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ABSTRACT

Machine learning is a rapidly developing technology that enables a system to automatically

learn and improve from experience. Modern machine learning algorithms have achieved

state-of-the-art performances on a variety of tasks such as speech recognition [3], image

classification [4], machine translation [5], playing games like Go [6], Dota 2 [7], etc. However,

one of the biggest challenges in applying these machine learning algorithms in the real world

is that they require huge amount of labeled data for the training. In the real world, the

amount of labeled training data is often limited.

In this thesis, we address three challenges in learning with limited labeled data using kernel

methods. In our first contribution, we provide an efficient way to solve an existing domain

generalization algorithm and extend the theoretical analysis to multiclass classification. As

a second contribution, we propose a multi-task learning framework for contextual bandit

problems. We propose an upper confidence bound-based multi-task learning algorithm for

contextual bandits, establish a corresponding regret bound, and interpret this bound to

quantify the advantages of learning in the presence of high task (arm) similarity. Our third

contribution is to provide a simple regret guarantee (best policy identification) in a contextual

bandits setup. Our experiments examine a novel application to adaptive sensor selection

for magnetic field estimation in interplanetary spacecraft and demonstrate considerable

improvements of our algorithm over algorithms designed to minimize the cumulative regret.
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CHAPTER I

Introduction

Machine learning is a rapidly developing technology and has the potential to solve many

issues in speech processing, natural language processing, robotics, autonomous cars, and

fields where data analysis is essential. Machine learning enables systems to automatically

learn and improve from the experience without manually programming it for every scenario.

Modern machine learning algorithms have achieved state-of-the-art performances on variety

of tasks such as speech recognition [3], image classification[4], machine translation [5], playing

games like Go [6], Dota 2 [7] ,etc. However, one of the biggest challenges in applying these

machine learning algorithms in the real world is that they require huge amount of labeled

data for the training. In real world, we are limited by the labeled data that’s available during

training, and which may also be distributionally different from the test data.

Consider an example of categorizing blood cells of a patient in two types, lymphocytes

and non-lymphocytes. Doctors measure various physical and chemical properties of a cell

using flow cytometry and then based on these properties, doctors have to manually label

each cell into two types. Creating such a labeled dataset for learning algorithm is a very

time consuming and expensive process. Also, physical and chemical properties of each

blood cell may vary according to patient and that’s why data used during training could
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be distributionally different than test data. One more example where collecting labeled

data is very expensive is clinical trials. In clinical trials, doctors have number of options for

drugs or type of treatments. Doctors try these options on various patients and check how

effective the particular option is; which is equivalent to collecting labeled data or training

data. Doctors have to minimize number of trials because trying wrong treatment could have

adverse effects on patients. In this case, collecting labeled data is not only expensive but is

also life threatening.

I.1 Background

In this section, I describe challenges addressed in the thesis and give necessary background.

Specifically, I explore three main scenarios where I address issues that arise due to limited

labeled data and solve these issues using kernel methods.

I.1.1 Domain Generalization

Transfer learning, domain adaptation, and weakly supervised learning all have the goal of

generalizing without access to conventional labeled training data. One particular form of

transfer learning that has garnered increasing attention in recent years is domain generalization

(DG) [8, 9]. In this setting, the learner is given unlabeled data to classify, and must do so by

leveraging labeled data sets from similar yet distinct classification problems. In other words,

label training data drawn from the same distribution as the test data are not available, but

are available from several related tasks (which may have slightly different distribution). We

use the terms “task" and “domain" interchangeably throughout this chapter.

Applications of DG are numerous. For example, each task may be a prediction problem

associated to a particular individual (e.g., handwritten digit recognition), and the variation
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between individuals accounts for the variation among the data sets. Domain generalization

is needed when a new individual appears, and the only training data come from different

subjects.

Consider the example of image classification, where one has images of different objects.

Each image contains a single object and the goal is recognize or classify these images based

on an object in it. We have multiple images of the same objects from different cameras, and

we train our image classification model for these cameras (e.g., Apple’s iPhone, Sony’s DSLR,

and Google’s Pixel). During the test time, the goal is to classify images from Samsung’s Note.

Different cameras have different optical structure and so images from those cameras may look

slightly different or may have different optical properties. What makes this more difficult is

that there are no labeled images from Samsung’s Note; and the classification model should

be able to classify images from Samsung’s Note without any labeled data.

As another application, we consider domain generalization for determining the orbits of

microsatellites, which are increasingly deployed in space missions for a variety of scientific

and technological purposes. Because of randomness in the launch process, the orbit of a

microsatellite is random, and must be determined after the launch. Furthermore, ground

antennae are not able to decode unique identifier signals transmitted by the microsatellites

because of communication resource constraints and uncertainty in satellite position and

dynamics. More concretely, suppose c microsatellites are launched together. Each launch is a

random phenomenon and may be viewed as a task in our framework. One can simulate the

launch of microsatellites using domain knowledge to generate highly realistic training data

(feature vectors of ground antennae RF measurements, and labels of satellite ID). One can

then transfer knowledge from the simulated training data to label (identify the satellite) the

measurements from a real-world launch with high accuracy.

Domain generalization is the problem of assigning labels to an unlabeled data set, given

several similar data sets for which labels have been provided [10]. More specifically, in domain

3



generalization, the learning algorithm has N datasets during training with each dataset drawn

from different probability distributions such that each point in each dataset has a label or

class associated with it. The goal is to learn a classifier such that, given a new dataset (with

no training data/labels) drawn from a different but similar probability distribution, it is

possible to provide labels to its points.

I.1.2 Multi-Task Learning for Contextual Bandits

A multi-armed bandit (MAB) problem is a sequential decision-making problem where, at

each time step, an agent chooses one of several “arms," and observes high reward for choosing

the correct arm and smaller reward if it chooses some other arm. The name "multi-armed

bandit" arises from an imaginary gambler who has access to number of slot machines. Slot

machines here are also called "one-armed bandits". In order to achieve a goal of maximizing

money in hand in certain number of trials, the gambler has to decide how many times to

play each machine and in which order to play those machines [11].

𝑟𝑎,𝑡 ∽ 𝑃𝑎

𝑟𝑁,𝑡𝑟2,𝑡 𝑟𝑎,𝑡𝑟1,𝑡

Figure 1.1: Multi-armed Bandit Problem
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More formally, the gambler here is called the learner, each slot machine is an arm and the

problem of making decision of choosing arms is called the multi-armed bandit (MAB) problem.

The “regret" of the learner is the difference between the maximum possible reward and the

reward resulting from the chosen action. The reward for each arm is random according

to a fixed distribution, and the learner’s goal is to either maximize its cumulative reward

or minimize cumulative regret [12] through a combination of exploring different arms and

exploiting those arms that have yielded high rewards in the past [13, 14]. For example, in

Fig. 1.1, there are N arms to choose from, reward ra,t for each arm a at time t is sampled

from a probability distribution Pa. In this case, the goal is to minimize cumulative regret

RT = max
a∈[N ]

T∑
t=1

ra,t −
T∑
t=1

rat ,t , where [N ] = 1, ...,N , at is the arm selected by a learner at time t

and T are number of trials. If the learner explores too little, it may never find an optimal

arm, which will in consequence increase its cumulative regret. If the learner explores too

much, it may select sub-optimal arms too often which will also increase its cumulative regret.

The contextual bandit problem is an extension of the MAB problem where there is some

side information, here called the context, associated with each arm [15]. The contextual bandit

setting is also called associative reinforcement learning [16] and linear bandits [17, 18]. In Fig.

1.2, there is a context xa,t for an arm a at time t . The expected reward for each arm a given

a context xa,t is some fixed but unknown function of xa,t . More formally, E[rat ,t |xa,t ] = fa (xa,t ).

Contextual bandits have been used to model personalized news recommendations, ad

placements, and other applications. Each context determines the distribution of rewards

for the associated arm. The goal, therefore, in contextual bandits is still to maximize the

cumulative reward or minimize cumulative regret, but now leveraging the contexts to predict

the expected reward of each arm. i.e. RT =
T∑
t=1

ra∗t ,t −
T∑
t=1

rat ,t , where a∗t is the arm with

maximum reward at trial t . Note that arm with maximum reward in contextual bandits

depends on the context unlike in MAB. Contextual bandits have been employed to model

various applications like news article recommendations [19], computational advertisements
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[20], website optimization [21] and clinical trials [22]. For example, in the case of a news

article recommendation, the agent must select a news article to recommend to a particular

user. The arms are articles, and contextual features are features derived from the article and

the user. The reward is based on whether a user reads the recommended article.

𝑟𝐾,𝑡𝑟2,𝑡 𝑟𝑎,𝑡𝑟1,𝑡

𝐸[𝑟𝑎,𝑡 𝑥𝑎,𝑡 = 𝑓𝑎(𝑥𝑎,𝑡)

𝑥1,𝑡 𝑥2,𝑡 𝑥𝑎,𝑡 𝑥𝐾,𝑡

Figure 1.2: Contextual Bandit Problem

One common approach to contextual bandits is to fix the class of policy functions (i.e.,

functions from contexts to rewards) and try to learn the best function with time [23, 24, 25].

Most algorithms estimate rewards either separately for each arm or have one single estimator

that is applied to all arms. But when rewards are estimated separately for each arm, we may

be exploring more because arms could be similar to each other and if rewards are estimated

together then we are assuming that there is a single estimator. Both these approaches are at

one extreme and in reality arms could be similar to each other to a different extent. Therefore,

I use an approach which adopts the perspective of multi-task learning (MTL) where separate

estimators or one single estimator are special cases. The intuition is that some arms may

be similar to each other, in which case it should be possible to pool the historical data for

these arms to estimate the mapping from context to rewards more rapidly. For example, in

the case of news article recommendations, there may be thousands of articles, and some of
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Cumulative Regret Simple Regret

Multi-armed Bandits Auer et al. 2002 [30] Audibert et. al. 2012 [31]

Contextual Bandits Chu et al. 2011 [19] This work

Table 1.1: Contribution: Simple regret minimization for contextual bandits

those are bound to be similar to each other. In this case, when news article are similar to

each other, we could benefit from estimating their rewards together and we may not need to

explore too much to estimate their rewards.

I.1.3 Simple Regret for Contextual Bandits

The previous sub-section has discussed cumulative regret minimization in MAB and contextual

bandit. In classical MABs, the goal of the learner is not always to minimize the cumulative

regret. In some applications, there is a pure exploration phase during which the learning

incurs no regret (i.e., no penalty for sub-optimal decisions), and performance is measured in

terms of simple regret, which is the regret assessed at the end of the pure exploration phase.

For example, in the best arm identification, the learner must guess the arm with a highest

expected reward at the end of the exploration phase. Simple regret minimization clearly

motivates different strategies, since there is no penalty for sub-optimal decisions during the

exploration phase. Fixed budget and fixed confidence are the two main theoretical frameworks

in which simple regret is generally analyzed [26, 27, 28, 29]. The number of trials for the

exploration are fixed in the fixed budget setting and the goal is to maximize the probability

of returning the best arm. In the fixed confidence setting, the goal is to achieve a fixed

confidence about the quality of the returned arm in minimum possible number of trials. [26].

To date, work on contextual bandits has studied cumulative regret minimization i.e.
T∑
t=1

ra∗t ,t −
T∑
t=1

rat ,t , which is motivated by applications in healthcare, web advertisement

recommendations and news article recommendations [23]. In this thesis, I extend the idea of
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simple regret minimization to contextual bandits i.e. minimizing the regret at time t > T

(after exploration phase) ra∗t ,t − rat ,t . In this setting, there is a pure exploration phase during

which no regret is incurred, followed by a pure exploitation phase during which regret is

incurred, but there is no feedback so the learner cannot update its policy. To my knowledge,

previous work has not addressed novel algorithms for this setting.

I.2 Contribution

The three major contributions of this thesis are summarized below.

1. Domain Generalization: In my first contribution (see chapter 2), I provide an efficient

way to solve an existing kernel based domain generalization and extend the theoretical

analysis to the multi-class classification. To be specific, I propose a kernel approximation

technique which reduces the time complexity of the solver in the existing kernel based

domain generalization approach to linear in terms of the number of samples. I give

empirical evidence based on two medical datasets and one satellite dataset demonstrating

the superiority of these algorithms over state-of-the-art ones. This work was done in

collaboration with my advisor Prof. Clayton Scott, Prof. Gilles Blanchard and Dr.

Urun Dogan at Microsoft Research.

2. Multi-Task Learning for Contextual Bandits: In chapter 3, I propose an upper confi-

dence bound-based multi-task learning algorithm for contextual bandits, establish a

corresponding regret bound, and interpret this bound to quantify the advantages of

learning in the presence of high task (arm) similarity. I also describe an effective scheme

for estimating task similarity from data and demonstrate my algorithm’s performance

using several data sets. This work was done in collaboration with Dr. Urun Dogan at

Microsoft Research and my advisor Prof. Clayton Scott.
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3. Simple Regret for Contextual Bandits: In chapter 4, I formulate a novel problem:

that of simple regret minimization for contextual bandits and develop an algorithm,

Contextual-Gap, for this setting. I present performance guarantees on the simple regret

in the fixed budget framework and present experimental results for adaptive sensor

selection in nano-satellites. This work was done in collaboration with Dr. Srinagesh

Sharma, my advisor Prof. Clayton Scott, Prof. James Cutler and Prof. Mark Moldwin.
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CHAPTER II

Domain Generalization

We consider the problem of assigning class labels to an unlabeled test data set, given several

labeled training data sets drawn from similar distributions. This problem arises in several

applications where data distributions fluctuate because of biological, technical, or other

sources of variation. [32] has developed a distribution-free, kernel-based approach to the

problem. This approach involves identifying an appropriate reproducing kernel Hilbert space

and optimizing a regularized empirical risk over the space. But as dataset size increases,

computational complexity of the SVM solver can be quadratic or cubic in terms of number of

samples. We propose a kernel approximation technique which reduces the time complexity of

the solver to linear in terms of number of samples. Kernel methods project input data points

into high dimensional feature space (infinite-dimensional in case of Gaussian kernel) and find

the optimal hyperplane in that feature space. Using kernel approximation techniques such as

random Fourier features we map the input data to a randomized low-dimensional feature

space and then apply existing fast linear SVM solvers. Experimental results are shown on

three real world datasets. We also extend the generalization error analysis in [32] for the

multi class setting and show supporting experimental results.
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II.1 Introduction

Is it possible to leverage the solution of one classification problem to solve another? This is a

question that has received increasing attention in recent years from the machine learning com-

munity, and has been studied in a variety of settings, including multi-task learning, covariate

shift, and transfer learning. In this work, we study domain generalization, another setting in

which this question arises, and one that incorporates elements of the three aforementioned

settings, and is motivated by many practical applications.

To state the problem, let X be a feature space and Y a space of labels to predict. For a

given distribution PXY , we refer to the X marginal distribution PX as simply the marginal

distribution, and the conditional PXY (Y |X ) as the posterior distribution. There are N similar

but distinct distributions P (i )
XY on X × Y, i = 1, . . . ,N . For each i, there is a training sample

Si = (Xij ,Yij )1≤j≤ni of i.i.d. realizations of P (i )
XY . There is also a test distribution PTXY that

is similar to but again distinct from the “training distributions" P (i )
XY . Finally, there is a

test sample (XT
j ,Y

T
j )1≤j≤nT of i.i.d. realizations of PTXY , but in this case the labels Yj are not

observed. The goal of domain generalization is to correctly predict these unobserved labels.

Essentially, given a random sample from the marginal test distribution PTX , we would like to

predict the corresponding labels.

The goal is to predict these unobserved labels corresponding to samples drawn from

the marginal test distribution. One of the methods to solve the transfer learning problem

in the above setting is described in [32]. Their approach, marginal transfer learning, is a

distribution-free, kernel-based and it involves identifying an appropriate reproducing kernel

Hilbert space (RKHS) and optimizing a regularized empirical risk over the space. But as

dataset size increases, computational complexity of this solver can be quadratic or cubic in

terms of number of samples. We propose a kernel approximation to solve marginal transfer

learning in linear time.
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II.2 Motivating Application: Automatic Gating of Flow

Cytometry Data

Flow cytometry is a high-throughput measurement platform that is an important clinical tool

for the diagnosis of many blood-related pathologies. This technology allows for quantitative

analysis of individual cells from a given population, derived for example from a blood sample

from a patient. We may think of a flow cytometry data set as a set of d-dimensional attribute

vectors (X j )1≤j≤n, where n is the number of cells analyzed, and d is the number of attributes

recorded per cell. These attributes pertain to various physical and chemical properties of the

cell. Thus, a flow cytometry data set is a random sample from a patient-specific distribution.

Now suppose a pathologist needs to analyze a new (test) patient with data (XT
j )1≤j≤nT .

Before proceeding, the pathologist first needs the data set to be “purified" so that only cells

of a certain type are present. For example, lymphocytes are known to be relevant for the

diagnosis of leukemia, whereas non-lymphocytes may potentially confound the analysis. In

other words, it is necessary to determine the label YT
j ∈ {−1, 1} associated to each cell, where

YT
j = 1 indicates that the j-th cell is of the desired type.

In clinical practice this is accomplished through a manual process known as “gating." The

data are visualized through a sequence of two-dimensional scatter plots, where at each stage

a line segment or polygon is manually drawn to eliminate a portion of the unwanted cells.

Because of the variability in flow cytometry data, this process is difficult to quantify in terms

of a small subset of simple rules. Instead, it requires domain-specific knowledge and iterative

refinement. Modern clinical laboratories routinely see dozens of cases per day, so it would be

desirable to automate this process.

Since clinical laboratories maintain historical databases, we can assume access to a number

(N ) of historical patients that have already been expert-gated. Because of biological and
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technical variations in flow cytometry data, the distributions P iXY of the historical patients

will vary. But every cell type of interest has a known tendency (e.g., high or low) for most

measured attributes. Therefore, it is reasonable to assume that there is an underlying

distribution (on distributions) governing flow cytometry data sets, that produces roughly

similar distributions thereby making possible the automation of the gating process [32].

II.3 Formal Setting

As described in the last section let X be feature space and Y be the label space or output

space. Further assume that we have samples from N distributions Si = (Xij ,Yij )1≤j≤ni . For

simplicity assume that ni = n. Let PX×Y be the set of probability distributions on X ×Y, PX

the set of probability distributions on X, and PY|X the set of conditional probabilities of Y

given X . Further, it is assumed that there exists a distribution µ on PX×Y , where P1
XY , ..., P

N
XY

are i.i.d. realizations from µ and as already described, samples Si are i.i.d. realizations of

(X ,Y ) following the distribution P iXY .

Suppose the user has training samples Si = ((Xij ,Yij ))1≤j≤n. Each data point Xij along with

its distribution P iX can be thought of as an extended data point X̃ij = (P iX ,Xij ) Now, consider

a test sample ST = ((XT
j ,Y

T
j ))1≤j≤nT , whose labels are not observed by a user. The goal here is

to predict YT
j as accurately as possible. A decision function is a function f : PX ×X → R (i.e.

a classifier on extended feature space) that predicts Ŷj = f (P̂X ,X j ), where P̂X is the associated

empirical distribution. Let ` : R × Y → R+ be the appropriate loss used, then the average

loss incurred on the test sample is

L =
1

nT

nT∑
j=1

`(Ŷj ,Yj ). (2.1)
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Based on this the empirical error on test sample with sample size nT is

ε̂ ( f ,nT ) =
1

T

nT∑
i=1

`( f (P̂TX ,X
T
i ),Y

T
i ), (2.2)

and the generalization error of a decision function with respect to loss ` is

ε ( f ) = EPTXY∼µ
E (XT ,YT )∼PTXY

`( f (PTX ,X
T ),YT ). (2.3)

Denoting X̃ = (PX ,X ), the above can be written as

ε ( f ) = EPTXY∼µ
E (XT ,YT )∼PTXY

`( f (X̃T ),YT ). (2.4)

Important points to note here are:

• At training time as well as at test time, the marginal distribution PX for a sample is

only known through the sample itself, that is, through the empirical marginal P̂X ,

• Despite the similarity to standard binary classification in the infinite sample case, the

learning task here is different, because the realizations (X̃ij ,Yij ) are neither independent

nor identically distributed

II.4 Learning Algorithm

We consider an approach based on kernels. The function k : Ω × Ω → R is called a kernel on

Ω if the matrix (k (xi ,xj ))1≤i,j≤n is symmetric and positive semi-definite for all positive integers

n and all x1, . . . ,xn ∈ Ω. It is well-known that if k is a kernel on Ω, then there exists a Hilbert

space H̃ and Φ̃ : Ω → H̃ such that k (x ,x′) = 〈Φ̃(x ), Φ̃(x′)〉
H̃
. While H̃ and Φ̃ are not uniquely

determined by k, the Hilbert space of functions (from Ω to R) Hk = {〈v, Φ̃(·)〉
H̃

: v ∈ H̃} is
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uniquely determined by k, and is called the reproducing kernel Hilbert space (RKHS) of k.

One way to envision Hk is as follows. Define Φ(x ) := k (·,x ), which is called the canonical

feature map associated with k. Then the span of {Φ(x ) : x ∈ Ω}, endowed with the inner

product
〈
Φ(x ),Φ(x′)

〉
= k (x ,x′), is dense in Hk . We also recall the reproducing property,

which states that 〈f ,Φ(x )〉 = f (x ) for all f ∈ Hk .

Several well-known learning algorithms, such as support vector machines and kernel ridge

regression, may be viewed as minimizers of a norm-regularized empirical risk over the RKHS

of a kernel. A similar development has also been made for multi-task learning [33]. Inspired

by this framework, we consider a general kernel algorithm as follows.

Consider the loss function ` : R × Y → R+. Let k be a kernel on PX × X, and let Hk

be the associated RKHS. For the sample Si , let P̂
(i )
X =

1

ni

ni∑
j=1

δXi j denote the corresponding

empirical X distribution. Also consider the extended input space PX × X and the extended

data X̃ij = (P̂ (i )
X ,Xij ). Note that P̂ (i )

X plays a role analogous to the task index in multi-task

learning. Now define

f̂λ = arg min
f ∈Hk

1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (X̃ij ),Yij ) + λ 

f 

2 . (2.5)

II.4.1 Specifying the kernels

In the rest of the chapter we will consider a kernel k on PX × X of the product form

k ((P1,x1), (P2,x2)) = kP (P1, P2)kX (x1,x2), (2.6)

where kP is a kernel on PX and kX a kernel on X.

Furthermore, we will consider kernels on PX of a particular form. Let k′X denote a kernel
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on X (which might be different from kX ) that is measurable and bounded. We define the

kernel mean embedding Ψ : PX → Hk ′X
:

PX 7→ Ψ(PX ) :=

∫
X

k′X (x , ·)dPX (x ). (2.7)

This mapping has been studied in the framework of “characteristic kernels” [34], and it has

been proved that universality of k′X implies injectivity of Ψ [35, 36].

Note that the mapping Ψ is linear. Therefore, if we consider the kernel kP (PX , P ′X ) =〈
Ψ(PX ),Ψ(P

′
X )

〉
, it is a linear kernel on PX and cannot be a universal kernel. For this reason,

we introduce yet another kernel K on Hk ′X
and consider the kernel on PX given by

kP (PX , P
′
X ) = K

(
Ψ(PX ),Ψ(P

′
X )

)
. (2.8)

Note that particular kernels inspired by the finite dimensional case are of the form

K(v,v′) = F (

v −v′

), (2.9)

or

K(v,v′) = G (
〈
v,v′

〉
), (2.10)

where F ,G are real functions of a real variable such that they define a kernel. For example,

F (t ) = exp(−t2/(2σ2)) yields a Gaussian-like kernel, while G (t ) = (1 + t )d yields a polynomial-

like kernel. Kernels of the above form on the space of probability distributions over a compact

space X have been introduced and studied in [37]. Below we apply their results to deduce

that k is a universal kernel for certain choices of kX ,k′X , and K.
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II.4.2 Relation to other kernel methods

By choosing k differently, one can recover other existing kernel methods. In particular,

consider the class of kernels of the same product form as above, but where

kP (PX , P
′
X ) =




1 PX = P ′X

τ PX , P ′X

If τ = 0, the algorithm (2.5) corresponds to training N kernel machines f (P̂ (i )
X , ·) using kernel

kX (e.g., support vector machines in the case of the hinge loss) on each training data set,

independently of the others (note that this does not offer any generalization ability to a

new dataset). If τ = 1, we have a “pooling" strategy that, in the case of equal sample

sizes ni , is equivalent to pooling all training data sets together in a single data set, and

running a conventional kernel learning supervised learning algorithm with kernel kX (i.e.,

this corresponds to trying to find a single “one-fits-all” prediction function which does not

depend on the marginal). In the intermediate case 0 < τ < 1, the resulting kernel is a

“multi-task kernel," and the algorithm recovers a multitask learning algorithm like that of

[33]. We compare to the pooling strategy below in our experiments. We also examined the

multi-task kernel with τ < 1, but found that, as far as generalization to a new unlabeled task

is concerned, it was always outperformed by pooling, and so those results are not reported.

This fits the observation that the choice τ = 0 does not provide any generalization to a new

task, while τ = 1 at least offers some form of generalization, if only by fitting the same

decision function to all datasets.

In the special case where all labels Yij are the same value for a given task, and kX is taken

to be the constant kernel, the problem we consider reduces to “distributional" classification

or regression, which is essentially standard supervised learning where a distribution (observed
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through samples) plays the role of the feature vector. Our analysis techniques could easily be

specialized to analyze this problem.

II.5 Implementation

Implementation of the algorithm in (2.5) relies on techniques that are similar to those used

for other kernel methods, but with some variations. The first subsection illustrates how,

for the case of hinge loss, the optimization problem corresponds to a certain cost-sensitive

support vector machine. Subsequent subsections focus on more scalable implementations

based on approximate feature mappings.

