
Functional Organic Monolayers on Semiconductor Surfaces 

 

by 

 

 

Sofiya Hlynchuk 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Chemistry) 

in the University of Michigan 

2019 

Doctoral Committee: 

Professor Stephen Maldonado, Chair 

Assistant Professor Neil Dasgupta  

Professor Adam Matzger 

Assistant Professor Charles McCrory 

  



 

 

 

 

 

 

Sofiya Hlynchuk 

hlynsofi@umich.edu 

ORCID iD: 0000-0003-1316-1551  

  

© Sofiya Hlynchuk 2019 

 

 

 



 
ii 

DEDICATION 

 

To my family. 

 



 
iii 

ACKNOWLEDGEMENTS 

 

I want to express my gratitude to my family for their constant support and help. I also want to 

thank my undergraduate advisor Prof. Jeremy Cody and my graduate advisor Prof. Stephen 

Maldonado. Your advice and encouragement have helped me form my path. Lastly, I want to thank 

all the amazing people I have met along this journey, you truly made it an experience to remember.



 
iv 

TABLE OF CONTENTS 

 

DEDICATION............................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................ iii 

LIST OF FIGURES ..................................................................................................................... vi 

LIST OF TABLES ....................................................................................................................... xi 

LIST OF EQUATIONS .............................................................................................................. xii 

ABSTRACT ................................................................................................................................ xiii 

CHAPTER 1 Introduction ........................................................................................................... 1 

1. Motivation ......................................................................................................................................... 1 

2. Relevant Wet Chemical Surface Modification Strategies ................................................................. 2 

3. Dissertation Overview....................................................................................................................... 5 

4. References ......................................................................................................................................... 9 

CHAPTER 2 Chemically Modified Si(111) Surfaces Simultaneously Demonstrating 

Hydrophilicity, Resistance Against Oxidation, and Low Trap State Densities..................... 12 

1. Introduction ..................................................................................................................................... 12 

2. Experimental ................................................................................................................................... 13 

3. Results ............................................................................................................................................. 25 

4. Discussion ....................................................................................................................................... 41 

5. Summary ......................................................................................................................................... 43 

6. References ....................................................................................................................................... 43 



 
v 

CHAPTER 3 Improvement in Adhesion Properties of SU8 Photoresist Layers on 

Functionalized Si(111) Surfaces................................................................................................. 46 

1. Introduction ..................................................................................................................................... 46 

2. Experimental ................................................................................................................................... 48 

3. Results ............................................................................................................................................. 51 

4. Discussion ....................................................................................................................................... 62 

5. Conclusion ...................................................................................................................................... 65 

6. References ....................................................................................................................................... 66 

CHAPTER 4 Sensitization of p-GaP by Physisorbed Triarylmethane Dyes ........................ 68 

1. Introduction ..................................................................................................................................... 68 

2. Experimental ................................................................................................................................... 69 

3. Results ............................................................................................................................................. 72 

4. Discussion ....................................................................................................................................... 85 

5. Summary ......................................................................................................................................... 90 

6. References ....................................................................................................................................... 90 

CHAPTER 5 Exploring Alkene Grafting on GaP(100) and (111)A ...................................... 93 

1. Introduction ..................................................................................................................................... 93 

2. Experimental ................................................................................................................................... 95 

3. Results ........................................................................................................................................... 100 

4. Discussion ..................................................................................................................................... 111 

5. Summary ....................................................................................................................................... 117 

6. References ..................................................................................................................................... 117 

CHAPTER 6 Conclusions and Future Work ......................................................................... 119 

1. Conclusions ................................................................................................................................... 119 

2. Future Work .................................................................................................................................. 120 

3. References ..................................................................................................................................... 134 



 
vi 

LIST OF FIGURES 

Figure 1.1 Schematic overview of chemical modification pathways on Si. .................................. 3 

Figure 1.2 Schematic overview of chemical modification strategies on GaP. .............................. 6 

Figure 2.1 Chemical modification routes for Si surfaces outlined in this work. ......................... 16 

Figure 2.2 Surface Labeled with t1 and t2. ................................................................................... 20 

Figure 2.3 Modified Si(111) surfaces after reaction with 4-(trifluoromethyl)benzyl bromide. .. 22 

Figure 2.4 Comparison of (a) Si 2p XP and (b) infrared spectra for freshly prepared type 1 and 1a 

surfaces. (c) Comparison of F 1s XP spectra before and after reaction of a type 1a surface with 4-

(trifluoromethyl)benzyl bromide. All spectra offset vertically for clarity. Representative 

microwave photoconductivity transients presented as (d) normalized and (e) natural log signal vs 

time. .............................................................................................................................................. 27 

Figure 2.5 GATR-FTIR of 1 and 1a surfaces in the COH bend region. Scale bar indicates 2 x 10-

4 A.U. Spectra were baseline corrected and offset for clarity. ...................................................... 28 

Figure 2.6 GATR-FTIR of 1 and 1a surfaces. Scale bar indicates 2 x 10-4 A.U. Spectra were 

baseline corrected and offset for clarity. ....................................................................................... 29 

Figure 2.7 Representative etherification reaction, showing reaction 1a with TFB with base 

promotor (KHMDS)...................................................................................................................... 31 

Figure 2.8 High resolution F 1s XP spectra of pristine 1a (bottom) and after reaction with OFP 

(top). Spectra offset for clarity. ..................................................................................................... 32 

Figure 2.9 (a) Comparison of Si 2p XP spectra for freshly prepared type 2 and 2a surfaces. (b) 

Infrared spectra showing the CO stretches, -OH bend, and CH bend for type 2a surfaces. (c) 

Comparison of F 1s XP spectra before and after reaction of a type 2a surface with 4-

(trifluoromethyl)benzyl bromide. (d) Comparison of Si 2p XP spectra for freshly prepared type 2b 

and 2c surfaces. All spectra offset vertically for clarity. Representative microwave 

photoconductivity transients presented as (e) normalized and (f) natural log signal vs time. ...... 36 

Figure 2.10 High resolution F 1s XP spectra after etherification reaction of TFB with (a) 2c and 

(b) 3c. ............................................................................................................................................ 37 

Figure 2.11 GATR-FTIR of surface 3. Scale bar is 1 x 10-4 A.U. ............................................... 39 



 
vii 

Figure 2.12 (a) Comparison of Si 2p XP spectra for freshly prepared type 3 and 3a surfaces. (b) 

High resolution N1s XP spectrum of a freshly prepared type 3a surface. (c) Comparison of infrared 

spectra for freshly prepared type 3 and 3a surfaces. (d) Comparison of F 1s XP spectra before and 

after reaction of a type 3a surface with 4-(trifluoromethyl)benzyl bromide. (e) Comparison of Si 

2p XP spectra for freshly prepared type 3b and 3c surfaces. All spectra offset vertically for clarity. 

Representative microwave photoconductivity transients presented as (f) normalized and (g) natural 

log signal vs time. ......................................................................................................................... 40 

Figure 3.1 Reaction scheme for the formation of organic monolayers on silicon; R: a) methyl, b) 

allyl, and c) pentenyl. .................................................................................................................... 52 

Figure 3.2 (a) Bromination of silicon surface. (b) High resolution Br 3d XP spectra of silicon 

surfaces reacted with HBr in dichloromethane for 1hr.;(i) methyl terminated, (ii) allyl terminated 

and (iii) pentenyl terminated surfaces. .......................................................................................... 53 

Figure 3.3 Transmission infrared spectra for functionalized Si(111) surfaces. (a) Allyl terminated 

Si(111) surface (red) and pentenyl terminated Si(111) surface (black). Spectra referenced to a 

native oxide silicon surface. (b) CH3 terminated Si(111) surface. Spectrum referenced to freshly 

etched Si-H terminated surface. .................................................................................................... 54 

Figure 3.4 Load-displacement profiles of functionalized Si/SU8 interfaces. .............................. 56 

Figure 3.5 Chemical Stability of functionalized Si/SU8 interfaces after soaking in pH 11.3 buffer 

for 72h. .......................................................................................................................................... 58 

Figure 3.6 (a) Experimental geometry used to acquire SFG spectra from buried Si-SU8 interfaces. 

SFG spectra for the (b) Si(111)-SU8, (c) Si(111)-HMDS-SU8, (d) Si(111)-pentenyl-SU8 

interfaces. ...................................................................................................................................... 60 

Figure 3.7 (a) Hydrolysis of interfacial of Si-O-Si bonds. (b) Interface resistance against 

hydrolysis due to presence of Si-C bonds. .................................................................................... 63 

Figure 3.8 Proposed mechanism for covalent linkage between a terminal alkene group and SU8 

film. ............................................................................................................................................... 64 

Figure 4.1 a) Steady state voltammograms of freshly etched p-GaP(100) electrodes in deaerated 

1M KCl, 5 mM methylviologen (MV2+) electrolyte (dashed lines) in the dark and (solid lines) 

under illumination at  = 650 nm and 0.5 mW cm-2. Responses were recorded (black) before and 

(red) after first soaking the electrode in Fast Green FCF solution for 90 s. b-d) Wavelength-

dependence of the external quantum yields measured with a p-GaP(100) electrode poised at E = -

0.6 V vs E(AgAg/Cl) in deaerated electrolyte both (black) without and (red) with first soaking in 

6 mM b) Fast Green, c) Crystal Violet, or d) Rose Bengal solution for 90 s. The dye structures are 

shown in the upper left portion of each plot. The bottom portion of each plot shows the normalized 

absorbance spectrum of corresponding dye dissolved in water at a concentration ≤ 10-6 M. ....... 73 

Figure 4.2 High resolution S 2p XP spectra of a) a freshly etched GaP(100) surface, b) GaP(100) 

soaked in 6 mM Fast Green solution for either (black) 90 s and (red) 600 s, and c) a GaP(100) 



 
viii 

surface where a 0.05 mL of 6mM Fast Green in methanol was allowed to dry without additional 

rinsing. .......................................................................................................................................... 75 

Figure 4.3 Current vs potential responses of p-GaP(100) electrodes that were first soaked in 6 mM 

Fast Green solution for 90s and then rinsed, dried, and immersed in deaerated 1 M KCl(aq) 

containing 5 mM of each redox mediator. Responses were recorded both in the dark and under 

monochromatic illumination at  = 650 nm and 0.5 mW cm-2. .................................................... 77 

Figure 4.4 Measured quantum yields for net photocurrent generation at  = 650 nm, 0.507 mW 

cm-2 and E = -0.6 V vs E(Ag/AgCl) as a function of the concentration of either (a) methyl viologen 

dichloride or (b) cobalt(III) sepulchrate trichloride dissolved in deaerated 1 M KCl(aq). ........... 80 

Figure 4.5 Dependence of photocurrent with illumination intensity centered at  = 656 nm for a 

p-GaP(100) photoelectrode with adsorbed Fast Green immersed in N2-purged 1 M KCl(aq) both 

(●) with and (□) without 0.005 M MVCl2  at E = -0.6 V vs E(Ag/AgCl). ................................... 81 

Figure 4.6 Linear sweep voltammograms for freshly etched p-GaP(100) electrodes immersed in 

deaerated 1 M KCl(aq). a) (black line) The potential of the electrode was swept from open circuit 

to E = +0.3 V at a scan rate of 20 mV s-1. (red line) The electrode was first held at E = -0.6 V while 

illuminated with supra-bandgap light at λ = 450 nm and at 1.14 mW cm-2 for 10 min before 

scanning to +0.3 V at 20 mV s-1. b) (black line) The electrode was first soaked in 6 mM Fast Green 

for 90 s, rinsed, and then immersed in deaerated 1 M KCl(aq). The potential of the electrode was 

then swept from open circuit to E = +0.3 V at a scan rate of 20 mV s-1. (red line) The electrode 

was first held at E = -0.6 V while illuminated with sub-bandgap light at λ = 656 nm and at 2.66 

mW cm-2 for 10 min before scanning to +0.3 V at 20 mV s-1. ..................................................... 82 

Figure 4.7 Wavelength-dependence of the external quantum yields at E = -0.6V vs E(Ag/AgCl). 

a) Freshly etched p-GaP(111)A electrode in deaerated 1 M KCl(aq) (black) before and (red) after 

soaking in Fast Green solution for 90 s. b) A chemically modified p-GaP(111)A electrode reacted 

first with CH3MgCl and then immersed in 1M KCl(aq) (black) without and (red) with 50 µM Fast 

Green. c) A chemically modified p-GaP(111)A electrode reacted with CH3MgCl and then 

immersed in 1M KCl(aq) (black) without and (red) with 50 µM Ethyl Violet. ........................... 84 

Figure 4.8 Schematic depiction of the flow of electrons for a physisorbed dye on p-GaP under 

illumination. 1) Sub-bandgap light absorption by physisorbed dye. 2) Electron injection from 

valence band into the ground state of the photoexcited dye (i.e. hole injection from the ground state 

of the photoexcited dye into the valence band). 3) Electron capture by a redox mediator from the 

photoexcited dye. 4) Electron capture by a surface state from the photoexcited dye. 5) Supra-

bandgap light absorption by GaP. 6) Field-induced direction of photogenerated electrons to the 

GaP/electrolyte interface. 7) Electron capture by a surface state from the conduction band edge.

....................................................................................................................................................... 88 

Figure 5.1 Chemical modification route for GaP(100) and GaP(111)A ...................................... 94 

Figure 5.2 (a) Grafting of vinyl ferrocene to GaP(111)A surface. (b) High resolution Fe 2p XP 

spectra of GaP(111)A samples reacted with vinyl ferrocene for 12 h (black) and after sonication 

in water for 5 minutes (red). ......................................................................................................... 97 



 
ix 

Figure 5.3 (a) Grafting of (vinylbenzyl)trimethylammonium chloride to GaP(111)A. (b) Optical 

photograph of contact between a H2O droplet and GaP(111)A wafer reacted with 0.125 M 

(vinylbenzyl)trimethylammonium chloride in DMSO for 2 h at 90 ºC. CA = 31 ± 5 º. ............... 98 

Figure 5.4 Static sessile water contact angle measurements of GaP(100) and (111)A wafers 

reacted in neat 1-octadecene as a function of reaction time. Grafting occurred at 90 ºC unless noted 

otherwise. For comparison, water contact angles for freshly etched bare GaP(100) and (111)A are 

plotted. Additionally, results for GaP(111)A surface reacted with octadecylmagnesium chloride, 

CH3(CH2)16CH2MgCl, are included............................................................................................ 101 

Figure 5.5 Optical photographs of contacts between a H2O droplet and GaP wafers. (a) freshly 

etched GaP(100) CA = 44 ± 4 º. GaP(100) after reaction with 1-octadecene (b) at 90 ºC for 24 h 

CA = 81 ± 7 º, and (c) at room temperature for 24 h CA= 79 ± 5. ............................................. 103 

Figure 5.6 Oxide thickness as a function of time in ambient air calculated from high-resolution P 

2p XP spectra for bare (◻) GaP surfaces, surfaces reacted with (•) 1-octadecene, and surfaces 

reacted with (▲) octadecylmagnesium chloride. ....................................................................... 109 

Figure 5.7 (a) Scheme showing a functionalized GaP surface with a cationic functional group and 

the structure of Fast Green. (b) High resolution S 2p XP spectra of GaP(111)A samples reacted 

with (vinylbenzyl)trimethylammonium chloride for 2 h (blue) and 10 h (red) followed by soaking 

in Fast Green solution for 90 sec. For comparison high resolution S 2p XP spectrum of bare 

GaP(111)A soaked in Fast Green solution for 90 sec is plotted in black. .................................. 110 

Figure 5.8 Wavelength dependence of the external quantum yields of a p-GaP(111)A electrode 

reacted with (vinylbenzyl)trimethylammonium chloride for 2 h at 90ºC; (red) before soaking in a 

6mm Fast Green solution, (blue) after soaking in a 6mM Fast Green solution for 90 seconds and 

(green) after soaking in a 6mM Fast Green solution for 25 minutes. In all cases the electrode was 

poised at E = −0.6 V vs E(Ag/AgCl) and measurements were collected in deaerated electrolyte 

containing 5mM methyl viologen in 1M KCl............................................................................. 112 

Figure 5.9 (a) Mechanism for radical-based hydrosilylation of a silicon(111) surface. (b) Direct 

concerted mechanism for thermal hydrosilylation (figure adapted from Colletti et. al.12). ........ 114 

Figure 5.10 (a) Proposed mechanism for alkene grafting on chlorinated GaP(111)A surface. (b) 

High resolution Cl 2p XP spectra of chlorinated GaP(111)A surface after a reaction with 1-

octadecene. .................................................................................................................................. 116 

Figure 6.1 Possible test reaction involving an alkene terminated silicon surface and an epoxy 

group. .......................................................................................................................................... 121 

Figure 6.2 Propose amide coupling on a GaP surface containing amine groups. ...................... 125 

Figure 6.3 (a) Proposed amide coupling on amine terminated surface. (b) High resolution P 2p XP 

spectra after 12 h reaction. (c) High resolution Fe 2p XP spectra after 12 h reaction. ............... 127 



 
x 

Figure 6.4 (a) Proposed amide coupling on amine terminated surface. (b) High resolution P 2p XP 

spectra after reaction, (i) reaction time 2h, (ii) reaction time 12 h. (c) High resolution Fe 2p XP 

spectra after reaction, (i) reaction time 2 h, (ii) reaction time 12 h. ........................................... 128 

Figure 6.5 (a) Proposed amide coupling on amine terminated surface. (b) High resolution Cl 2p 

XP spectra; (i) high resolution Cl 2p XP spectrum for a bare GaP(111)A, (ii) after amide coupling 

reaction. ....................................................................................................................................... 129 

Figure 6.6 Proposed route for preparing a protected benzyl amine Grignard............................ 130 

Figure 6.7 Mass spectrum results of compound 2. .................................................................... 132 

Figure 6.8 Preparation of protected benzyl amine followed by conversion reaction to a Grignard 

and subsequent reaction with chlorinated GaP(111)A surface. .................................................. 133 

 



 
xi 

LIST OF TABLES 

Table 2.1 Monolayer Coverage Calculation Parameters for Various Reactants. ......................... 19 

Table 2.2 Monolayer Coverage and Fractional Coverage (θ) of Modified Si(111) Surfaces. ..... 23 

Table 2.3 Contact Angle Data for Modified Si(111) Surfaces. .................................................... 30 

Table 2.4 Calculated SRV Values in cm s-1 Over Time in Ambient Conditions for N=3. .......... 33 

Table 2.5 Average Oxide Thickness of Modified Si(111) Surfaces in nm. ................................. 34 

Table 3.1 Summary of measured force necessary for film delamination..................................... 57 

Table 4.1 Standard Potentials and Self-Exchange Rates of Selected Candidate Redox Mediators.

....................................................................................................................................................... 78 

Table 5.1 Contact angle (CA) measurements between water and GaP surfaces reacted with 1-

octadecene. .................................................................................................................................. 102 

Table 5.2 Summary of statistical analysis; comparing alkene grafting as a function of (a) reaction 

time, and (b) temperature. ........................................................................................................... 105 

 



 
xii 

LIST OF EQUATIONS 

Equation 2.1 Simplified Substrate Overlayer Equation............................................................... 17 

Equation 2.2 Electron Escape Depth Calculation. ....................................................................... 17 

Equation 2.3 Mean Diameter Calculation. .................................................................................. 18 

Equation 2.4 Three-Layer Model for Monolayer Calculation. .................................................... 18 

Equation 2.5 Relationship Between Two Sub-Layers in Three-Layer Model. ........................... 21 

Equation 2.6 Relationship Between Total Overlayer Thickness and Two Sub-Layers. ............. 21 

Equation 2.7 Monolayer Coverage Relationship. ........................................................................ 21 

Equation 2.8 Relationship Between Lifetime and Surface Recombination Velocity. ................. 24 

Equation 2.9 Relationship Between Lifetime and Surface Recombination Velocity when Wafer 

Thickness Is Small. ....................................................................................................................... 25 

Equation 3.1 Beam Intensity Relationship. ................................................................................. 51 

Equation 3.2 Effective Second Order Nonlinear Optical Susceptibility. .................................... 51 

.



 
xiii 

ABSTRACT 

 

This thesis describes wet chemical surface functionalization strategies that introduce 

organic groups onto semiconductor surfaces silicon (Si) and gallium phosphide (GaP). The 

overarching motivation is to develop tailored interfaces for particular electrical and 

photoelectrochemical applications. This thesis employs concepts developed by previous group 

members to design semiconductor surfaces with specific wetting properties, with better adhesion 

to photoresists, and with molecular sensitizers for sensitization. This thesis also demonstrates a 

new avenue for functionalizing GaP surfaces.  

In chapter 2, surface functionalization strategies on Si are developed that yield surficial 

hydroxyl and amine functional groups. These functionalities alter the wetting properties of Si while 

also acting as reactive handles for surface reactions. These organic monolayers were characterized 

by grazing angle attenuated total reflectance infrared (GAATR-IR) and X-ray photoelectron (XP) 

spectroscopies. The qualities of the interface were assessed by measuring surface recombination 

velocities of photogenerated charge carriers by microwave photoconductivity. The net results 

show that it is possible to achieve three distinct surface properties on Si: hydrophilicity, secondary 

reactivity, and good electronic passivation. In chapter 3, a specific demonstration of Si surface 

functionalization is presented. The objective is to improve adhesion between a photoresist film 

and a Si surface under humid (wet) conditions. Si surfaces with a monolayer consisting of terminal 

alkene groups were prepared and characterized by GAATR-IR and XP spectroscopies. The 

adhesion between SU8 photoresist and alkene-terminated Si surfaces was probed using the 

nanoindentation method and the chemical integrity of adhesion was studied determined after 

exposure to strongly alkaline conditions. The chemical structure of several types of Si/SU8 

interfaces were additionally characterized using sum frequency generation (SFG) vibrational 

spectroscopy. Overall, the experimental data illustrate that a purposely functionalized Si surface 

can yield Si/SU8 contacts with desirable properties. 
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 The second portion of this thesis focuses on the surface chemistry of GaP. Chapter 4 

describes the sensitization of p-GaP photocathodes in the presence of physisorbed dye. Freshly 

etched p-GaP(100) and p-GaP(111)A electrodes were loaded with several triarylmethane dyes by 

soaking the electrodes in an aqueous solution of dye. Dye coverages were evaluated using XP and 

Auger electron spectroscopies. The magnitude of sensitization currents were probed by measuring 

steady-state photoelectrochemical responses. The cumulative findings showed low dye loading 

and cathodic degradation were common occurrences when sensitization was attempted with bare 

GaP. The data suggest that avoiding these issues requires developing p-GaP electrodes where the 

dye is covalently attached and the underlying GaP surface is otherwise passivated. In chapter 5, 

the idea of deliberately functionalizing GaP surface with a method that is agnostic to 

crystallographic surface type is investigated. Functionalization of GaP(100) and GaP(111)A using 

thermal activation of alkenes is described. Alkene grafting reactioins were evaluated under various 

temperatures, reactions times, and surface pretreatments. Although functional groups were 

introduced on various GaP surfaces successfully, low surface coverages were routinely observed. 

This aspect limited the ability of this methodology to yield surface passivation layers that inhibited 

chemical oxidation in ambient conditions. However, this reaction did provide a path to higher dye 

loadings. Quaternary amines were introduced to GaP surfaces to attract anionic dye. High dye 

loading was detected by XP spectroscopy. Still, the sensitization currents remained low. Some 

potential reasons are presented in the text. Finally, chapter 6 provides a summary of the major 

conclusions of the cumulative work, with additional details regarding possible future experiments. 
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CHAPTER 1  

 

Introduction 

1. Motivation 

Crystalline inorganic semiconductor materials are omnipresent in society, embedded in 

modern electronics and impacting sociological and economic aspects of life. Existing and 

emerging optoelectronic, energy, and micro(nano)electronic devices specifically depend critically 

on a set of group IV and III-V semiconductors. This thesis focuses on two such materials. Silicon 

(Si) is ‘the’ ubiquitous semiconductor used in everything from electronics, biomedical devices, to 

solar energy conversion.1-9 Gallium phosphide (GaP) is found in fewer (niche) applications (e.g. 

