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ABSTRACT 

Fuel efficiency standards in the ground transportation sector have been becoming 

more stringent over the previous decade worldwide. The power-split hybrid powertrain 

technology is one of the most promising solutions to meet those exigent standards. This 

technology has been successfully implemented in the passenger vehicle market, such as 

Toyota Prius, and demonstrated a fuel economy improvement of over 60%. In contrast, 

however, few hybrid electric light trucks are available, which is problematic given the fact 

that trucks are now more than 65% of light-duty vehicle sales in the United States. 

Additional performance requirements such as all-wheel-drive (AWD) also has not been 

explored adequately. Expanding the power-split hybrid technology to a broader market 

while satisfying all these requirements is imperative but challenging.  

The main contributions of this dissertation includes, 1) we present a systematic 

design methodology that enables the exhaustive search of AWD power-split hybrid 

powertrains; 2) the concept of relaxed optimization for additional fuel reduction; 3) a 

systematic framework of control design that enables automated development of real-time 

control strategies and ensures near-optimal performance; in addition, 4) an experimental 

study to verify the theoretical development.  

Designing AWD power-split hybrid powertrains involves searching over a large 

design space. Millions of designs are possible when considering collocations of all 

components including planetary-gear (PG) sets, an engine, electric motor(s), and clutches. 

Within the developed systematic design methodology, all possible designs can be 

generated through an automated modeling technique; exhaustively searching through all 

these designs then become possible. A systematic screening process is developed to screen 

for feasible designs, with respect to desired performance attributes; optimal designs then 

can be identified by checking their launching/towing performances together with fuel 

efficiencies. A case study on an imagined hybrid F-150 light truck demonstrates that the 
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developed methodology is able to identify dozens of better designs than parallel-hybrid 

baseline model.  

Optimization is crucial for both design and control development. An optimization 

of hybrid electric powertrain is defined which allows load leveling among the power source 

(engine), electrical energy buffer (battery). Relaxed optimization is further defined and 

investigated when the mechanical energy buffer (vehicle kinetic energy) is also introduced. 

Analysis of these optimized results are used for design screening and control development.  

By understanding the analysis of optimized results, a systematic framework is 

developed to generate a near-optimal real-time control strategy. A set of optimal controls 

is generated by analyzing the hybrid powertrain system firstly; the real-time control 

strategy is developed by constructing the policy from the optimal control set. Near-optimal 

results are achieved under this development framework.  

With the establishment of the design and control development frameworks, an 

experimental study is performed to verify this theoretical development. Preliminary results 

project that the developed framework of hybrid technology implementation is able to 

identify designs achieving fuel consumption reduction of more than 50% compared to 

current conventional baseline models for truck applications.  
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CHAPTER 1 

Introduction 

1.1 Motivation 

 Fuel efficiency continues to be a top priority in transportation especially in the 

previous decade because of apprehension relative to CO2 emissions and climate change. 

Stringent fuel economy policies have been proposed to improve fuel efficiency. As shown 

in Figure 1.1, fuel economy or greenhouse-gas emission standards from six major markets 

worldwide (listed at the bottom) have been established or proposed for passenger vehicles 

and light-commercial vehicles/light trucks [1-3]. The regulations in these markets, which 

encompass more than 80% of the global passenger vehicle sales, influence the business 

decisions of major vehicle manufacturers around the world and are among the most 

effective climate change mitigation measures that have been implemented over the past 

decade [1].  
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Figure 1.1 Average fuel economy standards for passenger cars and light trucks and 

corresponding projected achieved values for model years 2010-2025 [1-3] 

It is challenging to meet these fuel economy standards. The projected fuel economy 

[2] for 2025 by the Environmental Protection Agency (EPA), highlighted in red in Figure 

1.1, is over 20% tighter. To achieve these exigent standards, different technologies have 

been studied and developed. Among these, the hybrid powertrain technology is one of the 

most promising.  

The hybrid powertrain technology has been successfully implemented in certain 

passenger cars. As shown in Figure 1.2, hybrid passenger cars currently available have 

attained fuel economy improvement of over 60% [4] compared with their conventional 

baseline models (equipped with an internal combustion engine only); this corresponds to a 

fuel economy sticker label of more than 50mpg (miles per gallon). Among full hybrids, 

models with power-split technology, such as Toyota Prius (2018) [4] and Toyota Hybrid 

Corolla (2019), exceed 58mpg. The achieved fuel economy sticker label indicates the 

hybrid powertrain technology has great potential to help the fleet meet those fuel economy 

standards.  
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Figure 1.2 EPA fuel economy labels (combined; in mpg) 

While there are successful passenger car models equipped with hybrid technology, 

in contrast, few strong hybrid light trucks have been available. Besides, the number of light 

trucks sold kept increasing in the past 8 years and in 2018 were more than twice those of 

passenger car models in the U.S. market, as indicated in Figure 1.3. Actions are required 

to expand the hybrid powertrain technology to broader markets, e.g., the light trucks.  

 

Figure 1.3 U.S. light vehicle sales [5, 6] 
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1.2 Background 

1.2.1 Hybrid Powertrain Technologies Implementation 

 The implementation of hybrid technologies to light trucks require a broad set of 

topics to be considered (see Figure 1.4). The implementation is organized into two phases: 

design and control development. One important aspect in the design phase is performance. 

Tighter performance requirements including those related to launching, towing, and uphill 

grade, are expected [7]. All-wheel-drive is one desired attribute in the performance metric. 

The other important aspect in the design phase is fuel economy.  

Given an identified hybrid powertrain design, in the control development phase, 

offline optimization is usually first solved. A real-time control strategy development may 

then be developed to approximate the behavior of the offline optimization results so it can 

be implemented. In the remaining section, aspects of each phase are to be explained and 

reviewed in the following sub-sections.  

 

Figure 1.4 Implementation of hybrid technologies 
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1.2.2 AWD Hybrid Electric Vehicles 

As one desired performance attribute, according to the Society of Automotive 

Engineers (SAE) standard J1952 [8] for the all-wheel-drive system classification, the all-

wheel-drive (AWD) is defined if the drivetrain can deliver power to both axles (i.e., 

primary and secondary axles). In typical AWD powertrain systems available in the current 

market, the two output axles are connected to the front and rear wheels.  

The  gradeability and towing capacity of hybrid vehicles with AWD, especially on 

an uphill slope, are better two-wheel-drive (2WD) designs, as shown in Figure 1.5. The 

two output axles guarantee combined vehicle traction torque in all wheels regardless of the 

shift in the vehicle’s center of gravity; consequently, a better traction performance in 

gradeability and towing capacity is achieved.  

AWD 

Design

RWD 

Design

 

Figure 1.5 Launching and towing performance comparisons between AWD and RWD 

vehicle designs up a slope 

One of the few AWD hybrid designs available on the market is Acura RLX Sport 

Hybrid [9] shown in Figure 1.6. This parallel hybrid design has three electric motors: two 

on the rear axle and one on the front axle. Other AWD hybrids are Toyota RAV4 Hybrid 

SUV [10] and Lexus RX Hybrid [11], which share the same design, as shown in Figure 

1.7. This Toyota design is a power-split type AWD design, in which two motors are at the 

front axle for the electric-continuous variable transmission (ECVT) attribute and a motor 

at the rear axle for the AWD attribute.  

 



6 

 

Rear Motor 1
27 kW

Rear Motor 2
27 kW

Front Motor
35 kW

V6 Engine
231 kW

7-Speed 
Dual Clutch 

Transmission

Battery Pack
1.3 kWh

+-

Front WheelsRear Wheels

Electrical Flow

 

Figure 1.6 Design schematic of Acura RLX Sport Hybrid [9] 

 

Figure 1.7 Design schematic of Toyota RAV4 Hybrid [10] 

 

1.2.3 Power-split Hybrid Electric Vehicles 

Mainly due to their superior fuel economy, the power-split hybrid powertrain 

technologies have been implemented on passenger cars and have secured more than 80% 

of the hybrid vehicle market share in calendar years 2016 and 2017 in the U.S. [12]. Typical 

power-split type designs utilize planetary-gear set(s), multiple clutches, two electric 

machines and one engine, such as those employed in Toyota Prius and Chevy Volt. The 

Toyota Prius 2010 [13] design is shown in Figure 1.8.  

Front WheelsRear Wheels

Engine

Battery Pack

Rear Motor

Electrical Flow

Motor

Motor

Planetary 
Gear Set

+-
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Figure 1.8 Toyota Prius (2010) design schematic example [13] 

For a power-split vehicle with the ECVT attribute, the engine speed and torque can 

be controlled independent of the vehicle operating conditions. This control degree-of-

freedom allows efficient engine operation as desired. In this dissertation, a systematic study 

of AWD power-split hybrid vehicles is performed from the modeling, control and design 

perspectives.  

1.2.4 Control Strategy for Power-split Hybrid Electric Vehicles 

In addition to configuration design, control strategy is also important to achieve 

superior fuel efficiency. The electric machine(s) supplement an electric power path: this 

aids in improving the fuel economy by engine right-sizing, load-leveling, and re-generative 

braking. However, the additional power component(s) add complexity to the powertrain 

system: the degree-of-freedom (DOF) of the powertrain system increases as the control 

component input(s) are added. To control this hybrid system, a control structure is 

generally used as shown in Figure 1.9. The control strategy determines the energy flow 

within the hybrid system and coordinates the torques of all components to balance the 

planetary gear set(s). Accordingly, the components’ commands are then executed by their 

own controllers.  
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Figure 1.9 Generic control structure for power-split HEV powertrain systems 

An optimized control strategy is crucial because it ensures that the hybrid 

powertrain system operates efficiently. The optimal results are obtained through solving 

the off-line optimization problem under a defined drive cycle. The optimal results become 

a benchmark as the best performance of the given hybrid powertrain and show how the 

powertrain operates to achieve the best results. Real-time implementable control strategies 

will need to be developed to achieve fuel economy as close as possible to the offline 

benchmark value.  

1.2.5 Powertrain Control with Vehicle Speed Relaxation 

The fuel economies are assessed under defined drive cycles. Most studies [14-20] 

on the powertrain controls, for both conventional and hybrid vehicles, have assumed that 

the vehicles follow a desired drive cycle exactly. However, real-world vehicles do not 

exactly follow the defined drive cycles. In fact, the Environmental Protection Agency 

(EPA) defined a speed tolerance for such drive cycles as shown in Figure 1.10; it is also 

cited by SAE standard J1711 [21]. The variation of vehicle speed within a defined speed 

tolerance is acceptable.  
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Figure 1.10 EPA-defined speed tolerance [21] 

The consideration of exploring this concept is crucial especially for applications of 

connected and automated vehicles (CAVs). With information of surrounding vehicles, 

traffic lights, and speed limit available, the controlled automated vehicles do not need to 

follow those defined drive cycles nor the speed of leading vehicle precisely. Instead, a new 

speed profile can be optimized and generated as long as limits from information of 

connectivity are not exceeded. The automated vehicle can be control to adapt to this 

optimized profile for additional fuel saving [22-24], as shown in Figure 1.1.  

 

Figure 1.11 CAV scenario: optimizing a new vehicle speed profile for a controlled 

vehicle to follow 

By utilizing this speed tolerance, the powertrain component(s) have higher degree-

of-freedom than the original control optimization problem, because the speed constraint is 

relaxed. We call these constraint-relaxed problems the “relaxed optimization” problem.  

Additional fuel consumption reduction was observed when utilizing this relaxed 

optimization concept. For example, the start/stop coasting (SSC) strategy from Bosch [25, 

26], shown in Figure 1.12, allows the speed of tested vehicle to be within 2-5 mph of the 

desired speed; real-world test results exhibit a fuel consumption reduction as much as 19%. 

The pulse-and-glide (PnG) strategy [24, 27-29] in the highway cruising can result in a fuel 
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consumption reduction of up to 55%. Other studies on controls that utilize vehicle speed, 

have also reported fuel benefits in using this concept [22-30] as shown in Figure 1.13.  

 

Figure 1.12 Vehicle speed and fuel rate test results using the Bosch Start/Stop Coasting 

strategy [25, 26] 

 

Figure 1.13 Fuel consumption reductions resulting from relaxed optimization in different 

studies 

In this dissertation, we will incorporates this relaxation concept of the power-split 

hybrid powertrains, including both 2WD and AWD configurations. The systematic control 

strategy is developed from the analysis of this optimal control problem with vehicle 

relaxation.  
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1.3 Literature Review 

1.3.1 Automated Modeling of Hybrid Powertrains  

The establishment of a proper modeling method is an essential element for the 

model-based development of HEV design and powertrain control. A proper mathematical 

model of the hybrid powertrain enables the systematic modeling of all possible hybrid 

powertrain designs and systematic development of control strategy.  

In 1999, Rizzoni et al. [31] proposed a system-oriented approach to the modeling 

and simulation of hybrid vehicles based on an energy conversion model of drivetrain 

subsystems. In 2007, Liu [32] employed a matrix representation to depict a power-split 

hybrid powertrain (Prius) dynamic in a universal format and to reveal patterns inside the 

representation. With the proposed representation and patterns, the automated modeling of 

power-split hybrid powertrain becomes possible by constructing the HEV dynamics in 

matrix form (Figure 1.14). In 2015, Zhang further extended the automated modeling 

technique to multi-mode power-split designs by incorporating all possible clutch 

collocations between two planetary gears (PGs) [33-36]. For multi-mode power-split 

hybrid designs, the system design procedures have been laid out: automated modeling, 

configuration screening, drivability screening and fuel economy evaluation.  

 

 

Figure 1.14 Universal format of model matrix for power-split hybrid powertrain 

Adding additional output axle to a planetary gear system can improve driving 

performance. To explore the entire design space (including multiple operating modes) and 

identify the optimal design, a systematic modeling approach is required to handle the 
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massive number of design candidates. For instance, for a double PG planetary gear hybrid 

powertrain system with two output axles, there can be over 80,000 designs and up to 18 

million design candidates if component sizing is considered. Therefore, it is considerably 

crucial to have an automated modeling method that represents each design in order to 

perform an exhaustive search through the large design space.  

1.3.2 Solving the Offline Optimal Control Problem  

The control of hybrid vehicles typically has a two-level hierarchical architecture: 

the components’ control/regulation and the supervisory control as already indicated in 

Figure 1.9 in the previous section. In general, the optimal control problem of the HEV 

system refers to solving the optimization problem of supervisory control, also known as 

energy management strategy. Algorithms for solving this optimal control problem can be 

categorized into three types: heuristic/rule-based control, instantaneous optimization, and 

horizon optimization.  

Horizon optimization is usually used to obtain the globally optimal/near-optimal 

results of the control problem offline, these results are critical for understanding the 

performance of each HEV design and having a fair comparison.  

A popular method for solving horizon optimization problems is dynamic 

programming (DP). The DP concept was proposed by Richard Bellman in the 1940s and 

refined by Bellman himself in 1954 and 1963 [37]. This global optimization method did 

became very popular in HEV control design in the previous two decades after the work of 

Brahma et al. in 2000 and Lin et al. in 2003 [20]. Extensive studies have been conducted 

[32-34, 36, 38, 39] over similar topics because the DP can easily handle the non-convexity 

and non-linearity of constrained problems easily. However, this method continues to suffer 

from the curse of dimensionality, as the number of controls and states increase; the 

utilization of this method to solve for higher DOF problems, such as the multi-mode hybrid 

powertrain, is rare.  

In order to handle the issues of evaluating large-scale designs, the method 

developed by Zhang, the power-weighted efficiency analysis for rapid sizing (PEARS) 

[35], which is a near-optimal and computationally efficient method that yields near-optimal 

results but four orders of magnitude faster than the DP. The idea of this method is to reduce 
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the number of continuous controls and states of the optimization problem by pre-

optimizing these continuous variables given each discrete state, for instance, the operating 

mode in this application. Consequently, the DOF of the optimization problem can be 

reduced; thus, a significantly shorter computational time is possible. This method has 

become effective and efficient for the HEV design evaluation.  

However, when certain continuous controls and states, such as vehicle speed and 

vehicle range, are difficult to pre-optimize, the curse of dimensionality of PEARS persists. 

To appropriately resolve the high DOF optimal control problem of AWD multi-mode 

power-split hybrid vehicles, a fast and reliable optimization method is necessary.  

A possible approach is multi-parametric programming (MPP), which refers to a 

class of optimization problems that involving bounded uncertainty and/or variability within 

the mathematical model. The concept of MPP was proposed by Pistikopoulos et al. [40]. It 

pertains to a hard-constrained multi-stage problem in a DP fashion; therefore, global 

optimality is guaranteed. The optimal solutions for every possible realization of the state 

vector are pre-computed as explicit functions. With this technique, the discretization of 

controls and states is avoided, the computational effort will be significantly reduced, and 

the curse of dimensionality (which exists in the DP) will cease to be a barrier.  

All these HEV control approaches have pros and cons. When utilizing any of these 

methods, the limitation of the selected technique should be thoroughly understood to ensure 

proper implementation.  

1.3.3 Real-time Control Strategy for HEV Powertrain and Vehicle Speed 

Relaxation 

The heuristic/rule-based control and instantaneous optimization have been used in 

the real-time control strategy for the HEV powertrain and vehicle control.  

The instantaneous optimization approaches minimize cost functions on the basis of 

current information; the equivalent consumption minimization strategy (ECMS) is one of 

the best-known examples. In this approach, electric power is transformed into an equivalent 

fuel consumption rate. By minimizing the instantaneous equivalent fuel consumption, the 

resulting algorithm achieves an optimized selection between engine power and battery 

power. The pioneering work was done by Kim et al. in 1999 and Paganelli et al. in 2000. 
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Rizzoni et al. [41] provided the relationship between the results of this method and the 

global optimal solution, together with the required condition. This methodology can be 

improved by introducing a periodically refreshed conversion factor on the basis of the road 

load condition and the state-of-charge (SOC) level [42].  

The heuristic control algorithms, such as control rules, are typically based on the 

concept of load-leveling, which attempts to operate the internal combustion engine in an 

efficient region and uses the reversible energy storage (e.g., battery or vehicle inertia) as a 

load-leveling device to provide the rest of the power demand. Some rule-base algorithm 

examples were demonstrated by Jalil et al. [17] and Lin et al. [43].  

With a thorough comprehension of the system and appropriate design, the rule-

based control can exhibit good performance. Bosch [25, 26] developed a rule-based 

strategy called start/stop coasting (SSC). The excessive engine torque pulses the vehicle 

speed beyond the desired value; this eliminates the combustion engine’s drag torque during 

idling and allows the vehicle to coast down.  

