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Abstract 

 

External beam radiation therapy is an effective and widely used focal cancer therapy. However, 

due to anatomical changes during radiation therapy, both in the tumor and in the normal tissue, 

the delivered radiation dose can deviate from the planned radiation dose. These responses may 

compromise the delivery of the most effective treatment and lead to an increased risk of 

complications in normal tissues. The ability to estimate the delivered radiation to the tumor and 

normal tissues with high accuracy requires modeling the patient response to dose. Modern 

medical imaging, such as computed tomography (CT) and medical resonance imaging (MRI), 

provides a method to evaluate spatial and functional changes of the tumor and normal tissue over 

the course of radiation therapy. A comprehensive evaluation of these changes requires 

identification of the tumor and normal tissue, through image segmentation, and accurate 

alignment of images, through image registration. In the head and neck region, varying angles of 

neck flexion, rapid tumor response and weight loss cause early changes in healthy tissue. In the 

abdominal region, motion due to breathing and digestion cause changes in the tumor position and 

normal structures. When the deviations between delivered and planned dose are great enough, 

the radiation treatment plan should be reoptimized, in order to ensure that the tumor is 

adequately treated and that the normal tissue is maximally avoided. Estimating the delivered 

dose to sufficient accuracy is therefore an important requirement for effective adaptive 

replanning. This dissertation work develops different techniques based on biomechanical models 
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of the anatomical changes to improve estimates of delivered dose, which can ultimately lead to 

improvements in treatment adaptation strategies as well as a better understanding of toxicity. A 

series of experiments based on finite element modeling were conducted to model the 

uncertainties between planned and delivered dose, as well as the potential impact of modeling on 

different organ sites. Abdominal normal tissue complication probability models were developed 

based on estimated delivered dose and their accuracy compared to traditional models based on 

planned dose. Following this study, a predictive model was developed for the head and neck site, 

in order to find how early in treatment significant deviations in planned and delivered dose could 

be predicted. After seeing the large potential deviations between planned and delivered dose in 

the head and neck site, a comprehensive study was conducted to model the changes that 

potentially cause these large deviations. This comprehensive head and neck model was 

developed in two steps; first, the positional changes due to flexion were resolved and second, the 

dose response to the parotid glands was modeled using finite element modeling. Each clinical 

site poses different challenges, and this dissertation work highlights two areas in which modeling 

the deviations between planned and delivered dose will improve advanced adaptive radiation 

therapy.   



 

1 

Chapter 1. Introduction  

The majority of cancer patients are treated with radiation therapy at some point during their 

treatment process. Radiation therapy is a comprehensive part of a treatment plan and is used to 

target cancer and spare normal tissue. The traditional approach has for decades consisted of 

planning a dose distribution from a single image of the anatomy and then delivering the 

treatment during several daily dose delivery fractions. However, the anatomy of the patient 

constantly changes throughout the duration of treatment, potentially causing variation in the dose 

to the tumor and other organs.  In order to ensure proper delivery of the prescribed dose to the 

target, image-guided radiotherapy has been developed based on the acquisition of images before 

each treatment fraction in order to reduce uncertainties in the localization of the target (tumor) 

during dose delivery. More recently, adaptive treatment strategies taking advantage of these 

images have been proposed, consisting of evaluating the delivered dose, identifying variations 

from planning, updating treatment decisions, and modifying the treatment plan accordingly. 

These novel patient-specific treatment strategies lead to more accurate radiation therapy, but 

there still exists the need to evaluate the impact of these strategies.  

 

 Cancers in the liver and head and neck  

 

Liver cancer is the sixth most common cancer worldwide, and accounts for 841,080 cases and 

5% of all cancers diagnosed globally in 2018 [1]. The most common primary liver cancer is 

hepatocellular carcinoma (HCC). The highest incidence of HCC occurs in East Asia and sub-
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Saharan Africa, where cases are mainly due to the hepatitis B virus [2]. However, HCC is the 

fastest growing cause of cancer deaths in the United States, which is linked to the hepatitis C 

virus. Additionally, non-alcoholic fatty liver disease (NAFLD) as well as obesity are also causes 

linked to the increased prevalence of HCC in the United States. HCC has a 5-year survival rate 

below 12% [2].  

 

Cancers in the head and neck (HN) region include lip and oral cavity, nasopharynx, oropharynx, 

hypopharynx, and salivary glands. These cancers account for 710,237 cases and 4% of all 

cancers diagnosed worldwide in 2018 [1]. HN cancer is also more common in eastern than in 

western countries. The highest incidence of HN cancers occur in Southeast Asia [3], where risk 

factors include the areca nut and smokeless tobacco [4]. Incidence of HN cancer is relatively low 

in the United States (3%) [5], and is primarily due to smoking and alcohol use [6]. Similar to 

liver cancer, HN cancer can also be caused by viruses; there has recently been a rise in the 

incidence of oropharyngeal cancers due to the human papillomavirus (HPV) [7]. The overall 5-

year survival rate for HN cancers is estimated between 56% and 75% [8-10]. 

 

 Treatment modalities 

 

1.2.1 Liver cancer 

 

While surgery to remove the tumor is the best option for cure of liver cancer, it isn’t always 

possible based on the location and size of the tumor [11]. Most chemotherapy drugs are not 

effective in the treatment of liver cancer, although hepatic artery infusion, which involves the 
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hepatic artery directly receiving the drugs, has been successful in early studies [12]. Small 

tumors can be treated with ablation therapy, which is performed by inserting a needle into the 

tumor to apply heat, cold, radio waves, or alcohol to kill cancer cells. This method is the most 

effective in tumors that are within 3cm in diameter [13]. For tumors between 3cm and 5cm in 

diameter, ablation therapy is most effective when used with embolization [13], which aims to 

block the blood supply to cancer cells. Embolization can also be combined with chemotherapy 

for trans-arterial chemoembolization (TACE). External beam radiation therapy (EBRT) is 

considered for liver cancer in cases where the other treatment modalities are not appropriate, 

however non-randomized studies show it may as effective as ablation [14]. Radiation therapy can 

be used for primary liver cancer as well as metastases in the liver, and can be delivered to tumors 

of various sizes. Additionally, radiation therapy has been used as a bridge to transplantation in 

cases of HCC [15].  

 

1.2.2 Head and neck cancer 

 

Similarly to liver cancer, surgery is commonly used for the treatment of HN cancer. 

Chemotherapy, in contrast to the treatment of liver cancer, is effective in the treatment of HN 

cancer. Surgeries performed for the treatment of HN cancer include laser surgery, which is used 

for early-stage tumors, excision, dissection (of the neck or lymph nodes), and reconstructive 

surgery. These surgeries can lead to side effects such as difficulty breathing due to swelling, 

hearing loss, voice alterations, facial disfigurement, and impaired speech. Additionally, patients 

can develop problems with chewing and swallowing, which can lead to the need for a feeding 

tube [16]. Chemotherapy is another method used to treat HN cancer, and involves the delivery of 
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drugs to the bloodstream to kill cancer cells. Chemotherapy can lead to gastro-intestinal (GI) 

problems, hair loss, risk of infection, and fatigue [17]. More than half of HN cancer patients are 

prescribed external beam radiation therapy (EBRT) [18] alone or in conjunction with surgery (in 

the case of advanced HN cancers). Head and neck cancer patients can also be treated 

concurrently with EBRT and chemotherapy (chemoradiation).  

 

 Historical review of dose accumulation, adaptive radiation therapy, and 

toxicity modeling in radiation therapy  

 

1.3.1 Liver cancer 

 

SBRT is a type of EBRT that delivers precise high dose radiation beams over 1-5 fractions and 

can be used to treat liver cancer and spare surrounding normal tissue. Several studies have 

demonstrated treatment efficacy using SBRT for liver cancer [19-21]. Recently, Scorsetti et al 

[19] analyzed 5-year local control, overall survival, progression free survival, and toxicity rates 

for 61 patients treated with SBRT for inoperable liver metastases. The long term results of this 

study suggested the safety and efficacy of SBRT for these patients. Dawson et al [20] studied 79 

patients with liver cancer treated with individualized SBRT. Dose-limiting toxicity for these 

patients was not observed, indicating that individualized, image-guided SBRT for liver is a 

feasible treatment method. Kwon et al [21] evaluated the long-term effects of 42 patients treated 

with SBRT for inoperable primary small HCC. The long term results of this study found 

complete response for the in-field lesion in 60% of the patients and overall 3-year survival of 

59%, indicating that SBRT is promising for inoperable small HCC.  
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Delivering high doses of radiation to tumors in the liver is challenging due to the position of liver 

in the abdomen near radiosensitive gastrointestinal organs. The stomach and duodenum develop 

toxicity (e.g. nausea, vomiting and bleeding) from radiation treatment and are commonly the 

dose-limiting organs during treatment [22]. Studies have shown that toxicity of these luminal GI 

structures are predicted by maximum dose to a small volume [22]. As these organs are situated 

so close to the liver, the dose to the tumor may need to be limited. Substantial deformation can 

occur in this region due to breathing and stomach filling [23,24]. While weight loss and tumor 

response are typically not observed over the course of treatment of liver cancer, random 

variations occur potentially causing the normal tissue to receive more dose than what was 

planned [25] increasing the risk of toxicity, which makes it an interesting area to study the 

uncertainties between planned and delivered radiation dose. 

 

1.3.2 Head and neck cancer 

 

The current most common radiation therapy delivery method for HN cancer, usually post-

surgery and often concurrently with chemotherapy, is intensity modulated radiation therapy 

(IMRT). IMRT employs non-uniform beam intensities, and the plans are typically developed 

with inverse planning and optimization algorithms. IMRT, like SBRT, can precisely target the 

tumor while sparing surrounding normal tissue, which is important for parallel organs. This 

treatment method allows the elevation of dose to the tumor volume and the reduction of dose to 

surrounding normal tissues. HN IMRT usually delivers 60-70Gy over 30-35 fractions. This 
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method has been shown to improve target coverage from the traditional radiation therapy 

methods for HN cancer treatment [26,27], with reports of local control exceeding 90% [28,29].   

 

Treating HN cancer patients can be challenging due to the anatomical changes of the patient 

during radiation therapy, due to weight loss, patient positioning, and dose-response of the tumor. 

During radiation therapy to HN cancers, there is often a rapid response of normal tissues near the 

target volume [30,31]. Studies have shown a rapid change in volume for the parotid glands over 

the course of radiation treatment, and this volumetric response has been correlated with radiation 

dose [32]. These rapid changes observed during radiation therapy make the HN region an 

important area to study the uncertainties between planned and delivered radiation dose.  

 

1.3.3 Toxicity from radiation therapy 

 

As the dose increases during radiation therapy, the probability of tumor control increases, but so 

does the likelihood of complications for healthy tissue. For optimal radiation therapy, the goal is 

to minimize normal tissue complication probability (NTCP) and maximize tumor control 

probability (TCP) [33]. NTCP models aim to quantify the risk of complications based on 

radiation dose to the patient using a simplified metric [34]. An optimal dose is one that gives the 

best separation of tumor control and reasonable risk of complication for normal tissue (Fig 1-1). 

Dose constraints placed on the OAR during radiation treatment planning are defined based on 

population models such as NTCP. The use of these types of models are critical in optimizing the 

radiation dose. Hence, it is crucial that these models are as accurate as possible.  
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The most popular NTCP model has been proposed by Lyman [35] in 1985. The model follows a 

sigmoidal relationship between dose and probability as defined by equation (1-1):  

 

 
𝑁𝑇𝐶𝑃 = (2𝜋)−1/2∫ exp (−

𝑡2

2
)𝑑𝑡

[𝐷−𝑇𝐷50(𝑣)]/[𝑚𝑇𝐷50(𝑣)]

−∞

 

 

(1-1) 

 

where D is the dose, TD50 is the whole organ dose where NTCP is 50%, v is the fractional 

volume, and m is the slope of the curve.   The model for TCP also follows a sigmoidal 

relationship (Eq. 1-2): 

 

 𝑇𝐶𝑃 = 𝑒−𝑁(𝑆𝐹2)

𝐷
𝐷𝑟𝑒𝑓

𝛼
𝛽
+
𝐷
𝑛

𝛼
𝛽
+𝐷𝑟𝑒𝑓

 

 

(1-2) 

where N represents the amount of clonogenic cells that reside in the tumor, SF2 represents the 

fraction of cells that survived the reference radiation dose (Dref), D represents the dose, n 

represents the amount of treatment fractions, and α/β represents the dose at which equal numbers 

of cells are killed from the linear and quadratic components. Figure 1-1 represents an example of 

an NTCP function and the associated TCP function. There exists the need to determine a dose 

that will ensure a good compromise between control probability and complication probability.   
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Figure 1-1. NTCP/TCP curves.  

Curves for probability of tumor control and probability of complication, with dose [Gy] on the x-axis and probability on the y-

axis. Both curves show a sigmoidal relationship between the probability of toxicity and the dose. Optimal radiation therapy 

compromises between these two curves. 

 

Currently, these toxicity models are based on planned dose. However, Velec et al (2012), Wong 

et al (2017), and Reese et al (2011)  showed that delivered dose is not equivalent to planned dose 

[25,36,37]. The field needs to accumulate radiation dose during treatment and develop new 

toxicity models based on accumulated dose. With the recent advances in image-guided radiation 

therapy, this is now theoretically possible.   

 

There are a limited number of studies that describe toxicity to the stomach due to radiation, 

separately from the small bowel. One study [38] found that 40.5Gy after chemotherapy and 

steroids led to 4% of patients developing acute nausea of grade 3 or higher. A randomized study 

[39] found that a single fraction of 8Gy to the lower hemi-body led to toxicity rates of 6-66% for 

moderate to severe nausea, depending on the type of chemotherapy. Complications in the small 

bowel as a response to radiation therapy include diarrhea, fistula, perforation, ulcers, obstruction, 

and constriction. One study [40] showed that cervical cancer patients had an increase in toxicity 
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of the small bowel with the addition of chemotherapy to 45Gy radiation therapy. A 5% toxicity 

rate was observed for those treated with radiation therapy alone, and a 14% toxicity rate was 

observed for those also treated with chemotherapy. The limited data for toxicity of gastro-

intestinal organs receiving dose during radiation therapy leads to the need to develop new, more 

specific, and more accurate toxicity models for these organs.  

 

Deasy et al [32] indicated in a Qualitative Analyses of Normal Tissue Effects in the Clinic 

(QUANTEC) Organ-Specific Paper that in order to improve HN patient toxicity due to radiation 

therapy, it must be determined if anatomical variations occur in the salivary glands during 

radiation therapy, and if shrinkage of the parotid glands should be incorporated in prediction 

models. They stated that the main goal is to validate accurate prediction models for the function 

of the salivary glands.  

 

The importance of the accurate accumulation of dose to normal tissues for improved 

understanding of toxicity was highlighted in a QUANTEC Vision paper by Jaffray et al [41] in 

2010, stating that creating accurate distributions of the accumulated dose for the tumor and 

normal tissue was clinically feasible. In order to make this process regular in radiation therapy, 

deformable image registration, dose accumulation, and techniques to estimate accumulated dose 

uncertainties must be further developed.  

 

1.3.4 Liver cancer toxicities 
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Radiation-induced liver disease (RILD) can occur just weeks after completion of radiation 

therapy, or months to years later. RILD is the most common significant toxicity that occurs due 

to EBRT and is a major limitation due to its association with high mortality rates. Symptoms of 

RILD include abdominal pain, hepatomegaly, fatigue, anicteric ascites, and abdominal swelling 

[42]. Although the characteristics of RILD are well understood, the pathogenesis remains 

unclear. RILD can lead to liver failure and has a 10-20% mortality rate [43].  

 

Before technological advances of the early 2000s, radiation treatments for liver cancer consisted 

of irradiation of the entire liver. In these treatments, RILD rates were 5% for doses up to 30Gy, 

10-13% for doses of 30-35Gy, and 44% for doses above 35Gy [44,45]. For daily 2Gy/fraction 

radiation therapy, the TD5/5, or the dose at which there is a 5% risk at 5 years, for RILD is 

≤28Gy for primary liver cancer and ≤30Gy for liver metastases, which are the tolerance doses for 

whole liver irradiation [44]. These doses are considered palliative, which means that the dose 

aims to slow tumor growth, shrink the tumor, or control symptoms, and not necessarily to cure 

the cancer.       

 

The liver is a parallel organ, meaning that the damage to one region of the liver does not indicate 

the loss of function to the entire organ. NTCP models have been developed to describe the partial 

volume tolerance of the liver to radiation, where the toxicity being modeled is RILD. These 

models are used to design radiation treatments for the liver that minimize risk of RILD. The 

Lyman NTCP curve (1985) [35] models the relationship between NTCP risk and the dose of 

uniform partial liver irradiation as sigmoidal. The effective volume, Veff, is typically used in the 

Lyman NTCP model and refers to the uniformly irradiated volume (Eq. 1-3):  
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 𝑉𝑒𝑓𝑓 =∑𝑣𝑖(𝐷𝑖/𝐷𝑟𝑒𝑓)
1/𝑛

𝑖

 (1-3) 

   

where vi is the volume, Di is the dose, and Dref is the reference dose, and n determines volume 

dependence. For normal tissue, n > 0. For a parallel organ, where the dose metric is the mean 

dose, n = 1. For a serial organ, where the dose metric is the maximum dose, 1 > n > 0. A Lyman 

NTCP model has been established [46] based on the correlation between mean liver dose and the 

risk of RILD for a series of 203 patients.  The study also demonstrated that doses over 100Gy 

could potentially be delivered to small regions of the liver (Veff < 30%) with a resulting NTCP 

risk under 5%.  

 

1.3.5 Head and neck cancer toxicities 

 

Toxicity due to radiation treatment of HN cancer includes mucositis, nausea, vomiting, cough, 

dehydration, fatigue, stomatitis, weight loss, infection, hemorrhage and many other adverse 

effects [47]. A common side effect that can severely decrease the quality of life (QoL) for HN 

cancer patients is xerostomia (dry mouth). A major indicator of xerostomia during HN radiation 

therapy is severe radiation damage to the salivary glands [48]. 

 

Xerostomia risk can be decreased with the reduction of parotid gland volume receiving high 

dose. Using IMRT, at least one parotid gland can be spared in certain patients. The high dose is 

only delivered to the region of the parotid gland in close proximity to the tumor, and the 

remaining parotid gland receives a much lower dose [48,49]. Several studies [50-54] have shown 
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that salivary function in the parotid glands can be conserved when IMRT is used. Additionally, 

several prospective trials have shown that IMRT can reduce xerostomia risk while still 

controlling the tumor [29,55-58].  

 

Several uncertainties in toxicity modeling exist. NTCP models are historic population models 

based on toxicity data from thousands of patients. Because biological differences exist between 

patients, there is some error in the models. Xerostomia is determined by salivary flow, which is 

assessed based on the collection of patient saliva. One method consists of having the patient 

swallow, instructing them not to move or swallow, and then collecting and measuring their saliva 

[59]. Another methods consists of having the patient chew gum at a certain pace, and instructing 

them to “Spit out, keep chewing” every minute [59]. These methods are also not exact and can 

potentially add uncertainty to the models. Additionally, toxicity grading is not exact and 

potentially adds uncertainty to the models. Xerostomia is rated from grade 1 through grade 3, 

where grade 1 xerostomia indicates that the patient is symptomatic with dry/thick saliva and 

without significant alteration to the diet (unstimulated salivary flow > 0.2 ml/min), grade 2 

indicates that the patient is symptomatic and that their oral intake is altered (unstimulated 

salivary flow 0.1 to 0.2 ml/min), and grade 3 indicates that the patients cannot adequately ingest 

orally (unstimulated salivary flow < 0.1 ml/min) [60]. With the advent of functional imaging, 

more quantitative data can be generated for more accurate grading. Uncertainty in the dose also 

adds uncertainty to NTCP models. Resolving these uncertainties using accumulated dose may 

lead to more accurate toxicity modeling, and for the correction of biological uncertainties in 

these models.    
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1.3.6 Dose accumulation for liver 

 

Lujan  [61] applied convolutional methods to account for uncertainties from patient setup and 

organ motion of the liver due to breathing. Eq. 1-4 shows his derived dose distribution that 

includes breathing motion.   

 

 𝐷̅(𝑥, 𝑦, 𝑧) =  ∫𝐷0(𝑥, 𝑦, 𝑧
′)𝑝𝑜𝑚(𝑧

′ − 𝑧)𝑑𝑧′ (1-4) 

 

Where 𝐷̅(𝑥, 𝑦, 𝑧) represents, for point x, y, z, the new dose distribution,  𝐷0(𝑥, 𝑦, 𝑧
′) represents, 

for point x, y, z’, the original dose distribution, and 𝑝𝑜𝑚(𝑧
′ − 𝑧) is a probability distribution 

function describing breathing motion. Breathing motion was also fit to a mathematical model,  

 

 𝑧(𝑡) = 𝑧0 − 𝑏𝑐𝑜𝑠
2𝑛(
𝜋𝑡

𝜏
− 𝜙) (1-5) 

 

Where 𝑧0 represents the exhale position, b represents the motion amplitude, 𝑧0 − 𝑏 represents the 

inhale position, 𝜏 represents the breathing period cycle, n represents the model shape, and 𝜙 

represents the breathing cycle starting phase. Eq. 1-6 shows his derived dose distribution that 

includes patient setup uncertainties.  

 

𝐷̅(𝑥, 𝑦, 𝑧) =  ∭𝐷0(𝑥
′, 𝑦′, 𝑧′)𝑁(𝑥′ − 𝑥, 𝑦′ − 𝑥, 𝑧′ − 𝑥)𝑑𝑥′𝑑𝑦′𝑑𝑧′ (1-6) 
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Where 𝐷̅(𝑥, 𝑦, 𝑧) represents, for point x, y, z, the average dose incorporating uncertainties, 

𝐷0(𝑥
′, 𝑦′, 𝑧′) represents, for point x’, y’, z’, the static dose, 𝑁(𝑥′ − 𝑥, 𝑦′ − 𝑥, 𝑧′ − 𝑥) represents 

the normalized PDF for each direction. His work demonstrated that convolutional methods could 

predict the delivered dose distribution for any amount of radiation therapy fractions. His work 

also demonstrated that for an infinite number of fractions, the delivered dose distribution could 

be calculated with convolutional techniques. Due to the finite number of fractions during true 

radiation treatment, the patient may receive a different dose distribution than the average. A 

method was then developed to calculate the standard deviation for any point in the patient. The 

finite-fractioned treatment was then compared to the convolutional method. The convolutional 

method included breathing motion and patient setup error in a dose distribution and results were 

validated with Monte Carlo methods. This work demonstrated that breathing motion and patient 

setup uncertainties should be convolved with dose functions for liver radiation therapy.    

