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ABSTRACT 

Losing a limb can drastically alter a person’s way of life, and in some cases, brings great 

financial and emotional burdens. In particular, upper-limb amputations means losing the ability to 

do many daily activities that are normally simple with intact hands. Prosthesis technology has 

significantly advanced in the past decade to replicate the mechanical complexity of the human 

hand. However, current commercial user-to-prosthesis interfaces fail to provide users with full 

intuitive control over the many functionalities advanced prosthetic hands can offer. Research in 

developing new interfaces for better motor control has been on the rise, focusing on tapping 

directly into the peripheral nervous system. The aim of this work is to characterize and validate 

the properties of a novel peripheral interface called the Regenerative Peripheral Nerve Interface 

(RPNI) to improve fine motor skills for prosthetic hand control.  

The first study characterizes the use of RPNI signals for continuous hand control in non-

human primates. In two rhesus macaques, we were able to reconstruct continuous finger movement 

offline with an average correlation of ρ = 0.87 and root mean squared error (RMSE) of 0.12 

between actual and predicted position across both macaques. During real-time control, neural 

control performance was slightly slower but maintained an average target hit success rate of 96.7% 

compared to physical hand control.  

The second study presents the viability of the RPNI in humans who have suffered from 

upper-limb amputations. Three participants with transradial amputations, P1, P2 and P3, 

underwent surgical implantation of nine, three, and four RPNIs for the treatment of neuroma pain, 

respectively. In P1 and P2, ultrasound demonstrated strong contractions of P1 and P2’s median 
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RPNIs during flexion of the phantom thumb, and of P1’s ulnar RPNIs during small finger flexion. 

In P1, the median RPNI and ulnar RPNIs produced electromyography (EMG) signals with a signal-

to-noise ratio (SNR) of 4.62 and 3.80 averaged across three recording sessions, respectively. In 

P2, the median RPNI and ulnar RPNI had an average SNR of 107 and 35.9, respectively, while 

P3’s median RPNI and ulnar RPNIs had an average SNR of 22.3 and 19.4, respectively.  

The final study characterizes the capabilities of RPNI signals to predict continuous finger 

position in human subjects. Two participants, P2 and P3, successfully hit targets during a center-

out target task with 92.4 ± 2.3% accuracy, controlling RPNI-driven one DOF finger movements. 

Comparably, non-RPNI driven finger movement had similar accuracy and performance. Without 

recalibrating parameter coefficients, no decreasing trend in motor performance was seen for all 

one DOF finger control across 300 days for P2 and 40 days for P3, suggesting that RPNIs can 

generate robust control signals from  day to day. Lastly, using RPNI-driven control, P2 and P3 

successfully manipulated a two DOF virtual and physical thumb with 96.4 ± 2.5% accuracy.  

These three studies demonstrated: (1) RPNIs provided robust continuous control of one 

DOF hand movement in non-human primates, an important step for human translation, (2) RPNIs 

were safely implemented in three participants, showing evidence of contraction and generation of 

EMG, and (3) in two participants, RPNIs can provide continuous control of one DOF finger 

movements and two DOF thumb movements. The results presented in this dissertation suggest 

RPNIs may be a viable option to advance peripheral nerve interfaces into clinical reality and 

enhance neuroprosthetic technology for people with limb loss.  
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CHAPTER I 

Introduction 

Limb loss can significantly alter a person’s way of life, forcing many new physical and 

emotional burdens that can last a lifetime. In the United Sates alone, approximately 2 million 

people live with limb loss (Ziegler-Graham, MacKenzie, Ephraim, Travison, & Brookmeyer, 

2008). Of the 2 million people, ~500,000 people underwent upper-extremity amputations. Many 

prosthetic options exist to replace upper-extremity amputations, from passive prostheses used for 

cosmetic purposes to active prostheses that can be controlled electronically. In fact, the past two 

decades have seen an expansion of more articulated, life-like prosthetic hands (DEKA LUKE arm, 

bebionic, i-limb ultra) in the commercial sector. However, there is not yet a proper interface for 

the user to actively control all functionalities of the prosthetic in a natural and intuitive manner.  

Current body-powered or myoelectric controllers are limited to performing only a single 

hand posture or movement at a time (Roche, Rehbaum, Farina, & Aszmann, 2014). The control of 

multiple hand postures or movements with these basic controllers leads to unintuitive control or 

induces a learning curve. These complications may lead to overall reduction in use or abandonment 

of the prosthesis (Biddiss & Chau, 2007). The limited number of control signals is the underlying 

problem for users not achieving full autonomy of their prosthesis.  
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 Prosthesis to User Interfaces 

1.1.1 Commercial Myoelectric Interfaces  

The human upper limb is composed of an intricate combination of muscles and tendons, 

providing people with fine control over their fingers or digits. Nerve fibers, specifically alpha 

motor neurons, innervate the muscles and send electrical pulses to induce muscle contractions. 

These contractions produce electromyography (EMG) signals, electrical activity emitted from 

muscle tissue, and are the main signal source used to control commercial myoelectric prostheses. 

Myoelectric prostheses technology was first introduced in the 1950s following World War II 

(Battye, Nightingale, & Whillis, 1955). In the most basic setup, EMG is recorded from a muscle 

group with one or two surface electrodes placed on the skin. The recorded activity is then used to 

control one or two simple movements, e.g. hand open/close, either via a discrete or continuous 

control scheme (details in section 1.2). This setup has been sufficiently reliable in a clinical setting 

(Roche et al., 2014; Schultz & Kuiken, 2011). However, commercial myoelectric interfaces are 

strictly limited to gross movements, and lack the ability to control multiple independent finger 

movements.      

This limitation is due to several factors regarding the characteristics of surface electrodes. 

Ideally, one surface electrode records from one muscle group to control a specific finger joint or 

degree of freedom, providing a one to one mapping of EMG activity to finger movement. In 

practice, surface electrodes pick up EMG activity from multiple nearby muscle groups. Also 

known as cross-talk, this consequently limits the number of independent signals available for 

multi-functional movements. Additionally, surface EMG activity is highly sensitive to electrode 

shift and repositioning, which can negatively impact the performance of myoelectric control 

systems (Fougner, Scheme, Chan, Englehart, & Stavdahl, 2011; Young, Hargrove, & Kuiken, 
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2011). Other factors of influence include electrode impedance changes due to perspiration and 

muscle shifts relative to electrode placement (Farina et al., 2014).  

Several solutions, both hardware and software, have been proposed to resolve some of 

these challenges mentioned above. High-density surface EMG electrodes have been shown to have 

feature properties robust against electrode count and shift (Muceli, Jiang, & Farina, 2014; Stango, 

Negro, & Farina, 2015). In terms of software, a rapid re-calibration algorithm has been proposed 

to alleviate electrode shift that has occurred during donning/doffing of the prosthetic limb (Prahm, 

Paassen, Schulz, Hammer, & Aszmann, 2017; Vidovic et al., 2016). Although these advances have 

shown progress in improving myoelectric technology, there still remains a fundamental problem. 

The number of available control sites is inversely proportional to the degree of amputation. In 

other words, the higher the amputation the fewer control sites. As amputation eliminates control 

sites, providing natural, intuitive prosthesis control becomes more difficult. In order to gain access 

to more control sites, interfacing directly with the peripheral nervous system is required.              

1.1.2 Peripheral Nerve Interfaces  

In the past two decades, many peripheral nerve interface methods have been developed in 

academic research. One of the reasons for this proliferation of nerve interface technology is that 

peripheral nerves still carry volitional commands to the intended absent limb, even decades, 

following amputation ( Dhillon, Lawrence, Hutchinson, & Horch, 2004; Jia et al., 2007). Thus, the 

peripheral nerve is a rich signal source that could provide the necessary number of control sites for 

intuitive prosthesis control. These methods aim to record either spike waveforms, measured 

extracellular action potentials from alpha motor neuron fascicles, or electroneurogram (ENG) 

signals, activity arising from populations of alpha motor neuron fascicles. To gain access to these 
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types of signals, an entirely new type of electrode hardware is required. Peripheral nerve electrodes 

are split between two main categories, intraneural electrodes and epineural electrodes. Intraneural 

electrodes have contacts that penetrate into the peripheral nerve, while epineural electrodes have 

contacts that wrap around the surface of the nerve or just placed on top of the nerve. 

  The most common epineural electrode is the cuff electrode, which has two or more 

contacts placed around a flexible structure and wrapped around the nerve (Naples, Mortimer, 

Scheiner, & Sweeney, 1988; Sahin & Durand, 1998). Another epineural electrode is the flat 

interface nerve electrode (FINE), which wraps around and flattens the nerve so that its contacts 

are closer to the fascicles (Tyler & Durand, 2002). Unfortunately, ENG amplitudes are much 

smaller in scale compared to EMG activity (Popovic et al., 1993; Sahin, Haxhiu, Durand, & 

Dreshaj, 1997). Additionally, ENG faces the same problems of cross-talk as surface EMG, 

recording neural activity from a population of fascicles instead of just a single fascicle. To address 

this, beamforming algorithms have been proposed to localize and separate ENG activity (Calvetti, 

Wodlinger, Durand, & Somersalo, 2011; Tang, Wodlinger, & Durand, 2014; Wodlinger & Durand, 

2009). More recently, these methods have been tested in chronic animal studies and show promise 

in separating and recovering fascicle signal sources reliably (Dweiri et al., 2017; Eggers, Dweiri, 

McCallum, & Durand, 2017). However, further studies are needed to determine if these methods 

can be translated and effectively utilized with human nerves. Overall, epineural electrodes have 

found more use as stimulating devices than recording devices for intuitive prosthetic control (Tan 

et al., 2014).  

Intraneural electrodes, on the other hand, have had more success in recording higher 

amplitude signals because of their direct contact with the fascicles. A few examples of intraneural 

electrodes are the longitudinal intrafascicular electrode (LIFE; [Lawrence, Dhillon, Jensen, 
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Yoshida, & Horch, 2004]), transverse intrafascicular multichannel electrode (TIME; [Boretius et 

al., 2010]), and the Utah slanted electrode array (USEA; [Branner, Stein, & Normann, 2001]). The 

LIFE has been used in multiple human studies including: real-time control of grip force and elbow 

position, offline classification of three different grasps, and evoking sensory percepts via 

stimulation for object discrimination (Dhillon & Horch, 2005; Horch, Meek, Taylor, & 

Hutchinson, 2011; Micera et al., 2011; Rossini et al., 2010). Comparably, the TIME has been used 

to provide sensory feedback to human patients during a bi-directional prosthesis control task 

(Raspopovic et al., 2014). Similarly, the USEA has been implanted in humans up to 30 days, 

providing tactile sensory feedback and intuitive finger movement to amputee patients (Davis et al., 

2016; Wendelken et al., 2017).  

Although intraneural electrodes have been heavily tested in human subjects, their expected 

longevity and durability is still in question. Recent studies have reported degradation in signal 

amplitude and increased electrode impedance in USEAs over the course of four weeks (Davis et 

al., 2016; Wendelken et al., 2017). A histological analysis has shown that inserting these electrode 

tips into the nerve causes an inflammatory response with an increase of macrophages surrounding 

and attached to the device (Christensen, Wark, & Hutchinson, 2016). In other intraneural 

electrodes, there has been no similar reporting of signal degradation. However, these studies are 

also short-lived, lasting only a few weeks or less. The longest reported use of intraneural electrodes 

has been three months (Gasson, Hutt, Goodhew, Kyberd, & Warwick, 2005). Because of the short 

periods of implantation in these studies, the signal recording robustness of intraneural electrodes 

remains unproven.  

An alternative peripheral interface, targeted muscle reinnervation (TMR; [Kuiken, 

Dumanian, Lipschutz, Miller, & Stubblefield, 2004]), has shown promise in the past two decades 
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to becoming a translatable technology into the clinical setting. TMR is a surgical technique that 

reroutes a transected nerve ending to a partially denervated intact muscle. After a few months, the 

nerve reinnervates the muscle, and the muscle can now contract normally under the efferent 

commands sent from the rerouted nerve. This in turn transforms the intact muscle to act as a 

biological amplifier for the once severed nerve, creating a new myoelectric site for prosthesis 

control. As reported in 2013, over 60 TMR procedures have been performed worldwide on 

shoulder disarticulation and transhumeral amputees (Miller, Feuser, & Kuiken, 2013). Since then, 

TMR continues to gain popularity as a surgical option for proximal amputee patients as it has also 

shown to treat neuroma and phantom limb pain (Dumanian et al., 2019). In the early days of TMR, 

a bilateral shoulder disarticulate amputee was able to control the elbow position, and hand 

open/close or wrist rotation using simultaneous proportional control (Kuiken et al., 2004). In 2007, 

Zhou et al. combined TMR signals with pattern recognition techniques, enabling users to control 

up to seven hand and arm postures (Kuiken, Li G, Lock BA, & et al, 2009; Zhou et al., 2007). 

More recently, a take home randomized clinical trial of eight TMR participants showed that pattern 

recognition control outperformed the conventional direct control (Hargrove, Miller, Turner, & 

Kuiken, 2017).  

Although TMR has expanded the capabilities of traditional myoelectric interfaces to 

control more advanced prosthetic technology, the spatial distribution of the rerouted nerves is 

limited.  The technique requires the whole nerve to be transferred to a whole muscle. At more 

proximal levels of amputation, the organization of fascicles in the nerve are disorganized 

(Delgado-Martínez, Badia, Pascual-Font, Rodríguez-Baeza, & Navarro, 2016). This prevents the 

different functions of the nerve to be equally distributed, and not all functions are guaranteed to be 

represented at the reinnervation site (Stubblefield, Miller, Lipschutz, & Kuiken, 2009). Since TMR 
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uses surface electrodes to record EMG signals, the maximum number of independent control sites 

is three, one for each nerve. This limitation is reflected in clinical practice, where users are only 

able to control three to four basic movements (Cheesborough, Smith, Kuiken, & Dumanian, 2015). 

Additionally, TMR adopts the challenges of surface electrodes mentioned previously.  

These novel peripheral nerve interfaces have made great strides in improving the 

technology for advanced prosthesis control. However, further research must be conducted to 

resolve stability and longevity issues as well as increase the number of independent control sites. 

 Prosthesis Control methods 

1.2.1 Commercial and Discrete Decoders 

Building an interface that effectively extracts intuitive signals for prosthesis control 

represents one side of an elaborate equation. The other side is the interpretation and prediction of 

these signals and the user’s intention. Conventional myoelectric controllers can either function in 

a discrete or continuous mode. In the discrete mode, a single channel or muscle group’s amplitude 

must reach a fixed threshold to activate a single hand movement (e.g. hand open). Subsequently, 

the channel amplitude would then need to reach a higher fixed threshold to close the hand (Battye 

et al., 1955). The prosthetic hand moves at a pre-defined fixed velocity for both open and close 

states. This control scheme is known as on/off control, and a variant can be applied to two muscle 

groups (Popov, 1965). In the continuous mode, the EMG change in amplitude over time is used to 

control the velocity or force output of the prosthetic hand. Defined as proportional control, a user 

could use one muscle group to control how fast the hand closes, and a second muscle group to 

control how fast the hand opens. Both discrete and continuous methods become harder and 
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unintuitive to use with increasing number of limb movements or degrees of freedom (DoF). This 

is mainly due to the limited number of independent control sites (see section 1.1.1).  

To gain more intuitive control of multifunctional prosthetic limbs, researchers have 

focused their attention on pattern recognition or discrete algorithms as a possible replacement for 

conventional control. In this control scheme, multiple recording electrodes capture the natural 

generation of muscle activity, which can be classified to a specific hand posture or grasp (Hudgins, 

Parker, & Scott, 1993). As different patterns arise, multiple postures or complex movements can 

be classified. Users can then naturally switch between movements by just activating the desired 

posture with their phantom limb. Multiple pattern recognition algorithms have been tested in a 

laboratory setting (Ajiboye & Weir, 2005; Kuiken et al., 2009; Tsenov, Zeghbib, Palis, Shoylev, 

& Mladenov, 2006), while one company (Coapt LLC, Chicago, IL) has commercialized the 

technology. Researchers continue to test pattern recognition algorithms in both the laboratory and 

clinical setting, further improving the technology for conventional use (Hargrove et al., 2017). 

Pattern recognition has taken one step further in providing prosthetic users intuitive and natural 

control. However, this technique is characteristically discrete, meaning that movements are chosen 

sequentially, and cannot be proportionally controlled. This is far from the golden standard of the 

natural human hand.  

1.2.2 Neuromuscular Skeletal Models and Continuous Decoders 

In order to reach the gold standard of the human hand, novel controller algorithms must be 

able to simultaneously and proportionally control multiple degrees of freedom at a time. One 

approach to reaching this standard is to mathematically determine the relationships between joint 

finger moments, muscle activations, and motor neuron spike trains.  
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Upper-limb movement forces are generated from muscles innervated by pools of firing 

alpha motor neurons (Farina & Negro, 2012; Heckman & Enoka, 2004). The relationships between 

these components are non-linear and neuromusculoskeletal modeling has shown promise in 

understanding the transformations between these components (Buchanan, Lloyd, Manal, & Besier, 

2004). Surface EMG has been commonly used as the neural drive for neuromusculoskeletal 

models to predict joint moments, since it can be easily recorded (Manal, Gonzalez, Lloyd, & 

Buchanan, 2002; Sartori, Reggiani, Farina, & Lloyd, 2012). Often these models need to be scaled 

and calibrated to an individual’s limb shape, size, and EMG-force properties (Sartori, Farina, & 

Lloyd, 2014). Although these surface-EMG driven models can accurately predict one DoF 

moments, they do not scale well to predicting multiple DoF moments (Sartori et al., 2012). This is 

mainly due to the limitations of surface EMG mentioned earlier: signal cross-talk, deep muscle 

signal attenuation, etc.. Thus, a neural drive with higher resolution is needed as inputs to these 

EMG-driven models.  