II.5.1 Representer theorem and hinge loss

For a particular loss `, existing algorithms for optimizing an empirical risk based on that

loss can be adapted to the marginal transfer setting. We now illustrate this idea for the case

of the hinge loss, `(t ,y) = max(0, 1 − yt ). To make the presentation more concise, we will

employ the extended feature representation X̃ij = (P̂ (i )
X ,Xij ), and we will also “vectorize” the

indices (i, j ) so as to employ a single index on these variables and on the labels. Thus the

training data are (X̃i ,Yi )1≤i≤M , where M =
N∑
i=1

ni , and we seek a solution to

min
f ∈Hk

M∑
i=1

ci max(0, 1 − Yi f (X̃i )) +
1

2


f 

2 .
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Here ci =
1

λNnm
, where m is the smallest positive integer such that i ≤ n1 + · · · + nm. By the

representer theorem [38], the solution of (2.5) has the form

f̂λ =
M∑
i=1

rik (X̃i , ·)

for real numbers ri . Plugging this expression into the objective function of (2.5), and

introducing the auxiliary variables ξi , we have the quadratic program

min
r ,ξ

1

2
rTKr +

M∑
i=1

ciξi

s.t. Yi

M∑
j=1

rjk (X̃i , X̃ j ) ≥ 1 − ξi , ∀i

ξi ≥ 0, ∀i,

where K := (k (X̃i , X̃ j ))1≤i,j≤M . Using Lagrange multiplier theory, the dual quadratic program

is

max
α
−

1

2

M∑
i,j=1

αiαjYiYjk (X̃i , X̃ j ) +
M∑
i=1

αi

s.t. 0 ≤ αi ≤ ci ∀i,

and the optimal function is

f̂λ =
M∑
i=1

αiYik (X̃i , ·).

This is equivalent to the dual of a cost-sensitive support vector machine, without offset, where

the costs are given by ci . Therefore, we can learn the weights αi using any existing software

package for SVMs that accepts example-dependent costs and a user-specified kernel matrix,

and allows for no offset. Returning to the original notation, the final predictor given a test

19



X -sample ST has the form

f̂λ (P̂
T
X ,x ) =

N∑
i=1

ni∑
j=1

αijYijk ((P̂
(i )
X ,Xij ), (P̂

T
X ,x ))

where the αij are nonnegative. Like the SVM, the solution is often sparse, meaning most αij

are zero.

Finally, we remark on the computation of kP (P̂X , P̂ ′X ). When K has the form of (2.9) or

(2.10), the calculation of kP may be reduced to computations of the form
〈
Ψ(P̂X ),Ψ(P̂

′
X )

〉
. If

P̂X and P̂ ′X are empirical distributions based on the samples X1, . . . ,Xn and X ′1, . . . ,X
′
n′, then

〈
Ψ(P̂X ),Ψ(P̂

′
X )

〉
=

〈
1

n

n∑
i=1

k′X (Xi , ·),
1

n′

n′∑
j=1

k′X (X
′
j , ·)

〉

=
1

nn′

n∑
i=1

n′∑
j=1

k′X (Xi ,X
′
j ).

Note that when k′X is a (normalized) Gaussian kernel, Ψ(P̂X ) coincides (as a function) with a

smoothing kernel density estimate for PX .

II.5.2 Approximate Feature Mapping for Scalable Implementation

Assuming ni = n, for all i, the computational complexity of a nonlinear SVM solver is between

O (N 2n2) and O (N 3n3) [39, 40]. Thus, standard nonlinear SVM solvers may be insufficient

when either or both N and n are very large.

One approach to scaling up kernel methods is to employ approximate feature mappings

together with linear solvers. This is based on the idea that kernel methods are solving

for a linear predictor after first nonlinearly transforming the data. Since this nonlinear

transformation can have an extremely high-dimensional or even infinite-dimensional output,
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classical kernel methods avoid computing it explicitly. However, if the feature mapping can

be approximated by a finite dimensional transformation with a relatively low-dimensional

output, one can directly solve for the linear predictor, which can be accomplished in O (Nn)

time [41].

In particular, given a kernel k, the goal is to find an approximate feature mapping z (x̃ )

such that k (x̃ , x̃′) ≈ z (x̃ )Tz (x̃′). Given such a mapping z, one then applies an efficient linear

solver, such as Liblinear [42], to the training data (z (X̃ij ),Yij )ij to obtain a weight vector w.

The final prediction on a test point x̃ is then wTz (x̃ ). As described in the previous subsection,

the linear solver may need to be tweaked, as in the case of unequal sample sizes ni , but this

is usually straightforward.

Recently, such low-dimensional approximate future mappings z (x ) have been developed

for several kernels. We examine two such techniques in the context of marginal transfer

learning, the Nyström approximation [43, 44] and random Fourier features. The Nyström

approximation applies to any kernel method, and therefore extends to the marginal transfer

setting without additional work. On the other hand, we give a novel extension of random

Fourier features to the marginal transfer learning setting (for the case of all Gaussian kernels),

together with performance analysis.

II.5.2.1 Random Fourier Features

The approximation of Rahimi and Recht is based on Bochner’s theorem, which characterizes

shift invariant kernels [45].

Theorem 1. A continuous kernel k (x ,y) = k (x − y) on Rd is positive definite iff k (x − y) is

the Fourier transform of a finite positive measure p (w ), i.e.,

21



k (x − y) =

∫
Rd

p (w )e jw
T (x−y)dw . (2.11)

If a shift invariant kernel k (x −y) is properly scaled then Theorem 1 guarantees that p (w )

in (2.11) is a proper probability distribution.

Random Fourier features approximate the integral in (2.11) using samples drawn from

p (w ). If w1,w2, ...,wL are i.i.d. draws from p (w ), then

k (x − y) =

∫
Rd

p (w )e jw
T (x−y)dw

=

∫
Rd

p (w ) cos(wTx −wTy)dw

≈
1

L

L∑
i=1

cos(wT
i x −w

T
i y)

=
1

L

L∑
i=1

cos(wT
i x ) cos(wT

i y) + sin(wT
i x ) sin(wT

i y)

=
1

L

L∑
i=1

[cos(wT
i x ), sin(w

T
i x )]

T [cos(wT
i y), sin(w

T
i y)]

= zw (x )
Tzw (y) , (2.12)

where zw (x ) =
1
√
L

[cos(wT
1x ), sin(w

T
1x ), ..., cos(wT

Lx ), sin(w
T
Lx )] ∈ R

2L is an approximate nonlin-

ear feature mapping of dimensionality 2L. In the following, we extend the Random Fourier

features methodology to the kernel k̄ on the extended feature space PX × X. Let X1, . . . ,Xn1

and X ′1, . . . ,X
′
n2

be i.i.d. realizations of PX and P ′X respectively, and let P̂X and P̂ ′X denote the

corresponding empirical distributions. Given x ,x′ ∈ X, denote x̃ = (P̂X ,x ) and x̃′ = (P̂ ′X ,x
′).

The goal is to find an approximate feature mapping z̄ (x̃ ) such that k̄ (x̃ , x̃′) ≈ z̄ (x̃ )T z̄ (x̃′).

Recall that,

k̄ (x̃ , x̃′) = kP (P̂X , P̂
′
X )kX (x ,x

′);

specifically, we consider kX and k′X to be Gaussian kernels and the kernel on distributions kP
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to have the Gaussian-like form

kP (P̂X , P̂
′
X ) = exp




1

2σ2
P

‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2
Hk ′X



.

As noted earlier in this section, the calculation of kP (P̂X , P̂ ′X ) reduces to the computation of

〈Ψ(P̂X ),Ψ(P̂
′
X )〉 =

1

n1n2

n1∑
i=1

n2∑
j=1

k′X (Xi ,X
′
j ). (2.13)

We use Theorem 1 to approximate k′X and thus 〈Ψ(P̂X ),Ψ(P̂ ′X )〉. Let w1,w2, ...,wL be i.i.d.

draws from p′(w ), the inverse Fourier transform of k′X . Then we have:

〈Ψ(P̂X ),Ψ(P̂
′
X )〉 =

1

n1n2

n1∑
i=1

n2∑
j=1

k′X (Xi ,X
′
j )

≈
1

Ln1n2

L∑
l=1

n1∑
i=1

n2∑
j=1

cos(wT
l Xi −w

T
l X
′
j )

=
1

Ln1n2

L∑
l=1

n1∑
i=1

n2∑
j=1

[cos(wT
l Xi ) cos(wT

l X
′
j ) + sin(wT

l Xi ) sin(wT
l X
′
j )]

=
1

Ln1n2

L∑
l=1

{ n1∑
i=1

[cos(wT
l Xi ), sin(w

T
l Xi )]

T
n2∑
j=1

[cos(wT
l X
′
j ), sin(w

T
l X
′
j )]}

= ZP (P̂X )
TZP (P̂

′
X ),

where

ZP (P̂X ) =
1

n1

√
L

n1∑
i=1

[
cos(wT

1Xi ), sin(w
T
1Xi ), ..., cos(wT

LXi ), sin(w
T
LXi )

]
, (2.14)

and ZP (P̂
′
X ) is defined analogously with n1 replaced by n2. For the proof of Theorem 2,

let z′X denote the approximate feature map corresponding to k′X , which satisfies ZP (P̂X ) =

1

n1

n1∑
i=1

z′X (Xi ).
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Note that the lengths of the vectors ZP (P̂X ) and ZP (P̂
′
X ) are 2L. To approximate k̄ we may

write

k̄ (x̃ , x̃′) ≈ exp
−‖ZP (P̂X ) − ZP (P̂

′
X )‖

2
R2L

2σ2
P

· exp
−‖x − x′‖2

Rd

2σ2
X

(2.15)

= exp
−(σ2

X ‖ZP (P̂X ) − ZP (P̂
′
X )‖

2
R2L + σ

2
P ‖x − x

′‖2
Rd )

2σ2
Pσ

2
X

= exp
−(‖σXZP (P̂X ) − σXZP (P̂

′
X )‖

2
R2L + ‖σPx − σPx

′‖2
Rd )

2σ2
Pσ

2
X

= exp
−‖ (σXZP (P̂X ),σPx ) − (σXZP (P̂

′
X ),σPx

′)‖2
R2L+d

2σ2
Pσ

2
X

This is also a Gaussian kernel, now on R2L+d . Again by applying Theorem 1, we have

k̄ (P̂X ,X ), (P̂ ′X ,X
′)) ≈

∫
R2L+d

p (v )e jv
T ((σXZP (PX ),σPX )−(σXZP (P

′
X ),σPX

′))dv .

Let v1,v2, ...,vq be drawn i.i.d. from p (v ), the inverse Fourier transform of the Gaussian

kernel with bandwidth σPσX . Let u = (σXZP (P̂X ),σPx ) and u′ = (σXZP (P̂
′
X ),σPx

′). Then

k̄ (x̃ , x̃′) ≈
1

Q

Q∑
q=1

cos(vTq (u − u
′))

= z̄ (x̃ )T z̄ (x̃′),

where

z̄ (x̃ ) =
1
√
Q

[cos(vT1u), sin(v
T
1u), ..., cos(vTQu), sin(v

T
Qu)] ∈ R

2Q (2.16)

and z̄ (x̃′) is defined similarly.

This completes the construction of the approximate feature map. The following result,

which uses Hoeffding’s inequality and generalizes a result of Rahimi and Recht [45], says that
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the approximation achieves any desired approximation error with very high probability as

L,Q → ∞.

Theorem 2. Let L be the number of random features to approximate the kernel on distributions

and Q be the number of features to approximate the final product kernel. For any ϵ` > 0,

ϵq > 0, x̃ = (P̂X ,x ), x̃′ = (P̂ ′X ,x
′),

P ( |k̄ (x̃ , x̃′) − z̄ (x̃ )T z̄ (x̃′) | ≥ ϵl + ϵq ) ≤ 2 exp
(
−
Qϵ2

q

2

)
+ 6n1n2 exp

(
−
Lϵ2

2

)
, (2.17)

where ϵ =
σ2
P

2
log(1 + ϵl ), σP is the bandwidth parameter of the Gaussian-like kernel kP , and

n1 and n2 are the sizes of the empirical distributions P̂X and P̂ ′X , respectively.

The above results holds for fixed x̃ and x̃′. Following again [45], one can use an ϵ-

net argument to prove a stronger statement for every pair of points in the input space

simultaneously.

Lemma 1. Let M be a compact subset of Rd with diameter r = diam(M) and let D be the

number of random Fourier features used. Then for the mapping defined in (2.12), we have

P
(

sup
x ,y∈M

|zw (x )
Tzw (y) − k (x − y) | ≥ ϵ

)
≤ 28

(σr
ϵ

)2
exp(

−Dϵ2

2(d + 2)
)

where σ = E[wTw] is the second moment of the Fourier transform of k [45].

Our RFF approximation of k̄ is grounded on Gaussian RFF approximations on Euclidean

spaces, and thus, the following results holds by invoking Lemma 1, and otherwise following

the argument of Theorem 2.

Theorem 3. Using the same notations as in Theorem 2 and Lemma 1,

P
(

sup
x ,x ′∈M

|k̄ (x̃ , x̃′) − z̄ (x̃ )T z̄ (x̃′) | ≥ ϵl + ϵq

)
(2.18)
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≤ 28
(σ ′Xr
ϵq

)2

exp(
−Qϵ2

q

2(d + 2)
) + 293n1n2

(σPσXr
ϵl

)2
exp(

−Lϵ2
l

2(d + 2)
)

where σ ′X is the width of kernel k′X in Eqn (2.13) and σP , σX are width of kernel kP and kX

respectively.

II.5.2.2 Nyström Approximation

Like random Fourier features, the Nyström approximation is a technique to approximate

kernel matrices. Unlike random Fourier features, for the Nyström approximation, the feature

maps are data-dependent. Also, in the last subsection, all kernels were assumed to be shift

invariant. With the Nyström approximation there is no such assumption.

For a general kernel k, the goal is to find a feature mapping z : Rd → RL, where L > d,

such that k (x ,x′) ≈ z (x )Tz (x′). Let r be the target rank of the final approximated kernel

matrix, and m be the number of selected columns of the original kernel matrix. In general

r ≤ m � n.

Given data points x1, . . . ,xn, the Nyström method approximates the kernel matrix by

first sampling m data points x′1,x
′
2, ...,x

′
m without replacement from the original sample,

and then constructing a low rank matrix by K̂r = KbK̂
−1KT

b , where Kb = [k (xi ,x
′
j )]n×m, and

K̂ = [k (x′i ,x
′
j )]m×m. Hence, the final approximated feature mapping is

zn (x ) = D̂−
1
2V̂T [k (x ,x′1), ...,k (x ,x

′
m )], (2.19)

where D̂ is the eigenvalue matrix of K̂ and V̂ is the corresponding eigenvector matrix.

The Nyström approximation holds for any positive definite kernel, but random Fourier

features can be used only for shift invariant kernels. On the other hand, random Fourier

features are very easy to implement and have a lower time complexity than the Nyström
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method (where one has to find the eigenvalue decomposition). Moreover, the Nyström method

is useful only when the kernel matrix is low rank. In our experiments, we use random Fourier

features when all kernels are Gaussian and the Nyström method otherwise.

II.6 Experiments

This section empirically compares our marginal transfer learning method with pooling.

One implementation of the pooling algorithm was mentioned in Section II.4.2, where kP is

taken to be a constant kernel. Another implementation is to put all the training data sets

together and train a single conventional kernel method. The only difference between the

two implementations is that in the form, weights of 1/ni are used for examples from training

task i. In almost all of our experiments below, the various training tasks have the same

sample sizes, in which case the two implementations coincide. The only exception is the

fourth experiment when we use all training data, in which case we use the second of the two

implementations mentioned above.

We consider three classification problems (Y = {−1, 1}), for which the hinge loss is

employed, and one regression problem (Y ⊂ R), where the ϵ-insensitive loss is employed.

Thus, the algorithms implemented are natural extensions of support vector classification and

regression to marginal transfer learning. The code is available online to reproduce all results

1.
1The code to reproduce our results is available at https://github.com/aniketde/

DomainGeneralizationMarginal
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II.6.1 Model Selection

The various experiments use different combinations of kernels. In all experiments, linear

kernels k (x1,x2) = x1
Tx2 and Gaussian kernels kσ (x1,x2) = exp

(
−
||x1 − x2 | |

2

2σ2

)
were used.

The bandwidth σ of each Gaussian kernel and the regularization parameter λ of the

machines were selected by grid search. For model selection, five-fold cross-validation has

been used. In order to stabilize the cross-validation procedure, it was repeated 5 times over

independent random splits into folds [46]. Thus, candidate parameter values were evaluated

on the 5 × 5 validation sets and the configuration yielding the best average performance

was selected. If any of the chosen hyper-parameters was at the grid boundary, the grid

was extended accordingly, i.e., the same grid size has been used, however, the center of

grid has been assigned to the previously selected point. The grid used for kernels was

σ ∈
(
10−2, 104

)
with logarithmic spacing, and the grid used for the regularization parameter

was λ ∈
(
10−2, 101

)
with logarithmic spacing.

II.6.2 Parkinson’s disease telemonitoring dataset

We test our method in the regression setting using the Parkinson’s disease telemonitoring

dataset, which is composed of a range of biomedical voice measurements using a telemonitoring

device from 42 people with early-stage Parkinson’s. The recordings were automatically

captured in the patients’ homes. The aim is to predict the clinician’s Parkinson’s disease

symptom score for each recording on the unified Parkinson’s disease rating scale (UPDRS)

[47]. Thus we are in a regression setting, and employ the ϵ-insensitive loss from support

vector regression. All kernels are taken to be Gaussian, and the random Fourier features

speedup is used.

There are around 200 recordings per patient. We randomly select 7 test users and then
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Table 2.1: RMSE of Marginal Transfer Learning on Parkinson’s Disease Dataset

Training examples 10 15 20 25 30 35

20 13.78 12.37 11.93 10.74 10.08 11.17

24 14.18 11.89 11.51 10.90 10.55 10.18

28 14.95 13.29 12.00 10.21 10.59 9.52

34 13.27 11.66 11.79 9.16 9.34 10.50

41 12.89 11.27 11.17 9.91 9.10 10.05

49 13.15 11.70 13.81 10.12 9.01 8.69

58 12.16 9.59 9.85 9.28 8.44 7.62

70 13.03 9.16 8.80 9.03 8.16 7.88

84 11.98 9.18 9.74 9.03 7.30 7.01

100 12.69 8.48 9.52 8.01 7.14 7.5

vary the number of training users N from 10 to 35 in steps of 5, and we also vary the number

of training examples n per user from 20 to 100. We repeat this process several times to get

the average errors which are shown in Fig 2.1 and Tables 2.1 and 2.2. The transfer learning

method clearly outperforms pooling, especially as N and n increase.

II.6.3 Satellite Classification

Microsatellites are increasingly deployed in space missions for a variety of scientific and tech-

nological purposes. Because of randomness in the launch process, the orbit of a microsatellite

is random, and must be determined after the launch. One recently proposed approach is to

estimate the orbit of a satellite based on radiofrequency (RF) signals as measured in a ground

sensor network. However, microsatellites are often launched in bunches, and for this approach

to be successful, it is necessary to associate each RF measurement vector with a particular
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Table 2.2: RMSE of Pooling on Parkinson’s Disease Dataset

Training examples 10 15 20 25 30 35

20 13.64 11.93 11.95 11.06 11.91 12.08

24 13.80 11.83 11.70 11.98 11.68 11.48

28 13.78 11.70 11.72 11.18 11.58 11.73

34 13.71 12.20 12.04 11.17 11.67 11.92

41 13.69 11.73 12.08 11.28 11.55 12.59

49 13.75 11.85 11.79 11.17 11.34 11.82

58 13.70 11.89 12.06 11.06 11.82 11.65

70 13.54 11.86 12.14 11.21 11.40 11.96

84 13.55 11.98 12.03 11.25 11.54 12.22

100 13.53 11.85 11.92 11.12 11.96 11.84

satellite. Furthermore, the ground antennae are not able to decode unique identifier signals

transmitted by the microsatellites, because (a) of constraints on the satellite/ground anten-

nae links, including transmission power, atmospheric attenuation, scattering, and thermal

noise, and (b) ground antennae must have low gain and low directional specificity owing to

uncertainty in satellite position and dynamics. To address this problem, recent work has

proposed to apply our marginal transfer learning methodology [48].

As a concrete instance of this problem, suppose two microsatellites are launched together.

Each launch is a random phenomenon and may be viewed as a task in our framework. For

each launch i, training data (Xij ,Yij ), j = 1, . . . ,ni , are generated using a highly realistic

simulation model, where Xij is a feature vector of RF measurements across a particular sensor

network and at a particular time, and Yij is a binary label identifying which of the two

microsatellites produced a given measurement. By applying our methodology, we can classify
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Figure 2.1: Parkinson’s disease telemonitoring dataset

unlabeled measurements XT
j from a new launch with high accuracy. Given these labels, orbits

can subsequently be estimated using the observed RF measurements. We thank Srinagesh

Sharma and James Cutler for providing us with their simulated data, and refer the reader to

their paper for more details on the application [48].

To demonstrate this idea, we analyzed the data from [48] for T = 50 launches, viewing 40 as

training data and 10 as testing. We use Gaussian kernels and the RFF kernel approximation

technique to speed up the algorithm. Results are shown in Fig 2.2. As expected, the error

for the proposed method is much lower than for pooling.

II.6.4 Flow Cytometry Experiments

We demonstrate the proposed methodology for the flow cytometry auto-gating problem,

described in Sec. II.2. The pooling approach has been previously investigated in this context
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Table 2.3: Average Classification Error of Marginal Transfer Learning on Satellite Dataset

Training examples 10 20 30 40

5 8.62 7.61 8.25 7.17

15 6.21 5.90 5.85 5.43

30 6.61 5.33 5.37 5.35

45 5.61 5.19 4.71 4.70

all training data 5.16 4.72 3.69 3.87

Table 2.4: Average Classification Error of Pooling on Satellite Dataset

Training examples 10 20 30 40

5 8.13 7.54 7.94 6.96

15 6.55 5.81 5.79 5.57

30 6.06 5.36 5.56 5.31

45 5.58 5.12 5.30 4.99

all training data 5.16 4.78 4.93 4.97
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Figure 2.2: Satellite dataset

by [49]. We used a dataset that is a part of FlowCAP Challenges where the ground truth

labels have been supplied by human experts [50]. We used the so-called “Normal Donors"

dataset. The dataset contains 8 different classes and 30 subjects. Only two classes (0 and 2)

have consistent class ratios, so we have restricted our attention to these two.

The corresponding flow cytometry data sets have sample sizes ranging from 18,641 to

59,411, and the proportion of class 0 in each data set ranges from 25.59 to 38.44%. We

randomly selected 10 tasks as test tasks and used exactly the same tasks over all experiments.

We varied the number of tasks in the training data from 5 to 20 with an additive step size of

5, and the number of training examples per task from 32 to 16384 with a multiplicative step

size of 2. We repeated this process 10 times to get the average errors which are shown in Fig.

2.3 and Tables 2.5 and 2.6. The kernel kP was Gaussian, and the other two were linear. The

Nyström approximation was used to achieve an efficient implementation.

For nearly all settings the proposed method has a smaller error rate than the baseline.

Furthermore, for the marginal transfer learning method, when one fixes the number of training
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Table 2.5: Average Classification Error of Marginal Transfer Learning on Flow Cytometry
Dataset

Training examples 5 10 15 20

1024 9 9.03 9.03 8.70

2048 9.12 9.56 9.07 8.62

4096 8.96 8.91 9.01 8.66

8192 9.18 9.20 9.04 8.74

16384 9.05 9.08 9.04 8.63

Table 2.6: Average Classification Error of Pooling on Flow Cytometry Dataset

Training examples 5 10 15 20

1024 9.41 9.48 9.32 9.52

2048 9.92 9.57 9.45 9.54

4096 9.72 9.56 9.36 9.40

8192 9.43 9.53 9.38 9.50

16384 9.42 9.56 9.40 9.33
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Figure 2.3: Classification error rates for baseline and proposed method for different experi-
mental settings, i.e., number of examples per task and number of tasks.

examples and increases the number of tasks then the classification error rate drops.
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II.7 Multiclass Domain Generalization

In this chapter, we have reviewed kernel based approach to address domain generalization

[32] which addresses binary classification and regression. In this section, we extend the

generalization error analysis to multiclass setting ( |Y | = c ) and give supporting experimental

results. While several aspects of the original analysis in [32] carry over to the multiclass case,

others do not. In particular, we use an extension of the contraction lemma for Rademacher

complexity of Lipschitz loss classes to prove the generalization error bound [51].

We modify our objective function for multiclass classification compared to Eqn. 2.5.

We will find a decision function f ∈ H c
k̄

:= Hk̄ × · · · Hk̄ (c times) and has components

дl ∈ Hk̄ , l = 1, 2, ...c, i.e., f =

д1 д2 · · · дc


. Define

f̂λ = arg min
f ∈H c

k̄

1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (X̃ij ),Yij ) + λr ( f ), (2.20)

as the empirical estimate of the optimal decision function. Define the regularizer r ( f ) as

r ( f ) := ‖ f ‖2
H c

k̄
:=

c∑
m=1

‖дm‖
2
Hk̄

.

II.7.1 Generalization Error Analysis

We make the following assumptions to analyze the generalization error. For any kernel k,

ϕk (x ) := k (·,x ) ∈ Hk denotes the canonical feature map, Bk (R) refers to the closed ball of

radius R in Hk and Bc
k (R) :=

c∏
m=1

Bk (R) refers to the product space of c closed balls.

A I The loss function ` : Rc × Y → R is bounded by B`, and is L`-Lipschitz in the first

variable: For all y, |`(T1,y) − `(T2,y) | ≤ L` ‖T1 −T2‖2 for T1,T2 ∈ R
c .
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A II Kernels kx ,k′x ,kP are bounded by B2
k ,B

2
k ′,B

2
kP

respectively.

A III The canonical feature map ϕkP : Hk ′x → HkP is α-Hölder continuous, i.e., ∀a,b ∈

Bk ′x (Bk ′ ) :

‖ϕkP (a) − ϕkP (b)‖2 ≤ LkP ‖a − b‖
α
2 .

The above assumptions are similar to those presented in [52] translated to multiclass data.