LEDs)10 but has great potential for use in photoelectrochemistry. 

In general, the performance of any semiconductor in a given optoelectronic application is 

a function of its bulk and surface properties. Bulk properties are controlled by material 

composition, crystal structure, and purity.11 The band gap (Egap), the energy position of the valence 

and conduction bands edges (Evb and Ecb, respectively), and doping level are all critical in 

applications such as solar energy capture and conversion. For example, under illumination 

semiconductors can absorb photons with energy equal to or greater than Egap. Immediately after 

light absorption, charge separation within the semiconductor occurs, resulting in electrons and 

holes promotion to the conduction and valance bands, respectively. Hence, Egap not only governs 

semiconductors’ light absorption properties but, the maximum free energy available from a 

thermalized electron-hole pair. If charge transfer with a molecular acceptor/donor is 

thermodynamically favorable, photogenerated charge carriers can drive oxidation and reduction 

reactions in solution. Consequently, the energy values of Evb and Ecb need to be considered relative 

to the energy necessary to drive a desired redox process. For instance, to produce a desirable 

chemical fuel such as H2(g) by splitting water, a semiconductor must have a minimum band gap 

of at least 1.23 eV at standard pressure and temperature.12 To overcome kinetic and mass transport 

losses, a bandgap closer to 1.8 eV is more desirable.13 For a single semiconductor to effect water 
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splitting, its conduction band edge must be more negative than the potential for water reduction 

reaction while its valance band edge must be more positive than the potential for water oxidation 

reaction. 

Surface properties are controlled by the type of uniformity of bonding at the outer most 

layer of a semiconductor material. As the dimensions of semiconductor devices continue to 

decrease (as of this writing, the current state of the art for a microprocessor chip involves devices 

with a length scale of 10 nm),14 controlling surface properties is even more important. The interface 

character of a semiconductor should be constant over whatever lifespan is expected of the 

associated device so as not to alter or impede the desired function. Introduction of a layer that is 

stable under experimental conditions of interest is useful in this regard. For example, the 

passivating layer can be introduced through electrochemical methods15-16 (i.e. deposition), atomic 

layer deposition17-18 or organic monolayers19-21. The ability to only modify the outer surface atoms 

without changing the bulk is highly desirable so that materials with suitable bulk properties can be 

selected and their surfaces tailored for broad applications. Hence, understanding and controlling 

interfacial surface chemistry under moderate conditions is of utmost importance. The goal of the 

work presented in this thesis is to develop new surface modification strategies and assess their 

efficacies in a variety of contexts. 

2. Relevant Wet Chemical Surface Modification Strategies 

Silicon Surface Reactions 

Since the 1960s, the most common routes for exerting Si surface control is by controlled 

oxidation. While, a surface oxide has several advantages, it is inherently insulating and, in many 

cases, electrically defective.22-23 As a result, alternative forms of passivation, have been explored. 

Pioneering works have shown an organic monolayer on a Si surface can be thermally 

grafted by treating a surface in a solution of primary alkenes in a presence of a radical initiator, in 

order to form Si-C surface bonds24 and to introduce organic monolayers on Si. Additional reagents 

such as alkynes25, aryldiazonium salts26, silanes27, dichalcogenides28, azides29 and Grignard 

reagents21, 30 have also been demonstrated. Figure 1.1. summarizes some of the most popular 

surface reactions. Despite the rich diversity of reactions for Si surfaces, attaining a surface layer 

with a high electronic quality is still difficult. To date, a chlorination-Grignard31 reaction sequence  
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Figure 1.1 Schematic overview of chemical modification pathways on Si. 
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binding alkyl functional groups on Si(111) is the most reliable method to produce interfaces that 

have low density of surface defects and high chemical resistance against oxidation. 32-34Alkyl 

Grignard reagents allow for attaching organic monolayers on Si through defined surface 

attachment points resulting in fine tuning of electronic properties of devices.35-37 An aspect that is 

lacking with these reagents is the ability to perform secondary surface reactions. In this thesis 

several demonstrations of expanding the Grignard-based surface passivation route to realize 

additional surface properties while still, maintaining oxide and defect free surfaces are presented. 

Gallium Phosphide Surface Reactions 

Gallium phosphide has the necessary bulk material properties to function as a 

photoelectrode in photoelectrochemical cell. GaP has a mid-size band gap of 2.26 eV, can generate 

photo voltages of greater than 1 eV and has band edge position that allow for both water and CO2 

reduction.38-42 

Over the years majority of research focused on developing suitable photoanodes for water 

splitting.43-44 Composition, architecture and surface treatments of photoanodes have been studied 

to realize water splitting. The realization of a photocathode has not been as widely studied. 

Considering a tandem cell, where both half reactions of water splitting occur simultaneously, the 

current follows Kirchoff’s law45-47 and the total current is limited by the lowest current at each 

junction. Therefore, it is imperative that photocathodes are identified and matured so as not to be 

limiting. 

To realize the potential of GaP as a photocathode material, two challenges need to be 

solved. The first challenge is the weak light absorption by GaP in the visible spectrum at 

wavelengths longer than 550nm.48 A large portion of the solar spectrum is therefore not utilized 

by GaP, which limits its efficiency as a photocathode material. Previous work in the Maldonado 

group has focused on using the morphology of GaP to trap light. 49-50The second challenge with 

utilizing GaP as a photocathode is surface instability in water.51 The stability of the photocathode-

solution interface must be considered in photoelectrochemical cells. The degradation of GaP 

interface will impact aspects such as charge transfer kinetics and loading of active species.52-55 The 

native and thermal oxides of GaP are populated with a high density of defects, which are 

detrimental to device performance.56-57 Although effective wet etching techniques have been 
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identified for GaP surfaces, rapid oxidation is unavoidable on bare surfaces and complicates 

subsequent reactivity.58 These two challenges can be addressed by understanding surface 

chemistry of GaP and applying appropriate surface modification strategies. 

To improve light absorption, sensitizers (e.g. molecular dyes, quantum dots) have been 

investigated that absorb light at wavelengths longer than 550nm.59-61 The simplest route for 

sensitization involves submerging a photocathode in dye solution and then measuring the spectral 

profile of the photocurrent. Despite this process being known for almost six decades, very little 

information exists on dye sensitized GaP photoelectrodes. 

In terms of functionalizing III-V semiconductors, comparatively fewer strategies have been 

realized. Thiols, sulfides and Grignard reagents are currently the predominant regents.62-64 Figure 

1.2 briefly summaries reactions with these reagents and atop Ga atoms on GaP(111)A. Although 

the first and most intently studied route, the reaction of thiols/sulfides with GaP results in 

metastable surface that degrade in air and in water.62, 65 In contrast, functionalization of III-V 

semiconductor surfaces with Grignard reagents, has resulted in robust monolayers, capable of 

passivating the surface in ambient conditions and preventing reductive degradation under 

illumination.64, 66-67 

Several pertinent questions remain unanswered. Specifically, what are the key 

experimental parameters that govern sensitization of GaP by molecular dyes and can we go beyond 

simple Grignard chemistry and to introduce organic monolayers on GaP for photoelectrochemical 

applications? The second portion of this thesis addresses these questions. 

3. Dissertation Overview 

The work presented in this dissertation focuses on investigating surface reactions of silicon 

and gallium phosphide to design organic monolayers that will allow us to tailor a semiconductor’s 

surface properties. 

Chapter 2 describes chemically modified Si(111) surfaces that been prepared through wet 

chemical surface treatments, adapted from homogenous organic reactions. Prepared surfaces 

showed resistance towards surface oxidation, selective reactivity towards chemical reagents, and 

areal defect densities comparable to unannealed thermal oxides. Functional groups such allyl-, 3,4- 
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Figure 1.2 Schematic overview of chemical modification strategies on GaP. 
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methylenedioxybenzene-, or 4-[bis(trimethylsilyl)amino]phenyl-terminated surfaces were 

introduced on Si(111) via Grignard chemistry. Following, the functional groups were converted to 

either hydroxylated or amine terminated surfaces. Grazing angle attenuated total reflectance 

infrared and X-ray photoelectron (XP) spectroscopies were used to characterize surfaces after each 

surface treatment. Hydroxylated surfaces were further confirmed through reaction with 4-

(trifluoromethyl)benzyl bromide and quantified by XP spectroscopy. Surface hydrophilicity was 

assessed by measuring contact angle between a water droplet and a functionalized surface. All 

surface exhibited hydrophilic character, consistent with polar surface groups. Surface 

recombination velocity measurements by way of microwave photoconductivity transients showed 

the relative defect-character of as-prepared and aged surfaces. 

Chapter 3 describes a method to improve adhesion of SU8 films on Si(111) wafers. 

Common photoresist pretreatment involving hexamethyldisilazane (HMDS) is replaced by 

utilizing chlorination-Grignard sequence to introduce organic monolayers, bonded to the surface 

via Si-C bonds. Following, SU8 is developed on functionalized surfaces and adhesion is assessed. 

In this work monolayers consisting of terminal alkenes were selected. Monolayers were 

characterized by grazing angle attenuated total reflectance infrared and XP spectroscopies. Si 

surfaces reacted with allylmagnesium bromide exhibited the largest force necessary for film 

delamination in comparison to those treated with HMDS or those reacted with 4-

pentenylmagensium bromide, as measured by nanoindentation. Interfaces functionalized through 

Si-C bond formation also showed improved chemical adhesion. Only samples reacted with alkene 

Grignard reagents maintained the SU8 film without any visible damage after soaking in pH 11.3 

buffer for 72 h. This result suggests that by converting the silicon interface from Si-O to Si-C 

bonds, monolayer hydrolysis is inhibited and SU8 delamination is avoided. To gain insight on 

interfacial molecular structures in a Si (111)-monolayer-SU8 system infrared-visible SFG 

vibrational spectroscopy was employed. By SFG alkene functionality was no longer detected after 

SU8 films were developed. Hence, it is hypothesized that the alkene group undergoes a reaction 

with the SU8 monomer during film development, forming a covalent attachment at the interface 

and subsequently aiding in adhesion. 

Chapter 4 investigates dye sensitization of bare p-type GaP electrodes in a presence of 

physisorbed triarylmethane dyes. Freshly etched p-GaP(100) and p-GaP(111)A electrodes were 



 
8 

loaded with physisorbed dye by brief soaking in solutions of Fast Green. X-ray photoelectron 

spectroscopy, corroborated by Auger electron spectroscopy, indicated that such treatments yield 

undetectable surface coverages. However, steady-state photoelectrochemical responses 

consistently showed sub-bandgap photoresponses corresponding to light absorption by the 

adsorbed dye. The photoresponse characteristics were clearly insensitive to the identity and 

amount of redox mediators dissolved in solution at low light intensities. Instead, the data suggest 

electrochemically active surface states related to the cathodic degradation of GaP can accept 

electrons from photoexcited physisorbed dye. Measurements at high illumination intensities 

showed sensitivity towards redox mediators in solution, indicating that the conventional mode of 

dye regeneration by redox species in solution is possible with p-GaP. Separate measurements with 

covalently modified p-GaP(111)A photoelectrodes further suggested that deliberate modification 

to minimize/eliminate surface states is also possible. Collectively, this work indicates that although 

some types of dye readily adsorb onto native GaP interfaces, the low dye loadings and the 

susceptibility of the interface to chemical attack during the sensitization process argue against 

using bare p-GaP photocathodes with physisorbed triarylmethane dyes. Instead, these studies 

suggest that dye-sensitized photocathodes based on p-GaP require deliberate surface chemical 

modification methods to overcome the low loading and inhibit unwanted charge transfer between 

the surface and the photoexcited dye. 

Chapter 5 investigates an alternative method to introduce organic monolayers on GaP 

surfaces. Alkene grafting on GaP(111)A and GaP(100) was studied as a function of reaction time, 

temperature and surface pretreatment. Test reactions were performed using 1-octadecene. Degree 

of grafting was evaluated as a function of contact angle value between a water droplet and reacted 

surfaces. Surface reaction independent of reaction time and temperature were observed. Changes 

in grafting were only observed when surfaces were dry etched with either oxygen or argon plasma. 

Degree of surface passivation against chemical oxidation in ambient conditions was characterized 

using XP spectroscopy. Monolayers prepared through a reaction with 1-octadecene were incapable 

of passivating GaP surfaces against surface oxide growth. This suggests that monolayers grafted 

through alkenes are less compact and potentially more disordered, in comparison to those 

introduced via Grignard chemistry. In summary, data presented in this chapter illustrated the ability 

to thermally graft alkene groups to GaP surface. However, the data suggest surface anomalies act 

as grafting sites. Lastly, grafting cationic surface group was explored to prepare a surface capable 
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of adsorbing anionic dye, Fast Green. Although dye loading was improved, low dye sensitization 

was measured. Possible explanations are presented in the chapter. 

Chapter 6 provides a summary of major conclusions of each chapter. Additionally, the 

chapter provides prospects for future works. Unanswered question from chapters 3 and 5 are 

reemphasized and potential routes for further exploration are presented. 
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CHAPTER 2  

 

Chemically Modified Si(111) Surfaces Simultaneously Demonstrating Hydrophilicity, 

Resistance Against Oxidation, and Low Trap State Densities 

Reprinted from Surface Science, Vol. 645, Chemically Modified Si(111) Surfaces Simultaneously 

Demonstrating Hydrophilicity, Resistance Against Oxidation, and Low Trap State Densities, 

Brown, E.S.; Hlynchuk, S.; Maldonado, S., 49-55, Copyright 2019, with permission from Elsevier. 

1. Introduction 

 Three features are highly desirable in semiconductor interfaces when used to construct 

optoelectronic technologies. First, the chemical integrity of the semiconductor surface must be 

both compatible with all device fabrication/metallurgical steps. Second, the electrical quality of 

each semiconductor interface must be sufficiently good so as not to present an operational 

bottleneck or otherwise adversely affect the device. Third, the semiconductor surface should be 

(and remain) either highly conducting or insulating (depending on the application) with respect to 

heterogeneous charge transfer. No native semiconductor surface perfectly and simultaneously 

demonstrates these aspects, motivating the development of new and improved chemical 

modification strategies of semiconductor interfaces. 

Vapor phase atomic layer deposition (ALD)1-2 and spin casting of aqueous metal oxo 

cluster solutions3-4 are highly advantageous for rapidly and simply constructing high quality 

semiconductor heterojunctions. However, they are best suited for hydrophilic semiconductor 

interfaces that can withstand elevated temperatures and have proton donating/accepting character. 

The majority of technologically relevant Groups IV and III-V have native interfaces that do not 

possess these attributes in addition to retaining a low defect density. Although native oxides on 

such semiconductors are generally hydrophilic,5-6 they possess deleterious levels of trap states. Of 

the few high quality oxides (e.g. annealed thermal oxide Si(100)7), they are naturally insulating. 
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Chemical methods to eliminate electrically active surface states on Groups IV and III-V surfaces 

(e.g. etching with NH4F;8 lattice matched AlGaAs epilayers9) render surfaces that have too few 

nucleation sites for ALD10 and/or are neither wettable nor stable towards exposure to aqueous 

solutions.11-19 

 This report focuses on the potential of wet chemical surface modification to yield 

semiconductor surfaces that are jointly hydrophilic, resistant against oxidation, and possesses a 

low level of surface defects. Using single crystalline Si(111) as a model surface, we demonstrate 

organically modified interfaces prepared through a sequence of reactions involving Grignard 

reagents20-21 and subsequent activation steps. Specifically, we show the preparation of Si(111) 

surfaces decorated with either a terminal primary alcohol, a terminal diol, or a terminal amine 

group (Figure 2.1). Distinctions between the surfaces prepared here and the prior art in organically-

modified Si surfaces22-33 are drawn through measurements of oxide growth via X-ray 

photoelectron spectroscopy, contact angle wetting measurements, reactivity towards model test 

reagents, and surface recombination velocities, S, of photogenerated carriers. The purpose of the 

work is to not only identify the attainable physicochemical properties of these modified Si 

interfaces but more generally to show that semiconductor surfaces that are reactive towards 

modification by Grignard reagents can be deterministically tailored as needed. 

2. Experimental 

Materials and Chemicals  

 All chemicals were purchased from Sigma-Aldrich and used as received unless noted.  

Methanol (anhydrous >99.8%,), chlorobenzene (Acros, 99.8%), tetrahydrofuran (THF) 

(anhydrous ≥ 99.9%, inhibitor free), acetone (Fisher, HPLC grade), hexanes (Macron Chemicals, 

ACS grade), dichloromethane (anhydrous > 99.8%), phosphorus (V) oxychloride, borane-

tetrahydrofuran (1 M), diethyl ether (anhydrous), potassium bis(trimethylsilyl)amide (KHMDS), 

40% ammonium fluoride (Transene Electronic Chemicals, semiconductor grade), sodium 

hydroxide (Fisher, 95.0 to 100.5% FCC grade), 30wt% in H2O hydrogen peroxide (ACS grade), 

trifluoroacetic acid (TFA) (99%), 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (98%), and 37% 

hydrochloric acid (ACS grade) were used as received. Methylmagnesium chloride (3.0 M), allyl 

magnesium chloride (2.0 M), and 4-[bis(trimethylsilyl)amino]phenyl magnesium bromide (0.5 M) 

were used as received. 3,4-(methylenedioxy)phenylmagnesium bromide (1.0 M) was diluted to 0.5 
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M with THF to help prevent polymerization during reaction. 4-(trifluoromethyl)benzyl bromide 

(Sigma-Aldrich, 98%) was outgassed by three freeze-pump-thaw cycles before use. Benzoyl 

peroxide (Fluka, ≥ 97%) was dried under a vacuum of < 200 mTorr for at least 24 h and placed in 

the nitrogen-atmosphere glovebox. Water with a resistivity of 18.2MΩ cm-1 (Barnsted Nanopure 

system) was used throughout. For surface characterization studies, one-side polished, n-type Si 

(111) wafers doped with As were purchased from Wafer Works Corp. and had thickness of 525 ± 

15 μm. For SRV measurements, float-zone (FZ), intrinsically-doped Si(111) (El-Cat) wafers with 

a resistivity equal to 16500 ± 3500 Ω·cm, a thickness of 460 ± 15 μm, and both sides polished 

were used. 

Sample Preparation  

Samples were diced into 0.5 cm by 0.5 cm squares for surface characterization and into 1 

cm by 1.5 cm rectangles for SRV measurements. Si(111) samples were etched prior to use in 40% 

NH4F solution for 5 minutes while continuously purging with nitrogen gas, rinsed with water, and 

dried in a stream of nitrogen gas. Immediately after etching, wafers were transferred to a nitrogen-

purged glove box. Freshly etched wafers were chlorinated at 90 °C for 50 minutes using a saturated 

solution of phosphorous (V) pentachloride in chlorobenzene, to which a few grains of benzoyl 

peroxide were added.34 Following the chlorination step, samples were washed with THF, dried in 

the glovebox, and transferred to reaction vessels to which designated Grignard reagents were 

added (Figure 2.1). 

Preparation of 1 and 1a 

 Chlorinated wafers were transferred to closed reaction vessels to which a solution of 

allylmagnesium chloride was added. Reaction solution was heated for 13 h at 110 ± 5 °C. Samples 

were rinsed with THF and methanol (1). To prepare 1a surfaces, 1 surfaces were hydroborated and 

hydroxylated with a procedure modified from Toledano, et al.30 In a nitrogen-purged glove box, 1 

wafers were immersed in a solution of BH3 •THF complex at room temperature for 5 h , rinsed 

with THF and allowed to dry, and transferred to a round bottom flasks, sealed with a rubber stopper 

and taken out of the glove box. To the flask, 1 mL 3 M NaOH and 1 mL 30% H2O2 injected through 

a rubber septum via syringe were added stepwise. After 20 min at room temperature, the wafers 

were removed from the flask, washed with water and methanol, and dried under a stream N2(g). 



 

 
15 

Preparation of 2, 2a, 2b and 2c 

 Chlorinated wafers were transferred to closed reaction vessels to which a solution of 3,4-

(methylenedioxy)phenylmagnesium bromide was added and diluted to 0.5 M. Reaction 

temperature was reduced to 90 ± 5 °C to prevent polymerization of the reagent. Upon completion, 

samples were rinsed with THF and methanol (2). Samples were either backfilled with 

methylmagnesium chloride in a new reaction vessel for additional 13 h at 110 ± 5 °C, rinsed with 

THF and methanol, and dried in the glovebox (2b) or deprotected with a solution of TFA:THF:H2O 

(1:20:5) for 4 h at room temperature outside of the glovebox (2a and 2c).35 

Preparation of 3, 3a, 3b and 3c 

 Chlorinated wafers were transferred to closed reaction vessels to which a solution of 4-

[bis(trimethylsilyl)amino]phenyl magnesium bromide was added. Reaction vessel was heated to 

110 ± 5 °C for 12-16 h, samples were rinsed with THF and methanol, and allowed to dry in the 

glovebox (3). Samples were either backfilled with methylmagnesium chloride in a new reaction 

vessel for additional 3 h at 90 ± 5 °C, rinsed with THF and methanol, and dried in the glovebox 

(3b) or deprotected with a 20% v/v HCl solution for 1 h at room temperature outside of the 

glovebox (3a and 3c). 
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Figure 2.1 Chemical modification routes for Si surfaces outlined in this work. 
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Nucleophilic Reaction with 4-(trifluoromethyl)benzyl bromide  

 In the glovebox, samples were reacted with 0.02 M TFB with <1 mg KHMDS in hexanes 

at 60 °C for 1 h.  Samples were rinsed with hexanes, diethyl ether, and methanol, sonicated in 

methanol for 2 min, and dried with a stream of nitrogen gas. 

X-ray Photoelectron Spectroscopy 

 Elemental composition of functionalized Si(111) surfaces was collected using a PHI 5400 

analyzer equipped with Al K α(1486.6 eV) source, without a monochromator. Acquisition took 

place at a pressure of < 2.5x10-9 torr, without the need for charge neutralization due to the natural 

conductivity of the samples. A 6 mA current emission and a 12 kV anode high tension were used. 

For each sample survey scans were recorded between 0 and 1350 eV at pass energy of 117.40 eV. 

While high resolution spectra were collected at pass energy of 23.5 eV. All binding energies were 

referenced to the expected binding energy for adventitious carbon (284.6 eV).36 Spectrum analysis 

was performed with CASA XPS 2.3.13 software. Further characterization of the surfaces were 

performed by calculating oxide thickness using a simplified substrate/overlayer model37 and 

calculating fractional monolayer coverage of the surface using three-layer model.38 

For surface oxides, the thickness of oxide at the surface was calculated using the simplified 

substrate overlayer model,37 
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Equation 2.1 Simplified Substrate Overlayer Equation. 

where d is the thickness of the oxide overlayer in nanometer, λov is escape depth of emitted 

electrons through the oxide layer, φ is the takeoff angle (54.6°) between the sample surface and 

the detector, I is the integrated area as follows: Isubstrate for bulk signal, Ioverlayer of oxide signals, 

I0
substrate for Si freshly etched in NH4F for 1 min, I0

overlayer for a thick (>500 nm) thermal oxide layer 

on Si. The escape depth for electrons was estimated: 

2
1

2
3

41.0 EA=  

Equation 2.2 Electron Escape Depth Calculation. 
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where A is the mean diameter of one unit in the overlayer (nm) and E is the kinetic energy of the 

ejected core electron (eV).  The mean diameter of one unit, A, is 

3

AN

MW
A


=  

Equation 2.3 Mean Diameter Calculation. 

where MW is mean atomic weight (g mol-1), ρ is the density (g cm-3), and NA is Avogadro’s number. 

