 𝑍𝑖𝑗 as

�̄�+ = [0 ⃗0′
2𝑛

⃗02𝑛 �̄�] ∈ ℝ(2𝑛+1)×(2𝑛+1),

𝑍𝑖𝑗 = [𝑥(0)
𝑖𝑗 𝑥′

𝑖𝑗
𝑥𝑖𝑗 𝑋𝑖𝑗

] ∈ ℝ(2𝑛+1)×(2𝑛+1), ∀𝑖, 𝑗 = 1, … , 𝑛.

The row vectors ℎ𝑖 and column vectors 𝑎𝑗 are implicit in the definition of
𝑍𝑖𝑗, so we need to include explicit linear constraints of the form

⟨�̄�ℓ, 𝑍𝑖𝑗⟩ = ℎ𝑖ℓ ∀ℓ = 1, … , 𝑛,
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ = 𝑎ℓ𝑗 ∀ℓ = 1, … , 𝑛, (ℒ)

78

where �̄�ℓ and �̄�ℓ, (both ∈ ℝ(2𝑛+1)×(2𝑛+1)), are defined as

�̄�ℓ = 1
2

⎡⎢⎢
⎣

0 𝑒′
ℓ ⃗0′

𝑛
𝑒ℓ 0𝑛 0𝑛
⃗0𝑛 0𝑛 0𝑛

⎤⎥⎥
⎦

and �̄�ℓ = 1
2

⎡⎢⎢
⎣

0 ⃗0′
𝑛 𝑒′

ℓ
⃗0𝑛 0𝑛 0𝑛

𝑒ℓ 0𝑛 0𝑛

⎤⎥⎥
⎦

,

where for �̄�ℓ, the only nonzero terms are ones in the (1, ℓ +1) and (ℓ +1, 1)
positions, while for �̄�ℓ the only nonzero terms are ones in the (1, 𝑛 + ℓ + 1)
and (𝑛 + ℓ + 1, 1) positions. This ensures that the matrix variables 𝑍𝑖𝑗
exhibit the proper structure with respect to the composite vectors 𝑥𝑖𝑗.

Furthermore, we need the additional linear constraint

𝑥(0)
𝑖𝑗 = 1, ∀𝑖, 𝑗 = 1, … , 𝑛,

which we write as

⟨ ̄𝐸+, 𝑍𝑖𝑗⟩ = 1 ∀𝑖, 𝑗 = 1, … , 𝑛,

where

̄𝐸+ = [1 ⃗0′
2𝑛

⃗02𝑛 02𝑛
] ∈ ℝ(2𝑛+1)×(2𝑛+1).

Therefore, since we have

𝑍𝑖𝑗 ⪰ 02𝑛+1 ⟺ 𝑋𝑖𝑗 − 𝑥𝑖𝑗𝑥′
𝑖𝑗 ⪰ 02𝑛, and

⟨�̄�, 𝑋𝑖𝑗⟩ ⟺ ⟨�̄�+, 𝑍𝑖𝑗⟩

we can rewrite (𝒮) in the canonical form

79

minimize ̄𝜏
𝑛

∑
𝑖,𝑗=1

𝑠𝑖𝑗 + 1
2(1 − ̄𝜏)⟨𝐼2𝑛, 𝑊⟩ dual variables

subject to 𝑎𝑖𝑗 + (1/2)⟨ ̄𝐸𝑖𝑗, 𝑊⟩ = ̄𝑐𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑦𝑖𝑗)
ℎ𝑖𝑗 + 𝑠𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑔𝑖𝑗)

−ℎ𝑖𝑗 + 𝑠𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑣𝑖𝑗)
(1/2)⟨�̄�+, 𝑍𝑖𝑗⟩ = 𝛿𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑢𝑖𝑗)
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − ℎ𝑖ℓ = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛 (𝑡(ℓ)

𝑖𝑗)
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − 𝑎ℓ𝑗 = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛 (𝑝(ℓ)

𝑖𝑗)
⟨ ̄𝐸+, 𝑍𝑖𝑗⟩ = 1 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑟𝑖𝑗)
𝑍𝑖𝑗 ⪰ 02𝑛+1 ∀𝑖, 𝑗 = 1, … , 𝑛
𝑊 ⪰ 02𝑛

(𝒮′)
with variables:

𝑎𝑖𝑗 ∈ ℝ, ℎ𝑖𝑗 ∈ ℝ, 𝑠𝑖𝑗 ∈ ℝ, 𝑍𝑖𝑗 ∈ 𝕊(2𝑛+1)×(2𝑛+1)
+ , 𝑊 ∈ 𝕊2𝑛×2𝑛

+ ,

where

̄𝐸𝑖𝑗 =

i j+ n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i 1

j+n 1

∈ ℝ2𝑛×2𝑛.

80

Note that we can recover 𝐵 from 𝑊 via

𝑊 = [𝑊1 𝐵
𝐵′ 𝑊2

] .

Corollary 10. (𝒮′) has a strictly feasible solution.

