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ABSTRACT

In the current era of electronic health records (EHR), use of data to make in-

formed clinical decisions is at an all-time high. Although the collection, upkeep and

accessibility of EHR data continues to grow, statistical methodology focused on aid-

ing real-time clinical decision making is lacking. Improved decision making tools

generally lead to improved patient outcomes and lower healthcare costs. In this dis-

sertation, we propose three statistical learning methods to improve clinical decision

making based on EHR data.

In the first chapter we propose a new classifier: SVM-CART, that combines fea-

tures of Support Vector Machines (SVM) and Classification and Regression Trees

(CART) to produce a flexible classifier that outperforms either method in terms of

prediction accuracy and ease of use. The method is especially powerful in situa-

tions where the disease-exposure mechanisms may be different across subgroups of

the population. Through simulation, under settings with high levels of interaction,

the SVM-CART classifier resulted in significant prediction accuracy improvements.

We illustrate our method to diagnose neuropathy using various components of the

metabolic syndrome. In predicting neuropathy, SVM-CART outperformed CART

in terms of prediction accuracy and provided improved interpretability compared to

SVM.

In the second chapter, we develop regression tree and ensemble methods for mul-

x



tivariate outcomes. We propose two general approaches to develop multivariate

regression trees by: (1) minimizing within-node homogeneity, and (2) maximizing

between-node separation. Within-node homogeneity is measured using the average

Mahalanobis distance and the determinant of the covariance matrix. For between-

node separation, we propose using the Mahalanobis and Euclidean distances. The

proposed multivariate regression trees are illustrated using two clinical datasets of

neuropathy and pediatric cardiac surgery. In high variance scenarios or when the di-

mension of the outcome was large, the Mahalanobis distance split trees had the best

prediction performance. The determinant split trees generally had a simple structure

and the Euclidean distance metrics performed well in large sample settings. In both

applications, the resulting multivariate trees improve usability and validity compared

to predictions made using multiple univariate regression trees.

In the third chapter we develop a sequential method to make prediction using

shallow (large-scale EHR) data in tandem with deep (health system specific) patient

data. Specifically, we utilize machine learning based methods to first give prediction

based on a large-scale EHR, then for a select group of patients, refine prediction based

on the deep EHR data. We develop a novel framework that is time and cost-effective,

for identifying patient subgroups that would most benefit from a second-stage predic-

tion refinement. Final tandem prediction is obtained by combining predictions from

both the first and second stage classifiers. We apply our tandem approach to predict

extubation failure for pediatric patients that have undergone a critical cardiac op-

eration using shallow data from a national registry and deep continuously streamed

data captured in the intensive care unit. Using these two EHR data sources in tan-

dem increased our ability to identify extubation failures in terms of the area under

the ROC curve (AUC: 0.639) compared to using just the national registry (AUC:

xi



0.607) or physiologic ICU data (AUC: 0.634) alone. Additionally, identifying a spe-

cific patient subgroup for second stage prediction refinement resulted in additional

prediction improvement, as opposed to giving each patient a deep-data prediction

(AUC: 0.682).
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CHAPTER I

Introduction

In healthcare delivery settings, accurate and informed decisions can improve pa-

tient care and reduce unnecessary healthcare cost. For the past several years, the

collection, upkeeping and accessibility of electronic health records (EHR) has grown,

allowing clinicians to utilize a breadth of data for patient diagnosis and treatment

[1,2]. Although the ability to use EHR in developing clinical decision support tools is

at an all-time high, often the statistical methodology falls short in terms of developing

tools that have clinical validity and applicability.

The ideal prediction tools for clinical decision support must satisfy a few criteria.

First, they must be practical, easy to implement, and allow clinicians to make real-

time predictions. Secondly, they must possess strong predictive attributes and yield

reliable predictions for clinical use. Finally, resulting classifiers must balance the

aforementioned predictive ability with clinical validity and clinical interpretability.

Tools that lack clinical validity and interpretability are less likely to be trusted by

clinicians and therefore: less likely to be implemented in practice.

In this dissertation, we propose three statistical learning methods to improve pre-

diction in the clinical setting using EHR data. In Chapters 2 and 3, we develop

methods that can be used to produce clinically valid, practical and reliable tools.

1
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In Chapter 4, we develop an approach to leverage multiple data sources to improve

the reliability when making prediction with EHR. The overarching goal of this dis-

sertation is to develop statistical methods that aid in clinical decision making and

subsequently improve patient care and outcomes.

Tree based methods such as Classification and Regression Trees (CART) are sta-

tistical learning tools that have become very popular in biomedical research [3-7].

Tree based methods have the ability to uncover hidden interactions in complex data

scenarios, and often yield practical and easy to use tools for diagnostic and prog-

nostic classification. However, due to the rectangular splits implemented in CART,

there are scenarios in which tree based methods yield classifiers with poor predictive

performance. In Chapter 2 of the dissertation, we propose a novel method (SVM-

CART) that combines features of support vector machines (SVM) and CART to

produce a more flexible classifier that has the potential to outperform either method

in terms of accuracy (reliability) and simplicity. SVM-CART performs especially

well when the disease-exposure mechanism is different across subgroups of the pop-

ulation. In such settings, SVM-CART results in improved prediction accuracy and

clinical interpretability. Using extensive simulations, we demonstrate the predictive

performance of the SVM-CART classifier under various clinical scenarios. Finally,

we illustrate our method to diagnose neuropathy using various components of the

metabolic syndrome.

Simultaneous prediction of multivariate outcomes is critical in many clinical ap-

plications. Multivariate prediction is needed when a diagnosis is based on multiple

measures of the same intrinsic condition or when there are multiple outcomes from

the same clinical domain. An example is in neurology, where in order for a clin-

ician to give an assessment of neuropathy, they would have to take into account
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multiple measures of the disease (e.g. many nerve conduction measures). Current

approaches to analyzing such outcomes rely on creating several univariate trees or

creating multivariate trees that fail to account for the inherent correlation structure.

These approaches may have several limitations. Specifically, as the dimension of the

multivariate outcome grows, the trees lose practical applicability in the clinic setting.

Additionally, univariate trees may have disparate sets of covariates, affecting clinical

interpretation. In Chapter 3, we propose two general tree methods for multivariate

outcomes. First, we grow regression trees by maximizing within-node homogene-

ity. Specifically, at each step of the splitting process, we use the determinant and

the average Mahalanobis distance of the empirical covariance matrix as within-node

impurity measures. Our second approach focuses on maximizing the between node

separation in the daughter nodes resulting from a split. We measure between node

separation using the Mahalanobis, Euclidean and standardized Euclidean distances.

The proposed methods are assessed using an extensive simulation study. Finally, we

illustrate our methods using data from two clinical studies. In the first application,

we build a multivariate regression tree to predict 3 measures of nerve conduction

that are used as a battery of tests to diagnose neuropathy. In the second appli-

cation, we predict post-operative length of stay in 3 phases of hospitalization for

pediatric patients who undergo a cardiac operation.

Large scale, multi-center, electronic health records (EHR) offer an incredible op-

portunity to assess the quality of health services and improve patient outcomes [8-15].

Examples of such EHR include hospital insurance claims data and multi-center clin-

ical registries. Since these data are collected across multiple sites/institutions, the

EHRs typically capture broad-range (shallow) data that may be lacking physiologi-

cal and disease-specific clinical variables. Therefore, prediction models built on large
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scale EHR may only yield modest predictive attributes. The latter can be enhanced

by taking advantage of deep data available in a single health center, e.g. after a

patient undergoes an operation or treatment. In Chapter 4, we develop a tandem

prediction approach, taking into account both shallow and deep EHR resources to

improve prediction. First, we utilize a toolbox of machine learning (ML) classifiers

to give an initial risk prediction based on the large scale EHR data. We then de-

velop a novel framework that is time and cost-effective for identifying subgroups that

would most benefit from a second stage prediction based on deep data. Final tan-

dem prediction is obtained by combining predictions from both the first and second

stage classifiers. We illustrate our proposed approach to predict extubation failure

for pediatric patients following a critical cardiac operation.



CHAPTER II

SVM-CART for Disease Classification

Classification and regression trees (CART) and support vector machines (SVM)

have become very popular statistical learning tools for analyzing complex data that

often arise in biomedical research. While both CART and SVM serve as powerful

classifiers in many clinical settings, there are some common scenarios in which each

fails to meet the performance and interpretability needed for use as a clinical decision-

making tool. In this paper, we propose a new classification method, SVM-CART,

that combines features of SVM and CART to produce a more flexible classifier that

has the potential to outperform either method in terms of interpretability and predic-

tion accuracy. Furthermore, to enhance prediction accuracy we provide extensions

of a single SVM-CART to an ensemble, and methods to extract a representative

classifier from the SVM-CART ensemble. The goal is to produce a decision-making

tool that can be used in the clinical setting, while still harnessing the stability and

predictive improvements gained through developing the SVM-CART ensemble. An

extensive simulation study is conducted to asses the performance of the methods

in various settings. Finally, we illustrate our methods using a clinical neuropathy

dataset.

5
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2.1 Introduction

Statistical learning methods such as decision trees and support vector machines

have become very popular tools for analyzing complex data that often arise in

biomedical research [3-7,16-19]. Classification and Regression Trees (CART) are

useful statistical learning tools because they allow for intuitive and simple disease

classification by recursively partitioning the covariate space [3-7]. Support vector

machines (SVMs) are non-probabilistic supervised learning procedures that create a

multi-dimensional hyperplane to partition the covariate space into two groups allow-

ing for classification [5,16-19].

While both CART and SVM serve as powerful classifiers in many clinical settings,

there are some common scenarios in which both fail to meet the performance and

interpretability needed for application as a decision-making tool. These scenarios

often occur when there are different disease-exposure mechanisms in subgroups of

the population. The following scenarios describe some pathological examples where

SVM and CART fail to meet the above criteria.

2.1.1 Scenario 1: Disease Outcome, Patient Gender and two Continuous Exposure
Variables

In Figure 2.1a, the exposure-disease mechanism is very different between males

and females. The gender-outcome subgroups are represented by shape and the con-

tinuous exposure variables are in the x and y axis of the plot.

The dashed line in Figure 2.1a represents the split from a linear SVM and the

solid line represents the single split from CART. The SVM splits the data down

the middle of continuous covariate 1 and has a 46% misclassification rate. CART

performs the same with a 46% misclassification rate. Visually, it is simple to classify

the patients into disease and control groups, but both methods fail to perform this
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simple task.

2.1.2 Scenario 2: Disease Outcome, Patient Gender, Smoking Status and two Con-
tinuous Exposure Variables

In the second example, in addition to the gender groups and two continuous

covariates, we have the additional binary covariate: smoking status. Figure 2.1b

shows the CART and SVM classifiers: the solid lines represent the CART splits in the

two-dimensional continuous exposure covariate space and the dashed line represent

the hyperplane from the SVM classifier.

The CART splits perform slightly better this time with a misclassification rate of

34%. SVM still has a misclassification rate of 46%. We also see that the CART tree

becomes quite complicated quickly, but in the end, still produces a relatively poor

performing classifier.

Classification scenarios such as the two presented above provide motivation for

our research. In this paper, we propose a new classification method that combines

features of SVM and CART to allow a more flexible classifier that has the potential

to outperform either method in terms of interpretability and prediction accuracy.

Ultimately our goal is to develop a tool that can be used in the clinical setting for

decision-making.

The literature on combination classifiers is somewhat sparse. Xu et al. (1992) de-

scribed methods of combining classifiers to improve handwriting recognition. These

authors propose a combination classifier that aggregates predictions across many dif-

ferent types of classifiers [20-22]. Our proposed method differs from Xu et al. in that

we exploit specific aspects of each classifier in tandem to create a new single classi-

fier [20-22]. While many different classifiers could be considered for use in tandem,

the choice of CART and SVM was motivated by the clinical study in our context.
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Figure 2.1: Results from SVM and CART for Simulated Scenarios



9

In neurology, the mechanistic pathway towards the disease polyneuropathy can be

different amongst gender/glycemic subgroups of the population. CART was chosen

as the first classifier because it offers a very natural way of subgrouping patients and

SVM was specifically chosen since it is non-probabilistic and complements CART by

overcoming issues with rectangular splits that often plague tree based methods. Ad-

ditionally, because CART and SVM are two of the most well known non-parametric

approaches in the clinical setting, the methods will be more approachable by clin-

icians who will ultimately use this method to make clinical decisions. The binary

decision rule generated by CART is attractive to clinicians; This is how clinicians

'think' and it is therefore easy for them to bin patients in the fashion that CART

works.

There is a growing literature for combining classification trees with paramet-

ric models, often implemented at the terminal nodes. Additionally, methods have

been developed for growing trees to find treatment-subgroup interactions. Exam-

ples include GUIDE (Loh), CRUISE (Kim and Loh), LOTUS (Chan and Loh),

MOB (Zeileis), STIMA (Dusseldorp), PALM (Seibold), PPTree (Lee) and Interac-

tion Trees (Su) [23-30]. In certain scenarios, these methods take a significant step to

improve prediction accuracy compared to a typical classification tree by overcoming

issues with perpendicular splits, finding important interaction subgroups and apply-

ing parametric models for inference. Our proposed method differs from the earlier

works in that we use a fully non-parametric approach combining two classifiers to

capture likely different disease-exposure mechanisms amongst subgroups of the pop-

ulation. In our proposed method, we elicit clinical information for covariate inputs

into the CART portion of the classifier, without having to evaluate every pairwise

interaction. By focusing on a priori knowledge-driven interactions, our resulting clas-
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sifier is more nuanced in its application. The overall goal of the proposed method is

to develop a valid, interpretable, and easily usable tool for prediction in the clinical

setting.

This paper is organized as follows: Section 2.2 describes the proposed methodol-

ogy, SVM-CART. Section 2.3 describes ensemble methods for SVM-CART. In Sec-

tion 2.4, we perform an extensive simulation to asses the prediction performance of

our proposed SVM-CART classifier under various scenarios. Section 2.5 illustrates

an application of our methodology to create a classifier for neuropathy. Lastly, con-

cluding remarks and discussion are provided in Section 2.6.

2.2 Methodology

2.2.1 Classification and Regression Trees

First, we introduce some terminology that will be used to describe a classification

tree. A classification tree T has multiple nodes where observations are passed down

the tree. The tree starts with a root node at the top and continues to be recursively

split to yield the terminal nodes at which stage no further split is prescribed. The

intermediate nodes in the tree between the root node and terminal nodes are referred

to as internal nodes. We specifically denote the set of terminal nodes as T̃ and the

number of terminal nodes is denoted as |T̃ | . In CART, a class prediction is given to

each observation based on which terminal node it falls into.

In growing a tree, the natural question that arises is how and why a parent node is

split into daughter nodes. Trees use binary splits, phrased in terms of the covariates,

that partition the covariate space recursively. Each split depends upon the value of

a single covariate. The partitioning is intended to increase within-node homogeneity.

Goodness of a split must therefore weigh the homogeneities in the two daughter

nodes. The extent of node homogeneity is measured using an 'impurity' function.
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Potential splits for each of the covariates are evaluated, and the covariate and split

value resulting in the greatest reduction in impurity is chosen.

The impurity at proposed node h is denoted as i(h) and the probability that a

subject falls into node h is P (h), where P (h) is estimated from the sample proportions

in the training data. Specifically, for a split sεS at node h, the left and right daughter

nodes are denoted as hL and hR respectively. Where S is the set of all possible splits.

The reduction in impurity is calculated as follows: ∆I(s, h) = i(h) − P (hL)i(hL) −

P (hR)i(hR). For binary outcomes, i(h) is measured in terms of entropy or Gini

impurity [3,4]. The splitting rule that maximizes ∆I(s, h) over the set S of all

possible splits is chosen as the best splitter for node h.

2.2.2 Support Vector Machines

Support Vector Machines create separating hyperplanes to give class-level predic-

tions. The SVM hyperplane takes a small or large number of covariates to create a

hyperplane that can be used to classify patients into outcome groups [16-19].

Let yi be the binary outcome for patient i, and xi the p × 1 vector of covariates

for the ith patient. Then we denote x as the p× n matrix of continuous covariates.

SVMs create a hyperplane of the form:

H = x : w′x+ b = 0

where wεRp and bεR are the set of optimal weights corresponding to each continuous

covariate that construct the hyperplane. SVMs create the separating hyperplane by

maximizing the margin between the nearest p-dimensional data points on each side of

the hyperplane. In clinical data, we often do not have linearly separable data. To deal

with non-separable data we use the optimal soft-margin hyperplane which introduces

slack variables to penalize classification errors based on some predetermined weights
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[5,16,17]. The optimal soft-margin hyperplane is found by minimizing the following

objective function:

minw,b,ψ
1
2
||w||2 + C

n

∑n
i=1 ψi

subject to: yi(w
′xi + b) ≥ 1− ψi∀i and ψi ≥ 0∀i

The solution to the above minimization problem represents the optimal hyper-

plane. C represents the cost penalty assigned for a misclassified subject and ψi are

the slack variables that allow for this misclassification. Using Lagrangian multipliers,

αi ≥ 0, the optimal hyperplane is obtained as [5,16,17]:

ŵ =
∑n

i=1 α̂iyixi

b̂ = yi − ŵ′xi

2.2.3 SVM-CART

In the traditional CART method, all covariates of interest are considered for

tree building. For SVM-CART, we propose to employ CART to split based on

only the categorical covariates. The terminal nodes from CART are used to pass

along patients to subgroups. Support Vector Machines are developed on each of

the subgroups using the continuous covariates, thereby generating |T̃ | separating

hyperplanes.

The optimal hyperplane solution can now be written within the SVM-CART

framework as follows:

ŵT̃j
=
∑nj

i=1 α̂iyixi

b̂ = yi − ŵT̃j
′xi

where we have a unique solution for each of the T̃j terminal nodes created from

CART. For each patient i in terminal node T̃j , the classifier evaluates hyperplane
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j to determine classification: if ŵT̃j
′xi + b > 0 we assign patient i to group 1.

Alternatively, if ŵT̃j
′xi + b < 0 we assign patient i to group 0. With a strong

subgroup selection by CART, the terminal nodes may not be well mixed. If any of

the terminal nodes are pure and contain only patients from one outcome group, no

SVM is generated. For future prediction, patients that fall into these nodes are given

the same predicted outcome.

Results from the single SVM-CART classifier offer a clinician friendly and easy

to use tool by first distributing patients into different subgroups and then assigning

an outcome class prediction based on an array of continuous data features.

2.2.4 Hyperparameter Tuning

Class Weights for CART

The proposed SVM-CART allows for implementation of class weights within the

CART part of the method. For a rare disease, a user can put higher weight to the

disease cases to assist in the most useful classification. Using inverse proportions of

the cases and controls is a simple way to include weight for the CART part of the

SVM-CART classifier.

SVM Cost Parameter

The cost parameter C allows the user to control how costly misclassification is in

the creation of the SVM hyperplane. Large values of C generally result in a smaller

and harder margin hyperplane and conversely smaller cost results in a larger, softer

margin hyperplane. The cost parameter is chosen through a data-driven search. We

select the cost parameter by examining the test error using a cross validation pro-

cedure or by examining the out-of-bag error estimates from a bootstrapped sample.

In either case, a reasonable grid search over the range 10−5 to 104 allows the user
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to select the proper cost parameter for building the SVM within the SVM-CART

procedure.

Class Weights for SVM

There exist many scenarios in which we want to assign different misclassification

costs to each outcome group. We propose assigning an outcome-class specific cost

parameter by assigning weights to each of the outcome groups. Assigning weights to

the two outcome classes allows us to re-write the hyperplane minimization problem

as:

minwT̃j
,b ,ψ

1
2
||wT̃j

||2 + C+

nj+

∑nj+

i=1 ψi+
C−
nj−

∑nj−
i=1 ψi

where C+ = r+ ∗ C and C− = r− ∗ C. In other words, to assign a higher cost to

the misclassification of the disease outcomes, we do so by using the weights r− and

r+.

In SVM-CART, the inverse proportion of the cases and controls in each of CART's

terminal nodes is chosen to be that node's SVM class weights. Then, a data driven

search is performed to determine a weight multiplier, m, for the inverse proportion

weights (r−, r+). The final chosen weights for the SVM-CART are: C+ = m ∗ r+ ∗C

and C− = r− ∗C . The multiplier allows more flexibility in the class weights for the

support vector machines in each terminal node.

2.2.5 SVM-CART as a Clinical Tool

Clinical applicability is an important goal of our proposed method. For certain

data applications, our methodology is expected to provide a better performing yet

simpler classifier due to the ability to create non-rectangular splits.

Using the SVM-CART classifier is very straightforward. First a patient is passed

down the CART tree based on his/her characteristics until they are placed in one of
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the CART terminal nodes. Then, a linear equation is evaluated to classify patients

into the final terminal classification nodes. For a SVM-CART with k continuous

covariates, we evaluate an equation of the form:

IT̃j(x1 ∗ w1 + ...+ xk ∗ wk + b > 0)

where the indicator function IT̃j assigns patients to outcome 1 if x1 ∗ w1 + . + xk ∗

wk + b > 0 in terminal node j and to outcome 0 otherwise. There is a terminal

node classification equation for each of the subgroup terminal nodes T̃j created by

the initial CART. The exception would be the scenario where terminal node T̃j is

pure; in that case, we have a class prediction without a SVM classifier.