 

Brock [62] studied two deformable image registration methods to describe deformation of the 

liver during radiation therapy. The first method involved finite element analysis (FEA), which 

was based on a linear-elastic mechanical liver model. The second method involved mutual-

information based registration, and consisted of a geometric liver model. The accuracy of the 

mutual-information based alignment was 1.0, 1.2, and 1.44 mm for the left-right, anterior-

posterior, and inferior-superior directions. One inhale CT and one exhale CT was used to include 

breathing deformation in dose calculations. The dose delivered to the liver with breathing 

deformation was summed using the transformation from the deformable  alignment. Eq. 1-7 

shows the total dose delivered for a voxel with initial position x, y, z during breathing.   
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𝐷(𝑥, 𝑦, 𝑧) =  ∑ [
𝐷𝜙
𝐸(𝑥 + 𝜙𝛥𝑥 , 𝑦 + 𝜙𝛥𝑦, 𝑧 + 𝜙𝛥𝑧)(1 − 𝜙) +

𝐷𝜙
1(𝑥 + 𝜙𝛥𝑥, 𝑦 + 𝜙𝛥𝑦, 𝑧 + 𝜙𝛥𝑧)𝜙

]

1

𝜙=0

𝑇∅ (1-7) 

 

 

Where 𝛥𝑥 , 𝛥𝑥 , and 𝛥𝑥 represent the transformation that resulted from the mutual-information 

based alignment in each direction, DE  and D1  represent the doses from the exhale and inhale 

dose grids, respectively, 𝜙 represents the breathing phase, and 𝑇∅ represents the time weighting 

based on 𝜙. Static dose calculations were compared to the dose calculations that included 

deformation, in order to determine the effect of deformation. Based on this comparison, 33% of 

the patients included in the study had prescribed dose changes exceeding one treatment fraction. 

For tumors residing in the inferior and superior regions of the liver, the effect of deformation was 

the greatest.  

 

Later work by Brock et al [63] involved the development of a biomechanical model-based 

deformation image registration algorithm, Morfeus. This method models the deformation of 

individual organs by assigning linear elastic properties to each of them and applying boundary 

conditions on their surfaces. This method was evaluated for the lung, liver, spleen, external 

surface, stomach, and kidneys. Velec [64] used Morfeus to track the tumor and surrounding 

normal tissue during radiation therapy for liver cancer. Dose accumulation for the liver cancer 

patients was enabled by modeling their daily anatomic variations. Estimates of delivered dose 

were improved by dose accumulation. Delivered dose reconstruction indicated substantial 

deviations (>5%) between planned and delivered dose for 70% of the patients included in the 

study. These uncertainties ranged between -42% and 8% for normal tissue and -15% and 5% for 
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tumors. In order to minimize the error in targeting the tumor as well as deviations between 

planned and delivered dose, image-guidance with respiratory-correlated imaging was used. This 

work also included the development of a treatment strategy that reduced breathing motion impact 

and employed a margin that accounted for deformation of the liver. The applied margin 

decreased the clinical margin by 38% and allowed for a 9% dose increase to the tumor while 

maintaining the toxicity risk to the surrounding normal tissue. The substantial deviations 

between planned and accumulated dose observed in this study indicate the need for improved 

toxicity models, based on accumulated dose.  

 

1.3.7 Dose accumulation and adaptive radiation therapy for head and neck cancer  

 

Treating HN patients with IMRT leads to sharp dose gradients, which can potentially cause 

greater inaccuracies in the dose distribution than standard techniques in the case of patient 

positioning errors and anatomical changes. Image-guided radiation therapy (IGRT) techniques 

can provide 3D images of the patient during radiation therapy, allowing for corrections in tumor 

position for more accurate radiation therapy.  

 

Several studies have investigated the volumetric changes for HN patients undergoing radiation 

therapy, exploring tumor shrinkage and weight loss. Barker et al [31] studied 14 patients with in-

room imaging (CT-on-rails) acquired three times per week. Rigid image registration was used to 

compare the daily images with the planning image. The tumor and parotid glands shrunk 1.8% 

and 0.6%, respectively, for each day of treatment. Geets et al [65] investigated the volumetric 

change for 10 patients using CT scans taken four times throughout treatment. The per-treatment 
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images were rigidly registered to the planning image. The tumor shrunk 65.5% after delivery of 

45Gy (mean dose). Han et al [66] used daily imaging (helical megavoltage CT) rigidly registered 

to the planning image for five patients and found 1.1% shrinkage in the parotid glands per day of 

treatment, with an overall average change from 20.5cm3 to 13.2cm3. Hansen et al [67] acquired 

CT scans after delivery of 38Gy for 13 patients, rigidly aligned the images to the planning 

images, and found no volumetric change in the tumor, but 15.6% shrinkage in the right parotid 

gland and 21.5% shrinkage in the left parotid gland. Robar et al [68] acquired weekly CTs for 15 

patients, rigidly aligned them to the planning images, and found shrinkage in the superficial lobe 

of the parotid glands of 4.9% per week. 

 

Osorio et al [69] acquired CT images after 46Gy was delivered to 10 patients, registered the per-

treatment CT to the planning image using deformable image registration, and found 25% 

shrinkage in the tumor, 17% shrinkage in the parotid glands, and 20% shrinkage in the 

submandibular glands after 46Gy. Castadot [70] acquired CT scans four times during treatment 

for 10 patients, used deformable image registration to align them with the planning images, and 

found tumor shrinkage of 3.2% per treatment day and parotid gland shrinkage of 0.9% per 

treatment day. 

 

Several studies have investigated the impact that these anatomical variations have on the planned 

radiation dose, based on image-guided radiation therapy (IGRT) methods. Hansen et al [67] 

acquired CT scans after 38Gy was delivered to 13 patients and rigidly registered the per-

treatment CTs to the planning images. The parotid gland V26Gy (volume of the parotid glands that 

received at least 26Gy) increased by 10.9%, and the mandible V60Gy increased by 7.2%. This 
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study also found that replanning lead to a significant improvement in the maximum dose to the 

spinal cord and brainstem, mean dose and V26Gy to the right parotid gland, and maximum dose 

and V60Gy to the mandible. Robar et al [68] studied 15 patients with weekly CT scans and found 

that the mean dose and V26Gy increased 2.6% and 3.5% in the left parotid gland and 0.2% and 

0.3% in the right parotid gland. Han et al [66] used daily helical megavoltage CTs and rigid 

registration for 5 patients and found an increase in the mean dose to the parotid gland from 0.83 

to 1.42Gy.  

 

O’Daniel et al [71]  studied 11 patients with in-room imaging (CT-on-rails) acquired two times 

per week. Deformable image registration was used to register the per-treatment images to the 

planning CT. A median dose increase of 1Gy to the parotid glands was observed. This study also 

found that the cumulative dose to the parotid gland was higher than the planned dose in the case 

that IGRT was not used during daily patient setup. Lee et al [72] used daily helical megavoltage 

CT and deformable image registration and found that the daily mean dose delivered to the 

parotid gland deviated from the planned dose by 15%. The total accumulated mean dose to the 

parotid gland was 32.7Gy, while the total planned mean dose was 29.7Gy. This study also found 

a relationship between weight loss of the patient and greater mean dose to their parotid glands. 

Castadot [70] used CT scans taken four times throughout treatment for 10 patients and aligned 

them to the planning image using deformable image registration. This study found that the 

parotid glands were planned to a mean dose of 17.9Gy, but in actuality received 18.7Gy, and that 

the submandibular glands were planned to a mean dose of 51.9Gy, but in actuality received 

52.8Gy. 
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Kong et al [73] showed the relationship between salivary flow in HN cancer patients and the 

mean dose to their parotid glands. The study demonstrated that even for parotid glands that 

received no dose, there was still no salivary flow for some patients. One potential explanation for 

this observation is that deviations between the planned and delivered dose existed for these 

patients. While their parotid glands were planned to receive no dose, they received some dose 

due to anatomical changes that may have occurred during radiation, leading to xerostomia. 

Toxicity models for radiation treatment are based on the planned mean dose to the entire gland, 

and may not be accurate. To date, there is a need to develop new models, as well as to assess the 

uncertainties and increase the accuracy of dose accumulation in these models.  

 

 Goals and Organization of this thesis 

 

Adaptive radiation therapy aims to limit the discrepancies between planned and delivered 

radiation dose with replanning. Adaptive radiation therapy relies on accurate dose accumulation, 

which is based on accurate anatomical modeling. Dose accumulation based on accurate 

anatomical modeling can potentially translate to more accurate toxicity models. This thesis 

focuses on modeling the anatomical changes of patients undergoing radiation therapy and the 

potential clinical impact of the discrepancies between planned and delivered dose that these 

changes cause, for the abdominal region and the HN region.  

 

There are three major aims included in this thesis work: i) to improve the understanding of 

toxicity by quantifying deviations between accumulated and planned dose in NTCP models, ii) to 

develop predictive models for treatment replanning decisions, and iii) to develop biomechanical 
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models of dose response in order to improve toxicity prediction models. This thesis includes four 

main chapters, based on the major aims of this dissertation.  

 

Chapter 3 investigates the potential clinical impacts of building luminal NTCP models based on 

accumulated dose rather than planned dose. NTCP models were simulated based on accumulated 

dose using statistical modeling for patients treated with liver SBRT. It was hypothesized that 

using accumulated dose data from DIR and statistical modeling to simulate new toxicity models 

for the duodenum and stomach will result in potentially clinically significant differences from 

the standard model. The goal of the first aim was to quantify the potential clinical impact of 

developing NTCP curves based on accumulated dose rather than the standard, planned dose 

model. Luminal (tubular) GI structures were chosen for this study because these are often 

radiation dose-limiting organs.  

 

Chapter 4 describes the development of predictive models for treatment replanning decisions in 

HN treatments. The need to replan is frequent in the HN site, as weight loss and tumor response 

can cause potentially clinically significant deviations between delivered and planned dose. Using 

these findings, we hypothesized that a dose deviation threshold could be applied to build a model 

that predicts, with 100% sensitivity, the need to replan a patient to avoid clinically relevant dose 

deviations. The goal of this aim was to develop and validate a predictive model to determine 

selection criteria where HN patients will need adaptive replanning by mid-treatment to avoid 

substantial deviations in their accumulated dose. 

 

Chapter 5 investigates an optimal technique to resolve the varying angles of neck flexion 
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between images acquired during HN radiation therapy. A biomechanical model-based DIR 

algorithm with boundary conditions on bony anatomy is proposed to accurately account for neck 

flexion of HN patients.   

 

Chapter 6 examines the development of biomechanical models of dose response of the parotid 

glands to improve toxicity prediction models. The dose metric used for assessment of the parotid 

glands is mean dose, and this metric is used as the basis for toxicity modeling. However, recent 

small animal studies show that there may be a stronger correlation between dose to substructures 

of the parotid glands and toxicity [74]. In order to establish the relationship between the 

substructure dose and parotid gland toxicity, the dose to the substructures must be evaluated. The 

spatial response of the parotid glands to radiation is expressed using thermal expansion 

coefficients to apply dose-based boundary conditions. The volumetric change in the parotid 

glands during radiation treatment is dramatic compared to other organs, making this an exciting 

site to evaluate the dose-response. 

 

Chapter 7 is the concluding chapter that discusses the potential clinical impact and possibility for 

future studies based on this work.
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Chapter 2. Background 

Approximately 40% of the US population will develop cancer during their lives[75], and 50% of 

these patients are treated with radiation therapy as part of their cancer treatment. Radiation 

therapy is part of a comprehensive treatment plan that may also include surgery or 

chemotherapy. Radiation is used to treat cancer by delivering high doses of radiation to the 

tumor in the form of x-rays, gamma rays, or charged particles. Radiation destroys cancer cells 

through DNA damage, which can be direct or indirect. Once DNA is damaged, those cells can no 

longer divide or survive. It is therefore crucial to limit the dose to normal tissue. For biological 

reasons the treatment is often fractionated, e.g. delivered over several treatment sessions.  

 

 Radiation Therapy Workflow  

 

Once patients are diagnosed with cancer and referred for radiation therapy, they undergo a 

treatment workflow that includes imaging in radiation oncology, radiation treatment planning, 

dose delivery over a series of fractions, and imaging for patient follow up (Fig. 1.1). Although 

radiation therapy encompasses external beam radiation therapy (EBRT) and brachytherapy, this 

dissertation will focus on EBRT, which is the most common method of radiation treatment.   
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Figure 2-1. Radiation therapy workflow.  

Images from left to right: treatment imaging, treatment planning, dose delivery, and follow-up imaging. Linear 

accelerator: Clinac iX System, Varian Medical Systems, Palo Alto, CA.  

 

2.1.1 Computed Tomography  

 

The standard imaging modality for treatment planning is computed tomography (CT). CT 

scanners consist of a detector opposite of a kV x-ray tube, which rotates around the patient. 

Measurements are taken as the x-ray and detector rotates, which returns data for multiple x-ray 

projections through the patient. A cross-sectional image can then be reconstructed 

mathematically to represent tissue visually based on its estimated attenuation coefficients, known 

as CT numbers. CT numbers are referred to as Hounsfield Units (HU), which are calculated 

using Eq. 2-1, 

 

 𝐻𝑈 = 1000 ∗
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑤𝑎𝑡𝑒𝑟

  (2-1) 

 

where µ represents the linear attenuation coefficient. Hounsfield units are dependent on the 

energy of the CT beam but generally range from -1,000 for air to -100 for fat to 0 for most tissue 

to 1,000 for bone. Electron density (electrons/cm^3) is needed in order to perform radiation dose 

calculations. Electron density is calculated using the CT number based on the linear correlation 

between CT numbers and attenuation coefficients. The calibration is performed by obtaining CT 
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images of phantoms with known electron densities, representing lung, muscle, and bone to 

enable the relationship between CT number and electron density to be established.        

The planning CT, or CT simulation as it is often referred to as, is the acquisition of a diagnostic 

CT image with the patient in the treatment position using an immobilization device. An example 

of an immobilization device used for brain and head and neck treatments is a mask (Fig. 1.2) that 

is designed to individually fit to the patient. The immobilization mask is a plastic mesh that is 

heated and formed to the patient’s head. Once the plastic returns to room temperature, it becomes 

rigid and is used to reproduce the position at CT simulation during each treatment delivery and 

aid in reducing patient movement during radiation delivery.  

 

 

 

Figure 2-2. Immobilization mask for head and neck (HN) radiation therapy.  

The material is heated, molded to the individual patients face, and cooled. The patient wears the mask during each 

fraction of radiation therapy to ensure that they are in the same position as they were during their planning scan.  

 

2.1.2 Radiation Treatment Planning 

 

Radiation treatment planning starts with the outlining of normal tissue and tumor on the planning 

CT. This outlining process is called contouring or tissue delineation. The radiation oncologist 
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contours the tumor (target volume) and then the organs at risk (OAR), which are normal tissues 

near the tumor. The target volumes defined in radiation oncology and recommended by the 

International Commission on Radiation Units and Measurements (ICRU) are the gross tumor 

volume (GTV), clinical target volume (CTV), internal target volume (ITV), and planning target 

volume (PTV). An example of these target volumes for a head and neck cancer patient can be 

seen in Fig. 1.3. The GTV consists of the tumor, including primary or metastatic disease, that is 

visible on all available images. The CTV includes the region around the visible tumor that may 

have microscopic disease, not visible on imaging. The ITV accounts for the CTV as well as size, 

shape, and positional uncertainties in the CTV. The PTV encompasses internal variations, which 

include CTV position, shape, and size, and external variations, which include beam and patient 

positioning [76]. Van Herk et al [77] developed a formula (Eq. 2-2) to calculate the PTV margin, 

M, necessary for the CTV to be covered by a minimum of 95% of the prescription dose for 90% 

of the population. Systematic errors, which are typically introduced during treatment planning 

and carried through treatment, cause shifts in the dose distribution (relative to the CTV). Random 

errors, which occur because of variations in day-to-day treatment, cause dose distribution 

blurring.  

 

 𝑀 = 2.5 𝛴 + 1.64(𝜎 − 𝜎𝑝)  (2-2) 

 

where 𝛴 represents the standard deviation for systematic errors, 𝜎𝑝 represents the width of the 

radiation beam’s penumbra, and 𝜎 is the sum of 𝜎𝑝
2and the squared standard deviation of the 

random errors. 
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Figure 2-3. Depiction of gross tumor volume (GTV), clinical target volume (CTV), and planning target volume 

(PTV). 

 

Following contour delineation, radiation parameters corresponding to the function of the linear 

accelerator, for example the number of beams, beam angle and fluence through a multileaf 

collimator, are optimized by the treatment planning software in order to obtain a 3D dose 

distribution. This dose distribution (Fig. 1.4) will aim for the target to receive the prescribed dose 

and for the dose to other structures to be as low as possible and not exceed given constraints.  

Advanced treatment delivery techniques have been developed to modulate the radiation, enabling 

improved sparing of normal tissue and targeting of the tumor.  These techniques include 

volumetric modulated arc therapy (VMAT), which is a radiation therapy technique in which 

delivery of radiation is entirely dynamic, and moves linearly between positions of the multi-leaf 

collimator (device composed of Tungsten leaves that move individually in and out of the particle 

beam path to block it) while the radiation beam is on with variable gantry speed and dose rate.  . 
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VMAT also has the potential to offer additional advantages, such as reduced treatment delivery 

time compared with conventional static field intensity modulated radiotherapy (IMRT).  

 

IMRT is a traditional technique which involves non-uniform beam intensities and is normally 

delivered with treatment delivery equipment controlled by a computer. With IMRT, the patient 

can be treated from different directions with nonuniform beams that are optimized to spare 

normal tissue while delivering high radiation dose to the tumor. The TPS converts the beams into 

many beamlets and optimizes their weights or fluences. The intensities and weights of the 

beamlets can be adjusted to meet the requirements of the dose plan (inverse planning). Optimal 

intensity profiles are calculated using analytic or iterative methods on a computer. Analytic 

methods are done with mathematical techniques that invert the dose distribution with back 

projection algorithms. Iterative methods consist of iteratively adjusting the weights of the 

beamlets to minimize cost function value. The standard cost function is the least square function 

(Eq. 2-3).  

 

 𝐶𝑛 = [(
1

𝑁
)∑𝑊(𝑟)(𝐷0

𝑟

(𝑟) − 𝐷𝑛(𝑟))
2]

0.5

  (2-3) 

 

where 𝐶𝑛 represents the cost at iteration n, 𝑟 is a point in the patient, 𝐷0(𝑟) represents the 

optimal dose, 𝐷𝑛(𝑟) represents the calculated dose at that point, 𝑊(𝑟) represents the weight of 

the structures, and N represents the number of dose points. For the tumor, the root mean squared 

difference between the true dose and the prescription dose equals the cost. For the normal tissue, 

the root mean squared difference between the true dose and zero dose is the cost. The sum of the 
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normal tissue and tumor costs, based on their weights, determines the total cost. The goal of the 

optimization algorithm is to minimize the total cost for every iteration until the goal radiation 

dose is reached.  

 

In order to prevent errors during the radiation therapy process, quality assurance (QA) is 

performed. QA is a process completed by a team of medical physicists in order to ensure the 

safety of patients, and includes measuring dose with a phantom, which is made of a synthetic 

material that mimics human tissue and comparing the measurements with the calculations 

obtained from the treatment planning system. Before delivering VMAT to a patient, 

measurement-based QA is performed. This is often done using a  cylindrical acrylic phantom 

accompanied by an array of diode detectors that compare the measured and calculated doses 

[78]. The measurements are then assessed using both distance and accuracy metrics, referred to 

as a gamma analysis [79,80]. Most institutions use a 3%, 3 mm pass rate for 95% of the points 

[78].  When this cannot be achieved, the plan must be evaluated by the medical physicist to 

determine its suitability for patient treatment. 

 

To deliver radiation, the linear accelerator accelerates electrons, which then collide with a 

Tungsten target to generate high-energy x-rays through bremsstrahlung. A multileaf collimator, 

situated inside the head of the linear accelerator, shapes the radiation beam. Finally, the beam 

emerges from the gantry, which rotates around the patient accordingly. The patient lies on the 

treatment couch, which is also moveable in 3 translational directions and in special cases 

rotational axes as well. Based on gantry rotation and treatment couch movement, the radiation 

beam can deliver dose at any angle. Before treating the patient, the aforementioned parameters 
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must be designed in process called ‘treatment planning’, which is typically performed by a board 

certified dosimetrist, or in some clinics or in especially complex cases, a board-certified medical 

physicist.  

 

 

Figure 2-4. Optimized dose distribution on a HN CT scan.  

The red contour surrounds the target tissue (tumor) and refers to the high-dose region. The green contour surrounds 

the low-dose region, and the yellow and orange contours represent the medium-dose region. Dose distributions are 

optimized to limit dose to surrounding tissue while distributing the maximum dose to the tumor. 

 

2.1.3 In-Room Imaging/Cone-Beam Computed Tomography  

 

The radiation dose prescribed by the radiation oncologist is typically delivered over a series of 

days, or fractions of smaller doses, which are delivered over the course of radiation therapy. The 

number of fractions varies depending on the treatment strategy. Before dose delivery at each 

fraction, the patient is positioned in the immobilization device, with the goal to reproduce their 

position from the CT simulation. Traditionally, the patient is repositioned according to external 
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landmarks such as skin markers. Portal imaging, which acquires images with the MV radiation 

beam from the linear accelerator, allows for the alignment of bony anatomy and some soft tissue 

structures (e.g. the lung diaphragm interface). While this technique is more reliable than skin 

markers for positioning, it offers limited soft tissue targeting. A recent and widely adopted 

advancement is the addition of a kV x-ray tube mounted 90 degrees from the MV radiation 

beam, enabling cone-beam CT (CBCT) acquisition in the treatment room (Fig. 1.6). The CBCT, 

as its name indicates, consists of a cone beam of x-rays contrary to a fan beam for the CT. CBCT 

imaging allows the visualization of bony anatomy and soft tissue in 3D, and can be useful for 

anatomical localization in the head and neck, abdomen, and pelvis regions (Fig 1.5).  

 

 

Figure 2-5. Head and neck (HN) 3D cone-beam CT (CBCT).  

These images are acquired at each fraction of radiation therapy to align the patient with their initial position.  
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Figure 2-6. Linear accelerator with cone-beam computed tomography (CBCT).  

True Beam, Varian Medical Systems, Palo Alto, CA.  

 

2.1.4 Rigid Registration 

 

Image registration involves finding the geometric transformation between corresponding 

anatomical points in two images. These two images are referred to as the reference dataset and 

the target dataset. Image registration in radiation oncology is used for image-guided treatment, 

contour propagation, dose accumulation, and integrating multi-modality images such as CT, 

magnetic resonance imaging (MRI), and positron-emission tomography (PET). The CBCT 

acquired just before radiation therapy allows for proper repositioning of the patient to the 

radiation beam by shifting and possibly slightly rotating the treatment couch. The applied 
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translation and rotation can be visualized with image fusion tools after the rigid image 

registration is calculated between the CBCT and the CT. Rigid image registration aims to 

optimize six transformation parameters: a translation in the superior-inferior, left-right, and 

anterior-posterior directions, and a rotation around each axis relative to the coordinate system 

origin. These three translations and three rotations are applied to the target image in order to 

align it to the reference image. This rigid transformation can then be applied to the patient to be 

accurately positioned prior to treatment. The optimal alignment prioritizes the alignment of a 

reference structure, such as a specific normal tissue or the tumor, or as a compromise between 

the alignments of different structures. An example alignment between the two images can be 

shown in a fused image (Fig. 1.7).  

 

 

Figure 2-7. Rigid alignment of CT images.  