To achieve higher resolution neural drive, several studies have proposed to use semi-

supervised signal separation algorithms to decompose recorded EMG into its motor unit 

components (Florestal, Mathieu, & Malanda, 2006; Marateb, Muceli, McGill, Merletti, & Farina, 

2011; McGill, Lateva, & Marateb, 2005). More recently, blind source separation has become a 

more popular tool for EMG decomposition due to its automation and high accuracy (Holobar, 

Minetto, Botter, Negro, & Farina, 2010; Holobar & Zazula, 2007; Negro, Muceli, Castronovo, 

Holobar, & Farina, 2016). In one study, signals from TMR patients were decomposed using blind 

source separation (Negro et al., 2016) and subsequently fed into a neuromusculoskeletal model 

(Sartori et al., 2014) to predict simultaneous and proportional control of multiple degrees of 

freedom, i.e. elbow flexion, forearm pronation ,and wrist flexion (Farina et al., 2017). In an effort 
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to combine three promising technologies, this is the first most physiologically-based neural 

interface tested in humans. However, since all predictions were performed offline, the success and 

practicality of this method during real-time control has yet to be determined. Some limitations lie 

in the computational complexity of the neuromusculoskeletal models and the decomposition 

algorithms, but current development in real-time neuromusculoskeletal models and EMG 

decomposition systems have shown progress in keeping under the maximum 200 ms delay 

specification for prosthesis response time (Barsakcioglu & Farina, 2018; Sartori, Durandau, 

Došen, & Farina, 2018).  

Less computationally heavy methods, such as regression-based algorithms, have been 

proposed as an alternative to simultaneous and proportional control. Unlike discrete algorithms, 

regression algorithms can continuously and simultaneously estimate multiple control signals 

directly from EMG signals (Barsotti et al., 2019; Hahne et al., 2014; Jiang, Rehbaum, Vujaklija, 

Graimann, & Farina, 2014; Nielsen et al., 2011; Smith, Kuiken, & Hargrove, 2015). Although 

these algorithms show promise in accelerating the progress of reaching the gold standard for 

prosthesis control, there still remains some limitations. Muscle synergies play a large role in 

natural limb movement (d’Avella, Portone, Fernandez, & Lacquaniti, 2006; Lee, 1984; Ting & 

Macpherson, 2005). These muscle synergies have a clear representation in EMG data and heavily 

affect the parameter training of regression algorithms. These effects can be seen in studies where 

unintended movement has been reported during online testing of multiple degrees of freedom 

control (Smith et al., 2015; Wendelken et al., 2017). Little progress has been made in addressing 

this issue with one study showing a possible solution using sparse non-negative matrix 

factorization (Lin, Wang, Jiang, & Farina, 2018).  
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In the age of information and artificial intelligence, significant progress has been made in 

developing elegant control algorithms for myoelectric prosthesis control. However, further 

progress is needed to reach the ultimate goal of providing upper-limb prosthesis users intuitive and 

natural control of their prosthetic hand. 

 Summary of Thesis  

This thesis addresses several of the limitations of peripheral nerve interfaces described 

above, and aims to present a viable option for long-term extraction of peripheral motor control 

signals for dexterous finger movement in humans with upper limb amputation. 

Chapter 2 aims to characterize the usability of a novel peripheral interface for continuous 

and proportional control of hand movement in non-human primates. The regenerative peripheral 

nerve interface (RPNI), is a free muscle graft that has been reinnervated by a transected peripheral 

nerve. Previously developed and tested in animal models (Irwin et al., 2016; Kung et al., 2014; 

Ursu, Urbanchek, Nedic, Cederna, & Gillespie, 2016), the RPNI acts as a bioamplifier for efferent 

motor nerves. In this study, RPNI signals were successfully used in a regression-based Kalman 

filter to decode hand movement with high accuracy both offline and online. This demonstrates that 

RPNI signals can be decoded and used for simultaneous and proportional control of a prosthetic 

hand.  

In Chapters 3, we present the efficacy and viability of RPNIs in human participants. Three 

transradial amputees, one proximal and two distal, were implanted with RPNI grafts. Under 

ultrasound, RPNI grafts were viewed contracting during cued finger movements. Additionally, 

EMG signals were recorded with one RPNI graft having a maximum SNR of 107. These results 

demonstrate that the RPNI surgical technique is translatable to human nerves and musculature, 

creating potential new control sites for myoelectric prosthesis control. 
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Chapter 4 demonstrates the utilization of recorded RPNI signals for continuous control of 

individuated fingers. Participants moved single degree of freedom individuated fingers in real-

time with precision and accuracy, controlling both a virtual and physical prosthetic hand. 

Additionally, with no retraining of the algorithm, no significant change in performance was seen 

over the course of multiple sessions. This suggests that RPNI signals are a viable option in a 

clinical setting for long-term, fine motor prosthesis control. 

   Lastly, chapter 5 will discuss the results of each study and expand upon the impact RPNIs 

could have on myoelectric prosthetic technology. 

1.3.1 Thesis Contributions 

Previous work have shown that RPNIs can be successfully reinnervated and maintain a 

healthy electrical response up to 7 months post-implantation in rats (Kung et al., 2014). A further 

study has shown that RPNIs can generate high-amplitude EMG signal during volitional 

movements in walking rats (Ursu et al., 2016). As the next step to translating RPNIs into humans, 

Irwin et al., showed that RPNIs can be successfully reinnervated and maintain a heathy electrical 

response up to 20+ months in non-human primates. Additionally, the recorded RPNI signals can 

be used to predict hand flexion and extension movements using a classifier in real-time (Irwin et 

al., 2016). This thesis aims to continue the characterization of RPNIs started in the previous 

studies. In particular, aim 1 takes the discrete classification results in Irwin et al., one step further 

and determines if RPNIs can provide and maintain the appropriate EMG signals for hand-level 

prosthetic continuous control in non-human primates. Aim 2 then assesses if the RPNI viability 

and stability found in Irwin et al., is transferrable to humans with amputations. Finally, aim 3 

continues the RPNI validation in humans from aim 2, and evaluates if the efficacy of RPNIs for 

continuous prosthetic control found in aim 1 can also be transferrable to humans with amputations. 



13 
 

CHAPTER II 

Closed-loop continuous hand control via chronic recording of 
regenerative peripheral nerve interfaces 

A version of this work has been accepted to IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, and is currently published online (Vu et al., 2018).  

 Abstract 

Loss of the upper limb imposes a devastating interruption to everyday life. Full restoration 

of natural arm control requires the ability to simultaneously control multiple degrees of freedom 

(DOFs) of the prosthetic arm and maintain that control over an extended period of time. Current 

clinically available myoelectric prostheses do not provide simultaneous control or consistency for 

transradial amputees. To address this issue, we have implemented a standard Kalman filter for 

continuous hand control using intramuscular electromyography (EMG) from both regenerative 

peripheral nerve interfaces (RPNI) and an intact muscle within non-human primates. Seven RPNIs 

and one intact muscle were implanted with indwelling bipolar intramuscular electrodes in two 

rhesus macaques. Following recuperations, function-specific EMG signals were recorded and then 

fed through the Kalman filter during a hand-movement behavioral-task to continuously predict the 

monkey’s finger position. We were able to reconstruct continuous finger movement offline with 

an average correlation of ρ = 0.87 and root mean squared error (RMSE) of 0.12 between actual 



14 
 

and predicted position from two macaques. This finger movement prediction was also performed 

in real-time to enable closed-loop neural control of a virtual hand. Compared to physical hand 

control, neural control performance was slightly slower but maintained an average target hit 

success rate of 96.70%. Recalibration longevity measurements maintained consistent average 

correlation over time but had a significant change in RMSE (p < 0.05). Additionally, extracted 

single units varied in amplitude by a factor of +18.65% and –25.85% compared to its mean. This 

is the first demonstration of chronic indwelling electrodes being used for continuous position 

control via the Kalman filter. Combining these analyses with our novel peripheral nerve interface, 

we believe that this demonstrates an important step in providing patients with more naturalistic 

control of their prosthetic limbs.   

 Introduction 

Limb loss can have a significant negative impact on a person’s daily life. Every year, 

around 185,000 people will undergo some sort of amputation, (Dillingham, Pezzin, & Mackenzie, 

2002) and the current number of people living with an amputation may increase by a factor of 10 

within the next 3-4 years (Ziegler-Graham et al., 2008). The loss is particularly devastating in the 

case of upper limb amputation. As one possible solution, myoelectric prosthesis technology can 

help assist these people and alleviate their daily struggles. Myoelectric prostheses work by using 

electromyogram (EMG) signals from residual muscle to control prosthetic hand movements. 

However, despite the improved hardware and functionality of prosthesis technology within the 

past decade, an adequate control strategy is ultimately lacking (Roche et al., 2014; Schultz & 

Kuiken, 2011). Current control strategies involve two muscle activations controlling multiple 

functions of the prosthetic hand. For example, flexing and extending the wrist muscle would 

control the prosthetic wrist flex/extend function and also the hand open/close function. Users 
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would switch between functions through co-contracting the flexion and extension muscles, or 

another mode selection mechanism. Three main components of this current control strategy make 

clinical myoelectric prosthetics unappealing to patients: the unintuitive feeling of control, the low 

level of performance and movement complexity compared to the natural hand, and the amount of 

training time it takes to achieve even that limited amount of performance.  

To address some of these issues, current research has focused on improving these discrete 

classification algorithms to achieve higher performance and provide a more intuitive control 

mechanism. Discrete machine learning algorithms classify different movements based on patterns 

of EMG signal features, allowing users to directly select a movement to perform rather than having 

to switch modes. Recent advancements have led to an increased number of classified posture 

movements, i.e. wrist flex/extend, forearm pronation/supination, and radial/ulnar deviation 

(Englehart, Hudgin, & Parker, 2001; Jun-Uk Chu, Inhyuk Moon, & Mu-Seong Mun, 2006; Saridis 

& Gootee, 1982) with further studies using EMG feature patterns to control individual fingers and 

finger combinations (Khushaba, Kodagoda, Takruri, & Dissanayake, 2012; Tenore et al., 2009; 

Tsenov et al., 2006). Discrete classifiers have achieved > 90% decoding accuracy in both able-

bodied participants (Englehart et al., 2001; Jun-Uk Chu et al., 2006) and transradial amputee 

subjects (Ajiboye & Weir, 2005; Cipriani et al., 2011; Kuiken et al., 2009; Tenore et al., 2009). 

This has overall granted myoelectric users with multi-functionality and a slightly more intuitive 

control scheme.  

Despite the high classification accuracy, certain characteristics of discrete classifiers 

prevent them from becoming the end-all solution for myoelectric prosthetic control. Classifiers 

can only operate sequentially and cannot provide simultaneous control for more complex 

movements. If the user desired to rotate the wrist and open the hand at the same time, an additional 
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class would need to be trained. This would result in increased training time and may be impractical 

in a clinical setting. Additionally, classifiers inherently do not provide proportional control, acting 

only in a binary on/off basis. The ability to control the speed and strength of the prosthesis is 

necessary for more refined tasks.  Thus, the absence of simultaneous and proportional 

characteristics limits the overall level of natural control a discrete classifier can provide.  

Regression algorithms, on the other hand, can offer both proportional and simultaneous 

control. They have the ability to continuously predict the output of multiple movement signals and 

provide users with a more intuitive control scheme. Several groups have demonstrated 

simultaneous and proportional control of wrist flex/extend, wrist supination/pronation, ulnar and 

radial deviation and hand open/close from EMG signals in both able-bodied and transradial 

amputee subjects (Hahne et al., 2014; Jiang et al., 2014; Muceli & Farina, 2012). However, very 

few studies have focused on restoring continuous control of individuated fingers using EMG, with 

the exception of those using neural networks to estimate joint finger angles in able-bodied subjects 

(Ngeo, Tamei, & Shibata, 2014; Smith, Huberdeau, Tenore, & Thakor, 2009). More investigation 

is needed in improving regression algorithms to control finger movements using EMG signals. In 

addition, the regression studies mentioned above used surface EMG signals, which cannot record 

EMG from specific muscles and has signal stability challenges such as movement artifacts, skin 

impedance changes, and electrode shifts. To overcome these issues, intramuscular EMG 

recordings may provide a more stable and more localized signal for regression algorithms. Smith 

et al. (Smith, Kuiken, & Hargrove, 2016), has demonstrated that intramuscular EMG can be used 

in regression algorithms to control wrist flex/extend, wrist supination/pronation, and hand 

open/close in able-bodied and amputee subjects. This holds promise for future studies to explore 

the specificity of intramuscular EMG for fine finger movements.    
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However, an additional concern for these novel regression algorithms is that they cannot 

be used when the necessary muscles are missing. Every person with an amputation is missing some 

amount of muscle, whether it is intrinsic hand function alone for a distal transradial amputee or 

complete loss of hand control in a transhumeral amputee. To address this, several groups have 

explored interfacing with the peripheral nerves in the residual limb of amputee patients for 

prosthetic hand control (Davis et al., 2016; Dhillon et al., 2004; Micera et al., 2010; Rossini et al., 

2010). Utah Slanted Electrode Arrays (USEA), intrafascicular electrodes, have been implanted 

into the median and ulnar nerve of two subjects with previous transradial amputations (Davis et 

al., 2016). Using a Kalman filter, a linear regression based algorithm, Davis et al. (Davis et al., 

2016) were able to continuously estimate finger position based on the firing rates of multiple 

neurons recorded from the USEA. Although promising, the group also reported a significant 

reduction in signal strength within the 1 month period of implantation. Most other groups using 

intrafascicular electrodes have not reported longer than 1 month signal stability. Thus, 

intrafascicular electrodes may not be a viable option for chronic neural control. 

As a longer term method for obtaining peripheral nerve signals, our group has recently 

developed the Regenerative Peripheral Nerve Interface (RPNI). RPNIs are 2-3cm autologous 

muscle grafts that are neurotized with residual severed nerves or nerve branches. The RPNIs can 

generate recordable high-amplitude EMG activity, acting as bioamplifiers for efferent peripheral 

nerve signals (Kung et al., 2014; Ursu et al., 2016). We previously implanted RPNIs and 

intramuscular bipolar electrodes within two rhesus macaques, and reported the long-term safety 

and performance of RPNIs during a finger-level behavioral task (Irwin et al., 2016). That study 

demonstrated that RPNIs can be used as a control signal source for discrete classification of simple 
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finger movements. However, their capability for continuous estimation of finger movements has 

yet to be quantified.  

Here, we build on this prior work by pursuing continuous fingertip control using indwelling 

bipolar intramuscular EMG electrodes (Memberg, Stage, & Kirsch, 2014). We record from both 

implanted RPNIs and intact muscles within two rhesus macaques. Using these signals, we 

evaluated the ability to control finger flexion and extension in a continuous fashion using the best-

known approach from brain controlled prostheses (Kim, Simeral, Hochberg, Donoghue, & Black, 

2008; Wu, Gao, Bienenstock, Donoghue, & Black, 2006), the Kalman filter, as well as a Wiener 

filter for comparison. Recorded EMG signals were used to train these algorithms to control a 

virtual hand both offline and in real-time. This is the first demonstration of chronic indwelling 

intramuscular electrodes being used for continuous position control of fingers, and the first use of 

a Kalman filter with EMG from RPNIs. 

 Materials & Methods 

All procedures were approved by the University of Michigan Institutional Animal Care 

and Use Committee. The two animals used in this study were the same two animals used in Irwin 

et al. (Irwin et al., 2016). 

2.3.1 System Design 

RPNIs are neurotized free autologous muscle grafts that convert signals from transected 

residual peripheral nerves into high amplitude EMG signals (Kung et al., 2014). The EMG signals 

can then be recorded from intramuscular electrodes implanted into the belly of the muscle graft. 

Here, two surgeries were performed to implant all RPNIs and bipolar electrodes (IM-MES, Ardiem 

Medical). The first surgery consisted of implanting the majority of RPNIs. Typically, RPNIs takes 
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3-4 months to mature and reinnervate. Here, a whole year passed before implanting the IM-MES 

electrodes to assess health and safety of the RPNIs (Irwin et al., 2016). RPNI implantation takes 

~2-4 hours, while the IM-MES implantation takes ~1-3 hours. A total of 9 RPNIs were implanted 

on separate branches of the median and radial nerves in the forearm of two rhesus macaques L and 

R. RPNI construction starts with harvesting a 1 x 3cm muscle graft from a healthy native donor 

muscle. Then, the distal end of a targeted peripheral nerve is isolated and dissected into individual 

fascicles or branches. The end of the isolated nerve is sutured to the center of the muscle graft and 

then the muscle graft is wrapped around the nerve and sutured shut to create an enclosed housing. 