2.2.6 SVM-CART for Simulated Scenarios

For both simulated examples in Section 2.1 , SVM-CART yields a perfect classifier.

The CART portion in the first scenario splits on gender allowing us to create a perfect

linear SVM based on the two continuous covariates. In Scenario two, we first split

on smoking status and then by gender. Each of the four node groups from CART

then yields itself to a linear SVM classifier that produces perfect classification. The

results from the SVM-CART classifier in Scenario 2 are displayed in Figure 2.2.
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Figure 2.2: SVM-CART for Simulated Scenarios

2.3 SVM-CART Ensemble

2.3.1 Creating the SVM-CART Ensemble

Ensemble methods have become very popular in tree based applications, allowing

for creation of more stable trees that often lead to improved predictions [31-34]. An

ensemble method proposed in 1994 by Breiman involved bootstrap aggregating or

Bagging [31]. The premise of this method is to generate many bootstrap samples

of the data and create an individual classification tree from each of the bootstrap

samples. A final classification is determined by voting across all trees in the ensemble

[31-34].
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We develop an SVM-CART ensemble to enhance prediction accuracy. Specifi-

cally, we generate b bootstrap samples by sampling uniformly n observations with

replacement from the entire data of size n. On each of the b samples, we generate

a SVM-CART classifier. For each patient, the most common class prediction across

the b classifiers is the predicted outcome.

To obtain honest estimates of prediction accuracy, we derive error rates based

on the out-of-bag sample. For the jth SVM-CART classifier, the out-of-bag sample

consists of patients that were not included in the specific bootstrap sample used to

create the jth classifier. For each SVM-CART classifier in the ensemble, we make

a class prediction for only the patients in the out-of-bag sample. Finally, the out-

of-bag prediction for each patient is the most common predicted class across all

c ≤ b samples for which that patient was out-of-bag. The out-of-bag error rate for

a single bootstrap sample is calculated as the percentage of misclassified patients in

the out-of-bag sample. The out-of-bag error rate for the ensemble is calculated as

the percentage of misclassified patients based on the out-of-bag prediction.

2.3.2 Selecting the Most Representative Classifier from the Ensemble

Bagging the SVM-CART improves stability and prediction ability; however, we

lose the interpretability of a single classifier. This is a significant loss from a clinical

standpoint because ultimately, we want to produce a decision-making tool that can

be used in the clinic setting.

This section describes how to harness the stability and predictive improvements

gained through the SVM-CART ensemble while still producing a clinician friendly

tool. To obtain a usable prediction tool for the clinical setting, we attempt to extract

the single most representative classifier from the ensemble. We think of each SVM-

CART classifier as a point in a high-dimensional space and cluster the classifiers
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according to some measure of proximity. Note that this space is much more complex

than the Euclidean space, and distances between the classifiers can be quantified in

several ways. Any classifier in the above space can be identified by a finite set of

parameters, and these parameters could include the partition of the covariate space

and the predictions from each terminal classification node. We propose two such

metrics that are extensions of Banerjee et al. [35].

The first metric focuses on prediction proximity (i.e. similarity). Two classifiers

are similar if the predictions from them are the same for all subjects. Without loss

of generality, the distance between SVM-CART 1 and SVM-CART 2 is measured

using the metric:

d1(T1, T2) = 1
n

∑n
i=1(ŷ1i − ŷ2i)2

where ŷ1i is the class prediction for patient i from SVM-CART classifier 1.

The second metric focuses on how closely (i.e. similarly) the covariate space is

partitioned by two classifiers. Classifiers that are similar will place the same subjects

together in a terminal classification node and separate the same subjects in different

terminal classification nodes (i.e. SVM-CART 1 and 2 are similar if two patients

that are placed in the same terminal node by classifier 1 are also placed in the same

terminal node by classifier 2). Towards that end, we define a metric that captures

how subjects are clustered in the terminal classification nodes from SVM-CART. For

all
(
n
2

)
pairs of subjects, let I(T1(i, j)) be the indicator that patient i and patient j

are in the same terminal classification node from SVM-CART 1.

The distance metric is then defined as:

d2(T1, T2) =
∑

i>j

∑
j |IT1 (i,j)−IT2 (i,j)|

(n
2)

The factor
(
n
2

)
scales the metric to the range (0, 1) such that 0 indicates perfect
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agreement. A pair of subjects contributes a positive amount to d2 if and only if

one SVM-CART classifier places the subjects together and the other SVM-CART

classifier places them apart. Thus d2 is 0 if the two classifiers partition the covariate

space in exactly the same way.

The score D(T ) for a SVM-CART classifier T is computed by averaging the in-

dividual distance metrics between the classifier T and all other classifiers in the

ensemble. This is the average distance between T and all other classifiers in the

ensemble. So, a low score for a classifier indicates its similarity to all other classifiers

in the ensemble. The score D(T ) is computed for each of the distance metrics (i.e.

d1, d2 giving rise to scores D1(T ) and D2(T ) ) and the representative classifiers in

the ensemble are chosen based on the smallest D(T ) values.

2.4 Simulation Study

We compare performance of the SVM-CART classifier using several criteria over a

variety of simulation scenarios. We generated a binary outcome y based on a logistic

regression model with two categorical covariates: x1 ∼ bernoulli(0.3) and x2 ∼

multinomial(0.45, 0.15, 0.4), and four continuous covariates: x3 ∼ uniform(0, 5),

x4 ∼ N(7, 5), x5 ∼ weibull(0.5) and x6 ∼ N(1, 5).

Several tuning parameters were used to assess prediction performance under the

various simulation scenarios. First, we varied the sample size: n = {100, 500, 1000}.

Next, we assessed the impact that different levels of continuous-categorical covariate

interactions may have on prediction performance. Specifically, we assess prediction

performance under small to large interaction effect sizes as well as in the absence

of any interaction between the categorical and continuous covariates. Lastly, we

examine how varying degrees of the main effects of the categorical covariates influence
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prediction performance.

Specifically, we generate data using the following underlying model: logit(p) =

Xα + Wβ, where p = P (y = 1|X,W), where X is the design matrix for the main

effects and W is the matrix of interactions. The fixed α and β values are listed in

Table 2.1. These give rise to varying main and interaction effects as described above.

The binary outcome is generated as y ∼ bernoulli(p).

In a separate simulation, we generated data from a true underlying SVM-CART

type structure. In this set-up, the tree first splits patients by x1. Patients with x1 = 1

were further split by x2 (1 vs. 2,3). For patients with x1 = 0, those with x2 = 3 were

split from x2 = 1 or x2 = 2. For each of these four terminal nodes created by the true

underlying tree, we generate data from node-specific logistic regression models. The

data generating structure is displayed in Figure 2.3. We examine scenarios where the

β coefficients were different across the four terminal nodes (Figure 2.3a) and similar

across the four terminal nodes (Figure 2.3b).
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Table 2.1: Beta Coefficients for the Data Generated from Logistic Regression Models Under Various
Scenarios

Interaction Effect
None Low Moderate High

Main Effects of Categorical Covariates
Beta Values Covariate High Low High Low High Low High Low
α0 Intercept* α0 α0 α0 α0 α0 α0 α0 α0

α1 x1 4.7 2.7 4.7 2.7 4.7 2.8 4.7 2.7
α2 x21 8.05 4.05 8.05 4.05 8.05 -4.05 8.05 4.05
α3 x22 -8.35 -4.35 -8.36 -4.36 -8.05 -4.36 -8.36 -4.36
α4 x3 -1 -1 -0.7184 -0.7184 -1 -1 8 8
α5 x4 -.5 -.5 0.317 0.317 0.5 0.5 2 2
α6 x5 2 2 0.215 0.215 2 2 5 5
α7 x6 4 4 0.695 0.695 4 4 -7 -7
β1 x1 ∗ x21 0 0 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2
β2 x1 ∗ x22 0 0 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9
β3 x3 ∗ x1 0 0 0.4934 0.4934 6 6 -9 -9
β4 x3 ∗ x21 0 0 1.5764 1.5764 -4 -4 -16 -16
β5 x3 ∗ x22 0 0 0.6203 0.6203 -2 -2 -4 -4
β6 x3 ∗ x1 ∗ x21 0 0 -1.21143 -1.21143 0 0 24 24
β7 x3 ∗ x1 ∗ x22 0 0 -1.1303 -1.1303 0 0 14 14
β8 x4 ∗ x1 0 0 0.229 0.229 -2 -2 -4 -4
β9 x4 ∗ x21 0 0 -0.591 -0.591 1 1 -1 -1
β10 x4 ∗ x22 0 0 -0.215 -0.215 0.5 0.5 -1 -1
β11 x4 ∗ x1 ∗ x21 0 0 -0.909 -0.909 0 0 1 1
β12 x4 ∗ x1 ∗ x22 0 0 0.0572 0.0572 0 0 1 1
β13 x5 ∗ x1 0 0 0.772 0.772 -3 -3 -8 -8
β14 x5 ∗ x21 0 0 -0.318 -0.318 1 1 -4 -4
β15 x5 ∗ x22 0 0 -1.189 -1.189 -5 -5 -5 -5
β16 x5 ∗ x1 ∗ x21 0 0 -0.658 -0.658 -2 -2 9 9
β17 x5 ∗ x1 ∗ x22 0 0 0.5689 0.5689 7 7 14 14
β18 x6 ∗ x1 0 0 -1.423 -1.423 -5 -5 11 11
β19 x6 ∗ x21 0 0 -0.15 -0.15 -3 -3 15 15
β20 x6 ∗ x22 0 0 -0.895 -0.895 -8 -8 10 10
β21 x6 ∗ x1 ∗ x21 0 0 0.974 0.974 1 1 -14 -14
β22 x6 ∗ x1 ∗ x22 0 0 1.652 1.652 12 12 -19 -19

*Where α0 centers the data at 0 to ensure a well mixed sample
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Figure 2.3: Data Simulated from Underlying SVM-CART Like Structure

For each of the above scenarios, we generated 1,000 simulated datasets. We split

each dataset into a training and testing set by randomly assigning 70% of the sample

for training and 30% for testing. To assess predictive performance, we calculated

overall prediction accuracy (ACC), sensitivity (TPR), specificity (TNR), positive

predictive value (PPV) and negative predictive value (NPV) based on the testing set.

Lastly, we obtained average size of the classifiers based on the number of terminal

nodes for CART, and the number of non-orthogonal dimensions of the hyperplane

for SVM. For SVM-CART, we obtained both the number of terminal nodes created

by the CART part of the classifier, and total number of SVM dimensions created for

each of the CART terminal nodes.

2.4.1 Simulation Results

Simulation results for data generated from logistic regression models (Table 2.1

coefficients) are displayed in Table 2.2. As sample size increases, each of the three

methods show improvement in prediction performance. CART and SVM-CART
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demonstrate significant prediction gains (SVM-CART: 6.9% and CART: 8.9% aver-

age ACC increase from n = 100 to n = 1000) while SVM has only modest gains

(3.9% average ACC increase from n = 100 to n = 1000). Additionally, the largest

improvements in prediction performance for SVM-CART occurred when sample sizes

increased from n = 100 to n = 500, with only minor improvements occurring when

sample size increased from n = 500 to n = 1000. SVM-CART and CART classifiers

also increased in size as n increased.

SVM-CART generally had better prediction performance when the main effects

of the categorical covariates were large. When the main effects of the categorical

covariates were large, the CART part of the SVM-CART classifier builds slightly

larger trees. SVM performed similarly in the scenarios with high/low main effects

of the categorical covariates and CART had somewhat modest improvement in the

setting with high main effects.

In the presence of interactions, the SVM-CART classifier outperforms SVM or

CART alone. The prediction gains increase as the interaction effect sizes increase.

When there were no interactions, SVM-CART performs similar to CART but worse

than SVM alone in terms of prediction ability.

When there are distinctly different disease-exposure mechanisms in different sub-

groups of the population (Figure 2.3 setting), SVM-CART demonstrates the best

prediction performance. This was consistently true across all sample sizes when the

the disease-exposure effects varied substantially between the 4 subgroups (generated

from Figure 2.3a), where SVM-CART outperformed CART or SVM alone in terms of

ACC, PPV, NPV, TPR and TNR. When the continuous disease-exposure effects did

not vary much between the 4 subgroups (generated from Figure 2.3b): SVM-CART

still performed better than CART but almost identically to SVM alone.
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In conclusion, there are clinical scenarios in which SVM or CART alone may

have low predictive performance. These typically arise when there are large and

complex interactions that exist in the data, specifically, when there are different

disease-continuous exposure mechanisms amongst subgroups of the population. In

simulations, we observed that as these interaction effects increase, SVM-CART may

have modest to substantial prediction gains compared to SVM or CART alone.

While prediction performance is an important aspect to consider when assess-

ing the performance of SVM-CART, with the ultimate goal of aiding in clinical

decision support: interpretability and clinical validity are also important consider-

ations. In scenarios with complex interactions, SVM-CART may provide enhanced

interpretability compared to SVM or CART alone. The improved interpretability

is demonstrated in our application to build a classifier for polyneuropathy in the

following section.

2.5 Polyneuropathy Classification in an Obese Cohort

2.5.1 Data Collection and Background Information

Polyneuropathy is a painful condition affecting 2-7% of the adult population

[36,37]. The most common etiology of the disease is diabetes. However, it is hy-

pothesized that other components of metabolic syndrome can play a role in the

etiology of polyneuropathy [15,38,39]. In this section, we take an in-depth look at

the classification of neuropathy using patient measures from the metabolic syndrome.

Data were collected from obese patients recruited to the University of Michigan

Investigational Weight Management Cohort. There were 115 patients recruited be-

tween November 2010 and December 2014. Inclusion criteria included age 18 years

or older and a body mass index of at least (BMI) 35kg/m2 or 32kg/m2 if they had

one or more medical conditions in addition to obesity.
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Table 2.2: Results Based on Data Generated from a Logistic Regression Model
Main Effects of the Categorical Covariates
Low High

Interaction
Effect

Sample Size (N) Classifier ACC PPV NPV TPR TNR Size ACC PPV NPV TPR TNR Size

High

100 CART 0.72 0.69 0.74 0.70 0.73 3.5 0.70 0.70 0.69 0.70 0.70 3.6
100 SVM 0.75 0.75 0.74 0.72 0.77 7.0 0.75 0.76 0.74 0.75 0.76 7.0
100 SVM-CART 0.75 0.76 0.74 0.71 0.79 11.6,2.9 0.75 0.77 0.73 0.72 0.77 12.1,3.0
500 CART 0.82 0.83 0.81 0.80 0.84 4.0 0.82 0.83 0.82 0.82 0.83 10.5
500 SVM 0.78 0.79 0.78 0.76 0.81 7 0.80 0.79 0.81 0.81 0.80 7.0
500 SVM-CART 0.87 0.89 0.86 0.84 0.90 16.1,4.0 0.82 0.85 0.79 0.78 0.86 17.0,4.3
1000 CART 0.84 0.85 0.83 0.82 0.86 13.0 0.85 0.85 0.85 0.85 0.85 13.1
1000 SVM 0.84 0.84 0.83 0.81 0.86 7.0 0.79 0.80 0.78 0.78 0.80 7.0
1000 SVM-CART 0.90 0.92 0.88 0.87 0.92 16.6,4.2 0.82 0.85 0.80 0.78 0.86 18.4,4.6

Moderate

100 CART 0.72 0.71 0.73 0.65 0.78 3.3 0.73 0.81 0.63 0.74 0.72 3.3
100 SVM 0.82 0.80 0.83 0.79 0.84 7.0 0.82 0.85 0.80 0.84 0.80 7.0
100 SVM-CART 0.80 0.78 0.81 0.77 0.82 9.4,2.4 0.82 0.85 0.77 0.83 0.80 8.7,2.1
500 CART 0.80 0.79 0.80 0.75 0.84 9.8 0.80 0.85 0.74 0.81 0.80 9.6
500 SVM 0.84 0.83 0.85 0.82 0.86 7.0 0.84 0.87 0.80 0.86 0.82 7.0
500 SVM-CART 0.84 0.84 0.84 0.81 0.87 11.9,3.0 0.86 0.89 0.82 0.87 0.85 10.0,2.5
1000 CART 0.82 0.82 0.82 0.77 0.86 13.2 0.83 0.88 0.76 0.83 0.83 13.4
1000 SVM 0.84 0.83 0.86 0.83 0.86 7.0 0.85 0.87 0.82 0.86 0.84 7.0
1000 SVM-CART 0.86 0.85 0.86 0.83 0.88 12.0,3.0 0.87 0.90 0.84 0.88 0.86 10.1,2.5

Low

100 CART 0.69 0.69 0.70 0.70 0.69 3.8 0.68 0.68 0.67 0.69 0.66 3.8
100 SVM 0.79 0.79 0.79 0.79 0.79 7.0 0.78 0.78 0.78 0.79 0.77 7.0
100 SVM-CART 0.61 0.60 0.61 0.61 0.60 11.5,3.0 0.7 0.7 0.7 0.72 0.68 10.7,3.2
500 CART 0.81 0.81 0.82 0.82 0.81 11.4 0.81 0.81 0.81 0.82 0.8 10.8
500 SVM 0.81 0.81 0.82 0.82 0.81 7.0 0.81 0.8 0.81 0.83 0.79 7.0
500 SVM-CART 0.73 0.74 0.72 0.70 0.75 14.9,4.0 0.71 0.7 0.72 0.76 0.66 15.2,3.9
1000 CART 0.84 0.84 0.85 0.85 0.84 14.1 0.84 0.83 0.84 0.85 0.82 12.8
1000 SVM 0.83 0.83 0.82 0.82 0.83 7.0 0.81 0.8 0.82 0.83 0.79 7.0
1000 SVM-CART 0.74 0.74 0.73 0.72 0.75 15.7,4.0 0.71 0.66 0.77 0.81 0.61 16.0,4.0

None

100 CART 0.85 0.85 0.84 0.86 0.83 2.4 0.88 0.88 0.88 0.87 0.9 2.3
100 SVM 0.94 0.94 0.94 0.94 0.93 7.0 0.94 0.93 0.94 0.94 0.93 7.0
100 SVM-CART 0.85 0.88 0.83 0.84 0.87 9.8,2.5 0.9 0.9 0.9 0.88 0.91 9.0,2.3
500 CART 0.90 0.89 0.90 0.91 0.87 6.8 0.91 0.9 0.91 0.9 0.92 5.5
500 SVM 0.97 0.97 0.97 0.97 0.96 7.0 0.97 0.96 0.97 0.97 0.97 7.0
500 SVM-CART 0.87 0.90 0.84 0.85 0.90 11.5,2.9 0.94 0.94 0.95 0.94 0.95 7.6,1.9
1000 CART 0.91 0.91 0.91 0.92 0.89 8.6 0.92 0.92 0.92 0.9 0.93 6.9
1000 SVM 0.97 0.97 0.97 0.97 0.97 7.0 0.97 0.97 0.97 0.97 0.97 7.0
1000 SVM-CART 0.87 0.90 0.84 0.85 0.90 11.5,2.9 0.95 0.95 0.95 0.94 0.95 7.1,1.8

Table 2.3: Results Based on Data Generated from an Underlying SVM-CART Like Structure
Disease-Exposure Effects
Vary Across Subgroups Similar Across Subgroups

Sample Size (N) ACC PPV NPV TPR TNR Size ACC PPV NPV TPR TNR Size
100 CART 0.83 0.81 0.85 0.75 0.89 2.8 0.64 0.64 0.65 0.61 0.67 4.2
100 SVM 0.89 0.86 0.91 0.86 0.91 7.0 0.69 0.68 0.70 0.69 0.70 7.0
100 SVM-CART 0.88 0.85 0.90 0.84 0.91 6.6,1.7 0.75 0.74 0.75 0.73 0.76 10.8,2.7
500 CART 0.88 0.88 0.88 0.81 0.93 6.8 0.81 0.81 0.80 0.78 0.83 10.9
500 SVM 0.92 0.90 0.93 0.89 0.94 7.0 0.73 0.72 0.74 0.73 0.73 7.0
500 SVM-CART 0.91 0.89 0.92 0.88 0.93 4.9,1.2 0.84 0.86 0.83 0.80 0.88 12.0,3.0
1000 CART 0.89 0.90 0.89 0.82 0.94 9.1 0.84 0.86 0.83 0.81 0.87 13.3
1000 SVM 0.92 0.90 0.93 0.89 0.94 7.0 0.74 0.72 0.75 0.74 0.74 7.0
1000 SVM-CART 0.91 0.90 0.92 0.88 0.93 4.3,1.1 0.87 0.91 0.84 0.82 0.92 12.1,3.0
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Five components make up the metabolic syndrome: glycemic status, waist cir-

cumference, high-density lipoprotein (HDL), triglycerides and systolic blood pres-

sure (SBP). These five components along with patient's gender were used to create

a classification tool for polyneuropathy in these obese patients.

Previous research has found that many of the relationships between metabolic

syndrome factors vary depending on patient glycemic status. The varying disease

mechanisms within different glycemic subgroups make SVM-CART an ideal method-

ology in this setting. SVM-CART learns the distinct subgroups that may exist within

the metabolic syndrome-neuropathy mechanism to build a predictive tool.