A planning CT (left) and pre-fraction CBCT (middle) are rigidly aligned. A fused image (right) can be generated 

based on rigid registration. The purple represents the CT and the green represents the CBCT. 

 

2.1.5 Radiation Dose Calculation 

 

The International Commission on Radiation Units and Measurements (ICRU) recommends a 

combined dose uncertainty below 5% [76] . As dose calculations from the TPS, machine 

calibration, and patient setup carry additional uncertainty, the dose calculation algorithm itself 

must estimate the dose distribution within an accuracy of 3%. The most accurate dose calculation 



 

33 

method is Monte Carlo, which simulates photon and electron transport to model the beam [81] . 

This method involves determining the history of each particle using a random number generator. 

The dose distribution is generated by combining the energy deposited by each particle. Monte 

Carlo methods for dose calculations are computationally expensive and currently not practical in 

the clinic, however they are used as benchmark calculations for other methods [82] . The other 

common dose calculation algorithms can be classified under two types. One type involves 

models based on equivalent tissue-air ratio (ETAR) [83] or the scaling of equivalent path length 

(EPL) [84] for inhomogeneity corrections. These techniques do not model the differentiations in 

lateral electron transport. The second type is based on convolution techniques, where 

inhomogeneities are managed with EPL correction or scaled kernels. The lateral transport of 

electrons is approximated for these techniques. The first type does not result in accurate dose 

distribution calculations in patients, but can be used in some TPSs to give an estimate of the 

absorbed dose. The second type results in dose calculations near the accuracy of Monte Carlo 

simulations, but have the benefit of being less time-consuming.   

 

 

2.1.6 Dose calculation algorithms  

 

The dose calculation algorithms used in this thesis were based on the treatment planning system 

used for those patients. One treatment planning system was Pinnacle (Philips, U.S.A). The dose 

calculation algorithm implemented in Pinnacle is the collapsed cone convolution (CCC) method. 

The CCC method employs angular discretization of the kernel to allow energy transport and 

deposition. The following equation describes the energy deposition per radial distance based on 
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this method where the dose fractions are scaled for the point kernel ℎ𝜌𝑜, for a homogeneous 

medium with a mass density of 𝜌𝑜: 

 

 ∬
ℎ𝜌𝑜
𝜌
(𝑟, 𝛺)𝑟2𝑑2𝛺 = 𝐴𝛺𝑖𝑒

−𝑎
𝛺𝑖
𝑟
+ 𝐵𝛺𝑖𝑒

−𝑏
𝛺𝑖
𝑟
 (2-4) 

 

where 𝛺𝑖 is a discrete angular sector (cone), ρ is the density, r is the radius, and A and B are 

elements. Due to interactions as the lower cone’s vertex, energy meant to be deposited in voxel 

B’ is deposited in voxel B, as a consequence of using the CCC approximation. Although the 

displacement increases with distance, the first scatter fraction decreases as the distance increases, 

which allows for the conservation of total energy deposition. Displacement errors occur within 

voxels, as most of the energy is deposited where it is released. It can be noted from this equation 

that due to the cone’s increasing cross section, the radius’s inverse square cancels as the radius 

increases. The terma distribution, where terma can be defined as the total energy released per 

mass [85], is convolved with the angular discretized kernel. The cones are essentially collapsed 

into their axes, as we approximate the energy release to be rectilinearly deposited in the volume 

elements of the axis. To represent the cone axes, a transport line lattice is created to incorporate 

the irradiate volume so every calculation voxel is intersected. For all discrete directions of the 

collapsed kernel, there must be a parallel subset of lines. We can express analytically the energy 

transport along a line, because the kernel is described exponentially. The resulting recursive 

formulas need to be evaluated just once for each voxel on the line. During this recursion, kernel 

scaling for heterogeneities is completed for scatter and primary dose kernels, and the recursion 

pass each voxel a minimum of one time for each direction. In the case that the points are 

individually calculated, the amount of operations is proportional to MN4, where M represents the 
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number of angular bins. The CCC method has been compared with dose distributions generated 

by Monto Carlo simulations with generally satisfactory results. However, in off-axis dose 

profiles, the differences between CCC and Monte Carlo increase. In low density regions, 

differences of up to 10% have been observed [86]. 

 

Another treatment planning system used for the studies described in this thesis was Eclipse 

(Varian Medical Systems, Palo Alto, CA). The dose calculation algorithm implemented in 

Eclipse is the analytic anisotropic algorithm (AAA). This superposition algorithm is similar to a 

pencil beam algorithm and represents patient scatter and bream properties with a multiple-source 

model. Small beamlets (β) make up the clinical beams. The calculation grid size is related to the 

beta cross sections. The AAA method assumes that the dose at a point is the sum of the doses of 

a depth and lateral part, perpendicular to the beamlet direction. The depth dependent functions of 

the convolution are calculated on the beamlet’s central fan line. The scatter kernels that model 

energy transport are discretized in 16 directions (lateral). Equation (Eq. 2-5) shows the absorbed 

energy (𝐸𝑖,𝛽) for a particle (i) and area β, 

 

 𝐸𝑖,𝛽(𝜉, 𝑧) = 𝛷𝑖,𝛽𝐼𝑖,𝛽(𝑧)∫𝐾𝑖,𝛽(𝑢 − 𝑥
′, 𝜐 − 𝑦′, 𝑧′)𝑑𝑢𝑑𝜐 (2-5) 

 

where an equivalent path is represented by 𝜉, the depth is represented by z, the fluence is 

represented by 𝛷𝑖,𝛽, the attenuation function is represented by 𝐼𝑖,𝛽(𝑧), and the lateral energy 

transport is represented by 𝐾𝑖,𝛽. Scaling the beamlet’s attenuation function allows for the 

heterogeneities of the tissue to be incorporated. The AAA algorithm reduces computational time 

with analytical convolution, which is made possible by using analytical functions only [87]. Two 
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previous studies [87,88] showed that the deviations between CCC, AAA, and Monte Carlo 

algorithms are within 5% of Dmax for clinical scenarios.   

 

As these algorithms are not 100% accurate, the estimated deviations due to patient motion 

explored in this thesis will be affected. The greatest errors within errors exist near the photon 

beam edges, as the spatial derivatives are largest in these regions. While Monte Carlo dose 

calculation algorithms are known to perform the most accurate dose calculations, they are time 

consuming and computationally expensive, and the CCC and AAA methods are known to result 

in dose calculations within an acceptable margin of error in the clinic. Dose calculation errors 

can be greatest in regions of high geometric complexity, such as the head and neck region. One 

study [89] compared the accuracy of a finite size pencil beam algorithm with EPL 

inhomogeneity correction with a Monte Carlo algorithm. Statistical significance was not 

observed for the mean and maximum doses to the GTVs when comparing the pencil beam and 

Monte Carlo method. Differences in the D50, mean dose, and maximum dose were not 

statistically significant between the two methods for the spinal cord and mandible. Differences in 

the D50, mean dose, and maximum dose were 4%, 4%, and 1%, respectively for the parotid 

glands. Additionally, a 6% difference was observed in the volume that received over 25 Gy, 

V25. Another study [90] used ArcCHECK to test the 3D gamma passing rate for three dose 

calculation algorithms, using the 3 mm/3% criteria. The planned dose was compared to the 

measured dose for a pencil beam algorithm, a CCC algorithm, and a Monte Carlo algorithm. For 

the pencil beam algorithm, a 91.75±9.12% passing rate was observed. For the CCC algorithm, a 

93.12±7.75% passing rate was observed. For the Monte Carlo algorithm, a 94.52±5.85% passing 

rate was observed. 
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Recalculation of the daily dose distribution (Fig. 1.8) can be done using CBCT. This dose 

calculation is more challenging than on the planning CT due to the limited field of view (FOV) 

and to artifacts. CBCT artifacts are caused by inconsistencies between the physical imaging 

process and mathematical modeling. Artifacts are evident when the CT numbers in the 

reconstructed image are inconsistent with the attenuation coefficients in the tissue being imaged.  

Examples of artifacts that occur for CBCT are shadowing and scattering effects. Artifacts cause 

contour uncertainty as tissue boundaries can be unclear depending on the location of the artifact.  

However, previous work [91] has demonstrated that dose can be calculated on the CBCT within 

an accuracy of 2% (within a specified region) compared to calculations on the CT. The dose 

distribution allows for the delivered dose assessment during the treatment fraction to the target 

and OAR.  

 

 

Figure 2-8. Delivered dose distribution on a head and neck (HN) cone-beam computed tomography (CBCT).  

The red refers to the high dose region, the yellow refers to a moderate dose region, and the green and blue refer to 

low dose regions. The high dose region is sculpted around the tumor.   

 

 Accounting for Anatomical Variations  
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A leading cause in the uncertainty in the delivered dose to the patient is anatomical variation 

between fractions that occur over the course of treatment. Anatomical variation can be due to 

patient positioning, physiological processes (e.g. digestion, breathing, etc) weight loss, or 

volumetric changes of normal and tumor tissue due to radiation. When tumor shrinkage and 

other anatomical variations occur, it becomes challenging to determine if the dose delivered to 

that structure is consistent with the planned dose (Fig. 1.9). Velec et al [25] demonstrated that 

dose differences to the liver could exceed 5%. Recent studies have also been conducted to show 

the differences between planned and delivered dose for head and neck cancer, including 

Heukelom et al [92], who demonstrated that deviations of >3% in normal tissue complication 

probability (NTCP) between planned an delivered dose occur in 25% of head and neck patients. 

Deformable image registration (DIR) improves our ability to quantify discrepancies between 

planned and delivered dose. Quantification of these discrepancies allows investigation into new 

replanning strategies.  

 

 

Figure 2-9. Planning CT (left) and mid-treatment CBCT (right) with the same contours overlaid.  

The tumor contour and high dose region is delineated in red and no longer fits around the target tissue on the mid-

treatment CT. 



 

39 

 

2.2.1 Deformable Image Registration  

 

While rigid registration involves translation and rotation in all directions, DIR allows more 

degrees of freedom by allowing a spatially variant transformation. DIR algorithms are 

considered parametric when the transform is defined by a limited number of parameters, for 

example, when using B-spline functions [93]. DIR algorithms are considered non-parametric 

when the voxel displacements are independently calculated and regularized in an iterative 

process, for example, in the Demons algorithm [94]. All DIR algorithms provide a dense 

deformation vector field (DVF), i.e., a displacement for each voxel of the reference image. Since 

there exists a displacement vector for each voxel in the source image, the number of degrees of 

freedom can be up to three times the number of voxels in the source image. A regularization 

function constrains the spatially variant vector fields to establish that the transformation is 

realistic anatomically. The regularization function allows for a smooth deformation field. 

 

The deformation between the CBCT and the planning CT must be calculated to in order to align 

images. Accurate alignment of images allows for the calculation of dose accumulated by 

different structures and eventually to decide if re-planning is necessary. Calculating the 

deformation between the CBCT and CT can be done with DIR which provides a DVF that maps 

each voxel of the planning CT onto the CBCT.  
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Figure 2-10. Deformation field obtained with a DIR algorithm that can be used to spatially align images.  

The purple and green each represent different images.  

 

Registration metrics are used to assess how well two images are aligned. DIR is the optimization 

process that provides the transformation (DVF) that will maximize or minimize the registration 

metric. Two main categories of DIR are used in the clinic and for research. The most common 

DIR techniques used clinically are intensity-based, which use functions of the image intensities 

as similarity metrics such as the following methods.  

 

Sum of Squared Differences  

In the sum of squared differences (SSD) approach, the secondary image is transformed to the 

primary image to minimize the SSD (Eq. 2-6):   

 

 𝑆𝑆𝐷(𝐼1, 𝐼2) = ∑(𝐼1(𝑥) − 𝐼2(𝑥))
2

𝑥∈𝛺

 (2-6) 

 

where all voxels x within an image grid 𝛺 are considered. The method is based on the intensity 

of a voxel in the primary image (𝐼1) corresponding to the intensity of a voxel in the secondary 

image (𝐼2). This method is inexpensive in computing time, and is only applicable in cases where 

both images are of the same modality.  
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Cross-Correlation 

Cross-correlation (CC) is applicable for the case that there is a linear relationship between the 

two images [95]: 

 𝐶𝐶(𝐼1, 𝐼2) =
∑ (𝐼1(𝑥) − 𝐼2(𝑥))𝑥𝜖𝛺

√∑ 𝐼1(𝑥)2 ∗ ∑ 𝐼2(𝑥)2𝑥𝜖𝛺𝑥𝜖𝛺

 (2-7) 

 

 

Mutual Information  

Mutual information (MI) is a useful method for when each image is of a different modality: 

 

 𝑀𝐼(𝐼1, 𝐼2) = 𝐻(𝐼1) + 𝐻(𝐼2) − 𝐻(𝐼1, 𝐼2) (2-8) 

 

where 𝐻(𝐼1) and 𝐻(𝐼2) (Eq. 2-9) represent the marginal entropies and 𝐻(𝐼1, 𝐼2) (Eq. 2-10) 

represents joint entropy.  

 

 𝐻(𝐼) = −∑𝑝(𝑖) log 𝑝(𝑖)

𝑖

 (2-9) 

 

where i spans all intensities in I.  

 

 𝐻(𝐼1, 𝐼2) = −∑𝑝(𝐢) log 𝑝(𝐢)

𝐢

 (2-10) 
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Where i spans all intensity pairs between I1 and I2. The probabilities are estimated from the 

images.  

 

Another technique is geometry-based DIR, which does not directly use voxel intensities but uses 

features extracted from the images such as landmarks or anatomical surfaces. Some approaches 

have been proposed to combine intensity-based and geometry-based DIR. One such approach 

used in this Ph.D. and implemented in the treatment planning system RayStation is the 

ANAtomically CONstrained Deformation Algorithm (ANACONDA) [96]. This hybrid approach 

combines intensity information as well as contours defined manually on anatomical surfaces. For 

the ANACONDA method, a smooth DVF is optimized using the quasi-Newton algorithm.  

Similarity between the images is determined by correlation coefficients, which guide the DVF. 

Regularization of the DVF is done by the weighted Dirichlet energy, which measures variability 

of the function. Regularization with this method involves first resolving the DVF smoothness 

and invertibility, and then penalizing large deviations in the regions of interest (ROI). 

Controlling ROIs can be chosen by the user to guide the DIR, which in addition to the intensity-

based part, makes it a hybrid algorithm. Deformation of each ROI surface is computed by 

registering distance maps representing the surface.  

 

2.2.2 Biomechanical Model-Based DIR Algorithms 

 

Biomechanical model-based DIR uses material properties of the tissue in the image to deform the 

image. These material properties define the stiffness and flexibility of the tissue. The 

biomechanical model-based DIR discussed in this dissertation is based on finite element models 
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(FEM) of the structures depicted in the images. In a FEM-based DIR algorithm, each ROI is 

represented by a series of joined nodes that create tetrahedrons to approximate the surface. FEM 

analysis solves the geometric relationship between tetrahedrons. For biomechanical model-based 

DIR, boundary conditions define motion and deformation of the tissue.     

 

 

FEM-based DIR algorithms are particularly useful compared to intensity-based algorithms for 

multi-modality applications and in cases where anatomical deformation is complex.  FEM-based 

DIR algorithms allow for the implementation of dose-based boundary conditions to describe the 

volumetric response of tissue and have been validated for several organ sites. Polan et al [97] 

applied dose-driven volumetric response to an FEM-based DIR algorithm to improve the 

accuracy of modeling anatomical changes in the liver. Velec et al [98] demonstrated that the 

accuracy of FEM-based DIR was near image voxel resolution accuracy for multiple image 

modalities for the thorax, abdomen, and prostate. Another advantage of using FEM-based DIR 

algorithms is the ability to apply internal boundary conditions to organs. Cazoulat et al [99] 

added boundary conditions to lung vasculature and significantly improved the accuracy in 

modeling lung and tumor response during radiation therapy. Yan et al [100] developed a 

biomechanical model of an elastic body in order to quantify the organ motion of radiation 

therapy patients.   

 

The biomechanical model-based DIR algorithm used for the studies described in this thesis was 

Morfeus [63], which is based on organ segmentations. With Morfeus, we can create a dense DVF 

between the reference image and target image. Based on contours, triangular surfaces meshes are 
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generated to represent the organs of interest. Material properties (Young’s Modulus and 

Poisson’s Ratio) are assigned to the organs of interest. Soft tissues are modeled as linear-elastic 

materials, which restore to their initial state after the load is removed. We characterize the 

material using the elastic modulus (E), which is the slope of the plot of stress over strain, and 

Poisson’s ratio (𝜈), which is the ratio of the transverse strain to the axial strain. The shear 

modulus, G, is defined by shear stress divided by angular deformation. The bulk modulus, K, is 

defined by the load divided by the volumetric change. The aforementioned variables are related 

in the following equations. 

 

 𝐺 =  
𝐸

2(1 + 𝜈)
 (2-11) 

 

 𝐾 =  
𝐸

3(1 − 2𝜈)
 (2-12) 

 

Hooke’s law represents the relationship linking stress and strain for elastic models, and is 

defined in the equation 

 𝜎 = 𝐶𝜀 (2-13) 

 

where the stress and strain are represented by σ and 𝜀, and the elastic moduli is represented by C.  

 

A tetrahedral FEM model of all organs is generated. For each structure, a surface projection 

algorithm determines the displacement of the surface nodes. Those displacements are used as 

boundary conditions in the model. Two different surface projection algorithms have been 
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previously implemented in Morfeus, in order to determine boundary conditions. The first method 

is HYPERMORPH, which is an algorithm in HYPERMESH, which is a FEM pre-processor 

from Altair Engineering in Troy, MI. HYPERMORPH relies on the FEM surface meshes 

generated based on the organs. The secondary mesh is converted to a surface. Next, an initial 

center-of-gravity (COG) registration is completed between the two meshes. The surface 

tetrahedrals are grouped into domains that depend on the FEM’s curvature. The nodes are then 

guided in each domain by a “handle”. The base model domains are mapped to the secondary 

model domains, and the deformable alignment is guided by the handle and then an orthogonal 

node projection. This alignment is performed from node to surface. Finally, boundary conditions 

are based on the vector difference of each mode, before and after alignment. Another surface 

projection algorithm has been recently added to handle organs presenting large deformations. 

This algorithm is based on the accelerated Demons algorithm. The Demons algorithm [94] is a 

greyscale image-, or intensity-based method. Because of the similar intensities between images, 

this method is used for registration between CT images in RT. The forces of the Demons method 

can be described using the optical flow equation. The following equation describes the 

displacement 𝑢⃗⃗ of a point from the reference image, R, to the point corresponding from the target 

image, T:   

 

 𝑢⃗⃗ =
(𝑡 − 𝑟)∇⃗⃗⃗𝑟

|∇⃗⃗⃗𝑟|
2
+ (𝑡 − 𝑟)2

 (2-14) 

 

where 𝑢⃗⃗ represents the displacement in each direction, t and r represent the intensities of the 

target and references images, and ∇⃗⃗⃗𝑟 represents the reference image gradient. Iteratively, the 
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Demons algorithm solves the equation (Eq. 2-15) for each voxel and composes the displacement 

field 𝑢⃗⃗ with the global displacement field 𝑈⃗⃗⃗: 

 

 𝑈⃗⃗⃗𝑛 = 𝑢⃗⃗𝑛 + 𝑈⃗⃗⃗𝑛−1 (2-15) 

 

 

In order to minimize noise and ensure smoothness of the tranformation the global DVF is filtered 

with a Gaussian kernel. Since the deformation is driven only by the gradient of the reference 

image, the method was improved in [101] with the addition of an active force to the deformed 

(target) image. This active force, 𝑓𝑡⃗⃗⃗ ⃗, can be described in the following equation. 

 

 𝑓𝑡⃗⃗⃗ ⃗ =  − 
(𝑟 − 𝑡)∇⃗⃗⃗𝑡

|∇⃗⃗⃗𝑡|
2
+ (𝑟 − 𝑡)2

 (2-16) 

 

Finally, the total force of a point can be described with the equation 

 

 𝑓 = 𝑓𝑟⃗⃗⃗ ⃗ + 𝑓𝑡⃗⃗⃗ ⃗ = (𝑡 − 𝑟) ∗ (
∇⃗⃗⃗𝑟

|∇⃗⃗⃗𝑟|
2
+ (𝑟 − 𝑡)2

+
∇⃗⃗⃗𝑡

|∇⃗⃗⃗𝑡|
2
+ (𝑟 − 𝑡)2

) (2-17) 

 

where 𝑓𝑟⃗⃗⃗ ⃗ represents the force from the gradient of the reference image and 𝑓𝑡⃗⃗⃗ ⃗ represents the force 

from the gradient of the target image. These force calculations are appropriate with relatively 

small deformations. However, there are often large deformations in clinical cases, so 

multiresolution method [102] was applied. This method applies an iterative demons diffusion 
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approach, based on low-resolution images, and increases calculation speed by improving the 

convergence. An additional normalization factor (a) was also applied. With this incorporation of 

a, adjustments to the force strength at each iteration is possible. This factor is applied as shown 

in the following equation 

 

 𝑑 = (𝑡 − 𝑟) ∗ (
∇⃗⃗⃗𝑟

|∇⃗⃗⃗𝑟|
2
+ 𝑎2(𝑟 − 𝑡)2

+
∇⃗⃗⃗𝑡

|∇⃗⃗⃗𝑡|
2
+ 𝑎2(𝑟 − 𝑡)2

) (2-18) 

 

where larger deformations require smaller a values.  

 

Morfeus was used in this work to align the parotid glands after both positional changes and dose 

response. Using Morfeus to describe the changes during radiation therapy is important because 

FEM-based deformable image registration algorithms can be used to show not just the changes in 

the surface of the organs, but also to model what is happening internally. The Morfeus process is 

outlined in Fig. 2-13.  
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Figure 2-11. Depiction of Morfeus process.  

Using a pre-treatment (initial) and a post-treatment (secondary) image, Morfeus aligns the initial image to the 

corresponding secondary image. A volumetric mesh is generated and material properties are assigned to the initial 

image. Then, a surface mesh is generated from the secondary image. The surface correlation is calculated and 

applied as boundary conditions to the initial model. Finally, the finite element analysis (FEA) solves the deformation 

between the initial image and the secondary image.  

 

2.2.3 Dose Accumulation  

 

Upon completion of any fraction during radiation therapy, the dose (d) can be accurately 

accumulated using DIR. A CBCT from a daily treatment fraction is deformed to the planning 

CT. The DVF (U) is then used to deform the dose from the CBCT onto the planning CT, which 

allows the comparison between the planning dose and delivered dose. Ultimately, accumulating 

the dose using DIR can indicate the need for re-planning the patient. After completion of 

treatment, assessment of the treatment efficacy is performed based on the acquisition of follow-
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up images. These images need to be registered to the image on which the accumulated dose has 

been calculated (Fig. 1.11) to better understand the correlation between delivered dose and 

outcome. The ultimate goal is to optimize treatment strategies for future patients. The following 

equation describes the daily accumulated dose:  

 

 𝑑(𝑥) = 𝐷(𝑥 + 𝑈(𝑥)) (2-19) 

 

where d is the daily accumulated dose at the voxel coordinate x, and D is the deformed daily 

dose distribution based on the DVF U. This daily accumulated dose is calculated for each 

fraction and all doses are summed to calculate the total accumulated dose.  

