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Abstract 

In recent years, many engine manufacturers have turned to downsizing and 

boosting of gasoline engines in order to meet the ever more stringent fuel economy and 

emissions regulations. With an increase in the number of turbocharged gasoline engines, 

solutions are required to manage knock under a range of operating conditions. The engine 

is required to operate with spark retard and/or boost reduction to provide knock reduction 

leading to reduced fuel economy.  

The charge air cooler has been introduced to mitigate knock and yield a denser 

intake charge. However, under certain conditions, water condenses onto the charge air 

cooler inner surfaces, and this water can be introduced into the combustion chamber 

during a hard acceleration. Therefore, water ingestion may cause abnormal combustion 

behavior such as misfire or slowburn. Understanding of this water condensate ingestion 

issue and separating the condensate from the charge air are required. In addition, many 

researchers have advocated water injection as an approach to replace or supplement 

existing knock mitigation techniques. However, such systems require that the customer 

replenishes a water supply periodically. To maximize the efficiency of the water injection 

system for a given amount of water, a deeper understanding of the ability to capture and 

utilize water is required.  



xvi 

The first part of this dissertation pursues an understanding of the condensates 

generated inside of the charge air cooler is discussed. A 1-D condensation model to 

estimate the potential amount of water condensation and the experiments is conducted to 

understand how and how much the condensates are generated at specific air humidity and 

engine conditions using a 1.6L gasoline turbocharged engine. Moreover, to understand 

the ingestion of condensates into the cylinders, the hard acceleration is applied with the 

condensates and quantitatively correlated the amount of condensation and number of 

abnormal combustion behavior such as misfire and slowburn in different engine 

conditions. The next study is designing the condensation separator to prevent the 

abnormal combustion behavior due to the condensates ingestion. Corrugated plate 

separators have been widely used in gas-water separation and oil-water separation in 

many industries including marine diesel engines. However, this sort of separator has not 

been applied to gasoline engines in vehicles to separate the condensation in the charged 

air. An approach to designing a unit to separate condensation in the flow from the charge 

air cooler while maintaining a low pressure drop is described. 

The effect of water on auto-ignition is described using modified CFR engine. 

Three test fuels gasoline, PRF, and TRF which have similar RON blends are used for this 

test at various intake pressure and amount of water conditions. The first test is done with 

constant intake air temperature and φ to exclude the effects of intake air cooling. Also, 

for more detail analysis of the effect of the intake charge property changes, the heat 

release analysis by comparing combustion phasing and duration, the bulk in-cylinder 

temperature and the bulk in-cylinder pressure analysis are done. For the second part of 
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this research, the comparison of the effect of the intake air cooling and the effect of the 

intake air property change is made.  

The numerical calculations of the chemical effect of water addition with high 

octane number fuels and oxygenated fuels such as iso-Octane, toluene, n-Butanol, and 

Ethanol are presented. Using chemical reaction simulation, CHEMKIN, the simulations 

have been conducted on the change of hydrocarbon and oxygenated hydrocarbon 

oxidations process with water addition by examining ignition delay, sensitivity analysis 

and chemical reaction pathway analysis. At the beginning of the study, change of the 

ignition delay due to water addition is quantified. Then, the sensitivity analysis and the 

reaction pathway analysis are carried out to verify more detail of chemical effect of water 

on combustion process.  

Through the studies presented in this thesis, some of potential contributions to 

high efficiency gasoline engine have been obtained. By collecting the condensate, the 

abnormal combustion behavior such as misfire or slowburn can be prevented, and also 

collected water condensate can be utilized as a source of water injection system. Because 

detail effect of water has been shown in the studies, it is expected that the gasoline engine 

could achieve higher compression ratio by avoiding knock with water injection system. 
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Chapter 1  

 

 

Introduction 

1.1  Background 

In recent years, the increase in the number of vehicles has led to detrimental 

effects on the environment, forcing strong emissions and fuel consumption standards. 

Figure 1-1 shows the increases in average fuel economy from 2002 to 2016 for new 

vehicles in Corporate Average Fuel Economy (CAFE)-normalized miles per gallon [1]. 

To meet the increasingly stringent requirements, the automotive industry is moving 

towards direct injection boosted downsized gasoline engines. 

The turbocharger compresses the intake air, so that denser air is able to be forced 

into cylinder. A simplified analysis by Gerty and Heywood [2] suggests that 

turbocharging and downsizing the engine would increase efficiency by about 16%. 

Boosting an engine increases its specific torque output while downsizing to maintain 

similar brake torque output causes the engine to operate with higher brake mean effective 

pressures (BMEPs) as illustrated in Figure 1-2. At higher BMEP, the engine fuel 

economy is improved due to reduction in relative heat transfer and pumping losses along 

with an overall increase of efficiency due to weight reduction and reduced frictional 
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losses. The major consequences of downsizing are the high levels of in-cylinder pressure 

and thermal loading, which results in increased possibility of abnormal combustion 

phenomena called knock. In contrast to these benefits, turbocharged gasoline engines 

may be limited by spark knock because of high cylinder pressure and temperature.  

 

 

Figure 1-1.  Actual(solid Lines) and projected(dotted Lines) fuel economy for passenger 

vehicles by location 

 

Knocking noise is unacceptable to the driver and repeated exposure to the extreme 

local pressures and temperatures can cause damage to engine components. Advancing the 

spark has a dramatic effect on knock [3]. An increase in the spark advance produces a 

higher cylinder pressure and temperature closer to top dead center. The increased 

temperature of the unburned end-gas increases the tendency for auto-ignition and knock.  
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Figure 1-2. Comparison of normal operating ranges for naturally aspirated and boosted-

downsized engines 

 

A charge air cooler (CAC) is used to reduce intake air temperature and reduce the 

chance of knock. Moreover engine control systems adjust spark timing to lower the peak 

pressure and temperature. The spark retard results in significant decreases in torque, 

combustion stability, and fuel economy in addition to an increase in exhaust temperature. 

To avoid the need for excessive spark retard, compression ratio or boost is limited, which 

in turn limits engine efficiency and power. Use of extremely rich mixtures is also an 

effective method to limit the exhaust gas temperature at turbine inlet, but this method 

results in degradation of fuel efficiency. Higher octane fuel can be used when available to 

reduce the tendency to knock. Recently, cooled EGR has been shown to be advantageous 

for high compression engines. An alternative option to avoid fuel-rich mixtures or restrict 

engine designs to use of lower boost pressure or compression ratio, is to utilize the charge 
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cooling effect of water as an effective means to reduce end gas temperatures and hence 

knock. 

A preliminary investigation explored the effect of charge air temperature and 

presence of water in the air on spark timing. Engine dynamometer testing was carried out 

using a four-cylinder turbocharged gasoline direct injection (GDI) engine. Table 1-1 

shows the engine specifications. A series of experiments were designed to conduct a 

parametric study of intake temperature on knock. Note the effect of humidity is also 

included as part of the same study. 

 

Table 1-1. Test engine specification 

Displacement 1.596 L 

Number of Cylinder 4 

Bore / Stroke 79.0 / 81.4 mm 

Compression Ratio 10:1 

Maximum Power 133 kW @ 5700 rpm 

Maximum Torque 250 N m @ 2500 rpm 

 

To simulate the effects of charge air temperature and humidity on knock, the 

charge air cooler outlet temperature was varied to obtain intake manifold air temperature 

varying from 20 to 35 °C over a range of engine load and speed. Unless otherwise noted, 

the atmospheric condition at the engine intake (before the compressor inlet) was 

maintained constant at 53% relative humidity and 26 °C to obtain mean humidity ratio of 

0.0113 gm water/gm dry air during the experiment. To study the effect of humidity on 

knock, the atmospheric temperature controller was adjusted to maintain steady 

temperature of 26°C while humidity was adjusted for relative humidity 30%, 50%, 70% 
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and 90% to obtain mean humidity ratios of 0.075, 0.013, 0.021 and 0.025 gm water/gm 

dry air at the intake of the engine turbocharger, respectively. The intake manifold 

temperature was maintained constant at 30°C throughout the experiment by adjusting the 

flowrate of cooling water through a water-air CAC.  Multiple steady state engine speeds 

were tested; at each speed, load was increased until the engine control system identified 

slight knock events and initiated spark retard.  

 Figure 1-3 and Figure 1-4 show the maximum torque without knock limit versus 

engine speed, with lines of varying CAC-out temperature and humidity. The tests were 

done by increasing engine speed from 1250RPM to 3250RPM and load at given engine 

speed to determine the borderline of knock. At the time when spark retard starts, 

indicated torque was measured. Comparing the time when spark retard starts, it was 

interesting to note that the effect of temperature on start of spark retard has a more 

pronounced effect as compared to humidity. No significant effect on start of spark retard 

due to humidity variation could be observed for similar operating conditions. At lower 

engine speed, it was observed that intake cam timing was adjusted by the engine control 

to reduce volumetric efficiency to reduce knock tendency. The effect of changing cam 

timing was more prominent than intake air temperature at lower speed. At higher engine 

speeds, the effect of charge cooling variation on the start of spark retard was more 

prominent than low engine speeds. 
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Figure 1-3. Temperature effect on start of spark retard 

 
Figure 1-4. Humidity effect on start of spark retard 

 

1.2  Motivation 

As shown above, the automotive industry has been witnessing a major shift 

towards downsized boosted direct injection engines due to increasingly stringent 

emission and fuel economy targets. Boosted engines operate at a high mean effective 

pressure (MEP), resulting in higher in-cylinder pressures and temperatures, effectively 
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leading to increased possibility of abnormal combustion events like knock and pre-

ignition. Therefore, the compression ratio and boost pressure in modern engines are 

restricted, which in-turn limits the engine efficiency and power. To mitigate conditions 

where the engine is prone to knocking, the engine control system uses spark retard and/or 

mixture enrichment, which decrease indicated work and increase specific fuel 

consumption.  

The objective of the current work is to secure a possible source of water injection 

using charge air cooler condensation and to fully-understand the effect of water injection 

in boosting conditions resulting from changes in the fuel properties. To this end, 

experiments examined collection method of charge air cooler condensate and the effect of 

water injection. Chemical kinetic mechanisms for de-couple chemical effect of water 

injection from thermal effects such as changing specific heat and reducing intake air 

temperature will be selected and shown in the results. 

Therefore, the research questions that will be addressed through this thesis are: 

- Under what conditions does water condensate occur in the charge air cooler? 

What factors affect the abnormal combustion, such as misfire or slowburn? 

How could the condensate be separated from the charge air? 

- Under boosted conditions, how does water affect the auto-ignition behavior of 

high octane number fuels? How much does the intake air properties change due 

to the effect of water under boosted condition? How much is this effect 

compared to the intake air cooling effect of water? 

- What is the chemical effect of water? Does water show a different chemical 

effect with oxygenated fuels? 
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The current document is organized as follows. In Chapter 3, an investigation of 

the effect of charge air cooler condensate carried over to the cylinder is shown using four 

cylinder turbocharged gasoline direct injection engine. Moreover, condensate separator is 

designed using CFD simulation. Through this numerical study, condensate droplet 

behavior is analyzed, and the prototypes of the separator test results are shown. Chapter 4 

presents an investigation of the effect of water on boosted condition. Water is injected to 

single cylinder research engine with three different fuels and 16 combinations of the 

boundary conditions. In Chapter 5, more detailed analysis is done by numerical analysis 

to identify a chemical effect of water. It presents the kinetic simulation results of two 

reference fuels and two oxygenated fuels with water. Finally, Chapter 6 presents 

summaries, conclusions, and recommendations for future work. 
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Chapter 2  

 

 

Literature Review 

 

2.1  Charge air cooler condensation 

2.1.1  Charge air cooler  

After the boosted, direct injection engine, had become mainstream among 

production vehicles, the importance of the charge air cooler has been emphasized. When 

the intake air is compressed using a turbocharger or supercharger, the temperature of the 

intake air is also increased. Due to high intake air temperature, the primary challenges of 

the boosted engine are higher mechanical and thermal loads to the engine and higher 

NOx emissions. To partly resolve those issues, charge air cooling was introduced. There 

are several of benefits of the charge air cooling [4,5]. The first benefit is reducing the 

thermal load on the engine. As mentioned above, once the intake air is compressed, the 

temperature of the intake air is also increased due to a polytropic change of state of the 

air. The heated intake air temperature results in higher exhaust gas temperature and 
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temperature of the engine components. It also leads more heat loss and more material 

load on the engine parts. The second advantage of the intake air cooling is increasing the 

intake air density. With higher density of the cooled intake air, the intake air could 

contain more oxygen, so that it is possible to inject more fuel or make more complete 

combustion [6]. Therefore, the volumetric efficiency and the engine power are improved. 

The cooled intake air is also able to reduce NOx emission because formation of NOx has 

a strong temperature dependency [3]. The lower the intake air temperature, the lower the 

NOx emission level. Another advantage of the intake air cooling on the spark ignition 

engine is suppressing spark knock. Due to high pressure and density of the intake air, the 

boosted spark ignition engine tends to be knock limited. So, the cooled intake air 

provides greater restriction of auto-ignition of the fuel. 

The charge air cooler (CAC), also called an intercooler, is a heat exchanger 

located between the turbocharger and the intake manifold. Over several years, the 

efficiency of the charge air cooler has been improved by changing the type of the charge 

air cooler, fin geometries and charge air flows [6–8].  Generally, there are two types of 

charge air cooler: air-to-water and air-to-air [6,9]. The air-to-water charge air cooler uses 

a liquid coolant to cool the intake air. With such a system, the intake air temperature can 

be controlled by controlling the coolant temperature. However, since the engine coolant 

temperature is normally higher than the desired intake air temperature, a separate coolant 

system is necessary. There is also a risk of coolant leakage to the charge air cooler and 

the engine. In contrast, ambient air is utilized as a cooling medium in the Air-to-Air 

charge air cooler. The most common location for the air-to-air charge air cooler is in the 

front of the engine radiator. This system is very reliable since there are no moving parts 
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and there is easy access to the cooler. However when the ambient air is too hot or too 

cold, the intake air temperature is also too hot or too cold which affects combustion.  

 

2.1.2  Charge air cooler condensation 

If gas and liquid are present simultaneously in a tube, several types of gas-liquid 

flow patterns are identified: bubbly, slug, semi-annular, annual, and mist [10]. The 

patterns are decided by fluid properties, flow rates, and flow geometry. When gas flows 

in the pipe at a low flow rate, the small liquid bubbles are randomly distributed. By 

increasing the gas flow rate, the small liquid bubbles coalesce, and these form larger 

bubbles which is called slug flow. Understanding the slug flow is important since it 

occurs in several applications such as oil pipelines, nuclear reactors, refrigerants and air 

conditioning equipment. For example, when the water boils in the pipe of the heat 

exchanger or the boiling water reactor, the flow oscillates and is unstable. Flow 

instability may cause mechanical damage or disturb controller of the system [11–13]. 

The charge air becomes cooler and denser by improving the efficiency of the 

charge air cooler. However, these changes can lead to condensate production inside of the 

charge air cooler under some conditions. As high humidity air passes through the charge 

air cooler, it may be cooled below the dew point, so moisture condenses onto the charge 

air cooler surfaces [7]. To understand this phenomenon, there have been several analyses 

reported in the literature [14–17]. Understand the heat exchanger behavior, in itself, is not 

a significant problem. However, transients lead to complex multiphase behavior. With a 

hard acceleration, the condensate can be introduced into the engine cylinder causing 

abnormal combustion behavior [18].  
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After the condensate has formed on the inner surfaces of the charge air cooler, 

understanding the condensate flow behavior is important. Once the condensate is formed, 

the droplets are driven in the direction of the air flow due to shear forces. The condensate 

movement can be categorized into various regimes including partial slugs, slugs, films, 

and mist [19–21]. The slug regime has the most significant effect on the boosted system 

due to the large volume of water being moved and the pressure drop across the charge air 

cooler. Hence, the slug dynamics are the main focus of understanding condensate 

movement. A study conducted by Cho et al. [22] focused on the fluid velocity as a factor 

affecting the slug movement. It has been said that the fluid flow over the surface of the 

condensate causes a drag force. Once the drag force exceeds the adhesion force between 

the condensate and the surface, the condensate is detached and forms a droplet. 

Equation (2-1) is the model for the detachment velocity Cho et al. developed. In 

equation (2-1) 𝜃𝑠 , 𝜃𝑎, and 𝜃𝑟 are the static, advancing, and receding contact angles. The 

coefficients 𝑎 and 𝑏 are defined as follows, where D is the droplet diameter and H is the 

channel height. As shown in Figure 2-1, the model had a good agreement with the 

experimental results presented [23]. Although this equation gives good correlation for the 

detachment velocity for the condensate, it cannot be applied to the condensation in the 

charge air cooler because the surface finishes used in the model are not the same as the 

materials in a charge air cooler. 

 

𝑊𝑒𝑟𝑅𝑒𝐻
𝑏 =

4𝜋 sin2 𝜃𝑠 sin
1
2 (𝜃𝑎 − 𝜃𝑟)

𝑎(𝜃𝑠 − sin 𝜃𝑠 cos 𝜃𝑠)
 

(2-1) 

 
 



13 

where, 𝑎 = 46.247 × (
𝐷

𝐻
)

0.1757

 ,    𝑏 = 0.2158 ×  (
𝐷

𝐻
) − 0.6384 

 

 

 
Figure 2-1. Comparison of the detachment velocity between analytical solutions and 

experimental data [23] 

 

There are some of other related studies for how the condensate detaches from the 

wall of the charge air cooler. In reference [20], the authors have hypothesized that the 

droplets advance under stick-slip conditions as the contact angle between the gas, liquid, 

and solid advance. In another paper [21], they have analyzed how the condensate droplet 

is formed in a square channel, which is one geometry of the production charge air coolers.  

The initial motion of the droplet has been studied and understood by models. 