Creating a strong clinician friendly classifier of polyneuropathy allows for greater

detection of neuropathy in certain patient subgroups and subsequently may improve

patient care. A neurologist has the greatest expertise to diagnose neuropathy. How-

ever, most patients with neuropathy are followed by their primary care physician who

may not have specific expertise in making this diagnosis. In contrast, the metabolic

syndrome components are easily measured by a wide range of clinicians. A good

classification tool based on the metabolic syndrome could target certain patient sub-

groups that are highly likely to have neuropathy based on their demographics and

metabolic profile. These patients could be referred for additional testing or consul-

tation with a neurologist.

The following section compares SVM-CART, SVM alone and CART alone (single

classifier as well as ensemble). The methods were compared based on both prediction

accuracy and interpretability.

Covariates in the study were gender (binary: male/female), glycemic status (cat-

egorical: normoglycemic, pre-diabetes, diabetes), and four continuous variables: sys-

tolic blood pressure (SBP, units=mmHg), triglyceride levels (TRIG, unit=mg/dL),



27

high-density lipoprotein levels (HDL, unit=mg/dL) and waist circumference (WC,

unit=cm). The primary outcome measure was the Toronto consensus definition of

probable polyneuropathy (two or all of the following: neuropathy symptoms, abnor-

mal sensory examination, and abnormal reflexes) as determined by a neuromuscular

specialist [38]. In this cohort, 27 patients were diagnosed with neuropathy while 88

patients were determined not to have neuropathy.

2.5.2 Determining Optimal Tuning Parameters

In this application, careful examination of the tuning parameters is especially

important because neuropathy is a rare event, even in this at risk, obese cohort.

For the CART part of the methodology we implemented inverse weights for the

neuropathy cases. Implementing these inverse weights gave proportionally higher

importance to the correct classification of the neuropathy cases in the dataset.

An empirical grid search was used to determine the optimal hyperparameters for

the SVM part of the SVM-CART classifier. Cost parameters ranging from 10−5

to 104 were considered. Within each terminal node created from the CART part,

the SVM cost parameter weights were chosen as the inverse proportion within that

terminal node subgroup. The cost weights were further extended by considering cost

weight multipliers from 0.1 to 10 by 0.1 to either amplify or reduce the class weights

on the cost parameters.

The optimal tuning parameters were selected by comparing prediction accuracy

for the out-of-bag estimates across 1,000 bootstrapped samples for the 900 different

cost/cost-weight multiplier scenarios. The classifiers were compared based on two

statistics: % correct case classification and % correct control classification. Based

on these statistics, the optimal cost parameter for SVM-CART was 100 and the

class weight multiplier was 1.9. Figure 2.4 shows the % correct classification for
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Figure 2.4: % Correct Classification Percentage for Tuning Parameter Selection

neuropathy and non-neuropathy patients based on SVM-CART. For SVM alone, the

weight multiplier of 1.5 and the cost parameter of 100 were chosen as the optimal

tuning parameters (figure not shown).

2.5.3 Comparison of SVM-CART, SVM and CART Single Classifiers

In this section, we compare the SVM-CART, SVM and CART classifiers based

on prediction accuracy, interpretability and simplicity. Previous research lead us

to believe that there are distinct subgroups based on glycemic status in this obese

population. In the SVM-CART methodology, we first create a tree based on the

patient gender and glycemic status. The resulting classifier is displayed in Figure 2.5.
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Figure 2.5: Single SVM-CART Classifier for Neuropathy

The first split was by glycemic status: normoglycemic patients were separated

from the pre-diabetes/diabetes patients. The normoglycemic patients were then

split based on gender, resulting in three distinct subgroups: normoglycemic male,

normoglycemic female and pre-diabetes/diabetes. These three groups of patients

were then passed along to create three distinct four dimensional hyperplanes based

on a linear soft margin SVM. The hyperplane was generated using each patient's

waist circumference size, HDL, triglyceride and SBP levels.

CART-alone considered all five metabolic components and gender as a categorical

variable, and produced a complicated tree with 10 terminal nodes. We determined

the prediction accuracy of each method using a 10-fold cross validation.

The results are presented in Table 2.4. In terms of clinical relevance, the CART

tree misses the most important predictor of neuropathy: glycemic status. In the tree

created by CART alone, glycemic status only enters the tree at a deep split (figure

not shown). Neuropathy case prediction accuracy (66.7% vs 70.4%) and overall
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prediction accuracy (53.9% vs 48.7%) were similar between SVM-CART and SVM

alone respectively. SVM correctly classifies 19 of the 27 neuropathy patients while

SVM-CART correctly classifies 18. SVM-CART correctly classifies 62/115 patients

overall compared to SVM which only correctly classifies 56/115.

Though the prediction accuracy was similar between SVM and SVM-CART,

SVM-CART was able to identify clinically meaningful subgroups which SVM alone

was not able to create. For the neuropathy classifier demonstrated in this application,

there are different mechanistic pathways to the disease within different subgroups of

the population. Specifically, it was hypothesized that the neuropathy-metabolic syn-

drome relationship was different across glycemic subgroups. SVM-CART's ability to

identify these subgroups give it enhanced interpretability compared to SVM alone.

2.5.4 Ensemble Classifier

Next, we attempt to improve prediction ability by creating an ensemble of clas-

sifiers. To compare the three methods, we examined the out-of-bag error rates.

Ensembles of the classifiers were built using 1,000 bootstrap samples from the entire

data.

Each of the three methods experience a boost in neuropathy classification per-

formance when predictions were averaged over the 1,000 classifiers in the ensemble.

SVM-CART gains 11.1% improvement in correct case classification, however there

is a 11.3% decrease in overall correct classification. In conclusion, the SVM-CART

ensemble outperforms the CART ensemble (77.8% vs 44.4% correct neuropathy clas-

sification) but is comparable to bootstrapped SVM correct neuropathy classification

(77.8% for both).
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Table 2.4: Prediction Accuracy Comparison of Various Classifiers

Method
% Correct
Neuropathy
Classification

% Correct
Overall
Classification

CART 51.9 59.1
SVM 70.4 48.7
SVM-CART
Single Classifier

66.7 53.9

SVM-CART
Ensemble

77.8 42.6

2.5.5 Representative Classifier

The ensemble of SVM-CART classifiers allows for a significant gain in neuropathy

prediction accuracy compared to a single SVM-CART classifier, but we lose some of

the interpretability. In this section, we select the most representative classifier from

the ensemble based on two similarity metrics. The representative classifier can be

used as a clinical decision-making tool. The first metric is based on the similarity

in class prediction. The SVM-CART classifier that was most representative in this

respect, is depicted in Figure 2.6. It is slightly different than the single classifier; we

split first by all three glycemic categories and then further divide the pre-diabetes

group by gender. We have four terminal nodes but only create three linear SVMs

because the normoglycemic group is pure with a class prediction of no neuropathy.



32

Figure 2.6: Most Representative SVM-CART Classifier from the Ensemble

The second similarity metric focuses on how patients are clustered within terminal

nodes. The most representative classifier in this respect (figure not shown) creates

six subgroups based on each gender by glycemic status subgroup.

2.5.6 Neuropathy Study Conclusions

In conclusion, a strong classifier for neuropathy using patient metabolic mea-

sures has the potential to improve patient care. SVM-CART produces an ideal

classifier that identifies different neuropathy-metabolic relationships across different

gender/glycemic subgroups.

SVM-CART outperforms CART and performs similarly to SVM in terms of pre-

diction accuracy both for the single classifier and ensemble. Using two similarity

metrics, we selected the two most representative classifiers from the SVM-CART en-

semble. The representative classifier provides a useful clinical tool while harnessing

the improved predictive ability of the ensemble.
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2.6 Discussion

Classification of disease continues to be an important aspect of analyzing human

health data. Classification trees and support vector machines have both become

popular tools for classifying patients into different disease groups. There are many

clinical scenarios where each of these two methods fail to meet standards in terms

of performance and applicability. Some of these common scenarios were highlighted

in Figure 2.1 and in the simulation study. We propose a new classifier SVM-CART,

that combines features of SVM and CART to allow for a more flexible classifier that

has the potential to improve prediction accuracy and model interpretability.

CART offers an intuitive and interpretable method for classification. However,

one significant drawback of CART is that it only allows rectangular splits that are

perpendicular to the covariate space. There are many clinical scenarios where a

non-rectangular split is more appropriate. In such scenarios, CART must create

a very complicated tree in order to achieve reasonable prediction accuracy. SVM-

CART can achieve similar or improved prediction performance with generally a more

parsimonious structure. The more parsimonious structure created with SVM-CART

provides a more interpretable decision making tool for clinicians.

The flexibility of SVM-CART allow it to uncover complex interactions among

the covariates. In simulations, in the presence of interaction, SVM-CART outper-

forms SVM or CART alone. The structure created by SVM-CART makes it a very

intuitive predictive tool in clinical scenarios where the disease-exposure mechanism

may be very different across patient subgroups. This was the case in our neuropa-

thy application, where it made clinical sense to create distinct classifiers based on

gender and glycemic status subgroups. SVM-CART's potential ability to find clini-
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cally meaningful subgroups can lead to enhanced interpretability compared to SVM

alone. When there is a priori clinical evidence to believe there are unique disease-

exposure relationships between subgroups of the population, SVM-CART will likely

have enhanced performance.

In settings where there is weak interaction, results from the simulation study

were mixed. Therefore, we do not recommend using SVM-CART as a complete

replacement for SVM or CART alone. In practice, it will be important to utilize

the expertise of clinicians to determine if complex interactions likely exist amongst

subgroups of the population for the clinical problem of interest. In such scenarios,

SVM-CART will improve prediction ability and interpretability.

One important goal of our methodology was to develop a practical and usable

tool for clinical decision making. We developed SVM-CART ensemble to improve

prediction accuracy and stability of the classifiers. Though the ensemble method

improved prediction accuracy, we lost the interpretability of a single SVM-CART

classifier. We proposed two metrics that were used to identify the most representative

classifier from the ensemble of SVM-CART classifiers. The resultant representative

SVM-CART provided an interpretable, easy to use and flexible classification tool.

While linear SVMs provided a simple extension in our case, using more intricate

kernel function SVM classifiers at each node has the potential to provide a powerful

boost in certain scenarios. These kernelized extensions of support vector machines

may allow for more flexible implementation of the SVM-CART method in non-linear

problems that often exist with high dimensional feature space. Due to the small

sample size of our neuropathy dataset, the kernel extensions did not perform as well

as the linear SVM splits in the presented application. The methodology presented

here can also be easily extended to multi-class outcomes.
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In this paper, we make a distinction between categorical vs. continuous covariates

in terms of how they are used in the SVM-CART classifier. In practice, a continuous

covariate may behave like a categorical variable or could be categorized into an

ordinal variable. If there is a priori evidence in the literature that different levels of

a continuous covariate result in subgroups where the disease-exposure mechanism is

different, then it should be added to the CART part of the classifier. One example

of this might be age; as different age groups might lead to very different exposure

mechanisms for various diseases.

The SVM-CART methodology presented here is one example of a composite clas-

sifier. In various clinical scenarios such as the ones presented in this research, using

a wide range of classifiers in tandem might achieve better performance. In this

research, CART was chosen as the first member of the composite classifier as it pro-

vided the most intuitive and flexible tool to separate patients into subgroups. Since

CART is non-probabilistic, we decided to combine CART with another member of

the general class of non-probabilistic classifiers. SVMs complement the rectangular

splits created by CART and are arguably the most popular method within the class

of non-probabilistic classifiers. Hence, we chose SVMs as the second member of the

composite classifier. Extending the general approach to include other classifiers is

an area of future research.



CHAPTER III

Regression Tree and Ensemble Methods for Multivariate
Outcomes

Tree-based methods have become one of the most flexible, intuitive, and pow-

erful analytic tools for exploring complex data structures. The best documented,

and arguably most popular uses of tree-based methods are in biomedical research,

where multivariate outcomes occur commonly (e.g. diastolic and systolic blood pres-

sure, periodontal measures in dental health studies, and nerve density measures in

studies of neuropathy). Existing tree-based methods for multivariate outcomes do

not appropriately take into account the correlation that exists in such data or do

not have the flexibility needed to make accurate prediction with complex data. In

this paper, we develop goodness of split measures for multivariate tree building for

continuous outcomes. We propose two general approaches to develop multivari-

ate regression trees: by minimizing within-node homogeneity and by maximizing

between-node separation. Specifically, we measure within-node homogeneity using

the average Mahalanobis distance and the determinant of the covariance matrix.

To measure between-node separation, we propose using the Mahalanobis distance,

Euclidean distance and standardized Euclidean distance. Furthermore, to enhance

prediction accuracy we extend the single multivariate regression tree to an ensemble

of trees. Extensive simulations are presented to examine the properties of our good-

36
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ness of fit measures. Finally, the proposed methods are illustrated using two clinical

datasets of neuropathy and pediatric cardiac surgery.
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3.1 Introduction

Prediction of multivariate outcomes is essential in many biomedical research prob-

lems. A multivariate prediction tool is required in scenarios where there are multiple

outcomes from the same clinical domain, or when a diagnosis is based on multiple

measures of the same intrinsic condition.

Currently, researchers wishing to use tree based methods to predict multivariate

outcomes have very limited options. The first and most obvious approach is to

build a series of univariate regression trees for each of the multivariate outcome

components, whereby prediction is made by using each univariate tree [3-5]. There

are two problems with this approach. First, as the dimension of the multivariate

outcome increases, the trees lose their usability as a clinical decision-making tool.

This is because to make predictions, a clinician has to evaluate a large number

of trees, which is both time consuming and complicated. Second, we fail to take

advantage of the correlation that likely exists between the multivariate outcomes. As

a result, we may fail to uncover a subset of common covariates that are correlated

with the multivariate outcome for the same underlying disease entity.

Earlier, De'Ath (2002) proposed a multivariate regression tree method using a

general impurity function [40]. At each split, De'Ath demonstrates the method by

building trees based on the covariate split that reduces the impurity in terms of the

average variance across each of the outcomes [40]. Reducing the average variance

of the outcomes is equivalent to choosing the split value that yields the maximum

impurity reduction in terms of the covariance matrix trace. Thus, De'Ath's method

only uses partial information from the covariance matrix and does not fully account

for the correlation between the multivariate outcomes. Later, Larsen (2004) extended
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the work by De'Ath and proposed building multivariate regression trees by measuring

node impurity as the median square-root of the Mahalanobis distances between the

multivariate outcomes in that given node [41].

In this paper, we develop methodology for growing trees for multivariate continu-

ous outcomes. Our proposed methods fall under two broad types of approaches. The

first approach focuses on finding splits that reduce within node impurity [3-5]. We

propose using the determinant of the covariance matrix and a flexible Mahalanobis

distance as measures of within node impurity. The second approach focuses on find-

ing splits that maximize between node separation in terms of the outcome [42,43].

We propose measuring between node separation using the Euclidean distance, stan-

dardized Euclidean distance and Mahalanobis distance.

This paper is organized as follows: Section 3.2 describes the methodology for

growing a multivariate tree using the above goodness of split measures. Section 3.3

describes methods for growing an ensemble of multivariate regression trees. Sec-

tion 3.4 provides a simulation study to assess the performance of our proposed mul-

tivariate tree methods. In Section 3.5, we illustrate our methodology to create a

classifier for neuropathy and then to predict pediatric ICU visit outcomes. Lastly,

in Section 3.6, we present concluding remarks and discussion.

3.2 Methodology

3.2.1 Univariate Classification and Regression Trees

We begin by introducing some terminology: a classification tree T has multiple

nodes where observations are passed down the tree. The tree starts with a root node

at the top and continues to be recursively split to yield the terminal nodes. At each

stage of the splitting process, a binary decision rule is used to split parent nodes

into two daughter nodes. The intermediate nodes in the tree between the root node
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and terminal nodes are referred to as internal nodes. We specifically denote the set

of terminal nodes as T̃ and the number of terminal nodes is denoted as |T̃ | . In

classification trees, a class prediction is given to each observation based on which

terminal node it falls into. In regression trees, the predicted value is the average

outcome of the respondents in each terminal node [3-5].

There are three basic elements for constructing a tree under the classification

and regression tree (CART) paradigm. These are: (1) tree growing, (2) finding

the 'right-sized' tree and (3) testing [3-5]. In growing a tree, the natural question

that arises is how and why a parent node is split into daughter nodes. Trees use

binary splits, phrased in terms of the covariates, that partition the covariate space

recursively. Each split depends upon the value of a single covariate. There are two

general approaches to tree building. The first and most common approach follows

that of Breiman, whereby a parent node is partitioned into two daughter nodes to

increase within-node homogeneity [3]. Goodness of a split must therefore weigh

the homogeneities in the two daughter nodes. The extent of node homogeneity is

measured using an 'impurity' function. Potential splits for each of the covariates are

evaluated, and the covariate and split value resulting in the greatest reduction in

impurity is chosen [3-5].

For a split sεS at node h, the left and right daughter nodes are denoted as hL and

hR respectively. The impurity at given node h is denoted as i(h) and the probability

that a subject fall into node h is P (h). P (h) is estimated from the sample proportions

in the training data. The reduction in impurity is calculated as follows: ∆I(s, h) =

i(h)− P (hL)i(hL)− P (hR)i(hR). For binary outcomes, i(h) is measured in terms of

entropy or Gini impurity [3,4]. For continuous outcomes, i(h) is typically the mean

residual sum of squares [3-5]. The splitting rule that maximizes ∆I(s, h) over the



41

set S of all possible splits is chosen as the best splitter for node h.

The second approach to tree building attempts to maximize the between node

separation at each stage of the splitting process. Previous methods for building trees

using between node separation have been popular with survival outcomes [42,43].

In this approach we measure between-node separation using a 'distance' function.

As before, all potential splits are evaluated using the distance function and the

split value resulting in the largest between node separation is chosen. The distance

function between proposed daughter nodes hL and hR is denoted as D(s, hL, hR) for

the specific split sεS.

An important feature in CART is growing a large tree and then pruning it back to

find the right-sized tree. Our proposed methods focus on the tree growing. For the

within-node impurity based trees, one could borrow the original CART machinery

to obtain pruned and cross-validated trees [3-5].

3.2.2 Multivariate Regression Tree

Extending univariate regression trees to continuous multivariate outcomes retains

much of the same tree terminology. Moving from the univariate to multivariate

framework, we propose several metrics that can be used to assess goodness of split

in the multivariate setting. Our proposed metrics are based on either summary

measures of the empirical covariance matrix at a given node or the distance between

the proposed daughter nodes.

Let Yi be the r×1 vector of outcomes for subject i. Define Y = (Y′1,Y
′
2, ....,Y

′
n)′

as the n× r outcome matrix. At a proposed split sεS, the patients that fall into the

left and right daughter nodes are denoted by hL and hR respectively. Let Y(h) be the

outcome matrix and nh the sample size (i.e. number of patients) in internal node h.

At any internal node h, let ˆcov(Y(h)) be the r × r matrix of observed variance and
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covariances.

3.2.3 Within Node Homogeneity Splitting

3.2.4 Determinant

In our first approach, we propose to build multivariate trees by reducing within

node homogeneity. In the multivariate setting, to account for the correlation, we

first propose to use generalized variance as a measure of impurity. The generalized

variance was proposed as a one-dimensional measure of multidimensional scatter and

is obtained using the determinant of the covariance matrix [45-48]. A node would be

considered relatively impure if the determinant of the empirical covariance matrix

was large and relatively pure if the multidimensional scatter (determinant) was small.

Building on this, we define our impurity function at a given internal node h as:

(3.1) i(h) = determinant( ˆCov(Y(h)))

At each stage of the splitting process, the split value that results in the greatest

impurity reduction in terms of the determinant of the empirical covariance matrix is

chosen.

The method demonstrated by De'Ath, builds multivariate trees with an impurity

function that can be written: i(h) = trace( ˆCov(Y(h))), where a node is considered

relatively impure if the trace of the covariance matrix is large and relatively pure

if the trace of the covariance matrix is small [40]. The trace impurity function's

inability to utilize all information from the empirical covariance matrix is a potential

limitation, especially in the high correlation setting.

3.2.5 Mahalanobis Distance

The second metric measures impurity by calculating the average distance amongst

the subjects in a given node. Mahalanobis distance is a measure of the distance
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between a point and a distribution that is often used with multivariate data [49]. At

a given node h, we first calculate the Mahalanobis distance between Yi for patient

i (in node h) and the distribution of Y(h). Let Ȳ(h) and ˆCov(Y(h)) be the sample

mean and empirical covariance matrix for the patients in node h. The Mahalanobis

distance for patient i is calculated as:

Mah1(Yi) =

√
((Yi − Ȳ(h))′ ˆCov

−1
(Y(h))(Yi − Ȳ(h))

We define impurity at node h based on the average Mahalanobis distances:

(3.2) i(h) =
1

nh

nh∑
i=1

Mah1(Yi)

where nh is the number of patients in node h.