 

 

Figure 2-12. Follow-up CT scan with accumulated dose overlaid. 

 

 Adaptive Radiation Therapy  

 

As patients progress through radiation therapy, the tumor and normal tissue may change due to 

weight loss and tumor response. As tissues change during radiation therapy, the radiation 
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treatment plan may no longer correspond to the patient anatomy. Continuing to use the original 

treatment plan may lead to an unacceptable dose deviation. In this case, creating a new treatment 

plan that is optimal for the new patient geometry is necessary. This process, ‘adaptive 

radiotherapy’, is the process where a new radiation treatment plan is triggered based on new 

information acquired during the radiation therapy course. For this, a new CT scan is usually 

acquired on which the contours are delineated to optimize a new treatment plan, based on the 

new anatomy of the patient.    
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Chapter 3. A Simulation Study to Assess the Potential Impact of Developing 

Normal Tissue Complication Probability Models with Accumulated Dose 

 

Current practice in radiation oncology involves the use of historic population models for 

predicting toxicity. These models are based on the planned dose to a specific organ. Recent 

studies explored the deviations between planned and delivered dose to the liver [62,64].  

 

 

When NTCP models were first developed, accurate dose accumulation to estimate the true 

delivered dose to the organ over treatment was not possible. However, accurate dose 

accumulation is now possible, and the same classic, planned dose-based models are still being 

used in the clinic. The radiation dose to liver tumors is often limited by the surrounding normal 

tissue. As the normal tissue in the abdominal region consists mainly of serial structures, which 

lose function completely when any part of the organ loses function, the priority of radiation 

treatment for liver cancer is to spare the gastro-intestinal organs. Limiting the dose to normal 

tissue can potentially limit the dose to the tumor and therefore tumor control. As there are 

potential deviations between the planned and delivered dose, the planned dose-based model is 

not necessarily accurate, and with the possibility of dose accumulation in clinical trials, it is now 

possible to generate more accurate toxicity models. This chapter explores the potential clinical 

impact of generating new toxicity models based on the accumulated dose to the patient.  
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 Abstract 

 

The purpose of this study is to analyze the potential clinical impact of differences between 

planned and accumulated dose on the development and use of normal tissue complication 

probability (NTCP) models. Thirty patients previously treated with SBRT for liver cancer and 

for whom accumulated dose was computed, were assessed retrospectively. The linear quadratic 

equivalent dose at 2Gy per fraction (LQED2) and generalized equivalent uniform dose (gEUD) 

were calculated for planned and accumulated dose. Stomach and duodenal Lyman-Kutcher-

Burman (LKB) NTCP models (α/β=2.5, n=0.09) were developed based on planned and 

accumulated gEUD and the differences between the models assessed. In addition, the error in 

determining the probability of toxicity based on the planned dose was evaluated by comparing 

planned doses into the NTCP model created from accumulated dose. The standard, planned-dose 

NTCP model overestimates toxicity risk for both the duodenal and stomach models at doses 

below approximately 20Gy (6-fractions), and underestimates toxicity risk for doses above 

approximately 20Gy (6-fractions). Building NTCP models using accumulated dose rather than 

planned dose changes the predicted risk by up to 16 % (Mean=6%,SD=7%) for duodenal toxicity 

and 6% (Mean=2%,SD=2%) for stomach toxicity. For a protocol planning a 10% iso-toxicity 

risk to the duodenum, a 15.7Gy (6-fractions) max dose constraint would be necessary when 

using standard NTCP models based on planned dose, while a 17.6Gy (6-fractions) max dose 

would be allowed when using NTCP models based on accumulated dose. Assuming that 

accumulated dose is a more accurate representation of the true delivered dose than the planned 

dose, this simulation study indicates the need for prospective clinical trials to evaluate the impact 

of building NTCP models based on accumulated dose.  
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 Introduction  

 

Stereotactic body radiation therapy (SBRT) delivers high precision external beam radiation 

therapy (EBRT) treatment in 2-5 fractions. The goal of using SBRT is to deliver an ablative dose 

to the tumor while sparing normal tissue leading to lower toxicity [103]. While SBRT has been 

demonstrated to increase local control of liver cancer [104], toxicity risks must still be 

acknowledged for liver and luminal gastrointestinal (GI) structures [105]. Dose escalation has 

the potential to improve local control [106]. However, increase in dose is often limited by normal 

tissue toxicity risk. Based on previous studies [25], approximately 30% of patients are dose 

limited based on GI toxicity. Overestimating toxicity risk can lead to conservative treatment for 

the patient, potentially leading to lower chances of tumor control.  Underestimating toxicity risk 

can subject the patient to unplanned risks. It is therefore critical to have an accurate 

understanding of toxicity to normal tissue. Significant efforts have been made in the 

development and validation of accurate Normal Tissue Complication Probability (NTCP) models 

[107-110], which aim to characterize the correlation between dose and the likelihood of side 

effects [111]. Specifically, Lyman-Kutcher-Burman (LKB) NTCP models have been used to 

investigate the dose-volume response for liver cancer [112].  

 

LKB NTCP models have been previously developed for duodenal toxicity [108] demonstrating 

that the model can predict outcomes after SBRT. In addition, a separate investigation showed 

that the Lyman NTCP model can predict gastric bleeding [107], demonstrating that patients with 

cirrhosis are at increased risk. Both studies built the NTCP models based on the planned dose to 

each patient. Recent retrospective studies have shown that the planned dose differs from the 
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accumulated dose [25,113,114], especially when evaluating the maximum dose to luminal GI 

structures, such as the duodenum and stomach, for which the differences could reach 42% and 

14%, respectively, of the prescribed dose [25]. It is hypothesized that building NTCP models 

based on accumulated dose will lead to a substantially different model, which may have clinical 

impact. The goal of this work is to evaluate how the known uncertainty between planned and 

delivered dose limits translates into potential uncertainties in NTCP modeling, and to determine 

the differences in the model if accumulated dose was used in the derivation of the model 

parameters.  

 

Previous work supports the hypothesis that accumulated dose can improve understanding of 

clinical outcomes of SBRT, demonstrating the accumulated dose to the GTV more strongly 

predicts for total time to local progression [114]. The current study builds on this work, assessing 

the impact of accumulated dose on NTCP models by comparing LKB NTCP models based on 

planned dose with those based on accumulated dose. Preceding clinical trials, the aim of this 

study is to assess the potential differences in the development of the NTCP models using 

accumulated dose versus planned dose. The second aim is to apply these models for patient 

specific assessment.  

 

 Methods and Materials 

 

3.3.1 Patient Data 
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A previous study retrospectively evaluated the deviations between planned and accumulated 

dose to tumors and normal tissues in liver SBRT in 30 patients [25]. The patients were treated on 

an institutional review board-approved trial under free-breathing conditions, with 6 fractions to 

an individualized risk-based dose of 27-30Gy. Daily cone-beam CT (CBCT) guidance was 

performed. For each patient, the dose was accumulated by registering the daily inhale/exhale 

CBCT to the planning CT scan with Morfeus, an in-house biomechanical model-based 

deformable registration algorithm (DIR) [63]. For each of the thirty patients, planning dose and 

accumulated dose for stomach and duodenum were used in the Lyman NTCP model.  

Dose Accumulation 

 

The dose accumulation was previously reported [25] and will be briefly described here for 

completeness. Morfeus was used to accumulate the dose for each patient. The dose distribution 

from the static radiation treatment plan was calculated in the treatment planning system on the 

exhale planning CT and the inhale planning CT. Both dose distribution files were imported into 

Morfeus. In Morfeus, the organs are described using finite element models, which represents 

substructure within the organs through tetrahedral elements. Through the DIR, the locations of 

the tetrahedral elements can be tracked between the exhale and inhale images of 4D scans. 

Interpolation of dose matrices onto the position of each element at exhale, inhale, and four 

intermediate phases is performed to accumulate the dose. The weighting of each phase was 

determined by the time spent at that phase and the elemental position in the breathing cycle. 

Finally, a summation of elemental dose over the breathing cycle was calculated to determine the 

accumulated dose.       
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The planned dose is defined as the static clinical planned dose, which was found by interpolating 

the dose matrix from the exhale CT onto the initial tetrahedral mesh constructed from the 

anatomy on the exhale CT. The calculation of this dose does not include any changes due to 

breathing motion or setup error.  

 

Accumulated dose refers to the dose accumulated over SBRT accounting for residual setup 

errors (e.g. those errors still present following daily image guidance), respiratory motion, shifting 

of the liver, and deformation. To account for setup errors and organ deformation present at each 

fraction, the exhale CT is deformed to the exhale CBCT of each fraction. Next, to account for 

daily breathing motion, the exhale CT is deformed from the exhale CBCT to the inhale CBCT of 

each fraction.  To accumulate the dose, dose matrices from the exhale CT and inhale CT are 

interpolated onto the deformation map from the exhale to inhale CBCT of each fraction. Finally, 

the doses from the 6 fractions of treatment are summed. In order to accumulate the dose, DIR 

tracked anatomical motion and deformation in the dose matrices of the initial planning 4D CT.  

 

3.3.2 Differences between planned and accumulated doses 

 

Percent change (PC) from planned to accumulated mean dose was analyzed for duodenum 

(N=30), stomach for primary liver cancer (non-cirrhotic) patients (N=15), and stomach for 

cirrhotic patients (N=15), calculated by the equation 

 

 𝑃𝐶𝑑𝑜𝑠𝑒 =
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑜𝑠𝑒 − 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐷𝑜𝑠𝑒

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝐷𝑜𝑠𝑒
∗ 100  (3-1) 
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3.3.3 NTCP Models – Change in probability of toxicity 

 

The delivered and accumulated doses (in the form of tabular DVH) were biologically corrected 

to the Linear Quadratic Equivalent Dose at 2Gy per fraction (LQED2), using an α/β ratio of 2.5 

[107]. The gEUD was calculated with n=0.09. The Lyman NTCP model, shown in equation 3-2, 

was used for toxicity modeling in this study.  

 

 𝑁𝑇𝐶𝑃 = Ф(
𝑔𝐸𝑈𝐷 − 𝑇𝐷50
𝑚 · 𝑇𝐷50

)  (3-2) 

 

The function Φ represents the NTCP model [115] where gEUD is evaluated using equation 

[105], TD50=24.6 and m=0.23 for duodenum [108], TD50=22 and m=0.21 for stomach and 

cirrhosis [107], and TD50=56 and m=0.21 for stomach and no cirrhosis [107].  

 

The percent change (PC) in NTCP from planned to accumulated dose was calculated using the 

equation  

 𝑃𝐶𝑁𝑇𝐶𝑃 = 
𝑁𝑇𝐶𝑃 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑁𝑇𝐶𝑃 𝑃𝑙𝑎𝑛𝑛𝑒𝑑

𝑁𝑇𝐶𝑃 𝑃𝑙𝑎𝑛𝑛𝑒𝑑
∗ 100   (3-3) 

 

 

  

3.3.4 Simulated Toxicities for Duodenum and Stomach 
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Toxicity models were simulated for duodenum and stomach with cirrhosis. Stomach without 

cirrhosis was not modeled, as there were no patients with an absolute change in NTCP of greater 

than 5% between the accumulated and planned dose.  In order to simulate toxicity models for a 

larger cohort of patients than was used in the study, a resampling process was developed. 

            

Figure 1 depicts the planned dose over the accumulated dose for the original 30 patients for 

duodenum, and the 15 cirrhosis patients for stomach. Based on the trends seen in Figure 1, a 

model was fit to predict planned dose given accumulated dose in order to resample data points. 

 

 𝑑𝑝𝑙𝑎𝑛~𝑁(𝑑𝑎𝑐𝑐 + 𝛽𝑑𝑎𝑐𝑐 , 𝜎
2𝑑𝑎𝑐𝑐)   (3-4) 

 

Where dplan is planned dose, dacc is the accumulated dose, and β (bias function of dose) and σ2 are 

parameters estimated by the linear regression model shown in Figure 1. These parameters were 

estimated via maximum likelihood.  
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Figure 3-1. Planned Vs. Accumulated Dose Plots.  

Planned Vs Accumulated Dose for Duodenum (a) and Stomach with Cirrhosis (b). The solid green line depicts the 

mean, the dashed line shows the 95% confidence limits for regression, and the solid gray line represents the case that 

planned dose and accumulated dose are equal.    

 

NTCP models are typically estimated using planned dose values. To quantify the effect of 

differences between planned and accumulated doses on model parameter estimation, the 

following steps were performed: 

1. The distribution of planned dose was estimated as a function of accumulated dose, 

which involved both estimation of systematic bias (i.e. β≠1 in Eq. 6) and random 

variation of planned dose about accumulated dose. In the case that the two dose terms 

agreed perfectly, there would be neither bias (i.e. β=1) nor variation (i.e. σ=0). 

2. Both toxicity values were simulated (using the accumulated dose NTCP model) and 

planned dose values (using Eq. 6) from the observed delivered dose values in the 

study (n=30). Larger sample sizes can overcome variation between planned and 

accumulated dose. However, larger sample sizes do not overcome systematic bias. 
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Thus, studies of size 30, 150, or 600 patients were simulated by using each observed 

patients delivered dose value 1, 5, or 20 times. Because a random toxicity outcome 

and random planned dose value was simulated using the relationship established in 

Eq. 6, the multiple outcomes simulated from a single patient in the 30 patient dataset 

were distinct.  

3. For each of the simulated studies, the NTCP model parameters were estimated based 

on the planned dose values.  

4. Steps 2 and 3 were repeated 2,000 times. Finally, the mean NTCP curve was plotted 

as well as the 10th and 90th percentiles of the curves.  

 

3.3.5 NTCP Models – Change in probability of toxicity  

 

Finally, the deviations in the probabilities of toxicity between the standard and accumulated 

NTCP models were quantified. As the true probability of toxicity risk is unknown, this was 

estimated with the probability of toxicity risk of the dacc derived from the accumulated dose 

model (NTCP1). The dplan and dacc (in maximum dose to 0.5cc) of each patient in the study were 

correlated to the probability of toxicity risk using each NTCP model. NTCP2 was defined as the 

probability of toxicity risk of dplan derived from the standard model and NTCP3 was defined as 

the probability of toxicity risk of dplan derived from the accumulated model. The error in the 

standard model was calculated as the difference between NTCP2 and NTCP1. The error in the 

accumulated model was calculated as the difference between NTCP3 and NTCP1. 

 

 Results 
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The previously reported deviations of 5% or greater in 70% of the patients [25] translates to a 

deviation of greater than 5% NTCP for 57% of the patients for duodenum and 60% of patients 

for stomach with cirrhosis in the current study.  
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Figure 3-2. Percent Change in Dose and NTCP.  

Percent Change from Planned to Accumulated Dose (PCdose) by Planned Dose (Gy) for Stomach and Duodenum and 

Percent Change in NTCP by Percent Change in Dose (PCNTCP) for Stomach and Duodenum. The solid gray line 

represents a zero percent change in dose. 

 

3.4.1 NTCP Models for Duodenum and Stomach 
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For duodenal toxicity, the difference between NTCP based on accumulated dose and NTCP 

based on planned dose is substantial (Figure 3). Table 1 shows the results from deriving error 

from the toxicity models for duodenum for the 30 patients with dose accumulation. It was 

assumed that the toxicity risk using the accumulated dose value and the probability of toxicity 

risk derived from the accumulated model was the most accurate assessment of the toxicity risk. 

The error in using the planned dose with the standard model was 6% (SD=7%), where the error 

in using the planned dose with the accumulated model was 4% (SD=7%).  
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Figure 3-3. Probability of Duodenal and Gastric (with Cirrhosis) Toxicity.  

Probability for simulations of 30, 150, and 600 patients. The black line represents the Lyman NTCP by dose. The 

solid red line represents the mean NTCP based on simulations with accumulated dose (dacc). The green lines 

represent the mean NTCP based on simulations with planned dose (dplan).The dashed lines represent the 10th and 90th 

percentiles.   

 

Table 3-1. Duodenal NTCP results.  

*Assumption that this model is closest to the true risk based on the most accurate measurement of delivered dose.  

 

Patient 

Doseplanned 

max dose 

to 0.5cc 

[Gy] 

NTCP2 

Doseplanned, 

Modelstd 

[%] 

NTCP3 

Doseplanned, 

Modelacc 

[%] 

Doseacc 

max dose 

to 0.5cc 

[Gy] 

NTCP1* 

Doseacc, 

Modelacc 

[%] 

|
𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞
𝐍𝐓𝐂𝐏𝟐 −
𝐍𝐓𝐂𝐏𝟏

| 

 

|
𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞
𝐍𝐓𝐂𝐏𝟑 −
𝐍𝐓𝐂𝐏𝟏

| 
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1 29.91 66.61 82.93 29.41 80.55 13.94 2.38 

2 25.44 45.72 55.86 20.91 25.18 20.54 30.68 

3 8.63 1.74 0.28 6.67 0.10 1.63 0.18 

4 6.67 0.96 0.10 5.86 0.07 0.90 0.04 

5 15.32 9.34 4.91 15.12 4.58 4.76 0.33 

7 29.70 65.66 81.94 29.74 82.14 16.48 0.19 

8 0.79 0.13 0.00 0.77 0.00 0.12 0.00 

9 10.42 2.87 0.66 9.04 0.34 2.53 0.32 

11 0.69 0.12 0.00 0.64 0.00 0.12 0.00 

12 9.77 2.40 0.49 9.69 0.47 1.93 0.02 

13 8.70 1.77 0.29 5.65 0.06 1.71 0.23 

14 0.64 0.12 0.00 0.63 0.00 0.12 0.00 

15 1.94 0.19 0.01 1.59 0.01 0.19 0.00 

16 9.61 2.29 0.45 9.29 0.39 1.90 0.06 

17 19.07 19.16 15.94 12.36 1.55 17.61 14.39 

18 32.28 76.18 91.47 27.76 71.44 4.74 20.03 

19 31.22 72.08 88.16 30.92 87.08 15.00 1.08 

20 32.35 76.42 91.64 30.06 83.59 7.17 8.06 

21 29.59 65.20 81.45 29.52 81.07 15.88 0.37 

22 30.08 67.35 83.70 28.75 77.15 9.81 6.55 

23 1.32 0.16 0.00 1.26 0.00 0.15 0.00 

24 6.56 0.93 0.10 5.79 0.06 0.87 0.03 

25 1.47 0.16 0.00 1.30 0.00 0.16 0.00 

26 22.39 31.78 34.34 20.75 24.26 7.51 10.07 

27 23.26 35.59 40.27 21.12 26.39 9.20 13.88 

28 24.19 39.80 46.83 22.88 37.62 2.18 9.21 

29 33.22 79.52 93.76 33.82 94.94 15.43 1.18 

30 31.25 72.20 88.26 30.20 84.19 12.00 4.07 

31 10.15 2.66 0.58 7.00 0.12 2.54 0.46 

32 9.57 2.27 0.44 8.49 0.26 2.01 0.18 

     Average 6.30 4.13 

     SD 6.53 7.31 

 

 

 

For stomach toxicity, the difference between NTCP based on accumulated dose and NTCP based 

on planned dose is less substantial (Figure 3). Table 2 shows the results from deriving error from 

the toxicity models for stomach for the 30 patients with dose accumulation. The error in using 
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the planned dose with the standard model was 3% (SD=3%), where the error in using the 

planned dose with the accumulated model was 3% (SD=4 %).  

 

 

Table 3-2. Stomach NTCP results:  

*Assumption that this model is closest to the true risk based on the most accurate measurement of delivered dose.  

 

Patient 

Doseplanned 

max dose 

to 0.5cc 

[Gy] 

NTCP2 

Doseplanned, 

Modelstd 

[%] 

NTCP3 

Doseplanned, 

Modelacc 

[%] 

Doseacc 

max dose 

to 0.5cc 

[Gy] 

NTCP1* 

Doseacc, 

Modelacc 

[%] 

|
𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞
𝐍𝐓𝐂𝐏𝟐 −
𝐍𝐓𝐂𝐏𝟏

| 

 

|
𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞
𝐍𝐓𝐂𝐏𝟑 −
𝐍𝐓𝐂𝐏𝟏

| 

 

1 29.21 90.23 94.19 29.24 94.26 4.03 0.08 

2 7.10 0.19 0.09 9.08 0.31 0.11 0.22 

3 10.31 1.06 0.64 10.09 0.56 0.51 0.08 

4 17.63 17.65 16.85 17.88 18.28 0.63 1.43 

5 2.86 0.01 0.00 3.22 0.01 0.01 0.00 

7 20.57 35.83 37.46 19.51 29.06 6.77 8.40 

8 13.94 5.17 4.05 12.36 1.91 3.26 2.15 

9 19.89 31.05 31.97 19.67 30.24 0.81 1.73 

11 0.61 0.00 0.00 0.61 0.00 0.00 0.00 

12 12.31 2.66 1.86 11.96 1.55 1.11 0.31 

13 23.55 58.30 63.03 22.20 51.50 6.80 11.53 

14 23.05 54.58 58.89 22.91 57.63 3.05 1.27 

15 26.44 77.80 83.33 23.63 63.77 14.03 19.56 

16 19.46 28.22 28.72 19.96 32.47 4.25 3.75 

17 28.18 86.43 91.14 27.78 89.65 3.22 1.48 

18 28.59 88.03 92.45 26.32 82.73 5.30 9.72 

19 5.62 0.08 0.03 5.56 0.03 0.05 0.00 

20 31.28 95.40 97.79 29.89 95.68 0.28 2.10 

21 31.07 95.02 97.56 31.65 98.20 3.17 0.64 

22 32.56 97.30 98.88 31.98 98.47 1.17 0.42 

23 29.23 90.30 94.24 30.09 96.09 5.79 1.85 

24 31.74 96.18 98.25 31.15 97.65 1.48 0.60 

25 18.63 23.06 22.86 17.96 18.72 4.34 4.14 

26 27.12 81.49 86.79 26.54 83.89 2.40 2.90 

27 16.79 13.84 12.74 15.43 7.66 6.17 5.07 

28 22.86 53.06 57.19 22.80 56.70 3.64 0.49 

29 11.14 1.58 1.01 12.15 1.72 0.14 0.71 

30 30.28 93.27 96.40 28.59 92.45 0.83 3.95 
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31 17.66 17.82 17.04 16.96 13.49 4.33 3.54 

32 17.12 15.28 14.28 15.68 8.45 6.83 5.83 

     Average 3.15 3.13 

     SD 3.08 4.30 

 

 

In an iso-toxicity protocol with a 10% risk to the duodenum, 17.6Gy (6-fractions) would be 

allowed if the accumulated model was applied, while 15.7Gy (6-fractions) would be allowed if 

the standard model was applied. While the stomach model shows only slight differences between 

the standard and accumulated NTCP models at this probability of toxicity risk, the standard 

model still overestimates toxicity risk. With a 10% limit on toxicity risk to the stomach, the 

accumulated model would allow 16.1Gy (6-fractions), while the standard model would allow 

15.8Gy (6-fractions).  

 

The bias in the planned doses in Figure 3 is reflected in the differences between the solid red and 

green lines. Increasing sample size does not diminish this difference. The dashed green lines 

indicate variation in the fitted NTCP curves between trials. As the sample size increases from 30 

to 600, the variation between hypothetical trials becomes very small so that almost any 600 

patient study will result in nearly the same biased NTCP curve (solid green line).  

