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Abstract 

 

 

DNA ligases catalyze the final step in DNA replication, repair and recombination pathways 

using a conserved three-step mechanism to generate a single phosphodiester bond. Humans have 

three LIG genes that encode the DNA ligase proteins; LIG1, LIG3 and LIG4. In the nucleus, LIG1 

and LIG4 repair single- and double-strand DNA breaks, respectively. LIG3 repairs both single- 

and double-strand DNA breaks in mitochondria and the nucleus. In the mitochondria, LIG3 

performs all the ligation events required for organellar viability. In the nucleus, LIG3 has been 

implicated in the error-prone alternative end-joining pathway, where it can generate a variety of 

chromosomal anomalies. Elucidating the biological functions of the LIG3 isozymes has been 

hampered by a lack of available biochemical information describing the specificity of these 

proteins. My thesis work describes the mechanistic framework needed for understanding the 

specificity of the different LIG3 isoforms, providing insight into the biological roles of the DNA 

ligases in DNA metabolism. Biochemical analysis of the nuclear LIG3 isozymes indicated the two 

enzymes were kinetically indistinguishable, suggesting their differing C-termini do not influence 

catalytic efficiency. When compared to LIG1, LIG3 binds Mg2+ ions 10-fold weaker, but has a 7-

fold greater specificity toward the nicked DNA substrate. This increased catalytic efficiency has 

been attributed to the DNA binding property of the LIG3 N-terminal zinc finger domain. We 

determined that the zinc finger domain and a previously uncharacterized disordered linker region 

contribute equally to the catalytic efficiency of LIG3. To elucidate the activities of the ligases for 

double-strand break ligation, I report the first systematic kinetic analysis of LIG1- and LIG3-
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catalyzed ligation of double strand breaks to elucidate their unique properties. LIG3 efficiently 

joined various DNA substrates under all tested conditions. In contrast, LIG1-catalyzed double-

strand break ligation was highly sensitive to Mg2+ concentrations and molecular crowding. LIG1 

activity rivaled that of LIG3 under optimal conditions but had a preference for 3’ overhang over 

5’ overhang and blunt-ended DNA structures. Notably, LIG1 (but not LIG3) accumulated abortive 

ligation products under physiological conditions. Recently, the erroneous ligation activities 

attributed to LIG3 have implicated the enzyme as a driver of cancer progression. Moreover, LIG3 

is overexpressed in cancers that require enzyme’s activity for survival, making LIG3 an attractive 

pharmacological target. To discover novel LIG3 inhibitors that may be useful therapeutics, I 

developed a fluorescence-based ligation assay that reports on DNA ligation in real-time that was 

validated by the kinetic characterization of LIG1- and LIG3-catalyzed ligation. I adapted this assay 

to a discontinuous format to conduct a high-throughput screen of small-molecule libraries. Potent 

and selective ligase inhibitors targeting the ligases will be useful for better understanding their 

roles in biology, and ligase inhibitors may one day be an effective cancer therapy. 
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Chapter 1  
 

 

 

 

Introduction to the human DNA ligases 

 

 

 

The human genome is continuously under stress from endogenous and exogenous DNA 

damaging agents. Many DNA repair pathways have evolved to reverse the damage caused by these 

agents in order to maintain the genome. With the exception of direct repair pathways, all DNA 

repair pathways generate DNA breaks that must be repaired by DNA ligation. Unsuccessful 

ligation of these DNA breaks can lead to genomic rearrangements and mutagenesis, causing 

various diseases, including cancer. Humans possess three genes encoding DNA ligase proteins, 

DNA ligase I (LIG1), III (LIG3) and IV (LIG4). These enzymes are essential for joining breaks in 

the DNA phosphodiester backbone whether they are formed by DNA repair processes or generated 

as a result of spontaneous damage. Understanding the biochemistry of these ligases is crucial to 

elucidating their individual roles in DNA metabolism and understanding how these enzymes 

contribute to disease. 
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Conserved catalytic mechanism of the DNA ligases 

 Human DNA LIG1, LIG3 and LIG4 utilize a conserved three-step chemical mechanism to 

repair breaks in the DNA phosphodiester backbone (Figure 1.1). The DNA ligases first interact 

with ATP to become adenylylated on the active-site lysine. To do so, the catalytic lysine reacts 

with the alpha phosphate of ATP in the presence of Mg2+, resulting in a covalent enzyme-AMP 

intermediate with the concomitant loss of inorganic pyrophosphate (PPi). Upon the formation of 

an enzyme-substrate complex, the AMP moiety is transferred to the terminal 5’ phosphate of the 

DNA in a Mg2+ dependent manner, generating a 5’-5’ adenylylated DNA intermediate (Ap-DNA). 

To complete the final step of ligation, the 3’-hydroxyl performs a nucleophilic attack on the 5’ 

 

 

 
 

 

 

Figure 1.1. Conserved chemical mechanism of the human DNA ligases. Left, mechanism of 

single-strand DNA break (nicked DNA) ligation. One round of the three chemical ligation steps 

is necessary to generate a fully repaired DNA product. Right, mechanism for double-strand 

DNA ligation as exemplified using blunt-ended DNA. The first round of catalysis (DNA end-

joining) requires the ligase to interact with two independent DNA molecules, and position the 

DNA ends such that the 3’-hydroxyl can efficiently attack the 5’-phosphate during the nick-

sealing step of catalysis. The second round of catalysis is identical to that of the nicked DNA 

ligation mechanism left. 
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phosphate, resulting in the release of the AMP leaving group, completing the ligation reaction with 

the creation of a new phosphodiester bond (1). DNA molecules containing a single-strand break 

(SSB) require a single round of catalysis to completely repair the DNA strand (Figure 1.1, left).  

The human DNA ligases are also capable of performing double-strand DNA break (DSB) 

ligation. DSB ligation requires the adenylylated ligase to coordinate and productively position the 

ends of two DNA molecules for catalysis. Following the first ligation event (joining of the two 

DNA molecules), a second ligation is required to completely restore the integrity of the DNA 

molecule (blunt-end substrate example provided in Figure 1.1, right). In the presence of DNA 

breaks with cohesive-end homology sufficient in length to stably anneal, the DNA ligases would 

likely join the two DNA molecules via a mechanism similar to that of nicked DNA ligation. 

Interestingly, the ligases do not catalyze this three step mechanism with perfect efficiency. Human 

LIG1 has been shown to dissociate from the Ap-DNA intermediate, resulting in abortive ligation. 

This abortive ligation is exacerbated under conditions of insufficient Mg2+ (2, 3). Abortive ligation 

intermediates are considered dead-end ligation products because the re-adenylylated enzyme is 

incapable of binding the aborted DNA species. Biochemical analysis of LIG1 clinical mutants 

indicate that naturally occurring mutations within the LIG1 gene indicate the encoded enzymes 

generate appreciable abortive ligation intermediates under physiological conditions (4). To date, 

LIG1 abortive ligation has only been observed with nicked DNA substrates; however, in Chapter 

4 we show that LIG1 can generate terminal adenylylated-DNA adducts while performing DSB 

ligation. The abortive ligation products produced by LIG1 can be directly repaired by the enzyme 

aprataxin, an Ap-DNA hydrolase that efficiently removes the adenylyl group from the DNA 

molecule to regenerate the ligation substrate (5, 6).   
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Conserved three-domain architecture of the human DNA ligases 

The human DNA ligases belong to the nucleotidyltransferase protein superfamily. The 

ligases possess a structurally conserved three-domain architecture composed of a DNA-binding 

domain (DBD), nucleotidyltransferase domain (NTase) and oligonucleotide-binding domain (OB-

Fold). Despite the ligases sharing only 22-23% sequence identity among these three domains (7), 

they share a high degree of structural conservation (Figure 1.2) (8-10). Crystal structures of the 

DNA-bound enzymes revealed that each of the enzymes completely encircle nicked DNA 

substrates, positioning the break within the NTase domain. The complete encirclement of DNA by 

the ligases is not absolutely required for catalytic activity. Removal of the DBD causes a reduction 

in nicked DNA ligation rates and increases abortive ligation (8, 11). The ligation rates of LIG1 

and LIG3 lacking the DBD can be partially restored by the addition of the DBD in trans. The DBD 

contributes to catalysis by stabilizing the enzyme•substrate complex through non-specific 

electrostatic interactions along the minor groove of the DNA substrate, spanning upstream and 

downstream of the DNA break (8, 9, 11). 

The NTase domains of the DNA ligases house their catalytic lysine residues (K568, K421 

and K273 for LIG1, LIG3 and LIG4, respectively). This domain also contains the ATP nucleotide 

binding pocket and numerous acidic residues responsible for divalent metal ion coordination 

(presumably Mg2+) (8).  Interestingly, numerous crystal structures and biochemical studies of the 

human DNA ligases have been unsuccessful in identifying the metal cofactor binding sites. Efforts 

are ongoing to better understand how the ligases bind and utilize these cofactor(s). 
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The OB-fold has been shown to adopt two conformations, the first contributes to enzyme 

adenylylation, and the second stabilizes the enzyme•DNA substrate complex by interaction with 

DNA. Structural studies of the homologous Chlorella virus mRNA capping enzyme, and the 

human DNA ligases have highlighted the importance of these two conformational states (8-10, 

12). In the first conformation, the alpha helix of motif VI is in close proximity to the nucleotide 

binding pocket of the NTase domain where it assists in enzyme adenylylation (motif VI, colored 

 

 

 

 

 
 

 

 

 

Figure 1.2. Structural conservation among the human DNA ligases. A, DNA LIG1, LIG3 

and LIG4 possess a high degree of structural conservation among their DNA-binding (DBD, 

Red), nucleotidyltransferase (NTase, green) and oligonucleotide-binding (OB-fold, yellow) 

domains. Illustrated in purple is motif VI of the OB-fold, a conserved region required for 

enzyme adenylylation. PDB identifiers are indicated below respective enzyme labels. Images 

generated using PyMol software. Each of the enzymes have been crystallized in the presence 

of nicked DNA species.  
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purple in Figure 1.2) (8, 13). Motif VI is essential for DNA ligase activity, for its removal abolishes 

self-adenylylation (13). In the second conformation the OB-fold domain undergoes a rotation that 

causes motif VI to face outward from the enzyme, becoming solvent exposed (Figure 1.2). In this 

rotated state, the OB-fold contributes to DNA binding and encirclement of the DNA substrate. In 

the DNA-encircled state, motif VI is not needed for the DNA dependent steps of catalysis (8-10). 

Thus, the three domains shared among the ligases (DBD, NTase and OB-fold domains) each 

contribute to the ligation reactions catalyzed by these enzymes. 

 

Unique N- and C-termini of the human DNA ligases.   

 The human DNA ligases have different N- and C-termini flanking their conserved catalytic 

regions (Figure 1.3). The N- and C termini play important roles in cellular localization, protein-

protein interactions and substrate specificity (14).  

Human DNA ligase I.  The LIG1 gene encodes a polypeptide possessing an unstructured 

N-terminal region of roughly 260 residues that are important for nuclear localization and protein-

protein interactions. LIG1 interacts with the proliferating cell nuclear antigen (PCNA) through a 

PCNA binding motif, an interaction required for LIG1 localization to sites of DNA replication (15, 

16). The N-terminal region of LIG1, prone to proteolysis/fragmentation in biochemical assays, 

does not contribute to the kinetic parameters of nicked DNA ligation and is thus commonly 

removed for in vitro biochemical analysis (2).  

Human DNA ligase III.  The LIG3 gene encodes four unique LIG3 isozymes (Figure 1.3). 

Mitochondrial and nuclear isoforms are synthesized from alternative translation initiation sites, 

generating the essential mitochondrial isoform, and the seemingly dispensable nuclear isoform 

(17-22). Translation from the first of the two methionine start codons generate polypeptides 
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containing a mitochondrial leader sequence (MLS), whereas synthesis from the second methionine 

start codon generate shorter nuclear LIG3 isoforms lacking the MLS (23). In addition to the 

mitochondrial and nuclear isoforms of LIG3, two alternatively spliced isoforms have also been 

identified. Alternative splicing of the mRNA transcript results in the formation of a germ-line 

specific isoform (LIG3β) and an isoform found in all cell types (LIG3α) (23-26). The BRCA1 C-

terminal (BRCT) domain, specific to LIG3α, interacts with X-ray repair cross-complementing 

protein 1 (XRCC1) in the cytoplasm and nucleus (27-31). LIG3β lacks the BRCT domain and is 

suggested to function independently of XRCC1 (25, 26, 28). Using an alternative exon during 

splicing generates an identifiable nuclear localization sequence (NLS) at the C-terminus of LIG3β. 

Since LIG3α lacks an NLS, it is postulated that LIG3α is targeted to the nucleus by the 

LIG3α•XRCC1 interaction since XRCC1 has an identifiable NLS (14, 32). Interestingly, it seems 

that MLS-LIG3α preferentially localizes to the mitochondria, even though the protein likely 

interacts with XRCC1 in the cytoplasm (33). Upon translocation into the mitochondria, the N-

terminal MLS is removed, and the LIG3α•XRCC1 interaction must be disrupted, for XRCC1 has 

not been detected in the mitochondria (33, 34). 

All LIG3 isozymes have an N-terminal zinc finger (ZnF) domain that is not present in LIG1 

or LIG4. This domain is highly homologous to the poly (ADP-ribose) polymerase-1 (PARP1) ZnF 

domains, in which a single Zn2+ ion is coordinated by three cysteine and one histidine (C2HC) 

residues (35-37). The solution structure of the LIG3 ZnF domain was reported in 2004, providing 

structural information of the ~100 amino acid domain (35). The role of the ZnF domain during 

LIG3-catalyzed ligation has been of interest for roughly two decades prior to the writing of this 

thesis, and has been shown to contribute to DNA binding and substrate specificity of LIG3 under 

a variety of in vitro conditions (9, 11, 36-39).  
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Figure 1.3. The differential N- and C-termini of the human DNA ligase gene products. 

DNA LIG1, LIG3 and LIG4 possess a high degree of structural conservation among their DBD 

(Red), NTase (green) and OB-fold (yellow) domains. Residue 232 of LIG1 indicates N-

terminal truncation utilized in structural and biochemical assays. LIG3 possesses a unique zinc 

finger (ZnF) domain upstream of a disordered linker region (DLR). LIG3α isoform and LIG4 

have BRCA1 C-terminal (BRCT) domains. Mitochondrial LIG3 alternative translation 

initiation isoforms possess an N-terminal mitochondrial leader sequence (MLS). LIG1, LIG3β 

and LIG4 have identifiable nuclear localization signal (NLS) sequences. Numbers represent 

identified domain boundaries.  
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Human DNA ligase IV.  The LIG4 gene encodes a polypeptide that is localized to the 

nucleus via a nuclear localization sequence located between the enzyme’s OB-fold and BRCT1 

domains. The C-terminal tandem BRCT domains of LIG4 have been suggested to each interact 

with Ku70/Ku80 heterodimers during nonhomologous end-joining (NHEJ) and V(D)J 

recombination (40). Similar to LIG3α•XRCC1, LIG4 constitutively interacts with XRCC4 in the 

cell. However, the LIG4•XRCC4 interaction is not mediated through BRCT domains (as seen with 

LIG3•XRCC1), but through the linker region joining the BRCT 1 and BRCT 2 domains (41). The 

activity of LIG4 seems to be dependent on the presence of these interacting proteins, without 

which, the enzyme may complete only a single round of ligation before becoming inactive since 

the enzyme is inefficient at self-adenylylation (42). 

 

Biochemistry aids our understanding of LIG1 and LIG3 biological activities 

DNA LIG1 is essential for embryonic development in mice and is widely referenced as the 

replicative DNA ligase (14, 43, 44). Recent cell based experiments, however, indicate the enzyme 

is not essential for DNA replication (17, 18, 45). The dependence of LIG1 activity for 

embryogenesis, but not cultured cell viability, suggests the activity attributed to LIG1 cannot be 

performed by the other human DNA ligases. In humans, mutations identified within the LIG1 gene 

cause a wide range of phenotypes, including immunodeficiencies, varying degrees of growth 

retardation, and neurological defects (4, 46, 47). The mechanism(s) by which these mutations to 

LIG1 cause the described phenotypes are poorly understood and may or may not be linked to DNA 

replication. Biochemical analysis of these LIG1 clinical mutants suggest the proteins have altered 

DNA and metal cofactor binding properties, causing the enzymes to accumulate appreciable 

abortive ligation products (4). Reducing the efficiency of LIG1 could compromise the enzymes 
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ability to join the SSBs required for Okazaki fragment joining and the DNA repair pathways. It is 

becoming increasingly clear that the abortive ligation behavior attributed to LIG1 correlates with 

the enzyme’s requirement for Mg2+ cofactor(s) since wild-type LIG1 accumulates abortive ligation 

products during SSB ligation under Mg2+ starved conditions (Chapter 2) (2, 3). Expanding upon 

this, I investigated the biochemical properties of LIG1 catalyzed end-joining using various 

structures of DSB. I found that human DNA LIG1 can efficiently catalyze the end-joining reaction; 

however, the enzyme is prone to accumulating abortive end-joining intermediates at low 

(physiological) Mg2+ levels. Interestingly, the accumulation of these 5’-adenylylated end-joining 

products was abolished at high (non-physiological) Mg2+ concentrations. Investigations into the 

end-joining characteristics of the LIG1 clinical mutants may prove fruitful for understanding the 

mechanisms by which these mutations lead to disease. 

As observed for LIG1, LIG3 is also essential for embryonic development in mice (48). The 

cause of compromised embryogenesis in mice lacking LIG3 is likely genomic instability of the 

mitochondrial genome since LIG3 is the only ligase targeted to the organelle (19, 20, 49). 

However, Puebla-Osorio et al. invite the possibility that compromised embryogenesis may be 

caused by an accumulation of unrepaired DNA damage and/or abnormal sister chromatid exchange 

as has been seen in cells lacking LIG3 (48). LIG3 is dispensable for cell viability, but it is not clear 

whether nuclear LIG3 is needed for embryonic development (17-22). Interestingly, mutations 

within the LIG3 gene that influence human health have not been identified, highlighting the 

biological necessity of the enzyme.  

Originally believed to be expressed exclusively in vertebrates, the LIG3 gene is now 

estimated to exist in roughly 30% of Eukarya (1, 7, 14). Since LIG3 has an inconsistent presence 

in Eukarya, many of the genetically tractable model organisms do not possess the LIG3 gene, 
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complicating the process of determining LIG3 specific cellular functions and differentiating the 

roles of the DNA ligases in DNA metabolism (33). Eukaryotes lacking the LIG3 gene utilize LIG1 

homologs to perform the necessary ligation reaction in the nucleus and mitochondria (14). It is 

becoming increasingly clear that LIG1 and LIG3 have overlapping roles in the cell since LIG3 

supports DNA replication and repair in the absence of LIG1 in mouse (43, 45, 50) and chicken 

cells (21). It is currently unknown how LIG3 is recruited to the replication fork during DNA 

replication. It is possible that LIG3 is recruited to the replication fork via XRCC1, since XRCC1 

has been shown to co-localize and interact with PCNA in HeLa cells during the S-phase of the cell 

cycle (51). Likewise, little is known about the overlapping roles the ligases play in the base and 

nucleotide excision repair pathways since LIG1 and LIG3 can both perform the ligation events 

required for their completion (14, 52). Together, LIG1 and LIG3 are both capable of catalyzing 

the repair of single-strand breaks during DNA replication and repair. 

To gain a better understanding of LIG1-, LIG3α- and LIG3β-catalyzed SSB ligation, I 

performed a systematic kinetic analysis of the recombinant proteins (Chapter 2) (2, 3). This 

comparative study indicated that LIG1 and LIG3 differ most in their Mg2+ binding affinity and KM, 

DNA values. Previous investigations by the Caldecott and Ellenberger groups provided compelling 

evidence that the LIG3 ZnF domain contributes to the DNA binding affinity of the enzyme (9, 11, 

36-39). However, the degree by which the ZnF domain contributes to the kinetic parameters of 

LIG3-catalyzed SSB ligation remains in question. We designed N-terminal truncation constructs 

and point mutation in the ZnF domain to investigate the influence of the ZnF domain on the 

substrate and cofactor dependences of LIG3 (Chapter 3). This systematic analysis of substrate and 

cofactor dependences indicates that the ZnF domain does not contribute to the ATP dependence 

of LIG3; however, the removal of the domain increased Mg2+ affinity. Consistent with previous 
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observations, the ZnF domain contributed to the catalytic efficiency (kcat/KM, DNA) for nicked DNA 

substrates. Strikingly, we discovered that a previously uncharacterized disordered linker region 

(DLR) tethering the ZnF domain to the DBD contributes to LIG3 steady-state kinetic parameters. 

In our hands, the DLR increases LIG3 catalytic efficiency to an equal degree as the ZnF domain, 

suggesting this linker is important for DNA binding. The discovery of the DLR’s contribution to 

LIG3 SSB ligation efficiency suggest the DNA interacting mechanisms of the LIG3 N-terminus 

are more complex than the current “jack knife” model proposed by Cotner et al. (9, 11). The ‘jack 

knife” model predicts that the ZnF domain and DBD first interact with a nicked DNA substrate as 

if they are a single DNA binding module (ZnF-DBD). Following this interaction, the NTase and 

OB-Fold domains bind to, and encircle the DNA substrate, forcing the ZnF domain to disengage 

the DNA. To investigate whether the ZnF disengages a DNA substrate upon ligase binding, small-

angle X-ray scattering experiments suggested the ZnF and DLR no longer interact with the DNA 

molecule after LIG3 has encircled it. These studies also suggest the DLR serves no function in 

addition to tethering the ZnF to the DBD (9). Conversely, my studies suggest that the DLR plays 

an important role in either DNA binding and/or stabilization of the enzyme•substrate complex via 

intramolecular interactions with the three-domain ligase core. Additional experimentation is 

required to better understand how the N-terminus of LIG3 is contributing to ligation efficiency. 

In addition to catalyzing the ligation of SSBs, LIG3 is capable of catalyzing DNA end-

joining (EJ) reactions (9, 11, 38, 39, 53). While the majority of DSBs are repaired via the LIG4-

dependent nonhomologous end-joining (NHEJ) and/or homologous recombination pathways, the 

minor and relatively poorly understood LIG3-dependent alternative-EJ (alt-EJ) pathway is highly 

error-prone (42, 54). The alt-EJ pathway is capable of generating telomere fusions, reciprocal 

chromosomal translocations and DNA deletions and has gained interest because these 
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chromosomal anomalies drive cancer progression (54-58). Cells deficient in NHEJ and/or 

homologous recombination activity become increasingly dependent on alt-EJ pathways (59-62). 

Upon removal of LIG3 or alt-EJ factors, these erroneous ligation behaviors occur less frequently 

(55), suggesting the LIG3-dependent alt-EJ pathway is responsible for this deleterious behavior. 