This procedure is repeated as needed to create the desired number of RPNIs. For our purposes, the 

median and radial nerve branches of interest terminated on the extrinsic finger flexors and 

extensors in order to gain hand level control. We used only minor, redundant terminal motor nerve 

branches to preserve motor function. Specifically, the median nerve branches that controlled the 

flexion of digits 2-5 and 1-3, and the radial nerve branch that controlled the extension of digits 2-

5. Further details of the RPNI graft construction and implantation can be seen in Irwin et al. (Irwin 

et al., 2016).  
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2.3.2 Study Design and Device Validation 

Post RPNI construction, we implanted IM-MES electrodes into RPNIs neurotized by 

nerves which originally innervated the flexor digitorum superficialis (FDS), flexor digitorum 

profundus (FDP), and extensor digitorum communis (EDC) muscles. We also implanted an IM-

MES electrode into an intact extensor carpi radialis (ECR) muscle in monkey L as a control. For 

the remaining sections below, the RPNIs will be referred to by the muscle that was originally 

innervated by the transplanted nerve branch, i.e. FDS RPNI. Fig. 1(a) demonstrates the electrode 

Figure 2.1 RPNI and electrode implantation procedure.  (a) Bipolar electrode implantation procedure 
illustrated from left to right. (1) Representation of an IM-MES bipolar electrode (Ardiem Medical). 
(2) Electrodes are first tunneled through the skin until reaching the site of electrode insertion. (3) An 
incision is made in the belly of the RPNI graft or muscle of interest and the electrode is inserted. (4) 
Electrode insertion is complete and the remaining slack of the electrode wire is carefully tucked in 
between the intact muscles to minimize electrode shift. (b) A close up of a RPNI implanted with a 
bipolar intramuscular electrode. 
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implantation process. These electrodes consist of two insulated stainless steel leads coiled in a 

double helix formation and potted in silicone tubing (Memberg, Stage, et al., 2014). Contacts are 

formed by exposing the leads and wrapping them around the tubing, and a polypropylene anchor 

at the distal end secures the electrode in the muscle. In the first animal, the two contacts on the 

electrode were 4 mm long with a diameter of 1.27 mm (the diameter of the silicone tubing), and 

were separated by 6 mm. After noting that in some cases, this was too large to fit both contacts 

within the muscle belly of an RPNI, a reduced contact size of 1.5 mm and inter-contact spacing of 

2.5 mm was used for the second animal. A single IM-MES electrode was placed in the muscle 

belly of each RPNI, as well as in a healthy control muscle, by making a small incision and manually 

feeding the electrode anchor-first into the muscle. Leads were tunneled subcutaneously to a 

transcutaneous port on the animal’s back and attached to a connector protected by a primate jacket. 

A fully-implanted RPNI is shown in Fig. 1(b). 

2.3.3 Behavioral Task 

We trained both monkeys to perform a finger movement task, illustrated in Fig. 2. A flex 

sensor (Spectra Symbol) was attached to the monkey’s index finger, which fed finger position data 

to a real-time computer running xPC Target (Mathworks). Musculoskeletal Modeling Software 

(MSMS; (Hauschild, Davoodi, & Loeb, 2007)*) provided a virtual model of a monkey hand that 

was displayed in front of the monkey on a monitor, and mirrored the finger movements measured 

by the flex sensor. The xPC Target real-time system executes on a millisecond basis. Neural signals 

are collected at 30 ksp and are sent to the xPC Target via an Ethernet cable. Using a 1 Gbps 

Ethernet network card, data transmission time from the Cerebus to the xPC Target is trivial. Thus, 

the xPC Target collects 30 samples of neural data in 1 millisecond. The Kalman filter decoding 

algorithm can be manually set to update at arbitrary intervals. Here, we set the decoding algorithm 
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to update every 50 ms or 100 ms. Updated position values are then sent from the xPC Target to 

the MSMS virtual software over Ethernet. Again, transmission time from xPC Target to MSMS 

was unmeasured, but likely very small since it has very little software running. Using a 120 Hz 

monitor adds 8 ms. 

The monkeys both performed movements with all four fingers simultaneously, with the position 

of all four indicated by the index flex sensor. Both monkeys L and R were trained with the virtual 

hand displaying only the index finger moving because this animation was the most robust and 

easiest to view during their earliest training sessions. However, the animal always moved all four 

fingers together, and all results that are present are for all four fingers moving simultaneously. 

Images are shown below in the way they were originally viewed by the animal. At the start of a 

trial, the xPC cued a spherical target to appear in the path of the virtual finger. The monkey was 

then required to move his fingers in order to hit the target on the screen. After holding the virtual 

finger in the target for a required hold time (usually set to 500-700 ms), the monkey was given a 

juice reward. Both monkeys performed a center out task with 50% flexion denoted as center. The 

xPC then chose randomly between 6 targets, 3 flexion and 3 extension targets, to display next after 

each center target was hit. The virtual hand could also be controlled by decoding the RPNI signals 

in real-time into predicted movement. As described below, the monkey would receive a reward 

only if the predicted movement was correct, and could act to correct the decode within the trial 

time limit in a closed-loop manner.  
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2.3.4 Electrophysiology Recording 

During task performance, EMG signals from the RPNIs were input into either a DAM50 

differential EMG amplifier (WPI), which filtered the signal between 10-1000 Hz with a gain of 

1000x, or directly into a Cerebus neural signal processor (Blackrock Microsystems), which filtered 

the signal between .3-7000 Hz (unity gain). For real-time signal analysis, the Cerebus was used to 

record from multiple electrodes simultaneously. The DAM50 was used for lower-noise recordings 

from a single electrode. In both cases, the processed signal was digitized and saved to disk by the 

Cerebus at 30 ksps. The signal was further sent from the Cerebus to the behavioral rig via ethernet, 

where it could be processed in real-time. 

Figure 2.2 Monkey behavioral task.(a) The monkey hit virtual targets by moving his four 
fingers simultaneously. The index finger of the virtual hand moved in conjunction with the 
monkey’s movements. (b) The virtual hand could be controlled either by the monkey’s 
movements directly (as measured by flex sensors) or by EMG signals decoded into movement 
predictions in real-time, allowing either open-loop or closed-loop task performance [22] [16]. 
The “decoding” and “recording” blocks in parallel indicate that recorded EMG is both stored 
and sent to the decoding algorithm simultaneously, giving us the ability to flip between open-
loop or closed-loop control instantly. 
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2.3.5 Signal Analysis and Decoding 

To isolate the EMG signal from motion and electrical artifacts, we filtered the data between 

100-500 Hz using a second-order Butterworth filter. In offline analysis, the data were filtered 

forwards and backwards in order to eliminate phase shift. 

To assess the EMG signal quality, we calculated both the maximum voluntary contraction 

(MVC) and the signal to noise ratio (SNR) for each recorded RPNI and intact muscle. MVC was 

calculated by isolating periods of maximum agonist behavior, corresponding to either full finger 

flexion or full finger extension movements, depending on the function of the RPNI nerve. 

Approximately 1000-1400 trials were conducted within each recording session. Movement periods 

were isolated and labeled by thresholding the finger position and velocity to ensure both maximum 

EMG activation and consistent behavior. The mean of the peak-to-peak amplitude during all such 

movements was taken as the MVC. SNR was calculated by simply dividing the MVC by the noise 

floor of the channel, which was extracted by manually selecting around 60-130 second quiescent 

periods in the signal and calculating the mean peak-to-peak amplitude.  

To evaluate the stability of the IM-MES electrode over time, we measured the amplitude 

of recorded single motor unit activity from the EMG. Single unit activity was extracted manually 

by choosing the peak of the motor unit waveform during behavior segments where finger position 

remained constant and finger velocity was approximately zero. Two milliseconds of samples were 

taken before the peak and 6 ms after the peak. 100 examples of one motor unit were extracted per 

recording session approximately once a week, and the mean and variance of the motor unit 

amplitude were calculated. Each motor unit was chosen based on having the same shape. If the 

signal was perfectly stable, the amplitude of the motor unit would remain the same over time. 

Thus, by picking the same motor unit over time, we attempted to assess the variability of the 

recorded EMG signal and the stability of the IM-MES electrodes. 
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To assess the functional efficacy of the recorded RPNI signals, we used a Kalman filter to 

decode continuous finger position movements from the EMG signals. The Kalman filter is a 

recursive linear filter that tracks the state of a dynamical system throughout time using noisy 

measurements (Kalman, 1960; Kim et al., 2008; Wu et al., 2006) relying on a trajectory model and 

an observation model. Here, the trajectory model is a representation of the transition of the 

kinematic state of the fingers at time 𝑡𝑡 to time 𝑡𝑡 + 1. We assume that the finger state vector 𝑥𝑥𝑡𝑡 

represents the position and velocity of the finger, 

𝑥𝑥𝑡𝑡 = �𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡, 𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡, 1�
𝑇𝑇

            (1) 
 

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 is the finger position measured by the bend sensor and 𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡 is the calculated difference 

of the position. The observation model represents the noisy transformation of the current finger 

state to recorded neural activity. Here, temporal characteristics of the EMG waveform represented 

the neural activity. We extracted two temporal characteristic features of the EMG waveform: (1) 

mean absolute value (MAV) and (2) waveform line length (LL) (Hudgins et al., 1993; Zhou et al., 

2007). Mean finger kinematics and EMG features were computed in consecutive time bins. 

Decoding features were extracted from the flexor and extensor channel available for both 

monkeys. A total of two channels were input into the filter during offline and online analysis. In 

particular, these features were simultaneously obtained from the FDP and EDC RPNI in monkey 

L and the FDS RPNI and an intact extensor muscle in monkey R. For monkey R only the MAV 

was used as a feature. If we let 𝑦⃗𝑦𝑡𝑡 = [𝑦𝑦1 … ,𝑦𝑦𝑘𝑘]𝑇𝑇 , where 𝑦𝑦𝑘𝑘 is the temporal feature of the 𝑘𝑘𝑘𝑘ℎ 

electrode, then the linear relationship between the finger state and neural measurements is: 

𝑥⃗𝑥𝑡𝑡 = 𝐴𝐴𝑥⃗𝑥𝑡𝑡−1 +  𝑤𝑤��⃗ 𝑡𝑡                (2) 
𝑦⃗𝑦𝑡𝑡 = 𝐶𝐶𝑥⃗𝑥𝑡𝑡 + 𝑞⃗𝑞𝑡𝑡                     (3) 

 
where 𝐴𝐴 ∈  𝑹𝑹3 𝑥𝑥 3 and 𝐶𝐶 ∈  𝑹𝑹𝑘𝑘 𝑥𝑥 3 represent the trajectory and observation models, and 𝑤𝑤��⃗ 𝑡𝑡 and 𝑞⃗𝑞𝑡𝑡 

are Gaussian distributed noise terms for the state trajectory transition and the observation 
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transformation, respectively. 𝐴𝐴 is the linear transformation from the previous finger state to the 

current finger state (the trajectory model), while C is a mapping of the current finger state to the 

EMG temporal features (the observation model).  

The above analysis was done both offline and in online closed-loop sessions. During 

closed-loop sessions, both monkeys performed a center-out task. After ~200 trials of normal task 

performance, the decoder was trained and the virtual hand was switched to mirror the Kalman filter 

output (predicted position values) instead of the flex sensor output. The Kalman filter updated 

every 50 ms, or 100 ms on some online sessions, allowing continuous control of the virtual hand.  

For comparison in performance, a Wiener filter was also implemented both offline and 

online for monkey R and only offline for monkey L. A comparable study used Wiener filters as a 

baseline comparison for decoding performance between different algorithms (Smith et al., 2016). 

The Wiener filter equation is as follows:  

 
                  𝑥⃗𝑥𝑡𝑡 = 𝐵𝐵𝑦⃗𝑦𝑡𝑡 + 𝑏𝑏�⃗ 0                            (4) 

 
where 𝑥⃗𝑥𝑡𝑡 represents the kinematic state of the system and 𝑦⃗𝑦𝑡𝑡 is the featured neural activity, where 

𝑦⃗𝑦𝑡𝑡 equals [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑘𝑘]𝑇𝑇, representing a history of measurements up to time k. 𝐵𝐵 is the linear 

transformation of the neural features to the kinematic state and 𝑏𝑏�⃗ 0 is a constant offset. 

For offline performance evaluation, tenfold cross validation was implemented when 

training the Kalman filter and Wiener filter. Subsequently, accuracy of the reconstructed position 

trajectory was calculated via cross-correlation (CC) with the actual trajectory. Likewise, root mean 

squared error (RMSE) was calculated between the reconstructed and actual trajectories. Let 𝑥𝑥�𝑡𝑡 be 

the estimate for the true position 𝑥𝑥𝑡𝑡, then the CC and RMSE are defined as follows: 
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𝐶𝐶𝐶𝐶 =
∑ (𝑥𝑥𝑡𝑡 −  𝑥̅𝑥𝑡𝑡)(𝑥𝑥�𝑡𝑡 −  𝑥𝑥�̅𝑡𝑡)𝑡𝑡

�∑ (𝑥𝑥𝑡𝑡 −  𝑥̅𝑥𝑡𝑡)2𝑡𝑡 ∑ (𝑥𝑥�𝑡𝑡 −  𝑥𝑥�̅𝑡𝑡)2𝑡𝑡
          (5)    

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑇𝑇

 �(𝑥𝑥𝑡𝑡 −  𝑥𝑥�𝑡𝑡)2
𝑇𝑇

𝑡𝑡=1

                  (6) 

 

where 𝑥̅𝑥𝑡𝑡 represents the mean of the x position, 𝑥𝑥�̅𝑡𝑡 represents the mean of the estimated position, 

and T represents the sample size of the predicted and actual position measurement.  

For real-time performance metrics, we calculated throughput, described by Fitts’s law 

(Soukoreff & MacKenzie, 2004; Thompson et al., 2014), and average success percentage. Fitts’s 

law, which calculates an overall bit rate, has been shown to be a robust performance metric for 

continuous brain machine interfaces (BMIs) across different task parameters. The Fitts’s equation 

used is shown below.  

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝 =  
log2 �1 +  𝐷𝐷𝑊𝑊�
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)     (7) 
 

Here, 𝐷𝐷 is the distance between targets and 𝑊𝑊 the width of the target. In addition to 

performance, we evaluated the smoothness of the estimated path trajectory between targets. In 

both offline and online analysis, the jitter metric was calculated by counting the number of times 

the velocity of the estimated trace changed signs and normalizing that number to the total 

experiment time to obtain the number of sign changes (SC) per second.  

To gauge the limits of recalibrating the decoding algorithms between recording sessions, 

Wiener filter parameters were trained offline on an initial EMG recording day and reused for 

decoding with subsequent EMG recording days. CC and RMSE values were calculated for each 

day to measure the performance. As a baseline for comparison, new Wiener filter parameters were 

trained on each day, used to decode that day’s EMG, and CC and RMSE values were calculated.  
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Overall for decoding analysis, a total of 7 recording session datasets were used for offline 

and online analysis between both monkeys. For signal stability measures and further functional 

efficacy, 12 datasets were used over the span of 8 weeks to extract single units and train the Wiener 

filter parameters. Unless otherwise stated, paired t-tests were used to evaluate the differences in 

CC and RMSE measurements between the decoding filters within each monkey (n = 2). 

Additionally, unpaired t-tests were used to evaluate the differences of single unit waveform 

amplitude between days. 

 Results 

2.4.1 Signal Quality Over Time from Indwelling Electrodes 

A total of 8 muscles were recorded with indwelling electrodes, 4 in each monkey. For 

monkey L, the FDP and EDC RPNI were used for offline and online continuous decoding analysis, 

as they provided task-relevant finger flexion and extension information. The intact ECR was not 

used since it only contained wrist information. Additionally, due to connector breakage, the FDS 

RPNI did not show finger flexion information during online continuous decoding. However, the 

FDS RPNI signal did appear during previously-reported online discrete decoding using a 

percutaneous electrode (Irwin et al., 2016). For monkey R, the FDS RPNI and intact EDC were 

used for decoding. The IM-MES electrode in the intact EDC was originally placed in the EDC 

RPNI, but high amplitude was immediately recorded after implantation, which could not have been 

produced by a denervated muscle. Thus, the electrode was assumed to have slipped out of the 

RPNI and was recording from surrounding EDC muscle. Similar to monkey L, the FDP RPNI 

channel was not used due to connector breakage.  
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For both monkeys, the maximum voluntary contraction (MVC) and signal to noise ratio 

(SNR) of the EMG signals used for decoding are shown in table 1. Here it is important to note that 

each RPNI muscle graft surrounds a single small branch of the median and radial nerves, with an 

IM-MES electrode inside that graft. Consistent with this, the RPNI signals had an average SNR of 

7.92, smaller than the intact EDC muscle with an SNR of 39.8 but greater than the SNRs reported 

for intrafascicular electrodes (Davis et al., 2016; Rossini et al., 2010). Fig. 2.3 shows the 

intramuscular raw EMG signals from both flexor and extensor RPNIs and intact EDC, bandpass 

 
 

Figure 2.3 Example of recorded EMG from chronic IM-MES electrodes.The top trace in each 
column is finger position during task behavior. The bottom two rows in the left column are the EMG 
signals from the flexor and extensor RPNIs in monkey L. The bottom two rows in the right column 
are the EMG signals from the flexor RPNI and the intact EDC in monkey R. The displayed raw 
signals came from online continuous finger control recording sessions, which differ from the signals 
reported in Irwin et al. (Irwin et al., 2016). 



30 
 

filtered from 100-500 Hz. The top row represents each monkey’s finger movements during the 

behavioral task (as a percentage of fully-flexed, with zero as fully-extended).  

2.4.2 Offline Continuous Reconstruction 

  Using the Kalman filter, which uses only the past 50 ms bin for input, there was an overall 

average CC of 0.89 and 0.84, and RMSE of 0.112 and 0.140, for monkey L and R respectively. 

