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Abstract 

 Metastasis remains the primary cause of death in cancer patients. The invasion-

metastasis cascade is dependent on crosstalk between tumor cells and the tumor 

microenvironment, including stromal cells, extracellular matrix, and blood vessels, at 

both primary and distal sites.  Ewing sarcoma is a bone and soft tissue tumor primarily 

affecting children and adolescents. Patients with only local disease have high survival 

rates of >70%. However, current treatment strategies for patients developing metastasis 

have dismal survival rates of <20%, making it imperative to better understand the 

biological processes that drive Ewing sarcoma metastasis. Wnt/beta-catenin activation 

is correlated with worse overall survival in Ewing sarcoma patients and tumor cell 

autonomous changes in cytoskeletal organization; however, the tumor cell non-

autonomous changes induced by Wnt/beta-catenin remain unexplored. Extracellular 

matrix encoding genes and genes involved in tumor: tumor microenvironment crosstalk 

are among the genes activated by Wnt/beta-catenin signaling. Therefore, we 

hypothesized that Wnt/beta-catenin induces changes in the tumor microenvironment to 

promote Ewing sarcoma progression. The results of our studies have shown that 

activation of the Wnt/beta-catenin pathway led to increased secretion of structural 

collagens and matricellular proteins. Intriguingly, in the secretome of Wnt-activated 

Ewing sarcoma cells we also detected TGF-beta ligands and proteins that are 

downstream targets of the TGF-beta signaling cascade. We show that activation of Wnt 
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leads to derepression of TGFBR2, the key mediator of TGF-beta signaling, and detect 

discrete tumor cell sub-populations, responsive to both Wnt and TGF-beta ligands.  

Studies of Ewing sarcoma models, in vitro and in vivo, as well as in two independent 

patient cohorts, confirmed a direct relationship between beta-catenin signaling, TGF-

beta activation, and angiogenesis in tumor cells. Mechanistically, this is due, in part, to 

increased endothelial cell proliferation mediated by increased secretion of the 

matricellular protein tenascin C. Additionally, we evaluated the other potential functions 

of the matricellular protein, tenascin C, in Ewing sarcoma progression, and identified 

stress-mediated activation of tenascin C through activation of Src kinase enhances an 

invasive phenotype. In conclusion, we have elucidated the importance of Wnt/beta-

catenin signaling in altering tumor: tumor microenvironment interactions to promote 

Ewing sarcoma progression, through secretion of proteins such as tenascin C into the 

tumor microenvironment. These studies highlight tenascin C as a potential “achilles 

heel” and therapeutic target in Ewing sarcoma progression. Together these studies 

illustrate the critical contribution of tumor cell heterogeneity, cell plasticity, and tumor: 

tumor microenvironment crosstalk to sarcoma progression.

  



 1 

Chapter 1: Introduction 

 

Thesis Overview 
 
 Ewing sarcoma is a bone and soft tissue tumor primarily found in children and 

adolescents. Currently there remains no effective treatment against metastatic Ewing 

sarcoma with 5-year survival rates for these patients being less than 20% (1). It is 

therefore imperative to understand the biological drivers of Ewing sarcoma metastasis 

to better identify therapeutic targets in hopes of improving survival for patients 

developing metastatic disease. Emerging research in the Ewing sarcoma field have 

implicated tumor: tumor microenvironment (TME) interactions to be key drivers of 

advanced disease (2). Additionally, Ewing sarcoma cells are plastic, and these cell state 

transitions are commonly driven by tumor heterogeneity and changes in the TME (3-6). 

In this thesis we dive deeply into the role of the Wnt/beta-catenin and TGF-beta 

pathways in dictating these tumor:TME interactions and provide support for both of 

these pathways in mediating transition to a more metastatic cell state. 

 

Tumor metastasis 
  
 Tumor metastasis occurs when tumor cells disseminate from the local tumor and 

move to a distal site in the body to continue tumor growth (7). Metastasis is the primary 

cause of cancer related deaths in patients as there remains very few effective 
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treatments towards metastatic tumors (8). It is thought that metastasis occurs via the 

invasion-metastasis cascade beginning with invasion and intravasation from the primary 

tumor, dissemination into the circulation, survival in the circulation, extravasation into a 

distal site, formation of a micro metastatic site, and finally full outgrowth of the 

metastatic tumor. This process is accompanied by a variety of genetic and epigenetic 

alterations along with incorporation of non-neoplastic stromal cells. Additionally, the 

process is highly regulated by cell-cell interactions and cell-matrix interactions (7) 

(Figure 1.1).  

 

A key driver of metastasis in 

carcinomas is the ability of cells to 

undergo the epithelial to 

mesenchymal transition (EMT) in 

which cells are able to 

phenotypically transition into a 

mesenchymal or more “metastatic” 

cell state via alterations in cell-cell 

interactions (9). Although debate continues as to whether or not EMT is necessary for 

metastasis, many studies have shown that EMT-like processes are able to contribute to 

changes in metastatic progression (10). EMT and metastasis are dictated by context 

specific mechanisms and the exact mechanism through which each cancer type 

metastasizes remains largely misunderstood. This introduction will specifically address 

the contribution of the TME and tumor heterogeneity to dictating metastatic progression 
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in solid tumors. Finally, we will discuss the specific contribution of tumor: TME crosstalk 

to dictating metastatic progression in Ewing sarcoma, a bone and soft tissue tumor with 

dismal survival for metastatic patients. Understanding these tumor:TME interactions will 

further advance our understanding of how Ewing sarcoma tumors are able to progress 

along the invasion-metastasis cascade, providing insight into development of new 

therapeutic targets to improve survival of patients with metastatic tumors.  

 

The tumor microenvironment  
 

The tumor is an ecosystem comprised of both tumor cells and the local TME 

made up of infiltrating non-neoplastic stromal cells, extracellular matrix (ECM), signaling 

ligands and cytokines, and blood vessels (11). Stromal cells is a very broad term that 

refers to all non-malignant cells found in a tumor, including but not limited to, fibroblasts, 

myofibroblasts, endothelial cells, adipocytes, mesenchymal stem cells (MSCs), 

macrophages, and many other immune cell types. Different stromal cells can secrete 

proteins, such as proteases or cytokines, that can degrade local ECM and/or signal to 

surrounding tumor and stromal cells to promote tumor growth (11). Additionally, tumor 

cells themselves are able to secrete proteins that can then signal to stromal cells to 

induce pro-tumorigenic changes. Most microenvironments in the body are not built to 

support tumor growth, however once the tumor is able to circumvent the normal 

microenvironmental cues, signaling from stromal cells and other components of the 

TME work together with tumor cells to drive tumor progression (12).Together this 

provides support for bidirectional control of tumor: TME interactions by tumor cells and 
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surrounding stromal cells to promote growth at the primary tumor and transition to a 

metastatic phenotype (Figure 1.2).  

 

The contribution of the tumor microenvironment to metastatic progression 
 

In 1863, Rudolf Virchow identified infiltrating immune cells in cancer and linked 

inflammation to cancer (13). Since then, increased evidence of cancer in organs subject 

to chronic inflammation and the identification of infections found to be associated with 

15% of human cancers (14, 15), solidified inflammation as a hallmark of cancer (16). 

This was the first report of the importance of the TME in mediating cancer progression. 

The majority of cancer research has focused on the cell autonomous changes that 

mediate tumor progression, but recently it has become clear that tumor cells are not the 

only factors dictating tumorigenesis.  

  

Invasion and intravasation 
 

Initial formation of a primary solid tumor begins with proliferation of only tumor 

cells, but as the tumor progresses and begins to grow, tumor cells come in contact with 
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stromal cells. This initial meeting of stromal cells to proliferating tumor cells results in a 

reactive stroma, increasing inflammation and mimicking a local environment found in 

wound healing. This reactive stroma results in secretion of signaling ligands into the 

TME that promote cell growth, thus creating a pro-tumor microenvironment (14).  

The first step of metastasis requires cells to acquire an invasive phenotype and 

intravasate into a basement membrane (most carcinomas) or local ECM (sarcomas or 

mesenchymal derived tumors). Tumor cells or surrounding stromal cells secrete various 

proteases, such as matrix metalloproteases (MMP), that are able to degrade the ECM 

and liberate any growth factors sequestered in the local ECM (17). These growth factors 

can then signal back to the tumor cells and to other infiltrating non-malignant cells to 

activate an invasive signature.  Typically changes in integrin signaling are observed, 

resulting in changes in cell-cell and cell-matrix adhesion leading to increased tumor cell 

motility (18).  

There are multiple routes a tumor can take to increase invasiveness, all of which 

require cooperation between stromal cells, the ECM, and tumor cells. The first is most 

commonly observed in cancers of epithelial origin, such as carcinomas, and is known as 

collective invasion. This requires that cells move together as a unit through the local 

basement membrane. The second type of invasion is observed in mesenchymal cells 

and can occur in two different ways – protease, stress-fiber, and integrin-dependent 

invasion or protease, stress-fiber, and integrin independent Rho/Rock dependent 

amoeboid invasion. Tumor cells can easily transition between each of these invasive 

states and are not programmed to only undergo one form of invasion. The mechanism 

through which the tumor cell invades is dictated by the local TME. For example, many 
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carcinomas undergo EMT, thus can transition between the collective invasion to one of 

the mesenchymal single cell invasive mechanisms (19). The activation of EMT is 

mediated by various growth factors, most commonly the transforming growth factor beta 

ligand (TGF-beta) (to be discussed further in the TGF-beta signaling and Ewing 

sarcoma section), a ligand produced by the local TME (20). TGF-beta ligands can either 

be released from the ECM via protease degradation of the ECM or secreted by stromal 

cells, thus implying that changes in the local TME are necessary to promote EMT and 

subsequent invasion (21). This suggests a bidirectional relationship between the tumor 

cells and the TME that contribute to the invasive potential at a primary tumor site.  

 

Dissemination and survival in circulation  
 
 A key limiting step to primary tumor growth, dissemination to the body, and 

growth at metastatic sites is access to blood supply (16). Tumor progression relies on 

the ability of cells to get nutrients from a blood source and therefore tumors can either 

induce neoangiogenesis, or formation of new blood vessels, a hallmark of cancer or co-

opt existing vessels to gain access to nutrients (22, 23). Once cells have invaded the 

local ECM, they can enter these new blood vessels and disseminate into the circulation 

to reach distal sites in the body. 

Formation of these blood vessels requires cooperation between the tumor cells 

and the local TME, in particular endothelial cells, pericytes, and bone marrow derived 

precursor cells (24). The process of neovascularization is a four-step process in which 

the initial area is wounded followed by local destruction and hypoxia, endothelial cells 

migrate after activation by angiogenic factors, proliferation of endothelial cells, and 
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finally, continual activation by angiogenic factors. These same steps occur in both tumor 

angiogenesis and physiological “normal” angiogenesis, however the resulting vessels 

are different (25). Tumor vessels are continuously undergoing reconfiguration as they 

constantly see angiogenic signals resulting in leaky blood vessels formed by weak 

interactions between adjacent endothelial cells (26). These leaky blood vessels are 

easily penetrated by tumor cells, allowing tumor cells to enter the blood stream and gain 

access to the rest of the body. 

This process of angiogenesis in tumors is regulated by tumor cell and stromal 

cell secretion of pro and anti-angiogenic factors. A change in the balance towards 

increased pro-angiogenic factors, most prominent is the vascular endothelial growth 

factor (VEGF), and decreased anti-angiogenic factors, such as thrombospondins, is 

necessary to activate the angiogenic switch (25). Other pro-angiogenic factors critical in 

mediating angiogenesis include platelet derived growth factor (PDGF), fibroblast growth 

factors (FGF), and TGF-beta, among others (25). Much of the production of these 

factors comes from stromal cells, particularly tumor associated macrophages, 

mesenchymal stem cells in the area, and cancer associated fibroblasts (11). This alters 

the balance of the local TME to be pro-angiogenic, resulting in activation of endothelial 

cells, leading to endothelial cell production of MMPs to break down the ECM and induce 

migration of endothelial cells (25). This process is known as the angiogenic switch (22). 

This angiogenic switch is primarily mediated by expression and secretion of members of 

the AngioMatrix by both tumor and stromal cells (27), implying a critical role for tumor: 

TME signaling in promoting blood vessel formation and subsequent metastatic 

progression.  
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Once in the circulation, tumor cells must survive in circulation and then 

extravasate into a distal site. Only 0.01% of cells that enter circulation are able to form a 

metastatic colony at a distal site (28). The first step in making it to the distal site is 

survival in circulation, also dependent on stromal cells and interactions with the 

microenvironment (29). Platelets found in blood vessels are able to aggregate to tumor 

cells circulating in blood vessels and protect tumor cells from natural killer cell mediated 

cytotoxicity and immune evasion. This aggregate of platelets and tumor cells can then 

circulate through the blood system until arrival and docking at a distal site (30). Ability to 

enter and survive in the blood stream is therefore dependent on tumor cells, the local 

TME, and non-stromal cells circulating in blood vessels.  

 

Extravasation  
 

Once at the distal site, tumor cells must be able to extravasate into this new site 

to allow for metastatic colonization. Platelets present in tumor cell aggregates interact 

with the local endothelium through integrin attachment to the extracellular matrix at the 

distal site of metastatic outgrowth. Platelets specifically open the endothelial barrier via 

ATP-dependent activation of endothelial cell surface receptors, allowing for metastatic 

seeding (31).  

Additionally, tumor cells can send signals to distal sites, leading to formation of a 

pre-metastatic niche favorable to extravasation of tumor cells. This occurs through 

secretion of systemic signals from the tumor cells themselves such as an increase in 

lysol oxidase (LOX) secretion that activates organ specific upregulation of fibronectin 

(32). This induces mobilization of vascular endothelial growth factor receptor positive 
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(VEGFR1+) bone marrow derived progenitor cells. The organ specific upregulation of 

fibronectin serves as a docking site for VEGFR1+ cells leading to alterations in local 

signaling to create a pre-metastatic niche prior to tumor cell arrival (33, 34). Thus, the 

cooperation between stromal cell and tumor cell signaling and interactions with the local 

microenvironment at the distal site mediates extravasation and the ability to form a 

metastatic site.  

 

Metastatic outgrowth at a distal site  
 

Although metastasis accounts for many tumor related deaths, the process of 

metastasis is highly inefficient (29). The rate limiting step of the invasion-metastasis 

cascade is the ability to establish a micro metastatic colony at a distal organ site (35). 

Once tumor cells leave a primary tumor site they have left a tumor promoting local 

microenvironment but encounter a microenvironment not supportive of tumor growth. 

They must be able to survive in this foreign microenvironment and learn to adapt the 

TME to be conducive to metastatic outgrowth.  

These micro metastatic colonies must gain access to the local blood supply to 

support growth by activating the angiogenic switch at the distal site. Once at a distant 

site, the tumor cells interact with a physiological blood vessel that is not leaky and must 

permeabilize the vessel (36).  This occurs through secretion of proteins such as ereglin 

(EREG), cyclooxygenase-2 (COX-2), various MMPs, and VEGF, which can disrupt the 

the local vasculature and increase permeability for tumor cells to gain access to 

nutrients (36). Once the vessel walls have been permeabilized, the tumor is able to alter 

signaling in the new microenvironment to lead to sprouting of neovessels and 
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production of periostin and TGF-beta to continue vascular growth and support tumor 

growth (37). Based on this evidence, it is clear that the invasion-metastasis cascade 

and tumor progression relies on altered tumor: TME crosstalk at both the primary and 

distal tumor site.  