In addition to the in vivo work investigating LIG3 DSB ligation characteristics, numerous 

biochemical studies indicate LIG3 can catalyze EJ reactions in vitro (9, 11, 38, 39, 53, 54). Guided 

by these biochemical studies, the Tomkinson and Ellenberger groups proposed that the combined 

DNA binding properties of the ZnF domain and DBD function as a single DNA interacting module 

that is capable of binding DNA ends. They also suggest the NTase and OB-Fold domains serve as 

a second DNA end binding module. The idea of LIG3 having two DNA binding models suggests 

the enzyme should be able to bridge two DNA molecules (9, 38). If LIG3 does interact with DNA 

ends as proposed (using two independent DNA-interacting modules), this may explain why LIG3 

is more proficient in end-joining than the other DNA ligases under in vitro conditions. To broaden 

our understanding of LIG3 catalyzed EJ, we investigated the kinetic parameters of LIG3β on blunt-

end and overhang containing substrates (Chapter 4). This analysis enabled the direct comparison 

of LIG1 and LIG3 activities. We report that LIG3 joined all of the tested substrates with similar 

efficiencies. Furthermore, we were able to determine the single-turnover rate constants for the 

sequential ligation events required to completely repair the DSB. 

 In addition to the erroneous ligation activity attributed to LIG3 and the alt-EJ pathway, 

elevated levels of LIG3 are needed for cancer cell survival (63-66). Targeted inhibition of LIG3 

and disruption of abnormal DNA repair within cancerous cells may be an attractive mechanism 

for anti-cancer therapy. In order to pursue LIG3 as a valid target, an efficient method for screening 

small-molecule inhibitors of the DNA ligases must be employed. We designed and validated a 
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real-time fluorescence based assay that reports on DNA ligation activity. The robustness of this 

method suggests it may be utilized to efficiently determine the steady-state parameters of various 

DNA ligases. The assay may be easily adjusted for discontinuous use, enabling efficient high-

throughput screening of small-molecule libraries (Chapter 5).  

 

 

Conclusions 

This thesis provides the first kinetic analysis of human DNA LIG3α and LIG3β on nicked 

DNA substrates. This systematic characterization enabled a direct comparative analysis of the 

LIG3 isoforms to LIG1. The LIG3 isoforms (enzymatically identical to each other) had markedly 

greater catalytic efficiencies on nicked DNA substrates than LIG1, presumably due to the N-

terminal DNA binding ZnF domain. Interestingly, while investigating the role of the N-terminal 

region (consisting of the ZnF domain and DLR) in nicked DNA ligation, we identified a previously 

unidentified function of the LIG3 DLR. The ZnF domain and DLR independently increased the 

catalytic efficiency of LIG3-catalyzed nicked DNA ligation. We report, for the first time, the 

biochemistry of LIG1 catalyzed end-joining and compare this activity to that of LIG3. Since LIG3 

may be a promising pharmacological target, we designed and validated a real-time ligation assay 

that is amendable to high throughput screening of small-molecule libraries to identify ligase 

inhibitors. Discovery of ligase specific inhibitors may provide tools to better define the biological 

roles of the human ligases, and lead to innovative therapeutic approaches to treat certain cancers. 
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Chapter 2  
 

 

 

 

 

Kinetic Analyses of Single-Strand Break Repair by Human DNA Ligase III Isoforms 

Reveal Biochemical Differences from DNA Ligase I1,2 

 

Introduction 

Human DNA Ligases I (LIG1), III (LIG3) and IV (LIG4) catalyze the ultimate steps in 

DNA replication and repair pathways. All three of the LIG genes are required for mouse embryonic 

development (1-5), and clinical mutations have been identified in both LIG1 and LIG4 genes that 

cause immunodeficiencies (6-8). LIG1 is believed to be the primary nuclear replicative DNA 

ligase, however recent studies indicate that LIG1 and nuclear LIG3 have overlapping functions (9-

12). The LIG3 proteins are translated from two start sites to generate mitochondrial and nuclear 

isoforms, the latter of which is suggested to be dispensable (10,11,13-16). Two alternative splice 

isoforms of LIG3 are known that differ in their C-terminal regions. The major LIG3 isoform 

(LIG3α) contains a C-terminal BRCT domain that has been shown to interact with XRCC1 (17-

21). Alternative splicing in male germ cells (22,23) gives rise to a shorter isoform (LIG3β) that 

 

1Reproduced with permission from McNally JR & O'Brien PJ (2017) Kinetic analyses of single-

stranded break repair by human DNA ligase III isoforms reveal biochemical differences from 

DNA ligase I. J. Biol. Chem. 292(38):15870-15879. © 2017 by The American Society for 

Biochemistry and Molecular Biology, Inc. Published in the U.S.A. 2I performed the 

experiments, Patrick O’Brien and I designed the study, analyzed the data, and wrote the 

manuscript. 



   

 

21 

lacks the BRCT domain (Figure 2.1A). Although the beneficial roles of nuclear LIG3 isoforms are 

not clear, LIG3 has been implicated in error-prone alternative end joining which can lead to 

chromosomal translocations (11,24) and telomere fusions (25,26). Furthermore, elevated levels of 

LIG3 have been detected in cancer, making LIG3 a candidate for anticancer therapeutics (27-30).  

Crystal structures of the human DNA ligases (31,32) show a conserved catalytic core made up of 

three distinct domains that encircle the substrate (Figure 2.1B). However, the N- and C-terminal 

extensions differ significantly and these regions of the protein are likely to contribute to 

physiological differences between the ligases (Figures 2.1A). LIG1 has an unstructured N-terminal 

region that facilitates protein-protein interactions (31,34), but this region is dispensable for ligase 

activity in vitro (31,33). LIG3 also has an N-terminal extension containing a unique zinc-finger 

(ZnF) domain that has been implicated in DNA binding (32,35-40). Furthermore, this ZnF domain 

has been hypothesized to be a ‘nick sensor’ responsible for increasing LIG3 specificity and affinity 

toward DNA substrates containing a single-strand DNA break (19,32,35,38). The C-terminal 

extension of LIG3α contains a BRCT domain that is constitutively bound to XRCC1 in the nucleus. 

As, XRCC1 is not found in the mitochondria, it is of interest to characterize the biochemical 

properties of LIG3α in the absence of XRCC1 (41). 

The human DNA ligases employ a conserved three-step chemical mechanism (Figure 

2.1C) to harness the energy of ATP to catalyze the formation of a phosphodiester bond between 

adjacent 3-hydroxyl and 5-phosphate groups in DNA (42). During the first chemical step of 

ligation (step 1), ligase catalyzes the transfer of AMP from ATP to the active site lysine forming 

an adenylylated enzyme intermediate and releasing inorganic pyrophosphate. The adenylylated 

enzyme binds to a DNA substrate containing a single-strand break, and during the second chemical 

step, catalyzes the transfer of the AMP group to the 5-phosphate at the break (nick), thereby 
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generating an adenylylated DNA intermediate. During step 3, the 3-hydroxyl at the nick attacks 

the adenylylated 5-phosphate to generate a new phosphodiester bond and release AMP (Figure 

2.1C). All three of these chemical steps are dependent on divalent metal ions  (presumably Mg2+), 

and previous work has supported a two metal ion mechanism for step 1 (enzyme adenylylation) 

catalyzed by human LIG1 (33). 

As a starting point for understanding the biochemical differences between LIG1 and LIG3, 

we describe the kinetic and thermodynamic framework for LIG3-catalyzed ligation of a single-

strand break. LIG3α and LIG3β exhibit similar kinetic parameters under all tested conditions, 

 

 

 
 

 

Figure 2.1. Conserved structure and mechanism of human DNA ligases. A, schematic 

representation of human DNA LIG3α, LIG3β and LIG1. Numbers indicate domain boundaries 

of the enzymes. LIG3α contains a C-terminal BRCT domain. The LIG1 Δ232 truncation mutant 

used throughout this study is catalytically identical to full length LIG1 (33). LIG3 isoforms and 

LIG1 possess conserved DNA binding (DBD), nucleotidyltransferase (NTase) and 

oligonucleotide-binding (OB-fold) domains. B, superimposition of LIG1 (grey) and LIG3 

(color coded; DBD, red; NTase, green; OB-fold, yellow) structures 1X9N and 3L2P, 

respectively (31,32). C, mechanism of ATP-dependent DNA ligases.  
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indicating that the C-terminal BRCT domain of LIG3α does not directly contribute to ligation of 

nicked DNA substrates. Comparison of the biochemical properties of LIG3 and LIG1 reveals 

similar rates of the three chemical steps under conditions of saturating Mg2+, but LIG3 has a higher 

kcat/KM value for nicked DNA and does not release adenylylated DNA intermediates as readily as 

LIG1. Unexpectedly, we found that LIG3 does not bind Mg2+ as tightly as LIG1, and this weaker 

binding by LIG3 is most pronounced in the nick-sealing step of catalysis. The apparent Mg2+ 

affinity of ~6 mM required for the stimulation of steady-state ligation catalyzed by LIG3 suggests 

that LIG3 activity can be regulated by the availability of free Mg2+ which is typically between 0.2 

and 1 mM in the nucleus and cytosol (43). Intriguingly, mitochondrial Mg2+ concentration has been 

reported to be 10-fold greater than cytosolic Mg+2 levels (44), which could contribute to higher 

LIG3 activity in the mitochondria where it is the sole DNA ligase. This kinetic and thermodynamic 

framework for LIG3 identifies the different biochemical properties that distinguish it from LIG1, 

and it will enable future studies investigating the roles of isoform-specific accessory proteins and 

their contributions to ligase activity. 

 

Results 

Purity, stability and adenylylation state of the LIG3 isoforms 

Recombinant human DNA LIG3α and LIG3β were purified to homogeneity over four 

chromatographic steps; phosphocellulose, NTA-Ni2+, Cibacron Blue, and gel filtration (Figure 

2.2A). LIG3α and LIG3β eluted at the same salt concentration from the Cibacron Blue (HiTrap 

Blue) column but eluted at different volumes with gel filtration, consistent with the greater 

molecular weight of LIG3α. Prior to detailed kinetic studies, the stabilities of LIG3α and LIG3β 

were investigated at 4 °C and 37 °C using a gel-based DNA ligation assay (Figure A.1). Both 
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LIG3α and LIG3β maintain activity when stored at 4 °C for more than one month (Figure A.2A). 

LIG3β is quite stable at 37 °C (t1/2 >> 4 hours), however LIG3α is significantly less stable at this 

temperature (t1/2 = 2 hours; Figure A.2B). These findings are consistent with previous reports 

suggesting LIG3α is less stable than LIG3β (45). Nevertheless, the stability studies established that 

both LIG3 isoforms are sufficiently stable for rigorous biochemical analysis.  

Consistent with a previous report from the Ellenberger lab, we obtained a mixture of 

adenylylated and deadenylylated recombinant LIG3 from our initial four-step purification scheme 

(36). Adenylylated enzyme (E-AMP) can be quantified by performing ligation reactions in the 

absence of ATP, because the number of ligated DNA molecules corresponds to the number of 

active E-AMP molecules (Figures 2.2B and 2.2C). To assess the adenylylation status of our initial 

 

 

 
 

 

Figure 2.2. Purity and active site titrations of LIG3 isoforms. A, 12% SDS-PAGE coomassie 

stained gel containing 0.5 µg of purified LIG3α and LIG3β with molecular weights of 102.7 

and 95.9 kDa (M, protein sizing standards; α, Lig3α; β, Lig3β). B and C, representative active 

site titrations of LIG3α and LIG3β isoform, inset gel shows product (upper bands) and substrate 

(lower bands). In the absence of ATP, the adenylylated enzyme is limited to a single turnover 

ligation. Reactions contained 150 nM 28-mer nicked DNA substrate and 20 mM Mg2+ (see 

Methods for details). The equivalence point of the titration (denoted by arrow) indicates the 

concentration of adenylylated enzyme (data points are the mean ± SD; n=2).  
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LIG3 preparations, enzyme samples were preincubated with ATP and MgCl2 to fully adenylylate 

any deadenylylated enzyme species prior to the addition of the DNA substrate  (Figure 2.3A). 

Under these conditions a pre-steady-state burst was observed followed by a slower steady-state 

 

 

 
 

 

 

Figure 2.3. Adenylylation state of purified LIG3 isoforms. A, schematics for burst 

experiments. The left (black) scheme indicates that LIG3 was incubated in the presence of ATP 

and Mg2+ to ensure complete enzyme adenylylation prior to the addition of DNA. The scheme 

to the right (green) displays reaction conditions in which no ATP was added to the reaction 

solution. Colors of the diagrams correspond to the colors of the linear fits in B – E. B and C, 

burst kinetics indicate LIG3α and LIG3β are 73% and 81% adenylylated, respectively. D and 

E, burst kinetics of LIG3α and LIG3β, respectively, after the addition of an adenylylation step 

during protein purification generates 100% adenylylated protein. Burst experiments after 

preincubation of LIG3 with ATP and Mg2+ did not increase burst amplitude. All experiments 

contained an estimated 50 nM enzyme, 200 nM DNA and 20 mM Mg2+ in the presence and 

absence of 0.5 μM ATP. Each experiment was completed in triplicate (mean ± SD). 
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phase (Figures 2.3B-2.3E). Comparison of the burst amplitude with the amplitude of ligation in 

the absence of ATP allowed us to determine that the preparations of LIG3α and LIG3β were 73% 

and 81% adenylylated, respectively (Figures 2.3B and 2.3C). The heterogeneity in adenylylation 

status of the purified ligases was remedied in future purification protocols by treating LIG3 

fractions with excess ATP and MgCl2 prior to the final gel filtration step of purification (Figures 

2.3D and 2.3E). The LIG3 proteins used in all subsequent experiments were purified using the 

improved protocol that yields homogeneous adenylylated enzyme. 

 

Substrate dependence of the LIG3 isoforms 

Steady-state conditions were used to investigate the substrate dependence of both LIG3 

isoforms. The ATP concentration dependencies for multiple-turnover ligation were determined in 

the presence of saturating Mg2+ (20 mM) and saturating nicked DNA substrate (1 µM). The 

reaction progress curves generated at each ATP concentration were linear in all cases (Figure 

2.4A), and the initial rates were plotted as a function of ATP concentration (Figure 2.4B). Fitting 

the Michaelis-Menten equation (Eq. 2.1) to the ATP dependence data yielded almost identical kcat 

and KM, ATP values for LIG3α and LIG3β (Table 2.1). These KM values are roughly three-fold higher 

than the previously reported value for LIG1 that was obtained under similar reaction conditions 

(33).  

We next examined the concentration dependencies of the nicked DNA substrate, keeping 

fixed saturating concentrations of ATP (1 mM) and Mg2+ (20 mM). Under the standard conditions 

of 150 mM ionic strength, LIG3β saturated at a very low concentration of DNA (KM ≤ 5 nM; 

Figure A.3). It was not possible to test lower concentrations of DNA using the gel-based 

fluorescence assay, and therefore the salt concentration was increased to 300 mM (using NaCl) to 
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weaken the protein-DNA interaction. At this higher salt condition, complete Michaelis-Menten 

curves were obtained for both of the LIG3 isoforms (Figure 2.4C). LIG3α and LIG3β have KM 

values for DNA of ~60 nM and ~50 nM and catalytic efficiency (kcat/KM) values of 8.4×106 M-1s-

1 and 1.0×107 M-1s-1, respectively (Table 2.1). The very similar rate constants observed for the two 

LIG3 isoforms indicate that the C-terminal BRCT domain of LIG3α does not directly affect the 

 
 

Figure 2.4. Substrate dependence of LIG3α, LIG3β and LIG1. A, representative ATP 

concentration dependence of LIG3β used to determine initial velocities under multiple-turnover 

conditions. Reactions performed at each ATP concentration (0 – 300 µM) were fit using linear 

regression to determine initial rates. B, ATP dependence was measured under multiple-turnover 

conditions in the presence of saturating DNA (1 µM) and Mg2+ (20 mM). Initial velocities are 

plotted as a function of ATP concentration and fit using the Michaelis-Menten equation 

yielding kcat, ATP values of 0.57 ± 0.02 s-1 and 0.55 ± 0.02 s-1 for LIG3α and LIG3β, respectively. 

The respective KM, ATP values are 34 ± 4 µM and 31 ± 3 µM. C, DNA dependence was measured 

at 300 mM ionic strength with 1 mM ATP and 20 mM Mg2+. LIG3α and LIG3β have kcat, DNA 

values of 0.52 ± 0.02 s-1 and 0.51 ± 0.03 s-1, and KM, DNA values of 62 ± 6 nM and 49 ± 8 nM, 

respectively. D, LIG1 DNA concentration dependence was measured under the same condition 

as for LIG3 in panel C. The kcat, DNA value for LIG1 is 0.87 ± 0.10 s-1 and the KM, DNA value is 

570 ± 170 nM. Each experiment was completed in triplicate (mean ± SD). 
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ligation reaction. To compare the catalytic efficiency of LIG3 isoforms to that of LIG1, it was 

necessary to determine the DNA concentration dependence of LIG1 at the same higher ionic 

strength conditions (Figure 2.4D). LIG1 is approximately an order of magnitude less efficient than 

LIG3 under these conditions, with a KM, DNA value of 570 nM and a kcat/KM, DNA value of 1.5×106 

M-1s-1 (Table 2.1). The higher catalytic efficiencies of the LIG3 isoforms are primarily due to the 

decreased KM, DNA values. 

 

Mg2+ concentration dependence for multiple-turnover ligation 

The preceding experiments were performed in the presence of a high concentration of Mg2+ 

(20 mM). This ensures that Mg2+, which is an essential cofactor for DNA ligases, is saturating. 

Free Mg2+ levels in the cell are typically much lower and therefore it is important to investigate 

the Mg2+ dependence on ligation (43). The free Mg2+ concentration dependence for multiple-

turnover ligation was determined in the presence of saturating ATP and nicked DNA substrate (1 

mM ATP, 1 µM DNA). A hyperbolic one site-specific binding equation (Eq. 2.2) fit well to the 

data, providing the half-maximal concentration of free Mg2+ (KMg) required for ligase activity. Free 

Mg2+ concentrations were calculated using the Kd values for ATP•Mg2+ and ATP•2Mg2+. It is 

likely that KMg is equal to the Kd for Mg2+ binding to the enzyme, because dissociation equilibrium 

constants in the millimolar range are typically indicative of fast dissociation rate constants. The 

observation that LIG3 is rapidly and efficiently quenched using EDTA on the millisecond 

timescale is consistent with fast dissociation of Mg2+. The Mg2+ dependencies of LIG3α and LIG3β 

are essentially superimposable and the fits yield similar kcat, Mg and KMg values (Figure 2.5A, Table 

2.1). It is striking that the affinity for Mg2+ (KMg ~6 mM) is about 10-fold weaker than was 

previously observed for LIG1 under similar conditions (Table 2.1).  



   

 

29 

 

 

 
 

 

Figure 2.5. Magnesium dependence for multiple-turnover ligation. A, reactions contained 

1 µM DNA, 1 mM ATP, and the concentration of free Mg2+ was varied between 0 and 35 mM. 

Data were fit using a hyperbolic one site-specific binding equation (Eq. 2.2) yielding maximal 

kcat, Mg values of 0.69 ± 0.04 s-1 and 0.69 ± 0.03 s-1, and KMg values of 5.6 ± 0.9 mM and 7.4 ± 

0.7 mM for LIG3α and LIG3β, respectively. B, Investigation of the Mg2+ concentration 

dependence of enzyme adenylylation. The Mg2+ concentration dependence was performed 

using subsaturating ATP concentrations (Figure A.4). The magnesium concentration 

dependence of (kcat/KM)ATP for LIG3β was fit using a two metal random binding model (Eq. 

2.3). Each experiment was completed in at least triplicate (mean ± SD). 
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We next determined the catalytic efficiency (kcat/KM)ATP for LIG3β as a function of Mg2+ 

concentration, which monitors the steps up to and including enzyme adenylylation. This can be 

most conveniently accomplished by measuring the linear dependence of the reaction rate as a 

function of ATP concentration when ATP is subsaturating (Figure A.4). The Mg2+ dependence of 

(kcat/KM)ATP (Figure 2.5B) could not be fit well by a hyperbolic dependence on a single essential 

Mg2+, but could be better fit by a two-metal ion, random binding model (Eq. 2.3). These data 

support a two-metal mechanism for the reaction of LIG3 with ATP, analogous to the two-metal 

ion mechanism proposed for LIG1 (33).  
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Single-turnover ligation kinetics 

Although the LIG3 isoforms exhibited very similar steady-state kinetic parameters, it is 

possible that larger differences could exist for steps that are not rate-limiting. Therefore, we also 

performed single-turnover ligation experiments using excess amounts of saturating LIG3α and 

LIG3β. As previously observed for other DNA ligases, LIG3-catalyzed single-turnover ligation 

followed a two-step irreversible mechanism. Simultaneous fitting of the substrate, intermediate 

and product yielded the microscopic rate constants for adenylyl transfer (kobs, transfer) and nick-

sealing (kobs, seal). At a high concentration of Mg2+ (20 mM), LIG3α and LIG3β exhibit almost 

identical microscopic rate constants for both steps (Figures 2.6A and 2.6B). Given the identical 

kinetic parameters for the two LIG3 isoforms, and the greater stability of LIG3 β, we chose to 

perform a comprehensive single-turnover kinetic analysis of LIG3β. 

To determine the metal cofactor requirements for each chemical step of ligation, the Mg2+ 

binding affinities and microscopic rate constants were systematically under single-turnover 

conditions. The observed rate constants for adenylyl transfer (Figure 2.6C) and nick-sealing by 

LIG3β (Figure 2.6D) are plotted as a function of Mg2+ concentration. These data were fit by a 

hyperbolic dependence to yield the maximal ktransfer and kseal rate constants of 0.90 s-1 and 18 s-1, 

respectively (Table 2.2). Using the net rate constants method (Eq. 2.5), the rate constant for enzyme 

adenylylation (kadenylylation) was calculated to be 1.6 s-1 (Table 2.2). The rate constants at saturating 

Mg2+ for all three of the chemical steps catalyzed by LIG3β are strikingly similar to the kinetic 

parameters for LIG1 that were previously obtained under similar reaction conditions. The apparent 

affinity for Mg2+ in the adenylyl transfer step is only 2-fold weaker for LIG3 compared to LIG1 

with KMg values of 0.3 and 0.15 mM, respectively. In contrast, the Mg2+ affinity for nick-sealing 
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is 7-fold weaker for LIG3 as compared to LIG1 with values of 18 mM and 2.6 mM, respectively 

(Table 2.2).  