This performance is similar to another study using a linear regression algorithm with intramuscular 

EMG during an annulus target task (Smith et al., 2015). Overall, the Kalman filter had smooth 

transitions between targets but would occasionally overshoot near the minimum and maximum 

finger positions. This may be a result of un-modeled non-linearities in the relationship between 

EMG and finger position.  

To compare performance with the Kalman filter, we applied the Wiener filter to the same 

training and testing datasets. Fig. 4 illustrates the reconstruction of true position offline using both 

Kalman and Wiener filters in monkeys L and R. Wiener filters have been used both offline and 

online in cortical brain machine interfaces (BMIs) for linear reconstruction (Wu et al., 2006). 

Additionally, Smith et al. (Smith et al., 2016; Smith et al., 2015) has used the Wiener filter as a 

baseline comparison to their algorithm’s performance with intramuscular EMG. Here, the Wiener 

filter had an overall average CC of 0.91 and 0.83 and RMSE of 0.0883 and 0.121, for monkey L 

and R respectively.  

 
Table 2.1 Maximum Voluntary Contraction and Signal-to-Noise of Implanted Electrodes 

Monkey Muscle MVC (µV) SNR 

L FDP RPNI 
EDC RPNI 

103.9 
136.2 

7.42 
9.77 

R FDS RPNI 
Intact EDC 

19.59 
936.2 

6.58 
39.8 
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Although this performance was not significantly different than the Kalman filter (p = 0.643), it 

was dependent on 500 ms of past EMG signal (10 bins). Without history, the overall average CC 

was 0.66 and 0.68 with an RMSE of 0.157 and 0.161 for monkey L and R respectively. This is a 

significant drop compared to the Kalman filter (p < 0.001). Additionally, the Kalman filter was 

smoother than the Wiener filter with or without history, with an average jitter of 1.7 and 1.4 in 

monkeys L and R, respectively, compared to 2.3 and 1.9 for the Wiener filter (2.2 and 2.1 for the 

Wiener filter without history).  

Table 2.2 shows the performance metrics for all sessions conducted with monkeys L and 

R. The Wiener filter with and without history had significantly higher jitter than the Kalman filter 

(p < 0.01).  This is expected due to the Kalman filter’s trajectory model, which is based on a 

physics model of the kinematics of the finger. Thus, although the performance of the Wiener filter 

can be equal to that of the Kalman filter, it requires history. Other studies have previously shown 

Table 2.2 Offline decoding performance metrics for Monkeys L and R 
 Kalman Filter Wiener Filter with 

History 
Wiener Filter 

without History 

Monkey Session CC RMSE 
Jitter 
(#SC/

s) 
CC RMSE 

Jitter 
(#SC/

s) 
CC RMSE 

Jitter 
(#SC/

s) 
 
 

L 

1 
2 
3 
4 

Mean 

0.88 
0.89 
0.91 
0.87 
0.89 

0.12 
0.10 
0.095 
0.14 
0.11 

1.6 
1.7 
1.5 
1.9 
1.7 

0.92 
0.90 
0.91 
0.89 
0.91 

0.083 
0.082 
0.079 
0.11 
0.088 

2.2 
2.4 
1.9 
2.5 
2.3 

0.64 
0.64 
0.67 
0.69 
0.66 

0.17 
0.15 
0.15 
0.17 
0.16 

2.0 
1.8 
2.1 
2.8 
2.2 

    

 
R 

 

1 
2 
3 

Mean 

0.85 
0.84 
0.82 
0.84 

0.15 
0.13 
0.14 
0.14 

1.5 
1.3 
1.5 
1.4 

0.83 
0.85 
0.83 
0.83 

0.13 
0.11 
0.11 
0.12 

2.1 
1.7 
1.9 
1.9 

0.66 
0.70 
0.68 
0.68 

0.18 
0.15 
0.15 
0.16 

2.3 
2.0 
1.8 
2.1 

    
Overall Mean 0.87 0.12 1.6 0.88 0.10 2.1 0.67 0.16 2.1 
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that adding neural data from hundreds of milliseconds in the past can significantly lower 

performance (Cunningham et al., 2011). 

2.4.3 Online Continuous Control 

During online control sessions, both monkeys performed the center-out task in hand control 

(controlled by flex sensor) and neural control (controlled by EMG signals) form. A summary of 

the overall average success rate, average acquisition time, and throughput for Kalman and Weiner 

filters can be seen in tables 3 and 4. For monkey L, the Kalman filter in session 1 used 50ms bins 

of neural data, while session 2 used 100 ms bins. The target could randomly appear in 6 different 

locations, 3 flexion and 3 extension targets after the center target was hit. Animals had to hold 

their hand within the acquired target space for 500- 700ms to receive the reward. Fig. 2.5 shows a 

sample of the online neural control task performance with the Kalman filter for both monkeys and 

 
 
Figure 2.4 Offline continuous reconstruction. Traces were produced from one of the recording 
sessions from each monkey. CC, RMSE, and Jitter values are mean values for each filter across 
datasets. The top traces in each column are the offline predicted reconstructions (red) overlapping 
on the actual finger position (blue) for the Kalman filter. Middle traces illustrate the same 
reconstructions for the Wiener filter with 500ms of history and the bottom traces show the 
reconstruction for the Wiener filter without history (using a single 50 ms bin). 
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the Wiener filter for monkey R. Both the estimated finger position and the actual finger position 

are displayed over time. 

For a comparison baseline, the animals had an overall average success rate of 98.50% using 

hand control, and an average time to target of 1.25 sec. The animals were able to acquire targets 

with a high success rate using an online Kalman filter, albeit at a slower pace with a significant 

difference between the time to success compared to hand control (p < 0.001). Specifically, their 

overall success rate was 96.70% with an average time to target of 1.61 sec. This was 77.64% as 

fast as hand control. The overall throughput was 0.77 bits/s, which was 93.90% of the throughput 

under hand control.  

For one animal, the Wiener filter with history was also used online, and resulted in a 

statistically significant smaller average throughput of 0.69 bits/s, 79.65% of the throughput under 

Kalman filter control (p < 0.001). The average success rate and acquisition time were not 

statistically different (p = 0.55, 0.27, respectively). However, on average the acquisition time for 

the Wiener filter was longer than the Kalman filter, 1.84 to 1.49 sec, even though statistical 

Table 2.3 Online Kalman filter task performance metrics for Monkeys L and R 
 

Success (%) Mean Time to 
Success (s) 

Throughput 
(bits/s) 

Jitter 
(# 

SC/s) 
Monkey Session Hand 

Control 
Neural 
Control 

Hand 
Control 

Neural 
Control 

Hand 
Control 

Neural 
Control 

Neural  
Control 

 
L 

1 
2 

Mean 

100 
94.3 
97.1 

96.3 
94.9 
95.6 

1.21 
1.31 
1.26 

1.66 
1.77 
1.72 

0.79 
0.71 
0.75 

0.68 
0.66 
0.67 

3.5 
4.7 
4.1 

 

R 

1 
2 
3 

Mean 

100 
99.9 
99.7 
99.9 

99.4 
97.0 
97.0 
97.8 

1.23 
1.24 
1.22 
1.23 

1.49 
1.50 
1.48 
1.49 

0.86 
0.92 
0.87 
0.88 

0.85 
0.88 
0.85 
0.86 

2.6 
3.2 
3.7 
3.2 

 
Overall Mean 98.5 96.7 1.25 1.61 0.82 0.77 3.6 
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significance was not met. This would tend to lower the Wiener filter’s throughput average, 

suggesting that the 500ms history did have some negative impact on the performance. Finally, 

similar to the cursor jitter measured offline, we found a significant difference between the Kalman 

filter and Wiener filter online in monkey R (p = 0.043). This suggests that orbiting behaviors may 

have played a role in longer target acquisition time, which resulted in lower throughput. For 

monkey L, only the online Kalman filter was implemented. 

 

Table 2.4 Online Wiener filter task performance metrics for Monkey R 
 Success (%) Mean Time to 

Success (s) 
Throughput 

(bits/s) 
Jitter 

(# SC/s) 
Monkey Session Hand 

Control 
Neural 
Control 

Hand 
Control 

Neural 
Control 

Hand 
Control 

Neural 
Control 

Neural  
Control 

 
R 

1 97.48 92.58 1.27 1.99 0.95 0.68 4.4 
2 99.55 98.20 1.14 1.68 0.96 0.69 4.7 

Mean 98.52 95.39 1.21 1.84 0.96 0.69 4.5 
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Figure 2.5 Online continuous control.  (a), (b) Traces in each row are the online predictions 
(red) overlapping on the actual finger positions (blue) for the Kalman filter in monkey L (a) 
and the Kalman and Wiener filter with history in monkey R (b), (c), respectively. Each trace 
also displays the target area, where height of the area represents the size of the virtual target, 
while the width of the area represents how long the virtual target was displayed. Green target 
areas denotes a successful target hit. 
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2.4.4 Recalibration Longevity 

Surface EMG is the standard control signal used in clinical myoelectric prostheses. 

However, surface EMG electrodes have some limitations that contribute to the rejection of 

myoelectric prosthetic use. Surface electrodes can shift on the skin, which can cause EMG 

instability (Young et al., 2011). Additionally, perspiration can alter the electrical impedance of the 

electrode such that the system’s performance reduces (Farina et al., 2014). This reduction in 

functionality can cost time for the user and add frustration to the usage of the prosthetic. Thus, a 

system where the EMG signal remains stable would be desirable.  

To assess the functional stability of the intramuscular EMG over time, the FDP and FDS 

RPNIs in monkey L were fed individually into a Wiener filter offline. This was done because the 

EDC RPNI was created at the same time as the IM-MES electrodes were implanted. Thus, a 

waiting period was required to allow the EDC RPNI to fully mature to produce EMG activity. 

Since the Kalman filter required both the extensor and flexor RPNI inputs to function, this 

prevented full evaluation of the recalibration longevity measurement. As an alternative, we used 

the Wiener filter to test the functional stability of individual flexor RPNIs.   

The Wiener filter decoder parameters were trained on an initial EMG recording day and 

reused on subsequent EMG recording days. As a comparison, decoding parameters were also 

recalibrated on the same days and CC and RMSE values were measured for both conditions 

(uncalibrated vs. recalibrated). Fig. 2.6a illustrates the performance of each RPNI, showing the 

change of CC and RMSE values over time (blue line). The red line indicates measured performance 

based on recalibrated decode parameters.  

For the FDP RPNI, CC values of the uncalibrated decoder were slightly lower compared 

to the calibrated decoder’s CC values for each day. Contrarily, the FDS RPNI did not have a 

significant change in CC values between uncalibrated and calibrated decoders (p = 0.165).  
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Figure 2.6 Functional stability and single unit activity.  (a) Decoding parameters were trained on Day 28 
for monkey L and reused to decode finger position on subsequent days. In (a) blue line denotes the 
decoding performance for the FDP and FDS RPNI over time for uncalibrated decoder parameters. Red 
line indicates decoding performance over time after recalibration. (b) 100 examples of one motor unit 
were extracted and averaged once a week for 8 weeks. 
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While correlation coefficients are not sensitive to large changes in amplitude, this result suggests 

that the timing of decoded flexion and extension was consistent across days without recalibration. 

While the signals may provide some form of stable functionality over time, they may also cause 

an undesired overshoot at the minimum and maximum finger positions.  To investigate this further, 

the RMSE showed clear visible changes over time. Both the FDP and FDS had significant 

difference between RMSE values (p < 0.05).  

Looking more closely at the data, there was an increase in error centered on day 79. 

Average single units from the FDP RPNI are shown across time throughout this period (Fig. 2.6b). 

100 examples of a chosen motor unit during consistent near zero velocity and constant position 

behavior were extracted from the FDP RPNI. The extracted single unit’s amplitude changed by a 

maximum factor of +18.65% and a minimum factor of –25.85% compared to its mean over the 

recorded time period, which was a significant change (p < 0.05). While we do not know for certain 

that this was the same unit, the changes correspond well to increased errors in the decode, with 

day 79 showing the most significant change. Overall, this suggests that intramuscular EMG signal 

amplitude varies over time, which may be due to either RPNIs still maturing 16+ months post-

implantation, or the IM-MES electrodes shifting during the monkey’s non-task related free time. 

This varying amplitude would not be desired in a practical myoelectric control system. 

 Discussion 

In this study, we demonstrated continuous control of finger position using intramuscular 

EMG electrodes in RPNIs using a Kalman filter. To the best of our knowledge, this is the first 

demonstration of RPNI continuous control of all four finger movements using indwelling 

electrodes. Previous continuous decoding studies have either used percutaneous fine-wire 

electrodes or surface electrodes to obtain EMG signals (Ameri, Kamavuako, Scheme, Englehart, 
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& Parker, 2014; Hahne et al., 2014; Jiang et al., 2014; Smith et al., 2015), with few decoding 

isolated finger movements (Kamavuako, Englehart, Jensen, & Farina, 2012; Ngeo et al., 2014). 

Other studies using indwelling electrodes have only implemented classifiers or proportional 

control algorithms (Baker, Scheme, Englehart, Hutchinson, & Greger, 2010; Pasquina et al., 2015).  

Overall offline, the Kalman filter had a smoother position output compared to the Wiener 

filter for both monkeys. Online we did not see a significant difference in the jitter between the 

Kalman and Wiener filter in monkey R, but qualitatively, we can see that control of the virtual 

hand was more difficult. This reflects the Wiener filter’s significantly lower throughput compared 

to the Kalman filter’s throughput. Thus, in a practical system, the Wiener filter with history would 

not provide the appropriate control for finger-level fine motor skills.   

Though the Kalman filter demonstrated the ability to provide continuous finger control, 

there are some challenges that need to be addressed. Primarily, we limited the number of DOFs to 

a simple open-close to demonstrate the capabilities of RPNIs as a proof of concept. To add more 

movement types, more RPNIs would need to be created with separated fascicles from each nerve. 

Studies have shown that distinct somatotopic organization occurs within peripheral nerves 

(Stewart, 2003). For example, nerve fibers innervating a specific muscle remain grouped together 

throughout most of the nerve. This is promising for separating nerves into discrete functional 

RPNIs and then potentially recording independent signals, increasing the number of DOF control 

sources. Additionally, monkeys will need to be trained on a new behavioral task that encompasses 

different grasp movements. Future studies are needed to measure and compare performances 

between different grasp movements using multiple RPNIs, and the question of individuated finger 

movements may ultimately be easier to address in humans. 
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Secondly, the Kalman filter reconstruction caused overshoots during some periods of flex 

and extend movements. This may indicate that the assumptions of a linear relationship between 

EMG activity and finger kinematics are erroneous. Nonlinear methods such as artificial neural 

networks, support vector regression, and kernel-ridge regression have been evaluated using surface 

EMG (Ameri et al., 2014; Hahne et al., 2014; Muceli & Farina, 2012; Ngeo et al., 2014), but no 

physiological model of the EMG to kinematic states has been used for prosthetic control. The 

results from Ngeo et al., 2014, show that a Gaussian process regression had an average correlation 

coefficient of 0.84 using 8 surface electrodes. For a single DOF, their best estimate for the MCP, 

PIP, and DIP joints were 0.92, 0.85, and 0.79, respectively. Comparatively, the Kalman filter for 

a single DOF performs just as well as this decoder with 2 intramuscular bipolar electrodes. 

Although RPNIs may not offer higher regression accuracy, they are able to produce relevant EMG 

signals from peripheral nerves, which could ultimately lead to many more independent EMG 

signals associated with missing or deep musculature, unlike surface EMG. The small number of 

nonlinear studies may be attributed to the recent interest of muscle synergies and how muscle 

activity during movement can be broken down into linear combinations (d’Avella, Saltiel, & Bizzi, 

2003). However, muscle synergies may not be as important in intramuscular EMG because of the 

single motor unit activity that can be picked up from intramuscular electrodes. Most studies have 

used Hill-based muscle models or other biomechanical models to predict forces of one or two 

DOFs (Cavallaro, Rosen, Perry, & Burns, 2006; Ding, Zhao, Xiong, & Han, 2011; Sartori, 

Reggiani, Mezzato, & Pagello, 2009). These studies have reported high motor performance, 

demonstrating that nonlinear algorithms could provide a better solution to current clinical control 

algorithms.  Thus, more exploration is needed to investigate potential nonlinear relationships that 

may exist between intramuscular EMG and finger kinematics.    
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Furthermore, we investigated the recalibration longevity in order to assess the stability of 

intramuscular EMG. Surface EMG has numerous limitations, discussed earlier, which prevent it 

from being an ideal solution to myoelectric prosthesis control. In this study, we purposefully used 

only electrodes with a strong existing safety record in humans (Memberg, Stage, et al., 2014), to 

enable fast translation. These bipolar electrodes had large contact sizes and low impedance, but 

were limited to a small number of channels due to the wiring. To investigate cross-talk issues, one 

bipolar electrode was implanted into an intact extensor carpi radialis (ECR) muscle as a control. 

Signals compared between the EDC RPNI and intact ECR muscle showed different amplitudes 

and shape. Additionally, the EDC RPNI fired more frequently during the behavioral movements 

than the ECR. Thus, any existence of cross-talk between the bipolar electrodes appeared to be 

minimal.   