This method has similarities with that proposed by Larsen [41]. The primary

difference between the methods is that while Larsen uses the covariance matrix of

the full data, at each step of the tree growing process, we update the covariance

matrix using patients at the given node for which the split is proposed. Our method

uses empirical variances at each proposed split, thereby accounting for variations in

the relationships across different subgroups of the population. In contrast, Larsen's

method may be computationally efficient due to fewer parameter estimates.

3.2.6 Between Node Separation Splitting

In this section, tree growing proceeds by selecting the covariate value split that

maximizes the between node separation in terms of the outcome. Specifically we wish

to maximize the distance between the outcome centroid of the proposed daughter

nodes. In the multivariate outcome setting, distance can be measured in a variety

of ways. In this section, we propose three distance metrics that can be used for tree

building using multivariate outcomes.
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Euclidean Distance Splitting

The first proposed method measures the distance between the mean outcome

in the two proposed daughter nodes using the Euclidean distance. The Euclidean

distance function is formalized as:

(3.3) D(s, hL, hR) = 1′(Ȳ(hR) − Ȳ(hL))
′(Ȳ(hR) − Ȳ(hL))

The covariate and covariate value the leads to the greatest D(s, hL, hR) is chosen

at that stage of the splitting process.

Standardized Euclidean Distance Splitting

The second proposed between-node splitting mechanism measures node separation

using the standardized Euclidean distance. Standardizing the Euclidean distance

by the empirical variances of the outcomes in the parent node results in a similar

relative scale for each outcome component. This may be preferable in a setting where

the scale of the multivariate outcome components are different. The Standardized

Euclidean distance function is written as:

(3.4) D(s, hL, hR) = 1′(Ȳ(hR) − Ȳ(hL))
′diag( ˆCov(Y(hR)))

−1(Ȳ(hR) − Ȳ(hL))

Mahalanobis Distance Splitting

A limitation of the two Euclidean based distance functions is they are unable

to take into account the correlated nature of the multivariate outcomes. The final

proposed distance function uses the Mahalanobis distance. This distance function

is slightly more complicated than simply finding the distance between the centroids

in the previous two distance functions. For this splitting method, we must evaluate

the total Mahalanobis distance between each subject's outcome and the alternative
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daughter node outcome distribution. For a given patient i in hL, the Mahalanobis

distance between patient i and alternative daughter node hR is defined as:

(3.5) MahR(Yi) =

√
((Yi − Ȳ(hR))′ ˆCov

−1
(Y(hR))(Yi − Ȳ(hR))

and similarly, we denote the Mahalanobis distance between patient j in hR and the

alternative daughter node hL as:

MahL(Yj) =

√
((Yj − Ȳ(hL))

′ ˆCov
−1

(Y(hL))(Yj − Ȳ(hL))

where ˆCov(Y(hR)) and Ȳ(hR) are the empirical covariance matrix and sample mean

for the subjects in the proposed right daughter node. Then the total Mahalanobis

distance for a proposed split s, is defined as:

D(s, hL, hR) =
∑nL

i=1(MahR(Yi)) +
∑nR

j=1MahL(Yj)

The split s, in the set of all splits S, that results in the largest D(s, hL, hR) is chosen

at that stage of the splitting process.

3.2.7 Multivariate Tree Prediction

For prediction using the multivariate tree, patients are first passed down the tree

based on their covariates until they land in one of the |T̃ | terminal nodes. Prediction

is made by taking the average of the outcome from all patients that fall into that

node. For a specific terminal node T̃p, the predicted r × 1 outcome vector is given

by:

ŷi = 1
nh

1′Y(T̃p)

3.3 Ensemble Methods for Multivariate Outcomes

The two biggest shortcomings of tree-based methods is modest prediction perfor-

mance and instability in the tree structure. Instability in building the single tree
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occurs because small perturbations of the data can have very dramatic effects on

the structure of the created tree. Ensemble methods are often used with tree-based

methods to help remedy the modest prediction performance and instability of the

single trees. An ensemble method proposed in 1994 by Breiman involved bootstrap

aggregating or Bagging [31-34]. The premise of this method is to generate many

bootstrap samples of the data and create an individual regression tree from each of

the bootstrap samples. The final predicted outcome is given as the average prediction

across each individual tree in the ensemble.

To increase stability and improve prediction accuracy, we propose growing ensem-

bles of the multivariate regression trees. First, we generate b bootstrap samples by

sampling uniformly n observations from the entire data of size n. For each of the b

samples, we create a multivariate regression tree. For each patient, prediction from

the ensemble is made by averaging the predictions from each of the b multivariate

trees.

For each tree in the ensemble, the out-of-bag sample is the set of patients that

were not included in the bootstrap sample used to create the tree [31]. The out-

of-bag prediction is the average outcome across the m ≤ b samples in which the

patient was in the out-of-bag sample. To fairly assess the prediction accuracy of

the ensemble methods, we calculate the mean squared error (MSE) based on the

out-of-bag prediction which is referred to as the out-of-bag error.

3.4 Simulation Study

3.4.1 Simulation Methods

Data Generated from Multivariate Linear Regression

To compare and evaluate the proposed goodness of split measures, we performed

an extensive simulation study. Covariates were generated by x1 ∼ Bernoulli(0.3),
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x2 ∼ N(50, 15) and x3 ∼ multinomial(0.45, 0.15, 0.40). Additionally, we generated

two noise variables: x4 ∼ N(1.5, 1.1) and x5 ∼ uniform(1, 10), that were included

in tree building but not in the true underlying model.

The outcome was generated using the following multivariate linear regression

model with 3 covariates:

Y = XB + ε

where Y = (y1, ...,yr) is the n × r outcome matrix, X = (1,x1,x2,x31x32) is

the n × 5 design matrix, B = (b1, ..., br) is the 5 × r effect matrix with bj =

(β0j, β1j, β2j, β3j, β4j) and ε = (ε1, ..., εn)′ is the n × r error matrix with εi ∼

MVN(0r,Σ). The β coefficients are fixed across the simulation settings.

We varied the dimension of the outcome: rε{2, 5}, the sample size: Nε{100, 500, 1000}

and considered three different structures for Σ (unstructured: Σ1, compound symme-

try (CS): Σ2 and heterogeneous compound symmetry (CSH): Σ3). The unstructured

covariance is defined:

Σ1 =


σ2
1,1 . . . σ2

1,r

...
. . .

...

σ2
r,1 . . . σ2

r,r


We calculate Σ1 = A′A, by generating A with values aij ∼ uniform(−σ, σ), where

choice of σε{1, 5, 10}, creates low, moderate and large magnitude covariance scenar-

ios.

The compound symmetry covariance is defined:
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Σ2 = σ2


1 . . . ρ

...
. . .

...

ρ . . . 1


The heterogeneous compound symmetry covariance is defined:

Σ3 =


σ2 ×m2

1 . . . σ2 × ρ×m1 ×mr

...
. . .

...

σ2 × ρ×mr ×m1 . . . σ2 ×m2
r


For {Σ2,Σ3}, we also varied the correlation: ρε{0.05, 0.50, 0.95} and the variance:

σ2ε{1, 25, 100}. Additionally, to create the CSH covariance matrix, we set (m1,m2) =

(1, 2) and (m1,m2,m3,m4,m5) = (1, 2, 3, 4, 5) when r = 2 and r = 5 respectively.

For each design scenario, we generated 1000 simulations.

The tuning parameter used for tree building was minimum terminal node size,

which was set as {5,15,25} when n = {100, 500, 1000} respectively. Our interest lies

in contrasting the splitting rules for the tree growing. Therefore, we do not perform

any cost-complexity pruning.

In a separate simulation, we generated data from a true underlying multivari-

ate regression tree structure. The data generating structure is displayed in Fig-

ure 3.1. In this set-up, the tree first splits patients by x1, x2 and x3. For each of the

four terminal nodes in the true underlying tree, we generate outcomes from a node-

specific multivariate normal distribution with covariance, Σ2 and mean, µ. For this

set of simulations, we assessed performance under various scenarios where: r = 5,

Nε{100, 500, 1000}, ρε{0.05, 0.50, 0.95} and σ2ε{1, 25, 100}.
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Figure 3.1: True Underlying Multivariate Regression Tree

3.4.2 Simulation Results

We assess the performance of the splitting rules by examining a variety of measures

that focus on the tree structure and predictive ability. For each simulation run, we

split the simulated data into a training and testing set by randomly selecting 70%

of the sample for training and 30% for testing. The sample size in the testing set is

ntest. The goodness of split measures are compared in terms of the following:

1. MSE = 1
ntest

∑ntest

i=1 (yi − ŷi)
′(yi − ŷi)

2. % of times true signal variables are used for splitting

3. % of times the noise variables are used for splitting

4. Average number of terminal nodes

Table 3.1-Table 3.4 describe the simulation results.
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Metric based on Within-Node Homogeneity, r = 5

The prediction accuracy for the regression trees were similar across the different

within-node metrics. When r = 5, under Σ2 and Σ3: the Larsen method had the best

performance in terms of MSE, except under Σ3 with σ2 = 100, where the determinant

trees had the smallest MSE. When simulating the outcome from an unstructured

covariance setting (Σ1), the Larsen metric had the smallest MSE (average MSE:

15,748), followed by the the determinant (16,979), Mahalanobis distance (17,006)

and trace trees (21,423).

Generally, as σ2 increased, the prediction accuracy of each metric worsened. Hold-

ing all other parameters constant, under Σ2, the determinant trees were least effected

in terms of MSE (1.43% MSE increase) when comparing σ2 = 100 to σ2 = 1, followed

by the Mahalanobis trees (1.55% MSE increase), trace trees (1.61% MSE increase)

and Larsen trees (2.10% MSE increase). Under Σ1, comparing σ2 = 1 to σ2 = 100,

there was a 4.8% MSE increase for determinant trees, 5.7% increase for trace trees,

6.4% increase for Mahalanobis trees and 6.8% increase for Larsen trees. A similar

pattern can be observed under Σ3, where the Larsen metric had the largest increases

in terms of MSE when comparing σ2 = 100 to σ2 = 1. This suggests that the Deter-

minant trees are well-suited in a high variance setting and the Larsen trees are not

well-suited.

Holding all other settings constant, there were slight improvements in MSE for the

Mahalanobis trees when comparing ρ = 0.95 to ρ = 0.05 (0.5% improvement under

Σ2 and 0.9% improvement under Σ3). The trace, determinant and Larsen trees had

mixed performance when comparing varying levels of ρ. These results suggest the

Mahalanobis trees are ideal when the correlation amongst the outcome is high.

Each of the methods improved prediction accuracy as the sample size increased.
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Under each covariance structure: Σ1, Σ2 and Σ3, the trace trees had the largest

MSE reduction (25.7%, 27.2% and 10.1% respectively) when comparing N = 1000

to N = 100. The Mahalanobis trees had the second largest MSE reduction (21.5%,

20.0% and 10.1% respectively). The determinant tree had the smallest prediction

accuracy improvements (19.0%, 19.8% and 6.5% respectively), suggesting that the

metric may be the well suited to build trees in the small sample setting.

All methods perform poorly in terms of separating the signal variables from the

noise variables, though, the Mahalanobis trees included the fewest noise variable

splits of the within-node metrics. In terms of tree size, the determinant metric

yielded the simplest trees under Σ1, Σ2 and Σ3, (average number of nodes: 10.7, 11.0

and 11.3) followed by the Mahalanobis trees (11.7, 11.9 and 12.0), Larsen (11.7, 12.1

and 12.1) and the trace trees (11.4, 12.2 and 12.3). There were no clear patterns in

terms of which specific covariates were used as splits in the resulting trees.

Metric based on Within-Node Homogeneity, r = 2

Under Σ2, when N = 100, the Larsen method had the smallest MSE and when

N = 500 or N = 1000, the trace trees had the best prediction accuracy. Under Σ3,

the smallest MSE was from the Mahalanobis trees when σ2 = 100 and the trace trees

when σ2 = 25 or σ2 = 1. Under Σ1, the Larsen tree had the best prediction accuracy

(average MSE: 4,937), followed by Mahalanobis distance (5,078), determinant (5,128)

and trace trees (6,792).

All of the metrics had increased MSE when comparing σ2 = 100 to σ2 = 1. Unlike

what was observed when r = 5, when r = 2, there were no clear trends to which

metric was most resistant to MSE increases as the variance increased. Under Σ2, the

Larsen trees were most resistant to MSE increases (1.66% MSE increase), followed

by the determinant (1.79%), trace (2.08%) and Mahalanobis (2.71%). Under Σ3,
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the Mahalanobis distance had the smallest percent increase in MSE (415% increase),

followed by the determinant (428%), Larsen (428%) and trace trees (436%). Lastly,

under Σ1, the trace trees had the smallest MSE gain (2.2%), followed by Larsen

(3.3%), Mahalanobis distance (3.3%) and determinant trees (5.0%). Holding all

other simulation settings constant, there were no clear trends in prediction accuracy

when comparing ρ = 0.95 to ρ = 0.05 under any covariance structure.

Each of the metrics had similar improvement in MSE as sample size increased

from N = 100 to N = 1000 under each of the three covariance structures. The

metrics performed similarly in terms of which covariates were used as splits in the

tree across the different settings. Contrary to when r = 5, under Σ1, Σ2 and Σ3

when r = 2, the Mahalanobis trees had the smallest average number of terminal

nodes (11.3, 10.7 and 10.9), followed by the determinant trees (11.2, 11.7 and 11.5),

Larsen (11.7, 11.9 and 8.9) and trace trees (11.8, 12.3 and 12.1).

Metric based on Between-Node Separation, r = 2

Of the between-node separation metrics, under both Σ2 and Σ3, the Mahalanobis

distance trees had the smallest MSE when N = 100 and the standardized Euclidean

trees had the smallest MSE when N = 500 and N = 1000. Under Σ1, the Euclidean

distance metrics had the best prediction accuracies.

The Mahalanobis trees had a smaller increase in MSE than the Euclidean metrics

when comparing σ2 = 100 to σ2 = 1 (Σ1: 3.0% vs to 27.4% and 26.6%, Σ2: 7.9% vs

4.0% and 3.2%, Σ3: 447% vs 453% and 456%). The Mahalanobis trees also had the

largest reduction in MSE when comparing ρ = 0.95 to ρ = 0.05 (3.6% improvement

under Σ2 and 0.2% improvement under Σ3). The two Euclidean distance metrics

had no clear MSE improvement across levels of ρ.

Each of the between-node metrics improved prediction accuracy as sample size
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increased from N = 100 to N = 1000. Under Σ1, the Euclidean trees had the

greatest reduction in MSE (28.0%) followed by standardized Euclidean (27.1%) and

Mahalanobis distance (12.6%). Similarly, under Σ2, the Euclidean distance trees had

largest reduction in MSE (26.5%) compared to the standardized Euclidean (26.0%)

and Mahalanobis distance trees (13.6%). Under Σ3, each of the three between-node

separation metrics led to similar improvements in MSE (11%) comparing N = 100

to N = 1000.

While each of the metrics incorrectly split on noise variables at a high rate, the

Mahalanobis distance trees included noise covariates at a slightly lower rate compared

to the Euclidean distance and standardized Euclidean distance metrics (Σ2: 99.2%

v 100% and 99.9% and Σ3: 99.6% v 100% and 100%). The Mahalanobis trees were

also slightly larger than the Euclidean and standardized Euclidean trees (Σ1: 14.3 v

14.1 and 14.2, Σ2: 14.9 v 14.4 and 14.7 and Σ3: 17.3 v 15.1 and 15.1).

Metric based on Between-Node Separation, r = 5

Similarly to when r = 2, the Mahalanobis distance metric resulted in the best

prediction accuracy (MSE) when N = 100 under Σ2. However, under Σ2 with

moderate and large sample size or Σ1, the Euclidean and standardized Euclidean

distance split trees had the smallest MSE. The resulting MSEs under Σ3 were similar

across the three metrics.

There were no trends in terms of which between node metric was most resistant to

increased MSE as the σ2 increased. Under Σ1, the standardized Euclidean trees had

the smallest MSE increase (6.9%), under Σ2, the Euclidean trees had the smallest

average MSE increase (3.0%) and under Σ3, the Mahalanobis trees had the smallest

MSE increase (371%). There were also no trends when comparing the three metrics

across different levels of ρ.
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Under and Σ1 and Σ2, as sample size increased from N = 100 to N = 1000, the

Euclidean and standardized Euclidean metrics had large MSE reductions compared

to the Mahalanobis distance (Σ1: 20.8% and 21.9% vs. 5.1%. Σ2: 24.1% and 24.1%

vs. 3.2%). The MSE reductions were similar amongst the three metrics as sample

size increased under Σ3.

Similar to when r = 2, compared to the Euclidean trees, the Mahalanobis trees

had a larger average number of terminal nodes (Σ1: 16.6 vs. 14.5 and 14.6, Σ2: 15.3

vs. 14.7 and 14.7, Σ3: 17.3 vs. 15.0 and 15.4). The Mahalanobis distance trees

included noise covariates as splits at a slightly lower rate than the Euclidean and

standardized Euclidean distance trees (Σ1: 99.6% vs. 100% and 100%, Σ2: 99.3%

vs. 100% and 100%, Σ3: 99.6% vs. 100% and 100%)

Simulation Results with Data Generated from Underlying Tree Structure

The determinant trees had the best prediction accuracy (MSE) of the within-node

metrics when data were generated from a true underlying tree structure. Specifically,

the determinant trees had the best prediction accuracy when the underlying variance

was large or when ρ = 0.05. When the variance was small and ρ was large, the Larsen

method had the best prediction accuracy. Each of the metrics performed similarly

across different levels of ρ while holding all other parameters constant. Each metric

had a similar MSE inflation when comparing the large variance setting to the small

variance setting (each around 10% increase).

Of the between-node separation metrics, the Euclidean distance trees were often

the best performing in terms of prediction accuracy. There was little differences

across different ρ and each method had similar MSE inflation as σ increased.
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Summary of Simulations

Results from these simulations provide valuable insight. Generally, the prediction

accuracies (MSE) are very similar across the metrics, but under certain scenarios,

specific metrics may be preferable to build a decision making tool. Amongst the

within-node metrics, when the dimension of the outcome is small (r = 2), the trace

trees are often preferable whereas, when the outcome dimension is moderate (r = 5),

the Larsen trees are often preferable. For high variance scenarios, the Mahalanobis

or determinant metrics are preferred. In particular, the determinant trees were the

most resistant to MSE inflation as the σ increased. The Mahalanobis trees (when

r = 5) and determinant trees (when r = 2) often result in the most simple tree

structure. We also observed that the Mahalanobis trees had improved performance

when the correlation amongst the outcome is large (when r = 5) and included the

noise covariates as a slightly smaller rate. Finally, the determinant trees may be well

suited in a small sample setting (N = 100).

In comparing the simulation results for the between-node metrics we found that

generally, the Mahalanobis splits have the best performance when the sample size

is small (N = 100). The Euclidean and standardized Euclidean distance metrics

may have better performance when the sample is larger (N = 500 or N = 1000), or

when the data follows an unstructured covariance. The Mahalanobis distance metric

generally built slightly larger trees, but included noise covariates at a slightly lower

rate. Across levels of σ and ρ, there were no consistent trends amongst the metrics.

When data was generated from a true underlying multivariate tree structure, the

between-node Euclidean and the within-node determinant were the preferred metrics.
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Table 3.1: Simulation Results (MSE) with Data Generated from Unstructured Covariance Matrix
(Σ1)

r=2 r=5

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

Metrics
based on
Between
Node
Separation

σ = 1
Mah 5678.86 4892.57 4913.11 17049.05 14602.27 16672.81
Euc 3238.46 2527.64 2336.02 17373.12 14184.74 13880.65
Std Euc 3227.04 2514.86 2359.57 17742.23 14307.36 13818.96

σ = 25
Mah 5705.92 4932.90 4991.62 17669.40 15127.35 16567.20
Euc 3276.09 2514.82 2340.50 17790.97 14607.83 14009.75
Std Euc 3250.72 2517.19 2368.44 17859.53 14626.98 13989.46

σ = 100
Mah 5798.45 5035.98 5112.64 18652.27 15970.87 17405.26
Euc 3338.97 2564.52 2415.35 18723.15 15558.15 14793.80
Std Euc 3313.82 2554.62 2409.24 18832.90 15503.27 14693.95

Metrics
based on
Within Node
Homogeneity

σ = 1

Trace 8018.25 6537.63 5605.61 24597.36 19911.87 18235.98
Det 5863.88 4814.66 4340.05 19178.29 15250.25 15467.58
Mah 5874.15 4722.82 4414.00 19165.89 15285.87 15037.50
Larsen 5830.13 4607.95 4172.71 17726.04 14552.56 13803.69

σ = 25

Trace 8134.50 6576.25 5645.50 25014.90 20149.48 18577.44
Det 6039.48 4828.28 4486.38 19487.75 15461.39 15656.93
Mah 5997.93 4704.48 4480.74 19701.68 15698.96 15492.30
Larsen 5827.02 4647.29 4258.08 18051.59 14649.72 13727.97

σ = 100

Trace 8238.45 6659.45 5714.78 26003.54 20984.62 19332.33
Det 6142.84 4979.21 4653.04 19723.65 16403.68 16180.35
Mah 6035.49 4898.40 4574.00 20303.15 16421.20 15947.89
Larsen 6044.70 4737.42 4310.75 19250.06 15462.23 14504.03

3.5 Illustrative Examples

3.5.1 Application: Predicting Nerve Conduction Measures

Data Collection and Background Information

Polyneuropathy is a painful condition affecting an estimated 2− 7% of the adult

population [36, 37]. The most common predictor of the disease is diabetes; however,

it is hypothesized that other components in the metabolic syndrome can play a role

in the etiology of polyneuropathy [15,38,39]. In this section, we attempt to build a

regression tree to predict three neuropathy outcomes using patient measures from

the metabolic syndrome.

