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ABSTRACT

Fossil fuel extraction and modern industrial agricultural practices both emit green-

house gases and pollutants, including methane (CH4), nitrous oxide (N2O), ethane

(C2H6), and black carbon (BC). Our understanding of emissions magnitudes, pro-

cesses that control these emissions, and expected future emissions behavior from

these sources and of these important atmospheric compounds have large uncertainty.

Accurate, precise measurements made from aircraft can provide essential insights into

emissions and their impact on climate and air quality. This thesis presents airborne

observations using high-precision spectroscopy of atmospheric greenhouse gases and

pollutants to quantify emissions. First, with airborne measurements we assess natu-

ral gas flaring efficiency of CH4, C2H6, and BC in the Bakken Shale region of North

Dakota. We discover emissions from flares exhibit a heavy-tailed distribution and

superemitter behavior with a small number of inefficient flares dominating the total

source. This skewed distribution translates to total flaring emissions of CH4 and

C2H6 that are 2.5 times higher than if standard flare efficiency is assumed. While

we observe a skewed distribution for BC, emissions are lower than previous estimates

and there is no significant correlation with CH4 emissions. Next, we describe the

development and evaluation of an airborne system using an N2O, CO2, CO, and H2O

laser spectrometer. Ambient pressure-related artifacts in the instrument are corrected

for with a mass flow-controlled frequent calibration technique to achieve an 88% duty

cycle with high precision and accuracy. The resultant flight system represents the

current state-of-the-art airborne N2O system. Finally, with this new system and

xiii



a series of flights, emissions from agricultural activity and fertilizer production are

evaluated in the Lower Mississippi River Basin. The quantification of emission rates

from two productive fertilizer plants finds good agreement with reported emissions of

N2O and CO2, but a large underestimation in CH4, suggesting significant natural gas

leakage. We calculate N2O emissions fluxes from cropland using the airborne mass

balance technique, a first application of this method for N2O. The impact on emis-

sions by associated factors—crop type, fertilizer application, soil moisture, and soil

temperature—is investigated. We find the strongest predictors in a multiple linear

regression are soil moisture and crop type. An average early-growing season N2O

flux of 1.8±1.4 g N2O-N ha−1 hr−1 is quantified for the region. The results demon-

strate the ability to evaluate N2O emissions at regional scales from sources with large

environmental heterogeneity using airborne observations. This thesis highlights the

utility of aircraft measurements for investigating emissions of greenhouse gases and

pollutants at varying spatial scales and from diverse sources associated with energy

and food production supply chains.

xiv



CHAPTER I

Introduction

1.1 Humans, Energy, and Food

The world has seen significant advancements in technology, medicine, science,

and international cooperation, especially since the second half of the 20th century

(Rosling et al., 2018; Pinker , 2018). On average we live longer than our predecessors

and enjoy more widespread availability of energy and food. In 1960 the global average

life expectancy was 52 years and by 2016 it was 72 years, a 40% increase (Roser , 2019;

The World Bank , 2016b). Over the same period there has been a steady increase in

food supply per capita and a decrease in undernourishment, particularly as meat and

dairy have become globally more prevalent (FAO , 2019). As for energy supply, since

1990 the global share of people with access to electricity has gradually risen from

71% to 87% (The World Bank , 2016a). The world’s population has grown from ∼4

billion in 1973 to 7.55 billion in 2017, and is projected to reach ∼9.8 billion by 2050

(United Nations , 2017). Figure 1.1 shows this consistent growth in global population,

energy use, and food supply. Although the global population increased by a factor

of 1.88 since 1973, the total annual energy consumption in the world increased by a

factor of 2.05 (IEA, 2018a; Ritchie and Roser , 2019). If energy demand continues at

this pace, total consumption is expected to double again by 2050, despite a potential

population increase by 1.3 times (Lewis and Nocera, 2006). Similarly, the food supply
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will have to sustain more mouths at a growing rate. The global expansion of energy

and agricultural production has resulted in increased emissions of greenhouse gases

(GHGs) and other associated pollutants, which significantly affect the climate and

warm the earth’s surface (Myhre et al., 2013).

Anthropogenic emissions of GHGs have perturbed the planetary energy balance

since pre-industrial times (Myhre et al., 2013; Prather et al., 2013). Three of the most

impactful GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).

Since 1750 these three have contributed 88% of the increase in global radiative forcing

due to long-lived gases (Hofmann et al., 2006; Montzka et al., 2003). As of 2017 the

total radiative forcing from GHGs was an estimated 3.06 W m−2, with CO2, CH4, and

N2O contributing 66%, 17%, and 6% respectively (Butler and Montzka, 2018). CH4

and N2O can experience feedback due to climate change, particularly in the tropics,

with rising temperatures causing higher CH4 emissions from wetlands and rice crops,

and higher N2O emissions from warmer soils (Tian et al., 2015; Reay et al., 2018).

Climate change can damage natural resources, displace humans, and pose significant

risks to financial security and health. Climate change adversely affects agriculture,

harming crop yields and increasing the severity and frequency of extreme weather

events (Lipper et al., 2014). The percentage of global undernourishment has actually

slightly risen in the past three years, following a decade of decline (Parry et al., 2004;

FAO et al., 2018). Pollutants that affect air quality and mortality, such as black

carbon (BC) and ethane (C2H6), have also experienced increased emissions. Higher

temperatures, reduced air and food quality, and increased energy demand are just a

few of the serious ramifications of climate change (FAO et al., 2018; Duffy et al., 2019;

Haines and Ebi , 2019). Improved observations of GHGs and pollutants such as CH4,

N2O, C2H6, and BC are valuable for quantifying the magnitude and rate of emissions.

A better understanding of emissions can then be used to assess the effectiveness of

mitigation policies and develop future climate scenarios.
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Figure 1.1: Growth in a) global population in billions of people, including projections
to 2100, b) energy consumption in million tons of oil, and c) food con-
sumption in kcalorie/capita/day. Time scales are not identical. Panel a)
adapted from United Nations (2017), b) adapted from IEA (2018a), and
c) adapted from FAO (2019).
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1.2 Greenhouse Gases and Pollutants

1.2.1 Methane

Methane is often referred to as the second most important atmospheric GHG after

CO2, having the next highest radiative forcing impact and additional indirect climate

effects (Wuebbles and Hayhoe, 2002; Myhre et al., 2013). It has a global warming

potential (GWP) of 34 over 100 years (i.e. a unit mass of CH4 contributes to time-

integrated radiative forcing 34 times more than an equal mass of CO2) (Myhre et al.,

2013). Using top-down methodology (assessing GHG emissions through observational

data of atmospheric concentrations), total emissions of CH4 in 2012 were an estimated

568 Tg yr−1, with 61% attributed to anthropogenic activity (Saunois et al., 2016).

Wetlands account for the largest single source, 30% of total emissions and 78% of nat-

ural emissions (Saunois et al., 2016). The remaining natural sources include termites,

the ocean, and geological processes (Ciais et al., 2013; Saunois et al., 2016). Fossil fu-

els comprise one-fifth of total CH4 emissions and one-third of anthropogenic sources,

the rest being livestock, landfills, biomass burning, and rice cultivation (Saunois et al.,

2016). The primary sink for CH4 is oxidation by reacting with the hydroxyl radical

OH (Le Texier et al., 1988). CH4 oxidation can lead to further reactions and emit

additional atmospheric products including tropospheric ozone, formaldehyde, and CO

(Wuebbles and Hayhoe, 2002; Amann et al., 2011; Shindell et al., 2012). Although

CH4 has an average atmospheric lifetime of about 9 years, its reactive nature ampli-

fies the feedback effect of emissions and extends the lifetime of CH4 perturbations to

∼12 years (Myhre et al., 2013; Holmes , 2018).

Figure 1.2 shows the major sources, sinks, and uncertainties in the CH4 budget

for annual emissions from 2003–2012. Many of the sources and sinks have high un-

certainties, and there are large discrepancies in the CH4 budget between top-down

and bottom-up (where emissions are attributed to appropriate sources from various
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Figure 1.2: Sources and sinks for CH4 with uncertainty ranges. Red arrows denote
anthropogenic fluxes, green arrows denote natural fluxes, striped arrow
denotes a mixed source. Figure adapted from the Global Carbon Project
(Saunois et al., 2016).

sectors and then aggregated) estimates, with bottom-up estimates at 756 Tg yr−1 in

2012 (Saunois et al., 2016). Atmospheric CH4 concentrations have been rising since

2007, after experiencing a brief plateau from 2000–2007 following a long period of

growth (Dlugokencky et al., 2009; Nisbet et al., 2014). Possible explanations for the

renewed increase include higher emissions from wetlands (Schaefer et al., 2016; Nisbet

et al., 2016), increased emissions from fossil fuels (Hausmann et al., 2016; Worden

et al., 2017), and decline in OH concentration (Rigby et al., 2017). The CH4 trends

are not well understood, and small changes in sources or sinks on the order of a few

percent can have large implications for total atmospheric concentrations and budget,

necessitating better constraints on key CH4 processes (Turner et al., 2017, 2019).
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1.2.2 Nitrous Oxide

Nitrous oxide is another important anthropogenic greenhouse gas, with the third

highest warming impact after CO2 and CH4 and a GWP of 298 (Myhre et al., 2013).

In the troposphere, N2O is fairly inert, with a relatively long average lifetime on the

order of 120 years (Portmann et al., 2012; Ciais et al., 2013). Once it is transported

to the stratosphere it can react with excited oxygen, producing stratospheric NO

and NO2 which in turn react with ozone, depleting the stratospheric ozone layer and

significantly increasing the overall impact of N2O on the climate and public health

(Ravishankara et al., 2009; Ghormley et al., 1973; Portmann et al., 2012; Stolarski

et al., 2015). Globally, N2O emissions are an estimated ∼18 Tg N2O-N yr−1 (with

nitrogen atoms accounting for 28 g/mol of N2O’s 44 g/mol molar mass), 40% of

that due to anthropogenic activities including agriculture, fossil fuel combustion, and

biomass burning (Ciais et al., 2013). These estimates have high uncertainty with total

emissions ranging from 8–31 Tg N2O-N yr−1, as there is high spatial and temporal

variability in N2O emissions (Brown et al., 2001; Monni et al., 2007; Davidson and

Kanter , 2014). Figure 1.3 illustrates the sources, sinks, and uncertainties in the N2O

budget.

Agricultural and natural soils are the primary sources of N2O, accounting for

∼60% of annual emissions (Ciais et al., 2013). Microbial activity is responsible for

the main mechanisms that emit N2O from soils. Large amounts of nitrogen are cycled

via nitrification and denitrification, and a very small fraction is lost to the atmosphere

as N2O. Through nitrification, nitrifying bacteria oxidize ammonium and ammonia

to nitrite and nitrate. Some gaseous N2O is created and lost to the atmosphere as

part of the process (Smith et al., 2003; Opdyke et al., 2009). During denitrification,

when oxygen in soil is limited, anaerobic bacteria can also produce N2O, which is

subsequently lost to the atmosphere, as they reduce nitrate to N2 (Smith et al., 2003;

Opdyke et al., 2009)
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Figure 1.3: Schematic of the N2O budget. Black arrows denote natural processes, red
arrows denote anthropogenic sources. Figure adapted from Ciais et al.
(2013).
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Nitrification and denitrification tend to occur simultaneously under most soil con-

ditions (Braker and Conrad , 2011; Zhang et al., 2015), and the amount of net emitted

N2O varies depending on microbe and soil type, as microbes can exhibit a range of ge-

netic diversity in various soils (Braker and Conrad , 2011; Schmidt and Waldron, 2015;

Hu et al., 2015; Hink et al., 2018), with a possibility that generations of agricultural

land use has optimized these bacteria to be more effective N2O emitters (Schmidt and

Waldron, 2015). Nitrification and denitrification rates can vary with changes in soil

moisture, soil type, fertilizer type, and other environmental factors (Smith et al., 2003;

Hu et al., 2015). The more excess nitrogen compounds are applied to soil, the more

is available for microbes to nitrify or denitrify and emit N2O (Butterbach-Bahl et al.,

2013; Hu et al., 2015). Since pre-industrial times humans have more than doubled

the amount of reactive nitrogen available to ecosystems through the use of fertilizer

(Melillo and Yohe, 2014; Lu and Tian, 2017). Analyses have suggested approximately

2% of excess applied nitrogen is lost to the atmosphere as N2O (McElroy and Wang ,

2005; Davidson, 2009; Grace et al., 2011). Global soil N2O emissions could be respon-

sible for up to 10 Tg N2O-N yr−1 with 3.3 Tg emitted from croplands, accounting

for 82% of the increase in soil N2O emissions since pre-industrial times (Tian et al.,

2018).

1.2.3 Ethane

After CH4, ethane is the second most abundant atmospheric hydrocarbon. While

technically a greenhouse gas, its direct warming impact is significantly weaker than

other gases such as CH4 or N2O. It modestly contributes to radiative forcing on the

order of mW m−2 (Hodnebrog et al., 2018). C2H6 also has a relatively shorter life-

time, on the order of 2-6 months (Boissard et al., 1996; Blake et al., 2003; Hodnebrog

et al., 2018). The main process by which C2H6 is removed from the troposphere is by

oxidation, reacting with the hydroxyl radical OH (Singh and Hanst , 1981; Blake and
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Rowland , 1986; Rudolph, 1995). Additional processes triggered by the oxidation of

C2H6 result in the formation of compounds which all contribute to smog, including

acetaldehyde, peroxyacetyl nitrate, and ozone, negatively impacting air quality and

posing severe health risks (Singh and Hanst , 1981; Aikin et al., 1982). Since CH4 is

also removed by oxidation, C2H6 increases the lifetime of CH4, enhancing its pertur-

bation to the climate (Blake and Rowland , 1986; Collins et al., 2002). Through these

indirect effects C2H6 has a GWP of ∼10 over 100 years (Hodnebrog et al., 2018).

The main sources of C2H6 are fugitive emissions from fossil fuels (e.g. leaks,

venting, and flaring), biomass burning, and biofuels, with more sources and thus

higher emissions in the northern hemisphere (Rudolph, 1995; Boissard et al., 1996).

In 2008 Xiao et al. (2008) estimated C2H6 emissions of 13 Tg yr−1 with 60% due to

fossil fuel production, 20% from biomass burning, and 20% from biofuel use, and 80%

of all global sources located in the northern hemisphere. From 1984 to 2010 global

C2H6 emissions steadily declined from 14.3 Tg yr−1 to 11.3 Tg yr−1, a 21% decrease,

possibly due to decreased emissions from fossil fuel production (Simpson et al., 2012).

Beginning in 2010 a measurement station in the Swiss Alps observed an increase in

atmospheric concentration of C2H6, implying underestimation in emissions inventories

(Franco et al., 2015). This trend has continued with an annual increase in northern

hemisphere C2H6 emissions of 0.42 Tg yr−1 from 2009 to 2014 (Helmig et al., 2016).

Figure 1.4 shows daily C2H6 observations from January 2003 to December 2014 from

a measurement site in Toronto, Canada, though other locations in North America and

Europe have observed similar trends (Franco et al., 2016). The significant increase

in North American oil and natural gas production over the past decade is a likely

contributor to the recent reversal in C2H6 emissions (Kort et al., 2016; Helmig et al.,

2016; Franco et al., 2016). Since C2H6 shares many of the same thermogenic sources as

CH4 without any of its biogenic sources, C2H6 can be used to attribute CH4 emissions

to fossil fuel-related activity (Yacovitch et al., 2014; Smith et al., 2015; Kort et al.,
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Figure 1.4: C2H6 observations from 2003-2015 in Toronto, Canada. Grey circles and
cyan triangles indicate daily mean observations from two different spec-
trometers, blue curve fits the observations. The green line shows decline
in C2H6 from 2003–2008, red line shows increase in emissions starting in
2009. Dashed and solid orange curves are simulated emissions from a
model using original and revised emissions inventory, respectively. Figure
adapted from Franco et al. (2016).

2016).

1.2.4 Black Carbon

Black carbon is an atmospheric pollutant, a byproduct of incomplete combustion

(Ramanathan and Carmichael , 2008). Sources include residential heating and cook-

ing, wildfires, diesel engines, and gas flaring (Ramana et al., 2010; Bond et al., 2013).

The net radiative forcing impact of BC is an estimated ∼1 W m−2 (Bond et al., 2013).

BC is highly absorptive of solar radiation, warming the atmosphere by absorbing re-

flected sunlight and reducing the earth’s albedo, or reflectivity (Ramanathan and

Carmichael , 2008). BC can also mix with clouds and deposit on snow and ice, fur-

ther reducing albedo and triggering a positive feedback loop, accelerating the rate of

snow melt (Flanner et al., 2007; Ramanathan and Carmichael , 2008). In 2000 total

emissions of BC were estimated to be 7.5 Tg yr−1 with an uncertainty range of 2–29

Tg (Bond et al., 2013). BC has many complex interactions with the climate system,
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capable of both cooling and warming effects, and can have large spatiotemporal vari-

ability, aging with photochemical activity and getting coated with other atmospheric

species (Moffet and Prather , 2009; Bond et al., 2013). This complexity has led to

some inconsistency in estimates of radiative forcing and total budget (Bond et al.,

2013; Myhre et al., 2013; Wang et al., 2014b), necessitating more measurements of

BC emissions from a variety of sources and under different meteorological conditions

(Moffet and Prather , 2009).