 Due to the larger size of all molecules tested here, a simple model of three-layer structure 

was used for monolayer coverage calculations.38 For calculations of coverage of 3a, the high 

resolution N 1s XP spectrum was used. Aniline was used as a model molecule and parameters of 

interest are listed in Table 2.1. The topmost layer included the –NH2 (t1), the Si substrate served as 

the bottom layer (sub) and the linker in between t1 and the substrate served as t2 (Figure 2.2). 

 To calculate overlayer coverage using the simple three-layer model, Equation 2.4 was 

adopted from Asami, et al.4 
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Equation 2.4 Three-Layer Model for Monolayer Calculation. 

where SFsub is the sensitivity factor for the element of interest in the substrate, SFov is the 

instrument sensitivity factor for the element of interest in the substrate, ρov is the density of the 

element of interest in the overlayer. For Si, ρsub is 2.32 g cm-3 and SFsub is 0.339.39 Parameters 

referring to ov are referencing the topmost layer containing an N atom in this situation. The variable 

t1 is the thickness of the second layer and t2 is the thickness of the intermediate layer. Values of t1 

and t2 were approximated using known data from model molecules, which are listed in Table 2.2, 

and using previously reported data on bond lengths and molecule size.40-42 The sum of the 

thicknesses is d, the total thickness of the organic overlayer.  
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Table 2.1 Monolayer Coverage Calculation Parameters for Various Reactants. 

Surface Type ρ n am  λx λSi  SFa Length No. Density 

(Element 

Measured) 
(g cm-3)  (nm)    (nm) b (atoms cm-2) 

3a (N 1s)c 1.20 0.40 0.502 5.26 5.94 0.477 0.70 4.22 x 1014 

1a+TFB (F 1s)d 1.30 0.18 0.641 5.95 7.83 1.0 1.08 2.44 x 1014 

2a+TFB (F 1s)e 1.30 0.14 0.815 8.53 11.23 1.0 1.51 1.52 x 1014 

3a+TFB (F 1s)f 1.32 0.14 0.672 6.38 8.41 1.0 1.38 2.22 x 1014 
aSF values from Asami, et al.38 bMolecule lengths were estimated from tabulated bond length values.40, 

42 cParameters for aniline were used. dParameters for methyl 4-(trifluoromethyl)benzyl ether were used. 

eMW and density were obtained from Chemdraw approximation since data could not be found for 

analogous structures. Values were also used for 2c+TFB. fParameters for N-phenyl-3-

(trifluoromethy)aniline were used. Values were also used for 3c+TFB. 
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Figure 2.2 Surface Labeled with t1 and t2. 
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The following relationship also holds true: 

21 ntt =  

Equation 2.5 Relationship Between Two Sub-Layers in Three-Layer Model. 

where n is the ratio of thicknesses of the two layers. The relationship was entered into the equation 

in place of t2 and subsequently t1 was solved for. Total thickness of the organic layer was 

calculated: 

21 ttd +=  

Equation 2.6 Relationship Between Total Overlayer Thickness and Two Sub-Layers. 

Monolayer coverage was calculated: 

litd

d
ML =  

Equation 2.7 Monolayer Coverage Relationship. 

where dlit is the sum of expected lengths t1 and t2 published in the literature.41, 43 Fractional 

monolayer coverage, θ, was calculated to determine the number of aniline molecules per atop Si 

atom. Converting the density of aniline to number density (atoms cm-2) and multiplying by the 

monolayer coverage, we divide by the number of unreconstructed atop atoms on Si(111) (7.83 x 

10-14 atoms cm-2) to get θ.44 

For calculations of surface coverage after etherification, the topmost layer included the –

CF3 (t1), the Si substrate served as the bottom layer (sub), and the linker in between t1 and the 

substrate served as t2 (Figure 2.3). Here, ov is referencing the topmost layer containing F atoms 

and the value of Iov was divided by 3 to account for three F atoms per molecule. The F 1s intensities 

of 2a and 2c surfaces reacted with TFB were divided by 6 to account for attachment of more than 

one TFB molecule. Parameters of interest are tabulated in Table 2.1. 

 Tabulated ML coverage and θ values for surface reactions on Si(111) quantified by XP 

spectra are shown in Table 2.2.  
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Figure 2.3 Modified Si(111) surfaces after reaction with 4-(trifluoromethyl)benzyl bromide. 
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Table 2.2 Monolayer Coverage and Fractional Coverage (θ) of Modified Si(111) Surfaces. 

Surface 
ML 

Coverage  
θ 

1a+TFB 0.60 0.19 

2a+TFB 1.13 0.22 

2c+TFB 1.03 0.21 

3aa 0.91 0.49 

3a+TFB 0.78 0.22 

3ca 0.93 0.50 

3c+TFB 0.63 0.18 

aCalculated with N 1s XP spectra. All other ML values calculated with F 1s spectra. 
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Infrared Spectroscopy 

 Infrared spectra were acquired using a Thermo- Fisher 6700 FT-IR spectrometer equipped 

with a deuterated triglycerine sulfate (DTGS) detector and a Ge hemisphere grazing angle 

attenuated total reflectance (GATR) accessory. P-polarized light at an incident angle of 65o was 

applied and spectra were recorded with 4 cm-1 resolution and referenced to spectrum of clean Ge 

hemisphere. 

Static Sessile Drop Contact Angle Measurements 

 Surface wettability was determined by recording the contact angles of water droplets 

formed on functionalized surfaces. CAM 100 optical contact angle meter (KSV instrument, 

Helsinki, Finland) and KSV software analysis package were utilized during data collection and 

analysis. 

Surface Recombination Velocity Measurement  

A custom-built microwave photoconductivity system38, 45 was used to measure the minority 

carrier lifetime in Si wafer sections after various surface treatments. Float-grown Si with low 

resistivity (R > 13000 ohm cm) and a thickness of 0.046 cm was used exclusively for these 

measurements. A Continuum Minilite Nd:YAG laser operating at λ = 1064 nm was used to produce 

excitation pulses with a full-width at half-maximum of < 10 ns. Photoexcitation was performed on 

the sample side opposite of where microwave radiation was incident. The microwave source was 

a HP 8350B Sweep Oscillator with a 83570A module operating at a frequency of 18.670 GHz and 

a nominal output power of 3.16 mW. The reflected signal was measured with an Advanced Control 

Devices diode (ACSP2644NZ, rise time < 1 ns) connected to a Tektronix TDS 1002B digital 

oscilloscope. The transient responses were normalized by the reflected signal at t = 0 and plotted 

as ‘ΔP/P0’. The apparent photoconductivity lifetime, τ, was then determined from plots of ΔP/P0 

vs t through a fit with a single exponential function. The explicit relation between τ and the surface 

recombination velocity, S, is given in Equation 2.8,46 
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Equation 2.8 Relationship Between Lifetime and Surface Recombination Velocity. 
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where τb is the bulk lifetime of the Si wafer section, D is the ambipolar diffusion constant in 

crystalline Si (10 cm2 s-1 at T = 300 K)47, and W is the wafer thickness. Equation 2.8 defines several 

important bounds. The shortest time constant (= W2--2D-1) occurs when S is infinitely large. For 

the materials used here, the shortest measurable value of τ is 2 x 10-5 s. The largest possible value 

of τ occurs when S = 0 cm s-1 and corresponds exactly to τb. According to the manufacturer, τb > 2 

x 10-3 s for the wafers used here. All values of τ measured between these two bounds thus report 

on S. Since 2D >> 2SW for S <103 cm s-1 for all measured samples, the following approximation 

was used to estimate S: 

W

S

b

211
+=


 

Equation 2.9 Relationship Between Lifetime and Surface Recombination Velocity when Wafer 

Thickness Is Small. 

3. Results  

Three different surface terminations were evaluated for achieving a hydrophilic, stable, and 

electronically passivated surface (Figure 2.1). After etching with NH4F(aq) and then chlorination 

with PCl5 in chlorobenzene, samples were reacted with one of three Grignard reagents to achieve 

surfaces decorated by either an allyl group, a cyclic diether, or a bis(trimethylsilyl)amino group. 

We henceforth refer to these surfaces as types 1, 2, and 3 (Figure 2.1). These surfaces were 

subsequently modified by introducing Bronsted-Lowry functionality without affecting the 

underlying putative Si-C bond. The resultant surfaces were selectively decorated with primary 

alcohols, diols, and amine groups. These surfaces are henceforth denoted as types 1a, 2a, and 3a. 

The characterization and properties of each surface are described individually below. 

Passivated Surface Featuring Chemisorbed Primary Alcohols (1a) 

 The preparation of Si surfaces decorated with allyl groups was first described by Lewis 

and co-workers.48 In this work, we specifically set out to selectively oxidize the terminal olefin to 

a primary alcohol, i.e. the anti-Markovnikov addition of an alcohol across the ‘-C=C-’ group. A 

hydroboration/hydroxylation method was employed, similar to an approach used to oxidize 

surface-grafted 1-decene reported previously by Cahen and co-workers.30 That procedure was 
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modified for surface 1 by extending both hydroboration times (>5 h) and subsequent hydroxylation 

(20 min) as long as possible without inducing surface oxidation, as monitored by high resolution 

Si 2p XP spectra. These surfaces are denoted as type 1a. The oxide thickness inferred from the 

integrated intensity of the shoulder centered at 103 eV was below <0.09 nm (Figure 2.4a). Before 

reaction, a peak for the C=C-H stretch at 3051 cm-1 was observable in the infrared spectrum but 

was absent after reaction (Figure 2.4b). Further, analysis of GATR-IR spectra of 1a resulted in a 

peak at 1265 cm-1 ascribed to COH bend of primary alcohols (Figure 2.5) and no signatures at 

2500-3000 cm-1 that indicated oxidation to a terminal carboxylic acid group (Figure 2.6). The 

wetting properties of type 1 and 1a surfaces were decidedly different, with the sessile contact 

angles with water of 75 ± 5° to 42 ± 3°, respectively (Table 2.3). This contact angle value for type 

1a surfaces is broadly in agreement with the value of 50° demonstrated by Zhong and Bernasek 

for Si surfaces decorated with long primary alcohols.49 The reactivity of type 1a surfaces was 

probed with test reagents so as to identify the predominant surface group (e.g. alcohol, carboxylic 

acid). Specifically, we attempted to perform both an etherification reaction with an organic halide 

and an esterification reaction with a primary alcohol. The hypothesis was that a surface decorated 

with primary alcohols is only reactive (under the employed reactions) towards organic halides for 

ether bond formation and wholly unreactive towards molecular alcohols. Upon reaction of 1a with 

4-(trifluoromethyl)benzyl bromide (TFB) as shown in Figure 2.7, a new signal was observed in 

the F 1s XP spectrum Figure 2.4c. Fractional coverage was calculated to be 0.19 molecules per Si 

atom (Table 2.2). Conversely, exposure to 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (OFP) yielded no 

change in the recorded F 1s XP spectra (Figure 2.8). These cumulative observations strongly 

suggest that type 1a surfaces were populated by terminal alcohol groups. 

The presence of surface-based electrical traps on these two surfaces was assessed through 

contactless microwave photoconductivity transients (Figure 2.4 d and e). The measured value of S 

for type 1 surfaces was 40 ± 30 cm s-1, consistent with prior estimates of S for allyl-terminated 

Si.48, 50 The values of S for 1 slightly increased over the course of 4 days (Table 2.4). After 

conversion to 1a, the value of S increased significantly to 220 ± 150 cm s-1, well above any S value 

measured for 1. However, for type 1a surfaces, the values of S slightly decreased to 90 ± 50 cm s-

1 after 4 days. Concurrently, the measured oxide thickness over the same time frame increased 

substantially to 0.55 nm (Table 2.5).  
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Figure 2.4 Comparison of (a) Si 2p XP and (b) infrared spectra for freshly prepared type 1 and 1a 

surfaces. (c) Comparison of F 1s XP spectra before and after reaction of a type 1a surface with 4-

(trifluoromethyl)benzyl bromide. All spectra offset vertically for clarity. Representative 

microwave photoconductivity transients presented as (d) normalized and (e) natural log signal vs 

time. 
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Figure 2.5 GATR-FTIR of 1 and 1a surfaces in the COH bend region. Scale bar indicates 2 x 10-

4 A.U. Spectra were baseline corrected and offset for clarity. 
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Figure 2.6 GATR-FTIR of 1 and 1a surfaces. Scale bar indicates 2 x 10-4 A.U. Spectra were 

baseline corrected and offset for clarity. 
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Table 2.3 Contact Angle Data for Modified Si(111) Surfaces. 

 

  

Surface 

Type

Number of Samples 

Measured Contact Angle /°

1 10 75±5

1a 16 42±3

2 10 64±2

2a 7 57±3

2b 10 57±3

2c 4 53±4

3 11 70±6

3a 7 57±4

3b 3 76±1

3c 3 64±2
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Figure 2.7 Representative etherification reaction, showing reaction 1a with TFB with base 

promotor (KHMDS). 

  

CF3C6H4CH2Br

Si

O
H

O

F
F

F

SiKHMDS



 

 
32 

 

Figure 2.8 High resolution F 1s XP spectra of pristine 1a (bottom) and after reaction with OFP 

(top). Spectra offset for clarity. 
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Table 2.4 Calculated SRV Values in cm s-1 Over Time in Ambient Conditions for N=3. 

Time/hr 1 1a 2 2a 2b 2c 3 3a 3b 3c 

0 40 ± 30 200 ± 150 150 ± 120 170 ± 40 75 ± 2 110 ± 40 140 ± 90 190 ± 50 190 ± 80 180 ± 90 

1 40 ± 30 210 ± 170 110 ± 70 190 ± 60 82 ± 3 90 ± 20 170 ± 60 170 ± 40 140 ± 20 180 ± 100 

4 40 ± 10 220 ± 150 110 ± 90 170 ± 50 130 ± 40 130 ± 60 400 ± 200 170 ± 50 210 ± 70 200 ± 120 

24 70 ± 60 160 ± 120 170 ± 120 120 ± 50 120 ± 10 110 ± 50 210± 120 170 ± 70 200 ± 110 220 ±110 

48 40 ± 40 150 ± 90 220 ± 170 140 ± 50 90 ± 20 100 ± 40 -- 300 ± 140 160 ± 40 180 ± 80 

96 70 ± 70 90 ± 50 180 ± 110 110 ± 30 100 ± 2 80 ± 40 -- 350 ± 100 170 ± 80 173 ± 130 
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Table 2.5 Average Oxide Thickness of Modified Si(111) Surfaces in nm. 

Surface Initial Aged 48 h 

1 0.025 0.361 

1a 0.050 0.550 

2 0.171 0.454 

2a 0.135 0.382 

2b 0.051 0.045 

2c 0.011 0.020 

3 0.016 0.210 

3a 0.018 0.033 

3b 0.038 0.181 

3c 0.031 0.011 
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Passivated Surface Featuring Chemisorbed Diols 

 H-terminated Si(111) was converted to a surface decorated with 3,4-

(methylenedioxy)phenyl groups (type 2 surfaces). These surfaces could be reacted with 

trifluoroacetic acid without substantially increasing the surface oxide content (Figure 2.9a). 

However, the wetting character became slightly more hydrophilic, decreasing from 64 ± 2° to 57 

± 3° (Table 2.3). Further, after reaction with trifluoroacetic acid, new modes corresponding to a 

CO stretch at 1288 cm-1, an OH bend at 1198 cm-1, and a CH bend at 1076 cm-1 in the GATR-IR 

spectra were observed (Figure 2.9b), consistent with deprotection of the 3,4-

(methylenedioxy)phenyl groups to a 3,4-benzenediol. These type 2a surfaces were then reactive 

towards 4-(trifluoromethyl)benzyl bromide. F1s XP spectra of these surfaces showed a clear 

signature indicative of grafted trifluoromethyl groups (Figure 2.9c). The integrated intensity of 

these spectra corresponded to a total fractional surface coverage of 0.22 per atop Si atom (assuming 

no surface roughness and each 3,4-benzenediol was functionalized with two 4-

(trifluoromethyl)benzyl groups). 

 Because these surface groups have a large areal footprint (0.8 nm2, assuming phenyl ring 

plane is perpendicular to the surface plane and freely rotates about the putative Si-C bond), a 

significant fraction of the available atop Si atoms remain unreacted. A mixed monolayer approach 

based on the premise of using CH3- groups to occupy unreacted sites was established previously.50-

53 We sought to apply this premise on type 2 surfaces. Reaction of 2 with CH3MgCl yielded surface 

2b. The measured water contact angles for 2b were only slightly changed relative to 2 (Table 2.3). 

Reaction of type 2b surfaces with trifluoroacetic acid (yielding type 2c surfaces) and then 4-

(trifluoromethyl)benzyl bromide yielded signal in the F1s the XP spectrum (Figure 2.10a) 

comparable to that for type 2a, corresponding to a fractional coverage of 0.21 surface groups per 

atop Si atom. 

The photoconductivity transients for type 2, 2a, 2b, and 2c surfaces exposed to the 

laboratory ambient are shown in Figure 2.9 e and f. Type 2 surfaces showed slightly larger initial 

S values than type 1 surfaces (Table 2.4) but still demonstrated reasonable levels of passivation on 

the order of 102 cm s-1. Over 4 days, the surface recombination velocities fluctuated with time and 

increased slightly for type 2 surfaces. Type 2a surfaces exhibited S values measurably larger than  
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Figure 2.9 (a) Comparison of Si 2p XP spectra for freshly prepared type 2 and 2a surfaces. (b) 

Infrared spectra showing the CO stretches, -OH bend, and CH bend for type 2a surfaces. (c) 

Comparison of F 1s XP spectra before and after reaction of a type 2a surface with 4-

(trifluoromethyl)benzyl bromide. (d) Comparison of Si 2p XP spectra for freshly prepared type 2b 

and 2c surfaces. All spectra offset vertically for clarity. Representative microwave 

photoconductivity transients presented as (e) normalized and (f) natural log signal vs time. 
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Figure 2.10 High resolution F 1s XP spectra after etherification reaction of TFB with (a) 2c and 

(b) 3c. 
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for type 2 but these values decreased over the course of 4 days. In comparison, the methylation 

‘back-fill’ step yielded noticeably lower S values for types 2b and 2c surfaces relative to types 2 

and 2a surfaces. Type 2b surfaces (i.e. functionalized with 3,4-(methylenedioxy)phenyl and 

methyl groups) showed a general trend of slightly increasing surface recombination velocities over 

time. Conversely, type 2c surfaces (i.e. functionalized with 3,4-benzenediol and methyl groups) 

like type 2a surfaces showed S values that slightly decreased over time. 

Passivated Surfaces Featuring Chemisorbed Phenylamine  

 Type 3 surfaces were prepared after reaction with 4-[bis(trimethylsilyl)amino]phenyl 

magnesium bromide. As-prepared 3 surfaces showed a detectable but low N 1s signal intensity. A 

peak at 925 cm-1 was observed in the IR spectrum which agreed with the Si-N stretch in 

trimethylsilyl groups (Figure 2.11).54-55 Deprotection of the surface groups by reaction with acid 

(i.e. H- replaced the trimethylsilyl groups) resulted in type 3a surfaces. These surfaces did not 

initially possess substantial oxide (Figure 2.12a) and the N 1s signal in the XP spectrum became 

more pronounced (Figure 2.12b). The integrated intensity of this signal corresponded to a 

fractional coverage of 0.49 phenylamine groups per atop Si atom. Further, the wettability towards 

water increased, with a change in the water contact angle from 70 ± 6° to 57 ± 4° (Table 2.3). In 

addition, a peak at 3330 cm-1 consistent with NH2 symmetric stretches was now evident in the IR 

spectra (Figure 2.12c). After aging in ambient conditions for 48 h, types 3 and 3a surfaces had 

oxide layer thicknesses of 0.21 and 0.033 nm, respectively. Type 3a surfaces were selectively 

reactive towards 4-(trifluoromethyl)benzyl bromide, yielding a surface coverage of 0.22 grafted 

groups per atop Si atom (Figure 2.12d), indicating not all underlying phenylamine groups were 

alkylated. Reaction of 3 with CH3MgCl prior to deprotection of the phenylamine groups yielded 

type 3b surfaces. After deprotection to give type 3c surfaces, the integrated intensity in the N 1s 

spectra corresponded to a fractional coverage of phenylamine groups of 0.5 per atop Si  atom, 

similar to type 3a surfaces. Type 3c surfaces were similarly reactive towards alkylation via reaction 

with 4-(trifluoromethyl)benzyl bromide (Figure 2.10b), yielding a surface coverage of 0.18 grafted 

groups per atop Si atom. Type 3 surfaces exhibited an initial surface recombination velocity (100 

± 40 cm s-1), which steadily increased over time. The deprotection step that converted type 3 to 

type 3a surfaces increased the measured value of S even though the measured oxide content had 

not substantially increased (vide supra). In addition, these surfaces deteriorated significantly over   
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Figure 2.11 GATR-FTIR of surface 3. Scale bar is 1 x 10-4 A.U. 

  



 

 
40 

 

 

 

Figure 2.12 (a) Comparison of Si 2p XP spectra for freshly prepared type 3 and 3a surfaces. (b) 

High resolution N1s XP spectrum of a freshly prepared type 3a surface. (c) Comparison of infrared 

spectra for freshly prepared type 3 and 3a surfaces. (d) Comparison of F 1s XP spectra before and 

after reaction of a type 3a surface with 4-(trifluoromethyl)benzyl bromide. (e) Comparison of Si 

2p XP spectra for freshly prepared type 3b and 3c surfaces. All spectra offset vertically for clarity. 

Representative microwave photoconductivity transients presented as (f) normalized and (g) natural 

log signal vs time. 
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4 days, yielding the largest value of S among all the surface types that were analyzed (345 ± 100 

cm s-1). Unexpectedly, type 3b surfaces (i.e. functionalized with [bis(trimethylsilyl)amino]phenyl 

and methyl groups) did not possess lower S values as compared to type 3 surfaces either initially 

and after 4 days in air (Table 2.4). Steric blocking by the bis(trimethylsilyl)amino]phenyl groups 

may have prevented sufficient access to populate unreacted sites with -CH3 groups. Still, type 3c 

surfaces (i.e. functionalized with phenylamine and methyl groups) demonstrated more stable and 

lower values of S relative to type 3a surfaces, implying a sufficient amount of -CH3 groups to 

render some improved passivating effect. 

4. Discussion 

 The presented data cumulatively show three separate surface types that achieve some level 

of chemical stability, possess proton donating/accepting character, and have low defect density. 

Here we discuss their respective virtues, the observed correlations between surface stability and 

electronic passivation, and the prospects for employing such surface chemistry to interfaces 

beyond Si. 

 Lewis and co-workers previously showed allyl-terminated Si(111) prepared by a Grignard 

reaction possesses surface recombination velocities ranging from 50 to 90 cm s-1,48, 50 in line with 

what was observed here. They later proved that mixed monolayers with allyl-groups demonstrate 

S values as small as 30 cm s-1 if 10% of the surface is decorated with allyl groups and the remaining 

90% is covered by CH3- groups.50 A more recent advancement by this same group was the 

oxidation of the fraction of allyl groups to primary aldehydes, resulting in a low defect surface 

amenable for ALD coating.51 However, the wetting properties were not detailed. The type 1a 

surfaces reported here are designed to achieve a similar goal but are simpler to prepare (i.e. fewer 

reaction steps) and have a defined hydrophilicity. However, the initial surface recombination 

velocity is decidedly higher for these type 1a surfaces, which may or may not be tolerable 

depending on the specific application. For reference, the initial S value for type 1a surfaces is still 

reasonably good compared to the native oxide of Si and is in fact on par with unannealed thermal 

oxides.56 For further comparison, a recent report demonstrating Si(111) surfaces terminated with 

4-trifluoromethylsulfonylbenzene exhibited surface recombination velocities of 1372 ± 30 cm s-

1.57 Still, if a lower initial surface recombination velocity is necessary, surface types 2a, 2c, 3a, 

and 3c are all viable options. Again, surface types 2a and 3a retain the practical advantage of a 
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minimal number of preparative steps. Further, type 2a surfaces exhibit the greatest wettability 

towards water in comparison to surface 3a, a feature which may aid in coatings cast from aqueous 

solutions. In comparison to alkyl-terminated Si surfaces rendered hydrophilic by oxidation with 

oxygen-containing plasmas,58-59 the wet chemical approach shown here is both controllable and 

more amenable to ‘short’ surface layers suited for heterogeneous charge transfer. 