 

The role of extracellular matrix components in creating a tumor “niche” 
 
 In 1889, Stephen Paget proposed the “seed and soil” hypothesis, stating that 

tumor cells were able to disseminate to all places in the body, but they needed the right 

local “soil” to stick and form a metastatic outgrowth (38). This means that cells need to 

be able to find the right foreign microenvironment and that the ability to form micro 

metastasis is dictated by the ability to convert the new microenvironment to a metastatic 

niche. The necessary changes in the local microenvironment and the ability of the cells 

to interact with this distal environment, is dependent on the type of cancer (33). This is 

evident through variable propensities of different cancer types to disseminate to 

particular locations (38). For example, in Ewing sarcoma, metastasis is most commonly 

found in the lung, bone, or bone marrow (1), while breast cancer commonly 

metastasizes to the brain, lymph nodes, lung, and liver (39). This concept is known as 

metastatic tropism and is dictated by the ability to form a pre-metastatic niche 

supportive of that particular cancer cell growth.  

 Creation of a supportive niche is mediated by composition and structure of both 

the local and metastatic ECM (11). At the site of primary tumor formation, deposition 

and organization of ECM components, such as various types of collagen, can dictate 

prognosis. For example, increased matrix stiffness and collagen fibril formation in breast 
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cancer results in poor clinical outcome (40). Additionally, high expression of protease 

inhibitors to block degradation of the ECM can be a biomarker for good prognosis of 

solid tumors (40). The tumor can also hijack the local TME and alter ECM synthesis and 

degradation to be conducive of tumor growth. One example of this is in osteosarcoma 

where the tumor resides in the bone, a microenvironment dominated by collagen I. 

Osteosarcoma tumors will alter the balance of collagen synthesis and degradation by 

osteoblasts and osteoclasts respectively, leading to a change in the local ECM structure 

to be pro-tumorigenic (41). This shift in the collagen production balance also results in 

changes in growth factor availability as they are sequestered in the collagen matrix and 

can be released during collagen degradation (33). In bone tumors, such as Ewing 

sarcoma, where there is an increase in the osteolytic activity, or bone matrix 

degradation, the result is an increase in bioavailability of growth factors, altering the 

signaling to the local tumor cells as well as non-malignant cells in the TME.  

The ECM can also play a role at distal sites in the metastatic niche. Here, the 

group of ECM proteins known as the matrisome, are critical in dictating progression 

from a micro metastasis into a metastatic outgrowth (42). The composition of the 

matrisome is comprised of secreted proteins from both the tumor cells as well as the 

stroma. One of the limiting aspects of metastatic growth at a distant site is access to a 

blood supply (16). Therefore, metastatic sites need to establish a blood source through 

neoangiogenesis, or vessel formation, by activating the angiogenic switch (22). A 

subset of matrisome proteins, categorized as the angiomatrix, have been shown to be 

critical in dictating the angioswitch (27). This provides one example of where the ECM 

at the distal site can be critical in controlling metastatic colonization and growth.  
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Tenascin C as a mediator of tumor: TME interactions in cancer 
 
 Tenascin C (TNC) is a matricellular protein found in the ECM that is a mediator of 

cell and ECM interactions. TNC is highly expressed during development in motile 

tissues, sites of EMT and branching morphogenesis, and dense connective tissue such 

as tendons and ligaments. However, it is only expressed in adults in instances of wound 

repair or in stem cell niches (43). TNC contains at least one epidermal growth factor 

(EGF) binding domain followed by a string of 9-16 fibronectin III repeats (FNIII). 

Alternative splicing occurring in 9 of these FNIII domains gives rise to a potential of 511 

different isoforms. Each of these FNIII domains have specific binding partners, 

proteolytic cleavage sites, and post-translational modification sites, making the functions 

of TNC very diverse (44).  

 TNC is categorized as a matricellular protein because it can both bind to ECM 

proteins, most predominantly fibronectin, as well as cell surface receptors, such as 

integrins. It can also interact directly with ligands in the microenvironment, such as 

Wnt3a and TGF-beta. TNC contributes to the composition of the local ECM and defines 

stiffness of the local environment. It also influences cellular processes including, but not 

limited to adhesion, cell spreading, invasion, and migration (43). Activation of TNC 

expression has been shown to be regulated by a variety of pathways, ligands, and 

transcription factors including through the TGF-beta pathway, Notch pathway, PDGF 

signaling, and transcription factors ETS1 and ETS2. TNC can also be mediated through 

mechanical stresses in the microenvironment and changes in matrix stiffness (45). 
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TNC has been shown to be expressed by both tumor cells and surrounding 

stromal cells in the TME. High expression of TNC has been observed in a variety of 

solid tumors and has been predominantly found at the invasive front of tumors (46). 

TNC is an important contributor to formation of the pre-metastatic niche in breast cancer 

(47). TNC is a poor prognosis indicator in colorectal cancer (48), and TNC is necessary 

for lung engraftment in Ewing sarcoma (3). These studies and others implicate that TNC 

is important for metastatic progression of solid tumors and provide further evidence for 

ECM proteins as drivers of metastasis.  

  

Tumor heterogeneity, cell plasticity, and the tumor microenvironment  
 
 
Genetic tumor heterogeneity 
 
 One of the major drivers of these changes in the tumor cells and their 

interactions with the tumor microenvironment, is intratumor heterogeneity (ITH). ITH can 

be driven by genetic or epigenetic heterogeneity in tumor cells. Genetic heterogeneity 

occurs when subpopulations of cells within a tumor contain different DNA mutations and 

copy number alterations, resulting in varying mutational burden. Genetic ITH was first 

described in 1958 by Julian Huxley but was not fully defined until the invention of next 

generation sequencing that allowed for massive DNA sequencing of patient tumor 

biopsies. Use of next generation sequencing on tumors allowed for identification of 

tumors comprised of multiple subpopulations with different mutations (49).  

Detection of genetic ITH through sequencing can also be used to define temporal 

order of events and reconstruct phylogenetic trees that show the evolution of each 

genetically similar subpopulation in the tumors (50). There are multiple theories on how 
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ITH arises, including the concept of classic Darwinian evolution within a tumor, where all 

cells are derived from one original cell (51), or through parallel evolution of different 

original subclones (52). Additionally, researchers have studied the proportions of 

different heterogeneous subpopulations to posit that these genetically diverse 

subpopulations are formed through a balance between survival of the fittest clone and 

neutral outgrowth of clones (49). Recent research has also hypothesized the existence 

of clonal cooperativity, where subclones work together to promote phenotypes 

necessary for survival and growth of the tumor (53).  

 

 Epigenetic tumor heterogeneity 
 

A second mechanism through which ITH occurs, is epigenetic ITH (54). 

Epigenetics is defined as a stable and heritable change in gene expression occurring 

without any changes in DNA sequence (55). A key aspect of the epigenome is how 

nucleosomes are positioned in relationship to the DNA, thus controlling transcription of 

the DNA via changes in DNA methylation, chromatin remodeling, and histone 

modifications (56). Each of these processes can result in changes in gene expression, 

leading to changes in phenotypic cell states. For example, over-activity of the polycomb 

group proteins leads to increased gene silencing of polycomb targets in many cancers 

(57). A key aspect of epigenetic ITH is its reversibility, meaning it is constantly in a 

changing state, making it hard to detect when taking only a snapshot of a tumor through 

a biopsy (54).  
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Tumor heterogeneity and the tumor microenvironment 
 

A major contributing factor to both genetic and epigenetic tumor heterogeneity, is 

the TME. The ability of fit clones to survive in the tumor is dependent on the TME and 

changes in the TME have been shown to drive genetic heterogeneity (58). A taxonomy 

report from several different cancer cell types showed that cell and tissue of origin can 

influence ITH and mutational burden, suggesting that the TME is a driver of ITH (59). 

Additionally, changes in the local TME can signal to induce changes in cell states 

resulting in epigenetic ITH. In particular, deregulation of the local ECM has been shown 

to induce ITH (60). Changes in the tumor cells are constantly occurring throughout the 

invasion-metastasis cascade, both at the genetic and epigenetic level, as the cells are 

undergoing multiple rounds of genetic diversification followed by clonal selection until a 

metastatic clone is developed (7).  

 

Cell plasticity and the TME 
 
 Cell plasticity refers to the ability of cells to transition between different cell 

states. This implies that the cell state is reversible, and is mainly dictated by changes in 

cell phenotype and gene expression. The most predominant example of cell plasticity is 

the EMT pathway. EMT switching is a very plastic and reversible program as cells can 

lie anywhere on the spectrum between epithelial and mesenchymal. Activation of this 

program, as well as other programs that dictate phenotypic plasticity, is mediated by 

changes in cell signaling pathways that alter expression of driver transcription factors 

and mediate global transcriptomic changes (9). In particular, for EMT, activation of the 

TGF-beta, Wnt, and NOTCH pathways all increase expression of key transcription 
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factors, SLUG, SNAIL, TWIST, ZEB1, and ZEB2. These transcription factors can then in 

turn alter transcription of key genes necessary for the EMT, resulting in upregulation of 

cell-matrix junctions and downregulation of genes necessary for cell-cell junctions, such 

as E-cadherin (9, 20). Varying combinations of EMT transcription factor activation can 

control where on the EMT spectrum the cell lies, and changes in activation of these 

factors can then result in reversion through the mesenchymal epithelial transition.  

Signals present in the TME, coming from both tumor cells and the local TME, 

activate changes in gene expression that lead to reversible phenotypic changes, such 

as EMT, increasing the invasive phenotype. This is a prime example of the tumor and 

the TME work together to alter cell state and induce a metastatic cell state. However, 

EMT is not the only case in which this is occurring. Secretion of proteins from 

surrounding stromal cells can induce phenotypic changes, such as increased motility of 

tumor cells, independently of the EMT pathway (11). For example, tumor associated 

macrophages regulate the production of fibrillar collagen which accelerates tumor 

motility in breast cancer (61). Another example is in Ewing sarcoma, where 

microenvironmental stresses, such as serum starvation and hypoxia, can induce 

changes in CXCR4 levels, a key chemokine receptor whose increased expression 

results in increased migration and invasion (4).  

 Tumor heterogeneity, cell plasticity, and the tumor microenvironment are all 

intimately linked and work together to control progression along the invasion-metastasis 

cascade. A prime example of all three of these concepts merging to drive invasion was 

identified in 2013 in breast cancer. Here, Chaffer et al., showed that ZEB1, a crucial 

EMT transcription factor, is held in a bivalent promoter state in basal-type epithelial 
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breast cancer cells, but not in luminal breast cancer cells. Bivalency is present when the 

promoter has both the activating H3K4me3 and repressive H3K27me3 mark, meaning it 

is poised for rapid activation of the ZEB1 promoter. However, in the luminal cells, the 

promoter only displays the H3K27me3 repressive state, meaning basal cells, but not 

luminal cells, can activate the EMT phenotype in the presence of TGF-beta because 

ZEB1 is poised for activation (62). This is a key example in which epigenetic plasticity 

can drive response to the TME and thus mediate phenotypic plasticity. The literature 

discussed to this point show that the ability of a tumor to initiate and progress along the 

invasion-metastasis cascade is clearly dependent on tumor heterogeneity, cell plasticity, 

and the TME all working together (Figure 1.3).  

 

Ewing sarcoma 
 
 Ewing sarcoma is the second most common bone and soft tissue tumor that 

predominantly affects children and adolescents. It is characterized by a small round 
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blue cell histology and is of presumed stem cell origin, however the exact cell of origin 

remains to be determined. There are only 200 new cases in the United States per year, 

with a predilection for males and a peak incidence between the ages of 5 and 25. 

Primary tumors tend to form in the long bones (femur, humerus, and tibia), pelvis, and 

chest wall, while metastasis prefers the lungs, bone, and bone marrow (1, 63) (Figure 

1.4A-B).  

Ewing sarcomas are characterized by the pathognomic fusion of EWS, an RNA 

binding protein, with an ETS family member, a family of transcription factors, with the 

most common fusion being EWS-FLI1 in 85% of patients (64). The chromosomal 

translocation creating this fusion occurs between chromosome 11 (FLI1) and 

chromosome 22 (EWS) t(11;22). Other fusions that have been reported include EWS-

ERG, EWS-ETV1, and EWS-E1AF (1). This results in the binding of the DNA binding 

domain of the ETS family members with EWS, an RNA binding protein whose RNA 

binding domain is lost in the fusion. Other than this characteristic fusion gene and 

occasional STAG2, p53, and CDKN2A mutations, there are no other recurrent 

mutations in the Ewing sarcoma genome and the genome is relatively silent in 

comparison to other tumors (65-67). EWS-FLI1 is the driving oncogene and acts as a 

pioneer factor, resulting in global reprogramming of the epigenome through creation of 

de novo enhancers at GGAA microsatellites present in the genome. This global 

reprogramming leads to changes in gene expression, transforming the cell into an 

oncogenic cell state (68, 69) (Figure 1.4C). 

 Patients that only develop a primary tumor have a high survival rate of > 70%, 

however patients that develop metastasis have a very low survival rate of < 20% (63) 
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(Figure 1.4D). Treatment currently includes a combination of aggressive chemotherapy 

and local control of radiation and/or surgery. Chemotherapy consists of many rounds of 

vincristine, doxorubicin, cyclophosphamide, ifosfamide, and etoposide (1). However, 

this is not enough for the third of patients who develop metastasis, making it imperative 

to identify the biologic drivers of Ewing sarcoma metastasis to better treat those patients 

who develop metastasis.  

 

Ewing sarcoma metastasis  
 
 Although much of Ewing sarcoma research has focused on understanding the 

role of EWS-FLI1 in driving tumorigenesis, very little is known about the drivers of Ewing 

sarcoma metastasis. As stated previously, the Ewing sarcoma genome is genetically 

silent and very few recurrent mutations have been identified, regardless of prognosis. 

This makes it very probably that the drivers of metastasis will not be identified through 

next generation sequencing efforts, and focus should be on understanding the biological 

processes that could be driving the metastatic phenotype.  
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 Few studies have identified driver pathways of Ewing sarcoma metastasis, and 

no therapeutic targets have been successfully exploited through identification of these 

few pathways. CXCR4 has been shown to promote invasion and migration (4). 

Dickkopf-2 (DKK2) was shown to promote metastasis in vivo through upregulation of the 

pro-metastatic genes CXCR4, PTHrP, RUNX2, TGFB1, and MMP1 (70). ERBB4, a key 

receptor that mediates EGF signaling, was identified to be upregulated through 

increased activation of the PI3 kinase (PI3K)-Akt pathway resulting in enhanced 

chemoresistance, invasion, and migration (71). Additionally, ERBB4 had increased 

expression in cell lines derived from recurrent or metastatic tumors in comparison to 

their matched primary tumor (72). More recently, EWS-FLI1 was identified to be 

expressed at varying levels in individual cells within a cell line. Cells categorized as 

EWS-FLI1 low expressing cells are more invasive and metastatic than EWS-FLI1 high 

cells, suggesting the possibility that EWS-FLI1 itself could be contributing to the 

metastatic phenotype (73). Finally, identification of the Wnt/beta-catenin pathway 

activation to be correlated with lower overall survival and lower event free survival 

implicates the Wnt/beta-catenin pathway as a metastatic driver, to be discussed further 

(3).   

 

Ewing sarcoma and the tumor microenvironment 
 
 Crosstalk between Ewing sarcoma tumor cells and the local TME has been 

poorly studied. Sarcomas are derived from mesenchymal cells and do not directly sit on 

top of a basement membrane, while carcinomas are derived from epithelial cells and 

grow on top of a basement membrane. Carcinomas must then invade the local 
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basement membrane, while sarcomas grow within the ECM and soft tissue. Therefore, 

much of the local TME is dictated by ECM or infiltrating cells. Multiple studies have 

implicated the Ewing sarcoma TME to be important in dictating metastatic progression. 