In addition to climate effects, airborne BC poses respiratory and cardiovascular

risks, making it an indicator for air quality and mortality (Janssen et al., 2011;

De Prins et al., 2014). BC is removed from the atmosphere by precipitation and

deposition on surfaces, giving it a short atmospheric lifetime on the order of days to

weeks (Amann et al., 2011). Thus, reducing emissions from BC sources could have a

near-immediate impact on climate and health with the largest benefits to the source

regions (Anenberg et al., 2011). A reduction in BC emissions would also reduce the

atmospheric concentration of other products such as CO, NOx, and volatile organic

compounds, which are major precursors to tropospheric ozone and are coemitted

with BC (Anenberg et al., 2012). The improvement in air quality could avoid up to 5

million premature deaths in 2030 (Anenberg et al., 2012). Solely in terms of reducing

radiative forcing from anthropogenic sources, mitigating BC emissions may not be the

best strategy, as coemitted products have some cooling impact and there is difficulty in

efficiently eliminating BC sources in both developed and developing countries (Bond

and Sun, 2005). Still, there are plenty of possibilities to reduce radiative forcing and

diminish climatic interference, especially with improved understanding of combustion

sources and reduced uncertainty in emissions (Bond and Sun, 2005; Shindell et al.,

2012).
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1.3 Changes in Energy and Agriculture

1.3.1 Fossil Fuels

The fossil fuel industry is one of the largest sources of anthropogenic GHGs, ca-

pable of emitting at all stages in the supply chain from drilling to distribution (Bal-

combe et al., 2018). Fossil fuel production has drastically changed and increased with

technological advancements in horizontal drilling and hydraulic fracturing allowing

“unconventional wells” to produce from previously inaccessible reserves of shale gas

and tight oil, particularly in the US (Wang et al., 2014a). Figure 1.5 shows domestic

oil and gas production in the US over several decades along with what fraction of

total production comes from tight oil and shale gas. From 2005–2017 US natural gas

gross withdrawals increased by 42% while oil production rose by 80% (EIA, 2019a,b).

The US is the second largest energy producer and consumer in the world after China,

accounting for 14% of all energy production and 16% of consumption in 2016 (IEA,

2018b). The US owes 33% of its energy production to natural gas and is responsible

for 20% of the world’s total natural gas production (IEA, 2018a). In the near future

the United States, already a net natural gas exporter, is poised to become a net total

energy exporter (EIA, 2019d). The production of shale gas is expected to continue to

rise while production from other sources diminishes, with a projected 90% of global

natural gas extracted from shale reservoirs by 2050, much of it from the US (IEA,

2018c).

The oil and gas industry’s growth has also led to increased flaring. Gas that wells

cannot capture and process due to insufficient storage or infrastructure is combusted,

emitting CO2 rather than hydrocarbons and volatile organic compounds. From 2012–

2016 the annual global gas volume flared rose from ∼140 billion cubic meters (Elvidge

et al., 2016) to ∼148 before dropping back down to ∼140 BCM in 2017 (The World

Bank , 2017). Flaring is not 100% efficient, and through incomplete combustion it
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Figure 1.5: a) US crude oil production from 1859–2017 in thousand barrels per year.
Insets shows tight oil as fraction of production in million barrels per day.
b) US natural gas gross withdrawals (green) from 1937–2017 in million
cubic feet per year, split by shale gas (blue), conventional gas (brown),
oil wells (red), and coalbed wells (yellow). Inset shows shale gas as frac-
tion of production in billion cubic feet per day. Colors of both insets
denote different production regions in the US. Figure adapted from EIA
(2019a,b,c).
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emits CH4, C2H6, BC, and other VOCs. Flaring emissions have high uncertainty

since emission factors used to estimate emissions are based on limited measurements

or laboratory settings (Allen et al., 2016). Variability in flare types and operating

conditions, for instance temperature, flame control, and spatial compactness, can

affect emissions and the flare height and heat allows pollutants to transport easily

in the atmosphere (Abdulkareem et al., 2009; Fawole et al., 2016). The increase in

flaring may have a large impact on BC emissions (Schwarz et al., 2015; Weyant et al.,

2016). Flaring contributes 3% of global BC emissions but dominates in the Arctic,

accounting for 42% of annual mean surface concentrations (Stohl et al., 2013).

Given the recent increase, how well are we keeping track of fossil fuel emissions?

Observational data has routinely found that inventories are underestimating total

emissions and that sources can exhibit a heavy-tailed characteristic, where a small

set of emitters is disproportionately responsible for a large fraction of total emissions

(Brandt et al., 2014; Balcombe et al., 2018). This “superemitter” phenomenon can

result in 5% of sources being responsible for 50% of emissions and needs to be better

understood to improve mitigation and efficiency in oil and gas systems (Brandt et al.,

2016). Studies in multiple oil and gas production basins around the US have ob-

served superemitters, with the top percentile of emitters accounting for up to 25–30%

of total regional emissions (Caulton et al., 2014b; Frankenberg et al., 2016b). The

possibility for high CH4 emissions due to leakage from natural gas systems threatens

to outweigh any climate benefits of switching fuel consumption in the US from oil

and coal to natural gas. In the past decade the use of coal in electricity generation

has decreased in the US, with natural gas and renewable energy sources such as solar

power increasing their share (EIA, 2019d). For the US, prioritizing natural gas over

coal for electric power, or gasoline and diesel for transportation purposes, provides

both energy independence and the potential for lower GHG emissions due to lower

carbon content (Alvarez et al., 2012). Accurate tracking of emissions is necessary to
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evaluate the benefits of fuel-switching (Schwietzke et al., 2014). It is not sufficient

to estimate emissions purely by a bottom-up method, they need to be validated and

reconciled with top-down methodologies utilizing atmospheric observations, remote

sensing data from satellites, and output from climate models in concert (Nisbet and

Weiss , 2010; Kort et al., 2014; Zavala-Araiza et al., 2015).

1.3.2 Agriculture

The agricultural sector is a significant source of atmospheric GHGs, accounting

for around 12% of total anthropogenic emissions (Smith et al., 2014). In the US,

agricultural sources contribute 9% of all national GHG emissions including 40% of

CH4 and 80% of N2O as of 2016 (EPA, 2018). The amount of global cropland has

considerably expanded over time, with 40% of the earth’s non-ice land area devoted

to agriculture (Foley et al., 2011). In recent decades a global rise of sugars, oils, fats,

and meats in diets has resulted in increased agricultural productivity and emissions

(Tilman and Clark , 2014). Figure 1.6 shows fertilizer use over time in the US, with

a 40 times increase between 1940 and 2015 (Cao et al., 2018). Mitigation requires

some combination of altering diets to reduce demand for crops and livestock that

contribute higher emissions as well as slowing down or ideally ceasing land expansion

by improving the efficiency of crop production, especially in underperforming regions.

Continued intensification, or improving crop yields per area cropland, is a promising

avenue to mitigation and since 1961 has avoided an estimated one-third of total

post-industrial anthropogenic GHG emissions (Burney et al., 2010). With proper

technological and management improvements it is possible to decouple emissions and

yields, optimizing high yields and low emissions up to a certain point (Bennetzen

et al., 2016). If consumption and diets stay constant, emissions will likely increase

until 2055 as more people worldwide consume higher value foods and developing

nations advance their agricultural infrastructure and production (Popp et al., 2010;
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FAO , 2017).

A better understanding of agricultural emissions can improve mitigation strate-

gies, especially if good estimates are available for regional and food-specific impacts,

particularly in wealthier developed nations (Aleksandrowicz et al., 2016). Regard-

ing N2O, there is large uncertainty in emissions estimates and inventories (Bouwman

et al., 1995). One reason for difficulty in creating a N2O budget is there are several

components in the nitrogen cycle and many agricultural sources of N2O, including

direct emissions from soils, emissions from animal waste, and indirect emissions from

leaching/runoff of nitrogen into water systems, all contributing to total uncertainty

(Mosier et al., 1998). There is high spatial and temporal variability in N2O emis-

sions that needs to be considered, making it difficult to use emissions from one area

and time as representative of an entire national region and year (Monni et al., 2007;

Nevison et al., 2018). Agricultural productivity and emissions are also affected by the

climate. In the US, temperature and precipitation trends can explain 70% of variation

in yields, and future climate scenarios could cause large drops in productivity (Liang

et al., 2017). Direct observations of N2O emissions are limited in some geographical

areas and production sectors (Reay et al., 2012). Quantifying N2O fluxes from key

regions and sectors is needed to guide mitigation strategies, reduce discrepancies in

top-down and bottom-up estimates, and better understand the dynamic and complex

interactions between agricultural emissions, nitrogen availability in ecosystems, and

climate change (Reay et al., 2012; Wollenberg et al., 2016).

An ideal monitoring system would measure throughout the year in various fields,

even once per day (Bouwman et al., 2002). Though that might be impractical, better

knowledge of emissions from crop production is essential for life cycle assessments to

investigate agricultural systems (Brentrup et al., 2000). A major goal for the agricul-

tural sector is to develop best management practices to optimize nitrogen uptake by

maximizing yield but reducing emissions. This can be done by identifying and quan-
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Figure 1.6: Growth in annual N fertilizer use rate in the US from 1900 to 2015.
Resolution is 5 km by 5km grid cells. Figure adapted from Cao et al.
(2018).
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tifying sources of emissions and reducing the uncertainty of measurements, improving

on the default emission factors used in inventories which do not always account for

specific crop type, fertilizer type, and other underlying factors (Brentrup et al., 2008;

Signor and Cerri , 2013). Identifying agricultural systems with inefficient nitrogen

use would facilitate optimization and mitigation, so the ability to estimate emissions

for entire crop fields is highly valuable (Desjardins et al., 2001; Clark and Tilman,

2017; Zhang et al., 2013). Optimizing factors such as fertilizer type (urea, ammonium

nitrate, potash, etc.) and production technique can substantially reduce emissions in

the fertilizer supply chain (Hasler et al., 2015). N2O emissions from croplands exhibit

a large seasonality effect with emissions typically occurring in bursts during several

key periods in the crop cycle (planting and fertilizing in spring, harvest in the sum-

mer, freeze/thaw in winter), making it a challenge to represent annual emissions with

infrequent measurements (Kavdir et al., 2008). Improving the availability of data on

spatial and temporal variability in N2O emissions and the accuracy of pertinent infor-

mation including fertilizer application rates and irrigation water use is key in supply

chain accounting and mitigating emissions (Smith et al., 2017b). Improvements over

the past few decades in energy-use efficiency and nitrogen-use efficiency have reduced

the amount of N2O emitted per unit of production, but emissions are still rising, re-

quiring additional field research and model development to assess mitigation attempts

and further improve efficiency (Cavigelli et al., 2012).

1.4 Laser Spectroscopy

The absorptive property of greenhouse gases makes studying them through laser

spectroscopy an appropriate choice (Fried and Richter , 2007; Heard , 2008; Du et al.,

2019). These instruments, used extensively in the research of atmospheric greenhouse

gases, are capable of high-precision and high-accuracy measurements (Nelson et al.,

2002; Curl et al., 2010). They are robust and can be deployed in either laboratory
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or field settings, including on vehicles. The mid-IR spectrum, in the 4000–400 cm−1

wavenumber or 2.5–25 µm range, exhibits strong absorption features and high sensi-

tivity, allowing for better identification of greenhouse gases than other spectral regions

(Stuart , 2000; Zhang et al., 2014). Linestrengths for some greenhouse gases can be

up to 100,000 times stronger in the mid-IR than near-IR. While there are several

types of laser spectrometers available, this thesis focuses on observations made with

a continuous-wave, tunable infrared laser direct absorption spectrometer. Figure 1.7

diagrams the optics of such an instrument made by Aerodyne Research, Inc. Several

mirrors align the beam into a 0.5 L optical cell. The 32 cm long cell has reflective

mirrors on both ends which allow the incident beam to reflect 238 times before exit-

ing the cell if aligned properly, resulting in a path length of 76 m. After exiting the

cell the beam is aimed into a photodetector. Air flows in and out of the cell with a

vacuum pump, holding the cell at a constant pressure. Current through the laser is

adjusted to scan the laser’s wavelength across a range covering absorption peaks of

several greenhouse gases, allowing for multi-species analysis. The change in incident

laser intensity and the intensity detected after passing through the cell is used to

calculate the concentration of a species. The calculation makes use of Beer’s Law,

given as Equation 1.1

A = N × σ × L (1.1)

where A is the fractional absorption, N is the molecular number density, σ is the

absorption cross section of a molecule, and L is the absorption path length. N is

the desired measurement: what ratio of the air is occupied by a particular trace gas.

Laser intensity measured by the photodetector is used to calculate A, σ has been

calculated for a large suite of transitions (Rothman et al., 2013), and the path length

L is known, in this case 76 m. A long path length and strong transition are desirable

to reduce noise in absorption and improve precision.
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Figure 1.7: Diagram of a continuous-wave, tunable infrared laser direct absorption
spectrometer. Figure adapted from Aerodyne Research Inc.
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Figure 1.8 shows a screenshot of the TDL Wintel retrieval software for an Aero-

dyne, Inc. trace gas laser monitor. For this instrument the absorption peaks cover

a wavenumber range of 2227.4–2227.9 cm−1. The laser frequency is periodically sta-

bilized by frequency locking, where the absorption peak of a specific reference gas,

in this case N2O, is set to an appropriate position or channel. For instruments that

frequency lock using a gas with small absorption profiles due to low atmospheric am-

bient values, such as C2H6, a reference cell is flipped in during frequency locking,

as indicated in Figure 1.7. Temperature, electric interference, and other factors can

cause drift in the instrument over time, affecting the trace gas measurement (Werle,

2011; Smith et al., 2013). Periodic sampling of either a reference gas with a known

composition or a zero gas with no detectable trace species can be used to adjust for

the drift and maintain accuracy, and the instrument’s software can automate the cal-

ibration. The interface also provides real-time monitoring of measurements, allowing

for adjustment of sampling strategy or route if the instrument is deployed on a mobile

platform such as a van or an airplane.

1.5 Airborne Observations

For decades, airborne measurements have been a valuable tool for quantifying

emissions of atmospheric trace gases (White et al., 1976). Airborne campaigns allow

for large regional coverage, can characterize the boundary layer in-flight with a vertical

profile, and can assess emissions from difficult-to-reach sources including offshore

platforms (Nara et al., 2014; Flamant et al., 2018) or remote wells far away from

major roads (Cambaliza et al., 2014). Airborne observations can be used to quantify

emissions from urban sources (Mays et al., 2009; Turnbull et al., 2011; Cambaliza

et al., 2014) or fossil fuel production (Karion et al., 2015; Peischl et al., 2015a), and

have been used to study a variety of gases and pollutants including ozone (Trainer

et al., 1995), N2O (Xiang et al., 2013), CH4 (Peischl et al., 2016), BC (Schwarz et al.,
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Figure 1.8: Screenshot of TDL Wintel interface showing the absorption spectra of
H2O, CO2, CO, and N2O in green, with line of best fit in blue.

2015; Weyant et al., 2016), and C2H6 (Smith et al., 2015; Kort et al., 2016).

A common approach is the mass balance method, illustrated by Figure 1.9. The

plane flies downwind of an emissions source, sampling the plume throughout the

transect. This technique assumes the mixing layer is well-mixed, with a consistent

boundary layer height, and relies on steady unidirectional winds. The emissions flux

in mol/s calculated with the mass balance method is given by Equation 1.2

flux = ν cosθ

xf∫
xi

X dx

zPBL∫
zg

nair dz. (1.2)

where ν cosθ is the horizontal wind component perpendicular to the airplane’s

heading, xi and xf define the width of the flight transect over ground, X is the

molar fraction enhancement over background during the transect, zg and zPBL define

the distance between ground level and the planetary boundary layer, and nair is the

molar density of air. This equation can be adjusted and used with several approaches
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Figure 1.9: Illustration of the airborne mass balance technique. Figure adapted from
Peischl et al. (2015b).

depending on background choice or complexities in the mixed layer height.

When deploying laser spectrometers on airplanes, careful considerations must be

made with regard to power draw, weight, accessibility, and safety (Richter et al.,

2013). The instrument and all related equipment must be secured and strapped in.

All parts of the flow scheme including tubing and gas regulators must be checked pre-

flight to ensure no leaks are present, since in-flight tightening may not be feasible.

Test flights are also needed to assess in-flight performance.

1.6 Dissertation Outline

This thesis presents assessments of atmospheric emissions of greenhouse gases from

oil, gas, and agricultural sources using continuous airborne observations. Chapter II
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examines the efficiency of natural gas flares from oil wells in the productive Bakken

Shale region of North Dakota, published as Gvakharia et al. (2017). Flaring efficiency

is reported for CH4, BC, and for the first time, C2H6. Flares appear to follow a non-

normal distribution with higher-emitting flares contributing to a larger fraction of

total emissions, a superemitter behavior characterized by other sources in the oil and

gas sector. Even with the skewed distribution, BC emissions are lower compared to

reported emissions from the region and do not strongly correlate with CH4 emissions.