 The surface stability and surface recombination velocities of some of the surfaces studied 

here tracked with time in unexpected ways. Surfaces that did not intentionally have any proton 

donating/accepting character (i.e. type 1, 2, 2b, 3, and 3b) all exhibited surface recombination 

velocities that either remained statistically unchanged or slightly increased over time. This 

observation itself is unsurprising given these surfaces are not indefinitely stable against oxidation 

and the act of oxidation should introduce strained bonding that act as electronic traps. However, 

the majority of surfaces that did have explicit proton donating/accepting character (i.e. type 1a, 

2a, and 2c) had surface recombination velocities that decreased over time even though the 

underlying surface oxide layer increased. That is, even though these surfaces were somewhat 

susceptible to oxidation of the underlying substrate, the resultant oxide growth did not add 

significant numbers of new electrical traps. Surface type 1a is a noteworthy example, as the surface 

oxide that grew after 24 h (0.55 nm) in air was greater than the thickness of a complete oxide 

monolayer on Si(111) (0.4 nm),60 yet the measured surface recombination velocity was actually 

lower than the initial value. Although the present dataset does not provide any direct microscopic 

insight on the cause of this observation, we comment on two possibilities. First, the presence of 

the grafted surface groups imparted some directing effect on the growth of any new oxide. Similar 

arguments have been made previously for modified surfaces whose surface recombination 

velocities decrease over time61-62 and there is no data to conclusively rule out this scenario. Still, 

since the physicochemical nature of the modifying groups in these three sets of surfaces differ 

significantly, an equivalent ‘oxide templating’ effect seems unlikely. Second, the acid/base 

functionality of the modified surfaces influences/introduces charge within the growing oxide. Such 

oxides could artificially lower the observable surface recombination velocity through charge 

screening.8 A hallmark of such an effect is a strong dependence of the surface recombination 

velocity with illumination intensity.8 The accessible illumination intensities were limited by the 

linearity of the microwave reflection method only at low charge carrier concentrations.63 

Nevertheless, we did not observe any significant dependence of the measured lifetimes with 
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changes in laser intensity, arguing against this possibility. Hence, additional studies are necessary 

to explain this curious phenomenon. 

 The wet chemical strategies applied here are not limited to just Si interfaces. The 

approaches demonstrated in this work to convert the grafted moieties into alcohols and amines 

should generally apply to these same groups when bonded to other semiconductors. We have 

shown previously that III-V semiconductor surfaces (e.g. GaAs(111)A, GaP(111)A, 

GaN(0001))64-66 are reactive towards Grignard reagents and therefore these interface could be 

initially functionalized in a similar manner as explored here. Since the intrinsic instability of the 

native surfaces of these III-V semiconductors substantially complicates coating these 

semiconductors with either solid dielectrics67-68 or molecular films,69 such wet chemical methods 

should prove useful. Work in our group to attain similar levels of control over wetting, stability, 

and interfacial defect densities on III-V semiconductor surfaces is ongoing. 

5. Summary 

 Three separate wet chemical reaction sequences were performed on Si(111) to achieve 

hydrophilic, chemically stable, and electronically passivated surfaces. These general features were 

attained although an unexpected improvement in the apparent surface recombination velocities 

was observed for many of the surfaces with acid/base character. These modified Si surfaces should 

be amenable for contacting methods such as ALD or spin-casting of solutions of oxo-clusters. 

With regards to ALD, these interfaces ought to provide a high number of nucleating sites during 

the initial deposition cycles, potentially leading to more uniform films. In the context of solution-

cast oxides, the low level of initial defects and good chemical stability should improve the quality 

of the resultant junction. Separate studies are needed to rigorously test these hypotheses. This study 

adds three sets of Si surfaces to the number of interfaces that are quantitatively categorized in 

terms of their stability, wettability, and electrical quality. This work thus defines protocols and 

benchmarks so as to evaluate these surfaces in heterojunctions as well as to apply to other 

semiconductor interfaces. 
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CHAPTER 3  

 

Improvement in Adhesion Properties of SU8 Photoresist Layers on Functionalized Si(111) 

Surfaces 

This chapter represents work from a collaboration between the Maldonado and Chen groups. Dr. 

Eli Fahrenkrug (Maldonado Group) performed adhesion measurements and Dr. John Myers (Chen 

Group) collected SFG spectra. 

1. Introduction 

Photolithography is a fundamental processing step for microfabrication of many optical, 

mechanical, and electronic devices.1 It is used to develop features on metal and semiconductor 

substrates using a light sensitive polymer film, photoresist. In most cases a photoresist template is 

first patterned onto a substrate for material deposition or etching, and later removed. Whereas in 

other applications, the photoresist comprises a permanent structure of the device.2-4 Photoresists 

consisting of epoxy monomers are commonly used. During the development step, cross-linking 

via the epoxy groups results in a three-dimensional covalent network that gives the material its 

structural stability. 

Bisphenol A novolac epoxy in gamma-butyrolactone (SU8) is an example of a popular 

photoresist where each monomer unit is made of eight epoxy groups. SU8 is routinely used as 

structural component in microelectromechanical systems (MEMS) due to its low cost, the 

possibility of forming high aspect ratios once cured, ease of processing, good chemical stability, 

and biocompatibility.1, 5-9 

Although cross-linked SU8 polymers themselves are both chemically and mechanically 

robust, the substrate-SU8 interface is sensitive to environmental conditions, i.e. humidity and 

temperature.10-11 When the substrate is a silicon (Si) wafer, the adhesion of SU8 is particularly 
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poor when wet.9, 12-13 Film delamination takes places, resulting in buckling and/or blister 

formation.14 

The adhesion between a photoresist and a substrate can be broadly characterized by two 

forms of interactions. Induced interactions due to Van der Waals forces’ and/or coulombic forces 

due to permanent differences in polarity or surface charge.15 Various treatments have been 

developed to augment photoresist adhesion. For example, oxygen plasma etching is often used to 

remove adventitious residues to ensure an intimate contact.16 Additionally, photoresist primers can 

change surface hydrophilicity to favor uniform film formation. Finally, reactive ion etching has 

been used to form pits for mechanical interlocking of the photoresist and the substrate.17-18 

For a silicon-SU8 device interface, a common pretreatment involves spin casting a 

hexamethyldisilazane (HMDS) primer. During HMDS pretreatment, Si substrates are cleaned and 

chemically etched to generate hydroxyl surface moieties. When freshly etched wafers are exposed 

to HMDS, -Si(CH3)3 are grafted through surficial hydroxyl groups.19 The terminal trimethylsilyl 

groups of the resultant HMDS layer accomplish two objectives. First, a hydrophobic layer is 

generated allowing for wetting of SU8 and subsequent development. Second, the bulky 

methylsilane groups serve to block solvent species like water molecules from penetrating the 

substrate-photoresist interface.20 Unfortunately, this is not a permanent solution as HMDS 

delaminates eventually.21 The failure mechanism is at the underlying surface attachment, where 

cleavage of Si-O-Si bonds at the interfaces occurs through hydrolysis.22-23 

In this work we propose an alternative method for Si surface modification to improve the 

adhesion of SU8 films on Si(111) wafers. Our work focuses on replacing the HMDS treatment by 

introducing an organic monolayer bonded at the surface through silicon-carbon (Si-C) framework, 

hence alleviating the issues associated with hydrolyzation. Monolayers tethered through Si-C 

bonds are robust, capable of withstanding both acidic/alkaline treatments24 and high 

temperatures.25 Additionally, control of terminal functional groups can be achieved. This aspect 

allows for tailoring the degree of interaction between the silicon substrate and a photoresist layer, 

further facilitating strong adhesion. To introduce Si-C bonding at the surface, this work describes 

using a well established chlorination-Grignard reaction sequence for alkylation of Si(111) 

surfaces.26-28 A H-terminated Si surface exposed to a chlorinating reagent (PCl5) in the presence 

of a radical initiator leads to a formation of surface Si-Cl bonds. Treatment of the chlorinated Si 
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surface in a Grignard (RMgX) reagent solution produces R-terminated surface with surface Si-C 

bonds. Herein, the R groups of interest are terminal alkenes. Reacted surfaces were characterized 

with X-ray photoelectron spectroscopy and infrared spectroscopy. Buried interfaces were 

characterized by sum frequency generation (SFG) vibrational spectroscopy. The adhesion strength 

was probed with nanoindentation and the chemical stability was tested by aging samples in alkaline 

solutions. 

2. Experimental 

Materials and chemicals 

All chemicals were purchased from Sigma-Aldrich and used as received unless noted 

otherwise. Methanol (anhydrous >99.8%), dichloromethane (anhydrous > 99.8%), chlorobenzene 

(Across, 99.8%), tetrahydrofuran (THF) (anhydrous ≥ 99.9%, inhibitor free), acetone (Fisher, 

HPLC grade), hexanes (Macro Chemicals, ACS grade), phosphorous (V) chloride and 40% 

ammonium fluoride (Transene Electronic Chemicals, semiconductors grade). Methylmagnesium 

chloride (3.0 M in THF), allylmagnesium bromide (2.0 M in THF) and 4-pentenylmagenesium 

bromide (0.5M in THF) were used as received. Benzoyl peroxide (Fluke, ≥ 97%) was dried under 

a vacuum of < 200mTorr for 24h and placed in the nitrogen-atmosphere glovebox. Water with a 

resistivity of 18.2 MΩcm-1 (Barnsted Nanopure system) was used during all sample preparation. 

Silicon (111) substrate, n-doped, was purchased from Wafer Works Corp with a thickness of 525 

± 15µm. 

Chemical Functionalization 

Samples were cut into 0.5 cm by 0.5 cm squares. Si wafers were degreased via sonication 

for 5 min each in hexanes, acetone, methanol, and water. Prior to functionalization, surfaces were 

etched in 40% NH4F solution (5 min), rinsed with water, and dried using N2 gas. Following 

etching, wafers were promptly transferred to a nitrogen-purge glove box, where the surfaces were 

chlorinated at 90 °C for 50 min using a saturated solution of phosphorous (V) pentachloride in 

chlorobenzene and a few grains of benzoyl peroxide. Upon completion, samples were washed with 

THF and transferred to reaction vessels to which appropriate Grignard reagents were added. All 

Grignard reactions were carried out at 100 °C for 12 hours. In ambient conditions selected samples 

were reacted with HBr in dichloromethane (1:1 v/v) solution in the presence of benzoyl peroxide 
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at room temperature for 1 h. Samples were rinsed and sonicated with dichloromethane to remove 

any residual bromine. 

Photolithography  

SU8 2007 (Microchem Corp.) was spin-coated over functionalized Si wafer samples and 

soft-baked at 95 C for 3 min on a hot plate. Nanoindentation and SFG samples were exposed to 

the UV source (OAI) for 13 s at 26 Wcm-2 without a photomask to create a 10 μm thick continuous 

SU8 film. Samples for chemical adhesion testing were patterned with a 10 x 10 um hole array 

photomask to allow electrolyte to reach the SU8/Si interface. All substrates were then subject to a 

post-exposure bake at 95 C for 5 min on a hot plate. Development for 5 min under agitation with 

SU8 developer (Microchem Corp) removed unexposed regions of the photoresist. Samples were 

then rinsed in isopropanol and dried under N2 (g). 

X-ray Photoelectron Spectroscopy 

Prepared surfaces before and after bromination where characterized by X-ray 

photoelectron (XP) spectroscopy. Elemental composition was collected using a PHI 5400 analyzer 

equipped with Al K α (1486.6 eV) source, without a monochromator. Data collection took place 

at a pressure of < 2.5 x 10-9 Torr, without the need for charge neutralization due to the natural 

conductivity of the samples. A 6 mA current emission and a 12 kV anode high tension were used. 

High resolution spectra were collected at pass energy of 23.5 eV. All binding energies were 

referenced to the expected binding energy for adventitious carbon (284.6 eV). Spectrum analysis 

was performed with CASA XPS 2.3.13 software. Surface coverage after each bromination reaction 

was calculated using a simplified substrate/overlayer model. 

Infrared Spectroscopy  

Infrared spectra were acquire using a Thermo-Fisher 6700 FT-IR spectrometer equipped 

with a deuterated triglycerine sulfate (DTGS) detector. Spectra were acquired in a N2-purge sample 

compartment. All spectra were recorded between 400-4000 cm-1 (4 cm-1 spectral resolution) with 

an incident IR beam angle of 75º off normal. The H-terminated silicon surfaces, as well surfaces 

containing native oxide, were used as a reference. 
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Nanoindentation 

A Hysitron TI950 Triboindenter equipped with a diamond Berkovich tip was used to 

measure force-displacement curves during delamination of SU8 films from Si surfaces. 

Nanoindendation was conducted in load-controlled feedback mode for the lowest loads where an 

abrupt change in displacement was observed. The inflection was taken as the onset of film 

delamination as described for similar systems elsewhere.14 Ten separate indents were collected at 

various points over each sample surface. 

Chemical Stability 

Chemical stability of prepared samples was assessed by aging samples in alkaline solutions 

(pH 11.3). Optical images were taken at t = 0h and t = 72 h. 

Sum Frequency Generation Vibrational Spectroscopy 

All SFG spectra were acquired using a commercial infrared frequency scanning SFG 

spectrometer purchased from EKSPLA. Details about the SFG spectrometer can be found 

elsewhere. A picosecond Nd:YAG laser (λ = 1064 nm, 50 Hz repetition rate, ~30 ps pulse duration) 

was used to pump  an optical parametric generation/optical parametric amplification/difference 

frequency generation (OPG/OPA/DFG) system. Homodyne-detected SFG spectra were acquired 

from buried Si(111)/SU-8 interfaces using a ‘sandwich’ geometry where a ~500 nm thick SU-8 

film was cured between a Si(111) surface and a fused silica or calcium fluoride window. The 

vertical plane of the collinear input visible and infrared beams was placed along the Si(111) 11̅0 

direction. The input angles of the overlapped visible and infrared beam were 60° and 51° versus 

the Si(111) surface normal, respectively. The input visible and infrared beam pulse energies were 

~10 and ~90 μJ, respectively. All SFG spectra were acquired using the SSP polarization 

combination (s-polarized SFG beam, s-polarized visible beam, p-polarized infrared beam). 

The beam intensity measured in homodyne-detected SFG spectra was proportional to the 

square of the effective second order nonlinear optical susceptibility (
(2)

eff ) and to the intensities of 

the input laser beams: 
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(2)

SFG eff IR visI I I
 

Equation 3.1 Beam Intensity Relationship. 

where SFGI , IRI , and visI  are the intensities of the generated SFG beam, the input infrared beam, 

and the input visible beam, respectively. The resonant and non-resonant components of the 

measured effective second order nonlinear optical susceptibility were determined by fitting all 

spectra using a sum of Lorentzian functions: 

(2) (2) (2) q

eff NR R

q q q

A

i
  

 
= + =

− + 
  

Equation 3.2 Effective Second Order Nonlinear Optical Susceptibility. 

where (2)

NR  and (2)

R   are the non-resonant and resonant contributions to
(2)

eff , respectively, and qA

, q , and q  are the amplitude of the resonant term, frequency of the qth vibrational mode, and 

damping factor, respectively. The non-resonant contribution to the detected SFG signal will be 

dominated by a non-resonant background arising from the silicon (111) substrate and can be 

modeled as having a fixed amplitude and phase at all input infrared frequencies. 

3. Results 

Surface Functionalization 

A chlorination, Grignard reaction sequence was used to introduce surface functionalities 

on Si(111).26 Three unique monolayers were examined, consisting of the following units; allyl, 1-

pentene and methyl (Figure 3.1). The double bond functionality was verified by treating the 

surfaces with hydrobromic acid in the presence of benzoyl peroxide. XP spectroscopy was used to 

characterize the surfaces after the bromination reaction (Figure 3.2). High resolution Br 3d 

spectrum showed a signal at 70eV corresponding to Br 3d. Using a simplified over-layer model 

and Br 3d XP signal, surface fractional coverage for alkene terminated monolayers was 

approximated to be 10-15%. Br signal was not detected on methyl terminated surfaces. 

Infrared spectroscopy 

Infrared spectroscopy was also used to confirm the presence of surface functionalities after 

a chlorination-Grignard reaction. Figure 3.3a depicts infrared spectra for Si(111) reacted with 
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Figure 3.1 Reaction scheme for the formation of organic monolayers on silicon; R: a) methyl, b) 

allyl, and c) pentenyl. 
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Figure 3.2 (a) Bromination of silicon surface. (b) High resolution Br 3d XP spectra of silicon 

surfaces reacted with HBr in dichloromethane for 1hr.;(i) methyl terminated, (ii) allyl terminated 

and (iii) pentenyl terminated surfaces. 
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Figure 3.3 Transmission infrared spectra for functionalized Si(111) surfaces. (a) Allyl terminated 

Si(111) surface (red) and pentenyl terminated Si(111) surface (black). Spectra referenced to a 

native oxide silicon surface. (b) CH3 terminated Si(111) surface. Spectrum referenced to freshly 

etched Si-H terminated surface. 
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allylmagnesium bromide (red) and 4-pentenylmagnesium bromide (black). After functionalization 

a peak at 3066 cm-1 was detected corresponding to C=C-H stretch. Additionally, peaks at 2927 

cm-1 and 2856 cm-1 all correspond to asymmetric and symmetric CH2 stretching vibration, 

respectively.29-30 Figure 3.3b depicts infrared spectrum for Si(111) reacted with methylmagnesium 

chloride. The peak centered at 1257 cm-1 was assigned the Si-CH3 umbrella mode, while peaks at 

754 cm-1 and 676 cm-1 corresponded to Si-CH3 rocking mode and Si-C stretch mode, 

respectively.31 The inverse peak at 626 cm-1 corresponded to a Si-H bend mode. After 

functionalization, this peak was no longer present. 

Nanoindentation 

To measure the force necessary for film delamination, nanoindentation was performed on 

functionalized and bare Si surfaces. Figure 3.4 depicts the force-displacement responses for SU8 

films observed prior to delamination that was induced by a nanoindentation probe. Film 

delamination is taken as the abrupt change in force-displacement curve, where the local maximum 

denotes buckling of the film (i.e. blister formation).14 The average force needed to induce 

delamination for HMDS-treated Si was 715 ± 1.1 mN, for allyl-terminated Si was 834 ± 4.7 mN, 

and for pentenyl-terminated Si was 504 ± 10.3 mN (Table 3.1). 

Chemical Stability.  

The chemical stability of functionalized Si-SU8 interfaces was tested by immersing 

samples in alkaline (pH 11.3) solutions. Figure 3.5 shows optical images of samples before and 

after immersion. After 72 h, SU8 films on a bare Si and HMDS samples were almost completely 

detached, with the patterned SU8 film floating in solution. Large portions of the film flaked off 

during the rinse step. In strong contrast, Si functionalized with terminal alkenes remained optically 

unchanged. 

Characterization of the buried Si (111)-SU8 Interface. 

Infrared-visible SFG vibrational spectroscopy was used to characterize the molecular 

structure at buried Si(111)-SU8 interfaces to correlate interfacial molecular structures to interfacial 

adhesion properties (Figure 3.6). 
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Figure 3.4 Load-displacement profiles of functionalized Si/SU8 interfaces. 
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Table 3.1 Summary of measured force necessary for film delamination. 

 

  

Interface Force/ mN

HMDS 715 ±1.1 %

Allyl 834 ± 4.7 %

Pentenyl 504 ± 10.3 %
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Figure 3.5 Chemical Stability of functionalized Si/SU8 interfaces after soaking in pH 11.3 buffer 

for 72h. 
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SFG spectra were acquired from the pristine Si(111)-SU8 interface (Figure 3.6b). Three 

peaks near 2880, 2915, and 2965 cm-1 were detected which can be assigned to the methyl C-H 

symmetric, methylene C-H asymmetric, and methyl C-H asymmetric stretching vibrational modes, 

respectively. The detection of peaks in the SFG spectrum acquired from the pristine Si(111)-SU8 

buried interface indicates that methyl and methylene groups on the SU8 cross-linked structure 

were ordered at the Si (111) interface. No strong features were detected near 2990 cm-1 which 

suggests that little to no epoxide groups were present at the interface. Therefore, all or most of the 

epoxide groups had undergone ring-opening reactions or the epoxide groups were randomly 

oriented at the buried interface. In addition, the signal contributed by the methyl C-H asymmetric 

stretching vibrational mode was stronger than the symmetric stretching vibrational mode which 

indicates that the methyl groups were oriented with the primary axis lying partially parallel to the 

Si(111) surface. 

To confirm that the measured SFG intensity was dominated by contributions from the 

buried Si (111)-SU8 rather than the silica/SU8 interface, SFG spectra were acquired from a silica-

Si(111)-SU8 system where the SU8 thickness was ~10 µm. Using a thick film would result in 

substantial attenuation of the infrared beam power and would thus limit SFG signal generation 

from the buried Si(111)-SU8 interface. No SFG signal was detected in the 2700-3100 cm-1 input 

infrared frequency when a thick SU8 film was used, indicating that silica/SU8 did not contribute 

to SFG spectra acquired using the ‘sandwich’ geometry. 

SFG spectra were then acquired from a Si(111)/SU8 buried interface where the Si(111) 

surface was treated with HMDS (Figure 3.6c). Four peaks were detected in the SFG spectra near 

2880, 2915, 2950, and 2965 cm-1 which can be assigned to the methyl C-H symmetric, methylene 

C-H asymmetric, methyl Fermi resonance, and methyl C-H asymmetric stretching vibrational 

modes, respectively. Unlike at the pristine Si(111)SU8 interface, SFG spectra acquired from 

Si(111)HMDS-SU8 interfaces where the silicon was functionalized can contain contributions from 

the HMDS layer and the SU8. However, the SFG signal intensity contributed by the functionalized 

interface was substantially stronger than the corresponding intensity from the pristine interface 

which indicates that the HMDS strongly contributed to the signal or induced ordering of the SU8 

structure in contact with the HMDS. No discernable peak near 2990 cm-1 was detected which again 

indicates that the epoxide cross-linking reactions were nearly complete. 
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Figure 3.6 (a) Experimental geometry used to acquire SFG spectra from buried Si-SU8 interfaces. 

SFG spectra for the (b) Si(111)-SU8, (c) Si(111)-HMDS-SU8, (d) Si(111)-pentenyl-SU8 

interfaces. 
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The buried interfaces between alkene functionalized silicon surfaces and SU8 were then 

characterized (Figure 3.6d). Three peaks near 2880, 2915, and 2965 cm-1 were detected in the SFG 

spectrum acquired from the pentenyl functionalized interface which can be assigned to the methyl 

C-H symmetric, methylene C-H asymmetric, and methyl C-H asymmetric stretching vibrational 

modes, respectively. The pentenyl group does not contain methyl groups which indicates that 

methyl groups on the SU8 backbone were ordered at the buried interface. The methyl asymmetric 

feature appeared as a dip in the spectrum rather than as a peak. The shape of peaks in homodyne-

detected SFG spectra where a non-resonant background is present has been studied and details can 

be found elsewhere. Briefly, interference between the non-resonant background and resonant 

components of the effective nonlinear susceptibility can result in features appearing as peaks or 

dips in SFG spectra. The peak centers found by fitting the experimental data are the frequencies 

of specific vibrational modes which enables selective detection of functional groups at interfaces. 