81

5.2.2 The dual SDP
Applying the well-known notion of SDP duality of Section A.2, the dual of
the SDP (𝒮′) can be written as

maximize
𝑛

∑
𝑖,𝑗=1

̄𝑐𝑖𝑗𝑦𝑖𝑗 +
𝑛

∑
𝑖=1

𝑢𝑖𝑖 +
𝑛

∑
𝑖,𝑗=1

𝑟𝑖𝑗 (𝒟)

subject to
𝑔𝑖𝑗 + 𝑣𝑖𝑗 = ̄𝜏 ∀𝑖, 𝑗 = 1, … , 𝑛

(5.11)

𝑔𝑖𝑗 − 𝑣𝑖𝑗 −
𝑛

∑
ℓ=1

𝑡(𝑗)
𝑖ℓ = 0 ∀𝑖, 𝑗 = 1, … , 𝑛

(5.12)

𝑦𝑖𝑗 −
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗 = 0 ∀𝑖, 𝑗 = 1, … , 𝑛

(5.13)
1
2

𝑛
∑
𝑖,𝑗=1

𝑦𝑖𝑗 ̄𝐸𝑖𝑗 ⪯ 1
2(1 − ̄𝜏)𝐼2𝑛 (5.14)

1
2𝑢𝑖𝑗�̄�+ +

𝑛
∑
ℓ=1

𝑡(ℓ)
𝑖𝑗 �̄�ℓ +

𝑛
∑
ℓ=1

𝑝(ℓ)
𝑖𝑗 �̄�ℓ + 𝑟𝑖𝑗 ̄𝐸+ ⪯ 0 ∀𝑖, 𝑗 = 1, … , 𝑛

(5.15)

𝑔𝑖𝑗, 𝑣𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛,
(5.16)

with real scalar variables: 𝑦𝑖𝑗, 𝑢𝑖𝑗, 𝑡(ℓ)
𝑖𝑗 , 𝑠(ℓ)

𝑖𝑗 , 𝑟𝑖𝑗, 𝑔𝑖𝑗, 𝑣𝑖𝑗.

Let us consider some simplifications that may help in solving (𝒟). We

82

may formulate the simplified dual problem as

maximize
𝑛

∑
𝑖,𝑗=1

̄𝑐𝑖𝑗
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗 +

𝑛
∑
𝑖=1

𝑢𝑖𝑖 +
𝑛

∑
𝑖,𝑗=1

𝑟𝑖𝑗 (𝒟′)

subject to

− ̄𝜏 ≤
𝑛

∑
ℓ=1

𝑡(𝑗)
𝑖ℓ ≤ ̄𝜏 ∀𝑖, 𝑗 = 1, … , 𝑛 (5.17)

𝑛
∑
𝑖,𝑗=1

(
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗) ̄𝐸𝑖𝑗 ⪯ (1 − ̄𝜏)𝐼2𝑛 (5.18)

1
2𝑢𝑖𝑗�̄�+ +

𝑛
∑
ℓ=1

𝑡(ℓ)
𝑖𝑗 �̄�ℓ +

𝑛
∑
ℓ=1

𝑝(ℓ)
𝑖𝑗 �̄�ℓ + 𝑟𝑖𝑗 ̄𝐸+ ⪯ 02𝑛+1 (5.19)

∀𝑖, 𝑗 = 1, … , 𝑛

Lemma 11. (𝒟) is equivalent to (𝒟′)

Proof. Taking (5.11), (5.12), notice that

𝑣𝑖𝑗 = 1
2(̄𝜏 +

𝑛
∑
ℓ=1

𝑡(𝑗)
𝑖ℓ),

𝑔𝑖𝑗 = 1
2(̄𝜏 −

𝑛
∑
ℓ=1

𝑡(𝑗)
𝑖ℓ).

Thus we may replace (5.11), (5.12), with (5.17), which reflects the nonneg-
ativity of 𝑣𝑖𝑗 and 𝑔𝑖𝑗. Furthermore, with constraint (5.13) we have

𝑦𝑖𝑗 =
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛,

83

so we substitute ∑𝑛
ℓ=1 𝑝(𝑖)

ℓ𝑗 for 𝑦𝑖𝑗 in the objective term ∑𝑛
𝑖,𝑗=1 ̄𝑐𝑖𝑗𝑦𝑖𝑗 to get

𝑛
∑
𝑖,𝑗=1

̄𝑐𝑖𝑗
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗 ,

and substitute ∑𝑛
ℓ=1 𝑝(𝑖)

ℓ𝑗 for 𝑦𝑖𝑗 in (5.14) to get (5.18).
Constraints (5.15) and (5.19) are the same, as (5.19) is unaffected by the

above simplifications and substitutions.

Theorem 12. Strong duality holds for (𝒮/𝒮′) and (𝒟/𝒟′).

Proof. By Lemma 9 and Corrollary 10 it can be shown that a strictly feasible
solution can be constructed for (𝒮/𝒮′). Via Slater’s condition (17), it is
sufficient that if we find a strictly feasible solution to the primal of a convex
optimization problem, then this implies that the duality gap is zero, i.e.,
that strong duality holds.

We do not know whether (𝒟/𝒟′) has a strictly feasible solution in general.

5.2.3 Disjunctive programming
With our definition of the nonconvex constraint 𝐻𝐴 = 𝐼𝑛 in terms of 𝑥𝑖𝑗,
𝑋𝑖𝑗, and subsequent relaxation into the constraints 𝑋𝑖𝑗 − 𝑥𝑖𝑗𝑥′

𝑖𝑗 ⪰ 0 for all
𝑖, 𝑗 = 1, … , 𝑛, we hope to construct a disjunctive cutting plane that tightens
our original relaxations (𝒮/𝒮′) (in the spirit of [LR08], [SBL10a], [SBL10b]).

84

Secant inequalities

Applying the ideas of [LR08] and [SBL10a], we can develop a convex relax-
ation of the nonconvex constraints

𝑋𝑖𝑗 − 𝑥𝑖𝑗𝑥′
𝑖𝑗 ⪯ 0 ∀𝑖, 𝑗 = 1, … , 𝑛2, (5.20)

so as to better approximate 𝑋𝑖𝑗 = 𝑥𝑖𝑗𝑥′
𝑖𝑗 when added to (𝒮/𝒮′).