 

 

 
 

 

 

Figure 2.6. Single-turnover ligation kinetics. Representative single turnover kinetics of DNA 

LIG3α (A) and LIG3β (B) indicate the two enzymes behave similarly under single-turnover 

conditions at 20 mM Mg2+. Data were fit using a two-step irreversible mechanism using the 

program Berkeley Madonna. The rate constants for adenylyl transfer are 0.7 s-1 and 0.8 s-1 and 

for nick sealing are 8.7 s-1 and 8.9 s-1 for LIG3α and LIG3β, respectively. Experiments contained 

100 nM fluorescein labeled DNA, 600 nM enzyme and 20 mM MgCl2 with no added ATP. C, 

Mg2+ concentration dependence for the adenylyl transfer step using LIG3β. D, Mg2+ 

concentration dependence of the nick-sealing step for LIG3β. Data were fit using a hyperbolic 

one site-specific binding equation (Eq. 2) yielding ktransfer and kseal values of 0.89 ± 0.03 s-1 and 

19 ± 6 s-1, respectively. The KMg values for adenylyl transfer and nick-sealing steps are 0.30 ± 

0.06 mM and 18 ± 3 mM, respectively. Each experiment was completed in at least triplicate 

(mean ± SD). 
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 Accumulation of adenylylated DNA intermediates 

Previous study of LIG1 revealed that this ligase releases adenylylated DNA intermediates 

under conditions of low free Mg2+ concentration (33). LIG1 is quickly adenylylated and cannot 

rebind the intermediate, resulting in abortive ligation (Figure 2.7A). The propensity for abortive 

ligation under Mg2+-starved conditions was attributed to differential affinity for Mg2+ in the 

adenylyl transfer and nick-sealing steps (33). As LIG3 shows a similar reduction in Mg2+ affinity 

for nick-sealing as compared to adenylyl transfer steps, we investigated whether LIG3 is also 

susceptible to abortive ligation on a nicked DNA substrate. Guided by the previous investigation 

of LIG1, multiple-turnover assays were conducted in the presence of low concentration of free 

Mg2+ (70-fold below KMg). Analogous ligation reactions using LIG1 were performed for direct 

comparison between the enzymes. The fraction abortive ligation was calculated for both LIG1 and 

LIG3β (Eq. 2.4; Figure 2.7B). Whereas 8% of attempted ligation events were aborted by LIG1, 

only 1% of ligation events were aborted by LIG3β. Thus, LIG3 appears to be less susceptible than 

LIG1 to abortive ligation of nicked DNA substrates.  

Table 2.2 

 Comparison of single-turnover parameters of LIG3β and LIG1a  

Kinetic parameter LIG3β LIG1b 
Relative 

LIG1/LIG3β 

kadenylylation (s-1)c        1.6 ± 0.2   1.3 ± 0.3             0.81 

ktransfer (s-1)        0.89 ± 0.03   2.6 ± 0.6             2.9 

kseal (s-1)      19 ± 6 12 ± 2             0.63 

KMg, transfer  (mM)        0.30 ± 0.07   0.15 ± 0.06             0.50 

KMg, seal  (mM)      18 ± 3   2.6 ± 0.9             0.14 
aSingle-turnover parameters were obtained at 150 mM ionic strength. All reactions contained 

600 nM adenylylated enzyme and 100 nM nicked DNA substrate in the presence of 20 mM 

Mg2+ and absence of ATP.  
bLIG1 values were previously reported for ∆232 LIG1 under similar experimental conditions 

(33). cThe microscopic rate constant for enzyme adenylylation was calculated using a kcat value 

of 0.55 s-1 with the net rate constants equation (Eq. 4). Error is represented as one standard 

deviation from the mean (n≥3). 
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Figure 2.7. Accumulation of adenylylated DNA intermediate. A, abortive ligation 

mechanism observed under Mg2+-starved conditions. Adenylylated ligase interacts with nicked 

DNA substrates, generating adenylylated DNA intermediate. The partitioning between the 

nick-sealing steps and abortive ligation is represented with kseal and koff, respectively. Following 

successful or abortive ligation, ligase becomes adenylylated, preventing the enzyme from 

rebinding the adenylylated DNA intermediate and completing the nick-sealing step. B, 

propensity of DNA ligases for abortive ligation. Free Mg2+ concentrations were 70-fold below 

KMg for LIG1 and LIG3β in all experiments. Abortive ligation data represents multiple time 

points obtained from multiple-turnover time courses conducted in quadruplicate (see methods 

for details). Error bars indicate one standard deviation from the mean.  
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Discussion 

DNA ligases I and III contain three structurally conserved domains (DBD, NTase and OB-

fold domains; Figure 2.1) that each contribute to substrate binding and ligation (32). Despite this 

high degree of structural homology, LIG1 and LIG3 share only 22% primary sequence identity 

across these three domains (Figure 2.1B). On the one hand, the high degree of structural homology 

might indicate similar biochemical activities, but on the other hand, there are numerous 

substitutions throughout the proteins, including the DNA-binding interfaces of the DBD and OB-

fold domains that could lead to distinct biochemical properties. Outside of the core three-domain 

architecture of the ligases, the human ligases also have unique N- and C-terminal domains that 

likely influence their localization, protein-protein interactions, and substrate specificity. As a first 

step toward understanding the biochemical differences between the human DNA ligases, we have 

characterized recombinant human LIG3α and LIG3β under single- and multiple-turnover 

conditions and compared the kinetic framework to that of the previously studied human DNA 

LIG1. This analysis reveals similarities and differences that are relevant to understanding their 

unique biological functions. Furthermore, this information provides an essential starting point for 

future studies that explore the functional consequences of mutations in LIG3 as well as the 

regulatory effects of LIG3 interacting proteins, such as XRCC1.  

Recombinant LIG3α was found to be less stable than LIG3β, with a half-life of roughly 

two hours, as compared to at least four hours for LIG3β in our assay conditions (Figure A.2). This 

is consistent with the previous findings by the Caldecott group that LIG3α exhibits limited stability 

in vivo and that interaction with XRCC1 is important for stability (45). It remains unclear whether 

mitochondrial LIG3α requires a mitochondrial-specific protein binding partner or whether it 

functions as a homodimer (41). Nevertheless, the stability of recombinant Lig3α was sufficient for 
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a complete in vitro kinetic characterization. We found that the two LIG3 isoforms are 

indistinguishable under all experimental conditions tested using a nicked DNA substrate (Table 

2.1). This has implications for mitochondrial DNA ligation and establishes that the different C-

termini of the LIG3 isoforms do not change the kinetics of single-strand break ligation. 

We can also directly compare the kinetic parameters for the LIG3 isoforms to those of the 

previously studied LIG1. Comparison of the substrate dependencies of the enzymes under 

conditions of saturating Mg2+ demonstrates that these enzymes have very similar efficiencies for 

utilization of ATP. However, the LIG3 isoforms have higher catalytic efficiency than LIG1 toward 

nicked DNA substrates due to the reduced KM, DNA of the LIG3 isoforms. These findings are 

consistent with previous studies suggesting that the ZnF domain of LIG3 contributes to DNA 

binding during ligation of both single- and double-strand breaks (19,32,35,38). A “jackknife” 

model for nick recognition has been previously proposed for explaining how LIG3 uses two 

independent DNA binding domains to bind to a nick (32). Our studies do not directly test this 

model, but require that the proposed conformational changes upon nick recognition would have to 

be fast to obtain such similar kinetics for the LIG3 isoforms and LIG1, for LIG1 lacks a ZnF 

domain (Figure 2.1A). These overall similarities in the rates of the chemical steps at saturating 

Mg2+ concentration are consistent with the strong conservation of the active site architecture 

(Figure 2.1B). 

Surprisingly, LIG3 requires a much higher concentration of Mg2+ cofactor to achieve 

maximal activity as compared to LIG1. The structural basis for this biochemical difference is 

unknown, but the observation of an approximate 10-fold reduction in KMg for steady-state ligation 

raises the possibility that this difference in Mg2+ affinity is biologically relevant. The free Mg2+ 

concentration in nuclei has been estimated to be between 0.2 – 2 mM, which would be 
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subsaturating for LIG3 and lead to suppressed catalytic activity (46). In contrast, recent studies 

have suggested that mitochondria have up to 10-fold higher concentration of free Mg2+ compared 

to the cytosol (44). We speculate that this difference in Mg2+ affinity could reflect an adaption to 

limit LIG3 activity in the nucleus where multiple ligases are present and yet allow for high catalytic 

activity in the mitochondria where it is the sole DNA ligase.  

The weaker affinity of LIG3 for Mg2+ is most apparent in the adenylylation step and in the 

nick-sealing step of the reaction, while the adenylyl transfer step is more similar for LIG3 and 

LIG1 (Table 2.2). These differences in Mg2+ affinity in the different steps of the reaction leads to 

a greater buildup of adenylylated intermediate for LIG3 (Figure A.5) as compared to LIG1 at a 

physiological free Mg2+ concentration of 1 mM. Nevertheless, LIG3 is more efficient at ligation 

than LIG1 under conditions of low free Mg2+ and LIG3 is not susceptible to abortive ligation on a 

normal nick (Figure 2.7). As abortive ligation involves the release of adenylylated DNA 

intermediate, we can infer that LIG3 must have greater DNA binding affinity as compared to LIG1.  

 

Conclusions 

This study provides the foundational kinetic and thermodynamic framework for ligation of 

single-strand breaks catalyzed by the LIG3 isoforms. We suggest that the BRCT domain of LIG3α 

does not contribute to ligation of single-strand breaks, revealing nearly identical kinetic parameters 

for the LIG3 isoforms. The LIG3 isoforms differ from LIG1 in their substrate and Mg2+ 

dependencies, despite a high degree of structural similarity in the catalytic domain. The kinetic 

and thermodynamic framework presented here for LIG3 will facilitate future investigations of the 

functional differences between human DNA ligases and their variants. 
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Experimental procedures 

Expression and purification of LIG3 isoforms 

Full-length human DNA LIG3α and LIG3β cDNAs were cloned into a modified pET28 

plasmid containing an N-terminal His6-SUMO tag, and the open reading frames were confirmed 

by Sanger sequencing of both strands. The enzymes were expressed in E. coli C41 pRare 2 cells. 

Bacterial cultures were grown in LB and induced at an OD600 of 0.6 using 300 µM IPTG followed 

by an incubation at 16 °C for 24 hours at 230 RPM. Cells were harvested via centrifugation at 

6,000 RFC for 20 minutes at 4 °C. Pellets were suspended in lysis buffer (50 mM Tris, pH 7.5, 

300 mM NaCl, 3 mM EDTA, 10 mM BME, 10% glycerol, 1 mM benzamidine-HCl and 1 mM 

PMSF) and stored at -80 °C. Prior to purification, cells were thawed and lysed by three passages 

through a cell homogenizer. Lysates were clarified by centrifugation for 1 hour at 39,000 RFC at 

4 °C and further clarified using a 0.45 µm filter. All purification steps were performed at 4 °C. The 

clarified lysate was loaded onto a cellulose phosphate column (Sigma) equilibrated with 

purification buffer (50 mM Tris, pH 7.5, 10% glycerol, 2 mM BME) containing 250 mM NaCl 

and 3 mM EDTA. The enzyme was eluted with purification buffer containing 2 M NaCl then 

loaded onto a HisTrap HP column (GE Healthcare) equilibrated with purification buffer containing 

1 M NaCl and 20 mM imidazole. Loaded protein was washed using 200 mM NaCl and 20 mM 

imidazole and then eluted using a linear imidazole gradient of 20 to 600 mM. Ligase containing 

fractions were pooled and the His6-SUMO tag digested using ubiquitin-like protease (ULP1) prior 

to loading onto a HiTrap Blue column (GE Healthcare) equilibrated with purification buffer 

containing 200 mM NaCl. The bound protein was eluted using a linear gradient of 200 mM – 2 M 

NaCl. Protein containing fractions were collected and concentrated using 30K MWCO Amicon 

Ultra concentrators. To ensure the purified protein was 100% adenylylated, 20 mM MgCl2 and 1 
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mM ATP were added to the concentrated HiTrap Blue fractions and incubated for 30 minutes on 

ice. Purification buffer was exchanged with LIG3 storage buffer (50 mM NaMOPS, pH 7.5, 300 

mM NaCl, 10% glycerol, 1 mM TCEP) over a Superdex S200 26/60 gel filtration column. Protein 

containing fractions were collected and concentrated to 40 mg/mL, snap frozen using liquid 

nitrogen, and stored at -80 °C. The purity of the ligase isoforms was greater than 95% as judged 

by SDS-PAGE (Figure 2.2A). Human DNA ligase I (LIG1) was prepared as previously described 

(33). 

 

DNA substrates 

Oligonucleotides were obtained from Integrated DNA Technologies (IDT) and purified 

using 15% polyacrylamide, 8 M urea DNA sequencing gels as previously described (33). The 

double stranded nicked DNA substrate used throughout this study was generated by annealing the 

following oligonucleotides:  5-CCGAATCAGTCCGACGACGCATCAGCAC, 5-

GTGCTGATGCGTC and 5P-GTCGGACTGATTCGG-FAM, where P indicates the presence of 

a 5-phosphate, and FAM indicates the presence of 3-fluorescein. The oligonucleotides were 

annealed at equimolar equivalents in annealing buffer (10 mM NaMES, pH 6.5, 50 mM NaCl) by 

heating the solution to 95 °C and cooling to 4 °C at a rate of 12 °C per minute. 

 

Gel-based ligation assay 

All single- and multiple-turnover reactions were performed at 37 °C, in standard reaction 

buffer (50 mM NaMOPS, pH 7.5, 10 % glycerol, 1 mM TCEP, 100 µg/mL BSA (MP 

Biomedicals)) at an ionic strength of 150 mM unless otherwise stated. Multiple-turnover ligation 

reactions were quenched at designated times into quench solution (90% formamide, 50 mM 
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EDTA, 0.006% bromophenol blue, 0.006% xylene cyanol). Single-turnover experiments were 

quenched using 0.2 M NaOH, followed by 2-fold dilution into the quench solution described 

above. Quenched samples were incubated at 95 °C for 3 minutes, snap cooled using ice water then 

loaded onto a 15% (w/v) polyacrylamide, 8 M urea, 1X TBE DNA denaturing gel. Gels were 

scanned using a Typhoon Trio+ imager (GE Healthcare) set to monitor excitation at 488 nm and 

emission through a 520 nm band-pass filter. DNA substrate, intermediate, and product bands were 

quantified using ImageQuant TL (GE Healthcare). Data were plotted and analyzed using GraphPad 

Prism. 

 

Multiple-turnover kinetics 

Steady-state reactions were performed in standard reaction buffer at 150 mM ionic strength 

unless otherwise stated. Multiple-turnover reaction volumes were 30 µL, from which 3 µL was 

quenched into 30 µL quench solution at designated times. Initial rates were determined by the 

linear rate of product formation within the first 10% of product formation. Results represent the 

average of least three independent experiments. Burst experiments contained an estimated 50 nM 

ligase and 200 nM DNA. LIG3 isoforms were preincubated in the absence and presence of 20-fold 

greater molar concentration of ATP in the presence of 20 mM Mg2+ for 1 hour on ice followed by 

10 minutes at 37 °C. Following the enzyme adenylylation incubations, samples were diluted 500-

fold to achieve reaction concentrations prior to mixing with DNA. Adenylylation state was 

determined by comparison between ATP treated and ATP omitted samples. Burst amplitudes are 

proportional to adenylylated enzyme concentration. The ATP concentration dependencies of the 

LIG3 isoforms were investigated using 5 nM enzyme in the presence of saturating Mg2+ (20 mM) 

and saturating 28mer DNA (1 µM) while adjusting ATP concentrations between 0 and 300 µM. 
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The initial rates (V0/[E]) were plotted as a function of ATP concentration and fit using the 

Michaelis-Menten equation (Eq. 2.1). The free Mg2+ concentration dependence (0-35 mM) was 

investigated under both saturating and subsaturating ATP concentrations. Free Mg2+ 

concentrations were calculated using Kd values for ATP•Mg2+ and ATP•2Mg2+ of 12 µM and 17 

mM as previously described (33,47). In the presence of saturating ATP (1 mM), the initial rates 

were fit by a hyperbolic curve (Eq. 2.2). In the presence of subsaturating ATP (0.5, 1, 2 µM), 

(kcat/KM)ATP values were generated and plotted as a function of Mg2+ concentrations revealing 

cooperative enzymatic behavior that best fit to a two-site random binding model (Eq. 2.3). The 

DNA concentration dependence for multiple-turnover ligation was obtained using standard 

reaction buffer at ionic strengths of 150 mM and 300 mM. DNA concentration dependencies of 

LIG1 and LIG3 were compared under the 300 mM ionic strength reaction conditions. Reactions 

contained 5 nM enzyme, 1 mM ATP, 20 mM Mg2+ and 0.02-1 µM nicked DNA substrate. Initial 

rates versus DNA concentration data were fit to the Michaelis-Menten equation (Eq. 2.1).  

 

𝑉𝑖𝑛𝑖𝑡

[𝐸]
=  

𝑘𝑐𝑎𝑡 × [𝑆]

(𝐾𝑀+[𝑆])
       (Eq. 2.1) 

𝑉𝑖𝑛𝑖𝑡

[𝐸]
=  

𝑘𝑐𝑎𝑡 × [𝑀𝑔2+]

(𝐾𝑀 + [𝑀𝑔2+])
      (Eq. 2.2) 

(
𝑘𝑐𝑎𝑡

𝐾𝑀
)

𝐴𝑇𝑃
=  

(
𝑘𝑐𝑎𝑡
𝐾𝑀

)
𝑀𝑎𝑥

𝐴𝑇𝑃

𝐾1∗𝐾2
[𝑀𝑔2+]2+

𝐾1+𝐾2
[𝑀𝑔2+]

+1
    (Eq. 2.3) 
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Quantifying adenylylated DNA intermediate 

Ligation experiments were performed under multiple-turnover conditions (5 nM LIG1 or 

LIG3β, 200 nM nicked DNA) in standard reaction buffer. Using LIG1 as previously described 

(33), the accumulation of abortive ligation intermediates was observed when free Mg2+ 

concentration was 70-fold below its respective KMg value. Free Mg2+ concentrations were 

calculated as described above. Accumulation of abortive ligation intermediates was investigated 

using 1 mM Mg2+ and the ATP concentration was adjusted to achieve a free Mg2+ concentration 

that was 70-fold below the individually measured KMg values for LIG1 and LIG3. 2 mM ATP was 

required to achieve 10.5 µM free Mg2+ in the case of LIG1, whereas 1 mM ATP was needed to 

achieve 98 µM free Mg2+ in the LIG3β containing reactions. The fraction of aborted ligation events 

was calculated from the concentration of intermediate (I) and product (P) formed under the free 

Mg2+-starved conditions at various points during the initial rates portion of the ligation reaction 

(Eq. 2.4). 

 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑟𝑡𝑖𝑣𝑒 𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 =  
[𝐼]

([𝐼]+[𝑃])
              (Eq. 2.4) 

 

Single-turnover ligation kinetics 

Single-turnover ligation kinetics were investigated using a KinTek RFQ-3 rapid mixing 

apparatus. Reaction times varied from 5 ms to 10 min. Experiments were performed by rapidly 

mixing equal volumes of 1.2 µM LIG3, and 200 nM nicked DNA substrate to generate 600 nM 

enzyme and 100 nM substrate. Enzyme and substrate concentrations were varied to ensure single-

turnover conditions were saturating (data not shown). For experiments investigating the 



   

 

44 

magnesium dependence for adenylyl transfer and nick-sealing steps of catalysis, ionic strength was 

calculated using the Debye-Hückel theory of electrolytes and held constant at 150 mM using NaCl. 

Samples were allowed to equilibrate at 37 °C for at least 1 minute prior to each reaction. Reactions 

were allowed to age for predetermined times and the reactions stopped using 200 mM NaOH, 

because the aforementioned quench solution used for multiple-turnover ligation kinetics was not 

sufficient to stop catalysis at 5 ms after mixing (Figure A.6). NaOH quenched samples were diluted 

2-fold in formamide quench solution and processed as previously described (33). The observed 

rates of adenylyl transfer and nick-sealing were plotted as a function of Mg2+ concentration and fit 

using a hyperbolic single-site binding equation (Eq. 2.2). The concentrations of total and free Mg2+ 

were assumed equal due to the absence of ATP in the single-turnover reactions. The value of 

kadenylylation was calculated using the net rate constant method (kcat = 0.55 s-1; Eq. 2.5). 

 

1

𝑘𝑐𝑎𝑡
=

1

𝑘𝑎𝑑𝑒𝑛𝑦𝑙𝑦𝑙𝑎𝑡𝑖𝑜𝑛
+

1

𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
+

1

𝑘𝑠𝑒𝑎𝑙
   (Eq. 2.5) 
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Appendix A 

Additional figures to support Chapter 2 

 

 

 

 

 

 

 

Figure A.1. Gel-based ligation assay. A, reaction schematic illustrating observable species of single 

turnover ligation. The 28-mer DNA substrate has a 3’ positioned fluorescein label (FAM) allowing for the 

detection of all species. ktransfer is the rate at which the adenylyl group is transferred from the enzyme to the 

5’-phosphate at the nick. kseal is the rate at which the 3’-hydroxyl at the nick attacks the neighboring 5’-

phosphate resulting in the release of the adenylyl leaving group upon formation of the phosphodiester bond. 

B, representative 15 % polyacrylamide, 8 M urea DNA sequencing gel indicating substrate (red), 

intermediate (blue) and product (green) species in a single-turnover ligation experiment. For single-turnover 

experiments: Reactions contained 600 nM ligase, 100 nM of duplex 28-mer nicked DNA substrate, in 

standard reaction buffer at 150 mM ionic strength. For multiple-turnover experiments: Reactions contained 

5 nM ligase and 1 μM duplex 28-mer nicked DNA substrate (unless otherwise stated) in the presence of 1 

mM ATP and 20 mM Mg2+ (unless otherwise stated). Multiple-turnover experiments did not accumulate 

detectable intermediate (blue). Intermediate accumulation was quantified when investigating abortive 

properties of LIG1 and LIG3β. 
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Figure A.2. Stability of LIG3 isoforms. A, stability of LIG3 isoforms when stored at 4 °C. B, LIG3 

stability at 37 °C. Ligase activity was investigated by analyzing the initial velocities of samples stored at 4 

or 37 °C. DNA ligases retain almost all activity over the course of a month when stored at 4 °C. However, 

at 37 °C, LIG3α has a half-life of two hours and the half-life of LIG3β is greater than four hours. LIG3 

activity was measured after pre-incubating concentrated enzyme stocks (4 °C in storage buffer) or 5 nM 

enzyme (37 °C in reaction buffer) at various times followed by analyzing initial rates in the presence of 1 

µM DNA. Initial velocities were normalized by dividing the initial rate of the pre-incubated enzyme at 37 

°C, by the initial rate of enzyme under normal assaying procedures (1 minute pre-incubation at 37 °C). 