Li et al. [28] developed a pulse-and-glide (PnG) strategy both for a conventional 

powertrain [24, 28, 29] and a parallel hybrid powertrain [27], as shown in Figure 1.15. The 

mechanism of pulse-and-glide [28], shown in Figure 1.16, take advantage of the non-

convexity of the engine fuel map. This PnG strategy was also verified to be optimal/near-

optimal by comparing results from solving the optimal control problem.  

 

Figure 1.15 Pulse-and-Glide strategy 
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Figure 1.16 Pulse-and-Glide mechanism [29]  

 

1.4 Contributions 

Research developed in this dissertation aims to expand hybrid technologies to light 

trucks. It focuses on design and control strategy development of AWD multi-mode power-

split which has not been systematically investigated before. The main contributions of the 

dissertation are summarized below:  

 A systematic design process was developed for the AWD multi-mode 

power-split hybrid vehicles. A new modeling and screening formulation was established 

for AWD multi-mode power-split hybrid vehicles; this formulation distinguishes the 

development from existing research on 2WD and has not been explored before. The design 

process highlights a four-step methodology that uses automated modeling, exhaustive 

search in the design space, and a near-optimal control strategy to obtain optimal designs. 

Drivability performance and fuel economy are both considered in the evaluation stage.  

 The concept of relaxed optimization for vehicle control was defined and 

solved. The formulations, solutions and analysis of this concept for both conventional and 

hybrid vehicles were systematically developed, which have not been systematically 
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explored. Enhanced fuel consumption reduction was demonstrated with additional relaxed 

constraints (vehicle speed and range). The MPP method was introduced to solve the high-

dimensional non-linear non-convex optimization problem and the relaxed optimization for 

AWD power-split hybrid vehicles. The developed problem formulation, transformation, 

and solution procedure exhibit a methodology to solve this class of vehicle control 

optimization problems even if the problem dimension is high (6-7 variables), which is 

difficult to be solved using commonly explored methods (e.g., dynamic programming). 

The relationship and analysis between the optimal control and the resulting state trajectory 

were revealed from the analytical solution.  

 A real-time control strategy design framework for hybrid powertrain was 

developed. The distinguishing framework demonstrated how to analyze the powertrain 

system, generate system optimal control sets, and systematically construct a near-optimal 

control strategy. Different from existing real-time control methods that either require prior 

information of speed profile to ensure near-optimal or require intensive computation for 

algorithm training/learning. Different HEV models, including the AWD power-split 

powertrain system are used to demonstrate the development and results. This framework 

can be expanded easily to all powertrain control design problems.   

 Experimental study for the developed of framework for design and control 

development was performed. A prototype multi-mode power-split hybrid powertrain is 

developed together with the control strategy. Experiments are performed to validate this 

proposed design concept that achieves a fuel consumption reduction of over 50%.  

1.5 Outline of the Dissertation 

This dissertation is organized as follows. In Chapter 2, an automated modeling 

process for multi-mode power-split hybrid vehicles is presented for the AWD and the 2WD 

hybrid vehicles. In Chapter 3, a systematic design methodology for multi-mode power-

split hybrid vehicles is shown, and the AWD hybrid powertrain is used as a design case 

study. In Chapter 4, the concept and formulation of relaxed optimization are presented to 

demonstrate the additional fuel benefits. In Chapter 5, the multi-parametric programming 

method is introduced and utilized to solve the relaxed optimization problem, together with 
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a case study on the AWD hybrid powertrain. In Chapter 6, a near optimal HEV control 

strategy is demonstrated based on understanding the relaxed optimization and analytical 

solutions from Chapter 5. In Chapter 7, the development of a prototype HEV medium duty 

delivery truck is described. In Chapter 8, conclusion and future work are presented.  

The building-blocks of the methodologies presented in this dissertation is shown in 

Figure 1.17.  

 

Figure 1.17 Flow-chart of organization development of this dissertation 
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CHAPTER 2 

Automated Modeling of AWD Multi-Mode Power-Split Hybrid 

Vehicles 

The proper modeling of the hybrid powertrains is an essential first step of 

implementing hybrid technologies. Including the very important goal of generating models 

of all possible designs automatically. In this chapter, a modeling technique for constructing 

mathematical models of power-split hybrid powertrains is demonstrated. Built upon prior 

studies, the modeling technique used in this dissertation is capable of automatically 

modeling both AWD multi-mode power-split hybrid powertrains and 2WD designs. To 

better demonstrate how the modeling technique works, an AWD power-split design is 

employed as an example.  

Figure 2.1 illustrates an example design of the AWD power-split architecture 

patented by Toyota [44]. One of the key feature of power-split powertrains is that the 

double PG set acts as a continuous variable transmission (CVT).  

Engine

MG1 MG2

Front Wheels

Rear Wheels

Ring
Gear

Sun
Gear

Carrier
Gear

PG #1 PG #2

AT

 

Figure 2.1 AWD power-split hybrid vehicle design example [44] 

The aforementioned AWD power-split hybrid powertrains can be modeled through 

a matrix that represents the complete dynamic and includes the connection information of 
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components. This technique is used throughout this dissertation to model and simulate the 

powertrain dynamics as well as design screening.  

The dynamic equations of the powertrain are shown in Eq. (2.1) where T(∙) denotes 

torque of components, ω ̇ (∙) denotes the angular acceleration, I(∙) denotes the corresponding 

inertia, F(∙) denotes internal gear force of the corresponding PG set, and R(∙) and S(∙) are the 

radii of the ring gear and sun gear, respectively.  
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(2.1) 

 

Equation (2.1) is the complete dynamics of the powertrain. The uniqueness of each 

design enables automated modeling possible, the format allows screening and mode 

analysis, and the complete dynamics can be used to evaluate the response of the powertrain.  

When a design is formulated by a matrix which represents its dynamics, dynamic 

performance requirements, such as acceleration, top speed, gradeability, and towing 

capacity, can be address. However, the capability to handle requirements for life-time 

usage or manufacturing feasibility might be limited. In this dissertation, dynamic 

performance requirements are highlight. Therefore, using the above matrix formulation is 

appropriate.  
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In this dissertation, each design candidate of the AWD power-split hybrid vehicle 

powertrains consists of an internal combustion engine, two electric motors, a battery pack, 

two PG sets, two output shafts, and three clutches. The details of constructing the complete 

model dynamics and assembling it into the representation in Eq. (2.1) are described in the 

remaining of this chapter. The dynamics of the AWD power-split hybrid powertrain is first 

developed. Then, the automated modeling procedure is described for generating all 

possible designs.  

2.1 Modeling Power-Split Hybrid Powertrains 

2.1.1 Vehicle Dynamics Model 

A quasi-static model is used to simulate the dynamics of the vehicle. Figure 2.2 

shows the free-body diagram of the longitudinal vehicle motion on a flat road. In the figure, 

the vehicle has a body mass mb (without wheels) and a wheel mass mw of both front and 

rear axles; the wheel inertia is denoted as Iw. The gravitational constant is g, the 

aerodynamic force is DA, T is the axle output torque, Kz is the vertical force between the 

wheels and body, Kx is the longitudinal force between the wheels and body, Nz is the tire 

reaction force in the vertical direction, and Fx is the tire reaction force in the longitudinal 

direction. The subscripts f and r refer to the front and rear axles, respectively.   
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Figure 2.2 Free-body diagram of longitudinal vehicle motion on a flat road 

The longitudinal dynamics and rotational dynamics of the vehicle body, front 

wheels, and rear wheels are given in Eqs. (2.2) – (2.10).  

 f rx x A bK K D m a  
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By defining the total mass M, the total rolling resistance Troll, and rear-to-front 

torque ratio α between Tf and Tr in Eqs. (2.11) – (2.13), the two axle output torques (Tf and 

Tr) can be expressed as Eqs. (2.14) and (2.15), respectively.  

 2b wM m m   (2.11) 

 f rroll roll rollT T T   (2.12) 

 f rT T  (2.13) 
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 (2.15) 

 

The aerodynamic forces in Eqs. (2.14) and (2.15) can be calculated from 
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A dD C Av  (2.16) 

 

where ρ is the air density, Cd is the drag coefficient, and A is the maximum vehicle cross 

sectional area. In this dissertation, the tire slip is not considered for simplification of the 

problem. The average accelerations of the to-be-evaluated drive cycles (UDDS and 

HWFET) are 0.4 and 0.17 m/s2. These accelerations correspond to slip ratios of 

approximately 0.04 and 0.017, using the relationship of slip ratio and tire force in Figure 

2.3 [45]. These slip ratios are smaller enough; therefore, their effects are neglected. Hence, 

all wheels have the same angular speed given by Eq. (2.17).  

 f r

v

r
    (2.17) 

 

Table 2.1 Average Accelerations of Different Drive Cycles 

Drive Cycles Average Acceleration (m/s2) 

UDDS 0.40 

HWFET 0.17 
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Figure 2.3 Longitudinal tire force on different road conditions [45]  

 

2.1.2 Engine and Electric Motor Models 

The fuel rate ṁf is obtained from a static look-up table calculated from the brake 

specific fuel consumption (BSFC) map of the 3.6L boosted engine; the map is shown in 

Figure 2.4. The constraints of engine speed ωe and torque Te are indicated in the BSFC map 

and considered throughout the design process.  

 

Figure 2.4 Engine BSFC map 

Similarly, the efficiency of the two electric machines are obtained from a look-up 

table based on the efficiency map shown in Figure 2.5. Given the electric motor torques, 

TMG1 and TMG2, and motor speeds, ωMG1 and ωMG2, the power of the two electric machines 

is shown in Eq. (2.18), where ηk1
MG1 and ηk2

MG2 are the efficiency of the two motors, 
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respectively. If the electric machine is motoring, then k1 and k2 will be -1; if it is 

generating, then k1 and k2 are 1.  

 

Figure 2.5 Efficiency map of electric motor 

 
1 2

1 1 1 2 2 2

k k

elect MG MG MG MG MG MGP T T      (2.18) 

 

2.1.3 Battery Model 

The battery is modeled as a simple open-circuit voltage with a constant internal 

resistance. The battery state of charge (SOC) dynamics is described in Eq. (2.19).  

 

2 4

2

oc oc bat elect

bat

V V R P
SOC

R

 
 


 (2.19) 

 

2.1.4 PG Model 

A typical PG set together with its equivalent lever diagram is shown in Figure 2.6. 

The three nodes in the lever diagram represents the ring gear, carrier gear, and sun gear of 

this PG; each node can be connected to a powertrain component. The kinematics of a PG 

set is governed by Eq. (2.20).  
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Figure 2.6 PG set and its lever diagram 

  s r cS R R S         (2.20) 

 

where ωr, ωc, and ωs are the speeds of the ring gear, carrier, and sun gear, respectively. R 

and S refer to the radii of the ring gear and sun gear, respectively.  

Engine

MG1 MG2

Front Wheels

Rear Wheels

Ring
Gear

Sun
Gear

Carrier
Gear

PG #1 PG #2
 

Figure 2.7 Lever diagram of Toyota AWD patent [44] (excluding the automated 

transmission) with significant forces and torques labeled 

2.1.5 Complete Dynamics of Power-Split Hybrid Powertrain Using Matrix 

Representation 

Given the components, the dynamics (excluding the battery dynamics) of an AWD 

power-split hybrid design can be represented in matrix form. To better describe the 

automated modeling technique, the patented Toyota design with two output shafts [44] is 

used (excluding the automatic transmission) shown in Figure 2.7 is used as an illustration. 

The dynamic equations of this powertrain are given by Eqs. (2.21) and (2.22) where I(∙) 
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denotes the corresponding inertia, and F(∙) denotes the internal gear force of the 

corresponding PG set.  
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TF and TR are the equivalent vehicle torques at the front and rear wheels which can 

be expressed in Eqs. (2.23) and (2.24) based on Eqs. (2.14) and (2.15), respectively. 

Similarly, the equivalent front wheel and rear wheel inertias can be expressed in Eqs. (2.25) 

and (2.26), respectively.  

  
1

F roll AT Mar T D



  


 (2.23) 

  
1

1
R roll AT Mar T D


  


 (2.24) 

  
1

F f rI I I



 


 (2.25) 

  
1

1
R f rI I I


 


 (2.26) 

 

Equations (2.21) and (2.22) can be rearranged into the matrix representation in Eq. 

(2.27).  
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(2.27) 

 

In this power-split mode (with its dynamics shown in Eq. (2.27)), 14 variables are 

to be determined using the 9 equations above and given the component inertias and PG 

ratios R1:S1 and R2:S2. Given a drive cycle to follow, ωR and ωF are determined; TF and TR 

are also obtained when the front to rear torque ratio α is defined. The only free variable 

that can be controlled is either the engine speed or engine torque.  

The square matrix of the integrated dynamics given in Eq. (2.27) can be 

decomposed into four sub-matrices as shown in Figure 2.8. The inertias of components and 

gears are assembled along the diagonal of the inertia matrix. The D-matrix indicates 

component connection, which is the key element that changes when the powertrain 

configuration changes.  
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Inertia matrix D-matrix

Transpose of D-matrix Zero-matrix  

Figure 2.8 Patterns of proposed matrix representation 

With the complete dynamics and generalized patterns, an automated modeling is 

possible. The automated modeling process (described in the next section) mainly involves 

generating the D-matrix given the component connections and clutch states. It consists of 

two steps: 1) initialize the configuration matrix of a design that shows the collocation of 

powertrain components excluding clutches, and 2) use clutch states to determine the 

dynamics.  

2.2 Automated Modeling Process I: Initialization of Configuration Matrix 

 An 8x8 zero matrix, which is decomposed into four parts, is first created: 

0

ini

T

ini

J D

D

 
 
 

, where J is a 6x6 matrix. The first four elements of the principal diagonal are 

replaced by the power source inertias in the order: engine, front output shaft, rear output 

shaft with MG2 and MG1.  

The PG set gear inertias are added to the principal diagonal of sub-matrix J 

following their collocation indicated in the AWD patented design shown in Figure 2.1. For 

example, the engine is connected to the carrier of the first PG; thus the first element in the 

principal becomes Ie+Ic1. The last two diagonal entries of sub-matrix J are filled with the 

remaining gear inertias.  

The entries to the upper-right 6x2 sub-matrix Dini are determined by the connections 

to the PG set; the number of columns is equal to the number of PGs. When a powertrain 

component is connected to a PG node, the “node coefficient” will be -S(∙) if it is connected 

to the sun gear; -R(∙) if it is connected to the ring gear; S(∙)+R(∙) if it is connected to the 
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carrier. By defining the component torque Tini and acceleration vectors Ω̇  ini, the following 

matrices are obtained:  
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(2.28) 

 

2.3 Automated Modeling Process II: Use of Clutch States to Obtain the 

Dynamic Equations 

Following a similar process described in [46], whenever a clutch connection exists, 

the sub-matrix Dini will be augmented with a zero column and is defined as matrix D. When 

a clutch connects two PG nodes, the corresponding two entries of the augmented column 

is replaced with 1 and -1; the same procedure applies to DT
ini. It should be mentioned that 

the augmented elements 1 and -1 indicate that the two nodes share the same rotational 

speed and acceleration. In the example, they indicate the coefficients of the relationship 

(1) ∙ 𝜔̇𝑟1 + (−1) ∙ 𝜔̇𝑟2 = 0.  

Note that Ω̇  ini is augmented with element Tcl(∙), which indicates the internal torque 

of the added clutch and defined as Ω̇  . Tini is augmented with a zero and is denoted as T. By 

defining the obtained 8x8 matrix as the A matrix, the complete dynamics of the design 

indicated in the referred Toyota patent (Figure 2.1) is given by Eq. (2.29), and the 

augmented sub-matrix D is given by Eq. (2.30). It can be observed that Eq. (2.29) is the 
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matrix representation of the dynamics in Eqs. (2.21) and (2.22). The filled entries, such as 

-S(∙), -R(∙), 1and -1, determine the internal forces/torques acting on the corresponding nodes.  
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(2.29) 
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(2.30) 

 

Grounding clutch connections can be added in a similar manner by putting 1 in the 

corresponding node entry. The augmented element 1 indicates that the connected node has 

a zero rotational speed and acceleration. For example, if the ring gear node of the 1st PG is 

grounded, the coefficients of the relationship are indicated as (1) ∙ 𝜔̇𝑟1 = 0.  

For all the power-split designs that use two PG sets, two output shafts, and three 

clutches, if the MG2 is collocated with the rear output shaft, the total number of designs is 

0.5∙P4
6∙C3

15 = 180∙455 = 81900. When considering that the PG gear ratio varies from 2:1 to 

4:1, and the final drive ratio varies between 2:1 to 6:1 (both with step size 1), the total 

number of design candidates is 18,427,500.  
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CHAPTER 3 

Systematic Design Methodology for AWD Multi-Mode Power-

Split Hybrid Vehicles 

With the modeling technique for both AWD and 2WD multi-mode power-split 

hybrid powertrains described in Chapter 2, all possible designs are generated. A systematic 

design methodology developed in this chapter is for screening all these possibilities 

according to the desired criteria and achieving good designs.  

Before introducing the detailed procedure of the design methodology, the criteria 

for desired designs should be clearly defined first. In this dissertation, such criteria include 

but not limited to powertrain attributes and performance requirements. The attributes 

highlighted in this dissertation are assumed to be necessary in the target AWD hybrid 

pickup truck design:  

 All-wheel-drive (AWD): the engine can drive both output shafts forward.  

 All-wheel-regenerative braking (AWRB): both output shafts can be 

controlled by the two electric motors during braking.  

 Driving backward using engine power: the engine can drive the vehicle 

backwards (when the output shaft speeds are negative).  

The AWD attribute ensures a truck design’s towing and grade performance; the 

AWRB attribute assures better regenerative braking; the capability of driving backward 

using the engine power attribute ensures the truck design’s performance when backing up 

a towed load on a slope even when the battery SOC is low.  

Performance requirements, such as vehicle top speed and maximum acceleration, 

are also considered. The vehicle’s top speed must at least be 90 mph, and the average 

acceleration from speeds of 0 to 60 mph must be higher than 3.6 m/s2. These two 

requirements ensure that the obtained designs are competitive against the benchmark (the 

conventional, non-hybrid vehicle).  
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With the foregoing criteria definition, the methodology to obtain good designs is 

described in the remaining of this chapter.  