Condition A III holds with α = 1 when kP is the Gaussian-like kernel on Hk ′x . Using the

stated assumptions, we shall now develop generalization error bounds for multiclass DG. To

generalize the analysis, an extension of Talagrand’s lemma for bounding the Rademacher

complexity is needed. Such an extension was provided by [53, 51] and [54].

Lemma 2. (Vector Valued Talagrand’s Contraction Lemma) [51] Let F be a class

of functions from X → Rc . Let {µi}Ni=1 and {σij}N ,ci=1,j=1 be two sets of independent Rademacher

random variables. If φ : Rc → R is L-Lipschitz under ‖·‖p where p ≥ 2, then

Eµ [ sup
f ∈F

N∑
i=1

µiφ ( f (xi ))] ≤
√

2LEσ [ sup
f ∈F

N∑
i=1

c∑
j=1

σijдj (xi )].

For simplicity’s sake, we assume that ni = n to state the generalization error bound.

Theorem 4. (Estimation error control) Assuming that conditions A I - A III hold then

for any R > 0, with probability at least 1 − δ :

sup
f ∈Bc

k̄
(R)
|ε̂ ( f ) − ε ( f ) | ≤L`LkPRBkc (Bk ′ )

α
(√2 log 2N

δ

n
+

√
1

n
+

4 log 2N
δ

3n

)α
+

8
√

2RL`BkBkPc
√
N

+ B`

√
log 8δ−1

2N
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Proof Sketch Let E ( f ) = |ε̂ ( f ) − ε ( f ) |.

sup
f ∈Bc

k̄
(R)
E ( f ) ≤ sup

f ∈Bc
k̄
(R)

����̂ε ( f ) −
1

Nn

N∑
i=1

n∑
j=1

`( f (X̃ij ),Yij )
���� + sup

f ∈Bc
k̄
(R)

����
1

Nn

N∑
i=1

n∑
j=1

`( f (X̃ij ),Yij ) − ε ( f )
����

= (I ) + (I I )

Term (I ) is bounded by application of Lipschitz continuity of `, union bounds for tasks and

classes over f and through Hölder continuity in assumption A III. Bounding the term (I I ) is

similar to bounding term (I I ) in Theorem 5 in [52] with modifications for multi-class loss. In

addition, the modified Talagrand’s lemma 2 is applied to bound the Rademacher complexity

[51].

II.7.2 Experimental Results

We test the proposed algorithm on 4 multiclass datasets and compare it with pooling, where

data from all the tasks are pooled together to learn one single classifier. Datasets description

are given below and a summary is in Table 2.7.

Dataset Training Tasks Test Tasks Examples Per Task Classes

Synthetic 80 20 100 10

Satellite 400 100 77-165 3

HAR 20 10 300 6

MNIST-MOD 80 20 100 10

Table 2.7: Summary of Multiclass Datasets for Domain Generalization

Synthetic Dataset: Features for synthetic data are drawn from the unit square. Based
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on one of the dimensions, the data are labeled from 0 to 10, e.g., if the feature value is

between 0 and 0.1, then it’s labeled as 1, if it’s in between 0.1 and 0.2, then it’s labeled as 2,

and so on. After that, the feature vectors are rotated clockwise by an angle randomly drawn

from 0 to 180 degrees to get data for one task. The process is repeated 100 times to get data

for 100 tasks out of which 80 are train tasks and 20 are test tasks. Fig. 2.4 shows 3 such

tasks for θ = 0, 90 and 180 where the supports don’t overlap at all, and Fig. 2.5 shows 13

tasks where the supports overlap.
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Figure 2.4: Synthetic Dataset: Three
tasks θ = {0, 90, 180}
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Figure 2.5: Synthetic Dataset: Thirteen
tasks θ = {0, 15, 30, ..., 180}

Satellite Dataset: The problem is described in the introduction, and we used the dataset

presented by [48] modified for c = 3 spacecraft.

HAR Dataset: This is a human activity recognition using smart-phone dataset from

UCI repository [55]. Each of 30 volunteers performed six activities (walking, walking upstairs,

walking downstairs, sitting, standing, laying) wearing the smart-phone.

MNIST-MOD Dataset: We randomly draw 1000 images from MNIST’s train dataset.

Then we rotate each of this image by randomly drawn angle from 0 to 180 degrees and repeat

this 100 times to get data for 100 tasks. Example for rotated MNIST dataset is shown in Fig.

2.6.
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Figure 2.6: MNIST Data with no rotation (first row) and 90 degree rotation (second row)

We use all Gaussian kernels and a novel random Fourier Feature (RFF) approximation,

which extends the usual RFF approximation on Euclidean space X [56] to the extended feature

space PX × X, to speed up the algorithm. We used Liblinear package for the implementation

[42]. All hyperparameters were selected using five fold cross-validation and experiments

were repeated 10 times. We show results in Table 2.8. The proposed method performs the

best in three datasets and equally well in the one remaining dataset. The more our method

outperforms pooling, the more knowledge can be shared between tasks.

Dataset Pooling Proposed Method

Synthetic 70.73 ( ±2.30) 25.40 ( ±1.72)

Satellite 11.95 ( ±0.46) 8.28 ( ±0.79)

HAR 1.69 ( ±0.56) 1.68 ( ±0.58)

MNIST-MOD 22.79 ( ±1.38) 21.39 ( ±1.24)

Table 2.8: Percentage Classification Error on Multiclass Datasets

II.8 Conclusion

In this work, we give scalable implementation of the kernel-based algorithm for domain

generalization of [5] and extend the generalization error analysis to the multiclass setting.

40



We implemented the approach, demonstrating its improved performance with respect to a

pooling strategy on multiple data sets.

II.9 Proofs

II.9.1 Proof of Theorem 2

Proof. Observe:

k̄ (x̃ , x̃′) = exp



−1

2σ2
P

‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2




exp



−1

2σ2
X

‖x − x′‖2


,

and denote:

k̃ (x̃ , x̃′) = exp



−1

2σ2
P

‖ZP (P̂X ) − ZP (P̂
′
X )‖

2



exp



−1

2σ2
X

‖x − x′‖2


,

We omit the arguments of k̄, k̃ for brevity. Let kq be the final approximation (kq = z̄ (x̃ )T z̄ (x̃′))

and then we have

|k̄ − kq | = |k̄ − k̃ + k̃ − kq | ≤ |k̄ − k̃ | + |k̃ − kq |. (2.21)

From Eqn. (2.21) it follows that,

P ( |k̄ − kq | ≥ ϵl + ϵq ) ≤ P ( |k̄ − k̃ | ≥ ϵl ) + P ( |k̃ − kq | ≥ ϵq ). (2.22)

By a direct application of Hoeffding’s inequality,

P ( |k̃ − kq | ≥ ϵq ) ≤ 2 exp(−
Qϵ2

q

2
). (2.23)
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Recall that 〈Ψ(P̂X ),Ψ(P̂ ′X )〉 =
1

n1n2

n1∑
i=1

n2∑
j=1

k′X (Xi ,X
′
j ). For a pair Xi ,X

′
j , we have again by

Hoeffding

P ( |z′X (Xi )
Tz′X (X

′
j ) − k

′
X (Xi ,X

′
j ) | ≥ ϵ ) ≤ 2 exp(−

Lϵ2

2
).

Let Ωij be the event |z′X (Xi )
Tz′X (X

′
j ) − k′X (Xi ,X

′
j ) | ≥ ϵ, for particular i, j. Using the union

bound we have

P (Ω11 ∪ Ω12 ∪ . . . ∪ Ωn1n2 ) ≤ 2n1n2 exp(−
Lϵ2

2
)

This implies

P ( |ZP (P̂X )
TZP (P̂

′
X ) − 〈Ψ(P̂X ),Ψ(P̂

′
X )〉| ≥ ϵ ) ≤ 2n1n2 exp(−

Lϵ2

2
). (2.24)

Therefore,

���k̄ − k̃
��� =

������
exp




−1

2σ2
X

‖x − x′‖2




exp




−1

2σ2
P

‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2




− exp



−1

2σ2
P

‖ZP (P̂X ) − ZP (P̂
′
X )‖

2





������

≤

������


exp




−1

2σ2
P

‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2



− exp




−1

2σ2
P

‖ZP (P̂X ) − ZP (P̂
′
X )‖

2





������

=

������
exp




−1

2σ2
P

‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2





1 − exp

{
−1

2σ2
P

(
‖ZP (P̂X ) − ZP (P̂

′
X )‖

2

− ‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2
)}

������

≤

������


1 − exp




−1

2σ2
P

(
‖ZP (P̂X ) − ZP (P̂

′
X )‖

2 − ‖Ψ(P̂X ) − Ψ(P̂ ′X )‖
2
)





������

=

������
1 − exp




−1

2σ2
P

(
ZP (P̂X )

TZP (P̂X ) − 〈Ψ(P̂X ),Ψ(P̂X )〉 + ZP (P̂
′
X )

TZP (P̂
′
X )

− 〈Ψ(P̂ ′X ),Ψ(P̂
′
X )〉 − 2

(
ZP (P̂X )

TZP (P̂
′
X ) − 〈Ψ(P̂X ),Ψ(P̂

′
X )〉

))


������
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≤

������
1 − exp




1

2σ2
P

(
|ZP (P̂X )

TZP (P̂X ) − 〈Ψ(P̂X ),Ψ(P̂X )〉| + |ZP (P̂
′
X )

TZP (P̂
′
X )

− 〈Ψ(P̂ ′X ),Ψ(P̂
′
X )〉| + 2|

(
ZP (P̂X )

TZP (P̂
′
X ) − 〈Ψ(P̂X ),Ψ(P̂

′
X )〉

)
|

)


������

The result now follows by applying the bound of Eqn. (2.24) to each of the three terms in the

exponent of the preceding expression, together with the stated formula for ϵ in terms of ϵ`.

�

II.9.2 Proof of Theorem 3

Proof. The proof is very similar to the proof of Theorem 2. We use Lemma 1 to replace

bound (2.23) with:

P ( sup
x ,x ′∈M

|k̃ − kq | ≥ ϵq ) ≤ 28
(σ ′Xr
ϵq

)2

exp(
−Qϵ2

q

2(d + 2)
). (2.25)

Similarly, Eqn. (2.24) is replaced by

P ( sup
x ,x ′∈M

|ZP (P̂X )
TZP (P̂

′
X ) − 〈Ψ(P̂X ),Ψ(P̂

′
X )〉| ≥ ϵ )

≤ 29n1n2

(σPσXr
ϵl

)2
exp(

−Lϵ2
l

2(d + 2)
). (2.26)

The remainder of the proof now proceeds as in the previous proof.

�

Theorem 5. (Hoeffding’s Inequality in Hilbert spaces [57] ) Let (Ω,A, P ) be a prob-
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ability space, H be a separable Hilbert space, and B > 0. Furthermore, let η1, ...,ηn : Ω → H

be independent H -valued random variables satisfying ‖ηi ‖∞ ≤ B ∀i = 1, ...,n. Then, for all

δ ∈ (0, 1), we have

P
(
‖

1

n

n∑
i=1

(ηi − EPηi )‖H ≥ B

√
2 log δ−1

n
+ B

√
1

n
+

4B log δ−1

3n

)
≤ δ .

II.9.3 Proof of Theorem 4

Proof. The proof follows the general structure of the theorem presented in [52]. Without

loss of generality, it is assumed that ni = n. The function f can be split into c components

f =

д1 д2 · · · дc


. We are interested in error bounds over f ∈ Bc

k̄
(R) :=

c∏
m=1

Bk̄ (R) and

дm ∈ Bk̄ (R),m ∈ {1, 2, ..., c}.

sup
f ∈Bc

k̄
(R)
|ε̂ ( f ) − ε ( f ) | ≤ sup

f ∈Bc
k̄
(R)

����̂ε ( f ) −
1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij )
����

+ sup
f ∈Bc

k̄
(R)

����
1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij ) − ε ( f )
����.

=: (I ) + (I I )

Let’s bound the first term:

����̂ε ( f ) −
1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij )
���� ≤ L`

1

N

N∑
i=1

1

ni

ni∑
j=1

����
����f (P̂

i
X ,Xij ) − f (P iX ,Xij )

����
����2

≤ L`
1

N

N∑
i=1

1

ni

ni∑
j=1

����
����f (P̂

i
X ,Xij ) − f (P iX ,Xij )

����
����1

= L`
1

N

N∑
i=1

1

ni

ni∑
j=1

c∑
l=1

����дl (P̂
i
X ,Xij ) − дl (P

i
X ,Xij )

����.
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(2.27)

Now, let us look at the term |дl (P̂ iX ,Xij ) − дl (P
i
X ,Xij ) | for some l ∈ {1, 2, ..., c}.

Using the reproducing property of the kernel

|дl (P̂X ,X ) − дl (PX ,X ) | = |〈k̄
(
(P̂X ,X ), ·

)
− k̄

(
(PX ,X ), ·

)
,дl〉|

≤ ‖дl ‖ ‖k̄
(
(P̂X ,X ), ·

)
− k̄

(
(PX ,X ), ·

)
‖

= ‖дl ‖ *
,
k̄
(
(P̂X ,X ), (P̂X ,X )

)
+ k̄

(
(PX ,X ), (PX ,X )

)
− 2k̄

(
(P̂X ,X ), (PX ,X )

)+
-

1
2

= ‖дl ‖ kx (X ,X )
1
2 *

,
kP

(
Ψ(P̂X ),Ψ(P̂X )

)
+ kP

(
Ψ(PX ),Ψ(PX )

)
− 2kP

(
Ψ(P̂X ),Ψ(PX )

)+
-

1
2

= ‖дl ‖Bk ‖ϕkP (Ψ(PX )) − ϕkP (Ψ(P̂X ))‖

≤ ‖дl ‖BkLkP ‖Ψ(PX ) − Ψ(P̂X )‖
α (2.28)

Where the last inequality is due to the Hölder continuity of the kernel kP . We can bound

‖Ψ(PX ) − Ψ(P̂X )‖ using Hoeffding’s inequality in the Hilbert space Hk ′x .

Using Theorem 5: with probability at least 1 − δ we have,

‖Ψ(PX ) − Ψ(P̂X )‖ ≤ Bk ′

√
2 log δ−1

n
+ Bk ′

√
1

n
+

4Bk ′ log δ−1

3n
. (2.29)
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Combining equation 2.28 and 2.29, with at least probability 1 − δ

����дl (P̂
i
X ,Xij ) − дl (P

i
X ,Xij )

���� ≤ ‖дl ‖BkLkP
(
Bk ′

√
2 log δ−1

n
+ Bk ′

√
1

n
+

4Bk ′ log δ−1

3n

)α
.

Using the union bound, with at least probability 1 − δ

1

N

N∑
i=1

����дl (P̂
i
X ,Xij ) − дl (P

i
X ,Xij )

���� ≤ ‖дl ‖BkLkP
(
Bk ′

√
2 log N

δ

n
+ Bk ′

√
1

n
+

4Bk ′ log N
δ

3n

)α
. (2.30)

Combining equation 2.27 and 2.30, with at least probability 1 − δ

sup
f ∈Bc

k̄
(R)

����̂ε ( f ) −
1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij )
���� ≤ L`LkPRBkc (Bk ′ )

α
(√2 log N

δ

n
+

√
1

n
+

4 log N
δ

3n

)α
.

(2.31)

Bounding the second term is similar to bounding term (II) in Theorem 5 in [52] with

modifications for multi-class loss. We defined term (I I ) as

(I I ) := sup
f ∈Bc

k̄
(R)

����
1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij ) − ε ( f )
����

We define (I I )′ as the one sided version of term (I I ) i.e.,

(I I )′ := sup
f ∈Bc

k̄
(R)

1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij ) − ε ( f )

We have
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(I I )′ ≤ sup
f ∈Bc

k̄
(R)

1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij ) − E[`( f (X̃ ,Y ))���P
i
XY ]

+ sup
f ∈Bc

k̄
(R)

1

N

N∑
i=1

(
E[`( f (X̃ ,Y ))���P

i
XY ] − E[`( f (X̃ ,Y ))]

)
=: (I Ia) + (I Ib)

(2.32)

Control of Term (IIa) Conditional to P1
XY ,...,P

N
XY , the random variables (Xij ,Yij )ij are

independent (not identically distributed). We apply Azuma-McDiarmid’s inequality to

ζ ((Xij ,Yij )ij ) = sup
f ∈Bc

k̄
(R)

1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij ) − E[`( f (X̃ ,Y ))���P
i
XY ]

We have with probability at least 1 − δ that

���ζ − E[ζ |(P iXY )1≤i≤N ]��� ≤
√
Cζ log(1/δ )

Where Cζ =
B2
`

Nn
. Next we bound the expectation term using standard Rademacher

complexity analysis and then applying the extension to Talagrand’s convex concentration

inequality (see [58] theorem 7 and lemma 22). Let (ϵij )1≤i≤N ,1≤j≤ni be i.i.d Rademacher random

variables.

E[ζ |(P iXY )1≤i≤N ]

= E(Xi j ,Yi j )

[
sup

f ∈Bc
k̄
(R)

1

N

N∑
i=1

1

ni

ni∑
j=1

`( f (P iX ,Xij ),Yij ) − E[`( f (X̃ ,Y ))���P
i
XY ]

�����
(P iXY )1≤i≤N

]

≤
2

N
E(Xi j ,Yi j )E(ϵi j )

[
sup

f ∈Bc
k̄
(R)

N∑
i=1

1

ni

ni∑
j=1

ϵij`( f (P
i
X ,Xij ),Yij )

�����
(P iXY )1≤i≤N

]
.

We now apply the modified talagrand inequality as stated in Lemma 2. Let (σijm )1≤i≤N ,1≤j≤ni ,1≤m≤c
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be i.i.d Rademacher random variables, then by assumption A I and Lemma 2,

E[ζ |(P iXY )1≤i≤N ]

≤
2
√

2L`
N

E(Xi j ,Yi j )E(σi jm )

[
sup

f ∈Bc
k̄
(R)

N∑
i=1

1

ni

ni∑
j=1

c∑
m=1

σijmдm (P
i
X ,Xij ),Yij )

�����
(P iXY )1≤i≤N

]
.

(2.33)

Next, from the properties of supremum,

E[ζ |(P iXY )1≤i≤N ]

≤
2
√

2L`
N

E(Xi j ,Yi j )E(σi jm )

[ c∑
m=1

sup
дm∈Bk̄ (R)

N∑
i=1

1

ni

ni∑
j=1

σijmдm (P
i
X ,Xij ),Yij )

�����
(P iXY )1≤i≤N

]

=
2
√

2L`
N

c∑
m=1

E(Xi j ,Yi j )E(σi jm )

[
sup

дm∈Bk̄ (R)

N∑
i=1

1

ni

ni∑
j=1

σijmдm (P
i
X ,Xij ),Yij )

�����
(P iXY )1≤i≤N

]
.

In the above equation, the terms in the summation with respect to m are over the same space

Bk̄ (R). Now, for any m ∈ {1, 2, ...c}, we have

E[ζ |(P iXY )1≤i≤N ] ≤
2
√

2L`c

N
E(Xi j ,Yi j )E(σi jm )

[
sup

дm∈Bk̄ (R)

N∑
i=1

1

ni

ni∑
j=1

σijmдm (P
i
X ,Xij ),Yij )

�����
(P iXY )1≤i≤N

]
.

Applying Lemma 22 from [58] and its related arguments,

E[ζ |(P iXY )1≤i≤N ]

≤
4
√

2cRL`BkBkP
N

√√√
N∑
i=1

c∑
m=1

1

ni
.

When ni = n we have

E[ζ |(P iXY )1≤i≤N ] ≤
4
√

2RL`BkBkPc
√
Nn

.
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Control of term (IIb) Let

ξ ((P iXY )1≤i≤N ) = sup
f ∈Bc

k̄
(R)

1

N

N∑
i=1

(
E[`( f (X̃ ,Y ))���P

i
XY ] − E[`( f (X̃ ,Y ))]

)
.

Since (P iXY )1≤i≤N are i.i.d we can apply Azuma-McDiarmid inequality to ξ to obtain

|ξ − E[ξ ]| ≤ B`

√
log(1/δ )

2N
.

We then bound E[ξ ] using the standard Rademacher complexity analysis with the modified

Talagrand’s inequality similar to the bounding of (IIa). We have

E[ξ ] = E(P iXY )1≤i≤N

[
sup

f ∈Bc
k̄
(R)

1

N

N∑
i=1

(
E(X ,Y )∼P iXY

[`( f (X̃ ,Y ))]

− EPXY∼µ,(X ,Y )∼PXY [`( f (X̃ ,Y ))]
)]

≤
2

N
E(P iXY )1≤i≤N

E(ϵi )1≤i≤N

[
sup

f ∈Bc
k̄
(R)

N∑
i=1

ϵiE(Xi ,Yi )∼P
i
XY

[`( f (X̃i ,Yi ))]

]

≤
2

N
E(P iXY )1≤i≤N

E(Xi ,Yi )∼P
i
XY
E(ϵi )1≤i≤N

[
sup

f ∈Bc
k̄
(R)

N∑
i=1

ϵi [`( f (X̃i ,Yi ))]

]

≤
4
√

2RL`BkBkPc
√
N

.

Where the third step is due to Jensen’s inequality.

Combining terms (IIa) and (IIb), we can write

(I I )′ ≤
4
√

2RL`BkBkPc
√
Nn

+
4
√

2RL`BkBkPc
√
N

+ B`

√
log 2δ−1

2N

≤
8
√

2RL`BkBkPc
√
N

+ B`

√
log 2δ−1

2N

(2.34)

since n ≥ 1. The bound for term (I I ) can be obtained by replacing δ with δ/2 as in standard

Rademacher complexity analysis (see Theorem 2 of [59]). We obtain, with probability at

49



least 1 − δ

(I I ) ≤
8
√

2RL`BkBkPc
√
N

+ B`

√
log 4δ−1

2N
(2.35)

So for the final bound, combining 2.31, 2.35, with probability at least 1 − δ

sup
f ∈Bc

k̄
(R)
|ε̂ ( f ) − ε ( f ) | ≤L`LkPRBkc (Bk ′ )

α
(√2 log 2N

δ

n
+

√
1

n
+

4 log 2N
δ

3n

)α
+

8
√

2RL`BkBkPc
√
N

+ B`

√
log 8δ−1

2N

(2.36)

�
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CHAPTER III

Multi-Task Learning for Contextual Bandits

Contextual bandits are a form of multi-armed bandit in which the agent has access to

predictive side information (known as the context) for each arm at each time step, and have

been used to model personalized news recommendation, ad placement, and other applications.

In this work, we propose a multi-task learning framework for contextual bandit problems.

Like multi-task learning in the batch setting, the goal is to leverage similarities in contexts

for different arms so as to improve the agent’s ability to predict rewards from contexts.

We propose an upper confidence bound-based multi-task learning algorithm for contextual

bandits, establish a corresponding regret bound, and interpret this bound to quantify the

advantages of learning in the presence of high task (arm) similarity. We also describe an

effective scheme for estimating task similarity from data, and demonstrate our algorithm’s

performance on several data sets.

III.1 Introduction

A multi-armed bandit (MAB) problem is a sequential decision making problem where, at

each time step, an agent chooses one of several “arms," and observes some reward for the
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choice it made. The reward for each arm is random according to a fixed distribution, and the

agent’s goal is to maximize its cumulative reward [12] through a combination of exploring

different arms and exploiting those arms that have yielded high rewards in the past [13, 14].

The contextual bandit problem is an extension of the MAB problem where there is some

side information, called the context, associated to each arm [15]. Each context determines

the distribution of rewards for the associated arm. The goal in contextual bandits is still to

maximize the cumulative reward, but now leveraging the contexts to predict the expected

reward of each arm. Contextual bandits have been employed to model various applications

like news article recommendation [19], computational advertisement [20], website optimization

[21] and clinical trials [22]. For example, in the case of news article recommendation, the

agent must select a news article to recommend to a particular user. The arms are articles

and contextual features are features derived from the article and the user. The reward is

based on whether a user reads the recommended article.

One common approach to contextual bandits is to fix the class of policy functions (i.e.,

functions from contexts to arms) and try to learn the best function with time [23, 24, 25].

Most algorithms estimate rewards either separately for each arm, or have one single estimator

that is applied to all arms. In contrast, our approach is to adopt the perspective of multi-task

learning (MTL). The intuition is that some arms may be similar to each other, in which case

it should be possible to pool the historical data for these arms to estimate the mapping from

context to rewards more rapidly. For example, in the case of news article recommendation,

there may be thousands of articles, and some of those are bound to be similar to each other.

The contextual bandit problem is formally stated in Problem 3.1. The total T trial reward

is defined as
T∑
t=1

rat ,t and the optimal T trial reward as
T∑
t=1

ra∗t ,t , where rat ,t is reward of the

selected arm at at time t and a∗t is the arm with maximum reward at trial t. The goal is to
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Algorithm 3.1: Contextual Bandits

1 for t = 1, ...,T do

2 Observe context xa,t ∈ Rd for all arms a ∈ [N ], where [N ] = {1, ...N}
3 Choose an arm at ∈ [N ]

4 Receive a reward rat ,t ∈ R

5 Improve arm selection strategy based on new observation (xat ,t ,at , rat ,t )

6 end

find an algorithm that minimizes the T trial regret

R (T ) =
T∑
t=1

ra∗t ,t −
T∑
t=1

rat ,t .

We focus on upper confidence bound (UCB) type algorithms for the remainder of the

chapter. A UCB strategy is a simple way to represent the exploration and exploitation

tradeoff. For each arm, there is an upper bound on reward, comprised of two terms. The

first term is a point estimate of the reward, and the second term reflects the confidence in

the reward estimate. The strategy is to select the arm with maximum UCB. The second

term dominates when the agent is not confident about its reward estimates, which promotes

exploration. On the other hand, when all the confidence terms are small, the algorithm

exploits the best arm(s) [30].

In the popular UCB type contextual bandits algorithm called Lin-UCB, the expected

reward of an arm is modeled as a linear function of the context, E[ra,t |xa,t ] = xTa,tθ
∗
a , where ra,t

is the reward of arm a at time t and xa,t is the context of arm a at time t . To select the best

arm, one estimate θa for each arm independently using the data for that particular arm [23].