The constraint (5.20) could equivalently be modeled by the inequalities
𝜈′(𝑋𝑖𝑗 − 𝑥𝑖𝑗𝑥′

𝑖𝑗)𝜈 ≤ 0, which can be written as

(𝜈′𝑥𝑖𝑗)2 ≥ ⟨𝜈𝜈′, 𝑋𝑖𝑗⟩, (5.21)

for all 𝜈 ∈ ℝ2𝑛. The nonconvex inequality (5.21) is therefore a valid inequal-
ity for the SDP relaxation (𝒮/𝒮′). As the authors in [SBL10a] point out,
it is possible to convexify (5.21) by replacing the concave quadratic func-
tion −(𝜈′𝑥𝑖𝑗)2 with its secant on an interval [𝜂𝐿(𝜈), 𝜂𝑈(𝜈)]. The convex
relaxation of (5.21) is then given by the secant inequality

(𝜈′𝑥𝑖𝑗)(𝜂𝐿(𝜈) + 𝜂𝑈(𝜈)) − 𝜂𝐿(𝜈)𝜂𝑈(𝜈) ≥ ⟨𝜈𝜈′, 𝑋𝑖𝑗⟩.

The interval [𝜂𝐿(𝜈), 𝜂𝑈(𝜈)] represents the range of the linear function
𝜈′𝑥𝑖𝑗 in the feasible set of (𝒮/𝒮′). More specifically,

𝜂𝐿(𝜈) ≔ min{𝜈′𝑥𝑖𝑗 : Σ},

and

𝜂𝑈(𝜈) ≔ max{𝜈′𝑥𝑖𝑗 : Σ},

85

where (Σ) is defined as the set of (𝑆, 𝐴, 𝐻, 𝑊, 𝑍𝑖𝑗) subject to constraints

𝑎𝑖𝑗 + (1/2)⟨ ̄𝐸𝑖𝑗, 𝑊⟩ = ̄𝑐𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛
ℎ𝑖𝑗 + 𝑠𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛
− ℎ𝑖𝑗 + 𝑠𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛
(1/2)⟨�̄�+, 𝑍𝑖𝑗⟩ = 𝛿𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − ℎ𝑖ℓ = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − 𝑎ℓ𝑗 = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛
⟨ ̄𝐸+, 𝑍𝑖𝑗⟩ = 1 ∀𝑖, 𝑗 = 1, … , 𝑛
𝑍𝑖𝑗 ⪰ 02𝑛+1 ∀𝑖, 𝑗 = 1, … , 𝑛
𝑊 ⪰ 02𝑛.

(Σ)

Finally, in [SBL10a], the authors note that if �̂�𝑖𝑗 and ̂𝑥𝑖𝑗 are obtained
from the solution to (𝒮/𝒮′), and �̂�𝑖𝑗 ≠ ̂𝑥𝑖𝑗 ̂𝑥′

𝑖𝑗, then �̂�𝑖𝑗 − ̂𝑥𝑖𝑗 ̂𝑥′
𝑖𝑗 has at least

one positive eigenvalue. Furthermore, if the vector 𝜈 is chosen as the unit-
length eigenvector corresponding to any positive eigenvalue of �̂�𝑖𝑗 − ̂𝑥𝑖𝑗 ̂𝑥𝑖𝑗,
then the constraint (5.21) would be violated by the solution of the relax-
ation. This observation guides the choice of the vector 𝜈 in the inequalities.

In order to strengthen (𝒮/𝒮′), we can apply the disjunctive cuts proposed
in [LR08]. The idea is to divide the interval [𝜂𝐿(𝜈), 𝜂𝑈(𝜈)] into 𝑘 ≥ 2
intervals [𝜂𝑡, 𝜂𝑡+1], for 𝑡 = 1, … , 𝑘, such that 𝜂𝐿(𝜈) ≔ 𝜂1 < 𝜂2 < … < 𝜂𝑘
< 𝜂𝑘+1 ≔ 𝜂𝑈(𝜈).

86

Disjunctive programming over the SDP relaxation

Problem (𝒮′) can be rewritten as

minimize ̄𝜏 ⟨𝑒𝑒′, 𝑆⟩ + 1
2(1 − ̄𝜏)⟨𝐼2𝑛, 𝑊⟩

subject to ⟨𝐸𝑖𝑗, 𝐴⟩ + ⟨ ̄𝐸𝑖𝑗, 𝑊⟩ = ⟨𝐸𝑖𝑗, ̄𝐶⟩ ∀𝑖, 𝑗 = 1, … , 𝑛
⟨𝐸𝑖𝑗, 𝐻⟩ + ⟨𝐸𝑖𝑗, 𝑆⟩ ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛

−⟨𝐸𝑖𝑗, 𝐻⟩ + ⟨𝐸𝑖𝑗, 𝑆⟩ ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛
(1/2)⟨�̄�, 𝑍𝑖𝑗⟩ = 𝛿𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − ℎ𝑖ℓ = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − 𝑎ℓ𝑗 = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛
⟨ ̄𝐸+, 𝑍𝑖𝑗⟩ = 1 ∀𝑖, 𝑗 = 1, … , 𝑛
𝑊 ⪰ 0
𝑍𝑖𝑗 ⪰ 0.