Microarray profiling of 46 tumors identified a poor prognosis signature comprised of 33 

genes, however this prognosis signature was only identifiable when tumors with high 

stromal content were present in the analysis (2). In support of this, subcutaneous 

xenografts of Ewing sarcoma have been shown to develop spontaneous metastasis at a 

much lower rate than orthotopic xenograft models, suggesting that the bone TME is 

much more supportive of metastatic progression (74).  

Inside the bone TME, the “vicious” cycle works to maintain a pro-tumor 

environment by altering the balance between bone formation, mediated by osteoblast 

activation, and bone resorption, mediated by osteoclasts (75). Ewing sarcoma tumors in 

the bone are characterized by extensive bony remodeling mediated by an osteolytic 

phenotype (70). In an attempt to inhibit the osteolytic activity in the TME, groups have 

utilized bisphosphonates to inhibit osteoclast activity in preclinical models of Ewing 

sarcoma and show decreased tumor development in bone sites and increased overall 

survival in mice (76). Specific pathways in the bone TME have also been shown to drive 

Ewing cell motility and invasion, such as signals from fibroblast growth factor (FGF) via 

the FGFR1-PI3K-Rac1 pathway, implicating the bone TME as a driver of metastasis 

(77). 

In addition to the bone TME, changes in microenvironmental stresses and 

induction of angiogenesis have been shown to promote Ewing sarcoma progression. 

The combination of serum starvation and hypoxia induces migration and invasion via 
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the CXCR4 signaling axis (4). These same microenvironmental cues lead to activation 

of Src kinase and subsequent formation of actin rich protrusions, or invadopodia 

structures (6). Hypoxia alone can also alter EWS-FLI1 levels to promote the metastatic 

phenotype (78).  

Another response to lack of nutrients and hypoxic conditions in cancer is the 

induction of angiogenesis. In Ewing sarcoma specifically, bone marrow cells are able to 

migrate to the tumor and differentiate into endothelial cells and pericytes to promote 

angiogenesis in the bone TME (79, 80). This is partially mediated by the CXCR4 

signaling axis, as blocking CXCR4 signaling reduces PDGF-B protein expression and 

decreases efficiency of vascular formation in the bone TME (81). Further understanding 

about how both changes in the TME as well as changes in the tumor cells themselves 

could help identify critical interactions between tumor cells and the TME in driving Ewing 

sarcoma progression.  

 

Wnt/beta-catenin signaling and Ewing sarcoma 
 
 The Wnt/beta-catenin signaling axis is a highly conserved pathway important in 

developmental processes such as cell proliferation, morphological changes, and cell 

organization. There are 19 different Wnt ligands, that can activate both canonical Wnt 

signaling occurring through beta-catenin activation, or non-canonical signaling which 

are beta-catenin independent signaling pathways. Due to findings that activation of the 

Wnt/beta-catenin pathway is a biomarker for aggressive disease in Ewing sarcoma, we 

will only focus on the canonical Wnt/beta-catenin pathway throughout the remainder of 

this thesis. Binding of Wnt ligand to a frizzled receptor results in recruitment of the 
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destruction complex (Axin2, Disheveled, APC, and GSK3-beta), freeing up beta-catenin 

to accumulate in the cytoplasm and translocate into the nucleus. Once beta-catenin is in 

the nucleus, it binds to various co-factors, most predominantly TCF and LEF, that 

facilitate binding to DNA and global changes in transcription. This signaling can be 

further potentiated by addition of secreted R-spondins (RSPO) which binds to the 

coreceptors, leucine G-protein coupled receptors, LGR4 and LGR5, to enhance Wnt 

signaling (82).  

These Wnt-mediated global changes in transcription are context and cell-

dependent. In Ewing sarcoma, activation of the Wnt/beta-catenin pathway induces 

robust expression of the lymphoid enhancing factor 1 (LEF1), AXIN2, and NKD2, 

among others, while classic Wnt targets, MYC and CCND1, remain unaltered (3). 

Previous to beginning work discussed in this thesis, our lab had identified the stem cell 

marker LGR5 to be expressed by Ewing sarcoma cells and high LGR5 expressing 

Ewing sarcoma cells to be Wnt responsive (83). Furthermore, activation of the Wnt 

pathway through addition of exogenous Wnt ligands, in particular Wnt3a, leads to 

heterogeneous activation of the pathway in cell lines. Activation of this pathway prior to 

injection into mouse via tail vein resulted in increased lung engraftment and high 

expression of LEF1 in patients is correlated with worse event free and overall survival 

(3). More recently, inhibition of Wnt signaling through inhibition of porcupine, a mediator 

of Wnt ligand secretion, was shown to increase survival in preclinical mouse models 

(84). Our lab has also shown that activation of the Wnt/beta-catenin pathway 

antagonizes EWS-FLI1, resulting in derepression of many EWS-FLI1 targets (3). These 

studies implicated that Wnt/beta-catenin alters tumor cell-autonomous functions to 
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increase metastatic potential, through in vivo studies showing Wnt/beta-catenin 

activated cells had increased time to tumor engraftment. However, it remains to be 

determined if and how activation of Wnt/beta-catenin alters tumor cell non-autonomous 

functions (Figure 1.5).  

 

Transforming growth factor beta and Ewing sarcoma 
 
 The transforming growth factor beta (TGF-beta) pathway regulates development 

through processes such as cell growth, adhesion, migration, apoptosis, differentiation, 

and angiogenesis. The TGF-beta superfamily is comprised of 30 members that include 

TGF-beta ligands, most commonly TGFB1, TGFB2, and TGFB3, bone morphogenic 

proteins (BMPs), growth and differentiation factors, activins, and nodals. Here, we will 

focus on the canonical TGF-beta pathway in which TGF-beta ligands, such as TGFB1, 

bind to a type 2 receptor (TGFBR2) leading to dimerization with a type 1 receptor 

(ALK4, ALK5, or ALK7). Formation of the TGFBR2/type1 receptor complex leads to 
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phosphorylation of downstream activating smads, SMAD2 or SMAD3. These 

phosphorylated smads dimerize with SMAD4 before translocation into the nucleus 

where they can directly bind to specific DNA sequences in promoters, resulting in global 

transcriptomic changes. Three different ligands for the TGF-beta pathway, TGFB1, 

TGFB2, and TGFB3 can all signal through the TGFBR2/type1 receptor complex, while 

other ligands such as bone morphogenic proteins (BMP), activins, and nodals, activate 

one of the other 5 type 2 receptors (21). We are interested specifically in the role of 

TGFB1/2/3 for the remainder of this thesis and will only discuss this pathway in the 

context of the canonical smad pathway activated through the TGFBR2/type1 receptor 

complex.  

 The TGF-beta pathway remains a poorly studied pathway in Ewing sarcoma. 

Initial studies identified TGFBR2 to be repressed by EWS-FLI1, rendering Ewing 

sarcoma cells unable to activate the downstream smad cascade in response to TGF-

beta ligands. Simultaneously, it was shown that overexpression of this receptor in Ewing 

sarcoma blocked tumor growth in a subcutaneous model, suggesting that expression of 

TGFBR2 would be tumor suppressive in Ewing sarcoma (85). Since this finding, the 

paradoxical role of TGF-beta as a tumor suppressor and tumor promoter has been 

identified in carcinomas. At earlier stages of tumor formation, activation of TGF-beta is 

associated with apoptosis, resulting in a block of tumor growth (86). However, TGF-beta 

is a critical driver of the EMT phenotype, leading to increased invasion and cell motility 

as the tumors progress (20). Although the traditional EMT pathway does not occur in 

Ewing sarcoma, sarcoma cells have been shown to be able to exist in a metastable 

state where they can transition between epithelial-like and mesenchymal-like 
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phenotypes (87). This implies that perhaps scenarios in which TGFBR2 is derepressed 

at later stages of Ewing sarcoma tumor progression could then activate this 

mesenchymal-like or more metastatic phenotype. It is therefore imperative to 

understand the role of TGF-beta at all stages of tumor progression in Ewing sarcoma, 

as it could be a critical driver of metastasis, post primary tumor formation (Figure 1.4).  

 

Linking Wnt, TGF-beta, and the tumor microenvironment in Ewing sarcoma 
 
 As discussed here, two potential factors contributing to Ewing sarcoma 

metastasis are the Wnt pathway and contributions from the local TME. However, unlike 

many colorectal tumors where activation of Wnt signaling is dictated by a recurrent 

mutation leading to constitutive activation of the pathway, there are no recurrent 

mutations in the Wnt/beta-catenin pathway in Ewing sarcoma (65-67, 88). Additionally, 

we did not detect presence of any secreted Wnt ligands in unmodified Ewing sarcoma 

cells (89). This implies that activation of this pathway is most likely occurring when 
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tumor cells are coming into contact with Wnt ligands produced by stromal cells in the 

TME.  

Additionally, we show in this thesis that activation of the Wnt/beta-catenin 

pathway is associated with increased expression of genes that encode structural 

components of the ECM, suggesting a link between activation of the Wnt pathway and 

changes in the TME (3). The remaining question is then what are these 

microenvironmental changes and do they play a role in mediating the metastatic 

phenotype associated with activated Wnt signaling? Lastly, activation of the Wnt/beta-

catenin pathway leads to antagonism of EWS-FLI1 and derepression of many 

repressed EWS-FLI1 targets, including TGFBR2 (3). This begs the question of whether 

or not activation of Wnt is able to prime these cells to be TGF-beta responsive and if so, 

does this also play a role in the Wnt activated phenotype? Answering all of these 

questions will elucidate the connection between Wnt, TGF-beta, and the TME in 

promoting Ewing sarcoma progression in hopes of identifying novel therapeutic targets 

and ways to exploit tumor: TME crosstalk to improve overall patient survival.  

 

Summary and Aims 
 
 Ewing sarcoma patients that develop metastatic disease have dismal survival 

rates, making it imperative to better understand the biological drivers of metastasis in 

hopes of identifying new therapeutic targets (1). Activation of the Wnt/beta-catenin 

pathway is associated with transition to a more metastatic cell state and global 

transcriptomic changes, specifically increased expression of ECM associated genes (3). 

Therefore, we hypothesized that activation of the Wnt/beta-catenin pathway is altering 
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the tumor: TME crosstalk to promote a metastatic phenotype. In this thesis we address 

this hypothesis in the following three aims.  

Aim 1: Identify the Wnt mediated contribution of Ewing sarcoma cells to the local 

TME through identification of the Ewing sarcoma secretome.  

Aim 2: Determine the link between the Wnt and TGF-beta pathways in driving 

metastasis, specifically through secretion of proteins important for angiogenesis.  

Aim 3: Investigate the role of the secreted protein, Tenascin C, in driving changes 

in tumor: TME crosstalk through Src-mediated invasion.  

Understanding how the Wnt/beta-catenin and TGF-beta pathways dictate 

changes in tumor: TME interactions will help elucidate how to best target the TME in 

hopes of both preventing metastatic disease progression and improving survival of 

patients who have developed metastatic disease.  



 29 

References  
 
1. Balamuth NJ, and Womer RB. Ewing's sarcoma. Lancet Oncol. 2010;11(2):184-

92. 
2. Volchenboum SL, Andrade J, Huang L, Barkauskas DA, Krailo M, Womer RB, et 

al. Gene Expression Profiling of Ewing Sarcoma Tumors Reveals the Prognostic 
Importance of Tumor-Stromal Interactions: A Report from the Children's 
Oncology Group. J Pathol Clin Res. 2015;1(2):83-94. 

3. Pedersen EA, Menon R, Bailey KM, Thomas DG, Van Noord RA, Tran J, et al. 
Activation of Wnt/beta-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS 
Function and Promotes Phenotypic Transition to More Metastatic Cell States. 
Cancer Res. 2016;76(17):5040-53. 

4. Krook MA, Nicholls LA, Scannell CA, Chugh R, Thomas DG, and Lawlor ER. 
Stress-induced CXCR4 promotes migration and invasion of ewing sarcoma. Mol 
Cancer Res. 2014;12(6):953-64. 

5. Krook MA, Hawkins AG, Patel RM, Lucas DR, Van Noord R, Chugh R, et al. A 
bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing 
sarcoma. Oncotarget. 2016;7(38):61775-88. 

6. Bailey KM, Airik M, Krook MA, Pedersen EA, and Lawlor ER. Micro-
Environmental Stress Induces Src-Dependent Activation of Invadopodia and Cell 
Migration in Ewing Sarcoma. Neoplasia. 2016;18(8):480-8. 

7. Valastyan S, and Weinberg RA. Tumor metastasis: molecular insights and 
evolving paradigms. Cell. 2011;147(2):275-92. 

8. Gupta GP, and Massague J. Cancer metastasis: building a framework. Cell. 
2006;127(4):679-95. 

9. Chaffer CL, San Juan BP, Lim E, and Weinberg RA. EMT, cell plasticity and 
metastasis. Cancer Metastasis Rev. 2016;35(4):645-54. 

10. Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu Rev 
Pathol. 2018;13:395-412. 

11. Quail DF, and Joyce JA. Microenvironmental regulation of tumor progression and 
metastasis. Nat Med. 2013;19(11):1423-37. 

12. Bissell MJ, and Hines WC. Why don't we get more cancer? A proposed role of 
the microenvironment in restraining cancer progression. Nat Med. 
2011;17(3):320-9. 

13. Balkwill F, and Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 
2001;357(9255):539-45. 

14. Grivennikov SI, Greten FR, and Karin M. Immunity, inflammation, and cancer. 
Cell. 2010;140(6):883-99. 

15. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global 
burden of cancers attributable to infections in 2008: a review and synthetic 
analysis. Lancet Oncol. 2012;13(6):607-15. 

16. Hanahan D, and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 
2011;144(5):646-74. 

17. Kessenbrock K, Plaks V, and Werb Z. Matrix metalloproteinases: regulators of 
the tumor microenvironment. Cell. 2010;141(1):52-67. 



 30 

18. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix 
crosslinking forces tumor progression by enhancing integrin signaling. Cell. 
2009;139(5):891-906. 

19. Friedl P, and Wolf K. Tumour-cell invasion and migration: diversity and escape 
mechanisms. Nat Rev Cancer. 2003;3(5):362-74. 

20. Xu J, Lamouille S, and Derynck R. TGF-beta-induced epithelial to mesenchymal 
transition. Cell Res. 2009;19(2):156-72. 

21. Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215-30. 
22. Folkman J, Watson K, Ingber D, and Hanahan D. Induction of angiogenesis 

during the transition from hyperplasia to neoplasia. Nature. 1989;339(6219):58-
61. 

23. Pezzella F, Harris AL, Tavassoli M, and Gatter KC. Blood vessels and cancer 
much more than just angiogenesis. Cell Death Discov. 2015;1:15064. 

24. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 
1971;285(21):1182-6. 

25. Nishida N, Yano H, Nishida T, Kamura T, and Kojiro M. Angiogenesis in cancer. 
Vasc Health Risk Manag. 2006;2(3):213-9. 

26. Carmeliet P, and Jain RK. Principles and mechanisms of vessel normalization for 
cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417-27. 

27. Langlois B, Saupe F, Rupp T, Arnold C, van der Heyden M, Orend G, et al. 
AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, 
correlates with poor prognosis for glioma and colorectal cancer patients. 
Oncotarget. 2014;5(21):10529-45. 

28. Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, and 
Groom AC. Critical steps in hematogenous metastasis: an overview. Surg Oncol 
Clin N Am. 2001;10(2):243-55, vii. 