For CH4 and C2H6, however, flaring could contribute ∼20% of total regional emissions,

more than double the value if a standard flaring efficiency is assumed.

Chapter III details the development and testing of an airborne system to measure

N2O, CO2, CO, and H2O, published as Gvakharia et al. (2018). The main compo-

nent is a trace gas laser monitor that previous literature suggested was sensitive to

variations in pressure during airborne operation. A repeatable pressure artifact is

confirmed in test flights and corrected for by extending on previous calibration ap-

proaches with a flow-controlled system and frequent calibrations, accounting for drifts

on short time scales. Calibrated CO2 and H2O data are compared with a different

flight-tested spectrometer, showing good agreement and validating the technique. In-

air 1σ precision of the instrument is comparable to laboratory operation, making it

suitable for airborne studies.

Chapter IV presents airborne observations made using the system described in the

previous chapter to quantify agricultural emissions in the fecund Lower Mississippi

River Basin. N2O, CO2, and CH4 emission fluxes are calculated for two fertilizer

plants that together account for a significant fraction of US fertilizer production.

Observed N2O and CO2 emission rates agree well with reported values but observed

CH4 emissions are several orders of magnitude higher than expected. Regional N2O

fluxes are quantified using the mass balance technique for the first time. These

fluxes are compared with several emissions drivers: crop type, applied fertilizer, soil
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moisture, and soil temperature. Finally, Chapter V summarizes the main thesis

results and discusses future research directions.
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CHAPTER II

Flaring: CH4, C2H6, and BC emissions from

natural gas flares in the Bakken Shale, ND

Reprinted (adapted) with permission from Gvakharia et al. (2017). Copyright

2017 American Chemical Society.

Abstract

Incomplete combustion during flaring can lead to production of black carbon (BC)

and loss of methane and other pollutants to the atmosphere, impacting climate and

air quality. However, few studies have measured flare efficiency in a real-world setting.

We use airborne data of plume samples from 37 unique flares in the Bakken region of

North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and

combustion efficiency for methane and ethane. We find no clear relationship between

emission factors and aircraft-level wind speed, nor between methane and BC emission

factors. Observed median combustion efficiencies for methane and ethane are close

to expected values for typical flares according to the US EPA (98%). However, we

find that the efficiency distribution is skewed, exhibiting log-normal behavior. This

suggests incomplete combustion from flares contributes almost 1/5 of the total field

emissions of methane and ethane measured in the Bakken shale, more than double

the expected value if 98% efficiency was representative. BC emission factors also
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have a skewed distribution, but we find lower emission values than previous studies.

The direct observation for the first time of a heavy-tail emissions distribution from

flares suggests the need to consider skewed distributions when assessing flare impacts

globally.

2.1 Introduction

Over 140 billion cubic meters (BCM) of gas is globally flared each year (Elvidge

et al., 2009). Flaring is used to dispose of gas at production and processing facilities

that lack infrastructure and means to capture or use the gas. The United States flares

about 8 BCM per year, with almost half of that coming from North Dakota alone

(EIA, 2016). From 2004 to 2014, the amount of gas annually flared in North Dakota

increased from 0.08 BCM to 3.7 BCM, and in 2014 about 28% of North Dakota’s total

produced natural gas was flared (North Dakota State Government , 2016). Flaring has

implications for the atmosphere. Although ideally gas would be captured instead of

lost, it is preferable to flare rather than vent, since flaring destroys methane (CH4)

and volatile organic compounds which affect air quality, converting them to CO2.

CH4 is a potent greenhouse gas, the 2nd most important anthropogenic greenhouse

gas behind CO2 based off integrated radiative forcing (IPCC , 2013; Shindell et al.,

2009). Flaring is not 100% efficient, and through incomplete combustion it can be a

source for CH4 and VOCs (Ismail and Umukoro, 2012; Simpson et al., 2012). Flaring

can also create black carbon (BC) as a byproduct, an anthropogenic forcer of climate

with public health implications (Bond et al., 2013; Stohl et al., 2013; Schwarz et al.,

2015; Anenberg et al., 2012). The World Bank recently introduced a “Zero Routine

Flaring” initiative to end flaring worldwide by 2030 through government incentives

and institutional cooperation, hoping to mitigate economic losses due to flaring and

relieve its burden on the atmosphere (The World Bank , 2016c).

Inventories that account for flaring often use a combustion efficiency value of 98%
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of the initial gas, citing an EPA technical report (EPA OAQPS , 2012; EPA, 1998).

This efficiency value assumes flare stability, and can decrease based on wind speed

and other factors such as flow rate or aeration. Studies have investigated flare effi-

ciency in laboratories using scaled-down flare simulations in a controlled environment,

reporting 98–99% flare combustion efficiency (Johnson and Kostiuk , 2000, 2002), but

there have been few field studies done to assess flare efficiency and directly measure

emissions in a real-world environment. Thus, scaled-up laboratory results may not be

representative of real-world flaring. A study of two flare sites in Canada calculated

an average observed combustion efficiency of 68 ± 7%, much lower than the assumed

efficiency (Leahey et al., 2001). One remote sensing study in the Netherlands found

high efficiencies of 99% but only analyzed three flares, with up to 30% error in the

measured gas concentrations, and noted the lack of in situ data (Haus et al., 1998).

There was also a comprehensive study to observe industrial flare emissions and effi-

ciency but the tests were conducted at a flare test facility, not directly at well sites

(Knighton et al., 2012). To our knowledge the only extensive study of in situ flare

efficiency for CH4 sampled ten flares in the Bakken Shale in North Dakota and one

in western Pennsylvania (Caulton et al., 2014a). This study reported high flare effi-

ciencies up to 99.9% but based on their identification techniques, they acknowledged

a possible bias towards larger, brighter burning, and thus more efficient, flares.

Black carbon emissions from gas flaring have been investigated, but there are not

many studies that use direct observations of flaring. Schwarz et al. (2015) quantified

total field emissions of BC and derived an upper-bound on BC emission factor for

flaring from the Bakken using the same aircraft campaign data as used in this paper.

Their emission factor was obtained using BC flux calculated with a mass balance

technique for the entire field. Hence, it did not target individual flares. It includes all

BC sources in the region (e.g. diesel trucks, generators, limited agriculture, etc.) and

is expected to provide an upper bound. Weyant et al. (2016) calculated BC emission
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factors from targeted flares in the same region and found an average value well below

the upper bound of Schwarz et al. (2015), and to our knowledge is the only previously

published peer-reviewed study of BC emissions from flaring that directly sampled

flares. BC emission factors have been shown to vary based on fuel chemistry and

stability of the flare, necessitating the use of specific emission factors or a distribution

rather than using a single average value as representative (McEwen and Johnson,

2012).

The lack of direct, in situ observations of flaring efficiency suggests that estimates

of emissions from incomplete combustion may be inaccurate. Also, using a single

value for flaring emission factors or combustion efficiency does not take into account

the various parameters that may affect a flare (Kahforoushan et al., 2010), and a

statistically robust sample of flaring efficiency would help identify a representative

distribution. Total fugitive emissions from oil and gas production and leakage can

be a substantial source of atmospheric CH4 and are underrepresented in inventories

(Brandt et al., 2014). Studies have observed non-normal distribution of CH4 emis-

sions in some fields, where less than 10% of sampled sources contributed up to 50%

of the sampled emissions (Yuan et al., 2015; Mitchell et al., 2015; Allen, 2014; Brandt

et al., 2016; Frankenberg et al., 2016b). A study of flare emissions using Greenhouse

Gas Reporting Program and Gas Emission Inventory data found that 100 flares out

of 20,000 could be responsible for over half the emissions in the US, but this con-

clusion results from the non-normal distribution of gas volume flared and not from a

skewed flare combustion efficiency (which is not represented) (Allen et al., 2016). In

addition to the non-normal distribution of gas volume flared, there may be a skewed

distribution of emissions from incomplete combustion in flares based on efficiency as

well.

We present an analysis of combustion efficiency and emission factors of CH4, BC,

and C2H6 for thirty-seven distinct flares in the Bakken Shale Formation in North
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Dakota using data obtained during a May 2014 aircraft campaign, to our knowledge

the largest study of flaring emissions in the field based on number of flares and the

first to include C2H6. This gives us sufficient statistics to obtain an efficiency dis-

tribution and determine the implications for total fugitive emissions from incomplete

combustion in actual field conditions.

2.2 Methods

2.2.1 Flights and Instrumentation

All observations used in this analysis were made as part of the TOPDOWN 2014

(Twin Otter Projects Defining Oil/gas Well emissioNs) study, and were collected on-

board a National Oceanic and Atmospheric Administration (NOAA) DHC-6 Twin

Otter aircraft (Peischl et al., 2016; Schwarz et al., 2015; Kort et al., 2016). This

campaign focused on understanding the atmospheric impact of fossil fuel extraction

activities. 17 research flights were conducted on 11 separate days between May 12–

26, 2014, totaling 40 hours. Flights were typically 3–3.5 hours in duration, and were

primarily conducted at low-altitudes (400–600 magl) within the planetary boundary

layer at an average speed of 65 m/s. Vertical profiles were performed in each flight to

define the mixed layer height. Flights dedicated to mass balance conducted transects

around the Bakken region, and although a few flares were sampled during these

transects, most of the flares were identified on “mowing-the-lawn” flights that swept

across the region to target point sources as well as some flights dedicated to point

source identification. Flares were circled multiple times during these flights between

400–600 magl although some were sampled higher up, around 1000 magl. Flares were

not specifically targeted for any particular characteristic such as size, brightness, or

flaring volume. Flares were sampled over the entire region rather than in a particular

cluster, giving low spatial sampling bias. However, due to the nature of the sampling,
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brighter flares were more easily identifiable from the plane and thus more likely to

have been targeted. Not all passes by a flare produced a well-defined peak that could

be used in the efficiency analysis. Many of the flares were sampled at a distance on

the order of hundreds of meters to kilometers downwind. This gave the flare plume

time to disperse and allowed us to measure large plumes over a time period of 10–20

seconds, providing more data per plume than if we sampled closer and lower.

CH4, CO2, carbon monoxide (CO), and water vapor (H2O) were measured with

a Picarro 2401-m cavity ringdown spectrometer with a sampling rate of 0.5 Hz. CH4

was measured with an accuracy of ±1.4 ppb and precision of ±0.2 ppb; CO2 with

an accuracy of ±0.15 ppm and precision of ±0.03 ppm (Karion et al., 2013, 2015).

An Aerodyne mini direct absorption spectrometer was used to continuously measure

C2H6, deployed as described previously in literature (Yacovitch et al., 2014; Smith

et al., 2015) along with hourly measurements of a standard gas to confirm stability

(Kort et al., 2016). Sampling was conducted at 1 Hz with precision of < 0.1 ppb

and average accuracy of ±0.5 ppb (Kort et al., 2016). Due to the Aerodyne ethane

instrument having a response time of 1 second, compared to the Picarro’s 2 second

response time, there were sharper, narrower peaks in C2H6 than CO2 and CH4. To

enable a point-by-point comparison of C2H6 to CO2, a weighted moving average

(WMA) was applied to the C2H6 data. The total integrated value of the C2H6 peak

did not significantly change with the WMA filter, indicating conservation of mass

with the method.

All trace gases are reported as dry air mole fractions, converted from the measured

wet air mole fractions using water vapor observations from the Picarro. A single-

particle soot photometer (SP2 by Droplet Measurement Technology Inc., Boulder,

CO) was used to measure refractory black carbon (rBC) for particles containing rBC

in the mass range of 0.7–160 fg. The SP2 provided 1-second rBC mass-mixing ratios

with systematic uncertainty of 25% (Schwarz et al., 2010, 2015). Two differential
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GPS antennae on the fuselage of the Twin Otter provided aircraft heading, altitude,

latitude, longitude, ground speed, and course over ground. Wind speed was calcu-

lated as described in Conley et al. (2014), with estimated uncertainties of ±1 m/s in

magnitude and ±6◦ in direction. A Rosemount de-iced Total Temperature Sensor,

model number 102CP2AF, measured ambient temperature. Calibration before and

after the field project indicate measurement performance with precision of ±0.2 ◦C

and accuracy of ±1.0 ◦C.

2.2.2 Flare Identification

We identified flares in the following ways. During the science flights, all signifi-

cant events were logged, including when the plane flew by a flare. These flight notes

thus provide times when a flare was visually confirmed, and these flare plumes were

identified in the data for the corresponding flight and flagged. After locating all the

flares confirmed by the flight notes, we searched through the remaining data to find

plumes that could be possible flares but were not noted during the flight, such as

smaller flares that might have been hard to see on the ground. To identify the other

possible flare plumes, we looked for peaks in CO2 where ∆CO2, the peak enhance-

ment, was greater at its maximum point than 4σ of the CO2 background variability,

indicating a statistically significant elevation of CO2 as a result of combustion from

a flare. We also looked for a peak less than 20 seconds in time. At a mean ground

speed of 65 m/s this corresponds to a source about 3 km away using Gaussian plume

theory (Zannetti , 1990), which is about the distance we tended to sample where the

plume still presented a robust signal above background. Figure 2.1 shows the research

aircraft flight paths, known flare locations (North Dakota State Government , 2016),

and where we sampled plumes.

To verify if these additional plumes identified in the data were indeed caused by

flaring, we co-plotted the locations of these events with all nearby wells with reported
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Figure 2.1: Left panel shows flight paths (black lines), wells with known flaring (grey
triangles) (North Dakota State Government , 2016), and flare plume lo-
cations (red points) from the TOPDOWN 2014 campaign in the Bakken
field in northwest North Dakota. Times when the plane circled around
an area multiple times to repeatedly sample can be seen in the middle of
the region. Right panel is zoomed in on a single flare plume, with flight
path (black line), flare plume (red points), and wells with reported flaring
(filled triangles with corresponding monthly flaring amounts). The arrows
indicate the wind direction. We used the wind direction, distance from
well, and flaring amount to verify that the plume was caused by flaring.

flaring and other CO2 producers such as processing facilities and gas plants using

the EPA GHG Reporting Program as seen in Figure 2.1. Certain flare locations were

cross-checked with additional data from the VIIRS Active Fire Map and North Dakota

Oil and Gas ArcIMS Viewer. Then, using Gaussian plume theory, we estimated how

far away the source of a plume was based on the plume width and wind conditions,

matching the plume to a possible flare source (Zannetti , 1990). Although the science

flights were conducted on days with steady winds, leading to low variability in wind

speed and direction, we accepted plumes that were within 20% of the theoretical

distance to account for deviation in other factors such as not flying directly in the

center of the diffused plume. If a plume was located downwind from a well with

flaring, was not downwind of another CO2 source, and had a width and distance

consistent within 20% of Gaussian plume theory, we considered it likely due to a flare

source. If a plume was not downwind of a flare at a distance consistent with Gaussian
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plume theory, or had interference from another CO2 source, we omitted it from the

analysis. 39 flare plumes were identified with the flight notes, and out of 17 additional

plumes in the data, 13 were accepted using our verification method and 4 rejected for

a total of 52 flare plumes from 37 unique flares.

Other sources for methane or black carbon closely co-located with flares (such

as diesel engines or fugitive losses from production wells) could contribute to the

observations we are attributing to flaring, and we assess their potential impact on our

analysis here. Using gas composition data from over 550 samples, the average chemical

plume from the Bakken is 0.7% CO2, 3.7% N2, 49% CH4, 21% C2H6, and the rest in

higher-order hydrocarbons (Brandt et al., 2015). This results in a molecular weight

of about 29 g/mol, close to that of air and nearly double the weight of natural gas

from other fields with higher CH4 ratios (Weyant et al., 2016). An unburned source

of gas is therefore neutrally buoyant compared to a hot flare exhaust plume which

will rise in the atmosphere (Beychok , 2005). However, the flare plume can entrain

these other sources, mixing them as the buoyant plume rises in the atmosphere. If we

assume a flare converts 98% of its hydrocarbons to CO2, and that enhancements near

a well pad due to other emissions are 50 ppm CH4 and 415 ppm CO2, then if the flare

plume entrained a volume equal to its own (50% dilution) the resulting CH4/CO2

slope measured by the aircraft (see Figure 2.2) would change by less than 1%, smaller

than the uncertainty range in fitting the slope. Considering typical values for methane

and CO2 enhancement (40 ppb and 5 ppm on average, respectively), we estimate the

slope error (and thus error on calculated emission factors) would be less than 1% with

10% as an upper bound. Adjusting the flare efficiency in this estimation does not

significantly affect the result (using a 90% combustion efficiency, all else equal, would

also have an impact of 1% on the slope). Although we cannot definitively rule out

all potential contributions from such sources to the plumes we are analyzing, these

considerations of possible entrainment suggest it is not significant in this analysis,
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though the potential impact would suggest our results may represent a lower bound

for combustion efficiency.

2.2.3 Combustion Efficiency

Destruction efficiency and emissions factors were calculated for each flare sampled.