The data for this application comes from participants in the Health, Aging and

Body composition study (Health ABC): a prospective cohort study of 70-79 year olds

[39]. The cohort is a simple random sample of age eligible patients in Pittsburgh or

Memphis that planned to remain in the study area for at least three years. The par-

ticipants had to report difficulty with walking 1
4

mile, climbing 10 steps or any basic
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Table 3.2: Simulation Results (MSE) for Within-Node Homogeneity Metrics with Data Generated
from Compound Symmetry and Heterogeneous Compound Symmetry (Σ2 and Σ3)

r=2 r=5

CS CSH CS CSH

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

ρ = 0.05

σ = 1

Trace 3317.13 2621.11 2433.09 3247.62 2660.79 2485.61 25107.16 19311.34 18238.41 25200.43 19413.03 18334.50
Det 3415.11 2693.47 2533.25 3300.77 2705.09 2515.44 19176.32 15530.14 15325.65 19365.00 15557.62 15821.49
Mah 3355.37 2739.59 2607.96 3444.95 2672.69 2695.01 19020.25 15139.97 14999.51 18668.48 15234.31 15198.28
Larsen 3300.87 2676.79 2513.84 3274.30 2672.79 2524.56 18493.34 14143.63 13425.67 18270.94 14143.52 13504.21

σ = 25

Trace 3370.59 2637.00 2454.40 11009.37 9922.00 9589.37 25310.93 19459.88 18388.41 63201.57 55261.38 53553.23
Det 3451.92 2688.12 2523.31 11056.70 9937.21 9624.67 18958.29 15541.72 15723.25 56819.46 50673.86 49528.32
Mah 3398.97 2749.99 2707.00 11110.93 9948.86 9701.00 18950.26 15438.62 15020.68 58246.95 50311.10 49436.13
Larsen 3252.63 2650.84 2556.66 11013.81 9882.75 9630.45 18687.30 14260.81 13656.43 56075.82 50266.10 48776.95

σ = 100

Trace 3442.14 2678.85 2541.14 127406.09 118400.46 116189.14 25566.87 19845.40 18771.29 636080.83 588982.76 580768.59
Det 3499.14 2758.93 2612.79 127493.88 118506.77 115928.96 19284.36 1565.32 15946.72 610609.91 581197.27 574717.29
Mah 3485.32 2806.41 2737.35 126999.57 118270.69 115893.33 19002.85 16070.78 15170.24 638881.13 580701.19 574050.45
Larsen 3339.13 2716.38 2595.56 127495.23 118388.00 116864.93 18999.74 14548.14 13735.57 613026.66 581225.47 574899.89

ρ = 0.5

σ = 1

Trace 3313.28 2612.72 2432.07 3256.04 2655.78 2484.72 25132.11 19322.34 18286.36 25217.18 19403.25 18316.70
Det 3417.81 2696.14 2531.24 3313.18 2700.11 2515.38 19042.76 15581.85 15394.18 19322.00 15384.16 15603.21
Mah 3343.94 2725.23 2609.84 3449.79 2652.57 2692.17 19032.30 15292.48 14804.78 18861.96 15511.99 15194.40
Larsen 3296.64 2670.53 2525.26 3284.07 2677.74 2530.65 18402.26 14183.23 13527.22 18548.54 14152.39 13619.20

σ = 25

Trace 3353.22 2620.40 2451.69 11092.87 9887.72 9615.50 25316.58 19462.06 18363.91 63013.38 54745.17 53372.57
Det 3448.91 2691.83 2535.19 11060.11 9922.53 9623.59 19885.84 15631.54 15437.96 57115.60 50563.09 49675.75
Mah 3411.89 2738.95 2678.87 11090.11 9922.84 9711.48 18822.72 15455.47 15156.14 57890.10 50274.75 49845.85
Larsen 3281.82 2648.05 2559.17 10979.87 9896.14 9624.12 18697.69 14489.27 13629.09 55835.71 49861.31 49226.46

σ = 100

Trace 3435.73 2681.46 2538.17 127726.12 127726.12 116177.19 25745.96 19833.42 18740.74 636267.76 588096.12 581034.77
Det 3505.65 2746.64 2597.11 127331.57 127331.57 116092.70 20027.68 16253.63 15764.11 609861.40 580267.00 574697.03
Mah 3499.16 2814.61 2729.14 127241.77 127241.77 115937.35 18892.85 15834.80 15401.03 634861.40 579170.99 574169.91
Larsen 3349.35 2723.92 2579.65 127819.61 127291.61 116107.64 18802.84 14870.20 14125.43 610455.52 580736.69 574687.01

ρ = 0.95

σ = 1

Trace 3323.89 2606.67 2436.30 3254.67 2651.54 2477.40 25128.94 19292.27 18273.61 25191.78 19378.21 18284.57
Det 3414.43 2693.75 2531.47 3327.94 2709.40 2508.73 18930.39 15441.15 15506.42 19392.95 15628.25 15579.63
Mah 3343.45 2718.22 2613.60 3474.57 2668.22 2696.10 18806.30 15160.87 15021.37 18849.15 15504.30 15116.65
Larsen 3284.86 2666.65 2521.20 3289.28 2658.83 2550.78 18505.37 14102.55 13651.06 18578.17 14180.56 13434.94

σ = 25

Trace 3337.13 2614.20 2438.01 11302.10 9940.88 9576.11 25213.15 19461.86 18336.47 63273.82 54857.27 53274.92
Det 3439.08 2697.45 2544.64 11180.20 9942.72 9653.72 19681.72 15808.19 15600.28 56633.25 50804.97 49595.29
Mah 3378.43 2728.64 2654.51 11491.20 9885.99 9694.90 18468.09 153237.47 14943.13 58018.05 50315.12 49614.46
Larsen 3294.58 2671.09 2554.56 126188.07 12492.68 12442.16 18442.36 143513.35 13621.94 56139.43 49886.41 48894.00

σ = 100

Trace 3403.09 2668.82 2516.74 128305.26 118589.95 116122.32 25591.25 19896.20 18756.71 638739.35 588636.56 580575.46
Det 3534.98 2741.05 2603.51 126816.14 118335.68 116011.59 20072.38 15585.43 15650.85 604155.48 578045.26 573928.00
Mah 3529.61 2815.33 2714.39 132607.53 118306.69 115720.18 18948.89 15897.69 15486.01 627083.18 576355.01 572944.43
Larsen 3369.54 2738.33 2648.00 118360.71 119470.52 116827.73 18918.52 14888.48 13953.45 604432.12 577816.39 574255.39
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Table 3.3: Simulation Results (MSE) for Between Node Metrics with Data Generated from Com-
pound Symmetry and Heterogeneous Compound Symmetry (Σ2 and Σ3)

r=2 r=5

CS CSH CS CSH

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

ρ=.05

σ = 1 Mah 3149.55 2663.53 2575.53 3114.82 2603.79 2602.77 16891.37 14753.89 16550.03 17078.48 14824.76 16517.76
Euc 3171.92 2517.49 2356.86 3177.96 2525.39 2369.20 17749.37 14161.64 13494.27 17737.36 14345.52 13607.32
Std Euc 3148.44 2496.83 2347.83 3155.14 2503.71 2351.53 17802.68 14107.26 13416.12 17616.48 14192.72 13515.85

σ = 25 Mah 3160.23 2690.10 2624.02 11252.23 9896.30 9737.01 17233.63 15118.61 16616.03 56328.01 50516.18 50891.59
Euc 3217.62 2533.15 2370.98 11166.67 9813.48 9518.77 17740.3 14222.29 13552.73 56874.86 50202.92 49287.29
Std Euc 3203.64 2523.08 2367.12 11132.02 9796.03 9453.18 17771.88 14386.37 13551.09 56886.66 50175.01 49293.66

σ = 100 Mah 3234.14 2773.19 3707.67 132463.85 119457.35 116978.87 17715.29 15228.36 16847.86 632133.83 590923.09 580721.23
Euc 3301.77 2610.24 2420.13 130677.23 119165.11 116504.84 18446.58 14728.07 13823.23 627710.94 5872283.19 578879.61
Std Euc 3271.30 2562.65 2413.83 129955.21 119279.77 116504.52 18398.89 14674.42 13884.81 627871.24 586997.88 579083.66

ρ=.5

σ = 1 Mah 3149.71 2665.03 2581.99 3109.99 2610.99 2606.11 17026.33 14744.87 16644.23 17148.54 14892.85 16592.14
Euc 3171.61 2515.13 2349.05 3191.36 2525.42 2374.65 17776.33 14193.89 13522.11 17737.99 14351.27 13556.01
Std Euc 3152.29 2500.57 2343.08 3161.70 2506.20 2356.76 17615.06 14181.73 13456.05 176621.30 14276.28 13557.09

σ = 25 Mah 3157.64 2693.16 2635.08 11279.46 9941.60 9780.57 17087.73 14935.99 163289.3 55828.94 50924.26 50972.16
Euc 3224.48 2529.83 2360.57 11181.97 9821.05 9520.54 17837.35 14282.78 13455.97 56600.99 50160.24 49013.78
Std Euc 3189.26 2519.72 2365.60 11106.60 9786.09 9496.07 17798.02 14277.11 13503.49 56833.71 50156.49 48933.36

σ = 100 Mah 3234.77 2759.45 2698.01 132101.00 132100.97 116516.52 17773.38 15216.15 16960.62 626286.74 590080.40 580167.74
Euc 3316.97 2596.22 2432.56 130073.40 119221.40 116601.31 18143.28 14708.58 13902.96 625631.47 585200.50 578231.62
Std Euc 3267.31 2564.66 2424.24 130534.50 119185.66 116562.60 18212.45 14648.77 13897.18 625662.90 586126.01 578080.41

ρ=.95

σ = 1 Mah 3142.97 2659.54 2585.09 3129.21 2610.18 2603.06 17038.17 14874.58 16517.92 16903.52 14788.85 16645.33
Euc 3174.09 2511.30 2350.90 3181.78 2525.86 2356.52 17887.18 14088.42 13524.85 17830.16 14281.77 13575.26
Std Euc 3160.07 2496.76 2370.95 3170.19 2505.18 2354.22 17667.01 14191.33 13575.28 17784.79 14237.49 13616.64

σ = 25 Mah 3160.28 2686.33 2635.16 11181.73 9801.62 9743.53 16935.99 14556.23 16600.37 55838.01 50479.96 50410.29
Euc 3230.42 2534.32 2349.12 11197.98 9824.68 9489.43 17642.65 14397.54 13502.41 56575.93 50137.91 48930.84
Std Euc 3213.23 2517.72 2359.38 11193.30 9811.15 9469.78 17891.58 14429.63 13424.46 56628.66 50105.62 48962.37

σ = 100 Mah 3273.55 2757.36 2732.90 130762.40 120510.61 117107.61 17558.45 15057.14 17093.33 627083.2 586840.09 579616.33
Euc 3338.23 2629.38 2441.29 129890.60 119183.31 116656.80 18307.39 14638.21 13764.87 615152.3 582087.91 577114.12
Std Euc 3311.83 2562.57 2408.87 130546.30 119242.93 116553.33 18329.64 14626.77 13840.52 615872.8 581726.15 577247.82

Table 3.4: Simulation Results (MSE) with Data Generated from Underlying Tree Structure
ρ = 0.05 ρ = 0.50 ρ = 0.95

Metrics
based on
Between
Node
Separation

Small
Variance

Btw Mah 6196.72 6209.90 6203.40
Euc 5842.06 5870.91 5865.22
Std Euc 5861.00 5880.67 5863.29

Moderate
Variance

Btw Mah 6337.95 6357.51 6365.73
Euc 5967.54 5978.80 5974.60
Std Euc 5988.35 6014.60 5985.18

Large
Variance

Btw Mah 6726.85 6755.70 6747.68
Euc 6407.92 6408.07 6354.14
Std Euc 6404.17 6417.67 6371.50

Metrics
based on
Within
Node
Homogeneity

Small
Variance

Trace 5554.61 5551.22 5562.98
Det 5045.30 5075.94 5107.04
Mah 5117.79 5090.53 5099.47
Larsen 5089.99 5062.18 5087.08

Moderate
Variance

Trace 5690.51 5713.12 5701.27
Det 5187.48 5210.39 5262.94
Mah 5300.89 5256.88 5290.32
Larsen 5231.84 5210.98 5253.26

Large
Variance

Trace 6065.26 6073.31 6048.91
Det 5572.38 5600.90 5580.40
Mah 5734.49 5674.52 5708.91
Larsen 5597.24 5603.63 5618.92
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activity of daily living. Participants have been followed since 1997-1998 and have

had a variety of neuropathy testing performed. This application is a cross-sectional

analysis of the data in 2000-2001. There were three continuous nerve conduction

study (NCS) outcomes that were measured for patients in this cohort: peroneal

motor nerve conduction velocity (CV, m/s), peroneal CMAP (mV) and nerve vibra-

tion threshold (µm). These three nerve conduction study measurements are used to

aid in the diagnosis of neuropathy [39]. There were 1,748 patients that had nerve

conduction study testing and therefore included in this application.

Creating a strong predictive tool for neuropathy based on the metabolic syndrome

components would allow for earlier testing and detection of neuropathy which could

subsequently improve patient care. Nerve conduction studies are generally performed

by a neurologist who has the highest expertise in making a diagnosis of neuropathy.

However, each of the metabolic syndrome factors are typically measured by a range

of clinicians with diverse experience and expertise. Therefore, strong prediction of

these multivariate NCS measures could target patients with a heightened risk of

neuropathy for expedited NCS testing by a neurology specialist [14].

There are five components of the metabolic syndrome: glycemic status, waist

circumference, high-density lipoprotein (HDL), triglycerides and systolic blood pres-

sure (SBP). These five components along with patient's gender and age are used in

building regression trees to predict the NCS outcomes.

In the next section, we present results from the proposed multivariate tree meth-

ods using both a single classifier and ensemble. Results are compared using prediction

accuracy and tree structure. Prediction accuracy was assessed using MSE and tree

structure is assessed by examining the number of terminal nodes. Lastly, we assess

whether the trees split patients based on the glycemic status: the most clinically jus-
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Table 3.5: Prediction Results for Neuropathy Outcomes

Tree Method
10-Fold
Cross Validation

Out of Bag
Error from
Ensemble

Number of Terminal Nodes Number of Covariates Included

3 Univariate Trees 1206.5 1171.4 26 7
Trace 1220.7 1199.0 19 7
Determinant 1221.7 1216.0 5 4
Mahalanobis Distance 1193.1 1229.5 8 5
Mahalanobis Distance (Larsen) 1186.3 1206.6 16 4
Between Node Mahalanobis 1238.9 1235.9 4 4
Between Node Euclidean 1197.5 1211.9 22 6
Between Node
Standardized Euclidean

1198.8 1210.2 22 6

tified predictor of neuropathy. We calculate the MSE using a 10-fold cross validation

for the single trees and using the out-of-bag error for the ensembles.

Comparison of Multivariate Regression Trees for Neuropathy Measures

The correlation between the peroneal CV and peroneal CMAP is 0.40, between the

vibration threshold and peroneal CV is -0.20 and between the vibration threshold and

peroneal CMAP is -0.18. When building the regression trees, we set the minimum

terminal node size to be 50.

The trace-based goodness of split resulted in the third worst tree in terms of pre-

diction accuracy (MSE=1212.27), a complicated structure with 19 terminal nodes,

but split on each of the seven covariates of interest. The determinant-based good-

ness of split resulted in a simple tree with 5 terminal nodes but the second worst

prediction accuracy (MSE=1239.33). The determinant tree split patients based on

glycemic status, waist circumference, SBP and HDL levels. This tree included the

most important covariate, namely glycemic status, and split on 4 of the 5 metabolic

syndrome components while maintaining simplicity. The determinant tree is dis-

played in Figure 3.2.

The Mahalanobis distance-based metric resulted in a tree with the second small-

est MSE and is displayed in Figure 3.3. This tree was moderately simple with 8

terminal nodes, splitting patients based on gender, waist circumference, SBP and
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Figure 3.2: Multivariate Neuropathy Tree Using Determinant Impurity

Figure 3.3: Multivariate Neuropathy Tree Using Mahalanobis Impurity
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Figure 3.4: Multivariate Neuropathy Tree Using Between Node Mahalanobis Distance

triglyceride levels. While the resulting tree from the Mahalanobis metric split on

5/7 covariates of interest, it failed to split on glycemic status. Using the full sam-

ple covariance estimate in the Mahalanobis distance resulted in the best prediction

accuracy (MSE=1186.3), but a complex, 16 terminal nodes tree structure. Though

it split on 6/7 covariates, the Larsen Mahalanobis tree missed the most clinically

proven predictor: glycemic status.

The between node Mahalanobis tree (Figure 3.4) resulted in the worst prediction

performance (MSE=1238.9) and the simplest tree stucture with only 4 terminal

nodes. The between-node Mahalanobis distance tree split on HDL, SBP and age. The

Euclidean and standardized Euclidean distance splits performed slightly better in

terms of prediction (MSE=1197.5 and MSE=1198.8) but were the most complicated

of the multivariate methods with 22 terminal nodes. The two Euclidean distance

trees were identical in structure.

The three univariate trees (8, 5 and 13 terminal nodes), perform worse than the
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within node Mahalanobis and Euclidean metrics in terms of prediction accuracy

(MSE=1206.5). To predict each of the three neuropathy outcomes, a clinician would

have to use 3 different trees, thereby limiting clinical usability as a decision-making

tool. Another issue with the resulting univariate trees is the clinical reliability of the

tree structure. That is, these methods lose validity with clinicians when different

covariates are used to predict different measures from the same clinical construct:

neuropathy. Each of the three univariate trees include gender, age, triglycerides and

waist circumference, however, only two of the trees include SBP and pre-diabetes,

and only one of the trees include diabetes status. Since each of the multivariate

components measure the same disease, ideally, the same clinical predictors would be

included in each of the univariate trees.

Comparison of Multivariate Tree Ensemble Methods

We attempted to stabilize the tree structure and improve prediction accuracy by

evaluating a multivariate tree ensemble. The regression tree ensembles were built

using 1000 bootstrap samples from the entire data. The out-of-bag prediction error

from the ensemble is displayed in Table 3.5. The prediction performance improves

slightly for the trace, determinant, between node Mahalanobis distance and univari-

ate trees. Interestingly, there is a larger improvement in prediction accuracy for the

univariate, determinant and trace ensembles compared to the between-node distance

and within node Mahalanobis metrics.

Conclusions for Nerve Conduction Prediction

The results from this Neuropathy application follow many of the trends that

were observed in the simulation study for a low/moderate ρ, large N and moder-

ate r setting. In assessing the single trees, the within node Mahalanobis distance
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metrics performed the best in terms of prediction accuracy and the between-node

Mahalanobis distance metric performed the worst. The between-node Mahalanobis

distance metric resulted in the simplest tree structure while the trees developed from

the trace and Euclidean distance metrics were the most complicated. The method

that identified the most clinically relevant structure was the determinant tree: iden-

tifying diabetes as the most important risk factor.

3.5.2 Application: Predicting Pediatric Post-Operative Length of Hospitalization

Data Collection and Background information

Improving the quality of care given to pediatric patients is an important goal

of health service researchers and clinicians alike. There is room to improve the

quality of care given to pediatric patients undergoing critical cardiac care, as cardiac

arrest occurs in an estimated 2.6-6% of children with cardiac disease [8,9]. This

subsequently results in a large mortality rate [8,9]. Additionally, there is significant

variation in congenital cardiac disease outcomes amongst hospitals in the United

States [10]. The length of time patients stay in a hospital has been linked to poor

outcomes and high healthcare costs [11]. In this section, we build a multivariate

regression tree to predict the length of time pediatric heart disease patients spend in

different aspects of their hospitalization after thoracic surgery.

The data in this application comes from the Pediatric Cardiac Critical Care Con-

sortium (PC4). Formed in 2009, PC4 is a collaboration of clinical leaders from 32

institutions across the United States. The overarching goal of PC4 is to improve the

quality of care given to pediatric patients with critical cardiovascular disease.

A tool that accurately predicts various aspects of postoperative hospitalization

time has many useful applications. First, finding patient factors that accurately

predict the length of hospitalization could allow clinicians to intervene earlier in
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the stay to help troubleshoot the complications that might arise. The goal would

be to intervene with patients at risk of a long length of stay to reduce the risk

of mortality and reduce overall healthcare costs. Second, the resulting prediction

could help hospitals with resource utilization and staffing. Last, having a precise

prediction tool could be used in evaluating clinician performance; meaning clinicians

can attempt to shorten these predicted lengths of stay by improving patient care.