(𝒮′′)

Furthermore, for each 𝑡 = 1, … , 𝑘, the inequalities

𝜂𝑡 ≤ 𝑣′𝑥𝑖𝑗 ≤ 𝜂𝑡+1

(𝜈′𝑥𝑖𝑗)(𝜂𝑡+𝜂𝑡+1) − 𝜂𝑡𝜂𝑡+1 ≥ ⟨𝜈𝜈′, 𝑋𝑖𝑗⟩

can be rewritten as

−⟨ ̄𝑁, 𝑍𝑖𝑗⟩ ≥ −𝜂𝑡+1,
⟨ ̄𝑁, 𝑍𝑖𝑗⟩ ≥ 𝜂𝑡, (5.22)

−⟨�̄�𝑡, 𝑍𝑖𝑗⟩ ≥ 𝜂𝑡𝜂𝑡+1,

87

where

̄𝑁 ≔ [0 1
2𝑣′

1
2𝑣 02𝑛

] ∈ ℝ(2𝑛+1)×(2𝑛+1),

and

�̄�𝑡 ≔ [0 ⃗0′
2𝑛

⃗02𝑛 𝑣𝑣′] − (𝜂𝑡 + 𝜂𝑡+1) ̄𝑁 ∈ ℝ(2𝑛+1)×(2𝑛+1).

We define

𝑅𝑡 ≔ {(𝑆, 𝐴, 𝑊, 𝐻, 𝑍𝑖𝑗) ∶ −⟨ ̄𝑁, 𝑍𝑖𝑗⟩ ≥ −𝜂𝑡+1,
⟨ ̄𝑁, 𝑍𝑖𝑗⟩ ≥ 𝜂𝑡, −⟨�̄�𝑡, 𝑍𝑖𝑗⟩ ≥ 𝜂𝑡𝜂𝑡+1},

for all 𝑡 = 1, … , 𝑘. Our goal is to construct a linear inequality of the form

⟨Γ1, 𝑆⟩ + ⟨Γ2, 𝐴⟩ + ⟨Γ3, 𝑊⟩ + ⟨Γ4, 𝐻⟩ + ∑
𝑖,𝑗

⟨Γ𝑖𝑗, 𝑍𝑖𝑗⟩ ≥ 𝛽 (5.23)

that is valid for

𝑅 ≔ convcl (∪𝑘
𝑡=1(𝑆 ∩ 𝑅𝑡)) ,

88

where 𝑆 is the feasible set of problem (𝒮′′). In order to construct the valid
inequality, we consider 𝑧𝑡 ≔

minimize ⟨Γ1, 𝑆⟩ + ⟨Γ2, 𝐴⟩ + ⟨Γ3, 𝑊⟩ + ⟨Γ4, 𝐻⟩ + ∑
𝑖,𝑗

⟨Γ𝑖𝑗, 𝑍𝑖𝑗⟩ dual
var.

subject to ⟨𝐸𝑖𝑗, 𝐴⟩ + ⟨ ̄𝐸𝑖𝑗, 𝑊⟩ = ⟨𝐸𝑖𝑗, ̄𝐶⟩ ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑦𝑖𝑗)
⟨𝐸𝑖𝑗, 𝐻⟩ + ⟨𝐸𝑖𝑗, 𝑆⟩ ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑔𝑖𝑗)

−⟨𝐸𝑖𝑗, 𝐻⟩ + ⟨𝐸𝑖𝑗, 𝑆⟩ ≥ 0 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑣𝑖𝑗)
(1/2)⟨�̄�, 𝑍𝑖𝑗⟩ = 𝛿𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑢𝑖𝑗)
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − ℎ𝑖ℓ = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛 (𝑡(ℓ

𝑖𝑗))
⟨�̄�ℓ, 𝑍𝑖𝑗⟩ − 𝑎ℓ𝑗 = 0 ∀𝑖, 𝑗, ℓ = 1, … , 𝑛 (𝑝(ℓ)

𝑖𝑗)
⟨ ̄𝐸+, 𝑍𝑖𝑗⟩ = 1 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝑟𝑖𝑗)

−⟨ ̄𝑁, 𝑍𝑖𝑗⟩ ≥ −𝜂𝑡+1 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝜌(𝑡)
𝑖𝑗)

⟨ ̄𝑁, 𝑍𝑖𝑗⟩ ≥ 𝜂𝑡 ∀𝑖, 𝑗 = 1, … , 𝑛 (𝛾(𝑡)
𝑖𝑗)

−⟨�̄�𝑡, 𝑍𝑖𝑗⟩ ≥ 𝜂𝑡𝜂𝑡+1, ∀𝑖, 𝑗 = 1, … , 𝑛 (𝜅(𝑡)
𝑖𝑗)

𝑊 ⪰ 0
𝑍𝑖𝑗 ⪰ 0.

and choose 𝛽 such that 𝑧𝑡 ≥ 𝛽 for all 𝑡 = 1, … , 𝑘.

89

By strong duality, we have 𝑧𝑡 ≔

maximize
𝑛

∑
𝑖,𝑗=1

̄𝑐𝑖𝑗𝑦𝑖𝑗 +
𝑛

∑
𝑖=1

𝑢𝑖𝑖 +
𝑛

∑
𝑖,𝑗=1

(−𝜌(𝑡)
𝑖𝑗 + 𝛾(𝑡)

𝑖𝑗 𝜂𝑡 − 𝜅(𝑡)
𝑖𝑗 𝜂𝑡𝜂𝑡+1) +

𝑛
∑
𝑖,𝑗=1

𝑟𝑖𝑗

subject to 𝑔𝑖𝑗 + 𝑣𝑖𝑗 = (Γ1)𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

𝑦𝑖𝑗 −
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗 = (Γ2)𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