Cheah et al. [20] have developed a model of droplet motion through the length of the 

channel. Also, Orell [24] has developed a model for a slug movement in the horizontal 

pipes. He has derived the pressure gradient by performing a momentum balance shown in 

equation (2-2). Results are also compared to data from previous research and his model 



14 

yielded an average error of 8%. A model for the slug movement through the 90 degree 

bent pipe has been also developed by Tay et al. [25].  

 

𝑑𝑃

𝑑𝑥
= 2

𝑓𝑠

𝐷
 𝜌𝑆𝑈𝑠

2
𝑙𝑠

𝑙
+

𝜏𝑓𝑆𝑓 − 𝜏𝑖𝑆𝑖

𝐴𝑓

𝑙𝑓

𝑙
 

(2-2) 

 

After the condensate droplet is detached from the surface of the charge air cooler, 

most of the droplets coalesce into a flow in the direction of the fluid velocity gradient. 

However there is a portion of the droplets entrained into the charge air stream. This 

phenomenon occurs when an instability between the gas and the liquid stream surface 

exceeds a critical level [26,27]. A study presented in reference [26] has concluded that 

this is inherently a transient phenomenon. Chang-Mateau developed a model using the 

critical wavelength to calculate an entrainment velocity shown in equation (2-3) and an 

expression for the critical wavelength is shown in equation (2-4).  

 

𝑉𝑟 = 𝑐𝑜𝑛𝑠𝑡(𝑎 𝜆𝑐)
1
2 

(2-3) 

𝜆𝑐 = 2 𝜋 [
𝜎

𝑎(𝜌𝑓 − 𝜌𝑔)
]

1
2

 

(2-4) 

 

Koestel et al. [27] have proposed a way to calculate the interfacial wave growth 

using the Kelvin-Hemlholtz theory. Their model shown in equation (2-5) predicts the 

critical velocity and the onset of instability wave growth at a Reynolds number of 203 for 

an air-water system.  

𝑢𝑔𝜇𝑔

𝜎
 (

𝜌𝑔

𝜌𝑙

)

1
2

> 2.46 × 10−4 
(2-5) 
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Another study [28] found that the onset of entrainment occurs when the 

volumetric air flux is larger than 40m/s and proposed a new correlation shown in 

equation (2-6) where 𝑅𝑒𝑙 is the liquid Reynolds number and P is defined by equation  

(2-7). 

𝑃 = 135 𝑅𝑒𝑙
−0.912 

(2-6) 

𝑃 =  
𝑗𝐺𝑐 ∙ 𝜇𝐿

𝜎
 

(2-7) 

 

There is a discrepancy between the two studies [27,28] mainly due to geometry 

differences of the test apparatuses and it causes an early onset of a turbulence. Therefore, 

Assad et al. [29] have found a correlation of the entrainment rate when 𝑊𝑒𝑙
1.25𝑅𝑒𝑙

0.25 is 

less than 10
6
. The various flow rates are tested to validate this correlation. Though the 

studies shown above do not completely explain the detailed droplet entrainment behavior, 

those provide a better understanding of the entrainment phenomenon. 

 

2.1.3 Condensate Separator 

In many industrial applications, separating a liquid or solid from a gas stream is 

very important. If it is separated efficiently, it can reduce cost save time and improve 

device performance. References [30,31] present the principal mechanisms of multiphase 

flow separation technologies such as a gravitation deposition, centrifugal separation, 

inertial deposition and diffusional interception.  

The gravity deposition is the easiest type of separator. It uses the weight of the 

particles or droplets to be separated from the gas flow. The centrifugal separation is a 

more efficient approach than gravity separation. It uses a centrifugal force higher than the 
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drag force created by the gas flow, and includes devices such as a cyclone separator. The 

cyclone separator works with a solid, liquid and gas. It is widely used in the petroleum 

industry if the gas volume fraction is high [32]. The next approach is called the inertial 

deposition. When a gas flow passes through the obstacles such as the fibers or barriers, 

the particles or droplets lose their momentum and then are trapped in the obstacles or fall 

to the bottom. This last approach, the diffusional interception, usually applies for the 

separation of particles from aerosols with small particles (less than 0.1µm). 

Among the principal mechanisms of a liquid/solid and gas separation, vane 

separators are one of the technologies that use an inertial impaction to remove the liquids 

and solids from the gases. Such devices have a series of the wavy plates in the vessel. 

Some of the separators have hooks or blades on the corner of the wavy plate to improve 

the separation efficiency. This type of the separator can advantageously drain the liquid 

from the gas and minimizes re-entrainment of the liquid. In addition, because of its small 

size and high separation efficiency, it can be embedded in a vehicle [33]. When the 

droplets are carried through the vane gas-water separator, the water droplets tend to go 

straight so they hit the hooks or blades and accumulate on the wall. Therefore, thin liquid 

films accumulate on the wall and the droplets fall on the bottom of the separator. A 

sample sketch of vane separator is shown in Figure 2-2 [34]. 

 
Figure 2-2. Sketch of vane separator – flow is left-to-right [34] 
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Nakao et al. [35,36] have researched the water droplet behavior passing through 

the vane gas-water separator. Their results have shown that most of large droplets (30-

600µm) are captured on the first and second hooks. However, smaller droplets (less than 

30µm) are not trapped well. Some researchers [34,37] have developed numerical models 

of the vane separator. However, those models neglect the secondary droplet breakup due 

to wall collisions, and show a calculation error of about 20%. Even if the droplet breakup 

is considered, the numerical calculations are carried out only at low inlet velocity of the 

water droplets, less than 10m/s [34,38] as compared to the range of interest for the CAC 

outlet of 10-15m/s. Therefore the prediction of pressure drop and separation efficiency 

for the high inlet velocities of the water droplets needs to be explored by analysis of the 

secondary water droplet breakup. 

 

2.2  Water Injection 

The application of water injection in combustion engines is not new. Water 

injection methods were recognized over a hundred years ago and applied during World 

War II to obtain more power from the aircraft engines. The usage of the water injection 

technology in gas turbines is still studied and in use up to now [39–43]. Also there is 

much research about water injection on internal combustion engines over the last 50 

years, which is summarized in the next section. 

 

https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/World_War_II
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2.2.1  Thermodynamic effects of water injection 

 Due to its high enthalpy of vaporization, injection of water into the air stream in 

the intake manifold or directly into the cylinder results in evaporative cooling of the 

charge and thus increases the density of the charge and potentially the air mass flow into 

the engine. This can translate to more fuel burning and allow for higher power from the 

engine. Bhagat et al. [44] performed a series of spray visualization experiments and 

engine simulation studies which indicated that direct in-cylinder water injection at 90 

degrees before top dead center (BTDC) resulted in about 8% reduction in peak 

temperature at the end of compression compared to without water injection. Also, the 

decrease in temperature due to water evaporation reduces the temperature at the end of 

compression, thus resulting in lower end gas temperature and allowing the engine to 

operate at the MBT spark timing. Without the water injection, the engine would be knock 

limited under high load, low speed conditions. 

Water, being a triatomic molecule, has a higher specific heat than air (which is 

mostly diatomic nitrogen and oxygen). The presence of water vapor in the combustion 

chamber increases specific heat capacity, assuming the same equivalence ratio [3], which 

results in lower combustion temperature and lower NOx emissions. The presence of 

water vapor can lead to higher the specific heat capacity of the air charge as compared to 

CO2 on mass basis which suggests the potential replacement of EGR with water vapor 

addition. Additionally, due to peak temperatures during combustion, the water molecules 

may dissociate into H and OH radicals. From experimental investigations by Wang et al. 

[45], the formation of NO is suppressed in the presence of such OH radicals.  
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2.2.2  Performance effects of water injection 

Several studies have been conducted to determine the effect of water addition on 

engine performance. There are three methods used for water addition to the engine: fuel-

water emulsion; intake manifold injection; and direct water injection into the cylinder.  

Fuel-water emulsion technique is the method injecting water into the engine. An 

emulsion of water in fuel with stabilizing additives is defined as the emulsion fuel. 

Several previous studies using fuel-water emulsion have shown advantages of water 

injection on engine performance parameters. It has been shown that water in the fuel 

promotes atomization of fuel due to micro explosion of droplets [46–48].  In 1984, a fuel-

water emulsion study for performance and emission control was done by Tsao et al. [49] 

on a single cylinder, four stroke, engine. The authors concluded that using unleaded 

gasoline containing 5, 10, and 15% of water by volume in a modified spark ignition 

engine gave both engine output and fuel economy improvement in the order of 10% as 

the water content in fuel was varied up to 15%. Introducing the water into the intake 

manifold by emulsion or injection did not make any difference in performance, which is 

consistent with the findings of Bratkov et al. [50] in regards to the antiknock effect of 

water. Besides, water-fuel emulsions as a technique to reduce emissions have been 

reported [51,52]. A blend of 20% of water by mass in a conventional diesel fuel was 

applied to a heavy duty diesel engine. The engine was tested over the Millbrook London 

Transport Bus (MLTB) cycle and the water-fuel emulsion offered up to 21% of NOx 

reduction. At the steady state test condition, NOx and PM emissions were reduced by 19% 

and 16%, respectively. Additional research conducted using fuel-water emulsions has 

shown the beneficial results of water addition [53–56]. 
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Recently, BMW offered manifold water injection on their 2016 M4 GTS, which 

achieved higher fuel economy and more power compared to their previous 6 cylinder 

engine [57]. Advantages of intake manifold injection were demonstrated in 1950 by 

Porter [58]. Porter injected the alcohol-water mixture, 85% alcohol plus 15 % water (not 

mentioned vol. % or wt. %), compared to fuel and achieved a 30% of power increase by 

increasing compression ratio from 6.8:1 to 8:1. Peters et al. [59] examined numerically 

and experimentally the effects of injecting water into the intake manifold on the P-V 

diagram. The authors also report that water addition to the reactant mixture slows the 

combustion process, hence in order to maintain MBT spark settings, the timing must be 

advanced when using water-gasoline fuels. Lanzafame [60] and Brusca and Lanzafame 

[61] reported that “by simultaneous increase of volumetric compression ratio and water 

injected mass flow rate, measured Research Octane number (RON) increased from 70 to 

93 and Motor Octane number (MON) from 64 to 90”. Also, a limitation of water 

injection was also observed in the literature. Nicholls et al. [62] showed in their 

theoretical analysis and experimental data for manifold injection that an increase of water 

injection beyond a water-fuel ratio of 0.75 results in a return to the original non-injection 

value of BMEP. Increases beyond about 1.25 results in diminished BMEP relative to the 

original case. In reference [63], Harrington observed a decrease of burn rate and increase 

of fuel consumption when adding water under normal operating conditions. Effect of 

intake manifold water injection on combustion was also discussed in different types of 

engine such as compression ignition engines [64–76]. 

Direct water injection means injecting water directly into the cylinder by using a 

second injector. The main advantage of this approach is controlling the water fuel ratio 
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and injection timing [77]. In 1944, Miller [78] tested direct water injection with a water 

fuel ratio 0.3 at 570 rpm and argued that the optimum angle of water injection is critical. 

Experiments on a direct water injection system by Lestz et al. [79] found that with 

constant spark operation, power deteriorates as the water to fuel mass ratio is increased 

due to the high latent heat of vaporization of water and to the water-induced slow-down 

of the combustion process. To compensate for slow combustion, the spark timing was 

readjusted to obtain maximum brake torque (MBT) for each operating condition with 

water injection. Water injection timing for the best performance is still controversial 

because it changes depending on fuel type, cylinder geometry and operating condition 

[73,80–87]. 

 

2.2.3  Emission effects of water injection 

The major gaseous effluents coming out of gasoline direct injection engines are 

dinitrogen (N2), water (H2O), nitric oxides (NOx), carbon oxides (CO2 and CO) and 

hydrocarbons (HC). Several studies have shown that water addition affects to those 

exhausts gases.  

NOx, referring to the sum of nitric oxide (NO) and nitrogen dioxide (NO2), is 

formed when nitrogen reacts with oxygen at high temperature and pressure conditions. 

Water injection by the following mechanisms reduces NOx formation with: (1) the 

temperature reduction due to the charge cooling effect because of the latent heat of 

evaporation; (2) the increase in heat capacity of the mixture due to dilution of the charge 

by water vapor; and (3) the reduction in adiabatic flame temperature due to water dilution 

[62]. Experimental data obtained by Lanzafame [60] indicates nitric oxide reductions of 
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over 50% with water injection/fuel ratio in the range from 1 to 1.25. In a comprehensive 

study, Lestz et al. [79] established that with constant spark timing operation, power 

deteriorates due to water induced slower combustion; the spark timing has to be adjusted 

to MBT. After adjusting the spark timing to obtain MBT, there was a 50% reduction in 

NOx without sacrificing power. With a direct water injection system, the NOx reduction 

was dependent on the injection timing of water [79,85]. Overall, water injection is an 

effective method to reduce NOx emission [45,55,63,65,66,68,70,80,82,88,89]. 

Unburned hydrocarbon emissions are emitted when fuel molecules do not burn or 

burn only partially in the engine. Partial burning can result because of crevice volumes, 

rich fuel-air ratio, or flame quenching [3]. Many studies (including [55,60,67,68,79] ) 

confirmed increases in HC emission with water injection, which can be explained by 

reduction in-cylinder temperature because of water acting as a heat sink. There is a 

pronounced increase in unburned HC emissions for late water injection timings, but for 

earlier injection timings, the HC level reaches a peak and then decreases for larger water-

fuel ratios. [79]. However, in reference [84] Mingrui et al. argues that HC emissions 

decrease by adding water because more complete combustion is achieved. 

Carbon monoxide is a byproduct of incomplete combustion when carbon in the 

fuel is partially oxidized rather than fully oxidized to carbon dioxide. The percent 

composition of the exhaust gas made up of CO and CO2 was essentially unaffected by 

water injection [45,63,68,83,89]. 
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2.2.4  Chemical effect of water injection 

Early studies of water injection effects on spark ignition engines suggested that 

the reason for reducing pre-ignition and knocking due to water injection was the internal 

charge cooling effect of water [90]. However, there are a relatively limited number of 

studies on the chemical reaction effects of water, because the chemical reactions are not 

easy to separate from the thermal effect, due to strong dependency of temperature. In 

reference [91], two percent increase in absolute humidity led to suppress on flame speed 

by ten percent. In addition, this reduction was three times higher than expected, 

considering the increase of heat capacity based on a simple calculation, presented in 

reference [92]. A possible mechanism has been introduced in references [93] and [94]. 

Water acts as a promoter for hydrogen-oxygen radical reactions. So by promoting the rate 

of chain branching, it lowers hydrogen atom concentrations through  

H2O + H ⇄ H2 + OH Reaction 2-1 

H2O + O ⇄ OH + OH Reaction 2-2 

H + O2 ⇄ OH + O Reaction 2-3 

  

Therefore, the auto-ignition can be promoted [46]. 

More research on the effect of water on combustion can be found. Shock tube 

experiments to identify the methane oxidation mechanism have been performed and 

oxygen atoms and hydroxyl radicals were observed by Bowman [95]. By adding 10 

percent water vapor in the gas mixture in 1400K, hydroxyl radical was increased by 30 

percent and oxygen atom concentration was decreased by 22 percent. Experimental data 

obtained by Le Cong and Dagaut [96] identified that the chemical effect of water on 

hydrogen-air and methane-air flames. They added 10%mol. of water to a jet-stirred 
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reactor and compared ignition delays and species concentrations. Water contributed to 

remove H via H + O2 + M ⇄ HO2 + M reaction and H2O + O ⇄ OH + OH reaction. 

Researchers have studied change of the burning velocity of methane flames due to water 

addition, using experimental and numerical analyses [97]. Burning velocity was 

measured under fuel lean, stoichiometric, and fuel rich conditions with fixed temperature 

and pressure with and without water. They argued that the chemical effect of water is 

greater under lean and stoichiometric conditions than rich conditions. 

 

2.2.5 Limitation of water injection 

Despite the benefits of water injection described above, water injection creates 

penalties on combustion. Typically, boosted engines use a charge air cooler (CAC) after 

the boosting system, in order to reduce charge temperature for improved volumetric 

efficiency and reduced knock tendency. It should be noted that under high humidity 

conditions, the CAC-out charge may be at or near 100% relative humidity.  Under this 

condition, water injected in the intake system will not evaporate. Instead, liquid water 

will enter the cylinder and evaporate during the compression stroke as the mixture 

pressure and temperature rise. At higher pressure, the heat of vaporization of water is 

reduced so there is less effect on charge temperature.  Nonetheless, there will be some 

reduction in charge temperature and the change in charge composition and thus the water 

injection will still have a beneficial effect. 

The net benefit of water injection on power and efficiency is difficult to predict.  

Knock limits occur under low speed, high load, and/or boosted conditions.  How often 

those occur depends on the driving modes, ambient temperature and humidity, and many 
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other factors.  We can conclude, however, that under customer relevant conditions there 

can be a significant increase in power and/or fuel efficiency through use of water 

injection. 

As mentioned above, some authors found that water injection into the engine 

yielded a slowdown of combustion. In addition, as mentioned earlier, HC emission 

increased with water injection [63]. To maximize the benefits of water injection, the 

amount of injected water as well as combustion parameters such as spark timing should 

be carefully controlled. If this strategy is carefully implemented, water injection can give 

fuel economy improvements along with knock limit extension.  