Black carbon emission factors were determined following the methodology of Weyant

et al. (2016), using eq. 2.1

EFBC = 1000 × F
CBC

CCO2 + CCH4 + CBC
(2.1)

Here CCO2 , CCH4 , and CBC are the mass concentrations of carbon in g/m3 for each

product with the respective background removed and F is the ratio of carbon mass

to total hydrocarbon mass, calculated to be 0.79 from gas composition data for the

Bakken (Brandt et al., 2015). CO2 and CH4 data were converted from molar ratios to

g/m3 using a molar volume at standard temperature and pressure (273K, 1013 mb)

to match the conditions of the BC mass concentrations. This EFBC value is given

in grams of BC per kg of gas, and can be converted to g/m3 using a gas density of

1.23 ± 0.14 kg/m3 for the composition (Brandt et al., 2015). For some of the flares

we did not detect a strong BC enhancement correlated with CO2, causing skewed

or negative emission factor values. To account for this, when the peak enhancement

∆BC was below the detection limit of 4σ of the background, we used a value of

half the detection limit in the EF calculation as in Weyant et al. (2016); this was

observed in a third of the plumes. The measured BC concentrations were scaled

up by 15% to account for accumulation-mode mass outside of the SP2 detection

range, as described in Schwarz et al. (2015); rBC mass in either the coarse mode or

a sub-accumulation mode size range would not be accounted for by this adjustment.

Generally, as in Schwarz et al. (2015), the accumulation mode size distribution is well-

fit with a log-normal function, and any additional smaller or larger populations of BC
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Figure 2.2: Example of a flaring plume with CO2, CH4, C2H6 time series and regres-
sion to find CH4 EF.

particles are revealed by deviations from the log-normal fit at the smaller or larger

limits of the detection range respectively. Here, there was no evidence of additional

non-accumulation modes.

Emission factors for CH4 and C2H6 were obtained by first calculating the peak

enhancement of CH4, C2H6, and CO2. We calculated a mean background value for

each plume using the concentration data from 5–10 seconds before the start and after

the end of the plume, and then subtracted the background from the plume values

to obtain ∆CH4, ∆C2H6, and ∆CO2. ∆CH4 and ∆C2H6 were fit with a Reduced

Major Axis (RMA) regression to ∆CO2 for each peak to obtain the emission factor,

in ppm CH4 or C2H6 per ppm CO2 (Caulton et al., 2014a). Figure 2.2 shows an

example plume from a flare and its CH4 regression. Regressions were well-correlated

with 10–20 data points in each flare plume. Uncertainty in EF for CH4 and C2H6 was

given by 95% confidence intervals from the regression. For all plumes, EFBC from eq.

1 linearly correlated with the slope of BC vs CO2 with an R2 of 0.97. This fit was

used to derive uncertainty in EFBC from 95% confidence intervals of the regression

of BC and CO2.

We calculated the destruction removal efficiency (DRE) following the methodology

of Caulton et al. (2014a) using eq. 2.2, with a small correction to report the value as
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the fraction of gas destroyed rather than remaining.

DRE(%) =
(

1 − µCH4

((X) ∗ µCO2) + µCH4

)
∗ 100 (2.2)

µCH4 and µCO2 are the gas concentrations in ppm and X is the carbon fraction

of CH4 in the total fuel gas before combustion. From gas composition data for the

field (Brandt et al., 2015), the value of X is 0.26 ± 0.05 for CH4.

This DRE calculation was done two ways. First, by integrating over the entire

peak to obtain a DRE value from the total integrated amount of CH4 and CO2.

Second, by calculating the DRE value for each point in the peak individually to get

an aggregate DRE dataset as seen in Caulton et al. (2014a) The respective baseline

values were removed from each gas concentration in both methods. Since the integral

method calculates DRE using the average concentration over the sampling time of the

gases in the plume, and the point-by-point mean represents the average instantaneous

DRE, a significant divergence between the results would be indicative of a potential

problem with the approach. For all flares the integrated DRE differed from the mean

point-by-point DRE by 1% on average, demonstrating robustness between the two

methods. C2H6 DRE was also calculated using both methods, with X = 0.23 ± 0.03

for C2H6. The effect of X’s variability on the DRE is small and within the calculated

uncertainty for DRE.

2.2.4 Detection Threshold

We compared the standard deviation of CH4 background and the maximum peak

CO2 enhancement to calculate a “noise DRE” using eq. 2.2 to assess the impact of

a potential signal produced by background variability on the DRE. The distribution

suggests a sensitivity threshold around 99%. We compared the sensitivity distribution

to the measured DRE distribution, and an analysis of variance between the two

produced a p value of 9×10−7, suggesting they are statistically significantly different.
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Thus it would be difficult to distinguish measured DRE values of greater than 99% as

significant compared to background variability, but values less than 99%, as we have

observed, are robustly detectable with our approach. There is a trade-off between our

sampling approach and the one used by Caulton et al. (2014a), where they flew lower

and closer to the flares. With our flights, we obtained more points in each plume,

allowing us to calculate regression lines for emission factors. However, we encountered

a lower signal-to-noise ratio, making it more difficult to precisely measure the DRE

of very efficient flares. We used the difference between 100% and the DRE calculated

using the sensitivity as a proxy for DRE uncertainty in each individual flare.

2.3 Results

2.3.1 Emission Factors

Figure 2.3 shows the calculated CH4 and C2H6 emission factors plotted against

mean aircraft-level wind speed for all flare plumes. Previous laboratory flare stud-

ies have observed a strong nonlinear dependence of inefficiency on crosswind speed

(Johnson and Kostiuk , 2000, 2002), and Caulton et al. (2014a) observed a weak re-

lationship in the flares they sampled in the field. Considering our observed emission

factors and crosswind speeds we find similar results to Caulton et al. (2014a). An

exponential fit of our data suggests a weak dependence, with parts of the data possi-

bly following different distinct curves. A Pearson correlation analysis of the data and

the exponential fit produced a weak correlation coefficient (0.34). Gas exit velocity

and flare parameters like the stack diameter can affect the inefficiency curve and may

be the reason for the apparent presence of multiple curves, but unfortunately these

values were not known for our sampled flares. More specific knowledge of the gas

composition and flow rate would potentially be illuminating for the possible bimodal

distribution in CH4 EF of low-efficiency emitters (>30 ppb/ppm) and high-efficiency
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emitters (0–20 ppb/ppm) but we can only hypothesize without detailed information

on specific flares at time of our sampling.

Some flares were circled repeatedly or revisited on different days, and so we tran-

sected multiple plumes from the same flare. The calculated EF for the flare was not

consistent between different plumes, suggesting fluctuation in the efficiency. Caulton

et al. (2014a) found large overall variability in CH4 EF and inconsistency between

sampling on different days, but attribute the variability to the small sample size of

their plumes. Weyant et al. (2016) reported inconsistent emissions of BC for flares

sampled on different days, and observed large variability in BC EF for multiple passes

of the same flare, citing variability in gas flow rate and gas composition as possible

sources. From our data alone we cannot resolve the cause of same-flare variability,

but it is apparently a feature consistent across studies.

We did not observe a clear relationship between EF and wind speed for plumes

from the same flare, possibly due to factors like flow rate or exit velocity. For some

flares that were sampled multiple times, we did not get a sharp, identifiable peak in

CO2 or CH4 on every pass, and so we were not able to analyze all possible passes.

The EF calculation included background points in the regression, removing these

points from the fit and forcing the line through zero did not significantly affect the

results. Comparing CH4 and C2H6 emission factors for each plume, we found a

linear relationship with a R2 value of 0.57, as plumes with higher emissions of CH4

had corresponding higher emissions of C2H6, suggesting that combustion efficiency is

somewhat uniform across hydrocarbons.

Like Weyant et al. (2016), we did not observe a dependence between BC emission

factor and CH4 EF for each plume. Elevated CH4 emissions from a flare do not

necessarily indicate higher or lower BC emission. Adding in an ethane term to eq.

2.1 did not significantly change the BC EF calculation, as the ppm-order enhancement

of CO2 dominates the ppb-order enhancement of C2H6 and CH4.
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Figure 2.3: CH4 and C2H6 EF plotted against wind speed for all plumes, with an
exponential fit in red. Error bars represent 95% confidence intervals in
EF and 1σ in wind speed.
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Figure 2.4: On the left, a histogram of black carbon emission factor for all flare
plumes, with log-normal density (red line). On the right, distribution
function of BC EF in black with log-normal distribution function in red.

Figure 2.4 shows the distribution and probability function of BC emission factor in

g BC/kg gas. The distribution is right-skewed, matching the results of Weyant et al.

(2016), and was fit with a log-normal density using a maximum-likelihood method.

The log-normal distribution function is given by

f(x) =
1√

(2π)σx
e−((logx−µ)2/(2σ2)) (2.3)

µ and σ are the mean and standard deviation of the logarithm. A Pearson correlation

analysis between the BC emission factor probability distribution and the log-normal

distribution resulted in a correlation coefficient of 0.96. We present the log-normal

fit as a way to illustrate the skewed distribution and provide a quantitative repre-

sentation. Results derived from the combustion efficiency distribution use the raw

distribution, rather than an approximation with the log-normal fit.

We report BC EF from flares in g/kg, grams of BC produced per kilogram of

hydrocarbons in the fuel gas. The values ranged from 0.0004 to 0.287 g/kg. We can

convert from g/kg to g/m3 using a flared gas density of 1.23 ± 0.14 kg/m3 (Brandt

et al., 2015), allowing us to express BC EF in terms of gas flared volume and to

compare the results with previous studies. Even with the observation of a right-
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skewed distribution, our analysis finds lower BC emissions than previously reported.

Schwarz et al. (2015) provided an estimate for all the BC sources in the Bakken of

0.57 ± 0.14 g/m3. This upper bound on flaring is twice the highest emission value

we observed (Figure 2.4). Similarly, laboratory analysis by McEwen and Johnson

(2012) reported emissions much larger than we observe (0.51 g/m3, off scale in Figure

2.4). The mean value of 0.13 ± 0.36 g/m3 measured with an SP2 by Weyant et al.

(2016) is within our observed range, though it falls within the top 20% of emitters

we observed. Our observed in-field flares thus appear to have produced less BC

than would be predicted from previous studies. The median, mean, and standard

deviation of the mean BC emission factor we observed were 0.021 g/m3 and 0.066 ±

0.009 g/m3 (or 0.017 g/kg and 0.053 ± 0.008 g/kg), respectively, though given the

skewed distribution care needs to be taken in interpreting these values. Given that 3.7

BCM of gas was flared in the Bakken field in 2014 (North Dakota State Government ,

2016), applying that to the entire distribution of BC EF in g/m3 suggests total BC

emissions from flaring of 0.24 Gg BC/yr. However, the top quartile of flares contribute

disproportionately, 0.17 Gg BC/yr, which is 70% of the total emissions from flares.

Overall, our emission rate of 0.24 Gg BC/yr is two-thirds the rate of 0.36 Gg BC/yr

calculated by Weyant et al. (2016) for flares and 17% of the total Bakken emission

rate (1.4 Gg BC/yr) reported by Schwarz et al. (2015). Based on these results, using

a single emission factor to estimate emissions from flares in a region does not properly

represent the wide variability in emissions that may be present. Total emissions from

flaring could potentially be substantially reduced if the least efficient flares alone are

identified and addressed.

2.3.2 Combustion Efficiency

For methane and ethane, the percent of gas remaining provides a useful metric

for flare efficiency—this is simply 100-DRE. In Figure 2.5 the distribution of percent
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remaining CH4 and C2H6 is illustrated and a log-normal relationship is apparent. As

with emission factors, we found a linear relationship between CH4 and C2H6 DRE for

each plume, with a R2 of 0.53.

A Pearson correlation analysis of the DRE probability distributions and the log-

normal fit distribution produced a correlation coefficient of 0.99 for both CH4 and

C2H6. The distribution of CH4 and C2H6 emission factors, which are theoretically

consistent with the DRE calculations, also exhibit a skewed distribution though a

log-normal relationship is not as apparent. The median DRE for CH4 is 97.14 ± 0.37

using the integral method and 96.99 ± 0.23 using the aggregate dataset. For C2H6 the

median DRE is 97.33 ± 0.27 and 97.36 ± 0.25 respectively. These median values are

close to the expected efficiency (98%), but the right-skewed distribution indicates that

98% is not a representative destruction efficiency and would over-predict methane and

ethane destruction.

We can assess the impact of this observed skewed distribution by considering

the contribution of incomplete flare combustion to total field methane and ethane

emissions. Using aircraft data and a mass balance technique, Peischl et al. (2016)

calculated a methane flux for the Bakken region that extrapolates to an annual flux of

0.25 ± 0.05 Tg CH4/yr. As with black carbon, we can use reported flaring gas volumes

for North Dakota in 2014 (North Dakota State Government , 2016) and integrate the

distribution of observed DRE values to produce an estimated emission of methane

from incomplete combustion of 0.052 Tg CH4/yr, or 21% ± 4% of the total emissions

reported by Peischl et al. (2016), using the uncertainty bound on the flux calculation.

This is more than double the contribution one would find if the expected value of 98%

was assumed representative of the field, which would predict emissions representing

8% ± 1.6% of the total field emissions. Caulton et al. (2014a) reported much higher

combustion efficiencies, and applying their median 99.98% value would suggest only a

fraction of a percent (0.13% ± 0.03%) of the total field emissions was from incomplete
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Figure 2.5: Histogram of remaining CH4 and C2H6 (100-DRE) with density curve
(dashed black) and log-normal fit (red). These distributions were inte-
grated to calculate the emissions due to incomplete combustion.
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combustion in flares.

We performed the same analysis for ethane, and compared with the total field

emissions estimate of 0.23 ± 0.07 Tg C2H6/yr reported in Kort et al. (2016). Again

our observed combustion efficiencies suggest incomplete combustion from flares con-

tributes substantially to total field emissions, 17% ± 5% of the total emissions (0.039

Tg/yr), more than double that predicted by using 98% as a representative value.

The observed log-normal distribution results in a disproportionate impact from

flares exhibiting poor combustion efficiencies. We find the top quartile of methane

emitters contribute 0.036 Tg CH4/yr, which is 69% of total emissions from incomplete

flare combustion (and 14% of the total field emissions). Similarly, for ethane, the top

quartile of emitters contributes 0.026 Tg C2H6/yr which is 66% of the total emissions

from incomplete flare combustion (and 12% of total field emissions).

Why do we find higher methane emissions and lower black carbon emissions than

other studies conducted in the Bakken shale (Weyant et al., 2016; Caulton et al.,

2014a; Schwarz et al., 2015)? We cannot definitively pinpoint the reason. We sampled

in the same subregion of the Bakken as Caulton et al. (2014a), though we did not

sample any of the same flares they did, and our campaign was 2 years after theirs.

Weyant et al. (2016) did not report specific flare locations but were likely in the same

subregion as well, 2 months before our campaign.

There is a difference in sampling methods, which could contribute. Caulton et al.

(2014a) flew low and close to the flares, though specific altitudes and distances are not

reported. As we did not specifically target larger (and so potentially more efficient)

flares, our approach makes it more likely to sample higher emitting flares. Weyant

et al. (2016) also likely flew closer to the flares than we did, though at a slower

speed (45 m/s) than at which we typically sampled (65 m/s). We did not observe

a clear correlation between sampling distance and combustion efficiency in our data,

but it certainly affects variables such as plume entrainment, other emissions sources,
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turbulence, and environmental factors.

The largest source of discrepancy in results is likely that relatively few flares have

been sampled: 26 (85 passes) by Weyant et al. (2016), 10 by Caulton et al. (2014a),

and 37 (52 passes) in our study, and thus there is large representation error. In our

study we attempt a statistical sampling for greater representativeness, but given that

there were over 5500 wells with reported flaring in the Bakken in 2014 (North Dakota

State Government , 2016), 37 independent flares only represents 0.6% of active flares.

Thus, we think our results should be considered in concert with the Weyant and

Caulton analyses, and our data should be considered in aggregate. In doing so, it

would subtly change our total estimated contribution (lower for methane and higher

for black carbon), but the observed log-normal distribution result would not change.

2.4 Global Implications

Our sampling provides sufficient statistics to observe a heavy-tail distribution of

combustion efficiencies. This heavy-tail characteristic has been observed and reported

for methane emissions from the oil and gas sector (Yuan et al., 2015; Subramanian

et al., 2015; Mitchell et al., 2015; Allen, 2014; Frankenberg et al., 2016b), but this

represents a first observation of the heavy-tail for flaring emissions of methane and

ethane. This has important implications for current and future contributions from

flaring activities. To illustrate, let us consider if our observed distribution were glob-

ally representative. Globally, 143 BCM of gas is flared annually (Elvidge et al., 2016).

If 98% destruction removal efficiency were representative of every flare, that would

correspond to a range in methane emissions of 1.14–1.90 Tg CH4/yr for a gas composi-

tion range of 60%–100% CH4. Applying our observed distribution, that range changes

to 2.78–4.64 Tg CH4/yr, more than doubling the amount emitted. In assessing the

climate and air quality impacts of flaring, it is critical that skewed distributions are

accounted for in the cases of methane, ethane, and black carbon. Although our spe-
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cific observed emissions factors and efficiencies are likely only representative of the

Bakken field, the observations of a skewed distribution is likely general.
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CHAPTER III

FCHAOS: Frequent Calibration High-performance

Airborne Observation System for continuous N2O,

CO2, CO, and H2O measurements

This chapter has been reproduced (adapted) from Gvakharia et al. (2018) under

Creative Commons Attribution 4.0 License.