3.1 Four-Step Systematic Design Process 

The design problem for optimal configurations, sizing, and control can involve a 

considerably large number of design candidates. A brute-force search is neither warranted 

nor efficient. Our proposed design process starts by screening out infeasible or incapable 

designs; consequently, the number of design candidates that require heavy computations is 

significantly reduced.  

This four-step design process is outlined in Figure 3.1.  

Automated modeling of all modes and all 

possible AWD design

Performance screening

Launching performance evaluation

Fuel economy evaluation

 

Figure 3.1 Four-step systematic design process 

Step 1 – Automated modeling is a proposed procedure to model all modes of all 

potential AWD designs; the search space is limited to designs that use three clutches.  

Step 2 – Performance screening involves screening for two aspects: attributes and 

criteria. Performance attributes are characteristics required by the designer that can include 

but not limited to AWD, all-wheel-regenerative-braking, and driving backward using the 

engine power. Performance criteria can include average acceleration and towing capability 

on a slope. Criteria can be based on standards, such as the SAE Standard J2807 for light 

trucks. This screening step is critical to weed out inferior designs so that only feasible 

designs are passed to succeeding steps.  
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Step 3 – Launching performance evaluation obtains the best launching performance 

of each design candidate at speeds of 0-60 mph by solving an optimization problem.  

Step 4 – Fuel consumption evaluation involves fuel economy assessment using the 

PEARS method [35]. This evaluation step is applied to all feasible designs with an 

acceptable launching performance.  

The terms frequently used in this dissertation are summarized in Table 3.1.  

Table 3.1 Frequently Used Terms in Systematic Design Process 

Terms Definition 

Node An available collocation point of a PG set (i.e., 

sun, carrier, and ring gears) 

Configuration A given topology of how components (i.e., 

engine, motors, and output shafts) are connected 

to nodes 

Design A configuration plus a selected set of clutches 

Design 

Candidate 

A design with given component sizing (e.g., gear 

ratios for the PG set and final drive ratio) 

Mode Clutch state (i.e., open and close)  
 

 

3.2 Performance Attribute Screening 

Given the complete HEV dynamic in Eq. (2.29), the augmented element Ω̇   (with 

rotational speed and internal force) is expressed in Eq. (3.1) by inverseing the dynamic 

equation, where Ainv(i,j) refers to the element in the ith row and jth column of the inverse 

matrix A-1.  
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The elements Ainv(i,j) in matrix A-1 are used for attribute screening according to the 

rules listed in Table 3.2.  

Table 3.2 Performance Attribute Screening Rules 

Desired 

Attributes 
Screening Condition 

AWD 
   2,1 3,1

0, 0
inv inv

A A   

AWRB 
     2,4 2,1 3,1

0, 0, 0
inv inv inv

A A A    

Driving 

backward using 

engine power 
   2,1 3,1

0, 0
inv inv

A A   

 

 

Note that Ainv(2,1) and Ainv(3,1) relate the engine torque to the front and rear output 

shaft, respectively. Ainv(2,4) relates the MG1 torque with the front output shaft.  

3.3 Efficient Performance Criterion Screening 

To implement a computationally efficient performance screening, a torque 

relationship derived from the static balanced state is used. The torque relationships and 

speed relationships of all six PG nodes are obtained from dynamics A Ω̇  = T through sub-

matrix D. Using the Toyota patent [44] shown in Figure 2.1 as an example again, the two 
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relationships are obtained in Eq. (3.2) by neglecting the gear inertias. Note that after 

neglecting the gear inertias, the last two elements of the torque vector in Eq. (3.2) are zeros.  
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Considering the torque relationship in Eq. (3.2) and neglecting all inertias except 

that of the vehicle (Iv), the best average acceleration rate of each design can be calculated 

by Eqs. (3.3) – (3.4) and used to estimate the launching performance. To complete the 

calculation for the best possible acceleration, the vehicle speed grid n and targeted speed 

60 mph are used. The maximum acceleration at the ith grid point is calculated in Eq. (3.3) 

based on the maximum combined output torque from Eq. (3.2). In the former equation, Rtire 

is the tire radius, and FR is the final drive gear ratio; TFmax, TRmax, and Tvmax refer to the 

maximum output torques at the front wheels, rear wheels, and vehicle, respectively; μtire is 

the tire road friction coefficient and is fixed at 0.8 in this study. To obtain TFmax and TRmax, 

all the combinations of Te, TMG1, and TMG2 are used to calculate TF and TR through Eq. (3.2); 

TFmax, TRmax, and Tvmax are the maximum values obtained. Details in calculating the 

acceleration are found in the Appendix A.  
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The launching acceleration in SAE Standard J2807 [7, 47] or the acceleration rate 

of the benchmark (non-hybrid) vehicle can be used as the threshold for acceptable 
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acceleration. These design requirements not only screen for competent designs but also 

substantially reduce the size of the feasible design pool for a more efficient design search.  

After the first two steps, feasible designs are identified. The remaining two steps of 

the design methodology are to examine the acceleration performance and fuel economy of 

those feasible designs. Optimal or near-optimal control results must be used to ensure fair 

comparison at these two stages of evaluation. For evaluating launching performance, 

dynamic programming (DP) is used to obtain the optimal result. For evaluating fuel 

economy, although DP guarantees global optimality, it is sometimes impractical to use 

because of its high computational cost.  In a large scale design search, it may take months 

or even years to finish the exhaustive search [35]. The PEARS method reported in [35] 

employs a near-optimal energy management that is ten thousand times faster than the DP. 

We choose to use the PEARS method for fuel economy evaluation in this study.  

3.4 Acceleration Performance Evaluation 

In the following case study, the performance of the conventional (non-hybrid) F-

150 vehicle is used as the benchmark that sets the design requirement. The following 

performance attributes are used for the case study: AWD, AWRB, and AWD backward 

using engine power. Given the above requirements, size designs with 328 different gear 

sizing (i.e., PG gear ratio and final drive ratio) combinations survive the screening.  

In the third step of the design methodology, acceleration performance for all 

surviving design candidates is evaluated. Different from the performance criterion 

screening in the second step, which primarily estimates an approximate average 

acceleration for the consideration of reducing computational cost, the performance 

evaluation in this section simulates the acceleration time with more detailed dynamics 

captured. The objective of this evaluation step is to find the control inputs that accelerate 

the vehicle to reach the targeted speed. The control problem is then an optimization 

problem at each time step as shown in Eq. (3.5).  
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The target speed vtarget is 60 mph. The step size is Δt = 0.1 s. v(k) is the vehicle 

speed at time step k, and a(k) is calculated from Eq. (3.6).  

 ( ) r fa k r r    (3.6) 

 

The optimization problem is solved through brute force search, by examining all 

the combinations of Te, TMG1, and TMG2 to obtain the maximum acceleration. This free-

terminal-time optimization continues until the vehicle speed reaches 60 mph. The battery 

SOC constraint is not considered, because the 0 – 60 mph launching action only lasts 

briefly.  

3.5 Fuel Economy Evaluations Using Power-Weighted Efficiency Analysis 

for Rapid Sizing Method 

To evaluate the optimal performance of fuel consumption of each design, it is 

formulated as a minimization problem as follows:  
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where ṁf is the engine fuel rate; Ω̇  = A-1 T is the inverse complete dynamics of Eq. (2.29); 

𝑆𝑂𝐶̇  represents the battery dynamics.  

The PEARS method is a near-optimal energy management methodology which was 

originally designed for component sizing [35]. It first analyzes the target cycle by 

discretizing the drive cycle in two dimensions: vehicle speed and vehicle torque demand. 

Thereafter, it uses the discretized information to calculate the optimal control input for all 

operating modes based on the defined power-weighted efficiency. Finally, the DP is 

incorporated to determine mode selection over the horizon. The PEARS process the with 

DP method is outlined in Figure 3.2.  

Target Cycle Discretization

EV Modes Analysis

Fuel Consumption Calculation by 

Dynamic Programming

Hybrid Modes Analysis

 

Figure 3.2 PEARS method [35] 

For EV (electric vehicle) modes, the electric motor powers PMG1 and PMG2 are 

obtained given a combination of the rear-to-front torque ratio α as well as their 

corresponding torques. Subsequently, the electrical system loss in Ploss
EV and battery power 

Pin
EV can be calculated. Thereafter, the best possible efficiency for an EV mode is obtained 

from Eqs. (3.8) and (3.9).  

 1
loss

EV
EV in

EV

P

P
    (3.8) 

  *

, 1 2 ,| max , , |EV v a EV MG MG v aT T       (3.9) 

 

For hybrid modes, four power flows Pe_1, Pe_2, Pe_3, and Pbatt are defined and 

summarized in Table 3.3. Similar to the EV mode analysis, by examining all the 
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combinations of rear-to-front torque ratio, speed and torque, the highest power-weighted 

efficiency is defined and calculated using Eqs. (3.10) and (3.11).  

Table 3.3 Power-Flow of Hybrid System 

Power Flow Description 

_1eP
 

Engine power through generator 

_ 2eP
 

Engine power through generator to motor 

_ 3eP
 

Engine power that directly flows to final drive 

battP  Battery power that drives the motor 
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  *

, ,| max , , |Hybrid v a Hybrid e e v aT        (3.11) 

 

In Eq. (3.10) and (3.11), ηG, ηM, and ηbatt refer to the efficiency of generator, motor, 

and battery, respectively. Pfuel refers to engine power, and μ is a flag to indicate whether 

the battery assist is on or not. The power-weighted efficiency ηHybrid relates the fuel and 

battery cost for the multi-object optimization. More details of PEARS can be found in [35].  

3.6 AWD Design Case Study of Hybrid F-150 

In the following, a conceptual parallel-hybrid Ford F-150 light truck is chosen for 

the case study. The comparisons made are among the conventional F-150, a pre-

transmission parallel hybrid F-150 (Figure 3.3), and AWD hybrid F-150. The key 

parameters of the vehicle are listed in Table 3.4. The powertrain design pool of components 

includes three power sizes for the engine (163, 217, and 272 kW) and three power sizes for 

the two electric motors (66, 88, and 110 kW). It should be mentioned that the two motors 

can have different sizes. In this case study, an electric motor is assumed to be collocated 

with the rear output shaft; however, the proposed design methodology can be easily applied 

to other scenarios.  
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Figure 3.3 Schematic of pre-transmission parallel hybrid design benchmark 

Table 3.4 Parameters of Vehicle Used in Case Study (F-150) 

Component 

Vehicle 

 

Conventional 

Parameters 

Parallel 

 

AWD Hybrid 

Engine 272 kw at 

5200rpm 

569 Nm at 

2500rpm 

272 kw at 

5200rpm 

569 Nm at 

2500rpm 

163 – 272 kw 

at 5200rpm 

MG1 power N/A 90 kW 66 – 110 kW 

MG2 power N/A N/A 66 – 110 kW 

Transmission 6-speed 6-speed 2-PG set 

Drivetrain RWD RWD AWD 
 

 

The combined launching performance and fuel economy results of the winning 

design candidates are shown in Figure 3.4. There is a family of designs that achieve better 

accelerations and better fuel economy than the conventional and parallel hybrid vehicles. 

Two designs (Design A and Design B) are highlighted in Figure 3.5 and Figure 3.6, 

respectively. Both families have a large number of design candidates (i.e., designs with 

different component size combinations) that achieve excellent launching and fuel economy 

performance. More details of mechanical connections and operations for these designs can 

be found in U.S. Patent Application No. 15/763,722 [48].  
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Figure 3.4 Combined performance and fuel economy results of various hybrid design 

candidates 

Engine

MG1 MG2

Front Wheels

Ring
Gear

Sun
Gear

Carrier
Gear

Design A

Rear Wheels

Lever Diagram

 

Figure 3.5 Diagram of Design A 

Engine

MG1

MG2

Front Wheels

Ring
Gear

Sun
Gear

Carrier
Gear

Design B

Lever Diagram

 

Figure 3.6 Diagram of Design B 

The best combined 
performance: fuel 
economy and 
launching. 
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An optimal design candidate from Design A is selected for further analysis; its 

powertrain component sizes are listed in Table 3.5. This highlighted design has the same 

total system power as the benchmark parallel hybrid design. Its performance is compared 

to the conventional and parallel designs listed in Table 3.6. Selected results are shown in 

Figure 3.7 and Figure 3.8.  

Table 3.5 Powertrain Parameters of Design A 

Engine MG1 MG2 

R/S 

Ratio 

(PG1) 

R/S 

Ratio 

(PG2) 

Final 

Drive 

(Front) 

Final 

Drive 

(Rear) 

163 

kW 

110 

kW 

88 

kW 

2:1 4:1 5:1 6:1 

 

 

Table 3.6 Performance Summary 

Vehicle 

Launching 

Time (s) 

(16000 

lbs.) 

Launching 

Time (s) 

(5073 lbs.) 

Fuel 

Economy – 

UDDS 

(mpg) 

(5073 lbs.) 

Fuel 

Economy – 

HWFET 

(mpg) 

(5073 lbs.) 

Conventional 21.6 7.7 25.0 30.3 

Parallel 17.3 7.1 42.3 31.7 

AWD Winning 

Design A 

13.5 5.1 50.0 34.8 

 

 

Figure 3.7 illustrates how the highlighted winning design accelerates from 0 to 60 

mph. The power-split mode is used to achieve the best launching in 5.1s because the 

operating mode can produce maximum power with all propulsion components engaged; 

the power-split mode controls the engine speed for maximum engine torque at any vehicle 

speeds.  

Compared to the parallel hybrid F-150 design, the winning Design A exhibits 

launching that is 28% faster, and fuel economies that are 18.2% and 9.8% better in the 

UDDS and HWFET cycles, respectively. These indicate that the proposed systematic 

design methodology successfully identifies a family of good AWD designs.  
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Figure 3.7 Results of 0-to-60 launching performance  

 

 

Power-split Mode
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Figure 3.8 Simulation results of UDDS and HWFET drive cycles 

 

3.7 Analysis of Highlighted AWD Hybrid Power-Split Vehicle Designs 

3.7.1 Common Features of the Two Winning Designs 

It is observed that the two highlighted designs (Design A and Design B) share 

several common features; each design has a clutch that connects the carrier nodes of the 

two PG sets; and the two output shafts are on the same PG set that connects to the sun gear 

node and the ring gear node. These common features allow a good torque balance of the 

second PG set.  

The torque balance analysis in Figure 3.9 shows that in equilibrium state torques at 

the ring gear and sun gear are in the same direction while the torque at the carrier is in the 

opposite direction. Therefore, the two output shafts of AWD designs will be collocated to 

either the ring gear or sun gear, respectively.  

 

Figure 3.9 Torque balance analysis of a PG set using the lever diagram 

By understanding the torque balance analysis, quick examination for rationality of 

AWD power-split designs becomes possible.  

3.7.2 Fuel-Saving Control Policy from Optimization Results 

 From the results in the two drive cycles, it was observed that the EV mode and 

parallel mode are frequently used: the parallel mode is used in high power driving and the 

EV mode is used for low-power driving and braking. To better understand this observation, 

the mode distribution is shown in Figure 3.10. The two operating modes are shown in 

Figure 3.11.  
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Figure 3.10 Operation mode analysis of UDDS and HWFET cycles 

 

Figure 3.11 Lever diagram of EV mode and parallel mode 

Based on the observation of 0-60 launching (when power-split mode is used) and 

the fuel-efficient driving in the EPA cycles, a mode selection policy is generated and shown 

in Figure 3.12. Although this mode selection map is simple and may lose certain optimality, 

it summarizes from optimal control results and is implementable.  
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Figure 3.12 Policy for mode selection 

3.7.3 Comparison of Launching Performance and Gradeability of AWD and 

FWD Hybrid Vehicles and RWD Hybrid Vehicles 

To better understand the performance of the highlighted AWD hybrid design, the 

analyses of acceleration and grade performance are presented in this subsection. Two tests 

are designed based on the towing-vehicle propulsion requirements from SAE Standard 

J2807. The AWD hybrid Design A, a FWD parallel design and a RWD parallel design are 

compared at the same gross combination weight rating (GCWR) of 16000 lbs. The vehicle 

dynamics of the AWD design are shown in the Appendix A.  

Test 1 – Launch on 12% grade: time for launching the towing vehicle from 0 to 10 

mph on a 12% grade.  

Test 2 – Gradeability test: maximum grade on a slope while maintaining the vehicle 

speed at 40 mph.  

In the summarized results in Table 3.7, it can note that the AWD power-split hybrid 

design is able to accelerate from 0 to 10 mph in 5.3 seconds, whereas the RWD parallel 

design requires 7.3 seconds to launch; the FWD parallel design cannot even launch from 

the 12% grade slope. The AWD design can launch on a slope that is 55% steeper than the 

RWD parallel design can. The RWD design performs better than the FWD design does 

because of the vehicle load transfer. Overall, the AWD power-split hybrid design presents 

the best performance.  

Vehicle Axle 
Torque (Nm)

Vehicle Speed (mph)

EV Mode

Parallel
 Mode

Power-split Mode

0 20 40 60
0

500

1000

1500

2000
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Figure 3.13 demonstrates the gradeability of these three designs by showing the 

tow-weight capability on different slopes. The AWD hybrid design can tow heavier 

weights because it uses both axles. The FWD design tows less than the RWD design can 

because of load transfer; it is unable to drive the vehicle up a slope with an 11% grade or 

higher at a fully loaded weight.  

Table 3.7 Launch Performance on 12% Grade and Gradeability 

Vehicle  

(GCWR: 16000 lbs.) 

Launch on 12% 

Grade 

Gradeability  

(at 40 mph)  

FWD Parallel Infeasible 9.2 % 

RWD Parallel 7.3 s 13.2 % 

AWD Winning 

Design A 

5.3 s 20.5 % 

 

 

 

Figure 3.13 Gradeability performance (at 40 mph) of the three designs 
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CHAPTER 4 

Relaxed Optimization for Vehicle Control 

Subsequent to the modeling and design processes in Chapter 2 and Chapter 3, 

respectively, a group of good HEV designs are identified. Given an identified design, the 

control strategy development then becomes the next important stage. To properly design a 

control strategy and compare its fuel efficiency performance, the global optimal results that 

are solved offline are usually generated for the following:  

1. Benchmark comparison for justifying “good” performance of the control 

strategy 

2. Analysis of results with the optimal control for control strategy development 

The offline evaluation of fuel economy is commonly performed by following 

certain drive cycles, such as UDDS and HWFET, precisely. However, in the real-world a 

vehicle never follows defined drive cycles exactly, and can “wander” around the desired 

speed profile instead, within the EPA defined speed tolerance (±2 mph) [21]. In this 

dissertation, the relaxed optimization is introduced to explore this concept.  