Normalized rates were plotted as a function of pre-incubation time and an exponential decay equation was 

fit to the data.   
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Figure A.3. DNA dependence for LIG3β at 150 mM ionic strength. DNA concentration dependence was 

measured for multiple-turnover ligation in the standard reaction buffer with saturating ATP (1 mM), 

saturating Mg2+ (20 mM), and 1 nM LIG3β. Ionic strength was adjusted to 150 mM using NaCl and 

reactions were performed at 37 oC. These data reveal that the value for KM, DNA is less than 5 nM under these 

conditions and limitations in fluorescence detection prevented lower concentrations of DNA from being 

tested.  
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Figure A.4. Measurements of kcat/KM for utilization of ATP (kcat/KM)ATP by LIG3β. Reactions contained 

5 nM LIG3β and 500 nM 28-mer nicked DNA substrate in standard reaction buffer containing 0.5, 1.0 and 

2.0 µM ATP. The effect of Mg2+ at each ATP concentration was investigated using 0.5-30 mM Mg2+. The 

linearity of the initial velocities as a function of ATP concentration suggests these reactions were 

subsaturating for ATP. The slopes provided by the linear fits are equal to the (kcat/KM)ATP in units of µM-1s-

1. All of the reactions were performed in at least triplicate and the error bars represent one standard deviation 

from the mean (error bars in most cases are smaller than the symbols).  
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Figure A.5. Single-turnover ligation catalyzed by LIG3β at 1 mM Mg2+ concentration. Representative 

single turnover ligation with 600 nM enzyme and 100 nM DNA substrate under the standard reaction 

conditions with 1 mM MgCl2. The time course was fit to a two-step irreversible model using Berkeley 

Madonna software. Reactions were performed in triplicate and the error bars represent one standard 

deviation from the mean.  
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Figure A.6. Identification of an effective quench for single-turnover studies. Reactions contained 600 

nM LIG3β, 100 nM nicked DNA substrate, 20 mM MgCl2 in standard reaction buffer. Reactions were all 

quenched at 5 ms. Quench solutions of more than 0.2 M NaOH were sufficient to reproducibly stop ligase 

activity at 5 ms. After quenching reactions with varying NaOH concentrations, indicated samples quenched 

were neutralized using an equivalence of Tris buffer, pH 7.5 after 2 minutes at room temperature. The 

EDTA and formamide based quench solutions used for the multiple-turnover studies were unable to prevent 

accumulation of the adenylylated DNA intermediate, however increasing the concentration for EDTA from 

50 to 200 mM led to a partial quench of the ligase-catalyzed reaction.  
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Chapter 3  
 

 

 

The LIG3 N-terminus, in its entirety, contributes to single-strand DNA break ligation3 

 

 

Introduction 

The three human DNA ligase gene products, DNA ligases I (LIG1), III (LIG3) and IV 

(LIG4) are required for catalyzing the ultimate step of DNA replication, repair and recombination 

pathways. These enzymes contain a conserved, three domain catalytic region consisting of a DNA 

binding domain (DBD), nucleotidyltransferase domain (NTase), and oligonucleotide-binding 

domain (OB-fold) (Figure 3.1A). Each of the human DNA ligases have been crystallized in the 

presence of a nicked DNA substrate, revealing that they completely encircle a nicked DNA 

substrate through a high degree of structural conservation while possessing relatively low (22-

23%) amino acid sequence identities (2-5). The three enzymes have a conserved ATP-dependent 

three-step chemical mechanism that is utilized to join adjacent DNA molecules by catalyzing the 

formation of a single phosphodiester bond (Figure 3.1B). Briefly, the ligases are first adenylylated 

on an active-site lysine by reaction with ATP thereby forming and releasing inorganic 

 
3The work reported in Chapter 3 would not have been possible without the help of Anna K. Wu 

and Amanda M. Ames. I assisted Anna with the molecular biology experiments required to 

generate and confirm all of the N-terminal ZnF constructs (point and truncation mutants) used 

throughout this study. Amanda performed the enzyme stability experiments in Appendix C. I 

purified the proteins, characterized the enzymes and wrote the chapter.  
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pyrophosphate (PPi). Upon interacting with the 5’ terminal phosphate of DNA, the AMP from the 

active site lysine is transferred to the 5’ phosphate, forming a 5’-5’ adenylylated DNA (Ap-DNA) 

intermediate. The Ap-DNA species is short-lived as the 5’ adenylylate is a suitable leaving group 

for the 3’ hydroxyl nucleophilic attack of the 5’ phosphate, forming the phosphodiester bond 

between the adjacent 3’ hydroxyl and 5’ phosphate. The transient kinetics reporting the rate 

constants and metal cofactor dependences of adenylyl transfer and nick-sealing catalyzed by 

human LIG1 and LIG3 were previously described (1, 6). Although these enzymes are similar in 

structure, their low amino acid sequence conservation leads to differential Mg2+ cofactor 

requirements for the chemical steps of ligation. LIG1 and LIG3 differ greatly in their nicked DNA 

ligation efficiencies; however, these observations are likely due to structural differences extending 

beyond their conserved three-domain structure.  

 Flanking their conserved domains, the human DNA ligases have different N- and C-termini 

that are important for their independent biological functions. These termini contain structured 

domains and unstructured functional regions that contribute to either substrate specificity, or 

biological activity via protein-protein interactions (7). The LIG3 gene encodes four isozymes 

differing in their N- and C- termini. Two isozymes are synthesized from alternative translation 

initiation, generating the essential mitochondrial isoform, and the seemingly dispensable nuclear 

isoform (8-13). Two additional LIG3 isoforms are generated via alternative splicing of the mRNA 

transcript, resulting in the formation of a germ-line specific isoform (LIG3β) and an isoform 

present in all cell types (LIG3α) that differ in their C-termini (Figure 3.1A) (14-17). LIG3α 

possesses a BRCA1 C-terminal (BRCT) domain that interacts with X-Ray Repair Cross 

Complementing protein 1 (XRCC1) (18-22), whereas LIG3β lacks the BRCT domain (16, 17). 

Kinetic analysis of recombinant nuclear LIG3α and LIG3β indicate the isozymes are biochemically 
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indistinguishable when acting on a nicked DNA substrate (1), suggesting that LIG3β is a sufficient 

surrogate for understanding the contributions of the N-terminal region of LIG3 during single-

strand DNA break ligation. 

 

 
 

 

 

Figure 3.1. Structural and chemical properties of the human DNA ligases. A, Schematic 

representation of the human DNA ligases. The protein products of the three mammalian ligase 

genes have a conserved three-domain architecture consisting of a DNA binding domain (DBD, 

Nucleotidyltransferase domain (NTase), and oligonucleotide binding domain (OB-Fold). The 

LIG3 isoforms possess an N-terminal zinc finger (ZnF) domain that is tethered to the DBD via 

a disordered linker region (DLR). B, conserved chemical mechanism of the ATP-dependent 

mammalian DNA ligases illustrated using a nicked (single-strand break) containing DNA. 
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Since the mid 1990’s, attempts to identify the function of the N-terminal ZnF domain 

during single- and double-strand break ligation have been ongoing. Interestingly, the degree by 

which the N-terminal ZnF domain contributes to LIG3β activity is dependent on the design of the 

protein construct and sensitive to experimental conditions. The ZnF domain was first described by 

the Caldecott group as a novel “nick sensor”, but this description of the domain was quickly 

amended after the creation of alternative protein constructs that indicated the ZnF domain interacts 

nonspecifically with DNA secondary structure (20, 23, 24). Building upon these studies, the 

Tomkinson and Ellenberger groups investigated the role of the ZnF domain by comparing the full 

length LIG3β protein to the highly truncated crystallization construct lacking all residues upstream 

of the DBD (residues 1-169), effectively removing the ZnF domain and a disordered linker region 

(DLR) localized between the ZnF and DBD domains (Figure B.2) (3, 25). These studies indicate 

the N-terminus of LIG3 (referred to as the zinc finger within the studies) contributes to nicked 

DNA binding and is essential for the end-joining activity of LIG3 (3, 25). Due to experimental 

design, it is unclear whether these conclusions accurately reflect the role of the ZnF domain 

(residues 1-116), or if the results are due to a more complex DNA binding mechanism utilized by 

the entire N-terminus of LIG3 (residues 1-169). Building upon the observation that this N-terminal 

region strongly interacts with DNA (and the assumption that the DNA binding energy is specific 

to the ZnF domain – residues 1-116), it was proposed that the N-terminal region of LIG3 functions 

as an independent DNA interacting module requiring the ZnF and DBD domains, excluding any 

contribution by the DLR. In this model, the ZnF and DBD domains physically interact, forming a 

half-ring shaped assembly capable of interacting with single- and double-strand DNA breaks (3, 

25, 26). Due to the assumption that the ZnF domain was solely responsible for the DNA binding 

energy of the N-terminus of LIG3, this model omitted the contribution of the DLR. The degree by 
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which the ZnF domain and/or the DLR contribute to DNA binding or LIG3-catalyzed ligation 

remains unresolved, requiring a systematic analysis of this region of the LIG3 protein. 

To better define the role of the LIG3β N-terminus, we describe a systematic kinetic analysis 

of numerous LIG3 N-terminal variants under steady-state conditions. To do so, we mutagenized 

highly conserved residues localized to the DNA binding interface of the ZnF domain to determine 

the degree by which the DNA binding properties of the ZnF domain contribute to the kinetic 

parameters of LIG3-catalyzed nicked DNA ligation. Two N-terminal truncation mutants were also 

generated to investigate the kinetic parameters of LIG3 in the presence and absence of the N-

terminal ZnF domain, and DLR (Figure 3.2). Mutagenesis of the ZnF domain, and truncations of 

the N-terminus had minimal effects on maximal ligation rates (kcat). Modifications to the N-

terminus of LIG3 had no effect on the ATP concentration dependence; however, the alterations 

did influence the dependence on Mg2+ and DNA concentration. Mutagenesis to the N-terminus of 

LIG3 increased Mg2+ binding affinity; whereas, the same mutants reported decreased nicked DNA 

ligation efficiencies when compared the full-length enzyme. Strikingly, removal of the DLR 

further reduced the ligation efficiency of LIG3, consistent with this region contributing to DNA 

binding as indicated by increased KM,DNA values. This kinetic analysis suggests the N-terminal 

region of LIG3, in its entirety, contributes to the ligation efficiency of nicked DNA substrates. 

These findings bring into the question the interpretation of previously reported findings, and reveal 

the degree by which the N-terminal region contributes to the kinetic parameters of LIG3 catalyzed 

single-strand DNA break ligation. 
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Results and discussion 

 

Generation of LIG3 N-terminal mutants.  

To determine the contributions of the N-terminal ZnF domain and the disordered linker 

region (DLR) to LIG3 activity, amino acid substitutions and N-terminal truncations were made to 

the LIG3β polypeptide. Four highly conserved residues (Lys12, Lys19, Arg31 and Trp50) were 

identified as candidates for mutagenesis via multiple sequence alignments of homologs possessing 

low primary sequence identity (Figure B.1). Superimposition of the LIG3 ZnF domain with the 

highly homologous PARP1 ZnF1 domain within the PARP1 ZnF•DNA cocrystal structure suggest 

that these residues are located within the DNA binding interface of the ZnF domain (Figure 3.2A 

and 3.2B). Of the four conserved residues, amino acid substitutions Arg31Ala (R31A) and 

Trp50Ala (W50A) were pursued to disrupt the ZnF domain’s DNA binding affinity without 

perturbing the domain structure. Zn2+ coordinating residues were not considered for mutagenesis 

in order to preserve the structural Zn2+ binding site and the tertiary structure of the ZnF domain. 

To investigate the degree by which the ZnF domain, as a whole, contributes to the kinetic 

parameters of nicked DNA ligation by LIG3, the ZnF domain was removed using boundaries 

defined by the solution structure (Δ116 LIG3) (27). To investigate the contribution of the DLR 

located between the ZnF and DBD domains, a second truncation construct (Δ169) was generated 

based on the crystallization construct (Figure 3.2C) (3). The combination of point and truncation 

mutations enable a systematic mapping of the LIG3 N-terminus in respect to its kinetic 

contributions to single-strand break ligation. 

The four mutants (R31A, W50A, Δ116, and Δ169) were expressed and purified as 

previously described (1). Each of the proteins were chromatographically identical to FL LIG3β 
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during purification with the exception of the Δ116 and Δ169 LIG3 truncation constructs. The Δ116 

and Δ169 LIG3 mutants exhibited lower apparent molecular weights during gel filtration, and 

greater mobility when analyzed via SDS-PAGE than FL LIG3β. Each of the purified proteins were 

 

 

 

 
 

 

 

Figure 3.2. LIG3 mutagenesis. A, structural model of LIG3α ZnF•DNA interaction to 

illustrate location of mutagenized residues. The LIG3α ZnF domain shares high sequence and 

structural similarities with PARP ZnF1 domain. The LIG3 ZnF domain was superimposed onto 

PARP ZnF1•DNA cocrystal structure, followed by omission of PARP ZnF1 to reveal a 

plausible LIG3α ZnF•DNA complex (PDB IDs: 1UW0 (LIG3α ZnF) and 3OD8 (PARP 

ZnF1•DNA)). B, space-filling model of LIG3α ZnF domain to illustrate localization of 

proposed sites of mutagenesis. Images rendered in PyMol software. Residue selection was 

guided by extensive multiple sequence alignments of ZnF homologs distant ancestry (low 

sequence identity) (Figure B.1). C, gene schematics of the proteins expressed and purified for 

enzyme analysis. D, LIGβ isozymes were expressed and purified to greater than 95% purity as 

determined by SDS-PAGE analysis (1 µg of each protein loaded). Sigma wide range protein 

markers are indicated by M. 
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greater than 95% pure, as determined by SDS-PAGE analysis (Figure 3.2D). Active enzyme 

concentrations were determined and confirmed to be 100% adenylylated by burst analysis as 

previously described (data not shown) (1). All LIG3β mutants were stable in standard reaction 

conditions at 37 ֯C for at least 4 hours in the absence of DNA (Figure B.3). Based on these data, 

each of the LIG3β mutants were of sufficient quality and stability for kinetic analysis. 

 

Influence of the N-terminal region on ATP and Mg2+ concentration dependences.  

To gain a holistic understanding of how the LIG3 N-terminal region contributes to substrate 

and cofactor requirements, we investigated the ATP and Mg2+ concentration dependences for each 

of the LIG3β variants. Using a gel-based ligation assay (Figure B.4), ATP concentration 

dependences were determined using 5 nM enzyme, 400 nM DNA with saturating 20 mM MgCl2 

while varying ATP concentrations from 0-300 µM. Initial rates of product formation (Figure 3.3A) 

were plotted as a function of ATP concentration to determine kcat and KM,ATP values for each of 

the LIG3 variants (Figure 3.3B, Table 3.1). Each of the proteins had similar KM,ATP values with 

small deviations in kcat, suggesting the N-terminal region of LIG3 does not play a kinetically 

distinguishable role in enzyme adenylylation.  

Investigation of the Mg2+ concentration dependences of the LIG3 variants revealed an 

unexpected 4-fold increase in Mg2+ affinity for the truncated LIG3β constructs, and 2-fold increase 

for the N-terminal point mutants when compared to FL LIG3β (Figure 3.3D , Table 3.1) (1). These 

data indicate that alterations to the ZnF domain and its affinity toward DNA influence the 

enzyme’s Mg2+ affinity via some unknown mechanism. Importantly, these Mg2+ concentration 

dependences likely report on the dissociation constant (Kd) for Mg2+ (referred as KMg) since Mg2+ 

binding in the millimolar concentration range suggests fast dissociation rates. Rapid mixing 
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experiments using FL LIG3 confirmed the rapid dissociation of the metal cofactor, as EDTA 

effectively inactivates the enzyme on the millisecond timescale (1, 6). Together, these results 

indicate that the N-terminal region of LIG3 does not contribute to enzyme adenylylation, however, 

the ZnF domain contributes to the Mg2+ affinity of LIG3 by an unknown mechanism.  

 

 

Figure 3.3. ATP and magnesium concentration dependences of LIG3 N-terminal mutants. 
A, Representative initial rates from Δ169 LIG3β ATP concentration dependences. Initial rates 

were determined by linear regression of the first 15% of product formation. B, Michaelis-

Menten analysis of ATP concentration dependence on Δ169, Δ116, R31A and W50A LIG3β 

nicked DNA ligation. C, Mg2+ concentration dependences of the LIG3β ZnF mutants. D, 

comparison of KMg of the various LIG3β ZnF mutants. Full-length LIG3β (FL) data was 

previously reported (1). Representative time course is from a single experiment. Initial rates 

were determined by at least three independent experiments (mean, error bars represent one 

S.D.) 
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The N-terminal linker of LIG3 contributes to the efficiency of nicked DNA ligation.  

It is currently unknown how much the LIG3 N-terminal ZnF domain actually contributes 

to nicked DNA ligation. To better understand the extent by which the N-terminal ZnF domain and 

DLR contribute to the nicked DNA ligation efficiency of LIG3, DNA concentration dependences 

were determined for each of the LIG3 mutants. To accurately determine KM, DNA values, conditions 

of 300 mM ionic strength (adjusted using NaCl) were chosen to enable a quantitative comparison 

of the mutant and full-length LIG3β constructs (1). Interestingly, the R31A, W50A and Δ116 LIG3 

variants had similar KM, DNA values (Figure 3.4A, Table 3.1). The observed 3-fold increase in KM, 

DNA values among the LIG3 point and truncation mutants indicate the mutations made to the 

 

 

 

 

Figure 3.4. Catalytic efficiencies of LIG3β ZnF variants.  A, Initial rates of Δ169 (blue 

closed circles), Δ116 (red open squares), R31A (orange open diamonds), and W50A (black 

open circles) were plotted as a function of nicked DNA concentration and fit well to the 

Michaelis-Menten equation (equation 3.1). For comparison to FL LIG3β, the purple dashed 

line represents the Michaelis-Menten fit described previously under identical reaction 

conditions (1). B, comparison of LIG3β catalytic efficiencies (kcat/KM, DNA) on nicked DNA 

substrates. 
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putative DNA binding interface of the ZnF domain effectively eliminated the DNA binding energy 

contributed by the domain. Strikingly, removal of the DLR (and ZnF domain) resulted in an 

additional 3-fold increase in KM, DNA, when compared to the R31A and W50A mutants. Thus, the 

removal of the entire N-terminus of LIG3 (residues 1-169) resulted in a 7.3-fold increase in KM, 

DNA when compared to FL LIG3β (Table 3.1) (1). Interestingly, previous studies investigating the 

affinity of FL and Δ169 LIG3 proteins on nicked DNA substrates reported a 56-fold difference in 

DNA binding affinity (25). If this is indeed the case, then disruption of the LIG3 N-terminus has 

a much larger effect on Kd than KM. Comparison of the previously reported catalytic efficiencies 

of LIG1 with the Δ169 LIG3β construct reveal very similar intrinsic ligation efficiencies of the 

conserved ligase cores (1.5 × 106 M-1 s-1 and 1.0 × 106 M-1 s-1 for LIG1 and Δ169 LIG3β, 

respectively) (Chapter 2) (1). Experiments investigating the DNA binding affinity of the LIG3 N-

terminal variants would provide valuable mechanistic insight to how this region influences LIG3 

activity. Alterations to the N-terminus of LIG3 primarily influenced KM values, suggesting that 

the ZnF domain does not contribute to the rate-limiting step of steady-state nicked DNA ligation. 

These data indicate that the DLR, located between the ZnF and DBD domains, contributes to the 

catalytic efficiency of LIG3 by reducing KM, DNA. 
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Conclusions 

To investigate the contribution of the LIG3β N-terminal ZnF domain during nicked DNA 

ligation, we describe a complete multiple-turnover kinetic analysis of several LIG3 N-terminal 

mutants. Highly conserved residues localized to the DNA binding interface of the ZnF domain 

were identified by multiple sequence and structural alignments. Targeted mutagenesis of the 

conserved residues along with N-terminal truncations to the LIG3 polypeptide allowed a kinetic 

analysis investigating the individual contributions of the ZnF domain and DLR. In our hands, the 

N-terminus of LIG3 did not influence maximal rates of ligation, nor did it influence ATP 

requirements for ligation. Disruption of DNA binding or deletion of the ZnF domain, in its entirety, 

increased the Mg2+ binding affinity of LIG3. Likewise, alterations to the N-terminus of LIG3 

influenced KM values for the nicked DNA substrate. Removal of the N-terminal ZnF domain 

resulted a 3-fold reduction in nicked DNA ligation efficiency, a reduction similarly observed with 

the alanine point mutations made within the putative DNA binding interface of the ZnF domain. 

These findings indicate the R31A and W50A amino acid substitutions effectively disrupted DNA 

binding by the ZnF domain. Strikingly, removal of the DLR (and ZnF domain) reduced catalytic 

efficiency by an additional 3-fold. These data indicate the DLR contributes to steady-state ligation 

to a similar extent as the ZnF domain by contributing to DNA binding  (via an unknown 

mechanism). This kinetic analysis indicates that the N-terminal region, in its entirety, contributes 

to the efficiency of LIG3-catalyzed single-strand break ligation.  
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Materials and methods 

 

Mutagenesis, expression and purification of LIG3 variants.  

Full length LIG3α and LIG3β were cloned into a modified pET28 vector resulting in an N-

terminal His6-SUMO LIG3β fusion protein. Sanger sequencing was conducted to ensure the 

enzyme was mutation free. Conserved N-terminal ZnF residues were determined using NCBI blast 

with filters modified to enable acquisition of homologs with low sequence identity. Obtained 

sequences were compiled and subject to multiple sequence alignment using the Clustal Omega 

multiple sequence alignment tool (Figure B.1). Lys12, Lys19, Arg31 and Trp50 were targeted for 

mutagenesis. QuickChange primers were designed to change Lys and Arg residues to Ala, Met 

and Glu, and the Trp residue to Ala and Glu. QuickChange mutagenesis was performed using wild 

type FL LIG3α and LIG3β constructs described in Figure 3.2 using the primers described in Figure 

B.5. Sanger sequencing of the entire LIG3α and LIG3β open reading frames confirmed mutations. 

Open reading frame sequences were analyzed using DNASTAR Navigation software to confirm 

the absence of random mutations. LIG3β Ala mutants of Arg31 (R31A) and Trp50 (W50A) were 

chosen for enzymatic characterization. N-terminal LIG3α and LIG3β truncation mutants were 

designed using the ZnF domain structural boundaries determined by the solution structure of the 

ZnF domain, (residues 1-116) (27). The N-terminal boundary of the LIG3 DBD was determined 

by multiple sequence analysis, and confirmed by X-Ray crystallography (3, 5), resulting in the 

removal of residues 1-169. The only difference between Δ116 and Δ169 LIG3 constructs is the 

presence of a disordered linker region (DLR) 53 residues in length tethering the ZnF to the DBD  

domain of LIG3 (Figure B.2.). Truncated LIG3 DNA was amplified by PCR using the primers 

described in Figure B.5. The primers contained BamHI and SalI restriction sites enabling efficient 



   

 

70 

incorporation into the same modified pET28 vector used for FL LIG3 fusion proteins. R31A, 

W50A, Δ116 and Δ169 LIG3β were expressed and purified as previously described in Chapter 2 

(1).   

  

Oligonucleotide substrates used to monitor ligase activity.  

Oligonucleotides were obtained from Integrated DNA Technologies and further purified 

using 15% DNA denaturing PAGE as previously described (6). The nicked DNA substrate used 

throughout this study was generated by annealing three oligonucleotides together in which an 

upstream 13mer and 5’phosphorylated fluorescein (FAM) labeled 15mer DNA were both annealed 

to a complementary 28mer template, generating a 28bp duplex DNA substrate with a centrally 

located nick. The sequences of the 13, 15 and 28mers are: 5’ GTGCTGATGCGTC, 5’P-

GTCGGACTGATTCGG-FAM and 5’ CCGAATCAGTCCGACGACGCATCAGCAC, 

respectively, where P indicates 5’ phosphorylation and FAM indicates the presence of a 3’ 

fluorescein. The three oligonucleotides were annealed at equimolar equivalents in 10 mM NaMES, 

pH 6.5, 50 mM NaCl by cooling the solution from 95 ֯C to 4 ֯C at a rate of 12 ֯C min-1.  

  

Discontinuous gel-based ligation assay.  