For this application we included 7,066 pediatric patients from the PC4 database

that had a STS (Society of Thoracic Surgeons) defined operation. This included

both Cardiopulmonary bypass (CPB) surgery and non-CPB surgery. The goal of

this application is to take patient demographic and clinical information at the time

of operation to predict three aspects of hospitalization time. The typical hospital-

ization timeline of a pediatric patient in our data is displayed in Figure 3.5. The

three outcomes for this application are the length hospitalization post operation

(not including time in the ICU), the amount of time in the ICU (not while on a me-

chanical ventilator), and the amount of time on a mechanical ventilator. If patients

had multiple stints in the ICU or on a mechanical ventilator, the times were added

together.

The covariates obtained from the PC4 registry describe a variety of clinical and

demographic factors collected at the time of operation. Demographic factors include:

patient age, gender, race and ethnicity. Clinical measurements from the child's birth

include: birth weight, birth length, head circumference, gestational age at birth

and whether the child was born prematurely. Other clinical covariates include: the

amount of time the patient was hospitalized before the operation, whether the patient

had previous cardiothoracic operations, whether there was an antenatal diagnosis

of congenital heart disease, whether the patient had a chromosomal abnormality
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Figure 3.5: Typical Pediatric Hospitalization Time line for Congenital Heart Disease Patients

or identified syndrome, whether there was a presence of extracardiac anomaly, the

patient's STAT score, whether they had vasoactive support at the time of surgery

and whether the patient had renal failure or stroke.

In the following section, results from the goodness of split metrics are presented

and compared. As in the neuropathy application, prediction accuracy and simplicity

are assessed using the MSE and the number of terminal nodes respectively. The MSE

is calculated from a 10-fold cross validation for the single trees and the out-of-bag

error rate for the ensemble methods.

Comparison of Multivariate Regression Trees for Pediatric Length of Stay

The correlation between the times spent in the CICU and on mechanical ventila-

tion is 0.35, between the CICU and in the non-CICU inpatient setting is 0.30 and

between the times spent with mechanical ventilation and in the non-CICU inpatient

setting is 0.25. When building the regression trees, we set the minimum terminal

node size to be 750.
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Table 3.6: Prediction Results for Pediatric Length of Stay

Tree Method
10-Fold
Cross Validation

Out of Bag
Error from
Ensemble

Number of
Terminal
Nodes

Number of
Covariates
Included

3 Univariate Trees 460.5 432.0 13 2
Trace 459.5 470.5 5 3
Determinant 443.7 469.7 6 3
Mahalanobis Distance 490.5 490.5 3 2
Mahalanobis Distance (Larsen) 499.8 501.0 4 2
Between Node Mahalanobis 441.8 455.5 7 6
Between Node Euclidean 446.7 459.5 5 3
Between Node
Standardized Euclidean

446.7 461.3 5 3

The prediction results are displayed in Table 3.6. The resulting trace, Mahalanobis

distance, determinant and between-node Mahalanobis distance trees are displayed in

Figures 3.6, 3.7, 3.8 and 3.9.

With a MSE of 443.7, the determinant tree was the best performing within-node

tree in terms of prediction accuracy: splitting by birthweight, length of stay in the

hospital pre-operation and STAT score, resulting in 6 terminal nodes. The trace tree

had the second best prediction accuracy of the within-node trees with 5 terminal

nodes, splitting by pre-operation hospitalization length, by antenatal heart disease

diagnosis and STAT score (MSE=459.5). The two within-node Mahalanobis distance

trees performed the worst in terms of prediction accuracy (MSEs of 490.5 and 499.8),

but produced very simple trees (3 and 4 terminal nodes).

The between-node Mahalanobis distance resulted in the most accurate tree (MSE=441.8),

split by the broadest number of clinical covariates and had 7 terminal nodes. The two

Euclidean trees had the same structure, splitting by hospitalization time before the

surgery, antenatal diagnosis and birthweight (MSE=446.7 for both). The Euclidean

trees had 5 terminal nodes.

The univariate trees performed similarly to the multivariate trees in terms of
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Figure 3.6: Multivariate Tree for Pediatric Hospitalization Time Using Trace Impurity

prediction accuracy (MSE=460.5), but produced a more complicated prediction tool

(5, 4 and 4 terminal nodes). Since the multivariate trees perform similarly in terms

of prediction accuracy, the simplicity of only evaluating a single tree to predict the

multivariate outcome gives the multivariate trees an advantage over the univariate

trees.

When evaluating the out-of-bag error from the ensemble, each of the multivariate

methods perform slightly worse in terms of prediction accuracy. Only the univariate

trees improve prediction accuracy, improving the MSE from 460.5 to 432.0.

Pediatric Post-Operative Length of Hospitalization Conclusion

The results from this application closely followed the trends observed in simula-

tion. The PC4 registry data used in this application was large sample (N=7,066),

had moderate outcome size (r=3) and a large variance (mean(diag(Σ̂)) = 35.7 and

mean(Σ̂−diag(Σ̂)) = 166.8). Similar to what was observed in simulation, the deter-

minant tree performed well in this high-variance scenario, having the best prediction
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Figure 3.7: Multivariate Tree for Pediatric Hospitalization Time Using Mahalanobis Distance Im-
purity

Figure 3.8: Multivariate Tree for Pediatric Hospitalization Time Using Determinant Impurity
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Figure 3.9: Multivariate Tree for Pediatric Hospitalization Time Using the Between-Node Maha-
lanobis Distance

accuracy of the within-node metric trees. The between-node Mahalanobis tree had

the best prediction accuracy overall, which was consistent with what was observed

in the simulation with large N and moderate r. Each of the multivariate methods

remained somewhat simple, each having 7 terminal nodes or less. In comparison to

the univariate trees, the presented multivariate methods achieve slightly improved

prediction accuracy with a more simple prediction structure.

3.6 Discussion and Conclusion

The improving collection, upkeeping and accessibility of electronic health records

(EHR) gives physicians the opportunity to make informed decisions in the clinical

setting at an unprecedented rate [1,2,50-53]. Strong prediction of multiple correlated

outcomes is vital to make these informed decisions in many biomedical settings.

Ideally, statistical methods used to aid clinical decision support are accurate, easy

to use and clinically valid. Assessing neuropathy or targeting pediatric heart disease
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patients most likely to have long hospitalizations are just two clinical scenarios where

strong prediction of multivariate outcomes could lead to improved patient care and

lower healthcare costs.

In this research, we propose five splitting rules that can be implemented to build

multivariate trees. Our first approach uses summary quantities of the empirical

covariance matrix at each stage of the tree building process. This allows us to iden-

tify which covariate value leads to the greatest reduction in impurity. Specifically,

calculating the determinant of the outcome empirical covariance matrix and by cal-

culating the average Mahalanobis distance in each node are the two ways we propose

evaluating node impurity. Compared to the previous multivariate tree methods, our

proposed impurity functions take into account the correlated nature of the multivari-

ate outcomes and allow the estimated covariance to be different amongst subgroups

of the population.

Our second approach builds off the ideas of LeBlanc and Crowley, who built

survival trees by maximizing the between node distance at each stage of the splitting

process [42-43]. We proposed three distance functions that can be used to build

trees in the multivariate setting. While this research focused on the tree growing

step, developing a pruning algorithm remains as future work.

Results from the multivariate ensemble methods were mixed, often not improving

prediction accuracy compared to the single tree counterparts. This might be because

multivariate trees are hitting a ceiling in terms of prediction accuracy. It is also

possible that the multivariate nature of the trees, built by balancing variances of

multiple outcomes, has given the single tree lessened variability in terms of structure.

A nice feature of this result is that we are left with a interpretable, usable tool to

make prediction in the clinical setting. Unfortunately, it is unlikely that we can
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improve prediction accuracy by developing an ensemble. Assessing the performance

of ensemble methods under specific scenarios through simulation is left as future

work.

The prediction accuracy results of the multivariate methods were very similar in

both applications. In practice, we recommend using the results from the presented

simulation study to help guide the selection of a specific multivariate tree building

metric. In simulation, the methods perform similarly in terms of MSE, however

under certain scenarios, specific metrics may be preferable. Amongst the within-

node metrics, the trace trees are preferable when r = 2 and the Larsen method is

preferable when r = 5. However, in high-variance and high-correlation scenarios, the

determinant and Mahalanobis distance trees are preferable and maintain a simple

tree structure. In comparing the between-node metrics, when the sample is small the

Mahalanobis distance trees have the best prediction accuracy and when the sample

is large the Euclidean distance metrics have the best prediction accuracy.

An important comparison is between the multivariate tree methods and a series

of univariate classifiers. In practice, clinicians would have to choose between these

two approaches for prediction in the clinical setting. Building many univariate trees

generally outperforms the multivariate trees in simulation. These two approaches

are not completely comparable: the univariate trees can focus on each outcome sep-

arately, allowing them to maximize their performance individually. The multivariate

tree methods must leverage performance on an individual outcome to achieve bet-

ter performance in the overall collection of outcomes. The proposed multivariate

tree method had mixed results when compared to multiple univariate trees in our

applications. In the single neuropathy trees, the within node Mahalanobis distance

and Euclidean distance trees outperformed the univariate trees, however, the series



73

of univariate trees outperformed each of the multivariate trees in the ensemble. In

predicting pediatric hospitalization times, all of the multivariate trees except the

within node Mahalanobis trees outperformed the 3 univariate trees.

Prediction accuracy (in terms of MSE) is only one aspect to evaluate when com-

paring tree methods for the prediction of multivariate outcomes. When comparing

the univariate and multivariate tree performance, it is important to consider clinical

reliability and usability. When predicting many outcomes from the same clinical

domain, a clinically reliable method would utilize similar covariates as predictors for

each outcome. As was the case in the application for neuropathy, each of the three

univariate trees had a different structure and contained some different covariates.

The differences in covariates used for prediction in the univariate trees might lead a

clinician to believe that the predictive tool is just an artifact of the data and therefore

loses generalizability and reliability.

Clinical usability is another important consideration between the proposed multi-

variate and univariate trees. Prediction of patient outcomes in the clinical setting is

a primary goal of the proposed tree based method. Tree based methods are an ideal

tool for prediction in the clinical setting since they are easy to use and interpret.

As the number of outcomes increases, a series of predictions using univariate trees

reduces practical clinical usability. It is much more realistic for a clinician to use a

single tree that predicts the entire multivariate outcome.

Development of statistical methods that are not only accurate, but also clinically

valid and usable is vital as the use of EHR data to aid in clinical decision making

becomes more prevalent. In this research, we offer a clinician-friendly solution for

prediction of multivariate outcomes using regression trees. Our proposed multivariate

regression trees attempt to bridge the gap between methods with strong prediction
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performance and real-time clinical decision support.



CHAPTER IV

Improving Patient Prediction Using Patient Specific Data in
Tandem with Well Validated Predictive Tools

Electronic Health Records (EHR) possess a powerful breadth of data allowing

biomedical and health service researchers alike to solve numerous research questions.

Predictive tools resulting from large EHR data sources have been validated for use

across many health centers but generally only use 'shallow' patient data that is likely

to be commonly collected. Often, data collected locally at specific health care centers

contain rich information on continuously monitored physiologic parameters that have

the potential to enhance outcome prediction. In this chapter, we propose methods

to combine large-scale, shallow EHR data with small-scale, deep patient data to im-

prove prediction. The idea is to perform sequential classification: first using widely

available covariates for risk stratification and subsequently refining prediction using

deep data for a subgroup of patients. We propose three approaches to select which

patients move onto a second stage prediction refinement using deep data. Our ap-

proaches select patients with poor predictive properties and intermediate risk based

on the first stage classification. At each step of the sequential classification, we use

a toolbox of machine learning methods. The predictions from the first two steps

are combined to produce a tandem prediction. The methods are illustrated using a

pediatric cardiac study.

75
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4.1 Introduction

The improved collection, upkeep and accessibility of electronic health records

(EHR) give physicians the opportunity to make informed decisions in the clinic

setting at an unprecedented rate [1,2]. Electronic Health Records such as large,

multi-center disease registries and nation-wide insurance claim databases provide a

powerful breadth of data allowing clinicians and health service researchers alike to

solve numerous research questions [8-15].

Predictive tools resulting from large EHR data sources have been validated for

use across many health centers and as a result, have strong predictive properties. In

practice, the resulting tools are used by clinicians to predict patient outcomes. These

large EHR databases typically capture 'shallow' patient data that are commonly

collected across a wide spectrum of health centers. In a specific health center, extra

patient information is collected in addition to that contained in the large EHR.

Making clinical decisions based on the large-scale (shallow) EHR may miss impor-

tant attributes that are collected locally at the patient level in a specific health care

center. In this paper, we hypothesize that using the rich, locally collected data can

improve prediction ability when used in tandem with the initial prediction based on

large scale EHR data in certain patient subgroups. Specifically, we develop an ap-

proach to use deep (health-center specific) data to complement shallow (large-scale)

EHR data with the goal of improving prediction while maintaining practicality.

We hypothesize that using just the large scale EHR-based prediction tools will

provide accurate prediction for patients at the extreme ends of the risk spectrum.

Generally, there is more heterogeneity and therefore, less prediction accuracy in the

intermediate range. This is the group that would benefit from added information
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using deep data to refine prediction. Building on this, we develop three general

approaches for identifying patient subgroups.

Pediatric cardiac critical care providers are often challenged with the equally im-

portant but often conflicting goals of minimizing patients exposure to mechanical

ventilation and preventing extubation failure [8-11]. Extubation failures have been

associated with adverse outcomes including increased duration of hospital stay, car-

diac arrest, and mortality [8-11]. Patients that experience extubation failure may

also suffer downstream complications such as airway injury, prolonged mechanical

ventilation, and the numerous consequences of prolonged exposure to critical care

therapies [10]. As such, efforts to reduce extubation failure events may lead to great

benefits for patients.

Reliable measures of extubation readiness, while validated in adult patients, re-

main elusive in pediatric cardiac critical care. Patients in the cardiac intensive care

unit (CICU) have heterogeneous pathophysiology. Failure to breathe without as-

sistance from a ventilator can be the result of primary respiratory failure, cardiac

failure, or a mixed etiology. Our previous work also demonstrates wide variation in

case mix-adjusted extubation failure rates across pediatric CICUs, further suggesting

that practice and outcomes vary due to existing knowledge gaps [11]. Physicians and

nurses need new prediction tools to help with clinical decision making when assessing

children in the CICU for extubation readiness.

Previous research has investigated how patient, disease, and hospital factors as-

sociate with the risk of extubation failure using data from a large clinical registry

of over 32 institutions from North America (Pediatric Cardiac Critical Care Consor-

tium: PC4) [8-11]. Using traditional regression approaches, previous work identified

several patient and disease characteristics that are associated with extubation fail-
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ure, but failed to develop a tool capable of informing clinical practice at the time of

deciding whether a patient is safe to extubate. In the delivery of medical and surgi-

cal care, often complex interactions between patient, physician, and hospital factors

influence practice patterns [50]. Machine learning methods could generate a deci-

sion algorithm based on these complex factors that could lead to reduced extubation

failure rates.

It is likely that more granular physiologic data collected during a patient extu-

bation readiness assessment, are crucial for improving the prediction of extubation

failure. This is especially true when patients have intermediate risk based on their

broad spectrum of clinical characteristics. An innovative software platform currently

in use in the CICU at the University of Michigan C.S. Mott Children's hospital cap-

tures patient information from 76 cardiology, respiratory and physiologic variables

from CICU monitors and devices at 1 minute intervals. This data source allows us

the opportunity to study physiologic parameters during the key period when patients

are evaluated for extubation readiness. Machine learning methods that utilize large-

scale shallow data from the PC4 registry in tandem with small-scale deep physiologic

data from CICU monitors hold the possibility of unlocking patterns that even the

most experienced clinicians may fail to recognize.

This paper is organized as follows: Section 4.2 describes the methodology for

making prediction with large-scale, shallow EHR based data in tandem with small,

deep healthcare specific data. In Section 4.3, we illustrate the methodology to make

prediction for pediatric patients who have undergone a critical cardiac operation.

Lastly, in Section 4.4, we present concluding remarks and discussion.
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4.2 Methodology

4.2.1 Tandem Prediction

First Stage Prediction

We begin by introducing some notation to describe the tandem approach. Let

n1, k1 and n2, k2, be the sample size and number of predictors for the shallow (large-

sample EHR) and deep (health system specific) datasets respectively. In this setting,

n1 >> n2, n2 ⊂ n1 and k2 >> k1. The goal is to predict the binary outcome, y,

using X, the matrix of predictors. Typically, clinicians attempt to predict y utilizing

either X1, the n1 × k1 covariate matrix from the large, shallow EHR or X2, the

n2 × k2 covariate matrix from the small, deep patient data. In this method, we

propose making a tandem prediction, by first stratifying patients based on risk using

X1, then selecting a subgroup of patients with intermediate risk and poor predictive

properties to pass on to the second stage, and lastly, refining prediction for the

selected subgroup using X2.

Motivated by our clinical example in pediatric heart disease, we utilize machine

learning (ML) methods to make predictions. Machine learning methods are espe-

cially useful in heterogeneous patient populations where standard regression meth-

ods may fail to uncover complex patterns in the data. Specifically, we will select

a prediction tool, f∗1 : X1 → Y, from F , the toolbox of ML methods. The ML

toolbox will include: classification and regression trees (CART), Bagging, Random

Forests, Boosting, Support Vector Machines (SVM), logistic regression and Naive

Bayes [3,4,5,31,32,33,34,56]. Classification and Regression Trees (CART), will be

the ideal prediction method to emerge from the ML toolbox. CART are useful sta-

tistical learning tools because they allow for intuitive and simple disease classification

by recursively partitioning the covariate space. Since CART is built with the goal
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of increasing node homogeneity, we will be able to easily identify subgroups of pa-

tients that are heterogeneous and therefore likely to improve prediction. They are

also very popular in the clinical setting because they are easy to use, implement and

understand from a clinical perceptive.

The first stage ML method: f∗1 is selected based on predictive performance using

a 10-fold cross validation. Each potential first stage classifier assigns a predicted

outcome probability: p̂1 = Pr(f ∗1 (X1) = 1|X1) to each patient. For each ML

method, to assess predictive performance we calculated overall prediction accuracy

(ACC), area under the ROC curve (AUC), sensitivity (TPR), specificity (TNR),

positive predictive value (PPV) and negative predictive value (NPV) based on the

cross validation. The classifier that possessed the best predictive attributes under

the 10-fold cross validation is used for the first stage prediction.

Second Stage Patient Selection

With the end goal of developing a tool to aid in clinical decision making, we need

to balance predictive improvements with simplicity, computational efficiency and us-

ability. There are two important considerations when determining which patients

should be selected for prediction refinement. First, the collection, storage and qual-

ity control of deep data is presumably more expensive and time intensive. Examples

include genetic testing and continuously streamed data (e.g. monitoring of physio-

logic data). Testing and collecting such data for an entire health system may simply

not be feasible. Recommendation for specific patient subgroups, that may benefit

most from the additional data collection, will be cost-effective and timely.

Second, we anticipate that patients with very high or low outcome risk from the

first stage classifier may already be homogeneous enough and may not have con-

siderable discrimination on the basis of additional deep data. In the event that
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prediction attributes are similar between the tandem prediction and first stage clas-

sification alone, we would prefer the first stage classifier since it is based on a larger,

well-validated data source.

We propose three general approaches to determine which patients will be passed

along to the second stage prediction. These approaches focus on finding subgroups

of patients that have (1) intermediate risk only (2) poor predictive properties only

and (3) intermediate risk and poor predictive properties.

1. Patient Selection Based on Risk

In this approach we select patients with intermediate risk to pass on to the second

stage. Lower and upper risk thresholds are pre-specified based on clinical input and

are denoted τL and τU . These thresholds can be tuned to select a specific size

subgroup for the second stage. Algorithm 1 is described below.

Algorithm 1 Risk Driven Subgroup Selection

1: Select f1 from F using 10-Fold CV
2: p̂1 = Pr(f1(X1) = 1|X1)
3: Define X2 = {X2i ∀i s.t. τL < p̂1i < τU}

2. Patient Selection Based on Predictive Performance

We develop four techniques to find the subgroup of patients with poor predictive

properties. In some small sample settings, all patient combinations could be exam-

ined to find the subgroup that has the worst predictive attributes. In this approach,

the clinician would pre-specify the subgroup size: v, and then calculate the AUC

for each n1Cv subgroup combination. The subgroup combination that minimizes the

AUC would be chosen for the second stage prediction. In many applications, the

sample size is large enough to where calculating the AUC for each patient subgroup

of size v is not computationally feasible. This approach is detailed in Algorithm 2.

A second option is to utilize the natural subgroups created by CARTs terminal
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nodes. If CART is selected as f1, we can utilize impure terminal nodes to identify

subgroups of patients with poor predictive performance. We denote T as the set

of all terminal nodes from f1(X1) and i(h) as the impurity for a given node h.

The patients that fall into the terminal node with the largest impurity would be

passed on for second stage prediction. The specifics of this approach are described

in Algorithm 3.