In the language of multi-task learning, each arm is a task, and Lin-UCB learns each task

independently.
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In the theoretical analysis of the Lin-UCB [19] and its kernelized version Kernel-UCB

[24] θa is replaced by θ , and the goal is to learn one single estimator using data from all the

arms. In other words, the data from the different arms are pooled together and viewed as

coming from a single task. These two approaches, independent and pooled learning, are two

extremes, and reality often lies somewhere in between. In the MTL approach, we seek to

pool some tasks together, while learning others independently.

We present an algorithm motivated by this idea and call it kernelized multi-task learning

UCB (KMTL-UCB). Our main contributions are proposing a UCB type multi-task learning

algorithm for contextual bandits, established a regret bound and interpreting the bound

to reveal the impact of increased task similarity, introducing a technique for estimating

task similarities on the fly, and demonstrating the effectiveness of our algorithm on several

datasets.

This chapter is organized as follows. Section 2 describes related work and in Section 3 we

propose a UCB algorithm using multi-task learning. Regret analysis is presented in Section

4, and our experimental findings are reported in Section 5. We conclude in Section 6.

III.2 Related Work

A UCB strategy is a common approach to quantify the exploration/exploitation tradeoff. At

each time step t , and for each arm a, a UCB strategy estimates a reward r̂a,t and a one-sided

confidence interval above r̂a,t with width ŵa,t . The term ucba,t = r̂a,t + ŵa,t is called the UCB

index or just UCB. Then at each time step t , the algorithm chooses the arm a with the

highest UCB.

In contextual bandits, the idea is to view learning the mapping x 7→ r as a regression

problem. Lin-UCB uses a linear regression model while Kernel-UCB uses a nonlinear regression

54



model drawn from the reproducing kernel Hilbert space (RKHS) of a symmetric and positive

definite (SPD) kernel. Either of these two regression models could be applied in either the

independent setting or the pooled setting. In the independent setting, the regression function

for each arm is estimated separately. This was the approach adopted by Li et al. [23] with a

linear model. Regret analysis for both Lin-UCB and Kernel-UCB adopted the pooled setting

[19, 24]. Kernel-UCB in the independent setting has not previously been considered to our

knowledge, although the algorithm would just be a kernelized version of Li et al. [23]. We

will propose a methodology that extends the above four combinations of setting (independent

and pooled) and regression model (linear and nonlinear). Gaussian Process UCB (GP-UCB)

uses a Gaussian prior on the regression function and is a Bayesian equivalent of Kernel-UCB

[25].

There are some contextual bandit setups that incorporate multi-task learning. In Lin-UCB

with Hybrid Linear Models the estimated reward consists of two linear terms, one that is

arm-specific and another that is common to all arms [23]. Gang of bandits [60] uses a

graph structure (e.g., a social network) to transfer the learning from one user to other for

personalized recommendation. Collaborative filtering bandits [61] is a similar technique which

clusters the users based on context. Contextual Gaussian Process UCB (CGP-UCB) builds

on GP-UCB and has many elements in common with our framework [62]. We defer a more

detailed comparison to CGP-UCB until later.

III.3 KMTL-UCB

We propose an alternate regression model that includes the independent and pooled settings

as special cases. Our approach is inspired by work on transfer and multi-task learning in the

batch setting [32, 63]. Intuitively, if two arms (tasks) are similar, we can pool the data for

those arms to train better predictors for both.
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Formally, we consider regression functions of the form

f : X̃ 7→ Y

where X̃ = Z ×X, and Z is what we call the task similarity space, X is the context space and

Y ⊆ R is the reward space. Every context xa ∈ X is associated with an arm descriptor za,

and we define x̃a = (za,xa ) to be the augmented context. Intuitively, za is a variable that can

be used to determine the similarity between different arms. Examples of Z and za will be

given below.

Let k̃ be a SPD kernel on X̃ . In this work, we focus on kernels of the form

k̃
(
(z,x ), (z′,x′)

)
= kZ (z, z

′)kX (x ,x
′), (3.1)

where kX is a SPD kernel on X, such as linear or Gaussian kernel if X = Rd , and kZ is a

kernel on Z (examples given below). Let Hk̃ be the RKHS of functions f : X̃ 7→ R associated

to k̃. Note that a product kernel is just one option for k̃, and other forms may be worth

exploring.

III.3.1 Upper Confidence Bound

Instead of learning regression estimates for each arm separately, we effectively learn regression

estimates for all arms at once by using all the available training data. Let N be the total

number of distinct arms that the algorithm has to choose from. Define [N ] = {1, ...,N} and

let the observed contexts at time t be xa,t ,∀a ∈ [N ]. Let na,t be the number of times the

algorithm has selected arm a up to and including time t so that
N∑
a=1

na,t = t . Define sets

ta = {τ < t : aτ = a}, where aτ is the arm selected at time τ . Notice that |ta | = na,t−1 for all a.

56



We solve the following problem at time t :

f̂t = arg min
f ∈Hk̃

1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

( f (x̃a,τ ) − ra,τ )
2 + λ‖ f ‖2

Hk̃
, (3.2)

where x̃a,τ is the augmented context of arm a at time τ , and ra,τ is the reward of an arm

a selected at time τ . This problem (3.2) is a variant of kernel ridge regression. Applying

the representer theorem [57] the optimal f can be expressed as f =
N∑

a′=1

∑
τ ′∈ta′

αa′,τ ′k̃ (·, x̃a′,τ ′ ),

which yields the solution (detailed derivation is in the Section III.7)

f̂t (x̃ ) = k̃t−1(x̃ )
T (ηt−1K̃t−1 + λI )

−1ηt−1yt−1, (3.3)

where K̃t−1 is the (t − 1) × (t − 1) kernel matrix on the augmented data [x̃aτ ,τ ]
t−1
τ=1, k̃t−1(x̃ ) =

[k̃ (x̃ , x̃aτ ,τ )]
t−1
τ=1 is a vector of kernel evaluations between x̃ and the past data, yt−1 = [raτ ,τ ]

t−1
τ=1

are all observed rewards, and ηt−1 is the (t − 1)× (t − 1) diagonal matrix ηt−1 = diag[
1

naτ ,t−1
]t−1
τ=1.

When x̃ = x̃a,t , we write k̃a,t = k̃t−1(x̃a,t ). With only minor modifications to the argument

in Valko et al [24], we have the following:

Lemma 3. Suppose the rewards [raτ ,τ ]
T
τ=1 are independent random variables with means

E[raτ ,τ |xaτ ,τ ] = f ∗(x̃aτ ,τ ), where f ∗ ∈ Hk̃ and ‖ f ∗‖Hk̃
≤ c. Let α =

√
log(2TN /δ )

2
and δ > 0.

With probability at least 1 −
δ

T
, we have that ∀a ∈ [N ]

| f̂t (x̃a,t ) − f ∗(x̃a,t ) | ≤ wa,t := (α + c
√
λ)sa,t (3.4)

where sa,t = λ
−1/2

√
k̃ (x̃a,t , x̃a,t ) − k̃

T
a,t (ηt−1K̃t−1 + λI )−1ηt−1k̃a,t .

The result in Lemma 3 motivates the UCB

ucba,t = f̂t (xa,t ) +wa,t
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and inspires Algorithm 3.2.

Algorithm 3.2: KMTL-UCB
Input: Input: β ∈ R+,

1 for t = 1, ...,T do

2 Update the (product) kernel matrix K̃t−1 and ηt−1

3 Observe context features at time t : xa,t for each a ∈ [N ].

4 Determine arm descriptor za for each a ∈ [N ] to get augmented context x̃a,t .

5 for all a at time t do

6 pa,t ← f̂t (xa,t ) + βsa,t

7 end

8

9 Choose arm at = arg maxpa,t , observe a real valued payoff rat ,t and update yt .

Output: Output: at

10

11 end

Before an arm has been selected at least once, f̂t (xa,t ) and the second term in sa,t , i.e.,

k̃Ta,t (ηt−1K̃t−1 + λI )
−1ηt−1k̃a,t , are taken to be 0. In that case, the algorithm only uses the first

term of sa,t , i.e.,
√
k̃ (x̃a,t , x̃a,t ), to form the UCB.

III.3.2 Choice of Task Similarity Space and Kernel

To illustrate the flexibility of our framework, we present the following three options for Z

and kZ:

1. Independent: Z = {1, ...,N}, kZ (a,a′) = 1a=a′. The augmented context for a context

xa from arm a is just (a,xa ).
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2. Pooled: Z = {1}, kZ ≡ 1. The augmented context for a context xa for arm a is just

(1,xa ).

3. Multi-Task: Z = {1, ...,N} and kZ is a PSD matrix reflecting arm/task similarities. If

this matrix is unknown, it can be estimated as discussed below.

Algorithm 3.2 with the first two choices specializes to the independent and pooled settings

mentioned previously. In either setting, choosing a linear kernel for kX leads to Lin-UCB,

while a more general kernel essentially gives rise to Kernel-UCB. We will argue that the

multi-task setting facilitates learning when there is high task similarity.

We also introduce a fourth option for Z and kZ that allows task similarity to be estimated

when it is unknown. In particular, we are inspired by the kernel transfer learning framework

of Blanchard et al. [32]. Thus, we define the arm similarity space to be Z = PXY , the set of

all probability distributions on X ×Y. In this case X is a space of contexts and Y is a space

of rewards. We further assume that contexts for arm a are drawn from probability measure

Pa. Given a context xa for arm a, we define its augmented context to be (Pa,xa ).

To define a kernel on Z = PXY , we use the same construction described in [32], originally

introduced by Steinwart and Christmann [64]. In particular, in our experiments we use a

Gaussian-like kernel

kZ (Pa, Pa′ ) = exp(−‖Ψ(Pa ) − Ψ(Pa′ )‖
2/2σ2

Z
), (3.5)

where Ψ(P ) =

∫
k′
X
(·,x )ydPxy is the kernel mean embedding of a distribution P . This

embedding is defined by yet another SPD kernel k′
X
on X, which could be different from the

kX used to define k̃. We may estimate Ψ(Pa ) via Ψ(P̂a ) =
1

na,t−1

∑
τ∈ta

ra,τk
′
X
(·,xaτ ,τ ), which leads

to an estimate of kZ.
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III.4 Theoretical Analysis

To simplify the analysis we consider a modified version of the original problem 3.2:

f̂t = arg min
f ∈Hk̃

1

N

N∑
a=1

∑
τ∈ta

( f (x̃a,τ ) − ra,τ )
2 + λ‖ f ‖2

Hk̃
. (3.6)

In particular, this modified problem omits the terms
1

na,t−1
as they obscure the analysis. In

practice, these terms should be incorporated.

In this case sa,t = λ−1/2
√
k̃ (x̃a,t , x̃a,t ) − k̃

T
a,t (K̃t−1 + λI )−1k̃a,t . Under this assumption Kernel-

UCB is exactly KMTL-UCB with kZ ≡ 1. On the other hand, KMTL-UCB can be viewed as

a special case of Kernel-UCB on the augmented context space X̃. Thus, the regret analysis of

Kernel-UCB applies to KMTL-UCB, but it does not reveal the potential gains of multi-task

learning. We present an interpretable regret bound that reveals the benefits of MTL. We

also establish a lower bound on the UCB width that decreases as task similarity increases

(presented in the Section III.7).

III.4.1 Analysis of SupKMTL-UCB

It is not trivial to analyze algorithm 3.2 because the reward at time t is dependent on the

past rewards. We follow the same strategy originally proposed in [16] and used in [19, 24]

which uses SupKMTL-UCB as a master algorithm, and BaseKMTL-UCB (which is called by

SupKMTL-UCB) to get estimates of reward and width. SupKMTL-UCB builds mutually

exclusive subsets of [T ] such that rewards in any subset are independent. This guarantees

that the independence assumption of Lemma 3 is satisfied. We describe these algorithms in

the Section III.7.
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Theorem 6. Assume that ra,t ∈ [0, 1],∀a ∈ [N ], T ≥ 1, ‖ f ∗‖Hk̃
≤ c, k̃ (x̃ , x̃ ) ≤ ck̃ ,∀x̃ ∈ X̃ and

the task similarity matrix KZ is known. With probability at least 1 − δ , SupKMTL-UCB

satisfies

R (T ) ≤ 2
√
T + 10*

,

√√√
log

(
2TN (log(T ) + 1)/δ

)
2

+ c
√
λ+

-

√
2m logд([T ])

√
T dlog(T )e

= O
(√

T log(д([T ]))
)

where д([T ]) =
det(K̃T+1 + λI )

λT+1
and m = max(1,

ck̃
λ
).

Note that this theorem assumes that task similarity is known. In the experiments for real

datasets using the approach discussed in subsection III.3.2 we estimate the task similarity

from the available data.

III.4.2 Interpretation of Regret Bound

The following theorems help us interpret the regret bound by looking at

д([T ]) =
det(K̃T+1 + λI )

λT+1
=

T+1∏
t=1

(λt + λ)

λ
,

where, λ1 ≥ λ2 ≥ · · · ≥ λT+1 are the eigenvalues of the kernel matrix K̃T+1.

As mentioned above, the regret bound of Kernel-UCB applies to our method, and we

are able to recover this bound as a corollary of Theorem 6. In the case of Kernel-UCB

K̃t = KXt ,∀t ∈ [T ] as all arm estimators are assumed to be the same. We define the effective

rank of K̃T+1 in the same way as [24] defines the effective dimension of the kernel feature

space.
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Definition 1. The effective rank of K̃T+1 is defined to be r := min{j : jλ logT ≥
T+1∑
i=j+1

λi}.

In the following result, the notation Õ hides logarithmic terms.

Corollary 1. log(д([T ])) ≤ r log
(
2T

2(T + 1)ck̃ + rλ − rλ logT

rλ

)
, and therefore R (T ) = Õ (

√
rT )

However, beyond recovering a known bound, Theorem 6 can also be interpreted to reveal

the potential gains of multi-task learning. To interpret the regret bound in Theorem 6, we

make a further assumption that after time t , na,t =
t

N
for all a ∈ [N ]. For simplicity define

nt = na,t . Let (�) denote the Hadamard product, (⊗) denote the Kronecker product and

1n ∈ Rn be the vector of ones. Let KXt = [kX (xaτ ,τ ,xaτ ′ ,τ ′ )]
t
τ ,τ ′=1 be the t × t kernel matrix

on contexts, KZt = [kZ (zaτ , zaτ ′ )]
t
τ ,τ ′=1 be the associated t × t kernel matrix based on arm

similarity, and KZ = [kZ (za, za )]
N
a=1 be the N × N arm/task similarity matrix between N arms,

where xaτ ,τ is the observed context and zaτ is the associated arm descriptor. Using eqn.

(3.1), we can write K̃t = KZt � KXt . We rearrange the sequence of xaτ ,τ to get [xa,τ ]
N
a=1,τ=(t+1)a

such that elements (a − 1)nt to ant belong to arm a. Define K̃r
t ,K

r
Xt

and Kr
Zt

to be the

rearranged kernel matrices based on the re-ordered set [xa,τ ]
N
a=1,τ=(t+1)a

. Notice that we can

write K̃r
t = (KZ ⊗ 1nt1

T
nt ) � K

r
Xt

and the eigenvalues λ(K̃t ) and λ(K̃r
t ) are equal. To summarize,

we have

K̃t = KZt � KXt

λ(K̃t ) = λ
(
(KZ ⊗ 1nt1

T
nt ) � Kr

Xt

)
. (3.7)

Theorem 7. Let the rank of matrix KXT+1 be rx and the rank of matrix KZ be rz. Then

log(д([T ])) ≤ rzrx log
( (T + 1)ck̃ + λ

λ

)
This means that when the rank of the task similarity matrix is low, which reflects a high

degree of inter-task similarity, the regret bound is tighter. For comparison, note that when

all tasks are independent, rz = N and when all tasks are the same (pooled), then rz = 1. In
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the case of Lin-UCB [19] where all arm estimators are assumed to be the same and kX is a

linear kernel, the regret bound in Theorem 6 evaluates to Õ (
√
dT ), where d is the dimension

of the context space. In the original Lin-UCB algorithm [23] where all arm estimators are

different, the regret bound would be Õ (
√
NdT ).

We can further comment on д([T ]) when all distinct tasks (arms) are similar to each

other with task similarity equal to µ. Thus, define KZ (µ ) := (1 − µ )IN + µ1N1
T
N and K̃r

t (µ ) =

(KZ (µ ) ⊗ 1nt1
T
nt ) � Kr

Xt
.

Theorem 8. Let дµ ([T ]) =
det(K̃r

T+1(µ ) + λI )

λT+1
. If µ1 ≤ µ2 then дµ1 ([T ]) ≥ дµ2 ([T ]).

This shows that when there is more task similarity, the regret bound is tighter.

III.4.3 Comparison with CGP-UCB

CGP-UCB transfers the learning from one task to another by leveraging additional known

task-specific context variables [62], similar in spirit to KTML-UCB. Indeed, with slight

modifications, KMTL-UCB can be viewed as a frequentist analogue of CGP-UCB, and

similarly CGP-UCB could be modified to address our setting. Furthermore, the term д([T ])

appearing in our regret bound is equivalent to an information gain term used to analyze

CGP-UCB. In the agnostic case of CGP-UCB where there is no assumption of a Gaussian

prior on decision functions, their regret bound is O (log(д([T ]))
√
T ), while their regret bound

matches ours when they adopt a GP prior on f ∗. Thus, our primary contributions with respect

to CGP-UCB are to quantify the gains of multi-task learning in the form of Theorems 2 and 3,

and a technique for estimating task similarity which is critical for real-world applications. In

contrast to our examples given below, the experiments in [62] assume a known task similarity

matrix.
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III.5 Experiments

We test our algorithm on synthetic data and some multi-class classification datasets. In

the case of multi-class datasets, the number of arms N is the number of classes and the

reward is 1 if we predict the correct class, otherwise it is 0. We separate the data into two

parts - validation set and test set. We use all Gaussian kernels and we estimate the task

similarity between arms only when both arms were selected correctly at least 5 times. We

preselect 200 hyperparameter configurations and run the algorithm on validation set (with

different sequences of streaming data) and select the best hyperparameter configuration

based on minimum mean regret. Then we run the algorithm on the test set 10 times (with

different sequences of streaming data) and report the mean regret. For the synthetic data,

we compare Kernel-UCB in the independent setting (Kernel-UCB-Ind) and pooled setting

(Kernel-UCB-Pool), KMTL-UCB with known task similarity, and KMTL-UCB-Est which

estimates task similarity on the fly. For the real datasets in the multi-class classification

setting, we compare Kernel-UCB-Ind and KMTL-UCB-Est. In this case, the pooled setting

is not valid because xa,t is the same for all arms (only za differs) and KMTL-UCB is not valid

because the task similarity matrix is unknown. The code is available online to reproduce all

results 2.

III.5.1 Synthetic News Article Data

Suppose an agent has access to a pool of articles and their context features. The agent then

sees a user along with his/her features for which it needs to recommend an article. Based

on user features and article features the algorithm gets a combined context xa,t . The user

context xu,t ∈ R2,∀t is randomly drawn from an ellipse centered at (0, 0) with major axis
2The code to reproduce our results is available at https://github.com/aniketde/

MultiTaskLearningContextualBandits
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length 1 and minor axis length 0.5. Let xu,t [:, 1] be the minor axis and xu,t [:, 2] be the major

axis. Article context xart ,t is any angle θ ∈ [0,
π

2
]. To get the overall summary xa,t of user and

article the user context xu,t is rotated with xart ,t . Rewards for each article are defined based

Figure 3.1: Synthetic Data

on the minor axis ra,t =
(
1.0 − (xu,t [:, 1] −

a

N
+ 0.5)2

)
. Figure 3.1 shows one such example for

4 different arms. The color code describes the reward, the two axes show the information

about user context, and theta is the article context. We take N = 5. For KMTL-UCB, we

use a Gaussian kernel on xart ,t to get the task similarity.

The results of this experiment are shown in last block of Figure 3.2. As one can see,

Kernel-UCB-Pool performs the worst. That means for this setting combining all the data

and learning a single estimator is not efficient. KMTL-UCB beats the other methods in all

10 runs.

III.5.2 Multi-class Datasets

In the case of multi-class classification, each class is an arm and the features of an example for

which the algorithm needs to recommend a class are the contexts. We consider the following

datasets: Digits (N = 10,d = 64), MNIST (N = 10, d = 780 ), Pendigits (N = 10,d = 16),

Segment (N = 7,d = 19) and USPS (N = 10,d = 256). Empirical mean regrets are shown in
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Figure 3.2. KMTL-UCB-Est performs the best in three of the datasets and performs equally

well in the one of the datasets.

Figure 3.2: Results on Multiclass Datasets - Empirical Mean Regret

III.6 Conclusions and future work

We present a multi-task learning framework in the contextual bandit setting and describe a

way to estimate task similarity when it is not given. We give theoretical analysis, interpret

the regret bound, and support the theoretical analysis with extensive experiments. We also

establish a lower bound on the UCB width, and argue that it decreases as task similarity

increases.
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III.7 Proofs

III.7.1 KMTL Ridge Regression

Let na,t be the number of times the algorithm has selected arm a up and including time t

so that
N∑
a=1

na,t = t . Define sets ta = {τ < t : aτ = a}, where aτ is the arm selected at time τ .

Notice that |ta | = na,t−1 for all a. We solve the following problem at time t :

f̂t = arg min
f ∈Hk̃

1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

( f (x̃a,τ ) − ra,τ )
2 + λ‖ f ‖2

Hk̃
, (3.8)

where x̃a,τ is augmented context and ra,τ is the reward of arm a selected at time τ . We

can minimize (3.8) by solving a variant of kernel ridge regression. Applying the representer

theorem [57] the optimal f can be expressed as f =
N∑

a′=1

∑
τ ′∈ta

αa′τ ′k̃ (·, x̃a′,τ ′ ). Plugging this in,

we have the objective function

J ( f ) =
1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

(
N∑

a′=1

∑
τ ′∈ta

αa′τ ′k̃ (x̃a,τ , x̃a′,τ ′ ) − ra,τ )
2 + λ‖ f ‖2

Hk̃

= (yt−1 − K̃t−1α )
Tηt−1(yt−1 − K̃t−1α ) + λα

T K̃t−1α

= yTt−1ηt−1yt−1 − y
T
t−1ηt−1K̃t−1α − α

T K̃t−1ηt−1yt−1

+αT K̃t−1ηt−1K̃t−1α + λα
T K̃t−1α .
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Taking the gradient, we have

∂J

∂α
= −2K̃t−1ηt−1yt−1 + 2K̃t−1ηt−1K̃t−1α + 2λK̃t−1α = 0.

Solving for α yields

α = (ηt−1K̃t−1 + λI )
−1ηt−1yt−1,

which implies

f̂t (x̃ ) = k̃t−1(x̃ )
T (ηt−1K̃t−1 + λI )

−1ηt−1yt−1. (3.9)

Here K̃t−1 is the (t − 1) × (t − 1) kernel matrix on the augmented data [x̃aτ ,τ ]
t−1
τ=1, k̃t−1(x̃ ) =

[k̃ (x̃ , x̃aτ ,τ )]
t−1
τ=1 is a vector of kernel evaluations between x̃ and the past data, yt−1 = [raτ ,τ ]

t−1
τ=1 are

all observed labels or rewards and ηt−1 is the (t−1)× (t−1) diagonal matrix ηt−1 = diag[
1

naτ
]t−1
τ=1.

We can also derive the solution without using the representer theorem. Let ϕ be a feature

map associated with kernel k̃. Let

θ̂ = arg min
θ

1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

(ϕ (x̃a,τ )
Tθ − ra,τ )

2 + λ‖θ ‖2. (3.10)

Minimizing eqn. (3.10) over θ gives,

θ̂t = D−1
t−1Φ

T
t−1ηt−1yt−1, (3.11)
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where Dt−1 = (ΦT
t−1ηt−1Φt−1 + λI ), Φt = [ϕ (x̃aτ ,τ )

T ]tτ=1 ∈ Rt×d̃ and d̃ is the dimension of

feature space ϕ (x ). The equivalence between eqn. (3.9) and (3.11) follows from the matrix

inversion lemma.

III.7.2 Upper Confidence Bound

Lemma 4. Suppose the rewards [raτ ,τ ]
T
τ=1 are independent random variables with means

E[raτ ,τ |xaτ ,τ ] = ϕ (x̃aτ ,τ )
Tθ ∗, where ‖θ ∗‖ ≤ c. Let α =

√
log(2TN /δ )

2
and δ > 0. With

probability at least 1 −
δ

T
, we have that ∀a ∈ [N ]

|ϕ (x̃a,t )
T θ̂t − ϕ (x̃a,t )

Tθ ∗ | ≤ (α + c
√
λ)sa,t ,

where sa,t =
√
ϕ (x̃a,t )TD

−1
t ϕ (x̃a,t ).

Proof. Proof of this theorem is similar to proof of Lemma 1 in [19]. For simplicity we write

Dt−1 = D,Φt−1 = Φ, yt−1 = y and ηt−1 = η. Now

ϕ (x̃a,t )
T θ̂t − ϕ (x̃a,t )

Tθ ∗ = ϕ (x̃a,t )
TD−1ΦTηy − ϕ (x̃a,t )

TD−1Dθ ∗

= ϕ (x̃a,t )
TD−1ΦTηy − ϕ (x̃a,t )

TD−1(ΦTηΦ + λI )θ ∗

= ϕ (x̃a,t )
TD−1ΦTηy − ϕ (x̃a,t )

TD−1(ΦTηΦθ ∗ + λθ ∗)

= ϕ (x̃a,t )
TD−1ΦTη(y − Φθ ∗) − ϕ (x̃a,t )

TD−1λθ ∗.

Therefore

|ϕ (x̃a,t )
T θ̂t − ϕ (x̃a,t )

Tθ ∗ | ≤ |ϕ (x̃a,t )
TD−1ΦTη(y − Φθ ∗) | + ‖θ ∗‖‖ϕ (x̃a,t )

TD−1λ‖

≤ |ϕ (x̃a,t )
TD−1ΦTη(y − Φθ ∗) | + cλ | |ϕ (x̃a,t )

TD−1 | |
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where the first inequality is due to Cauchy-Schwarz.