1
2

𝑛
∑
𝑖,𝑗=1

𝑦𝑖𝑗 ̄𝐸𝑖𝑗 ⪯ Γ3

𝑔𝑖𝑗 − 𝑣𝑖𝑗 −
𝑛

∑
ℓ=1

𝑡(𝑗)
𝑖ℓ = (Γ4)𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

1
2𝑢𝑖𝑗�̄�+ +

𝑛
∑
ℓ=1

𝑡(ℓ)
𝑖𝑗 �̄�ℓ +

𝑛
∑
ℓ=1

𝑝(ℓ)
𝑖𝑗 �̄�ℓ + 𝑟𝑖𝑗 ̄𝐸+

− 𝜌(𝑡)
𝑖𝑗 ̄𝑁 + 𝛾(𝑡)

𝑖𝑗 ̄𝑁 − 𝜅(𝑡)
𝑖𝑗 �̄�𝑡 ⪯ Γ𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

𝑔𝑖𝑗, 𝑣𝑖𝑗, 𝜌(𝑡)
𝑖𝑗 , 𝛾(𝑡)

𝑖𝑗 , 𝜅(𝑡)
𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 = 1, … , 𝑛.

Finally, searching for a valid inequality that is violated by a given solution
(̂𝑆, ̂𝐴, �̂� , �̂�, ̂𝑍𝑖𝑗), we set Γ1, Γ2, Γ3, Γ4, Γ𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛, and 𝛽 by solving
the following problem:

90

𝛿 ≔ min ⟨Γ1, ̂𝑆⟩ + ⟨Γ2, ̂𝐴⟩ + ⟨Γ3, �̂� ⟩ + ⟨Γ4, �̂�⟩ + ∑
𝑖,𝑗

⟨Γ𝑖𝑗, ̂𝑍𝑖𝑗⟩ − 𝛽

s.t.
𝑛

∑
𝑖,𝑗=1

̄𝑐𝑖𝑗𝑦𝑖𝑗 +
𝑛

∑
𝑖=1

𝑢𝑖𝑖 +
𝑛

∑
𝑖,𝑗=1

(−𝜌(𝑡)
𝑖𝑗 + 𝛾(𝑡)

𝑖𝑗 𝜂𝑡 − 𝜅(𝑡)
𝑖𝑗 𝜂𝑡𝜂𝑡+1) +

𝑛
∑
𝑖,𝑗=1

𝑟𝑖𝑗 ≥ 𝛽

∀𝑡 = 1, … , 𝑘
𝑔𝑖𝑗 + 𝑣𝑖𝑗 = (Γ1)𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

𝑦𝑖𝑗 −
𝑛

∑
ℓ=1

𝑝(𝑖)
ℓ𝑗 = (Γ2)𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

1
2

𝑛
∑
𝑖,𝑗=1

𝑦𝑖𝑗 ̄𝐸𝑖𝑗 ⪯ Γ3

𝑔𝑖𝑗 − 𝑣𝑖𝑗 −
𝑛

∑
ℓ=1

𝑡(𝑗)
𝑖ℓ = (Γ4)𝑖𝑗 ∀𝑖, 𝑗 = 1, … , 𝑛

1
2𝑢𝑖𝑗�̄�+ +

𝑛
∑
ℓ=1

𝑡(ℓ)
𝑖𝑗 �̄�ℓ +

𝑛
∑
ℓ=1

𝑝(ℓ)
𝑖𝑗 �̄�ℓ + 𝑟𝑖𝑗 ̄𝐸+

− 𝜌(𝑡)
𝑖𝑗 ̄𝑁 + 𝛾(𝑡)

𝑖𝑗 ̄𝑁 − 𝜅(𝑡)
𝑖𝑗 �̄�𝑡 ⪯ Γ𝑖𝑗 ∀𝑖, 𝑗, 𝑡

𝑔𝑖𝑗, 𝑣𝑖𝑗, ∀𝑖, 𝑗, 𝑡
𝜌(𝑡)

𝑖𝑗 , 𝛾(𝑡)
𝑖𝑗 , 𝜅(𝑡)

𝑖𝑗 ≥ 0, ∀𝑖, 𝑗, 𝑡

If 𝛿 < 0, the valid inequality (5.23) obtained from the solution of the
above problem is violated by (̂𝑆, ̂𝐴, �̂� , �̂�, ̂𝑍𝑖𝑗).

It should be noted that the feasible region is a cone, so we need to add
a normalization constraint. As noted in [FLT11], [LR08], and [SBL10a], we

91

may consider normalization constraints of the form

∑
𝑖,𝑗

|Γ1(𝑖, 𝑗)| ≤ 1,

∑
𝑖,𝑗

|Γ2(𝑖, 𝑗)| ≤ 1,

∑
𝑖,𝑗

|Γ3(𝑖, 𝑗)| ≤ 1,

∑
𝑖,𝑗

|Γ4(𝑖, 𝑗)| ≤ 1,

∑
𝑘,ℓ

|Γ𝑖𝑗(𝑘, ℓ)| ≤ 1 ∀𝑖, 𝑗 = 1, … , 𝑛,

although there may be other, more appropriate normalizations to use.

5.3 Remarks
Although we have presented a process to formulate the low-rank/sparse-
inverse decomposition problem, along with a procedure to generate test
problems (as seen in Chapter 4), we did not conduct any computational
experiments using disjunctive cuts. Some preliminary experiments were
conducted for the semi-definite programming (SDP) relaxation using MAT-
LAB, CVX and MOSEK, but many questions remained regarding how to
better handle the nonconvex constraint, which in our writeup is a left-inverse
of 𝐴, but could equally be considered as a right-inverse or a pseudoinverse.
With the difficulties in coding the formulations, as well as the computa-
tional/numerical limitations of existing SDP solvers, we chose to shift our
focus to dealing with the nonconvex constraints dealing with the sparse-
inverse and addressing the square and non-square scenarios.