The production uses of a water injection strategy would need to include 

developing an efficient on-board diagnostic (OBD) strategy which ensures that a 

minimum level of adequate quality water is available, failing which, the engine control 

system should trigger conventional knock mitigating strategies. Other limitations include 

the need for a separate water reservoir, and perhaps developing anti-freeze systems to 

avoid water freezing during cold ambient conditions. 
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Chapter 3  

 

 

Charge Air Cooler Condensation Management 

 

In this chapter, a 1-D condensation model to estimate the potential amount of 

water condensation and entrainment from a charge air cooler is presented. The model 

results of the1-D condensation model and the 3-D computational model have been 

validated by experiments on an engine-dynamometer based test cell. The experiments 

were conducted to duplicate condensate issues and analyze abnormal combustion 

behavior, such as misfire and slowburn due to condensate ingestion. An approach to 

designing a unit to separate condensation in the flow from the charge air cooler while 

maintaining a low pressure drop is described. The design approach provided correlations 

of separator geometries versus separation and pressure drop performance. The study was 

developed using a 3-D computational model for analyzing charge air and condensation 

flow. 
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3.1 Experimental Setup 

Engine dynamometer testing was carried out using a four-cylinder turbocharged 

gasoline direct injection (GDI) engine. The engine specifications are shown in Table 3-1. 

An air-to-air charge air cooler was fitted to the side of the engine. An external fan was 

used for the CAC cooling air flow. The intake air for the engine was supplied using a 

combustion air unit that allows the operators to control the temperature and humidity. 

Detailed setup photos are shown in Figure 3-1. 

Table 3-1. Test engine specification 

Displacement 1.596 L 

Number of Cylinder 4 

Bore / Stroke 79.0 / 81.4 mm 

Compression Ratio 10:1 

Maximum Power 133 kW @ 5700 rpm 

Maximum Torque 250 N m @ 2500 rpm 

 

 
(a) 
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(b) 

 
(c) 

Figure 3-1. Experimental Setup, (a) external fan for the cooling air, (b) the engine and 

cooling air flow duct, and (c) the combustion air for intake 

 

The air-to-air charge air cooler (CAC) was used to cool down the charge air. The 

specification of the CAC is shown in Table 3-2. A test for the charge air cooler 

verification was done prior of the experiments. For the verification, a heat rejection per 

temperature differences and thermal effectiveness calculations were applied. The engine 

tests were done at two different conditions: 2000rpm, 13bar BMEP; and 3000rpm, 16bar 
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BMEP. The cooling air flow rate, cooling air temperature, CAC inlet temperature, CAC 

outlet temperature, a charge air mass flow rate, heat rejection per temperature differences, 

and thermal effectiveness are calculated using equations (3-1), (3-2), where: 

 heat rejection 𝑄 in W,  

 CAC outlet temperature 𝑇𝑜𝑢𝑡𝑙𝑒𝑡 in K,  

 CAC inlet temperature 𝑇𝑖𝑛𝑙𝑒𝑡 in K,  

 cooling air temperature 𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟 in K,  

 specific heat of air 𝑐𝑝 in J/kgK, and  

 charge air mass flow rate 𝑚̇ in kg/s.  

 

The results were compared with the data which were provided by the engine 

manufacturer as shown in Table 3-3 and  

Table 3-4. The heat rejection per temperature difference obtained by the engine 

test was calculated to be 33.7W/K and 63.5W/K at the lower load and the higher load 

conditions respectively. Since the charge air flow rate in those conditions were out of 

range on the table, the values were obtained using an interpolation method, and 36.9W/K 

and 62.2W/K at the lower load and the higher load condition, respectively. In the same 

way, the thermal effectiveness from the engine tests were 95.6% and 89.5% at the lower 

load and the higher load conditions, and the values from the table were 92.1% and 86.2%. 

The percentage errors were less than 4% in the every case, except the heat rejection per 

temperature differences in the low load engine condition, 10% error. This is mainly due 

to a result of the interpolation method, because the change of the heat rejection per 

temperature difference does not follow a linear equation. 
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𝑄

𝑑𝑇
=

(150 − 𝑇𝑜𝑢𝑡𝑙𝑒𝑡) × 𝑐𝑝 × 𝑚̇

125
 

(3-1) 

Thermal Effectiveness =
𝑇𝑖𝑛𝑙𝑒𝑡 − 𝑇𝑜𝑢𝑡𝑙𝑒𝑡

𝑇𝑖𝑛𝑙𝑒𝑡 − 𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑎𝑖𝑟
 

(3-2) 

 

Table 3-2. Charge air cooler specification 

Dry Mass 2.1kg 

Charge Air Internal Volume 2.4L 

Dimension 657mm L × 67mm W × 157mm H 

 

Table 3-3. Heat rejection per temperature differences of CAC 

 
Cooling Air Flow(m/s) 

 2 4 6 

Charge Air 

Flow rate (kg/s) 

0.1 73 80 83 

0.2 110 131 140 

0.3 131 165 182 

 

 

Table 3-4. Thermal effectiveness of CAC 

 
Charge air flow  rate (kg/s) 

 0.1 0.2 0.3 

Cooling air 

speed at CAC 

face(m/s) 

1.7 0.70 0.52 0.41 

4 0.79 0.65 0.55 

7 0.84 0.71 0.62 

 

To generate the condensation, high humidity air is needed as the intake air to the 

engine. A test cell combustion air unit was used to control the humidity level of the 

intake air. It is designed to supply a conditioned airflow at a fixed speed through a supply 



31 

duct. Unconditioned ambient air passes through an evaporator coil and a refrigeration 

system. The air is cooled and de-humidified before the air heater which re-heats the air to 

the desired temperature. After the air heater, the heated air is injected to a steam riser to 

re-humidify the air to the required level. This conditioned air passes through the blower 

and is delivered to the engine. The specification of the combustion air unit is shown in 

Table 3-5 and a schematic of the intake air flow is shown in Figure 3-2. There is a heat 

loss from the intake air as it passes from the combustion air unit to the engine cell. 

Therefore, a temperature and humidity sensor was located right before the engine intake, 

which was to adjust the temperature and humidity through the combustion air unit 

controller. 

 

Table 3-5. Specification of combustion air unit 

Temperature Range 15.5°C to 40.5°C dry bulb 

Temperature Tolerance ±0.5°C 

Humidity Range 20% to 95% RH; 13°C to 35°C dew point 

Humidity Tolerance 
±0.5°C dew point or ±2.0% RH, whichever 

is greater 

Airflow 1926Nm
3
/h max 
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Figure 3-2. Schematic of intake air flow from the combustion air unit to engine 

 

To duplicate a condition under which a vehicle is driven on the road, an external 

fan was used to provide a cooling air for the air-to-air charge cooler. To obtain high 

efficiency of the charge air cooler, a high cooling air flow rate is needed. For this reason, 

a cooling air flow duct was used to concentrate the cooling air. The cooling air flow rate 

is one of the important factors to predict the amount of condensation generated in the 

charge air cooler. Also, well distributed and steady air flow is needed to get a consistent 

result. Therefore, the cooling air distribution was examined using a hand held 

anemometer. A cross section of the outlet of the cooling air flow duct was divided into 10 

sections as shown in Figure 3-3, and interpolated the sections. The cooling air speed was 

measured with and without the charge air cooler. Total average of the cooling air was 

5.8m/s without the charge air cooler and 5.0m/s with the charge air cooler. However the 

distribution of the cooling air without the charge air cooler was not uniform; standard 

deviation was 1.87m/s without the charge air cooler and 0.45m/s with the charge air 

cooler, respectively, as shown in Figure 3-4. 
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Figure 3-3. Cooling air flow distribution test setup 
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Figure 3-4. Cooling air flow distribution at the cross section of outlet of cooling air flow duct in 

m/s (interpolated) (a) without the charge air cooler, (b) with the charge air cooler 

 

Exhaust composition is measured by an instrument bench, AVL i60, based on an 

FTIR spectrometer, to determine exhaust H2O content. A Fourier transform infrared 

spectroscopy (FTIR) is a technique which is using an infrared to obtain a spectrum of a 

solid, liquid or gas. Molecules of each sample have their own unique resonant absorption 

frequency depending on the characteristics of their structure. When a beam of infrared 

light passes through the sample, if the frequency of the infrared light is the same as the 

resonant absorption frequency, the infrared spectrum of the sample can be recorded. 

Using a Fourier transform, the raw data is converted from time domain to the frequency 

domain. Now, the concentration of the emission can be analyzed using the FTIR 

measurement [98]. In the same way, H2O concentration in the exhaust gas was measured 

and analyzed to determine the amount of water the cylinder consumes or generates in the 

combustion cycle. To calculate the amount of water added into the cylinder, the amount 

of water generated from combustion and the amount of water from the ambient air needs 

to be subtracted from the total amount of water recorded by the FTIR measurement. To 

estimate the amount of the water generated from the results of combustion, the air fuel 

ratio was obtained from equation (3-3). And the air fuel ratio was calculated using the 
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Brettschneider equation, shown in equation (3-4), where gas concentration in % volume 

[XX], atomic ratio of hydrogen to carbon in the fuel Hcv, atomic ratio of oxygen to carbon 

in the fuel Ocv, number of carbon atoms in each of the HC molecules, n [99]. After the 

rejection the amount of water generated from the combustion and the amount of water the 

ambient air has, the amount of water additionally consumed in the cylinder was counted 

by integration of over the certain period of time. A schematic diagram of the FTIR 

analysis is shown in Figure 3-5. 

 

λ =
𝐴𝐹𝑅

𝐴𝐹𝑅𝑎𝑡𝑜𝑖𝑐ℎ
 

(3-3) 

λ =

[𝐶𝑂2] + [
𝐶𝑂
2 ] + [𝑂2] + [

𝑁𝑂
2 ] + {(

𝐻𝑐𝑣
4 ×

3.5

3.5 +
[𝐶𝑂]
[𝐶𝑂2]

) −
𝑂𝑐𝑣
2 } × ([𝐶𝑂2] + [𝐶𝑂])

(1 +
𝐻𝑐𝑣

4 −
𝑂𝑐𝑣
2 ) × ([𝐶𝑂2] + [𝐶𝑂] + (𝑛 × [𝐻𝐶]))

 

(3-4) 

 

 
Figure 3-5. Schematic diagram of FTIR analysis 
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3.2 Charge air cooler condensation model validation 

This section presents a test result to predict water condensation in the charge air 

cooler using the condensation model described in Appendix A. There are two parts to the 

model: a 1D phase change heat exchanger model for the air-water vapor mixture; and a 

transient entrainment model for the liquid water phase.  

The amount of condensate in the charge air cooler is determined by a combination 

of several conditions, such as intake air temperature and humidity, charge air temperature, 

flow rate and pressure, cooling air temperature and flow rate. The condensation region 

over the engine operating range is calculated by the model described in Appendix A, and 

is shown in Figure 3-6. Test conditions are described in Table 3-6.  

• At low loads, the boost is low enough that water does not condense 

• At high loads, the large charge air flow exceeds the cooling capacity of the CAC 

so the charge air remains too hot for water condensation 

• In between, significant rates of water condensation can occur 

 
Figure 3-6. Condensation region. Color contours indicate the rate of liquid water 

condensation in grams of water per minute 
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Table 3-6. List of test conditions 

Intake Air Temperature 33⁰C 

Intake Air Humidity 70%RH 

Cooling Air Temperature 26⁰C 

Cooling Air Flow Rate 0.6kg/s 

 

Different conditions were applied to evaluate the experimental results and 

compare to the amount of condensate predicted by the model. The experiments were 

conducted with four air mass flow rates of the engine intake air, 0.021kg/s, 0.031kg/s, 

0.041kg/s, and 0.053kg/s. Equivalent engine conditions for each air mass flow rate are 

shown in Table 3-7. All experiments were carried out with 89%RH ± 3 at 36.5°C ± 0.5 of 

the intake air, which was controlled by the test cell combustion air unit. The CAC cooling 

air was controlled by an external fan operated at a maximum flow rate of 0.2kg/s, 27°C ± 

1 by an air controller at the test cell. Commercial premium gasoline fuel (RON99, 

MON90, E10) was used in these experiments. The detail of the fuel properties is shown 

in Appendix B. 

 

Table 3-7. Equivalent engine conditions for air mass flow rate 

Mass Flow Rate(kg/s) Equivalent Engine Condition 

0.021 2000rpm/7.8bar BMEP 

0.031 2000rpm/12.5bar BMEP 

0.041 2500rpm/12.6 bar BMEP 

0.053 3000rpm/13.3 bar BMEP 
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The engine was operated for 10 minutes at each speed and load point. The weight 

of the charge air cooler before and after the test was measured to obtain the amount of 

condensation generated during the test period.  

Figure 3-7 shows the amount of condensation measured at four different air mass 

flow rates for the engine and for the model calculations. For each calculation, measured 

engine data such as a charge air inlet temperature and pressure, and a charge air mass 

flow rate were applied to the model. All test points were repeated three times to analyze 

the results of the experiment and the error of the model calculation. The measurement of 

the amount of condensation was made in two separate steps: the amount of condensation 

remained in the CAC; and the amount of condensation flow into the cylinder. To obtain 

the amount of condensation remaining in the CAC, the CAC weight was measured before 

and after each test and subtracted. To measure the amount of condensation flow into the 

cylinder, the Fourier transform infrared spectroscopy (FTIR)-based exhaust analysis 

system was used. The total H2O concentration of the exhaust gas is the sums of water 

generated by combustion, water contained in the ambient air, and condensate. The 

amount was obtained by subtracting combustion water from the measured total water. In 

each experimental condition, the error between the experimental result and the model 

calculation is less than 10%. 
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Figure 3-7. Comparison of the amount of condensation between model calculations (line) 

and experiment results (triangles) 

 

3.3 Tip in test and slowburn / misfire 

3.3.1  Experiment setup 

The following experiments are to reproduce a field issue due to the condensation 

entrainment to the cylinder and an analysis of the amount of condensate effect to a 

combustion behavior, such as the misfire and the slowburn. The misfire event is defined 

as IMEP of the cycle is less than 0.5 bars, and the slowburn event is defined as IMEP of 

the cycle is less than 70% of IMEP at normal condition. Moreover, the condensate carried 

into the cylinder at different engine conditions was examined using the 1.6L GDI turbo 

engine, as shown in the previous section. First, a known amount of water, 100ml, 150ml, 

and 200ml was applied by pouring it into the CAC at three different tip-in engine 

conditions to understand how the engine reacts to different amounts of condensate. By 

applying a known amount of water, the test can be repeated with same amount of water, 
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and in each test, we do not need to wait a certain period time to accumulate the 

condensate in the charge air cooler. The engine conditions were set to 2500rpm/9.5bar 

BMEP/28% pedal position, 2750rpm/11.6bar BMEP/33% pedal position, or 

3000rpm/14.1bar BMEP/40% pedal position. The engine was operated and maintained 

for 5 minutes at 2000rpm/7.8bar BMEP condition to obtain a steady state. We confirmed 

that with 2000rpm/7.8bar BMEP condition, water in the CAC does not get transported 

into cylinder with the charge air. After five minutes, a sudden acceleration was applied by 

rapid transition to one of the three conditions noted above. The engine was held at this 

condition for 20 seconds to carry the condensate within the charge air into the cylinder, 

and then the engine returned to 2000rpm/7.8bar BMEP for 60 seconds. The engine speed 

and load profile is shown in Figure 3-8.  

To measure the amount of condensate consumed in the cylinder, FTIR analysis as 

explained in previous section was applied. The remaining condensate inside of the charge 

air cooler and a connecting pipe were measured after the experiment for comparison. The 

detail of the procedure is shown in Figure 3-9. The condensation inside of the charge air 

cooler was generated with the intake air temperature and humidity controlled by the test 

cell combustion air unit. The humidity was controlled to 76%, 81%, 84%, and 90% RH at 

35°C. The engine tip in condition was chosen to be 3000rpm/14.1bar BMEP, since it was 

the worst case shown in previous tests. Similar to the previous setup, the engine was 

operated for 10minutes, in this case at 2000rpm/7.8bar BMEP condition, and then tipped 

in for 20seconds and back to the cruise condition. Because the exact amount of 

condensation cannot be predicted before each test run, the charge air cooler weight was 

measured before and after the test and the differences obtained for counting the amount 
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of condensate retention inside of the charge air cooler core. This amount was added to the 

amount of condensation transferred from the core during the tip-in which is the combined 

amount of condensate collected from the drain valve at the charge air cooler and the 

connection pipe, and consumed by the cylinders. This is illustrated in Figure 3-10. In the 

next of these two sets of experiment, a comparison is made to investigate the differences 

between the manually added water into the CAC and the naturally generated condensate 

tests condition. 

 

 
Figure 3-8. Test condition (a) engine speed(RPM), (b) brake mean effective pressure(bar) 
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Figure 3-9. Schematic of experiment procedure in case of the known amount of water 

added 

 

 
Figure 3-10. Schematic of experiment procedure in case of the generated condensation 

with high humid air 

 

 

3.3.2  Experiment results; added water in the charge air cooler 

Figure 3-11 shows a change of the maximum water mass fraction, normalized by 

total fluid mass intake to the engine cylinder based on the FTIR analysis of exhaust by 

three different amounts of water addition and three different engine tip-in conditions.  

With 2500rpm and 28% of a pedal position no matter of the amount of water maximum 

water concentration of exhaust does not change. From 2750rpm and 33% of pedal 
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position, the added water flow was started into the engine and gradually increased. 

Obviously, when the engine was running 3000rpm and 40% of pedal position, more 

water can be carried to the cylinder than at lower engine speed and load. Depending on 

the amount of water flowing into the cylinder, a higher number of slowburn and misfire 

events were observed. As shown in Figure 3-12 and Figure 3-13 Total 492 cycle, on 

average 46.7 cycles of slowburn were observed with 200ml, 2750 rpm and 33% of pedal 

position, 155.5 cycles of slowburn and 1.75 cycles of misfire were observed with 150ml, 

3000rpm and 40% of pedal position. As a worst case, 256 cycles of slowburn and 21 

cycles of misfire were measured with 200ml, 3000rpm and 40% of pedal position. 