Now we know that Ey = E[raτ ,τ ]τ=1,...,t−1 = Φθ ∗ =⇒ E[y − Φθ ∗] = 0. Let f (y1, ...,yt−1) =

|ϕ (x̃a,t )
TD−1ΦTη(y − Φθ ∗) | and vector V = ϕ (x̃a,t )TD−1ΦTη. Then

| f (y1, ...yi , ...,yt−1) − f (y1, ...ŷi , ...,yt−1) | = |Vi (y
i − ŷi ) | ≤ |Vi |.

That means any component yi can change f (y1, ...,yt−1) by at most |Vi |.

Using statistical independence of all random variables raτ ,τ in a vector y and using

McDiarmid’s Inequality:

P ( |ϕ (x̃a,t )
TD−1ΦTη(y − Φθ ∗) | ≥ αsa,t ) ≤ 2 exp(−

2α2s2
a,t

‖V ‖2
)

≤ 2 exp(−2α2)

=
δ

TN

where the second inequality is due to

s2
a,t = ϕ (x̃a,t )

TD−1ϕ (x̃a,t )

= ϕ (x̃a,t )
TD−1(ΦTηΦ + λI )D−1ϕ (x̃a,t )

≥ ϕ (x̃a,t )
TD−1ΦTηΦD−1ϕ (x̃a,t )

≥ ϕ (x̃a,t )
TD−1ΦTη2ΦD−1ϕ (x̃a,t )

= ‖ηΦD−1ϕ (x̃a,t )‖
2
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= ‖V ‖2.

Now applying the union bound we can see that, with probability at least 1 −
δ

T
, ∀a ∈ [N ]

|ϕ (x̃a,t )
TD−1ΦTη(y − Φθ ∗a ) | ≤ αsa,t .

Bounding the second term:

cλ | |ϕ (x̃a,t )
TA−1

a | | = cλ
√
ϕ (x̃a,t )TD−1ID−1ϕ (x̃a,t )

≤ c
√
λ
√
ϕ (x̃a,t )TD−1(λI + ΦTΦ)D−1ϕ (x̃a,t )

= c
√
λ
√
ϕ (x̃a,t )TD−1ϕ (x̃a,t )

= c
√
λsa,t .

�

We kernelize sa,t in the following result.

III.7.2.1 Proof of Lemma 3

Proof. We use Lemma 4 to get the width and then kernelize it using techniques in [24].

Note that Φϕ (x̃ ) = k̃t−1(x̃ ). When x̃ = x̃a,t , we write k̃a,t = k̃t−1(x̃a,t ). For simplicity we write

ηt−1 = η and Φt−1 = Φ. Since the matrices (ΦTηΦ + λI ), (ηΦΦT + λI ) are regularized, they are

strictly positive definite and hence their inverses are defined. Observe that

(ΦTηΦ + λI )ΦT = ΦT (ηΦΦT + λI ) (3.12)

71



by associative property of matrix multiplication and

ΦT (ηΦΦT + λI )−1 = (ΦTηΦ + λI )−1ΦT (3.13)

by multiplication of (ΦTηΦ + λI )−1 and (ηΦΦT + λI )−1 on both sides. Also observe that

(ΦTηΦ + λI )ϕ (x̃a,t ) = (ΦTηk̃a,t + λϕ (x̃a,t ))

by associative property of matrix multiplication and using Φϕ (x̃a,t ) = k̃a,t . Multiplying on the

left by (ΦTηΦ + λI )−1,

ϕ (x̃a,t ) = (ΦTηΦ + λI )−1(ΦTηk̃a,t + λϕ (x̃a,t ))

= (ΦTηΦ + λI )−1ΦTηk̃a,t + λ(Φ
TηΦ + λI )−1ϕ (x̃a,t )

= ΦT (ηΦΦT + λI )−1ηk̃a,t + λ(Φ
TηΦ + λI )−1ϕ (x̃a,t ) (3.14)

where the last step is due to eqn. (3.13).

Multiplying both sides of eqn. (3.14) by ϕ (x̃a,t )T we get,

ϕ (x̃a,t )
Tϕ (x̃a,t ) = k̃Ta,t (ηΦΦ

T + λI )−1ηk̃a,t + λϕ (x̃a,t )
T (ΦTηΦ + λI )−1ϕ (x̃a,t )

or, equivalently,

k̃ (x̃a,t , x̃a,t ) = k̃Ta,t (ηK̃t−1 + λI )
−1ηk̃Ta,t + λs

2
a,t .
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By rearranging terms, we get

sa,t = λ
−1/2

√
k̃ (x̃a,t , x̃a,t ) − k̃

T
a,t (ηt−1K̃t−1 + λI )−1ηt−1k̃a,t . (3.15)

�

III.7.3 UCB Width

In this subsection we establish a lower bound on the UCB width. To simplify the analysis we

consider a problem:

f̂t = arg min
f ∈Hk̃

1

N

N∑
a=1

∑
τ∈ta

( f (x̃a,τ ) − ra,τ )
2 + λ‖ f ‖2

Hk̃
, (3.16)

as
1

na,t−1
obscures the analysis. In this case sa,t = λ−1/2

√
k̃ (x̃a,t , x̃a,t ) − k̃

T
a,t (K̃t−1 + λI )−1k̃a,t . Let

(�) denote the Hadamard product and (⊗) denote the Kronecker product.

Lemma 5. [65] Let A be a positive definite matrix partitioned according to

A =



A11 A12

A21 A22



.

Then

A22 ≥ A22 −A
T
12A

−1
11A12 ≥

4λmaxλmin(
λmax + λmin

)2
A22

where λmax and λmin are the maximum and minimum eigenvalues of A and A ≥ B means

A − B is a positive semidefinite matrix.

Lemma 6. [66] Let D,C be positive semidefinite matrices. Any eigenvalue λ(D �C ) of D �C
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satisfies

λ(D � C ) ≤ λmax(D � C ) ≤ |max
i

dii |λmax (C )

and

|min
i

dii |λmin (C ) ≤ λmin(D � C ) ≤ λ(D � C ).

Lemma 7. [67] Let D ∈ Rn×n and C ∈ Rm×m. Any eigenvalue λ(D ⊗C ) of D ⊗C ∈ Rnm×nm is

equal to the product of an eigenvalue of D and an eigenvalue of C.

We assume that na,t =
t

N
after time t to get interpretibility (this is not needed for the

general regret bound that we prove in Theorem 6). For simplicity define nt = na,t . Let

(�) denote the Hadamard product, (⊗) denote the Kronecker product and 1n ∈ Rn be

the vector of ones. Let KXt = [kX (xaτ ,τ ,xaτ ′ ,τ ′ )]
t
τ ,τ ′=1 be the t × t kernel matrix on contexts,

KZt = [kZ (zaτ , zaτ ′ )]
t
τ ,τ ′=1 be the associated t × t kernel matrix based on arm similarity, and

KZ = [kZ (za, za )]
N
a=1 be the N × N arm similarity matrix between N arms, where xaτ ,τ is

observed context and zaτ is an associated arm descriptor. Using the definition of tildek,

k̃
(
(z,x ), (z′,x′)

)
= kZ (z, z

′)kX (x ,x
′), we can write K̃t = KZt � KXt . We rearrange a sequence

of xaτ ,τ to get [xa,τ ]
N
a=1,τ=(t+1)a

such that elements (a − 1)nt to ant belong to arm a. Define

K̃r
t ,K

r
Xt

and Kr
Zt

be rearranged kernel matrices based on the re-ordered set [xa,τ ]
N
a=1,τ=(t+1)a

.

Notice that we can write K̃r
t = (KZ ⊗ 1nt1

T
nt ) � Kr

Xt
and the eigenvalues λ(K̃t ) and λ(K̃r

t ) are

equal. To summarize, we have

K̃t = KZt � KXt

and

λ(K̃t ) = λ
(
(KZ ⊗ 1nt1

T
nt ) � Kr

Xt

)
. (3.17)

Lemma 8. Assume k̃ (x̃ , x̃ ) ≤ ck̃ ,∀x̃ ∈ X̃ , and let K̃t be the final product kernel matrix and
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KZ be the task similarity matrix. Also write

K̃t + λIt =



K̃t−1 + λIt−1 k̃a,t

k̃Ta,t k̃ (x̃a,t , x̃a,t ) + λ



.

Then

Lsa,t =
4nck̃λmax(KZ ) + λ(
nck̃λmax(KZ ) + 2λ

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)
− 1 ≤ s2

a,t ≤
ck̃
λ
. (3.18)

Proof. Using Lemma 5,

k̃ (x̃a,t , x̃a,t ) + λ − k̃
T
a,t (K̃t−1 + λIt−1)

−1k̃a,t ≤ k̃ (x̃a,t , x̃a,t ) + λ.

Subtracting λ from both sides,

λs2
a,t ≤ k̃ (x̃a,t , x̃a,t )

and therefore

s2
a,t ≤

ck̃
λ
.

This proves the upper bound. Again by using Lemma 5,

k̃ (x̃a,t , x̃a,t ) + λ − k̃
T
a,t (K̃t−1 + λIt−1)

−1k̃a,t ≥
4λmax(K̃t + λIt )λmin(K̃t + λIt )(
λmax(K̃t + λIt ) + λmin(K̃t + λIt )

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)
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Notice that the right hand side of the above equation is a monotonically decreasing

function of
λmax

λmin
. Then

λs2
a,t + λ ≥

4λmax(K̃t + λIt )λmin(K̃t + λIt )(
λmax(K̃t + λIt ) + λmin(K̃t + λIt )

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)

=

4λmax (K̃t )+λ

λmin (K̃t )+λ(
λmax (K̃t )+λ

λmin (K̃t )+λ
+ 1

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)

=

4λmax (K̃
r
t )+λ

λmin (K̃
r
t )+λ(

λmax (K̃
r
t )+λ

λmin (K̃
r
t )+λ
+ 1

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)

≥

4ck̃λmax (K
r
Zt
)+λ

mini K
r
Xt

(ii )λmin (K
r
Zt
)+λ(

ck̃λmax (K
r
Zt
)+λ

mini K
r
Xt

(ii )λmin (K
r
Zt
)+λ + 1

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)

where Kr
Xt
(ii ) are the diagonal elements of Kr

Xt
and the last inequality is due to Lemma 6.

The smallest eigenvalue of 1nt1
T
nt is zero and therefore according to Lemma 7, the smallest

eigenvalue of Kr
Zt

is zero. This implies

λs2
a,t + λ ≥

4nck̃λmax (K
r
Zt
)+λ

λ(
nck̃λmax (K

r
Zt
)+λ

λ + 1
)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)

=
4nck̃λmax(KZ ) + λ(
nck̃λmax(KZ ) + 2λ

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)
λ

where the last equality is again due to Lemma 7. Dividing both sides by λ and then subtracting

one gives

s2
a,t ≥

4nck̃λmax(KZ ) + λ(
nck̃λmax(KZ ) + 2λ

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)
− 1

76



�

Theorem 9 below says that the lower bound on width decreases as task similarity increases.

In particular, assume that all distinct tasks are similar to each other with task similarity

equal to µ and there are N tasks (arms). Thus KZ (µ ) := (1 − µ )IN + µ1N1
T
N .

Define

Lsa,t (µ ) :=
4nck̃λmax(KZ (µ )) + λ(
nck̃λmax(KZ (µ )) + 2λ

)2

(
k̃ (x̃a,t , x̃a,t ) + λ

)
− 1.

Theorem 9. Let Lsa,t be the lower bound on width as defined in Lemma 8. If µ1 ≤ µ2 then

Lsa,t (µ1) ≥ Lsa,t (µ2). (3.19)

Proof. The eigenvalues of KZ (µ ) = (1− µ )IN + µ1N1
T
N are 1+ µ (N − 1) with multiplicity 1 and

1 − µ with multiplicity N − 1.

That means λmax(KZ (µ )) is highest when tasks are more similar and it decreases as task

similarity µ goes to zero. The theorem follows as Lsa,t (µ ) is a monotonically decreasing function

of λmax(KZ (µ )) �

This is important because if the lower bound on sa,t is small then we may be more

confident about the reward estimates and this may lead to a tighter regret bound. In the

next subsection we discuss the upper bound on regret.

III.7.4 Regret Analysis

We use the Lemma 24to prove the Lemma 10

Lemma 9 (Lemma 1.1 in [68]). Let A ∈ Rn×n be a positive definite matrix partitioned
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Algorithm 3.3: BaseKMTL-UCB at step t

Input: Input: α ∈ R+, c, λ,Ψ ⊆ {1, 2, ..., t − 1}
1 Get K̃Ψ = ΦΨΦ

T
Ψ, where ΦΨ = [ϕ (x̃aτ ,τ )

T ]τ∈Ψ

2 Get yΨ =
[
raτ ,τ

]

τ∈Ψ

3 Observe context features at time t : xa,t for each a ∈ N

4 Calculate k̃a,Ψ = ΦT
Ψϕ (x̃a,t ) and k̃ (x̃a,t , x̃a,t ) for each a ∈ N .

5 for all a at time t do

6 sa,t = λ
−1/2

√
k̃ (x̃a,t , x̃a,t ) − k̃

T
a,Ψ (K̃Ψ + λI )−1k̃a,Ψ

7 ucba,t ← k̃Ta,Ψ (K̃Ψ + λI )
−1yΨ + (α + c

√
λ)sa,t

8 end

according to

A =



A11 A12

AT
12 A22



.

where A11 ∈ R(n−1)×(n−1),A12 ∈ R(n−1) and A22 ∈ R1. Then det(A) = det(A11) (A22 −

AT
12A

−1
11A12).

Using the notations of BaseKMTL-UCB, we write K̃Ψ = ΦΨΦ
T
Ψ and k̃a,Ψ = ΦT

Ψϕ (x̃a,t ) where

ΦΨ = [ϕ (x̃ )Taτ ,τ ]τ∈Ψ and Ψ ⊆ {1, ..., t − 1}. Define

K̃Ψ+1 + λI =



K̃Ψ + λI |Ψ| k̃a,Ψ

k̃Ta,Ψ k̃ (x̃a,t , x̃a,t ) + λ



Also, define k̃1 = k̃ (x̃aσ ,σ , x̃aσ ,σ ), where σ is the smallest element of Ψ.
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Algorithm 3.4: SupKMTL-UCB

1 Using same notation as in [19]:

Input: Input: α ∈ R+,T ∈ N

2 Q ← dlogT e, Ψq
1 ← ∅ and ∀q ∈ [Q].

3 for t = 1, ...,T do

4 q ← 1 and Â1 ← [N ]

5 repeat

6 sa,t ,ucba,t ← BaseKMTL-UCB with Ψ
q
t and α , for all a ∈ Âq

7 wa,t = (α + c
√
λ)sa,t

8 if wa,t ≤
1
√
T

for all a ∈ Âq then

9 Choose at = arg max
a∈Âq

ucba,t and Ψ
q′

t+1 ← Ψ
q′

t for all q′ ∈ [Q]

10 end

11

12 else if wa,t ≤ 2−q for all a ∈ Âq then

13 Âq+1 ← {a ∈ Âq |ucba,t ≥ max
a′∈Âq

ucba′,t − 21−q} and q ← q + 1

14 end

15

16 else

17 Choose at ∈ Âq such that wat ,t > 2−q

18 Update Ψ
q
t+1 ← Ψ

q
t ∪ {t} and ∀q′ , q, Ψq′

t+1 ← Ψ
q′

t

19 end

20

21 until at is found

22

23 Observe reward rat ,t

24 end
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Lemma 10. Using notations in BaseKMTL-UCB and suppose |Ψ| ≥ 2. Then

∑
τ∈Ψ

s2
aτ ,τ ≤ 2m logд(Ψ),

where m = max(1,
ck̃
λ
) and

д(Ψ) =
det(K̃Ψ+1 + λI )

λ |Ψ|+1
.

Proof. Using the Lemma 24,

det(K̃Ψ+1 + λI ) = (k̃1 + λ)
∏

τ∈Ψ\{σ}
λ(1 + s2

aτ ,τ )

= λ(
k̃1

λ
+ 1)

∏
τ∈Ψ\{σ}

λ(1 + s2
aτ ,τ )

= λ
∏
τ∈Ψ

λ(1 + s2
aτ ,τ ),

where the last step is because s2
aσ ,σ =

k1

λ
.

From Lemma 8, max s2
aτ ,τ =

ck̃
λ
. When

ck̃
λ
≤ 1, using x ≤ 2 log(1 + x ),∀x ∈ [0, 1] ,

s2
aτ ,τ ≤ 2 log(1 + s2

aτ ,τ ). In this case,

∑
τ∈Ψ

s2
aτ ,τ ≤ 2

∑
τ∈Ψ

log(1 + s2
aτ ,τ )

= 2 log
∏
τ∈Ψ

(1 + s2
aτ ,τ )

= 2 log
det(K̃Ψ+1 + λI )

λ |Ψ|+1
.
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When
ck̃
λ
> 1,

∑
τ∈Ψ

ck̃
λ

λ

ck̃
s2
aτ ,τ ≤

2ck̃
λ

∑
τ∈Ψ

log(1 +
λ

ck̃
s2
aτ ,τ )

≤
2ck̃
λ

∑
τ∈Ψ

log(1 + s2
aτ ,τ )

=
2ck̃
λ

log
∏
τ∈Ψ

(1 + s2
aτ ,τ )

=
2ck̃
λ

log
det(K̃Ψ+1 + λI )

λ |Ψ|+1
.

Combining both cases,

∑
τ∈Ψ

s2
aτ ,τ ≤ 2 max(1,

ck̃
λ
) log

det(K̃Ψ+1 + λI )

λ |Ψ|+1

= 2m logд(Ψ).

�

Lemma 11. Using the same notations as in Lemma 10,

∑
τ∈Ψ

saτ ,τ ≤
√

2m |Ψ| logд(Ψ)

Proof.

∑
t∈Ψ

saτ ,τ ≤

√
|Ψ|

∑
τ∈Ψ

s2
aτ ,τ

≤

√
2|Ψ|m log

det(K̃Ψ+1 + λI )

λ |Ψ|+1

where the first inequality is due to Cauchy-Schwarz and the last inequality is due to Lemma
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10. �

Lemma 12. [16] Using notations in SupKMTL-UCB, for each t ∈ [T ], q ∈ [Q], and any fixed

sequence of feature vectors xat ,t with t ∈ Ψ
q
t , the corresponding rewards rat ,t are independent

random variables such that E[rat ,t ] = ϕ (x̃at ,t )
Tθ ∗.

Lemma 13. [16] Using notations in SupKMTL-UCB, let ‖θ ∗‖ ≤ c and a∗t be the best arm at

time t . With probability 1 − δQ and ∀t ∈ [T ],q ∈ [Q], the following hold

• |ϕ (x̃a,t )T θ̂t − E[ra,t |xa,t ]| ≤
(√ log 2TN /δ

2
+
√
λc

)
sa,t

• a∗t ∈ Âq

• E[ra∗t ,t ] − E[ra,t ] ≤ 23−q.

Lemma 14. Using notations in SupKMTL-UCB, ∀q ∈ [Q],

|Ψ
q
T+1 | ≤ 2q

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)
|Ψ

q
T+1 |

where [T ] = {1, ...,T}.

Proof.

∑
t∈Ψ

q
T+1

wat ,t =
∑

t∈Ψ
q
T+1

(√ log 2TN /δ

2
+ c
√
λ
)
sat ,t

≤

(√ log 2TN /δ

2
+ c
√
λ
)√

2m |Ψ
q
T+1 | logд(Ψ

q
T+1)

≤

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)
|Ψ

q
T+1 |

where the first inequality is due to Lemma 11 and the last inequality holds because

1 + s2
at ,t ≥ 1 for all t .
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From the third step (line 16) in SupKMTL-UCB algorithm 3.4, we choose and alternative

at ∈ Âq such that wat ,t ≥ 2−q and include that t in Ψ
q
t+1 for the next round of estimates.

Therefore, ∑
t∈Ψ

q
T+1

wat ,t ≥ 2−q |Ψ
q
T+1 |

.

Combining the above two equations completes the proof. �

Lemma 15. [Azuma’s inequality [69]] Let r1, ..., rT be random variables with |rτ | ≤ aτ , for

some a1, ...,aT ≥= 0. Then

P*
,

������

T∑
τ=1

rτ −
T∑
τ=1

E[rτ |r1, ..., rτ−1]
������
≥ B+

-
≤ 2 exp *

,
−

B2

2
∑T
τ=1 a

2
τ

+
-

(3.20)

III.7.5 Proof of Theorem 6

We use same proof technique proposed by Auer et al. [16].

Proof. Let Ψ0 be the set of trials for which an alternative (wa,t ≤
1
√
T

) at line 9 of SupKMTL-

UCB algorithm 3.4 is chosen . Since 2−Q ≤
1
√
T
, we have {1, ...,T} = Ψ0 ∪

⋃
q

Ψ
q
T+1.

With probability 1 − δQ,

E[R (T )] =
T∑
t=1

E[ra∗t ,t ] − E[rat ,t ]

=
∑
t∈Ψ0

E[ra∗t ,t ] − E[rat ,t ] +

Q∑
q=1

∑
t∈Ψ

q
T+1

E[ra∗t ,t ] − E[rat ,t ]

≤
2
√
T
Ψ0 +

Q∑
q=1

∑
t∈Ψ

q
T+1

E[ra∗t ,t ] − E[rat ,t ]
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≤
2
√
T
T +

Q∑
q=1

∑
t∈Ψ

q
T+1

23−q

≤ 2
√
T +

Q∑
q=1

23−q |Ψ
q
T+1 |

≤ 2
√
T +

Q∑
q=1

23−q2q
(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)
|Ψ

q
T+1 |

≤ 2
√
T + 8

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
) Q∑
q=1

√
|Ψ

q
T+1 |

≤ 2
√
T + 8

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)√√√√

Q

Q∑
q=1

|Ψ
q
T+1 |

≤ 2
√
T + 8

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)√

QT

where the first inequality is because of line 9 of SupKMTL-UCB algorithm 3.4, the second

inequality is due to Lemma 13 and the fourth inequality is due to Lemma 14.

Using B =
√

2T log(2/δ ) and aτ = 1 in Azuma’s inequality (Lemma 15), with probability

at least 1 − δ (Q + 1),

R (T ) ≤ E[R (T )] +
√

2T log(2/δ )

≤ 2
√
T + 8

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)√

QT +
√

2T log(2/δ )

≤ 2
√
T + 10

(√ log 2TN /δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)√

QT .

Replacing δ with
δ

Q + 1
, we get that with probability at least 1 − δ ,

R (T ) ≤ 2
√
T + 10

(√ log 2TN (Q + 1)/δ

2
+ c
√
λ
)√

2m
(

logд([T ])
)√

QT (3.21)
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≤ 2
√
T + 10*

,

√
log 2TN (log(T ) + 1)/δ

2
+ c
√
λ+

-

√
2m logд([T ]

√
T dlog(T )e . (3.22)

�

We use following definitions and lemmas to interpret the regret bound and to establish a

regret bound in terms of the effective rank of the kernel matrix.

Definition 2. Let x ,y ∈ Rn and x1 ≥ x2 ≥ .... ≥ xn, y1 ≥ y2 ≥ .... ≥ yn . We say x is

majorized by y, i.e. x ≺ y, if
k∑
i=1

xi ≤
k∑
i=1

yi , for k = 1, ...,n − 1 and
n∑
i=1

xi =
n∑
i=1

yi .

Definition 3. A real valued function on д defined on set S ⊂ Rn is said to be Schur concave

on S if x ≺ y =⇒ д(x ) ≥ д(y).

Lemma 16. [70] If x ,y ∈ Rn
+ and x ≺ y, then

n∏
i=1

xi ≥
n∏
i=1

yi. This means
∏

xi is a Schur

concave function.

Lemma 17. [71] Let A,B be positive semidefinite matrices of the same size and let all

elements on diagonal of B are 1. Then λ(A � B) ≺ λ(A).

Lemma 18. [67] Let A,B be matrices of size Rn×m then rank(A � B) ≤ rank(A) rank(B).

Lemma 19. [Arithmetic Mean-Geometric Mean Inequality [72]] For every sequence of

nonnegative real numbers a1,a2, ...an one has

(
n∏
i=1

ai )
1/n ≤

∑
i=1 ai
n

with equality if and only if a1 = a2 = ... = an.
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III.7.6 Proof of Theorem 7

Suppose the rank of K̃T+1 is r . Hence only the first r eigenvalues are non zero. In that case

д([T ]) attains its maximum when each of these r eigenvalues is equal to
trace(K̃T+1)

r
(using

Lemma 26). Thus,

д([T ]) =

∏T+1
i=1 (λi + λ)

λT+1

≤

∏r
i=1(trace(K̃T+1)/r + λ)

λr

=

( trace(K̃T+1)/r + λ

λ

)r
.

It follows that,

log(д([T ])) ≤ r log
( trace(K̃T+1)/r + λ

λ

)
≤ r log

( trace(K̃T+1) + λ

λ

)
= rzrx log

( trace(K̃T+1) + λ

λ

)
≤ rzrx log

( (T + 1)ck̃ + λ

λ

)
,

where the second inequality is due to Lemma 18.

III.7.7 Proof of Theorem 8

Proof. Suppose the K̃T+1(µ1) and K̃T+1(µ2) are final kernel matrices after time T , KZ r
T+1

(µ1)

and KZ r
T+1

(µ2) are corresponding matrices using the definition 3.17. Also suppose that KZ (µ1)

and KZ (µ2) are task similarity matrices. The eigenvalues of KZ (µ ) = (1 − µ )IN + µ1N1
T
N are
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1 + µ (N − 1) with multiplicity 1 and 1 − µ with multiplicity N − 1.