In this chapter, the relaxed optimization is defined, formulated, and solved given 

an HEV design. The resulting optimal controls are analyzed, and the knowledge acquired 

over different powertrain platforms is summarized. These will be useful for the control 

strategy development that is presented in the later part of this dissertation. With this 

established study framework, the analysis of system optimal control for the AWD power-

split HEV becomes possible.  

4.1 Constraint Relaxation 

In this dissertation, the relaxed optimization for vehicle control is defined under the 

condition that the dynamic constraints of powertrain and vehicle are relaxed. In particular, 
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the relaxed constraints that are investigated include: vehicle speed, range to the leading 

vehicle, and battery SOC. The relaxation of vehicle speed constraint allows the control 

strategy to vary the vehicle speed in the proximity of the desired speed profile; relaxing the 

vehicle range constraint represents the controlled vehicle being limited by the leading and 

tailing vehicle in the real-world scenario; relaxing the battery SOC allows the control 

strategy to optimize the distribution between the mechanical and electrical power paths. 

The battery SOC, as an additional energy storage, along with the vehicle kinetic energy 

storage (vehicle speed and range to the leading vehicle) can be used a strike a better balance 

between fuel consumption and vehicle ride. The studies and comparison of these constraint 

relaxations over the conventional vehicle and HEV are performed.  

4.1.1 Conventional Vehicles – No Relaxations 

For conventional vehicles with a step-gear automatic transmission, gear position is 

the only control available to optimize the vehicle’s fuel consumption according to defined 

drive cycles. At a desired vehicle speed and engine power, the engine torque and engine 

speed are dependent on the gear position. A general problem formulation is shown in Eq. 

(4.1), where ṁf refers to the engine fuel rate, ωe is the engine speed, Te is the engine torque, 

and fe is the function that relates ṁf, Te, and ωe; 𝑇𝑣𝑘 and vk represent the vehicle torque and 

speed at time step k, respectively; Rtire is the tire radius; J is the accumulated cost of fuel 

consumption.  
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4.1.2 Constraint Relaxation for Conventional Vehicles 

The vehicle speed in the relaxed control problem can follow the speed profile 

approximately instead of exactly. In this case, it is not necessary for the torque output from 
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the transmission to deliver exactly the demanded value at the given speed level; in other 

words, the vehicle speed and vehicle range constraints are relaxed. A general problem 

formulation is shown in Eq. (4.2), where vk and sk represent vehicle speed and range (or the 

distance between the controlled vehicle and leading vehicle), respectively; 𝑣𝑘, 𝑣𝑘, 𝑠𝑘, and 

𝑠𝑘 are the lower and upper limits of each state, respectively.  

 

 

 

1

0

1

1

min

. .

1

,

,

,

N

f

k

e k gear

tire

f e e e

k

k k

i

k k k

k k k

J m k

s t A T

v n
R

m f T

s v dt

v v v k

s s s k















  

  





  

  





 

(4.2) 

 

4.1.3 Hybrid Electric Vehicle and Its Relaxation 

Hybrid electric vehicles possess additional DOFs because power can be generated 

from the engine or battery. This additional flexibility results in a larger feasible control set, 

i.e., opportunity for better fuel economy. The battery SOC can be any value within its range 

(0.3-0.8); this condition allows the engine to change its torque and/or speed given a desired 

vehicle command. Therefore, it can be interpreted that the battery SOC is a relaxed 

constraint to the optimal power generation problem. A general problem formulation for the 

HEV is shown in Eq. (4.3), where Pbatt is the battery power, fbatt represents the battery 

dynamics related to motor speed ωm, motor torque Tm, and motor efficiency ηm; 𝑆𝑂𝐶̇  

represents the change rate of SOC, and SOCmin and SOCmax are the lower and upper limits, 

respectively.  
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The vehicle speed control problem can be relaxed to add flexibility to the optimal 

search. By combining all relaxations including battery SOC constraints, vehicle speed 

constraints, and range constraints, the general relaxed optimization problem of the HEV is 

developed, as shown in Eq. (4.4).  
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Details of the dynamics in the above equations are shown in the next section.  
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4.2 Formulation of the Relaxed Optimization Problem 

 To start the investigation of this topic, a conventional powertrain and a pre-

transmission parallel hybrid powertrain are used for the case study as shown in Figure 4.1. 

The conventional powertrain consists of an internal combustion engine (ICE) and a 6-speed 

automatic transmission; the parallel hybrid powertrain has an additional electric motor 

before the transmission. There is a clutch between the engine and transmission that can 

disconnect the engine from the powertrain.  

    

Figure 4.1 Schematic of conventional powertrain and pre-transmission parallel hybrid 

design 

The fuel/electrical efficiencies of the powertrain components are shown in Figure 

4.2. The fuel rate ṁf is obtained from the BSFC map shown in Figure 4.2. The constraints 

of engine speed ωe and torque Te are indicated in the BSFC map by the black line and 

considered throughout the design process. Similarly, the efficiency of the electric machine 

is obtained from the motor map shown in Figure 4.2.  

    

Figure 4.2 Engine BSFC map (left) and motor efficiency map (right) 

The battery is modeled by a simple open-circuit voltage model with a constant 

internal resistance. The battery SOC is described in Eq. (4.5), where Voc is the open-circuit 

voltage, and Rbatt is the battery internal resistance.  
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The automatic transmission is modeled by gear ratios with a different efficiency for 

each gear. The relationships of speed and torque are given in Eq. (4.6), together with the 

vehicle dynamics shown in Eq. (4.7), where av represents the vehicle acceleration, m is the 

vehicle mass, g is the gravitational constant, μ is the rolling resistance coefficient, ρ is the 

air density, Cd is the drag coefficient, A is the vehicle cross sectional area, and Rtire is the 

tire radius.  
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Combining all the models in Eqs. (4.4) – (4.7), the optimal control problem with 

relaxed speed and range constraints for the conventional vehicle and the hybrid vehicle are 

formulated in Eqs. (4.8) and (4.9), respectively.  
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(4.9) 

 

The relaxed optimization for the conventional vehicle has two controls (engine 

torque and transmission gear) and two states (vehicle speed and vehicle range), whereas 

the optimization problem for the parallel hybrid electric vehicle has three controls (engine 

torque, motor torque, and transmission gear) and three states (SOC, vehicle speed, range 

to the leading vehicle). The problem is nonlinear and non-convex that is inherited from the 

vehicle dynamics and the components’ efficiency maps. Moreover, the problem has both 

continuous and discrete controls. In the following section, the DP method is employed to 

solve this problem by discretizing the continuous states and controls.  

4.3 Dynamic Programming 

DP is commonly used to solve non-linear non-convex optimal control problems 

because it can guarantee global optimality and manage constraints. To implement the DP 

algorithm, the original problem in Eq. (4.10) is decomposed into a set of sub-optimization 

problems for each time step k as shown in Eq. (4.11), where rk represents the transitional 
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cost at step k, RN represents the final cost at step N, and Jk refers to the optimal cost-to-go 

from step k to the final step N.  

    
1

0

min ,
N

N N k k k

k

J R x r x u




 
  
 

  (4.10) 

       1 1min ,k k k k k k kJ x r x u J x    (4.11) 

 

As shown in Figure 4.3, given all feasible controls (shown in green) and states, all 

sub-problems in Eq. (4.11) are optimized backward until the 1st stage is reached. Based on 

the Bellman’s principle of optimality, the obtained results are guaranteed to be global 

optimal.  

 

Figure 4.3 Backward optimization of DP process 

 

4.4 Optimization Results 

The simulation studies to be presented below cover four problem formulations: 

conventional (non-relaxed), conventional (relaxed), HEV (non-relaxed), and HEV 

(relaxed). Various driving scenarios are included and categorized into two types: constant 

speed scenarios (20, 30, 40 and 50 mph) for 200s and drive cycles (UDDS, HWFET, and 

NYCC). The vehicle speed constraint is set to ±2 mph, following the SAE fuel economy 

testing standard; the vehicle range difference is set to ±50 m. The major constraints are 

listed in Table 4.1, and key powertrain parameters are summarized in Table 4.2.  

Table 4.1 Case Study Setup(F-150) 



56 

 

 
Vehicle Speed 

(mph) 

Vehicle Range 

Difference (m) 
Battery SOC (%) 

Constraint 

Range 
±2 mph ±50 m 40 – 60 

 

 

 

Table 4.2 Other Vehicle Parameters Used in Case Study (F-150) 

Powertrain Engine MG Power Battery Size Vehicle Mass 

Conventional 
272 kW at 5200 

rpm 
N/A N/A 2300 kg 

Parallel 

Hybrid 

272 kW at 5200 

rpm 
90 kW 1.35 kWh 2300 kg 

 

 

4.4.1 Fuel Consumption Comparison 

 Fuel consumption results are shown in Figure 4.4 and Figure 4.5. These results 

confirm that relaxing the vehicle speed and battery SOC constraints can reduce fuel 

consumption. Relaxing the constraints within the EPA-defined tolerance can result in a fuel 

reduction of 2% - 73% compared to the optimal results without relaxations.  

For constant speed driving, the fuel saving benefit from the HEV powertrain largely 

depends on the driving speed.  Because the ICE operates efficiently, speed relaxation shows 

consistent and significant fuel saving even at high speeds. In this case, the hybrid system 

(i.e., battery SOC relaxation) does not present significant amount fuel saving. For low-

speed drive cycles (NYCC, UDDS, and FTP-75), the HEV with speed relaxation presents 

the best fuel saving results; however, it seems that regenerative braking becomes a more 

important factor compared with relaxation. Overall, it could be inferred that the HEV 

powertrain is important in dynamic cycles with several opportunities for regenerative 

braking, whereas speed relaxation is more effective during constant-speed driving.  

Moreover, results indicate that further fuel consumption reduction benefits can be 

derived if the average speed is low. At low-speed scenarios, engine operation in a 

conventional vehicle is considerably inefficient. Therefore, significant fuel consumption 

reduction opportunities exist for battery SOC relaxation and for speed relaxation. At high-
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speed scenarios, the engine already operates at regions close to its “sweet spots” 

(optimum); consequently, less fuel consumption reduction benefit is observed. The average 

speed in different drive cycles are summarized in Table 4.3; the speed profile is shown in 

Figure 4.6.  

 

Figure 4.4 Fuel consumption comparison between constant speed scenarios and general 

drive cycle scenarios 
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Figure 4.5 Fuel consumption reduction percentage in constant speed scenarios and 

general drive cycle scenarios 

 

Table 4.3 Average Speeds of Studied Driving Scenarios (Excluding Stop Event) 

Driving 

Scenarios 
Constant 20mph Constant 30mph Constant 40mph Constant 50mph 

Average 

Speed 
20mph 30mph 40mph 50mph 

Driving 

Scenarios 

New York City 

Cycle  (NYCC) 

Urban 

Dynamometer 

Driving Schedule  

(UDDS) 

Federal Test 

Procedure  (FTP-

75) 

Highway Fuel 

Economy Test 

(HWFET) 

Average 

Speed 
10.9mph 24.2mph 26.2mph 48.6mph 

 

 

 

Figure 4.6 Speed profiles of NYCC, UDDS, FTP-75, and HWFET drive cycles 
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4.4.2 Speed and Battery SOC Trajectory Comparison 

 The optimized trajectories of vehicle speed and/or battery SOC of the three relaxed 

optimization cases (relaxed speed, relaxed SOC, and combined speed and SOC relaxation) 

at a constant speed of 30 mph and NYCC cycles are shown in Figure 4.7 – Figure 4.9.  

Figure 4.7 shows the trajectory in the case study of the speed relaxation of the 

conventional vehicle. A pulse-and-glide behavior is observed in the vehicle speed 

trajectory. For the constant speed cases, the optimized vehicle speed fluctuates in the 

proximity of the desired speed, showing a period of approximately 5s. For the NYCC case, 

the optimized vehicle speed also fluctuates in the proximity of the desired speed and 

smooths out the profile if the original profile frequently changes.  

 

 

Figure 4.7 Optimized vehicle speed of relaxed optimization at 30mph and NYCC cycle 

Figure 4.8 shows the trajectories of the case study for the battery SOC-only 

relaxation of the parallel HEV, i.e., a classic HEV. Pulse-and-glide behavior is observed 

for the SOC trajectory in the proximity of the desired final SOC value. In this case, vehicle 

speed follows the original profile exactly but SOC “pulses and glides”.  
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Figure 4.8 Optimized battery SOC trajectories (partial) of HEV at 30mph and NYCC 

Figure 4.9 shows the trajectories of the case study for both vehicle speed and battery 

SOC relaxation of the parallel HEV. In the original constant speed case, the vehicle speed 

shows pulse-and-glide behavior while the battery SOC remains constant, implying that 

vehicle speed pulse-and-glide is preferred over battery SOC pulse-and-glide. In the NYCC 

case, both vehicle speed and battery SOC exhibit a pulse-and-glide behavior. Compared to 

the previous HEV case, the battery SOC changes are smaller and occur mostly during 

braking. The vehicle speed changes are still noticeable and occur along the whole horizon.  

 

 

Figure 4.9 Optimized speed and battery SOC trajectories of HEV at 30mph and NYCC 

Overall, pulse-and-glide behaviors are observed in the vehicle speed and battery 

SOC. From these comparisons, exploring the relaxation of both the speed and battery SOC 

constraints can balance the vehicle ride while achieving the lowest fuel consumption.  
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4.5 Optimization Analysis 

Figure 4.10 shows the fuel consumption rates of different relaxation at the original 

constant driving scenario of 30 mph. Generally, the optimal engine powers are mostly at 

approximately 50 kW (near the “sweet spot” of the engine) or zero (engine shut-down). 

The final average fuel rates are lower than that at the same average power level as 

highlighted in the figure. Therefore, the overall fuel consumption is reduced.  

 

Figure 4.10 Optimized speed and battery SOC trajectories (partial) of HEV at 30mph and 

NYCC 

Relaxing the vehicle speed allows the vehicle (body) to act as an (kinetic) energy 

storage system. The battery can replace the vehicle body to act as the energy buffer. Instead 

of speed fluctuation, the battery SOC will fluctuate up and down. As a result of the 

approximate 20% energy losses (charge and discharge) at the motor/power electronics and 

battery, the “SOC pulse-and-glide” is less efficient compared with the “Speed pulse-and-

glide”. The optimal results show that the kinetic energy storage (vehicle body) is preferred 

because it is more efficient. Because of the regenerative energy, the SOC will continue to 

still fluctuate to some extent. The energy flow of the HEVs relaxed optimization is shown 

in Figure 4.11.  



62 

 

 

Figure 4.11 Energy flow in the relaxed optimization 

 

4.6 Effects of the Boundary Conditions 

The benefits of relaxed optimization depend on other conditions, such as the 

defined speed constraint bounds (at a given drive cycle, not at a constant speed), range 

constraint bounds, and drive cycle attributes. To further analyze these problems, 

simulations with different speed bounds, range bounds, and SOC bounds are performed. 

The constraint bounds are summarized in Table 4.4. The comparison in corresponding fuel 

consumption reduction percentages with the extended constraint bounds is shown in Figure 

4.12.  

Table 4.4 Extended Constraint Bounds used in Simulations 

 
Vehicle Speed 

(mph) 

Vehicle Position 

Offset (m) 

Battery SOC 

(%) 

Constraint 

Range 
±10 ±250 10 – 90  
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Figure 4.12 Percentages of fuel consumption reduction in constant speed scenarios and 

general drive cycle scenarios, with extended constraint bounds 

Results show that further fuel consumption reductions of up to 76% are achieved. 

Larger constraint bounds generally result in higher fuel consumption reductions.  

Figure 4.13 shows vehicle speed trajectories with the extended constraints. The 

speed profiles still exhibit the pulse-and-glide behavior. The speed trajectory becomes 

smoother because the pulse-and-glide period is longer. It can be noted that the vehicle 

speed does not always fully utilize an upper bound higher than 7mph, because a higher 

speed indicates a higher aerodynamic-drag.  
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Figure 4.13 Speed trajectories of relaxed optimization using the extended constraint 

bounds at original constant 30 mph and NYCC drive cycles 

Among all constraints, the effects of speed constraint are most significant. 

Additional case studies on other constraints (range and battery SOC) are provided in 

Appendix B.  

Table 4.5 Extended Constraint Bounds in Different Constraint Case 

Studies 

 
Vehicle Speed 

(mph) 

Vehicle Position 

Offset (m) 
Battery SOC (%) 

Constraint Range 

(Case 1: Speed) 
±2 – ±10 ±50 40 – 60  

 

 

Figure 4.14 shows the fuel consumption reduction when speed relaxation is made 

to vary. Results show that for both powertrains, generally, a larger speed bound results in 

lower fuel consumptions when the bounds are smaller than ±10 mph from the nominal 

speed. Larger speed bounds allow the vehicle to pulse with a larger acceleration. This 

permits a larger output power from the powertrain and allows the engine to operate closer 

to the sweet-spot power points, as indicated in Figure 4.10. The benefits saturate when 

these sweet-spot power operating points are reached. On the other hand, the overall driving 

becomes smoother because the larger speed bound results in a longer pulse-and-glide 

period.  

For the conventional vehicle, results show more fuel consumption reduction 

improvements at lower speeds. Speed bounds larger than ±7 mph stop generating more fuel 

saving. A similar trend is observed in the HEV case; however, fuel saving is lower. This is 

because the HEV is already more efficient.  
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Figure 4.14 Fuel consumption reduction for varying speed constraints under different 

driving scenarios 

To further analyze these problems in the general driving scenarios, more 

simulations are desired. However, using DP to solve the problem is time consuming: more 

than nine days to complete the simulation in the HWFET cycle and two weeks in the UDDS 

cycle for the relaxed optimization. This is because the DP is unable to manage the curse of 

dimensionality. Different methods are required to handle these optimization problems.  

Additional studies are also conducted on computational cost to identify methods 

that can be used to solve mixed-integer optimization problems, such as the DP and MIP. 

As shown in Figure 4.15, two methods are used to solve a conventional vehicle optimal 

control problem over different drive cycles with only one control (transmission gear). The 

DP requires more computational time than MIP when the drive cycle is short; more, the 
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time consumed by the DP increases linearly as the drive cycle extends. The time consumed 

by the MIP increases exponentially, and eventually takes longer time than the DP. The MIP 

method is not an ideal option for solving long horizon problems.  