The higher SNR reported here and by others (Ortiz-Catalan, Hakansson, & Branemark, 

2014; Weir et al., 2009), motivates additional development in multi-channel intramuscular EMG 

electrodes, as it is very likely that additional channels could provide anatomically precise 

information about additional joints simultaneously. For example, multi-channel intramuscular thin 

film electrodes have been demonstrated in both animals and humans for multi-motor unit 

recordings (Farina, Yoshida, Stieglitz, & Koch, 2008; Muceli et al., 2015). Single units were 

generally visible on even these macroscopic electrodes, and remained high throughout 7 months 

of implantation in two animals. However, single unit waveforms were not identical from day to 

day. Quantitatively, they varied much less than Utah array waveforms (Chestek et al., 2011), and 

there were no systematic changes indicative of progressive scarring. However, as EMG electrodes 

get smaller and more numerous over time, the biological environment around them may shift 

similar to brain electrodes. This may require adaptive approaches to stabilize the control signal 
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(Bishop et al., 2014; Li, O’Doherty, Lebedev, & Nicolelis, 2011), or further investigation for 

different electrode designs to mitigate this effect.  

Overall, these results suggest that future implantable systems may be more able to precisely 

control the position of individual joints. While many advanced prosthetic hands have fully 

articulated fingers and other joints (Touch Bionics, Deka), most are not natively capable of 

position-based control. Future designs may need to take the availability of these novel control 

signals into account, for example in making hands that can sense their current position for real 

time adjustment. For future studies, we would like to (1) increase the number of EMG electrodes 

that can be implanted simultaneously to obtain higher functionality, and (2) evaluate the use and 

controllability of multiple DOFs both individually and in combination. Combined with 

intramuscular recording of EMG, Kalman filter based positional control may provide patients with 

more naturalistic movements of their prosthetic limb.    



43 
 

CHAPTER III 

Viability of Regenerative Peripheral Nerve Interfaces in 
Humans with Amputations 

 Abstract 

Peripheral nerves provide a promising source of motor control signals for neuroprosthetic 

devices because they are relatively easy to access and functionally selective. Unfortunately, the 

clinical utility of current peripheral nerve interfaces is limited due to their lack of long-term 

stability and low amplitude signals. In contrast, the Regenerative Peripheral Nerve Interface 

(RPNI) is biologically stable and serves as a functionally selective, bioamplifier of efferent motor 

action potentials. The RPNI is created by suturing a small muscle graft on the residual end of a 

peripheral nerve or fascicle. The muscle graft is reinnervated, creating a stable bioamplifier of 

nerve signals. In this study, we demonstrate the viability of RPNIs to provide high fidelity efferent 

motor signals in three human participants. 

Participant 1 (P1) underwent a proximal transradial amputation and implantation of nine 

RPNIs, while participant 2 (P2) and participant 3 (P3) had a distal transradial amputation with 

implantation of three and four RPNIs, respectively. Ultrasonography was used to visualize the 

RPNIs, and fine wire bipolar electrodes were percutaneously implanted in P1, P2, and P3. Later in 

a separate surgery, indwelling intramuscular bipolar electrodes were surgically implanted for P2 



44 
 

and P3. Efferent motor action potentials were then recorded from the RPNIs during volitional 

finger movements.  

Ultrasound demonstrated strong contractions of P1 and P2’s median RPNIs during flexion 

of the phantom thumb and P1’s ulnar RPNIs during small finger flexion. In P1, the median RPNI 

and ulnar RPNIs produced signals with a signal-to-noise ratio (SNR) of 4.62 and 3.80, 

respectively. In P2, the median RPNI and ulnar RPNI had an average SNR of 107 and 35.9, 

respectively, while P3’s median RPNI and ulnar RPNIs had an average SNR of 22.3 and 19.4, 

respectively. 

This study provides evidence that the transected peripheral nerves have reinnervated the 

RPNI muscle grafts allowing RPNIs to transduce and amplify efferent motor action potentials 

during volitional individual finger movements. Thus, RPNIs show promise in enhancing prosthetic 

rehabilitation in patients with limb loss.  

 Introduction 

Limb loss can dramatically alter an individual’s lifestyle and impede the ability to perform 

activities of daily living. Building a direct interface to the peripheral nervous system may be a 

viable option for providing intuitive control of a prosthesis. However, current peripheral nerve 

interfaces have limitations, which minimize their clinical utility. Electrodes placed within a 

peripheral nerve can record distinct efferent motor action potentials but can experience a decline 

in signal amplitude over time (Davis et al., 2016). In contrast, electrodes placed around a nerve 

have been successfully used in humans for more than two years. These electrodes can be used to 

stimulate efferent motor axons to control distal innervated muscles and afferent sensory axons to 

provide patients with a sense of touch and pressure while using a prosthesis (Tan et al., 2014). 
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However, recording specific efferent motor action potentials is challenging, limiting the number 

of independent control signals (Dweiri et al., 2017).  

Targeted muscle reinnervation (TMR) can provide multiple control signals by 

transferring divided peripheral nerves in a residual limb to intact local or regional muscles. 

Surface electromyography (EMG) is then used to record the efferent motor control signals (Zhou 

et al., 2007). With TMR, a normally innervated muscle must be partially denervated to provide a 

new target muscle for recording EMG signals from the implanted nerve. In addition, two or three 

nerves (median, radial, and ulnar) may be implanted into the same target muscle (e.g. pectoralis 

major muscle), making it difficult to record independent control signals from individual nerves 

or fascicles. Consequently, participants can control a limited number of independent, 

simultaneous movements (Cheesborough et al., 2015). 

To achieve both greater signal specificity and long-term signal stability, we have developed 

the Regenerative Peripheral Nerve Interface (RPNI). An RPNI is composed of a transected 

peripheral nerve, or peripheral nerve fascicle, that is implanted into a free muscle graft. The free 

muscle graft undergoes a three month process of regeneration, revascularization, and reinnervation 

by the implanted peripheral nerve. This creates a stable, peripheral nerve bioamplifier that 

produces high amplitude EMG signals which can be used to control a prosthetic device (Irwin et 

al., 2016; Kung et al., 2014; Ursu et al., 2016; Vu et al., 2018). Additionally, RPNIs have been 

shown to prevent and treat neuroma pain and phantom pain after amputation (Woo et al., 2016; 

Kubiak, Kemp, Cederna & Kung, In press). Here, we present initial results in three participants 

with upper extremity limb loss who have undergone RPNI implantation. 



46 
 

 Materials & Methods 

The Institutional Review Board at the University of Michigan approved this study, and 

each participant provided written and informed consent.   

3.3.1 RPNI Construction 

In this pilot study, three participants underwent RPNI surgery to treat neuroma and 

phantom pain. A 3 x 1.5 x 0.5 cm muscle graft was harvested from a healthy native donor 

muscle. The distal end of a transected peripheral nerve in the residual limb was isolated.  The 

end of the isolated nerve or nerve fascicle was implanted into the muscle graft and secured into 

position to create an enclosed biologic peripheral nerve interface. This procedure was then 

repeated to provide the desired number of RPNIs (Figure 3.1a). 
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3.3.2 Participant 1 (P1)  

P1 is a 45 year old male who sustained a left proximal transradial amputation. He 

presented 16 years postoperatively with severe, persistent neuroma pain that was inadequately 

treated using traditional techniques. In 2016, the patient underwent excision of his ulnar, median, 

and radial nerve neuromas at the level of his antecubital fossa. An intraneural dissection of the 

median, ulnar, and radial nerves was performed to isolate individual nerve fascicles. Four RPNIs 

were created on the median nerve, three RPNIs on the ulnar nerve, and two RPNIs on the radial 

nerve (Figure 3.1b, 3.2a). The RPNIs were created by harvesting free muscle grafts from the 

ipsilateral vastus lateralis muscle and then implanting the end of each divided nerve fascicle into 

a separate muscle graft. 

3.3.3 Participant 2 (P2) 

P2 is a 30 year old male who sustained a traumatic amputation of the right hand resulting 

in a right wrist disarticulation. He presented two years after his original injury with severe, 

persistent symptomatic neuromas of the median, ulnar, and dorsal radial sensory nerves. The 

pain limited his ability to wear his prosthesis. In 2015, P2 underwent resection of his median, 

ulnar and radial nerve neuromas in his distal forearm. One RPNI was created on each of these 

nerves using free skeletal muscle grafts from his ipsilateral vastus lateralis (Figure 3.2b).  

Figure 3.1 RPNI surgical construction and implantation, and P1’s electrode insertion. (a) A 
peripheral nerve in the residual limb is identified and isolated. The nerve is either used whole 
or is dissected into individual nerve fascicles by performing intraneural dissection. A muscle 
graft is then harvested from a regional or distant site. The nerve or fascicle is then sutured to 
the muscle graft and the graft is wrapped around the nerve and sutured together to form am 
RPNI. (b) Illustration of percutaneous bipolar hook electrodes embedded into the RPNI muscle 
belly and the remaining bicep and triceps muscles of P1 during acute sessions. Following 
electrode placement, the lead wires were plugged into a neural recording system. 



48 
 

 

 



49 
 

3.3.4 Participant 3 (P3) 

P3 is a 53 year old female who suffered a suspected urinary tract infection, leading to 

septic shock and acute renal failure. Her treatment was complicated by an IV extravasation of 

calcium into her right hand and forearm, leading to tissue necrosis and requiring a partial hand 

amputation. Her hand became contracted with limited flexion/extension, pronation/supination, 

and limited function. In 2017, P3 underwent a voluntary wrist disarticulation amputation. Free 

muscle grafts were extracted from the ipsilateral vastus lateralis. An RPNI was created on each 

of the median and radial nerves, while an intraneural dissection of the ulnar nerve was performed 

to create two RPNIs (Figure 3.2c).  

3.3.5 Electrophysiology 

P1, P2, and P3 participated in experimental sessions beginning four, six months, and 

eleven months post-RPNI surgery, respectively. Initiation of experimentation was based on 

patient availability and results from previous animal work which demonstrated that it took 

approximately three months for RPNIs to mature and stabilize (Irwin et al., 2016; Kung et al., 

2014). During each experiment, ultrasound imaging was performed to identify the RPNIs and to 

guide percutaneous placement of fine wire electrodes into the RPNIs (Natus Medical P/N 019-

475400). At the same time, fine wire electrodes were also placed percutaneously into innervated 

muscles in the residual limb (Figure 3.1b). The electrodes were removed at the completion of 

each session.  

Figure 3.2 RPNI surgical implantation. (a) Anatomical layout of P1’s RPNI surgical 
implantation. P1 had 9 RPNIs implanted: 4 for the median nerve, 3 for the ulnar nerve, and 2 
for the radial nerve. (b) Anatomical layout of P2’s RPNI surgical implantation. P2 had three 
RPNIs implanted, one on each of the median, ulnar, and dorsal radial sensory nerves. (c) 
Anatomical layout of P3’s RPNI surgical implantation. P3 had four RPNIs implanted, one on 
each of the median and radial nerve, and two on the ulnar nerve.  
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After obtaining RPNI signals and achieving prosthetic control with the fine wires, P2 and 

P3 elected to undergo surgical implantation of eight indwelling intramuscular bipolar electrodes 

(30.5 x 0.025 cm, Synapse Biomedical, Oberlin, OH, USA). The electrodes consist of two 

stainless steel leads coiled in a double helix formation and insulated with perfluoroalkoxy (PFA) 

material. For P2, electrode implantation was performed three years following the original RPNI 

surgery and five years following the original amputation. One electrode was implanted in each of 

the median and ulnar nerve RPNIs (Figure 3.3a) and six electrodes were implanted in residual 

muscle. For P3, electrode implantation was performed 12 months following the original RPNI 

and amputation surgery. P3 had three electrodes implanted in the RPNIs, and five were 

implanted in the residual muscle (see Table A.1 for details). No electrode was implanted into the 

dorsal radial sensory RPNI for either participant since it is a purely sensory nerve and transduces 

no efferent motor action potentials. A neural signal processor (NeuroPort, Blackrock 

Microsystems, Salt Lake City, UT, USA) filtered EMG signals from residual muscles and RPNIs 

between 3-7000 Hz (unity gain) and recorded the signals for offline analysis. For all three 

participants, EMG signal to noise ratio (SNR) was calculated offline. Specifically, the root mean 

square (RMS) of the EMG amplitude during maximal voluntary contraction (MVC) was divided 

by the RMS of the electrode’s noise floor seen during rest. The calculated SNR and MVC are 

averaged across two sessions with fine wire electrodes in P1 and three sessions with indwelling 

electrodes in P2 and P3. 
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3.3.6 Ultrasound Imaging and Recording 

In separate experimental sessions, a 15-6 MHz linear array ultrasound transducer 

(Sonosite X-Porte, Bothell, Washington, USA) was positioned along the transverse plane of the 

arm to locate and measure the size of the RPNIs in each participant. In addition, the subjects 

were asked to perform finger movements with their phantom hand, and the changes in the size 

and shape of the associated RPNIs were evaluated and visualized. P1 volitionally flexed and 

Figure 3.3 Electrode implantation for P2, and P3. (a) P2 underwent bipolar electrode 
implantation after several acute sessions. (Top) Surgical photos show the RPNIs three years 
post-implantation. (Middle) Example of wire insertion into the RPNI muscle graft (dashed 
line). (Bottom) Final connector setup after all electrodes have been implanted (Partially blurred 
to protect participant identification). (b) P3 underwent bipolar electrode implantation 
approximately 12 months post RPNI implantation. (Top) Surgical photos show the median 
RPNI, ulnar RPNI 1, and ulnar RPNI 2 before electrode implantation. (Middle) Example of 
wire insertion into the RPNI muscle graft (dashed line). (Bottom) Final connector setup after 
all electrodes have been implanted.  
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extended his phantom thumb at a self-paced frequency of 1.5 Hz for a duration of approximately 

13 seconds. Subsequently, he was asked to move his phantom index and then his phantom small 

finger in a similar manner. P2 had a distal transradial amputation and was asked to perform 

activities which required function of his absent intrinsic hand muscles. In particular, he 

volitionally flexed and extended his small finger metacarpal phalangeal (MCP) joint at ~0.5 Hz 

(self-paced) for approximately 16 seconds. Subsequently, he simultaneously flexed and extended 

his index and middle finger MCP joint, and then his thumb MCP joint. Each ultrasound video 

clip was evaluated qualitatively and quantitatively.  

To quantify the contraction of the RPNIs, frames at rest and at maximum volitional 

contraction (MVC) of each video were analyzed and the percent difference of pixel mean intensity 

(MI) and standard deviation (SD) between frames was calculated. Using Matlab (MathWorks, 

Natick, Massachusetts), the selected frames were segregated and labeled as rest or MVC. 

Subsequently, the manually traced RPNI region was extracted from each frame and the remaining 

area was identified as the “surrounding tissue”. Similar calculations of the pixel MI and SD were 

taken as well as the percent differences between frames. A Wilcoxon rank sum test was used to 

test for significance between the percent differences of the surrounding tissue and the percent 

differences of the traced RPNI regions. Ultrasound data was collected in two sessions in P1 and 

one session in P2.  

 Results 

3.4.1 P1  

P1’s median nerve RPNI grafts, located near the short head of the biceps brachii, 

demonstrated independent muscle contractions during attempted thumb metacarpophalangeal 
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(MCP)/interphalangeal (IP) and index finger proximal interphalangeal (PIP)/distal 

interphalangeal (DIP) joint flexion of the phantom limb. In particular, median RPNI one 

contracted for thumb flexion, while a combination of median RPNI one, two, three, and four 

contracted for index finger flexion (Figure 3.4a, 3.4b). These movements correlated anatomically 

to the level of amputation (Table A.2). Ultrasound imaging showed isolated median RPNI 

contractions with minimal movement of the surrounding tissue. For RPNI one, pixel changes 

were significantly larger within the RPNI than in the surrounding tissue during thumb flexion 

(MI = 8.34% vs. 1.20% p < .001, SD = 10.80% vs. 0.28% p < .001). Recorded EMG signals 

from RPNI one during thumb flexion demonstrated a signal to noise ratio (SNR) of 4.62 (Figure 

3.4c).  A subregion of median RPNI one also contracted for index finger movement, significantly 

more than surrounding tissue (MI = 4.49% vs. 0.18% p < .001, SD = 6.74% vs. 0.25% p = .002). 

Median RPNIs 2 to 4 were observed to make smaller contractions compared to median RPNI one 

during median nerve appropriate finger flexion and had mixed significant pixel changes 

compared to surrounding tissue (See Table 3.1). 

For both ulnar RPNI one and two, located near the long and medial heads of the triceps 

brachii, contractions were observed during attempted phantom small finger PIP/DIP joint flexion 

as expected. Pixel changes in ulnar RPNI one and two (MI = 12.8%, 1.24%, SD = 11.2%, 2.37%, 

respectively) were significantly larger than in the surrounding tissue (MI = 0.86%, 0.67% SD = 

0.33%, 0.16% p < .001 for all comparisons). Acute EMG was recorded from all three ulnar 

RPNIs with an average SNR of 3.80 during voluntary small finger contractions (Figure 3.4f). A 

subsection of ulnar RPNI one contracted for thumb MCP/IP joint flexions, while a subsection of 

ulnar RPNI two contracted for both thumb MCP/IP and index PIP/DIP joint flexions (Figure 

3.4d, 3.4e). Contractions of the ulnar nerve RPNIs are expected based on the ulnar nerve 
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innervation of both the adductor policis muscle and the deep head of the flexor policis brevis. 

The unexpected contraction for the index finger may be due to P1’s 16 year period without a 

hand, and no training with the virtual hand or the prosthesis, making certain volitional 

movements difficult to generate independently.  