Let n be positive integer with n ≤ N − 1 and define d f to be the difference between sum

of largest n + 1 eigenvalues of KZ (µ1) and KZ (µ2). Thus,

d f = 1 + µ1(N − 1) + n(1 − µ1) −
(
1 + µ2(N − 1) + n(1 − µ2)

)
= (N − 1) (µ1 − µ2) + n(1 − µ1 − 1 + µ2)

= (N − 1) (µ1 − µ2) + n(µ2 − µ1)

= (µ1 − µ2) (N − 1 − n)

≤ 0

where the last inequality holds because µ1 ≤ µ2. This implies

λ(KZ (µ1)) ≺ λ(KZ (µ2))

and the Lemma 7 implies

λ(Kr
ZT+1

(µ1)) ≺ λ(K
r
ZT+1

(µ2)).

Using the Lemma 17 and the definition 3.17, we have

λ(K̃T+1(µ1)) ≺ λ(K̃T+1(µ2))

This implies
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λ(K̃T+1(µ1)) + λ ≺ λ(K̃T+1(µ2)) + λ.

Using the Lemma 16, we conclude that

T+1∏
t=1

(λt (K̃T+1(µ1)) + λ) ≥
T+1∏
t=1

(λt (K̃T+1(µ2)) + λ).

This completes the proof. �

III.7.8 Proof of Corollary 1

Proof. Let’s find the upper bound of maximum of д([T ]). We know that rλ logT ≥
T+1∑
i=r+1

λi .

Let ϵ be a constant such that rλ logT =
T+1∑
i=r+1

λi + ϵ . Notice that ϵ ≤ (T + 1)ck̃ . Consider

max
T+1∏
i=1

(λi + λ)

s .t .
r∑

i=1

λi + λ = (T + 1)ck̃ + rλ − rλ logT + ϵ

and
T+1∑
i=r+1

λi + λ = rλ logT − ϵ + (T + 1 − r )λ

Using Lemma 26, the maximum of above constrained optimization problem occurs at

λi + λ =




(T + 1)ck̃ + rλ − rλ logT + ϵ

r
, if λi ≤ r ,

rλ logT + (T + 1 − r )λ

(T + 1 − r )
−

ϵ

T + 1 − r
otherwise.

(3.23)

Therefore,
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д([T ]) =
T+1∏
t=1

(λt + λ)

λ

≤

( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)r (rλ logT + (T + 1 − r )λ

(T + 1 − r )λ

)T+1−r

=

( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)r (r logT + (T + 1 − r )

(T + 1 − r )

)T+1−r

=

( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)r ( r logT

T + 1 − r
+ 1

)T+1−r

=

( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)r ( r logT

T + 1 − r
+ 1

)T+1−r

≤

( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)r (r log(T + r − 1)

T
+ 1

)T
≤

( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)r
exp

(
r log(T + r − 1)

)

where the first inequality is due to eqn. (3.23), the second inequality holds because (1+
log(x )

x
)x

is monotonically increasing function ∀x ≥ 1 and the last inequality holds because log(1+x ) ≤

x ,∀x > −1.

Taking log on both sides

log(д([T ])) ≤ r log
( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)
+ r log(T + r − 1)

≤ r log
( (T + 1)ck̃ + rλ − rλ logT + ϵ

rλ

)
+ r log(2T )

log(д([T ])) ≤ r log
(
2T

2(T + 1)ck̃ + rλ − rλ logT

rλ

)
.

�
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CHAPTER IV

Simple Regret for Contextual Bandits

There are two variants of the classical multi-armed bandit (MAB) problem that have received

considerable attention from machine learning researchers in recent years: contextual bandits

and simple regret minimization. Contextual bandits are a sub-class of MABs where, at every

time step, the learner has access to side information that is predictive of the best arm. Simple

regret minimization assumes that the learner only incurs regret after a pure exploration

phase. In this work, we study simple regret minimization for contextual bandits. Motivated

by applications where the learner has separate training and autonomous modes, we assume

that, the learner experiences a pure exploration phase, where feedback is received after every

action but no regret is incurred, followed by a pure exploitation phase in which regret is

incurred but there is no feedback. We present the Contextual-Gap algorithm and establish

performance guarantees on the simple regret, i.e., the regret during the pure exploitation

phase. Our experiments examine a novel application to adaptive sensor selection for magnetic

field estimation in interplanetary spacecraft, and demonstrate considerable improvement over

algorithms designed to minimize the cumulative regret.
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IV.1 Introduction

The multi-armed bandit (MAB) is a framework for sequential decision making where, at

every time step, the learner selects (or “pulls”) one of several possible actions (or “arms”), and

receives a reward based on the selected action. The regret of the learner is the difference

between the maximum possible reward and the reward resulting from the chosen action.

In the classical MAB setting, the goal is to minimize the sum of all regrets, or cumulative

regret, which naturally leads to an exploration/exploitation trade-off problem [30]. If the

learner explores too little, it may never find an optimal arm which will increase its cumulative

regret. If the learner explores too much, it may select sub-optimal arms too often which

will also increase its cumulative regret. There are a variety of algorithms that solve this

exploration/exploitation trade-off problem [30, 16, 73, 17, 12].

The contextual bandit problem extends the classical MAB setting, with the addition of

time-varying side information, or context, made available at every time step. The best arm at

every time step depends on the context, and intuitively the learner seeks to determine the best

arm as a function of context. To date, work on contextual bandits has studied cumulative

regret minimization, which is motivated by applications in health care, web advertisement

recommendations and news article recommendations [23]. The contextual bandit setting is

also called associative reinforcement learning [16] and linear bandits [17, 18].

In classical (non-contextual) MABs, the goal of the learner isn’t always to minimize the

cumulative regret. In some applications, there is a pure exploration phase during which

the learning incurs no regret (i.e., no penalty for sub-optimal decisions), and performance

is measured in terms of simple regret, which is the regret assessed at the end of the pure

exploration phase. For example, in top-arm identification, the learner must guess the arm

with highest expected reward at the end of the exploration phase. Simple regret minimization

clearly motivates different strategies, since there is no penalty for sub-optimal decisions
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during the exploration phase. Fixed budget and fixed confidence are the two main theoretical

frameworks in which simple regret is generally analyzed [26, 27, 28, 29].

In this chapter, we extend the idea of simple regret minimization to contextual bandits.

In this setting, there is a pure exploration phase during which no regret is incurred, following

by a pure exploitation phase during which regret is incurred, but there is no feedback so the

learner cannot update its policy. To our knowledge, previous work has not addressed novel

algorithms for this setting. [74] provide simple regret guarantees for the policy of uniform

sampling of arms in the i.i.d setting. The contextual bandit algorithm of [75] also has distinct

exploration and exploitation phases, but unlike our setting, the agent has control over which

phase it is in, i.e., when it wants to receive feedback. In the work of [76, 77, 78, 79] there is

a single best arm even when contexts are observed (directly or indirectly). Our algorithm,

Contextual-Gap, generalizes the idea of [26] and [76] to the contextual bandits setting.

We make the following contributions: 1. We formulate a novel problem: that of simple

regret minimization for contextual bandits. 2. We develop an algorithm, Contextual-Gap, for

this setting. 3. We present performance guarantees on the simple regret in the fixed budget

framework. 4. We present experimental results for adaptive sensor selection in nano-satellites.

The chapter is organized as follows. In section 2, we motivate the new problem based on

the real-life application of magnetometer selection in spacecraft. In section 3, we state the

problem formally, and to solve this new problem, we present the Contextual-Gap algorithm

in section 4. In section 5, we present the learning theoretic analysis and in section 6, we

present and discuss experimental results. Section 7 concludes.
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IV.2 Motivation

Our work is motivated by autonomous systems that go through an initial training phase (the

pure exploration phase) where they learn how to accomplish a task without being penalized

for sub-optimal decisions, and then are deployed in an environment where they no longer

receive feedback, but regret is incurred (the pure exploitation phase).

Figure 4.1: Scientific measurement: magnetic field lines of the Earth (Credit: NASA/Goddard
Scientific Visualization Studio)

An example scenario arises in the problem of estimating weak interplanetary magnetic

fields (Figure 4.1) in the presence of noise using resource-constrained spacecraft known

as nano-satellites or CubeSats. Spacecraft systems generate their own spatially localized

magnetic field noise due to large numbers of time-varying current paths in the spacecraft.

Historically, with large spacecraft, such noise was minimized by physically separating the

sensor from the spacecraft using a rigid boom. In highly resource-constrained satellites such

as nano-satellites, however, structural constraints limit the use of long rigid booms, requiring

sensors to be close to or inside the CubeSat (Figure 4.2). Thus, recent work has focused on

nano-satellites equipped with multiple magnetic field sensors (magnetometers) [80].

A natural problem that arises in nano-satellites with multiple sensors is that of determining

the sensor with the reading closest to the true magnetic field. At each time step, whenever

sensor is selected, one has to calibrate the sensor readings because sensor behaviours change
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due to rapid changes in temperature and movement (rotations or maneuvers) of the satellite

which introduce a further errors in magnetic field readings. This calibration process is

expensive in terms of computation and memory [81, 82], particularly when dealing with many

magnetic field sensors. To get accurate readings from different sensors one has to repeat

this calibration process for every sensor and it’s not feasible because of the limited power

resources on the spacecraft. These constraints motivate the selection of a single sensor at

each time step.

Furthermore, the best sensor changes with time. This stems from the time-varying

localization of noise in the spacecraft, which in turn results from different operational events

such as data transmission, spacecraft maneuvers, and power generation. This dynamic sensor

selection problem is readily cast as a contextual bandit problem. The context is given by the

spacecraft’s telemetry system which provides real-time measurements related to spacecraft

operation, including solar panel currents, temperatures, momentum wheel information, and

real-time current consumption [83].

In this application, however, conventional contextual bandit algorithms are not applicable

because feedback is not always available. Feedback requires knowledge of sensor noise, which

in turn requires knowledge of the true magnetic field. Yet the true magnetic field is known only

during certain portions of a spacecraft’s orbit (e.g., when the satellite is near other spacecraft,

or when the earth shields the satellite from sun-induced magnetic fields). Moreover, when

the true magnetic field is known, there is no need to estimate the magnetic field in the first

place! This suggests a learning scenario where the agent (the sensor scheduler) operates in

two phases, one where it has feedback but incurs no regrets (because the field being estimated

is known), and another where it does not receive feedback, but nonetheless needs to produce

estimates. This is precisely the problem we study.

In the magnetometer problem defined above, the exploration and exploitation times occur

in phases, as the satellite moves into and out of regions where the true magnetic field is known.
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For simplicity, we will the address the problem in which the first T time steps belong to the

exploration phase, and all subsequent time steps to the exploitation phase. Nonetheless, the

algorithm we introduce can switch between phases indefinitely, and does not need to know in

advance when a new phase is beginning.

Figure 4.2: TBEx Small Satellite with Multiple Magnetometers [1, 2]

Sensor management, adaptive sensing, and sequential resource allocation have historically

been viewed in the decision process framework where the learner takes actions on selecting

the sensor based on previously collected data. There have been many proposed solutions

based on Markov decision processes (MDPs) and partially observable MDPs, with optimality

bounds for cumulative regret [84, 85, 86, 87, 88]. In fact, sensor management and sequential

resource allocation was one of the original motivating settings for the classical MAB problem

[89, 12, 84], again with the goal of cumulative regret minimization. We are interested in an

adaptive sensing setting where the optimal decisions and rewards also depend on the context,

but where the actions can be separated into a pure exploration and pure exploitation phases,

with no regret during exploration, and with no feedback during pure exploitation.

————————————————————————————-
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IV.3 Formal Setting

We denote the context space as X = Rd . Let {xt}∞t=1 denote the sequence of observed contexts.

Let the total number of arms be A. For each xt , the learner is required to choose an arm

a ∈ [A], where [A] := {1, 2, ...,A}.
For arm a ∈ [A], let fa : X → R be a function that maps context to expected reward when

arm a is selected. Let at denote the arm selected at time t , and assume the reward at time t

obeys rt := fat (xt ) + ζt , where ζt is noise (described in more detail below). We assume that

for each a, fa belongs to a reproducing kernel Hilbert space (RKHS) defined on X. The first

T time steps belong to the exploration phase where the learner observes context xt , chooses

arm at and obtains reward rt . The time steps after T belong to an exploitation phase where

the learner observes context xt , chooses arm at and earns an implicit reward rt that is not

returned to the learner.

For the theoretical results below, the following general probabilistic framework is adopted,

following [18] and [90]. We assume that ζt is a zero mean, ρ-conditionally sub-Gaussian

random variable, i.e., ζt is such that for some ρ > 0 and ∀γ ∈ R,

E[eγζt |Ht−1] ≤ exp

(
γ 2ρ2

2

)
. (4.1)

Here Ht−1 = {x1, . . . ,xt−1, ζ1, . . . , ζt−1} is the history at time t (see Section IV.8 for additional

details).

We also define the following terms. Let Da,t be the set of all time indices when arm a was

selected up to time t − 1 and set Na,t = |Da,t |. Let Xa,t be the data matrix whose columns

are {xτ}τ∈Da,t and similarly let Ya,t denote the column vector of rewards {rτ}τ∈Da,t . Thus,

Xa,t ∈ R
d×Na,t and Ya,t ∈ R

Na,t .
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IV.3.1 Problem Statement

At every time step t , the learner observes context xt . During the exploration phase t ≤ T ,

the learner chooses a series of actions to explore and learn the mappings fa from context to

reward. During the exploitation phase t > T , the goal is to select the best arm as a function

of context. We define the simple regret associated with choosing arm a ∈ [A], given context x ,

as:

Ra (x ) := f ∗(x ) − fa (x ), (4.2)

where f ∗(x ) := max
i∈[A]

fi (x ) is the expected reward for the best arm for context x . The learner

aims to minimize the simple regret for t > T . To be more precise, let Ω be the fixed policy

mapping context to arm during the exploitation phase. The goal is to determine policies for

the exploration and exploitation phases such that for all ϵ > 0 and t > T

P(RΩ(xt ) (xt ) ≥ ϵ |xt ) ≤ bϵ (T ),

where bϵ (T ) is an expression that decreases to 0 as T → ∞.

The following section presents an algorithm to solve this problem.

IV.4 Algorithm

We propose an algorithm that extends the Bayes Gap algorithm [76] to the contextual setting.

Note that Bayes Gap itself is originally motivated from UGapEb [26].
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IV.4.1 Estimating Expected Rewards

A key ingredient of our extension is an estimate of fa, for each a, based on the current

history. We use kernel methods to estimate fa. Let k : X × X → R be a symmetric positive

definite kernel function on X, H be the corresponding RKHS and ϕ (x ) = k (·,x ) be the

associated canonical feature map. Let ϕ (Xa,t ) := [ϕ (xj )]j∈Da,t . We define the kernel matrix

associated with Xa,t as Ka,t := ϕ (Xa,t )
Tϕ (Xa,t ) ∈ R

Na,t×Na,t and the kernel vector of context x

as ka,t (x ) := ϕ (Xa,t )
Tϕ (x ). Let Ia,t be the identity matrix of size Na,t . We estimate fa at time

t , via kernel ridge regression, i.e.,

f̂a,t (x ) = arg min
fa∈H

∑
j∈Da,t

( fa (xj ) − rj )
2 + λ‖ fa‖

2.

The solution to this optimization problem is f̂a,t (x ) = ka,t (x )
T (Ka,t + λIa,t )

−1Ya,t . Furthermore,

[90] establish a confidence interval for fa (x ) in terms of f̂a,t (x ) and the “variance” σ̂2
a,t (x ) :=

k (x ,x ) − ka,t (x )
T (Ka,t + λIa,t )

−1ka,t (x ).

Theorem 10 (Restatement of Theorem 2.1 in [90]). Consider the contextual bandit sce-

nario described in section IV.3. For any β > 0, with probability at least 1 − e−β
2
, it holds

simultaneously over all x ∈ X and all t ≤ T ,

| fa (x ) − f̂a,t (x ) | ≤ (C1β +C2)
σ̂a,t (x )
√
λ
, (4.3)

where C1 = ρ
√

2 and C2 = ρ

√√√
T∑
τ=2

ln(1 +
1

λ
σ̂a,τ−1(xτ )) +

√
λ‖ fa‖H .

In the Section IV.8, we show that C2 = O (ρ
√

lnT ). For convenience, we denote the width

of the confidence interval sa,t (x ) := 2(C1β +C2)
σ̂a,t (x )
√
λ

. Thus, the upper and lower confidence

bounds of fa (x ) are Ua,t (x ) := f̂a,t (x ) +
sa,t (x )

2
and La,t (x ) := f̂a,t (x ) −

sa,t (x )

2
. The upper
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confidence bound is the most optimistic estimate of the reward and the lower confidence

bound is the most pessimistic estimate of the reward.

IV.4.2 Contextual-Gap Algorithm

During the exploration phase, the Contextual-Gap algorithm proceeds as follows. First, the

algorithm has a burn-in period where it cycles through the arms (ignoring context) and pulls

each one Nλ times. Following this burn-in phase, when the algorithm is presented with context

x at time t ≤ T , the algorithm identifies two candidate arms, Jt (x ) and jt (x ), as follows. For

each arm a the contextual gap is defined as Ba,t (x ) := max
i,a

Ui,t (x ) − La,t (x ). Jt (x ) is the arm

that minimizes Ba,t (x ) and jt (x ) is the arm (excluding Jt (x )) whose upper confidence bound

is maximized. Among these two candidates, the one with the widest confidence interval is

selected. Note that quantity Ba,t (x ) upper bounds the the simple regret for corresponding

arm a and is the basis of definition of the best arm Jt (x ). We use jt (x ) = arg max
a,Jt (x )

Ua,t (x ) as

the second candidate because optimistically jt (x ) has a chance to be the best arm and it may

give more information about how bad the choice of Jt (x ) could be.

In the exploitation phase, for a given context x , the contextual gap for all time steps

in the exploration phase are evaluated. The arm with the smallest gap over the entire

exploration phase for the given context x is chosen as the best arm associated with context

x . Because there is no feedback during the exploitation phase, the algorithm moves to the

next exploitation step without modification to the learning history. The exact description is

presented in Algorithm 4.1.

During the exploitation phase, looking back at all history may be computationally

prohibitive. Thus, in practice, we just select the best arm as JT (xt ),∀t > T . As described in

the experimental section, this works well in practice. Theoretically, Nλ has to be bigger than

a certain number defined in Lemma 21, but for experimental results we keep Nλ = 1.
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IV.4.3 Comparison of Contextual-Gap and Kernel-UCB

In this section, we illustrate the difference between the policies of Kernel-UCB (which

minimizes cumulative regret) and exploration phase of Contextual-Gap (which aims to

minimize simple regret). At each time step, Contextual-Gap selects one of two arms: Jt (x ),

the arm with highest pessimistic reward estimate, or jt (x ), the arm excluding Jt (x ) with

highest optimistic reward estimate. Kernel-UCB, in contrast, selects the arm with the highest

optimistic reward estimate (i.e., with the maximum upper confidence bound).

Figure 4.3: Contextual-Gap exploration policy: case 1

Consider a three arm scenario at some time τ with context xτ . Suppose that the estimated

rewards and confidence intervals are as in Figures 4.3 and 4.4, reflecting two different cases.

• Case 1 (Figure 4.3): In this case, Kernel-UCB would pick arm 1, because it has the

maximum upper confidence bound. Kernel-UCB’s policy is designed to be optimistic

in the case of uncertainty. In the Contextual-Gap, we first calculate Jτ (xτ ) which

minimizes Ba,τ (xτ ). Note that B1,τ (xτ ) = U2,τ (xτ ) − L1,τ (xτ ) = 7 − 2 = 5, B2,τ (xτ ) = 3 and

B3,τ (xτ ) = 7. In this case, Jτ (xτ ) = 2 and hence jτ (xτ ) = 1. Finally, Contextual-Gap

would choose among arm 1 and arm 2, and would finally choose arm 1 because it has

the largest confidence interval. Hence, in case 1, Contextual-Gap chooses the same arm

as that of Kernel-UCB.

• Case 2 (Figure 4.4): In this case, Kernel-UCB would pick arm 1. Note that B1,τ (xτ ) =
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U2,τ (xτ ) − L1,τ (xτ ) = 7 − 4 = 3, B2,τ (xτ ) = 7 and B3,τ (xτ ) = 4. Then Jτ (xτ ) = 1 and hence

jτ (xτ ) = 2. Finally, Contextual-Gap chooses arm 2, because it has the widest confidence

interval. Hence, in case 2, Contextual-Gap chooses a different arm compared to that of

Kernel-UCB.

Figure 4.4: Contextual-Gap exploration policy: case 2

Clearly, the use of the lower confidence bound along with upper confidence bound allows

Contextual-Gap to explore more than kernel-UCB. However, Contextual-Gap doesn’t explore

just any arm, but rather it explores only among arms with some likelihood of being optimal.

The following section details high probability bounds on the simple regret of the Contextual-

Gap algorithm.
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Algorithm 4.1: Contextual-Gap
Input: Number of arms A, Time Steps T , parameter β , regularization parameter λ,

burn-in phase constant Nλ.

1 // Exploration Phase I: Burn-in Period //

2 for t = 1, ...,ANλ do

3 Observe context xt and choose at = t mod A

4 Receive reward rt ∈ R

5 end

6 //Exploration Phase II: Contextual-Gap Policy //

7 for t = ANλ + 1, . . . ,T do

8 Observe context xt

9 Learn reward estimators f̂a,t (xt ) and confidence interval sa,t (xt ) based on history

10 Ua,t (xt ) = f̂a,t (xt ) +
sa,t (xt )

2
, La,t (xt ) = f̂a,t (xt ) −

sa,t (xt )

2

11 Ba,t (xt ) = max
i,a

Ui,t (xt ) − La,t (xt ) , Jt (xt ) = arg min
a

Ba,t (xt ), jt (xt ) = arg max
a,Jt (xt )

Ua,t (xt )

12 Choose at = arg max
a∈{jt (xt ),Jt (xt )}

sa,t (xt )

13 Receive reward rt ∈ R

14 end

15 // Exploitation Phase //

16 for t > T do

17 Observe context xt .

18 for τ = ANλ + 1, . . . ,T do

19 Evaluate and collect Jτ (xt ),B Jτ (xt ) (xt )

20 end

21 ι = arg min
ANλ+1≤τ≤T

B Jτ (xt ),t (xt )

22 Choose Ω(xt ) = Jι (xt ).

23 end
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IV.5 Learning Theoretic Analysis

We now analyze high probability simple regret bounds which depend on the gap quantity

∆a (x ) := |max
i,a

fi (x ) − fa (x ) |. The bounds are presented in the non-i.i.d setting described in

Section IV.3. For the confidence interval to be useful, it needs to shrink to zero with high

probability over the feature space as each arm is pulled more and more. This requires the

smallest non-zero eigenvalue of the sample covariance matrix of the data for each arm to be

lower bounded by a certain value. We make an assumption that allows for such a lower bound,

and use it to prove that the confidence intervals shrink with high probability under certain

assumptions. Finally, we bound the simple regret using the result of shrinking confidence

interval, the gap quantity, and the special exploration strategy described in Algorithm 4.1.

We now make additional assumptions to the problem setting.

A I {Xt}t≥1 ⊂ Rd , is a random process on compact space endowed with a finite positive

Borel measure.

A II Kernel k : X × X → R is bounded by a constant L, the canonical feature map

ϕ : X → H of k is a continuous function, and H is separable.

We denote Et−1[·] := E[·|x1,x2, . . . ,xt−1] and by λr (A) the r th largest eigenvalue of a

compact self adjoint operator A. For a context x , the operator ϕ (x )ϕ (x )T : H → H is a

compact self-adjoint operator. Based on this notation, we make the following assumption:

A III There exists a subspace of dimension d∗ with projection P , and a constant λx > 0, such

that ∀t , λr (PTEt−1[ϕ (xt )ϕ (xt )
T ]P ) > λx for r ≤ d∗ and λr ((I −P )TEt−1[ϕ (xt )ϕ (xt )

T ](I −

P )) = 0,∀r > d∗.

Assumption A III facilitates the generalization of Bayes gap [76] to the kernel setting with

non-i.i.d, time varying contexts. It allows us to lower bound, with high probability, the
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r th eigenvalue of the cumulative second moment operator St :=
t∑

s=1

ϕ (xs )ϕ (xs )
T so that it is

possible to learn the reward behavior in the low energy directions of the context at the same

rate as the high energy ones with high probability.

We now provide a lower bound on the r th eigenvalue of a compact self-adjoint operator.

There are similar results in the setting where reward is a linear function of context, including

Lemma 2 in [91] and Lemma 7 in [92] which provides lowest eigenvalue bounds with the

assumption of linear reward and full rank covariance, and Theorem 2.2 in [93] which assumes

more structure to the contexts generated. We extend these results to the setting of a

compact self-adjoint operator scenario with data occupying a finite dimensional subspace.

LetWt :=
t∑

s=1

Es−1[(ϕ (xs )ϕ (xs )
T )2] − (Es−1[ϕ (xs )ϕ (xs )

T ])2. By construction and Assumption A

III we can show thatWt has d∗ non-zero eigenvalues (See Section IV.8).

Lemma 20 (Lower bound on r th Eigen-value of compact self-adjoint operators). Let xt ∈ X,

t ≥ 1 be generated sequentially from a random process. Assume that conditions A I-A III hold.

Let p (t ) = min(−t , 1) and ∀b ≥ 0,a >
1

6
(L2 +

√
L4 + 36b) let d̃ := 50

d∗∑
r=1

p (−
aλr (EWt )

L2b
) ≤ 50d∗.

Let

A(t ,δ ) = log
(tL4 + 1) (tL4 + 3)d̃

δ
,

and

h(t ,δ ) =
(
tλx −

L2

3

√
18tA(t ,δ ) +A(t ,δ )2) −

L2

3
A(t ,δ )

)
.

Then for any δ > 0,

λr (St ) ≥ h(t ,δ )+

holds for all t > 0 with probability at least 1 − δ . Furthermore, if L =1, r ≤ d∗ and 0 < δ ≤
1

8
,

then the event

λr (St ) ≥
tλx
2
,∀t ≥

256

λ2
x

log(
128d̃

λ2
xδ

),

holds with probability at least 1 − δ .
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Lemma 20 provides high probability lower bounds on the minimum nonzero eigenvalue of

the cumulative second moment operator St . Using the preceding lemma and the confidence

interval defined in Theorem 10, it is possible to provide high probability monotonic bounds

on the confidence interval widths sa,t (x ).