 

Figure 4.15 Computational time of different cycles using DP and MIP 

Figure 4.16 shows how the computational time of the DP increases exponentially 

when the number of states/controls increases. The exponential increase is due to the curse 

of dimensionality, and shows that DP is not an ideal option for the relaxed optimization of 

HEVs because of the increased number of states.  

Therefore, in this dissertation we propose to use the multi-parametric programming 

method to solve the relaxed optimization problems for HEVs in the next Chapter.  



67 

 

 

Figure 4.16 Computational time of number of controls and states using DP to solve a 

200s drive cycle 
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CHAPTER 5 

Multi-Parametric Programming for Hybrid Vehicle Control 

Optimization 

In Chapter 4, the relaxed optimization for vehicle control is defined, formulated, 

and solved for conventional and parallel hybrid powertrains. The optimal fuel benefits and 

optimized control are analyzed.  

However, solving the relaxed optimization for the parallel HEV suffers from the 

curse of dimensionality (e.g., two controls and two states for this problem) when the DP 

method is applied. This indicates that it is limited to solve higher degrees-of-freedom 

(DOFs) optimization problems, such as the relaxed optimization of the AWD power-split 

HEV, using the DP method, except for people who have access to significant computation 

resources.  

In this chapter, the multi-parametric programming (MPP) method is introduced and 

utilized to solve the HEV control optimization problem. The generic solution formulation 

is developed, and the optimality and computational efficiency of this method are verified. 

The developed solution formulation is also adapted for the relaxed optimization of the 

AWD power-split HEV.  

5.1 Problem Approximation and Reformulation 

 The HEV optimization problems are typically either non-convex problems or 

mixed-integer non-convex problems. To solve these high-order optimization problems 

using the MPP method, the optimization problem is approximated and parameterized 

instead of discretizing or approximating controls and states. Thereafter, the high-

dimensional non-convex non-linear HEV optimization problem is firstly analyzed:  

1. The mechanical path of the powertrain dynamic is linear;  
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2. The battery dynamic is non-linear (a square root function);  

3. The map data of components is non-convex (e.g., engine fuel map and 

motor efficiency map). 

Then, the following technique and approximation are adopted:  

1. The linear dynamic of the mechanical path remains;  

2. The non-linear battery dynamics is replaced by a linear energy model;  

3. The non-convex engine fuel map and motor efficiency maps(s) are 

approximated with piece-wise linear maps.  

The original HEV optimization problem then becomes a piece-wise linear convex 

optimization problem. The process of this approximation is shown by the diagram in Figure 

5.1. Further details are provided in the next section.  

 

Figure 5.1 Approximation of HEV optimization problems 

 

5.1.1 Linearization of Engine Fuel Map 

The engine fuel map is first decomposed into several engine map segments based 

on engine speed and torque, shown in Figure 5.2. The fuel rate in each engine map segment 

is approximated by a linear function of the engine torque. Figure 5.3 shows an example of 

the resulting fuel rate approximation at engine speed of 1100 rpm.  
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Figure 5.2 Engine fuel map decomposed into several smaller segments (in red) 

 

Figure 5.3 Approximated fuel consumption using a piece-wise linear function at engine 

speed of  

The engine fuel rate map is then decomposed into a group of piece-wise linear 

functions. The general approximation is given in Eq. (5.1), where 𝜔̅e,i is the average engine 

speed in the ith engine speed segment to approximate ωe within that segment.  

    
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The analysis of Figure 5.4 shows that 99% of the approximation data points are less 

than 5% different from the original data points and the remaining 1% approximated points 

are between 5-10% from the original points. Moreover, the non-convexity of the original 

fuel map is inherited in this approximation. Therefore, the approximated piece-wise linear 
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fuel functions are valid to replace the original fuel map in the optimization problem. The 

factors αh1,h2
0, αh1,h2

1 and αh1,h2
2 of those piece-wise linear functions in Eq. (5.1) are 

constant; they are determined from the fuel map through least square regression.  

 

Figure 5.4 Analysis using engine fuel map approximation 

5.1.2 Approximation of Motor Speed 

Because the engine speed is approximated by the average speed (𝜔̅𝑒,ℎ1 ) in the 

corresponding segment, the motor speed is approximated by Eq. (5.3) for this parallel 

hybrid vehicle design.  

 
1, 1 : engine segmentm e h h   (5.2) 

 

The motor speed approximation is dependent on the engine grid point. For example, 

if the engine speed is 1000 rpm and the engine grid point is 100 rpm, then the 

approximation error is less than 5% within the segment of approximately 1000 rpm.  

It should be noted that this approximation is only for the purpose of converting the 

problem to be piece-wise mixed-integer linear programming. If the problem is formulated 

as a quadratic programming, then this approximation for motor speed is not necessary.  

5.1.3 Linearized Energy Model 

The mostly frequently used open circuit voltage (OCV) battery model, shown in 

Figure 5.5, consists of a square root function of the battery power in terms of the battery 

current. This is given by in Eq. (5.3), where Voc is the battery open circuit voltage, Rbatt is 

the internal resistance, Ibatt is the battery current, and Pbatt is the battery output power. Eq. 
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(5.4) shows the relationship between the battery state of charge (SOC) and the battery 

current. Etot is the total energy of the battery pack, and ΔSOC is the battery SOC change 

rate.  

 

Figure 5.5 Battery open circuit voltage model 
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batt
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   (5.4) 

 

Because the battery internal resistance can be relatively small, the battery current 

is then approximated as an affine function of the battery power, i.e., a linear energy model. 

Figure 5.6 shows the comparison of the calculated battery current from Eq. (5.3) and from 

an approximate affine function in Eq. (5.5), and the results verify the OCV model is closely 

approximated by the linear energy model. An analysis of the comparison in Figure 5.7 

shows that 57% of the data are within a 1% difference and over 97% of the data are within 

a 5% error. The remaining 3% with a larger error locates at areas with considerably low 

power. The factors β0 and β1 of the affine function in Eq. (5.5) are constant and determined 

through least square regression from the OCV model.  
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Figure 5.6 Battery OCV model and its linear approximation 

 

Figure 5.7 Analysis using the linear battery model approximation accuracy 

 1 0batt battI P     (5.5) 
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5.1.4 Problem Formulation 

By incorporating the above approximations, the piece-wise linear convex 

optimization of the HEV is formulated in the below, where 𝑇̅𝑒,ℎ2 is the mid-point of each 

torque segment and gr is the transmission gear ratio:  
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The MPP method is used to solve this optimization as explained in the next section. 

As an example, the problem is optimized over a 55-mph cruising cycle for 8s.  

5.2 Use of MPP to Solve Hybrid Vehicle Non-Relaxed Optimization Problem 

5.2.1 Multi-Parametric Programming Process 

The optimization of a parallel hybrid vehicle (Eq. (5.7)) is formulated as a series of 

stage decision processes represented in Figure 5.8, where u1
t is the control of motor torque 

Tm at time t, u2
t is the control of the transmission gear Ngear at time t, x1

t is the state of 

battery SOC SOCbat at time t, x2
t is the state of transmission gear Ngear at time t, and st is 

the cost-to-go of fuel cost fuelt at time t.  

Stage 1 … … Stage N-1 Stage N

… ...
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Figure 5.8 Schematic of HEV optimization problem with N (N=8) stages 

Following a process similar to solving dynamic programming of solving a group of 

sub-problems in Eq. (5.7), the MPP method starts from the end stage i=N. At this stage, 

the optimization in Eq. (5.7) has the decision vector XN=[u1
N, u2

N, x1
N, x2

N], which includes 

both the control and state vector, and the parameter vector θ for the cost-to-go function as 

Vi=N(θ). In this case of HEV optimization, the decision vector includes MG1 torque 

command Tmg1, gear ratio command gr (for next time-step), current SOC state soc, and 

current gear ratio state gr. The sub-problem at stage i=N is then developed as Eq. (5.8), 

where socN is the SOC state at time step N, SOCdesired is the desired SOC, ωv_desired is the 

desired transmission speed, and Tv_desired is the desired vehicle torque. The cost-to-go and 

its complete representation format are described in Eqs. (5.9) and (5.10). The cost-to-go is 

also plotted in Figure 5.9. The optimal control of the sub-problem Eq. (5.8) is expressed in 

Eq. (5.11).  
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Figure 5.9 Cost-to-go function at stage i=N  
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 (5.20) 

 

All the above expressions of cost-to-go and optimal controls are valid within the 

corresponding region. Therefore, it is also important to identify the feasible regions of the 

solution.  

The feasible regions at stage i=N and i=N-1 are expressed in Eqs. (5.21) and (5.22), 

respectively. The cost-to-go and the corresponding feasible region at stage i=N, i=N-1 and 

i=1 are shown in Figure 5.10 – Figure 5.12, respectively.  
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Figure 5.10 Map of critical regions [Eq. (5.21)] to solve Eq. (5.8) with stage i=N 
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Figure 5.11 Map of critical regions [Eq. (5.22)] to solve Eq. (5.13) with stage i=N-1 

 

 

Figure 5.12 Map of critical regions at stage i=1 

Using the same approach, at stage k of the sub-optimization problem, the optimal 

cost-to-go and optimal control are obtained in below.  
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Note that the solution in Eqs. (5.23) – (5.30) is a sub-problem solution of Eq. (5.7), 

with decision variables, and constraints, pertaining only to stage k. Bellman [49] 

demonstrated that, by recursively obtaining the solution in Eqs. (5.23) – (5.30) for i = N, 

…, k, …, 1,  the global optimal solution of Eq. (5.7) is obtained.  

5.2.2 Algorithm 

The steps in the dynamic programming algorithm of mixed-integer linear problems 

by multi-parametric programming are summarized in the following table.  

Table 5.1 Algorithm Using Multi-Parametric Programming 

Step  Process 

1  Parameterize the original problem into Eq. (5.7).  

2  Formulate the dynamic programming recursion in Eq. 

(5.8) as a multi-parametric mixed-integer linear 

problem in the form of Eq. (5.13).  

3  Solve stage N of the problem to Eq. (5.13) and obtain 

the solution in Eq. (5.10).  

4  for i=(N-1):1 

5  Solve stage i of the problem in Eq. (5.13) and 

obtain the solution in Eq. (5.15):   

6  a. Calculate the new SOC range (SOC region 

critical points) from previous cost-to-go 

and current control 

7  b. Calculate the cost of each SOC region 

critical point 

8  c. Minimize the cost at each point 
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9  d. Find and add crossing-points not included 

in the SOC region critical points 

10  Obtain the boundaries of feasible regions for 

the cost-to-go and optimal controls.   

11  end 

12  return  

List of stage solutions and corresponding maps of 

critical regions 

   
 

 

It should be noted that the MPP algorithm obtains an analytical solution of Eq. 

(5.7), whereas the DP computes the numerical solution to the problem.  

5.3 Use of MPP to Solve Relaxed Optimization for Hybrid Vehicles 

5.3.1 Linearization of Relaxed Optimization 

The relaxed optimization of the parametrized parallel HEV problem is shown in 

Eq. (5.31), where vehicle speed vt and vehicle range st are added to the optimization 

problem. The vehicle resistance torque is a quadratic function of the vehicle speed.  
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(5.31) 

 

The parametric programming problem in Eq. (5.31) is simplified and converted to 

a piece-wise mixed-integer linear problems by linearizing Tv in the proximity of the 

original speed vt,original at each stage as a linear function of Δv by neglecting the 2nd order 

term of Δv, as shown in Eq. (5.32). The adjusted vehicle torque T’
v can then be expressed 

in Eq. (5.33) in terms of speed difference Δvt. The parametrized relaxed optimization with 

linearization is shown in Eq. (5.34).  
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(5.34) 

 

5.3.2 Solving the Relaxed Optimization 

With the additional control and state, the cost-to-go function solved by the MPP 

becomes a two-dimensional function (assuming just using 1 fixed transmission gear for 

simplification). Following the same approach as that found in Section 5.2, the sub-problem 

to be solved through the MPP is shown in Eq. (5.35), where the decision vector Xk=[u1
k, 

u2
k, u3

k, x1
k, x2

k, x3
k] includes both the control and state vector, u3

k is the control of vehicle 
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speed and x3
k is the vehicle speed. In this case of HEV relaxed optimization, the decision 

vector includes MG2 torque command Tmg2, gear ratio command gr (for next time-step), 

demanded change of vehicle speed Δv (for next time-step), current SOC state soc, current 

gear ratio state gr, and current change of vehicle speed Δv. Assuming the time for gear-

shifting is neglected, the states remained in the cost-to-go are vehicle speed and battery 

SOC. The cost-to-go and the optimal control in each time step k are expressed in Eqs. (5.36) 

– (5.38).  
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5.4 Simulation and Analysis of Non-Relaxed Optimization 

5.4.1 Comparison between DP and MPP 

The DP and MPP are used to solve the non-relaxed problem of the parallel hybrid 

vehicle in Eq. (5.7). Because the DP has been commonly used to solve similar HEV 

optimization problems, its result is used for comparison with that of the MPP. The 

optimized fuel consumption results calculated from both methods are summarized in Table 

5.2.  

Table 5.2 Fuel Consumption Result Comparison 

Solving Method Fuel Consumption (g) 

MPP 12.61 

DP 12.59 
 

 

The results listed in Table 5.2 indicate that the fuel consumption calculated by the 

two methods are practically the same (0.16% difference). This verifies that the analytical 

solution by the MPP and the numerical results by the DP converge. In fact, the results from 

MPP should be the accurate result, whereas that of DP is the approximated numerical 

result.  

To further verify the results of the two methods, two cost-to-go functions obtained 

from each method are compared. Firstly, the cost-to-go values calculated by 𝑡 = 𝑁 − 2 to 

𝑡 = 𝑁 are shown in Figure 5.13. The results show that the two cost-to-go functions overlap 
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and are considered to be the same. Figure 5.14 is the comparison of results of the 8s cruising 

short cycle between MPP and DP; it confirms that both cost-to-go results are numerically 

the same.  

 

Figure 5.13 Cost-to-go from t=N-2 to t=N calculated by DP (in blue) and MPP (in purple)  

 

Figure 5.14 Cost-to-go calculated by DP (in blue) and MPP (in purple) for the 8-second 

cruising cycle 

The constant offset between the cost-to-go function obtained with the MPP and 

calculated by the DP comes from the approximation of DP. In the DP method, a quadratic 

penalty function on the SOC state is used to constrain the desired state at the end of the 

cycle. The constant error is then generated because the quadratic function has a smaller 

value than the linear function in a small region. Therefore, considering this offset, the cost-

to-go function obtained using the MPP has the same value calculated by the DP.  
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5.4.2 Efficiency and Analysis of DP and MPP 

The computational costs between the DP and MPP are also compared in terms of 

computational time in a PC (with an Intel(R) Core(TM) i7-2600 CPU at 3.40GHz), to 

understand the benefit of the MPP method. The stage computational time, backward 

optimization computational time, and total computational time are summarized in Table 

5.3.  

Table 5.3 Computational Time Cost of 8-Second Cruise Cycle Solved by DP and 

MPP 

  DP MPP 

Step 1 
Stage cost, transitional cost 0.92 s  

transitional cost (horizon) 9.2 s  

Step 2 
Stage cost, backward 1.2 s 0.0274 s 

optimization (horizon) 12 s 0.27 s 

All 

Steps 
Total cost 21.2 s 0.27 s 

 

 

The DP method has to calculate the transitional cost of each control and state grid 

point at each stage. Each stage computational time is determined by the number of 

discretization grids and number of states and controls. The computational time for the 1st 

step is then determined by the stage time and the length of the problem horizon. It is not 

necessary for the MPP to compute the transitional cost nor state/control discretization; 

hence, it does not have any cost in the 1st step.  

In the 2nd step, the DP method solves the sub-optimization problem backward from 

the end of the problem horizon to the initial state of each gridded state at every stage. The 

computational time for the 2nd step is determined by the number of discretization grids, 

number of states, and the length of problem horizon. The MPP analytically solves the 

parametric sub-problem Eq. (5.13) at each stage. Continuous states are formulated within 

the analytical solutions; thus, there is no discretization in continuous states. Therefore, the 

computational complexity only depends on the number of discrete states and the problem 

horizon length.  

The results show that the DP requires significant computational resources because 

of the curse of dimensionality. The MPP method can solve the problem efficiently because 

it directly solves a mixed-integer linear optimization problem directly in all continuous 
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states and controls. The MPP method does not require additional resources to repeat 

computation because of the continuous-state discretization; thus, the curse of 

dimensionality of continuous states and controls is avoided.  

As a summary of these two methods, DP is a numerical method that can solve many 

different problems including highly non-linear problems and non-convex problems. 

However, to better approximate to the correct optimal solution, the discretization of 

states/controls causes heavy computational load. MPP is an analytical method that can 

solve problems efficiently and also guarantee the global optimality. To implement this 

method, it requires the original problem can be approximated well by a piece-wise mixed-

integer convex optimization problem. It may not be the best method to solve all the non-

linear problems, non-convex problems, or problems with high order dynamics. In this case 

as shown in this chapter, the HEV optimization problem can be approximated well as a 

piece-wise mixed-integer linear optimization, thus can be solved using MPP method.  

5.5 Simulation Results and Comparison of Relaxed Optimization 

The simulation results of the HEV relaxed optimization solved by the MPP and 

compared to DP results are summarized in Table 5.4. The relaxed optimization of HEV 

reduces fuel consumption by 4 – 6 % in addition to the optimization of HEV without 

vehicle speed relaxation, for selected drive cycles within the EPA defined ±2 mph speed 

bound.  

Table 5.4 Simulation Result Comparison of HEV Relaxed Optimization Solved 

by DP and MPP 

 
Driving 

Scenarios 
NYCC UDDS FTP-75 HWFET 

Fuel (g) 
DP 56.6 572.3 913.5 1281.1 

MPP 58 586 932 1289 

Fuel 

Consumption 

Reduction 

Compared to 

Non-Relaxed 

HEV 

DP 6.1% 5.7% 5.2% 4.7% 

MPP 3.8% 3.5% 3.2% 4.1% 
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Result 

Difference 
 2.5% 2.4% 2.0% 0.6% 

 

 

The summary in Table 5.4 shows that the differences are 0.6 – 6%. The differences 

are caused by the numerical precision of DP and the precision resulting from the 

simplification of MPP models. The distribution of the powertrain component operating 

points over the FTP-75 is shown in Figure 5.15. The operating points used by the two 

methods were found to be comparable.  