Abstract

We present the development and assessment of a new flight system that uses a

commercially available continuous-wave, tunable infrared laser direct absorption spec-

trometer to measure N2O, CO2, CO, and H2O. When the commercial system is oper-

ated in an off-the-shelf manner, we find a clear cabin pressure/altitude dependency for

N2O, CO2, and CO. The characteristics of this artifact make it difficult to reconcile

with conventional calibration methods. We present a novel procedure that extends

upon traditional calibration approaches in a high-flow system with high-frequency,

short-duration sampling of a known calibration gas of near-ambient concentration.

This approach corrects for cabin pressure dependency as well as other sources of drift

in the analyzer while maintaining a ∼90% duty cycle for 1 Hz sampling. Assessment

and validation of the flight system with both extensive in-flight calibrations and com-

parisons with other flight-proven sensors demonstrate the validity of this method.
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In-flight 1σ precision is estimated at 0.05 ppb, 0.10 ppm, 1.00 ppb, and 10 ppm for

N2O, CO2, CO, and H2O respectively, and traceability to WMO standards (1σ) is

0.28 ppb, 0.33 ppm, and 1.92 ppb for N2O, CO2, and CO. We show the system is ca-

pable of precise, accurate 1 Hz airborne observations of N2O, CO2, CO, and H2O and

highlight flight data illustrating the value of this analyzer for studying N2O emissions

on ∼100 km spatial scales.

3.1 Introduction

Continuous, 1 Hz airborne observations of atmospheric greenhouse gases and pol-

lutants provide essential information for direct quantification of emissions (Karion

et al., 2015; Peischl et al., 2015a; Smith et al., 2015; Kort et al., 2016), assessment

of modeled representations of emissions and transport (Wofsy , 2011; O’Shea et al.,

2014), and validation of remote sensing observations (Tanaka et al., 2016; Inoue

et al., 2016; Frankenberg et al., 2016a). Advances in the last decade have facili-

tated widespread, high-precision, high-accuracy continuous airborne observations of

CH4, CO2, CO, and H2O (Chen et al., 2010; Karion et al., 2013; Filges et al., 2015).

These observations have proven particularly valuable for quantifying emissions from

individual, large emitting point sources (Conley et al., 2017; Mehrotra et al., 2017)

as well as constraining emissions of highly heterogeneous processes on 10–100 km

scales (Karion et al., 2015; Peischl et al., 2015a; Smith et al., 2015; Kort et al., 2016).

Continuous, 1 Hz airborne sampling of N2O with high accuracy and precision has

proven more elusive, with limited aircraft campaigns reporting continuous airborne

N2O (Kort et al., 2011; Wofsy , 2011; Xiang et al., 2013), systems being large and

challenging to operate with frequent attention to supplies of cryogens (Santoni et al.,

2014), and newer systems showing large cabin pressure dependencies (Pitt et al.,

2016).

N2O is a potent greenhouse gas with natural and anthropogenic sources, and is
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currently the single most impactful anthropogenic ozone-depleting substance actively

emitted to the atmosphere (Ravishankara et al., 2009). Atmospheric emissions of

N2O have been steadily rising over time (Myhre et al., 2013), but attempts to better

quantify, understand, and constrain anthropogenic emissions have been hindered by

high uncertainties in model estimates and limited observational constraints (Ciais

et al., 2013; Davidson and Kanter , 2014). The poor understanding of N2O emissions

processes is attributable to a combination of high spatial and temporal variability

(Monni et al., 2007) that is hard to observe and represent, and a lack of direct

observational data of emissions sources (Brown et al., 2001). The largest source of

anthropogenic N2O, contributing 66% of global N2O emissions, is agricultural activity

(Davidson and Kanter , 2014). Some of these emissions are a direct product of human

activity, such as the fertilizer production process, which has grown to 100 Tg N yr−1

since the development of the Haber-Bosch process in 1908 (Erisman et al., 2008).

Other anthropogenic emissions, such as from applied fertilizer, are harder to observe

and represent as environmental factors including soil moisture, temperature, and crop

type all influence emissions (Dalal et al., 2003; Ruser et al., 2006; Griffis et al., 2017).

A diverse range of approaches have been utilized in attempts to measure N2O

emissions (Denmead , 2008; Rapson and Dacres , 2014). Flux chambers can quantify

emissions from areas on the order of square meters (Bouwman et al., 2002; Marinho

et al., 2004; Turner et al., 2008; Chadwick et al., 2014). Given the heterogeneity in

N2O emission processes, extrapolation of limited flux chambers to accurately represent

domains on the orders of 10–100 square km remains challenging (Pennock et al., 2005;

Flechard et al., 2007). The eddy covariance approach deploys sensors on towers to

estimate fluxes on a 1–10 km2 scale (Dalal et al., 2003; Pattey et al., 2007), but

not beyond that range, thus encountering similar representation challenges as flux

chambers. Bottom-up modeling of emissions processes (Del Grosso et al., 2006; Tian

et al., 2015) can represent emissions at a range of scales. The models are typically
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trained and evaluated with data from flux chambers and then simulate emissions at

a continental to global scale. Evaluation of these representations then can happen

at the larger scales, where top-down atmospheric inversions (Kort et al., 2008, 2011;

Miller et al., 2012; Thompson et al., 2014; Chen et al., 2016; Griffis et al., 2017;

Nevison et al., 2018) have challenged modeled and inventoried emissions and often

found large discrepancies exceeding 100% (Miller et al., 2012). To better understand

these divergences as well as to properly assess the representation of flux chamber and

eddy covariance measurements, we need observational constraints at 10–100 square

km spatial scales.

Continuous, 1 Hz airborne measurements can provide information at this criti-

cal spatial scale, in addition to providing observational constraints for large point

sources (N2O fertilizer production facilities present a potentially important source of

N2O emissions). To get good, useful data, aircraft studies require instruments that

have high precision, a fast response time, and are relatively robust to changes in

the environment (Fried et al., 2008). Continuous-wave tunable infrared laser direct

absorption spectrometers (CW-TILDAS) can satisfy those requirements and are an

appropriate choice for airborne instrumentation (Rannik et al., 2015).

Infrared laser spectrometers have been widely used in airborne studies. They often

employ an in-flight calibration to correct for spectral drift that can occur over several

hours of measurement (O’Shea et al., 2013; Santoni et al., 2014). Zero air with no

gases in the absorption spectrum can also be used to adjust the spectral baseline for

more accurate measurements, particularly if the desired gas has a weak absorption

feature (Yacovitch et al., 2014; Smith et al., 2015). One recent study to measure

N2O emissions with such an instrument reported their assessment of its performance

and found artifacts in the data primarily due to changes in airplane cabin pressure

(Pitt et al., 2016), significantly impacting the duty cycle of the analyzer and its utility

during vertical profiles. To deploy a CW-TILDAS for N2O observation as in Pitt et al.
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(2016), problems can arise if drifts occur on a timescale faster than the conventional

calibration period of 0.5–1 hour. Also, at low flow rates (0.1–1 slpm), N2O can take

a long time to equilibrate, and this can have a negative impact on the instrument’s

duty cycle (Santoni et al., 2014). The efficacy of airborne instrumentation for N2O

measurements would benefit from improvements to such limitations.

We present the Frequent Calibration High-performance Airborne Observation Sys-

tem (FCHAOS), utilizing a TILDAS instrument and an updated calibration tech-

nique, to make N2O measurements that can be utilized for calculating facility emis-

sions, mass balance fluxes, and regional inversions. Rather than relying on spectral

zeros and infrequent in-flight calibrations to correct for drift on large time-scales,

we use short, frequent calibration measurements to resolve both long-term spectral

drift and short-term environmental effects. This research was part of the Fertilizer

Emissions Airborne Study (FEAST) campaign in spring 2017 targeting N2O and

other greenhouse gas emissions in the southern Mississippi River Valley region of the

USA. In this manuscript we discuss the operation and set-up of the instrumenta-

tion involved in the airborne flight system. We discuss test flights done to assess

the off-the-shelf operation and the associated flaws. We then present our solution to

improve instrument performance with short, frequent calibrations and validation by

in-flight calibrations and comparison with a flight-proven Picarro cavity ring-down

spectrometer.

3.2 Instrumentation

3.2.1 CW-TILDAS description

The core of our system is an Aerodyne mini spectrometer. The spectrometer uses

a mid-IR, continuous-wave, distributed feedback laser with a frequency of 2227 cm−1

(nanoplus, Germany). The laser is mounted on a copper Peltier device which keeps
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the laser temperature stable at ∼17 ◦C and is regulated by a thermoelectric chiller

held at 23 ◦C (Oasis 3, Solid State Cooling, USA). This laser is optically aligned

into a 0.5 L astigmatic mirror multipass absorption Herriott cell (McManus et al.,

1995). The refraction pattern in the cell is optimized to produce a total path length

of 76 meters before the beam exits the cell and is aligned into a photodetector. The

cell itself is sealed and held at ∼40 Torr. The space outside of the cell is subject

to variations in external pressure. The laser’s output frequency can be adjusted by

ramping the current, sweeping across a frequency range of approximately 2227.4–

2227.9 cm−1. This range contains transition lines for H2O, CO2, CO, and N2O,

allowing the photodetector to measure the laser transmission intensity at each of

these transitions (Nelson et al., 2002).

The mole fractions of N2O, CO2, CO, and H2O are reported using the TDLWintel

software as described in Nelson et al. (2002) and Nelson et al. (2004). The retrieval

uses the Beer-Lambert law, where the absorption intensity, path length, and molar

absorptivity enable calculation of gas mixing ratio. The absorption spectrum is fit

in real-time with a Voigt density profile using the Levenberg-Marquardt algorithm,

allowing retrievals at 1 Hz (Nelson et al., 2004). The exact frequencies of the line tran-

sitions and absorption cross-sections are obtained from the HITRAN2012 database

(Rothman et al., 2013). Pressure and temperature data acquired from sensors in the

cell are used to account for broadening effects in the fit.

3.2.2 Set-up and payload

We integrated the FCHAOS system on a single-engine Mooney M20R aircraft

from Scientific Aviation. Figure 3.1 shows the flow diagram for our system. The inlet

line to the instrument is ∼5 m PVDF Kynar tubing. The inlet line is rear-facing on

the right wing to reduce liquid and particle contamination of the line, with the plane

exhaust located on the left wing, minimizing exhaust contamination. A membrane
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disc filter (Pall, USA) is also used to block particulates from entering the cell. Using

a mass flow controller (MC-5SLPM-D, Alicat Scientific, USA), we set a flow rate of

1.5 slpm. The MFC is placed downstream of the filter to prevent damage due to

rogue particulates. The instrument cell is pressurized on the ground to 40 Torr using

a dry scroll pump (IDP-3, Agilent Technologies, USA) and a needle valve (SS-1RS4,

Swagelok, USA) directly upstream of the pump for adjusting the target pressure

given a defined mass flow rate. The use of mass flow control enables rapid switching

between calibration gas and ambient air without inducing pressure fluctuations or

ringing in the cell. The mass flow control setup is a closed system (no excess flow),

thus ensuring no contamination of other inlets and minimal waste of calibration gas.

Pressure-control systems that are optimally tuned may achieve similar performance,

but even with an excess flow to reduce pressure pulses, it is difficult to reach similar

performance as with mass flow control. Figure 3.2 illustrates respective performance

in-flight of a pressure and mass flow control configuration for our instrument. Two

2 L aluminum carbon-fiber-wrapped compressed air cylinders are securely strapped

in the plane. These tanks are outfitted with stainless steel regulators (51-14B-590,

Air Liquide, USA) and stored calibration gases. Two three-way solenoid valves (009-

0294-900, Parker-Hannifin, USA) control the air flow between the tanks and the inlet

line.

The additional payload is set up on the Mooney as described in Conley et al.

(2014) and Conley et al. (2017). Temperature and relative humidity are recorded

with a humidity probe (HMP60, Vaisala, Finland). A cavity ring-down spectrome-

ter (G2301-f, Picarro, USA) measures CH4, CO2, and H2O as described in Crosson

(2008). Ozone is measured with an ozone monitor (Model 202, 2B Technologies,

USA). Wind speed and direction are calculated using a differential GPS method as

in Conley et al. (2014). The Mooney aircraft is not pressurized, so the instrument

experiences pressure variation as the aircraft profiles.
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Figure 3.1: Schematic of FCHAOS, where air flows from the inlet line through the
solenoid valves, past the filter to the mass flow controller (MFC), through
the instrument cell, a needle valve, and finally the vacuum pump. When
calibrating the solenoid valves are actuated to direct flow from each indi-
vidual calibration tank into the cell directly.

Lag time between when air enters an instrument’s inlet line and when it is mea-

sured in the cell is determined by breathing close to the inlet tube and recording

sharp rises in CO2 and H2O mixing ratios. For FEAST lag times were measured at 3

s and 5 s for the FCHAOS and Picarro G2301-f respectively, values confirmed in flight

by comparing variability with temperature and RH data from the humidity probe.

These lag times are used in post-processing to match avionics and GPS data with

the co-located molar ratios from the FCHAOS and G2301-f. Though lag times will

vary with altitude, given the flow-rates, inlet line volumes, and altitude range of the

Mooney aircraft it is essentially constant for the data presented in this manuscript.

3.2.3 Calibration

We performed pre-flight calibrations on the ground for both the FCHAOS and

Picarro G2301-f using two air cylinders calibrated to a NOAA WMO greenhouse gas

scale (X2007, X2004A, X2014A, X2006A for CO2, CH4, CO, and N2O respectively)

(WMO , 2015). Both cylinders had mixing ratios of CO2 (Zhao et al., 1997; Zhao and

Tans , 2006; Tans et al., 2017), CH4 (Dlugokencky et al., 2005), CO (Novelli et al.,

2003), and N2O (Hall et al., 2007) near ambient atmospheric levels, with one as a
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Figure 3.2: Cell pressure (black) in response to actuating a solenoid and sampling a
standard cylinder (blue indicates solenoid position). The pressure con-
trol setup (top panel), including excess flow, exhibits significant pressure
perturbations and residual transients that persist longer than desired cal-
ibration time. The mass flow control setup (bottom panel) shows pressure
perturbations of shorter duration and on the order of 0.04 Torr, 20 times
smaller than with pressure control.
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high-span standard and the other as a low-span.

We sequentially sampled these cylinders for multiple cycles, and compared the

measured mixing ratios for each gas to the reported value on the WMO scale. We

consider known values Xtrue against the measured values Xmeasured, and a linear fit

provides the slope m and intercept b such that Xtrue = m*Xmeasured + b.

We filled the two in-flight calibration tanks used with the FCHAOS for FEAST

with a separate custom mixture that contained atmospheric levels of N2O, CO2, and

CO. We calibrated the mixing ratios using the WMO standard cylinders by sampling

the target cylinders in between the WMO standards. During flights, we used one tank

as a single-point calibration gas, while the other was used as a check gas to assess the

instrument’s traceability. We elaborate on these processes in Sect. 3.3.2 and 3.4.1.

We assessed the stability in slope of the instrument by performing calibrations

separated by months before and after the FEAST campaign. Over the course of four

months, the slopes for N2O, CO2, and CO changed by 0.4%, 0.01%, and 0.5%. The

impact of any variation in slope depends on the difference between ambient levels

and calibration gas values. For the operation of FCHAOS, we use calibration gas

with mixing ratios near ambient levels. Typical atmospheric ambient levels of N2O

are ∼335 ppb, so with a calibration gas at ∼330 ppb, the long-term variation due to

linearity is 0.4% of 5 ppb, or 0.02 ppb, an uncertainty that is within our 1 Hz precision

as reported in Sect. 3.4.1. For CO2 and CO, which have ambient atmospheric levels

of ∼400 ppm and ∼155 ppb, we use calibration gases with ∼390 ppm and ∼150 ppb,

and the impacts due to variation in slope are 0.01 ppm and 0.025 ppb, respectively.

If zero air were used instead, the impact on N2O would be on the order of 0.4% of

335 ppb, or 1.3 ppb, an order of magnitude larger, with similar impacts for CO2 and

CO. By using calibration gases close to ambient levels we eliminate our sensitivity to

drift in the instrument’s slope and thus can a single gas target for in-flight calibration

to correct only for intercept variability.
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3.2.4 Water vapor

Spectroscopic measurements of atmospheric species are sensitive to dilution and

broadening effects due to water vapor (Chen et al., 2010, 2013; Rella et al., 2013).