No SFG peak near 3000 cm-1 was observed suggesting that no alkene functional groups 

were present at the buried interface or that the groups were randomly distributed. Considering that 

the alkene groups were the terminal groups of the organic monolayer after the Grignard reaction, 

they should be ordered and oriented nearly perpendicular to the silicon surface. Therefore, the SFG 

results indicate that alkene groups had undergone a chemical reaction during the SU8 curing 

process. To further monitor the alkene group, SFG spectra were acquired in the 1300-1800 cm-1 

range which eliminates possible spectral interferences from methyl and methylene functional 

groups. Therefore, the lack of detected SFG signal at ~1400 cm-1 supports the conclusion that 

alkene groups had undergone a chemical reaction at the buried interface. 

Similar to the pentenyl functionalized interface, three peaks near 2880, 2915, and 2965 

cm-1 were detected in the SFG spectrum acquired from the allyl functionalized interface which can 

be assigned to the methyl C-H symmetric, methylene C-H asymmetric, and methyl C-H 

asymmetric stretching vibrational modes, respectively. In addition, no alkene groups were detected 

at the allyl functionalized buried interface which again suggests that the alkene groups underwent 

a chemical reaction during the SU8 curing. 
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4. Discussion 

Manipulation of inorganic semiconductor surface properties is critical in photolithographic 

applications, specifically during photoresist development step. Surface pretreatment either through 

cleaning, etching or priming will govern properties such as film homogeneity and adhesion.32-34 In 

this work the nature of the priming layer, the method of surface attachment, and the consequent 

adhesion were explored. The data presented here speaks to the following points and how they 

impact film adhesion. First, chemical structure of the monolayer can be tailored to improve 

adhesion. Second, organic monolayers formed through surface Si-C bonds are robust in aqueous 

conditions, hence assisting in prolonged adhesion. 

The chemical structure of the monolayer is tailorable, and it will impact overall photoresist 

adhesion. Both allyl (Si-CH2CHCH2) and pentenyl (Si-CH2CH2CH2CHCH2) monolayers consist 

of terminal alkene groups but, the carbon chain length is different. The methyl monolayer in 

contrast, consists of single CH3 groups (Si-CH3). By selecting these three monolayers comparisons 

are possible regarding the overall photoresist adhesion based on; (1) the importance of surface 

coverage or packing density and (2) the influence of surface functionality.  

According to the nanoindentation experiments, allyl-terminated Si surfaces required the 

greatest amount of force necessary for film delamination, even in comparison to HMDS treated 

surfaces. A possible trend is observed for allyl and pentenyl surfaces regarding measured force. 

This trend can be attributed to surface coverage. The relative size of allyl groups is smaller in 

comparison to pentenyl functionalities which leads to higher surface coverage. It is possible that 

having a greater number of functional surface groups could favor interaction between the SU8 film 

and Si. Si surfaces with –CH3 groups did not permit SU8 adhesion. Even though near full surface 

coverage is reported for CH3-terminated Si surfaces, complete delamination occurred during the 

SU8 development step, preventing subsequent characterization31 and implying that just 

hydrophobicity is not a sufficient criterion for good adhesion.  

An interesting observation in this work is that after the photoresist was applied and cured 

on olefin-terminated Si surfaces, neither alkene and epoxide functionalities were detected at the 

Si/SU8 interface. The lack of epoxide groups is not by itself unusual since UV exposure is what 

triggers SU8 polymerization. Still, the lack of alkenes indicates those groups did undergo reaction  
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Figure 3.7 (a) Hydrolysis of interfacial of Si-O-Si bonds. (b) Interface resistance against 

hydrolysis due to presence of Si-C bonds. 
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Figure 3.8 Proposed mechanism for covalent linkage between a terminal alkene group and SU8 

film. 
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which could have promoted direct reaction with SU8. We propose a covalent linkage between the 

alkene groups and the SU8 film could occur which is consistent with the measured adhesion 

enhancement and the lack of detectable alkene functionality by SFG. Strong acids can catalyze 

alkylation reactions by ionizing alkenes to alkylcarbenium ions.35 If terminal olefin groups 

undergo reaction with SU8 monomers in a presence of a photoacid (a key component in the 

formulation of SU8 resists, (Figure 3.7), the SU8 is effectively grafted on to the surface monolayer. 

This scenario is consistent with another observation in the SFG data. The notable disorganization 

of the SU8 chains at olefin-terminated Si surfaces was different than the SU8 ordering at the 

Si/SU8 interface for HMDS treated samples. This difference could arise because bonding between 

the SU8 and the Si monolayer disrupted the possibility of chain reorganization. Supplementary 

experiments are necessary to further test this hypothesis. 

Irrespective, allyl and pentenyl monolayers did lead to stable adhesion even in wet 

environments. The data with these surfaces, after spin coating on SU8 films and subjecting to 

soaking in pH = 11.3 buffer for 72 h, were clear on this point. The lack of delamination after this 

time (in strong contrast to HMDS treated surfaces) is strong evidence supporting the durability of 

the Si-C linkage. Therefore, the data suggests that by converting the silicon interface from Si-O to 

Si-C, a reaction between the alkaline solution and the interface is significantly (kinetically) 

inhibited (Figure 3.8). 

5. Conclusion 

The cumulative experimental data shown here illustrate the ability to improve adhesion of 

SU8 photoresist films introduced on Si(111) surfaces. Although functional groups were introduced 

via Grignard chemistry to form the Si-C interface, surface reactions on silicon are highly explored 

thus one is not limited to Grignard reagents. UV and thermal grafting are some additional 

pathways. In overall, it is imperative that the nature of the monolayer and interfacial bonding is 

considered to best suit the chemical characteristics and application of a photoresist film. This report 

argues that conversion of interfacial Si-O bonds to Si-C bonds is one way to improve overall 

adhesion between the substrate and a photoresist film in aqueous conditions. 
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CHAPTER 4  

 

Sensitization of p-GaP by Physisorbed Triarylmethane Dyes 

Reprinted with permission from Hlynchuk, S., MacInnes, M. M.; Maldonado, S., Sensitization of 

p-GaP by Physisorbed Triarylmethane Dyes. The Journal of Physical Chemistry C 2018, 122 (35), 

20073-20082. Copyright 2019, American Chemical Society . 

1. Introduction 

 Dye-sensitized photocathodes are attractive platforms for solar energy capture, conversion, 

and storage1-6 but have been the subject of much less scrutiny than dye-sensitized photoanodes for 

regenerative photovoltaic applications.7-8 In lieu of using p-type metal oxides, which are both 

uncommon and difficult to prepare with high charge-carrier mobilities,9 multiple groups have 

explored alternative p-type semiconductors.10-12 

 In this context, gallium phosphide (GaP) has several potential merits. First, this III-V 

semiconductor can sustain photovoltages in excess of 1 V at 1 sun illumination.13-14 In principle, 

an optimal GaP photocathode could supply a large electromotive force for desirable fuel forming 

reactions. Second, GaP natively demonstrates surface energetics amenable to both proton and CO2 

reduction,15-17 indicating that dye-sensitized schemes could be used to drive these specific half 

reactions. Third, GaP is a technologically mature material (e.g. used extensively in commercial 

light emitting diodes), so methods for its metallurgy (i.e. doping, contacting) are well known.18 

Nevertheless, the use of GaP as a dye-sensitized photocathode platform in water is challenging for 

several reasons. First, surface of GaP is not indefinitely stable in water. Second, the indirect 

bandgap of GaP results in long minority charge-carrier diffusion length. As a result, nanostructured 

GaP tends to outperform planar GaP photoelectrodes but the difference strongly depends on the 

morphological and electronic properties of the specific GaP material. Finally, although 

sensitization of p-GaP by organic chromophores was first reported at the onset of the concept of 

dye sensitization in photoelectrochemistry,19 the design principles required for high-efficiency and 
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long-lived dye sensitized p-GaP photocathodes are as yet unclear. That is, how to properly couple 

dyes to GaP surfaces is unknown.  

 To date, several organic and inorganic chromophores demonstrate the capacity for light-

stimulated hole injection into p-GaP photoelectrodes.20-23 However, the majority of studies have 

employed conditions where p-GaP is immersed in an electrolyte containing the dissolved dye, i.e. 

the chromophore is not permanently adsorbed onto the electrode and is instead involved in some 

dynamic adsorption/desorption equilibrium. Although this tactic simplifies measurement, it does 

not address how the sensitizer-electrode combination would operate when the dye is adhered 

permanently to the semiconductor surface. Two basic questions yet to be addressed are: (1) are 

there any facile methods to adsorb a chromophore on GaP? and (2) what aspects are germane to 

realization of high charge-collection efficiency and stability? 

 In our ongoing work, we have noted that some common triarylmethane dyes can adsorb to 

some crystalline faces of GaP. As yet, no report has described the operational characteristics of 

physisorbed triarylmethane dyes on p-GaP electrodes immersed in otherwise blank electrolytes 

(i.e. electrolyte solutions that do not contain any dissolved redox mediator or dye). Accordingly, 

this work focuses on identifying such systems to evaluate their efficacy for constructing 

regenerative or photosynthetic photoelectrochemical cells featuring dye-sensitized p-GaP 

photocathodes. Herein, we detail how readily such dyes adhere on native p-GaP interfaces, using 

Fast Green FCF as a representative triarylmethane dye. This work demonstrates the first proof of 

sensitization by a physisorbed molecular chromophore on native GaP immersed in a blank, 

aqueous electrolyte. We further show how Fast Green FCF is regenerated to yield a steady-state 

photocurrent at sub-bandgap wavelengths and discuss the implications on further electrode design. 

Finally, we highlight several important criteria that should be considered to improve the prospects 

for sensitized electrochemistry with p-GaP. 

2. Experimental  

Chemicals and Materials  

Methanol (anhydrous, 99.8%, Aldrich), acetone (HPLC-grade, Fisher), tetrahydrofuran 

(anhydrous, ≥ 99.9%, Aldrich), methylmagnesium chloride (3M CH3MgCl solution in THF, 

Aldrich), phosphorous pentachloride (95%, Aldrich), chlorobenzene (anhydrous, 99.8%, Aldrich), 
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benzoyl  peroxide (≥ 97%, Aldrich),  double distilled sulfuric acid (95-98%, Aldrich), hydrofluoric 

acid (48%, Fisher), potassium chloride (ACS grade, Mallinckrodt), Fast Green FCF dye content 

(≥85 %, Sigma Aldrich), Crystal Violet (≥90%, Aldrich), Ethyl Violet (<90%, Aldrich), Rose 

Bengal  (≥95 %, Aldrich), tris(ethylenediamine)cobalt(III) chloride dihydrate (<90%, Sigma 

Aldrich), europium(III) chloride hexahydrate (99.9%, Stream Chemicals), methyl viologen 

dichloride hydrate(98%, Aldrich), cobalt(III) sepulchrate trichloride (95%, Aldrich), forming gas 

(5% hydrogen/ 95% nitrogen, Metro Welding), argon gas (Metro Welding), indium (99.99%, 

gallium Source), and zinc powder (≥99.8%, Baker Analyzed) were used as received. Water with a 

resistivity of > 18 MΩ cm (Barnsted Nanopure system) was used throughout. Single-side polished 

(etch pit density = 0.5x105 cm-2) p-type GaP(100) with Zn dopant concentration of 1.8-2.3 x1018 

cm-3 and a thickness of 350 ±25 µm and double-side polished (etch pit density = 1.5 x 105 cm-2) 

p-type GaP(111)A with Zn dopant concentration of 1.4x1018cm-3 and a thickness of 400 ±20 µm 

were obtained from University Wafers.  

Electrode Fabrication  

P-type GaP(100) and p-type GaP(111)A wafers were first cut into roughly 0.5 cm x 0.5 cm 

sections, degreased by sequential sonication in hexanes, acetone, methanol and water, and then 

dried under a stream of N2(g) before further use. Ohmic contacts were then prepared by soldering 

an In-Zn mixture onto the backs of each GaP wafer section, followed by annealing in forming gas 

for 10 minutes at 400°C. These GaP sections were then mounted on to tinned copper wire using 

silver print (GC Electronics), which was then threaded through a glass rod. An inert epoxy (Hysol 

C) was then used to insulate the back and sides, exposing only the front face of the wafer section 

for use as an electrode. 

Surface Modification 

Dye adsorption was performed by immersion of electrodes or wafer sections in aqueous 

solutions of dissolved dye. Specifically, cleaned and freshly etched (30 sec in hydrofluoric acid) 

GaP samples were immersed in a 6 mM solution of dye in water for 90 seconds with gentle stirring. 

After rinsing with water 3 times and then drying with a dry nitrogen stream, the sections were 

subsequently immediately used for electrochemical or spectroscopic analysis. Following all such 

studies, surfaces were cleaned and restored to their native state by sonicating in neat methanol and 
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then etching in 49% HF(aq) for 30 s. This procedure was sufficient to eliminate all sub-bandgap 

photocurrents, implying complete dye removal. 

To prepare CH3-terminated p-GaP(111)A electrodes, a slight modification was employed. 

The ohmic back-contacts on p-GaP(111)A wafer sections were prepared as described above. 

However, prior to functionalization, excess In-Zn present on the backside was etched off with a 

drop of concentrated H2SO4 for 30 seconds. These sections were then moved into N2-purged 

glovebox, where they were immersed for 50 min at T = 90 oC in a saturated solution of PCl5 in 

chlorobenzene with a few grains of dissolved benzoyl peroxide. Following, the front face of the 

GaP wafer sections were rinsed with neat THF and inserted into a reaction vessel containing 1 mL 

of 3M CH3MgCl in THF. The wafer sections were left to react for 3 h at T =100-110 oC. After 

completion, the surfaces were again washed with copious amounts of THF followed by neat 

methanol. Upon removal from the glovebox, additional In-Zn was soldered onto the back but no 

further annealing was performed. These wafer sections were then affixed onto tinned copper wire 

and embedded in insulating epoxy as described above. 

(Photo)Electrochemical Measurements 

All electrochemical measurements were performed in a three-electrode cell under 

potentiostatic control (PAR 273) in an airtight Pyrex cell with an optically flat and transparent 

quartz bottom. All solutions were sparged with N2(g) and the headspace was kept under a constant 

flow of N2(g). A Pt mesh counter electrode and a Ag/AgCl(sat. KCl) reference electrode were used 

throughout. All potentials are reported with respect to E(Ag/AgCl(sat. KCl)). Care was taken to 

ensure the position of the electrode was constant, with a distance between the GaP electrode and 

electrochemical cell window ~2 mm for all measurements to minimize optical losses. Wavelength-

dependent external quantum yield measurements were collected with an Oriel 150 W Xe arc lamp 

(Newport) and a quarter-turn single grating monochromator (Model 74125, Newport).  

Additionally, all external quantum yield measurements were conducted under chopped 

illumination at 15Hz and -0.6V vs E(Ag/AgCl). All data was corrected for fluctuations in light 

intensity, via a quartz beam splitter which directed a portion of the light to a Si photodiode (Model 

70316NS, Newport). The output signal from the cell and the reference Si photodiode was passed 

through a Stanford Instruments SR830 lock-in amplifier and relayed to a computer controlled by 

custom-written LabVIEW software. Wavelengths were scanned at increments of 5 nm in each 
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presented plot. Each individual quantum yield value on every plot represents values from at least 

200 repetitive measurements. That is, 100 sequential measurements were obtained and averaged. 

This value was then compared to the average of the previous 100 sequential measurements. If the 

difference between the two averages was less than 2%, then the latter average was logged as the 

tabulated value. If the differences was equal to or larger, then another 100 measurements were 

collected and compared. This cycle was repeated until the 2% criterion was satisfied. The 

propagated error from the uncertainties in the measurement of current, illumination power, and the 

width of the emission line from the monochromator (Δ 2 nm), translated into relative errors in each 

quantum yield measurement of 5.6 - 5.7% in the range from 525-700 nm. 

Separate measurements were performed with a light emitting diode (Mightex Systems) 

whose emission centered at λ= 656 nm with a bandwidth of 20 nm (full width at half maximum of 

emission spectrum, emission intensity < 1% at λ < 610 nm). The output illumination power from 

this source was adjusted over several orders of magnitude through a combination of a variable 

output power supply and a combination of aluminum neutral density filters. An optical 

beamsplitter was used to direct a portion of the light to a mounted reference Si photodiode. All 

reported illuminated power densities were corrected for electrode placement. 

X-ray Photoelectron (XP) Spectroscopy 

X-ray photoelectron spectra were collected using a PHI 5400 analyzer equipped with Al K 

α (1486.6 eV, 6 mA current emission and a 12 kV anode high tension) source, without a 

monochromator. Data collection took place at a pressure of < 2.5 x 10-9 Torr, without charge 

neutralization. Sample survey scans were recorded between 0 and 1350 eV at pass energy of 

117.40 eV, while high resolution spectra were collected at pass energy of 23.5 eV. All binding 

energies were referenced to the expected binding energy for adventitious carbon (284.6 eV). 

Spectrum analysis was performed with CASA XPS 2.3.13 software. 

3. Results 

Spontaneous Physisorption of Dye on Freshly Etched GaP(100) 

Figure 4.1a shows the recorded steady-state voltammogram in deaerated 1M KCl 

electrolyte containing 5 mM methyl viologen both in the dark and under monochromatic 

illumination at λ = 650 nm and 0.5 mW cm-2. Without exposure to Fast Green FCF  
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Figure 4.1 a) Steady state voltammograms of freshly etched p-GaP(100) electrodes in deaerated 

1M KCl, 5 mM methylviologen (MV2+) electrolyte (dashed lines) in the dark and (solid lines) 

under illumination at  = 650 nm and 0.5 mW cm-2. Responses were recorded (black) before and 

(red) after first soaking the electrode in Fast Green FCF solution for 90 s. b-d) Wavelength-

dependence of the external quantum yields measured with a p-GaP(100) electrode poised at E = -

0.6 V vs E(AgAg/Cl) in deaerated electrolyte both (black) without and (red) with first soaking in 

6 mM b) Fast Green, c) Crystal Violet, or d) Rose Bengal solution for 90 s. The dye structures are 

shown in the upper left portion of each plot. The bottom portion of each plot shows the normalized 

absorbance spectrum of corresponding dye dissolved in water at a concentration ≤ 10-6 M. 
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 (i.e. no prior immersion in dye solution), the photoelectrode responses in the dark and under 

illumination were nominally identical, in accord with the premise that sub-bandgap illumination 

does not illicit any substantive photoresponse. In comparison, when the electrode was first 

immersed in a 6 mM Fast Green FCF solution and then rinsed and immersed in blank electrolyte, 

the photocurrent-potential response was augmented and showed typical behavior of potential-

independent photocurrent at more negative potentials. The low absolute photocurrents 

corresponded to a small overall external quantum yield for photon-to-electron conversion, as 

expected for dye distributed across a flat surface plane. The explicit dependence of the 

photocurrent external quantum yield with wavelength at E = -0.6 V (i.e. in the plateau region of 

the photoresponse) is shown in Figure 4.1b. The spectral profile of the external quantum yield 

mirrored the solution absorbance of Fast Green FCF (Figure 4.1b inset), apart from a red shift of 

30 nm relative to the peak absorbance wavelength. Such shifts are commonly observed in dye 

sensitization and typically arise from a different local environment of a chromophore on a charged 

surface as opposed to dissolved in solution.24-26 The large difference in high frequency dielectric 

constants (9.11 for GaP, 80 for H2O)27-28 is consistent with this notion. Comparable photoresponses 

were collected for p-GaP(100) electrodes coated in a similar fashion by first soaking freshly etched 

p-GaP(100) electrodes in solutions of other triarylmethane dyes including, Crystal Violet and Rose 

Bengal (Figure 4.1c,d). The wavelength dependence of the external quantum yields measured for 

adsorbed Crystal Violet suggested the possibility of some H-aggregation, implying at least for this 

dye adsorbed chromophores were not totally isolated. 

To determine the amount of dye spontaneously and persistently (i.e. does not 

instantaneously desorb upon re-immersion in fresh solution) adsorbed onto GaP(100) surfaces 

upon soaking in a dye solution, X-ray photoelectron (XP) spectroscopy was employed (Figure 

4.2). GaP(100) wafer sections were soaked in a Fast Green FCF solution for either 90 s, 300 s or 

600 s and then rinsed with water. Based on the composition of Fast Green FCF 

(C37H34N2O10S3Na2), high resolution of sulfur 2p spectra were acquired before and after treatment. 

Figure 4.2a shows the respective S 2p spectra for a GaP(100) prior to treatment. A flat base line is 

seen from 174 eV to160 eV, indicating no detectable signal for sulfonates (> 167 eV)29 on the 

native surfaces, as expected. Figure 4.2b shows analogous spectra for a representative sample 

following immersion for 90 and 600s. There was still no detectable signatures of sulfonates visible 

above the baseline. Auger spectra were separately collected and again no detectable quantities of   
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Figure 4.2 High resolution S 2p XP spectra of a) a freshly etched GaP(100) surface, b) GaP(100) 

soaked in 6 mM Fast Green solution for either (black) 90 s and (red) 600 s, and c) a GaP(100) 

surface where a 0.05 mL of 6mM Fast Green in methanol was allowed to dry without additional 

rinsing. 
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Fast Green FCF were observed. Based on a surface detection limit of 0.1 at %,30 the XP and Auger 

data necessarily constrained the maximum surface coverage of physisorbed Fast Green FCF to less 

than 6.6 x1011 molecules cm-2. Additionally, separate measurements of the Ga 2p signal did not 

change between pre- and post- dye loading, further implying ultra-low levels of physisorbed dye.  

Similar observations and conclusions were drawn for Rose Bengal, Ethyl Violet, Crystal Violet, 

and Rhodamine G. For reference, Figure 4.2c also shows an analogous spectrum for a sample 

where a drop of a Fast Green FCF solution was allowed to evaporate and the surface was then 

analyzed without rinsing. For these samples, detectable levels of sulfonates were routinely seen. 

Factors that Affect Sensitized Photoresponse  

Figure 4.3 shows the influence of the redox mediator used for sensitization experiments 

with putatively physisorbed Fast Green FCF. On average, the photocurrents for freshly dye-loaded 

electrodes measured at λ = 650 nm varied by approximately 30%. The use of cobalt(III) sepulchrate 

(Co(sep)), cobalt(III) tris(ethylenediamine) (Co(en)3), europium(III), and ruthenium(III) 

hexammine were initially explored to gauge the extent that the standard potential and self-

exchange rate constants (Table 4.1)31-35 of the redox mediator were expected to have on the 

sensitized signal. However, aside from the significantly larger dark current elicited in electrolytes 

containing ruthenium(III) hexammine chloride, the steady-state photoelectrode responses were 

nominally the same in terms of photocurrent magnitude and current-potential profile. This 

observation is contrary to the well-established precedent for the electrochemical properties of a 

redox mediator influencing the level and shape of sensitized photoresponses.36-40 The large dark 

current for ruthenium(III) hexammine chloride was unexpected and could not be ascribed to the 

fact it is a ‘fast’ redox couple. Methyl viologen has an even higher self-exchange rate by several 

orders of magnitude (Table 4.1) and still did not induce a similarly large increase of the dark 

current response (Figure 4.1a). Instead, the issue with ruthenium(III) hexammine chloride could 

be related to some disassociative adsorption by the metal complex. Exposure of III-V 

photocathodes to solutions containing Ru-complexes is well known to catalyze their activity for 

H+ reduction41-46 presumably through decomposition and formation of Ru0 clusters. The possibility 

and extent of Ru0 formation and adsorption was not analyzed further since the larger dark current 

implies that overall ruthenium(III) hexammine chloride is not well-suited as a redox mediator with 

p-GaP.   
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Figure 4.3 Current vs potential responses of p-GaP(100) electrodes that were first soaked in 6 mM 

Fast Green solution for 90s and then rinsed, dried, and immersed in deaerated 1 M KCl(aq) 

containing 5 mM of each redox mediator. Responses were recorded both in the dark and under 

monochromatic illumination at  = 650 nm and 0.5 mW cm-2. 
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Table 4.1 Standard Potentials and Self-Exchange Rates of Selected Candidate Redox Mediators. 