29. Chambers AF, Groom AC, and MacDonald IC. Dissemination and growth of 
cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563-72. 

30. Gay LJ, and Felding-Habermann B. Contribution of platelets to tumour 
metastasis. Nat Rev Cancer. 2011;11(2):123-34. 

31. Gay LJ, and Felding-Habermann B. Platelets alter tumor cell attributes to propel 
metastasis: programming in transit. Cancer Cell. 2011;20(5):553-4. 

32. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-
induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to 
form the premetastatic niche. Cancer Cell. 2009;15(1):35-44. 

33. Psaila B, and Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev 
Cancer. 2009;9(4):285-93. 

34. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. 
VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-
metastatic niche. Nature. 2005;438(7069):820-7. 

35. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et 
al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after 
successful extravasation and limited survival of early micrometastases. Am J 
Pathol. 1998;153(3):865-73. 



 31 

36. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, et al. Mediators of 
vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 
2007;446(7137):765-70. 

37. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The 
perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 
2013;15(7):807-17. 

38. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis 
revisited. Nat Rev Cancer. 2003;3(6):453-8. 

39. Chu JE, and Allan AL. The Role of Cancer Stem Cells in the Organ Tropism of 
Breast Cancer Metastasis: A Mechanistic Balance between the "Seed" and the 
"Soil"? Int J Breast Cancer. 2012;2012:209748. 

40. Bergamaschi A, Tagliabue E, Sorlie T, Naume B, Triulzi T, Orlandi R, et al. 
Extracellular matrix signature identifies breast cancer subgroups with different 
clinical outcome. J Pathol. 2008;214(3):357-67. 

41. Goltzman D. Osteolysis and cancer. J Clin Invest. 2001;107(10):1219-20. 
42. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, and Hynes RO. The matrisome: 

in silico definition and in vivo characterization by proteomics of normal and tumor 
extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111 014647. 

43. Midwood KS, Chiquet M, Tucker RP, and Orend G. Tenascin-C at a glance. J 
Cell Sci. 2016;129(23):4321-7. 

44. Jones PL, and Jones FS. Tenascin-C in development and disease: gene 
regulation and cell function. Matrix Biol. 2000;19(7):581-96. 

45. Chiovaro F, Chiquet-Ehrismann R, and Chiquet M. Transcriptional regulation of 
tenascin genes. Cell Adh Migr. 2015;9(1-2):34-47. 

46. Lowy CM, and Oskarsson T. Tenascin C in metastasis: A view from the invasive 
front. Cell Adh Migr. 2015;9(1-2):112-24. 

47. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et 
al. Breast cancer cells produce tenascin C as a metastatic niche component to 
colonize the lungs. Nat Med. 2011;17(7):867-74. 

48. Li M, Peng F, Li G, Fu Y, Huang Y, Chen Z, et al. Proteomic analysis of stromal 
proteins in different stages of colorectal cancer establishes Tenascin-C as a 
stromal biomarker for colorectal cancer metastasis. Oncotarget. 
2016;7(24):37226-37. 

49. McGranahan N, and Swanton C. Clonal Heterogeneity and Tumor Evolution: 
Past, Present, and the Future. Cell. 2017;168(4):613-28. 

50. Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, et al. Single-
cell genetic analysis reveals the composition of initiating clones and phylogenetic 
patterns of branching and parallel evolution in myeloma. Leukemia. 
2014;28(8):1705-15. 

51. Nowell PC. The clonal evolution of tumor cell populations. Science. 
1976;194(4260):23-8. 

52. Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, et al. Extremely high genetic diversity 
in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl 
Acad Sci U S A. 2015;112(47):E6496-505. 



 32 

53. Caswell DR, and Swanton C. The role of tumour heterogeneity and clonal 
cooperativity in metastasis, immune evasion and clinical outcome. BMC Med. 
2017;15(1):133. 

54. Easwaran H, Tsai HC, and Baylin SB. Cancer epigenetics: tumor heterogeneity, 
plasticity of stem-like states, and drug resistance. Mol Cell. 2014;54(5):716-27. 

55. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8. 
56. Korber P, and Becker PB. Nucleosome dynamics and epigenetic stability. Essays 

Biochem. 2010;48(1):63-74. 
57. You JS, and Jones PA. Cancer genetics and epigenetics: two sides of the same 

coin? Cancer Cell. 2012;22(1):9-20. 
58. Zellmer VR, and Zhang S. Evolving concepts of tumor heterogeneity. Cell Biosci. 

2014;4:69. 
59. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. 

Multiplatform analysis of 12 cancer types reveals molecular classification within 
and across tissues of origin. Cell. 2014;158(4):929-44. 

60. Wang CC, Bajikar SS, Jamal L, Atkins KA, and Janes KA. A time- and matrix-
dependent TGFBR3-JUND-KRT5 regulatory circuit in single breast epithelial cells 
and basal-like premalignancies. Nat Cell Biol. 2014;16(4):345-56. 

61. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 
induces cathepsin protease activity in tumor-associated macrophages to promote 
cancer growth and invasion. Genes Dev. 2010;24(3):241-55. 

62. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised 
chromatin at the ZEB1 promoter enables breast cancer cell plasticity and 
enhances tumorigenicity. Cell. 2013;154(1):61-74. 

63. Lawlor ER, and Sorensen PH. Twenty Years on: What Do We Really Know about 
Ewing Sarcoma and What Is the Path Forward? Crit Rev Oncog. 2015;20(3-
4):155-71. 

64. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene 
fusion with an ETS DNA-binding domain caused by chromosome translocation in 
human tumours. Nature. 1992;359(6391):162-5. 

65. Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic 
landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 
mutation. PLoS Genet. 2014;10(7):e1004475. 

66. Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, et al. Genomic 
landscape of Ewing sarcoma defines an aggressive subtype with co-association 
of STAG2 and TP53 mutations. Cancer Discov. 2014;4(11):1342-53. 

67. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, et 
al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 
2014;4(11):1326-41. 

68. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suva ML, et al. EWS-
FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or 
repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26(5):668-81. 

69. Boulay G, Volorio A, Iyer S, Broye LC, Stamenkovic I, Riggi N, et al. Epigenome 
editing of microsatellite repeats defines tumor-specific enhancer functions and 
dependencies. Genes Dev. 2018;32(15-16):1008-19. 



 33 

70. Hauer K, Calzada-Wack J, Steiger K, Grunewald TG, Baumhoer D, Plehm S, et 
al. DKK2 mediates osteolysis, invasiveness, and metastatic spread in Ewing 
sarcoma. Cancer Res. 2013;73(2):967-77. 

71. Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA, et al. E-
cadherin cell-cell adhesion in ewing tumor cells mediates suppression of anoikis 
through activation of the ErbB4 tyrosine kinase. Cancer Res. 2007;67(7):3094-
105. 

72. Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, Ayala FR, et al. 
ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med. 
2013;5(7):1087-102. 

73. Franzetti GA, Laud-Duval K, van der Ent W, Brisac A, Irondelle M, Aubert S, et 
al. Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines 
proliferation/migration choices in Ewing sarcoma cells. Oncogene. 
2017;36(25):3505-14. 

74. Goldstein SD, Hayashi M, Albert CM, Jackson KW, and Loeb DM. An orthotopic 
xenograft model with survival hindlimb amputation allows investigation of the 
effect of tumor microenvironment on sarcoma metastasis. Clin Exp Metastasis. 
2015;32(7):703-15. 

75. Redini F, Odri GA, Picarda G, Gaspar N, Heymann MF, Corradini N, et al. Drugs 
targeting the bone microenvironment: new therapeutic tools in Ewing's sarcoma? 
Expert Opin Emerg Drugs. 2013;18(3):339-52. 

76. Moriceau G, Ory B, Gobin B, Verrecchia F, Gouin F, Blanchard F, et al. 
Therapeutic approach of primary bone tumours by bisphosphonates. Curr Pharm 
Des. 2010;16(27):2981-7. 

77. Kamura S, Matsumoto Y, Fukushi JI, Fujiwara T, Iida K, Okada Y, et al. Basic 
fibroblast growth factor in the bone microenvironment enhances cell motility and 
invasion of Ewing's sarcoma family of tumours by activating the FGFR1-PI3K-
Rac1 pathway. Br J Cancer. 2010;103(3):370-81. 

78. Aryee DN, Niedan S, Kauer M, Schwentner R, Bennani-Baiti IM, Ban J, et al. 
Hypoxia modulates EWS-FLI1 transcriptional signature and enhances the 
malignant properties of Ewing's sarcoma cells in vitro. Cancer Res. 
2010;70(10):4015-23. 

79. Reddy K, Cao Y, Zhou Z, Yu L, Jia SF, and Kleinerman ES. VEGF165 
expression in the tumor microenvironment influences the differentiation of bone 
marrow-derived pericytes that contribute to the Ewing's sarcoma vasculature. 
Angiogenesis. 2008;11(3):257-67. 

80. Lee TH, Bolontrade MF, Worth LL, Guan H, Ellis LM, and Kleinerman ES. 
Production of VEGF165 by Ewing's sarcoma cells induces vasculogenesis and 
the incorporation of CD34+ stem cells into the expanding tumor vasculature. Int J 
Cancer. 2006;119(4):839-46. 

81. Hamdan R, Zhou Z, and Kleinerman ES. Blocking SDF-1alpha/CXCR4 
downregulates PDGF-B and inhibits bone marrow-derived pericyte differentiation 
and tumor vascular expansion in Ewing tumors. Mol Cancer Ther. 
2014;13(2):483-91. 

82. Nusse R, and Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging 
Therapeutic Modalities. Cell. 2017;169(6):985-99. 



 34 

83. Scannell CA, Pedersen EA, Mosher JT, Krook MA, Nicholls LA, Wilky BA, et al. 
LGR5 is Expressed by Ewing Sarcoma and Potentiates Wnt/beta-Catenin 
Signaling. Front Oncol. 2013;3:81. 

84. Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, et al. 
Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft 
model of Ewing sarcoma. Oncotarget. 2017;8(45):78265-76. 

85. Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG, et al. Repression of the 
gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 
oncoprotein. Nat Genet. 1999;23(2):222-7. 

86. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-beta: 
duality of function between tumor prevention and carcinogenesis. J Natl Cancer 
Inst. 2014;106(2):djt369. 

87. Sannino G, Marchetto A, Kirchner T, and Grunewald TGP. Epithelial-to-
Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal 
Tumors: A Paradox in Sarcomas? Cancer Res. 2017;77(17):4556-61. 

88. Novellasdemunt L, Antas P, and Li VS. Targeting Wnt signaling in colorectal 
cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and 
Mechanisms. Am J Physiol Cell Physiol. 2015;309(8):C511-21. 

89. Hawkins AG, Basrur V, da Veiga Leprevost F, Pedersen E, Sperring C, 
Nesvizhskii AI, et al. The Ewing Sarcoma Secretome and Its Response to 
Activation of Wnt/beta-catenin Signaling. Mol Cell Proteomics. 2018;17(5):901-
12. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 



 35 

Chapter 2: The Ewing sarcoma secretome and its response to activation of 

Wnt/beta-catenin signaling*1 

 

Summary  

Tumor: tumor microenvironment (TME) interactions are critical for tumor 

progression and the composition and structure of the local extracellular matrix (ECM) 

are key determinants of tumor metastasis. We recently reported that activation of 

Wnt/beta-catenin signaling in Ewing sarcoma cells induces widespread transcriptional 

changes that are associated with acquisition of a metastatic tumor phenotype. 

Significantly, ECM protein-encoding genes were found to be enriched among Wnt/beta-

catenin induced transcripts, leading us to hypothesize that activation of canonical Wnt 

signaling might induce changes in the Ewing sarcoma secretome. To address this 

hypothesis, conditioned media from Ewing sarcoma cell lines cultured in the presence 

or absence of Wnt3a was collected for proteomic analysis. Label-free mass 

spectrometry was used to identify and quantify differentially secreted proteins. We then 

used in silico databases to identify only proteins annotated as secreted. Comparison of 

the secretomes of two Ewing sarcoma cell lines revealed numerous shared proteins, as 

well as a degree of heterogeneity, in both basal and Wnt-stimulated conditions. Gene 

                                                        
1 This research was originally published in Molecular & Cellular Proteomics. Allegra G. Hawkins, 
Venkatesha Basrur, Felipe da Veiga Leprevost, Elisabeth Pedersen, Colin Sperring, Alexey I. Nesvizhskii, 
and Elizabeth R. Lawlor. The Ewing sarcoma secretome and its response to activation of Wnt/beta-
catenin signaling. Mol Cell Proteomics. 2018; 17(5):901-912. © the American Society for Biochemistry 
and Molecular Biology 
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set enrichment analysis of secreted proteins revealed that Wnt stimulation reproducibly 

resulted in increased secretion of proteins involved in ECM organization, ECM receptor 

interactions, and collagen formation. In particular, Wnt-stimulated Ewing sarcoma cells 

upregulated secretion of structural collagens, as well as matricellular proteins, such as 

the metastasis-associated protein, tenascin C (TNC). Interrogation of published 

databases confirmed reproducible correlations between Wnt/beta-catenin activation and 

TNC and COL1A1 expression in patient tumors. In summary, this first study of the 

Ewing sarcoma secretome reveals that Wnt/beta-catenin activated tumor cells 

upregulate secretion of ECM proteins. Such Wnt/beta-catenin mediated changes are 

likely to impact on tumor: TME interactions that contribute to metastatic progression.  

 

Introduction 

The local and metastatic progression of solid tumors is critically dependent on 

interactions and crosstalk between tumor cells and their local tumor microenvironment 

(TME). Both cellular and non-cellular components of the TME can bind and activate 

surface receptors on tumor cells to impact on cell signaling and cell behavior (1). In 

particular, the proteinaceous extracellular matrix (ECM) is a key player in tumor: TME 

crosstalk and changes in the composition and structure of the ECM can profoundly alter 

cell signaling (2). The main source of ECM proteins in the TME is secretion from 

fibroblasts (3). However, secretion of ECM proteins also occurs in normal physiological 

processes, such as secretion of collagens from osteoblasts during bone formation (4). 

In cancer, aberrant secretion of proteins from non-tumor stromal cells, as well as tumor 

cells themselves, can disturb homeostatic signaling and promote disease progression. 
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Indeed, each of the major hallmarks of cancer (5) is impacted by secreted proteins in 

the TME - i.e. VEGF and it’s role in angiogenesis, MMPs and their role in matrix 

degradation, and cytokines and their recruitment of immune cells (6).  

Ewing sarcoma is an aggressive tumor of bone and soft tissue that has a peak 

incidence in adolescents and young adults (7). Although much has been learned about 

the genetic basis of Ewing sarcoma, in particular the specific role of EWS/ETS fusion 

genes in tumorigenesis, relatively little is known about the cellular mechanisms that 

underlie metastasis and even less is known about the contribution of the local TME (8). 

Previous reports have shown that the bone TME specifically promotes metastatic 

progression of Ewing sarcoma (9) and that its ability to grow in bone is dependent on 

the osteolytic phenotype (10). Moreover, a hypoxic microenvironment promotes 

activation of metastasis-associated gene expression in tumor cells and enhanced 

metastatic progression in xenograft models (11, 12). In addition, gene expression 

profiling studies of primary localized tumor specimens demonstrated the important 

contribution of tumor stroma to relapse and patient survival (13). Thus, crosstalk 

between the Ewing sarcoma cells and their TME plays a key role in tumor progression. 

However, the Ewing sarcoma secretome is undefined, and its role in dictating ECM 

composition and tumor progression is yet to be elucidated. 