TDLWintel, in its retrieval algorithm, corrects for water dilution and uses H2O broad-

ening coefficients to mitigate the effect of water vapor on the spectral lines, directly

reporting dry molar fractions for N2O, CO2, and CO (Lebegue et al., 2016; Pitt et al.,

2016). This coefficient is the ratio of spectral line broadening due to water pressure

compared to air pressure broadening. To determine the coefficients, we conducted

a test where dry tank air was sampled with varying amounts of water vapor. We

used a similar approach as in Lebegue et al. (2016). We used a moist filter along with

variable flow through parallel dry tubing, enabling some control of the water vapor

content by modulating the relative flows over the moist filter compared to the dry

tubing. We sampled at varying humidity starting at ∼1.6% H2O and decreasing to

near 0, spanning a typical range of atmospheric water vapor. Using spectral playback

in TDLWintel, we were able to re-analyze the spectra with various broadening coeffi-

cients until we found the optimum values as in Pitt et al. (2016). Figure 3.3 shows the

measurement data from the test using our optimized broadening coefficients of 1.33,

1.93, and 1 for N2O, CO2, and CO, respectively. The dry value is determined from

prolonged sampling of dry air only from the standard tank. The deviation from this is

shown as a function of water vapor. The gray line shows a moving average with a 10

s window. The RMS difference in N2O, CO2, and CO was 0.023 ppb, 0.076 ppm, and

0.75 ppb, respectively. These are used as the uncertainty in water vapor correction,

as in Pitt et al. (2016). For CO, a coefficient of 1 corresponds to purely a dilution

correction. Larger values of the coefficient do not improve the dependency. As high-

lighted by Pitt et al. (2016), water broadening coefficients must be determined by

users for their own instrument as these can vary for each analyzer and can introduce

substantial errors in correcting to dry air mole fraction.
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Figure 3.3: Residual uncertainty in water vapor correction for N2O, CO2, and CO
with broadening coefficients of 1.33, 1.93, and 1, respectively. Black dots
are the deviation from the dry value, with a moving average (10 s) de-
picted in gray.
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3.3 In-flight operation

3.3.1 Null Test

For an instrument to be well-suited for airborne observation, resistance to envi-

ronmental effects is paramount. A “null test,” where an instrument samples air with

known mixing ratios in flight while subject to variation in cabin pressure, air temper-

ature, etc., can be useful in evaluating its robustness as shown in Chen et al. (2010)

and Karion et al. (2013). We conducted two null tests using the FCHAOS, once

during a test flight in Colorado, once during a research flight in our target region in

the lower Mississippi River basin. Figure 3.4 shows N2O, CO2, and CO mixing ratios

observed by the FCHAOS while sampling tank air during a vertical profile descent.

As the altitude decreases, there is a clear dependence due to the cabin pressure chang-

ing similar to what was reported in Pitt et al. (2016). As mentioned in Sect. 3.2,

though the cell is pressurized, the rest of the instrument is not, and since the aircraft

cabin is not pressurized, our system thus experiences any change in ambient pressure.

Correcting or mitigating this cabin pressure artifact is necessary for FCHAOS to be

capable of accurate airborne in-situ sampling.

3.3.2 Frequent calibration correction

The cause of the cabin pressure dependence is not immediately evident. One

possible explanation could be an optical fringe pattern in the absorption spectrum

that moves with changing cabin pressure. Acceleration during altitude change could

also create g-force or electrical (via engine surges) changes that propagate through

the instrument system. Without needing to pinpoint the cause, we know the time

period of the artifact presents on the order of many minutes, with a typical aircraft

climb rate of 500 ft/min. Thus a correction that occurs on a shorter time spacing

could remedy the drift. To account for both spectral drift in the instrument that
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Figure 3.4: A null test demonstrates artifacts when operating the instrument in an
off-the-shelf manner. Drift occurs in N2O, CO2, and CO due to changes
in cabin pressure that occur with changing aircraft altitude.
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occurs on the order of hours and cabin pressure-related artifacts that emerge on

the order of minutes, we developed an empirical correction procedure using frequent

measurements of a calibration gas.

The procedure is as follows. Every 2 min, we actuate the solenoid valve to sample

tank air for 10 s. We determined the calibration frequency of 2 min through a sensi-

tivity test using null test data. By adjusting the calibration frequency and measuring

the precision, we found similar 1σ uncertainties at 1 min and 2 min frequencies, but

an increase in uncertainty at 4 min and beyond, making 2 min good for reducing gas

consumption while maintaining high precision. We allow 5 s of flush time, leaving 5

s of measurement time. We determined the flush time duration of 5 s by sampling

tank air in a lab setting at the same flow-rate and cell pressure as in-flight operation

and measuring equilibration time. We calculate the average measured mole frac-

tion of N2O, CO2, and CO in these 5 s. Figure 3.5 demonstrates a typical in-flight

calibration.

For each species we then interpolated in time using a Forsythe, Malcom, and Moler

cubic spline between each measured calibration gas value and subtracted the known

“true” value from this interpolation, giving us correction as a function of time. We

then subtract this calibration curve from the raw data. Figure 3.6 shows both raw

CO2 data and the correction we derive using the frequent calibration method from

one of our flights. As mentioned above, the gas was on for 10 s, along with 5 s of

post-calibration time removed to account for equilibration back to ambient sampling,

resulting in a loss of 15 s of atmospheric observations every 120 s for an 87.5% duty

cycle. As mentioned in Sect. 3.2.3, the calibration cylinder mixing ratios are near

atmospheric values. As seen in Santoni et al. (2014), N2O can take a long time to

equilibrate between measurement sources due to its propensity to stick to tubing.

Thus, choosing calibration values close to ambient is critical for maintaining short

flush times. This also holds for CO2, though less so for CO. Artifacts that occur on

62



Figure 3.5: Example of in-flight calibration, showing time series of N2O, CO2, CO,
H2O, and cell pressure. Vertical lines indicate when the solenoid valve
was actuated or closed. The first 5 seconds of each calibration are treated
as equilibration time, and the last 5 seconds are used to find a mean
calibration value.
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Figure 3.6: Raw CO2 (black) measured by the FCHAOS for an entire flight, with
frequent low dips due to calibrations. The blue dashed line indicates the
“true” value of the calibration gas, the blue solid line shows the calibration
curve obtained by interpolating between each calibration instance. The
difference between the dashed and solid blue lines is used to correct for
drift.

shorter time-frames, such as those induced by a short-duration turbulence event, will

not be corrected with this method.

3.4 Calibration results and comparison with Picarro G2301-f

Figure 3.7 shows measurements from two null tests, one on April 26, 2017 in Col-

orado and one on May 2, 2017 in the Mississippi River Valley, the same null test as

from Fig. 3.4. For each null test, the figure shows both the raw N2O, CO, and CO2

measurements and the corrected data following our calibration, along with the air-

craft altitude. Our calibration method accounts for the clear cabin pressure/altitude

dependence. During a null test FCHAOS samples tank air uninterrupted, rather
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than making a calibration measurement every 2 min as in the frequent calibration

procedure described in Sect. 3.3.2. Thus, we average 5 s of data from every 120 s

to simulate the normal operation mode. Even after correction there is some residual

coherent variability evident at the 15 min mark of the null test shown in the bottom

2 rows of Fig. 3.7, but this potential feature remains still within our 1 Hz precision.

Given the repeatable, smooth nature of the cabin pressure artifact, it would seem

possible to use just the cabin pressure data to empirically correct for the artifact,

without running frequent calibrations. This method would not account for long-term

spectral drift however or traceability, and relies on the assumption that the cabin

pressure artifact will be stable and repeatable. These weaknesses compromise such

an approach.

Figure 3.8 compares the raw CO2 data from the Picarro G2301-f and FCHAOS

during a research flight along with altitude, and a second comparison once the

FCHAOS data is corrected. The difference between the two instruments is shown

in the top 2 panels. The most significant discrepancies occur during the vertical

profile section of the flight. Following calibration, the deviation during profiling is

eliminated, and the 1σ uncertainty in the difference is reduced from 1.15 ppm to 0.28

ppm.

For the FEAST campaign, in post-processing it became evident that a persistent

offset of 0.51 ppm existed for CO2 between the Picarro and FCHAOS. For the CO2

comparisons in this manuscript, we have corrected for this bias. We believe the origin

of this offset to be related to regulator contamination of a calibration gas cylinder

and/or tubing used in conjunction with the regulator. With subsequent investigation

it has been difficult to identify the exact cause. We do note that in comparing

the Picarro and FCHAOS instruments, they both are calibrated with dry tank air,

whereas the in-flight comparison is while measuring wet ambient air. Any residual

water vapor sensitivity not corrected for either analyzer can manifest as an apparent
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Figure 3.7: Top two rows show FCHAOS data from a null test on April 26, 2017,
bottom two rows shows data from a null test on May 2, 2017, the same
seen in Fig. 3.4. Rows 1 and 3 show N2O, CO, and CO2 during the null
test before any calibration, rows 2 and 4 show the gas data following the
frequent calibration correction. The procedure removes cabin pressure
dependence and calibrates for linear drift. Black horizontal lines show
mean and 1σ uncertainty.
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Figure 3.8: Bottom panels show Picarro G2301-f and uncalibrated FCHAOS CO2

time series on left, Picarro G2301-f and calibrated FCHAOS CO2 on right.
Top panels show difference between the two instruments with and without
FCHAOS calibration. The calibration procedure corrects for any artifacts
in the FCHAOS data correlated with aircraft altitude.
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bias, and this further emphasizes the need to validate water vapor corrections, as

pointed out by Pitt et al. (2016), and further outlined for FCHAOS above in the

discussion of the water vapor correction.

The raw H2O measurements exhibit good agreement between FCHAOS and the

Picarro G2301-f. The H2O data was not calibrated or adjusted in any way, as there

appeared to be small impact from cabin pressure variance and it is not well char-

acterized. Figure 3.9 shows a histogram of the differences in FCHAOS and Picarro

G2301-f H2O and CO2 (following calibration) for ∼40 hours of research flight time.

Figure 3.10 shows the differences as a function of time for all flight data. For H2O,

we find a mean difference between the two instruments of 180 ppm, a median of 180

ppm, and 1σ of 340 ppm, shown in the figures as solid and dashed lines. In-flight 1σ

precision for H2O from the Picarro G2301-f has been reported as 100 ppm (Crosson,

2008), while the in-flight 1σ precision for the FCHAOS was found to be 10 ppm.

Why does water vapor not exhibit the same sensitivities as the other gases? To

assess the sensitivity for water vapor to cabin pressure is more challenging given

the long equilibration time. In Fig. 3.11 we show H2O during the null test. On

the null test where water vapor has previously equilibrated, some altitude-dependent

sensitivity is apparent (∼60 ppm). Our calibration approach cannot well address this

potential residual sensitivity given the long equilibration time required for H2O. Does

this potential artifact matter? In comparison with the Picarro analyzer (Fig. 3.11)

we see no evident residual sensitivity to altitude. Given relative uncertainties, we

cannot eliminate the presence of a vertical sensitivity of 10s ppm for water vapor.

3.4.1 Precision and Accuracy

To assess the FCHAOS precision, we consider flight data during a null test when

the altitude did not significantly change. We find 1 s precisions of ±0.05 ppb, ±0.10

ppm, ±1.00 ppb, and ±10 ppm for N2O, CO2, CO, and H2O respectively. This is
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Figure 3.9: Histogram of difference between H2O and CO2 mixing ratios from
FCHAOS and the Picarro G2301-f. FCHAOS CO2 has been calibrated,
while H2O has not. For H2O, mean of 0.018% or 180 ppm, median of
0.018% or 180 ppm, 1σ of 0.034% or 340 ppm, where Picarro G2301-f
precision is 100 ppm. For CO2, mean of 0 ppm, median of 0.024 ppm, 1σ
of 0.45 ppm.
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Figure 3.10: Difference as function of flight time for FCHAOS and Picarro G2301-f
H2O and CO2 for all research flights. Colors separate flight days, gray
lines indicate mean and 1σ uncertainty. Largest deviations occur when
sampling in the immediate near-field of large point sources where some
mismatched lag times contribute to deviations.
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Figure 3.11: Panels (a) and (b) show H2O during null tests from Fig. 3.7. In panel (b)
H2O hasn’t fully equilibrated. In panel (a), H2O previously equilibrated
and there does appear to be a dependence on altitude on the order of
60 ppm. As seen in panel (c), the difference in H2O between the Picarro
and FCHAOS over the entire campaign does not exhibit an altitude
dependence, so while there may be some altitude sensitivity, the effect is
relatively small compared to typical atmospheric concentrations of H2O
and our overall water vapor uncertainty.
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about a factor of 2 greater than the performance on the ground in a lab setting,

with 1σ precisions of 0.02 ppb, 0.05 ppm, 0.50 ppb, and 7 ppm. Considering an Allan

variance analysis of both the in-flight null test and in-lab study, the same result holds,

in that the Allan variance in the air closely matches the ground, with performance

degraded by a factor of 2.

In addition to the frequent calibrations every two minutes, a second cylinder is

sampled every hour for 25 s as a “check gas” to test the traceability of the in-flight

system. The last 5 s of each check gas period is used to calculate a mean value for each

species. Figure 3.12 shows each instance of N2O, CO2, and CO check gas sampling,

along with histograms for the difference from the known value. The time series show

the last 5 s of each check gas period, along with a horizontal line indicating the known

value of the air tank calibrated with the WMO standards as in Sect. 3.2.3. Note that

the “check gas” and “calibration gas” cylinders were switched halfway through the

campaign due to gas consumption, as reflected by the horizontal line. Looking at the

difference of each check gas period from the known value, we find median offsets of

0.06 ppb, 0.06 ppm, and 0.03 ppb for N2O, CO2, and CO respectively, representative

of possible bias between the flight system and the WMO scale. The 1σ values for

the check gas points are 0.1 ppb, 0.3 ppm, and 1.62 ppb for N2O, CO2, and CO,

representative of traceability of individual 1 s observations to the WMO scale. Table

3.1 summarizes the precision and accuracy for the four gases, though we were unable

to measure H2O traceability because we calibrated with dry tank air. We do report

water vapor (and carbon dioxide) performance in comparison with the Picarro. Total

instrument 1 s uncertainty is derived from summing in quadrature the 1σ accuracy

to WMO, water vapor correction, and standard tank calibration uncertainty.
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Figure 3.12: Top row: the last 5 s of each check gas period, black horizontal line indi-
cating the value of the sampled gas traced to the WMO scale. Vertical
lines separate the individual research flights. Bottom row: histograms
of difference between known check gas value and last 5 s of measured
check gas value, with solid gray lines indicating median and dashed lines
showing 1σ uncertainty.
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Table 3.1: Precision and accuracy for N2O, CO2, CO, and H2O.
N2O (ppb) CO2 (ppm) CO (ppb) H2O (ppm)

1σ Precision 0.05 0.1 1 10
Accuracy (median offset) 0.06 0.06 0.03 NA

1σ comparison with Picarro NA 0.45 NA 340

Accuracy (1σ check gas) 0.1 0.3 1.62 NA
Water vapor correction 0.023 0.076 0.75 NA

WMO standard calibration 0.26 0.11 0.71 NA
Total 1σ uncertainty 0.28 0.33 1.92 NA

3.5 Applications

Continuous airborne N2O observations can be useful for quantifying fluxes and

estimating emissions on a facility-to-regional scale. Mass balances techniques, which

have been utilized to estimate emissions of other atmospheric gases as in Karion

et al. (2013), Smith et al. (2015), Peischl et al. (2015a), and Kort et al. (2016), could

similarly be applied for N2O. Figure 3.13 shows the path flown during a research flight

on May 6, 2017, with measured N2O mole fraction in color, white arrows indicating

wind direction and speed, and blue and black arrows showing the direction of the flight

route and the upwind and downwind transects. The downwind transect was flown at

a mean altitude of 1515 msl, 1σ of 14 m, and the upwind transect at a mean altitude of

1501 msl, 1σ of 14m. The bottom right panel of the figure shows N2O from this flight

as a function of latitude with the upwind and downwind transects in blue and black,

while the top right panel shows the difference in N2O between the downwind and

upwind at each latitude. There is a distinct enhancement in the downwind transect

relative to the upwind transect in the lower latitudes, from about 31.5◦ N to 32◦ N.

This enhancement disappears at higher latitudes and the N2O measurement tracks

well between upwind and downwind transects, even with a substantial latitudinal

gradient. This flight illustrates the ability of this instrument to accurately measure

small variations and link to local emissions (to the south) or larger scale gradients (to
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Figure 3.13: Left panel: flight path with N2O signal and wind direction (white ar-
rows). Blue and black arrows show the direction of the planes route
and indicate upwind and downwind transects. Bottom right panel: N2O
signal as a function of latitude with upwind and downwind transects
colored by blue and black, respectively. Top right panel: Difference in
N2O between downwind and upwind transects as a function of latitude.

the north). Future analyses of this data can involve mass balance flux quantification

and/or regional model comparisons, both to quantify emissions and link to driving

factors such as soil moisture or crop type.

As a fast-response sensor, FCHAOS can also be used for point source quantifi-

cations, as first explained in Conley et al. (2017) and further analyzed in Mehrotra

et al. (2017); Vaughn et al. (2017). During FEAST, we circled several fertilizer plants

with significant N2O emissions, and future analyses can leverage these observations

to better quantify emissions from the large point sources.