 

  

Redox Mediator Abbreviation E
0
' /V vs. E (Ag/Agcl) Self-Exchange Rate /M

-1
 s

-1

Europium(III) Eu
3+

-0.550 Ref 31 ≤ 1 x 10
-4

Ref 35

Cobalt(III) tris(ethylenediamine) Co(en)3
3+

-0.440 Ref 34 3 x 10
-5

Ref 34

Cobalt(III) sepulchrate Co(sep)
3+

-0.540 Ref 32 5 x 10
0

Ref 34

Ruthenium(III) hexammine Ru(NH3)6
3+

-0.100 Ref 31 4 x 10
3

Ref 34

Methyl Viologen MV
2+

-0.650 Ref 33 1 x 10
7

Ref 34
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To probe further, sensitized photocurrent measurements at the sensitization peak 

wavelength (650 nm) were recorded as a function of mediator concentration. Figure 4.4 shows 

such data for two redox couples with similar standard potentials but different self-exchange rates, 

methyl viologen and cobalt(III) sepulchrate. The photocurrents are presented as external quantum 

yields and are clearly insensitive toward the redox mediator concentration as it was titrated into 

solution. In fact and unexpectedly, the sensitized signal was comparable (or even higher) in blank 

electrolyte, i.e. with no redox mediator in solution. To ascertain that some residual amount of 

dissolved oxygen was not acting as a mediator for sensitization through the generation of singlet 

oxygent, sodium azide was introduced into the cell. External quantum yield values measured 

before and after the addition of sodium azide remained constant, eliminating any trace of dissolved 

oxygen as a potential redox mediator. 

The total insensitivity of the sensitized photocurrent towards concentrations of species in 

solution suggested an unexpected mechanism of dye regeneration. To probe further, separate 

experiments were performed over a greater range of illumination intensities. Using a light emitting 

diode centered at λ = 656 nm, photocurrent measurements were taken at a range of illumination 

intensities both with and without dissolved methyl viologen in solution (Figure 4.5). At light 

intensities below 0.6 mW cm-2, the photocurrent dependence on the illumination light intensity 

was nominally linear and equivalent for both solutions. However, above this light intensity, 

photocurrent measurements in the blank electrolyte saturated. In contrast, the photocurrent 

measurements continued to monotonically increase at higher light intensities when methyl 

viologen was in solution, indicating that the photoexcited dye could be regenerated by dissolved 

methyl viologen. 

In lieu of regeneration by dissolved redox mediators at low light intensities, further 

experiments were performed to explore the regeneration pathway of Fast Green FCF after hole 

injection into GaP under these conditions. Figure 4.6 shows a series of linear sweep 

voltammograms obtained in the absence of illumination where the p-GaP(100) electrode was 

swept from the rest potential out to +0.3 V after first being held at E = -0.6 V. When the electrode 

was swept in the dark, no appreciable anodic current passed until 0.0 V. At more positive 

potentials, increased current corresponded to the electrochemical oxidation of GaP.47 This 

observation was independent of the total hold time at E = -0.6 V. When the electrode was first   
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Figure 4.4 Measured quantum yields for net photocurrent generation at  = 650 nm, 0.507 mW 

cm-2 and E = -0.6 V vs E(Ag/AgCl) as a function of the concentration of either (a) methyl viologen 

dichloride or (b) cobalt(III) sepulchrate trichloride dissolved in deaerated 1 M KCl(aq). 
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Figure 4.5 Dependence of photocurrent with illumination intensity centered at  = 656 nm for a 

p-GaP(100) photoelectrode with adsorbed Fast Green immersed in N2-purged 1 M KCl(aq) both 

(●) with and (□) without 0.005 M MVCl2  at E = -0.6 V vs E(Ag/AgCl). 
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Figure 4.6 Linear sweep voltammograms for freshly etched p-GaP(100) electrodes immersed in 

deaerated 1 M KCl(aq). a) (black line) The potential of the electrode was swept from open circuit 

to E = +0.3 V at a scan rate of 20 mV s-1. (red line) The electrode was first held at E = -0.6 V while 

illuminated with supra-bandgap light at λ = 450 nm and at 1.14 mW cm-2 for 10 min before 

scanning to +0.3 V at 20 mV s-1. b) (black line) The electrode was first soaked in 6 mM Fast Green 

for 90 s, rinsed, and then immersed in deaerated 1 M KCl(aq). The potential of the electrode was 

then swept from open circuit to E = +0.3 V at a scan rate of 20 mV s-1. (red line) The electrode 

was first held at E = -0.6 V while illuminated with sub-bandgap light at λ = 656 nm and at 2.66 

mW cm-2 for 10 min before scanning to +0.3 V at 20 mV s-1. 
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illuminated with supra-bandgap light at λ = 450 nm at 1.1 mW cm-2 for 10 min before sweeping 

the potential out to +0.3 V, two new anodic waves were observed centered at E = 0.0 V and E = -

0.125 V. The intensity of these waves depended on the hold time, with longer times eliciting larger 

oxidation waves. These data indicated that illumination resulted in the generation of additional 

reduced species at the electrode/electrolyte interface. Integration of the total charge passed above 

the blank condition corresponded to 1.11 x10-5 C cm-2. When a p-GaP photoelectrode that was first 

soaked in a Fast Green FCF solution for 90s was illuminated with sub-bandgap light at λ = 656 

nm at 2.7 mW cm-2 for 10 min and then scanned out to 0.3 V, a single anodic peak at E = 0.0 V 

was observed. The intensity of this wave also depended somewhat on the hold time, but a second 

peak at more negative potentials was never observed. The sum conclusion from these experiments 

was that the GaP electrode surface has the capacity to store excess negative charge by the reduction 

of surface atoms. 

Attempts to Sensitize Chemically Passivated p-GaP Photoelectrodes 

Although a well-defined, wet chemical passivation method for controlling the surface 

chemistry of p-GaP(100) does not yet exist, we have previously shown that GaP(111)A surfaces 

could be effectively stabilized and modified by reaction with alkyl Grignard reagents.48-49 

Accordingly, additional p-GaP photoelectrodes were prepared with single-crystalline wafers with 

exposed (111)A surface planes. As was observed with freshly etched p-GaP(100) electrodes, 

freshly etched p-GaP(111)A electrodes that were first immersed in Fast Green FCF solution (vide 

supra) exhibited photoelectrochemical responses suggestive of physisorbed dye (Figure 4.7a). A 

notable observation is that the sensitization levels with p-GaP(111)A electrodes tended to be 

consistently lower than that for analogous p-GaP(100), indicating even less dye physisorbed on to 

this surface plane. In contrast, when p-GaP(111)A electrodes were first reacted with CH3MgCl 

and then soaked in dye solution and analyzed for sensitized photocurrent, no sub-bandgap 

photoresponse was observed. Attempts to soak these CH3-terminated p-GaP(111)A electrodes in 

the other triarylmethane dyes consistently showed no evidence of sensitization or persistent 

physisorption (Figure 4.7b). These data implied that either the low affinity of the anionic Fast 

Green FCF dye with a CH3-terminated p-GaP(111)A surface resulted in no sensitized photocurrent 

or that the storage of injected electrons at the GaP surface was a necessary condition for 

sensitization. However, when sensitization measurements were repeated with CH3-terminated 
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Figure 4.7 Wavelength-dependence of the external quantum yields at E = -0.6V vs E(Ag/AgCl). 

a) Freshly etched p-GaP(111)A electrode in deaerated 1 M KCl(aq) (black) before and (red) after 

soaking in Fast Green solution for 90 s. b) A chemically modified p-GaP(111)A electrode reacted 

first with CH3MgCl and then immersed in 1M KCl(aq) (black) without and (red) with 50 µM Fast 

Green. c) A chemically modified p-GaP(111)A electrode reacted with CH3MgCl and then 

immersed in 1M KCl(aq) (black) without and (red) with 50 µM Ethyl Violet. 
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p-GaP(111)A electrodes in electrolytes containing the less hydrophilic triarylmethane dye Ethyl 

Violet, low but persistent sensitized photocurrents were detected, suggesting that dye affinity for 

the surface rather than the participation of surface reduction was controlling in these 

measurements. 

4. Discussion 

The cumulative data presented here highlight important insights on how to construct 

sensitized photocathodes with doped p-GaP. First, adsorption of Fast Green FCF and similar 

triarylmethane dye salts is apparently achieved on native GaP surfaces but the total amount is quite 

low. Second, the sensitization by hole-injection from adsorbed, photoexcited dye at low light 

intensities is coupled with chemical attack of the native GaP surface. Third, at high light intensities, 

the sensitization mechanism transitions to a mode where redox species in solution mediate the 

regeneration of adsorbed dye. Fourth, chemical passivation of GaP interfaces that inhibits chemical 

surface degradation but still permits sensitization is possible. These points are detailed below. 

Adsorption of Fast Green FCF on Native GaP Interfaces 

Since a pristine, oxide-free GaP interface does not present any natural reactive sites for an 

organic chromophore, the means for persistent adsorption of a dye is not immediately obvious. 

However, freshly etched GaP surfaces rapidly form a significant density of polar surface groups 

upon exposure to air and immersion in protic solvents.50-52 Accordingly, the data are consistent 

with the premise that resultant surface charges on freshly etched GaP(100) and GaP(111)A supply 

enough electrostatic attraction to bind Fast Green FCF. To be clear, since no sensitization signal 

was ever observed with p-GaP that featured a native oxide prior to dye loading, we infer the active 

sites for charge-injection was not oxide-based. The quantity of adsorbed dye is below the detection 

limits of X-ray photoelectron spectroscopy and Auger spectroscopy. Nevertheless, the fractional 

surface coverage of the dye is still enough to elicit appreciable photocurrent external quantum 

yields at longer, sub-bandgap wavelengths. This necessarily implies that the internal quantum yield 

for sensitized hole injection is likely high for an individual, adsorbed dye molecule and is in accord 

with the premise that electrodes operating under depletion conditions are naturally suited for dye-

sensitization.22, 53-54 Although a sufficiently high ionic strength electrolyte and/or extreme pH 

could facilitate dye desorption, the data shown here indicates that in 1 M ionic strength and neutral 
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pH, the small amount of physisorbed Fast Green FCF does not desorb appreciably within the 

timescale of the measurements (i.e. ~10 minutes). 

Regeneration of Dye After Sensitized Hole Injection 

The sign and wavelength-dependence of the steady-state photocurrent are clear indications 

that the sub-bandgap photocurrent arises from photoexcitation and regeneration of physisorbed 

Fast Green FCF. However, the mechanism of regeneration of dye following charge injection 

appears complex. 

 At low light intensities, the magnitude of the photocurrent has a zero-order dependence on 

the concentration (and type) of dissolved redox couples. This finding is unexpected because it is 

in strong contrast to the typical description of sensitized photocurrents where the dye, following 

charge injection, is restored to its original state by a redox reaction with a molecular mediator. The 

findings here make clear that at least one pathway exists for dye regeneration that does not involve 

charge-transfer with a solution-based redox mediator. One possibility is that after photoexcitation 

and injection of a hole into the valence band of GaP, dyes are regenerated by charge transfer with 

adjacent adsorbed, non-photoexcited dye. In principle, this scenario could also produce a saturated 

sensitized photoresponse above a threshold illumination intensity. However, this possibility would 

not be expected to induce any net chemical change to the surface, nor would this mechanism 

expected to be consistent from electrode to electrode. Rather, the data implicate that some charge 

transfer with the GaP surface itself is what regenerates the dye. As evident from the oxidative 

waves in the voltammograms in Figure 4.6, electron storage is possible at GaP interfaces. The 

electroreduction of the surface atoms into (ultimately) Ga and PH3 is known to occur at potentials 

within the bandgap.55 For experiments where GaP itself was photoexcited, accumulation of 

electrons at the conduction band edge at the surface apparently reduce surface Ga atoms that could 

then be reoxidized by sweeping the potential out to sufficiently anodic potentials. Steps 5-7 in 

Figure 4.8 summarize such a process, which is known to occur when there is an absence of efficient 

acceptors in solution (the native GaP surface is not electrocatalytic for H+ reduction at neutral 

pH).48, 56 For charge compensation, this reduction likely drives insertion of H+ into the GaP sub-

surface.55, 57 The net result on the GaP surface is the introduction of new (and likely numerous) 

chemical defects at the surface. 
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 We posit with an adsorbed dye on a native p-GaP interface, a similar process occurs. That 

is, photoexcitation of the dye not only results in hole injection into the valence band but also 

electron injection into GaP via a surface state(s) (Steps 1,2, & 4 in Figure 4.8). To be clear, electron 

injection from the dye does not proceed by injection into the conduction band. In this electrolyte, 

the conduction band edge of GaP is -1.2 V ± 0.2 vs E(Ag/AgCl),58 far too negative to receive an 

electron from these photoexcited chromophores. Rather, an electron from the photoexcited dye 

drives the reduction of surface atoms in GaP. The standard potentials for the first reduction of 

triarylmethane dyes are < -0.5 V vs E(Ag/AgCl)59 and the re-oxidation of GaP surfaces during 

anodic sweeps occurs at more positive potentials > -0.1 V vs E(Ag/AgCl) (Figure 4.6) are 

consistent with this premise. The injection of both electrons and holes into GaP does not translate 

into appreciable carrier recombination because they remain physically separated. In p-GaP 

electrodes operating under strong depletion, the internal electric field efficiently sweeps injected 

holes away from the surface and simultaneously strongly confines injected electrons to the 

interface. Accordingly, in three-electrode experiments under potentiostatic control and in the 

absence of a redox mediator in solution, a net photocurrent is possible and was observed. 

The effective rate for electron injection from the dye to drive GaP surface redox chemistry must 

be fast relative to the rate of electron transfer for the reduction of all dissolved redox couples 

explored here. The data regarding the insensitivity of the photocurrent towards redox couple 

concentration in solution are clear on this point at low light intensities. Since the photocurrent did 

not rapidly decay to zero, the regeneration of the adsorbed dye by the reduction of the GaP surface 

attains a steady-state balance. When sensitized photocurrents were measured at light intensities 

sufficiently high to afford a sensitivity to the presence of methyl viologen in solution, the rate-

limiting aspect was inferred to be charge-transfer between the dye and methyl viologen. This 

finding indicates that physisorbed Fast Green FCF can in fact be regenerated with a redox couple 

and the semiconductor/dye pairing can still function in accord with the traditional mechanism of 

sensitized charge-transfer60, an important point relating to the prospects of p-GaP photocathodes. 

Although it is tempting to analyze how the attributes of different redox couples affect 

sensitization of native p-GaP electrodes under high light intensity conditions, such data would be 

inextricably coupled with chemical attack of the GaP surface operating in parallel. No doubt this 

aspect convolutes the role that redox mediator properties like the standard potential and  



 

 
88 

 

Figure 4.8 Schematic depiction of the flow of electrons for a physisorbed dye on p-GaP under 

illumination. 1) Sub-bandgap light absorption by physisorbed dye. 2) Electron injection from 

valence band into the ground state of the photoexcited dye (i.e. hole injection from the ground state 

of the photoexcited dye into the valence band). 3) Electron capture by a redox mediator from the 

photoexcited dye. 4) Electron capture by a surface state from the photoexcited dye. 5) Supra-

bandgap light absorption by GaP. 6) Field-induced direction of photogenerated electrons to the 

GaP/electrolyte interface. 7) Electron capture by a surface state from the conduction band edge. 
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self-exchange rate play. Further, the long-term chemical instability of p-GaP interfaces coated with 

physisorbed dye in water severely compromises the possibility of such constructs being used in a 

practical two-electrode sensitized photoelectrochemical cell. 

Three possible design motifs are still worth exploring for sensitized p-GaP. First, 

sensitizers tuned to longer wavelengths could be used if they provide insufficient driving force to 

reduce surface Ga atoms when photoexcited. Such dyes could then be regenerated with solution-

based redox couples in a straight-forward manner. The difficulty then lies in identifying 'red' 

sensitizers with photoexcited states capable of injecting holes into the valence band of GaP. The 

rather positive potential of the valence band edge for GaP is mismatched to the standard potentials 

of the first oxidation of many 'red' dyes previously used in dye-sensitized platforms.53-54 Moreover, 

longer wavelength dyes will necessarily require the use of redox mediators with more positive 

standard potentials, limiting the overall energy conversion efficiencies by capping the attainable 

photovoltage. Smaller photovoltages are not desirable, limiting the appeal of this approach. 

Second, the use of Fast Green FCF and related dyes on native p-GaP interfaces may yet be 

possible if a redox mediator is identified that possesses a sufficiently fast charge-transfer with the 

excited state of the dye to outpace the surface reduction pathway. However, the saturated 

photocurrent density of 7.5 x10-6 A cm-2 at high light intensities without a redox mediator in 

solution defines bounds for the necessary rate of charge-transfer. Assuming 3e- reduction process 

for every Ga atom and an upper limit of 6.6 x1011 atoms cm-2 for the atomic surface density, the 

corresponding reaction rate between the dye and the surface is at least 102 s-1. This value represents 

the lower bounds on the charge transfer rate that a redox mediator must attain to match the surface 

process. To sufficiently outpace the deleterious surface process, a redox mediator should support 

a rate constant several orders of magnitude greater, as has been described in the context of fast 

redox mediators outpacing the corrosion of photoelectrodes in conventional regenerative 

photoelectrosynthetic schemes.61 Although none of the electrolytes explored here suffice, rate 

constants for dye regeneration in sensitized photoanodes are known to reach values up to 105 s-1 

through a combination of high concentrations and optimal dye-mediator energetics.62-63 

Accordingly, a more suitable redox mediator that better mitigates cathodic surface degradation of 

GaP may yet be identified. 
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A third route that may improve the efficacy of sensitized GaP photocathodes, without 

limiting the choice of redox mediator, is through chemical modification of the semiconductor 

surface. Although not fully demonstrated here, the data presented in Figure 4.7 show that the 

physicochemical properties of CH3-terminated GaP(111)A are substantially different than native 

GaP(111)A but still permit sensitization under certain conditions. We have already shown 

previously that these surfaces are more resistant against both surface oxidation in air49 and cathodic 

surface degradation in solution.48 The latter is possible because the CH3- groups coordinate the 

atop Ga atoms and inhibit changes in their redox state. The data are clear here that triarylmethane 

dyes with less charge and more non-polar groups (i.e. alkyl chains) do have some affinity for CH3-

terminated surfaces, allowing sensitization when dyes like Ethyl Violet are dissolved in solution. 

Still, in order to represent a path forward, the stabilizing effect of the CH3- groups must be 

augmented with a chemical functionality that facilitates persistent dye adsorption. Work along 

these lines is ongoing in our laboratory. 

5. Summary 

The cumulative experimental data shown here illustrates the ability of freshly etched p-

GaP to function as a photocathode when loaded with triarylmethane dyes. However, several issues 

were identified with this basic motif. First, dye coverage by simple immersion in dye solutions is 

low. Second, sensitized hole injection into freshly etched p-GaP surfaces is complicated by redox 

chemistry of GaP surfaces in water. Electron injection from the photoexcited dye into the interface 

to drive reductive transformations of the GaP surface is possible and occurs to an appreciable 

extent relative to electron injection into a species dissolved in solution. The surface redox activity 

of GaP is insufficient to regenerate dye at illumination intensities commensurate with solar 

irradiation. A solution to these issues may be realized through modification of p-GaP interfaces 

with surface groups that inhibit surface redox activity but still permit sensitization. The presented 

data suggests this is possible. In total, the enumeration of these points in this work represents a 

necessary step towards the development of sensitized p-GaP photocathodes. 
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CHAPTER 5  

 

Exploring Alkene Grafting on GaP(100) and (111)A 

1. Introduction 

In a photoelectrochemical energy conversion cell using GaP as a photocathode, two 

challenges must be solved. The first issue is solving the surface instability of GaP in contact with 

water. The second challenge is the moderate visible light absorption of GaP at wavelengths longer 

than 550 nm. Employing surface modification strategies can alleviate these issues. A passivating 

surface layer can stabilize the GaP surface against chemical degradation in aqueous conditions.1-2 

Grafting, a sensitizer onto that layer could improve photon collection at longer wavelengths of 

light.3-8 

A previous chapter focused on the investigation of the sensitization process at bare GaP 

electrodes containing a physisorbed molecular sensitizer. The cumulative findings indicated that 

during sensitization, the excited dye molecules were regenerated by injecting charges into surface 

atoms, rather than being regenerated by a redox couple in solution,.5 This process results in 

accumulation of metallic gallium at the interface and accordingly renders the photocathode 

inactive since the metal acts to trap charge. To combat these issues, GaP(111)A electrodes were 

functionalized using a two-step process: chlorination followed by a Grignard reaction, to introduce 

methyl surface groups. Although methyl groups kinetically inhibited electrochemical degradation, 

these groups also hindered dye loading. Dye sensitization of physisorbed Fast Green on methyl 

terminated GaP surfaces was not observed and was attributed to the lack of favorable interaction 

between the nonpolar surface and the charged dye molecules. Therefore, to realize the potential of 

GaP as a dye sensitized photocathode, surface groups must be introduced on a GaP surface that 

not only chemically and electrochemically passivate the semiconductor but also facilitate some 

sort of rational dye attachment. Herein, this chapter develops a strategy of alkene grafting for 

producing a cationic monolayer on GaP that inhibits chemical degradation but promotes adhesion 

of anionic sensitizers (Figure 5.1). 
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Figure 5.1 Chemical modification route for GaP(100) and GaP(111)A 

  



 

 
95 

Three major points are considered for the development of the monolayer species in this 

chapter. First, the introduction of the monolayer is intended to facilitate dye physisorption through 

charge affinity with opposite charged dyes. In this way, a range of dye molecules can be 

investigated, avoiding the constraint of designing unique reaction strategies for a covalent bond 

for every specific dye. Second, the monolayer must not totally inhibit electronic coupling between 

the semiconductor and a photoexcited dye. Little to no resistance should be encountered as charge 

travels from the dye into GaP. Third, the monolayer should consist of densely packed functional 

groups to inhibit formation of deleterious surface oxides. A high packing density will also allow 

for greater dye adsorption. 

A major disadvantage of using Grignard reagents to design an organic monolayer is their 

chemical incapability with many desirable functionalities, placing a constraint on the types of 

monolayers that are possible. With Grignard reagents, there is no straightforward method to graft 

positively charged functional groups to a surface. Additionally, on GaP, this reaction scheme 

appears to be limited specifically to the GaP(111)A crystal plane. Accordingly, to achieve the 

desired objectives, an alternate reaction scheme must be developed. Here we selected alkene 

grafting, which involves a primary alkene reacting with and binding to the surface through 

reduction of the C=C bond. Alkene grafting has been reported previously on Si.9 There is some 

precedent for this idea on GaP, too,10 but only using ultraviolet light to initiate the reaction. 

Although UV irradiation is effective in promoting alkene reactions with GaP, it often leads to 

surface oxidation.9, 11 On Si, alkenes can react with surface atoms via hydrosilylation and therefore 

such reactions can also be initiated thermally.12 On GaP, it is presently unclear if such a mechanism 

is possible. 