All reactions were performed at 37 ֯C in standard reaction buffer containing 50 mM 

NaMOPS, pH 7.5, 10% glycerol, 1 mM DTT, and 0.1 mg mL-1 BSA (MP Biomedicals) with ionic 

strength maintained at 150 mM unless otherwise stated. DNA, ATP, MgCl2 and NaCl 

concentrations were adjusted on an experimental basis depending on the variable in question. 

Ligation reactions were stopped at predetermined times by transferring reaction solution into 1.5X 

quench solution (90% formamide, 50 mM EDTA, 0.006% bromophenol blue, 0.006%xylene 
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cyanol). Quenched samples were incubated at 95 ֯C for 3 minutes before snap cooling in ice water 

prior to loading onto a 15% polyacrylamide, 8 M urea, 1X TBE DNA-denaturing gel. Gels were 

scanned using a typhoon 5 imaging system (GE Healthcare) set to monitor emission at 525 (BP20) 

with excitation set to 488 nm (Figure B.3). Separated DNA species were quantified using 

ImageQuant TL (GE Healthcare) and plotted using GraphPad Prism.  

  

Multiple-turnover ligation.  

Reactions contained substrate in excess of enzyme concentration under all tested 

conditions. Reactions were 30 µL in volume; from which 3 µL was transferred to quench solution 

at predetermined times. Quenched samples were analyzed using the gel-based assay described 

above to determine initial rates. Initial rates were determined by linear regression of the first 10% 

of product formation, and then plotted as a function of the variable in question. Data presented 

within this study represent the average of at least 3 individual experiments unless otherwise stated 

within the figure legend. Active concentrations and adenylylation states of LIG3β mutants (R31A, 

W50A, Δ116, Δ169) were determined by burst analysis as previously described (1). ATP 

concentration dependences of the LIG3 variants were performed in standard reaction buffer 

containing 20 mM MgCl2, with ionic strength at 150 mM using NaCl. Ionic strengths were 

calculated using the Debye-Hückel theory of electrolytes. Reactions contained 5 nM enzyme with 

400 nM DNA substrate and ATP concentrations were varied from 0-300 µM. Initial rates at each 

ATP concentration were plotted as a function of ATP concentration. The data fit well to a 

Michaelis-Menten equation (equation 3.1). MgCl2 concentration dependences (0-33 mM) were 

conducted in the presence of 5 nM enzyme, 400 nM DNA and saturating ATP (1 mM). Ionic 

strength was maintained at 150 mM using NaCl. Initial rates were plotted as a function of free 
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Mg2+ concentration and fit well to a hyperbolic curve (equation 3.2). Free Mg2+ was calculated 

based on the ATP•Mg2+ and ATP•2Mg2+ Kd values of 12 µM and 17 mM, respectively (1, 28). 

DNA concentration dependences were measured at 300 mM ionic strength with 5 nM enzyme, 1 

mM ATP and 20 mM MgCl2. Nicked DNA concentrations ranged from 0.025 – 1.5 µM. Initial 

rates plotted as a function of nicked DNA concentration fit well to the Michaelis-Menten equation 

(equation 3.1). Errors of calculated catalytic efficiencies were determined by propagation of error. 

 

 

𝑉𝑜

[𝐸]
=  

𝑘𝑐𝑎𝑡×[𝑆]

(𝐾𝑀+[𝑆])
       (Eq. 3.1) 

 

𝑉𝑖𝑛𝑖𝑡

[𝐸]
=  

𝑘𝑐𝑎𝑡 × [𝑀𝑔2+]

(𝐾𝑀𝑔 + [𝑀𝑔2+])
       (Eq. 3.2) 
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Figure B.3. LIG3 mutants are stable under standard reaction conditions. A, stability of 

LIG3 variants as a function of preincubation time. B, Experimental work flow to investigate 

the stability of LIG3 variants. Briefly, 5 nM enzyme was incubated at 37 ֯C in the absence of 

DNA substrate in standard reaction buffer containing 1 mM ATP and 20 mM MgCl2 150 mM 

ionic strength. Activities were determined by the addition of nicked DNA to determine initial 

rates of reaction as a function of preincubation time. Ligation rates remained unchanged as a 

function of preincubation time. This experiments was not performed in duplicate.  
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Figure B.4. Gel based ligation assay used for the characterization of LIG3 N-terminal 

mutants. A synthetic 28 base paired duplex DNA was generated by annealing three 

complementary oligonucleotides. The synthetic DNA substrate contained an unlabeled 

upstream 13-mer oligonucleotide containing a 3’-hydroxyl, and a downstream 5’-

phosphorylated, 3’-fluorescein (FAM) labeled 15-mer oligonucleotide. Both upstream and 

downstream oligonucleotides were annealed to an unlabeled 28-mer template DNA strand as 

described (Methods). The fluorescent 28-mer DNA substrate was reacted with LIG3 under 

various assay conditions. Reactions were stopped with quenching solution (Methods) and 

analyzed via DNA denaturing PAGE (Right). 3’-FAM labeled substrate enabled the detection 

of product species. Fluorescent bands were quantified and fraction products were determined.  
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Name Sequence 5'  3’ Tm ֯C 

Lig3K12AFP GTGGACTATGCCGCGCGTGGCACAGCTG 78.1 

Lig3K12ARP CAGCTGTGCCACGCGCGGCATAGTCCAC 78.1 

Lig3K12MFP GTGTGGACTATGCCATGCGTGGCACAGC 78.7 

Lig3K12MRP GCTGTGCCACGCATGGCATAGTCCACAC 78.7 

Lig3K12EFP GTGGACTATGCCGAGCGTGGCACAGC 78.5 

Lig3K12ERP GCTGTGCCACGCTCGGCATAGTCCAC 78.5 

Lig3K19AFP GTGGCACAGCTGGCTGCGCAAAATGCAAGGAAAAG 78.8 

Lig3K19ARP CTTTTCCTTGCATTTTCGGCAGCCAGCTGTGCCAC 78.8 

Lig3K19MFP CGTGGCACAGCTGGCTGCATGAAATGCAAGGAAAAG 78.8 

Lig3K19MRP CTTTTCCTTGCATTTCATGCAGCCAGCTGTGCCACG 78.8 

Lig3K19EFP GGCACAGCTGGCTGCGAAAAATGCAAGGAAAAG 79.1 

Lig3K19ERP CTTTTCCTTGCATTTTTCGCAGCCAGCTGTGCC 79.1 

Lig3R31AFP GTGAAGGGCGTATGCGCAATTGGCAAAGTGGTGC 78.7 

Lig3R31ARP GCACCACTTTGCCAATTGCGCATACGCCCTTCAC 78.7 

Lig3R31MFP GATTGTGAAGGGCGTATGCATGATTGGCAAAGTGGTGCCC 78.7 

Lig3R31MRP GGGCACCACTTTGCCAATCATGCATACGCCCTTCACAATC 78.7 

Lig3R31EFP GTGAAGGGCGTATGCGAAATTGGCAAAGTGGTGCC 78.8 

Lig3R31ERP GGCACCACTTTGCCAATTTCGCATACGCCCTTCAC 78.8 

Lig3W50AFP CTGGGGGTGATATGAAAGAGGCGTACCACATTAAATGCATG 79.2 

Lig3W50ARP CATGCATTTAATGTGGTACGCCTCTTTCATATCACCCCCAG 79.2 

Lig3W50EFP CTGGGGGTGATATGAAAGAGGAGTACCACATTAAATGCATG 78.2 

Lig3W50ERP CATGCATTTAATGTGGTACTCCTCTTTCATATCACCCCCAG 78.2 

   

   

FORWARD PRIMERS BAMHI + SEQUENCE Tm ֯C 

LIG3_BAMHI_Δ116 CCACGGATCCACTGGCCAGGTGACTTCTCC 59 

LIG3_BAMHI_ Δ169 CCACGGATCCCATAAGGACTGTCTGCTACGGGAGTTTCG 63 

   

REVERSE PRIMERS SALI + SEQUENCE 
 

LIG3Α_SALI GCAGGTCGACTTAGCAGGGAGCTACCAG 58 

LIG3Β_SALI GCAGGTCGACTATCTCCTGCCTGCTGGC 62 

 

 

Figure B.5. Primers used for mutagenesis of LIG3α and LIG3β. “RP” refers to reverse 

primer. “FP” refers to forward primer. BAMHI  and SALI refer to restriction endonuclease sites 

required for sub-cloning the truncation constructs into the destination vector. The lysine and 

arginine residues were each mutagenized to alanine, methionine and glutamate whereas the 

tryptophan residue was mutagenized to alanine and glutamate in both LIG3α and LIG3β. The 

creation of the various ZnF point mutants enabled alanine screening, the utilization of residues 

occupying a similar volume (lysine and arginine vs methionine), or oppositely charged residues 

to disrupt the ZnF•DNA interactions without perturbing the tertiary ZnF domain structure, or 

Zn2+ coordination. LIG3α proteins were not expressed or purified, for the analysis of 

LIG3α•XRCC1 complex and the role of the N-terminal plays in this complex will be the subject 

of future study. 
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Chapter 4  
 

 

Comparative end-joining by human DNA ligases I and III4 

 

 

Introduction 

 

The human genome is continuously assaulted by endogenous and exogenous sources of 

DNA damage. DNA replication, repair, and recombination pathways work together to maintain 

and safeguard the stability of the genome from these insults. Human DNA ligases I (LIG1), III 

(LIG3) and IV (LIG4) catalyze the ultimate step in the aforementioned pathways by rejoining 

DNA molecules to restore continuous genomic DNA strands. DNA ligases employ a three-step 

chemical mechanism that is amendable to joining single- or double-strand DNA breaks (SSBs and 

DSBs, respectively). During a single round of catalysis, ligases catalyze self-adenylylation with 

ATP to form a high-energy intermediate. This activated enzyme intermediate binds to a 5’-

phosphorylated SSB or DSB DNA and transfers AMP from the active site lysine to the 5’-

phosphate to form an adenylylated DNA intermediate (Figure 4.1A). During SSB ligation, the 3’-

hydroxyl adjacent to the adenylylated 5’-phoshate is appropriately positioned for efficient sealing 

 
4Amanda Ames helped with trouble shooting and establishment of the double-strand DNA 

break repair assay described within this chapter. Jeremy Day-Storms performed initial 

experiments identifying the ability of LIG1 to catalyze EJ. Thomas Jurkiw gifted purified Δ232 

LIG1 and APTX to this study. I performed the study and wrote the chapter.  
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of the phosphodiester DNA backbone, completing the final chemical step of ligation with the 

release of AMP and the repaired DNA molecule. The ligation activities of LIG1 and LIG3 have 

already been reported for the repair of SSBs (1-5). In the case of DSBs that lack cohesive ends, 

there is an additional challenge to orienting two DNA molecules to catalyze the formation of the 

phosphodiester bond without the aid of a bridging DNA strand (Figure 4.1A). Many studies have 

reported on the EJ activity of human LIG3 (3, 4, 6-10), but we are not aware of any previous efforts 

to investigate potential EJ by human LIG1. 

 LIG1 and LIG3 possess a structurally conserved three-domain architecture of 22% 

sequence identity that completely encircles a SSB (3, 5, 11). These proteins differ structurally in 

their N- and C-termini, suggesting these regions flanking the conserved three-domain ligase core 

direct biological activities. LIG3 contains an N-terminal zinc finger (ZnF) domain homologous to 

those of poly (ADP-ribose) polymerase 1 (PARP-1) tethered to the DNA-binding domain via a 

~50 residue linker region (Figure 4.1B) (12, 13). This N-terminal region of LIG3 has been 

described as dynamic and proposed to serve as a nick sensor for SSB ligation, contain non-specific 

DNA binding properties, and play an essential role in LIG3 catalyzed EJ (3, 4, 6, 8, 12-15). In 

contrast, the N-terminal region of LIG1 (~260 residues) does not contribute to the kinetic 

parameters of the enzyme (1). In the cell, this region is important for targeting LIG1 to the nucleus 

as well as facilitating protein-protein interactions in a post-translational modification dependent 

manner (5, 16). The differences in the N-termini of LIG1 and LIG3 have fueled the consensus that 

LIG1 is incapable of performing EJ reactions due to the lack of an additional DNA interacting 

domain outside of its three-domain architecture.  
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The extent to which LIG1 performs EJ reactions is unknown. Recently, two independent 

genetic studies using cultured mouse B-cells indicated that EJ can occur during class switch 

recombination (CSR) in the absence of LIG3 and LIG4 (17, 18). These data implicate LIG1 as the 

 

 

 

Figure 4.1. Human LIG1 and LIG3 share structural and mechanistic characteristics. A, 

chemical mechanism of blunt end ligation by ATP-dependent DNA ligases. The end-joining 

reaction produces a nicked DNA product (single ligation product) that must undergo a second 

round of catalysis to join the opposite side of the DNA molecule. B, simplistic schematic of 

LIG1 and LIG3 domains and their corresponding boundaries (numbers). B, LIG1 and LIG3β 

possess conserved DNA binding (DBD, green), nucleotidyltransferase (NTase, blue), and 

oligonucleotide-binding (OB-fold, red) domains. LIG3 has an additional DNA binding N-

terminal zinc finger domain (ZnF, yellow). 
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source of the EJ activity, but there is no mechanistic information regarding how LIG1-mediated 

EJ may occur. Roughly three decades prior to these studies, two research groups reported that rat 

and calf thymus LIG1 are capable of catalyzing EJ in vitro (19, 20). Together, these studies suggest 

that LIG1 could participate in an undefined EJ pathway that overlaps with the EJ activities of LIG3 

and LIG4.  

 We took a systematic biochemical approach to characterize the EJ activities of LIG1 and 

LIG3 on DNA ends of varying structure. We demonstrate that LIG1 is capable of performing EJ, 

highlighting the differences in end-joining efficiencies and substrate specificities of LIG1 and 

LIG3. Most notably, LIG3 efficiently joined all tested DSB substrates, whereas LIG1 shows a 

preference for 3'-overhangs over 5'-overhangs and blunt ends. To simulate the crowded conditions 

within the cell, we employed polyethylene glycol as an inert molecular crowding agent. Molecular 

crowding increased the catalytic efficiency of LIG1 by up to 100-fold, while also stabilizing the 

LIG3•substrate complex, enabling a transient kinetic characterization of EJ. Remarkably, we found 

that a single molecule of LIG3 was capable of performing the sequential ligation events required 

to completely repair double-strand DNA breaks in a single DNA binding encounter. This work 

highlights the similarities and differences of LIG1 and LIG3 mediated EJ and documents, for the 

first time, their catalytic efficiencies for in vitro EJ. 

 

Results and Discussion 

 Previous structural and biochemical studies of single-strand break repair by LIG3 and LIG1 

demonstrate many conserved mechanistic features (1-3, 5). Although numerous studies have 

qualitatively investigated the ability of LIG3 to catalyze end-joining in vitro (3, 4, 6-10), the 

specificity and mechanism by which LIG3 recognizes and ligates DNA ends remains in question. 
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Furthermore, there has been a strong dogma that LIG1 does not perform EJ, and that this 

characteristic sets it apart from LIG3 and LIG4 (16, 21, 22). EJ reactions can be complex if there 

are multiple ligatable ends, and therefore we developed a simplified assay with defined compatible 

ends to systematically characterize the activity and specificity of human DNA LIG1 and LIG3. 

 

EJ assay development.  

We designed synthetic DNA hairpin substrates containing GNA trinucleotide loop 

structures that are closed by 14-16 base-pairs of duplex DNA (Figure 4.2A). The resulting hairpin 

substrates were A•T rich to achieve melting temperatures between 61-64 ֯C. Hairpin lengths were 

optimized for the detection of abortive, single, and double ligation products via denaturing PAGE 

(Figure 4.2B). A 14-bp duplex DNA hairpin was found to be sufficient in length because blunt-

end substrates of 14 and 18 bp showed similar rates of ligation by LIG1 and LIG3 (Figure C.2). 

These data are in agreement with a footprint of roughly 8 base pairs upstream and downstream of 

a SSB that can be inferred from crystal structures of LIG1 and LIG3 (3, 5). Hairpin substrates were 

designed with blunt ends or with either 3' or 5' overhangs with 3 nucleotides of complementarity 

(Figure 4.2A). The blunt-end substrate contained a terminal G•C base-pair, whereas the 3’- and 

5’- 3 nucleotide overhang (henceforth referred to as 3’- or 5’-DSB) substrates contained A•T and 

G•C terminal base-pairs in the 16- and 14-bp duplex DNA hairpins, respectively. With the 

exception of the terminal base pair, all hairpin sequences were identical. Abortive, single, and 

double ligation products were verified by enzymatic digestion of the ligation products (Figure C.3) 

and by observing the banding patterns associated with the formation and decay of the single 

ligation product as a function of time (Figure C.4).  
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Catalytic efficiencies of LIG1- and LIG3-catalyzed end-joining.  

To determine the catalytic efficiencies (kcat/KM, DNA) of LIG1 and LIG3 EJ, DNA substrate 

concentration dependences were measured in the presence of saturating (18 mM free) and 

physiological (1 mM free) Mg2+ on blunt-end and cohesive-end substrates. Initial rates of LIG1 EJ 

 

 

 

 

Figure 4.2. End-joining efficiencies of DNA LIG1 and LIG3β. A, schematic of hairpin 

substrates used to investigate end-joining of LIG1 and LIG3β. Oligonucleotides contain a 

centrally localized GTA tri-loop sequence containing dT-fluorescein (FAM). B. Representative 

DNA denaturing gel illustrating the banding pattern of substrates, adenylylated (Ap-) 

intermediates, single and double ligation products. C, end-joining efficiencies of LIG1 (red 

circles) and LIG3β (blue diamonds) determined under saturating Mg2+ concentrations (18 mM 

free Mg2+). D, end-joining efficiencies of LIG1 and LIG3β determined under physiological 

Mg2+ conditions (1 mM free Mg2+). E, relative catalytic efficiencies of LIG1 and LIG3β 

presented in A and B are represented as LIG3β/LIG1. F, Mg2+ concentration dependences for 

LIG1 and LIG3 catalyzed blunt-end DNA ligation. Catalytic efficiencies and Vo/[E] values 

were determined in at least triplicate (mean ± S.D.). 
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were linearly dependent on substrate concentration (Figure C.5), indicating that the tested substrate 

concentrations were below the KM, DNA value. Strikingly, in the presence of saturating Mg2+, LIG1 

and LIG3 had remarkably similar kcat/KM values for the blunt-end and 3’-DSB substrates. The 

efficiency of LIG1-catalyzed EJ of 5’-DSB was 10-fold lower than that of LIG3 (Figures 4.2C and 

4.2E). The kcat/KM, DNA values determined for LIG1 and LIG3 EJ were achieved via different 

mechanisms: LIG1 efficiency was influenced by greater kcat values than LIG3, whereas LIG3 had 

lower KM values than LIG1 under the saturating Mg2+ condition (Figures C.5 and C.6). It is notable 

that the catalytic efficiencies of LIG1 EJ were reduced by 1.5-2 orders of magnitude for all 

substrates at upon reduction of Mg2+ to physiological concentrations. This large effect caused by 

the reduction of Mg2+ is particularly remarkable, because LIG1 had a 10-fold lower KMg value than 

LIG3 for SSB ligation (2). Equally surprising, LIG3 specificity remained unchanged for the blunt-

end and 3’-DSB substrates at physiological Mg2+ concentration (Figure 4.2D). Under the reduced 

Mg2+ condition, LIG3 had a maximal turnover number (kcat) of  ~0.008 s-1 with the 3’- and 5’-DSB 

substrates (Figure C.6). This observation indicates that the steady-state rate of cohesive end 

ligation is limited by the Mg2+ cofactor availability at physiological levels, and this rate can be 

significantly increased by increasing the Mg2+ concentration. The kcat/KM values for LIG3 EJ of 

5’- and 3’-DSB substrates were determined by Michaelis-Menten analysis and direct competition 

reactions, respectively, as the KM, DNA values were too low for accurate determination (Figures 

C.6). The striking differences in the catalytic efficiencies of LIG1- and LIG3-catalyzed EJ in the 

presence of physiological and saturating Mg2+ can be explained by large differences in their Mg2+ 

concentration dependences for EJ (Figure 4.2F). The hyperbolic and sigmoidal Mg2+ dependences 

of LIG3 and LIG1, respectively, highlight why LIG3 had 100-10,000-fold greater catalytic 

efficiencies than LIG1 at physiological Mg2+ concentrations. (Figure 4.2E and 4.2F). The reduced 



   

 

89 

specificity of LIG1 toward 5’-DSB may be due to the lack of available electrostatic interactions 

with the DNA backbone opposite the 5’-phosphorylated DNA strand, destabilizing the 

enzyme•substrate complex. These data indicate LIG1 and LIG3 are both capable of performing EJ 

reactions; however, the catalytic efficiencies of LIG1 EJ were highly sensitive to Mg2+ 

concentrations. 

 

Abortive ligation by LIG1.  

Previous studies indicated that LIG1 activity on SSBs is susceptible to accumulating 

abortive ligation products at low levels of Mg2+ (1, 2). Interestingly, LIG1 accumulated aborted 

EJ products with each DSB substrate at physiological Mg2+ (Figure C.7). LIG1 aborted the 5’-

DSB cohesive end substrates to a greater extent than the 3’-DSB and blunt-end substrates, 

indicating that LIG1 possesses structural preferences for EJ substrates (Figures 4.3 and C.7). These 

observations indicate LIG1 can readily adenylylate DNA ends, allowing the accumulation of the 

toxic 5’-DNA-adduct. LIG1 abortive products were generated almost exclusively on A•T terminal 

base paired cohesive ended substrates (Figure C.7), suggesting the reduced stability of the terminal 

A•T base pair sufficiently destabilized the enzyme•Ap-DNA complex, thereby preventing the 

formation of a productive EJ complex (Figures 4.3A and 4.3B). The propensity of LIG1 to 

accumulate abortive intermediates was not dependent on substrate concentration; roughly 70% of 

all adenylyl transfer events failed to form productive end-joining complexes with the 3’-DSB 

substrate (Figure 4.3C). Likewise, the blunt-end and 5’-DSB substrates were aborted 75% and 

90%, respectively, relative to successful end-joining events (Figure C.7). In contrast, LIG3 did not 

accumulate appreciable abortive products for any of the DSB substrates at either physiological or 
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saturating Mg2+ concentrations (Figure 4.3A). As observed with SSB ligation, abortive ligation by 

LIG1 was completely alleviated at saturating Mg2+ concentrations. 

 

 

Figure 4.3. Abortive ligation by LIG1 is dependent on DNA sequence. A, DNA denaturing 

PAGE gel comparing LIG1 and LIG3β ligation of the 3’-3 nt overhang substrate under 

physiological Mg2+ in standard reaction buffer. LIG1 accumulates adenylylated terminal A•T 

base pairs to a greater extent than terminal G•C base pairs. Abortive ligation products generated 

by LIG3β are below the limit of detection (N.D.). B, comparison of fraction abortive EJ 

products and successful EJ products generated by LIG1. Partitioning between successful 

ligation and abortive ligation is independent of substrate concentration. Data averaged in B was 

acquired from reactions containing 50, 100 and 200 nM 3’-3nt DNA. Time points were taken 

at 360, 720, 1500 and 3000 seconds. C, Accumulation of adenylylated 3’-3nt  DNA by LIG1. 