 

The greatest deviation between the probability of toxicity risk based on the accumulated model 

and the probability of toxicity based on the planned model occurs at a planned dose of 

approximately 30Gy (6-fractions) for duodenum (Figure 4a) and 25Gy (6-fractions) for stomach 

(Figure 4b). This deviation is greater for duodenum (16% greater probability of toxicity risk 

based on the accumulated model) than for stomach (6% greater probability of toxicity risk based 
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on the accumulated model). For both the duodenum and stomach models, the planned model 

overestimates the probability of toxicity risk for planned doses until the crossover point of 21Gy 

(6-fractions) for duodenum and 18Gy (6-fractions) for stomach, and overestimates the 

probability of toxicity after the crossover point. 

 

 

Figure 3-4. Probability of Duodenal Toxicity [%] (Based on Accumulated Model) for Duodenum and Stomach.  

The blue line represents the probability of toxicity derived from the accumulated dose NTCP model versus planned 

dose. The orange line represents the difference between probability of toxicity using the accumulated model and the 

planned model. The largest difference for duodenum occurs at planned dose of approximately 30Gy (toxicity risk of 

approximately 80%). The largest difference for stomach occurs at planned dose of approximately 26Gy, (toxicity 

risk of approximately 80%. 
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 Discussion  

 

The potential impact of the deviation between the planned and delivered dose on the 

development of NTCP models was investigated for liver SBRT patients. Deviations were 

observed between the NTCP curves based on accumulated dose and standard NTCP curves for 

duodenal toxicity, indicating the potential impact that updated NTCP curves could have on 

patient treatment. For gastric toxicity, only modest deviations were observed, with a maximum 

deviation of 14%. However, more substantial and potentially clinically significant deviations 

were seen for the duodenum, with an average deviation of 6% and a maximum deviation of 21%. 

For both duodenal toxicity and gastric toxicity, standard NTCP curves overestimated toxicity 

risk at lower doses (for doses up to 21.5Gy based on 6-fraction dose for duodenum and up to 

19Gy based on 6-fraction dose for stomach). Deriving probability of toxicity risk for planned 

dose using simulations of NTCP curves based on accumulated dose yields a smaller error than 

deriving probability of toxicity risk for planned dose using the standard, planned dose NTCP 

model.  

 

This study was based on 30 original patients that were resampled to simulate a cohort of 150 and 

600 patients to build statistical Lyman NTCP models. Due to the limited number of patients in 

the original analysis [25], true models could vary from the simulations. In addition, these 30 

patients were treated at one institution, indicating the possibility of dependence of the results to 

the treatment setup and treatment planning tendencies. As with all models, there is some 

uncertainty and this NTCP model has been shown to potentially overestimate the toxicity risk 
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[116]. However, the focus of this paper is to investigate the potential difference between NTCP 

models given the known differences between accumulated and planned dose, to determine if 

there is a strong need to gather multi-institutional data to ensure the accuracy of these models. 

The results of this simulation study requires confirmation through prospective studies. Further 

affirmations are necessary for the impact assessment on normal tissue complications of the 

stomach and duodenum. In an image guided radiation therapy (IGRT) protocol, the goals are 

normally targeting tumor alignment and avoiding normal tissue. A complicated relationship 

exists between the planned and accumulated dose due to dose distribution and high dose regions, 

and a study with many more than 30 patients is necessary to understand this relationship. 

 

The 30 patients in the current study were originally selected for a secondary analysis of SBRT 

dose accumulation [25], from the patients treated on phase I/II clinical trials [106,117,118] based 

on having available CBCT imaging and breathing motion > 5mm. They were not 

specifically selected based on any clinical outcome including toxicity. There were no grade 3 or 

higher GI toxicities in this limited sample of 30 patients. There were 2 patients with Grade 3 

platelet counts, which are likely not related to duodenum or stomach toxicity, however are 

related to liver function and possibly non-classic radiation induced liver disease (RILD).  

 

Of the 30 patients included in this study, there were 9 patients with a dose-limiting normal tissue 

(i.e. PTV coverage or prescription dose was limited due to normal tissue toxicity risks) [64]. The 

toxicity models developed for this study showed that the planned-dose model overestimates 

toxicity risk in the average dose range, implying that the dose-limiting organs could potentially 

receive a higher dose with the same risk of toxicity. The 30 patients in this study did not have GI 
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toxicity, however this may have been the result of a conservative tumor dose. Understanding the 

dose-toxicity relationship is important especially in escalation studies because under-dosing due 

to misinterpreted normal tissue complication risk can be detrimental to local control, as the 

tumor will not receive as high a dose as possible. The QUANTEC report [116] on stomach 

toxicity acknowledged that there is limited data for GI toxicity, indicating a need for a better 

understanding of GI toxicity models, especially with the introduction of molecular agents in 

radiation therapy. The understanding of the dose being delivered is crucial so that the models 

used for radiation therapy are as accurate as possible and enable the highest therapeutic ratio 

possible.  

 

This study demonstrates the potential clinical importance of including accumulated dose in the 

development of NTCP models in future clinical trials. Since existing NTCP models are based on 

patient data that preceded volumetric daily imaging, they are based on only planned dose. 

Currently, equipment and software for volumetric daily imaging are available in the clinic, and 

therefore new DIR tools can be applied to perform dose accumulation. Future clinical trials 

should prospectively record delivered (accumulated) doses and toxicity outcomes in an effort to 

improve the understanding of the dose-response relationship. For example, in a phase III study 

[119] with 368 patients, more accurate toxicity data could be developed if accumulated dose was 

collected along with planned dose. This would require the collection of daily images or all 

patients to correlate true delivered dose with toxicity. This study supports the need for these trials 

to include the collection of imaging obtained at treatment delivery so that accumulated dose can 

be calculated. This simulation study suggests that deriving new NTCP models based on 
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accumulated dose will yield clinically significant results compared to the current models based 

on planned dose.  

 

In terms of trial design, one possibility is an observational design in which patients are treated 

per standard of care and both planned and accumulated dose values are recorded along with 

eventual toxicity outcome. How many patients are required will depend on many factors 

including the overall toxicity rate which is not always low. In primary liver cancer (HCC) 

patients treated with radiation, approximately 20% will experience toxicity defined as a change 

in Child-Pugh score of 2 points or more.  Demonstrating improved predictive performance of 

accumulated dose models would be one aim of a trial.  However, the primary aim would more 

likely be characterizing differences between planned and accumulated dose values including 

estimating how many patients had large deviations and seeking to identify in advance which 

patients were likely to have large dose deviations.  The size of the trial could be selected to 

achieve a desired level of precision in estimating the proportion of patients with large 

deviations.  As an example, if the true proportion of patients with large deviations were 0.10, a 

trial of 100 patients would result in a standard error of the estimated proportion equal to 0.03.  

 

Possible reasons for the numerical differences between the NTCP curves of the duodenum and 

stomach include variation of patients breathing magnitude and breathing trajectory. Regions of 

high dose gradient can differ based on the area of the organ and how it is affected by breathing 

motion. NTCP parameters, radiation treatment planning, and sensitivity of motion can all 

influence the final NTCP results for each organ, potentially causing the duodenum and stomach 

to have different numerical results. In addition, due to the limited number of patients, it may be 
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that potential deviations for the stomach were not observed, which may be observed in a larger 

population.   

 

This study focused on liver cancer and the organs at risk for toxicity during radiation treatment. 

However, the results may reflect the impact of incorporating accumulated dose in the 

development of luminal GI toxicity models in other abdominal treatment sites such as stomach, 

pancreas, or pelvic sites, where toxicity to GI structures are of clinical concern. Because 

accumulated dose is a more accurate prediction of delivered dose than planned dose, NTCP 

models for all sites, e.g. head and neck, could be improved if based on accumulated dose instead 

of planned dose. 

 

 Conclusion 

 

This work shows the importance of building new toxicity models based on accumulated dose. 

Accumulated dose provides an estimate of the radiation dose that the patient is actually 

delivered, rather than the dose that was planned before the start of their radiation treatment. 

Current toxicity models overestimate the toxicity risk to the duodenum and stomach at doses up 

to 21.5Gy and 19Gy, respectively, and underestimate the toxicity risk for higher doses. These 

findings indicate that the tumor could be delivered a higher dose, with the same probability of 

toxicity to the duodenum and stomach, which are both dose-limiting structures. Delivering a 

higher dose to the tumor potentially allows for higher tumor control, which could ultimately lead 

to a higher success rate for radiation treatment of liver cancer and lower rates of recurrence. This 
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work indicates the need for dose accumulation in clinical trials for liver cancer, as more accurate 

dose accumulation models could be developed based on this data. 
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Chapter 4. Predictive Models to Determine Clinically Relevant Deviations in 

Delivered Dose for Head and Neck Cancer 

 

Currently, the need to replan a HN cancer patient undergoing radiation therapy is based on the 

decision of the physician, based on factors such as weight loss. Rapid response from the tumor, 

weight loss, changes in the patient setup, and shrinkage of normal tissue can all occur during HN 

radiation therapy, causing drastically different anatomy than in the planning CT. In some cases, 

replanning is necessary, however, there does not yet exist a model to aide in the decision to 

replan a patient in radiation oncology. However, with the possibility of accumulating the dose to 

the patient, deviations between planned and accumulated dose can be calculated at every fraction 

during treatment, allowing for the possibility to develop such a model.  

 

 

This work aims to develop a model that can aid physicians in the decision to replan HN patients, 

with an explicit dose deviation threshold between planned and accumulated dose.  

 

 Abstract  

 

To improve the understanding of deviations between planned and accumulated dose and 

establish metrics to predict for clinically significant dosimetric deviations mid-way through 
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treatment to evaluate the potential need to replan during fractionated radiation therapy (RT). 100 

head and neck cancer patients were retrospectively evaluated. Contours were mapped from the 

planning CT to each fraction CBCT via deformable image registration (DIR). The dose was 

calculated on each CBCT and evaluated based on the mapped contours. The mean dose at each 

fraction was averaged to approximate the accumulated dose for structures with mean dose 

constraints and the daily max dose was summed to approximate the accumulated dose for 

structures with max dose constraints. A threshold deviation value was calculated to predict for 

patients needing mid-treatment replanning. This predictive model was applied to 52 patients 

treated at a separate institution. Dose was accumulated on 10 organs over 100 patients. To 

generate a threshold deviation that predicted the need to replan with 100% sensitivity, the 

submandibular glands required replanning if the delivered dose was at least 3.5Gy higher than 

planned by fraction 15. This model predicts the need to replan the submandibular glands with 

98.7% specificity. On the independent evaluation cohort, this model predicts the need to replan 

the submandibular glands with 100% sensitivity and 98.0% specificity. The oral cavity, 

intermediate CTV, left parotid, and inferior constrictor patients each had one patient exceeding 

the threshold deviation by the end of RT. By fraction 15 of 30-35 total fractions, the left parotid 

gland, inferior constrictor, and intermediate CTV had a dose deviation of 3.1Gy, 5.9Gy, and 

4.8Gy, respectively.  When a DIR failure was observed, the dose deviation exceeded the 

threshold for at least one organ, demonstrating that an automated DIR-based dose assessment 

process could be developed with user evaluation for cases resulting in dose deviations. A mid-

treatment threshold deviation was determined to predict the need to replan for the submandibular 

glands by fraction 15 of 30-35 total fractions of RT.   
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 Introduction   

 

Approximately 50,000 patients are diagnosed with head and neck (HN) cancer in the United 

States every year, with the incidence of human papillomavirus (HPV) – related cases rising 

[120]. Standard management includes chemotherapy plus radiation therapy. The combined 

chemoradiation is often so effective, especially for HPV+ patients, that their tumor often 

responds in volume over the course of treatment [121]. In addition, due to toxicities seen during 

treatment (i.e. mucositis), patients often lose weight during the course of chemoradiotherapy. 

These anatomical changes lead to deviations between the prescription (planned) dose and 

delivered dose, which are well documented for radiation therapy; however the majority of these 

studies used research software not immediately available for widespread clinical use [122-124]. 

Deviations call for plan modification during the fractionated treatment course for many head and 

neck cancer radiation treatment plans in order to ensure proper coverage of the tumor, to avoid 

overdosing of healthy tissue, and ultimately to ensure that the best treatment is delivered to the 

patient.    

 

Although some deviation between the planned and delivered dose is expected and not likely 

clinically significant, deviations that are clinically significant need to be identified early enough 

in the treatment delivery process to ensure that a plan adaptation can be safely performed to 

correct for the deviation. The need for adaptive replanning is often left to the discretion of the 

physician, and a quantitative model could aid in the decision to replan. Currently, there is no 

existing model to predict the need to replan and uncertainty exists as to what levels of deviation 

from the planned dose would result in a significant deviation from the initial expectations of 

tumor control and normal tissue toxicity risk. The goal of this work was to perform a quality 
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control study, using tools commercially available to determine the best estimate of the delivered 

dose across a large number of patients and then use this data to design a model to identify, by 

fraction 15 (out of 30-35 total fractions), which patients would complete treatment with a dose 

deviation exceeding the identified tolerance.  

 

 Methods and Materials  

 

4.3.1 Patient Data  

 

Data from 100 HN cancer patients treated with 30-35 fractions between November 2013 and 

October 2016 were retrospectively evaluated for this quality control IRB exempt evaluation. All 

patients were planned with volumetric modulated arc therapy (VMAT) using a commercial 

treatment planning system (Eclipse v13.6, Varian Medical Systems, Palo Alto, CA) and treated 

on a linear accelerator with daily kilovoltage cone beam CT (CBCT) imaging for pre-treatment 

positioning. Patient and treatment planning information is detailed in Table 1. CT-based 

treatment planning was performed based on the planning directive structures and goals listed in 

Table 2. The study focused on soft tissue organs at risk for toxicity that were within the field of 

view (FOV) of the CBCT.  

 

Table 4-1. Patient characteristics for all patients included in the study.  

Human papillomavirus is denoted as HPV. Clinical target volume is denoted as CTV. Planning target volume is 

denoted as PTV. Gross tumor volume is denoted as GTV.  

Table 1a. Patient Characteristics – Original patient cohort 

Patients (n) 100 

Gender (male/female) (n) 80/20 

Diagnosis site (n)  

     Pharynx 58 

     Larynx 21 
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     Lip and Oral Cavity  16 

     Other 5 

HPV status [positive/negative/unrecorded] (n)      59/13/28 

CTV [mean (range)] (cm^3) 154 (1-725) 

CTV to PTV margin (mm) 3 

Prescribed dose [mean (range)] (Gy)  68 (60-72)  

Fractions [35/30/other] (n) 66/17/17 

Patients with boost (n) 10 

Patients with replans (n) 16 

Elapsed Tx Time [median (range)] (days) 49 (39-74) 

IV contrast used in CT (Y/N) 78/22 

≥10% Weight Loss over entire Tx (n) 25 

≥5% Weight Loss over entire Tx (n) 67 

 

Table 1b. Patient Characteristics – Independent Evaluation set  

Patients (n) 52 

Gender (male/female) (n) 36/16 

Diagnosis site (n)  

     Pharynx 27 

     Sinonasal  12 

     Oral Cavity  5 

     Larynx 1 

     Other 7 

HPV status [positive/negative/unrecorded] (n)      10/10/32 

GTV [mean (range)] (cm^3)  45(4-171) 

Prescribed dose [mean (range)] (Gy)  67(60-70) 

Fractions [35/33/32/30] (n) 14/27/1/10 

Patients with boost (n) 13 

Patients with replans (n) 13 

 

 

Table 4-2. Planning directives for normal tissue structures used in the initial planning.  

The mean and max dose refers to the dose metric used for that organ. 

Table 2. Normal Tissue Structures and Goals  

Structure Target Value (Gy) 

Left/Right Submandibular Gland  Mean Dose < 30 

Larynx Mean Dose < 20 

Inferior Constrictor Mean Dose < 20 

Superior Constrictor Mean Dose < 50 

Oral Cavity Mean Dose < 30 

Left/Right Parotid Gland Mean Dose < 24 
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Spinal Canal Max Dose < 45 

 

4.3.2 Image Guided Radiation Therapy  

 

 

Daily image guided radiation therapy (IGRT) was delivered using automatic registration of the 

CBCT to the planning CT using a multiple iteration technique, with the initial iterations focusing 

on automated intensity based alignment of the entire planning CT and the CBCT and the final 

iterations focusing on the custom region of interest structure that was made from the union of the 

spinal canal and high-risk planning target volume (PTV). Manual adjustments were permitted 

following the automatic registration by the treating radiation therapist. The isocenter was defined 

on the planning CT to be at chin level to ensure the FOV of the CBCT scan covered the anatomy 

of interest.   

 

4.3.3 Calculation and Evaluation of Delivered Dose 

 

The daily CBCTs were directly accessible in the commercial treatment management software for 

DIR using a Demon’s-based contour propagation [101] and dose calculations (SmartAdapt, 

Varian Medical Systems, Palo Alto, CA). Figure 1 shows contours on the planning CT and the 

same contours propagated on the CBCT of a different fraction. Figure 2 shows the planned dose 

distribution and the recalculated dose on a daily CBCT. The calibrations between the CBCT and 

planning CT were matched using monthly measurements (QA) of standard materials with known 

electron density (Catphan®). The delivered dose at each fraction was calculated on the daily 

CBCT, and the dose was evaluated based on the propagated contours. 
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Figure 4-1. Contour examples.  

Example of contours at planning, fraction 10, fraction 20, and fraction 30 of one patient, showing the deformed 

structures.   
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Figure 4-2. Dose Distribution Examples.  

Example of the planning dose on the planning CT (top) and the dose distribution of the same plan calculated on the 

fraction 30 CBCT (bottom). 

 

The following dose metrics were calculated:  

 

Planned dose (DPlan) is the clinical prescription planned dose, based on the planning CT and 

original contours, calculated in the treatment planning software and exported for analysis and 

comparison with delivered dose.  
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Delivered (Fraction) dose (DFrac) for each fraction is the calculation of the clinical metric (e.g. 

mean or max dose) based on the dose calculated on the daily CBCT evaluated for the contours 

propagated from the planning CT onto the CBCT with DIR.  

 

Accumulated dose (DAcc) is the accumulation of clinical metric (DFrac) over all treatment 

fractions. As dose accumulation is not currently available in the commercial treatment planning 

system, the following approximation was made to estimate the accumulated dose. For mean dose 

metrics, the accumulation is performed by averaging the daily calculation of the mean dose.  For 

max dose metrics, the accumulation is performed by summing the daily calculation of the 

maximum dose, therefore representing the most conservative estimate (e.g. the highest max dose 

possible to a voxel). 

 

4.3.4 Model Development  

 

DPlan, DFrac for each fraction, and DAcc were all calculated for each patient’s treatment course. 

DAcc were calculated for each patient for fractions 1-5, 1-10, and 1-15, representing the 

accumulated dose to date up to fraction 5, 10, and 15, respectively, but scaled to the total number 

of fractions. That is, the Dacc at 1-5, 1-10, and 1-15 indicate the total dose that would be delivered 

if the entire treatment course was delivered as indicated by the first 5, 10, or 15 fractions. This 

scaling allows for direct comparison of dose deviations at each time point. Recently published 

data [125] suggests that a deviation between planned and delivered dose of less than 3.6Gy (15% 

of the 24Gy planning constraint) for parotid glands would not have a significant impact on the 

observed toxicity in a patient population. This 15% deviation criteria was then applied as a 

threshold for other HN organs with a mean dose constraint. This adaptive triggering model was 
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developed to identify dose deviations of 15% of the planning constraint of each organ at the 

completion of treatment early enough in treatment to enable corrective action. For CTVs, the 

dose deviation threshold was conservatively set at 7%, as the ICRU guideline [126] criteria is 

95% - 107% relative to the prescribed dose. Table 3 depicts the dose deviation threshold between 

planned and delivered dose for each organ.  

 

Table 4-3. Planning and dose deviation thresholds for the organs at risk and the target volumes.  

Prescription dose is denoted as Rx. The dose deviation threshold is based on 15% of the planning constraint for all 

tissue with the exception of the target volume and the spinal canal. The threshold for spine is based on the maximum 

clinical constraint being 48Gy [127]. 

Organ Dose 

Metric 

Planning 

Constraint [Gy] 

Dose Deviation 

Threshold [Gy] 

Inferior Constrictor  Mean 20 3 

Superior Constrictor Mean 50 7.5 

Spinal Canal Max 45 3 

High risk CTV D95% ±7% of Rx 4.10-5.18 

Intermediate risk CTV D95% ±7% of Rx 2.83-5.17 

Larynx Mean 20 3 

Oral Cavity Mean 30 4.5 

Left/Right Parotid glands Mean 24 3.6 

Left/Right Submandibular 

glands 

Mean 30 4.5 

 

 

Cases with a completed dose deviation to any structure that exceeded the structure-specific 

threshold were used to build a model to predict, with 100% sensitivity, whether a patient needs 

replanning, specifically looking at three time points: at the completion of fraction 5, fraction 10, 

and fraction 15. Each completed dose was compared to the planned dose to assess if the dose 

deviation threshold was exceeded for each organ for each patient. For every organ with a DAcc 

that exceeded the dose deviation threshold, the minimum deviations between the DPlan and DFrac 

for fraction 1, the average of fractions 1-5, 1-10, and 1-15 were assessed to find the minimum 
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deviation in delivered dose at that time point to indicate that replanning was necessary to avoid 

completing treatment with a deviation that exceeded the specified tolerance. In some cases, due 

to proximity of the disease, normal tissue could not be spared at planning, dose constraints were 

substantially exceeded, and replanning when dose is increased would not improve toxicity risk. 

Based on 5-year normal tissue complication probability (NTCP) curves for the parotid glands 

[128], toxicity risk was evaluated at the parotid gland planning constraint (a mean dose of 24Gy), 

at 34Gy, and 54Gy. A mean dose of 24Gy corresponded to 20% toxicity risk, 34Gy to 30%, and 

54Gy to 64%. As a 10Gy increase in mean dose corresponded to a 10% increase in toxicity, the 

model included organs with planned mean dose within 10Gy above the dose constraint, as we 

assumed that these patients could still benefit from replanning if the deviation in delivered dose 

exceeded the planned dose by more than the tolerance.  

 

4.3.5 Data Inclusion  

 

FOV and HU in CBCT was previously investigated demonstrating a 2% accuracy could be 

achieved with the exclusion of the superior 7mm and tissue in the shoulder region. The 

referenced study [91] compared dose calculations for the CBCTs and planning CTs of five 

oropharyngeal cancer patients undergoing radiation therapy. Rigid registration was performed 

between each CBCT and corresponding planning CT. CBCTs from the first three fractions of 

radiation treatment for each of the five patients included in the study were used for dose 

comparisons to measure the accuracy of dose calculation on CBCT. Three CBCT regions were 

assessed for dose calculation accuracy. Errors up to 80% were identified on the superior and 

inferior boundary of the CBCT. Errors were less than 2% after excluding the superior 7.1mm ± 

1.1mm extent of the CBCT and excluding the shoulder region in the inferior boundary. In the 
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current study, data was included only for organs on CBCT slices inferior to the superior-most 

7mm and for organs that were not missing material in the trapezius/shoulder region due to field-

of-view limitations. For the spinal canal, where Dmax was the metric of interest, the dose was 

evaluated only within the evaluable region of the CBCT. 