2. Experimental 

Chemicals and Materials  

Methanol (anhydrous, 99.8%, Aldrich), hexanes (99.9%, Fisher), acetone (HPLC-grade, 

Fisher), tetrahydrofuran (anhydrous, ≥ 99.9%, Aldrich), 1-octadecene ( ≥ 95.0%, Aldrich), vinyl 

ferrocene (97%, Aldrich), (vinylbenzyl)trimethylammonium chloride (99%, Aldrich), Fast Green 

Dye ( ≥ 85%), dimethyl sulfoxide (anhydrous, ≥ 99.9%, Aldrich), octadecylmagnesium chloride 

(0.5M CH3MgCl solution in THF, Aldrich), phosphorous pentachloride (95%, Aldrich), 

chlorobenzene (anhydrous, 99.8%, Aldrich), benzyl peroxide ( ≥ 97%, Aldrich),  hydrofluoric acid 
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(48%, Fisher), methyl viologen dichloride hydrate(98%, Aldrich), potassium chloride (ACS grade, 

Mallinckrodt), forming gas (5% hydrogen/ 95% nitrogen, Metro Welding), argon gas (Metro 

Welding), indium (99.99%, Gallium Source), and zinc powder ( ≥ 99.8%,  Baker Analyzed) were 

used as received. Water with a resistivity of > 18 MΩ cm (Barnsted Nanopure system) was used 

throughout. n-GaP(100) with S doping level of 4.75 x 1017 cm-3 and thickness of 302 ± 20 were 

purchased from El-Cat. Double-side polished (etch pit density = 1.5 x 105 cm-2) p-type GaP(111)A 

with Zn doping level of 1.4x1018cm-3 and a thickness of 400 ± 20 µm were obtained from 

University Wafers. 

Chemical Surface Modification  

Prior to performing any chemical surface modifications, GaP(100) and GaP(111)A wafers 

were diced into 0.5 x 0.5 cm squares. The wafers were then degreased in hexanes, acetone, 

methanol and water for 5 minutes each, etched with oxygen or argon plasma for 5 minutes and 

etched in concentrated HF for 1 minute, rinsed with water and dried under nitrogen. Immediately 

after etching, wafers were transferred to a nitrogen-purged glove box. All surface reactions took 

place in a nitrogen-purged glove box. For reactions with 1-octadecene, wafers were placed in 

reaction vials containing neat 1-octadecene and reacted at designated temperatures and times. To 

react vinyl ferrocene with GaP(111)A surfaces, freshly etched surfaces were placed in 0.1 M vinyl 

ferrocene solution in THF at 90 ºC for 12 h (Figure 5.2). (Vinylbenzyl)trimethylammonium 

chloride was dissolved in DMSO at a concentration of 0.125M, and the reactions took placed at 

90 ºC (Figure 5.3). 

To prepare CH3(CH2)16CH2-GaP terminated surfaces using a Grignard reaction, freshly 

etched GaP(111)A surfaces were chlorinated at 90 °C for 50 min using a saturated solution of 

phosphorous (V) pentachloride in chlorobenzene and a few grains of benzoyl peroxide. Upon 

completion, samples were washed with THF and transferred to reaction vessels containing 

octadecylmagnesium chloride. The Grignard reaction was carried out at 100 °C for 12 hours. 

Dye adsorption on reacted GaP surfaces 

To adsorb Fast Green on bare GaP surfaces or those reacted with 

(vinylbenzyl)trimethylammonium chloride, wafer sections or electrodes were immersed in  
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Figure 5.2 (a) Grafting of vinyl ferrocene to GaP(111)A surface. (b) High resolution Fe 2p XP 

spectra of GaP(111)A samples reacted with vinyl ferrocene for 12 h (black) and after sonication 

in water for 5 minutes (red). 
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Figure 5.3 (a) Grafting of (vinylbenzyl)trimethylammonium chloride to GaP(111)A. (b) Optical 

photograph of contact between a H2O droplet and GaP(111)A wafer reacted with 0.125 M 

(vinylbenzyl)trimethylammonium chloride in DMSO for 2 h at 90 ºC. CA = 31 ± 5 º. 
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aqueous solution of dissolved Fast Green dye (6mM). After a designated time, wafer sections or 

electrodes were rinsed with water 3 times and dried with a dry nitrogen stream. 

Electrode Fabrication  

P-type GaP(111)A wafers cut into roughly 0.5 cm x 0.5 cm sections, degreased in hexanes, 

acetone, methanol and water for 5 minutes, oxygen plasma etched for 5 minutes and etched in 

concentered HF for 1 minute. Ohmic contacts were then prepared by soldering an In-Zn mixture 

onto the backs of each GaP wafer section, followed by annealing in forming gas for 10 minutes at 

400 °C. Prior to chemical modification, excess In-Zn present on the backside was etched off with 

a drop of concentrated H2SO4 for 30 seconds. The front of the wafer sections were then re-etched 

and transferred to a nitrogen-purge glovebox for reaction with (vinylbenzyl)trimethylammonium 

chloride. Upon completion of the functionalization step, additional In-Zn was soldered onto the 

back, but no further annealing was performed. These wafer sections were then mounted on to 

tinned copper wire using silver print (GC Electronics), which was then threaded through a glass 

rod. An inert epoxy (Hysol C) was then used to insulate the back and sides, exposing only the front 

face of the wafer section for use as an electrode. 

Static Sessile Contact Angle Measurements 

The contact angle formed between a droplet of distilled water and a GaP interface was 

recorded using a CAM 100 optical contact angle meter (KSV instrument, Helsinki, Finland). KSV 

software was utilized during data collection and analysis. 

X-ray Photoelectron (XP) Spectroscopy 

X-ray photoelectron spectra were collected using a PHI 5400 analyzer equipped with Al K 

α (1486.6 eV, 6 mA current emission and a 12 kV anode high tension) source, without a 

monochromator. Data collection took place at a pressure of < 2.5 x 10-9 Torr, without charge 

neutralization. High resolution spectra were collected at pass energy of 23.5 eV. All binding 

energies were referenced to the expected binding energy for adventitious carbon (284.6 eV). 

Spectrum analysis was performed with CASA XPS 2.3.13 software. 
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Photoelectrochemical Measurements 

All electrochemical measurements were performed in a three-electrode cell under 

potentiostatic control (PAR 273) in an airtight Pyrex cell with an optically flat and transparent 

quartz bottom. All solutions were sparged with N2(g) and kept under a constant flow of N2(g). A 

Pt mesh counter electrode and a Ag/AgCl(sat. KCl) reference electrode were used throughout. All 

potentials were referenced to E(Ag/AgCl(sat. KCl)). Care was taken to ensure the distance between 

the GaP electrode and electrochemical cell window remained small and constant for all 

measurements. Oriel 150 W Xe arc lamp (Newport) and a quarter-turn single grating 

monochromator (Model 74125, Newport) were used to collect wavelength-dependent external 

quantum yields. Additionally, external quantum yield measurements were conducted under 

chopped illumination at 15Hz and -0.6V vs E(Ag/AgCl). To correct the data for fluctuations in 

light intensity, a quartz beam splitter directed a portion of the light to a Si photodiode (Model 

70316NS, Newport). The output signal from the cell and the reference Si photodiode was passed 

through a Stanford Instruments SR830 lock-in amplifier and relayed to a computer controlled by 

custom-written LabVIEW software. Wavelengths were scanned at increments of 5 nm from the 

longest wavelength to the shortest wavelength. 

3. Results 

Temperature dependence of 1-octadecene grafting 

The temperature dependence of grafting 1-octadecene on GaP was monitored by 

measurement of contact angles between water and GaP surfaces after performing each reaction. 

Freshly etched GaP(100) wafers subjected to a reaction with neat 1-octadecene at 23 ºC (room 

temperature), 90 ºC, and 200 ºC for 24 h. The measured contact angles for GaP(100) reacted for 

24 h under various temperatures are summarized in Figure 5.4and Table 5.1. Figure 5.5 shows 

optical photographs of contacts between a H2O droplet and GaP wafers after reaction at various 

temperatures. An independent Student’s t test was performed to determine whether the data 

supported the contention that temperature effected a change in the resultant surface layer. 

Following statistical analyses, a clear difference in the measured contact angles was observed 

between the data for bare GaP surfaces and surfaces reacted with 1-octadecene. As shown in Figure 

5.4, a near two-fold increase in water contact angle was measured. These results are consistent 

with octadecyl groups chemisorbed onto the surface to render hydrophobic character. On the other  
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Figure 5.4 Static sessile water contact angle measurements of GaP(100) and (111)A wafers 

reacted in neat 1-octadecene as a function of reaction time. Grafting occurred at 90 ºC unless noted 

otherwise. For comparison, water contact angles for freshly etched bare GaP(100) and (111)A are 

plotted. Additionally, results for GaP(111)A surface reacted with octadecylmagnesium chloride, 

CH3(CH2)16CH2MgCl, are included. 
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Table 5.1 Contact angle (CA) measurements between water and GaP surfaces reacted with 1-

octadecene. 

Surface * Time / h Temperature / ºC CA / degrees 

(100) 24 RT 88 ± 6 (n = 6) 

(100) 24 90 81 ± 7 (n = 6) 

(100) 24 200 85 ± 7 (n = 6) 

(100) 1 90 87 ± 3 (n = 6) 

(100) 12 90 83 ± 4 (n = 6) 

(111)A 24 90 86 ± 7 (n = 3) 

Argon Plasma - (100) 24 90 93 ± 3 (n = 12) 

* All surfaces were degreased, oxygen plasma etched, and HF etched, unless noted otherwise. 
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Figure 5.5 Optical photographs of contacts between a H2O droplet and GaP wafers. (a) freshly 

etched GaP(100) CA = 44 ± 4 º. GaP(100) after reaction with 1-octadecene (b) at 90 ºC for 24 h 

CA = 81 ± 7 º, and (c) at room temperature for 24 h CA= 79 ± 5. 

  

(a)

(c)
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hand, we determined that the GaP/water contact angles for reactions performed at 25, 90, and 200 

ºC were not statistically different at the 95% confidence interval. This aspect strongly implied that 

the reaction was not thermally activated in this temperature range. 

Time dependence of 1-octadecene grafting 

The time dependence for the efficiency of thermal grafting of alkenes on GaP(100) was 

measured through contact angle measurements between water and GaP surfaces. The assumption 

in this strategy was that higher contact angles were correlated with higher density of surface 

coverage. The time dependence was performed at 90 ºC. This temperature was selected since no 

statistical difference (at a 95 % confidence interval) was seen between samples reacted at 90 ºC 

and 200 ºC. Results are summarized in Figure 5.4 and Table 2.1, a constant range of water contact 

angles values was reached, as evidenced by an independent samples t-test. Table 5.2 summaries 

the independent sample t-test results. All measured differences were not statistically significant at 

the 95% confidence level. 

Surface treatment prior to 1-octadecene grafting 

To assess whether surface pre-treatments that yield high densities of surface 

defects/radicals such as plasma etching influenced the reaction with 1-octadecene, additional 

reactions were performed with GaP sections that were first exposed to either oxygen or argon 

plasma for 5 minutes. Surface roughness was evaluated using AFM, no significant difference was 

measured between the two treatments. Contact angle measurements between water and GaP 

surfaces after grafting were recorded as a function of pre-treatment. Treating GaP(100) surfaces 

with oxygen or argon plasma prior to a reaction with 1-octadecene resulted in a water contact angle 

of 81 ± 7 º and 93 ± 3 º, respectively. A Student’s t-test analysis confirmed that plasma pre-

treatment led to statistically significant difference in water contact angles at the 95% confidence 

level. 

Comparison of 1-octadecene grafting and chlorination-Grignard surface functionalization 

No significant differences in contact angle values were seen after reacting alkenes on either 

GaP(100) or GaP(111)A surface. For GaP(111)A surfaces, octadecyl groups grafted through 

Grignard chemistry showed statistically different contact angle values at the 95% confidence level. 

Grignard functionalization surfaces led to higher water contact angles, implying higher surface 
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Table 5.2 Summary of statistical analysis; comparing alkene grafting as a function of (a) reaction 

time, and (b) temperature. 

(a) Grafting of 1-octadecene on GaP (100) as a function of temperature 

Reaction Conditions Temperature  Degrees of 

Freedom 

t-value at 

95% 

confidence 

t-value 

calculated 

24hrs in neat 1-

octadecene 

RT (n = 6)  

M = 88 SD = 6 

90ºC (n = 6) 

M = 81 SD = 7 

10 2.228 1.720 

200ºC (n = 6) 

M = 85 SD = 7 

10 2.228 0.737 

24hrs in neat 1-

octadecene 

90ºC (n = 6)  

M = 81 SD = 7 

200ºC (n = 6) 

M = 85 SD = 7 

10 2.228 0.904 

 

(b) Grafting of 1-octadecene on GaP (100) as a function of time  

Reaction Conditions Time Degrees of 

Freedom 

t-value at 

95% 

confidence 

t-value 

calculated 

90ºC, in neat 1-

octadecene at 

1hr (n = 6)  

M = 87 SD = 3 

12hrs (n = 6) 

M = 83 SD = 4 

10 2.228 1.832 

  
24hrs (n = 6) 

M = 81 SD = 7 

8 2.306  1.470  

90ºC, in neat 1-

octadecene at 

12hrs (n = 6) 

M = 83 SD = 4 

24hrs (n = 6) 

M = 81 SD = 7 

10 2.228 0.533 
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Table 5.2 continued. Summary of statistical analysis; comparing alkene grafting as a function of (c) 

crystal orientation, and (d) plasma etching. (e) Comparison between chemical modification strategies 

on GaP (111)A. 
 

(a) Grafting of 1-octadecene on either GaP (100) or GaP (111) A surfaces 

Reaction Conditions Temperature  Degrees of 

Freedom 

t-value at 

95% 

confidence 

t-value 

calculated 

24hrs in neat 1-

octadecene at 

90ºC 

(100) (n = 6)  

M = 81 SD = 7 

(111) A (n = 3) 

M = 86 SD = 7 

7 2.365 0.891 

 

(b) Grafting of 1-octadecene on GaP (100) after plasma etching 

Reaction Conditions Temperature  Degrees of 

Freedom 

t-value at 

95% 

confidence 

t-value 

calculated 

24hrs in neat 1-

octadecene at 

90ºC 

Oxygen (n = 6)  

M = 81 SD = 7 

Argon (n = 12) 

M = 93 SD = 3 

6 2.447 4.0186 

 

(c) Comparison between chemical modification strategies on GaP (111) A 

Reaction Conditions Temperature  Degrees of 

Freedom 

t-value at 

95% 

confidence 

t-value calculated 

12hrs in neat 1-

octadecene at 

90ºC 

(n = 5)  

M = 87 SD = 4 

Chlorination- Grignard 

reaction , 12hrs at 90ºC 

(n = 6) 

M = 96 SD = 3 

9 2.262 3.957 
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coverage (i.e. greater packing density). For instance, GaP(111)A reacted with 

octadecylmagnesium chloride for 12 h at T = 90 ºC lead to a water contact angle of 96 ± 3 º while 

(111)A and (100) reacted with 1-octadecene lead to a water contact angle of 87 ± 4 º and 83 ± 4 º, 

respectively (Table 5.1). 

Surface passivation of 1-octadecene grafted groups 

To probe the ability of the functional monolayer to prevent chemical oxidation under 

ambient conditions, oxide signal was measured as a function of time using X-ray photoelectron 

(XP) spectroscopy. Based on the intensity of the oxide signal, oxide thickness was calculated, 

using the simplified substrate overlayer model2, 13, 
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Equation 2.1 Simplified Substrate Overlayer Equation. 

where d is the thickness of the oxide overlayer in nanometer, λov is escape depth of emitted 

electrons through the oxide layer, φ is the takeoff angle (54.6°) between the sample surface and 

the detector, Isubstrate is the integrated area for bulk signal, Ioverlayer is the integrated area of oxide 

signals, I0
substrate is the integrated area of the bulk signal obtained from a freshly etched GaP sample, 

I0
overlayer is the integrated area for a thick (>500 nm) thermal oxide layer on GaP. The escape depths 

for P 2p electrons was estimated using eq.2 

2
1

2
3

41.0 EA=  

Equation 2.2 Electron Escape Depth Calculation. 

where A is the mean diameter of one unit in the overlayer (nm) and E is the kinetic energy of the 

ejected core electron (eV).  The mean diameter of one unit (A) can be calculated: 

3

AN

MW
A


=  

Equation 2.3 Mean Diameter Calculation. 
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where MW is mean atomic weight (g mol-1), ρ is the density (g cm-3), and NA is Avogadro’s number. 

For comparison, the degree of chemical oxidation was monitored for surfaces reacted with 1-

octadecene and for those reacted with octadecylmagnesium chloride. Surfaces reacted with 

octadecylmagnesium chloride showed superior resistance against oxidation in air than surfaces 

reacted with 1-octadecene (Figure 5.6). 

Grafting of a redox active group  

To probe charge transfer across the grafted monolayer, GaP(111)A electrodes were reacted 

with vinyl ferrocene for 12 h at T = 90 ºC (Figure 5.2a). Fe 2p high resolution XP spectrum were 

collected before and after reaction. As seen in Figure 5.2b, Fe 2p signal was detected at 710.5 eV 

and 724 eV corresponding to Fe 2p3/2 and Fe 2p1/2, respectively, and confirmed the presence of 

ferrocenes on the surface. To assess the stability of the linkage between vinyl ferrocene and 

GaP(111)A, reacted surfaces were sonicated in water for 5 minutes. Afterwards, the Fe 2p signals 

were lost and no longer detectable by XP spectroscopy (Figure 5.2b). This observation could mean 

either initially detected vinyl ferrocene was just physisorbed on the GaP surface via non-covalent 

interactions or the covalent bond was dissociated when placed in water and sonicated. There is no 

precedent for the latter possibility, but this issue was not resolved and remains an open question. 

Accordingly, the results precluded further electrochemical experiments to gauge the electronic 

coupling across the surface bond. 

Grafting of cationic surface groups and subsequent dye loading 

To study the influence of surface functional groups on the physisorption of an ionic dye, 

trimethyl ammonium moieties were chosen. Freshly etched GaP(111)A was subjected to a reaction 

with (vinylbenzyl)trimethylammonium chloride for either 2 or 10 h at 90 ºC in DMSO (Figure 

5.3). Contact angle measurements between water and GaP surfaces after reaction showed high 

surface wettability, 31 ± 5 º (Figure 5.3a). These results were consistent with the presence of polar 

surface groups that rendered the surface hydrophilic. Subsequently, functionalized GaP surfaces 

were soaked in a solution of 6 mM Fast Green dye for 90 seconds and then characterized by XP 

spectroscopy. As shown in Figure 5.7b the peak at 168 eV corresponds to S 2p from the SO3
- 

groups of Fast Green.14 Consistent dye loading was seen in both cases, whether the surface was 

reacted with (vinylbenzyl)trimethylammonium chloride for 2 or for 10 h. The spectra 
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Figure 5.6 Oxide thickness as a function of time in ambient air calculated from high-resolution P 

2p XP spectra for bare (◻) GaP surfaces, surfaces reacted with (•) 1-octadecene, and surfaces 

reacted with (▲) octadecylmagnesium chloride. 
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Figure 5.7 (a) Scheme showing a functionalized GaP surface with a cationic functional group and 

the structure of Fast Green. (b) High resolution S 2p XP spectra of GaP(111)A samples reacted 

with (vinylbenzyl)trimethylammonium chloride for 2 h (blue) and 10 h (red) followed by soaking 

in Fast Green solution for 90 sec. For comparison high resolution S 2p XP spectrum of bare 

GaP(111)A soaked in Fast Green solution for 90 sec is plotted in black. 
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suggested dye loading was obtained but a reasonable measure of the surface coverage was not 

obtained. To apply the overlayer model to determine surface coverage, the thickness of the organic 

monolayer and the packing of the dye on the surface need to be approximated. Since a clear 

understanding of the structure of the monolayer is not known (i.e how the functional groups are 

bonded to the surface or their orientation) it is difficult to predict the thickness of the monolayer. 

Additionally, it is not clear on how the dye is loading on the surface. For instance, a key parameter 

is the escape depth of electron coming from the sulfur atoms of Fast Green. A simple assumption 

that the dye is oriented perpendicular to the surface is not valid to calculate escape depth. For 

comparison, S 2p signal could not be detected on bare GaP surfaces soaked in a Fast Green solution 

(Figure 5.7b). 

Spectral response of p-GaP photocathodes  

To investigate whether the positively charged monolayer on GaP afforded persistent dye 

sensitization, the wavelength dependent the external quantum yields for photocurrent generation 

were collected. p-GaP(111)A electrodes were reacted with (vinylbenzyl)trimethylammonium 

chloride for 2 h followed by soaking in a 6 mM Fast Green solution. As shown in Figure 5.8, the 

spectral response of a GaP electrode after treatment without prior soaking in a dye solution showed 

no signal at wavelengths longer than 550 nm. When the same electrode was soaked in a solution 

of Fast Green, an increase in photocurrent at 650 nm was observed. Increasing the soaking time 

only slightly improved the photocurrent, indicating a limiting condition as obtained. Surprisingly, 

the response of the functionalized  electrode soaked in Fast Green solution (EQY at 650nm = 

3.64x10-5) was 2.5 times lower than that of bare, freshly etched GaP(111)A (EQY at 650nm = 

9.42x10-5).5  

4. Discussion 

The ability to tailor surface properties of GaP for photoelectrochemical applications is 

highly desirable. The data in this chapter speak to the following three points. First, thermal grafting 

of alkenes on GaP appears to proceed strictly through surface defects. Two, the mechanism is 

likely radical based. Three, although limited in attainable functional group density and underlying 

electronic surface quality, the GaP interfaces produced by this scheme showed measurable 

sensitization. 
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Figure 5.8 Wavelength dependence of the external quantum yields of a p-GaP(111)A electrode 

reacted with (vinylbenzyl)trimethylammonium chloride for 2 h at 90ºC; (red) before soaking in a 

6mm Fast Green solution, (blue) after soaking in a 6mM Fast Green solution for 90 seconds and 

(green) after soaking in a 6mM Fast Green solution for 25 minutes. In all cases the electrode was 

poised at E = −0.6 V vs E(Ag/AgCl) and measurements were collected in deaerated electrolyte 

containing 5mM methyl viologen in 1M KCl. 
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Consistently, GaP surfaces exhibited a hydrophobic character after reaction with alkenes 

in comparison to bare GaP surfaces. Regardless of the time and temperature used for reaction, a 

similar range of contact angles values were attained. In addition, no preferential grafting on either 

(100) or (111)A surface plane was observed. These observations are quite different than what is 

observed for the chlorination-Grignard reaction sequence. Successful reaction with Grignard 

reagents only occurs on chlorinated GaP(111)A surface planes, resulting in Ga-C surface bonds.2 

Here, the data showed that reactions with alkenes and the chlorination-Grignard sequence lead to 

different densities of monolayers, similar to what was previously reported for Si surfaces where 

the same organic functional group introduced via two different strategies resulted in different 

levels of chemical and electrochemical passivation.15 

No clear dependence was seen on reaction time or temperature. However, a difference was 

noted if surfaces were pretreated with argon rather than oxygen plasma. The plasma treatment step 

generally removes adventitious carbons. Oxygen plasma oxidizes organic surface contaminants, 

leaving oxygenated surface moieties.16 In contrast, argon plasma generates free radicals on 

surfaces and leaves a high density of active sites.16-17 Since surface pre-treatments with argon 

plasma showed statistically higher contact angles, a reasonable conclusion is that the extent of 

alkene grafting is limited by the number of surface defects. 