 

Figure 5.15 Distribution of engine operating points: numerical results (DP) vs analytical 

results (MPP) 

The computation efficiency of the two methods are summarized and compared in 

Table 5.5. The processing speed of the MPP method is over 100 times faster than that of 

the DP. This shows the advantage of the MPP method in solving a high-order optimization 

problem.  

Table 5.5 Simulation Computational Cost Comparison between DP and MPP 

 
Driving 

Scenarios 
NYCC UDDS FTP-75 HWFET 

Simulation 

Time 

DP 8.2 days 17.8 days 25.2 days 9.5 days 

MPP 2.1 hrs 5.3 hrs 8.5 hrs 3.5 hrs 
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5.6 Relaxed Optimization of AWD 

5.6.1 Deriving Solutions in MPP Formulation 

The same methodology outlined earlier in the chapter can be applied to the AWD 

multi-mode powertrain hybrid powertrain. As stated in Chapter 3, the AWD multi-mode 

hybrid powertrain has two controls (operating mode and wheel torque split ratio / engine 

torque) and three states (operating mode, engine speed, and battery SOC). Compared to the 

HEV parallel dynamics, the foregoing involves one more variable. In addition, one more 

control (EM1 torque) and one more state (vehicle speed) are involved for the relaxed 

optimization, respectively. Both of additional control and state are part of the linear HEV 

system dynamics. Therefore, the MPP method can be applied to solve this system using 

the same model simplification framework. The simplified dynamics for the relaxed 

optimization of the AWD multi-mode power-split powertrain hybrid powertrain are shown 

in Eqs. (5.44) – (5.46).  
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The optimal solution of the relaxed optimization for AWD multi-mode power-split 

hybrid powertrain in the recursive form are shown in Eqs. (5.47) – (5.55).  
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5.6.2 Optimization Results 

The relaxed optimization of the winning AWD power-split Design A identified in 

Chapter 3 is performed in the UDDS and HWFET drive cycles, and compared to results 

obtained by DP with PEARS in Chapter 3. Fuel consumption results are summarized in 
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Table 5.6. Results verify that the relaxed optimization concept results in additional fuel 

consumption reduction of 10% compared to results without relaxing the vehicle speed.  

 

Table 5.6 Fuel Consumption of the Identified AWD Power-split Design A 

Solving Method Relaxation 
Fuel Consumption (g) 

UDDS HWFET 

DP+PEARS Battery SOC 353.5 938.9 

MPP Battery SOC 348.6 935.2 

MPP 
Battery SOC + 

Vehicle Speed 
312.2 918.5 
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CHAPTER 6 

Near-Optimal Real-Time Control Strategy: Battery State-of-

Charge Pulse-and-Glide Strategy 

In Chapter 4 and Chapter 5, the relaxed optimization control problem of the HEV 

is formulated and solved offline. These benchmarking results from this off-line 

optimization usually are not implementable as the real-time control strategy because of the 

necessity of prior driving knowledge and the limitation of online computational resources. 

However, these results can provide an insightful analysis of system operation. In the 

aforementioned chapters, both the numerical and analytical results of the optimization are 

obtained. Pulse-and-glide behavior is observed for the vehicle speed and/or SOC trajectory 

“wandering” around the desired values. The zero power, the optimal point of the powertrain 

control, and the engine sweet-spot are identified as the hybrid system optimal controls. 

Then, the solutions of the powertrain control optimization problem can be approximated 

by re-constructing controls from the set of optimal controls. This analysis then becomes 

the knowledge of control strategy framework development.  

In this chapter, the analysis and optimization of the powertrain system control are 

developed; accordingly, an optimized control set can be then generated. A framework for 

constructing the real-time control strategy based on the pre-optimized system optimal 

control is developed and evaluated over different models and scenarios. Results of this 

strategy’s performance is compared with other methods and justified within conditions of 

using common drive cycles including HWFET, FTP-75, UDDS, and NYCC.  

The analysis and control development framework were established based on 

assumptions that the responses of the powertrain mechanical dynamics (e.g., rotational 

speeds of all components) are significantly faster than the electrical dynamics (e.g., the 

battery SOC); all possible states of the rotational components can be achieved while the 
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state-of-charge of the battery system takes time to reach each possible state. Therefore, 

problem simplification to highlight the low-speed response dynamic becomes reasonable.  

6.1 Battery SOC Pulse-and-Glide based on HEV Model Simplification 

Toyota Prius Gen I is used as a case study for concept development and simulation 

demonstration because it is a simpler example without additional states (e.g., operating 

mode) and it retains the power-split attribute. The developed framework is not limited to 

this example and can be generalized for all hybrid powertrain systems. The powertrain of 

the Toyota Prius Gen I (Figure 6.1) is transformed into the lever diagram analogy shown 

in Figure 6.2. The complete dynamics of the system are given by Eq. (6.1), and different 

rotational relationships are specified in Eq. (6.2). In the equations, Ω̇   denotes the 

acceleration vector of all rotating components, A is the transfer matrix that transfers the 

torque vector T into acceleration, fe denotes the engine fuel rate ṁf as a function of engine 

speed ωe and engine torque Te, fbat denotes the battery SOC change rate as a function of 

battery power Pbatt is calculated by motor speeds (ωem1 and ωem2), motor torques (Tem1 and 

Tem2) and motor efficiencies (ηem1 and ηem2). The open-circuit voltage is Voc; the battery 

internal resistance is Rbat; I(∙) denotes the corresponding inertia, and T(∙) denotes the 

corresponding components’ torques. R and S refer to the radii of the ring gear and sun gear 

of the planetary gear respectively.  
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Figure 6.1 Toyota Prius Gen I vehicle and its powertrain design 

 

Figure 6.2 Lever diagram of Prius powertrain 
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(6.2) 

 

The Prius powertrain dynamics have two controls (engine torque, and EM1 torque) 

and two states (engine speed and battery SOC). Because the engine dynamics are much 

faster than the battery dynamics, and the engine speed can be controlled to any target values 

in less than one second, the battery SOC dynamics, which is significantly slower, are 

highlighted for the HEV control.  

Different from the pulse-and-glide strategy for conventional that analyzes the 

system using the relationship between fuel rate and engine power, as shown in Figure 6.3, 

the SOC pulse-and-glide strategy for HEV analyzes the system based on the relationship 

between fuel rate and battery SOC change (referred to as 𝑆𝑂𝐶̇ ). This analysis for the HEV 

considers all losses, including motor losses and battery losses, along the electrical path.  

 

Figure 6.3 Engine power pulse-and-glide analysis [29] 
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Based on this concept, given any demand of vehicle torque and vehicle speed, the 

original optimization problem in Eqs. (6.1) – (6.2) is simplified to be the relationship of 

fuel rate versus battery SOC change in Eq. (6.3), shown below.  

   ,|
vf SOC v Tm f SOC  (6.3) 

 

The mapping in Eq. (6.3) can be calculated numerically given the driver demand 

with vehicle torque and vehicle speed, with all different engine state. The minimum fuel 

rate across different SOC change can be obtained together with optimal system controls. 

For example, given the vehicle torque Tv=50Nm and vehicle speed v=15mph, the curve of 

minimum fuel rate v.s. the battery SOC change can be obtained and shown in Figure 6.4. 

By analyzing the non-convexity of this curve (highlighted in light blue), this hybrid system 

can achieve minimum fuel consumption if it chooses to operate alternately between the 

zero-engine-output point and the point at which the slope increases in the region of positive 

𝑆𝑂𝐶̇  (the two circle dots). This way, the average fuel consumption, highlighted by the red 

dash-line connecting the above two control points, is always lower than any other points 

on the original minimum fuel-rate curve. The average optimum is highlighted in the red 

asterisk dot, which refers to the optimal fuel consumption at charge-sustaining condition 

Therefore, minimum fuel consumption is guaranteed. The two control points under the 

given vehicle state are optimal system controls. Combining all these optimal hybrid system 

controls constructs the optimal control set.  

 

Figure 6.4 Battery SOC pulse-and-glide analysis 
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By applying the aforementioned analysis to all different vehicle demands (vehicle 

speed and torque), the set of all optimal operating points are obtained for the Prius engine, 

as shown in Figure 6.5. This set of optimal operating points can be characterized as two 

categories: optimal engine-on control and engine-off control.  

 

Figure 6.5 Set of all optimal operating points of Prius powertrain 

By utilizing this SOC pulse-and-glide strategy, the resulting battery SOC exhibits 

a pulse-and-glide behavior because of the control switch between charging and 

discharging. The battery SOC fluctuates in the proximity of the desired SOC and shows 

the pulse-and-glide behavior as a consequence of the proposed switching control strategy.  

6.2 Control Design: Battery State-of-Charge Pulse-and-Glide Strategy 

After obtaining all the optimal system controls under all driver demand, an 

optimization problem is formulated to decide where and when to apply the switch.  

Given the representative drive cycles, an average equivalent fuel consumption 𝑓𝐸̅𝐹𝐶 

is defined, and the optimization problem for minimum cost is formulated, as given in Eq. 

(6.4).  
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This optimization problem can be solved through a linear programming algorithm 

in a computationally efficient manner. The computational cost is low, because there is only 

one control (optimal system control) and one state (battery SOC).  

Once the optimization problem in Eq. (6.4) is solved, a control map for switching 

between engine-on and engine-off is generated, as shown in Figure 6.6, where the yellow 

region refers to engine-on operations and the blue region refers to the engine-off 

operations.  

 

Figure 6.6 Engine-on and engine-off switch map 

With the generated control map and optimal-control set, the control structure for 

the SOC pulse-and-glide strategy is presented in Figure 6.7. This control map ensures that 

the Prius operates at its system-optimal points. The engine-on map ensures that the final 

battery SOC will be in the proximity of the desired state.  

 

Figure 6.7 Energy management strategy layout 
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6.3 Simulation Results: Battery State-of-Charge Pulse-and-Glide Strategy 

The simulations are performed under different drive cycles for the proposed battery 

SOC Pulse-and-Glide strategy, and compared to results obtained by the DP. As 

summarized in Table 6.1, the simulation results using the battery SOC pulse-and-glide 

strategy are 5–6% different from the results from the DP over different driving scenarios.  

Table 6.1 Simulation Result Summary Using Battery SOC Pulse-and-Glide 

Strategy 

 
Driving 

Scenarios 
NYCC UDDS FTP-75 HWFET 

Fuel (g) 

DP 19.8 249.7 378.5 278.4 

Battery SOC 

PnG 
21.1 264.2 403.1 294.6 

Result 

Difference 
 6.4% 5.8% 6.5% 5.5% 

 

 

The achieved results of 5-6% difference comparing to the global optimal result are 

considerably great performance, for a real-time control strategy without knowledge of the 

precise drive cycles nor without intensive neural network training beforehand. From 

reviewed literatures of existing methods and applications, rule-based control algorithms in 

general achieve results of 16-20% different from the optimal result [50]. Other 

instantaneous optimization method such as ECMS and model predictive control (MPC) 

usually achieve results around 12-30% different from the optimal if not knowing the exact 

drive cycle beforehand [51]; the ECMS with adaptation achieves results of 7-12% 

differences from the optimal result [50]. The online optimization, if with knowledge of 

driving cycles, calibration on the control factor, intensive training computation, or pattern 

recognition, can achieve close to optimal results [42, 52, 53]. Other control methods such 

as pattern recognition and neural network demonstrate results of 3 – 8% differences from 

the optimal result [54]. The performance of the aforementioned methods are summarized 

in Figure 6.8. Overall, the proposed control strategy framework, which utilizes battery SOC 

pulse-and-glide strategy, shows great performance, without knowledge of speed profile 
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ahead nor intensive computation of pre-training. Moreover, this framework can be 

systematically and automated implemented on different HEV powertrains.  

 

Figure 6.8 Fuel efficiency performance comparison of real-time control strategies 

The battery SOC trajectory, components’ torques, and components’ speeds over the 

UDDS drive cycle are presented in Figure 6.9 as illustration. Both results indicate the 

switching behavior between engine-on and engine-off; this behavior results in battery SOC 

“pulse and glide”. The resulted battery SOC trajectories are different but the resulted fuel 

consumption values are closed. This indicates that likely there are multiple optimal / near-

optimal solutions in the HEV optimization problem because of the non-convexity of the 

problem.  
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Figure 6.9 Result comparison between DP and battery SOC PnG over UDDS drive cycle 

This real-time control strategy development framework was also implemented on 

a 2012 Chevrolet Volt, as another case study to verify performance of the developed 

strategy. Although the framework was not yet completed when utilized for the 2018 IEEE 

VTS Challenge. The concept of battery SOC Pulse-and-Glide showed promising 

performance and achieved No.5 globally among the 52 competitors in this competition. 

More details of this implementation case study can be found in Appendix C. If the 

framework had been completed earlier, the final results for this competition were expected 

to be better.  
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6.4 Battery SOC Pulse-and-Glide Development for AWD 

6.4.1 Battery SOC Pulse-and-Glide Control Development 

The system dynamics of the AWD multi-mode power-split hybrid powertrain 

winning design, Design A investigated in Chapter 3, are further analyzed for battery SOC 

pulse-and-glide control strategy development as a case study for the AWD hybrid 

powertrain. The dynamics of Design A has two-DOF with operating mode, engine speed, 

and battery SOC, as states; corresponding operating mode and MG2 torque as controls. 

The fuel cost depends on all the aforementioned states and controls, as indicated in Eq. 

(6.5).  

  2 ,, , , , |
vf AWD PowerSplit sta e ctr MG v Tm f mode SOC mode T  (6.5) 

 

This optimization problem is solved following the same process described in below. 

The simplified dynamics is shown in Eq. (6.6), where 𝑆𝑂𝐶̇  is the control and SOC is the 

state.  

   ,|
vf SOC v Tm f SOC  (6.6) 

 

The analyzed optimized controls of the AWD power-split winning Design A under 

different vehicle commands (vehicle torque and vehicle speed) are shown in Figure 6.10. 

The control strategy structure is shown in Figure 6.11.  

 

Figure 6.10 Engine operating points in proposed battery SOC pulse-and-glide strategy for 

AWD winning Design A in Chapter 3 
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Figure 6.11 Battery SOC pulse-and-glide strategy structure for AWD winning Design A 

in Chapter 3 

 

6.4.2 Simulation Results and Analysis 

Analysis, which employs the battery SOC pulse-and-glide for the AWD power-

split design, is presented in Figure 6.12, under the condition of vehicle torque Tv=100Nm 

and vehicle speed v=35mph. The non-convex characteristic of this hybrid powertrain 

system is verified. The plotted result also verifies there exist the two saddling points (zero 

engine torque and hybrid system optimal control) for the hybrid electric system. Operation 

at these two saddling points is more efficient than using the engine sweet spot, if the 

electrical energy buffer (battery system) is employed; whereas operation between the 

engine sweet spot and zero torque is more efficient, if the vehicle kinetic energy is utilized 

as the mechanical energy buffer. The real-time control strategy of battery SOC pulse-and-

glide is reconstructed from the set of these three operation sets.  
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Figure 6.12 Battery SOC pulse-and-glide analysis of AWD power-split design 

Simulations of the Design A investigated in Chapter 3 are performed under different 

drive cycles for the proposed battery SOC Pulse-and-Glide strategy and compared to 

results obtained by the DP with PEARS in Chapter 3. As shown in Table 6.2, for the case 

without speed relaxation, results of simulation using the battery SOC pulse-and-glide 

strategy are 2-3% different from results from DP with PEARS; for the case with vehicle 

speed relaxed, additional fuel consumption reduction of 12-13% is obtained.  

Table 6.2 Fuel Consumption of Identified AWD Power-split Design A 

Control Method 
Speed 

Relaxation 

Fuel Consumption (g)  

UDDS HWFET 

DP+PEARS N 353.5 938.9 

Battery SOC PnG N 360.2 956.7 

Battery SOC PnG Y 314.2 922.3 
 

 

The engine operating points and trajectories of battery SOC and component torques 

in UDDS drive cycle are plotted in Figure 6.13 and Figure 6.14, respectively. Figure 6.13 

exhibit the engine operating points distributed in the proximity of the best engine BSFC 

line (in red) rather than exactly on the best engine BSFC line. With the losses at the two 

electric motors considered, the optimal controls of the hybrid powertrain system deviate 

from the system with ICE only. The analysis of the hybrid system optimum is necessary. 

Figure 6.14 presents “pulse-and-glide” behavior of the battery SOC trajectory and vehicle 

speed trajectory as desired from the designed strategy. The powertrain system uses the 
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engine and “pulse” the SOC of the battery energy buffer system and vehicle speed at a low-

speed acceleration; and use the electric machine(s) to “glide” the battery SOC at higher 

vehicle speed.  

 

Figure 6.13 Engine operating points of AWD power-split design in UDDS drive cycle 

 

Figure 6.14 Trajectories of Battery SOC and component torques in UDDS drive cycle 

The simulation results verify that the established real-time control development 

framework of battery SOC pulse-and-glide achieves near-optimal performance over fuel 

efficiency, and the near-optimality can be quantified within a range of 2-6%. This 

performance is better than most existing control strategies without knowledge of future 

drive cycle information nor intensively computation of training in neural network 

application. Moreover, this control strategy is able to be implemented in more complicated 
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powertrain control optimization problems with high DOFs, such as the AWD power-split 

hybrid powertrains relaxed optimization.  
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CHAPTER 7 

Experimental Study 

In Chapter 2 to Chapter 6, the theoretical development has covered power-split 

HEV design to optimization and control development, including the AWD and 2WD. The 

frameworks of the design process and control development are established and 

investigated. To validate the proposed design process, experimental studies are performed.  

As a preparation step, a demonstration platform that enables exhibition of multi-

mode power-split powertrain mechanism is firstly developed, as shown in Figure 7.1.With 

this demonstration platform, emulation of the powertrain operation through a down-scale 

level to test, validation of a realistic feasibility of a designed power-split hybrid powertrain, 

and exercise of speed control of this powertrain technology, become possible. More details 

of this platform can be found in Appendix D.  

 

Figure 7.1 Demo platform of multi-mode power-split mechanism 

To further validate the framework of design process and control development 

proposed in this dissertation, a prototype truck is developed, under the DOE funding: 

Medium-Duty Urban Range Extended Connected Powertrain (MURECP). The goal of this 

project is to develop and demonstrate a plug-in hybrid electric (PHEV) Class 4 delivery 
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truck, which reduces fuel consumption by at least 50% compared to a baseline truck, by 

using an innovative and low-cost hybrid electric powertrain.  