Greater than 70% of all adenylyl transfer events by LIG1 result in aborted ligation products 

(Figure C.8). Presented in (B) is the average of 9 independent experiments with error bars 

representing one standard deviation from the mean. 
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Influence of molecular crowding on EJ.  

We next considered the impact that the crowded cellular environment would have on DNA 

EJ. Macromolecules occupy 20-30% of the intracellular volume and the sum of protein and 

oligonucleotide concentrations is ~300 mg/mL (23). Molecular crowding agents increase the 

effective viscosity of a solution thereby reducing translational diffusion, aiding in substrate capture 

and stabilization of the enzyme•substrate complex (24). To mimic the crowded environment of the 

cell, we employed the inert molecular crowding agent polyethylene glycol 6000 (PEG). Molecular 

crowding agents like PEG have been previously shown to increase ligase EJ activities (7, 20, 25, 

26). To test the effect of molecular crowding on LIG1 mediated EJ, we determined that 10% PEG 

was suitable for EJ analysis by LIG1 and LIG3. PEG concentrations greater than 10% resulted in 

LIG3 inhibition, while LIG1 activity was equally stimulated within the 10% to 15% range (Figure 

4.4A). Under physiological Mg2+ conditions, we found that the kcat/KM values of LIG1 EJ 

increased by 10- and 30-fold for the 3’-DSB and blunt-end substrates, respectively. Surprisingly, 

the catalytic efficiency of LIG1-catalyzed 5’-DSB EJ increased by two orders of magnitude in the 

presence of PEG (Figure 4.4B). The 10% PEG also reduced the accumulation of abortive ligation 

products by 20–30% (Figure C.7). Together, our studies indicate molecular crowding enhances the 

catalytic efficiency LIG1 EJ, suggesting that LIG1 is capable of catalyzing EJ reactions within the 

context of the crowded cellular environment. These findings corroborate prior observations that 

LIG1 is prone to abortive ligation, and may require the activity of aprataxin, an RNA/DNA 

polynucleotide deadenylase that can restore the 5' phosphate by hydrolyzing the 5’-5’ AMP-DNA 

intermediate (27).  
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Figure 4.4. Molecular crowding enhances LIG1 end-joining activity. A, comparison of 

LIG1 and LIG3 ligation rates at various polyethylene glycol 6000 (PEG) concentrations in the 

presence of physiological Mg2+. PEG concentrations in excess of 10% (w/v) reduced LIG3 

blunt-end ligation rates. LIG1 maximal ligation rates were observed in the presence of 10 and 

15% PEG. B, end-joining efficiencies of LIG1 in the presence (black circles) and absence (red 

circles) of 10% PEG and physiological Mg+2 as described in the methods. C, relative catalytic 

efficiencies of LIG1 in the presence and absence of PEG. Influence of PEG on end-joining rates 

and catalytic efficiencies were determined in at least triplicate (mean ± S.D.). 
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Pre-steady-state analysis of LIG3-catalyzed EJ.  

Interestingly, molecular crowding agents enabled the pre-steady-state analysis of 

sequential ligation events by stabilizing LIG3 complexes and reducing the rate of product release. 

Under these conditions, LIG3 exhibited a pre-steady-state burst, followed by a slow steady-state 

ligation (Figure 4.5A). The kcat values for blunt-end, 3’- and 5’-DSB ligation by LIG3 are within 

2-fold as determined by analysis of the steady-state rates (Figure 4.5A, Table 4.1). To determine 

the observed rate constants of sequential ligation events by LIG3, optimized time courses enabled 

the detection of the first and second ligation products (Figure 4.5B). Pre-steady-state experiments 

were designed such that substrate concentration (40 nM) was in 2-fold excess of LIG3 (20 nM) to 

prevent competitive inhibition by LIG3 end-binding. Observed rate constants were determined by 

fitting the data to a two-step irreversible model using the kinetics simulation software Berkeley 

Madonna. The blunt-end and 5’-DSB substrates had similar observed rate constants for the first 

ligation event. The observed rate constants we report encapsulate multiple steps of the ligation 

mechanism. Following the first ligation event, LIG3 undergoes conformational changes to release 

AMP and sample adjacent sites on the DNA. During this time, LIG3 undergoes self-adenylylation 

while associated with DNA and is able to reposition, capture, and repair the nick on the opposing 

DNA strand (Figure 4.5D). This model, were it to operate in a cell, ensures faithful ligation of 

DSB with compatible ends. We note that many physiological breaks will only contain a single 

ligatable strand and additional processing steps would be required to generate the substrate for the 

second DNA ligation event. 
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Figure 4.5. Molecular crowding enables the detection of sequential ligation events by 

LIG3β. A, burst analysis of 1 and 2 nM LIG3 in the presence of 20 and 40 nM EJ substrates, 

respectively. B, representative gel illustrating the formation and decay of the single ligation 

product (labeled 2) followed by the formation of the double ligation product (labeled 1) during 

blunt-end ligation at physiological Mg2+. 3 and 4 indicate adenylylated substrate and substrate, 

respectively. C, pre-steady-state quantification of single (green) and double (red) blunt-end 

ligation products. Sum of both products presented in blue. D, simplified mechanism of 

sequential ligation events by LIG3β. Domains are color coded as follows: ZnF, yellow; DBD, 

green; NTase, blue; OB-fold, red. Experiments in B and C were performed in triplicate and are 

presented as mean ± S.D.. 
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Conclusions 

In response to the recent observations of LIG1 mediated EJ in mouse B-cells (17, 18), we 

pursued the first biochemical analysis of human DNA LIG1 catalyzed end-joining. We 

demonstrate that LIG1 and LIG3 are capable of joining various DNA ends. In the presence of 

artificially high Mg2+ cofactor concentrations, LIG1 EJ activity is similar to that of LIG3. Upon 

reduction of cofactor concentration to physiological levels, the catalytic efficiency of LIG1 EJ was 

reduced by 2-4 orders of magnitude, while LIG3 catalyzed EJ remained relatively unchanged. 

Strikingly, the catalytic efficiency of LIG1 EJ was partially restored in the presence of PEG, a 

molecular crowding agent, raising the possibility that LIG1 participates in EJ within the crowded 

environment of a cell. Notably, LIG1’s weak affinity for DSB substrates resulted in a substantial 

accumulation of abortive EJ products at physiological Mg2+. LIG1 abortive ligation was slightly 

reduced by the addition of PEG, and completely abolished in the presence high of Mg2+ 

 

Table 4.1 

Rate constants for sequential ligation by LIG3βa 

 

kobs (s-1) Blunt end 3’-3nt 5’-3nt 

First ligation 0.054 ± 0.004 0.027 ± 0.008 0.043 ± 0.005 

Second ligation 0.082 ± 0.005 0.038 ± 0.004 0.040 ± 0.002 

    

Steady-stateb 0.00097 ± 0.00020  0.0021 ± 0.0002 0.0018 ± 0.0002 
 

aObserved single-turnover rate constants obtained at physiological Mg2+ in the presence of 10% 

PEG (Figure 4.5C). Reactions contained 20 nM LIG3β and 40 nM substrate. Reactions were 

performed at 1 mM free Mg2+.  
bValues represent kcat determined using 1 and 2 nM enzyme in the presence of 20 and 40 nM 

EJ substrates, respectively. Reactions were performed at 1 mM free Mg2+ in the presence of 

10% PEG. Observed velocities were divided by the concentration of enzyme to yield kcat 

(Figure 4.5B). 
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concentrations. Under all conditions tested, LIG3 shows higher affinity for DSBs, and no 

propensity to accumulate abortive EJ products. Furthermore, this greater affinity enabled the first 

transient kinetic analysis of LIG3 catalyzed DSB ligation. Our kinetic analysis of LIG1- and LIG3-

catalyzed EJ sheds light on the similarities, differences and erroneous behaviors of the human 

DNA ligases, facilitating future investigations of these activities. 

 

 

Experimental Procedures 

 

Recombinant LIG1 and LIG3β.  

Human DNA LIG1 N-terminal truncation mutant Δ232 was cloned into a pET19 vector 

containing an N-terminal His6-PreScission protease cleavable tag and expressed in Rosetta2 (DE3) 

E. coli by auto induction in terrific followed by a three-step purification as described previously 

(28). Nuclear LIG3β was cloned into a pET28 vector containing an N-terminal His6-SUMO 

protease cleavable tag and expressed in C41 pRare3 (DE3) cells by IPTG induction in Luria broth 

followed by the four step purification as previously described (2).  

 

DNA substrates. 

 Oligonucleotides were purchased from KECK oligonucleotide Synthesis facilities and 

Integrated DNA Technologies. All oligonucleotides were further purified by 15% polyacrylamide, 

8 M urea denaturing PAGE as previously described (1). SSB (nicked DNA) substrate was 

described previously (1, 2). End-joining DNA substrate concentrations were determined by 

absorbance of the internal dT-fluorescein fluorophore at 495 nm. DNA concentrations described 
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in assays refers to the amount of product capable of forming (e.g., 100 nM blunt-end substrate 

contains 200 nM of ligatable hairpin ends). The 14 bp blunt-end substrate sequence: 

pCATAGAATATTTACGFAGTAAATATTCTATG. The 3’-DSB overhang substrate consisted 

of two DNA hairpins of differing length (14 and 16 bp) containing complementary overhangs. The 

14 bp hairpin (34 nt in length) sequence : 

pCATAGAATACTTACGFAGTAAGTATTCTATGCAT. And the 16 bp hairpin (38 nt in length) 

sequence: pAGAATACTTATTAATCGFAGATTAATAAGTATTCTATG. The 5’-DSB 14 bp 

hairpin contained the sequence: pTACCATAGAATACTTACGFAGTAAGTATTCTATG and 

the 16 bp: pGTAAGAATACTTATTAATCGFAGATTAATAAGTATTCT. The 10bp duplex 

hairpin and 18 bp duplex hairpins used to investigate substrate length dependences are 

pGAATATTTACGFAGTAAATATTC and 

pCATAGAATATTTATTAACGFAGTTAATAAATATTCTATG, respectively. Each of the 

above oligonucleotides were 5’-phosphorylated (p), and contained an internal dT-fluorescein (F). 

Hairpins were annealed as previously described (2). Digestion of oligonucleotide species observed 

via DNA denaturing PAGE was performed as described in Figure C.3.  

 

Gel-based end-joining assay.  

Ligation reactions were performed at 37  ֯C in standard reaction buffer (50 mM NaMOPS, 

pH 7.5, 10% glycerol, 1 mM ATP, 1 mM DTT, 100 µg/µL BSA) at 150 mM ionic strength, unless 

otherwise stated. Ionic strength was controlled using the Debye-Hückel theory of electrolytes. 

Mg(OAc)2 and NaOAc concentrations were adjusted to achieve the desired reaction conditions. 

Reactions were stopped by the addition of reaction solutions into 1.2X quench solution (90% 

formamide, 50 mM EDTA, 0.006% bromophenol blue 0.006% xylene cyanol) at predetermined 
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times. Quenched samples were loaded directly onto a running 15% (w/v) polyacrylamide, 8 M 

urea, 1 × TBE DNA-denaturing gel. Gels were scanned using a typhoon 5 imaging system (GE) 

set to monitor emission at 525 (BP20) with excitation set to 488 nm. Separated DNA species were 

quantified using ImageQuant TL (GE) and plotted as a function of time using GraphPad Prism. 

 

Effects of chloride on catalytic efficiency.  

Multiple-turnover reactions were performed in standard reaction buffer with ionic strength 

maintained at 300 mM. All reactions contained 20 mM Mg(OAc)2 while altering the Cl- 

concentration by varying the ratios of NaCl to NaOAc. Cl- concentrations ranged from 0 – 205 

mM. Nicked DNA concentration dependences were performed to determine catalytic efficiencies 

(kcat/KM, DNA) under varying Cl- concentrations. Reactions contained 0.5 nM enzyme while 

substrate ranged from 5 - 1,500 nM. Two methods were utilized to determine catalytic efficiency 

of LIG1 and LIG3. Linear regression of  initial rates (Vo/[E] (s-1)) at 5, 10, 20 and 40 nM DNA 

(LIG1) (Figure C.1B), and Michaelis-Menten analysis of rates (LIG3) (Equation 4.1, Figure C.1C). 

The catalytic efficiencies of LIG1 and LIG3β were plotted as a function of Cl- concentration and 

fit well to a four parameter dose response curve (Figure C.1). 

 

𝑽𝒐

[𝑬]
=  

𝒌𝒄𝒂𝒕×[𝑺]

(𝑲𝑴+[𝑺])
       (Eq. 4.1) 
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Multiple-turnover kinetics of end-joining.  

EJ efficiencies were determined using the discontinuous gel-based assay. reactions were 

performed in standard reaction buffer at 150 mM ionic strength at 37 ֯C. Initial rates of steady-state 

reactions were determined by linear regression of the first 10 % of product formation (product is 

the sum of singly and doubly ligated products). LIG1 EJ efficiencies were determined by reacting 

5 nM enzyme with 25, 50, 100 and 200 nM DNA substrate at 2 and 20 mM Mg(OAc)2. Free Mg2+ 

concentrations of 1 and 18 mM were estimated based on the Kd values for the ATP•Mg2+ and 

ATP•2Mg2+ complexes (12 µM and 17 mM, respectively), as described previously (2). Plotting 

the initial rates of product formation as a function of substrate concentration yield catalytic 

efficiencies (kcat/KM, DNA) that report on successful end-joining events. Our reports of catalytic 

efficiency do not include the consumption of substrate that result in the formation of abortive 

ligation intermediates observed under physiological Mg2+
 conditions. LIG1 experiments described 

above were repeated in the presence of 10% polyethylene glycol. The catalytic efficiencies of 

LIG3β EJ were determined by reacting 1 nM enzyme with 5, 10, 20, and 40 nM DNA substrate at 

2 and 20 mM Mg(OAc)2. Reactions in which EJ rates were linearly dependent on DNA 

concentration were fit using linear regression to determine kcat/KM values. Reactions in which DNA 

concentrations ranged from below to above KM, were fit using the Michaelis-Menten equation to 

determine kcat and KM values. Substrates in which a kcat/KM value could not be determined were 

subjected to a direct competition reaction with the blunt-ended substrate to determine a relative 

kcat/KM value. Competition experiments contained 4 nM LIG3 with 30 nM + 200 nM as well as 30 

nM + 400 nM of the blunt-end and 3’-DSB substrates, respectively, in the presence of 2 mM 

Mg(OAc)2. The Mg2+ concentration dependences of LIG1 and LIG3β blunt-end ligation (0-30 mM 

Mg(OAc)2) were conducted in standard reaction buffer containing 5 nM enzyme and 300 nM 
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blunt-end substrate. Plots of initial rates vs Mg2+ concentration fit well to a two metal random 

binding model (LIG1, Equation 4.3) and a hyperbolic curve (LIG3β, Equation 4.4). Determination 

of fraction abortive ligation was achieved using Equation 4.5. Initial rates of LIG1 and LIG3 in 

the presence of 0-20% polyethylene glycol 6000 (PEG) contained 5 nM enzyme and 200 nM blunt-

end in the presence of 2 mM Mg(OAc)2 in standard reaction buffer.   

 

𝑽𝑨

𝑽𝑩
=  

(
 𝒌𝒄𝒂𝒕

𝑲𝑴 
⁄ )

𝑨
× [𝑨]

(
 𝒌𝒄𝒂𝒕

𝑲𝑴 
⁄ )

𝑩
× [𝑩]

       (Eq. 4.2) 

 

𝑽𝒐

[𝐄]
=  

𝑽𝒐
[𝑬]⁄

𝑲𝟏∗𝑲𝟐
[𝑴𝒈𝟐+]𝟐+

𝑲𝟏+𝑲𝟐
[𝑴𝒈𝟐+]

+𝟏
        (Eq. 4.3) 

 

𝑽𝒊𝒏𝒊𝒕

[𝑬]
=  

𝒌𝒄𝒂𝒕 × [𝑴𝒈𝟐+]

(𝑲𝑴𝒈 + [𝑴𝒈𝟐+])
        (Eq. 4.4) 

 

𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒂𝒃𝒐𝒓𝒕𝒊𝒗𝒆 𝒍𝒊𝒈𝒂𝒕𝒊𝒐𝒏 =  
[𝑰]

([𝑰]+[𝑷])
     (Eq. 4.5) 

 

Pre-steady-state analysis of LIG3β.  

Burst and pre-steady-state analysis of LIG3β was performed in standard reaction buffer 

containing 10% PEG with 2 mM Mg(OAc)2. Burst experiments contained 1 and 2 nM LIG3β with 

20 and 40 nM DNA substrates, respectively. Reported bursts are the sum of the single and double 

ligation products. Time courses fit well to Equation 4.6 where Ao is the burst amplitude, k is the 
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pre-steady-state rate constant, Vss is the steady-state velocity and t is time. Pre-steady-state 

reactions contained 20 nM LIG3β and 40 nM substrate. Single and double ligation products were 

plotted individually and observed rate constants (kobs) determined using a two step-irreversible 

mechanism in the kinetics simulation program Berkeley Madonna. 

 

[𝑷] =  𝑨𝒐(𝟏 − 𝒆𝒙𝒑−𝒌×𝒕) +  (𝑽𝒔𝒔 × 𝒕 )      (Eq. 4.6) 
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Appendix C 

 Additional figures to support Chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1. Influence of chloride on the catalytic efficiencies of LIG1 and LIG3β. A, chemical 

mechanism for nicked DNA ligation. 28mer nicked DNA substrate (2) was used to determine 

kcat/KM values. Catalytic efficiencies were determined by (B) linear regression of V/E values at 

numerous subsaturating DNA concentrations or by (C) obtaining kcat and KM values. Reactions 

were performed at 300 mM ionic strength with 20 mM Mg(OAc)2 used in all reactions. Desired 

chloride concentrations were achieved by varying NaCl:NaOAc ratios. 0.5 nM LIG3β and LIG1 

were assayed in the presence of 5-1500 nM DNA in standard reaction buffer containing 1 mM 

ATP and 1 mM DTT. D, catalytic efficiencies vs chloride concentrations illuminate differential 

inhibitory effects of chloride on the ligases. Experiments were completed in duplicate (mean ± 

S.D.). 
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Figure C.2. Hairpin length dependence on LIG1 and LIG3β end-joining. End-joining rates of 

LIG1 and LIG3 were investigated in the presence of 5 nM enzyme, 300 nM DNA (600 nM 

ligatable ends), saturating Mg2+ in standard reaction buffer with ionic strength maintained at 150 

mM using NaCl. Ligation rates were within 2-fold for LIG1 on all tested blunt-end substrate 

lengths. Ligation rates were within 3-fold for of all tested hairpin lengths. Reaction rates were 

normalized to the LIG1 end-joining reactions with14bp duplex DNA. Data suggests the 14 bp 

hairpin was sufficient in length for end-joining analysis of DNA LIG1 and LIG3. 10bp and 18bp 

DNA sequences can be found it the Materials and Methods. Reactions were performed in duplicate 

(mean ± S.D.).  
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Figure C.3. Identification of substrate, intermediate and product bands of DSB analysis. 
Product and intermediate species generated from an overnight ligation reaction containing 300 nM 

DNA, 20 nM LIG3β in standard reaction buffer were subject to analysis by various enzymes for 

band identification. Ligation products were investigated at a final solution volume of 20 uL 

containing 150 nM of DSB ligation products. A. Enzymatic analysis of products proceeded for 4 

hours at 37 ֯C in the presence of 10 U of T4 PNK, 5 U Antarctic phosphatase, 5 nM aprataxin, 5 U 

lambda exonuclease, 10 U EXO1. Reactions were incubated at 95 ֯C to stop reactions and analyzed 

by DNA denaturing PAGE. B. Identification of mid-sized product band. Left, 50:50 mixture of 

unphosphorylated (Antarctic phosphatase treated) and phosphorylated (T4 PNK treated) blunt end 

substrates generate 50:50 mixture of singly and doubly ligated product species. right, 16 hour 

ligation reaction of unphosphorylated and phosphorylated blunt end products confirms efficient 

dephosphorylation and phosphorylation of blunt end DNA substrates. 
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Figure C.4. transient kinetic analysis of sequential ligation events by LIG3β. Representative 

gel of quantified DNA species and time courses used to determine sequential ligation rates by 

LIG3β on blunt, 3’-3nt, and 5’-3nt overhang substrates. Experiments investigating the sequential 

ligation events of LIG3 mediated end-joining contained 20 nM LIG3β, 40 nM DNA (80 nM ends), 

1 mM ATP, 2 mM Mg(OAc)2, in standard reaction buffer with ionic strength maintained at 150 

mM using NaOAc. Data were acquired from 2 – 150 seconds. Experiments were completed in 

triplicate and are represented as mean ± S.D.. 
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Figure C.5. Determination of LIG1 specificity constants. DNA concentration dependences 

were conducted in the presence of 5 nM LIG1, 2 and 20 mM Mg2+, 1 mM ATP and 25-200 nM 

DNA. Ligatable ends tested include: blunt ends, 3’ and 5’ cohesive ends, 3 nucleotides in length. 

Reported catalytic efficiencies were calculated using linear regression of the DNA concentration 

dependence reactions. Experiments were repeated 3 times with error bars representing on standard 

deviation from the mean. Catalytic efficiencies values were calculated using the rates of successful 

ligation events.  
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Figure C.6. Determination of LIG3β specificity constants. DNA concentration dependences 

were conducted in the presence of 1 nM LIG3β, 2 and 20 mM Mg2+, 1 mM ATP and 5-40 nM 

DNA. ligatable ends tested include: blunt ends, 3’ and 5’ cohesive ends, 3 nucleotides in length. 

All substrate concentration dependences were linear at high Mg2+ concentrations. Cohesive ended 

substrates at 2 mM Mg2+ saturate at low mM Mg2+ range due to a maximal ligation rate of roughly 

0.007 s-1. Reported catalytic efficiencies were calculated using linear regression of the DNA 

concentration dependence reactions. The 5’ 3nt cohesive end substrate was calculated using the 

estimated kcat and KM values determined using the Michaelis-Menten equation. To determine the 

catalytic efficiency of the 3’ 3nt overhang substrate, direct competition studies (3’ 3nt vs blunt end 

ligation) were performed in the presence of 4 nM LIG3β, 2 mM Mg2+, 1 mM  ATP in standard 

reaction buffer in the presence of 30:200 or 30:400 nM of 3’3nt:blunt end substrates, respectively. 
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Figure C.7. Polyethylene glycol increases LIG1 reaction rates while reducing abortive 

ligation at physiological Mg2+. A, representative gels illustrate the accumulation of abortive 

intermediates and products generated during LIG1 catalyzed end-joining in the absence (left) and 

presence (right) of 10% PEG at 1 mM free Mg2+. Reactions contained 5 nM LIG1 and 100 nM of 

designated DNA in standard reaction buffer. B, LIG1 abortive ligation is reduced by 20 - 30% in 

the presence of 10% PEG. Fraction abortive ligation was calculated as previously described (1). 
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Figure C.8. Determination of LIG1 catalytic efficiencies in the presence of PEG 6K with 

physiological Mg2+. DNA concentration dependence was measured with 5 nM LIG1, 2 and 20 

mM Mg2+, 1 mM ATP and 25-200 nM DNA. Ligatable ends tested include: blunt ends, 3’ and 5’ 

cohesive ends, 3 nucleotides in length. Reported catalytic efficiencies were calculated using linear 

regression of the DNA concentration dependence reactions. Experiments were repeated 3 times 

with error bars representing on standard deviation from the mean. Catalytic efficiencies values 

were calculated using the rates of successful ligation events. 
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Chapter 5  
 

 

A real-time DNA ligase assay suitable for high throughput screening5,6 

 

 

Introduction 

The mammalian DNA ligases catalyze the formation of phosphodiester bonds in DNA 

thereby repairing single- and double-strand DNA breaks, and completing DNA replication, repair, 

and recombination pathways (1). DNA ligation proceeds through an ATP-dependent three-step 

chemical mechanism. During the first step of catalysis, an active site lysine reacts with the alpha 

phosphate of ATP resulting in enzyme adenylylation with a loss of inorganic pyrophosphate. Upon 

encountering the 5’ phosphate of a nicked DNA fragment, ligase transfers the adenylyl group from 

the active-site lysine to the 5’ phosphate, forming an adenylylated DNA intermediate. During the 

final chemical step of ligation, the 3’ hydroxyl nucleophile of the adjacent DNA strand attacks the 

5’ adenylylated phosphate, forming the phosphodiester bond with the release of AMP (1). This 

three-step chemical mechanism is conserved among the human DNA ligases (Figure 5.1A).  