The idea of grafting alkenes through surface defects on GaP is contradictory to what is 

currently known for alkene reactions with Si. This discrepancy is notable, since our lab has 

previously shown that the chlorination-Grignard sequence works similarly on Si and GaP surfaces. 

The mechanism of alkene grafting on silicon depends both on surface orientation and method of 

initiation.9, 18 Surface radicals can be formed on Si by a homolytic cleavage of surficial Si-H bonds, 

initiated by UV radiation (< 350 nm).9 Once a Si radical is formed, it reacts rapidly with an alkene 

functionality and grafting occurs through radical propagation (Figure 5.9a). Thermal grafting can 

also create radical at the silicon surface at T > 150 ºC. Hence, at temperatures lower than 150 ºC, 

the radical pathway is not feasible and instead a concerted mechanism has been discussed (Figure 

5.9b).12 The chemical composition of GaP after wet etching is not well-defined, with a mixture of 

thin surface oxide and Ga-H have been reported.19-20 In principle, grafting of alkenes could follow 

a similar mechanism as on a Si surface. However, the presented findings show that alkene grafting 

on GaP has no obvious dependence on surface condition, even when Cl-terminated surfaces are 



 

 
114 

 

Figure 5.9 (a) Mechanism for radical-based hydrosilylation of a silicon(111) surface. (b) Direct 

concerted mechanism for thermal hydrosilylation (figure adapted from Colletti et. al.12). 
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used for the reaction (data not shown). No statistical difference was seen in grafting 1-octadecene 

to a freshly etched or a GaP surface treated with PCl5 first. It is important to note that the Cl 2p 

signal was still detected on Cl-terminated GaP even after exposure to alkene reagents (Figure 

5.10b). Hence, we speculate the mechanism for grafting on GaP is much different and instead 

specifically involves high energy surface defects. Radicals at dangling bonds could be envisioned 

to attack alkenes. Further, reactions between alkenes and GaP were not performed in the dark, so 

photoexcitation of GaP and preferential direction of carriers to defect sites could have occurred to 

help facilitate reaction. The data thus argue against one potential mechanism that is shown in 

Figure 5.10a. Additional experiments are necessary to further identify the operative mechanism(s). 

To further investigate alkene grafting on GaP, surfaces were reacted with a reagent 

containing a terminal alkene group and a redox active moiety, ferrocene. Unfortunately, although 

Fe 2p signal was detected via XP spectroscopy, with further assessment it was found that vinyl 

ferrocene was not strongly bonded to GaP. Upon sonication in water, vinyl ferrocene fully 

dissociated from the GaP surface. Two scenarios are speculated. One, the ferrocene groups 

dissociate from the surface due to instability of bonding at the GaP electrode surface. Two, vinyl 

ferrocene is merely physisorbed on the surface and when submerged in water, it is simply washed 

off. It is important to note that previous reports showed grafting of vinyl ferrocene on Si using neat 

solutions.21 It is possible reactions attempted here were not successful because diluted vinyl 

ferrocene in a separate solvent was used instead. That aspect should be investigated more fully. 

The previous data has shown that though alkene grafting produces an incomplete 

monolayer, functional groups can still be added to a GaP surface through this route. Accordingly, 

the attachment of quaternary amine groups to p-GaP surfaces for dye adsorption was shown. Dye 

loading was definitely increased on GaP photocathodes reacted first with 

(vinylbenzyl)trimethylammonium chloride. Still, although an increase in the photocurrent 

quantum yield at 650 nm was observed, the sensitized signal was lower in magnitude than for a 

bare GaP(111)A electrode.5 Still, the shape of the spectral response was different, with a bare 

surface showing a less defined, broader photocurrent spectrum. Conversely, the profiles for the 

spectral responses from the chemically modified GaP(111)A electrodes appeared much closer to 

the absorbance spectrum of the dye in solution. Further, the data only represent the external 

quantum yield values, as internal quantum yields could not be determined without separate 
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Figure 5.10 (a) Proposed mechanism for alkene grafting on chlorinated GaP(111)A surface. (b) 

High resolution Cl 2p XP spectra of chlorinated GaP(111)A surface after a reaction with 1-

octadecene. 
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measures of the active dye loading. Cumulatively, the data suggest that a charged monolayer on 

GaP may lead to an improvement in dye loading. 

5. Summary 

The cumulative data shown here illustrate the ability to thermally graft alkene groups to 

GaP surfaces. However, several issues have been identified concerning this functionalization 

strategy and whether it can ultimately be applied to prepare functioning dye-sensitized p-GaP 

photocathodes. First, in the specific case of grafting 1-octadecene, the data suggest a short surface 

reaction independent of reaction time and temperature. Second, changes in grafting were only 

observed when surfaces were dry etched with either oxygen or argon plasma, suggesting surface 

defects act as grafting sites and therefore the total density of groups is limited by the quality of the 

underlying surface. Third, alkyl monolayers grafted via alkenes show worse passivation against 

surface oxidation than identical alkyl groups grafted onto GaP via Grignard reagents. Fourth, this 

work briefly introduced a route to affect a cationic monolayer that facilitates dye adsorption. In 

conclusion, despite being able to introduce organic surface functionalities by alkenes, there is still 

uncertainty in the type of bonding present at the interface. This lack of understanding limits the 

further application of this functionalization technique. To introduce a monolayer through alkene 

grafting that is capable of passivating GaP against chemical and electrochemical degradation, it is 

imperative that the GaP-organic monolayer interface is further studied. If pristine GaP interfaces 

are maintained, this functionalization strategy could then be applied to prepare dye sensitized p-

GaP photocathodes. 
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CHAPTER 6  

 

Conclusions and Future Work 

1. Conclusions 

This thesis investigates surface functionalization strategies to introduce organic 

monolayers to Si and GaP surfaces. Doing so allows for the development of highly tailored 

interfaces that possess properties which are suitable for specific electrical, electrochemical, and 

photoelectrochemical applications. 

This chapter describes several important advancements. In chapter 2 of this thesis, ideas 

were presented that expand the available surface modification strategies for Si interfaces. This 

work showed it was possible, even with Grignard-based chemistry, to produce surface coatings 

that were covalently attached to the underlying Si, that exhibited a low density of electrical defects, 

and that were hydrophilic due to the presence of alcohol and amine functionalities. In chapter 3, 

organic monolayers on Si improved adhesive strength of SU8 films on Si(111) wafers. This work 

showed that it was possible to design deliberate surface chemistry to effect a desirable and long-

lasting interfacial property. In chapter 4, sensitization of p-GaP from physiosorbed dyes was 

demonstrated for the first time. Through the investigated systems, the processes that govern 

sensitization at bare GaP were identified. The efficacy of sensitization was correlated to reactivity 

of the GaP interface in water. The cumulative data specifically showed at low light intensities, the 

reductive degradation of GaP was sufficient to mediate sensitized hole injection. Consequently, 

this work illustrated the importance of a passivating monolayer on a sensitized GaP photocathode. 

In chapter 5, a potential method to functionalize GaP photocathodes was investigated. Thermal 

alkene grafting was shown possible on both GaP(100) and GaP(111)A surfaces. These monolayers 

were found to be ineffective by themselves at protecting against oxidation but did allow the 

attachment of functionalities that promoted dye adsorption. Despite the progress represented by 

this cumulative work, there are still several avenues available for further development. 
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2. Future Work 

Additional Directions for the Work in Chapter 3 

Modifying the chemistry of the interface between Si and SU8 unambiguously improved 

adhesion strength. The exact rationale as to why this happens is still unclear. Moving forward, 

several potential routes to explore this question are possible. First, regarding nanoindentation 

measurements, corresponding cross section scanning electron micrographs would be informative. 

Such images would clarify if the applied force during measurement truly resulted in film 

delamination as opposed to film fracture. Second, the amount of force needed specifically for 

delamination ought to be correlated to the dissociation bond energy of attachment to the surface. 

Knowing the force per unit area, as well as the corresponding density of surface bonds, might 

provide insight on whether delamination by the application of force scales with the type of surface 

bond (e.g. Si-O-Si vs Si-C). Third, test reactions involving terminal surface alkenes and epoxy 

groups should be performed to determine if the mechanism involving photoacids and protonation 

of the olefin is operative. An ideal reagent would by one with a halogen tag such as Cl or F (i.e. 2-

(4-chlorophenyl)oxirane, (Figure 6.1). Following, the reaction should occur in the presence of heat, 

to resemble the hard bake step used to develop SU8.1 XP and infrared spectroscopies could then 

be used to characterize the surface after the reaction, with both the loss of the C=C and the increase 

of alkyl carbon as expected observables. 

Additional Directions for the Work in Chapter 4 

To realize p-GaP as a viable dye sensitized photocathode material for water-splitting 

applications, a broadly applicable surface functionalization strategy that not only passivates the 

surface against chemical oxidation but also allows for dye loading needs to be developed. To make 

a direct comparison to work reported in chapter 4, a monolayer that can prevent cathodic 

degradation and allow dye physisorption needs to be developed. Chapter 5 provides on overview 

of some relevant factors to consider towards this goal. If a route for covalent attachment is 

successful, the following experiments should be then performed. First, wavelength-dependent 

external quantum yield (EQY) measurements should be performed to determine if adsorbed dye 

molecules are capable of sensitizing GaP. Depending on the method of covalent attachment, dyes 

such as Fast Green, Rose Bengal and Crystal Violet could be explored since the group has 
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Figure 6.1 Possible test reaction involving an alkene terminated silicon surface and an epoxy 

group. 
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accumulated a lot of prior experimental data on sensitization by these specific dyes. One question 

to investigate is whether the EQY profile is the same for a covalently attached dye as compared to 

the same dye but just physisorbed. A second question to determine is whether the pathway for 

mediation of the dye by cathodic surface degradation (see chapter 4) is eliminated. If so, then the 

sensitization signal should depend on the composition of the electrolyte, where the concentration 

of a mediator such as methyl viologen in 1M KCl could be assessed. In principle, the sensitization 

signal should scale linearly with redox mediator concentration until the rate limiting step for 

sensitization is no longer regeneration of the dye. In addition, the stability of the dye attachment 

should be assessed. The relative time frame before the dye desorbs from the surface is necessary 

to deconvolute from other possible effects (e.g. surface oxidation) and to make sure the sensitized 

electrode systems are stable over a course of a specific experiment. A simple experiment can 

involve measuring the EQY at a specific wavelength corresponding to the maximum sensitization 

current as a function of time. For instance, selecting λ = 760 nm for Fast Green is useful. 

Separately, the spectral response as a function of the identity of the redox mediator should be 

assessed. In principle, the details underpinning the charge-transfer reaction between mediator and 

dye will affect dye regeneration. Accordingly, if dye regeneration is rate limiting, a change should 

be observed between redox mediators like methyl viologen and Eu3+, which have similar standard 

potentials but very different self-exchange rates. The list provided in chapter 4 should be further 

consulted. If the response is dependent on the redox identity and its concentration these results 

would imply that the monolayer can protect the underlying surface and the dye regeneration occurs 

through a mediator, rather than an undesirable surface mechanism. Moving forward, an ideal 

combination involving the redox mediator and its concentration should then be determined that 

leads to maximum sensitization response.  

Additionally, the effects of surface concentration of dye on the sensitization current need 

to be more fully considered. In many cases, high surface loadings are known to result in dye 

aggregates forming, which has been attributed to internal self-quenching and overall net lower 

sensitization currents.2-4 Co-adsorbers such as cholic acid and chenodeoxychlolic acid are often 

added to suppress aggregation.5 A possible path to explore is the presence of co-adsorbers on the 

sensitization response of alkene functionalized GaP photoelectrodes. A possible co-adsorber to use 

is cholic acid.6 Functionalized GaP electrodes could be soaked in various concentrations of species 

like cholic acid. Spectral response measurement could then be collected to examine whether the 
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sensitization signal (magnitude, stability, wavelength dependence) changes or is invariant to the 

co-adsorber presence. 

2c. Additional Directions for the Work in Chapter 5 

Chapter 5 explored one strategy involving alkene grafting. The following avenues are 

worth exploring. First, quantifying exactly how many surface groups are grafted by this reaction 

would be informative. Reactions that graft a redox-active functionality should be continued on this 

front. In this work, attempts were limited by the availability of the vinyl ferrocene reagents, and 

so experiments with ‘neat’ reagent were never performed. Grafting vinyl ferrocene onto Si is 

possible from neat solutions.7 A neat solution of vinyl ferrocene can be prepared simply by melting 

the reagent at 100ºC. This reaction should be repeated with GaP. If persistent attachment is 

successful, then surface coverage can be determined using XP spectroscopy and cyclic 

voltammetry. Surface coverage values of the redox group using XP spectroscopy and voltammetry 

should be compared to determine if all the ferrocenes on the surface are redox active. XP 

spectroscopy approximates the overall surface coverage of the ferrocene groups, not considering 

if charge transfer is possible. On the other hand, only, redox active species are detected by cyclic 

voltammetry. The voltammetry experiments will also describe the ability to pass charge to/from 

the attached ferrocene group. For instance, a set of characteristic peaks is observed at 0.1 V vs 

E(Ag/AgCl) for ferrocene oxidation.8 The width of these waves (i.e. the peak separations) are 

indicative of the rate of charge transfer. Fast charge transfer is expected since ferrocene has 

minimal reorganizational energy penalty. However, if very broad waves are observed, it could 

indicate the attachment method somehow impedes charge transfer, possibly explaining the results 

for dye sensitization in Chapter 5. 

Second, the alkene reactions should be explored in a presence of radical initiators. Two 

radical initiators worth exploring are di(dodecanoyl) peroxide and benzoyl peroxide. Grafting in 

the presence of di(dodecanoyl) peroxide has been previously investigated and is suited for grafting 

of long alkenes in neat solutions.9 Due to its aliphatic nature, di(dodecanoyl) peroxide is it able to 

dissolve in neat solutions of long carbon chain alkenes. If shorter alkenes are of interest a potential 

candidate is benzoyl peroxide. If these initiators lead to a perceptible difference in surface group 

coverage, such data could implicate a rate-limiting step in the surface reaction mechanism. 
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Third, the operative mechanism for alkene grafting should be evaluated. Although there 

are indications that the mechanism is radical based, there is still no clear description of how this 

reaction proceeds. A proposed mechanism on chlorinated GaP(111)A was presented in chapter 5 

that parallels alkene grafting on H-terminated Si.10 Preliminary measurements were performed on 

this front. A chlorinated surface was reacted with 1-octadecene. After completion, a Cl 2p signal 

was detected by XP spectroscopy. This signal could have arisen from the chlorination of the alkyl 

chain during surface reaction. Additional experiments should be performed to determine if the Cl 

2p signal corresponds to organic Cl. If so, then it is likely that the alkyl chain is chlorinated. If not, 

then the data could indicate the remaining surficial Cl was simply the original Ga-Cl type and the 

mechanism for the reaction needs further description. 

Fourth, covalent attachment of a dye on functionalized GaP requires development of a 

protective monolayer that has the capacity for secondary functionalization, as was shown possible 

for Si in chapter 2. Although such a monolayer on GaP was not fully discussed in the thesis, dye 

chemisorption on GaP should be possible if such monolayers are realized. I attempted several such 

experiments. In one attempt, I tried covalently attaching dyes that contained a carboxylic acid 

group by reacting them with amine-terminated GaP via amide coupling. Amide coupling on an 

aniline-terminated GaP surface was attempted, (Figure 6.2).As detailed below, the data suggested 

that these dyes were not covalently attached. One possible reason was the reduced degrees of 

freedom for motion of the aniline group bonded to the surface. In general, it is preferred that during 

a surface reaction a nucleophilic species diffuses to the surface leading to a chemical reaction. In 

this scenario the amine group (the nucleophilic part) was bonded to the surface and this might have 

impacted the overall success of the reaction. This possibility led me to explore an alternative 

surface functionality involving a benzyl amine. Two routes were explored to this end, with the 

goal to prepare a trimethyl silyl (-Si(CH3)3, TMS) protected benzyl amine containing a halogen at 

a para position of the benzene ring. If successful, the protected benzyl amine would be converted 

to a Grignard reagent and reacted with a surface. The first route involved protecting benzyl amine 

using trimethyl silyl chloride (TMS-Cl) reagent. The primary amine needs to react with TMS-Cl 

two times to become fully protected. The first reaction is quick, while the second is sluggish as the 

bulkiness of the TMS groups slows down the rate. Full conversion could not be obtained. Attempts 

were made to purify the product using column chromatography, but the product ended up 

decomposing on the column. A potential alternative could have been using reverse phase, but this 
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Figure 6.2 Propose amide coupling on a GaP surface containing amine groups. 
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was not attempted. These results ultimately prevented me from using this TMS-Cl to protect the 

benzyl amine TMS-Cl as the product could not be purified, which was essential to being able to 

convert it to a Grignard reagent.  

To prepare an aniline terminated GaP surface, I adopted a procedure from Brown et. al.11 

Chlorinated GaP(111)A surfaces were reacted with 4-[bis[trimethylsilyl)amino]phenylmagnesium 

bromide. The amine was deprotected in the presence of trifluoracetic acid and reacted with various 

reagents containing a COOH functionality. For instance, test reactions were performed using 4-

bromobutyric acid and ferrocene carboxylic acid. Reaction conditions were adapted from Sam et. 

al.12 Briefly, equal concentrations (4mM) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) and N-hydroxysuccinimide (NHS) were dissolved in water. 1.3 equivalences of acid were 

then added and the mixture was stirred for 90 minutes. Following, aniline-functionalized GaP 

surfaces were added. Figure 6.3 shows the overall attempted reaction scheme using EDC/NHS to 

facilitate amide coupling. As seen in the obtained XP data, a Br 2p signal was not detected after 

the reaction. I took this observation to mean that amide coupling did not take place. Attempts were 

also made to couple ferrocene carboxylic acid to a GaP(111)A surface. After the reaction, surfaces 

were again characterized by XP spectroscopy. As seen in Figure 6.4c, no Fe 2p signals were 

detected above the baseline. Amide coupling between aniline terminated surface and acyl chlorides 

was also attempted. Acyl chlorides are derivatives of carboxyl acids and they are more prone to 

amide coupling. 4-Chlorobenzoyl chloride was reacted with GaP surface (Figure 6.5) in this vein. 

In a sealed, 3-neck round bottom flask, a 1:1 equivalent of acid to diisopropylamine was dissolved 

in dichloromethane (2mL). Following, aniline-terminated GaP(111)A was added to the solution. 

The solution was purged with N2, and placed on heat (45oC) for 12 h. Although Cl 2p XP spectrum 

shows a possible peak at 200 eV corresponding to Cl 2p, upon further evaluation this was attributed 

to signal coming from GaP substrate. 

To prepare a benzyl amine terminated GaP surface, two strategies were explored. One idea 

was to protect 4-bromobenzylamine with TMS-Cl followed by conversion of the protected amine 

to a Grignard reagent (Figure 6.6). 0.1g of benzyl amine and 1.1 equivalences of trimethyl amine 

were dissolved in a 3-neck round bottom containing 1.6 mL of dichloromethane. Mixture was 

purged with N2(g) for 5 minutes and kept under constant nitrogen flow. Following, 150 µL of 

TMS-Cl was slowly added to the mixture. Reaction proceeded with stirring for 2.5 h at room 
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Figure 6.3 (a) Proposed amide coupling on amine terminated surface. (b) High resolution P 2p XP 

spectra after 12 h reaction. (c) High resolution Fe 2p XP spectra after 12 h reaction. 
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Figure 6.4 (a) Proposed amide coupling on amine terminated surface. (b) High resolution P 2p XP 

spectra after reaction, (i) reaction time 2h, (ii) reaction time 12 h. (c) High resolution Fe 2p XP 

spectra after reaction, (i) reaction time 2 h, (ii) reaction time 12 h. 
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Figure 6.5 (a) Proposed amide coupling on amine terminated surface. (b) High resolution Cl 2p 

XP spectra; (i) high resolution Cl 2p XP spectrum for a bare GaP(111)A, (ii) after amide coupling 

reaction. 
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Figure 6.6 Proposed route for preparing a protected benzyl amine Grignard. 
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temperature. Afterwards, the mixture was quenched with ammonium chloride, the organic phase 

was separated, and then the solute was dried with Na2SO4. However, a complete reaction of TMS-

Cl with 4-bromobenzylamine was not observed. Instead, several products were seen, as shown by 

mass spectrometry (Figure 6.7). To purify the product, column chromatography was employed. 

The solvent system consisted of a mixture of ethyl acetate in hexanes. The products could not be 

purified as the mixture underwent decomposition quite rapidly and was highly retained on the 

silica column. Further experiments on this idea were not attempted. However, the following could 

be explored. First, a reverse phase column could be tried to purify the product. Second, one of the 

hypothesis of why the reaction does not proceed to completion is the inability of the mono-

substituted amine to further react with TMS-Cl. A possible solution could be performing the 

reaction in two sequential steps. The first addition of the Si(CH3)3 group is quick, leading to the 

mono substituted product. If it is confirmed by 1H-NMR or mass spec that the starting material is 

consumed and only the mono-substituted product is present, then a strong base such as sodium 

hydride can be added to allow the di-substituted product to form. 

A second strategy involved 4-bromobenzyl bromide and KHMDS (Figure 6.8). KHMDS 

reacts with 4-bromobenzyl bromide by an SN2 mechanism effectively placing a protected amine 

on the benzyl position.13 The appeal of this route is that it allowed for a near quantitative 

conversion of 4-bromobenzyl bromide to a protected benzyl amine. This product was characterized 

by 1H-NMR, confirming conversion. Unfortunately, the protected benzyl amine was not 

successfully converted into a Grignard regent. The following attempts at Grignard synthesis were 

made. A reaction was carried out in a presence of magnesium (Mg) turnings and protected amine 

(1.25: 1 equivalence). In a dried 3 neck round bottom flask Mg(s) was added to tetrahydrofuran 

and the solution was purged with N(2) for 10 minutes. Then a few crystals of I2(s) were added to 

activate Mg(s). Reaction was stirred at RT for 2 hr. Following, protected amine was added, and 

mixture was heat to 100oC. Visually looking at the mixture it was determined that the Grignard 

reagent was not synthesized. Mg turnings should be consumed during the processes, but this did 

not occur. Additional route to prepare a Grignard reagent involved using isopropylmagnesium 

chloride lithium chloride complex. Unfortunately, no success was seen. 1H-NMR results could not 

collaborate that a protected benzyl amine Grignard was formed. The inability to form a Grignard 

reagent using this route lead me to believe the product was not pure. This is not surprising for two 

reasons (1) a clear purification route could not be developed and (2) the data suggests that N-Si  
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Figure 6.7 Mass spectrum results of compound 2. 
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Figure 6.8 Preparation of protected benzyl amine followed by conversion reaction to a Grignard 

and subsequent reaction with chlorinated GaP(111)A surface. 
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bonds are cleaved readily, reforming the R-NH2 group. Grignard are highly reactive, and any 

presence of protons will quench the Grignard. Moving forward, if amide coupling is of interest, 

new protecting groups need to be considered that can protect a primary amine during a Grignard 

reaction. Unfortunately, it is very difficult to find a protecting group for an amine against a 

nucleophilic species such as a Grignard reagent. I highly suggest alternative groups are explored 

other than amines to perform covalent attachment. For instance, introducing an azide at a surface 

could allow for click coupling. 

My conclusion from my cumulative observations is that alternative protecting groups are 

needed to make primary amines that survive the Grignard reaction. I suspect that N-Si bonds were 

cleaved either during purification of the reagent prior to surface reaction or during exposure to 

moisture before reacting with the dyes. Data illustrating this point to be a fact, and why it happens 

on GaP but not on Si, would be interesting. However, for the purpose of making a purposeful, 

functionalized GaP surface, identifying an altogether different strategy is more important. 
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