  

Figure 7.2 CSHVC speed profile 

The drive cycle city suburban heavy vehicle cycle (CSHVC), shown in Figure 7.2, 

is defined as the target cycle for the fuel consumption assessment. This drive cycle is close 

to the average kinetic intensity versus average driving speed based on the actual field data 

from multiple delivery trucks, as shown in Figure 7.3 [55], where the kinetic intensity is 

defined in Eq. (7.1) [56] as a measure of “ hybrid advantage”, defined as ratio between 

characteristic acceleration to aerodynamic speed. This CSHVC profile is considered to be 

a representative for our prototype truck. More details of this drive cycle approach can be 

referred to work accomplished by the national renewable energy laboratory (NREL) [55].  
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Figure 7.3 Kinetic intensity distribution of collected delivery truck data by NREL [55] 

The project set the goal to design an RWD (single-output shaft) multi-mode power-

split hybrid powertrain, as a more practical target because it is to be used in the urban 

environment. AWD will add unnecessary complexity and cost, and thus was not selected.  

7.1 Project Overview 

 

Figure 7.4 Design of a multi-mode power-split hybrid powertrain 

To demonstrate the potential for expanding the multi-mode power-split hybrid 

technology to a boarder market, this project will validate the fuel efficiency improvement 
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and cost effectiveness of using a dual planetary-gear (2PG) power-split transmission, as 

shown in Figure 7.4 for a Class 4 PHEV delivery truck using commercialized light-duty 

vehicle electric drive components (for lower cost). With the power-split and multi-mode 

attribute, the targeted design is expected to achieve the aggressive target of fuel 

consumption reduction of 50% and to maintain competitive driving performance such as 

acceleration, towing capability, and gradeability.  

As stated in this dissertation, designs with this set-up involves millions of design 

candidates. Therefore, it requires the systematic design methodology developed through 

this dissertation to identify the optimal design, with the capability of adopting all 

parameters (vehicle weight, etc.) from the target vehicle and components. A proper control 

strategy, which is developed from the control strategy development framework, will be 

tested.  

By utilizing the entire process developed in this dissertation, this project practice 

will develop the most promising hybrid configuration for mass-market commercialization 

within the medium-duty (MD) segment and demonstrate a working prototype for data 

collection and testing. The project development process is summarized in Figure 7.5.  

 

Figure 7.5 Vehicle design process 

 

7.2 Powertrain Design and Development 

7.2.1 Design Methodology 

 Design requirements are defined and used in the design process as shown in Figure 

7.6. Besides the mechanical design requirements, such as driving backward with engine-
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on, acceleration requirement, gradeability, and towing are required to be no worse than the 

conventional powertrain vehicle.  

 

Figure 7.6 Design requirements applied in the four-step design methodology for the 

MURECP vehicle 

The screening process starts from millions of variants and at the end of the 

screening process, we were able to identify 212 feasible design candidates, as shown in 

Figure 7.7. The obtained feasible design candidates will be evaluated for acceleration 

performance and fuel economy.  

 

Figure 7.7 Design down-selection through the screening process 
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7.2.2 Design Identification 

Given all the feasible design candidates, the acceleration performance and fuel 

consumption are evaluated for each, in order to find the optimized designs. The results of 

acceleration performance and fuel consumption of all feasible design variants are shown 

in Figure 7.8. The conventional truck and a parallel hybrid truck are also used as 

benchmarks to indicate fuel efficiency improvement in different technologies. Some 

designs have better acceleration performance while others show better fuel economy. As 

indicated in Figure 7.8, the “2PG Group2 designs” are selected for the prototype because 

they achieved the project target of a fuel consumption reduction of over 50% compared to 

the baseline ICE truck.  

 

Figure 7.8 Combined results of fuel consumption and acceleration performance of 

feasible designs 

Among the down-selected 212 feasible variants, the optimal design is identified 

based on the fuel efficiency and manufacturing feasibility. A grounding clutch C2 is added 

to the identified design, so that a powerful EV mode with two motors can be achieved. This 

2-motor EV mode ensures the operation of the delivery truck a zero-emission mode under 

all power demands through the drive cycle. The winning multi-mode power-split 

powertrain design is shown in Figure 7.9, together with other identified designs filed in 

patent application No. 2115-007471-US-PS1.  
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Figure 7.9 Design schematic of winning design 

The fuel consumption of the final prototype truck simulated (solved by DP for 

baseline and PEARS), and the results are shown in Figure 7.10. A fuel consumption 

reduction of 56.8% is achieved over the CSHVC profile; the design target of over 50% 

consumption reduction is exceeded.  

 

Figure 7.10 Evaluated fuel consumption reduction of identified optimal power-split 

hybrid design compared to baseline 

Given the multi-mode power-split hybrid powertrain schematic in Figure 7.9, the 

mechanical design of a prototype is then developed and manufactured in Figure 7.11. Based 

on the schematic of the lever diagram of the winning power-split hybrid design, the 3D 

drawing of the mechanical design realization is developed. The mechanical prototype is 

then assembled from design component parts from the 3D drawing.  
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Figure 7.11 Mechanical design realization of winning design 

 

7.3 Simulation and Testing Environment 

7.3.1 Simulation Environment 

The final simulation environment is developed in both MATLAB/Simulink and GT 

Suite. The two stage environment development is for two purposes: the 

MATLAB/Simulink environment captures the powertrain dynamics but with simplified 

component models. It is used for control development. The GT Suite environment includes 

more details of the components such as engine loss, transmission loss, e-motor loss, etc. It 

is used for final simulation verification. The detailed GT Suite model is able to closely 

align with experiment results if all component sub-models are calibrated against the real 

hardware. The simulation environment set-up for MATLAB/Simulink and GT Suite are 

shown in Figure 7.12 and Figure 7.13, respectively.  
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Figure 7.12 MATLAB/Simulink modeling environment 

 

Figure 7.13 GT Suite modeling environment 

 

7.3.2 Experiment Environment 

The testing environment includes three phase of experiments: powertrain dyno 

testing, integrated vehicle chassis dyno testing, and vehicle on-road testing. The prototype 

transmission is set up in the dyno laboratory with the transmission output shaft attached to 

the dynamometer, as shown in Figure 7.14. Different functionalities are verified and 

calibrated including the EV mode (single mode) operation, power-split (single mode) 

operation, and power-split control calibration, etc. Fuel consumption experiments are 

conducted to verify and to be compared with simulation results. Due to time constraint, we 

do not have multi-mode test results yet.  
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Figure 7.14 Installation of designed hybrid transmission for powertrain dyno testing 

After the adequate verification of the transmission operation, the identified winning 

power-split design transmission is moved to the prototype vehicle chassis, as shown in 

Figure 7.15. We are able to get some simple tests done, but again due to time constraints, 

as of the time of writing this dissertation, we were not able to finish all the tests we planned. 

Further road test will follow to verify the performance and fuel efficiency of this prototype 

vehicle.  

 

Figure 7.15 Installation of designed hybrid transmission for chassis dyno testing 
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7.4 HEV Control Design and Development 

7.4.1 Control Structure Layout 

The final architecture of the control system is shown in Figure 7.16, which is 

derived from the general hybrid powertrain control structure introduced in Figure 1.9 in 

Chapter 1. The supervisory control selects the mode and power distribution between the 

mechanical (engine power) and electrical (battery power) paths. The servo-loop control 

functions follow the commands of the supervisory control, coordinate components’ torques 

for balancing the PG system, and ensure smooth mode transitions. The final commands for 

engine torque, motor torques, and clutch torques are sent from this control structure to the 

hardware components.  

 

Figure 7.16 The final architecture of the control system 

 

7.4.2 Supervisory Control Development 

A rule-based control is first developed as an initial development for the supervisory 

control because:  

1. This configuration enables opportunities to test and calibrate sub-functions such 

as power-split mode speed control and clutch control. For example, fixed engine 

power for power-split mode test become possible by just changing rule setting.  

2. This control configuration allows changing testing assumption easily regarding 

to limitation of different testing environment. For example, the allowed 
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regenerative braking on the powertrain dyno is limited because of the lab 

hardware’s limitation.  

3. This control configuration enables opportunities to investigate fuel reduction 

benefits quantitatively. For example, benefits of power-split mode, regenerative 

braking, and multi-mode operation can be quantitatively analyzed.  

As shown in Figure 7.17, the mode selection schedule is based on mode distribution 

of offline optimized simulation results on various drive cycles and conditions. The engine 

power is then determined, and the desired torque and speed are computed based on the 

powertrain system optimal operating points. These desired controls are sent to the servo-

loop control, and then the motor controls further balance the PG system while satisfying 

the driving demand.  

 

Figure 7.17 Development of the supervisory control strategy 

 

7.5 Simulation and Testing 

7.5.1 Simulation Results on Different Drive Cycles 

Simulations are conducted in both MATLAB/Simulink and GT Suite 

environments. The GT Suite results are highlighted because they align with the experiment 

results more closely. The fuel consumption results discussed are corrected with the battery 

SOC difference between the initial and final value. The simulation results of GT Suite 

utilizing the developed control strategy are shown in Figure 7.18. Various battery SOC 
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conditions and drive cycles are investigated. The results indicate that under the charge 

sustaining conditions, the fuel consumption is reduced by 25 – 60%. The reduction benefit 

is higher when the average driving speed is lower. The results confirm that in simulations 

the identified optimal design is able to achieve fuel consumption reduction of over 50% in 

the defined CSHVC drive cycle. We also found that more fuel saving is possible when the 

vehicle operates in chare depletion mode. This is probably due to the fact in the charge 

depletion mode, the powertrain operation is more relaxed, compared with operation in the 

charge sustaining model.  

 

Figure 7.18 Simulation result summary in different drive cycles 

 

7.5.2 Experimental Results 

Experiments were firstly conducted on the powertrain dyno while the chassis dyno 

is being set up. For the purposes of project time management, coordination of multiple 

parties, and handling temporary limitations of the lab set-up, five function cases were 

defined so that experiments would proceed step-by-step:  

1. Single mode operation throughout the whole drive cycle 
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2. No regenerative braking 

3. Engine always on throughout the cycle 

4. Desired engine power strategy (simplified) 

5. Desired engine torque and speed strategy (simplified) 

Under these simplification constraints, five control test cases were defined and 

shown in Table 7.1. Experiments of these defined control test cases would be performed in 

sequence. Within current time schedule, experiments for control test case #1 and #2 were 

first conducted and analyzed.  

Table 7.1 Test Cases Selected of Powertrain Dyno Experiment for Designed 

Power-split Hybrid Powertrain 

Control 

Test Case 

Function Case Definition 

Multi-

Mode 

Regenerative 

Braking 

Engine 

On and 

Off 

Optimized 

Engine 

Power 

Optimized Engine 

Torque and Speed 

1 EV only     

2 PS only    Y 

3 PS only Y   Y 

4 PS only Y Y  Y 

5 Y Y Y Y Y 
 

 

The results of control test case #1 for EV mode test over the CSHVC are shown in 

Figure 7.19, together with the operating points of the two e-machines. The two e-machines 

have similar operating point distribution because the two e-machines are identical and they 

have very close gear ratios to the outputs. The optimization showed that the desired output 

torque is split close to around 52:48 ratio. Therefore, operating points of the two e-

machines are similar. The energy consumption results under different environments are 

summarized in Figure 7.20. The closeness of the EV mode results show usefulness of the 

modeling development for practical implementation.  
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Figure 7.19 Result summary of 2-motor EV mode powertrain dyno testing 

 

Figure 7.20 Comparison EV mode energy consumption under different environments 

The results of control test case #2 for power-split mode test are shown in Figure 

7.21. The corrected fuel consumption shows a fuel consumption reduction of 29.6%. These 

preliminary results exhibit the fuel consumption reduction categorized by the technologies 

of downsized engine and power-split operation. As more experiments proceed with 

extended control capability enabled, more fuel consumption reductions are expected.  
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Figure 7.21 Fuel consumption result of the identified winning power-split powertrain in 

dyno testing 

Component operating point distributions for control test case #2 are shown in 

Figure 7.22. Over the CSHVC, the engine operation is controlled around the desired state 

as highlighted in red, following closely the engine control command from the supervisory 

control. The engine operates freely, decoupled from the vehicle speed. This verifies the 

successful control design development of this prototype powertrain to have ECVT 

function, which is natural to many power-split hybrid powertrains. In addition, operating 

points of the two e-machines are also plotted in Figure 7.22. It was observed from the tests 

that there are some singular operating points which caused the engine operating points 

away from the desired control. Preliminary analysis indicate that the e-machines torque 

response close to zero torque or zero speed are less precise, and this phenomenon caused 

desired engine control less precise. Additional calibration is needed to improve the ECVT 

speed control accuracy and some engine control region might need to be avoided.  
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Figure 7.22 Result summary of power-split mode powertrain dyno testing 

 

 

Figure 7.23 Result summary of power-split mode simulation 

 

The simulations of the designed multi-mode power-split design with the same 

control strategy is performed over the CSHVC speed profile, as shown in Figure 7.23. The 

operating point distributions in the simulation in Figure 7.23 align with the dyno testing 

result in Figure 7.22. The agreement between simulation and experimental results 
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demonstrates the successful engineering application of the developed theory, and that the 

simulation models can be trusted during the design process.  

7.6 Comparison and Analysis 

7.6.1 Comparison between Simulation and Experimental Results 

The comparison of fuel consumption between the results of simulations and 

experiments are summarized in Figure 7.24. Although we have not been able to have all 

the hardware calibration work done in time to confirm that the prototype truck indeed can 

achieve the projected 50% fuel reduction, the preliminary results indicate that this 

powertrain is projected to achieve a reduction of approximately 50% compared to the 

baseline model. However, availability of powertrain dyno and chassis dyno, and 

coordination with multiple parties to finish all the required mechanical and electrical work 

for the experiments made the experimental progress slower than what we would like to see. 

We are, nevertheless, very encouraged by the early experimental results.  

These early results show that: the preliminary fuel reduction of 29.6% benefits from 

the downsized engine and power-split mode operation. As more experiments are in 

progress, tests with control technologies such as full regenerative braking, engine-off, 

multi-mode operation, and optimized control will be performed. The simulation results, 

with all the aforementioned control technologies enabled, exhibit the fuel consumption 

reduction of over 50%. Based on preliminary experimental results and the alignment with 

the simulation results, the experiments are also expected to demonstrate that this powertrain 

can achieve the desired target of a fuel consumption reduction of approximately 50% 

eventually, if all the aforementioned control technologies enabled.  
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Figure 7.24 Analysis of simulations and experiments under different control settings 

Based on the results summarized in Figure 7.24, fuel consumption reduction can be 

categorized by different technologies for this application and summarized in Figure 7.25. 

The technologies of downsized engine with power-split attribute and regenerative braking 

present the most fuel consumption reduction, with 19.5% and 25.4%, respectively. The 

technology of engine-off and multi-mode achieve smaller but still considerable amount of 

fuel consumption reduction, with 2.4% and 4%, respectively. In summary, the technologies 

of engine down-sizing, power-split (i.e., ECVT), and regenerative braking are the most 

contribution of the hybrid technology.  

 

Figure 7.25 Categorized fuel reduction by different technologies 

 The MATLAB/Simulink results always show consistently the least fuel 

consumption because this simulation environment simplifies several component dynamics 
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and neglects a number of dynamic losses, such as, engine combustion dynamics, inverter 

drive dynamics, and transmission fluid dynamics. The GT Suite simulation environment 

show results that are considerably similar to those of the dynamometer testing results 

because several component dynamic losses are included through enhanced component 

models. Overall, the trends in fuel consumption results in simulations and experiments are 

well-aligned. The differences across different environments are shown in Figure 7.26. The 

foregoing validates the usefulness of the modeling, design, and calibration approach to 

design hybrid electric vehicle powertrains for the practical implementation. Again, more 

experiments will be performed to complete this analysis.  

 

Figure 7.26 Comparison of differences among environments compared with MATLAB 

results 

 

7.6.2 Analysis and Lesson Learned: PG Transmission Loss 

Based on the experimental results, we found that the transmission losses are higher 

than expected. More tests are performed to investigate this effect and identify its root-

cause. The transmission loss in terms of the transmission output shaft speed is obtained and 

plotted in Figure 7.27. Results were obtained by using the powertrain dyno drag the power-

split transmission without any component power inputs, under various output shaft speed. 

The consumed power by the dynamometer is considered as the transmission loss.  
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Figure 7.27 Transmission loss as functions of output shaft speed 

 

Figure 7.28 Characterizing root-cause of transmission loss 

Significant transmission losses are observed from the experimental results. After 

analyzing the mechanical schematic in Figure 7.28 and component information, it is found 

that these losses were hypothesized (based both on experience and conjecture) to mainly 

originate from the oil pump, external gears between the e-machines and power-split 

transmission connections, and the PG gear losses. Our analysis indicates the oil pump is 

responsible for approximately 50% of the power loss.  

From this experimental analysis, these transmission losses are important factors 

when evaluating the fuel consumption of hybrid powertrains. These losses can result in 

10% fuel consumption different from results of the MATLAB simulation. On one hand, if 

the simulation can incorporate these losses, results will be closer to experiments for better 
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justification for optimal design. On the other hand, the result comparison between 

simulations and experiments indicate that if we maintain the same assumption (no 

transmission losses considered), the trends of fuel consumption reduction are similar. In 

summary, these transmission losses/efficiencies should be considered in the modeling and 

evaluation if known (e.g., gear losses); if these efficiencies are unknown (e.g., losses 

originate from oil pump), the assumptions of not considering these efficiencies should be 

maintained throughout the study to justify the fuel reduction trend.  

7.7 Control Development Using Battery SOC Pulse-and-Glide Strategy 

To further improve the fuel efficiency and to verify the proposed real-time control 

development framework proposed in this dissertation, the proposed battery SOC pulse-

and-glide strategy was developed for this designed power-split hybrid powertrain. 

Following a design process similar to that presented in Chapter 6, the SOC PnG-based 

near-optimal control strategy is developed. The analyzed optimized controls of the e2PG 

dynamics under the vehicle command (vehicle torque and vehicle speed) is shown in Figure 

7.29. The power management strategy is then developed; the integration of SOC pulse-

and-glide strategy into the control design is shown in Figure 7.30.  