3.6 Conclusions

We present a continuous-wave, mid-IR laser spectrometer system that can measure

continuous 1 Hz airborne mole fractions of N2O, CO2, CO, and H2O. The commercial

analyzer, when operated off-the-shelf, exhibits a dependence of N2O, CO2, and CO
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on cabin pressure. We correct for this artifact by employing an updated calibration

procedure with mass flow control at a high flow rate enabling high-frequency, short-

duration calibrations. While modern systems conventionally use pressure control and

infrequent, long-duration zeros, our method expands on these previous approaches

and opens up uses for the instrument in ways that have not yet been realized. We

solve the inability of other systems to operate with large changes in cabin pressure by

mitigating the cabin pressure effect while maintaining a ∼90% duty cycle. In-flight

1σ precisions are estimated to be ±0.05 ppb, ±0.1 ppm, ±1 ppb, and ±10 ppm for

N2O, CO2, CO, and H2O, with total uncertainty in traceability estimated at 0.28

ppb, 0.33 ppm, and 1.92 ppb for N2O, CO2, and CO. We then validate our method

by comparing FCHAOS data to CO2 and H2O measurements from a flight-proven

cavity ring-down spectrometer, seeing excellent agreement. This flight-proven system

can provide key insights into N2O emissions processes by providing observational

support for facility-quantification, for mass-balance flux estimates, and for inverse

modeling. As presented, this system can be utilized for precise, accurate, continuous

1 Hz airborne observations of N2O, CO2, CO, and H2O.
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CHAPTER IV

Fertilizers: Greenhouse gas emissions from

fertilizer production and agriculture

Chapter in preparation for submission to Global Biogeochemical Cycles. It was

coauthored with Eric A. Kort, Mackenzie L. Smith, and Stephen Conley.

Abstract

Agricultural activity is a significant source of greenhouse gas emissions. The

fertilizer production process emits N2O, CO2, and CH4, and croplands with applied

fertilizer emit N2O. We present continuous airborne observations of these three trace

gases in the Lower Mississippi River Basin to quantify emissions from both fertilizer

plants and croplands during the growing season. Observed hourly emission rates

from two fertilizer plants are compared with reported inventory values, showing good

agreement in N2O and CO2 emissions but large underestimation in CH4 by up to

a factor of 100. These CH4 emissions would be consistent with loss rates of 0.6–

1.2%. We quantify regional emissions fluxes of N2O using the airborne mass balance

technique, a first application for N2O. The effect of crop type, fertilizer application,

soil moisture, and soil temperature on emissions is investigated. We find soil moisture

and total area planted of soybean, cotton, and rice to be the strongest predictors of

N2O fluxes. We report average regional fluxes of 1.8±1.4 g N2O-N ha−1 hr−1.
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4.1 Introduction

Nitrous oxide (N2O) is the third most important long-lived anthropogenic green-

house gas (Myhre et al., 2013). It is also currently the most significant anthropogenic

source of stratospheric ozone depletion (Ravishankara et al., 2009). An estimated

16 Tg N2O-N yr−1 was emitted globally in the 1990s, with about half coming from

anthropogenic sources including agricultural land management, sewage, and biomass

burning (Reay et al., 2012). The estimated magnitude of agricultural emissions ranges

from 4–7 Tg N yr−1 and is predicted to rise in the next decade as developing nations

improve their agricultural productivity (FAO , 2017). The large uncertainty in emis-

sions estimates is a result of infrequent measurements with limited geographical cov-

erage for emissions that exhibit high spatial and temporal variability (Monni et al.,

2007) combined with a lack of direct measurements to get accurate emission factors

from all sources (Brown et al., 2001).

A dominant source of anthropogenic N2O has been the mass application of fer-

tilizer. Since 1908 the Haber-Bosch process of synthesizing ammonia and producing

nitric acid, ammonium nitrate, and other compounds has allowed for mass produc-

tion of synthetic fertilizer, with current global production levels near 100 Tg N yr−1

(Erisman et al., 2008; Smil , 2011). Between 1961–2013 global N fertilizer consump-

tion increased by a factor of nearly 10, with 5 countries accounting for over 60% of

the consumption (Lu and Tian, 2017). In the United States the current fertilizer

application rate is 11.4 Tg N yr−1, a ∼40 times increase since 1940 (Cao et al., 2018).

Fertilizers provide essential nutrients to plants that enhance their growth and yield

but soils have a limit nutrient uptake capacity, and so over-application of nitrogen

fertilizer can cause a nonlinear increase in N2O emissions (Grant et al., 2006).

Fertilizer production itself also emits greenhouse gases and differences in pro-

duction type and efficiency affect the total footprint of synthetic fertilizer (Fossum,

2014). Ammonia production is energy-intensive, requiring the combustion of natu-
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ral gas or other fuels to synthesize nitrogen and hydrogen (Gellings and Parmenter ,

2016). Plants may then oxidize ammonia to produce nitric acid, which is used to

manufacture ammonium nitrate fertilizer (EFMA, 2000). Ammonia oxidation emits

waste gases, including N2O (EFMA, 2000). In 2017 23 million metric tons (MMT)

of CO2 equivalent (CO2e) greenhouse gas emissions were emitted by fertilizer plants

accounting for 73% of total US nitrogen production capacity (TFI , 2017). N2O and

CH4 emissions are converted to CO2e values by multiplying by global warming po-

tential values of 298 and 25, respectively. Though facilities report their emissions,

independent objective observations of production sources have been limited.

While fertilizer is arguably the strongest driver of N2O soil emissions, various fac-

tors including climate, soil conditions, and management practices can impact N2O

emissions. Increased N2O emissions can positively correlate with higher soil temper-

ature and moisture, particularly after precipitation (Dobbie et al., 1999; Griffis et al.,

2017). The positive relationship between N2O emissions and soil moisture has been

observed in various environments and soil conditions (Smith et al., 1998, 2003; Mar-

inho et al., 2004; Schindlbacher et al., 2004; Pattey et al., 2008). Crop species and

type of residue crop cover can also affect emissions (Parkin and Kaspar , 2006; Lemke

et al., 2018).

Flux chambers are a commonly-used method to quantify N2O emissions. They are

relatively inexpensive and easy to deploy, but they measure small areas, can perturb

the area of study, and are constrained by manpower (Rapson and Dacres , 2014).

Scaling up singular chamber measurements for greater representation of emissions

is hampered by soil diversity and spatial variability (Parkin et al., 2012; Scaroni

et al., 2014), necessitating data at larger regional spatial resolution. Studies at larger

scales can also capture indirect emissions from nitrogen runoff and leaching. Process-

based models have good coverage (Del Grosso et al., 2006; Tian et al., 2012) but also

demand high computational power and often have large input uncertainties, relying
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on constraints from observational data to reduce uncertainty (Butterbach-Bahl et al.,

2013; Ehrhardt et al., 2017).

Many studies have investigated N2O emissions in the Corn Belt region of the Upper

Mississippi River Basin (Parkin and Kaspar , 2006; Chen et al., 2016; Nevison et al.,

2018). Relatively less attention has been paid to the Lower Mississippi River Basin

(LMRB) downstream in the southeast US. The region was added to the USDA’s Long-

Term Agroecosystem Research (LTAR) network in 2014 (USDA ARS , 2014). With

∼20 million acres—∼30% of total area—as cropland, much of it intensely developed

and irrigated, it is a highly productive agricultural region responsible for a quarter

of the US’s corn production and two-thirds of its rice (USDA ARS , 2012; Lund

et al., 2013). A better quantification of emissions and improved understanding of the

heterogeneous processes on fields including applied fertilizer and soil conditions can

aid in mitigating atmospheric N2O emissions.

Here we analyze continuous airborne observations of N2O, CO2, and CH4 from

research flights in the LMRB in May 2017 during the growing season (Padgitt et al.,

2000; Snipes et al., 2004). The campaign took place immediately following a historic

heavy rainfall/flooding event in the northern part of the region (Heimann et al.,

2018). We quantify emissions of N2O, CO2, and CH4 from two large fertilizer plant

point sources and compare to reported emissions from the Greenhouse Gas Reporting

Program (GHGRP). We apply the airborne mass balance technique for the first time

to quantify N2O emission fluxes, and compare with gridded data sets of crop type,

applied fertilizer, soil moisture, and soil temperature.
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4.2 Methods

4.2.1 Flights

Research flights were conducted on a Mooney M20R single-engine aircraft (Sci-

entific Aviation, Inc.) as part of the Fertilizer Emissions Airborne STudy (FEAST).

There were six research flights from May 2–10, 2017, based out of West Memphis,

Arkansas. Each flight typically lasted ∼6 hours from 12:00–18:00 local time (17:00–

23:00 UTC), allowing a well-mixed boundary layer to develop. Combined, the flights

covered most of the LMRB region, from 31◦ to 38◦N and 88◦ to 93◦W. The plane flew

at an average altitude of 550 meters above ground level (magl), with multiple cross-

wind transects designed to capture emissions plumes from agricultural activity in the

river valley. During each flight at least one vertical profile was completed, circling

the plane up past the mixing layer and back down while tracking atmospheric con-

ditions and trace gases to determine the mixed layer depth. On the last two flights,

two high-production fertilizer plants were circled to quantify point source emissions.

Figure 4.1 shows the region of study with flight paths, along with land use for four

major crops: soybean, corn, cotton, and rice.

4.2.2 Instrumentation

An Aerodyne laser absorption spectrometer measured N2O, CO2, CO, and H2O

mole fractions at 1 Hz frequency with an in-flight high-frequency flow-controlled cal-

ibration method as described in Gvakharia et al. (2018). In-flight 1 s precisions were

±0.05 ppb, ±0.10 ppm, ±1.00 ppb, and ±10 ppm respectively for N2O, CO2, CO, and

H2O. Water vapor corrections were applied to the data in post-processing to eliminate

the effect of dilution and water line broadening—all measurements reported herein

are dry molar fractions.

Additional payload on the aircraft, listed in Conley et al. (2014, 2017), included
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Figure 4.1: Map of the LMRB. FEAST research flights paths are traced with colors
for individual flights. Green, yellow, red, and blue pixels respectively
indicate cropland for soybean, corn, cotton, and rice at 30 m by 30 m
resolution (USDA, 2017).
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a Picarro G2301-f cavity ringdown spectrometer to measure CH4, CO2, and H2O,

a Vaisala HMP60 probe to measure temperature and relative humidity, and a 2B

Technologies 202 ozone monitor. The Picarro measurements were sampled at 0.5 Hz

and interpolated to acquire 1 Hz data. The Picarro was calibrated on the ground by

sequentially sampling two gravimetrically-prepared NOAA WMO standards (Dlugo-

kencky et al., 2005). Wind speed and direction were calculated using a differential

GPS system as described in Conley et al. (2014). Ambient air was sampled from an

inlet installed underneath the aircraft wing, and traveled through ∼5 m of tubing

to the instruments. Lag time between when air enters the inlet line and when it is

sampled by the instruments was determined by breathing near the inlet and observ-

ing spikes in CO2 and H2O, resulting in lag times of 3 and 5 s for the Aerodyne

and Picarro instruments respectively. These lag times were confirmed in flight by

comparing peaks in CO2 and H2O from both instruments. The lag times are used in

post-processing to align all instruments and sensors on a unified time basis.

4.2.3 Gridded Data

Crop land cover for 2017 is provided by the Cropland Data Layer (CDL) (USDA,

2017). The CDL uses satellite imagery to provide information on land use at 30 m

by 30 m resolution for the United States. Data is transformed from USA Contiguous

Albers Equal Area to a WGS84 projection, but land use values are not significantly

changed by the re-projection.

A 5 km by 5 km gridded dataset of annual applied nitrogen fertilizer provides

nitrogen input information (Cao et al., 2017). The data used is from 2015, the most

recent year available in the dataset. As of writing, gridded U.S. fertilizer application

data with high spatial resolution for 2017 had not been identified.

Two soil moisture data sets are used in this analysis. The first is the SMAP

Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 2
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data product from the Soil Moisture Active Passive (SMAP) satellite (O’Neill et al.,

2018). The satellite retrieves a surface volumetric water content value from soil

thermal emissions measured with a radiometer. The product has a spatial resolution

of 9 km by 9 km following interpolation of brightness temperature from the radiometer

at 36 km by 36 km resolution. Data is reported at 06:00 and 18:00 local time. This

analysis uses the 06:00 data set, as research flights landed around 18:00 local time and

made most of the observations before that time. While the satellite provides good

spatial resolution, the area it scans on each pass of the earth does not always coincide

with the flight path. In order to estimate regional soil moisture during a flight, the

SMAP products from May 1–10, 2017 are averaged over the LMRB region. The

second soil moisture data set is the North American Regional Reanalysis (NARR)

product which combines model output and assimilated precipitation data (Mesinger

et al., 2006). The dataset is spatially gridded at approximately 0.3 degree by 0.3

degree resolution and values are reported at 3-hour intervals for several layers of soil.

Values at 19:00 UTC time are used, coinciding with the middle of FEAST flights, and

at the 0 cm surface level. To complement volumetric water content, water-filled pore

space (WFPS) is also calculated to better relate soil properties. WFPS is defined by

Linn and Doran (1984) in Equation 4.1

WFPS =
Θv

1 − PB

PP

(4.1)

where Θv is volumetric water content, PP is soil particle density, and PB is soil bulk

density. A common PP value of 2.65 g cm−3 is used (Soane, 1990). For PB, an average

value of 1.385 g cm−3 is used based on measurements of soil density in the LMRB

(Römkens et al., 1986; Selim et al., 1987; Scott et al., 1998).

NARR is also used for soil temperature data (Mesinger et al., 2006). Like the

soil moisture product, the dataset is spatially gridded at 0.3 degree by 0.3 degree
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resolution, with 3-hourly values of temperature for several layers of soil. The 19:00

UTC time and 0 cm surface level values are used in this analysis.

4.2.4 Point Source Quantification

Emission rates from point sources are quantified following the methodology first

described in Conley et al. (2017) and used by Mehrotra et al. (2017); Vaughn et al.

(2017). Figure 4.2 illustrates the technique. The plane circles a source at constant

radius and discrete altitudes, starting near 200 magl and ascending until the plume

is no longer detected, then descending back down. By measuring the atmospheric

concentration upwind and downwind of the source simultaneously with the wind, an

emission rate is calculated for a given trace gas.

Due to the frequent calibration of the FCHAOS system, 15 s of data was not

sampled every 120 s. When quantifying N2O and CO2 emission rates, the FCHAOS

data was interpolated to fill in gaps throughout the loops. As seen in Table 4.1, CO2

estimates agree between the FCHAOS and the Picarro, supporting the interpolation

and use of FCHAOS measurements in this analysis.

Table 4.1: CO2 emission rates
Plant FCHAOS CO2 (mt hr−1) Picarro CO2 (mt hr−1)

Plant 1 98.3±24 94.6±21.4
Plant 1 94.4±17.6 109.1±24.7
Plant 2 73.6±15.7 88.1±19.3

4.2.5 Mass Balance Technique

Using the mass balance method (White et al., 1976), atmospheric N2O fluxes

are quantified for regions in the LMRB. The usefulness of this approach has been

well-documented in estimates of methane (Karion et al., 2015; Peischl et al., 2015a;

Smith et al., 2017a), ethane (Smith et al., 2015; Kort et al., 2016), and black carbon

(Schwarz et al., 2015) emissions from oil and natural gas activity. The flux during a
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Figure 4.2: Flight pattern during point source quantification. The blue square shows
the location of the emitting source, in this case a fertilizer plant, and the
black arrow indicates wind direction. N2O molar fraction is given both
by the color bar and the point size. The plane circles the source upwind
and downwind at several altitudes, capturing the emissions plume, and
the data is then processed to quantify emissions fluxes.
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flight transect is given by Equation 4.2

fluxN2O = ν cosθ

xf∫
xi

XN2O dx

z1∫
zg

nair dz. (4.2)

where ν cosθ is the horizontal wind component perpendicular to the airplane’s

heading, xi and xf define the width of the flight transect over ground, XN2O is the N2O

molar fraction enhancement over background during the transect, and zg is the terrain

height above sea level. z1 is the adjusted mixed layer height as defined in Peischl et al.

(2015a), z1 = (3zPBL + ze)/4 where zPBL is the planetary boundary layer depth and

ze is the entrainment height at which mixing below the boundary layer finally reaches

free troposphere levels. nair is the molar density of air. Background N2O is determined

by averaging 30 s of data at the start and end of a plume. Uncertainty for mixing

layer height is defined as ∆z=z1-zPBL, while for the other components it is defined

by the 1σ value. All uncertainties are then propagated by summing in quadrature for

the total flux uncertainty.

For each flight mass balance transects are identified and an N2O flux is calculated

using Equation 4.2. Emissions are then quantified from a subregion bounded by two

transects by subtracting the flux of the upwind transect (or “flux in”) from the flux

of the downwind transect (or “flux out”). Transects are chosen such that a transect

with length li and mean angle of wind normal to the aircraft θi has a similar li cosθi

value as another transect with lj cosθj. The air mass passes through two planes with

equal areas defined by l cosθ z1, allowing comparison of fluxes from different transects.

4.3 Results

4.3.1 Fertilizer Plant Emissions

Two large fertilizer plants with significant greenhouse gas emissions are investi-

gated. These are 2 of 19 facilities in the US with reported N2O emissions greater
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than 100,000 mt CO2e (EPA, 2017). Plant 1 was responsible for 5% of all US CO2e

emissions of N2O in 2017, and Plant 2 contributed 1% (EPA, 2017). In terms of am-

monia production, 32 plants in the US accounted for 10,500 thousand mt N (USGS ,

2018). Plant 1’s ammonia production capacity is equal to 4% of the total US ammonia

production, while Plant 2’s capacity is 3.5% (Nutrien, 2018). Figure 4.3 shows N2O

and CO2 quantified emission rates from the FCHAOS system, CO2 and CH4 emis-

sion rates from the Picarro, and reported GHGRP emissions for both plants. The

GHGRP emissions are scaled down from Tg yr−1 to kg hr−1, as fertilizer production

facilities typically run non-stop throughout the year with some periodic maintenance,

resulting in low temporal variability (TFI , 2017). Plant 1 was observed on both May

9 and May 10, while Plant 2 was observed only on May 10. Estimates for N2O and

CO2 agree well within uncertainty with emissions reported in the GHGRP. For Plant

1, there is consistency in emissions from one day to the next.