We previously showed that activation of Wnt/beta-catenin in Ewing sarcoma cells 

induces transition to a more migratory cellular phenotype and enhances metastatic 

engraftment (14). In the current study, we have investigated whether activation of 

canonical Wnt signaling in Ewing sarcoma cells impacts on their secretion of ECM 

proteins. To address this, we combined mass spectrometry, proteomics, and 
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bioinformatics tools to define the Ewing sarcoma secretome. In addition, we determined 

if the secretome is impacted by exposure to exogenous Wnt3a, a canonical Wnt ligand 

abundant in the bone microenvironment (15, 16). Our results demonstrate that the 

Ewing sarcoma secretome is rich in ECM proteins, as well as IGF binding proteins. 

Activation of Wnt/beta-catenin modulates the secretion of ECM proteins, altering the 

local TME. These data provide novel insight into the nature of the Ewing sarcoma 

secretome and how it is altered by Wnt/beta-catenin signaling.  

 

Results  
 

Wnt-activated cells upregulate pathways involved in tumor: TME crosstalk.  

To begin to understand the mechanisms through which upregulation of the 

Wnt/beta-catenin signaling axis contribute to metastatic phenotypes and poor outcomes 

in Ewing sarcoma, we performed pathways analysis on our previously reported RNA-

sequencing study of Wnt/beta-catenin activated cells (14). In this previous study, 1157 

transcripts were identified as being significantly induced by Wnt activation and 1221 

were significantly induced in Wnt activation with potentiation by Rspondin2. Mapping of 

these transcripts against published signal transduction pathways using the Genomatix 

Pathway System tool revealed significant enrichment of signaling pathways that are 

known to play key roles in mediating tumor: TME interactions. In particular, signaling 

pathways that depend on crosstalk between receptors on tumor cells and proteins in the 

surrounding ECM were identified, including, integrin linked kinase, focal adhesion 

kinase, cadherin, angiogenesis, TGF beta and matrix metalloproteinase pathways 

(Supplemental Figure 2.1A). Additionally, gene ontology analysis of cellular 
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localization revealed significant enrichment of proteins found in focal adhesions, 

extracellular exosomes and the ECM (Supplemental Figure 2.1B). Thus, activation of 

canonical Wnt signaling in Ewing sarcoma cells leads to a significant increase in the 

transcription of genes that encode ECM proteins as well as other proteins that play key 

roles in tumor: TME interaction and crosstalk.  

 

Identification of secreted proteins in Ewing sarcoma using label free mass 

spectrometry 

ECM proteins in the local TME of solid tumors are most often secreted by tumor-

associated fibroblasts and other non-malignant stromal cells (1). However, unlike many 

other solid tumors, non-tumor stromal cells are infrequently detected in Ewing sarcoma 

biopsies (13). This led us to speculate that the composition of the ECM in Ewing 

sarcoma may be largely determined by proteins that are secreted by the tumor cells 

themselves. Furthermore, in light of our observation that activation of canonical Wnt 

signaling induces transcription of ECM-encoding genes, we hypothesized that Wnt 

activation would alter the Ewing sarcoma secretome. In order to address this 

hypothesis, we used tandem mass spectrometry to define the secretomes of control and 

Wnt-activated Ewing sarcoma cells. TC32 and CHLA10 cells were chosen for these 

studies given that both are well-established Ewing sarcoma cell lines that grow as 

adherent monolayers on uncoated tissue culture plates. They were also found to 

generate less cell debris when exposed to serum free conditions than other Ewing 

sarcoma cell lines and to robustly activate TCF-dependent transcription in response to 
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Wnt3a (see Figure 2.3 below).  An outline of the experimental approach is summarized 

in Figure 2.1.  

 

 

Figure 2.1 Identification of secreted proteins in Ewing sarcoma using label free mass 
spectrometry. Both TC32 and CHLA10 were treated with either vehicle (PBS) or recombinant 
human Wnt3a (100 ng/uL) once a day for 5 days prior to collection of media. Cell debris was 
monitored over time and only replicate cultures with excellent cell viability and minimal debris in 
the conditioned culture medium were collected for analysis. Media was collected gently to 
minimize cell rupture. All conditions were collected in triplicate and cell debris removed by 
centrifugation. Conditioned media was then concentrated and submitted for Tandem mass 
spectrometry and subsequent protein identification using Swissprot. 
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Conditioned media from control and experimental cells was analyzed by mass 

spectrometry, as described above, and the overall distribution of proteins identified 

across all conditions was first quantified. Since we used unlabeled mass spectrometry, 

all quantification was done using spectral counting and peptide-spectra-match (PSM) 

counts for each protein (17). The total number of proteins identified in the conditioned 

media was 2336 proteins for TC32 and 857 for CHLA10 cells (Supplemental Table 1). 

One caveat of using mass spectrometry for secretome analysis of conditioned media is 

that many proteins can be detected that are not considered part of the secretome. 

These proteins include those that are present in the media as a result of cell rupture, 

cell shedding, as debris from dying cells, or simply due to their overwhelming 

abundance in cultured cells. To address this key issue, and to minimize assignment of 

non-secreted proteins to the defined secretome, we gently collected conditioned media 

from the culture dishes without disrupting the cell monolayers and removed any cellular 

debris by centrifugation prior to mass spectrometry analysis. Next, we utilized four 

independent computational methods to analyze the mass spectrometry data to further 

ensure that the data represented secreted proteins. Four different analytic tools have 

been developed to rigorously assign identified proteins to the secretome: Human 

Protein Atlas, SignalP4.0, Phobius, and SPOCTOPUS (18-21). These tools predict the 

likelihood of a detected protein being secreted based on presence of a signal peptide 

sequence and absence of a transmembrane domain. Following application of these 

computational tools, 543 of 2336 (23%) proteins were identified as secreted proteins in 

the conditioned media of TC32 cells. For CHLA10 cells, 259 of the 857 (30%) proteins 

were classified as secreted. This proportion of secreted proteins in conditioned media is 
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consistent with prior reports and, thus, the reproducible protein data are likely to be 

highly representative of the Ewing sarcoma secretome (22, 23). Alignment of the 

secreted proteins to all proteins encoded by the human genome confirmed highly 

significant enrichment for proteins in the “extracellular region” and “extracellular space” 

compartments, with FDR of 6.03E-72 and 2.47E-68 respectively, validating their 

designation as secreted proteins. Finally, to ensure that the designation of proteins to 

the secretome was not biased in favor of either low- or high- abundance proteins, we 

compared the distribution of spectral counts from the list of secreted proteins to the list 

of all proteins identified. A similar range of counts was evident across both the total and 

the secreted protein lists, confirming that we had identified an unbiased list of proteins 

that belong to the Ewing sarcoma secretome (Supplemental Figure 2.2). This 

computationally-validated list of secreted proteins was used for all further analyses and 

validation studies (Supplemental Table 2).  

 

Defining the baseline Ewing sarcoma secretome  

Having defined the identities of secreted proteins in the conditioned media of 

cultured Ewing sarcoma cells we next sought to define the nature of these proteins in 

the two different cell lines in basal conditions. To our knowledge, the Ewing sarcoma 

secretome has not previously been characterized. Under basal conditions, 138 and 85 

proteins were identified as being secreted into the media by TC32 and CHLA10 cells, 

respectively (Figure 2.2A and Supplemental Table 3). Principal component analysis of 

the data highlights that the secretome signature differs between the two cell lines, and 

that reproducibility between biologic replicates is high (Figure 2.2B). Interestingly, 
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however, over a third of proteins in the TC32 secretome and two-thirds of proteins in the 

CHLA10 secretome were shared, indicating that, despite some overall heterogeneity, 

there is evidence of a common secretome. Specifically, 56 proteins were reproducibly 

secreted by both Ewing sarcoma cell lines under basal, serum-free conditions 

(Supplemental Table 3). In addition, seven of the 20 most abundantly secreted proteins 

in each cell line, based on total PSM number, were shared (Figure 2.2C). Pathway 

analysis of the commonly secreted 56 proteins revealed enrichment for proteins 

involved in IGF transport, extracellular matrix organization, and elastic fiber formation 

(Figure 2.2D). This is especially interesting given that many insulin-like growth factor 

(IGF) family members are targets of the pathognomonic EWS-FLI1 fusion and that 

alterations in IGF signaling are characteristic of Ewing sarcoma (24, 25). In addition, 

fibronectin, a major component of the ECM, was robustly secreted by both cell lines 

demonstrating that a primary source of fibronectin in the local Ewing sarcoma TME is 

the tumor cells themselves (26, 27). Thus, from these data we conclude that modulators 

of IGF pathway signaling and ECM composition and organization are reproducibly and 

abundantly secreted by Ewing sarcoma tumor cells. 
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Defining the Wnt-dependent Ewing sarcoma secretome 

Having defined the basal secretomes of both TC32 and CHLA10 cells we next 

sought to assess the impact of canonical Wnt-activation. We previously observed that 

the response of Ewing sarcoma cells to exogenous Wnt3a ligand is highly 

Figure 2.2 The baseline Ewing sarcoma secretome. A. Venn diagram showing the 
intersection between proteins identified at baseline in TC32 and CHLA10. 56 of the proteins 
were found in both samples. B. Principal component analysis of three TC32 and three 
CHLA10 replicates with vehicle treatment only. C. Total PSMs were added among all three 
replicates for each cell line and then ranked in descending order based on total PSM. 7 of the 
top 20 most abundant proteins were shared among both cell lines and are displayed here. D. 
Proteins present at baseline in both TC32 and CHLA10 were subject to pathway analysis 
using the reactome database. Top 10 pathways are shown here and all pathways have FDR < 
1%.  
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heterogeneous (14). Thus, we used flow cytometry analysis of TCF/LEF-GFP reporter 

cells, as previously described (14), to validate the extent of canonical Wnt signaling in 

Ewing sarcoma cells following the defined five-day exposure to Wnt3a. As shown, 

approximately one-third of cells in both TC32 and CHLA10 cell lines demonstrated 

activation of Wnt/beta-catenin-dependent transcription under the experimental 

conditions (Figure 2.3A). In addition, parallel analysis of mRNA from the same cultures 

confirmed robust and reproducible upregulation of the previously validated Wnt/beta-

catenin target genes, LEF1, NKD1, and AXIN2, in Wnt-activated samples (Figure 

2.3B).  

Similar to the basal secretomes, the Wnt-activated secretome of TC32 contained 

more proteins than that of CHLA10.  Whereas 170 secreted proteins were identified in 

the conditioned media of TC32 cells, 70 proteins were identified in the CHLA10 

secretome. Principal component analysis again confirmed that the Wnt-activated 

secretomes differed between the two cell lines (Figure 2.3D). Nevertheless, 50 proteins 

were again shared (Supplemental Table 4), including IGFBP2, fibronectin, as well as 

other proteins that were also abundant in basal conditions (Figure 2.3E), Notably, two 

proteins that are integral to ECM composition and bone remodeling, collagen type 1 

alpha 2 chain (COL1A2) (28) and secreted protein acidic and cysteine rich (SPARC) 

(29), were among the most abundant and reproducibly secreted under conditions of 

canonical Wnt activation (Figure 2.3E). Consistent with basal secretomes, analysis of 

the 50 shared proteins in Wnt-activated secretomes revealed enrichment for pathways 

involved in IGF signaling as well as ECM composition, organization, and degradation 

(Figure 2.3F).  
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Figure 2.3 The wnt-dependent Ewing sarcoma secretome. A. Cells were transduced with 
7TGP plasmid (plasmid #24305 from Addgene). Cells were treated for 5 days with Wnt3a (100 
ng/uL) once a day prior to collection of cells for flow cytometry analysis. Analysis was run in 
triplicate and percentage of GFP positive cells are shown. Statistical significance was determined 
using student’s t-test and *** = p-value <.0001. B. qRT-PCR validation of established Wnt targets 
in Ewing sarcoma. LEF1, NKD1, and AXIN2 were all upregulated in all replicates submitted for 
mass spectrometry. C. 170 proteins were identified to be secreted in TC32, 70 were identified in 
CHLA10, and 50 were identified in both cell lines. D. Principal component analysis of the Wnt-
activated secretomes of each cell line. E. The total PSMs were added together for all three 
replicates of Wnt3a treatment and ranked in descending order based on total PSM. Of the top 20 
proteins in each cell line, 7 were secreted by both cell lines. These proteins are shown here. F. 
Proteins present in both TC32 and CHLA10 were subject to pathway analysis using the reactome 
database. Top 10 pathways are shown here and all pathways have FDR < 1%.  
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Wnt activation in Ewing sarcoma cells promotes secretion of proteins that alter 

the composition and structure of the ECM. 

Next, we assessed each cell line independently to determine if secretion of 

individual proteins changed in response to Wnt/beta-catenin activation. Total PSMs 

were used to determine differential expression between control and Wnt3a-treated 

samples. Differentially expressed proteins were defined as proteins that had a local 

FDR < 10% (computed using QPROT), a fold change score of >2 or <0.5, and detection 

of at least 2 unique peptides (see methods for further details) (30). Using these very 

stringent criteria, we identified significant changes in the secretomes of both cell lines 

following activation of canonical Wnt signaling. Specifically, TC32 cells showed altered 

secretion of 33 proteins, 27 of which were upregulated (Figure 2.4A). In CHLA10 cells, 

Wnt/beta-catenin activation led to altered secretion of 16 proteins with 14 of these 

having increased secretion (Figure 2.4B). Shared proteins with Wnt-dependent 

increases in secretion were Wnt3a, TNC, pro-enkephalin (PENK), and members of the 

proprotein convertase subtilisin/kexins family (PCSK2 and PCSK9). Given that Wnt3a 

was added to the media for these experiments, it is important to note that it was 

identified in both lists, confirming the validity of the analysis and serving as an internal 

quality control.  

In order to better understand the nature of Wnt-dependent secretome, and to remove 

bias associated with a priori assignment of significance based on fold change, we 

performed Gene Set Enrichment Analysis (GSEA) on the ranked list of detected 

proteins and searched against the KEGG and Reactome databases (31). GSEA 

revealed the Wnt-dependent secretome to be enriched, in both cell lines, for proteins 
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that play key roles in ECM organizational structure and ECM: cell receptor interactions 

(Supplemental Figure 2.3). Notably, 5 of 27 proteins with increased secretion in 

Wnt/beta-catenin activated TC32 cells are structural proteins (COL1A1, COL1A2, 

COL3A1, COL5A1, and LAMA5), and another 9 have been published to play a role in 

collagen fibril and extracellular matrix organization (BGN(32), TGFBI(33-35), CTGF(36), 

MATN3(37), ADAM9 (38), MMP19(39), FMOD (28), LUM (28, 40) and TNC (41-43)). 

Thus, these data show that the secretome of TC32 cells is particularly responsive to 

canonical Wnt activation, and secretion of structural proteins that contribute to ECM 

organization and remodeling is significantly increased. Interestingly, the secretome of 

CHLA10 cells, an inherently highly metastatic cell line (44), contained abundant 

collagens at baseline and secretion was not further induced by Wnt stimulation 

(Supplemental Table 2).   
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To validate our findings, we used orthogonal methods to assess the impact of 

Wnt/beta-catenin activation on expression and secretion of TNC and collagen I. Both of 

these ECM proteins are well-established mediators of tumor engraftment and 

metastasis (43, 45). We previously showed that stimulation of Ewing sarcoma cells with 

Figure 2.4 Stimulation 
with Wnt3a changes the 
Ewing sarcoma 
secretome. Volcano plots 
showing the Log2(Fold 
Change Score) vs. -
Log10(localFDR). Red dots 
indicate proteins that were 
not differentially secreted 
and blue dots indicate 
proteins that were 
considered to be 
differentially secreted. 
Proteins that were 
considered differentially 
secreted have Fold 
Change Score >2 or <.5 
and QPROT computed 
local FDR of differential 
expression <.1 (indicated 
by the black dashed lines). 
We also have noted that 
FDR <.05 results in 16 
differentially secreted 
proteins in TC32 and 5 in 
CHLA10 (proteins that are 
above the blue dashed 
line). An FDR <.01 results 
in 8 proteins in TC32 and 2 
in CHLA10 to be 
differentially secreted 
(proteins that are above 
the red dashed line).  
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Wnt3a for 48 hours leads to a two-fold increase in expression of TNC mRNA (14). 