3.4.2 P2  

Unlike P1, P2 had RPNIs placed in areas with residual innervated muscles controlling 

finger movement, prompting more reliance on surgically placed EMG leads (rather than 

ultrasound guided lead placement) for analysis. Figure 3.5a and 3.5d show sonographs of the 

median and ulnar RPNI captured 31 months post-RPNI surgery. P2’s median RPNI contracted 

appropriately during phantom thumb MCP joint flexion (Figure 3.5b). Specifically, the median 

RPNI changed shape independently of the adjacent residual tissue.  

Stronger evidence of reinnervation for both the ulnar and median RPNIs came from the 

surgically implanted bipolar electrodes. For the median RPNI, EMG recordings during voluntary 

thumb movements showed average peak-to-peak amplitude of 2.88 mV, with an SNR of 107 

(Figure 3.5c). During voluntary small finger movements, the average peak-to-peak amplitude from 

the ulnar RPNI was 501 µV, with an SNR of 35.9 (Figure 3.5e, 3.5f). As expected, minimal median 

RPNI EMG firing was detected during small finger flexion. For the ulnar RPNI, EMG firing 

appropriately occurred during flexion of the phantom thumb, while minimal activation occurred 

during index finger flexion as expected (Figure 3.6a). Additionally, both the median ulnar RPNIs 

activated for hand abduction and hand adduction, finger movements that are dominantly driven 

with intrinsic muscles. This suggest that RPNIs are receiving some level of efferent motor signals 

that would be absent due to amputation.  
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Table 3.1 Quantitative analysis of ultrasound videos for P1 and P2 

Participant Finger 
movement 

 Pixel 
mean 

intensity 
change 

(%) 

Pixel 
standard 
deviation 

change (%) 

Compared against 
surrounding tissue 
Mean intensity p – 

value, Standard 
deviation p – value 

P1 

Thumb 
MCP/IP 
flexion 

Surrounding 
Tissue 1.20 0.28 N/A 

Median RPNI 
1 8.34 10.80 p < .001, .001 

Median RPNI 
2 2.33 0.61 p < .001, = .005 

Median RPNI 
3 5.91 0.81 p = .03, < .001 

Median RPNI 
4 1.45 0.20 p = .74, .02 

Surrounding 
Tissue   1.23  0.52  N/A 

Ulnar RPNI 1 6.08 11.6 p = .47, < .001 
Surrounding 

Tissue   0.33  0.11  N/A 

Ulnar RPNI 2 1.11 0.16 p < .001, .001  

Index finger 
PIP/DIP 
flexion 

Surrounding 
Tissue 0.18 0.25 N/A 

Median RPNI 
1 4.49 6.74 p < .001, .002 

Median RPNI 
2 0.60 3.07 p = .52, < .001 

Median RPNI 
3 7.90 11.8 p = .005, < .001 

Median RPNI 
4 0.16 4.63 p = .18, .01 

Surrounding 
Tissue 0.28 0.09 N/A 

Ulnar RPNI 1 3.02 3.22 p = .06, .01 
Surrounding 

Tissue 0.08 0.62 N/A 

Ulnar RPNI 2 4.59 7.28 p < .001, .001 
CMC – Carpometacarpal joint, MCP – metacarpophalangeal joint, PIP – proximal interphalangeal joint, DIP – distal interphalangeal 
joint, IP – interphalangeal joint  
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Table 3.1 Quantitative analysis of ultrasound videos for P1 and P2 (continued) 

Participant Finger 
movement 

 
Pixel mean 
intensity 

change (%) 

Pixel 
standard 
deviation 

change (%) 

Compared against 
surrounding tissue 
Mean intensity p – 

value, Standard 
deviation p – value 

P1 

Small 
finger 

PIP/DIP 
flexion 

Surrounding 
Tissue 0.02 0.24 N/A 

Median 
RPNI 1 2.01 1.02  p = .008, .48 

Median 
RPNI 2 1.41 2.20 p = .005, < .001 

Median 
RPNI 3 0.64 0.19 p = .009, .005 

Median 
RPNI 4 0.57 2.03 p = .50, .01 

Surrounding 
Tissue 0.86 0.33  N/A 

Ulnar RPNI 
1 12.8 11.2 p < .001, .001 

Surrounding 
Tissue  0.67 0.16 N/A  

Ulnar RPNI 
2 1.24 2.37 p < .001, .001 

P2 

Thumb 
CMC/MCP 

flexion 

Surrounding 
Tissue 1.13 0.47 N/A 

Median 
RPNI 16.3 8.88 p = .001, .002 

Surrounding 
Tissue 2.08 6.66 N/A 

Ulnar RPNI 4.22 1.73 p = .02, .004 

Index and 
Middle 

finger MCP 
flexion 

Surrounding 
Tissue 3.75 0.67 N/A 

Median 
RPNI 8.47 11.4 p = 0.07, 0.002 

Surrounding 
Tissue 3.94 0.93 N/A 

Ulnar RPNI 1.02 0.64 p = .004, .16 

Small 
finger MCP 

flexion 

Surrounding 
Tissue 0.30 1.22 N/A 

Median 
RPNI 6.79 3.17 p = .01,  .07 

Surrounding 
Tissue 0.86 0.67 N/A 

Ulnar RPNI 3.70 3.21 p < .001, .001 
CMC – Carpometacarpal joint, MCP – metacarpophalangeal joint, PIP – proximal interphalangeal joint, DIP – distal interphalangeal 
joint, IP – interphalangeal joint  
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Figure 3.4 P1’s RPNI sonograms, motor map, and electrophysiology.  (a), (d) P1’s median and 
ulnar RPNI sonograms captured 19 months post-RPNI surgery. Highlighted areas on the 
sonogram and hand map (b), (e) show which region of the RPNIs contracted and for what 
finger, respectively. (a), (b) The median RPNIs contracted during thumb MCP/IP and index 
finger PIP/DIP joint flexion. In particular, median RPNI 1 strongly contracted during thumb 
MCP/IP joint flexion (yellow), while different regions of median RPNI 1, 2, 3, and 4 contracted 
during index finger PIP/DIP joint flexion (cyan). A subsection of median RPNI 1, highlighted 
green, contracted for either thumb MCP/IP or index finger PIP/DIP joint flexion. (c) A sample 
of median RPNI 1’s EMG signals (blue) recorded after cued thumb MCP/IP joint movement 
(red dashed line). (d), (e) The ulnar RPNI 1 and 2 contracted during small finger PIP/DIP joint 
flexion (yellow), while a subsection of both RPNI grafts contracted during thumb MCP/IP joint 
flexion (green). Additionally, a subsection of ulnar RPNI 2 contracted for index finger PIP/DIP 
joint flexion (cyan). (f) A sample of EMG signals (blue) recorded after cued small finger 
PIP/DIP movement (red dashed line). 
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3.4.3 P3 

Similar to P2, evidence of RPNI reinnervation in P3 relied more on surgically implanted 

electrodes since P3’s RPNIs were also placed within areas of residual muscles innervated for finger 

movement. All three RPNIs were located under ultrasound approximately 16 months post-RPNI 

surgery and 4 months post-indwelling electrode surgery Figure (3.5g, 3.5j). EMG was recorded on 

all three implanted RPNIs. Specifically, the median RPNI strongly activated for thumb IP joint 

flexion (Figure 3.5h), while ulnar RPNI 1 and 2 activated for small finger flexion (Figure 3.5k). 

On average, EMG recordings for the median RPNI had a peak-to-peak amplitude of 649 µV, and 

SNR of 22.3 (Figure 3.5i). For the ulnar RPNI 1 and 2 the average peak-to-peak amplitude was 

386 µV and 474 µV with an SNR of 19.4 and 19.5, respectively (Figure 3.5l). As expected, 

minimal activation occurred during small finger flexion for the median RPNI, while both ulnar 

RPNIs had little to no activation during index finger movement (Figure 3.6b). Like P2, RPNI EMG 

activation occurred during cued hand abduction and hand adduction movements. Specifically, 

ulnar RPNI 2 strongly activated during hand adduction as well as hand abduction. Additionally, 

ulnar RPNI 2 activated for thumb CMC/MCP joint flexion, which further suggests that RPNIs are 

receiving missing intrinsic motor signals  
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Figure 3.5 P2 and P3’s RPNI sonograms, motor map, and electrophysiology.  (a), (d) P2’s 
median and ulnar RPNI sonograms captured 31 months post-RPNI surgery. (a), (b) The median 
RPNI contracted during thumb MCP joint flexion (yellow). (c) A sample of EMG signals 
recorded after cued thumb movement (red dashed line). (d), (e) Contraction of surrounding 
tissue obscured any obvious contractions of the ulnar RPNI during small finger MCP joint 
flexion (cyan). (f) However, a sample of ulnar RPNI EMG signals (blue) were recorded after 
cued small finger movement (red dashed line). (g), (j) P3’s median and ulnar RPNI sonograms 
captured 16 months post-RPNI surgery and 4 months post-indwelling electrode surgery. (g), 
(h), (j), (k) Like P1’s ulnar RPNI, contraction of surrounding tissue obscured any obvious 
contractions of P3’s RPNIs. (i), (l) However, EMG signals (blue) were recorded after cued 
thumb movement and small finger movement (red dashed line) in the median and ulnar RPNIs, 
respectively.  
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 Discussion 

 We have demonstrated that RPNIs are an effective peripheral nerve interface to provide 

efferent motor signals for control of prosthetic devices. The RPNI amplifies efferent nerve 

signals to provide favorable SNRs for high fidelity control of both extrinsic and intrinsic hand 

Figure 3.6 P2 and P3’s RPNI mean absolute value (MAV) signals during six different finger 
movements. (a) P2’s median and ulnar RPNI MAV signals during Thumb CMC/MCP joint 
flexions, Thumb IP joint flexion, index MCP/PIP/DIP joint flexions, small MCP/PIP/DIP joint 
flexions, hand abduction and adduction movements. Each median (maize) and ulnar (blue) 
trace is averaged across 5-6 trials from a single experimental block. P2’s median and ulnar 
RPNIs activated the strongest during anatomically appropriate movements. (b) P3’s median 
ulnar RPNI 1 and ulnar RPNI 2 MAV signals during Thumb CMC/MCP joint flexions, Thumb 
IP joint flexion, index MCP/PIP/DIP joint flexions, small MCP/PIP/DIP joint flexions, hand 
abduction and adduction movements. The median (blue), ulnar 1 (maize), and ulnar 2 (green) 
traces are averaged across 10 trials from a single experimental block. Like P2, P3’s RPNIs 
activated for anatomically appropriate movements. 
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functions. The SNR of the recorded EMG had a mean of 4.21 in P1, a mean of 71.5 in P2, and a 

mean of 20.4 in P3. The wide SNR gap between P1 versus P2, P3 is mainly due to fine wires 

versus implanted indwelling wires, while the difference between P2 and P3’s measured SNR 

may be due to the period of reinnervation. P2’s nerves had two plus years to reinnervate his 

muscle grafts before electrode implantation. Nonetheless, P2 and P3’s SNR were substantially 

larger for RPNIs with implanted bipolar electrodes than measured SNR in nerve cuff electrodes 

or intraneural probes (Sahin et al., 1997; Wendelken et al., 2017). Intraneural probes, such as the 

Utah Slanted Electrode Array, can provide larger signals, but they do not remain stable over time 

(Wendelken et al., 2017). In comparison, RPNIs have remained a stable peripheral nerve 

interface in P1, P2 and P3 for two, three and one year(s), respectively. The chronic bipolar 

electrodes used in this study are similar to those that have been previously observed to record 

stable EMG for up to 7.5 years (Memberg, Polasek, et al., 2014). As P2 and P3 remain 

implanted, we hypothesize that RPNI signals will continue to demonstrate stability over the 

course of their implantation.   

With ultrasound guidance, we demonstrated at the proximal transradial level that 

different subregions of each RPNI contracted for different volitional movements. This is not 

surprising since the reinnervated muscle of the RPNI will have different single motor units 

reinnervating distinct portions of the free muscle graft. With surgically implanted indwelling 

electrodes at the distal transradial level, we have shown that RPNI EMG activation occurred 

during specific intrinsic hand movements. Together, this suggests that RPNIs are functionally 

selective to a certain degree. To gain even greater selectivity for prosthetic control, electrodes 

with more recording sites within RPNIs can theoretically provide enhanced signaling. In contrast 

to intraneural electrodes, which require numerous recording sites a few hundred microns apart, 
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electrodes in RPNIs could have recording sites millimeters apart to record different efferent 

motor control signals. 

In the past, investigators have provided prosthetic control signals by interfacing with 

muscles in the residual limb. This strategy has provided reasonable signal amplitude and 

demonstrations of some control of a prosthetic limb in patients undergoing transradial 

amputations (Ajiboye & Weir, 2005; Cipriani et al., 2011; Jiang et al., 2014; Li, Schultz, & 

Kuiken, 2010; Smith et al., 2015). However, when intrinsic hand muscles and extrinsic flexors 

and extensors of the fingers are absent, there is no effective way to obtain these control signals 

without directly interfacing with the peripheral nerves. RPNIs have provided an alternative 

where extracting efferent motor action potentials from the peripheral nerve is possible. 

Furthermore, we did not need to divide any motor branches to any of the residual muscles of the 

upper arm, and thus did not create any new denervated muscle, as is necessary in targeted muscle 

reinnervation (Kuiken et al., 2009).  

We have demonstrated that RPNIs can be used to record efferent motor nerve action 

potentials at both the intrinsic and extrinsic levels. RPNIs have shown proficiency in amplifying 

motor nerve signals, enabling motor selectivity, and remain a stable interface over time. Thus, the 

RPNI technique combined with a wireless recording/stimulation device may provide a viable 

option for future clinical prosthetic technology and greatly improve the quality of life for patients 

with limb loss.
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CHAPTER IV 

Real-Time Myoelectric Prosthesis Control with Regenerative 
Peripheral Nerve Interfaces in Humans with Amputations 

 Abstract 

Normal hand function requires articulation of multiple degree of freedom (DOF) joint 

control at high accuracy and precision. Current state of the art prosthetic hand controllers in the 

past decade have greatly increased hand functionality for prosthetic users. However, these 

controllers can only move the hand in sequential and discrete patterns. Proportional control and 

regression-based algorithms have been applied to allow simultaneous and continuous control, but 

the number of controllable DOFs dwindles as the number of available control sites disappear due 

to amputation. Thus, a combination of dynamic continuous controllers along with stable peripheral 

nerve interfaces are needed to be able to reach the level of normal hand functionality. Here, we 

address these issues by investigating the use of regenerative peripheral nerve interface (RPNI) 

signals for simultaneous and continues control of one degree of freedom finger and two degree of 

freedom thumb movement across two participants with transradial amputations. Participants 

reported in this chapter are P2 and P3 from chapter III. Both participants successfully hit targets 

during a center-out target task with 92.4 ± 2.3% accuracy, controlling RPNI-driven one DOF finger 

movements. Comparably, non-RPNI driven finger movement had similar accuracy and 



64 
 

performance. Without recalibrating parameter coefficients, no decreasing trend in motor 

performance was seen for all one DOF finger control across 300 days for P2 and 40 days for P3, 

suggesting that RPNIs can generate robust control signals from  day to day. Lastly, using RPNI-

driven control, P2 and P3 successfully manipulated a two DOF virtual and physical thumb with 

96.4 ± 2.5% accuracy. This study demonstrates that RPNIs are capable of robust continuous 

control of one and two degree of freedom finger and thumb movements. RPNIs may be a viable 

option to advance peripheral nerve interfaces into clinical reality and enhance neuroprosthetic 

technology for people with limb loss. 

 Introduction 

The gold standard for upper-limb neural prostheses is to replace the capabilities and 

functionalities of an intact human hand and arm. The human hand has 27 degrees of freedom, 4 in 

each finger, 5 for the thumb and 6 for the wrist (ElKoura & Singh, 2003). Beginning in the 1950s, 

the first neural-based controlled hand prosthesis was introduced. The myoelectric prosthesis, 

which utilizes the user’s muscle activity as the control source, allowed users to more intuitively 

control their prosthetic hand (Battye et al., 1955). However, the technology was severely limited 

to one degree of freedom hand open/close. Since then, the advancement of myoelectric prostheses 

have gradually increased and has become a commercialized standard option for upper-limb 

amputations. Unfortunately, like body-powered hooks, myoelectric prostheses have limitations 

that have prevented them from reaching the gold standard of full hand restoration. Particularly, 

myoelectric interfaces are restricted to gross movements, and lack robust capabilities to control 

multiple independent finger movements. This is mainly due to the myoelectric interface setup and 

the interface-dependent control architecture  
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 The control architecture of the 1960s involved using an EMG signal’s amplitude, or rate 

of change of one to two channels to directly control a simple one degree of freedom movement 

(e.g. hand open/closed) and to switch between other states of movement (Scott and Dorcas, 1966; 

Childress 1980). Once a movement is selected, the velocity was either fixed at a certain rate or 

proportionally controlled. By the 1990s, the paradigm shifted to machine learning techniques, 

which was data driven but provided users with increased functionality and more intuitive control 

(Hudgins et al., 1993). As described in chapter 2.2, these algorithms can be either discrete or 

continuous, with continuous algorithms allowing simultaneous and proportional control. However, 

discrete algorithms have gain more popularity in the past two decades because of its more robust 

feature. As a result, they have shifted from use in a research lab to more use in a clinical research 

setting. One of many reasons why discrete algorithms are now the state of the art technology is 

that myoelectric interfaces continue to limit the advancement of the control architecture.   