 

Figure 7.29 Optimized powertrain controls using SOC pulse-and-glide strategy 
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Figure 7.30 Control structure diagram adapted with SOC pulse-and-glide algorithm 

The simulation results using the battery SOC pulse-and-glide control strategy are 

shown in Figure 7.31. Results indicate that by using the battery SOC pulse-and-glide 

control strategy as the real-time control strategy, the designed hybrid powertrain is able to 

achieved 50% fuel consumption reduction over the CSHVC drive cycle. Fuel consumption 

reduction benefits gained over different drive cycles are 0 – 5 % better than using the 

derived rule-based control.  

 

Figure 7.31 Result summary of designed multi-mode power-split hybrid powertrain using 

battery SOC pulse-and-glide control strategy 

Because of the constraint of timeline progress and coordination of multiple parties, 

the hardware is not yet ready to perform tests with the designed control strategy: capability 

of engine-off and multi-mode operation are not ready yet. Further tests for the 



149 

 

implementation of this battery SOC pulse-and-glide strategy will be performed if the 

hardware set-up is available.  

7.8 Summary of the Experimental Study 

In this project, the developed design methodology for the multi-mode power-split 

hybrid vehicle is utilized to design a delivery truck platform. A simulation framework was 

also developed, using both MATLAB/Simulink and GT Suite for different simulation 

environments to serve different purposes in this design process. Successful experiments of 

first dyno tests confirmed the theoretical development on design and control of this hybrid 

powertrain. The development work will continue, and more research and calibration will 

be performed on this prototype development.  
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CHAPTER 8 

Conclusions and Future Work 

8.1 Conclusion 

The dissertation work focused on the modeling, control, and design of multi-mode 

power-split hybrid vehicles for both the 2WD and AWD powertrains. The primary 

achievements include: 1. developed a design methodology for AWD power-split hybrid 

vehicles; 2. defined and investigated the concept of relaxed optimization for hybrid 

vehicles; 3. solved the relaxed optimization problem for hybrid vehicles using the MPP 

method; 4. generated a real-time control based on the analytical results from the MPP; 5. 

verified the developed framework by simulations and experiments.  

A four-step systematic design methodology was developed for modeling, 

screening, and evaluating multi-mode power-split hybrid powertrains. A family of winning 

AWD designs is identified in a case study for an imaginary hybrid F-150 truck. For the 

identified winning design, a fuel consumption reduction of over 50% is demonstrated; the 

acceleration performance is also better than the conventional (ICE only) baseline.  

Given an identified optimal hybrid powertrain design, the concept of relaxed 

optimization is further explored. Results indicate that by relaxing the vehicle speed and/or 

vehicle range requirements, an additional fuel consumption reduction of over 10% can be 

gained. As the constraint is further relaxed, more fuel consumption reduction benefits can 

be achieved; this benefit saturates eventually saturates (in our case study, at about 7mph 

speed relaxation).  

A framework for using the MPP method is developed, to solve high DOF 

optimization problem of the HEV and identify the analytical solution of the control 

problem. The analytical results were found to be close to numerical results from DP.  
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By understanding the distribution of optimal control actions based on the analytical 

and numerical results, the framework for a systematic real-time control strategy was 

developed. The optimal control points were analyzed and obtained. Real-time control 

strategy was constructed based on the obtained optimized controls.  

We were able to secure research funding from the USDOE to build a prototype 

truck, funded project MURECP. The powertrain of this prototype vehicle was designed 

based on the design process developed in this dissertation. Simulation results were 

conducted, and limited experimental results were obtained on the engine dyno and the 

chassis dyno. The preliminary experimental results indicate that the predicted fuel 

consumption reduction of 50% can be achieved. However, this requires significant 

additional implementation on real hardware. Due to the challenges in scheduling resources 

to conduct experiments, we do not yet have all the functions implemented (e.g., regen 

braking and multi-mode switching).  

8.2 Short-Term Future Work 

8.2.1 Experiments on the MURECP Prototype Vehicle 

The control implementation on the designed prototype multi-mode power-split 

hybrid vehicle will be continued. The first next step is to implement the mode shift control 

logic on the test vehicle.  

The experiments on the powertrain dyno and chassis dyno still ongoing. Fuel 

economy with different refined and implemented control cases will be measured as these 

additional low-level control functions become available. Fuel economy under different 

drive cycles will also be verified through these experiments.  

8.2.2 Experiments and Analysis for Relaxed Optimization  

Once the assembled vehicle is completed and ready for road test, the experiments 

for different levels of relaxation will be performed. Results of the simulations and 

experiments will be compared and to verify the concept. Effects of different relaxation of 

energy buffer will be analyzed.  
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8.2.3 Performance Robustness and Sensitivity for Battery SOC Pulse-and-

Glide 

The proposed battery SOC pulse-and-glide strategy will be further investigated, to 

understand effects of the uncertainty of the driving power distribution. The sensitivity of 

the resulted fuel efficiency performance and the control robustness will be analyzed.  

8.3 Long-Term Future Work 

8.3.1 Expansion of Design Framework to Beyond Fuel Economy 

The established design framework will be extended to incorporate more 

performance indexes as required, including NOx emission and cost. These added indexes 

are useful for determining designs for additional considerations. Additional dynamics for 

NOx emissions result in additional DOFs to the problem; models for cost payback add 

complexity for modeling. To address these considerations, the developed design 

framework requires extensive models that incorporates those different dynamics and 

adapted methods to solve the optimization problem efficiently.  

8.3.2 Expansion of Optimization and Control Frameworks to Control 

Planning of Connected and Automated Vehicles 

The proposed framework of defining, formulating, and solving the relaxed 

optimization will be extended to a speed-trajectory planning problem for connected and 

automated vehicles. With information of surrounding vehicles, traffic lights, and speed 

limit available, the speed-trajectory planning for vehicles is a non-convex, nonlinear, and 

high-dimensional problem. Using the developed framework, constraints of all the 

information of connectivity can be included; and the planning problem for hybrid vehicles 

can be solved, which is difficult or time-consuming to solve using existing methods.  

Route planning problem considering minimum fuel will be addressed by utilizing 

the control development framework. With consideration of fuel consumption 

minimization, the route planning, especially for HEVs, includes optimization for both route 

selection and powertrain control. Existing methods to solve these problems commonly use 

an average fuel consumption model, which simplifies the problem by neglecting the 
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powertrain dynamics. With the control developed framework, the powertrain dynamics can 

incorporated. The planning problem then can provide better justified results with 

minimizing fuel consumption considered.  
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APPENDIX A Calculation of Average Acceleration and 

Gradeability Dynamics Analysis 

Appendix A.1 Calculation of the Average Acceleration 

The 0 – 60 mph launching is divided into n speed grid evenly, as shown in Figure 

A.1.  

 

Figure A.1 Speed grid division for evaluation of the average acceleration 

For each speed grid, the velocity difference Δv of the initial value and the final 

value is known. In the ith speed grid, the time for this speed grid ti can be calculated by Eq. 

(A.1),  

 
1i i

i

i i

v v v
t

a a

 
   (A.1) 

 

where ai is the acceleration in this grid. The total time used for 0 – 60 mph launching is 

calculated in Eq. (A.2).  

 
1 1

1n n

tot i

i i i

t t v
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     (A.2) 

 

By defining the average acceleration of the launching period shown in Eq. (A.3). 

The average acceleration relates ai by Eq. (A.4).  
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tot tot

v v n v
a

t t

 
   (A.3) 



155 

 

 
1

1

1

1

n

tot

i i

n

i i

n v n v
a

t
v

a

n
a

a





   
 



 





 (A.4) 

 

Appendix A.2 Model of Vehicle Dynamics for the Gradeability Tests 

The gradeability tests in Figure A.2 are for a fully loaded vehicle driving on a slope 

with angle of θ. A free-body diagram for the tow-vehicle motion is shown in Figure A.3.  

 

Figure A.2 Gradeability tests of a full-loaded AWD tow-vehicle 
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Figure A.3 Free-body diagram for the tow-vehicle motion on a slope 

The tow-vehicle has a trailer with weight of mT. Kcz is the vertical internal force 

between the vehicle and the trailer body, and Kcx is that internal force in the longitudinal 

direction. Other symbols are defined in the same way as those in Chapter 2. The subscripts 

T refers to the front and rear tire reaction forces/torques respectively. The gravitational 

constant is g, the aerodynamic force is DA, T is the axle output torque, Kz is the vertical 

internal force between the wheels and body, Kx is the longitudinal internal force between 

the wheels and body, Nz is the tire reaction force in the vertical direction, and Fx is the tire 

reaction force in the longitudinal direction. The subscripts F and R refer to the front and 

rear tire reaction forces/torques respectively. 

Longitudinal dynamics and rotational motion dynamics of the vehicle body, the 

trailer, trailer wheels, front wheels, and rear wheels are given in Eq. (A.5) – (A.19).  

 sin
f r xx x A b c bK K D m g K m a      (A.5) 

 cos
f r zz z c bK K K m g     (A.6) 
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f ff x roll w fT F r T I     (A.8) 

 
f fx x wF K m a   (A.9) 

 cos 0
f fz z wN K m g     (A.10) 
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T Tx roll w TF r T I    (A.17) 

 
T Tx x wK F m a   (A.18) 

 cos 0
T Tz z wN K m g     (A.19) 

 

The maximum driving forces for the three cases (i.e., AWD, FWD, and RWD) in 

the gradeability tests are shown in Table A.1.  

Table A.1 Maximum driving forces  

Hybrid Vehicle 

Drive-train Designs 
Max Tire Forces 

AWD 
_ max f rAWD z tire z tireF N N    

 
FWD 

_ max fFWD z tireF N  
 

RWD 
_ max rRWD z tireF N  
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APPENDIX B Case Studies of Relaxed Optimization on Relaxing 

Vehicle Range and Battery SOC 

Additional case studies on other independent constraints (range difference and 

battery SOC) is provided in this appendix. Case set-up for constraints relaxation is 

summarized in Table B.1.  

Table B.1 Extended Constraint Bounds for Different Independent 

Constraint Case Studies 

 
Vehicle Speed 

(mph) 

Vehicle Position 

Offset (m) 
Battery SOC (%) 

Constraint Range 

(Case 1: Speed) 
±2 ~ ±10 ±50 40 – 60  

 

 

Figure B.1 shows the fuel reduction benefits when varying the range difference 

relaxation only. Results show that, for conventional vehicle, larger range difference (when 

larger than 50m) does not result in significant fuel reduction. The fuel reduction benefit 

saturates when the range difference is greater than 50m, where the speed constraint starts 

to dominate the operation. Similar trend is observed for the HEV case. The benefit effect 

of the range difference is less sensitive compared to the speed bound relaxation, because 

the range difference is the integration results of the speed differences thus the effect on fuel 

rate is smoothed out.  
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Figure B.1 Percentage of fuel consumption reduction under varying range constraints in 

different driving scenarios 

Figure B.2 shows the fuel reduction benefits when varying the battery SOC 

relaxation only. The resulted fuel reduction shows steady values with enlarged battery SOC 

range. The benefits saturate even when the SOC range enlarged more than 20% range, as 

long as the battery energy range is enough to provide the buffer to absorb power from 

engine & braking, and enough to discharge with the help of engine. Thus a larger battery 

energy/SOC range is not necessary.  

 

Figure B.2 Percentage of fuel consumption reduction of HEV for varying battery SOC 

constraint values under different driving scenarios 
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APPENDIX C Application Case Study of Battery SOC Pulse-and-

Glide Strategy – IEEE VTS Challenge 

The powertrain system optimal strategy derived from the battery SOC pulse-and-

glide is also utilized in the participation of the 2018 IEEE VTS Challenge as a case study 

implementation. This competition focuses on the energy management of a Range Extender 

Electric Vehicle, the Chevrolet Volt. The aim is to develop a robust Energy Management 

Strategy to minimize the fuel consumption and the battery charging cost as shown in Eq. 

(C.1). A battery SOC pulse-and-glide strategy is developed and implemented. Simulation 

results show that the designed control approach leads to over 10% combined cost reduction 

on average, compared to the original control. The resulted global combined score is 6.641 

US$, ranking No.5 globally among the 52 competitors in the 2018 IEEE VTS Motor 

Vehicles Challenge.  

    
1 1

*

0 0

min $ $
N N

gas f charge

k k

J m k SOC k
 

 

       (C.1) 

 

Appendix C.1 Modeling and Control Development 

The 2012 Chevrolet Volt powertrain with all 4 operating modes is shown in Figure 

C.1. The complete dynamics for all 4 modes are shown in Eqs. (C.2) – (C.5).  
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Figure C.1 Lever diagram of the 2012 Chevrolet Volt powertrain 
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Utilizing the same analysis methodology shown earlier in Chapter 8, the powertrain 

system optimality is analyzed and demonstrated in Figure C.2. Again, the battery SOC 

pulse-and-glide control strategy is used.  

 

Figure C.2 Battery SOC pulse-and-glide analysis for the 2012 Chevrolet Volt powertrain 

 

 Appendix C.2 Simulation Results 

Numerical simulations are conducted with different drive cycles and the results are 

compared with those of the original control in the Autonomie model. The results for two 
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different initial SOC (60% and 40%) for the original control are shown in Table C.1 and 

Table C.2, while the results of the proposed battery SOC pulse-and-glide strategy are 

shown in Table C.3 and Table C.4, which reports fuel consumption, SOC usage, and the 

combined cost. The comparison between the proposed battery SOC pulse-and-glide and 

the original control is shown in Table V. The results show that over 10% combined cost 

reduction as shown in Table C.5.  

Table C.1 Results of the Original Autonomie Control 

(Initial SOC = 60%) 

Tested Cycles 

Fuel 

Consumption 

(g) 

Usage of 

SOC 

Combined 

Cost 

UDDS 0 15.5% 0.3393 

US06 0 28.2% 0.6187 

FTP-75 0 23.9% 0.5238 

WLTC 0.2488 30.0% 0.8332 
 

 

Table C.2 Results of the Original Autonomie Control 

(Initial SOC = 40%) 

Tested Cycles 

Fuel 

Consumption 

(g) 

Usage of 

SOC 

Combined 

Cost 

UDDS 0.1551 10.6% 0.3565 

US06 0.4173 9.9% 0.6029 

FTP-75 0.4161 9.7% 0.5432 

WLTC 0.7868 9.0% 0.8222 
 

 

Table C.3 Results of the Proposed Battery SOC PnG 

Strategy (Initial SOC = 60%) 

Tested Cycles 

Fuel 

Consumption 

(g) 

Usage of 

SOC 

Combined 

Cost 

UDDS 0.2619 5.9% 0.3165 

US06 0.9594 -11.1% 0.5199 
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FTP-75 0.6628 -2.5% 0.4732 

WLTC 1.0998 -5.3% 0.7576 
 

 

Table C.4 Results of the Proposed Battery SOC PnG 

Strategy (Initial SOC = 40%) 

Tested Cycles 

Fuel 

Consumption 

(g) 

Usage of 

SOC 

Combined 

Cost 

UDDS 0.4376 -1.6% 0.3133 

US06 0.9693 -11.5% 0.5191 

FTP-75 0.8677 -10.2% 0.4656 

WLTC 1.2804 -12.8% 0.7374 
 

 

Table C.5 Combined Cost Reduction for the Proposed 

Battery SOC Pulse-and-Glide Strategy Compared to the 

Original Autonomie Control 

Tested Cycles Initial SOC = 60% Initial SOC = 40% 

UDDS 6.70% 12.11% 

US06 15.96% 13.91% 

FTP-75 9.66% 14.29% 

WLTC 9.07% 10.32% 
 

 

The engine operating points under the two control strategies are compared and 

shown Figure C.3 and Figure C.4.  

 

Figure C.3 Engine operating points under the original control 
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Figure C.4 Engine operating points under the proposed battery SOC pulse-and-glide 

strategy 

Under the original control in the Autonomie software, the engine operating points 

in Figure C.3 are more distributed along the best brake specific fuel consumption (BSFC) 

line (highlighted in red). Under the proposed battery SOC pulse-and-glide strategy, the 

engine operating points in Figure C.4 are distributed differently. When accounting for the 

losses of the motor(s) and battery, operating the engine along the best BSFC line is not 

necessarily system optimal. The SOC pulse-and-glide strategy is able to consider all the 

losses, with the optimal system controls. Therefore, the overall fuel rate and combined cost 

are reduced.  
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APPENDIX D Three-Dimensional Demonstration of Multi-Mode 

Power-Split Hybrid Powertrain Schematics 

A with 3D-printing demo is developed as a platform for an efficient validation of 

design schematic and control strategy development. The motivation is to establish a 

reconfigurable platform that can emulate multi-mode power-split hybrid powertrain 

mechanism using two PG sets given all possible design schematics. With this emulation 

technique, the feasibility to operate this powertrain can be confirmed. This demo enables:  

1. collocations of powertrain components;  

2. emulation of operating status;  

3. emulation of mode-switch.  

The design demo uses a designed PG from a typical PG set shown in Figure D.1 

and developed a 3D printing PG set shown in Figure D.2.  

 

Figure D.1 Diagram of a typical PG set 
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Figure D.2 3D printing gear from a typical PG set 

To emulate the clutch connections between the two PG set, each PG set is connected 

a longitudinal rotational shaft as an output shaft. The connection between each gear is 

emulated by clutch connection between each shaft. A PG set with output shaft connection 

is created and assembled, as shown by the 3D printing design drawing (on the left) in Figure 

D.3, together with the manufactured mechanical gear set (on the right).  

      

Figure D.3 The 3D printing design and the manufactured gear set 

By using this PG set-up, a 2PG power-split demo is set up, which enables 

connection with clutches between the 2PG set and collocation with electric motors. Using 

an example of shown in Figure D.4 (but not limited to this example), the emulated drawing 

using the designed demo is shown in Figure D.5. The manufactured set-up of the 

corresponding design is shown in Figure D.6.  
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Figure D.4 An exemplary design of a 2PG power-split hybrid 

 

Figure D.5 The designed power-split demo that emulates the design in Figure D.4 

 

Figure D.6 The manufactured set-up of the design in Figure D.5 
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The above designed power-split demo can emulate 2PG power-split designs with 

controls through Simulink models on a PC. The electric motors and clutches communicate 

with the PC through Arduino board and controlled by controller in Simulink. This 

hardware-in-loop (HIL) set-up is used to test the speed mode control and mode shift 

operation for a given power-split design. It is able to emulate the powertrain operation 

through a down-scale level to test and confirm a realistic feasibility of a designed power-

split hybrid powertrain.  
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