 
5Emily Overway helped trouble shoot and validate the robustness of the real-time fluorescence 

based assay by performing some of the kinetics experiments described in this chapter. Michael 

Baldwin aided in substrate design. Thomas Jurkiw generously gifted purified Δ232 LIG1 to this 

study. Justin McNally planned all of the experiments, assisted in and performed all of the 

experiments described and wrote the chapter. Patrick O’Brien provided insightful guidance and 

feedback on this work. 6This chapter was submitted to the Department of Pharmacology Master’s 

Program as a thesis to fulfill the requirements for the Master’s in Pharmacology. 
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Human DNA ligases 1 (LIG1) and 3 (LIG3) share only 22 % sequence identity (2), but 

have a high degree of structural conservation in their three conserved domains (3,4) (Figure 5.1B).  

LIG1 and LIG3 differ in their N- and C-terminal regions, which contribute to their specialized 

biological activities (1). LIG3 has an N-terminal zinc finger (ZnF) domain that contributes to the 

efficiency of single- and double-strand DNA break ligation (4,5). Recent studies have reported 

that the erroneous ligation activity of nuclear LIG3 can contribute to telomere fusions and 

reciprocal chromosomal translocations (6-9). Furthermore, observations of LIG3 overexpression 

in various cancers that are reliant on LIG3 activity suggest that LIG3 may be a promising 

pharmacological target (10,11). To better understand the biology and chemistry of the DNA 

ligases, gel-based ligation assays have been used to characterize the activities of these enzymes on 

both single- and double-strand DNA breaks (3-5,12-15). Although gel-based ligation assays can 

be very quantitative, this method is laborious and is not amenable to high-throughput data 

acquisition. Observation of ligation products is difficult in the absence of DNA denaturing 

conditions or separation techniques. Interestingly, several approaches have been reported to 

efficiently measure ligase activity by utilizing FRET to detect conformational changes in DNA 

structure or detect the joining of two DNA molecules as a product of DNA ligation. Molecular 

beacons (MBs) report on DNA ligation by the observation of FRET signal change caused by a 

ligation induced conformational change in DNA structure (16). FRET has also been used to 

efficiently observe DNA double-strand break ligation by reporting the joining of two labeled DNA 

molecules (17). Oddly, the authors of this assay did not display any real-time data, suggesting this 

method used to monitor end-joining activity was best used discontinuously. Likewise, if real-time 

monitoring of DNA ligation is not important to the experimentalist, efficient methods to detect 

nicked DNA ligation in a discontinuous format have been developed. Chemical denaturants have 
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been used to denature nicked DNA substrates to observe a measurable FRET signal (18). In an 

attempt to create a simple assay that monitors ligase activity in real-time and is also conducive to 

high-throughput screening of small-molecule libraries (in discontinuous mode), we developed a 

reporter of nicked-DNA ligation that is not dependent on conformational changes to distinguish 

between substrate and product species, does not require a ligase capable of DNA double-strand 

break ligation, and does not require DNA denaturing agents (Figure 5.2A). 

 

 

Figure 5.1. DNA ligase mechanism and structure. A, conserved three step reaction 

mechanism of ATP-dependent DNA ligases. B, Schematic representation of DNA LIG1 and 

LIG3β. The numbers indicate domain boundaries of the two ligases. Ligase domains are color-

coded; DNA binding Domain (DBD), red; Nucleotidyltransferase domain (NTase), green; 

Oligonucleotide binding domain (OB-fold), yellow; zinc finger (ZnF), black. 
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We developed a fluorescence-based ligation assay capable of monitoring steady-state DNA 

ligation in real-time. Using this assay, we characterized the activities of LIG1 and LIG3β and 

obtained similar Mg2+ cofactor and ATP dependences as previously reported using a traditional 

gel-based DNA ligation assay (12,13). In addition to defining the kinetic parameters of LIG1 and 

LIG3β under continuous monitoring mode, we adapted the assay to function in a discontinuous 

format, enabling efficient screening of small-molecule libraries to identify inhibitors of the human 

DNA ligases. We statistically validated the discontinuous assay screening conditions and 

investigated the inhibition characteristics of the human ligases using the inhibitor L67. Our data 

suggests that this assay could be a viable option for conducting large scale high-throughput screens 

to identify and characterize DNA ligase inhibitors. 

 

Materials and Methods 

 

Expression and purification of human DNA ligases 

Human DNA ligase 1 (Δ232 LIG1) and 3 (full-length nuclear LIG3β) were expressed and 

purified as previously described (13,19). 

 

DNA substrates 

Synthetic DNA oligonucleotides were acquired from Integrated DNA Technologies (IDT) 

or Keck Oligonucleotide Synthesis facilities and purified by denaturing PAGE as previously 

described (12). The real-time fluorescence substrate is composed of three DNA strands; 5’TET-

CATAGTA, 5’GGTCCATGAAGTACTATG-D, and 5’P-CTTCATGGACC where TET indicates 

the presence of a 5’-tetrachlorofluoroscein, D indicates the presence of a 3' quencher (3’-TTdT-
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dabcyl), and P indicates the presence of a 5’-phosphate. The three oligonucleotides were annealed 

at 1:1.5:2 molar equivalents, respectively, in annealing buffer (10 mM NaMES pH 6.5, 50 mM 

NaCl) by heating the solution to 95 ֯C and cooling to 4 ֯C at a rate of 12 ֯C min-1. 

 

Real-time fluorescence assay 

Reactions were performed in black 96-well half-area non-binding flat bottom plates 

(Corning). Reaction buffer for protein characterization contained 50 mM NaMOPS, pH 7.5, 10% 

glycerol, 1 mM TCEP, 100 μg mL-1 BSA with ionic strength maintained at 150 mM using NaCl 

for all reported reactions. Ionic strength was calculated using the Debye-Hückel theory of 

electrolytes. Enzyme concentration dependences of LIG1 and LIG3 were tested independently 

over the 20-fold range of 0.2 – 4 nM. Enzyme concentration dependences were conducted in 

reaction buffer containing 1 mM MgCl2, 100 μM ATP and 500 nM DNA substrate. The LIG1 

DNA concentration dependence reactions contained 10 nM ligase, 0.4 – 4 μM DNA, 1 mM MgCl2, 

and 100 μM ATP in reaction buffer. The LIG3 DNA concentration dependence was determined 

using 1 nM ligase, 20 – 800 nM DNA, 1 mM MgCl2, and 100 μM ATP in reaction buffer. The 

Mg2+ concentration dependences for multiple-turnover ligation were conducted in reaction buffer 

containing 1 nM ligase, 0-25 mM MgCl2, 1 mM ATP, and 400 nM DNA. ATP concentration 

dependences were determined in the presence of 1 nM enzyme, 20 mM MgCl2, and 400 mM DNA, 

and 0 – 150 μM ATP in reaction buffer. 

 

Data acquisition and analysis 

Fluorescence measurements were performed using Tecan GeniosPro or Tecan Safire2 plate 

readers set to 30  ֯C. The plate readers were configured to monitor TET emission at 550 nm (BP20) 
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using an excitation wavelength of 510 nm (BP20). Reaction progress traces were analyzed by a 

series of steps. Data underwent background subtraction, followed by fluorescence normalization 

to a scale of 0 – 1.0. To do so, fluorescence reaction progression curves were divided by the no 

enzyme control fluorescence values, enabling the conversion of fluorescence units (A.U.) to 

fraction substrate. Normalized plots were fit using linear regression to obtain slopes required to 

determine reaction rates. Reaction progress curves were linear for the first 50% of the reaction. 

Reaction rates were determined by multiplying the slope by the reacting substrate concentration to 

obtain reaction velocities (Vmax). Reaction velocities were normalized to enzyme concentration to 

obtain Vmax/[E] with units of time-1. Initial rates (represented as V/[E]) were plotted as a function 

of the tested variable to determine the kinetic parameters of the tested enzyme. ATP and DNA 

substrate dependences were analyzed using the Michaelis-Menten equation (Equation 5.1). The 

Mg2+ cofactor dependences were analyzed using a hyperbolic single-site binding model (Equation 

5.2).  

 

𝑉

[𝐸]
=  

𝑘𝑐𝑎𝑡 × [𝑆]

(𝐾𝑀+[𝑆])
      (Eq. 5.1) 

𝑉

[𝐸]
=  

𝑘𝑐𝑎𝑡 × [𝑀𝑔𝐶𝑙2]

(𝐾𝑀𝑔 + [𝑀𝑔𝐶𝑙2])
     (Eq. 5.2) 

 

Discontinuous high-throughput screen and Z’ score analysis 

The real-time fluorescence assay can be modified for discontinuous activity measurements 

to enable efficient high-throughput screening using automated platforms. The high-throughput 

screening reaction buffer contained 50 mM NaMOPS, pH 7.5, 112 mM NaCl, 1 mM MgCl2, 1 
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mM TCEP, 100 µg/mL BSA, 100 µM ATP, DMSO control (5% v/v) or dissolved L67 in DMSO 

(5% v/v). LIG1 reactions possessed 10 nM LIG1 and 500 nM DNA, whereas LIG3β reactions 

contained 2 nM LI3β and 50 nM DNA. Positive controls were performed in the absence of enzyme. 

For both enzymes, the DNA concentration was maintained at or below their respective KM, DNA 

values. 50 μL reactions were incubated at ambient temperature for 50 minutes prior to quenching 

with 0.5 M EDTA to achieve a final EDTA concentration of 45 mM. Reactions quenched via metal 

chelation did not destabilize DNA products or alter the fluorescence properties of the 

substrate/product species. The Z’ score analysis was calculated as previously described (Equation 

5.3) (20). σ represents 1 standard deviation from the mean for the positive (c+) and negative (c-) 

controls. μ represents the mean values for positive (c+) and negative (c-) controls.  

 

𝑍′ = 1 −  
3𝜎𝑐+ + 3𝜎𝑐−

|𝜇𝑐+ − 𝜇𝑐−|
     (Eq. 5.3) 

 

Ligase inhibition by L67 

L67 was determined greater than 98% pure by HPLC (MedKoo Biosciences). L67 was 

dissolved in 100% DMSO to a concentration of 10 mM. The L67 concentration dependence on 

enzyme activity was investigated while maintaining DMSO concentrations at 5% (v/v) in all 

reactions. L67 concentration dependences on ligase activities were performed as described in 

Discontinuous high-throughput screen and Z’ score analysis. Briefly, reactions were performed at 

ambient temperature for 50 minutes prior to being stopped by the addition of 0.5 M EDTA to 

achieve a final EDTA concentration of 45 mM. Reactions were scanned as described above. Raw 

fluorescence values underwent baseline subtraction, followed by normalization to a scale of 0 – 
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1.0 with 0 representing completely inhibited reactions and 1.0 representing uninhibited reactions. 

These normalized values were plotted as a function of L67 concentration and fit to a four-variable 

dose response curve using GraphPad Prism software. 

 

Gel based ligation assay  

 

To confirm the occurrence of ligation during the real-time fluorescence assay, ligation 

reactions were analyzed using denaturing polyacrylamide electrophoresis. Briefly, discontinuous 

ligation reactions containing 50 mM NaMOPS, pH 7.5, 112 mM NaCl, 1 mM MgCl2, 1 mM TCEP, 

100 µg/mL BSA, 100 µM ATP, 2 nM LIG3β, 50 nM DNA were conducted in parallel to real-time 

ligation reactions but were stopped at 10 min intervals using a DNA denaturing quench solution 

(90% formamide, 50 mM EDTA, 0.006% bromophenol blue, 0.006% xylene cyanol). Quenched 

samples were incubated at 95 ֯C for 3 minutes, snap-cooled in ice water, then loaded onto a 20% 

polyacrylamide, 6.6 M Urea, 1X TBE DNA denaturing gel. Gels were imaged using a Typhoon 5 

imaging system (GE Healthcare) set to monitor emission at 525 (BP20) while exciting at 488 nm. 

DNA substrates and products were quantified using ImageQuant TL (GE Healthcare) and analyzed 

using GraphPad Prism softwares.  
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Results 

 

Real-time fluorescence assay 

We previously characterized the substrate and cofactor dependences of human DNA 

ligases 1 and 3 using a discontinuous gel-based ligation assay (12,13). The gel-based system is not 

optimal for small-molecule screening due to significant time investment and material costs. We 

designed an oligonucleotide substrate suitable for measuring DNA ligase activity in real-time 

(Figure 5.2A and Materials and Methods). A 7-mer acceptor strand and a 5'-phosphorylated 11-

mer donor strand were designed to anneal to an 18-mer DNA template to form a ligatable nick. 

The 7-mer was labeled at the 5' terminus with tetrachlorofluorescein. The template strand was 

designed with a 3' overhang containing a dT-dabcyl quencher. The 7-mer only transiently anneals 

to the template strand at room temperature, with equilibrium favoring the dissociated, highly 

fluorescent state. Ligation greatly increases the stability of the fluorophore-labeled DNA, locking 

it in the annealed and low-fluorescence (quenched) state. We confirmed that the loss in 

fluorescence signal correlates with ligation by monitoring the reaction using the gel-based assay, 

in which substrate and product can be identified unambiguously (Figure 5.2B). To validate the 

robustness of this real-time ligation assay, the steady-state kinetic parameters of LIG1 and LIG3 

were determined. 
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Figure 5.2. Real-time fluorescence assay monitors DNA ligation. A, description of the real-

time fluorescence-based ligation assay. Tetrachlorofluorescein (TET) labeled 7-mer 

oligonucleotide fluoresces in the absence of a quencher. The 7-mer oligonucleotide transiently 

anneals to the dabcyl-containing complementary oligonucleotide, forming a ligatable complex. 

Upon ligation, the stabilized DNA duplex brings the TET in proximity of the dabcyl, resulting 

in decreased fluorescence. B, representative reaction progress curve monitoring substrate 

consumption by real-time fluorescence (blue trace), and discontinuous gel-based ligation assay 

(red circles) under identical reaction conditions. Inset representative gel shows product (upper 

bands labeled P) and substrate (lower bands labeled S) of the real-time assay performed 

discontinuously and analyzed by denaturing PAGE.  C, representative reaction progress curves 

used to determine LIG3β MgCl2 concentration dependence on ligation. D, representative MgCl2 

dependence of LIG3β determined from rates of substrate consumption followed by a 

normalization of DNA and enzyme concentrations, represented by V/E (s-1). Values reported 

using the gel-based ligation assay in B are the mean ± S.D.; n = 3. Real-time ligation traces in 

B and C are representative data from individual experiments. 
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Substrate and metal dependence of human DNA LIG1 

We first investigated the LIG1 concentration dependence on reaction rate. Over a 20-fold 

concentration range (0.2-4 nM), LIG1 activity was linearly proportional to its concentration, 

indicating that the reaction conditions were suitable for a detailed kinetic analysis (Figure 5.3A). 

The DNA concentration dependence of LIG1 was measured with 1 mM MgCl2 and gave a KM, DNA 

value of 800 nM (Figure 5.3B). We next determined the Mg2+ dependence and found a KMg value 

 

 

Figure 5.3. Kinetic parameters of LIG1 determined using the real-time ligation assay. A, 

Multiple-turnover ligation rate of LIG1 is linearly dependent on enzyme concentration. B, 

DNA concentration dependence measured using 10 nM LIG1 in the presence of 1 mM MgCl2 

and 100 μM ATP. LIG1 has a KM,DNA value of 800 nM. C, MgCl2 concentration dependence 

of LIG1 was measured in the presence of 1 mM ATP and 400 nM DNA with ionic strength 

maintained at 150 mM. LIG1 has a KMg value of 1.5 mM. D, ATP concentration dependence 

was measured in the presence of 20 mM MgCl2 and 400 nM DNA. LIG1 possess a KM,ATP 

value of 1.5 μM. Each experiment was completed in triplicate (mean ± S.D.). 



   

 

124 

of 1.5 mM (Figure 5.3C). The multiple-turnover ATP concentration dependence of LIG1 indicated 

KM, ATP was equal to 1.9 μM (Figure 5.3D). The ATP and Mg2+ dependences of LIG1 were similar 

to previous observations using the gel-based assay (Table 5.1) (12). The maximal rates of reaction 

with this real-time assay were greatly reduced when compared to previous reports using an optimal 

nicked DNA substrate (Table 5.1). The reduced rate of ligation of the real-time substrate was likely 

attributed to the unfavorable annealing of the TET-7-mer oligonucleotide that limits the formation 

of a productive enzyme complex. 

 

Substrate and metal dependence of human DNA LIG3β 

We next determined the steady-state kinetic parameters of LIG3β. The rate of LIG3β 

mediated ligation was proportional to enzyme concentration, also indicating that LIG3β was well-

behaved under reaction conditions (Figure 5.4A). The DNA concentration dependence of LIG3β 

was measured within the range of 20 – 800 nM DNA yielding a KM,DNA of 50 nM (Figure 5.4B). 

Mg2+ and ATP concentration dependences report KMg and KM,ATP values of 4.3 mM and 9.6 µM, 

respectively (Figures 5.4C and 5.4D). The DNA concentration dependence of LIG3β cannot be 

directly compared to previous reports of nicked DNA ligation due to the different reaction 

conditions, but the enzyme had a markedly lower KM,DNA value compared to LIG1, as previously 

described (13). Importantly, KMg and KM,ATP values were similar to previously reported values, 

suggesting this assay reliably reported cofactor and substrate dependences (Table 5.1) (13).  
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High-throughput discontinuous assay 

Although high-throughput screening could be performed in continuous kinetic mode, it is 

often advantageous to quench samples at a set time for subsequent scanning and analysis. We 

optimized sample handling such that reactions could be incubated at ambient temperature and 

quenched using concentrated EDTA. We directly compared reaction progress curves for the 

continuous and discontinuous assays, which were in good agreement with each other (Figure 

 

 

Figure 5.4. Kinetic parameters of LIG3β determined using the real-time ligation assay. 
A, Multiple-turnover ligation rate of LIG3β is linearly dependent on enzyme concentration. B, 

DNA concentration dependence measured in the presence of 1 mM MgCl2 and 100 μM ATP. 

LIG3β has a KM,DNA value of 50 nM. C, MgCl2 concentration dependence of LIG3β was 

measured in the presence of 1 mM ATP and 400 nM DNA with ionic strength maintained at 

150 mM. LIG3β possesses a KMg value of 4.3 mM. D, ATP concentration dependence was 

measured in the presence of 20 mM MgCl2 and 400 nM DNA. LIG3β possess a KM,ATP value 

of 9.6 μM. Each experiment was completed in triplicate (means ± S.D.). 
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5.5A). The absolute fluorescence values were slightly reduced for the quenched assay, presumably 

due to the dilution of the reaction mixture from the addition of EDTA to the reaction solution to 

stop catalysis. Under the selected conditions, a 50 minute incubation time provided optimal signal 

to noise ratio (Figure 5.5A). To determine the influence of DMSO on LIG3β activity, we followed 

the real-time ligation activity of LIG3β in the presence of 0 –15% (v/v) DMSO (Figure 5.5B). 

LIG3β tolerated DMSO up to 15% v/v and exhibited a ~50% increase in activity at 5% DMSO. 

Fluorescence intensities remained consistent at all DMSO concentrations, demonstrating that 

 

Figure 5.5. Discontinuous fluorescence ligation assay optimization for high-throughput 

screening of small-molecule inhibitors of LIG3β. A. comparison of a real-time fluorescence 

progress curve (blue) with EDTA quenched reactions confirm sufficient ligation within 50 

minutes (3000 seconds, marked with dashed line) for small-molecule screening. B, DMSO 

concentration dependence on LIG3β activity. Rate of LIG3β mediated ligation is minimally 

impacted by the presence of high DMSO concentrations. C, scatterplot of the relative 

fluorescence units of control reactions (8 positive (no enzyme), red; and 8 negative, blue) for 

inhibition. dashed lines represent three S.D. from the mean. D, dose response curve of ligase 

inhibitor, L67, possessing an IC50 of 50 μM. Dose response data were fit to a four-variable 

dose response curve. Each experiment was completed in at least triplicate (mean ± S.D.). 

 

 



   

 

127 

DMSO did not interfere with fluorescence or annealing of the DNA strands (data not shown). After 

optimizing conditions for small-molecule screening, we evaluated the ligation assay protocol using 

negative controls (uninhibited ligation reaction) and positive controls (reactions representing 

 

 

Figure 5.6. Discontinuous fluorescence ligation assay for LIG1. A, DMSO concentration 

dependence on LIG1 activity. B, scatterplot of the relative fluorescence units of control 

reactions (20 positive, green; and 20 negative, blue) for inhibition. Dashed lines represent three 

S.D. from the mean. C, dose response curve of L67 yielded an IC50 value of 200 μM. Data 

were fit to a four-variable dose response curve. Each experiment was completed in at least 

triplicate (mean ± S.D.). 
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idealized inhibition by omitting LIG3β). The LIG3β control data yielded a Z’ score of 0.80 

indicating the assay was suitable for high-throughput screening (Figure 5.5C). For further assay 

validation, we performed a concentration dependence of the reported mammalian DNA ligase 

inhibitor L67 (21). We found that L67 inhibited LIG3β with an IC50 of 50 μM, (Figure 5.5D).  