Lemma 21 (Monotonic upper bound of sa,t (xt ) ). Consider a contextual bandit simple regret

minimization problem with assumptions A I-A III and fix T . Assume ‖ϕ (x )‖ ≤ 1, λ > 0 and

∀a ∈ [A], Na,t > Nλ := max
(2(1 − λ)

λx
,d∗,

256

λ2
x

log(
128d̃

λ2
xδ

)
)
. Then, for any 0 < δ ≤

1

8
,

sa,t (xt )
2 ≤ дa,t (Na,t )

with probability at least 1 − δ , for the monotonically decreasing function дa,t defined as

дa,t (Na,t ) := 8(C1β +C2)
2
( 1

λ + Na,tλx/2

)
.

The condition Na,t > Nλ results in a minimum number of tries that arm a has to be

selected before any bound will hold. In Nλ := max
(2(1 − λ)

λx
,d∗,

256

λ2
x

log(
128d̃

λ2
xδ

)
)
, the first and

third term in the max are needed so that we can give concentration bounds on eigenvalues

and prove that the confidence width shrinks. The second term is needed because one has to

get at least d∗ contexts for every arm so that at least some energy is added to the lowest

eigenvalues.

These high probability monotonic upper bounds on the confidence estimate can be used

to upper bound the simple regret. The upper bound depends on a context-based hardness

quantity defined for each arm a (similar to [76]) as

Ha,ϵ (x ) = max(
1

2
(∆a (x ) + ϵ ), ϵ ). (4.4)

Denote its lowest value as Ha,ϵ := inf
x∈X

Ha,ϵ (x ). Let total hardness be defined as Hϵ :=
∑
a∈[A]

H−2
a,ϵ
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(Note that Hϵ ≤
A

ϵ2
). The recommended arm after time t ≥ T is defined as

Ω(x ) = Jarg minANλ+1≤τ ≤T
B Jτ (xt ),t (xt )

(xt )

from Algorithm 4.1. We now upper bound the simple regret as follows:

Theorem 11. Consider a contextual bandit problem as defined in Section IV.3 with as-

sumptions A I-A III. For 0 < δ ≤
1

8
, ϵ > 0 and Nλ := max

(2(1 − λ)

λx
,d∗,

256

λ2
x

log(
128d̃

λ2
xδ

)
)
,

let

β =

√
λx (T − Nλ (A − 1)) + 2Aλ

16C2
1Hϵ

−
C2

C1
. (4.5)

For all t > T and ϵ > 0,

P(RΩ(xt ) (xt ) < ϵ |xt ) ≥ 1 −A(T −ANλ)e
−β2
−Aδ . (4.6)

Note that the term C2 in (4.5) grows logarithmically in T (see Section IV.8). For β to

be positive, T should be greater than
16HϵC

2
2 − 2Aλ

λx
+ Nλ (A − 1). We compare the term

e−β
2
in our bound with the uniform sampling technique in [74] which leads to a bound that

decay like Ce−cT
2

(d1+d )
≥ Ce−cT

2
(2+d ) , where d1 ≥ 2, d is the context dimension, and C and c

are constants. In our case, the decay rate has the form C′Te−c
′T for constants C′, c′. Clearly,

our bound is superior for ∀d ≥ 1. We can also compare Theorem 11 with Bayes Gap [76]

and UGapEb [26] which provide simple regret guarantees in the multi-armed bandit setting.

Bayes Gap and UGapEb have regret bounds of order O (ATe−
T−A
Hϵ ) and we provide bounds

of order O (A(T − ANλ)e
−
T−ANλ

Hϵ ). Ignoring other constants, our method has the additional

term Nλ which is required because algorithm needs to see enough number of contexts to get

information about context space and to become confident in the reward estimates in that

context space. The simple regret bound is also dependent on the gap between the arms. A

larger gap quantity ∆a implies a larger Ha,ϵ which implies that quantity e−
1
Hϵ is small. This
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means that a larger gap quantity leads to a faster rate.

Note that there are two choices for simple regret analysis: 1) bounding the simple regret

uniformly (Theorem 11) and 2) average simple regret
(∑
t>T

RΩ(xt ) (xt )
)
. We bound the simple

regret uniformly and it may require stronger distributional assumptions (e.g. Assumption

A III ) compared to average simple regret. Furthermore, we provide uniform bounds and

not average simple regret bounds since our problem setting of simple regret minimization

and the motivating application require performance guarantees for every time step during

exploitation, as opposed to average simple regret guarantees.

IV.6 Experimental Results and Discussion

We present results from two different experimental setups, first is synthetic data, and second

from a lab generated non-i.i.d. spacecraft magnetic field as described in the motivation Section.

Cross validation was performed to minimize average simple regret for the exploitation phase

while training with the exploration phase, both from the cross validation dataset. The

value of T selected in both the cross validation and evaluation datasets were of similar

magnitude. Evaluation of the algorithm for average simple regret behavior is performed with

the evaluation dataset.

We present average simple regret comparisons of the Contextual-Gap algorithm against

four baselines:

1. Uniform Sampling: We equally divide the exploration budget T among arms and learn

a reward estimating function fa : X → R for each of the arm during the exploration

phase. During the exploitation phase, we select the best arm based on estimated reward

function fa.
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2. Epsilon Greedy: At every step, we select the best arm (according to estimated fa ) with

probability 1 − ϵt and other arms with probability ϵt . We use ϵt = 0.99t , where t is the

time step.

3. Kernel-UCB: We implement kernel-UCB from [24] for both exploration and exploitation.

4. Kernel-UCB-Mod: We implement kernel-UCB from [24] for exploration but use best

arm based on estimated reward function fa for exploitation.

5. Kernel-TS: We use kernelized version of Thompson Sampling from [94].

For all the algorithms, we use the Gaussian kernel. The algorithm was implemented with

the best arm chosen with a history of one i.e., Ω(xt ) = JT (xt ). For speed and scalability in

implementation, the kernel inverse for arm a, (Ka,t + λIa,t )
−1 and the kernel vector ka,t (x )

updates were implemented as rank one updates. To tune kernel bandwidth and regularization

parameters, we use following procedure: The dataset was split into two parts for hold-out

(HO) and evaluation (EV). Each part was further split into two phases: exploration and

exploitation. The value of T selected in both the hold-out and evaluation datasets were

of similar magnitude. On the hold-out dataset, a grid search was used to set the tuning

parameters by optimizing the average simple regret of the exploitation phase. The tuned

parameters were used with the evaluation datasets to generate the plots. The code is available

online to reproduce all results 3. As our implementation performs rank one updates of the

kernel matrix and its inverse, our algorithm has O (T 2) as both computational and memory

complexity in the worst case scenario, where T is the length of the exploration phase.

The exploration parameter α := C1β +C2 is set to 1 for the results in this section and we

show results for different values of α in Sharma et. al. (2018) [95] and [96].

The algorithm was implemented with the best arm chosen with a history of one i.e.,
3The code to reproduce our results is available at https://github.com/aniketde/ContextualGap
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Ω(xt ) = JT (xt ). For speed and scalability in implementation, the kernel inverse for arm a,

(Ka,t + λINa,t )
−1 and the kernel vector ka,t (x ) updates were implemented as rank one updates.

To tune kernel bandwidth and regularization parameters, we use following procedure: The

dataset was split into two parts for hold-out (HO) and evaluation (EV). Each part was further

split into two phases: exploration and exploitation. The value of T selected in both the

hold-out and evaluation datasets were of similar magnitude. On the hold-out dataset, a grid

search was used to set the tuning parameters by optimizing the average simple regret of the

exploitation phase. The tuned parameters were used with the evaluation datasets to generate

the plots. The code is available online to reproduce all results . As our implementation

performs rank one updates of the kernel matrix and its inverse, our algorithm has O (T 2) as

both computational and memory complexity in the worst case scenario, where T is the length

of the exploration phase.

IV.6.1 Synthetic Dataset

We present results of contextual simple regret minimization for synthetic dataset. At every

time step, we observe a one dimensional feature vector xt ∼ U [0, 2π ], where U is a uniform

distribution. There are 20 arms and reward for each arm a is ra,t = sin(a ∗ xt ), where

a = [1, 2..., 20]. The arm with the highest reward at time t is the best arm. At every time

step, we only observe the reward for the arm that the algorithm selects.

Since the dataset is i.i.d. in nature, multiple simple regret evaluations are performed

by shuffling the evaluation dataset, and the average curves are reported. Note that the

algorithms have been cross validated for simple regret minimization. The plots are generated

by varying the length of the exploration phase and keeping the exploitation dataset constant

for evaluation of simple regret. It can be seen that the simple regret of the Contextual-Gap

converges faster than the simple regret of other baselines.
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Figure 4.5: Average Simple Regret Evaluation on Synthetic Dataset

IV.6.2 Experimental Spacecraft Magnetic Field Dataset

We present the experimental setup and results associated with a lab generated, realistic

spacecraft magnetic field dataset with non-i.i.d. contexts. In spacecraft magnetic field data,

we are interested in identifying the least noisy sensor for every time step (see Section 2).

Figure 4.6: Average Simple Regret Evaluation on Spacecraft Magnetic Field Dataset

The dataset was generated with contexts xt consisting of measured variables associated

with the electrical behavior of the GRIFEX spacecraft [97, 98], and reward is the negative of
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the magnitude of the sensor noise measured at every time step.

Data were collected using 3 sensors (arms), and sensor readings were downloaded for all

three sensors at all times steps, although the algorithm does not know these in advance and

must select one sensor at each time step. The context information was used in conjunction

with a realistic simulator to generate spacecraft magnetic field, and hence a realistic model of

sensor noise, as a function of context. The true magnetic field was computed using models of

the earth’s magnetic field.

Figure 4.7: Histogram of Arm Selection during exploration

Histogram of number times the best, second best and third best arms are selected during

exploration is shown in Figure 4.7. As expected, algorithms designed to minimize cumulative

regret focus on the best arm more and Contextual-Gap explores best and second best arms.

The contextual gap algorithm presented is a solution to simple regret minimization, and

not average simple regret minimization. Hence,we present the worst case simple regret among

all the data present in the exploitation phase as additional empirical evidence of simple regret

minimization ( Figure 4.8).

Figure 4.6 shows the average simple regret minimization curves for the spacecraft data-set

and even in this case Contextual-Gap converges faster compared to other algorithm. From

the results above and additional experimental results in Sharma et. al. (2018) [95], one can

conclude that Contextual-Gap has advtantage only if top best arms are closer to each other.

In the case when best and second best are very far from each other, exploring second best

does not give any additional advantage.
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Figure 4.8: Worst Case Simple Regret Evaluation on Spacecraft Magnetic Field Dataset
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IV.7 Conclusion

In this work, we present a novel problem: that of simple regret minimization in the contextual

bandit setting. We propose the Contextual-Gap algorithm, give a regret bound for the simple

regret, and show empirical results on lab-based spacecraft magnetometer dataset. It can be

seen that in this scenario persistent and efficient exploration of the best and second best arms

with the Contextual-Gap algorithm provides improved results compared against algorithms

designed to optimize cumulative regret.

IV.8 Proofs

IV.8.1 Probabilistic Setting and Martingale Lemma

For the theoretical results, the following general probabilistic framework is adopted, following

[18] and [90]. We formalize the notion of history Ht defined in the Section 3 of the chapter using

filtration. A filtration is a sequence of σ -algebras {Ft}∞t=1 such that F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · ·.

Let {Ft}∞t=1 be a filtration such that xt is Ft−1 measurable, and ζt is Ft measurable. For example,

one may take Ft := σ (x1,x2, · · · ,xt+1, ζ1, ζ2, · · · , ζt ), i.e., Ft is the σ−algebra generated by

x1,x2, · · · ,xt+1, ζ1, ζ2, · · · , ζt .

We assume that ζt is a zero mean, ρ-conditionally sub-Gaussian random variable, i.e., ζt

is such that for some ρ > 0 and ∀γ ∈ R,

E[eγζt |Ft−1] ≤ exp

(
γ 2ρ2

2

)
. (4.7)

Definition IV.1 (Definition 4.11 in [99]). Let (Σ,F , Pr ) be a probability space with filtration
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F0,F1, . . .. Suppose that Z0,Z1, . . . are random variables such that for all i > 0, Zi is Fi

measurable. The sequence Z0,Z1, . . . is a martingale provided for all i ≥ 0,

E[Zi+1 |Fi ] = Zi .

Lemma 22 (Theorem 4.12 in [99]). Any subsequence of a martingale is also a martingale

(relative to the corresponding subsequence of the underlying filter).

The above Lemma is important because we construct confidence intervals for each arm

separately. Note that we define a subset of time indices ( Da,t of each arm a), when the

arm a was selected. Based on these indices we can form sub-sequences of the main context

{xt}∞t=1 and noise sequence {ζt}∞t=1 such that the assumptions on the main sequence hold for

subsequences.

IV.8.1.1 Proof of Theorem 10

Theorem 4.1 is a slight modification of Theorem 2.1 in [90]. In the contextual bandit setting

in [90], for any δ ∈ (0, 1], Theorem 2.1 in [90] establishes that with probability at least 1 − δ ,

it holds simultaneously over all x ∈ X and t ≥ 0,

| fa (x ) − f̂a,t (x ) | ≤
σ̂a,t (x )
√
λ



√
λ‖ fa‖H + ρ

√
2 ln(1/δ ) + 2γt (λ)


,

where γt (λ) =
1

2

t∑
τ=1

ln(1 +
1

λ
σ̂a,τ−1(xτ ))

For T ≥ t , one can replace t in the log terms with T . Then ∀x ,∀t ≥ 1, we have

1 − δ ≤ P*
,
| fa (x ) − f̂a,t (x ) | ≤

σ̂a,t (x )
√
λ

[√
λ‖ fa‖H + ρ

√
2 ln(1/δ ) + 2γT (λ)

]
+
-
.
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Let δ = e−β
2
. In that case,

1 − e−β
2
≤ P*

,
| fa (x ) − f̂a,t (x ) | ≤

σ̂a,t (x )
√
λ

[√
λ‖ fa‖H + ρ

√
2β2 + 2γT (λ)

]
+
-
.

Using triangle inequality
√
p + q ≤

√
p +
√
q for any p,q ≥ 0,

1 − e−β
2
≤ P*

,
| fa (x ) − f̂a,t (x ) | ≤

σ̂a,t (x )
√
λ

[√
λ‖ fa‖H + ρ

√
2β2 + ρ

√
2γT (λ)

]
+
-
.

Let C1 = ρ
√

2 and C2 =
√
λ‖ fa‖H + ρ

√
2γT (λ). Hence, we have

1 − e−β
2
≤ P*

,
| fa (x ) − f̂a,t (x ) | ≤

σ̂a,t (x )
√
λ

[C1β +C2]+
-
.

IV.8.2 Lower Bound on r th Eigenvalue

First we state the Lemmas that we use to prove Lemma 20.

Lemma 23 (Lemma 9 in [92]). If a > 0,b > 0,ab ≥ e, then for all t ≥ 2a log(ab),

t ≥ a log(bt ). (4.8)

Lemma 24 (Lemma 1.1 in [68]). Let A ∈ Rn×n be a symmetric positive definite matrix

partitioned according to

A =



A11 A12

AT
12 A22



,

where A11 ∈ R(n−1)×(n−1),A12 ∈ R(n−1) and A22 ∈ R1. Then det(A) = det(A11) (A22 −

AT
12A

−1
11A12).
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Lemma 25 (Special case of extended Horn’s inequality (Theorem 4.5 of [100])). Let A,B be

compact self-adjoint operators. Then for any p ≥ 1,

λp (A + B) ≤ λ1(A) + λp (B). (4.9)

Theorem 12 (Freedman’s inequality for self adjoint operators, Thm 3.2 & section 3.2 in [101]).

Let {Φt}t=1,... be a sequence of self-adjoint Hilbert Schmidt operators Φt : H → H acting on

a seperable Hilbert space ( EΦ is a operator such that 〈(EΦ)z1, z2〉H = E〈Φz1, z2〉H for any

z1, z2 ∈ H ). Additionally, assume that {Φt}t=1,... is a martingale difference sequence of self

adjoint operators such that ‖Φt ‖ ≤ L2 almost surely for all 1 ≤ t ≤ T and some positive L ∈ R.

Denote byWt =

t∑
s=1

Es−1[Φ2
s ] and p (t ) = min(−t , 1) . Then for any a ≥

1

6
(L2+

√
L4 + 36b),b ≥ 0,

P
*.
,
‖

t∑
j=1

Φj ‖ > a and λ1(Wt ) ≤ b+/
-
≤ d̃ · exp

(
−

a2/2

b + aL2/3

)
,

where ‖ · ‖ is the operator norm and d̃ := 50
∞∑
r=1

(p (−
aλr (EWt )

L2b
)).

Note that d̃ is a function of t but it’s upper bounded by d∗ which is the rank of

Es−1[ϕ (x )ϕ (x )T ].

IV.8.2.1 Proof of Lemma 20

Lemma 7 in [92] gives the lower bound on minimum eigenvalue (finite dimensional case)

when reward depends linearly on context. We extend it to r th largest eigenvalue (infinite

dimensional case) and the case when reward depends non-linearly on context.

Proof. X ⊂ Rd is a compact space endowed with a finite positive Borel measure. For a

continuous kernel k the canonical feature map ϕ is a continuous function ϕ : X → H , where
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H is a separable Hilbert space (See section 2 of [102] for a construction such that H is

separable). In such a setting, ϕ (X) is also compact space with a finite positive Borel measure

[102]. We now define a few terms on ϕ (X).

Define the random variable Φt := Et−1[ϕ (xt )ϕ (xt )
T ] − ϕ (xt )ϕ (xt )

T . Let Zt :=
t∑

s=1

Φs =

t∑
s=1

Es−1[ϕ (xt )ϕ (xt )
T ] − St = Vt − St .

By construction, {Zt}t=1,2,... is a martingale and {Φs}s=1,2,... is the martingale difference

sequence. Notice that λ1(Φt ) ≤ L2. To use the Freedman’s inequality, we lower bound

the operator norm of Zt , ‖Zt ‖ and upper bound the largest eigenvalue of Wt , λ1(Wt ). Let

ν (A) = max
i
|λi (A) | be the spectral radius of operator A. We work with the spectral radius

because it is not necessary that Zt is a positive definite operator. It is well known that

ν (A) ≤ ‖A‖. (4.10)

By assumption A III, Es−1[ϕ (x )ϕ (x )T ] lies in a fixed d∗ dimensional subspace with

its eigenvalues λr (Es−1[ϕ (x )ϕ (x )T ]) > λx for r ≤ d∗. Thus, for Vt =
t∑

s=1

Es−1[ϕ (x )ϕ (x )T ],

λr (Vt ) ≥ tλx .

Bound on ‖Zt ‖ : By definition, Vt = Zt + St . Hence, λr (Vt ) ≤ λ1(Zt ) + λr (St ) by using

Horn’s inequality (Lemma 25).

λ1(Zt ) ≥ λr (Vt ) − λr (St )

λ1(Zt ) ≥ tλx − λr (St )

ν (Zt ) ≥ tλx − λr (St ),

where the second step is due to A III and the third step is by definition of spectral radius.
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By Eqn. (4.10), we have

‖Zt ‖ ≥ tλx − λr (St ). (4.11)

Bound on λ1(Wt ) : To bound the term λ1(Wt ), write

Wt =

t∑
s=1

Es−1[Φ2
s ]

=

t∑
s=1

Es−1[(Es−1[ϕ (xs )ϕ (xs )
T ] − ϕ (xs )ϕ (xs )

T )2].

By using square expansion,

Wt =

t∑
s=1

Es−1[(Es−1[ϕ (xs )ϕ (xs )
T ]2 + (ϕ (xs )ϕ (xs )

T )2

−Es−1[ϕ (xs )ϕ (xs )
T ](ϕ (xs )ϕ (xs )

T )

−(ϕ (xs )ϕ (xs )
T )Es−1[ϕ (xs )ϕ (xs )

T ]]

=

t∑
s=1

Es−1[(ϕ (xs )ϕ (xs )
T )2] − Es−1[ϕ (xs )ϕ (xs )

T ]2.

Taking norm on both sides,

‖Wt ‖ = ‖

t∑
s=1

Es−1[(ϕ (xs )ϕ (xs )
T )2] − Es−1[ϕ (xs )ϕ (xs )

T ]2‖.

As both terms on the right hand side are positive semi-definite matrices,

‖Wt ‖ ≤ ‖

t∑
s=1

Es−1[(ϕ (xs )ϕ (xs )
T )2]‖.

118



Next, we use convexity properties of norms to get the upper bound.

‖Wt ‖ ≤

t∑
s=1

‖Es−1[(ϕ (xs )ϕ (xs )
T )2]‖

=

t∑
s=1

‖Es−1[(ϕ (xs )
(
ϕ (xs )

Tϕ (xs )
)
ϕ (xs )

T )]‖

≤ L2
t∑

s=1

‖Es−1[(ϕ (xs )ϕ (xs )
T )]‖

≤ L2
t∑

s=1

Es−1[‖ (ϕ (xs )ϕ (xs )
T )‖]

where the first step is due to the triangle inequality and the third step is due to the upper

bound ‖ϕ (x )‖ ≤ L, the fourth step is due to the convexity of the operator norm and Jensen’s

inequality. Using the properties of Hilbert Schmidt operators, we can write

Es−1[‖ (ϕ (xs )ϕ (xs )
T )‖] ≤ Es−1[‖ (ϕ (xs )ϕ (xs )

T )‖HS ]

= Es−1[‖ϕ (xs )‖
2] ≤ L2

Therefore, we can bound the norm ‖Wt ‖ as

‖Wt ‖ ≤ L2
t∑

s=1

L2

= tL4,

Again, by using Eqn. (4.10), we have

λ1(Wt ) ≤ tL4. (4.12)
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Now, we shall construct a parameter A such that

a2/2

b + aL2/3
≥ A. (4.13)

For this inequality to hold, one can see, by its quadratic solution, a ≥ f (A,b) :=
1

3
AL2 +√

1

9
A2L4 + 2Ab. Note that for A > 1, the condition of a ≥ f (A,b) also satisfies the conditions

of Friedman’s inequality in Theorem 12.

Let A(m,δ ) = log
(m + 1) (m + 3)

δ
and P be the probability of event

[
∃t : λr (St ) ≤ tλx −

f (A(tL4,δ ), tL4)
]
.

P

= P

[
∃t : λr (St ) ≤ tλx − f (A(tL4,δ ), tL4)

]
(4.14)

≤ P

[
∃t : λr (St ) ≤ tλx

−f (A(λ1(Wt ),δ ), λ1(Wt ))
]

(4.15)

≤

∞∑
m=0

P

[
∃t : λr (St ) ≤ tλx

−f (A(m,δ ),m), λ1(Wt ) ≤ m
]

(4.16)

≤

∞∑
m=0

P

[
∃t : ‖Zt ‖ ≥ f (A(m,δ ),m),

λ1(Wt ) ≤ m
]

(4.17)

≤ d̃
∞∑

m=0

exp (−A(m,δ )) (4.18)

= d̃
∞∑

m=0

δ

(m + 1) (m + 3)

≤ d̃ · δ , (4.19)

where (4.15) is because A is increasing in m, f is increasing in A,b, and Eqn. (4.12). Eqn.

(4.16) is by application of the union bound over all the events for which λ1(Wt ) ≤ m. Also,
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Eqn. (4.17) is due to Eqn. (4.11) and Eqn. (4.18) is due to Theorem 12.

The result is obtained by replacing δ by
δ

d̃
.

For the second part. Let λ̃x :=
λx
L
. By definition of L, λ̃x ≤ 1. Let t ≥

256

λ̃2
x

log
128d̃

λ̃2
xδ

. Then

by using the Lemma 23,

t ≥
128

λ̃2
x

log
td̃

δ
. (4.20)

Rearranging the terms, we get
tλ̃2

x

4
≥ 32 log

td̃

δ

Taking square root and then multiplying by
√
t on both sides

tλ̃x
2
≥

√
32t log

td̃

δ

=
2

3

√
72t log

td̃

δ

=
2

3

√
36t log

td̃

δ
+ 36t log

td̃

δ
.

Using equation (4.20),

tλ̃x
2
≥

2

3

√
36t log

td̃

δ
+

36 · 128

λ̃2
x

(
log

td̃

δ

)2

=
2

3

√
36t log

td̃

δ
+

36 · 32

λ̃2
x

4
(

log
td̃

δ

)2

.

Since λ̃2
x ≤ 1 we have

tλ̃x
2
≥

2

3

√
36t log

td̃

δ
+ (36 · 32)

(
2 log

td̃

δ

)2

>
2

3

√
18t · 2 log

td̃

δ
+

(
2 log

td̃

δ

)2

. (4.21)
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Now we use the condition on δ as stated in the Theorem statement: 0 ≤ δ ≤
1

8
. We can

see that
1

8
≤

t2d̃2

(t + 1) (t + 3)
, (4.22)

because
t2d̃2

(t + 1) (t + 3)
is a monotonically increasing function for both t , d̃ for t , d̃ ≥ 1. Simpli-

fying Eqn. (4.22), we get
t2d̃2

δ2
≥

(t + 1) (t + 3)

δ
. (4.23)

Taking log of both sides,

2 log
td̃

δ
≥ log(

(t + 1) (t + 3)

δ
) = A(t ,δ ).

Without loss of generality, we will assume that L = 1. From Eqn. (4.23) and Eqn. (4.21),

we have

tλx
2
≥

2

3

√
18t · A(t ,δ ) +A(t ,δ )2

=
1

3

√
18t · A(t ,δ ) +A(t ,δ )2

+
1

3

√
18t · A(t ,δ ) +A(t ,δ )2

≥
1

3

√
18t · A(t ,δ ) +A(t ,δ )2 +

1

3
A(t ,δ )

Therefore,
tλx
2
≥ f (A(t ,δ ), t ). (4.24)

Equations (4.14) and (4.24) complete the proof. �
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IV.8.3 Monotonic Upper bound of sa,t (x )

Lemma 26. [ Arithmetic Mean-Geometric Mean Inequality [72]] For every sequence of

nonnegative real numbers a1,a2, ...an one has

(
n∏
i=1

ai )
1/n ≤

∑
i=1 ai
n

with equality if and only if a1 = a2 = ... = an.