 

4.3.6 DIR Evaluation and Validation 

 

All DIR results were qualitatively evaluated using image fusion, evaluation of the deformation 

vector field (DVF), and visual assessment of the propagated structures onto the CBCT anatomy.  

For cases with DIR results identified as failing due to these qualitative metrics, the images were 

evaluated for artifacts. Images were re-registered to determine if a successful DIR result could be 

obtained.  If a successful DIR could not be obtained, the treatment fraction was excluded from 

analysis and the dose accumulation was scaled based on the number of fractions with accurate 

DIR. 

 

The assessment of DIR accuracy was based on contour propagation and comparison to manually 

drawn contours, therefore a baseline variation in the manual segmentation of normal tissues was 

established. Five HN patients were randomly selected for a reproducibility study. Segmentation 

of targets and critical organs was performed on four of the CBCTs by a radiation oncologist 

experienced in treating HN cancer and then a repeat segmentation was performed following a 

greater than two week time period, blinded to the original contours. The Dice similarity 

coefficient (DSC) was computed for the repeat contours for structures listed in Table 4.   
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The DSC calculates the overlap between two ROIs as defined by Eq. 4-1, and was used to assess 

the accuracy of the DIR based on the overlap between deformed and original contours.  

 𝐷𝑆𝐶 = 2
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
   (4-1) 

 

Where A is the primary ROI, and B is the secondary ROI. Based on this equation, a DSC of 1 

indicates complete overlap, and a DSC of 0 indicates no overlap. The DSC was computed 

between the CT contours and CBCT contours propagated based on rigid registration alone and 

DIR.  

 

Table 4-4. Results of DIR validation study and CBCT contour reproducibility (mean and standard deviation).  

The p-value is based on a two-tailed paired Student’s T-test. Manual contour reproducibility was based on results of 

a resident radiation oncologist manually delineating structures on a CBCT, then repeating at a later date without 

reference to the original delineation. The submandibular glands are abbreviated to Sub. Glands in this table.   

 

Structure 

Registration Evaluation Manual Contour 

Reproducibility 

Rigid 

Registration 

DSC 

DIR DSC 

 

T-Test  

P-Value  

DSC 

Spinal Canal 0.81±0.04 0.85±0.03 < 0.01 0.93±0.02 

Sub. Glands  0.70±0.08 0.76±0.11 < 0.01 0.87±0.02 

Larynx 0.65±0.10 0.74±0.10 < 0.01 0.90±0.03 

Parotid Glands 0.64±0.09 0.71±0.08 < 0.01 0.78±0.05 

Sup. Constrictor 0.53±0.11 0.61±0.08 < 0.01 0.78±0.03 

Esophagus 0.41±0.10 0.58±0.09 < 0.01 0.63±0.18 

Inf. Constrictor  0.40±0.19 0.60±0.10 < 0.01 0.64±0.16 

 

4.3.7 Independent Model Validation 
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An independent validation was performed using a cohort of 52 patients treated at the MD 

Anderson Cancer Center whose dose was accumulated in a collaboration between the MD 

Anderson Cancer Center and the Netherlands Cancer Institute. Patient and treatment planning 

information is detailed in Table 1b. The original treatment plan was recalculated on the daily CT 

scans for each day of treatment, in order to calculate the delivered dose. The treatment isocenter 

was adjusted accordingly prior to dose recalculation. Using a deformation vector field (DVF) 

from DIR (Admire 1.04, Elekta AB, Stockholm, Sweden), the new dose distribution was mapped 

to the planning CT. The daily dose to each organ was calculated using the original contours on 

the planning CT. In the case of missing daily CTs, linear interpolation was performed on the CTs 

of the two closest fractions in order to create the missing fractionated doses. Nearest neighbor 

extrapolation was performed in the case that the daily CT from the first or last fraction was 

missing. The predictive model was applied to the delivered dose to 104 submandibular glands at 

fraction 15. The validation of the predictive model using this external data set was evaluated 

based on the dose deviation threshold set at 15% of the planning constraint (4.5Gy). 

 

 Results  

 

Of the 3291 DIRs performed on 100 patients, 1% failed. These failures were due to metal 

artifact, beam hardening artifact, shadowing, and lack of contrast on the CBCTs. The maximum 

number of DIR failures for a single patient was 3. In the cases with DIR failures a deviation from 

the planned dose of greater than 15% was observed for at least one organ. DIR failures led to the 

re-registration of images, however that did not result in DIR improvement. Data due to errors in 

dose calculations and DIR were excluded from further analysis.      
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4.4.1 Contour Reproducibility and DIR Validation 

 

Table 4 shows the results of the DIR validation and CBCT contour reproducibility. DIR 

improved DSC over rigid registration for 100% of inferior constrictors, 94% of esophagi and 

parotid glands, 90% of submandibular glands, and 75% of superior constrictors, spinal canals, 

and larynges included in the study. Based on a two-tailed paired Student’s T-test, improvement 

in DSC was statistically significant from rigid registration to DIR in all organs. The average DSC 

over all CBCTs included in the study is included in the table for both the rigid registration and 

the DIR.  

4.4.2 Dose Deviation Threshold 

 

The results of setting a 15% dose deviation threshold at treatment completion are shown in Table 

5. There was one patient exceeding the threshold for oral cavity, left parotid gland, intermediate 

CTV, and inferior constrictor, and the average deviation between Dplan and DFrac is reported for 

the completion of treatment and fraction 15. For the submandibular glands, where 7 patients 

exceeded the threshold, the maximum deviation at completion of treatment and minimum 

deviation by fraction 15 are shown.   

 

Table 4-5. Number of organs with clinically relevant dose deviations and values of those deviations.  

The total number of organs were those that originally had dose calculations done for the study. The organs included 

in the model were those within the evaluable region of the image and not on images for which DIR failures were 

observed. 

Organ Planning 

Constraint 

[Gy] 

Dose 

Deviation 

Threshold 

[Gy] 

Total 

Number 

of 

Organs 

Organs 

Included 

in Model 

Organs 

Exceeding 

Deviation 

Maximum 

Deviation at 

Completion 

of Tx [Gy] 

Minimum 

Deviation 

by Fx15 

[Gy] 

Spinal Canal 

 

45 3 99 99 1 3.1 NA 
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Left/Right 

SGs 

30 4.5 176 85 7 8.22  3.5 

Sup. 

Constrictor 

50 7.5 100 60 0   

Oral Cavity 

 

30 4.5 100 56 1 5.18 0.81 

High CTV 

 

±7%*Rx 4.10-5.18 103 43 0   

Left Parotid 

 

24 3.6 100 37 1 3.77 3.08 

Right Parotid 24 3.6 99 34 0   

Int. CTV 

 

±7%*Rx 2.83-5.17 101 17 1 -6.65 -4.84 

Inf. Const 

 

20 3 97 12 1 5.62 5.86 

 

 

The left and right submandibular glands were combined into a single model to account for all 

patients with completed dose deviations exceeding the threshold. Eighty-five total 

submandibular glands were without DIR failures and in the evaluable region of CBCTs. With a 

dose deviation threshold set at 15% of the planning constraint (4.5Gy), seven submandibular 

glands exceeded the threshold. By fraction 15, the minimum deviation of these seven glands, 

using the Dacc at fraction 15 scaled to the total delivered dose, was 3.5Gy (maximum = 7.1Gy, 

median = 5.1Gy, mean = 5.3Gy). This minimum deviation threshold was set for each time point 

of treatment to evaluate predictive power for final dose deviation.  The resulting false positives, 

sensitivities, specificities, and positive and negative predictive values (PPV and NPV) are shown 

in Table 6.  Out of the 12 patients with evaluable inferior constrictor dose deviations, one had a 

potentially clinically significant dose deviation of 5.6Gy at completion of treatment. This 

deviation, and the need to replan, was predicted by fraction 15, with a dose deviation of 5.86Gy. 

 

Table 4-6. Model based on submandibular glands (SG).  

The minimum dose deviation for Fx 1-15, 1-10, 1-5, and 1 is based on the minimum dose deviation by fraction 15 

that leads to a dose deviation exceeding the dose deviation threshold at completion of treatment. CI refers to 

confidence interval. Dev. refers to deviation.  

Organ Total 

SGs 

(N) 

Dose 

Deviation 

Threshold 

[Gy] 

Organs 

Exceeding 

Dose 

Deviation 

Test  Fx 1-15 

Dose 

Dev. 

[Gy] 

95% CI Fx 1-10 

Dose 

Dev. 

[Gy] 

Fx 1-5 

Dose 

Dev. 

[Gy] 

Fx 1  

Dose 

Dev. 

[Gy] 
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Threshold 

 

 

 

 

L/R 

SGs 
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4.5 

 

 

 

 

7 

Min. 

[Gy] 

3.5  3.5 3.5 3.5 

False 

Pos. 

1  3 2 10 

Sens. 1.00 0.59, 1.00 100 57.1 28.6 

Spec. .99 0.93, 1.00 96.2 97.4 87.2 

PPV .88 0.47, 1.00 70 66.7 16.7 

NPV 1.00 0.95, 1.00 100 96.2 93.2 

 

 

Of the 17 patients with evaluable intermediate CTV dose deviations, one had a potentially 

clinically significant dose deviation of -6.7Gy at the completion of treatment. This deviation, and 

the need to replan, was predicted by fraction 15, with a dose deviation of -4.8Gy. 

 

Of the 56 patients with evaluable oral cavity dose deviations, one had a potentially clinically 

significant deviation of 5.2Gy. However, the early treatment fractions did not show clinically 

relevant dose deviations, and therefore did not predict the final dose deviation. By fraction 15, 

the dose deviation was only 0.81Gy. 

 

Of the 99 patients with evaluable spinal canal dose deviations, one had a potentially clinically 

significant deviation of 4.3Gy, leading to a Dacc of 48.1Gy, which exceeds the maximum 

planning constraint. Therefore, trends could not be evaluated for this organ.   

 

4.4.3 Independent Model Validation 

 

On the independent validation data set, four submandibular glands exceeded the dose deviation 

threshold by the end of treatment. By fraction 15, a total of six glands exceeded the 3.5Gy 

minimum deviation based on the original dataset; four of these glands were those that exceeded 
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the 4.5Gy deviation threshold by the end of treatment. Independent validation predicted the dose 

deviation threshold by the end of treatment with 100% sensitivity (95% CI: 40%, 100%), 98% 

specificity (95% CI: 93%, 100%), 67% PPV (95% CI: 22%, 96%) and 100% NPV (95% CI: 

96%, 100%).  

 

 Discussion  

 

A deviation threshold was developed from a large cohort of patients to aid physicians in the 

decision to replan HN cancer patients. This replanning strategy has the potential to impact HN 

cancer patients by automatically identifying cases that could benefit from replanning by the 

midpoint of treatment. Treatment planning and CBCT image data from 100 HN patients were 

retrospectively analyzed to build a model to predict clinically relevant deviations between 

planned and delivered dose. For these 100 patients, 9 HN organs of interest were evaluated over 

30-35 fractions of VMAT. If a mean dose deviation threshold of 3.5Gy is set by fraction 15 for 

the submandibular glands, the need for replanning can be predicted with 98.7% specificity 

providing 87.5% PPV, and 100% NPV. Applying this model to an independent validation set 

from a different institution using a different DIR algorithm predicted the need for replanning 

with 100% sensitivity, 98% specificity, 67% PPV and 100% NPV. The inferior constrictor, 

intermediate CTV, oral cavity, and left parotid glands only had one patient exceeding the 

corresponding dose deviation threshold by the end of treatment. With the exception of the oral 

cavity, all of these patients would be flagged by fraction 15 of treatment using this model.  

Trends could not be evaluated for spinal canal as only one patient had a substantial deviation. 

The spinal canal was used for initial alignment of the CBCTs to CTs, likely influencing 

consistent delivery of planned dose. 
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As demonstrated in Table 6, the confidence intervals for specificity are relatively narrow 

(resulting from the majority of subjects not requiring replanning), while the confidence intervals 

for sensitivity are relatively wide (since the number of positives, i.e., subjects requiring 

replanning, is small in both cohorts). Although the model achieves 100% sensitivity, it’s difficult 

to make strong statistical claims due to the limited number of cases that require replanning, 

indicating the need to further validate this model in a prospective clinical trial. Assuming that the 

true proportion of observations requiring treatment replanning is 8%, a minimum sample size of 

100 subjects will be required to achieve ≥ 80% power to reject the null hypothesis that the 

sensitivity is ≤ 70% under the alternative that the sensitivity is ≥ 98%, using an exact test for a 

single proportion with one-sided significance level 0.05. This sample size is also sufficient to 

detect a change in the value of specificity from 85% to 95% (assuming 92 plans do not require 

replanning), also using a one-sided test with level 0.05. 

 

Although true dose accumulation using an accurate DIR method is ideal, it has been shown [129] 

that the population differences are small (the difference between the population average of mean 

PG doses and the population average of DIR mean PG doses was 0.3Gy) and did not impact the 

assessment of replanning strategies. This study used manual delineations on CT and used those 

contours for DIR and to propagate the dose. The current study used DIR between CT and CBCT 

to propagate the contours, which could potentially increase uncertainties in the estimated 

delivered dose. The impact of uncertainties in the DIR algorithm on the assessment of delivered 

dose requires further investigation. Limited data exists in the literature on how uncertainties in 

DSC translate to uncertainties in dose. A recent study reported on the impact of the accumulated 
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minimum dose as a function of variation in DIR [130]. This study demonstrated that, in order to 

impact the minimum dose, a combination of low contour DSC in a high dose gradient would 

have to occur. A maximum difference of 2.5 Gy in the minimum dose was observed. The current 

study reported on the mean dose to each organ and would therefore be less sensitive to low DSC 

and high dose gradients.     

 

Substantial DIR error occurred in a limited number of cases, 1%, and was attributed to artifact, 

shadowing effects, beam hardening artifact, shadowing, and lack of contrast on the CBCTs. The 

potential to develop a completely automated dose accumulation process is limited by the 

possibility of DIR errors and the potential need to evaluate the results in real time. Dose 

deviations from all cases with substantial DIR failure were evaluated and all of them were found 

to lead to reported dose deviations of greater than 15% between planned and delivered dose for 

at least one organ.  This data suggest that it may be possible to develop an automated process and 

perform DIR evaluation only on those cases that result in a dose deviation greater than 15% 

(10% of cases).  This requires further testing on additional patients.      

 

A previous study [91] determined that FOV differences between CT and CBCT lead to dose 

calculation error up to 80% on the superior and inferior edge inside the CBCT FOV. For dose 

calculations to not exceed 2% error, organs in the superior 7mm and the shoulder regions of the 

CBCTs were excluded in evaluations. Future work must address this limitation to ensure a robust 

method is available to calculate the daily dose to all structures of interest. Augmenting the 

missing data from the CT or deforming the CT to the CBCT are potential methods to improve 
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these dose calculations.  

 

The dose deviation threshold was based on research that stated that dose changes of less than 

3.6Gy (15% of the planning constraint) to parotid glands would not have a significant impact in a 

population. As similar data for other soft tissue structures with mean dose constraints does not 

exist, this 15% was applied as the dose deviation threshold for the other HN organs with mean 

dose planning constraints evaluated in this study. However, consensus on a clinically meaningful 

dose deviation has not been reached across the radiation oncology community.   

 

 Conclusion  

 

In this study, a predictive model was developed to aide physicians in the decision to replan HN 

patients undergoing radiation therapy. This is the first model developed for this purpose, and was 

validated on an external validation patient cohort. While this model was developed with 100% 

sensitivity (e.g. to catch all patients exceeding a clinically significant dose deviation threshold) 

on the original patient cohort, it also predicted the need to replan with 100% sensitivity on the 

external validation patient cohort. Using this model in the clinic provides physicians with the 

first predictive model to aide in the decision to replan HN patients undergoing radiation therapy. 
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Chapter 5. Biomechanical Modeling of Neck Flexion for 

Deformable Alignment of the Salivary Glands in Head and Neck 

Cancer Images 

 

Patients undergoing radiation therapy for HN cancer often receive imaging in different positions. 

The patient may be setup differently in the diagnostic image, planning image, treatment images, 

and follow-up images. In order to map contours from one image to another, proper alignment 

must be completed between the two images. Currently, rigid registration and intensity-based 

deformable image registration is used clinically, in order to register two images and map the 

contours from one image to the other. However, rigid registration alone may not account for the 

changes in the tissue, and intensity-based registration methods may not allow us to see the 

changes inside the individual organs. Additionally, intensity-based registration methods do not 

allow for the extrapolation of contours outside of the image FOV, as investigated in the previous 

chapter. This work investigates a biomechanical model-based deformable image registration 

method to align the salivary glands, based on the varying angles of neck flexion of patients 

undergoing HN radiation treatment.   
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 Abstract 

 

During head and neck (HN) cancer radiation therapy, analysis of the dose-response 

relationship for the parotid glands (PG) relies on the ability to accurately align soft tissue 

organs between longitudinal images. In order to isolate the response of the salivary glands 

to delivered dose, from deformation due to patient position, it is important to resolve the 

patient postural changes, mainly due to neck flexion. In this study we evaluate the use of a 

biomechanical model-based deformable image registration (DIR) algorithm to estimate the 

displacements and deformations of the salivary glands due to postural changes. A total of 

82 pairs of CT images of HN cancer patients with varying angles of neck flexion were 

retrospectively obtained. The pairs of CTs of each patient were aligned using bone-based 

rigid registration. The images were then deformed using biomechanical model-based DIR 

method that focused on the mandible, C1 vertebrae, C3 vertebrae, and external contour. 

For comparison, an intensity-based DIR was also performed. The accuracy of the 

biomechanical model-based DIR was assessed using Dice similarity coefficient (DSC) for 

all images and for the subset of images where the PGs had a volume change within 20%. 

The accuracy was compared to the intensity-based DIR. The PG mean (STD) DSC were 

0.63 (0.18), 0.80 (0.08), and 0.82 (0.15) for the rigid registration, biomechanical model-

based DIR, and intensity based DIR, respectively, for patients with a PG volume change up 

to 20%. For the entire cohort of patients, where the PG volume change was up 57%, the 

PG mean (STD) DSC were 0.60 (0.18), 0.78 (0.09), and 0.81 (0.14) for the rigid 

registration, biomechanical model-based DIR, and intensity based DIR, respectively. The 

difference in DSC of the intensity and biomechanical model-based DIR methods were not 
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statistically significant when the volume change was less than 20%. When the volume 

change was large, there was a significant difference, although the magnitude was small. 

These results demonstrate that the proposed biomechanical model with boundary 

conditions on the bony anatomy can serve to describe the varying angles of neck flexion 

appearing in images during radiation treatment and to align the salivary glands for proper 

analysis of dose-response relationships. It also motivates the need for dose response 

modeling following neck flexion for cases where parotid gland response is noted. 

 

 Introduction 

 

During external beam radiation therapy (EBRT) of head and neck (HN) cancer, dose to the PG 

can lead to toxicity [32]. Studies have shown that limiting the mean dose to the salivary glands 

during HN radiation therapy leads to lower toxicity to the patient [131]. However, preclinical 

studies show that considering specific subregions of the glands could improve dose response 

modeling [74]. Understanding the effect of the dose to the subregions of the glands over the 

course of radiotherapy is challenging due to the volumetric response combined with the sharp 

dose gradient within the glands. Determining the dose to subregions over the course of treatment 

requires spatial alignment of longitudinal images. Deformable registration of the gland is 

challenging due to the volumetric response, deformation, and the uniform contrast of the glands 

on CT images which remain the standard imaging modality in the radiation therapy workflow. 

 

The majority of techniques proposed for DIR of longitudinal images of HN cancer patients use 

intensity-driven algorithms to deform one image so that the structure boundaries match those in 
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the other image [132-135]. Using these conventional DIR approaches, the estimated 

deformations inside PGs will only depend on the displacement vector field (DVF) regularization 

model of the DIR algorithm. However, the shrinkage scheme is likely more complex, correlating 

to the heterogeneity of the dose inside the organ and potentially the sensitivity of the local 

structure within the gland. Biomechanical model-based DIR algorithms allows exploration of 

such complex deformations and volume change as the PGs respond to radiation therapy. Early 

work by Al-Mayah demonstrates that the use of dose-based boundary conditions in a 

biomechanical models can simulate the radiation dose response during HN radiation therapy 

[136].     

 

Based on the above study, biomechanical model-based DIR provides the potential to investigate 

the PGs response to radiation. However, in order to understand the PG response to radiation dose 

other sources of displacements and deformations of the glands should be resolved first. In 

particular, flexion of the neck or movement of the mandible are often observed between images 

acquired at different time points because of the difficulty in reproducing the patient position in 

the presence of weight loss or when acquisition is performed by different imaging devices, 

limiting the consistency of immobilization devices. In order to accurately model the volumetric 

changes of the PG subregions due to dose-response during radiation therapy, an initial alignment 

of the PGs is necessary to first resolve the changes due to neck flexion. A previous feasibility 

study [137] investigated a biomechanical model of the HN with various boundary conditions. 

This study found that the highest accuracy, based on the DSC of the tumor and PGs, was found 

when placing boundary conditions on the vertebrae and mandible. However, the evaluation was 

tested on a small dataset of four pairs of images and requires further validation. 
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The goal of this study is to perform a comprehensive investigation and validation of the use of 

biomechanical model-based registration to resolve the misalignment of the salivary glands only 

due to those postural changes and compare to an intensity-based DIR method for a large cohort 

of patients demonstrating a range of levels of volumetric response of the parotid gland. The use 

of a commercially available biomechanical model of the patient anatomy with boundary 

conditions on relevant bones and external contours is proposed. For evaluation of the model, a 

cohort of 82 patients was retrospectively evaluated and for each patient a pair of CT scans 

presenting noticeable differences in the angle of neck flexion was selected. The overlap between 

mapped deformed gland volumes and original gland volumes were measured after solving the 

neck flexion using the biomechanical model-based DIR algorithm. In order to assess the 

accuracy of the biomechanical approach to resolve patient positioning, the performances of the 

biomechanical approach were compared to the performances of the rigid and intensity-based DIR 

methods for PGs with volume change within 20%, to evaluate the accuracy of alignment when 

little response is noted, as well as the whole cohort of patients, with volume change up to 57%, 

to evaluate the need of further dose-based boundary conditions on the glands when response is 

noted.  

 

 Methods 

 

 Patient Data  

 

A retrospective IRB approved evaluation was performed on 164 PG from 82 oropharynx cancer 

patients who underwent EBRT. For each patient, two non-contrast enhanced CTs showing neck 
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flexion acquired on different dates were selected. The normal tissue structures were previously 

auto-segmented (Admire ABAS, Elekta, Stockholm, Sweden) on all images. For this study, all 

images and contours were imported into a TPS with biomechanical model-based deformable 

registration capabilities (RayStation v6.99, RaySearch Laboratories, Stockholm, Sweden).  

 

 

Figure 5-1. Examples of rigid registration performance for three cases.  

The top row shows the primary images, the middle row shows the secondary images, and the bottom row shows the 

rigid registration results (with focus on skeletal anatomy) between the primary and secondary images.  