The third approach involves finding patients that when added to a candidate

patient subgroup, reduces the calculated AUC for the subgroup in which the patient

was added. The ideal upper-bound second stage sample size is pre-specified and

denoted n∗. We first rank order patients based on the predicted outcome probabilities

from the first stage prediction: p̂1. We denote the rank-ordered probabilities as

{p̂11, p̂12, ..., p̂1n1} where p̂11 is lowest predicted risk and p̂1n1 is the highest predicted

risk. Next, we define p̂1(j) = {p̂1i}i=1,...,j as the subset of patients of size j, with

the lowest p̂1 and similarly, p̂1(−j) = {p̂1i}i=n1−j,...,j as the size j patient subset

with the largest predicted risk (p̂1). Similarly, we denote X1(j) and y1(j) as the

covariate matrix and outcome for the j lowest risk patients based on the first stage

classifier. We calculate the AUC(f(X1(j)),y1(j)), for sequentially increasing patient

subgroups beginning with the lowest risk patient until the entire sample is included.

Next, we subset the patients, that when added to the sequentially larger test group,

reduced the calculated AUC. We repeat this process for the the backwards direction,

starting with those with highest risk, and increasing subgroups sequentially until the

full sample is included. The patients that reduced the AUCs when added in both

directions are taken as the first candidate subgroup. Instead of the intersection of the

forward and backward selected groups, one could consider the union as well. Next,

the patients in the candidate subgroup are re-ordered by risk and sequential AUCs
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are re-calculated. This process is iterated until a sufficiently small (≤ n∗) group of

patients is selected. This approach is described in Algorithm 4.

A fourth approach is described in Algorithm 5. This approach is similar to Algo-

rithm 4, except patients are randomly ordered, instead of rank-ordered by probability.

Then, we sequentially add patients based on the random order, calculate AUCs and

track which patients caused AUC decreases. This process iterates several times and

we determine the poor predictive subgroup by selecting patients that reduced AUC

most often as a candidate subgroup. We denote B as the number of iterations, and

for each patient, we can add up the number of times that patient decreases sub-

group AUC. We introduce ψ, as a tuning parameter cutoff, to which we compare

the proportion of times (out of B), that a patient decreased subgroup AUC when

sequentially added.

Algorithm 2 Prediction Driven Subgroup Selection- 1

1: Select f1 from F using 10-Fold CV
2: v ⇐ Pre-Specified Subgroup Size
3: Sv ⇐ Set of all v size subsets in n1
4: Select s ∈ Sv s.t. min(AUC(Sv)) = AUC(s)
5: Define X2 = {X2i ∀i ∈ s}

Algorithm 3 Prediction Driven Subgroup Selection- 2

1: f1 ⇔ CART
2: Define T as the set of all terminal nodes created by f1
3: Define i(h) as the impurity function for a given node h
4: Select T∗ ∈ T s.t. max(i(T)) = i(T∗)
5: Define X2 = {X2i ∀i ∈ T∗}

3. Patient Selection Based on Predictive Performance and Risk

In order to identify patients with poor prediction attributes, an AUC threshold γ,

is pre-specified. We recommend working with expert clinicians to elicit the γ value

that would be considered acceptable for the specific clinical outcome (e.g. 0.65, 0.90).

Rank-ordering the predicted outcome probabilities from the first stage prediction
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Algorithm 4 Prediction Driven Subgroup Selection- 3

1: Select f1 from F using 10-Fold CV
2: n∗ ⇐ Pre-Specified ideal sample size
3: n′ = n1
4: X′1 = X1

5: while (n∗ ≤ n′):
6: Define X2forward = {X2j∀j ∈ {2, ..., n1} where AUC(f1(X′1(j)),y

′
1(j)) −

AUC(f1(X′1(j−1)),y
′
1(j−1)) < 0}

7: Define X2backward = {X2j∀j ∈ {2, ..., n1} where AUC(f1(X′1(−j)),y
′
1(−j)) −

AUC(f1(X′1(−j+1)),y
′
1(−j+1)) < 0}

8: X2 = X2forward ∩X2backward

9: Define X1forward = {X1j∀j ∈ {2, ..., n1} where AUC(f1(X′1(j)),y
′
1(j)) −

AUC(f1(X′1(j−1)),y
′
1(j−1)) < 0}

10: Define X1backward = {X1j∀j ∈ {2, ..., n1} where AUC(f1(X′1(−j)),y
′
1(−j)) −

AUC(f1(X′1(−j+1)),y
′
1(−j+1)) < 0}

11: X′1 = X1forward ∩X1backward

12: n′ = length(X2)

13: Define X2 = {X2i ∀i ∈ X′1}

Algorithm 5 Prediction Driven Subgroup Selection- 4

1: Select f1 from F using 10-Fold CV
2: B ⇐ Number of Iterations
3: Q⇐ n1 ×B results matrix
4: for (b in 1:B):

5: X′1 = reorder(X1)
6: res = I{AUC(f1(X′1(−j)),y

′
1(−j))−AUC(f1(X′1(−j+1)),y

′
1(−j+1)) < 0}

7: Qb = unorder(res)

8: Define X2 = {X2i ∀i s.t.
∑B

b=1 Qi/B ≥ ψ}
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(p̂1), allows us to identify those patients with intermediate risk. We utilize the same

notation from Algorithm 4.

Our strategy is to find the intermediate risk group with poor predictive attributes

by increasingly moving j to create sequentially larger and larger patient subgroups

with the j lowest (or highest) risks based on the first stage predictions. For each

value of j, we calculate AUC(f(X1(j)),y1(j)) for the sequential subgroups of pa-

tients. We increase j until that subgroup loses its strong predictive performance

(AUC(f(X1(j)),y1(j)) < γ). The sequential subgroups start at the lowest risk (or

highest risk) in which the outcomes are not pure. For example, if the patient with

the 25th smallest risk is the first that experiences the event, j will start at 25. We

introduce ω as a tuning parameter, where low values can give stricter and larger

subgroups and high values result in more liberal, smaller subgroups. The ω can be

thought of as a leniency parameter, allowing the calculated AUC to fall below γ

exactly ω number of times before we create our lower and upper bound subgroups.

We introduce ω for two reasons. First, when j is small, the calculated AUCs can be

noisy (since we are building an ROC curve based on such few patients). This noise

may lead us to incorrectly find a large intermediate subgroup of patients. Secondly,

when data is expensive to collect, we provide some control on the size of the interme-

diate subgroup that would be recommended for second stage prediction. After the

ωth consecutive subgroup where AUC(f(X1(j)),y1(j)) < γ, we define τL = p1(j−ω)

as the lower risk threshold. This process is repeated, beginning with the highest

risk patients, resulting in τU = p1(−j+ω) as the upper risk threshold. The calculated

thresholds result in X2 = {X2i ∀i s.t. τL < p̂1i < τU}, that are then used for the

second stage prediction. The details of this approach are described in Algorithm 6.
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Algorithm 6 AUC and Risk Driven Subgroup Selection

1: Select f1 from F using 10-Fold CV
2: auc← γ
3: ω′ ← ω
4: j = 1
5: m← n1
6: while (j ≤ m & ω′ > 0):

7: auctest = AUC(f1(X1(j)),y1(j))
8: if auctest ≥ auc:
9: ω′ ← ω

10: else:
11: ω′ = ω′ − 1

12: j = j + 1

13: τL = p̂1(j−1−ω′)

14:

15: ω′ ← ω
16: j = 1
17: m← n1
18: while (j ≤ m & ω′ > 0):

19: auctest = AUC(f1(X1(−j)),y1(−j))
20: if auctest ≥ auc:
21: ω′ ← ω
22: else:
23: ω′ = ω′ − 1

24: j = j + 1

25: τU = p̂1(−j+1+ω′)

26: Define X2 = {X2i ∀i s.t. τL < p̂1i < τU}

Subgroup Selection in the 'Cheap' Deep Data Scenario

There exists certain clinical scenarios in which the deep data collection actually

has minimal costs. Cheap deep data sources could include text frequency from clinical

notes or examining ICD-9 codes from medical claims data. In each of these exam-

ples, data is already collected, thus reducing the costs greatly of using 'additional'

information. An alternative approach in a setting where additional data collection

costs are minimal, would involve giving a second stage prediction for all patients,

using p̂1, as an extra covariate in the second stage classifier. As a comparison, we

also include the initial predicted risk as an additional covariate for the second stage

classifiers based on the selected subgroups.
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Second Stage Prediction Refinement

In the second stage of the tandem approach, we refine the prediction for the

selected patients using X2. Once again we consider the toolbox of ML approaches, F .

In the second stage prediction, we choose f∗2 : X2 → Y, from F based on prediction

results calculated from a 5-fold cross validation. The resulting prediction made from

the second stage refinement is denoted: ŷ2 = f ∗2 (X2) with probability, p̂2 =

Pr(f ∗2 (X2) = 1|X2). For notational convenience, we define the complete tandem

prediction as T = f2(f1(X)) where final prediction is given as: p̂ = Pr(T (X) = 1) .

4.2.2 Making Real-Time Prediction

To ensure this method can be easily implemented for real time clinical decision

support, we detail the process of making prediction for a new patient i. First, an

initial prediction is given as p̂1i using f1. The clinician would have pre-determined

whether to select patients for prediction refinement using risk, predictive performance

or both. The clinician would need to pre-specify tuning parameters such as what

would be considered satisfactory predictive performance (γ) or what is considered

high and low risk (τU and τL). Then using the selected algorithm, we determine

whether patient i will be moved to second stage classification.

Algorithms 1, 2 and 6 result in well-defined risk cutoffs or terminal nodes that

would be used for subgroup selection. Conversely, Algorithms 3, 4 and 5 select sub-

groups of patients with the worst prediction attributes, based on already collected

data. Unfortunately, when determining whether a new patient falls into the sub-

groups selected by Algorithms 3, 4 and 5: we do not yet know the full outcome

information.

To circumvent this issue in practice, we treat whether the patient was included
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in the refinement subgroup as a binary outcome. We find the group of patients that

patient i is most similar to in terms of known covariates using a k-nearest neighbors

algorithm. For a new patient i, if the k-nearest patients are included in the prediction

refinement subgroup (based on Algorithms 3, 4 or 5), then she/he is also passed on

to second stage prediction. Final prediction for these patients will take into account

both p̂1 and p̂2. We propose two general approaches to produce a final tandem

prediction: p̂i. Consider producing a tandem predicted probability as:

1. p̂i=p̂2i

2. p̂i=(r1p̂1i+r2p̂2i)

where r1 and r2 are weights scaled between (0,1) with r1+r2 = 1. One common choice

for the weights would be r1 = r2 = 0.5 which would equally weight the two predicted

probabilities. A second choice would be to weight the predicted probabilities based on

the proportion of patients that were passed to second stage: c, resulting in r1 = 1−c

and r2 = c. A third choice of weights can be derived through the fold change

in AUC improvement for patients that are given prediction refinement. We define

d = AUC(X2)/AUC(X1) as the AUC ratio for the deep and shallow data. Then,

define r1 = 1/(1+d) and r2 = d/(1+d). We once again assess the overall performance

of the tandem approach by examining AUC, ACC, PPV, NPV, TPR, TNR based

on a 5-fold cross validation.

4.2.3 Making Prediction with Complex Data

When using EHR data to make prediction in the clinical setting, we often have

data that is so complex that standard methods are unable to produce a prediction

performance needed to make decisions in the clinical setting. In this section we

propose an approach to deal with the complex longitudinal data in our motivating
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application.

The deep data collected in the CICU at the University of Michigan contains con-

tinuously streamed cardiology, respiratory and physiologic variables collected every

minute during the time period of the extubation readiness evaluation. Specifically

we collect patient systolic blood pressure (SBP), diastolic blood pressure (DBP),

mean blood pressure (mean BP), respiratory rate (RR), heart rate (HR), SpO2 lev-

els, FiO2 levels, SpO2/FiO2 Ratio, mean airway pressure (MAP), delivered volume

(DV), dynamic compliance (DYN), positive end expiratory pressure (PEEP), and

central venous pressure (CVP).

The complex longitudinal nature of this data makes prediction challenging for

three reasons. First, the number of covariates may be larger than our sample size,

depending on the subgroup selection. Second, this type of continuously streamed

information can be quite noisy. Finally, since the patients are each followed for a

variable length of time, the data is very unbalanced. If one were to try and ex-

tract the entire physiologic profile, the analysis may be plagued by missing data.

Dimension reduction techniques such as Principle Component Analysis (PCA), Lin-

ear Discriminant Analysis (LDA) and Generalized Discriminant Analysis (GDA) can

deal with dimension reduction, but lose the easy clinical interpretability that is often

necessary for clinicians to make patient decisions.

To deal with the high-dimensionality of the deep data, we propose several ap-

proaches, each time adding features to the previously derived covariate set. The

idea is to 'magnify' in on the patient covariate profiles at different resolutions in

an attempt to capture as much relevant information as possible while maintaining

simplicity. Our objective is to balance computational complexity with predictive

accuracy, generalizability and clinical interpretability in order to develop a tool for
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clinical decision-making. Towards this end, we want to 'zoom' in to gain as much

information as possible (and therefore predictive ability), while maintaining a level

of clinical applicability.

A simple dimension reduction technique that retains the interpretability of the

covariates is to take summary measures of the covariate trajectories for each patient.

For example, making a decision based on SBP slope reduces the dimension of the

SBP measurements to a single covariate while maintaining clinical interpretability.

For each of variables measured during the extubation readiness evaluation, we extract

basic profile information (e.g. minimum, maximum, standard deviation, slope and

average piece-wise slope) for each patient profile. This approach of feature selection

yielded 53 summary covariates for each patient.

We further this technique by fitting polynomial regression models with increasing

order for each patient profile. The regression coefficients are then extracted for use as

inputs in the ML based analysis for the second stage prediction. Since our physiologic

deep data source is a relatively small sample, as an exploratory analysis, we create

indicators for each of these effects based on whether the patient effect was above the

average effect for the full data.

4.3 Application: Predicting Extubation Failure for Pediatric Patients

Following Critical Cardiac Operation

4.3.1 Data Collection and Background

Improving the quality of care given to pediatric patients is an important goal of

health service researchers and clinicians alike. In this section, we demonstrate our

tandem approach to predict extubation failure amongst 174 pediatric patients that
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have undergone a critical cardiac operation with measured physiological attributes.

Utilizing the PC4 registry, we identified 12,244 pediatric patients that had undergone

a critical STS (Society of Thoracic Surgeons) defined heart operation from 32 North

American institutions. During CICU follow-up, 8.6% of the patients experienced an

extubation failure. In the first stage of the tandem prediction, we attempt to predict

patient extubation failure based on 22 covariates available to clinicians at the time

patients enter the CICU following the operation.

Patient covariates in the PC4 registry included characteristics of the CICU visit

(whether there was an operation included with the ventilator run, number of previ-

ous extubations, length of time on the ventilator, whether the patient was ventilated

during the operation), patient airway characteristics (whether the patient had an

airway anomaly, non-airway anomaly or chromosomal abnormality), patient clini-

cal characteristics and demographics (patient length, gender, age and weight), three

patient risk scores and lastly, patient comorbidities (whether the patient had hyper-

tension, stroke, sepsis, acute decompensated heart failure, cardiac arrest, ECMO,

vocal cord dysfunction or paralyzed diaphragm).

4.3.2 First Stage Prediction, Risk Stratification and Patient Refinement Selection

Table 4.1 presents results from the first stage prediction. Specifically, we present

prediction performance based on a 10-fold cross validation for each method in the

machine learning toolbox. Boosting performed the best with an AUC of 0.689.

The variable importance plot for the boosted classifier is displayed in Figure 4.1.

The length of time spent on the ventilator, whether the patient had a paralyzed

diaphragm and patient weight were the three variables that resulted in the largest

average impurity decrease. Based on the predicted probabilities from the boosted



92

Table 4.1: 10-Fold Cross Validation Prediction Results for First Stage Classification using PC4

Registry

First Stage

Prediction using PC4

AUC ACC NPV PPV TPR TNR

CART 0.5 0.914 0.914 0.4 0 1

Logistic Regression 0.677 0.914 0.915 0.367 0.00948 0.998

Random Forest 0.66 0.912 0.915 0.199 0.0116 0.996

Bagging 0.51 0.914 0.914 0 0 1

Boosting 0.689 0.913 0.915 0.318 0.0146 0.997

SVM 0.533 0.914 0.915 0.525 0.00565 0.999

Naive Bayes 0.655 0.817 0.927 0.163 0.272 0.869

classifier, we select patients to pass to the second stage.

1. Patient Selection Based on Risk

We first select intermediate risk patients by pre-specifying the lower and upper

risk cutoffs (Algorithm 1). Setting the upper and lower risk cutoffs to be the 20th

and 80th percentiles, the corresponding predicted probability cutoffs are 0.116 and

0.267 respectively. The extubation failure rates in the low, intermediate and high

risk groups were 1.9%, 6.9% and 20.3% respectively. Of the 174 patients for which

we have second stage data, 105 fall into the intermediate risk group.

2. Patient Selection Based on Predictive Performance

Next, we find candidate subgroups with poor predictive performance in the first

stage classifier. Due to the large sample in this application, we are unable to examine

the out-of-sample predictive performance of all patient combinations (Algorithm 2).

Since the CART classifier based on the PC4 data yielded just a single node stump,

we are also unable to identify heterogeneous patients using the tree (Algorithm 3).
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Figure 4.1: Variable Importance for Boosted Classifier based on PC4
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Alternatively, we use the calculated AUCs from the sequentially larger subgroups

based on risk to select the subgroup that decreased subgroup AUC when added (Al-

gorithm 4). The AUCs from the sequentially larger subgroups are displayed in Fig-

ure 4.2. There were 10,528 patients when added, reduced the calculated AUC while

sequentially moving forward with larger risks. When sequentially moving backward

with smaller risks, there were 1,038 patients that when added, reduced the calcu-

lated AUC. The were 10,680 patients (151 failures) that reduced AUC when added

in the forward or backward sequential calculations which included 155/174 patients

with physiologic measurements. The 10,680 patients were re-ordered and sequential

AUCs were re-assessed. There were 9,338 patients (36 failures) that reduced AUCs

in the second iteration which resulted in 143/174 patients. Unfortunately only 2/155

and 1/143 of the proposed subgroup had failures. So while we may have selected a

subgroup with poor predictive properties, this subgroup selection did not result in a

usable subgroup for second stage prediction.

In the final approach to find a subgroup of patients with poor predictive attributes,

we randomly ordered the 12,244 patients, created sequentially larger subgroups and

calculated AUC differences (Algorithm 5). We repeated this process ten times (B =

10) and then added the number of times (out of 10) the AUC decreased when that

patient was added to the subgroup. There were 1,212, 2,981, 3,468 and 2,500 patients

that caused AUC decreases 10, 9, 8 and 7 times out of ten times respectively. We

choose ψ = 0.8 and selected the 7,661 patients as the subgroup that resulted in

AUC decreases at least 80% of the time. The subgroup had an 8.6% failure rate and

resulted in 107/174 patients for second stage prediction.

3. Patient Selection Based on Predictive Performance and Risk

To select patients based on both predictive ability and risk (Algorithm 6), we
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set the predictive threshold as γ = 0.65 and initially set the tuning parameter to

ω = 122, or 1% of the sample size. After rank ordering the patients by the risk

calculated from the boosted classifier, the lowest calculated risk for a patient with an

extubation failure was 0.077, which was the 666th patient. The highest calculated

risk for a patient without a failure was 0.695, which was the 12,243rd patient. The

starting point for the forward and backward portions of the algorithm are therefore

the 666th and 12,243rd patient respectively. The sequentially calculated AUCs used

in finding the lower and upper risk cutoffs are displayed in Figure 4.2.

The tuning parameter ω was varied to create candidate subgroups with differing

sizes. By varying levels of ω we can evaluate the different subgroup sizes for the

174 patients with both PC4 and CICU physiologic data. Not each increase in ω

results in a meaningful subgroup for this application, since it will not always result

in changing which patients of the 174 are recommended for the second stage. Keeping

γ = 0.65 fixed, we find 6 different subgroup splits at ω = 1, 2, 18, 53, 368, 424 resulting

in subgroup sizes of 174,151,150,146,130,129. The ω can be chosen to select an

ideal subgroup size in terms of cost. If data collection costs are minimal, we could

potentially evaluate the predictive performance of the generated potential subgroups

as a hold out set in the first stage classifier. In this application, we stay with our

initial assignment of ω = 122.

Algorithm 6 found the risk cutoffs to be 0.120 and 0.418 respectively resulting in

2,709 patients in the low risk group, 9,345 patients in the intermediate risk group

and 190 patients in the high risk group. The extubation failure rate was 39.5%

in the high risk group, 9.9% in the intermediate risk group and 1.9% in the low

risk group. Patients with predicted risk between 0.120 and 0.418 are selected for

prediction refinement. Of the 174 patients with second stage data, 24 fell into the
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Figure 4.2: Sequentially Calculated AUCs
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Table 4.2: Summary of Subgroup Selection Algorithms

Patients in

Subgroup

Patients with Physiologic Data

Data in Subgroup

Prediction Results from Boosting

Algorithm Using Holdout Set

Algorithm N % Failure N % Failure AUC ACC NPV PPV TPR TNR

Risk and Prediction Performance 9345 9.9% 146 12.3% 0.529 0.863 0.875 0 0 0.985

Risk Only 7345 6.9% 105 7.6% 0.341 0.924 0.924 0 0 1

Prediction Performance (Algorithm 5) 10680 1.4% 152 1.3% 0.57 0.974 0.987 0 0 0.987

Prediction Performance (Algorithm 6) 7661 8.6% 107 9.4% 0.688 0.897 0.906 0 0 0.99

low risk group (0/24 had extubation failure) and 4 fell into the high risk group (1/4

had an extubation failure). The remaining 146 patients were passed on to the second

stage.