 
Figure 3-11. Maximum water mass fraction normalized by total fluid mass intake to 

engine cylinder (from FTIR analysis) 
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Figure 3-12. Average number of slowburn event 

 
Figure 3-13. Average number of misfire event 
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connection pipe and intake manifold that cannot be completely collected, along with error 

in the 1-D condensation model and FTIR analysis error. The water concentration in error 

in engine exhaust is shown in Figure 3-15. Comparing case1 and 2, the maximum water 

concentrations are similar but case 1 shows a longer period time of water entrainment. 

Table 3-8 shows the number of slowburn and misfire events measured in each case of the 

engine operation.  

 
Figure 3-14. Total amount of water condensed (model) and measured amount of 

water(exp) 

 
Figure 3-15. H2O concentration measured by exhaust during tip-in transient 
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Table 3-8. Number of slowburn and misfire events 

CASE 
%RH 

(@35°C) 

# of Slowburn # of Misfire 

Cyl 

1 

Cyl 

2 

Cyl 

3 

Cyl 

4 
Tot 

Cyl 

1 

Cyl 

2 

Cyl 

3 

Cyl 

4 
Tot 

1 90 58 0 2 115 175 0 0 0 1 1 

2 84 35 0 1 55 91 0 0 0 1 1 

3 81 12 0 0 18 30 0 0 0 0 0 

4 76 0 0 0 0 0 0 0 0 0 0 

 

3.3.4  Experiment results; comparison 

To compare the water ingestion between manually added water to the charge air 

cooler and generated condensate, two cases for each test condition are chosen and 

compared. Case 1 and 3 are the cases of generated condensation which are case 1 and 4 in 

section 3.3.3. Case 2 and 4 are the cases of manually added water into the charge air 

cooler which are cases of 150ml and 100ml of water addition in section 3.3.2. Case 1, 2 

and case 3, 4 are matched similar amount of water ingested to the cylinder as shown in 

Figure 3-16. In Case 2, 4, 70% of water was introduced at 14s and 19s after the tip in, but 

in Case 1, 3, 70% of water was introduced at 21s and 30s after the tip in, shown in Figure 

3-17. The real condensation cases (Case 1, 3) had more water left in the CAC than the 

manual water addition cases (Case 2, 4) after tip in. The main reason for the differences 

in the water condensation results is that the extra force to detach the condensation from 

the inner matrix of the charge air cooler was not needed. When the water was manually 

added into the CAC, the water was sitting on the bottom of the charge air cooler, not 

inside of the matrix.  
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Figure 3-16. Total amount of water condensed (model) and measured amount of 

water(exp) 

 
Figure 3-17. H2O concentration measured in the engine exhaust 
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3.4  Condensate separator 

3.4.1  Numerical calculation setup 

Two different approaches were pursued for the pressure drop simulation and the 

separation efficiency simulation: the pressure drop calculation is tested as a single stream 

of continuous air; while the separation efficiency calculation has two phase flow - a 

continuous air flow with dispersed water droplets. In most engine operating conditions, 

the flow of condensation water droplets in the charge air can be ignored except in the 

high humidity intake air conditions. 

To predict the pressure drop over the flow regime of the separator, the continuity, 

energy, and momentum equations were solved as governing equations for the air flow. 

The turbulence model was chosen as the standard ƙ-ɛ model. To calculate the separation 

efficiency, a calculation of dispersed water droplets was adapted to the Lagrangian 

particle tracking model in ANSYS CFX® . This model tracks individual water droplets 

from the inlet of the separator through a final destination such as the outlet or wall of the 

separator. The assumptions applied in the calculation are shown below; 

 The air flow was not affected by the water droplets, while the water droplet 

movement is controlled by the air flow.  

 Water droplets were considered to be solid spherical particles because the density of 

water droplets is much larger than air [100].  

 Three fixed droplet sizes of 100µm, 500µm, and 2mm which represented fine, 

average and coarse sized droplets, were assumed and the separation efficiency was 

obtained by averaging them (assuming the three droplet sizes are equally distributed). 

 Temperature of air and water do not change. 
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 Water droplets sitting on the wall surface were counted as collected. 

 Water droplets were injected in the normal direction to the inlet surface and 

uniformly distributed. 

 Thickness of wall is 1mm. 

 The material of the separator is aluminum. 

The drag and buoyancy forces are calculated by ANSYS CFX®  Solver. For 

numerical calculation, more parameters such as a surface tension coefficient, a wall film 

interaction, and number of droplets for the particle tracking model have been carefully 

selected. 

One of the design goals is that the separator should be sufficiently small to fit in a 

vehicle. Thus the outer dimensions of the separator are designed as a rectangle 64-82 mm 

W×100 mm L×76 mm H because the outlet of the charge air cooler has a 60.325 mm 

inner diameter. The geometry is defined by the angle of plate, the air path width, the 

blade length, the blade width, and the number of air paths. Figure 3-18 shows 

configurations of the separator. In order to observe de-coupled effects of these 

configurations, a number of combinations of the angle, the number of air paths, the blade 

width, the blade length, and the air path width were simulated. The geometry of the 

separator was created using Autodesk Inventor 2015, and detailed dimensions are shown 

in Table 3-9.  
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Table 3-9. List of geometrical dimensions of the separator 

Case 

Air path 

Width 

(mm) 

Blade 

Length 

(mm) 

Blade Width 

(mm) 

NO. of 

Air Path 

Angle of 

Plate(⁰) 

1 16 10 9 2 120 

2 12 10 9 2 120 

3 20 10 9 2 120 

4 16 5 9 2 120 

5 16 10 4 2 90 

6 16 15 9 2 120 

7 16 10 12 2 150 

8 43 10 9 1 120 

9 7 10 9 3 120 

10 11 10 9 2 90 

11 19 10 9 2 150 

12 16 10 13 2 180 

13 20 10 9 2 180 

14 62 0 0 1 180 

15 16 20 9 2 120 

 

 
Figure 3-18. The separator configurations 
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Meshes were created using ANSYS Meshing 17.1. A mesh sensitivity test was 

performed on two different mesh sizes for the case 1-7. So a total of nearly 3 million 

nodes and 5 million elements were applied throughout the simulation. 

As boundary conditions for the calculation, the mass flow rate of the charge air 

was applied for the inlet condition, and a static pressure was applied for the outlet 

condition on both the pressure drop and the separation efficiency cases. Specific engine 

conditions were selected based on actual vehicle speed and corresponding mass flow rate, 

and the charge air cooler outlet pressure was obtained by actual engine testing. The 

detailed inlet and outlet boundary conditions are presented in Table 3-10. For the 

calculation of the separation efficiency, the test conditions assumed that the vehicle is in 

a transient condition such as a highway entry. Therefore, the initial conditions of the 

calculation were determined for engine conditions of 2000rpm, 8 bar BMEP. The air 

density and dynamic viscosity were automatically calculated based on the charge air 

outlet pressure and temperature obtained by the engine experiments.  
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Table 3-10. Separator boundary conditions and equivalent engine conditions (Inlet: mass 

flow rate, Outlet: pressure) 

Pressure Drop Simulation 

Engine Condition Mass Flow Rate(kg/s) Pressure (kPa) 

2000rpm, 8 bar BMEP 0.021 20 

3000rpm, 15 bar BMEP 0.053 50 

6000rpm, 16.5 bar BMEP 0.160 210 

Separation Efficiency Simulation 

Engine Condition Mass Flow Rate(kg/s) Pressure (kPa) 

3000rpm, 15 bar BMEP 0.053 50 

4500rpm, 19 bar BMEP 0.130 210 

6000rpm, 16.5 bar BMEP 0.160 210 

 

 

To establish a convergence criteria, three different root-mean-square (RMS) 

residuals (1×10
-5

, 5×10
-5

, and 1×10
-6

) were applied to confirm that the results were the 

same. Therefore, all other simulations used on RMS residual of 1×10
-5

 to minimize 

execution time. All steady state simulations had a maximum of 300 iterations, and 

completed as soon as the residual satisfied the convergence criteria. In the case of 

transient simulation for the separation efficiency calculations, the time step has been 

chosen to 1×10
-5

s by the RMS courant number from the CFX software [101]. Therefore 

the Courant number should be within the range of 0.5-1 for high accuracy results. Five 

iterations were performed within a single time interval. 
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3.4.2  Numerical calculation results 

Simulation results were carried out for the pressure drop and the separation 

efficiency through the charge air gas / water condensation separator. The pressure drop 

due to each geometric factor and the separation efficiency are shown below.  

The effect of total air path width on pressure drop is shown in Figure 3-19. Total 

air path width is calculated as the air path width multiplied by the number of air paths. 

Case numbers 1, 2, 3, 8, and 9 are compared. As the total air path width increases, there is 

less energy loss of contraction, thus reducing the pressure drop. The next calculated 

results are the effect of the blade lengths shown in Figure 3-20. The results show that 

increasing the length of the blade does not significantly affect the pressure drop, as seen 

by comparing the results from case numbers 1, 4, 6, and 15. 

 
Figure 3-19. Effect of total air path width on pressure drop 
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Figure 3-20. Effect of blade length on pressure drop 

 

Figure 3-21 through Figure 3-23 show the influence of the number of air paths 

and the plate angles. Increasing the number of air paths at a constant total air path width 

increases the pressure drop. For the angle of plate effects with the fixed blade width in 

Figure 3-22, smaller angles have higher pressure drop but there is no significant 

difference between 150° and 180°. Those two cases are due to similar air path width and 

geometric constraints. In contrast, a comparison of the effect of angle of plate on the 

pressure drop with respect to the fixed air path width is given in Figure 3-23. In this case, 

the pressure drop for case 7, 150° angle of plate, represents the lowest pressure drop and 

increases again for case 12, 180° angle of plate. Since the case 12 has wider blade width 

than for case 7, the energy loss due to air swirl is larger.  
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Figure 3-21. Effect of number of air path on pressure drop 

 
Figure 3-22. Effect of angle of plate on pressure drop with fixed blade width 
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Figure 3-23. Effect of angle of plate on pressure drop with fixed air path width 

 

The effects of the ratio of open path width on the pressure drop and the separation 

efficiency were examined. Open path width is defined as the size of air path which the air 

can pass straight from the inlet side to the outlet side of the separator as illustrated in 

Figure 3-24. Ratio of the open path width is calculated as the open path width over the 

total air path width. The larger this ratio, it has the wider the open path. If the air path is 

overlapped, it is defined that the ratio is negative. So the higher the negative value, the 

more the air path is overlapped. Therefore, as shown in Figure 3-25, the lower the ratio of 

open path width, the greater the charge air pressure drops across the separator. The 

separation efficiency associated with the ratio of open path width is shown in Figure 3-26. 

As can be seen from the graph, the separation efficiency increases with decreasing of the 

ratio of the open path width from 1 to 0. If the ratio of the open path is negative, the 

calculated separation efficiency result is 100%. Moreover, a bigger droplet size (2mm) 

shows better separation efficiency than a smaller droplet size (0.1mm). There is no 
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significant relationship to other geometric parameters such as the total air path width, 

blade width, blade length, number of air paths, and angle of plate. 

 

 
Figure 3-24. Definition of ratio of open path width 

 
Figure 3-25. Effect of ratio of open path width on pressure drop for various inlet air mass 

flow rate(g/s) 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

4

5

6

P
re

s
s
u
re

 D
ro

p
(k

P
a
)

Ratio of open path width(mm/mm)

160(g/s)

53(g/s)

21(g/s)



58 

 
Figure 3-26. Effect of ratio of open path width on separation efficiency for various 

droplet size and on average 

 

Empirical equations for the pressure drop and the separation efficiency were 

derived based on the simulation calculation results. The means to calculate the pressure 

drop and the separation efficiency are reported in equations (3-5) and (3-6) where 

pressure drop ∆𝑝(Pa), density of charge air 𝜌(kg/m3), and velocity of charge air at inlet 

𝑉(m/s). R(mm/mm) is the ratio of open path width, and it is dictated by the geometry of 

the separator and is calculated as shown in equation (3-7). 

 

∆𝑝(𝑃𝑎) = (
49.4𝑅2 − 99.3𝑅 + 49.9

𝑅 + 4
) ×

𝜌𝑉2

2
 (3-5) 

Separation Efficiency = −87.69 × R + 100, if R > 0 
                                         = 100,                                     if R < 0              

(3-6) 

𝑅 = 1 −
𝑁𝑂 𝑜𝑓 𝐴𝑖𝑟 𝑃𝑎𝑡ℎ

𝑇𝑜𝑡𝑎𝑙 𝐴𝑖𝑟 𝑃𝑎𝑡ℎ 𝑊𝑖𝑑𝑡ℎ
[(

𝐵𝑙𝑎𝑑𝑒 𝑊𝑖𝑑𝑡ℎ

cos (
𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑃𝑙𝑎𝑡𝑒

4 )
)

+ tan (
𝜋 − 𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝑃𝑙𝑎𝑡𝑒

2
) ×

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

2
] 

(3-7) 
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3.4.3  Experiment setup and results 

To verify the simulation results for the pressure drop and the separation efficiency 

shown above, the engine tests were performed using prototypes of the charge air cooler 

condensation separator. Four pressure drop tests and two separation efficiency tests were 

performed according to the separator specifications in Table 3-11. The corrugated plates 

were made of ABS on a 3D printing machine. The separator was placed at the outlet of 

charge air cooler, and a reservoir is put at the bottom of the separator to collect the 

condensation. The test setup is shown in Figure 3-27. 

 

Table 3-11. Specifications of separator prototypes for engine tests 

Case 

Air path 

Width 

(mm) 

Blade 

Length 

(mm) 

Blade Width 

(mm) 

NO. of 

Air Path 

Angle of 

Plate(⁰) 

A 18 9 7 2 120 

B 16 10 9 2 120 

C 4 18 6 2 90 

D 3 15 6 3 120 
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Figure 3-27. Engine test setup 

 

Two separate tests were conducted for the pressure drop and the separation 

efficiency. For the pressure drop, two different intake air mass flow rates were chosen, 

0.021kg/s, and 0.053kg/s, corresponding to the engine conditions of 2000rpm/7.8bar 

BMEP, and 3000rpm/13.3 bar BMEP. The engine was operated and maintained for 10 

minutes under each condition to reach a steady state. The pressure sensors were located 

before and after the charge air cooler. The pressure for these two locations was recorded 

with and without the separator and subtracted to calculate the pressure drop due to the 

separator. Each test condition was repeated three times.  
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For validation of the simulation results for the separation efficiency, experiments 

were conducted with transient engine conditions. The engine started at 2000rpm/7.8bar 

BMEP, and was held for 10 minutes to reach a steady state under non-condensing 

conditions. Then, the engine was tipped in at 3000rpm/13.3 bar BMEP for 20 seconds, 

and moved back to 2000rpm/7.8bar BMEP. To create a short and repeatable experiment, 

200 ml water was added to the CAC outlet with the engine off; this avoided running for a 

longer time with a high humidity to condense water in the CAC. Other experiment 

settings were the same as presented above. The tests were repeated three times for each 

separator prototype. After each test, the weight of water remaining in the charge air 

cooler and the reservoir was measured to obtain the separation efficiency. Equation (3-8) 

used to calculate the separating efficiency is shown below. 

 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%)

=  
𝐴𝑚𝑜𝑢𝑛𝑡 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

𝐴𝑚𝑜𝑢𝑛𝑡 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 + 𝐴𝑚𝑜𝑢𝑛𝑡 𝑓𝑙𝑜𝑤𝑒𝑑 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

(3-8) 

 

Figure 3-28 and Figure 3-29 show the comparisons between the simulation results 

and the experimental results for the pressure drop and the separation efficiency. Because 

the desired pressure drop (less than 5kPa at full load condition) was obtained only case A 

and B, the separation efficiency testes were considered with case A and B. Case C and D 

were chosen for a comparison and validation of angle of plate and number of air path. In 

the pressure drop comparison, the error between the experimental results and the 

simulation results was less than 10%. Overall, the simulation results are in good 

agreement with the experimental results. 
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For the separation efficiency, the simulation results show better separating 

efficiency than the experimental results. Some of the assumptions made for the numerical 

calculations can account for higher separation efficiency predictions. First, water droplets 

sitting on the wall surface were considered as being collected, because there is no method 

for an accurate calculation of droplet motion on the surface [101]. Second, water droplets 

were injected normal to the inlet surface and uniformly distributed. However, the 

direction and distribution of the droplets could not be estimated from the experiment. 

Lastly, some of the droplet sizes may be smaller than 100µm. Small droplets are more 

difficult to collect and may reduce the separation efficiency. 
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Figure 3-28. Comparison of pressure drop between simulation results (line) and 

experiment results (triangles), (a) 2000rpm, 7.8bar BMEP, (b) 3000rpm, 13.3bar BMEP 

 
Figure 3-29. Comparison of pressure drop between simulation results (line) and 

experiment results (triangles) 

 

 

3.4.4  Separator design integrated in charge air cooler 

A separator which can be integrated with the current charge air cooler was 

designed as shown in Figure 3-30. The separator is placed between the charge air cooler 
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matrix and the outlet housing of the charge air cooler. The separator has the same height 

(157mm) and width (40mm) as the charge air cooler matrix installed in the engine. The 

length of the separator is set to 80mm. Table 3-12 shows specifications of the separator 

used in calculations. The pressure drop and the separation efficiency were calculated 

using the same setup shown in the section 3.4.1. 

 

 
Figure 3-30. A prototype of separator integrated in charge air cooler 

 

Table 3-12. Specifications of separator used in calculation 

Case Angle of Plate(⁰) Air path Width(mm) 
Ratio of open path 

width 

I 180 22 0 

II 150 22 0.25 

III 180 25 0.10 

IV 150 17 0.10 
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Figure 3-31 and Figure 3-32 show the effects of the ratio of open path width on 

the pressure drop and the separation efficiency. Symbols in the graphs mean the 

calculation results and lines mean the results of the empirical equation which was shown 

in equations (3-5) to (3-7) with each boundary condition such as the air mass flow rate. 