92

Appendix A

Supplementary Material

Appendix

A.1 Conditional Independence Structure of Gaussian
Random Variables

We can consider a covariance matrix 𝐴 for 𝑛 Gaussian random variables
𝑋1, … , 𝑋𝑛. We assume that 𝑋1, … , 𝑋𝑛 are partitioned into 𝑋 and 𝑌 , so
𝐴 has the form

𝐴 = [𝐴𝑋𝑋 𝐴𝑋𝑌
𝐴′

𝑋𝑌 𝐴𝑌 𝑌
] .

Via the Schur complement, we can see that

(𝐴−1)𝑋𝑋 = (𝐴𝑋𝑋 − 𝐴𝑋𝑌 (𝐴𝑌 𝑌)−1𝐴′
𝑋𝑌)−1 .

From this, we can see that the interpretation of (𝐴−1)𝑋𝑋 is that it is the
inverse of the covariance matrix for 𝑋 conditioned on 𝑌 . If 𝑋 = (𝑋𝑖, 𝑋𝑗)

93

and 𝑌 comprises the remaining random variables, then define 𝑎, 𝑏, 𝑐 by

[𝑎 𝑏
𝑏 𝑐] ≔ (𝐴−1)𝑋𝑋.

Then

[𝑎 𝑏
𝑏 𝑐]

−1

= 1
𝑎𝑐 − 𝑏2 [𝑐 −𝑏

−𝑏 𝑎]

is the covariance matrix for 𝑋 conditioned on 𝑌 . So we can see that 𝑋𝑖
and 𝑋𝑗 are conditionally independent when −𝑏 = 0 (equivalently, when 𝑏
= 0). Therefore the sparsity pattern of 𝐴−1 directly gives the conditional
independence structure of 𝑋1, … , 𝑋𝑛.

A.2 Dual of an SDP
Most of the notation in this subsection is local to this and the subsequent
subsection, with the dimensions of the matrices being implicit.

SDP duality: basic

Basic SDP duality is usually presented as follows (see [WSV00]). We have
a single psd matrix variable 𝑋, and the primal form is

min {⟨𝐶, 𝑋⟩ ∶ ⟨𝐸𝑖, 𝑋⟩ = 𝑏𝑖 for 𝑖 ∈ ℰ, 𝑋 ⪰ 0} .

The dual has the simple but rather different form

max {∑
𝑖∈ℰ

𝑦𝑖𝑏𝑖 ∶ ∑
𝑖∈ℰ

𝑦𝑖𝐸𝑖 ⪯ 𝐶} .

94

SDP duality: general

In application, it is often convenient to have many psd matrix variables and
additional scalar variables.

Below, we take the finite index sets 𝒫, 𝒰, ℰ and 𝒢 to be disjoint. We
suppose that we have square and symmetric psd matrix variables 𝑋𝑘, for
𝑘 ∈ 𝑃 and unrestricted scalar variables 𝑧𝑗, 𝑗 ∈ 𝒰. Note that the matrix
variables can be of varying sizes. In particular, a 1 × 1 psd matrix variable
is a non-negative scalar variable.

We take a general linear objective function

min ∑
𝑘∈𝒫

⟨𝐶𝑘, 𝑋𝑘⟩ + ∑
𝑗∈𝒰

𝑑𝑗𝑧𝑗 . (A.1)

We take some general linear equations and inequalities

∑
𝑘∈𝒫

⟨𝐸𝑖
𝑘, 𝑋𝑘⟩ + ∑

𝑗∈𝒰
𝑎𝑖

𝑗𝑧𝑗 { ≥
= } 𝑏𝑖, for 𝑖 ∈ { 𝒢

ℰ. } (A.2)

So, our primal SDP is (A.1), subject to (A.2),

𝑋𝑘 ⪰ 0, for 𝑘 ∈ 𝒫 (A.3)

and
𝑧𝑗 unrestricted, for 𝑗 ∈ 𝒰. (A.4)

It is convenient to assume, without loss of generality, that the data ma-
trices 𝐶𝑘 and 𝐸𝑖

𝑘 are symmetric.
For the dual SDP, we will have non-negative scalar variables 𝑦𝑖, 𝑖 ∈ 𝒢,

and unrestricted scalar variables 𝑦𝑖, 𝑖 ∈ ℰ.

95

The dual objective function is

max ∑
𝑖∈𝒢∪ℰ

𝑦𝑖𝑏𝑖 (A.5)

Next, we have dual constraints corresponding to the primal matrix variables

∑
𝑖∈𝒢∪ℰ

𝑦𝑖𝐸𝑖
𝑘 ⪯ 𝐶𝑘 , for 𝑘 ∈ 𝒫. (A.6)

Note that for 𝑘 in which 𝑋𝑘 is 1 × 1, the corresponding constraint (A.6) is
a scalar ‘≤’ inequality. We have further dual constraints corresponding to
the primal scalar variables

∑
𝑖∈𝒢∪ℰ

𝑦𝑖𝑎𝑖
𝑗 = 𝑑𝑗 , for 𝑗 ∈ 𝒰. (A.7)

So our dual SDP is (A.5), subject to (A.6), (A.7),

𝑦𝑖 ≥ 0, for 𝑖 ∈ 𝒢. (A.8)

and
𝑦𝑖 unrestricted, for 𝑖 ∈ ℰ. (A.9)

Observation 13. If there are no matrix variables in the primal that are
bigger than 1 × 1, then the primal is a linear-optimization problem ((A.3)
reduces to scalar non-negativity constraints). In this case, the dual is also a
linear-optimization problem, as (A.6) reduces to scalar inequalities, and we
get a familiar dual pair of linear-optimization problems.