CH4 estimates are several orders of magnitude larger than the reported values, by

a factor of 100 for Plant 1 and 20 for Plant 2. According to the GHGRP, 100% of the

CH4 emissions from both plants is a result of stationary fuel combustion (EPA, 2017).

Using the amount of gas combusted, a leakage rate is calculated to account for the

discrepancy in observed and reported emissions. Plant 1 directly reports the amount

of natural gas consumed while Plant 2 does not, but the value is calculated using

reported emissions and GHGRP-defined emission factors. Using a typical natural gas

composition range of 70–90% CH4 (Speight , 2007) results in a range in leakage rates

of 0.6–0.8% for Plant 1 and 0.9–1.2% for Plant 2. CH4 accounts for ∼0.01% of total

GHGRP-reported CO2e emissions for both plants, with N2O and CO2 contributing

essentially all of the GHG emissions. Adding in observed CH4 emissions changes the

contribution of methane to 0.9% for Plant 1, a factor of 90 increase, and 1.8% for

Plant 2, a factor of 180 increase.
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Figure 4.3: Observed emissions for N2O, CO2, and CH4 (FHCAOS in orange, Picarro
in blue) along with 2017 GHGRP data (gray) for two fertilizer plants from
EPA (2017). Black error bars indicate 1σ uncertainty.
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Figure 4.4: a) Flight path for May 9, 2017, colored by N2O mole fraction. Black
arrows indicate wind direction and relative magnitude. The black box
highlights a transect used for mass balance. b) The N2O mole fraction
along the transect indicated by the black box in a). The first and last
30 s of the transect are used to find the mean background and its 1σ
uncertainty (solid black line and dashed lines, respectively).

4.3.2 Regional N2O Fluxes

N2O fluxes are calculated from mass balance transects for 26 regions, ranging

from the northern end of the LMRB near the Missouri/Kentucky border down to the

southern end of the valley in northern Louisiana. Figure 4.4 illustrates an example

flight path and N2O plume from May 9. Five transects are quantified from this flight,

from which six flux regions are identified. A plume’s behavior may affect the choice

of background. The typical approach is to use the edges of the plume, as shown in

Figure 4.4. For some plumes the aircraft did not fully exit the area of enhancement in

the valley, and so edge values for plumes are higher than those from earlier transects

further upwind. In these situations, background values from upwind transects are

used to account for passive enhancement captured in the downwind transect. Figure

4.5 shows all 26 flux regions, dividing the LMRB into north, middle, and south

subregions.

For all regions, the mean emission flux is 1.8±1.4 g N2O-N ha−1 hr−1. Marinho
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Figure 4.5: Flux regions used for N2O emissions quantification. Polygons and num-
bers denote flux regions, colors denote distinct research flights from Figure
4.1.
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et al. (2004) observed emissions from Mississippi Alluvial Plain soils of 1.5 g N2O-N

ha−1 hr−1 following rainfall in mid-June during the growing season, while Scaroni

et al. (2014) reported emissions of 0.1 g N2O-N ha−1 hr−1 from soils in the Louisiana

river basin in June and July. From a flux chamber study in Iowa, Parkin and Kaspar

(2006) reported soybean emissions of ∼2500 g N2O-N ha−1 yr−1, with typical hourly

fluxes on the order of 1.5–2.4 g N2O-N ha−1 hr−1 from soybean, consistent with

the results of this analysis. Parkin and Kaspar (2006) report fertilizer application

in Iowa occurring on day 155 of the year, while the FEAST campaign took place

from day 122 to 130. However, crop planting in the LMRB typically occurs earlier

than the Corn Belt according to the USDA’s Crop Progress Reports (USDA NASS ,

2017a). By May 7, 2017, based on fraction of state crop acreage for a particular crop,

Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee had planted 50–

76% of soybean, 50–77% of corn, 7–68% of cotton, and 67–92% of rice (USDA NASS ,

2017a,b).

4.3.2.1 Fluxes and Environmental Factors

N2O fluxes are plotted against crop type in Figure 4.6. The left panel shows

what percent of total crop area is occupied by soybean, corn, cotton, and rice. On

average these four crops account for 85% of land designated as crops by the CDL in a

given subregion, with the rest primarily used for grassland/pasture, hay/non-alfalfa,

winter wheat/soybean double crop, fallow/idle land, and various miscellaneous crops.

On average, the ratio of cropland was 55:18:8:4 for soybean, corn, cotton, and rice,

respectively. The right panel of Figure 4.6 shows crops by total area, with soybean

having the greatest variability in total area. Marinho et al. (2004) reported mean

flux values from soybean crops in the Mississippi Alluvial Plain of 0.2 g N2O-N ha−1

hr−1. The highest fluxes, 1.1 g N2O-N ha−1 hr−1, occurred immediately following a

heavy rainfall event similar to the one before the FEAST campaign (Heimann et al.,

92



Figure 4.6: Emissions of N2O-N in g ha−1 hr−1 for regions in the LMRB plotted
against the major crops in the corresponding region: soybean, corn, cot-
ton, and rice. On the left crops are represented as percentage of cropland
occupied by each crop, and on the right the crops are represented as total
area in km2.

2018). As soybeans occupy a majority of the cropland in our studied regions, the mean

hourly emission estimate of 1.8±1.4 g N2O-N ha−1 hr−1 appears to be consistent with

Marinho et al. (2004).

Fluxes are plotted against fertilizer application rate in Figure 4.7, although the

N2O emissions are hourly and the fertilizer emissions are annual. The fertilizer data

is limited as we know annual application rates and how they vary spatially, but

not temporally. However, about 75% of fertilizer is applied before or at planting

time, with the rest being applied in the fall, intended for crops the following spring

(Padgitt et al., 2000). Though the IPCC uses a linear emission factor to estimate N2O

emissions from fertilizer, an analysis by Shcherbak et al. (2014) of multiple studies

suggests a non-linear, exponential relationship. There is not a clear dependence of
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Figure 4.7: Emissions of N2O-N in g ha−1 hr−1 for flux regions plotted against annual
N from applied fertilizer in 2015 (Cao et al., 2017). Colors denote distinct
flights, shapes denote LMRB region, numbers identify each flux region,
error bars show 1σ uncertainty.

N2O flux on fertilizer from our observations. Flights 1 and 4 sampled the northern

end of the LMRB which has higher average applied fertilizer than the south, but there

is no significant effect on N2O flux.

Figure 4.8 shows N2O flux plotted against soil moisture and WFPS from both

SMAP and NARR, with a linear fit for soil moisture and an exponential curve from

Smith et al. (1998) for WFPS. There is a 0.11 cm3/cm3 difference in average vol-

umetric water content between SMAP and NARR data. For soil moisture a weak

linear dependence is present, as expected from literature (Dobbie et al., 1999; Smith

et al., 1998; Schindlbacher et al., 2004). Fitting a regression line confirms the weak

relationship, with R2 = 0.19, p = 0.02. NARR has no clear dependence, with R2 =

0.03, p = 0.39. N2O flux and WFPS from SMAP agree with the relationship observed
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Figure 4.8: Top row: emissions of N2O-N in g ha−1 hr−1 in the LMRB plotted against
soil moisture as volumetric water content from SMAP and NARR. Bot-
tom row: emissions of N2O-N plotted against WFPS calculated from
SMAP and NARR soil moisture data. Dashed line denotes fit from Smith
et al. (1998). Colors denote distinct flights, shapes denote LMRB region,
numbers identify each flux region, error bars show 1σ uncertainty.

by Smith et al. (1998), but WFPS calculated using NARR does not.

Figure 4.9 shows N2O-N fluxes plotted against soil temperature, along with the

exponential relationship observed by Smith et al. (1998) using flux chambers. There

is a temporal gradient, with higher temperatures during later flights. Flights 5 and 6

also both sampled the southern end of the LMRB and coincided with an observed rise

in air temperature throughout the week. Though there was a heavy rain event in late

April (Heimann et al., 2018), it primarily affected the northern part of the LMRB, so

evaporative cooling is not a likely explanation. Comparing to the relationship from

Smith et al. (1998), temperature alone does not seem to be a strong factor for N2O

flux.
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Figure 4.9: Emissions of N2O-N in g ha−1 hr−1 in the LMRB plotted against the
soil temperature from NARR. Dashed line denotes fit from Smith et al.
(1998). Colors denote distinct flights, shapes denote LMRB region, num-
bers identify each flux region, error bars show 1σ uncertainty.
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To assess the relative emergent role of these driving variables, we perform a mul-

tiple linear regression analysis with crop type, applied fertilizer, soil moisture, and

soil temperature to predict N2O flux. The resultant fit produced an R2 value of 0.64,

and a p value of 0.01. The strongest predictors that emerge from this analysis are soil

moisture from SMAP, and total planted area of soybean, cotton, and rice. A multiple

linear regression model with only those four variables had an R2 = 0.54, p = 0.001.

Although fertilizer is expected to be a strong driver of N2O emissions, the temporal

elements of its application are not represented by annual data. Since this analysis

relates hourly N2O emissions to annual fertilizer application, it is understandable that

the fertilizer does not significantly predict N2O. The crop type may be acting as a

proxy for the actual applied fertilizer amount, capturing fertilizer timing and variation

in management practice. While previous studies have observed a positive relationship

between emissions and soil temperature, it is possible that the soil temperature effect

is being dwarfed by other factors such as soil moisture.

4.4 Implications

Observed N2O and CO2 emissions from two productive fertilizer plants agree with

reported emissions, showing no evidence that emissions of these greenhouse gases are

under- or over-estimated in inventories. Our observed emissions of CH4 from the

two plants, however, are greatly in excess of reported emissions. Though emissions

exceeding expectation by multiple orders of magnitude may appear to be unrealistic,

these emissions are consistent with a fugitive emission rate of ∼1%, a leakage rate

consistent with observations from other portions of the natural gas supply chain

(Schwietzke et al., 2014). Although the observed emissions are orders of magnitude

higher than expected, the increased CH4 emissions do not significantly impact the

overall footprint of the fertilizer plants, corresponding to a 0.9% increase in total

CO2e emissions for Plant 1 and a 0.2% increase for Plant 2. The large emissions
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of CO2 and N2O render the loss of CH4 relatively unimportant. The fugitive CH4

emissions may be modest in this case, but it is an addressable emissions source and

is under-estimated in current CH4 inventories, thus representing another discrepancy

in inventory representation of CH4 emissions.

Regional sampling of the LMRB enabled the investigation of emissions at a unique

spatial scale. Surprisingly, we observed significant variability in N2O emissions in the

various sub-regions sampled. Though the emissions magnitude and variability we

observed is consistent with flux chamber measurements, we would have expected far

less variability in the regional flights that integrate over many fields with different

crops and farming practices. Considering the variability we observed, soil moisture

and crop type proved to be the strongest emergent predictors of emissions. This

suggests knowing the crop (and inherently thus the soil type and fertilizer practice)

combined with soil moisture can predict N2O variability, and highlights the role of

soil moisture in predicting N2O flux. Future work evaluating how process-based

models predict N2O emissions to vary in this domain will enable evaluation of process

representations on regional spatial scales.

4.5 Conclusions

This work highlights the capability of continuous airborne observations to quan-

tify atmospheric greenhouse gas emissions from agricultural activity similar to what

has been done in the oil and gas sector. We quantify two productive fertilizer plants

with significant production capacity of ammonia and nitric acid and find good agree-

ment with GHGRP-reported emissions and observed N2O and CO2 emission rates.

Observed CH4 emissions are several orders of magnitude higher, and suggest a nat-

ural gas leakage rate of ∼1%. Replacing GHGRP-reported values with the observed

emissions raises the CH4 fractional contribution to total plant emissions by a factor

of 100, but the overall footprint is not significantly increased.
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We quantify regional N2O fluxes using the mass balance technique, the first exam-

ple of this approach to agricultural N2O emissions, demonstrating proof-of-concept.

We find fluxes on the order of 1.8±1.4 g N2O-N ha−1 hr−1, with large variability

between regions. We investigate relationships between emissions and several factors

known to impact N2O: crop type, nitrogen from fertilizer application, soil moisture,

and soil temperature. For our flights we find the strongest predictors of N2O emis-

sions are soil moisture, soybean area, cotton area, and rice area. Soil temperature

and annual applied fertilizer appear less predictive. The emission fluxes are broadly

consistent with fluxes reported in literature. Our method encompasses all emissions

from the agricultural regions, with total areas ranging from 5000 to 37000 km2.

Future studies would benefit from observations of more fertilizer plants. A larger

dataset could reveal if CH4 leakage is a persistent phenomenon at fertilizer facilities.

Direct knowledge of a facility’s production rate would help reduce variability in scaling

from annual to hourly emissions, though that information may not be easily available.

Comparing the results of these flights with output from a process-based model for

May 2017 in the region of interest would allow direct comparison with expected

N2O fluxes as well as evaluation of the models’ predicted sensitivity to underlying

variables such as applied fertilizer, soil moisture, or soil temperature. The type of

airborne observations presented here could potentially be used to assess the efficiency

of various management practices by farms, evaluating if whole field emissions vary

depending on specific practices.
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CHAPTER V

Conclusions

5.1 Summary

This dissertation focuses on using airborne observations to quantify greenhouse

gas emissions from the energy and agricultural sectors. Deployment on an airborne

platform enables both broad regional sampling as well as the capability to target

particular sources or areas. The use of mid-infrared laser spectroscopy provides high-

accuracy and high-precision measurements of key trace gas species on a 1 Hz time

basis, allowing for in-flight tracking and improved attribution of emissions.

We conducted the largest in-field study of flaring efficiency. In the Bakken Shale

we evaluated flaring emissions of CH4, C2H6, and BC. We discovered emissions of all

three gases followed a skewed distribution, with the top 25% of flares contributing

∼66% of CH4 and C2H6 emissions, though BC emissions are lower than expected and

do not correlate with emissions of CH4. With the skewed distribution, total emissions

from flaring could account for 21% of CH4 emitted from the Bakken region and 17%

of C2H6, more than double the fraction if standard flare efficiency is assumed. Global

emissions of CH4 from flaring could be ∼2.5 times higher than estimated, suggesting

the need to consider variation in flare efficiency for inventories and estimates and the

possibility of disproportionate emissions.

We integrated an N2O, CO2, CO, and H2O laser spectrometer into a new airborne
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measurement system, FCHAOS. A repeatable cabin pressure-dependency was diag-

nosed and resolved with high-frequency calibrations, achieving in-flight 1σ precisions

of 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively,

and traceability to WMO standards (1σ) of 0.28 ppb, 0.33 ppm, and 1.92 ppb for

N2O, CO2, and CO. This instrument provides the current best airborne N2O mea-

surements in terms of duty cycle, precision, and accuracy, enabling airborne N2O

studies not previously possible.

Using this newly developed airborne system, we quantified greenhouse gas emis-

sions from fertilizer production and agricultural sources in the Lower Mississippi River

Basin. Two fertilizer plants were sampled and rates of emissions were quantified.

When compared with reported emissions from the GHGRP, N2O and CO2 emissions

agreed well within uncertainty. The CO2 emissions between two instruments also

agreed, and observations made for one plant on two consecutive days were consistent.

However, CH4 emissions were 20 times larger than reported emissions for one plant

and 100 times larger for the other. These emissions are consistent with a loss rate of

0.6–1.2%. Regional N2O fluxes were calculated for the first time using the airborne

mass balance approach, and compared with crop type, applied fertilizer, soil tempera-

ture, and soil moisture. We found the most significant predictors of N2O flux were soil

moisture and total crop area of soybean, cotton, and rice. N2O fluxes were consistent

with expected values based on literature, and this approach allows for the possibility

to directly quantify total emissions from farms and large agricultural regions without

having to scale up flux chamber data.

5.2 Further Directions

There are several avenues to build upon this thesis. While we report efficiency for

the largest ever sample of real-world flares, it is still 37 out of ∼5500 in the Bakken.

More observations of flares in real-world settings with varying operating conditions
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and gas compositions in different environments are needed to improve global efficiency

calculations.

The fertilizer plant analysis would also be significantly improved by more obser-

vations. Quantifying emissions from more than two fertilizer plants on multiple days

or throughout the year would help define any temporal variability in the results and

identify common characteristics among fertilizer plants. It is unknown if the higher

CH4 emissions we observed are present in all fertilizer plants.

Due to seasonality in N2O, our regional N2O fluxes could not be scaled up to

estimate annual emissions. Model output would allow for a direct comparison for our

seasonal observations. The temporal variability could also be elucidated with airborne

campaigns during other key periods in N2O soil emissions such as thawing at the

end of winter and post-harvest. Using a particle dispersion model to better attribute

emissions and estimate footprints as seen in Xiang et al. (2013) would improve linkages

of observed N2O to controlling processes. There is also the potential to investigate

CH4 emissions from rice using the FEAST data set.
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