The calculation results are well matched with the empirical equations even if the 

separators have different geometries.  

 
Figure 3-31. Comparison of pressure drop between simulation results (scatters) and 

empirical equation (line) 

 
Figure 3-32. Comparison of separation efficiency between simulation results (triangle) 
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and empirical equation (line) 

 

3.5  Conclusion 

In this study numerical calculations of the amount of condensation generated from 

a charge air cooler are presented. Using a 1.6L GDI gasoline turbocharged engine, 

experiments have been conducted on the total amount of condensation of specific air 

humidity and four engine conditions. Those results show that the predictions are close to 

the experimental data.  

With a hard acceleration, the water condensate generated in the charge air cooler 

was ingested into engine cylinder, and caused an abnormal combustion behavior such as 

a slowburn or a misfire. With different amounts of the condensate and different tip-in 

engine conditions, changes of maximum water concentration in the engine exhaust were 

measured and correlated to the number of slowburn and misfire events. 

In addition, the numerical simulations of the pressure drop and the separation 

efficiency for a charge air cooler condensation separator have been developed. It was 

found that the ratio of open path width is a good variable to predict the pressure drop and 

the separation efficiency. Decreasing the ratio of open path width increases the pressure 

drop and the separation efficiency. If the ratio of open path width was less than 0, the 

separation efficiency was 100%. A total of 16 different separators were designed and 

simulated, and four prototype separators were engine tested. For the optimum design of 

charge air cooler condensation separator, the ratio of open path width should be close to 

zero for high separation efficiency and acceptable pressure drop. The charge air cooler 

condensation separator efficiently collects the condensate from the charge air. As a last 
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stage of this research, the prototype separators which can be integrated in a current 

charge air cooler were designed and engine tested. All of the simulation and experiment 

results matched well with the empirical equations.  
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Chapter 4  

 

 

Effect of Water Injection on Auto-Ignition under Boosted Conditions 

In this chapter, a careful examination of the effect of water on auto-ignition under 

boosted conditions is presented. The experiments were conducted in two different ways. 

The first experiment was for identifying the effect of water through changing intake air 

properties. The second experiment was for comparing the effect of water between intake 

air temperature drop and intake air properties change. Those experiments have been 

performed using a modified cooperative fuel research engine. 

 

 

4.1  Experimental 

4.1.1. Motored Engine Setup 

In this work, a modified motored Cooperative Fuel Research (CFR) engine is 

used to study the effects of water on auto-ignition of hydrocarbon fuels. The engine is a 

modified CFR Octane Rating Engine, four-stroke single cylinder engine with 
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compression ratio controllable between from 4.0 to 15.7. This engine has been used 

extensively to investigate combustion and emission characteristics [102–107]. The engine 

used in this work has been modified by previous researchers [108–111]. A solenoid 

injector replaced the original carbureted fueling system. The injector used is a production 

part originally used for direct injection, but in this work it is placed upstream of the 

intake air system (1.4 meters above the intake valve) allowing that a fuel can be fully 

vaporized and mixed with the intake air. A fuel tank was located near the injector, and 

held under a constant pressure of 700 psi using an inert gas, helium, and fuel was injected 

at a constant frequency of 10 Hz. A Max Model 213 piston flow meter was used to 

control fuel mass flow rate. The addition of this Max flowmeter was made by previous 

researcher and calibration had been performed carefully [111]. A series of electric heaters 

and supplemental heaters were installed to control the intake air temperature as high as 

260°C. Air mass flow rate was obtained using a Delphi hot wire mass airflow sensor. 

Additional modification was made to deliver dry and pressurized intake air to a 

maximum boost pressure of 3 bar (abs). A Kistler 6052B piezoelectric pressure 

transducer was used to measure the in-cylinder pressure at a 0.1 crank angle resolution 

for 70 cycles. The pressure signal was amplified by a Kistler 5010 dual mode amplifier 

and a LabView-based high speed data acquisition system recorded the signals. Engine 

speed was measured by an Accu-Coder shaft encoder at the resolution of a 0.1 crank 

angle per revolution. Static pressure sensors were installed at the intake plenum chamber 

and the exhaust plenum chamber. Two (8L, 1000 W and a 6L, 1100W) chiller circulators 

were used to maintain the engine cylinder temperature and the GDI fuel injector 

temperature to 90°C. A MedTherm coaxial thermocouple was used to measure the 
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cylinder wall temperature. The effect of residual gas has been carefully examined by 

previous researchers [108,109]. Residual gas was set to minimal by applying a slight 

vacuum (~ 0.97bar) to the exhaust. Details of the CFR engine and schematic are shown in 

Table 4-1 and Figure 4-1. 

 

Table 4-1. CFR engine specification 

Number of cylinder   1 

Bore (cm)   8.26 

Stroke (cm)   11.43 

Connection rod (cm)   25.4 

Swept volume (cm
3
)   611.7 

Compression ratio   4.0-15.7 

Number of overhead valve   2 

Engine speed (rpm)   900 

Intake valve open (degrees after TDC)   10 

Intake valve closes (degrees after BDC)   34 

Exhaust valve open (degrees before BDC)   40 

Exhaust valve closes (degrees after TDC)   15 

Combustion chamber   Pancake piston 
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Figure 4-1. Schematic of the CFR engine setup 

 

4.1.2. Water injection setup 

To examine the effects of water on auto-ignition, the amount of water should be 

precisely controlled. A Waters Model 590 HPLC pump was used to deliver a desired 

amount of water. The specifications of the pump are shown in Table 4-2. Water was 

injected between the supplemental heater and the main intake heater. The supplemental 

heater pre-heated the intake air to 400°F before water was injected. This setup provides 

enough time for the water droplets to completely evaporate and be well mixed with the intake 

air. The controlled amount of water was delivered through a sintered stainless metal 

fitting. The inside of the fitting was filled by glass fiber to evaporate water quickly and 

constantly. The schematic diagram of the water injection in the intake manifold is shown 

in Figure 4-2. 
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Table 4-2. HPLC water pump specification 

Operating temperature 4 to 38°C 

Flow rate range 0.001 to 20.0 ml/min; 0.001ml/min increments 

Flow rate accuracy ± 1% of setting at 3ml/min 

Flow rate precision 
± 0.1% from 0.1 to 20.0 ml/min 

± 1% from 0.01 to 0.05 ml/min 

Operating pressure limit 480 bar maximum ± 10% of reading 

 

 

 
 

Figure 4-2. Schematic of water injection apparatus in the intake manifold 

 

In the air and water mixture, the latent heat of vaporization is taken from the 

intake air. Assuming satisfactory mixing and sufficiently long time duration, the 

evaporation of the atomized liquid water would continue until the combined effect of 

cooling and increase in content of water vapor would bring about saturation. 

Thermodynamically the process can be broken down into two steps.  
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The thermodynamic equations that dictate the heat transfer between air and water 

at the moment when both are mixed are as following equations.  

mwcw(Tw − Tm)  =  macpa(Tm − Ta) 
(4-1) 

cpa  =  
cpTa +  cpTm

2
 

(4-2) 

𝑇𝑚 =  
𝑚𝑤𝑐𝑤𝑇𝑤 +  𝑚𝑎𝑐𝑝𝑎𝑇𝑎

𝑚𝑤𝑐𝑤 +  𝑚𝑎𝑐𝑝𝑎
 

(4-3) 

 

Where 𝑚𝑎 and 𝑚𝑤 are the mass of air in the manifold and mass of water injected 

respectively, 𝑐𝑤 and 𝑐𝑝𝑎 are the specific heat of water and air. 𝑇𝑤  , 𝑇𝑎 , and 𝑇𝑚 are the 

initial temperatures of water, and air, and final mixture temperature, respectively. The 

specific heat of air is a function of temperature, thus it can be averaged over the 

temperature before and after the heat exchange. 

The mass of water reduces by a small quantity ∆𝑚𝑤 which corresponds to the 

quantity of water that is converted into vapor. Thus the thermodynamic equation can be 

written as below in two phases; an initial phase and a second phase. 

At the initial phase, there is no vapor present in the dry air. The change in 

temperature of the mixture is due to the evaporation of the small quantity of water, ∆𝑚𝑤. 

Latent heat of vaporization of the water varies according to temperature, however, for the 

intake manifold it can be assumed to be a constant 2500 kJ/kg under standard temperature 

and pressure conditions. The new temperature of the mixture on evaporation of the first 

mass can be given by the equation (4-4). 

After the initial vaporization the specific heat of the vapor will also come into 

play. The specific heat of vapor, 𝑐𝑝𝑣, can be considered to be around 2.5 kJ/kg-K under 

standard temperature and pressure. Thus the thermodynamic equation for the second 
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phase is in equation (4-5).  Equation (4-5) is an iterative progression form, and thus can 

be represented as equation (4-6). The iteration index 𝑖 is stopped by a numeric check that 

stops the iteration if the relative humidity reaches 100% (attainment of saturation) or 𝑚𝑤 

becomes zero. 

[(𝑚𝑤 − ∆𝑚𝑤)𝑐 +  𝑚𝑎𝑐𝑝𝑎](𝑇𝑚 𝑂𝑙𝑑 − 𝑇𝑚 𝑁𝑒𝑤) =  ∆𝑚𝑤ℎ𝑓𝑔 (4-4) 

[(𝑚𝑤 − ∆𝑚𝑤)𝑐 +  𝑚𝑎𝑐𝑝𝑎 + ∆𝑚𝑤𝑐𝑝𝑣](𝑇𝑚 𝑂𝑙𝑑 −  𝑇𝑚 𝑁𝑒𝑤) =  ∆𝑚𝑤ℎ𝑓𝑔 (4-5) 

[(𝑚𝑤 − 𝑖∆𝑚𝑤)𝑐𝑤 + 𝑚𝑎𝑐𝑝𝑎 + (𝑖 − 1)∆𝑚𝑤𝑐𝑝𝑣] (𝑇𝑚 𝑂𝑙𝑑 − 𝑇𝑚 𝑁𝑒𝑤)  =  ∆𝑚𝑤ℎ𝑓𝑔 (4-6) 

In the experiments, the total mass flow rate can be measured by the mass flow 

sensor, and relative humidity present in the intake air can be assumed to zero since the 

intake air passes through an oil and moisture separator. Therefore the humidity ratio 

under the intake manifold pressure and temperature can be determined using equation 

(4-7). Thus in the iteration equation, the iteration index i changes from 1 to n where n is 

the n
th

 iteration of the process. In the given amount of water, the humidity ratio at the n
th

 

value is checked whether the relative humidity reaches to 100% or not. The solution of 

the iteration gives a final temperature of the mixture under saturated condition before the 

mixture enters the cylinder. This calculation is important because if the water is injected 

is more than the amount needed to reach water for 100% relative humidity, the excess 

water remains liquid in the intake manifold. Therefore at every test point, initial analyses 

were performed to check whether the amount of water was completely evaporated and 

the final temperature of mixture from the calculation was matched to actual measured 

temperature after the water injection port. 

Humidity Ratio =  
𝑚𝑣 + 𝑛∆𝑚𝑤

𝑚𝑎
 (4-7) 
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4.1.3. Heat release calculation 

When the fuel burns, its chemical energy releases. By observing rate of the 

chemical energy release (or heat release), details of the progress of combustion can be 

quantified, which can be calculated from in-cylinder pressure versus crank angle over the 

engine cycle. The in-cylinder pressure and crank angle data are measured by the sensors 

and acquired through a LabView program as mentioned above. Those signals are filtered 

and smoothed to compute an apparent heat release rate (AHRR) using a single zone 

model [3]. The detailed explanations of the calculation were presented previously 

[108,111].  

Because water is added to the intake air, the ratio of specific heats (γ) of the 

intake air mixture is changed. To compute the apparent heat release rate, the change in γ 

of the intake air mixture should be considered in the calculation. The new γ  of the 

mixture is calculated using an equation (4-8). 

𝑐̃𝑝,𝑖

𝑅̃
=  𝑎𝑖1 +  𝑎𝑖2𝑇 +  𝑎𝑖3𝑇2 + 𝑎𝑖4𝑇3 +  𝑎𝑖5𝑇4 (4-8) 

Where i is each species, T is temperature, 𝑐̃𝑝  is specific heat. Values of the 

coefficient 𝑎𝑖𝑗 for O2, N2, H2O and equation (4-8) are from Heywood [3]. A specific heat 

of the mixture is calculated by multiplying mole fraction of each species and specific heat 

of each species. 

 

4.1.4. Critical compression ratio 

The benefits of the modified CFR engine are its flexibility for selection of the end 

of compression pressure and temperature in the cylinder, and the repeatability of the test 
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conditions compared to ideal reactors such as RCM, shock tubes, and flow reactors, that 

traditionally have been used to characterize hydrocarbon ignition behavior. In this study, 

the CFR engine is used as a chamber to compression ignite rather than spark ignite the 

fuel and air mixture and observe temperature, pressure and exhaust products to study 

auto-ignition and pre-ignition chemistry. The experimental method is that increase the 

compression ratio from 4 (which is the lowest compression ratio setting for the engine) 

until auto-ignition of the fuel and air mixture is observed. When the compression ratio is 

4, a little or no reaction is expected and CO emissions stay pretty low or zero. By 

increasing the compression ratio, CO emissions increase slowly, but at a certain point, 

CO emission increases dramatically, and suddenly drops with further compression ratio 

increase. A reduction of CO emission means that CO is converted to CO2 because more 

complete combustion occurs, with more CO oxidation to CO2. The compression ratio at 

this point where CO emissions suddenly drop is defined as the critical compression ratio 

(CCR). Therefore, a condition with a higher CCR means that a test fuel is less prone to 

auto-ignite. This approach to observing auto-ignition and related chemical kinetics with 

regard to the compression ratio using the motored engine was introduced by Curran et al. 

[112]. Previous research [109–111] adopted the approach to modify the CFR engine to 

explore the CCR and a critical equivalence ratio for diesel fuels, gasolines, jet fuels, 

biofuels and model compounds.  

4.1.5. Fuel Selection 

The purpose of this study is to observe the differences in auto-ignition behavior of 

fuels with similar octane number fuel but with different amounts of water and with 

different intake air pressure. In the current study, premium gasoline is chosen as the base 
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fuel for the motored engine experiments, which has a RON of 98.7. In comparison, 

primary reference fuels (PRF) and a toluene reference fuel (TRF), prepared by mixing 

primary reference fuels with toluene, are used.  

The primary reference fuel is a mixture of iso-Octane and n-heptane, and is used 

to define the octane reference scale for gasoline. Thus, a blend of 99% of iso-Octane and 

1% of n-heptane by volume has a RON and MON of 99 by definition.  

However, the operating condition for the RON test is different from current 

gasoline engines. Therefore RON does not represent a fuel’s auto-ignition behavior 

sufficiently well in current technology GDI engines [113]. In practice, a combination of 

RON and MON ((RON + MON) / 2) is used to define the anti-knock index. The 

difference between RON and MON is referred to as the octane sensitivity. Since a 

gasoline used in this test has the sensitivity of 8.7, the auto-ignition behavior of the fuel 

as compared to the primary reference fuel is expected to be different [3,114]. To compare 

the auto-ignition behavior with water at similar octane sensitivity, a toluene reference 

fuel is adopted for this experiment. Toluene is one of the aromatic surrogates used in 

model gasoline fuels, and aromatic fuels show a higher resistance to auto-ignition than 

paraffin fuels such as iso-Octane [115]. Details of the test fuels are shown in Table 4-3. 

To calculate RON and MON of the TRF, a method presented in reference [116] was 

applied. 
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Table 4-3. Tested fuel specifications 

 
Gasoline PRF TRF 

RON 98.7 99.0 99.1 

MON 90.0 99.0 92.7 

Sensitivity 8.7 0 6.4 

iso-Octane  99 vol% 59 vol% 

n-Heptane  1 vol% 9 vol% 

Toluene   32 vol% 

 

4.1.6. Test conditions 

To examine the effect of water injection on auto-ignition under boosted 

conditions, the experimental conditions are divided into two different sets. The first test 

set is to observe the effect of changes of intake air properties under boosted conditions 

with water at a constant charge temperature. The second test set is to compare the effects 

of intake air property changes and the intake air cooling effect. 

For the first test set, the following initial conditions were applied. The intake air 

temperature was set to 190°C, and this temperature enabled complete evaporation of the 

water in a short period of time. Moreover, by heating the premixed intake air (pressurized air 

with water, and pressurized air without water) to 190°C, the effect of intake air cooling on 

auto-ignition was eliminated. 

The amount of water was controlled by an HPLC pump and water was injected at a 

water-fuel ratio from 0 to 1.5, in increments of 0.5. The water-fuel ratio is defined as a mass 

flow rate of water over a mass flow rate of fuel. The intake air pressure was swept from 1 bar 
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to 2.5 bar abs. The engine speed was kept constant at 900 rpm for all of the test conditions. 

Three test fuels were chosen for this experiment as shown above.  

For the second test set, a comparison was made to de-couple the effect of intake air 

cooling and the intake air property changes in combination with the effect of water on auto-

ignition behavior. To do this, three experimental conditions were examined. First was to 

measure the fuel auto-ignition behavior without water. Therefore, the temperature of the 

intake air was set to 207°C. Second was to measure the effect of the intake air cooling. Using 

equation (4-3), the predicted intake air temperature at the fuel-water ratio of 1.5 was 

calculated, but no actual water was added to the intake air. Therefore, the intake air 

temperature was set to 190°C without water. As the last experimental condition, the intake air 

temperature was set to 190°C and a certain amount of water (water-fuel ratio of 1.5) was also 

added to the intake air. By comparing the first condition and second condition, the effect of 

the intake air cooling effect of water can be derived, and by comparing the second condition 

and third condition, the effect of the intake air property changes with water can be observed. 