Observation 14. If 𝒰 = 𝒢 = ∅ and |𝒫| = 1, then we get the familiar basic
dual pair of SDPs of §A.2

96

Observation 15. If we define square symmetric matrix variables via the
linear equations

𝑆𝑘 = 𝐶𝑘 − ∑
𝑖∈𝒢∪ℰ

𝑦𝑖𝐸𝑖
𝑘 , for 𝑘 ∈ 𝒫, (A.10)

then we can see the dual in a form that is essentially in the form of the
primal.

Definition 16. Let 𝑝∗ denote the optimal value associated with the optimal
solution to the primal SDP (A.1), (A.2), and (A.4) and 𝑑∗ denote the
optimal value associated with the optimal to the dual SDP (A.5), (A.6),
(A.7), and (A.8). If the equality 𝑝∗ = 𝑑∗ holds, then strong duality holds.

Lemma 17. (Slater’s Condition) Given an SDP with objective function
of the form (A.1) subject to (A.2), (A.3), and (A.4), if there exists a strictly
feasible solution that satisfies (A.2), (A.3), and (A.4), then strong duality
holds (i.e, there is zero duality gap between the primal and dual optimal
values).

97

Bibliography
[Ach07] T. Achterberg. “Constraint integer programming”. PhD thesis.

Berlin Institute of Technology, 2007. isbn: 978-3-89963-892-9.
url: http://opus.kobv.de/tuberlin/volltexte/2007/
1611/.

[AH17] A. A. Ahmadi and G. Hall. “Sum of squares basis pursuit with
linear and second order cone programming”. Algebraic and ge-
ometric methods in discrete mathematics. Vol. 685. Contempo-
rary Mathematics. American Mathematical Society, Providence,
RI, 2017, pp. 27–53.

[Ber06] T. Berthold. “Primal Heuristics for Mixed Integer Program-
ming”. MA thesis. Technische Universität Berlin, 2006.

[Ber08] T. Berthold. “Heuristics of the Branch-Cut-and-Price-
Framework SCIP”. Operations Research Proceedings 2007.
Ed. by J. Kalcsics and S. Nickel. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 31–36. isbn: 978-3-540-77903-2.

[Boy+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Dis-
tributed Optimization and Statistical Learning via the Alternat-
ing Direction Method of Multipliers”. Foundations and Trends
in Machine Learning 3.1 (2010), pp. 1–122.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[CG80] R. Cline and T. Greville. “A Drazin inverse for rectangular ma-
trices”. Linear Algebra and its Applications 29 (1980), pp. 53–
62.

98

http://opus.kobv.de/tuberlin/volltexte/2007/1611/
http://opus.kobv.de/tuberlin/volltexte/2007/1611/

[Cha+11] V. Chandrasekaran, S. Sanghave, P. Parrilo, and W. A.S.
“Rank-Sparsity Incoherence for Matrix Decomposition”. SIAM
Journal on Optimization 21.2 (2011), pp. 572–596.

[Che90] Y. Chen. “The generalized Bott-Duffin inverse and its applica-
tions”. Linear Algebra and its Applications 134 (1990), pp. 71–
91. issn: 0024-3795.

[CLL11] T. Cai, W. Liu, and X. Luo. “A Constrained ℓ1 Minimization
Approach to Sparse Precision Matrix Estimation”. Journal of
the American Statistical Association 106.494 (2011), pp. 594–
607.

[DG17] I. Dokmanić and R. Gribonval. “Beyond Moore-Penrose Part
II: The Sparse Pseudoinverse”. working paper or preprint. June
2017. url: https://hal.inria.fr/hal-01547283.

[DKV13] I. Dokmanić, M. Kolundžija, and M. Vetterli. “Beyond Moore-
Penrose: Sparse pseudoinverse”. ICASSP 2013, pp. 6526–6530.
2013.

[DRL05] E. Danna, E. Rothberg, and C. Le Pape. “Exploring relaxation
induced neighborhoods to improve MIP solutions”. Mathemati-
cal Programming, Series A 102 (2005), pp. 71–90.

[EN07] J. Eckstein and M. Nediak. “Pivot, Cut, and Dive: a heuristic
for 0-1 mixed integer programming”. Journal of Heuristics 13
(2007), pp. 471–503.

[FFL16a] V. Fuentes, M. Fampa, and J. Lee. “Low-rank/Sparse-Inverse
Decomposition”. Operations Research Proceedings 2016. 2016,
pp. 111–117.

[FFL16b] V. Fuentes, M. Fampa, and J. Lee. “Sparse pseudoinverses via
LP and SDP relaxations of Moore-Penrose”. CLAIO 2016. 2016,
pp. 343–350.

[FFL19] V. Fuentes, M. Fampa, and J. Lee. “Diving for sparse partially
reflexive generalized inverses”. WGCO 2019. 2019.

99

https://hal.inria.fr/hal-01547283

[FHT08] J. Friedman, T. Hastie, and R. Tibshirani. “Sparse inverse co-
variance estimation with the graphical lasso”. Biostatistics 9.3
(2008), pp. 432–441.

[FL18a] M. Fampa and J. Lee. Efficient treatment of bilinear forms in
global optimization. arXiv:1803.07625. 2018.

[FL18b] M. Fampa and J. Lee. “On sparse reflexive generalized inverse”.
Operations Research Letters 46.6 (2018), pp. 605–610.

[FLT11] M. Fischetti, A. Lodi, and A. Tramontani. “On the separation
of disjunctive cuts”. Mathematical Programming 128.1–2, Ser. A
(2011), pp. 205–230.