Analysis of cells following the five-day stimulation protocol used for secretome analysis 

confirmed robust upregulation of TNC mRNA to greater than five-fold (Figure 2.5A). 

Expression of the COL1A1 transcript was also induced (Figure 2.5B). Next, we sought 

to validate whether activation of Wnt/beta-catenin in tumors in vivo is also associated 

with increased expression of these ECM protein-encoding genes. To achieve this we 

interrogated three independent, publicly available databases (13, 46, 47) and assessed 

correlations between expression of LEF1 and TNC and COL1A1 in primary patient 

tumors. We have previously shown that LEF1 is a robust biomarker of Wnt/beta-catenin 

activation in Ewing sarcoma cells and tumors (14). As shown, expression of TNC was 

significantly positively correlated with LEF1 in all datasets and COL1A1 correlated with 

LEF1 in two of the three patient cohorts (Figure 2.5C).  As a control, we tested 

correlations of two other ECM protein-encoding genes, FBLN1 and LTBP3, whose 

protein products were detected in the Ewing sarcoma secretome but were not impacted 

by Wnt activation (Supplemental Table 2). As shown, expression of neither of these 

genes correlated with LEF1 in any of the three primary Ewing sarcoma datasets (Figure 

2.5C).  Thus, these data support the conclusion that, consistent with their response in 

vitro, activation of Wnt/beta-catenin in Ewing sarcoma cells in vivo leads to upregulated 

expression of the ECM protein-encoding genes TNC and COL1A1.  

Finally, we sought to directly validate our mass spec findings that TNC and 

collagen I are secreted by Ewing sarcoma cells. To achieve this, we performed western 

blot on concentrated conditioned media collected from independent experiments. As 

shown, increased secretion of TNC was evident in the conditioned media of both TC32 
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and CHLA10 cells following Wnt3a stimulation (Figure 2.5D). Likewise, an increase in 

collagen I secretion was detected in the conditioned media of Wnt-stimulated TC32 cells 

(Figure 2.5E). Consistent with our mass spec results, Collagen I was readily detected in 

the media of Wnt-activated CHLA10 cells, but was not increased beyond the high levels 

that were already secreted under basal conditions (Figure 2.5E).  

 Together these studies confirm that activation of Wnt/beta-catenin signaling in 

Ewing sarcoma cells leads to increased expression and secretion of ECM proteins that 

have the potential to impact on tumor progression by altering tumor: TME crosstalk.  

 

Figure 2.5 Activation of Wnt/beta-
catenin is associated with high 
expression of TNC and COL1A1 in 
Ewing sarcoma patients. A. qRT-
PCR of TNC expression after 5 days 
of treatment with Wnt3a. B. qRT-
PCR of COL1A1 expression after 5 
days of treatment with Wnt3a. C. 
Confidence intervals for pearson 
correlation of LEF1 with TNC, 
COL1A1, FBLN1, and LTBP3 from 
microarray analysis of three different 
patient cohorts, Volchenbaum 2015 
(13), Postel Vinay 2012 (46), and 
Savola 2009 (47). The number of 
unique patient tumors in each 
dataset is shown (legend on right). 
D. Validation of increased secretion 
of TNC by Ewing sarcoma cells post 
Wnt3a treatment (western blot of 
conditioned media). Note that 
although TNC is expressed by 
Ewing sarcoma cells, its presence is 
not robustly detected in the 
secretome in the absence of Wnt3a 
stimulation. Statistical significance 
was determined using student’s t-
test with *= p-value < .05 and ** = p-
value <.001.  E. Validation of 
increased secretion of COL1A1 post 
Wnt3a treatment in TC32 and high 
basal levels in CHLA10.  
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Discussion 
 

Secreted proteins play a role in every hallmark of cancer and are critical to tumor 

progression (6). Our data show that under basal, non-stimulated conditions, Ewing 

sarcoma cells secrete abundant proteins that play key roles in modulation of IGF 

signaling and the composition of the local tumor ECM. In addition, we find that, upon 

activation of Wnt/beta-catenin, Ewing sarcoma cells alter their secretomes in a manner 

that leads to increased secretion of matricellular and structural ECM proteins. We 

previously reported that activation of Wnt/beta-catenin signaling in Ewing sarcoma cells 

leads to an increase in expression of TNC, and that this is associated with enhanced 

engraftment and metastatic potential (14). In the current study we have confirmed that, 

not only is TNC expression upregulated, but that its secretion by tumor cells into the 

local TME is robustly increased. TNC interacts with FN1, another abundant ECM protein 

detected in our secretome analysis. TNC contains up to 17 FNIII repeats and is able to 

bind to the FNIII domain of FN1 through syndecan 4 (48). Thus, the increase in TNC 

secretion is expected to alter the physical interaction between TNC and FN1, resulting 

in altered TME structure. TNC has previously been reported to play a role in 

establishing the pre-metastatic niche in breast cancer, in addition to being highly 

expressed in the secretome of aggressive colorectal cancers (49, 50). Thus, these 

studies lend evidence to support the hypothesis that Wnt/beta-catenin dependent 

activation of TNC contributes to the metastatic phenotype of Ewing sarcoma by altering 

the local ECM.  

Despite inter-tumor heterogeneity, our studies of two different cell lines revealed 

substantial overlap in secreted proteins. We particularly noted the presence of members 



 
 

 53 

the IGF pathway. The IGF1-receptor is necessary for EWS-FLI1-induced malignant 

transformation and activation of IGF signaling contributes to tumor initiation and 

progression  (24, 25, 51). We detected abundant secretion of IGF family members, 

specifically IGFBPs, in the Ewing sarcoma secretome, and the overall level of secretion 

did not change under conditions of Wnt/beta-catenin activation. Interestingly, however, 

Wnt/beta-catenin activation did lead to a reproducible increase in secretion of the 

IGFBP protease, pappalysin-1 (PAPPA) (Fold change scores 2.2 and 3.0 for TC32 and 

CHLA10 cells, respectively). PAPPA cleaves IGFBPs, thereby releasing IGF ligands, 

and promoting activation of the IGF signaling axis (52).  Thus, a Wnt-dependent 

increase in PAPPA secretion could increase in the availability of IGF ligands in the local 

TME and activate IGF signaling in tumor cells. Despite its tremendous potential as a 

therapeutic target, and clear evidence of efficacy in preclinical models, the efficacy of 

IGF1-R targeted therapies in clinical trials has been mixed with response rates ranging 

from 10-14% in three independent clinical trials (53-55). To date, it is not known why 

some patients are so responsive to anti-IGF1-R strategies, nor how to identify them 

(56). Intriguingly, in a phase II study of 115 patients with relapsed or refractory Ewing 

sarcoma, 10 of 11 responses occurred in patients with bone tumors, suggesting that 

there may be something about bone tumor microenvironment that sensitizes tumors to 

IGF1 pathway targeted therapy (55). Given the high level of canonical Wnt ligands that 

are present in the bone, we speculate that activation of Wnt/beta-catenin in bone Ewing 

sarcoma cells may alter their secretome, resulting in an altered TME, promotion of IGF1 

pathway activation, and enhanced sensitivity to anti-IGF approaches.  
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In addition to IGFBPs, FN1 and other proteins involved in elastic fiber formation 

were abundantly secreted by Ewing sarcoma cells. This is consistent with earlier reports 

that Ewing sarcoma cells synthesize fibronectin, collagens, and laminin (26, 27). 

Notably, in the Wnt-activated secretomes, we detected further abundance of proteins 

that contribute to the structure and composition of the ECM. In particular, secretion of 

collagens as well as other glycoproteins involved in mediating collagen fibril formation ( 

i.e. TNC, BGN, TGFBI, LUM, MATN3, ADAM9, MMP19, and FMOD) was significantly 

increased in TC32 cells, a cell line in which canonical Wnt activation results in 

enhanced metastatic engraftment (14). Changes in the structural and biochemical 

properties of the ECM play fundamental roles in cancer progression (2). Not only does 

changing the biochemical properties lead to aberrant alterations in classical signaling 

pathways, such as TGF-beta and Wnt signaling (57, 58), but changes in synthesis, 

deposition, and degradation of ECM components, including collagen I, III, and V, are 

able to further promote tumor progression (59). Hayashi et al., recently reported that 

inhibition of canonical Wnt signaling in Ewing sarcoma cells resulted in an increase in 

metastasis-free survival in orthotopic bone tumor models and this was associated with 

decreased expression of COL1A2 and COL3A1 (60). Moreover, in the current study, 

COL1A1, COL1A2, COL3A1, and COL5A1 were abundant in CHLA10 secretomes, 

under both basal and Wnt-activated conditions. CHLA10 is an inherently metastatic cell 

line (44), irrespective of Wnt-activation, leading us to speculate that secretion of 

collagens by Ewing sarcoma cells may be a key determinant of their metastatic 

potential. Indeed, the propensity of undifferentiated soft tissue sarcomas to metastasize 

is, in part, dependent on modification and organization of collagens in the local TME 
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(61). Further experiments are now needed to understand the contribution of altered 

collagen secretion and organization to metastatic progression of Ewing sarcoma. 

In summary, through an unbiased proteomics approach we have defined the 

Ewing sarcoma secretome, under both basal and Wnt/beta-catenin activated conditions. 

Our findings demonstrate that Ewing sarcoma cells secrete numerous proteins that 

modulate IGF signaling as well as ECM composition and structure, and that activation of 

the canonical Wnt pathway leads to increased secretion of ECM matricellular and 

structural components. These findings support the conclusion that activation of 

canonical Wnt signaling in Ewing sarcoma cells leads to changes in the local TME that 

have the potential to impact on tumor crosstalk and metastatic progression. 

 

Materials and Methods 
 
Cell lines  
 

Ewing sarcoma cell line TC32 was maintained in RPMI 1640 media (Gibco) 

supplemented with 10% FBS (Atlas Biologicals) and 2mmol/L-glutamine (Life 

Technologies. CHLA10 was maintained in IMDM media (Fisher Scientific) 

supplemented with 20% FBS, 2mmol/L-glutamine, and 1X Insulin-Transferrin-Selenium 

(Gibco). Both cell lines are late passage cell lines and were obtained from the Children’s 

Oncology Group (COG) cell bank (cogcell.org).  Identity of all cell lines was confirmed 

by STR profiling and absence of mycoplasma was confirmed within 6 months of the 

experiments performed in this manuscript.  

 

Biological annotation of the differentially expressed transcripts 
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In order to understand the biological functions of the transcripts that were 

differently expressed in Wnt3a treated samples compared to that of the baseline group, 

we used the Genomatics software suite. The signal transduction pathway enrichment 

analyses were done using the Genomatix Pathway System (GePS) tool 

(www.genomatix.de/) embedded in Genomatix software. GePS uses information 

extracted from public and proprietary databases to display canonical pathways or to 

create networks based on literature data. Cellular compartment was determined using 

DAVID 6.8 (updated October 2016). All genes identified to be upregulated by Wnt3a+/-

RSPO2 in our previously published work ((14) GSE75859) were compared against the 

human genome. All cellular compartments shown have FDR < 1%.  

 

Experimental Design and Statistical Rationale 
 

Cells were either treated with vehicle (PBS, Life Technologies) or 100 ng/uL of 

recombinant Wnt3a (Wnt3a; R&D Systems). Cells were treated once a day for three 

days in media with full serum prior to changing to either RPMI or IMDM lacking FBS. 

Cells were cultured in 15 cm dishes for all experiments and media was collected from a 

single dish for each biologic replicate. Cells were then treated once a day for two 

additional days before media was collected. Protein in the media was concentrated 

using three kilodalton cutoff Amicon Ultra Centrifugal Filter Units (Fisher). Protein 

concentration was measured using the DC Protein Assay (Bio-Rad). Two cell lines were 

used for analysis with each condition. For each cell line, three replicates of control 

(vehicle treated samples) were compared against three replicates of Wnt3a treated 
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samples. All samples for each cell line were processed at the same time to account for 

batch effect.  

 

Protein Identification by LC-tandem Mass Spectrometry 
 

Equal amounts of proteins (50 ug) were used for processing.  Cysteines were 

reduced with 10 mM DTT at 55 °C for 30 min and alkylated using 50 mM 

chloroacetamide (RT, 30 min).  Digestion with 500 ng of sequencing grade, modified 

trypsin (Promega) was carried out overnight at 37 °C.  Reaction was terminated by 

acidification with trifluoroacetic acid (0.1% v/v) and peptides were purified using SepPak 

C18 cartridge following manufacturer’s protocol (Waters Corp).  An aliquot of the 

resulting peptides (~2 ug) were resolved on a nano-capillary reverse phase column 

(Acclaim PepMap C18, 2 micron, 50 cm, ThermoScientific) using 0.1% formic 

acid/acetonitrile gradient at 300 nl/min (2-25% acetonitrile in 105 min; 25-40% 

acetonitrile in 20 min followed by a 90% acetonitrile wash for 10 min and a further 30 

min re-equilibration with 2% acetonitrile) and directly introduced in to Q Exactive HF 

mass spectrometer (Thermo Scientific, San Jose CA).  MS1 scans were acquired at 

60K resolution (AGC target=3e6, max IT=50ms).  Data-dependent high-energy C-trap 

dissociation MS/MS spectra were acquired for the 20 most abundant ions (Top20) 

following each MS1 scan (15K resolution; AGC target=1e5; relative CE ~28%).  Data 

was analyzed using Proteome Discoverer (v2.1, Thermo Scientific). Proteins were 

identified by searching the data using Sequest HT against Homo sapiens (Swissprot, 

v2016-11-30, database includes 20,213 proteins) appended with common contaminants 

(100 total proteins). Search parameters included MS1 mass tolerance of 10 ppm and 
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fragment tolerance of 0.2 Da; the protease used was trypsin; two missed cleavages 

were allowed; carbamidimethylation of cysteine was considered fixed modification and 

oxidation of methionine, deamidation of asparagine and glutamine, phosphorylation of 

serine, threonine and tyrosine were considered as potential modifications.  False 

discovery rate (FDR) was determined using Percolator and proteins/peptides with a 

FDR of ≤1% were retained for further analysis. 

 

Identification of Secreted Proteins  
 

In order to gather more information about the nature of the identifications, the 

predicted proteins were initially mapped to the Human Protein Atlas (HPA) Secretome 

and Proteome (18). HPA maintains a list of genes and proteins annotated as potentially 

secreted based on several inputs, including results from 3 bioinformatics applications 

(SignalP (19), Phobius (20), and SPOCTOPUS (21)) and one large-scale study (18). 

Proteins found in any of these lists were then classified as secreted and subject to 

further analysis.  

 

Statistical Analysis and Interpretation of Results 
 

Differential protein expression of proteins identified to be secreted in both vehicle 

and Wnt3a treated samples were analyzed by QPROT as described previously in (30). 