The high-throughput discontinuous assay was next optimized for LIG1, which could be 

used to screen for inhibitors of LIG1, or to counter screen for compounds specific to LIG3β. The 

DNA concentration was chosen to be 500 nM, which was below the determined KM, DNA value of 

800 nM. For convenience, LIG1 concentration was increased to 10 nM to achieve a similar 

incubation time as LIG3β. Varying DMSO concentrations had modest effect on LIG1 activity, 

tolerating 15% (v/v) DMSO. As with LIG3β, DMSO increased ligation rates of LIG1 in a 

concentration dependent manner, with maximal ligation rates observed in the presence of 10% 

DMSO  (Figure 5.6A). We evaluated the LIG1-catalyzed discontinuous assay by comparing 

negative and positive controls, which yielded a Z’ value of 0.82 (Figure 5.6B). To further validate 

these conditions as a viable counter screen, an L67 dose response curve indicated the compound 

had an IC50 of 200 μM under the tested conditions. By using the real-time fluorescence assay to 

determine the kinetic parameters of the human DNA ligases, we were able to exploit their DNA 

and Mg2+ binding characteristics to define suitable conditions to perform high-throughput 

screening and/or investigate the binding properties of ligase inhibitors. 
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Table 5.1 

Comparison of multiple turnover kinetic parameters determined by real-time fluorescence assay 

and reported values.a 

 Fluorescence-based ligation of  

18-mer transient nicked DNA 

substrate 

Gel-based ligation of  

28mer stably nicked DNA 

substrate  

Parameter LIG3β LIG1 LIG3βb LIG1c 

kcat     

   ATP (s-1) 0.14 ± 0.003 0.088 ± 0.001 0.55 ± 0.02 0.74 ± 0.09 

   Mg2+
 (s

-1) 0.14 ± 0.001 0.074 ± 0.001 0.69 ± 0.03 0.81 ± 0.10 

   DNA (s
-1) 0.024 ± 0.001 0.12 ± 0.01  0.51 ± 0.03* 0.87 ± 0.10* 

KM     

   ATP (µM) 9.6 ± 0.8 1.9 ± 0.1 31 ± 3 11 ± 3 

   Mg2+  (mM) 4.3 ± 0.4  1.5 ± 0.1 7.4 ± 0.7 0.71 ± 0.2 

   DNA (nM) 52 ± 9 800 ± 80 49 ± 8* 570 ± 170* 

kcat/KM     

   ATP (M-1s-1) 1.5 ± 0.1× 104 4.6 ± 0.2 × 104 1.8 ± 0.2 × 104 6.7 × 104 

   Mg2+(M-1s-1) 33 ± 3 49 ± 3 93 ± 10 1.1 ± 0.4 × 103 

   DNA (M-1s-1) 4.6 ± 0.8 × 105 1.5 ± 0.2 × 105 1.0 ± 0.2 × 107* 1.5 ± 0.5 × 106* 
 

aMultiple-turnover kinetic parameters were all determined at 150 mM ionic strength. ATP 

concentration dependences were conducted at fixed DNA (400 nM) and Mg2+ (20 mM) 

concentrations. Likewise, Mg2+ concentration dependences were conducted at fixed DNA (400 

nM) and ATP (1 mM) concentrations. DNA concentration dependences were performed at fixed 

ATP (100 µM) and Mg2+ (1 mM) concentrations. 

b The LIG3β values (excluding *) were previously determined using a gel-based ligation assay 

with a nicked DNA substrate at 150 mM ionic strength  (13). 

 c The LIG1 values (excluding *) were previously determined by a gel-based ligation assay using 

a nicked DNA substrate at 150 mM ionic strength  (12). 

 * Values of LIG1 and LIG3β nicked DNA concentration dependences were obtained at 300 mM 

ionic strength using a gel-based ligation assay (13).  
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Discussion 

 

Human DNA LIG1 and LIG3 play important and overlapping roles catalyzing the DNA 

ligation reactions required for successful completion of the DNA replication, repair, and 

recombination pathways. LIG1 has been suggested to primarily catalyze single-strand DNA break 

ligation, whereas LIG3 has been reported to catalyze single- and double-strand DNA break ligation 

(1). The double-strand break ligation activity attributed to LIG3 is reported to erroneously generate 

chromosomal translocations (7) and telomere fusions (8,9). Moreover, patient-derived cancer cells 

overexpress LIG3 and are reliant on this LIG3 activity for survival, making LIG3 an attractive 

pharmacological target (10,11). A major obstacle restricting the discovery of inhibitors targeting 

the human DNA ligases is the lack of a robust, high-throughput methodology necessary for 

identifying such compounds.  

A number of DNA ligation assays have been developed to increase the efficiency of 

monitoring ligase activity. Molecular beacons (MBs) are an attractive method for investigating 

nicked DNA ligation in real-time. These substrates utilize two oligonucleotides adjacently-

annealed to the loop region of a hairpin structured oligonucleotide. Upon ligation of the nick, the 

MB undergoes a conformational change that disrupts the hairpin structure thereby generating a 

fluorescence signal (16,22). MBs may be an elegant approach for monitoring DNA ligase activity 

in theory; however, it is unclear if they are suitable substrates for a wide variety of DNA ligases 

that function under a wide range of conditions. Analysis of T4 DNA ligase using MBs indicate 

that these substrates may be sensitive to changes in ionic strength. Monovalent cation 

concentrations upwards of 300 mM, and Mg2+ concentrations of more than 20 mM either inactivate 

T4 DNA ligase, or the MB does not report on DNA ligation at these elevated ionic strengths due 
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to stabilization of the hairpin (22). Furthermore, MBs may not be suitable substrates for all DNA 

ligases due to their conformationally restricted DNA structure. T4 DNA ligase, unlike the human 

DNA ligases, has a relatively small DBD, bringing into question whether the human DNA ligases 

(and other DNA ligases with highly homologous domain structures) can physically engage with 

and encircle the nick in a physiologically relevant mode to perform catalysis (23). Human DNA 

LIG3 is suggested to have a ~14 nucleotide footprint as determined by DNase I digestions (24) 

and X-ray crystallography (4). This binding footprint is a substantial percentage of the MB loop 

structure (~20-nt that adopt a circular structure). An alternative DNA substrate proposed to be used 

as an efficient discontinuous assay for high-throughput screening of DNA ligases is based on DNA 

end-joining ligase activity. A double-strand DNA break substrate comprised of 5’ 4 – nucleotide 

overhangs generates a FRET signal upon ligation (17). This substrate design has inherent 

complexities since it requires double-strand break ligation to achieve a signal, and due to this style 

of substrate, may not be appropriate for all DNA ligases. Alternatively, Shapiro et al. developed a 

discontinuous ligation assay utilizing a nicked-DNA substrate that requires chemical denaturation 

prior to observation of the FRET signal (18). This method, although unable to report on ligation 

in real-time, was shown to be amenable to high-throughput screening. Each of the described 

approaches have been described as efficient methods to monitor DNA ligation. Each of these 

assays, however, have limitations that disallow the experimental flexibility and simplicity that is 

desired for efficient small-molecule screening, counter-screening, and characterization of 

compounds of interest.   

In an attempt to overcome the limitations of the previous FRET-based assays, we strove to 

generate a substrate that reports on nicked DNA ligation in real-time and is adaptable to efficient 

screening of small-molecule libraries. The three oligonucleotide architecture of the substrate 
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(Figure 5.1) resembles a simple nicked DNA substrate previously used for the characterization of 

human DNA LIG1 and LIG3 (12,13). The DNA substrate was engineered such that the upstream 

TET labeled 7-mer oligonucleotide would be transiently annealed to the dabcyl-containing 18-mer 

DNA template strand under a broad spectrum of assay conditions. Importantly, fluorescence 

quenching was not observed in the presence of high (25 mM) Mg2+ concentrations, indicating that 

the increased divalent metal concentration did not shift the equilibrium of the free (fluorescent) 7-

mer to the annealed (quenched) state. Investigation of the Mg2+ concentration dependences of 

LIG1 and LIG3 confirmed that the changes in metal cofactor concentrations directly influenced 

DNA ligase activity. LIG1 and LIG3 both reported KMg values within 2-fold of previously reported 

values. Likewise, we report that the KM, ATP values obtained using this fluorescence-based assay 

are similar to those previously described using a gel-based ligation assay under nearly identical 

reaction conditions (Table 5.1) (12,13). Interestingly, LIG3 was reported to have KM, DNA values 

roughly 12-fold lower than that of LIG1 (13). A comparison of KM,DNA values acquired using the 

real-time assay indicates LIG3 KM, DNA values were 15-fold lower than that of LIG1, a difference 

strikingly similar to those reported on a stably annealed nicked DNA substrate (13). Importantly, 

due to the transient nature of the 7-mer DNA strand, rates of DNA ligation (kcat) were greatly 

reduced when compared to those of a stably nicked DNA species. (Table 5.1). In general, the DNA, 

ATP and Mg2+ concentration dependences of both LIG1 and LIG3β are consistent with previously 

reported values, confirming that this assay may be used as an efficient biochemical method to 

quantify DNA ligase activity (Table 5.1) (12,13). 

This study describes and validates a real-time fluorescence based ligation assay capable of 

determining steady-state kinetic parameters of DNA ligases that is adaptable to high-throughput 

screening for ligase inhibitors. Small-scale analysis of positive and negative controls indicates Z’ 
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scores of 0.82 and 0.80 for LIG1 and LIG3β, respectively. As proof-of-principle, we confirmed 

that a previously characterized inhibitor, L67, was effective at inhibiting both LIG3β and LIG1, 

with modestly greater efficacy against LIG3β. 
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Chapter 6  
 

       Conclusions and Future Directions 

 

Summary of conclusions 

This thesis provides the first systematic kinetic characterization of two human DNA ligase 

3 isoforms catalyzing ligation of single- and double-strand DNA breaks (SSB and DSB, 

respectively). To complete this body of work I developed methods to express and purify nuclear 

LIG3α and LIG3β to homogeneity and investigate their kinetic parameters. The LIG3 isoforms are 

markedly more efficient at ligating SSBs than LIG1; however, the LIG3 isoforms have weaker 

magnesium affinities than LIG1. Interestingly, this reduced Mg2+ affinity does not increase the 

susceptibility of LIG3 to accumulate potentially toxic abortive ligation intermediates, in contrast 

to what was seen with LIG1 (1, 2). To better understand how the structural characteristics unique 

to the LIG3 isozymes contribute to their kinetic parameters, we performed a systematic analysis 

of numerous N-terminal variants under steady-state reaction conditions. These studies were 

performed using SSBs and indicate that the ZnF domain and a previously uncharacterized 

disordered linker region (DLR) both contribute to the efficiency of LIG3-catalyzed SSB ligation.  

Recently LIG1 and LIG3 were both suggested to perform the ligation reactions required 

for successful class-switch recombination mouse B-cells (3, 4). These genetic experiments suggest 

LIG1 has end-joining capabilities; however, the biochemistry of LIG1-catalyzed end-joining has 

never been reported. To fill this void, we investigated the kinetics of LIG1 and LIG3 catalyzed 
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DSB ligation. The observation that LIG1 can ligate DSBs with similar efficiency as LIG3 under 

optimal conditions challenges the longstanding belief that LIG1 is poorly suited to catalyze end-

joining reactions and supports the genetic studies that find comparable contributions of LIG1 and 

LIG3 to the end-joining behavior required for class-switch recombination. Although LIG1 may 

contribute to DSB repair, LIG3 is central to the relatively minor error-prone alternative end-joining 

pathway (5). Observations that LIG3 activity is required in cancer cells over expressing the 

enzyme, and the fact that the enzyme has erroneous ligation activity (6-10), make LIG3 an 

attractive pharmacological target for anti-cancer therapies (11). With this in mind, we developed 

a rapid and reliable method to monitor DNA ligation that is adaptable to high-throughput small-

molecule screening of DNA ligase inhibitors. 

 

Kinetic characterization of the nuclear LIG3 isoforms  

The first goal of this thesis project was to determine the kinetics and thermodynamics of 

SSB ligation by LIG3α and LIG3β, and to compare these characteristics to those of the nuclear 

replicative DNA ligase, LIG1. The kinetic parameters of the LIG3 isoforms are nearly identical 

under all tested conditions, indicating that the BRCA1 C-terminal (BRCT) domain specific to 

LIG3α does not alter ligation kinetics in the absence of its interacting protein XRCC1. Although 

LIG3 is only 22% identical to LIG1 across their conserved domains (12), the two enzymes had 

very similar maximal ligation rates. Comparison of the rate and equilibrium constants for LIG3 

and LIG1 nevertheless revealed important differences. The LIG3 isoforms were 7-fold more 

efficient than LIG1 at ligating nicked DNA under optimal conditions. The increased ligation 

efficiency attributed to LIG3 is due to decreased KM,DNA values, possibly explaining why LIG3 is 

less prone to abortive ligation than LIG1. Surprisingly, LIG3 binds Mg2+ 10-fold weaker than 
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LIG1. We suggest that Mg2+ availability may regulate DNA ligation in vivo because Mg2+ levels 

are higher in the mitochondria than in the nucleus (13). The similarities and differences between 

the LIG3 isoforms and LIG1 presented here provide the first direct biochemical comparison of the 

enzymes, enhancing our understanding of their unique and overlapping biological roles. 

 

Role of the LIG3 N-terminus in single-strand break ligation 

LIG3 is the only human DNA ligase to possess an N-terminal ZnF domain and the degree 

by which the ZnF domain contributes to catalysis is poorly understood. Numerous efforts have 

been made to establish mechanisms by which LIG3 utilizes the ZnF domain for nicked DNA 

binding affinity and DNA end-binding characteristics (14-19). Due to experimental design, these 

studies do not indicate the degree by which the ZnF domain contributes to the kinetics of nicked 

DNA ligation, nor do they invite the possibility that regions outside of the enzyme’s structured 

domains (ZnF, DBD, NTase, OB-fold domains) may contribute to catalysis. Using LIG3β as a 

surrogate for both nuclear isozymes, we investigated the role of the LIG3β ZnF domain by 

performing a systematic kinetic analysis of numerous N-terminal variants using a nicked DNA 

substrate. Highly conserved residues localized to the putative DNA binding interface of the ZnF 

domain were identified via multiple sequence and structural alignments. These candidate residues 

were targeted for mutagenesis with the intention of disrupting the ZnF•DNA interaction. 

Truncation mutants were also generated to identify degree by which the ZnF domain and DLR 

contribute to LIG3 ligation efficiency. The resulting modifications had minimal effects on 

maximal ligation rates (kcat), and steady-state requirements for ATP.  However, Mg2+ affinities 

were strengthened by the disruption and removal of the ZnF domain. Removal of the ZnF reduced 

ligation efficiency (kcat/KM,DNA) by 3-fold. A similar 3-fold reduction was observed among the 
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enzymes containing point mutations along the ZnF•DNA binding interface, suggesting the point 

mutations drastically reduced the DNA binding affinity of the ZnF domain. Strikingly, removal of 

the DLR reduced LIG3 catalytic efficiency by an additional 3-fold, suggesting that this linker 

region contributes to DNA binding. This kinetic analysis indicates that the N-terminal region of 

LIG3, in its entirety, contributes to the ligation efficiency of nicked DNA substrates. 

 

Kinetic analysis of LIG1 and LIG3 double-strand break ligation 

LIG3 and LIG4 have long been accepted as the enzymes responsible for repairing DNA 

DSBs by rejoining the phosphodiester backbone (5). Recent genetic experiments in LIG4 deficient 

B cells have revealed surprising similarities when either LIG1 or LIG3 is deleted, suggesting LIG1 

is capable of DSB ligation (3, 4). To follow up on these observations, we investigated the DSB 

repair activities of LIG1 and LIG3 using in vitro biochemical assays. We reported that LIG1 has 

robust end-joining efficiency on blunt-end and 3’-overhang breaks that approaches the efficiency 

of LIG3 under optimal conditions. Surprisingly, the activity of LIG1 is attenuated at physiological 

Mg2+ concentrations. LIG1 end-joining efficiency was enhanced by molecular crowding agent 

polyethylene glycol, a polymer commonly used to simulate the crowded environment of a cell. 

Interestingly, LIG3 has similar efficiencies on 3’ or 5’ overhang substrates whereas LIG1 has a 

strong preference for 3’-overhang substrates. Under all conditions tested, LIG3 shows greater 

affinity for DSB substrates than LIG1. Remarkably, LIG3 was capable of ligating both strands of 

a DSB in a single binding encounter and we report the first transient kinetic analysis for DSB 

ligation by a DNA ligase. Due to the weaker DNA binding affinity of LIG1, we observed 

significant abortive ligation that varies depending on polarity and sequence context of the cohesive 
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end. Taken together, these results redefine our understanding of the substrate specificity of human 

LIG1 and LIG3 and broaden our understanding of alternative end-joining. 

 

A Real-Time DNA Ligase Assay Suitable for High Throughput Screening  

The ATP-dependent mammalian DNA ligases catalyze the formation of a single 

phosphodiester bond between adjacent DNA molecules via a conserved three-step chemical 

mechanism. Historical approaches used to monitor DNA ligation activity to obtain kinetic 

parameters are not conducive to high-throughput screening of small-molecule libraries. We 

reported the development and validation of a robust real-time fluorescence-based ligation assay 

that is amendable to high-throughput screening of small-molecule libraries. To test the sensitivity 

and reliability of the assay, steady-state kinetic parameters of LIG1 and LIG3β were measured in 

parallel and report ATP and Mg2+ concentration dependences in close agreement to those 

previously reported (1, 2). The assay was also converted to a discontinuous format, facilitating the 

screening of chemical libraries to identify novel ligase inhibitors. During the writing of this thesis, 

I have had the opportunity to collaborate with the Newman laboratory to perform a high-

throughput screen of >100,000 small-molecule compounds at the University of Michigan’s Center 

for Chemical Genomics (CCG) at the Life Sciences Institute. Employment of the assay (with slight 

modifications) has reproducibly yielded Z’ scores of at least 0.8. 
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Future directions 

 

Characterization of the LIG3α•XRCC1 complex 

LIG3α is constitutively bound to XRCC1 outside of the mitochondria (20), suggesting the 

interaction between the two proteins is essential for the enzyme’s stability (21). Our current 

characterization of LIG3α in the absence of XRCC1 reflects on the essential mitochondrial activity 

of the protein, as XRCC1 is not localized to the mitochondria  (2, 22, 23). We are perfectly poised 

to determine how the presence of XRCC1 influences LIG3 single- and double-strand break ligation 

parameters. Since XRCC1 is known to interact with numerous DNA repair proteins, including 

polymerase beta (Polβ) (24), we are interested in determining how LIG3α activity may be coupled 

to the activity of Polβ in an XRCC1 dependent manner. Investigating the protein-protein 

interactions relevant for the base excision repair pathway may reveal functional advantages to 

protein-protein interactions during DNA repair. 

 

Mechanistic analysis of LIG1 and LIG3 catalyzed end-joining  

An interesting area of research would entail the elucidation of the mechanism(s) by which 

LIG1 and LIG3 perform DSB ligation. The data presented in Chapter 4 provided new insights, but 

also leaves several key mechanistic questions unanswered. For example, is there a preferred order 

of substrate binding and to what extent do ligases stabilize a synapse between ends? In addition to 

better understanding the mechanism(s) by which the enzymes engage DNA ends to catalyze DSB 

ligation faithfully, it is of interest to investigate their fidelity during DSB ligation. The design of 

various DSB substrates that result on the formation of gaps and mismatches upon ligation is needed 

to understand similarities and differences in LIG1 and LIG3 catalyzed end-joining fidelity. A 
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recent study has claimed the presence of ribonucleotides at a DNA break increased the end-joining 

activity of LIG4 (25). It is unclear whether this observation is unique to the LIG4 dependent 

nonhomologous end-joining pathway or conserved among the human DNA ligases. Further 

investigation of the double-strand DNA break ligation characteristics of LIG1 and LIG3 will 

provide insight into the degree by which the enzymes participate in the alternative end-joining 

pathway. Although the alternative end-joining pathway repairs relatively few double-strand DNA 

breaks when compared to the LIG4-dependent nonhomologous pathway, the mechanisms by 

which DNA is repaired is poorly understood. Interestingly, cancers exhibiting deficiencies in the 

nonhomologous end-joining and/or homologous recombination pathways become increasingly 

dependent on the alternative end-joining pathways within the cell (5, 26). Understanding the 

capabilities of the enzymes required for alternative end-joining will be invaluable for 

characterizing and defining the various mechanisms that drive carcinogenesis. 

 

Influence of the N-terminal ZnF domain on SSB and DSB ligation 

As described in Chapter 4, chloride anions differentially influenced LIG1 and LIG3 

catalytic efficiency in a concentration dependent manner. We established that an alternative salt 

anion (acetate) does not have the inhibitory effects of chloride, suggesting acetate is better suited 

for measuring enzyme activity under various salt concentrations. Our initial analysis of the LIG3 

N-terminal variants was conducted in the presence of chloride anions (Chapter 3) to directly 

compare these proteins to the previously reported values of the LIG3 isoforms and LIG1 (Chapter 

2) (1, 2). However, comparing SSB ligation characteristics of the LIG3 N-terminal variants to their 

respective DSB ligation characteristics (discussed below) will require that SSB ligation be 
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characterized in the absence of chloride. Complete datasets under both conditions will enable 

continuity in experimental conditions, minimizing the possibility of data misinterpretation.  

It is currently believed that the N-terminal ZnF domain is essential for LIG3 catalyzed end-

joining (14, 15, 19). Experiments investigating the contributions of these N-terminal regions on 

the kinetic parameters of DSB ligation are of interest for elucidating the mechanism by which 

LIG3 binds to and coordinates DNA ends prior to ligation. A complete kinetic analysis of the LIG3 

N-terminal variants may shed light on the mechanism by which LIG3 performs the end-joining. 

Further mutagenesis and the generation of alternative LIG3 N-terminal truncation variants could 

be useful in identifying the mechanism by which the DLR is contributing to the catalytic efficiency 

of LIG3.  

 

Utilization of metal cofactors by LIG3 

Initial analysis of LIG1- and LIG3-catalyzed SSB and DSB ligation indicates that the two 

enzymes possess different Mg2+ cofactor binding affinities (Chapters 2 and 4). Expanding upon 

the observation of LIG3 possessing weaker magnesium affinity than LIG1 during SSB ligation 

invites the possibility that LIG3 may be more promiscuous in utilizing alternative activating metal 

cofactors than LIG1. In fact, preliminary experiments indicate LIG3 can catalyze multiple-

turnover ligation while utilizing calcium as the activating metal cofactor, a capability not shared 

with LIG1. Furthermore, LIG3 possesses vastly different manganese concentration dependences 

than LIG1 for the adenylyl transfer and nick-sealing chemical steps of nicked DNA ligation. The 

increased promiscuity for metal cofactors and different metal binding profiles of LIG3 suggest the 

enzyme is an ideal candidate for metal mixing experiments that could help elucidate the 

stoichiometry and roles of the metal cofactors utilized during catalysis.  
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Identification and characterization of ligase specific inhibitors 

Currently, the reported ligase inhibitors have poor chemical characteristics (reactive alkene 

moieties, low solubility and high IC50 values) (7, 27). Completion of a high-throughput small-

molecule inhibitor screen by the University of Michigan’s Center for Chemical Genomics at the 

Life Sciences Institute may lead to the identification of novel ligase inhibitors with better chemical 

characteristics. We initiated a high throughput screen of > 100,000 small-molecule compounds. 

After identifying compounds of interest, the inhibitors will need to be systematically evaluated to 

determine their IC50 values and modes of inhibition. Our interests in identifying LIG3-specific 

inhibitor are two-fold. Firstly, we would like to utilize ligase-specific inhibitors as tools to guide 

our understanding of their independent roles in the nucleus since the LIG3 gene is not found in 

genetically tractable organisms. Secondly (but not less importantly), the identification of LIG3-

specific inhibitors with promising pharmacological properties may establish a starting point for 

the development and treatment of cancer cells that are dependent on LIG3 activity for 

carcinogenesis (8).  
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