As described in chapter 3.2, advancement in peripheral nerve interface technology has 

shown promising avenues to greater prosthetic functionality in the clinical setting. For example, 

discrete algorithms in combination with TMR surgery has shown greater performance in prosthesis 

functionality than conventional control (Hargrove et al., 2017). Another study has tested TMR 

with more physiologically based algorithms to gain simultaneous and proportional control of 

multi-degree of freedom arm and hand control (Farina et al., 2017). Similarly, intraneural 

electrodes combined with regression-based machine learning techniques have shown to achieve 

simultaneous and proportional multi-DOF control but at the finger level (Wendelken et al., 2017). 

However, as mentioned before, these peripheral interface technologies have their shortcomings in 

providing both signal selectivity and signal stability at the same time. Like myoelectric interfaces, 

this limits their capabilities of reaching the gold standard of prosthesis technology. In this chapter, 
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we address these issues by investigating the efficacy of RPNIs signals to simultaneously and 

continuously predict end point finger dynamics in real-time. In particular, two participants with 

implanted RPNIs controlled one DOF finger and two DOF thumb movements with high accuracy 

with a virtual and physical prosthesis. Additionally, no recalibration motor performance remained 

high up to 12 months, demonstrating robust signal stability and fidelity. Thus, RPNIs may be a 

viable option to propel peripheral nerve interfaces to have a greater impact on people with limb 

loss. 

 Materials & Methods 

This study was approved by the Institutional Review Board at the University of Michigan 

and each participant provided written and informed consent.   

4.3.1 RPNI Construction, Implantation and Participants 

Refer to chapter 3.3.1 for details on RPNI construction and subject implantation. 

Participants P2 and P3 will be reported in this chapter.  

4.3.2 Electrophysiology 

Refer to chapter 3.3.2 for details on the implantation of indwelling bipolar electrodes and 

the recording system used to obtain EMG signals. 

4.3.3 Online Prosthesis Control 

A continuous task was conducted to measure motor performance. Each task was split 

between two phases, a training phase and a decoding phase.  

For the continuous task training phase, participants performed a bilateral mirrored 

behavioral task in which finger position from their intact hand and EMG data from their amputated 
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limb were recorded (Muceli & Farina, 2012). Participants donned a glove embedded with five flex 

sensors (Spectra Symbol) on their intact hand to measure finger position. Using the glove, they 

controlled a virtual prosthetic hand generated by MuJoCo software and followed a visual target 

during a center-out target task (Figure 4b) (Todorov, Erez, & Tassa, 2012). Participants followed 

the visual target for 2-5 min (~50-200 trials), and held the fingers of their intact hand and phantom 

hand within the target for one second. The target color would turn green if the participant 

successfully placed the virtual finger within the target radius. Additionally, each trial was labeled 

success if the participant successfully held the finger within the target.  

To train one degree of freedom (DOF) finger control, P2 and P3 were asked to volitionally 

move the following joints: thumb interphalangeal (IP) joint, thumb carpometacarpal 

(CMC)/metacarpophalangeal (MCP) joints (opposition/reposition), index MCP/proximal 

interphalangeal (PIP)/distal interphalangeal (DIP) joints, and small MCP/PIP/DIP joints. To train 

two DOF thumb control, P2 and P3 were asked to volitionally move their thumb CMC/MCP and 

IP joints separately, then all together. Because the glove did not measure thumb opposition, a real-

time computer (Matlab xPC Target) controlled the movement of the virtual finger and P2 and P3 

were instructed to follow along. Additionally, P3 followed this training protocol for all her training 

phases for each finger, while P2 followed this protocol for some of his training phases. All 

participants performed at least one session of contralateral hand glove control of the virtual task 

for motor performance comparison.      

During this training phase, a neural signal processor (NeuroPort, Blackrock Microsystems, 

Salt Lake City, UT, USA) filtered EMG signals from residual muscles and RPNIs between 3 to 

7000 Hz (unity gain) and recorded the signals for offline analysis.  The signals were then sent to 

xPC Target where they were further filtered from 100-500 Hz. The real-time computer calculated 
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the mean absolute value (MAV) from the EMG waveform (Zhou et al., 2007). Additionally, the 

real-time computer received and smoothed the finger position data from the glove. Both the 

temporal features and the finger position data were stored in Matlab to train a position/velocity 

Kalman filter (described in detail in Chapter 2.3), a machine learning algorithm previously shown 

to effectively decode RPNI signals (Vu et al., 2018). A separate computer smoothed the stored 

MAV feature and finger position in successive 50 ms bins for P2, and 100 ms bins for P3 and 

calculated Kalman filter matrix coefficients. Offline Kalman filter analysis showed that 100 ms 

bins gave P3 the best decoding performance. The coefficients were then uploaded to the real-time 

computer for use during the decoding phase. For one degree of freedom (DOF), P2 and P3’s 

decoding features were extracted from one RPNI and an extensor channel, while for two DOF 

control, decoding features were extracted from all RPNIs, and all extensor channels available 

(Table 4.1).  

During the decoding phase, the Kalman filter allowed participants to volitionally control 

the virtual prosthetic finger in real-time during the center-out target task. The participants 

performed the same task but without the data glove. The neural signal processor sent the filtered 

EMG signals from the residual muscles and RPNIs to the xPC target where the MAV features 

were calculated, smoothed, and used to decode (predict) the participant’s volitional movement in 

real time. Participants used this decoder to control the virtual prosthetic finger between 20 to 100 

trials. For one degree of freedom movements, participants were required to hold the finger within 

2 cm targets for 1 second. During the two degree of freedom control, participants were required to 

hold within 3 cm targets for 500 ms. The physical LUKE arm (DEKA, Manchester, NH, USA) 

was used in place of the virtual prosthesis for some of P2’s trials.  
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For real-time performance metrics, we calculated throughput, described by Fitts’s law 

(Soukoreff & MacKenzie, 2004; Thompson et al., 2014), average time to success, and average 

success percentage (see Chapter 2.3 for detailed equations of Fitt’s law). Performance data shown 

comes from three experimental blocks in P2 and four experimental blocks in P3.  

To measure signal stability of the indwelling wires, Kalman filter matrix coefficients were 

calculated for one DOF finger movements as the baseline training session and reused across days. 

P2 and P3 performed the same target hitting task, and the real-time performance metrics mentioned 

above were calculated for each day. Data shown comes from nine sessions in P2 and six sessions 

in P3 across 300 and 40 days, respectively. Two-sample t-tests were used to evaluate differences 

between no recalibration and recalibration motor performance, and a Mann-Kendall test was used 

to evaluate increasing or decreasing trends across days. Significance was evaluated at α = 0.05 for 

all t-tests. Means are reported as ± standard error. Error bars in figures represent standard error.   

Table 4.1 Muscles Used to Train One DOF and Two DOF Movement Decode Parameters  
ONE DOF MOVEMENT 

Participant Finger Agonist Muscle Antagonist Muscle 

P2 

Thumb IP joint Median RPNI EPL 
Thumb  

CMC/MCP joints Ulnar RPNI EPL 

Index finger joints FDP Index EDC 
Small finger joints Ulnar RPNI EDC 

P3 

Thumb IP joint Median RPNI EDC 
Thumb  

CMC/MCP joints Ulnar RPNI 2 EDC 

Index finger joints FDP Index EDC or EPL 
Small finger joints Ulnar RPNI 1 EPL 

TWO DOF MOVEMENT 
Participant Finger Agonist Muscle Antagonist Muscle 

P2 Thumb  
CMC/MCP/IP joints 

Median and Ulnar 
RPNI EDC and EPL 

P3 Thumb  
CMC/MCP/IP joints 

Median, Ulnar 1, and 
Ulnar 2 RPNIs EDC and EPL 
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 Results 

4.4.1 Real-Time One DOF Finger Control  

In chapter 3, we verified that RPNI grafts implanted in humans generate EMG signals 

during anatomically correct movements. Here, we wish to further characterize these signals and 

determine if RPNI generated signals can continuously predict finger position along the full range 

of motion of a single degree of freedom virtual prosthesis.  

Overall, P2 and P3 successfully controlled the virtual thumb IP joint and thumb CMC/MCP 

joints continuously when the median or ulnar RPNI acted as the agonist muscle (Table 4.1). Across 

both subjects, the averaged throughput was 1.09 ± 0.096 bits/s and 1.02 ± 0.064 bits/s controlling 

the virtual thumb IP joint and thumb CMC/MCP, respectively (Table 4.2). These bit rates represent 

how efficiently subjects moved each finger within the virtual finger’s full range of motion. Similar 

success was also observed for continuous small finger movements when the ulnar RPNIs acted as 

Table 4.2 Motor Performance Averages Across Experimental Blocks for One DOF Control 

Participant Finger Throughput 
(bits/s) 

Time to 
Success (s) 

Percent 
Correct (%) 

P2 

Thumb IP joint 1.28 ± 0.084  0.85 ± 0.024 98.9 ± 1.1 
Thumb CMC/MCP joints 1.26 ± 0.048 1.04 ± 0.054 96.0 ± 2.2 

Index finger joints 0.964 ± 0.14 1.44 ± 0.20 99.2 ± 0.81 
Small finger joints 1.04 ± 0.058 1.19 ± 0.048 98.7 ± 1.3 

P3 

Thumb IP joint 0.898 ± 0.11 1.69 ± 0.11 96.4 ± 0.50 
Thumb CMC/MCP joints 0.787 ± 0.079 2.20 ± 0.24 84.6 ± 4.6 

Index finger joints 0.581 ± 0.032 1.95 ± 0.15 92.8 ± 1.8 
Small finger joints 0.558 ± 0.035 2.62 ± 0.21 79.9 ± 4.0 

 

Overall 
One DOF Mean 0.921 ± 0.073 1.62 ± 0.13 93.3 ± 2.0 
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the agonist muscle. The averaged throughput was 0.80 ± 0.047 bits/s controlling the virtual small 

finger. In comparison to non-RPNI finger control, the average throughput was 0.773 ± 0.086 bits/s. 

RPNI-driven fingers completed the task in 1.60 ± 0.11 s on average and were able to hit targets 

with 92.4 ± 2.3% accuracy. In comparison, the non-RPNI-driven finger completed the task in 1.70 

± 0.17 s and hit targets with 96.0 ± 1.3% accuracy. No significant difference was seen in motor 

performance between RPNI-driven and non-RPNI driven control (Two sample t-test, p = 0.42, 

0.86, 0.59 for throughput, time to success, and percent correct, respectively). In other words, RPNI 

grafts performed just as well as existing innervated muscles in transradial amputations. Examples 

of real-time predicted trajectories for all finger movements are shown in figure 4.1.  
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Figure 4.1 Real-time one DOF continuous decoding for P2, and P3. (a), (c), (e), P2 and P3’s 
throughput (bits/s), time to success (s), and trial success (%) for thumb IP joint, thumb 
CMC/MCP joint, small finger, and index finger movements across three and four experimental 
blocks, respectively. (b),(d) Examples of P2’s real-time predicted trajectories (blue) for all four 
finger movements.. Each green rectangle indicates the target was successfully hit. Red 
rectangles indicate unsuccessful trials. The width of the rectangle represents how long the 
virtual target was displayed, while the height represents the size of the virtual target. (f), (g) 
Examples of P3’s real-time predicted trajectories for all four finger movements.  
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4.4.2 Motor Performance Stability for One DOF Control 

In order for peripheral interfaces to reach clinical reality, they must have robust features 

in order to minimize error in prosthetic function. Here, we evaluate the stability of recorded 

RPNI and non-RPNI EMG signals from the implanted indwelling bipolar electrodes to control 

one DOF finger movements. One-time calculated parameter sets were reused for each finger over 

several experimental days. The results below represent motor performance measured up to 300 

days post-implantable electrode surgery for P2, and 40 days for P3. Both subjects successfully 

controlled one DOF finger movements without recalibration, showing no significant increasing 

or decreasing trends of motor performance for either subject (Mann-Kendell test, p > 0.05) 

(Figure 4.2). Though performance varied slightly from day to day, there were no days on which 

the subjects felt recalibration was absolutely necessary. Additionally, there were no days in 

which the success rate fell below 80% (Figure 4.2b). The overall throughput was 0.955 ± 0.068 

bits/s with a time to success of 1.49 ± 0.10 s and a target hit rate of 96.0 ± 1.2% (Table 4.3). In 

comparison to parameter recalibration motor performance (Table 4.2), there was no significant 

Table 4.3 Motor Performance Averages Across Days for One DOF Control 

Participant Finger Throughput 
(bits/s) 

Time to 
Success (s) 

Percent 
Correct (%) 

P2 

Thumb IP joint 1.21 ± 0.067 0.998 ± 0.096 97.5 ± 1.7 
Thumb CMC/MCP joints 1.17 ± 0.015 1.04 ± 0.072 97.5 ± 1.0 

Index finger joints 0.805 ± 0.043 1.62 ± 0.097 99.5 ± 0.49 
Small finger joints 1.04 ± 0.061 1.22 ± 0.085 99.6 ± 0.38 

P3 
Thumb IP joint 0.705 ± 0.11 2.04 ± 0.15 93.1 ± 1.5 

Thumb CMC/MCP joints 0.797 ± 0.11 2.04 ± 0.11 88.9 ± 2.0 
 

Overall  
One DOF Mean 0.955 ± 0.068 1.49 ± 0.10 96.0 ± 1.2 
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difference between either method across all metrics (Two sample t-test, p = 0.81, 0.68, 0.43 for 

throughput, time to success, and percent correct, respectively). This suggests that (1) implantable 

bipolar electrodes can steadily record EMG signals, and (2) RPNI grafts can generate stable 

EMG signals that do not adversely affect prosthetic motor performance across time. 

4.4.3 Real-Time Two DOF Thumb Control  

Beyond one DOF control, normal hand function requires the use of multiple DOFs 

especially the thumb, which has five degrees of freedom. Here, the virtual thumb IP joint and 

thumb CMC/MCP joints were combined to form a continuous two degree of axis thumb control. 

A combination of median and ulnar RPNIs were used as agonist muscles since all grafts showed 

proficiency controlling one DOF movements (Table 4.1). P2 and P3 performed the same target 

hitting task, hitting eight different targets in a 2D space with 96.4 ± 2.5% accuracy. Their average 

throughput was 0.610 ± 0.041 bits/s with an average time to success of 1.66 ± 0.16 s (Figure 4.3a). 

Bit rate averages fell within the range (0.25 bits/s to 0.90 bits/s) of reported two DOF control for 

transradial amputations (Smith et al., 2015). Figure 4.3b shows an example of P2’s predicted 

trajectories of continuous thumb control. In addition to the virtual target task, P2 was asked to use 

the physical prosthesis (LUKE arm, DEKA, Manchester, NH, USA) to touch the tip of a wand, 

placed at different locations, with the tip of the physical thumb (Figure 4.3c). The high accuracy 

of the thumb control seen during the virtual task easily translated to the physical prosthesis. 
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Figure 4.2 Motor performance stability of one DOF movements across time for P2, and P3. 
(a), (b), (c) P2 and P3’s throughput (bits/s), trial success (%), and time to success (s) for thumb 
IP joint, thumb CMC/MCP joint, small finger, and index finger movements across 300 and 40 
days, respectively. No increasing or decreasing motor performance trends were found across 
time (Mann-Kendell Test, p > 0.05).  
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  Discussion 

We have demonstrated that RPNI graft signals are capable of driving one DOF finger and 

two DOF thumb movements continuously and simultaneously in real-time. RPNI-driven motor 

performance was as effective as non-RPNI-driven motor performance, achieving target hitting 

accuracies greater than 90%. Across a 300 and 40 day period, P2 and P3 successfully controlled 

one DOF movements without recalibration, respectively. As mentioned in 3.5, the chronic 

bipolar electrodes used in this study are similar to those that have been previously observed to 

record stable EMG for up to 7.5 years (Memberg, Polasek, et al., 2014). As both P2 and P3 

remain implanted, we anticipate that their motor performances will continue to remain stable 

over time.  

As mentioned earlier, intraneural peripheral nerve interfaces have had difficulty in 

maintaining signal stability over time (Davis et al., 2016; Wendelken et al., 2017). Here, we 

demonstrated that with indwelling bipolar electrodes, RPNI signals can maintain equivalent 

motor performances as intact residual muscle up to 10 months. This may be attributed to the very 

high SNR found on all bipolar electrode channels. Compared to epineural or intraneural 

peripheral interfaces whose SNR ranges from 4-15 (Davis et al., 2016; Dweiri et al., 2017; 

Struijk, Thomsen, Larsen, & Sinkjaer, 1999), RPNIs can produce SNR levels of 30-100 (see 

chapter III for details). This is an important distinction as noisier control signals can lead to 

turbulent trajectories. 

Unlike current myoelectric interfaces which use surface electrodes, implanted 

intramuscular electrodes have shown to be an effective method in obtaining more localized EMG 

signals. Surface electrodes are severely limited by cross-talk, which adversely affects the number 

of available independent control signals (Farina et al., 2014). This is readily apparent in targeted 
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muscle reinnervation, which uses high density surface electrodes to record EMG (Kuiken et al., 

2009). Although the surgical technique by design creates new control sites, the new control sites 

are typically located in one or two intact muscles. This then influences the type of control 

architecture being implemented. Thus, TMR has shown to be only effective in utilizing pattern 

recognition algorithms for prosthetic function (Cheesborough et al., 2015; Hargrove et al., 2017; 

Simon, Hargrove, Lock, & Kuiken, 2011; Zhou et al., 2007).  In contrast, multiple RPNIs can 

theoretically be created with the finite limiting factor dependent on the number of ways the intact 

nerve can be split. This would allow multiple independent control sites to be created for multiple 

degrees of functionality. Some evidence of this selectivity has been shown in chapter III, where 

P3’s ulnar RPNI 1 and 2 activated for different intrinsic hand functions.  