The six algorithms resulted in three potential subgroups recommended for pre-

diction refinement. Table 4.2, summarizes the subgroups and prediction attributes

when used as a holdout testing set for the first stage boosted classifier. The predic-

tive performance for the 2/3 subgroups was significantly weaker than the full data.

The calculated AUCs were 0.341, 0.688 and 0.529 for the subgroups selected based

on risk, prediction and both risk and predictive attributes respectively. These testing

set predictive performances using the PC4 data alone represent a baseline that can

be potentially improved with second stage deep data.

4.3.3 Second Stage Prediction

We evaluate predictive performance for each of the ML based classifiers on sec-

ond stage data. Table 4.3 lists the predictive performance of each classifier for the

selected patient subgroups. We compare the second stage prediction results to the

baseline first stage results (with the subgroups used as a hold out set). First, we

compare to the results of the selected subgroup using just the first stage prediction.

There is clear improvement in prediction accuracy using the second stage classifiers
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for the subgroups selected by risk and the risk/predictive attributes. Each of the

classifiers improved predictive performance for the risk (stage one AUC=0.341) and

risk/predictive subgroup (stage one AUC=0.529). The subgroup selected by pre-

dictive attributes (algorithm 6) was less effective: none of the classifiers improved

performance for the 107 patients compared to the first stage classifier alone.

The best performing classifier for the predictive and risk-based patient subgroup,

was the Naive Bayes classifier with an AUC of 0.63. Boosting was the best second

stage classifier for the risk based subgroup (AUC=0.64). Random forest resulted in

the best predictive performance (AUC=0.69) for the predictive based subgroup. The

variable importance plots for three selected subgroups are displayed in Figures 4.3-

4.5. There were somewhat different covariates responsible for the largest average

impurity decrease in the three subgroups. However, minimum SpO2 was amongst

the most important covariates in each group. The prediction accuracies for the second

stage prediction based on the full n = 174 cohort are slightly improved compared

to the 3 subgroups which is unsurprising, as the likely homogeneous patients are

included in the full data.

Next, we attempted to incorporate more information from the CICU physiologic

database by including the coefficients from increasing polynomial trends as features

for the ML classifiers. We also included results from classifiers where each feature

was an indicator to whether the patient had above average values for each of the

extracted polynomial features. The results from each of the subgroups is included

in Table 4.4. Prediction accuracy did not consistently improve as the number of

features increased.
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Figure 4.3: Variable Importance for Random Forest based on CICU Physiologic Data for Risk

Subgroup
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Figure 4.4: Variable Importance for Random Forest based on CICU Physiologic Data for Predictive

Subgroup
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Figure 4.5: Variable Importance for Random Forest based on CICU Physiologic Data for Predictive

and Risk Subgroup
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Table 4.3: Second Stage Prediction Results

AUC ACC NPV PPV TPR TNR

Subgroup Based on Risk and Prediction

Boosting 0.602 0.835 0.873 0.200 0.000 0.955

Bagging 0.624 0.870 0.877 0.000 0.000 0.933

CART 0.573 0.829 0.896 0.187 0.330 0.915

Random Forest 0.628 0.871 0.877 0.000 0.000 0.992

Support Vector Machines 0.546 0.877 0.877 0.200 0.000 1.000

Nave Bayes 0.634 0.698 0.886 0.093 0.290 0.784

Subgroup Based on Risk

Boosting 0.644 0.914 0.923 0.200 0.000 0.990

CART 0.680 0.895 0.942 0.350 0.400 0.950

Random Forest 0.603 0.924 0.924 0.200 0.000 1.000

Support Vector Machines 0.295 0.914 0.923 0.000 0.000 0.990

Nave Bayes 0.550 0.581 0.925 0.143 0.367 0.605

Logistic Regression 0.501 0.705 0.911 0.040 0.100 0.751

Subgroup Based on Prediction

Boosting 0.603 0.897 0.906 0.000 0.000 0.990

Bagging 0.537 0.935 0.935 0.000 0.000 1.000

CART 0.500 0.907 0.907 0.000 0.000 1.000

Random Forest 0.687 0.888 0.906 0.200 0.000 0.982

SVM 0.615 0.906 0.906 0.000 0.000 1.000

Nave Bayes 0.459 0.786 0.920 0.111 0.200 0.834

Logistic Regression 0.508 0.766 0.925 0.105 0.333 0.816

Full Data (n = 174)

Boosting 0.676 0.868 0.891 0.200 0.050 0.966

Bagging 0.631 0.891 0.891 0.500 0.000 1.000

CART 0.559 0.850 0.891 0.200 0.067 0.948

Random Forest 0.643 0.891 0.891 0.000 0.000 1.000

SVM 0.476 0.890 0.890 0.000 0.000 1.000

Nave Bayes 0.486 0.607 0.884 0.099 0.300 0.656

Logistic Regression 0.567 0.758 0.891 0.132 0.150 0.834
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Table 4.4: Prediction Results with Polynomial Effect Covariates

Random Forest Boosting

Degree Polynomial Fit Number of Covariates AUC AUC with Indicators AUC AUC with Indicators

Approach 1 Subgroup (n=146)

1 54 0.628 0.605 0.602 0.699

2 91 0.558 0.597 0.512 0.605

3 130 0.547 0.631 0.497 0.647

4 182 0.498 0.526 0.588 0.64

5 265 0.474 0.496 0.5 0.699

Approach 2 Subgroup (n=105)

1 54 0.603 0.667 0.644 0.459

2 91 0.303 0.505 0.356 0.323

3 130 0.291 0.379 0.5 0.423

4 182 0.231 0.453 0.393 0.3

5 265 0.328 0.387 0.408 0.367

Full Data (n=174)

1 54 0.643 0.681 0.676 0.691

2 91 0.632 0.660 0.652 0.604

3 130 0.612 0.657 0.571 0.555

4 182 0.571 0.633 0.569 0.633

5 265 0.547 0.614 0.566 0.622



104

4.3.4 Final Tandem Prediction

While there is some obvious improvement in two of the three subgroups, we next

examine the performance of the full tandem classifier in predicting extubation failure.

The calculated AUCs from the tandem prediction are displayed in Table 4.5. We

compare the prediction accuracies of the final tandem predictions (in the last 6 rows

of the table) to that of just using the first stage prediction alone (in row two of the

table). The subgroups selected by approach 1 and 3 saw significant improvements

in prediction accuracies. Conversely, there was no prediction improvement when

refining prediction using approach 2. The risk based subgroup increased AUC from

0.607 to 0.682 in the best scenario. The prediction/risk subgroup increased AUC

from 0.607 to 0.647. The AUC improvements were less dramatic when assigning

second stage prediction for each patient, increasing AUCs from 0.607 to 0.639 in the

best case scenario. Using just physiologic data for all 173 patients, we have an AUC

of 0.634. Thus, our tandem approach improved predictive ability compared to using

either EHR alone. Additionally, the fact that the best case tandem AUC increase

(when using the full data) was only 0.634 to 0.639 may support our hypothesis that

we are unable to add discrimination to the already homogeneous population within

the full data.

When fully adjusting for first stage prediction, there is a prediction gain in each

of the three subgroups. Interestingly, there was no boost in prediction for the full

data when adjusted for the initial predicted risk for the second stage classifier.

4.3.5 Application Conclusions

Improving our ability to identify pediatric patients most likely to experience an

extubation failure can reduce risk of cardiac arrest, mortality and length of hospital-
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Table 4.5: Tandem Prediction Results

Subgroup Based on Risk and Prediction (n2 = 146) Subgroup Based on Risk (n2 = 105) Subgroup Based on Prediction (n2 = 107) Full Data (n2 = 174)

p̂1i (holdout: n2) 0.529 AUC1 0.341 AUC1 0.688 AUC1 0.607 AUC1

p̂1i (holdout: 174) 0.607 0.607 0.607 0.607

p̂2i (5-Fold Cross Validation n2) 0.604 AUC2 0.662 AUC2 0.604 AUC2 0.676 AUC2

p̂i=p̂2i ∗ p̂2i 0.539 0.647 0.604 0.650

p̂i=0.5 ∗ p̂1i+0.5 ∗ p̂2i 0.647 0.663 0.589 0.637

p̂i=p̂2i 0.618 0.682 0.580 0.634

p̂i=
174−n2

174 ∗ p̂1i+ n2

174 ∗ p̂2i 0.634 0.668 0.585 0.637

p̂i=
1−AUC2

AUC1

1+
AUC2
AUC1

∗ p̂1i+
AUC2
AUC1

1+
AUC2
AUC1

∗ p̂2i 0.647 0.671 0.590 0.639

p̂2 adjusting for p̂1 0.665 0.723 0.605 0.599

ization. This application demonstrates how broad-scale EHR data can be combined

with institution specific deep data for risk prediction for extubation failures. The

collection and quality control of continuously streamed physiologic data is expen-

sive and therefore, not collected on each patient. Using the proposed algorithms,

we derived 3 potential patient subgroups that were passed to the second stage. In

this application, selecting patients based on their predicted risk allowed us to take

a deeper dive into the complex features that make a patient more or less likely to

have a extubation failure. In the best case setting, we had an AUC improvement of

0.075.

To understand the impact of the tandem prediction, we make two key compar-

isons. First, we compare the prediction attributes of the tandem classifier to that

of just using the PC4 registry or the CICU physiologic database alone for the 174

patients with full data. Using PC4 alone resulted in AUC = 0.607 and that for the

CICU physiologic alone was AUC = 0.634. Using Algorithm 6 to select patients, we
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obtained an AUC of 0.647 and using Algorithm 1, we achieved AUC of 0.682. Sec-

ond, we assess whether selecting specific patients for prediction refinement resulted

in better predictive attributes compared to that of giving all patients a second stage

prediction. Utilizing the PC4 registry to identify the heterogeneous second stage

subgroup resulted in improved predictive attributes and required less data collection

(0.647 and 0.682 vs. 0.639). Adding effects from polynomial regression models for

covariates as features for the second stage classifiers did not consistently improve

predictive ability for any of the subgroups.

The results of the tandem prediction could be implemented quite easily at health

centers within the PC4 collaborative. As part of the extubation readiness trial, we

could assign a patient an initial risk based on our boosted classifier. Then, if the

patient fell into intermediate risk group, the physiologic data during the readiness

trial would be collected and summarized. The second stage classifier would then

utilize the physiologic data to give a final prediction. This tandem approach will

allow us to identify patients with elevated risk of extubation failure more accurately,

thereby improving downstream patient outcomes.
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4.4 Discussion

Developing prediction tools that can be used in real-time has the potential to im-

prove healthcare delivery and decrease healthcare costs. Ideally, such prediction tools

should be accurate, practical and easy to use. In our proposed tandem approach, we

first obtain risk prediction using a well-validated, large sample EHR that contains

only shallow patient covariates. Next, we utilize the initial risk to select patients that

have intermediate risk and/or poor predictive properties using one of six proposed

algorithms. Finally, the selected patients are given an updated prediction based on

a second stage ML based classifier that utilizes deep, physiologic data. The resulting

prediction tool may offer clinicians risk cutoffs to inform when deep patient data

should be collected and assessed to refine risk prediction. While adding more infor-

mation to aid in predictions can be valuable in certain clinical scenarios, our method

is built on the premise that targeting patient subgroups where there is maximum

heterogeneity and potential for improvement, will have the greatest impact.

The collection and quality control of deep health system specific data can be

expensive and time consuming. Deep data examples include genetic testing, contin-

uously streamed ICU data, metabalomics, lipidomics or functional MRI. A useful

feature of the proposed subgroup selection algorithms is their ability to be tuned;

giving the user the ability to select from subgroups with differential sample sizes. In

real-time prediction, one would determine whether a patient lands in our selected

subgroup and then perform further testing to collect the deep data needed to refine

prediction. The framework of selecting patients for additional testing based on their

initial predicted risk make it possible to upscale the tandem approach widely.

Statisticians must attempt to balance computational and quantitative complex-
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ity with predictive accuracy, generalizability and clinical meaning. Frequently, the

complexity of the methodology must be increased to meet the complexity of the un-

derlying outcome etiology. This is especially true in our tandem approach with the

second stage deep data. When data is complex, we need 'magnify' our view when

extracting covariates from the deep data. In this paper, we propose extracting poly-

nomial effects from regression models for each patients physiologic data trajectories

to use as features in the second stage prediction. The level of 'magnification' should

be chosen based on predictive ability through a cross validation in the training data

to ensure we do not overfit by extracting covariates that are too patient specific.

We demonstrated our method by predicting extubation failure for pediatric pa-

tients who have undergone a critical heart operation. We identified 3 potential

subgroups that could be used for prediction refinement. There was a significant im-

provement in prediction accuracy when comparing the tandem prediction to that

from the first stage or second stage prediction alone. Additionally, the prediction

attributes were improved for the tandem approaches that refined prediction for spe-

cific patient subgroups compared to making second stage prediction with the full

data. Though our application did not allow us to utilize certain algorithms to select

patient subgroups, they may be useful in other applications. Due to our small sample

of patients with collected deep data, we were unable to gain consistent additional

information by including polynomial effects as predictors. In larger sample appli-

cations, extracting important trends through polynomial trajectories may result in

increased prediction accuracy.

An important consideration that must be made on a case-by-case clinical basis

is determining what constitutes meaningful increases in predictive ability. In some

clinical scenarios with extreme adverse outcomes, any predictive improvement will
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be 'worth' the increased time, costs and analysis of deep patient data. Using a

training cohort of patients with already collected data, AUC improvement could be

estimated under different tuning parameter settings. Under this approach, clinicians

can estimate what predictive improvements could be gained based on differential

subgroup sizes. If only a small AUC increase is observed, tuning parameters can

be chosen to select a smaller subgroup. Once the desired AUC improvement and

corresponding subgroup size is selected, the patient selection parameters could be

'locked in' for future prediction.

Our tandem approach could easily be extended to other outcome types. For con-

tinuous outcomes, predictive ability could be assessed using MSE and the patient

subgroup could be selected by rank-ordering the predicted outcome. The ML litera-

ture for survival and clustered outcomes is less developed. Implementing the tandem

approach to different outcomes remains as future work.

Due to the tandem nature in the data, we expect instability in the structure

of the developed classifier. Instability in building a classifier occurs because small

perturbations of the data can have very dramatic effects on the structure of created

classifier (especially with tree-based methods). If instability occurs in the first stage

prediction, the classifier could alter which patients are delivered to second stage

prediction. Therefore, in certain cases, the instability caused by small perturbations

in the data could have multiplicative consequences. To overcome potential instability

in our tandem approach, ensemble methods could be implemented. Specifically, we

could develop an ensemble in the first stage prediction to provide added stability in

terms of subgroup selection. A final second stage subgroup could be chosen based on

the group of patients that were selected to the subgroup most often in the ensemble.

Important experimentation needs to be implemented to asses whether or not in each
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stage of the ensemble, the specific ML method will be locked in or allowed to change

with each bootstrapped sample. Exploration of tandem prediction ensembles are left

as future work.

In this paper, we demonstrate how our tandem approach can be implemented to

two EHR data sources, however this method could be generalized to make prediction

using more than two data sources. The idea for a generalized-tandem prediction

is that after each sequential prediction, we would continue to re-assess which pa-

tients would most benefit from further classification. Combining more than two data

sources could be applied in a patient diagnostic setting, where clinicians iteratively

order more testing in order to assign a patient diagnosis. With each additional test,

prediction is updated and the subgroup selection algorithms determine whether more

testing should be ordered, or a diagnosis assigned.



CHAPTER V

Discussion

Although the availability of data to inform clinical decisions is at an all time

high, predictive tools often lack certain attributes to aid in real-time clinical decision

making. Statistical methods are needed to produce practical, reliable, clinical valid

and interpretable decision making tools. In this dissertation, we proposed three

statistical learning methods with the above attributes based on data from electronic

health records. The ultimate goal of each method was to improve patient care and

reduce unnecessary healthcare costs.

In the first chapter, we proposed a new classification tool: SVM-CART, that com-

bined features of SVM and CART. This work was motivated by clinical scenarios

where neither SVM nor CART alone could address complex features of the data

reasonably, such as scenarios when there were different disease-exposure mechanisms

across subgroups of the population. Through simulations, we demonstrated that

under these scenarios, SVM-CART outperformed SVM or CART alone in terms of

prediction accuracy. Furthermore, to improve prediction accuracy and stability of

the SVM-CART classifier, we developed an ensemble. We proposed a method to

select the most representative single classifier from the ensemble as a practical tool

for decision making. Results from simulations were mixed. Therefore, we do not

111
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recommend using SVM-CART as a complete replacement for SVM or CART alone.

Statisticians must take advantage of the knowledge from subject matter experts to

determine if the hypothesized disease exposure mechanism differs across subgroups

of the population. This was the case with our clinical application in neurology, where

there were different neuropathy-metabolic syndrome relationships amongst patients

with different glycemic-gender status. In addition to the modest improvements in

prediction accuracy (reliability), our SVM-CART classifier also had enhanced clin-

ical interpretability for the neuropathy application. Compared to CART and SVM

alone, the SVM-CART classifier was relatively simple and allowed us to make pre-

diction based on glycemic groups separately. In future work, it may be interesting

to develop a general form of this composite classifier using other machine learning

methods. Additionally, SVM-CART applied to large EHR data, will have the ability

to implement more intricate kernel functions in the SVM portion of the classifier.

In Chapter 3, we proposed methods to build regression trees and ensembles for

multivariate outcomes. We developed two general approaches to tree growing where

goodness of split was evaluated based on maximizing (1) within-node homogeneity

and (2) between node separation. Within-node homogeneity was measured using the

average Mahalanobis distance and determinant of the empirical covariance matrix.

Between node separation was assessed using Mahalanobis and Euclidean distances.

In general, the prediction accuracies of trees resulting from these goodness of split

measures were similar, with some variation under certain scenarios. Specifically,

when true variance was large, the within-node Mahalanobis and determinant metrics

resulted in trees with the best prediction accuracy. Ensemble of multivariate trees

yielded mixed results. We illustrated the proposed methods using two applications

to: (1) predict patients who were at risk for long lengths of stay in various phases of
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hospitalization and (2) predict nerve conduction measures to diagnose neuropathy.

Compared to univariate trees, our multivariate trees were better in terms of clinical

validity and applicability, while maintaining similar predictive attributes.

As more and more EHR data sources become available, it will be important to

leverage data from multiple sources to enhance prediction. In Chapter 3, we devel-

oped an approach to make tandem predictions using large-scale shallow data and

deep physiologic data from two separate EHRs. First, patients were assigned an ini-

tial risk from a classifier based on the large (shallow) EHR data. Then, we developed

a framework to find a subgroup of patients that were most likely to benefit from a

second stage prediction refinement. The selected subgroup was given a second stage

prediction based on the small (deep) EHR. Final tandem prediction was based on

combining predictions from both steps. We illustrated our method to predict extu-

bation failure for pediatric patients that have undergone a critical cardiac operation.

We used the PC4 registry to assign patients an initial risk. For a selected subgroup

of these patients, we utilized continuously streamed data on physiologic variables

to update risk prediction. Extending this tandem approach to continuous and sur-

vival outcomes is an area of future research. Additionally, it would be interesting to

extend our approach to other clinical applications. Common shallow data sources

include insurance claims. Using our approach, such data complemented with word

frequencies from clinical notes, metabalomic, lipidomic or data from genetic testing

has the potential to yield tools for classification. Finally, it would be interesting

to see our tandem approach extended to more than two EHR sources; each time

re-evaluating whether patients would benefit from additional data (and therefore

additional testing).

As high complexity EHR-based data becomes more prevalent, it will be important
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to develop methods that creatively address nuances of the specific dataset. An exam-

ple of this was in Chapter 1, where the development for SVM-CART was motivated

from the inability of SVM or CART to produce a desired prediction tool for imple-

mentation in specific disease setting. Methods should be data-adaptive and require

careful incorporation in terms of tuning parameters to obtain prediction tools with

maximum potential impact.

Development of these methods require an intricate balance between practical ap-

plicability, reliability and clinical validity. In this dissertation we developed three

methods attempting to optimize this balance. In each chapter, we proposed meth-

ods that improved reliability compared to existing methods. In Chapters 2 and 3,

we developed tree-based methods to maximize practical applicability while improv-

ing clinical validity compared to the existing methods. In Chapter 4, we proposed

subgroup selection approaches that takes into account time and financial considera-

tions to improve the practical applicability of the tandem approach. Our overarching

goal was to develop statistical learning methods that keep this balance in mind, to

improve patient outcomes and reduce unnecessary healthcare costs.
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