For each test condition, compression ratio was gradually increased from the 

compression ratio of 4 to the critical compression ratio (CCR). Constant equivalence ratio (φ), 

0.25, was maintained during the study. There are some reasons that a low equivalence ratio 

was selected. Compared to high equivalence ratio such as 1 or higher, it provides wider range 

to observe low temperature pre-ignition behavior. Also, it is a typical operation condition for 

homogeneous charge compression ignition (HCCI) engine. The summary of the test 

conditions is given in Table 4-4. 
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Table 4-4. Summary of the initial conditions for CFR water injection test 

Test set Fuel 
Intake air 

Pressure 

Intake air 

temperature 
Phi 

Water Fuel 

Ratio 

1 

PRF / TRF / 

Gasoline 

1 - 2.5 bar 

abs. 

190°C 

0.25 

0 – 1.5 

2 - 1 207°C 0 

2 - 2 190°C 0 

2 - 3 190°C 1.5 

 

4.2. Results 

Overall, the effect of water can be categorized in two parts. When the water is 

injected into the intake air, the intake air temperature is decreased by evaporation of 

water droplets. The other effect of water addition is changing the intake air property. Due 

to water’s high specific heat, the total intake air specific heat increases with water 

addition. Also, as water is added into intake air, oxygen concentration is reduced. Lastly, 

the presence of water molecules affects the chemical reaction pathway. 

Therefore, the experiment consisted of two parts. One is for examining effect of 

water on changing intake air properties, and the other is for comparing the effect of water 

via intake air temperature drop and intake air property changes. 

 

4.2.1. Effects of Intake air property changes under boosted conditions 

 As shown in Figure 4-3, at certain compression ratio CO converted to CO2, and a 

sudden drop of CO concentration is observed. The results show that when a larger 

amount of water is injected into the intake air, a higher CCR was measured for all cases 
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of premium gasoline, PRF, and TRF. This means that as a larger amount of water is 

injected, the effect of changing the intake air property is larger. This trend is shown to be 

more dominant for lower intake air pressure. Figure 4-4 shows that the critical 

compression ratio with various range for a range of water-fuel ratio and intake air 

pressure. As explained earlier, the critical compression ratio is defined as the 

compression ratio at which CO emissions suddenly drop. It can be observed that with 

increasing the intake air pressure, the CCR is advanced for all test fuels and, as expected, the 

CCR was higher for greater water-fuel ratio, when compared at the same intake pressure. The 

higher intake air pressure leads higher rate of hydrocarbon oxidation [117]. The results 

shown in these figures confirm that expected trend. 

 
(a) 

8 10 12 14

0

2000

4000

6000

8000

10000

C
O

 (
p
p

m
)

Compression Ratio

P=2.5bar P=2bar

P=1.5bar P=1bar

Gasoline  wf0

 wf0.5

 wf1.0

 wf1.5



82 

 
(b) 

 
(c) 

Figure 4-3. CO emission versus compression ratio at various intake pressures and water-

fuel ratios for: (a) Gasoline, (b) PRF, (c) TRF 
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Figure 4-4. Critical compression ratio versus water-fuel ratio 
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MON were increased. It means that water addition suppresses auto-ignition tendency and 

it agrees with the results. 
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(c) 

 
(d) 

Figure 4-5. Critical compression ratio versus intake air pressure 
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Figure 4-6. Change of critical compression ratio versus intake air pressure 

 

 The heat release rate indicates the progress of the combustion process at a given 

compression ratio. The heat release rate was used to derive the combustion phasing, the 

crank angle where 50% of fuel is burned (CA50) and combustion duration (CA1090), the 

crank angle differences where 10% of the fuel is burned (CA10) and 90% of the fuel is 

burned (CA90). Two compression ratios were selected to compare the effect of water. 

One was one specific value of compression ratio for all intake air pressure conditions. 

The other was a CCR for each test condition. Figure 4-7 shows the apparent heat release 

rate for PRF as a function of crank angle, intake pressure of 2.5bar, intake temperature of 

190°C, 𝜙 of 0.25, and CR of 9.15. The peak heat release rate noticeably decreases with 

increasing water-fuel ratio. This agrees with results presented in earlier studies [65,89]. 

The authors state that water absorbs the energy released, and reduced the peak heat 

release rate. Again, this means that water suppresses auto-ignition. Figure 4-8 shows the 

apparent heat release rate for PRF as a function of crank angle, intake pressure of 2.5bar, 

intake temperature of 190°C, 𝜙 of 0.25, and CCR. It seems that there is no change on the 

1.0 1.5 2.0 2.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

T
R

F

T
R

F

T
R

F

T
R

F

P
R

F

P
R

F

P
R

F

P
R

F

G
a
s
o
lin

e

G
a
s
o
lin

e

G
a
s
o
lin

e

C
h

a
n
g

e
 o

f 
C

C
R

Intake Pressure (bar)

 W/F=1.5

 W/F=1

 W/F=0.5

G
a
s
o
lin

e



87 

peak heat release rate at CCR. In addition, based on the comparison of combustion 

phasing (CA50), there is a trend that the combustion phasing is shifted to somewhat 

advanced, except for the gasoline cases. In case of combustion duration (CA1090) 

comparison, there is a lack of evidence whether the water addition in the intake air affects 

the combustion duration. Similar observation could be seen in a study by Hoppe et al. 

[85]. Although the test conditions were different (engine configuration and water 

injection methods), CA50 was generally advanced by adding water and CA1090 did not 

show clear correlations by adding water. 

 
Figure 4-7. Apparent heat release rate profiles for PRF with water-fuel ratio 0 – 1.5 as a 

function of crank angle at CR=9.15 
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Figure 4-8. Apparent heat release rate profiles for PRF with water-fuel ratio 0 – 1.5 as a 

function of crank angle at CCR 

 
Figure 4-9. CA50 versus water-fuel ratio at CCR 
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Figure 4-10. CA1090 versus water-fuel ratio at CCR 

 

As Figure 4-11 and Figure 4-13 show maximum in-cylinder temperature profile 

and in-cylinder pressure profile for PRF with water-fuel ratio from 0 to 1.5 and the intake air 

pressure from 1bar to 2.5 bar. By adding more water, it is observed the lower maximum in-

cylinder temperature, which is consistent with results from earlier studies [68,84,85,87,89]. 

At all intake air pressure conditions, higher water-fuel ratio led to ignition at higher 

compression ratio. Those results show that beyond a certain compression ratio, the 

temperature and pressure suddenly start to increase, which indicates a shift towards high 

temperature chemistry. This point shall be termed as a “thermal runaway” point. This thermal 

runaway temperature occurs at a lower CCR at the higher intake pressure. Moreover, with 

less water addition, a lower thermal runaway temperature was observed. It points out that 

water suppresses the onset of high temperature heat release. Figure 4-12 shows a zoomed 

figure of Figure 4-11. It is overserved that thermal runaway temperature is almost 7K 

differences. It can be observed from Figure 4-14 that the critical pressure, corresponding to 

the thermal runaway point, for W/F ratio of 1.5 is higher compared with that for W/F ratio of 

0.0 0.5 1.0 1.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

1bar

1.5bar

2bar

C
A

1
0
9

0

Water Fuel Ratio

 PRF 1bar

 PRF 1.5bar

 PRF 2bar

 PRF 2.5bar

 TRF 1bar

 TRF 1.5bar

 TRF 2bar

 TRF 2.5bar

 Gasoline 1bar

 Gasoline 1.5bar

 Gasoline 2bar

 Gasoline 2.5bar

2.5bar



90 

0. Also, at higher intake pressure of 2.5 bar, the difference between the critical pressures is 

less compared with the 1 bar intake pressure suggesting that the reactivity suppression due to 

water addition is less pronounced at higher intake pressures. For two other test fuels, 

Gasoline and TRF, similar results were observed, meaning that the effect of water with 

changing intake air properties is less pronounced for different types of fuels, when those 

fuels have similar RON. 

 

 
Figure 4-11. Maximum bulk in cylinder temperature for PRF with water-fuel ratio 0 – 1.5 

versus compression ratio 
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Figure 4-12. Zoomed in plot of Figure 4-11 indicating the thermal runaway points and 

differences in temperature 

 
Figure 4-13. Maximum bulk in cylinder pressure for PRF with water-fuel ratio 0 – 1.5 

versus compression ratio 
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Figure 4-14. Maximum in cylinder pressure expressed as a function of compression ratio 

for W/F ratio 0 (○) and W/F ratio 1.5(■), Two intake pressure are shown; 1bar( ___ ), 

2.5bar( ___ ) 
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intake air cooling and intake air property changes, are constant for increasing intake air 

pressure. Although the results for the two other test fuels are not shown here, overall 

effect of water is similar for each of the test fuels. 

As a result, critical compression ratio change due to intake air cooling on entire 

tested fuels was recorded 0.28±0.02 compression ratio, and due to intake air property 

changes when water-fuel ratio 1.5 was recorded 0.28±0.03 compression ratio. It can be 

observed from this result that as water is added to intake air, the effect of intake air 

temperature and effect of intake air properties are almost equivalent, as shown in Figure 

4-17. 

 

 
Figure 4-15. CO emission of PRF expressed versus compression ratio at various intake 

pressure and water-fuel ratio 
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Figure 4-16. Critical Compression Ratio changes for PRF due to intake air cooling 

(differences of ■ and ▲) and intake air property changes (differences of ● and ■) 

 
Figure 4-17. Change of critical compression ratio versus intake air pressure 
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apparent heat release rate for PRF at same condition as Figure 4-18, except its 

compression ratio. It seems that there is no change of the magnitude of heat release rate at 

CCR. As same as in previous section, combustion phasing (CA50) and combustion 

duration (CA1090) were compared. The combustion phasing tends to be advanced except 

for gasoline at 2 bar intake pressure. In case of combustion duration (CA1090), overall 

the combustion duration is shorter when decreasing the intake air temperature and adding 

water except for the gasoline 2 bar intake pressure. The effect of intake air temperature 

change on the combustion duration seems higher than the effect of intake air property 

change. 

 
Figure 4-18. Apparent heat release rate profiles for PRF versus crank angle at CR=8.8 
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Figure 4-19. Apparent heat release rate profiles for PRF versus of crank angle at CCR 

 
Figure 4-20. CA50 as a function of water-fuel ratio at CCR 
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Figure 4-21. CA1090 as a function of water-fuel ratio at CCR 
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Figure 4-22. Maximum bulk in cylinder temperature for PRF versus compression ratio 

 
Figure 4-23. Zoomed in plot of Figure 4-22 indicating the thermal runaway points and 

differences in temperature 
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Figure 4-24. Maximum bulk in cylinder pressure for PRF versus compression ratio 

 

4.3. Conclusion 

Previous studies have characterized the effect of water on auto-ignition with the 

modified CFR engine. Three test fuels gasoline, PRF, and TRF which have similar RON 

were used for this test at various intake pressures and amounts of water addition. First test 

was done with constant intake air temperature and φ. This condition excludes the effect 

of intake air cooling due to water injection. One of the key conclusions from this study 

was that all of test fuels showed decreased reactivity as the water-fuel ratio was increased. 

Also, as the intake pressure was increased from 1 bar to 2.5 bar the CCR was decreased. 

All of selected fuels had similar CCR without water and by adding water the auto-

ignition was suppressed. 

Heat release analysis was used to examine the effect of water on combustion 

phasing and duration. The heat release was compared at CCR and at the same 
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decreased by increasing the amount of water added to the intake air. Except for a couple 

of test conditions, combustion phasing tends to be advanced regarding to the crank angle 

by adding water, while no changes of combustion duration. Bulk in-cylinder temperature 

and pressure analysis indicated that the more water in the intake air, the lower the thermal 

runaway temperature as compared to no water addition.  

Second test was for comparing the effect of the intake air cooling and the effect of 

the intake air property change. These results show that CCR changes, due to the intake air 

cooling and due to intake air property change when water-fuel ratio 1.5, were similar. 

The results show that the effect of intake air temperature change on the combustion 

duration seems higher than the effect of intake air property change. In the case of bulk in-

cylinder temperature and pressure, the effect of the intake air cooling effect on thermal 

runaway temperature and critical pressure was greater than the effect of the intake air 

property changes. 
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Chapter 5  

 

 

Chemical Reaction of Water with Oxygenated Fuels 

In this chapter, the analytical and numerical modeling of the auto-ignition of 

oxygenated fuels with water is described. One of the common approaches for examining 

the hydrocarbon oxidation process is CFD simulation using a chemical kinetic 

mechanism. The mechanism shows the reactions pathway between the chemical species 

and the reaction rates in the hydrocarbon oxidation process. CHEMKIN is adapted for the 

calculation of reaction kinetics and thermodynamic properties. 

 

5.1 Simulation Setup 

5.1.1 Modeling tools 

CHEMKIN is a software tool developed by Sandia National Laboratories for 

solving and modeling chemically reacting flows [118]. It is a highly structured 

computational tool that requires a kinetic mechanism and a thermodynamic database. It 

consists of number of programs, libraries of subroutines and data files. After CHEMKIN 
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reads the reaction mechanism, the kinetic reaction rate (forward) is calculated by 

equation (5-1) 

𝑘𝑓𝑖 =  𝐴𝑖𝑇𝛽𝑖exp (
−𝐸𝑖

𝑅𝑐𝑇
) 

(5-1) 

 

where the pre-exponential factor 𝐴𝑖 , the temperature exponent 𝛽𝑖 , and the activation 

energy 𝐸𝑖. In addition, the reverse rate coefficient for a reaction is calculated based on 

equilibrium constants using thermodynamic data by equation (5-2). 

𝑘𝑟𝑖 =  
𝑘𝑓𝑖

𝐾𝑐𝑖
 

(5-2) 

𝐾𝐶𝑖 =  𝐾𝑃𝑖 (
𝑃𝑎𝑡𝑚

𝑅𝑇
)

∑ 𝑣𝑘𝑖
𝐾
𝑘

 
(5-3) 

 

where the equilibrium constants 𝐾𝑃𝑖, the stoichiometric coefficients𝑣𝑘𝑖 [119]. 

Three different approaches pursued done for examining the chemical effect of 

water on the auto-ignition process. First, ignition delay times with water and without 

water are calculated. Though the ignition delay analysis provided a valuable indication of 

auto-ignition characteristics with water, a fundamental understanding on the chemical 

effect of water is not obtained through the ignition delay analysis. Therefore, a brute-

force sensitivity analysis with respect to H2O and the detailed chemical reaction pathways 

are compared with water and without water. 

 

5.1.2 Methodology 

Ignition delay is defined as the period between the start of fuel injection into a 

combustion chamber and the start of combustion [3]. Therefore, the ignition delay is an 

indicator of the tendency toward auto-ignition. Numerous studies have been conducted on 
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the ignition delay using rapid compression machines, shock tubes, Ignition Quality Tester 

(IQT) and so on [120–128]. Also there are several ways of obtaining the ignition delay. It 

can be defined as the time of the maximum of certain species concentrations, the time of 

the specified temperature increase rate occurs, or the time when specific 

chemiluminescence is first observed. In this analysis, the ignition delay is defined as the 

time of the largest rate of change of temperature with respect to time. 

Combustion is a very complex phenomenon. To understand this phenomenon, 

careful examination of interactions of physical and chemical processes is required. 

Sensitivity analysis is a very useful tool to analyze the chemical reaction pathways that 

are crucial during a reaction process. By applying the sensitivity analysis, the complex 

combustion reaction mechanisms can be simplified so that the dependency on the certain 

parameters can be determined. Furthermore, by using the main control parameters, a 

prediction can be made in similar conditions and for a range of variables. The sensitivity 

analysis in chemical kinetic mechanisms has been studied and applied many times [129–

134]. Reaction pathway analysis is another technique to detect the important chemical 

reactions in a combustion process. It assists in developing a reaction mechanism which 

covers ranges of conditions such as composition, temperature and pressure. In other 

words, it can also be utilized to develop a simplified version of the detailed mechanism 

by removing unimportant species.  

 

5.1.3 Modeling setup 

All the simulations have been conducted using the zero dimensional, closed, 

homogeneous batch reactor model to control the volume and temperature of an intake 
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charge mixture. The reactor conditions for the calculation are constant volume and 

adiabatic. The pressure is set to 20 atm and temperature is swept from 714 K to 2000 K. 

In this research, the chemical reaction mechanism and thermodynamic data are chosen 

presented in the reference [130]. This mechanism contains 8231 reactions and 1944 

species.  