The most promising finding of intrinsic hand functionality was the ability for P2 and P3 

to control the intrinsic muscles of their thumb using both their ulnar and median RPNIs. This is 

anatomically appropriate since both the median and ulnar nerves innervate the flexor pollicis 

brevis, which assists in flexing the thumb CMC/MCP joints. Past studies of simultaneous control 

of multiple degrees of freedom have focused on controlling the wrist and hand open/closed 

(Jiang et al., 2014; Sartori et al., 2018; Smith et al., 2015). In this study, RPNIs enabled P2 and 

P3 to have intuitive two degree of axis thumb control including thumb flexion/extension and 

thumb opposition/reposition. Similarly, the ulnar RPNI in P2 and ulnar RPNI 1 in P3 generated 

signals for small finger movements. Naturally, the ulnar nerve innervates the flexor digiti minimi 

brevis, which assists in flexing the small finger at the MCP joint. These additional control signals 

combined with existing residual muscle may help gain more dexterous control of the prosthetic 
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hand as many studies are limited to only existing musculature (Ameri et al., 2014; Smith et al., 

2015; Tenore et al., 2009; Twardowski et al., 2019). 

The most promising finding of intrinsic hand functionality was the ability for P2 and P3 to 

control the intrinsic muscles of their thumb using both their ulnar and median RPNIs. This is 

anatomically appropriate since both the median and ulnar nerves innervate the flexor pollicis 

brevis, which assists in flexing the thumb CMC/MCP joints. Past studies of simultaneous control 

of multiple degrees of freedom have focused on controlling the wrist and hand open/closed (Jiang 

et al., 2014; Massimo Sartori et al., 2018; Smith et al., 2015). In this study, RPNIs enabled P2 and 

P3 to have intuitive two degree of axis thumb control including thumb flexion/extension and thumb 

Figure 4.3 Real-time two DOF continuous decoding for P2, and P3.  (a) P2 (Maize) and P3’s 
(Blue) throughput (bits/s), time to success (s), and trial success (%) across two experimental 
blocks. (b) Example of P2’s predicted trajectories during the virtual target task. A center-out 
task displayed eight targets within a 2D space. (c) An equivalent target hitting task moved to a 
physical prosthesis (DEKA LUKE arm). P2 had to hit the wand in four locations to complete 
the task.  
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opposition/reposition. Similarly, the ulnar RPNI in P2 and ulnar RPNI 1 in P3 generated signals 

for small finger movements. Naturally, the ulnar nerve innervates the flexor digiti minimi brevis, 

which assists in flexing the small finger at the MCP joint. These additional control signals 

combined with existing residual muscle may help gain more dexterous control of the prosthetic 

hand as many studies are limited to only existing musculature (Ameri et al., 2014; Smith et al., 

2015; Tenore et al., 2009; Twardowski et al., 2019).  

We have demonstrated that RPNIs can be used to record efferent motor nerve action 

potentials from missing intrinsic muscles to provide high fidelity prosthetic control. In particular, 

RPNIs have shown proficiency in decoding one DOF and two DOF finger control in an artificial 

hand, and future studies will explore expanding the number of DOFs to controlling multiple fingers 

simultaneously and continuously. The RPNI technique may provide a viable option for future 

clinical prosthetic technology and greatly improve the quality of life for patients with limb loss at 

any amputation level.
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CHAPTER V 

Discussion  

 Conclusion 

Integrating with the body’s peripheral nervous system to extract intuitive prosthetic control 

signals has demonstrated great potential in restoring intuitive hand function to people with upper-

limb amputations. However, many challenges still remain before the technology can be robust 

enough and widely accepted for translation into a commercial setting. This thesis provides several 

studies that attempts to address these challenges to bring peripheral nerve interfaces closer to 

clinical translation.  

 Chapter II investigated the ability of the regenerative peripheral nerve interface to be used 

for continuous control of hand movement. Agonist and antagonist RPNI muscle signals allowed 

real-time continuous control of hand-level movement with an overall throughput of 0.77 bits/s and 

a success rate of 96.7% using a postion/velocity Kalman filter. This motor performance was on 

par with that of an intact hand, and provided a level of control equal to that of current myoelectric 

prostheses. Additionally, signal robustness was measurements showed that signal amplitude varied 

significantly across time, which may be an issue for future implantable myoelectric systems. 

Nonetheless, this study has provided initial data on the capabilities of RPNIs to provide 

simultaneous and continuous prosthesis control for future human implementation.  
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Previous studies have shown RPNIs can safely be implemented in animals for signal 

extraction and prosthetic control (Irwin et al., 2016; Ursu et al., 2016). Chapter III explored the 

implementation and viability of RPNIs in people with upper-limb amputations. Using ultrasound 

to track the size and shape of the RPNIs post-implantation, we were able to view dynamic 

contractions of the RPNIs in two patients. Particularly the RPNIs in P1, who’s missing a majority 

of his forearm muscles, displayed strong contractions for individual thumb and finger movements. 

Further evidence of viability was shown in P2 and P3, where high amplitude signals ranging from 

300 µV to 2.5 mV and SNR ranging from 30-100 were recorded with surgically implanted bipolar 

electrodes. What’s more promising is that RPNIs were able to generate efferent motor signals 

during movements that required missing intrinsic and extrinsic muscles. These results demonstrate 

that the RPNI technique is effective and safe within the human population and can increase the 

number of available control sources that could be implemented for prosthesis control. 

To expand upon the results in the previous chapter, chapter IV further characterized RPNIs 

and tested their motor control capabilities in humans. In particular, one and two DOF finger control 

was achieved in three participants who had little to no experience in controlling a myoelectric 

prosthesis. In general, intuitive single degree of freedom continuous control was achieved for 

multiple fingers with accuracies > 85%. Additionally, two degree of freedom thumb control was 

possible for two transradial amputees who are missing all of their intrinsic thumb muscles. Lastly, 

motor performance remained stable for up to 300 days for one DOF finger movements. We 

speculate that motor performance will continue to remain stable for the remainder of P2 and P3’s 

implantation period. Overall, RPNIs have provided a bridge to tap into the severed communication 

line of the peripheral nerve, indicating that this technique represents a viable option to enhance 

myoelectric prosthetic functionality for people with limb loss.  
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5.1.1 Thesis Contributions 

This thesis has demonstrated several new characterizations of the RPNI. Aim 1 

demonstrated that RPNIs can generate sufficient EMG signals that can be used to continuously 

control a prosthetic hand in non-human primates, an important characterization for future 

translation in humans with amputations. Aim 2 was the first study to test the translation of RPNIs 

into humans with upper-limb amputations and showed that RPNIs can safely be implemented and 

can physically contract and generate EMG signals during finger movements. Lastly, aim 3 took 

the translation one step further, and showed that RPNIs can provide humans with upper-limb 

amputations with robust continuous control of one DOF finger movements and continuous control 

of two DOF thumb movements in real-time.  

 Future Directions 

Despite the promising results presented in this work, there still remains many challenges 

and improvements needed before peripheral nerve technology can be readily available for the 

prosthetic market. Advances in this technology will require further studies in both animals and 

humans. Below, I will briefly expand upon several promising avenues that could address some of 

the most critical challenges facing peripheral nerve technology’s translation towards a viable 

clinical system.   

Previous pilot and clinical trial human studies of two different peripheral nerve interfaces 

(intraneural electrodes and TMR, respectively) have demonstrated great promise in adding greater 

prosthetic functionality (Davis et al., 2016; Hargrove et al., 2017). However, both techniques come 

with a few shortcomings, particularly the signal stability of intraneural electrodes and the signal 

selectivity of TMR. The RPNI technique presented in this thesis, addresses both of these issues. 

To date, the RPNIs in P2 have been implanted for 4 years and we have successfully recorded 
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signals from his RPNIs 1 year following his electrode implantation. For P3, her RPNIs were 

implanted 1 year ago and we have successfully recorded signals 5 months post-electrode 

implantation. We have then presented initial results of RPNIs activating for specific finger 

movements in people who are missing the appropriate musculature to perform such movements. 

This suggests that RPNIs can add unique signal sources that could be used to increase motor 

functionality to myoelectric users. 

Further studies are needed to characterize the degree of motor selectivity in RPNIs. To do 

this, multi-contact electrodes are necessary to obtain a higher spatial resolution. Current 

intramuscular electrodes contain one or two contact sites, which would then require multiple 

electrode insertions to record from different portions of the muscle (Héroux, Dakin, Luu, Inglis, 

& Blouin, 2013). To address this issue, several studies have proposed and implemented a thin‐

film multi‐channel electrode  for intramuscular recordings in humans (Luu et al., 2017; Muceli et 

al., 2019, 2015). Integration of this technology with RPNIs may be well suited to mapping different 

regions of the RPNI graft. Alternatively, multi-channel intraneural peripheral probes, like the 96 

channel Utah Slanted Electrode Array (USEA; [Branner et al., 2001]), could be repurposed for 

intramuscular recordings since the RPNI grafts are typically 1-3 cm in length.  

The next challenge to address is the interpretation and implementation of these additional 

signal sources to gain full independent control of a prosthetic hand. Regression-based machine 

learning algorithms have shown to allow simultaneous and proportional control of multi-DOF 

finger control ( Smith et al., 2015; Wendelken et al., 2017).  However, these approaches are highly 

sensitive to external conditions that may cause muscle co-contractions or tonic firing, producing 

unintended movement error. Deep learning and convolutional neural networks have recently had 

success in applications of speech recognition and computer vision, which by design must be robust 
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against external variability (Goodfellow et al., 2016). Thus, these methods may be applicable to 

reducing error rate and solving the nonlinearities between muscle activations and end-point finger 

kinematics in prosthetic control.   

Alternatively, more physiological approaches have been implemented that may warrant 

more attention in the neuroprosthetic community. To generate dexterous hand control, the central 

nervous system needs to coordinate multiple degrees of freedom of the musculoskeletal limb 

(Bernstein, 1967). This in turn produces muscle synergies that follow a specific pattern to generate 

natural limb behavior (d’Avella et al., 2006). Depending on the level of amputation, the natural 

production of muscle synergies is ultimately lost. RPNIs show promise in restoring these lost 

synergy patterns in order regain full control of the hand. Future human studies need to combine 

RPNIs with EMG-drive musculoskeletal models that rely on synergy patterns for control. 

Implementation of musculoskeletal models has been recently demonstrated in TMR subjects and 

a normal transradial amputee, showing promise in improving state of the art decoders (Farina et 

al., 2017; Sartori et al., 2018).  

Finally, if an optimal solution can be reached to provide simultaneous and continuous 

control of multiple degrees of freedom, then the next step would be to implement a fully 

implantable system. The system will need to be able to receive incoming neural signals, predict 

the user intention, and output the commands to the artificial limb all below the maximum 200 ms 

delay specification for prosthesis response time. One possible option for a fully implantable system 

with RPNIs is osseointegration. Osseointegration is a surgical technique where an abutment and a 

fixture are placed within the intramedullary cavity of the bone at the stump. The abutment then 

serves as an anchor for the prosthetic limb and feedthrough connectors can be embedded within 

the abutment to allow bidirectional electrical communication (Ortiz-Catalan et al., 2014). This 
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system would then be fully proficient for take home trials to assess activities of daily living and 

overall user satisfaction. 

Much more work is required before peripheral nerve interfaces can have a widespread 

impact in the prosthetic community. However, combining the work presented here with the recent 

progress in prosthetic limb technology mentioned above may bring us one step closer to reaching 

that gold standard of fully restoring normal limb function. 
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APPENDIX 

 
Supplemental Material for Chapter III and IV 
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Table A.1 Summary of implanted RPNI grafts, the recording electrode, and the finger movement 
correlated to each RPNI or residual contraction. 

CMC – Carpometacarpal joint, MCP – metacarpophalangeal joint, PIP – proximal interphalangeal joint, DIP – distal interphalangeal 
joint, IP – interphalangeal joint 

  

Participant 
RPNI or 
residual 

muscle name 
Nerve Electrode type 

RPNI or residual 
muscle contraction 

correlated with 

P1 

Median RPNI 1 Median Fine wire 

Thumb MCP/IP joint  
flexion, 

Index finger PIP/DIP 
joint flexion 

Median RPNI 2 Median Fine wire Index finger PIP/DIP  
joint   flexion 

Median RPNI 3 Median Fine wire Index finger PIP/DIP  
joint  flexion 

Median RPNI 4 Median Fine wire Index finger PIP/DIP  
joint  flexion 

Ulnar RPNI 1 Ulnar Fine wire 

Small finger PIP/DIP  
joint   flexion, 

Thumb MCP/IP  joint  
flexion 

Ulnar RPNI 2 Ulnar Fine wire 

Small finger PIP/DIP  
joint   flexion, 

Thumb MCP/IP  joint  
flexion, 

Index finger PIP/DIP  
joint  flexion 

P2 

Median RPNI Median Intramuscular Thumb MCP joint flexion 

Ulnar RPNI Ulnar Intramuscular Small finger MCP  joint  
flexion 

Flexor Digitorum 
Profundus Index Median Intramuscular Index finger PIP/DIP  

joint  flexion 
Flexor Digitorum 
Profundus Small Ulnar Intramuscular Small finger PIP/DIP  

joint  flexion 
Extensor 
Digitorum 
Communis 

Radial Intramuscular Extension of all four 
fingers at the MCP joint 

Extensor Pollicis 
Longus Radial Intramuscular Thumb MCP/IP joint 

extension  
Flexor Carpi 

Radialis  Median Intramuscular Wrist flexion 
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Table A.1 Summary of implanted RPNI grafts, the recording electrode, and the finger movement 
correlated to each RPNI or residual contraction (Continued).  

Participant 
RPNI or 
residual 

muscle name 
Nerve Electrode type 

RPNI or residual 
muscle contraction 

correlated with 

P3 

Median RPNI Median Intramuscular Thumb MCP joint flexion 

Ulnar RPNI 1 Ulnar Intramuscular Small finger MCP  joint  
flexion 

Ulnar RPNI 2 Ulnar Intramuscular Small finger MCP  joint  
flexion 

Flexor Digitorum 
Profundus Index Median Intramuscular Index finger PIP/DIP  

joint  flexion 
Extensor 
Digitorum 
Communis 

Radial Intramuscular Extension of all four 
fingers at the MCP joint 

Extensor Pollicis 
Longus Radial Intramuscular Thumb MCP/IP joint 

extension  
Flexor Carpi 

Radialis  Median Intramuscular Wrist flexion 
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Table A.2 Details of a subset of muscles missing in each participant and their function 
Participant Level of 

Amputation 
Missing 
Muscles Nerve Function 

P1* Proximal 
transradial  

Flexor 
Digitorum 

Superficialis  
Median Flex digits 2-5 at MCP/PIP joints 

Flexor 
Digitorum 
Profundus 

Median 
and Ulnar 

Median half: Flex digits 2-3 at DIP joint, 
Ulnar half: Flex digits 4-5 at DIP joint  

Flexor 
Pollicis 
Longus 

Median Flex digit 1 at IP joint 

P2 Wrist 
disarticulation 

Abductor 
Pollicis 
Brevis 

Median Abduct digit 1– assists to oppose and 
extend digit 1 

Flexor 
Pollicis 
Brevis 

Median 
and Ulnar 

Flex digit 1 at MCP/CMC joints – assists 
to oppose digit 1 

Opponens 
Pollicis Median Flex digit 1 at CMC joint – assists to 

oppose digit 1 
Lumbricals 1 

and 2 Median Simultaneously flex digit 2 and 3 at MCP 
joint and extend 2 or 3 at PIP joint 

Flexor Digiti 
Minimi 
Brevis 

Ulnar Flex digit 5 at MCP joint 

Opponens 
Digiti Minimi Ulnar Oppose digit 5 – flex/rotate 5th metacarpal 

Lumbicals 3 
and 4 Ulnar Simultaneously flex digit 4 or 5 at MCP 

joint and extend digit 4 or 5 at PIP joint 

P3 Wrist 
disarticulation 

Abductor 
Pollicis 
Brevis 

Median Abduct digit 1– assists to oppose and 
extend digit 1 

Flexor 
Pollicis 
Brevis 

Median 
and Ulnar 

Flex digit 1 at MCP/CMC joints – assists 
to oppose digit 1 

Opponens 
Pollicis Median Flex digit 1 at CMC joint – assists to 

oppose digit 1 
Lumbricals 1 

and 2 Median Simultaneously flex digit 2 and 3 at MCP 
joint and extend 2 or 3 at PIP joint 

Flexor Digiti 
Minimi 
Brevis 

Ulnar Flex digit 5 at MCP joint 

Opponens 
Digiti Minimi Ulnar Oppose digit 5 – flex/rotate 5th metacarpal 

Lumbicals 3 
and 4 Ulnar Simultaneously flex digit 4 or 5 at MCP 

joint and extend digit 4 or 5 at PIP joint 
MCP – metacarpophalangeal joint, PIP – proximal interphalangeal joint, DIP – distal interphalangeal joint, IP – interphalangeal joint, 
CMC – Carpometacarpal joint 
*P1 is also missing all the muscles missing in P2 and P3
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