QPROT is developed specifically for modeling protein abundances in label free 

proteomics estimated using either MS1 intensity or the number of MS2 peptide-spectral-

matches (PSMs). Proteins were considered to be statistically significant if they had fold 

change scroe >2 or < .5 and local FDR as computed by QPROT of < 10%.  The fold 
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change score was calculated by averaging the total PSMs across all replicates in Wnt 

plus another factor (in this case we used 1) divided by the average PSMs across all 

replicates in PBS plus the same factor. Any proteins that had <2 unique peptides, and 

were only identified in 1 of 6 replicates, were not considered differentially secreted. 

Gene set enrichment analysis  (GSEA) was conducted using the GSEA v2.1.0 software 

(31). Gene ontology for secreted proteins of non-Wnt activated cells was performed 

using DAVID 6.8 with the human genome as the background. Pathway analysis for the 

baseline secretome and Wnt-activated secretome was done using the Reactome 

pathway knowledgebase (62).   

 

Quantitative real-time PCR  
 

Total RNA was extracted from cells at the same time as protein collection using 

Quick-RNA MicroPrep (Zymo Research) and cDNA was generated using iScript (Bio-

Rad). Quantitative real-time PCR (qRT-PCR) was performed using universal SYBR-

Green Supermix (Bio-Rad) for designed primers. Analysis was performed in triplicate 

using the Light-Cycler 480 System (Roche Applied Science) and average Cp values 

were normalized relative to the geometric mean of the two housekeeping genes 

GAPDH and HPRT. The following primers were used: LEF1 forward – 

5’TGGATCTCTTTCTCCACCCA3’ and reverse – 5’CACTGTAAGTGATGAGGGGG3’, 

NKD1 forward – 5’TCGCCGGGATAGAAAACTACA3’and reverse – 

5’CAGTTCTGACTTCTGGGCCAC3’, AXIN2 forward – 5’AAGTGCAAACTTTCGCCAAC 

and reverse – 5’ACAGGATCGCTC CTCTTGAA, HPRT forward - 

5’TGACACTGGCAAAACAATGCA3’ and reverse – 
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5’GGTCCTTTTCACCAGCAAGCT3’, GAPDH forward – 

5’TGCACCACCAACTGCTTAGC3’ and reverse – 5’GGCATGGACTGTGGTCATGAG3’, 

TNC forward – 5’GCAGCTCCACACTCCAGGTA3’ and reverse – 

5’TTCAGCAGAATTGGGGATTT3’, and COL1A1 forward – 

5’CTGGACCTAAAGGTGCTGCT3’ and reverse – 5’GCTCCAGCCTCTCCATCTTT3’. 

 

Flow Cytometry 
 

Stably transduced 7xTcf-eGFP (7TGP) (14) TC32 and CHLA10 cells were 

stimulated with Wnt3a (100ng/mL) once a day for 5 days prior to collecting cells to 

measure GFP fluorescence. Fluorescence was measured and quantified on an Accuri 

C6 cytometer (BD Biosciences). 

 

Western Blots  
 

Western blot analysis was performed using the Bio-Rad Mini-PROTEAN Tetra 

System. Following transfer, nitrocellulose membranes were blocked in 5% BSA in TBS-

T for 1 hour. Membranes were washed once with TBS-T and then incubated overnight 

at 4o C with either mouse-anti human Tenascin C (1:500, Sigma T2551) or rabbit-anti 

Collagen 1 (1:1000, Abcam ab34710). Membranes were then washed three times in 1X 

TBS-T for 5 minutes each and then incubated with secondary antibody IRDye 800CW 

goat anti-mouse (1:10,000, LiCor) or IRDye 800CW goat anti-rabbit (1:10,000, LiCor) for 

1 hour. They were then washed two times with 1X TBS-T and once with 1X TBS for 5 

minutes prior to scanning the membrane using the LiCor Imaging system.  
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Gene expression in Ewing sarcoma patient tumors  
 

Pearson correlation coefficients of gene expression and associated confidence 

intervals in primary patient tumors were determined using three previously reported, 

independent datasets: GSE 63157 (13), GSE 34620 (46), and GSE 17679 (47). Only 

data from patient tumors were extracted from the GSE17679 dataset and the average 

value for duplicate assays from each of 44 unique patient tumors was used. 
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Chapter 3: Cooperation between canonical Wnt and TGF-beta pathways promotes 

sarcoma angiogenesis 

Summary 
 

Local and metastatic progression of solid tumors depends on crosstalk between 

tumor cells and the tumor microenvironment (TME), including both stromal cells and the 

extracellular matrix (ECM). We recently showed that high Wnt/beta-catenin activity in 

Ewing sarcoma correlates with diminished patient survival and that canonical Wnt 

signaling alters the tumor secretome, influencing ECM protein composition. In light of 

this, we investigated the hypothesis that Wnt/beta-catenin supports tumor progression 

by modulating tumor: TME crosstalk. Our results reveal that, in discrete tumor cell sub-

populations, beta-catenin activation sensitizes cells to TGF-beta ligands, resulting in 

canonical Wnt-induced, TGF-beta-dependent upregulation of TGF-beta targets, 

including numerous AngioMatrix proteins that are known to alter the TME to promote 

angiogenesis. Studies of Ewing sarcoma models, in vitro and in vivo, as well as primary 

tumor tissues, confirm that a direct relationship exists between beta-catenin activation in 

tumor cells and angiogenesis in the local TME. Mechanistically, this is due, in part, to 

tenascin C-mediated promotion of endothelial cell proliferation. Thus, functional 

cooperation between canonical Wnt and TGF-beta signaling in Ewing cells induces 

secretion of pro-angiogenic factors. Together, these studies illustrate the critical 
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contribution of tumor cell heterogeneity and tumor: TME crosstalk to sarcoma 

progression. 

 

Introduction 
 

Tumor growth and metastatic progression is dependent on the local “soil” or 

tumor microenvironment (TME), as posited in the seed and soil hypothesis put forth by 

Stephen Paget in 1889 (1). Together, the tumor and the local TME, comprised of 

secreted proteins, infiltrating non-cancerous cells, and blood vessels, create an 

ecosystem that is conducive to supporting tumor growth. Creation of this supportive 

niche is dependent on composition and structure of the local extracellular matrix (ECM) 

(1). Recent findings from our group and others have shown that activation of the 

Wnt/beta-catenin pathway in Ewing sarcoma is associated with alterations in the local 

TME and transition to a metastatic phenotype (2-5). Additionally, gene expression 

profiling of primary, localized tumors supports a role for the TME in driving metastasis, 

revealing the critical contribution of the TME to clinical outcomes in Ewing sarcoma (6).  

Ewing sarcomas are aggressive bone and soft tissue tumors with peak incidence 

in adolescents and young adults (7). Pathologically, they are defined by an 

undifferentiated cellular histology and characteristic chromosomal translocations that 

give rise to EWS-ETS fusion proteins, the most common of which is EWS-FLI1 (8). 

EWS-ETS fusions are critical for the initiation, maintenance, and progression of this 

tumor, and they often represent the sole identifiable genetic lesion (9-11). Nevertheless, 

although most primary Ewing sarcoma tumors harbor quiet genomes, the clinical 

outcomes differ widely among patients and nearly a third of patients ultimately succumb 
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to disease recurrence and metastatic progression (7, 9). To date, the mechanisms that 

contribute to disease progression remain poorly understood, and this gap in knowledge 

has impeded the development of novel therapeutic strategies and prognostic 

biomarkers (12, 13).   

The canonical Wnt/beta-catenin signaling pathway is critical for embryogenesis 

and normal development, but is co-opted in numerous tumors to promote proliferation, 

survival, and metastasis (14). Extracellular canonical Wnt ligands bind to cell surface 

receptors, resulting in activation of an intracellular signaling cascade that culminates in 

stabilization and nuclear localization of beta-catenin. Once in the nucleus, beta-catenin 

partners with the TCF/LEF family of transcription factors to activate transcription of cell-

type and context-dependent target genes that alter cellular phenotypes (14).  In Ewing 

sarcoma cells, activation of the canonical Wnt-dependent transcriptome promotes 

transition from a proliferative to a more migratory and metastatic state, a phenotypic 

switch that is associated with tumor cell-autonomous changes in the cytoskeleton (5, 

15). Paradoxically, this activation of Wnt/beta-catenin partially antagonizes the EWS-

ETS-dependent transcriptome, suggesting that these competing transcriptional 

programs modulate cell plasticity between non-motile and motile cell states (5). In 

addition, we recently reported the potential for tumor cell non-autonomous functions for 

Wnt/beta-catenin signaling in Ewing sarcoma progression. We showed that activation of 

the canonical Wnt pathway induces secretion of ECM and ECM associated proteins that 

alter the composition of the local TME. Specifically, we reported increased secretion of 

Tenascin C (TNC), a matricellular protein reported to mediate metastasis in Ewing 
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sarcoma (5), breast cancer (16), colorectal cancer (17), and many other solid tumors 

(18).  

The exact mechanism through which Wnt dependent changes in the 

transcriptome and secretome contribute to changing tumor: TME crosstalk and 

metastatic progression remains to be elucidated. In the current study, we investigated 

the functional consequences of Wnt/beta-catenin activation on tumor: TME crosstalk. 

Our results have uncovered a previously unknown role for cooperation between 

canonical Wnt and TGF-beta pathways in mediating a pro-angiogenic TME in Ewing 

sarcoma. 

 

Results 
 
Beta-catenin activation correlates with extracellular matrix and EMT gene 

signatures in primary tumors  

We previously showed that high expression of LEF1, a robust biomarker of 

Wnt/beta-catenin pathway activation in Ewing sarcoma, was associated with worse 

outcomes in patients who presented with localized disease (GSE63157) (5). These 

observations, together with our finding that Wnt/beta-catenin activation upregulates 

secretion of ECM proteins (3), led us to hypothesize that there may be a direct 

relationship between canonical Wnt pathway activation in Ewing tumor cells, the tumor 

microenvironment (TME), and disease progression. To address this hypothesis, we first 

evaluated whether a correlation exists in primary tumors between LEF1 expression and 

expression of genes that are important in tumor: TME interactions. Using a stringent 

cutoff of pearson correlation r > 0.5, we identified 376 and 688 genes that were 
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positively correlated with LEF1 in two independent patient cohorts of 46 (6) and 117 

(19) tumors, respectively (Table 3.1). Interrogation of these gene lists using the 

bioinformatics tool DAVID (20) revealed a striking enrichment for biologic processes 

involved in ECM organization, cell adhesion, and angiogenesis (Table 3.1). Moreover, 

unbiased gene set enrichment analysis (GSEA) of both datasets in their entirety (21), 

confirmed highly statistically significant and reproducible correlations between LEF1 and 

gene programs and signaling pathways that are crucial for tumor: TME interactions 

(Figure 3.1). Interestingly, in both independent patient cohorts, the top hit in the GSEA 

analysis ranked on LEF1 correlation was epithelial mesenchymal transition (EMT). 

Classically, in tumor biology EMT is limited to carcinoma cells and is induced in these 

epithelial-derived cells by the TGF-beta pathway (22). Significantly, however, recent 

studies have suggested that, despite their mesenchymal origins, some sarcoma cells 

exist in a metastable state, allowing for transition between more epithelial-like and more 

mesenchymal-like phenotypes (23). We therefore investigated whether the phenotypic 

plasticity of Ewing sarcoma cells, that we previously described in response to Wnt/beta-

catenin activation (5), is influenced by TGF-beta signaling.   

 

Wnt/beta-catenin leads to de-repression of the TGFBR2 locus and sensitizes cells 

to TGF-beta pathway activation 

Prior studies have shown that Ewing sarcoma cells are unresponsive to TGF-

beta ligand induced pathway activation as a consequence of EWS-FLI1-mediated 

repression of the core pathway receptor, TGFBR2 (24). We previously showed that 

activation of the Wnt/beta-catenin pathway antagonizes EWS-FLI1 activity, resulting in 
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de-repression of many EWS-FLI1 repressed genes (5). This led us to hypothesize that 

activation of canonical Wnt signaling in Ewing cells might lead to induction of TGFBR2, 

thereby sensitizing them to TGF-beta. To address this, we first measured TGFBR2 in a 

panel of Ewing sarcoma cell lines and confirmed expression to be very low relative to 

A549 lung adenocarcinoma cells (Figure 3.2A). Consistent with our hypothesis, 

interrogation of previously generated RNA-sequencing data (5) showed that the 

TGFBR2 transcript increased in Ewing sarcoma cells following exposure to Wnt3a 

conditioned media, and this was potentiated by the addition of R-spondin2 (Figure 

3.2B). We validated this finding in four different Ewing cell lines, wherein a reproducible 

Table 3.1. LEF1 correlated genes (Pearson r>0.5) in primary Ewing tumor biopsies are highly significantly 
enriched for biologic processes involved in tumor: TME interactions, including extracellular matrix 
organization, cell adhesion and angiogenesis. (Top 10 DAVID) 
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increase in TGFBR2 expression was observed following exposure to recombinant 

Figure 3.1. Beta-catenin activation correlates with extracellular matrix and 
EMT gene signatures in primary tumors. GSEA of whole transcriptome data from 
two independent primary tumor cohorts reveals genes that are highly correlated with 
LEF1 expression are enriched for extracellular matrix and EMT associated gene 
signatures. Top 4 most enriched gene sets are shown in (A) for GSE63157; N=46 
tumors, and in (B) for GSE34620; N=117 tumors.  
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Wnt3a (Figure 3.2C). To assess whether beta-catenin activation is also associated with 

TGFBR2 de-repression in vivo, we assessed the relationship between its expression 

and that of LEF1 in primary tumors. As shown, LEF1 expression positively and 

significantly correlated with TGFBR2 expression in both patient cohorts (Figure 3.2D & 

E). Thus, activation of canonical Wnt signaling in Ewing sarcoma cells leads to 

increased expression of TGFBR2. 