[GB08] M. Grant and S. Boyd. “Graph implementations for nonsmooth
convex programs”. Recent Advances in Learning and Control.
pp. 95–110. Springer, 2008.

[GB15] M. Grant and S. Boyd. CVX, version 2.1. 2015.
[GKL17] D. Gerard, M. Köppe, and Q. Louveaux. “Guided dive for the

spatial branch-and-bound”. Journal of Global Optimization 68.4
(Aug. 2017), pp. 685–711. issn: 1573-2916.

[GV96] G. Golub and C. Van Loan. Matrix Computations (3rd Ed.)
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[Hag89] W. Hager. “Updating the Inverse of a Matrix”. SIAM Review
31.2 (1989), pp. 221–239. issn: 0036-1445.

[Hsi+11] C. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. “Sparse In-
verse Covariance Matrix Estimation Using Quadratic Approx-
imation”. Advances in Neural Information Processing Systems
24 (2011), pp. 2330–2338.

[KK03] S. Kim and M. Kojima. “Exact Solutions of Some Noncon-
vex Quadratic Optimization Problems via SDP and SOCP Re-
laxations”. Computational Optimization and Applications 26.2
(2003), pp. 143–154.

[LR08] J. Lee and F. Rendl. “Improved bounds for Max-Cut via dis-
junctive programming”. Personal notes. 2008.

100

https://arxiv.org/abs/1803.07625
http://cvxr.com/cvx/

[LZ14] J. Lee and B. Zou. “Optimal rank-sparsity decomposition”.
Journal of Global Optimization 60.2 (2014), pp. 307–315.

[Mey73] C. Meyer. “Generalized inversion of modified matrices”. SIAM
Journal on Applied Mathematics 24 (1973), pp. 315–323.

[Pat13] G. Pataki. “Strong Duality in Conic Linear Programming: Facial
Reduction and Extended Duals”. Computational and Analytical
Mathematics. pp. 613–634. Springer, 2013.

[Rie92] K. Riedel. “A Sherman-Morrison-Woodbury identity for rank
augmenting matrices with application to centering”. SIAM
Journal on Matrix Analysis and Applications 13.2 (1992),
pp. 659–662.

[RM71] C. Rao and S. Mitra. Generalized Inverse of Matrices and Its
Applications. Probability and Statistics Series. Wiley, 1971.

[SA99] H. D. Sherali and W. P. Adams. A reformulation-linearization
technique for solving discrete and continuous nonconvex prob-
lems. Vol. 31. Nonconvex Optimization and its Applications.
Kluwer Academic Publishers, Dordrecht, 1999, pp. xxiv+514.
isbn: 0-7923-5487-7.

[SBL10a] A. Saxena, P. Bonami, and J. Lee. “Convex relaxations of
non-convex mixed integer quadratically constrained programs:
Extended formulations”. Mathematical Programming, Series B
124.1-2 (2010), pp. 383–411.

[SBL10b] A. Saxena, P. Bonami, and J. Lee. “Convex relaxations of non-
convex mixed integer quadratically constrained programs: pro-
jected formulations”. Mathmatical Programming, Series A 130.2
(2010), pp. 359–413.

[SL18] E. Speakman and J. Lee. “On branching-point selection for tri-
linear monomials in spatial branch-and-bound: the hull relax-
ation”. Journal of Global Optimization 72.2 (2018), pp. 129–153.

[SMG10] K. Scheinberg, S. Ma, and D. Goldfarb. “Sparse inverse covari-
ance selection via alternating linearization methods”. Neural In-
formation Processing Systems 2010. 2010, pp. 2101–2109.

101

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of
semidefinite programming : theory, algorithms, and applications.
International Series in Operations Research & Management Sci-
ence. Boston, London: Kluwer Academic, 2000. isbn: 0-7923-
7771-0. url: http://opac.inria.fr/record=b1099098.

[Zha05] F. Zhang, ed. The Schur complement and its applications.
Vol. 4. Numerical Methods and Algorithms. Springer-Verlag,
New York, 2005, pp. xvi+295.

102

http://opac.inria.fr/record=b1099098

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1. Introduction
	Definitions
	Chapter overviews

	Chapter 2. Sparse Pseudoinverses via LP relaxation
	Pseudoinverses
	Sparse left and right pseudoinverses
	Sparse generalized inverses based on the Moore-Penrose properties
	Computational experiments
	Conclusions and ongoing work

	Chapter 3. Computationally dealing with the non-linear property of the Moore-Penrose Pseudoinverse
	Toward computationally dealing with (P2)
	A lighter version of (P1)
	Quadratic tightening of (P1)
	Penalizing ``big'' Hij with quadratic penalties
	Quadratic PSD-cuts
	Pre-computed quadratic PSD-cuts
	2-by-2 cuts
	Reformulation Linearization Technique (RLT)
	Non-symmetric lifting
	Modeling our problem
	Diving heuristic
	Weighted branching-point analysis and selection
	Impact of diving heuristic on combinations of (P3) and (P4)
	Changes in solution norm ratios

	Conclusions and further questions

	Chapter 4. Sparse-inverse/low-rank Decomposition via Woodbury
	Introduction
	Convex approximation
	Generating test problems via the recovery theory

	Sparse-inverse/low-rank decomposition
	An algorithmic approach via the Woodbury identity
	Generating test problems without a recovery theory

	Computational experiments
	Conclusions

	Chapter 5. Computational Techniques for Sparse-Inverse/Low-Rank Decomposition
	SDP Approach
	A convex relaxation
	An SDP relaxation
	The dual SDP
	Disjunctive programming

	Remarks

	Appendix
	Bibliography