In this study, iso-Octane (2,2,4-trimethylpentane) is chosen as the base fuel with a 

RON of 100. In addition, three fuels, toluene, Ethanol, and n-Butanol are considered to 

examine the detailed chemical reaction, in the presence of water. Toluene is one of the 

most plentifully aromatics in gasoline, and commonly used as a surrogate for the other 

aromatics in the fuel. Therefore, understanding the auto-ignition behavior of toluene in 

the presence of water is important to predict the auto-ignition behavior of gasoline. In 

addition, Ethanol is already employed in commercial gasoline as a blending agent and it 

is expected that higher percentages of Ethanol will be applied in gasoline blends in the 

future(e.g., mid-level blends) [135]. n-Butanol is one of the key renewable fuels. n-

Butanol offers similar volumetric energy density as that of gasoline, higher octane number, 

and has a high latent heat of vaporization, though neither the octane number nor the latent 

heat of vaporization are as high as for Ethanol [136]. The physical and chemical properties of 

the test fuels are shown in Table 5-1. 
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Table 5-1. Summary physical and chemical properties of tested fuels 

 iso-Octane Toluene n-Butanol Ethanol 

Chemical 

formula 

CH3C(CH3)2C

H2CH(CH3)2 
C6H5CH3 C4H9OH C2H5OH 

Structure 

 
 

  

MW(g/mol) 114.23 92.14 74.11 46.06 

O2(mass %) 0 0 21.6 34.8 

LHV(MJ/kg) 44.8 40.6 33.3 26.8 

Stoichiometric 

air/fuel ratio 
15.13 13.51 11.19 9 

RON 100 121 92 109 

MON 100 107 71 90 

Density (kg/m
3
) 692 862 802 790 

Flash point(C) 4.5 4 28 8 

Auto-ignition 

temperature(C) 
418 480 415 434 

Boiling 

Point(C) 
99 110.6 108 78.4 

Solubility in 

water 

(ml/100ml 

H2O) 

none none 10.6 Fully miscible 

 

When water is added into the inlet charge mixture at a constant temperature, there 

are three different effects on the combustion process. First is the dilution effect, which 

decreases O2 concentration. Second, there is a thermal effect which raises the specific 

heat capacity of the inlet charge mixture. The last effect is a chemical effect, which is the 

main focus of this research. To identify the chemical effect of water, the dilution effect 

and the thermal effect should be isolated. To do so, a fixed concentration of oxygen is 

applied and set to 20.9 % mol. To eliminate the thermal effect, a mixture of water and 



106 

argon, which has lower specific heat capacity than nitrogen, replaces some of the 

nitrogen in the inlet charge mixture. Therefore, by keeping a constant oxygen 

concentration, the specific heat capacity of the inlet charge mixture is the same as the 

specific heat capacity without water. The methodology used to separate the dilution effect 

and the thermal effect of water on combustion is shown in Figure 5-1. In Table 5-2, mole 

fractions of constituents used in the calculations are presented and in Figure 5-2, specific 

heat capacity of the inlet charge mixture compared to other gases is shown. 

 

 
Figure 5-1. The methodology used to separate the effects of H2O on combustion 

 

Table 5-2. Summary of the mole fraction of the inlet charge mixture 

 O2 N2 H2O Ar 

Without H2O 20.9% 79.1%   

With H2O 20.9% 65.6% 10.0% 3.5% 
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Figure 5-2. The specific heat capacity of the inlet charge mixture and gases 

 

5.2 Results 

5.2.1 Ignition Delay 

To examine the auto-ignition behavior, the ignition delay time for the test fuels 

with water was calculated using CHEMKIN. Model calculations were performed for 

homogeneous adiabatic with a constant volume reactor. A comparison of simulated 

ignition delay times with water and without water is presented in Figure 5-3. Overall, the 

temperature increases ignition delay time is decreased, except for iso-Octane. The total 

average of the ignition time changes is 7.6%, 8.3%, 6.9%, and 10%, in order of iso-

Octane, toluene, n-Butanol, and Ethanol. From 769.2 K to 833.3 K, the ignition delay 

time of iso-Octane increased. This is a negative temperature coefficient (NTC) behavior. 

This behavior is well explained from previous research [108,110,111]. Several studies 

[63,65,68,88] indicated longer ignition delay with water addition. The result shown in 

Figure 5-3 is contradictory to the earlier studies. It is mainly because the earlier studies 
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observed entire effects of water addition in the ignition delay. In the study [64], the 

chemical effect of water was observed and compared with the dilution effect and the 

thermal effect. Due to the chemical effect of water, a shorter ignition delay was observed 

as similar with the results from the present study. Therefore, the chemical effect is 

weaker than the other effects: intake charge cooling and heat capacity increase, so that 

the total effects of water lead to an increase of ignition delay time. 

 

 
Figure 5-3. Ignition delay time for iso-Octane, Toluene, Ethanol, and n-Butanol with 

water (open symbols) without water (closed symbols) 
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delay time changes in 833.3 K and decrease by increasing the temperature. However, at 

the highest temperature, 2000K, the chemical effect of water was increased. Ethanol and 

n-Butanol showed relatively similar trend of the ignition delay time change. Although at 

the minimum temperature, 769.2 K, the water led the ignition delay time increase in case 

of n-Butanol, the amount of effect of water was increase by increasing the temperature to 

1000 K. After a temperature of 1000 K, the effectiveness of water decreases, and then 

increases again at 2000 K.  

As a result of this observation, it is shown that there is a chemical effect of water 

on auto-ignition. On all of tested fuel, the ignition delay time is decreased by increasing 

temperature. Moreover, depending on the type of fuel and the temperature, the trends of 

chemical effectiveness of water are shown differently. 
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(b) 

  
(c) 

-15.3%

-13.8%

-11.9%

-7.83%

-6.36%

-4.75%
-4.23%

-9.23%-9.63%

0.6 0.7 0.8 0.9 1.0 1.1 1.2

-16

-14

-12

-10

-8

-6

-4

-2

0

2
 (W/F1.5-W/F0)/(W/F0)*100

%
 o

f 
c
h
a

n
g
e

1000/T (K)

Toluene

1800 1600 1400 1200 1000 800

Temperature (K)

1.97%

0.529%

-4.36%

-9.28%

-12.3%
-11.6%

-7.20%

-4.65%

-6.63%

-10.1%

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

-14

-12

-10

-8

-6

-4

-2

0

2

%
 o

f 
c
h
a
n
g
e

1000/T (K)

 (W/F1.5-W/F0)/(W/F0)*100

n-Butanol

1800 1600 1400 1200 1000 800

Temperature (K)



111 

  
(d) 

Figure 5-4. Ignition delay time changes due to water on (a) iso-Octane, (b) Toluene, (c)  

n-Butanol, and (d) Ethanol. Negative values indicate water shortens ignition delay 
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considered. Also, 3 different time steps, 20% fuel burn, 50% fuel burn and auto-ignition 

were compared. 

(a) iso-Octane 

Figure 5-5 shows a reaction pathway for iso-Octane in the presence of water and 

without water at 909K. Overall the reaction pathways are largely the same at all time 

steps. However, relative rates of production are slightly different. At the beginning of iso-

Octane oxidation (20% fuel burn), H2O is produced by the β-scission of aC8H17, bC8H17, 

cC8H17, and dC8H17 radicals. It is also observed from the experiments conducted by Le 

Cong and Dagaut [96], due to a reaction H + O2 + M ⇄ HO2 + M, a higher concentration 

of HO2 was measured. In addition, the peak of OH concentration was measured to be 13% 

higher with H2O addition. A higher the peak of OH concentration with water addition is 

also found in the study by Mazas et al. [97]. With water, because more OH radical is 

available, those reactions are promoted around 1% more on the basis of the relative rate 

of production. Similar observations are made at the 50% fuel burn and auto-ignition. 

Mainly due to higher available OH radicals, reactions involving OH are promoted around 

1% relative rate of production, and those led to faster ignition delay compared to without 

water. Based on sensitivity analysis, the results identified the same key reactions for H2O 

evaluated in case of with water and without water. The primary reactions controlling the 

H2O profiles are  

H2O2(+M) ⇄ 2OH(+M),  

iC8H18 + HO2 ⇄ bC8H17 + H2O2,  

iC8H18 + HO2 ⇄ cC8H17 + H2O2,  

iC8H18 + HO2 ⇄ aC8H17 + H2O2, and 
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iC8H18 + CH3O2 ⇄ cC8H17 + CH3O2H. 

 

 
(a) 

 
(b) 

Figure 5-5. Reaction pathway for iso-Octane at 909K (a) with H2O and (b) without H2O 

 

A reaction pathway of iso-Octane in the presence of water is slightly different at 

higher temperature 1250 K as shown in Figure 5-6. Major different reaction is CH4 + OH 
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⇄ CH3 + H2O. In the case of no water, methane (CH4) reacts with OH radical to produce 

a methyl radical (CH3). However, the reverse reaction occurs with water as well. Methyl 

radical combines with water and produces more methane and CH radical which is a 

highly reactive radical as shown in Figure 5-7. The top 5 most sensitive reactions are 

examined. The reactions do not changed by adding H2O or not, but the orders of the 

reactions (magnitude of sensitivity coefficient) are changed. Without H2O, H + O2 ⇄ O + 

OH reaction is the top reaction but with H2O, this reaction becomes the second most 

major reaction and H + O2(+M) ⇄ HO2(+M) comes first. 

 

 
(a) 
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4  

(b) 

Figure 5-6. Reaction pathway for iso-Octane at 1250K (a) with H2O and (b) without H2O 

 
Figure 5-7. Evolution of CH4 in the oxidation of iso-Octane with / without H2O 

 

At the highest temperature, 1666K, overall the reaction pathways are pretty much 

the same at all time steps, as with the 909K condition. Although the reactions, CH4 + OH 

⇄ CH3 + H2O and OH + H2 ⇄ H + H2O, are not shown in the reaction pathways in 

Figure 5-8, those reverse reactions are occurs with water. It means that OH radical is 

combined with CH4 and H2 then H2O is generated. However, in the case of H2O addition, 
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those reactions occur reversely. H2O contributes to produce more OH radical. In this 

temperature, H + O2 ⇄ O + OH reaction has top sensitive reaction related to H2O with or 

without H2O. However, similar with the 1250K condition, H + O2(+M) ⇄ HO2(+M) 

arises more important reaction with the presence of H2O. 

Overall, the major changes of iso-Octane oxidation process with addition of water 

is that H2O helps to produce more OH radical and generate more intermediate species 

such as CH4 and H2. 

 

 
(a) 
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(b) 

Figure 5-8. Reaction pathway for iso-Octane at 1666K (a) with H2O and (b) without H2O 

 

(b) Toluene 

Figure 5-9 shows a reaction pathway of toluene in the presence of water at 909K. 

Unlike the reaction pathway for iso-Octane, the reaction pathway of toluene at ignition 

point is very different with H2O and without H2O. In the case with H2O, H2O produces 

more hydrogen peroxide (H2O2) which is a strong oxidizer. Also, relative rate of 

production of OH radical involved reactions (C6H5CH3 + OH ⇄ C6H4CH3 + H2O, and 

C6H5CH3 + OH ⇄ C6H5CH2 + H2O) are slightly higher in H2O case, because of higher 

number of available OH radicals as in the iso-Octane case. Therefore, at the same 

temperature (909K), the effect of the presence of H2O on the ignition delay of toluene is 

higher than its effect on iso-Octane. The study by Andrae et al. [137] states the detail of 

the toluene oxidation process. At the beginning of the oxidation process of toluene, 

toluene reacts with oxygen and produces benzyl (C6H5CH2) and hydroperoxy radicals. As 

the radical pool builds up with the reaction with the oxygen, the reaction C6H5CH3 + OH 
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⇄ C6H5CH2 + H2O starts to be dominant. Therefore, the increase of this reaction rate 

with H2O addition affects the auto-ignition process. Based on sensitivity analysis, the key 

reactions remain unchanged with water and without water.  

 
(a) 

 
(b) 

Figure 5-9. Reaction pathway for Toluene at 909K (a) with H2O and (b) without H2O 
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The reaction pathway for toluene in the presence of water at 1250K is shown in 

Figure 5-10. Like the reaction pathway for iso-Octane at 909K, the overall the reaction 

pathways are similar at all time steps with H2O and without H2O. The only differences 

are the rate of production of the OH radical. The top 5 most sensitive reactions are also 

the same with or without H2O.  

 
(a) 

 
(b) 

Figure 5-10. Reaction pathway for Toluene at 1250K (a) with H2O and (b) without H2O 
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At the highest temperature, 1666K, the major distinct reactions are C6H5CH2 + O 

⇄ C6H5 + CH2O and CH2O + OH ⇄ HCO + H2O. Those reactions present at the 50% 

fuel burn point without H2O, but those reactions occur at an earlier time step (20% fuel 

burn) with H2O addition. This is mainly due to the larger amount of O and OH 

availability due to H2O breakdown. Although it is not shown in the pathway diagram, 

H2O produces more hydrogen peroxide (H2O2) by combining with the hydroperoxyl 

radical (HO2) as with the reaction pathway at 909K. In addition, more formyl radical 

(HCO) is generated by H-atom abstraction from formaldehyde (CH2O), CH2O + X ⇄ 

HCO + HX. Moreover, formyl radical (HCO) is an important radial for the combustion of 

hydrocarbons because it changes the chain termination rate and branching rate [138]. 

Otherwise, the results of sensitivity analysis are not affected by water addition. The top 5 

major reactions related to H2O are  

H + O2 ⇄ O + OH,  

C6H5CH3 + OH ⇄ C6H4CH3 + H2O,  

C6H5CH2j + HO2 ⇄ C6H5CH2Oj + OH,  

C6H5CH3 + O2 ⇄ C6H5CH2j + HO2, and  

C6H5CH2j + O ⇄ C6H5 + CH2O 

As a result, the effect of water addition on toluene is shown to be similar to that 

on iso-Octane oxidation. More OH and O are available due to H2O breakdown, and at 

some point, the rate of production for hydrogen peroxide (H2O2) and formyl radical 

(HCO) are changed by adding water. 
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(a) 

 
(b) 

Figure 5-11. Reaction pathway for Toluene at 1666K (a) with H2O and (b) without H2O 

 

(c) n-Butanol 

In Figure 5-12, a reaction pathway for n-Butanol in the presence of water at 909K 

is shown. In the early stages of combustion, 20% fuel burn and 50% fuel burn, the 

reaction pathways are pretty much the same, except the relative rate of production of the 
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to the OH radical. These are slightly high (around 1%) as observed for iso-Octane and 

toluene. At the ignition point, when H2O is not present n-Butanol finishes a dissociation 

reaction, but when H2O is present n-Butanol is still dissociating to C4H8OH. It is 

predicted that more OH radical is available at the end of combustion process. As a result 

of sensitivity analysis, key reactions related to H2O are  

nC4H9OH + HO2 ⇄ C4H8OH-1 + H2O2,  

H2O2(+M) ⇄ 2OH(+M),  

C4H8OH-1 + O2 ⇄ C4H8OH-1O2,  

nC4H9OH + OH ⇄ C4H8OH-3 + H2O, and  

C4H8OH-3O2 ⇄ C4H7OH-3OOH-1 

 are the same as with or without H2O addition. 

 
(a) 
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(b) 

Figure 5-12. Reaction pathway for n-Butanol at 909K (a) with H2O and (b) without H2O 

 

The reaction pathway of n-Butanol in the presence of water at 1250K is shown in 

Figure 5-13. Like the reaction pathway for iso-Octane at 909K and toluene at 1250K, the 

overall the reaction pathways are largely the same at all time steps with H2O or without 

H2O addition. The only differences are the rate of production of OH radical. The top 5 

most sensitive reactions are also the same with or without H2O addition.  
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(a) 

 
(b) 

Figure 5-13. Reaction pathway for n-Butanol at 1250K (a) with H2O and (b) without H2O 

 

At 1666K, the reaction pathways related to H2O are the same at all time steps, as 

with the 1250K condition. In addition, the top 5 reactions are also the same with or 

without H2O addition, based on sensitivity analysis.  
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As a result, the effect of water addition on n-Butanol is not clearly shown at all 

stages of time steps and temperatures. As explained earlier, it is expected that more OH 

radical leads to a shorter ignition delay.  

 
(a) 

 
(b) 

Figure 5-14. Reaction pathway for n-Butanol at 1666K (a) with H2O and (b) without H2O 

 

(d) Ethanol 
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The reaction pathway for Ethanol in the presence of water at 909K is shown in 

Figure 5-15. In the early stage of combustion, the reaction pathways are identical except 

for a slightly higher rate of OH related reactions. However at the ignition stage, 

hydroperoxyl radical (HO2) related reactions are enhanced with water addition. This 

reaction is H2O2 + OH ⇄ H2O + HO2 and water combines with hydroperoxyl radical, 

then hydrogen peroxide (H2O2) and OH radical are produced. Similar reactions are shown 

for toluene for the 909K and 1666K cases. At this temperature, the order of top five H2O 

sensitive key reactions is not affected by water addition although the normalized 

sensitivity coefficients are decreased. The top five reactions are  

H2O2(+M) ⇄ 2OH(+M),  

C2H5OH + HO2 ⇄ sC2H4OH + H2O2,  

C2H5OH + OH ⇄ C2H5O + H2O,  

C2H5OH + HO2 ⇄ pC2H4OH + H2O2, and  

C2H5OH + CH3O2 ⇄ sC2H4OH + CH3O2H 

The ethanol oxidation mechanism by Norton and Dryer [139] discussed three 

distinct reaction pathways. Those are 

CH3CH2OH(+ M) → CH2CH2OH(+M) → C2H4 + OH 

CH3CH2OH(+ M) → CH3CHOH(+M,O2) → CH3CHO + (H, HO2) 

CH3CH2OH(+ M) → CH3CH2O(+M) → CH3 + CH2O 

Among three of reactions, the first and the last reactions are H2O sensitive key 

reactions. Therefore, even though the change in these reaction rates is small by adding 

H2O, H2O affects the entire oxidation process of Ethanol. 
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(a) 

 
(b) 

Figure 5-15. Reaction pathway for Ethanol at 909K (a) with H2O and (b) without H2O 

 

In Figure 5-16, a reaction pathway of Ethanol in the presence of water at 1250K is 

shown. As with the reaction pathway at 909K, overall the reaction pathways at the early 

stages are same with H2O and without H2O. On the other hand, at the auto-ignition, it is 
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shown that higher reaction rate reacted with formaldehyde (CH2O) with H2O addition. 

Formaldehyde is an important intermediate species in the hydrocarbons and oxygenated 

hydrocarbon oxidation process. Previous research has shown that formaldehyde promotes 

the ignition process in the presence of oxygen [140]. As a result of sensitivity analysis, 

the fourth most sensitive reaction to H2O, CH3 + HO2 ⇄ CH3O + OH, without water is 

slightly promoted with water addition, and it turns to the third most important reaction. 

 

 
(a) 
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(b) 

Figure 5-16. Reaction pathway for Ethanol at 1250K (a) with H2O and (b) without H2O 

 

At 1666K, the reaction pathways related to H2O are the same at all time steps as 

with the 1250K condition, as shown in Figure 5-17. In addition, the top 5 reactions are 

also the same with and without H2O addition, based on sensitivity analysis.  