 

 

5.4.1 Image registration 
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The following registration and evaluation steps were performed automatically for all 82 patients 

using a Python-based script in the TPS. 

 

 

Rigid Registration. For each patient, gray level-based rigid registration was performed in the 

TPS between the two CTs displaying neck flexion using a focus on the skeletal anatomy. This 

registration step served as the initial registration for the DIR that followed. Examples of the rigid 

registrations are illustrated in Fig. 1. The bottom row of Figure 3 shows the overlay of the 

images after a global rigid registration based on all bony anatomy. On the left column both the 

vertebra and mandible were still misaligned. For the case in the middle column only the vertebra 

were still misaligned while for the third case only the mandible was still misaligned. It is 

expected that a biomechanical model driven by boundary conditions on the vertebrae and 

mandible would allow a better global alignment particularly for the PG.  

 

Deformable Image Registration. Following the initial rigid registration, both intensity and 

biomechanical-based DIRs were performed between the CTs of each patient. The intensity-based 

DIR algorithm used in this study was the ANAtomicaly CONstrained Deformation Algorithm 

(ANACONDA) implemented in the commercial TPS (RayStation v6.99, RaySearch 

Laboratories, Stockholm, Sweden). For the ANACONDA method, the registration problem is 

represented as a nonlinear optimization problem, where the objective function is defined as f : Rn 

→ R , and R is there reference image. The equation for the nonlinear optimization problem is 

 

 𝑓(𝑣) =  𝛼𝐶(𝑣) + (𝛽𝐻(𝑣) + 𝛾𝑆(𝑣)) + 𝛿𝐷(𝑣)   (5-1) 
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where non-negative weights are represented by α, γ, and δ, C(𝜈) represents the correlation 

coefficient, the term βH(𝜈) allows coordinate functions to minimize (approximately) the 

Dirichlet energy and causes the invertibility and smoothness of the DVF,  γS(𝜈)  penalizes large 

ROI deviations (together, βH(𝜈) + γS(𝜈) control regularization of the deformation grid), and D(𝜈) 

includes ROIs that guide the deformation (in the case that the user has selected any). A smooth 

DVF is optimized using the quasi-Newton algorithm.  Similarity between the images is 

determined by correlation coefficients, which guide the DVF. Regularization is attained with 

minimization of the weighted Dirichlet energy for coordinate functions of the DVF, and involves 

first resolving the DVF smoothness and invertibility, and then penalizing large deviations in the 

regions of interest (ROI). Controlling ROIs can be chosen by the user to guide the DIR, but were 

not selected in this study when using the algorithm. .  

 

The biomechanical model-based DIR algorithm used for this study was the commercial 

implementation of Morfeus [63] in the TPS. Briefly, Morfeus creates tetrahedral meshes from 

the contours of the body and organs included in the model and assigns elastic properties to each 

of them. For each organ, a surface projection method between the organ surface on the reference 

and secondary images determines the displacement of the surface nodes of the tetrahedral 

meshes. Those displacements are used as boundary conditions in the model to solve the 

displacement of all the internal mesh nodes in a finite-element analysis. In the proposed model, 

boundary conditions were applied on the mandible, C1 vertebrae, and C3 vertebrae, as well as 

the patient external contour. These boundary conditions were chosen for their proximity to the 

PG, and their capacity to describe most possible postural changes. 
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5.4.2 Registration evaluation 

 

Based on the rigid registration and two DIR methods (intensity and biomechanical), the left and 

right PG segmentations were propagated from the CT0 (the earlier dated CT) to CT1 (the later 

dated CT). The performance of each method to accurately propagate the PG structures were 

reported using the following metric: 

Dice Similarity Coefficient. The DSC, which calculates the overlap between two ROIs as 

defined by Eq. 1, was used to assess the accuracy of the DIR based on the overlap between 

deformed and original contours.  

 𝐷𝑆𝐶 = 2
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
   (5-2) 

 

Where A is the primary ROI, and B is the secondary ROI. Based on this equation, a DSC of 1 

indicates complete overlap, and a DSC of 0 indicates no overlap. The DSC was calculated in the 

TPS for the left and right PG, individually, based on the rigid registration, intensity-based DIR 

method, and the biomechanical model-based DIR method. For each case, the DSC was 

calculated between the deformed ROI mapped on the second CT and the original ROI on that 

CT. The mean DSC for PG variability (based on multiple observers) is 0.76 [138].  

 

Volume Change. The volume of the left and right PG from each CT were calculated in the TPS 

in order to understand the analysis of the PG DSC. The DSC from the intensity-based DIR and 
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the biomechanical model-based DIR were evaluated in cohorts based on absolute percent volume 

change of the PG. A two-tailed paired Student’s T-test was used to assess the statistical 

significance between the PG DSC of each DIR method for cases with volume change within 

20% and for the entire cohort. The DSC as a function of volume change is important as the 

intensity based registration should account for volume change, whereas the biomechanical based 

registration does not have boundary conditions on the PGs and therefore will not account for 

volume change (e.g. when the 2 images represent both neck flexion and PG volume chance, the 

biomechanical model, by definition, will only account for the neck flexion and the volume 

difference should be noted by a DSC less than 1).  

 

DSC for cases with less than 20% volume change using biomechanical-based DIR will evaluate 

the accuracy and robustness of the algorithm to resolve the deformation and positional changes 

due to neck flexion.  The DSC for cases with more than 20% volume change will evaluate the 

accuracy and robustness of the algorithm to partially resolve complete deformation, but highlight 

the potential need for further boundary constraints to resolve the volumetric response.  The DSC 

for the intensity-based DIR will indicate the accuracy and robustness of the algorithm to resolve 

this complex deformation. 

 

 Results 

 

Table 1 shows the mean, standard deviation (STD), maximum, and minimum DSC of the PG 

over all patients with volume change within 20% (N=63). The intensity-based DIR method 
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resulted in a slightly higher mean DSC average (0.02) and slightly higher standard deviation 

(0.07) at (0.82±0.15) than the biomechanical model-based DIR method (0.80±0.08), and both 

DIR methods resulted in a higher mean DSC and lower standard deviation than rigid registration 

(0.63±0.18). No significant differences were observed (p = 0.13) between the DIR methods and 

both methods had a DSC greater than the DSC reported for inter-observer variation (0.76). The 

minimum PG DSC were 0.17 and 0.53 for the intensity-based and biomechanical model-based 

DIR methods, respectively, indicating the potential for more ‘catastrophic’ registration errors 

with the intensity-based algorithm. The maximum PG DSC were 0.96 and 0.93 for intensity-

based and biomechanical model-based, respectively.  

 

Table 5-1. Registration method comparison according to PG DSC.  

For each method, the mean, STD, max, and min DSC values of the PG are reported. The percentage of patients with 

a DSC superior to 0.75 are also reported.  

DIR 

method 
Mean STD Min 

 

Median Max 

% of PG 

with DSC 

> 0.75 

Rigid 0.63 0.18 0.07 0.66 0.94 20% 

Intensity-

based 

0.82 0.15 0.17 0.87 0.96 80% 

Biomechan

ical model-

based 

0.80 0.08 0.53 0.82 0.93 76% 

 

 

Figure 2 is a histogram depicting the number of PG with DSC greater than values ranging from 0 

to 1. All PG (n=87) resulted in DSC greater than 0.1 for both methods, and 0 PG resulted in DSC 

greater than 0.95. Twenty-four (28%) PGs had a DSC that exceeded 0.9 for the intensity-based 

method, while only 8 (9%) PG exceeded 0.9 for the biomechanical model-based method. 

However, all of the biomechanical model-based registrations had a DSC of 0.5 or greater, 

whereas 84 of the intensity-based registration had a DSC of 0.5 or greater.  
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Figure 5-2. PG DSC Histogram.  

Histogram depicting the number of PG with DSC greater than the corresponding value, ranging from 0 to 1. The 

results of the intensity-based DIR method is depicted in blue and the results of Morfeus are depicted in orange, for 

patients with <20% volume change.  

 

Table 2 shows the mean, standard deviation (STD), maximum, and minimum DSC of the PG 

over all patients. The intensity-based DIR method resulted in a slightly higher mean DSC 

average (0.03) and slightly higher standard deviation (0.05) at (0.81±0.14) than the 

biomechanical model-based DIR method (0.78±0.09), and both DIR methods resulted in a higher 

mean DSC and lower standard deviation than rigid registration (0.60±0.18). Similar to the subset 

evaluated above, both DIR algorithms had an average DSC greater than the inter-observer 

variability (0.76). 
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Table 5-2. Registration method comparison according to PG DSC.  

For each method, the mean, STD, max, and min DSC values of the PG are reported. The percentage of patients with 

a DSC superior to 0.75 are also reported.  

DIR method Mean STD Max Min 
% of PG with 

DSC > 0.75 

Rigid 0.60 0.18 0.94 0.07 21% 

Intensity-

based 
0.81 0.14 0.96 0.17 77% 

Biomechanical 

model-based 
0.78 0.09 0.93 0.53 67% 

 

 

Including cases where the volume change exceeded 20%, the differences in DSC between the 

intensity-based DIR and biomechanical model-based DIR becomes statistically significant. The 

significant difference between the PG DSC in cases with a 20% volume change demonstrates the 

need for additional boundary conditions to describe this volumetric response. The larger STD 

and lower minimum DSC of the intensity-based registration demonstrates the potential 

advantage of the biomechanical model-based approach when potentially combined with a dose-

based boundary condition on the PGs. Figure 3 illustrates the range of DSC for each method as a 

function of volume change. 
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Figure 5-3. DSC Boxplots.  

Boxplots of the DSC obtained for rigid registration (gray), intensity-based DIR (orange), and biomechanical model-

based DIR (blue) for different volume changes of the DSC obtained for the propagated PG contours based on each 

DIR method. PG 5 represents volume change of 5%, and the same for other values. Outliers are shown in the 

bubbles below each box plot. Median DSCs are represented by the horizontal lines, the lower whiskers represent the 

minimum, the upper whiskers represent the maximum, the base of the box represents the lower quartile, and the 

ceiling of each box represents the upper quartile. Intensity-based and biomechanical model-based results are shown 

in pairs for each volume change threshold.  

 

 Discussion  

 

In this study, we retrospectively evaluated the registration of 82 repeat CT scans for 

oropharyngeal cancer using the DSC between the deformed and original delineations of the PGs. 

For each set of CT scans, DIR was performed using intensity-based registration for full image 

DIR and a biomechanical model-based methods focused only on resolving the neck flexion, and 

therefore PGs with minimal volume change were evaluated in an isolated cohort.  
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There was no statistically significant difference observed between the DIR methods for cases with 

a PG volume change within 20%, and both DIR methods had a median DSC of greater than the 

inter-observer variation. Additionally, the clinical significance of a 0.02 decrease in mean DSC is 

arguably minimal. The standard deviation for the intensity-based method was larger than for the 

biomechanical model-based method and the minimum DSC was lower, indicating more potential 

failures in the results of the intensity-based method, which was further demonstrated by 3 PGs that 

had a DSC of less than 0.5 following intensity-based DIR.  

 

This data demonstrates that modeling neck flexion alone using a biomechanical model-based 

registration algorithm aligns the PGs as accurately as an intensity-based registration and within 

the expected contour variation. For a volume change exceeding 20%, the results of each method 

were statistically significant, as expected given the lack of boundary conditions driving the 

alignment of the PGs in the biomechanical model. Future work will include applying dose-based 

boundary conditions to the biomechanical model-based algorithm [136] in order to build a 

comprehensive model that involves accurate neck flexion as well as a deformation model function 

of the dose distribution in the PG.   

 

Evaluation of the DSC trends showed that there are 10 outliers in the total 164 PGs for the 

intensity-based method and 0 for the biomechanical model-based method. This indicates more 

failures in the intensity-based method. Table 2 shows the minimum DSC over all patients for the 

intensity-based method was 0.17, while the minimum DSC for biomechanical model-based 

method was 0.53. This data suggests that for challenging cases where intensity-based methods fail, 

even a simple biomechanical model-based method may give reasonable results.  
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 Conclusion 

 

In this study, a biomechanical model was developed to align the parotid glands based on changes 

only due to the varying angles of neck flexion of HN patients undergoing radiation therapy. For 

patients with minimal volume change in the parotid glands, and therefore changes only due to the 

position of the patient, the biomechanical model-based deformable image registration algorithm 

performed alignment of the parotid glands with indistinguishable results from the intensity-based 

method. Which the results of this study, it is known that biomechanical modeling with minimal 

boundary conditions can be used to resolve the neck flexion in images of patients undergoing 

radiation therapy for HN cancer. This model can be applied to patients with follow-up imaging 

done in different positions than during planning, allowing for the propagation of contours to map 

the tumor and normal tissue. Additionally, this model could be applied when the need arises to 

map contours outside of the field of view of the image, as in the work in the previous chapter. 
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Chapter 6. Biomechanical Modeling of Dose-Induced Volumetric Changes of 

the Parotid Glands for Deformable Image Registration 

 

Current toxicity models for head and neck cancer are based on the mean dose to the entire gland, 

however recent studies [74] have shown that toxicity to the parotid gland may be more closely 

related to the dose to the substructures. Normal tissue structures deform through radiation 

therapy, due to the varying angles of neck flexion, weight loss, and dose-response. The last study 

resolved the deformation due to the varying angles of neck flexion, using a biomechanical 

model-based deformable image registration algorithm with optimal bony anatomy boundary 

conditions (C1 vertebra, C3 vertebra, and mandible). With the application of this initial 

registration, the addition of dose-based boundary conditions should resolve the remaining 

deformation. There first exists the need to determine the volumetric response of the parotid 

glands to radiation therapy, and study the response of the substructures of the glands. In this 

study, biomechanical models of the parotid gland response to radiation therapy are developed, by 

employing thermal expansion coefficients modified to describe the dose delivered and the 

resulting volumetric response.  
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 Abstract  

A major side effect of radiation treatment for head and neck cancer is xerostomia, which leads to 

a poor quality of life. Current toxicity models for the parotid glands are based on mean dose to 

the entire gland, however recent small animal studies show that there may be a better correlation 

between the radiation dose to the sub-regions of the parotid glands and the risk of toxicity. 

Delivered dose to the parotid gland sub-regions can be estimated with dose accumulation using 

deformable image registration. The purpose of this study was to build a population model 

describing the relationship between radiation dose and parotid gland shrinkage and to use this 

model to aide in the improvement of deformable image registration accuracy of head and neck 

images during radiation therapy. A modified thermal-expansion coefficient was determined 

based on the population model and served to apply shrinkage to each element of the finite 

element model based on the planned dose. Based on the thermal-expansion coefficient, dose-

based boundary conditions were applied to an in-house biomechanical model-based deformable 

image registration algorithm. Assessment of the accuracy of the model was based on target 

registration error (TRE). The accuracy was improved significantly (p = 0.01) from a TRE of 1.6 

± 0.9 mm for the standard model to a TRE of 1.4 ± 0.8 mm for the proposed model. Application 

of these models may allow better estimation of the delivered dose during radiation therapy and 

aide in the development of improved toxicity prediction models.  

 

 Introduction  

 

Over 550,000 new cases of head and neck (HN) cancer are diagnosed leading to 380,000 deaths 

per year in the United States [139]. Most HN cancers recommended management include radiation 
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therapy. While treatment planning aims to avoid irradiation of the salivary gland to preserve their 

function, a total sparing is rarely achievable. A major side effect of the parotid gland (PG) 

irradiation is Xerostomia, which is defined as oral dryness [140]. Xerostomia leads to dysphagia, 

or difficult swallowing, which lowers the quality of life (QoL) substantially. A better sparing of 

the PG may improve the QoL of HN cancer patients [131]. Currently, prediction of toxicity for the 

PG is based on the mean dose to the entire gland. However, small animal studies show that the 

relationship between delivered dose and the sub-regions of the glands may be more meaningful 

[74], indicating the need for accurate estimation of the dose delivered to the PG sub-regions.  

 

HN patients lose 6-10% of their body weight on average over cancer treatment [141], leading to 

anatomical changes and deformation. Additionally, tumors shrink by an average of 70% of their 

initial volume by the end of radiation treatment [31]. Due to those complex anatomical changes 

throughout RT, the precise delivery of the planned dose is compromised. Especially, as the tumor 

can be situated near a PG, a sharp dose gradient over the PG can exist, where even a small shift or 

volumetric change could potentially lead to a dramatic difference in the dose. The delivered dose 

to the PG has been reported as high as 30% above the planned dose distribution [142]. This increase 

can be clinically significant, as a 1 Gy dose increase correlates with a 5% decrease in PG function 

[143]. Understanding the response of the PGs to the dose is then hampered by the differences 

between planned and delivered dose. 

 

Dose accumulation using deformable image registration (DIR) can be used to estimate delivered 

dose to the PG. Many studies investigated deformable image registration between the planning CT 

and followup CT or Cone-Beam CTs (CBCT) to accumulate the dose in the head and neck region 
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[125,144-146]. However, since only the boundaries of the gland are visible with these imaging 

modalities, the deformation estimated inside the gland is the result of a regularization model of the 

displacement vector field (DVF). Since a correlation exists between the mean dose and the volume 

change of the PG [147], the internal deformations of the gland may actually be more complex than 

an interpolation from the gland surface deformation, and may depend on the heterogeneity of the 

dose inside the gland and the variable sensitivity of the tissue in the gland. 

 

Previous studies modeled the dose response of organs by using dose-based boundary conditions 

into a biomechanical model-based deformable image registration algorithm, Morfeus [63]. Al-

Mayah et al demonstrated the feasibility of simulating a dose-induced shrinkage of the PGs for 5 

patients by assigning a negative thermal expansion coefficient to the tetrahedral elements of the 

PG in Morfeus and by applying to each element a temperature corresponding to the locally planned 

dose [136]. More recently, Polan et al investigated the use of additional dose-based boundary 

conditions on the liver [97] versus the use of boundary conditions on the liver surface only. The 

use of dose BCs, based on a model established from 33 prior radiation therapy patients, was 

evaluated for the DIR of pre- and post-RT CT scans for 7 patients. The target registration error 

(TRE) was significantly improved when using dose BCs suggesting the model better described the 

spatial volume change distribution inside the liver. 

 

The goal of this study was to establish the relationship between dose and PG shrinkage for a 

population of patients and to use that model to improve the DIR accuracy of longitudinal images 

of the PG during RT. MR images acquired at the time of treatment planning and mid-treatment 

were collected for a series of patients to visualize anatomical details inside the PG and allow 
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quantitative evaluation of the proposed method accuracy. The DVF differences in the PG, when 

considering dose-boundary conditions or not, were analyzed. 

 

 

 Materials and Methods  

 

6.3.1 Patient Data  

 

Nineteen patients treated at the MD Anderson Cancer Center with RT for oropharyngeal cancer in 

31-35 fractions were retrospectively evaluated. Detailed patient data are shown in Table 1.  For 

each patient, the following images were collected and imported in the treatment planning system 

RayStation: the treatment planning CT, planned dose distribution, a treatment planning MR and a 

MR acquired approximately at mid-treatment between fractions 15 and 25.  

 

   

Table 6-1. Treatment details for patients included in the study.  

BOT stands for base of tongue.  

Characteristic  Value 

RT modality (IMRT/Proton) 15/4 

Total dose (range, median) 63-72,70 

Total fractions (range, median) 31-35,33 

Treatment duration (range, median) 39-50,44 

Gender (M/F) 19/0 

Age (range, median) 32-78,67 

Tumor subsite (tonsil/BOT/neck) 11/6/2 

HPV/p16 status (+/-) 18/1 

Concurrent chemotherapy (yes/no) 13/6 
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1.1.1. Image data 

 

For each patient, all PGs were delineated on the MR images. In order to ensure consistency 

between the contours on the planning MR and mid-treatment MR, the PGs were first delineated 

on the planning MR and automatically propagated onto the mid-treatment MR using the intensity-

based DIR method available in RayStation. Manual edits were made on the propagated contour 

when necessary. The mandible, C1 vertebrae and C3 vertebrae were manually delineated on the 

planning CT. The contours of these bony structures were copied on the MR images following the 

global rigid registration and translated or rotated when necessary. The dose grid, rigidly registered 

MR images and all the contours for ten patients were exported from the treatment planning 

software for processing with an in-house implementation of Morfeus. 

 

For each PG, three corresponding anatomical landmarks were placed on the planning and mid-

treatment MR, with an effort to have them spatially well distributed. The landmarks were used to 

assess the registration accuracy by measuring, in each PG, the target registration errors (TRE) 

defined as the mean Euclidean distance between each pair of landmarks. 

  

1.1.2. Analysis of the dose volume relationship 

 

For the 38 PGs of the 19 patients in the optimization cohort, the volume of the gland was measured 

on both MR images and the planned mean dose was scaled to the mean dose delivered at the time 

of the mid-treatment MR. The relationship between volume change and mean delivered dose was 

analyzed. 
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6.3.2 Biomechanical Model-based Deformable Image Registration 

 

6.3.3 Neck flexion alignment 

 

Our previous work demonstrated that a global rigid registration of the HN anatomy could yield to 

a poor alignment of the PGs because of varying angles of neck flexion. The use of the 

biomechanical model-based DIR implemented in RayStation based on boundary conditions on 

only the mandible, C1 and C3 vertebras allowed to correct for that neck flexion and improve the 

alignment of the PGs. In this study, this approach was systematically applied to register the mid-

treatment MR onto the planning MR. The obtained 𝐷𝑉𝐹𝑓𝑙𝑒𝑥𝑖𝑜𝑛 were exported from RayStation and 

used to deform the contour of the PG corresponding to the mid-treatment MR. 

 

 

6.3.4 Standard Morfeus 

 

The in-house implementation of Morfeus [63] was used for this study. The workflow of the method 

is illustrated Figure 1. For each PG corresponding to the planning, Morfeus creates a tetrahedral 

mesh of the gland and surrounding anatomy. Based on previous studies, the Young’s Modulus, 

defined as the ratio of the stress to the strain(Eq. 6-1), was set to 7.8 kPa and the Poisson’s Ratio, 

defined as the ratio  between the transverse and axial strain (Eq. 6-2),  was set to 0.45. These 

properties were assigned to the PG elements.  
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 𝐸 =  
𝜎

𝜖
 (6-1) 

 

Young’s Modulus is defined by the ratio of the uniaxial stress, σ, to the strain, ϵ. 

 

 𝜈 =  −
𝜀𝑡𝑟𝑎𝑛𝑠
𝜀𝑎𝑥𝑖𝑎𝑙

  (6-2) 

 

Poisson’s Ratio is the transverse strain divided by the axial strain.  

 

A surface projection algorithm is applied between the PG surfaces of the planning and mid-

treatment after resolving the neck flexion. The displacements determined on the surface nodes 

are used as boundary conditions in the model to solve the displacement of all the internal mesh 

nodes in a finite-element analysis. The surface projection algorithm used for this study was based 

on the accelerated Demons algorithm [101]. The forces of the Demons method can be described 

using the optical flow equation. The following equation describes the displacement 𝑑 of a point 

from the reference PG, R, to the point corresponding from the target PG, T:   

 

 𝑑 =
(𝑡 − 𝑟)∇⃗⃗⃗𝑟

|∇⃗⃗⃗𝑟|
2
+ (𝑡 − 𝑟)2

  (6-3) 

 

 

where 𝑑 represents the displacement in each direction, t and r represent the intensities of the 

target and references PGs, and ∇⃗⃗⃗𝑟 represents the reference PG gradient. The Demons algorithm 
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solves the equation iteratively using optical flow and regularization of the DVF. The 

regularization component smooths, minimizes noise, and keeps the deformed image continuous. 