Lemma 27. If λ1 ≥ λ2 ≥ · · · ≥ λd > 0, and µ1 ≥ 0, µ2 ≥ 0 · · · µd ≥ 0 such that
∑
j

µj = L and

λd ≥ L then
d∏
i=1

(
1 +

µi
λi

)
− 1 ≤

2L

λd
.

Proof. By replacing each λi with the smallest element λd we get,

d∏
i=1

(
1 +

µi
λi

)
− 1 ≤

d∏
i=1

(
1 +

µi
λd

)
− 1

=

d∏
i=1

(
λd + µi
λd

)
− 1

=

(∏d
i=1(λd + µi )

λd
d

)
− 1

≤

(∑d
i=1(λd + µi )

dλd

)d
− 1

=

(
dλd + L

dλd

)d
− 1

=

(
1 +

L

dλd

)d
− 1

≤ eL/λd − 1,

where the fourth inequality is by Lemma 26 and last inequality holds because (1 +
a

x
)x

approaches ea as x → ∞ and (1 +
a

x
)x is a monotonically increasing function of x .
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By ex ≤ 1 + 2x for x ∈ [0, 1] and the assumption that λd ≥ L,

d∏
i=1

(
1 +

µi
λi

)
− 1 ≤ eL/λd − 1

≤ 1 +
2L

λd
− 1

=
2L

λd
.

�

IV.8.3.1 Proof of Lemma 21

Proof. We will assume that L = 1. We write

Ka,t+1 + λIa,t+1 =



Ka,t + λIa,t ka,t (x )

ka,t (x )
T k (x ,x ) + λ



.

Let µi = λi (Ka,t+1 + λIa,t+1 ) − λi (Ka,t + λIa,t ).

Using Lemma 24,

det(Ka,t+1 + λIa,t+1 )

= det(Ka,t + λIa,t )
(
k (x ,x ) + λ

−ka,t (x )
T (Ka,t + λIa,t )

−1ka,t (x )
)
.

Rearranging,

k (x ,x ) − ka,t (x )
T (Ka,t + λIa,t )

−1ka,t (x )
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=
det(Ka,t+1 + λIa,t+1 )

det(Ka,t + λIa,t )
− λ.

Dividing both sides by λ,

k (x ,x ) − ka,t (x )
T (Ka,t + λIa,t )

−1ka,t (x )

λ

=
det(Ka,t+1 + λIa,t+1 )

λ det(Ka,t + λIa,t )
− 1. (4.25)

Notice that the left hand side is equal to
σ̂a,t (x )

λ
. Using the definitions of sa,t (x ) and σ̂a,t (x ),

we can write,

sa,t (x )
2 = 4(C1β +C2)

2 σ̂a,t (x )
2

λ

= 4(C1β +C2)
2
(det(Ka,t+1 + λIa,t+1)

λ det(Ka,t + λIa,t )
− 1

)
= 4(C1β +C2)

2
(∏Na,t+1

i=1 λi,a,t+1

λ
∏Na,t

i=1 λi,a,t
− 1

)

By assumption in the statement of the Lemma, Na,t ≥ d∗. Hence, all eigenvalues above d∗ are

λ.

By replacing all eigenvalues λi,a,τ by λ for τ = {t , t + 1} and i > d∗, we get

sa,t (x )
2 = 4(C1β +C2)

2
( d∗∏
i=1

λi,a,t+1

λi,a,t
− 1

)
.

Note that λi,a,t+1 = λi,a,t + µi . By replacing λi,a,t+1, we get

sa,t (x )
2 = 4(C1β +C2)

2
( d∗∏
i=1

λi,a,t + µi
λi,a,t

− 1
)

= 4(C1β +C2)
2*

,

d∗∏
i=1

(
1 +

µi
λi,a,t

)
− 1+

-

≤ 4(C1β +C2)
2*

,
1 +

2L

λd∗,a,t
− 1+

-
,
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where the third inequality is due to Lemma 27.

For L = 1,

sa,t (x )
2 ≤ 4(C1β +C2)

2*
,
1 +

2

λd∗,a,t
− 1+

-

= 4(C1β +C2)
2*

,

2

λd∗,a,t
+
-
.

Note that λd∗,a,t = λd∗ (Ka,t+1 + λIa,t+1 ) = λd∗ (Ka,t+1) + λ. By Lemma 20, λd∗ (Ka,t+1) ≥ Na,tλx .

We can apply Lemma 27 only when

1

λ + Na,tλx/2
< 1

or

Na,t >
2(1 − λ)

λx
.

The assumption in the statement of the lemma satisfies the above equation. Hence, we

have

sa,t (x )
2 ≤ 4(C1β +C2)

2*
,

2

λ + Na,tλx/2
+
-

= 8(C1β +C2)
2*

,

1

λ + Na,tλx/2
+
-

= дa,t (Na,t ).

This concludes the proof. �
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IV.8.3.2 Closed form of д−1
a,t (s )

Now we calculate a closed form expression of Na,t . Setting the upper bound on confidence in

the Theorem 10 to s, we calculate the inverse in terms of Na,t ,

8(C1β +C2)
2*

,

1

λ + Na,tλx/2
+
-
= s2.

Rearranging all the terms, we get

8(C1β +C2)
2 = s2(λ + Na,tλx/2)

(λ + Na,tλx/2) =
8(C1β +C2)

2

s2

Na,t =
16(C1β +C2)

2

s2λx
−

2λ

λx
.

Define

д−1
a,t (s ) =

16(C1β +C2)
2

s2λx
−

2λ

λx
. (4.26)

IV.8.4 Simple Regret Analysis

Lemma 28 (Value of β). Assume the conditions in Theorem 10 and Lemma 21. If∑
a∈[A]

д−1
a,t (Haϵ ) = T − Nλ (A − 1), then

β =

√
λx (T − Nλ (A − 1)) + 2Aλ

16C2
1Hϵ

−
C2

C1
. (4.27)

Proof. We have

∑
a∈[A]

д−1
a,t (Haϵ ) = T − Nλ (A − 1).
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By using Eqn. (4.26),

∑
a∈[A]

16(C1β +C2)
2

H2
aϵλx

−
2λ

λx
= T − Nλ (A − 1)

16(C1β +C2)
2

λx

∑
a∈[A]

1

H2
aϵ

−
2Aλ

λx
= T − Nλ (A − 1).

By using definition of Hϵ ,

16(C1β +C2)
2Hϵ

λx
−

2Aλ

λx
= T − Nλ (A − 1)

Rearranging the terms,

16(C1β +C2)
2Hϵ = λx (T − Nλ (A − 1)) + 2Aλ

(C1β +C2)
2 =

λx (T − Nλ (A − 1)) + 2Aλ

16Hϵ

β =

√
λx (T − Nλ (A − 1)) + 2Aλ

16C2
1Hϵ

−
C2

C1
.

�

IV.8.4.1 Proof of Theorem 11

Let [A] = {1, ...,A}. We define a feasible set A′(x ) ⊆ [A] such that elements of A′(x ) contain

possible set of arms that may be pulled if context x was observed at all times ANλ < t ≤ T .

The set A′(x ) is used to discount the arms that will never be pulled with context x .

Proof. The proof broadly follows the same structure presented in Theorem 2 of [76]. We will

provide the simple regret bound at the recommendation of time T + 1, since the algorithm

operates in a pure exploitation setting, the recommended arm ΩT+2 will follow the same
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properties.

Fix x ∈ X such that x can be generated from the filtration. We define the event Ea,t (x )

to be the event in which for arm a ≤ A, fa (x ) lies between the upper and lower confidence

bounds given x1,x2, ...,xt−1 More precisely,

Ea,t (x ) = {La,t (xt ) ≤ fa (x ) ≤ Ua,t (x ) |x1,x2, · · · ,xt−1}.

For events Ea,t , from Theorem 10,

P(Ea,t (x )) ≥ 1 − e−β
2
.

Let Na,T denote the number of times each arm has been tried upto time T . Clearly
A∑

a=1

Na,T = T . Also, note that we try each arm at least Nλ number of times before we run our

algorithm. We define event E as E :=
⋃

a≤A,ANλ<t≤T

Ea,t (x ). By the union bound we can show

that

P(E) ≥ 1 −A(T −ANλ)e
−β2
.

The next part of the proof works by contradiction.

Let ϵ > 0. The recommended arm at the end of time T for context x is defined as follows:

let t∗ := arg min
ANλ<t≤T

B Jt (x ),t (x ) then the recommended arm is Ω := ΩT+1 := Jt∗ (x ).

Conditioned on event E, we will assume that the event RΩ (x ) > ϵ is true and arrive at

a contradiction with high probability. Note that if RΩ (x ) > ϵ, the recommended arm Ω is

necessarily sub-optimal (regret is zero for the optimal arm).

Define Ma,T (x ) as number of times arm a ∈ [A] would be selected in ANλ < t ≤ T , if we
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had seen context x at all those times. Hence,
∑

a∈A′(x )

Ma,T (x ) = T − ANλ . Also, note that

Na,T (x ) = Ma,T (x ) + Nλ for a ∈ A′(x ) and Na,T (x ) = Nλ otherwise. Let ta = ta (x ) be the last

time instant for which arm a ∈ A′(x ) may have been selected using the Contextual-Gap

algorithm if context x was observed throughout.

The following holds for the recommended arm Ω with context x :

min(0, sa,ta (x ) − ∆a (x )) + sa,ta (x ) ≥ B Jta (x ),ta (x )

≥ BΩ,T+1(x )

≥ RΩ (x )

> ϵ .

Where the first inequality holds due to Lemma 31, the second inequality holds by definition

of BΩ,T+1, the third inequality holds due to Lemma 29 and the last inequality holds due to

the event RΩ > ϵ . The preceding inequality can also be written as

sa,ta (x ) > 2sa,ta (x ) − ∆a (x ) > ϵ, if ∆a (x ) > sa,ta (x ).

2sa,ta (x ) − ∆a (x ) > sa,ta (x ) > ϵ, if ∆a (x ) < sa,ta (x ).

This leads to the following bound on the confidence diameter of a ∈ [A],

sa,ta (x ) > max(
1

2
(∆a (x ) + ϵ ), ϵ ) =: Haϵ (x ).

For any arm a, we consider the final number of arm pulls Ma,T (x ) + Nλ. From Lemma 21 we

can write, using the strict monotonicity and there by invertibility of дa,T , with probability at

least 1 − δ as
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Ma,T (x ) + Nλ ≤ д
−1
a,T (sa,ta (x ))

< д−1
a,T (Haϵ (x ))

≤ д−1
a,T (Haϵ ),

where Haϵ = inf
x
Haϵ (x ). Last two equations hold as дa,T is a monotonically decreasing

function. By summing both sides with respect to a ∈ A′(x ) we can write

T −ANλ + |A
′(x ) |Nλ <

∑
a∈A′(x )

д−1
a,T (Haϵ ),

We can make RHS even bigger by adding terms a ∈ [A]\A′(x ). Hence, we get

T − (A − |A′(x ) |)Nλ <
∑
a∈[A]

д−1
a,T (Haϵ ).

We can make LHS even smaller by noting that minimum value of |A′(x ) | is one.

T −ANλ + Nλ <
∑
a∈[A]

д−1
a,T (Haϵ ).

Rearranging the terms, we get

T −ANλ + Nλ <
∑
a∈[A]

д−1
a,T (Haϵ )

T − Nλ (A − 1) <
∑
a∈[A]

д−1
a,T (Haϵ ).

which contradicts our definition of дa,T in the theorem statement. Therefore RΩT (x ) ≤ ϵ .

From the preceding argument we have that if
∑
a∈[A]

д−1
a,T (Haϵ ) ≤ T − Nλ (A − 1), then for any

x ∈ X generated from the filtration,
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P(RΩT < ϵ |x ) ≥ 1 −A(T −ANλ)e
−β2
−Aδ .

In the above equation, 1 −A(T −ANλ)e
−β2

is from the event E and 1 −Aδ is due to the

fact that the monotonic upper bounds holds only with probability 1 − δ for each of the arms.

Setting β such that
∑
a∈[A]

д−1
a,T (Haϵ ) = T − Nλ (A − 1) (See Lemma 28), we have for

β =

√
λx (T − Nλ (A − 1)) + 2Aλ

16C2
1Hϵ

−
C2

C1
,

that

P(RΩT < ϵ |x ) ≥ 1 −A(T −ANλ)e
−β2
−Aδ ,

for C1 = ρ
√

2 and C2 = ρ

√√√
T∑
τ=2

ln(1 +
1

λ
σ̂a,τ−1(xτ )) +

√
λ‖ fa‖H .

Since C2 depends on T , to complete the proof and validity of the bound, we will show

that C2 grows logarithmically in T . When assumption A III holds and ‖ϕ (x )‖ ≤ 1, similar

to the analysis in [18, 90], we have

C2 = ρ

√√√
T∑
τ=2

ln(1 +
1

λ
σ̂a,τ−1(xτ )) +

√
λ‖ fa‖H

= ρ

√√√
T∑
τ=2

ln(1 +
1

λ
ϕ (xτ )T (I +

1

λ
Ka,τ−1)−1ϕ (xτ ))

+
√
λ‖ fa‖H

= ρ

√
ln(det(I +

1

λ
Ka,T )) +

√
λ‖ fa‖H

≤ ρ

√
d∗ ln

(
1

d∗

(
1 +

T

λ

))
+
√
λ‖ fa‖H .

Since C2 depends on
√

ln(T ), we fix C2 = O (ρ
√

ln(T )). As T → ∞ the RHS of the probability
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bound goes to unity and we have the resulting theorem.

�

IV.8.4.2 Lemmas over event E

For arm a at time t , we define event Ea,t as

Ea,t (x ) = {La,t (xt ) ≤ fa (x ) ≤ Ua,t (x ) |x1,x2, · · · ,xt−1}.

We define event E as E :=
⋃

a≤A,ANλ<t≤T

Ea,t (x )

The following theorems operate under the assumption the event E holds. We provide two

properties of the terms in the algorithm that will be of help in the proofs:

• B Jt (x ) = Ujt (x ),t (x ) − L Jt (x ),t (x )

• Ua,t (x ) = La,t (x ) + sa,t (x )

Lemma 29. Over event E, for any sub-optimal arm a(x ) , a∗(x ) at any time t ≤ T , the

simple regret of pulling that arm is upper bounded by the Ba,t (x ),

Proof.

Ba,t (x ) = max
i,a

Ui,t (x ) − La,t (x )

≥ max
i,a

fi (x ) − fa,t (x ) = f ∗(x ) − fa (x ) = Ra (x ).

The first inequality holds due to the definition of event E and the equality holds since we are

only considering sub-optimal arms. �

Note that the preceding lemma need not hold for the optimal arm, for which Ra (x ) = 0

and it is not necessary that Ba,t (x ) ≥ 0.
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Lemma 30. Consider the contextual bandit setting proposed in the chapter 4. Over event

E, for any time t and context x ∈ X, the following statements hold for the arm a = at to be

selected:
if a = jt (x ), then Ljt (x ),t (x ) ≤ L Jt (x ),t (x ),

if a = Jt (x ), then Ujt (x ),t (x ) ≤ UJt (x ),t (x ).

Proof. We consider two cases based on which of the two candidate arms jt (x ), Jt (x ) is selected.

Case 1: a = jt (x ) is selected. The proof works by contradiction. Assume that Ljt (x ),t (x ) >

L Jt (x ),t (x ). From the arm selection rule we have sjt (x ),t (x ) ≥ s Jt (x ),t (x ). Based on this we can

deduce that Ujt (x ),t (x ) ≥ UJt (x ),t (x ). As a result,

Bjt (x ),t (x ) = max
i,jt (x )

Ui,t (x ) − Ljt (x ),t (x )

< max
i,Jt (x )

Ui,t (x ) − L Jt (x ),t (x ) = B Jt (x ),t (x ).

The above inequality holds because the arm jt (x ) must necessarily have the highest upper

bound over all the arms. However, this contradicts the definition of B Jt (x ),t (x ) and as a result

it must hold that Ljt (x ),t (x ) ≤ L Jt (x ),t (x ).

Case 2: a = Jt (x ) is selected. The proof works by contradiction. Assume that Ujt (x ),t (x ) >

UJt (x ),t (x ). From the arm selection rule we have s Jt (x ),t (x ) ≥ sjt (x ),t (x ). Based on this we can

deduce that L Jt (x ),t (x ) ≤ Ljt (x ),t (x ). As a result, similar to Case 1,

Bjt (x ),t (x ) = max
j,jt (x )

Uj,t (x ) − Ljt (x ),t (x )

< max
j,Jt (x )

Uj,t (x ) − L Jt (x ),t (x ) = B Jt (x ),t (x ).

The above inequality holds because the arm jt (x ) must necessarily be have the highest upper

bound over all the arms. However, this contradicts the definition of B Jt (x ),t (x ) and as a result

it must hold that Ujt (x ),t (x ) ≤ UJt (x ),t (x ). �
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Corollary 2. For context x, if arm a = at (x ) is pulled at time t , then B Jt (x ),t (x ) is bounded

above by the uncertainty of arm a, i.e.,

B Jt (x ),t (x ) ≤ sa,t (x ).

Proof. By construction of the algorithm a ∈ {jt (x ), Jt (x )}. If a = jt (x ), then using the

definition of B Jt (x ),t (x ) and Lemma 30, we can write

B Jt (x ),t (x ) = Ujt (x ),t (x ) − L Jt (x ),t (x )

≤ Ujt (x ),t (x ) − Ljt (x ),t (x ) = sa,t (x ).

Similarly, for a = Jt (x ),

B Jt (x ),t (x ) = Ujt (x ),t (x ) − L Jt (x ),t (x )

≤ UJ (x ),t (x ) − L Jt (x ),t (x ) = sa,t (x ).

�

Lemma 31. On event E, for any time t ≤ T and for arm a = at (x ) the following bounds

hold for the minimal gap

B Jt (x ),t (x ) ≤ min(0, sa,t (x ) − ∆a (x )) + sa,t (x ).

Proof. The arm to be pulled is restricted to a ∈ {jt (x ), Jt (x )}. The optimal arm for the

context x at time t can either belong to {jt (x ), Jt (x )} or be equal to some other arm. This

results in 6 cases:

1. a = jt (x ),a
∗ = jt (x )

2. a = jt (x ),a
∗ = Jt (x )
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3. a = jt (x ),a
∗ < {jt (x ), Jt (x )}

4. a = Jt (x ),a∗ = jt (x )

5. a = Jt (x ),a∗ = Jt (x )

6. a = Jt (x ),a∗ < {jt (x ), Jt (x )}
We define f ∗(x ) := fa∗ (x ) as the expected reward associated with the best arm and f (a) (x ) as

the expected reward of the ath best arm.

Case 1: The following sequence of inequalities holds:

f (2) (x ) ≥ f Jt (x ) (x )

≥ L Jt (x ),t (x )

≥ Ljt (x ),t (x )

≥ fa (x ) − sa,t (x ).

The first inequality follows from the assumption that a = a∗ = jt (x ), the chosen and optimal

arm has the highest upper confidence bound, and therefore, the expected reward of arm Jt (x )

can be at most that of the second best arm. The second inequality follows from event E, the

third inequality follows from 30. The last inequality follows from event E. Using the above

string of inequalities and the definition of ∆a (x ), we can write

sa,t − ( fa (x ) − f (2) (x )) = sa,t − ∆a (x ) ≥ 0.

The result holds for case 1 with the application of Corollary 2.
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Case 2: a = jt (x ),a
∗ = Jt (x ). We can write

B Jt (x ),t (x ) = Ujt (x ),t (x ) − L Jt (x ),t (x )

≤ fjt (x ) (x ) + sjt (x ),t (x )

− f Jt (x ) (x ) + s Jt (x ),t (x )

≤ fa (x ) − f ∗(x ) + 2sa,t (x ).

The first inequality follows from event E and the second inequality holds because the selected

arm has a larger uncertainty. From the definition of ∆a (x ),

B Jt (x ),t (x ) ≤ 2sa,t (x ) − ∆a (x )

≤ sa,t (x ) +min(0, sa,t − ∆a (x )).

Where the inequality follows from Corollary 2.

Case 3: a = jt (x ),a
∗ < {jt (x ), Jt (x )}. We can write the following sequence of inequalities

fjt (x ) (x ) + sjt (x ),t (x ) ≥ Ujt (x ),t (x ) ≥ Ua∗ ≥ f ∗.

The first and third inequalities hold due to event E, the second inequality holds by definition

as jt (x ) has the highest upper bound on any arm other than Jt (x ) neither of which is the

optimal arm in this case. From the first and last inequalities, we obtain

sa,t (x ) − ( f ∗ − fa,t (x )) ≥ 0,

or sa,t (x ) − ∆a (x ) ≥ 0. The result follows from Corollary 2.
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Case 4: a = Jt (x ),a∗ = jt (x ). We can write

B Jt (x ),t (x ) = Ujt (x ),t (x ) − L Jt (x ),t (x )

≤ fjt (x ) (x ) + sjt (x ),t (x )

− f Jt (x ) (x ) + s Jt (x ),t (x )

≤ fa (x ) − f ∗(x ) + 2sa,t (x ).

The first inequality follows from event E and the second inequality holds because the selected

arm has a larger uncertainty. From the definition of ∆a (x ),

B Jt (x ),t (x ) ≤ 2sa,t (x ) − ∆a (x )

≤ sa,t (x ) +min(0, sa,t − ∆a (x )).

Where the inequality follows from Corollary 2.

Case 5: a = Jt (x ),a∗ = Jt (x ). The following sequence of inequalities holds:

fa (x ) + sa,t (x ) ≥ UJt (x ),t (x )

≥ Ujt (x ),t (x )

≥ fjt (x ) (x )

≥ f (2) (x ).

The first and third inequalities follow from event E, the second inequality is a consequence of

Lemma 30, the fourth inequality follows from the fact that since Jt (x ) is the optimal arm,

the upper bound and the arm selected should be as good as the second arm. Using the above

chain of inequalities, we can write

sa,t (x ) − ( f (2) (x ) − fa (x )) = sa,t (x ) − ∆a (x ) ≥ 0.
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Case 6: a = Jt (x ),a∗ < {jt (x ), Jt (x )}. We can write the following sequence of inequalities

f Jt (x ) (x ) + s Jt (x ),t (x ) ≥ UJt (x ),t (x ) ≥ Ua∗,t (x ) ≥ f ∗.

The first and third inequalities hold due to event E, the second inequality holds by definition

as Jt (x ) has the highest upper bound on any arm when a = Jt (x ) due to Lemma 30 and Jt (x )

is not optimal in this case. From the first and last inequalities, we obtain

sa,t (x ) − ( f ∗ − fa,t (x )) ≥ 0,

or sa,t (x ) − ∆a (x ) ≥ 0. The result follows from Corollary 2.

�
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CHAPTER V

Conclusion and Future Work

In this thesis, I explored three challenges of limited labeled data and proposed novel kernel

based solution to address these challenges.

As discussed in the introduction, in domain generalization setting, the learner is given

unlabeled data to classify, and must do so by leveraging labeled data sets from similar yet

distinct classification problems. In other words, label training data drawn from the same

distribution as the test data are not available, but are available from several related tasks

(which may have slightly different distribution).

In chapter 2, I provide an efficient way to solve an existing domain generalization approach

and extend the analysis to multi-class classification. I also give empirical evidence based on

two medical datasets and one satellite dataset demonstrating the superiority of proposed

algorithms over state-of-the-art.

Deep learning extension to the algorithm proposed in chapter 2 could be useful for

representation learning and embed feature engineering part into domain generalization

algorithm. An idea is to learn domain/distribution specific embedding which is a good

representation of that domain. Preliminary investigation suggests that one can learn these
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domain specific embeddings and can learn decision functions that generalize to new domains

or tasks using deep neural network [103]. But like all deep learning methods, even this idea

is data hungry. In future work, I intend to work on addressing the issue of limited labeled

data in deep learning for domain generalization and giving generalization error analysis.

One can also extend the domain generalization idea in chapter 2 to semisupervised setup

where one can learn more with unlabeled data. One such idea is presented in [104] without

theoretical analysis. I intend to continue working on the idea of semisupervised learning and

its theoretical analysis.

In Chapter 3, I discuss the problem of multi-task learning of contextual bandits. I propose

an upper confidence bound-based multi-task learning algorithm for contextual bandits and

establish a corresponding regret bound. I also describe an effective scheme for estimating task

similarity from data and demonstrate my algorithm’s performance using several data sets.

One can investigate this idea of multi-task learning through arm similarity to predict and

learn from the rewards of arms that were not picked during any given trial. This would allow

us to address limited feedback setting and may speed up the learning process. One can also

extend the idea to learn representation of arms or actions using bandit feedback. One of

the major limitation of the study presented in chapter 3 is that regret analysis assumes that

task or arm similarity is given. A good future direction is to analyze the regret where arm

similarity is learnt on the fly.

One more challenge that I faced during my Ph.D work and specifically chapter 3 is how

to select hyperparameters (e.g. exploration parameter, kernel widths and regularization

in contextual bandits) for bandit and reinforcement learning problems. We have some

preliminary ideas and one such idea is described in the technical report Deshmukh et. al.

[105]. More work is needed to standardize computationally efficient hyperparameter selection

with theoretical guarantees.
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In chapter 4, I formulate and present performance guarantees on the simple regret for

contextual bandits in the fixed budget framework and present experimental results for adaptive

sensor selection in nano-satellites. One future idea is to work on similar concept of simple

regret but in the reinforcement learning setting. Idea is to give guarantees on identifying the

best policy using pure exploration strategy in Reinforcement learning.

The approaches I proposed to solve the three challenges mentioned have theoretical

guarantees, and their effectiveness is proven using empirical evidence. I plan to continue to

use both theory and experiments to guide my work in the future.
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