As a result, one potential effect of water addition in Ethanol is observed at 1250K 

and 1666K, which is the formaldehyde (CH2O) related reaction. The reaction rate is 

promoted by water addition and because it is an ignition aid in the presence of oxygen, it 

may lead to a faster ignition process.  
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(a) 

 
(b) 

Figure 5-17. Reaction pathway for Ethanol at 1666K (a) with H2O and (b) without H2O 
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5.3. Conclusion 

In this chapter, numerical calculations of the chemical effect of water addition 

with high octane number fuels and oxygenated fuels including iso-Octane, toluene, n-

Butanol, and Ethanol were presented. Using a chemical reaction simulation tool, 

CHEMKIN, the simulations have been conducted on the change of hydrocarbon and 

oxygenated hydrocarbon oxidation processes with water addition by examining ignition 

delay, sensitivity analysis and chemical reaction pathway analysis.  

To examine the chemical effect of water on the combustion process, the 

homogeneous batch reactor model, mimicking a constant volume chamber was applied. 

Moreover, to eliminate the thermal effect of water on combustion, the composition of the 

intake charge was modified to have the same heat capacity with water and without water.  

As a first step of the study, the change of the ignition delay due to water addition 

was quantified. The results showed out that a faster ignition delay, around 5-10%, was 

observed with water, although the magnitude of this enhancement of ignition varied with 

temperature and type of fuel. The results show that there is a chemical effect of water on 

auto-ignition.  

To verify in more detail the chemical effect of water on the ignition process, the 

sensitivity analysis and the reaction pathway analysis were performed. All of the 

chemical reactions change due to the present of water is a matter to more OH radical 

availability due to H2O decomposition. Therefore, there were lots of chemical reaction 

rates affected, increased or decreased, by having more OH radical. For example, CH4 + 

OH ⇄ CH3 + H2O occurred in the opposite direction, in the case of iso-Octane at 1250K. 

H2O led to production of hydrogen peroxide (H2O2) by combining with hydroperoxyl 
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radical (HO2) in the case of toluene case. Moreover, more formaldehyde (CH2O) was 

formed due to water addition during the combustion of Ethanol.  
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Chapter 6  

 

 

Conclusions and Recommendations for Future Work 

6.1. Conclusion 

The conclusions of the dissertation are summarized as follows.  

In Chapter 3, this work included a wide scope of research to understand 

condensation generated inside of the charge air cooler. Using a 1.6L GDI turbocharged 

engine, experiments were conducted to understand how and how much condensates were 

generated at specific air humidity and engine conditions. The following conclusions were 

observed for the condensate generation. 

• At low loads, the boost is low enough that water does not condense 

• At high loads, the large charge air flow exceeds the cooling capacity of the CAC 

so the charge air remains too hot for water condensation 

• In between, significant rates of water condensation can occur 

Moreover, to understand the ingestion of condensates into the engine cylinders, 

the hard acceleration was applied and quantitatively correlated the amount of 

condensation and number of abnormal combustion behavior such as misfire and slowburn 
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events under different engine conditions. The following amount of abnormal combustion 

was quantified in over a total of 492 cycles. 

• 47 cycles of slowburn were observed with 200ml and 2750 rpm and 33% of pedal 

position 

• 156 cycles of slowburn and 1-2 cycles of misfire were observed with 150ml and 

3000rpm and 40% of pedal position 

• 256 cycles of slowburn and 21 cycles of misfire were measured with 200ml and 

3000rpm and 40% of pedal position 

The next a condensation separator was designed and tested to prevent the 

abnormal combustion behavior due to the ingestion of condensates. Therefore, the 

numerical simulation of the pressure drop and the separation efficiency for the charge air 

cooler condensation separator was developed. Empirical equations for the pressure drop 

and the separation efficiency were derived based on the simulation results. In addition 

prototype separators were built and engine tested. All of the simulation and experiment 

results matched well with the empirical equations. 

In Chapter 4, the effect of water on auto-ignition was examined using a modified 

CFR engine. Three test fuels gasoline, PRF, and TRF which have similar RON values 

were used for this test at various intake pressures and amount of water addition. The tests 

were done in two steps. The first test was done with constant intake air temperature and φ 

to exclude the effects of intake air cooling. From the results of this test, regardless of the 

intake charge temperature cooling effect due to water, the intake charge property changes 

due to water addition suppressed the auto-ignition process. It was shown that when a 

larger amount of water was injected into the intake air, a higher critical compression ratio 
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was measured for all fuels: premium gasoline, PRF, and TRF. This trend is more 

significant at lower intake air pressure. The effect of pressure on water addition had 

similar trends to all test fuels and amounts of water adding consistently indicating that 

auto-ignition is promoted as the intake air pressure increases. 

Also, the heat release, the bulk in-cylinder temperature, and the bulk in-cylinder 

pressure analyses were applied to examine the effect of the property change intake charge. 

The peak heat release rate noticeably decreases with increasing water-fuel ratio at 

constant compression ratio. However, there is a lack of evidence as to whether water 

addition in the intake air affects the combustion duration. 

For the second part of CFR engine studies, the comparison of the effect of the 

intake air cooling and the effect of the intake air property changes was made. It was 

found that CCR change due to the intake air cooling or due to intake air property change 

when water-fuel ratio was 1.5, was similar. 

Chapter 5 presented the numerical calculations of the chemical effect of water 

addition with high octane number fuels and oxygenated fuels including iso-Octane, 

toluene, n-Butanol, and Ethanol. Using chemical reaction simulation, CHEMKIN, the 

simulations have been conducted on the change of hydrocarbon and oxygenated 

hydrocarbon oxidation processes with water addition by examining ignition delay, 

sensitivity analysis and chemical reaction pathway analysis. At the beginning of the study, 

the change of the ignition delay due to water addition was quantified. On all of the test 

fuels, the ignition delay time is decreased by increasing temperature. Moreover, the 

chemical effectiveness of water is different depending on the type of fuel and the 

temperature. 
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Then, the sensitivity analysis and the reaction pathway analysis were carried out 

to verify in more detail of the chemical effect of water on the combustion process. 

Common observations made through all kind of fuels were more OH radical with H2O 

addition due to H2O decomposition. Therefore, many chemical reactions were affected by 

water addition. For example, the higher rate of reverse reaction of CH4 + OH ⇄ CH3 + 

H2O found in the case of iso-Octane at 1250K. H2O addition led to production of 

hydrogen peroxide (H2O2) by combining with hydroperoxyl radical (HO2) in the case of 

toluene. Moreover, more formaldehyde (CH2O) was formed due to water addition during 

Ethanol combustion process. 

Overall, the automotive industry has been shifting towards downsized, boosted, 

and direct fuel injection engines to achieve high efficiency. Boosted and downsized 

engines operate under higher in-cylinder pressure and temperature, leading to increased 

possibility of abnormal combustion events like knock. As a result, the compression ratio 

and boost pressure in modern engines are restricted, which in-turn limits the engine 

efficiency and power. A charge air cooler is utilized to manage the intake air temperature 

which is one of factors controlling the likelihood of knock events. However the 

condensate generated and ingested into the engine cylinder in certain conditions is a 

potential issue.  

Through the studies presented in this thesis, some potential contributions to high 

efficiency gasoline engines have been obtained. By collecting the condensate which is 

accumulated in the charge air cooler, the abnormal combustion behavior such as misfire 

or slowburn can be prevented, and also the collected water condensate can be utilized as a 

supply source for a water injection system. Water injection is known to be an effective 
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technique to manage knock, but requires a customer to refill the water periodically. So, 

the main challenges of the water injection system are how to achieve high efficiency of 

the system with a given amount of water and how to make self-sufficient system, if 

possible. Because the detailed effect of water has been shown in previous studies, it is 

expected that the gasoline engine could achieve higher compression ratio with a water 

injection system which leads higher thermal efficiency. In addition, an engine with a 

water injection system could avoid knock limited operation condition. Therefore, the 

water injection system is able to improve the efficiency of the turbocharged and 

downsized gasoline engine. 

 

6.2. Recommendations for Future Work 

Used in the second study within this thesis, the CFR motored engine is a unique 

test equipment to observe the hydrocarbon oxidation process, and it is capable of 

operation over a wide range of pressure, temperature, fuel air ratio and so on. However 

the exhaust sampling device which was available with the CFR engine has a limited 

capability of measuring exhaust composition. Therefore, similar to the study done in 

Chapter 3, it is recommended to use Fourier Transform Infrared Spectroscopy (FTIR) to 

better quantify the exhaust composition to examine the effect of water. In addition, 

implementing a gas chromatography mass spectrometry (GC-MS) analysis is recommended 

for better understanding of intermediate species changes due to water addition.  

In the third study, the chemical reaction calculation depends heavily on the on the 

chemical reaction mechanisms which was developed by other researchers. In addition, 

experimental validation is necessary even though de-coupling other effects of water and 
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the chemical effect of water is quite difficult. While the ignition delay and chemical 

reactions were derived by numerical calculation, the simulations may not guaranteed to 

match the actual test results. Thus, more fundamental experiments using shock tubes or 

rapid compression machines will be beneficial for future analysis.  
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Appendices 

Appendix A. Condensation model description  

This model has been developed by Chih-Kuang Kuan of Ford Motor Company 

starting with work done by Mehdi Abarham, while a graduate student at University of 

Michigan. This model was published in 2017, under the title of “An Experimental and 

Computational Analysis of Water Condensation Separator within a Charge Air Cooler” in 

the ASME 2017 ICEF technical conference. 

The charge air coolers considered here are cross-flow, brick type, air to air heat 

exchangers. For this particular application, air flow paths are composed by bundles of 

straight rectangular passages separated by corrugated fins. Each individual flow passage 

has a characteristic length of about few millimeters in cross section and tens of 

centimeters in length, as shown in Figure A-1. The model treats the flow passage as a 

circular tube with an equivalent hydraulic diameter of the original rectangular flow 

passage. Under this L/D ratio, we can ideally use classic shear stress and heat transfer 

correlations for internal pipe flows. Mass transfer coefficient for water molecular 
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diffusion of water from the gas phase to the near wall can be approximated by 

momentum-mass transfer analogy when local Reynolds and Nusselt numbers are 

available. To simplify the problem, we consider film condensation alone. Liquid water is 

assumed to be a uniform thin film on the periphery of the flow passage, and may move 

due to shear stress from the air flow. Therefore, in this model, we use two computational 

domains: one is for the heat and mass transfer of charge air, and the other domain 

describes the transportation of the liquid water film. 

 

 
Figure A-1. The condensation model simulates a single air passage in a charge air cooler 

core containing computational domains for charge air and water film. 
 

Without introducing other sources of water vapor, water mass fraction in air is 

minor composition compared to other non-condensable gas (around 4.6% in mass for 

saturated air at 40˚C). Since the air mass flow rate in the cooler is assumed to be much 

higher than water condensation flux for the engine conditions considered, it is reasonable 

to treat this problem as quasi-steady state. We solve steady-state transport equations for 

mean charge air pressure P, temperature T, velocity u, density ρ, water mass fraction Yw, 
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as functions of axial distance from the cooler inlet, while a transient mass conservation 

equation is used for the movement of water film. Water film thickness will be much 

smaller than hydraulic diameter so that the cross section area variation of the air flow 

passage is negligible. This assumption makes the shear stress and heat transfer 

correlations for pipe flow and film condensation applicable. Body force on the thin film 

is small compared to shear stress of charge air exerted on the film surface, and hence an 

annular, uniform liquid film attached to the periphery of a flow passage is possible. 

Latent heat of condensation is ignored; it is negligible compared to cooler heat rejection 

under the engine conditions considered, and so is viscous dissipation. 
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Equation (A-1) is the mass conservation of water vapor, momentum, energy 

equations for air flow in this model. The term 
wm  on the right hand side of eq. (A-1) is 

the water mass flux due to condensation. It is a source term contributing to the liquid 

water film given in eq. (A-9). Bulk flow velocity u and pressure P are calculated in 

momentum equation as given in eq. (A-2). Friction loss is modeled by the Darcy–

Weisbach equation where the Darcy friction factor, f, is derived from Zigrang-Sylvester’s 

correlation with local Reynolds number, roughness, and hydraulic diameter Dint [141]. 
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Convection and conduction thermal resistance in the energy eq. (A-3) are 

described as functions of thermal conductivity of corresponding substances, Nusselt 

number, Nu, and hydraulic diameters of flow passage, as shown in eq. (A-4). Nusselt 

number can be derived from the Gnielinski correlation for forced convection in turbulent 

pipe flow. Entrance effect may be considered for higher heat and shear stress in the inlet 

regions. For an air-cooled cross–flow heat exchanger, the skin wall temperature Tw on the 

cooling side depends on both cooling air inlet temperature and its mass flow rate. In the 

following experiment section the boundary conditions of cooling air are controlled such 

that skin temperature Tw should be available for the model. Eq. (A-5) is used to compute 

temperature on the free surface, which is needed for phase change mass computation. 
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Since the temperature drop over a cooler is less than 200˚C, we use constant 

thermodynamic properties calculated at average pressure and temperature in the domain 

for constant-pressure specific heat, viscosity, and thermal conductivity. 
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If we treat air-water vapor mixture as ideal gas, the mass flux of water 

condensation can be expressed as a function of water vapor partial pressure in the 

mixture, Pw, and water vapor pressure on the liquid film, Pw,f, as given in eq. (A-6) [142]. 

Here hm is the mass transfer coefficient from air-water vapor mixture to the surface of 

water film. To obtain hm, we assume that the Lewis relation in eq. (A-7) for air-water 

vapor mixture is valid and close to 1, then mass flux of eq. (A-6) can be expressed as a 
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function of Nusselt number and mass diffusivity of water vapor to air mixture, Dw-a, as 

shown in eq. (A-8) [143]. The water vapor pressure on the surface of liquid film can be 

predicted by the Antoine equation at free surface temperature Ts. 
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To understand instantaneous water volume trapped in the cooler core, we use an 

entrainment model to simplify liquid water movement simulation. This 1D entrainment 

model is based on mass conservation of liquid water film and an expression of stream-

wise water transportation in liquid phase. Assumptions of this model are annular thin film 

and ignoring free surface instability when calculating average liquid velocity. Eq. (A-9) 

shows the mass conservation of liquid water film. Note that ρw, δ, and uw are water 

density, film height, and average liquid velocity respectively. Instantaneous water volume 

trapped in the cooler core, which is δ(x,t), is available by solving the hyperbolic equation 

(A-9). Since condensation mass flux 
wm is addressed in eq. (A-6), the remaining unknown 

is uw. 

Figure A-2 is an illustration of velocity profiles ug and ul for gas mixture and an 

annular liquid water film in cylindrical coordinates. In eq. (A-9) the cross sectional area 

of the liquid film is approximated by film thickness due to the thin-film assumption (Dint 

>> δ).  
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Figure A-2. Entrainment model illustration 

 

 To obtain the average velocity uw, we have to assume a reasonable velocity profile 

ul across the liquid film as given in eq. (A-10). Note Vl is the velocity on the free surface 

of liquid film, and R is radius of dry tube. The power m is a positive value which depends 

on flow fields. For example, if m=1 the velocity profile is linear as Couette flow. In 

practice, the flow is in the turbulent regime. We calibrate m from 0.5 to 0.1 to match 

experimental data for each particular cooler application.  

 The velocity profile ul satisfies the no-slip condition at the wall and Vl has the 

same velocity as gas mixture on the free surface. 
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 In addition this velocity profile should provide shear stress balance on free surface 

as shown in eq. (A-11). We approximate the shear stress from gas mixture exerting on the 

free surface by the friction loss of gas mixture, and hence Vl is derived in eq. (A-12). 
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 Note this approach is a one-way coupling between liquid and gas phase, which 

dramatically eases two-phase modeling. Then we integrate velocity from r=R to r=R-δ to 

obtain stream-wise flow rate of liquid water in eq. (A-13) and average liquid velocity uw 

given in eq. (A-14). 
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 With uw we are able to solve eq. (A-9) and close the entrainment model. 

The following steps constitute the condensation model algorithm: 

1. Begin with initial conditions and boundary conditions. 

2. Solve Eq. (A-1)-(A-3) for water vapor mass fraction, bulk velocity, pressure, 

friction factor, Nusselt number, and temperature with boundary conditions. 

3. Compute condensation flux with local vapor pressure, Nusselt number, and free 

surface temperature from eq. (A-8). 

4. Compute average liquid speed from eq. (A-14) 

5. Solve eq. (A-9) with a hyperbolic solver for liquid water distribution δ(x,t). 

6. With δ(x,t), return to step 2 for time marching. 
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Appendix B. Data of commercial premium gasoline fuel properties  

 

Table B-1. Fuel properties of premium gasoline 

Elemental Analysis  

Carbon (Wt%) 81.94 % m/m 

Hydrogen (Wt%) 14.43 % m/m 

Oxygen (from oxygenates) 3.63 % m/m 

  

Oxygenates by GC  

Ethanol (EtOH) 10.46 % m/m 

  

FIA - Total Sample Basis  

Avg. % Vol of Saturates Zone 73.9 % v/v 

Avg. % Volume of Olefins Zone 2.4 % v/v 

Avg. %Vol of Aromatics Zone 14.0 % v/v 

  

Individual Parameters  

API Gravity at 15.56°C 61.4 °API 

Density at 15.56°C 0.7329 g/mL 

Spec. Grav. at 15.56°C/15.56°C 0.7336 

Gross Heating Value (BTU/lb) 19406 BTU/lb 

Net Heating Value (BTU/lb) 18089 BTU/lb 

  

Octanes  

Research Octane Number 98.7 

Motor Octane Number 90.0 

AKI Calculation 94.4 

Sensitivity 8.7 
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