Since the deformation is driven only by the gradient of the reference PG, the method was 

improved [101] with the addition of an active force to the deformed (target) image. This active 

force, 𝑓𝑡⃗⃗⃗ ⃗, can be described in the following equation. 

 

 𝑓𝑡⃗⃗⃗ ⃗ =  − 
(𝑟 − 𝑡)∇⃗⃗⃗𝑡

|∇⃗⃗⃗𝑡|
2
+ (𝑟 − 𝑡)2

  (6-4) 

 

Finally, the total force of a point can be described with the equation 

 

 𝑓 = 𝑓𝑟⃗⃗⃗ ⃗ + 𝑓𝑡⃗⃗⃗ ⃗ = (𝑡 − 𝑟) ∗ (
∇⃗⃗⃗𝑟

|∇⃗⃗⃗𝑟|
2
+ (𝑟 − 𝑡)2

+
∇⃗⃗⃗𝑡

|∇⃗⃗⃗𝑡|
2
+ (𝑟 − 𝑡)2

) (6-5) 

 

where 𝑓𝑟⃗⃗⃗ ⃗ represents the force from the gradient of the reference PG and 𝑓𝑡⃗⃗⃗ ⃗ represents the force 

from the gradient of the target PG. These force calculations are appropriate with relatively small 

deformations. To account for larger deformations, the multiresolution method [102] was applied. 

This method applies an iterative demons diffusion approach, based on low-resolution images, 

and increases calculation speed by improving the convergence. An additional normalization 

factor (a) was also applied. With this incorporation of a, adjustments to the force strength at each 

iteration is possible. This factor is applied as shown in the following equation 
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 𝑑 = (𝑡 − 𝑟) ∗ (
∇⃗⃗⃗𝑟

|∇⃗⃗⃗𝑟|
2
+ 𝑎2(𝑟 − 𝑡)2

+
∇⃗⃗⃗𝑡

|∇⃗⃗⃗𝑡|
2
+ 𝑎2(𝑟 − 𝑡)2

) (6-6) 

 

where larger deformations require smaller a values.  

 

Finally, the calculated displacements are resampled on the grid of the planning MR image to 

provide a DVF mapping the PG voxels of the planning image to the mid-treatment image. 

 

Figure 6-1. Depiction of standard Morfeus process.  

The initial image is aligned to a corresponding image. A volumetric mesh is generated and material properties are 

assigned to the pre-treatment image. A surface mesh is generated from the mid-treatment image. A surface 

correlation is calculated and applied as boundary conditions to the pre-treatment model. FEA solves the deformation 

between the pre-treatment to mid-treatment PG image.  
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6.3.5 Modeling the dose-induced shrinkage 

 

Morfeus was expanded to simulate a shrinkage of the PG as a response to a dose distribution as 

illustrated Figure 2. For this, each tetrahedral element of the PG was assigned an additional 

material property a thermal expansion coefficient. Where the classic thermal expansion coefficient 

involves the change in temperature, the modified version 𝛼 applied in this study involves the dose 

to the PG:  

 𝛼 =
(𝑉𝑚 − 𝑉𝑖)

3𝑉𝑖𝐷
 (6-7) 

 

Where 𝑉𝑚 the volume of the gland at mid-treatment is, 𝑉𝑖 is the volume at planning, and 𝐷 is the 

mean dose to the PG.  

 

Optimization experiments showed that for the FEM solver to provide a stable solution considering 

the large volume variations to simulate, more compressibility of the tetrahedral elements had to be 

allowed by decreasing the Poisson’s ratio to 0.3 compared to a value 0.45 for standard Morfeus. 

 

After application of the dose-induced shrinkage as a first step (Figure 2), the post-response PG 

was used in a second step of a standard run of Morfeus (Figure 1.).  
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Figure 6-2. Depiction of dose-based boundary condition application to Morfeus.  

The modified thermal expansion coefficient is developed based on the population model. A FEM of the PG is 

created. Boundary conditions are applied to the FEM of the PG and the PG responds with the application of the 

boundary conditions from FEA. 

6.3.6 Displacement vector fields analysis 

 

After DIR using standard Morfeus (Morfeusstd) or Morfeus with additional dose boundary 

conditions (Morfeusdbc), the DVF was composed with the initial 𝐷𝑉𝐹𝑓𝑙𝑒𝑥𝑖𝑜𝑛 and the resulting DVF 

imported in RayStation for accuracy evaluation. 

 

The Jacobian matrix is computed based on the DVF. The determinant of the Jacobian matrix is 

then calculated to represent the volumetric change of each voxel based on the DVF. The Jacobian 

determinant is described with the following equation, where T is the deformation, x is the voxel 

coordinates at which the local expansion of compression the volume change is being calculated.      
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 𝐽𝑇(𝑥) = 𝑑𝑒𝑡
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 (6-8) 

 

In the case that the Jacobian determinant is greater than one, volumetric expansion has occurred. 

In the case that the Jacobian determinant is less than one, volumetric compression has occurred. 

In order to compare the distribution of the volume changes inside the gland between Morfeusstd 

and Morfeusdbc and to verify the correlation with the dose distribution when considering 

Morfeusdbc, the determinant of the Jacobian was computed for one PG example. 

 

 Results 

 

6.4.1 Population Model 

 

Figure 3 represents the measured volume changes versus the mean dose delivered at mid-

treatment for the 38 PGs included in the study. A linear regression with an intercept set at the 

origin yielded to an expansion coefficient 𝛼 = −0.0033 following Eq 1. 

 

However, experimentation showed that to achieve the final desired volume changes in 

Morfeusdbc, 𝛼 had to be scaled by a factor of 1.3. 𝛼′ = 𝛼 ∗ 1.3 = −0.0043 . 
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Figure 6-3. Population Model.  

Population model of the volume change (absolute) over the dose [Gy] for calculation of the modified thermal 

expansion coefficient. Each point represents a different PG.  

 

6.4.2 Target Registration Errors and Dice Similarity Coefficients 

 

Box plots of the TRE for the initial alignment based on the vertebrae and mandible, Morfeusstd, 

and Morfeusdbc are shown in Fig. 4. The initial alignment resulted in a mean TRE of 3.1 ± 1.6 mm. 

Morfeusstd resulted in an average TRE of 1.6 ± 0.9 mm. Morfeusdbc resulted in an average TRE of 

1.4 ± 0.8 mm, a statistically significant improvement (p = 0.01) over Morfeusstd., based on a 2-

Tailed paired Student’s T-Test.  
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Since Morfeus uses the contours of the PG, the Dice Similarity Coefficient (DSC) for the PG was 

always measured above 0.93 and no significant differences were found between Morfeusstd and 

Morfeusdbc. 

 

 

 

Figure 6-4. Resulting TRE for each DIR Method.  

The whiskers represent the maximum and minimum values. The middle line represents the median values. The 

bottom horizontal lines represent the first quartiles. The top horizontal lines represent the third quartiles.  

 

6.4.3 Jacobian determinant distribution and impact on dose mapping 

 

1.1.3. Volume change maps 

 

For comparison of the spatial volume change distributions, the Jacobian determinant maps were 

computed from the DVFs obtained after Morfeusstd, from the DVFs obtained after applying only 

dose BCs and from the DVFs obtained after Morfeusdbc.  
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Figure 5 represents for an example PG, the dose distribution on a coronal slice and the histogram 

of the doses in the whole gland as well the different Jacobian maps, their histogram and the 

correlation with dose distribution. 

 

A very low correlation between the dose distribution and the volume changes after Morfeusstd was 

found with a Spearman correlation coefficient r=-0.10. A very high correlation with r=-0.96 was 

measured after the first step of Morfeusdbc when only dose BC were applied, indicating that our 

method worked as intended.  

 

The correlation decreased after applying boundary conditions on the surface of the parotid gland 

in the second step of Morfeusdbc but remained relatively high (r=-0.62). 

 

For this patient, the volume change was 20%. The DSC was the same (0.96) for Morfeusstd and 

Morfeusdbc but the mean TRE improved when using Morfeusdbc from 1.6 mm to 1.0 mm, which 

supports our hypothesis of a correlation between dose and volume change distributions. 
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Figure 6-5. Jacobian Maps.  

Left column: Images of the dose and Jacobian maps for the same coronal slice of a PG. The white contour represents 

the PG. Middle column: Histograms of the corresponding images. Right column: scatter plots representing the 

correlation with the Spearman correlation coefficient r between the Jacobian map and the dose distribution inside the 

PG. 
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1.1.4. DVF differences 

 

The mean absolute DVF difference between Morfeusstd and Morfeusdbc inside the example PG 

(Figure 6) was 0.7 ± 0.3 mm and the 95th percentile was 1.4 mm. Small differences were found 

on the boundaries of the PG, as the surface projection method in each DIR method resulted in 

similar surface point-to-point correspondences.   

 

 

Figure 6-6. DVF Differences.  

Norm in millimeters of the vector differences between the DVFs obtained with standard Morfeus and Morfeus with 

dose BC on the same coronal slice as for Figure 6. 

 

1.1.5. Dosimetric impact 

 

To assess the impact of the DVF differences for dose mapping applications, the deformation fields 

obtained after Morfeusstd and Morfeusdbc were inverted and used to map the planned dose 

distribution from the planning MR to the mid-treatment MR. Figure 7 represents the absolute 

difference between the mapped dose distributions on the same coronal slice as previously and the 
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dose-volume histograms. While the DVF differences could be considered small, these differences 

translated for this example into impactful dosimetric differences. For example, D50, the minimum 

dose received by 50% of the volume was 17 Gy and 20 Gy for Morfeusstd and Morfeusdbc 

respectively. 

  

 

 

Figure 6-7. Dose Distribution Differences and DVH.  

Left: Image of the absolute differences in Gy between the dose distributions mapped from the planning image to the 

mid-treatment image considering standard Morfeus or Morfeus with dose BCs. The white contour represents the 

contour of PG from the mid-treatment MR. Right: Comparison between the dose-volume histograms. 

 

 Discussion 

 

A biomechanical model-based DIR method has been expanded to describe the dose-induced 

shrinkage of the PGs due to RT. Following initial alignment of the PGs, the first step of this DIR 

method involved applying the dose-based boundary conditions to the PG of the planning MR. 
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The second step consisted of applying boundary conditions on the PG surface to refine the 

deformation. The calculation of the Jacobian map of the final deformation field demonstrated 

that our numerical implementation provides the desired volumetric response behavior of the PG. 

The accuracy of the method was assessed by measuring the TRE. However, in MR images 

identifying landmarks can be challenging, which limits the comprehensiveness of this evaluation.  

The addition of MR sialography, which improves the conspicuity of the vessels in the PG, would 

aid in this effort.  Work is ongoing to develop these sequences and acquire them in future clinical 

trials.   

 

The hypothesis of this study was that the volume change inside the PGs depends on the dose 

distribution, with the tissues receiving higher dose being more likely to shrink than tissues in low 

dose regions. To test this assumption, the accuracy of the proposed DIR method using dose 

boundary conditions was compared to the accuracy of the standard DIR method based only on the 

surface boundary conditions. Both DIR methods resulted in similar DSC, but the statistically 

significant improvement in TRE using the expanded DIR method confirms our hypothesis, even 

in this limited cohort of patients. Consequently, traditional DIR methods based only on the PG 

boundaries may lead to inaccurate estimations of deformation inside the gland, and therefore 

inaccurate estimates of the delivered dose. 

 

This study used MR images to enable the identification of internal landmarks for TRE evaluation.  

However, MR images are not always available for patients and therefore DIR must be performed 

on CT images, where internal landmarks are not visible. The method proposed here will maintain 

a consistent level of accuracy regardless of imaging modality, as long as the PG boundaries can be 
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identified as it only relies on the boundaries of the PG and the planned dose distribution. Having 

a robust algorithm is critical to enable widespread deployment of dose accumulation in the PG. 

 

Although the average TRE improvement was modest, 1.6 mm to 1.4 mm, the new deformation 

model can yield to clinically meaningful dose differences, as illustrated in the highlighted patient. 

Future work will also investigate if the dose estimated with the proposed deformation model will 

lead to better predictors of the toxicity.  

 

 Conclusion  

            

A model was developed to describe the volumetric response of the parotid glands to radiation 

dose, using dose-based boundary conditions, applying shrinkage based on radiation dose to each 

tetrahedral element in the model. This model had improved results over the standard 

biomechanical model-based deformable image registration algorithm, as well as a higher 

correlation between the volumetric change inside the gland and the radiation dose. The use of 

this model, applied to images with clear ductal anatomy, could allow for dose accumulation to 

the substructures of the parotid glands. Dose accumulation to substructures of the parotid gland 

can be correlated with predicted toxicity for the glands. Ultimately, more accurate toxicity 

models could be developed based on this work.  
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Chapter 7. Conclusions and Future Work 

  

 Conclusions  

 

In chapter 2, the need for prospective clinical trials to evaluate the clinical impact of developing 

NTCP models based on accumulated dose, rather than planned dose, was demonstrated. The 

study used simulated data for 600 patients to develop toxicity models and indicated that 

historical NTCP models, based on planned dose, may overestimate the toxicity risk for lower 

doses, but underestimate the risk of toxicity for higher doses with errors up to 21%. The 

differences between NTCP models based on accumulated dose compared to NTCP models based 

on planned dose is greater for duodenum than for stomach. However, with the availability of 

deformable registration-based dose accumulation using volumetric daily imaging, improved 

NTCP models are possible and should be included in the development of future clinical trials. 

 

With the use of this model developed in chapter 3, HN cases that would benefit from replanning 

could be identified. For submandibular glands, a dose deviation threshold of 3.5Gy at fraction 15 

can predict the need to replan a patient. Therefore, a model was developed to aid physicians in 

the decision to replan HN patients based on the submandibular glands by fraction 15 of radiation 

treatment. At least one organ exceeded the dose deviation threshold for all CBCTs in which a 

DIR failure was identified, indicating the possibility of an automated process to perform DIR 

evaluation only for cases that would result in a dose deviation. Additionally, the accuracy of the 
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DIR algorithm in the commercial treatment management software was evaluated using contour 

propagation.  

 

This retrospective study in chapter 4 demonstrated that PG deformation due to neck flexion can 

be modeled using the biomechanical model-based method with indistinguishable results from the 

intensity-based method (p=0.13 for volume change up to 20%). The minimum DSC based on the 

biomechanical-based method is 0.53, while the minimum DSC based on the intensity-based 

method is 0.17. This combined with the many outliers from the intensity-based method shows 

that while the intensity-based method can slightly outperform the biomechanical model-based 

method on average, there can be substantial failures using the intensity-based method, which is 

not observed with the biomechanical model-based method. The biomechanical model can be an 

initial step in a comprehensive model to describe the anatomical, patient positioning, and 

volumetric changes to the salivary glands during HN radiation therapy, and eventually aid in the 

development of toxicity models for this region.  

 

In chapter 5, a biomechanical model-based DIR method was developed to describe the volumetric 

response of the PG to RT. A modified thermal expansion coefficient was applied to an existing in-

house biomechanical model-based DIR algorithm. The adaptation to the existing DIR method 

improved the average TRE significantly (p = 0.01) from 1.6 mm ± 0.9 mm to 1.4 mm ± 0.8 mm, 

which should translate into better estimations of the delivered dose through the course of radiation 

therapy and potentially in the development of more accurate toxicity prediction models.  
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 Summary and Future Work 

This dissertation consisted of a series of experiments based on finite element modeling that lead 

to better understanding of the uncertainty between planned and delivered radiation dose and the 

development of improved statistical models of toxicity. This work aimed to improve the 

understanding of toxicity during liver cancer radiotherapy by quantifying deviations between 

accumulated and planned dose in luminal NTCP models, develop predictive models for 

treatment replanning decisions in head and neck treatments, resolve the anatomical changes due 

to neck flexion using biomechanical modeling, and develop biomechanical models of dose 

response of the parotid glands in order to improve toxicity prediction models. The studies 

described were novel and will hopefully lead to continued development and advancement. Three 

paths of interest are detailed below. Briefly, future directions include applying the models 

previously described throughout this manuscript to additional anatomical sites. Another path 

involves the use of imaging modalities that were not explored throughout this dissertation. 

Finally, a long-term goal for future work related to this thesis includes clinical trials to expand 

the patient cohorts studied in the previous chapters.  

 

The models developed for this dissertation were based on the abdominal region and the HN 

region. Further studies should explore other organ regions to improve toxicity risk of patients 

affected by those cancers, as well as to enhance the robustness of biomechanical models. One 

such organ site is the brain. Common brain cancers include glioblastoma multiforme (GBM), 

which is a type of glioma. Gliomas are cancers of the glial cells in the brain. GBM is an 

infiltrative tumor, and tumor cells can be found far beyond the margins visible on medical 

images. The brain is comprised of a large number of critical structures which are typically not 
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visualized on standard imaging. Determining the correlation between the dose to these critical 

structures and toxicity is essential for the QoL of the patient. However, it would not be feasible 

for a radiation oncologist to contour all of these structures for each patient during radiation 

therapy. There exists the need for an atlas of normal tissue contours that can be mapped onto 

each patient that undergoes radiation therapy for brain cancer, to spare these critical brain 

structures and preserve the patient’s QoL. Biomechanical model-based DIR could aide in the 

development of such an atlas. Preliminary work of applying biomechanical model-based DIR to 

glioma patient images included post-surgery/pre-radiation therapy and post-radiation therapy 

images. Boundary conditions were placed on the GTV and brainstem in order to align normal 

structures. For one patient with substantial normal tissue shifts due to a reduction in swelling 

from the pre-radiation therapy image to the post-radiation therapy image, boundary conditions on 

the GTV alone yielded a DSC improvement from 0.56 to 0.74, 0.36 to 0.48, and 0.68 to 0.71 for 

rigid registration to DIR in the ventricles, left hippocampus, and right hippocampus, respectively. 

Applying the brain stem and GTV as boundary conditions for the other patients in the study 

slightly improved the alignment of the normal tissues. Boundary conditions on the surgical 

resection cavity are also being explored for this study.     

 

The work presented in this dissertation was based on CT and MR images. However, several 

other imaging modalities are used in the diagnosis and treatment of cancer. Namely, MR-

sialography (Figure 1), which is an imaging technique that relies on the bright signal produced 

from fluids on heavily T2-weighted images (TR = 3500 and TE = 500 ms). This imaging 

modality can be useful in the imaging of HN cancer, as the salivary flow can be visualized. 

Patients receiving imaging of this type are given vitamin C to stimulate salivary output and 
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improve the visibility of the salivary ducts. As the parotid and submandibular glands produce 

saliva, they can be successfully imaged using this technique, as shown in Figure 1. Future work 

involves using this imaging modality to obtain a detailed representation of the parotid gland 

anatomy. The segmentation of the salivary duct tree will allow a more thorough evaluation of the 

accuracy of the parotid gland shrinkage model proposed in this Ph.D. work by measuring how 

well the biomechanical model matches the whole duct tree and not only a limited number of 

manually picked landmarks. Using the duct segmentation to place additional internal boundary 

conditions in the proposed biomechanical model will also be investigated to evaluate the 

accuracy of the image alignment. The dose response assessment could be improved considering 

this advanced detailed image modality.  

 

Figure 7-1. Examples of sialography images.  

On the left is an axial slice depicting a bright parotid gland duct. In the middle is a sagittal view. On the right is a 

coronal view. The red arrow points to the location of the parotid gland duct.  

 

Ultimately, applying the models developed throughout this Ph.D. to larger patient cohorts will be 

instrumental in validating these models for use in the clinic. This thesis work included the first 

model of normal tissue complication probability based on accumulated dose, which is now 

possible on a large scale due to recent technological advancements. This work involved a cohort 

of thirty patients, which were resampled to project the potential effect of using accumulated dose 



 

138 

for NTCP curves in place of the standard planned dose. The study demonstrated the potential 

clinical importance of including accumulated dose in the development of NTCP models in future 

clinical trials, in which the delivered (accumulated) doses and toxicity outcomes would be 

prospectively recorded to improve the understanding of the dose-response relationship. Such a 

trial could characterize the differences between planned and accumulated dose values and the 

true impact of these differences on NTCP models. Clinical trials for cancer research are 

conducted by a non-profit research organization, for example NRG Oncology. A phase III trial 

can include hundreds of patients assigned to either the standard or new treatment, with the goal 

of determining if the new treatment is an improvement over the standard. If daily imaging was 

collected for each patient undergoing a phase III trial for a new fractionated radiation treatment 

method, dose accumulation could be performed in order to correlate the accumulated dose with 

toxicity. With accumulated dose tabulated for hundreds or thousands of patients, more accurate 

toxicity models could be developed. One ongoing NRG trial for the treatment of liver cancer is a 

phase III randomized trial to study the efficacy of photons versus protons in overall survival for 

HCC patients. Another current phase III randomized trial is comparing Sorafenib 

(chemotherapy) with SBRT followed by Sorafenib in HCC patients to investigate if overall 

survival is improved when SBRT is used in addition to Sorafenib. In addition to NTCP 

modeling, this thesis also includes the first ever predictive model to aid in the decision to replan 

head and neck patients, where the current decision to adapt is based on the physician’s ‘best 

guess’ and has no standardized metrics or guidelines to assist in this complex task.  These HN 

predictive models, described in the second chapter of this thesis, require prospective validation in 

a larger, multi-institutional patient cohort. The model was developed based on 100 HN cancer 

patients treated at the University of Michigan and externally validated on 52 patients treated at 
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the MD Anderson Cancer Center. The development of adaptive clinical trials utilizing these 

predictive models are currently under development.  

 

Finally, this work included the first dose response study of the parotid glands that included 

internal validation inside the organs. First, 100 patients were aligned based on bony anatomy, 

and next the volumetric response was added to the model. Accurate modeling of the parotid 

gland during radiation therapy, which is complex due to the dose functions, will allow a better 

estimate of the delivered dose distribution inside the parotid gland. Ultimately, these models will 

yield better understanding of the toxicity and dose relationship and will allow the development of 

better predictive models to be used in advanced adaptive radiation therapy strategies. No other 

approach currently accounts for the dose distribution inside the gland.  These studies also require 

validation on a larger cohort of patients to be used clinically.  A linear relationship was found 

between the volumetric change and mean dose to 40 parotid glands. However, more data points 

could show a more complex relationship. One patient in this cohort had a very high dose of 40Gy 

to the left parotid gland. The addition of more patients could provide more data points with very 

high dose. With a larger population model, the dose-response model would be more robust.  

 

To summarize, this dissertation proposed original approaches to describe the uncertainties 

between planned and delivered dose during radiation therapy and demonstrated their utility for 

advanced adaptive radiotherapy techniques. There will be more detailed imaging involved in the 

management of cancer treatment, as in the case with the MR-linear accelerator, which provides 

real-time high-resolution imaging during radiation therapy,  providing the opportunity to further 

demonstrate the refinement and use of these models. 
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