 

Having confirmed that Wnt/beta-catenin activation leads to de-repression of 

TGFBR2, we next sought to test whether these cells activate the TGF-beta signaling 

Figure 3.2. Wnt/beta-catenin leads to de-repression of the TGFBR2 locus. A. 
qRT-PCR analysis of baseline TGFBR2 expression in Ewing sarcoma (A673, 
CHLA9, CHLA10, TC32), embryonic kidney cells (293FT) (Negative control), and 
lung adenocarcinoma (A549) cell lines (Positive control) (N=3). B. RNA-seq 
analysis of TGFBR2 expression Ewing sarcoma cells (CHLA25) following 
exposure to Wnt3a conditioned media or Wnt3a+ R-spondin2 (GSE75859) (N=3). 
C. qRT-PCR of TGFBR2 expression in Ewing sarcoma cell lines following 
exposure to vehicle or recombinant Wnt3a (N=3). P-values were determined using 
student’s t-test. *p<0.05, ** p<0.005  D. & E. Expression of TGFBR2 is correlated 
with LEF1 in primary tumor biopsies. X and Y axes represent log2(signal intensity) 
of labeled gene. Correlation was determined using Pearson r calculation.  D: N=46 
tumors, E: N=117 tumors.  
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pathway in response to TGF-beta ligands. Previously it had been reported that TGFB1 

is unable to induce TGF-beta pathway activation in Ewing sarcoma cells (24). In 

keeping with this observation, phosphorylation of SMAD3 (pSMAD3), a well-established 

member of the canonical TGF-beta signaling cascade, was robustly induced by TGFB1 

in A549 cells but was only minimally or not induced at all in Ewing sarcoma cells 

(Figure 3.3A). Next, we pretreated cells with either vehicle or Wnt3a for 24 hours prior 

to addition of TGFB1, expecting that we would see an increase in pSMAD3 in Wnt3a-

treated cells. However, in these studies of bulk populations, no appreciable change in 

pSMAD3 activation was observed (Supplemental Figure 3.1A). We have previously 

shown that heterogeneity in the Wnt3a response exists in Ewing sarcoma and that only 

discrete sub-populations of cells activate the beta-catenin/TCF/LEF-transcriptional axis 

in response to canonical Wnt ligand (5). Therefore, we hypothesized that de-repression 

of TGFBR2 and sensitization to TGFB1 would be limited to the Wnt-responsive cells. To 

test this, we first sorted cells into Wnt-responsive (GFP Positive) and Wnt-unresponsive 

(GFP Negative) cells on the basis of a TCF/LEF-reporter, as previously described (5) 

(Supplemental Fig. 3.1B). Wnt responsive and Wnt unresponsive cells were then 

pretreated with vehicle or Wnt3a for 24 hours prior to treatment with TGFB1. As shown, 

pSMAD3 was induced by TGFB1 in the Wnt responsive cells but not in the Wnt-

unresponsive population in the Ewing sarcoma cell line CHLA10 (Figure 3.3B). To 

validate this finding of differential TGF-beta sensitivity in the two sub-populations we 

used an orthogonal and more sensitive bioluminescent reporter assay. TCF/LEF-GFP 

reporter cells were transduced with a Smad binding element (SBE) – Luciferin reporter, 

sorted for GFP following Wnt3a stimulation, and then treated with TGFB1 prior to 
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measuring luciferase activity. In keeping with pSMAD3 western blot assays, TGFB1 led 

to a greater increase in luciferase activity in Wnt-responsive than Wnt-unresponsive 

cells, although the extent of these responses varied both within and between cell lines 

(Figure 3.3C). Thus, activation of Wnt/beta-catenin signaling in heterogeneous 

subpopulations of Ewing sarcoma cells leads to derepression of TGFBR2 and this 

primes tumor cells to respond to TGF-beta ligands.  

Given the evidence of heterogeneity that we observed in both the Wnt and TGF-

beta responses across experiments and cell lines, we turned to a fluorescence-based 

dual reporter system to evaluate Wnt/beta-catenin and TGF-beta dependent 

transcriptional activation at the level of individual cells. For these experiments, Ewing 

sarcoma cells expressing the TCF/LEF-GFP reporter were transduced to co-express a 

TGF-beta SMAD binding element reporter (SBE-mCherry; kind gift of Dr. Elaine Fuchs) 

(25).  Dual reporter cells were pretreated with vehicle or Wnt3a prior to treatment with 

TGFB1 and then subjected to flow cytometry. Interestingly, even in the absence of 

Wnt3a, TGFB1 induced mCherry expression in 0.5 – 8% of cells, revealing that small 

numbers of TGF-beta responsive cells are present at baseline (Figure 3.3D & E). Pre-

treatment with Wnt3a led to activation of GFP in 4.5-80% of cells, depending on the cell 

line, and 1.5-10% of these GFP+ cells were mCherry+ following TGFB1 treatment 

(Supplemental Figure 3.1C).  Consistent with our prior studies, Wnt3a led to activation 

of the TCF/LEF-GFP reporter in 4.5-80% of cells, depending on the cell line, and with 

the exception of TC32 cells, Wnt3a alone did not alter the frequency of mCherry+ cells. 

In TC32 cells, addition of Wnt3a alone resulted in induction of a population of 

GFP+/mCherry+ cells indicating that autocrine TGF-beta ligands were able to activate 



 
 

 77 

TGF-beta transcriptional activity in Wnt-responsive TC32 cells (Figure 3.3E). Provision 

of both ligands in the media resulted in an increase in mCherry+ cells in all cell lines, 

comprising either single and/or dual positive cells, and mCherry activity was blocked by 

exposure of cells to SB505124. Exposure of cells to SB505124, a TGF-beta inhibitor, 

decreased the frequency of mCherry+ cells, validating that mCherry expression was 

due to TGF-beta pathway activation and not leakiness of the reporter (Figure 3.3D & 

E).  
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Figure 3.3. Wnt/beta-catenin activation sensitizes cells to TGF-beta. A. Western 
blot of pSMAD3 expression in Ewing sarcoma and A549 (positive control) cells at 
baseline and following exposure to TGFB1. B. Ewing sarcoma cells were treated with 
vehicle or Wnt3a and sorted into Wnt responsive (GFP Positive) and Wnt unresponsive 
(GFP Negative) subpopulations. Sorted cells were exposed to one or both ligands 
(Wnt3a and TGFB1) and pSMAD3 analyzed by western blot. C. TCF/LEF-GFP reporter 
expressing Ewing sarcoma cell lines were stably transduced with a Smad binding 
element- luciferase reporter and then sorted into GFP positive and GFP negative 
subpopulations as described in (B) prior to treatment with TGFB1. Fold change in 
luciferase activity (arbitrary units of luminescence) in the subpopulations was measured 
and results are shown for 3 independent experiments. D. Dual reporter Ewing sarcoma 
cells containing a TCF/LEF-GFP reporter and SBE-mCherry reporter were pretreated 
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with Wnt3a prior to treatment with TGFB1 +/- SB505124. FACS plots show percentage 
of GFP positive (Wnt responsive), mCherry positive (TGF-beta responsive), and double 
positive (Wnt and TGF-beta responsive) cells in a representative experiment in CHLA9. 
E. Quantification of mCherry positive cells across three independent replicate 
experiments for A673, CHLA9, CHLA10, and TC32 as in (D). P-values were determined 
using student’s t-test. *p<0.05, ** p<0.005  

 

These studies show that heterogeneous sub-populations of Ewing sarcoma cells 

exist in vitro and that when Wnt3a and TGFB1 ligands are present in the media, these 

cells show differential responses with respect to activation of downstream signaling 

pathways. Specifically, in response to exogenous Wnt and TGF-beta ligands, some 

cells activate either Wnt/beta-catenin or TGF-beta dependent signaling, some activate 

both pathways, and others activate neither. This led us to question whether such 

heterogeneity is also present in vivo. To answer this question, we used an orthotopic 

xenograft model and injected Ewing sarcoma cells directly into the femur of immune 

deficient mice. Immunohistochemical analysis of adjacent tumor sections identified both 

pSMAD2 and pSMAD3 positive and negative cells. Additionally, in areas of high 

pSMAD2 staining, both LEF1+ and LEF1- cells could be identified (Supplemental 

Figure 3.1D). Thus, tumor cell subpopulations with differential Wnt and TGF-beta 

pathway activation states exist in Ewing sarcoma and canonical Wnt activation primes 

cells to respond to TGF-beta. 

 

Wnt-sensitized TGF-beta responsive cells upregulate expression of ECM-protein 

encoding genes  

TGF-beta signaling plays a paradoxical role in carcinoma progression wherein it 

restrains local tumor growth at early disease stages but promotes metastasis at later 
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stages by activating tumor cell migration and invasion and by inducing pro-metastatic 

changes in the TME (26). In particular, TGF-beta activated cells induce genes involved 

in ECM organization (27).  We therefore tested whether these previously established 

TGF-beta targets were impacted by TGF-beta in Ewing sarcoma cells, either alone or 

following Wnt3a priming, focusing on ECM proteins which we previously identified in the 

Wnt-dependent secretome (3). As shown, TNC, COL1A1, and CTGF were all 

reproducibly induced by TGFB1 and pre-treatment with Wnt3a enhanced this induction, 

albeit to a small degree (Figure 3.4A). In addition, exposure of dual-ligand treated cells 

to SB505124 blocked induction of the TGF-beta target genes demonstrating that the 

Wnt-dependent activation of these genes is mediated by TGF-beta, downstream of 

Wnt/beta-catenin (Figure 3.4C).  

The observation that induction of previously identified Wnt/beta-catenin targets in 

Ewing sarcoma is mediated by TGF-beta signaling led us to question whether other 

elements of the canonical Wnt-dependent transcriptome are also induced indirectly and 

downstream of TGF-beta. In support of this possibility, we noted that TGF-beta ligand 

secretion increased in the Wnt-dependent Ewing sarcoma secretome (3), raising the 

possibility that autocrine TGF-beta signaling may be induced in Wnt-responsive tumor 

cells even in the absence of exogenous TGF-beta ligands. To test this hypothesis, we 

performed RNA sequencing analysis of vehicle and Wnt3a treated cells TC32 cells, with 

and without SB505124 (Figure 3.4D). Wnt3a led to significant upregulation of 144 

transcripts and induction of 77 of these targets was inhibited by SB505124, 

demonstrating that Wnt3a-dependent upregulation was mediated by activation of TGF-

beta signaling (Supplemental Table 3.1). Gene ontology analysis of these 77 
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Wnt/TGF-beta dependent targets using the DAVID database (20) revealed striking 

enrichment for ECM organization and TGF-beta signaling, validating our hypothesis that 

many Wnt3a-induced ECM target genes are, in fact,  induced by TGF-beta signaling 

(Figure 3.4E). Notably, among these TGF-beta dependent Wnt targets were the ECM 

proteins TNC, COL1A1, MATN3, COL1A2, COL6A3, and COL3A1, all of whom were 

previously identified in the Wnt dependent secretome (3). Additionally, proteins involved 

in ECM degradation and remodeling such as member of the disintegrin and 

metalloprotease (ADAM) family, ADAM19, along with matrix metalloprotease 15 

(MMP15) were also inhibited with addition of the TGF-beta inhibitor. Many of these 

proteins have been previously shown to be upregulated by TGFB1 in other cancers, 

however this is the first study in Ewing sarcoma showing that their expression is 

regulated by the TGF-beta pathway (27). These findings together show that activation of 

the canonical Wnt-dependent transcriptome leads to changes in expression of ECM 

genes that are critical to composition of the local TME but that Wnt-mediated activation 

of these genes is mediated indirectly, via TGF-beta.  

 

Wnt activation is correlated with activation of the AngioMatrix 

 TGF-beta signaling plays a central role in multiple aspects of the TME, impacting 

on tumor cells, non-tumor stromal, cells, and the ECM. Given our finding that ECM 

genes are specifically induced by Wnt/TGF-beta-stimulated Ewing sarcoma cells, and 

that Wnt-stimulated cells secrete ECM proteins, we next sought to determine how these 

changes might functionally impact on tumor biology. Importantly, TNC, COL1A1, and 

CTGF all contribute to angiogenesis and their transcripts are members of the 
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AngioMatrix, a set of 110 ECM and ECM associated genes that are upregulated during 

the angiogenic switch (28). Therefore, we hypothesized that Wnt/TGF-beta activation in 

Ewing sarcoma cells might promote an angiogenic phenotype in the adjacent TME. To 

address this hypothesis, we returned to GSEA analysis of LEF1-correlated genes in the 

two tumor cohorts (GSE63157 and GSE34620) and discovered that angiogenesis 

(Figure 3.5A) and AngioMatrix (Figure 3.5B) gene sets highly and reproducibly 

correlated with LEF1. We then interrogated our previous RNA-sequencing study of 

canonical Wnt-activated Ewing sarcoma cells (5) (GSE75859) and found that 17 of 110 

AngioMatrix genes were upregulated downstream of Wnt activation (p=0.019) (Table 

3.2). Moreover, AngioMatrix proteins were also highly enriched in the Wnt-activated 

Ewing sarcoma cell secretome (3) (10/39 proteins; p=3.46e-4) (Table 3.2). Thus, 

AngioMatrix genes and proteins are induced downstream of Wnt/beta-catenin activation 

in Ewing sarcoma. Next, we calculated the composite AngioMatrix score for all tumors 

in the two patient cohorts (28), and found direct correlations with expression of 

PECAM1, a cell surface marker for endothelial cells (29) (Pearson correlation r = 0.75 

(GSE63157) and r = 0.77 (GSE34620); Supplemental Figure 3.2). In addition, 

AngioMatrix scores correlated directly with LEF1 (Figure 3.5E) and with TGFBR2 

(Figure 3.5F). Thus, these genomic and proteomic studies of Ewing sarcoma cell lines 

and patient tumors support the hypothesis Wnt/TGF-beta activated sarcoma cells 

induce upregulated expression of the AngioMatrix.  
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Figure 3.4. Wnt and TGF-beta responsive cells upregulate expression of ECM-
protein encoding genes. A. Ewing sarcoma cells treated with both Wnt and TGFB1 
induce expression of TNC, COL1A1, and CTGF - all TGF-beta targets important in the 
ECM. B. Ewing sarcoma cells treated with Wnt and TGF-beta were treated with 
SB505124 (SB505 in figures), a TGF-beta inhibitor, which blocks induction of TNC, 
COL1A1, and CTGF. D. Cells were treated with vehicle or Wnt3a for 4 hours prior to 
treating with vehicle (DMSO) or SB505124 for 24 hours. Cells were then collected in 
triplicate and RNA was sequenced. E. Gene ontology of transcripts upregulated with 
Wnt3a and blocked by SB505124 was determined using DAVID. Top 4 gene ontology 
terms for biological process are shown. All qRT-PCR shown were performed in triplicate 
and p-values were determined using student’s t-test. *p-value <0.05 **p-value <0.005 
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Transcriptome Secretome 
TIMP1 LUM 
MMP2 FMOD 

SERPINF1 BGN 
SERPINH1 TGFB1 

SULF2 COL1A1 
ANXA2 COL1A2 

COLEC12 COL3A1 
CCL2 TNC 

COL6A1 CTGF 
FN1 TGFBI 
TNC   

SRPX2   
MGP   

MFAP4   
SPARC   
AEBP1   
IGFBP5   

 
Table 3.2. List of Wnt activated transcripts (CHLA25, GSE75859) also found in the angiomatrix gene set 
(p=1.87e-2). List of Wnt induced secreted proteins (TC32 and CHLA10, PXD007909) also found in the 
angiomatrix gene set (p=3.46e-4). For all overlaps chi-squared goodness of fit test was used to determine 
statistical significance. 
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Figure 3.5. Wnt activation is correlated with activation of the AngioMatrix. A. 
GSEA of whole transcriptome data from independent cohorts of N=46 (GSE63157) and 
N=117 (GSE34620) patient tumors reveals transcripts that are highly correlated with 
LEF1 are enriched with an angiogenesis gene signature. B. GSEA of the same 
transcriptome data as in (A) in two independent patient cohorts (N=46 and N=117) 
shows that transcripts highly correlated with LEF1 expression are enriched for the 
AngioMatrix gene set. AngioMatrix score was calculated by averaging log2(signal 
intensity) of all AngioMatrix genes in two independent patient datasets (N=46 and 
N=117). Correlation of the AngioMatrix score with LEF1 is shown in (C) and correlation 
with TGFBR2 is shown in (D). LEF1 and TGFBR2 levels are expressed as log2(signal 
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intensity). All correlation coefficients shown are Pearson r values and p-values are 
determined using a student’s t-test.  
 

Beta-catenin activated Ewing sarcoma cells promote angiogenesis in the local 

TME 

Given the reproducible association between LEF1 expression and the 

AngioMatrix signature, we next sought to determine whether Wnt/bet-catenin activation 

directly impacts on tumor angiogenesis.  To address this, we used Ewing sarcoma cells 

engineered to stably express constitutively active beta-catenin, as previously described 

(EBP cells; (5)), after first confirming that they express high levels of LEF1, AXIN2, 

TGFBR2, and TNC compared to empty vector controls (Figure 3.6A). To directly 

evaluate angiogenesis in the TME, we took advantage of the chick chorioallantoic 

membrane (CAM) assay, which is a well-established model of tumor-induced 

angiogenesis that allows study of tumor: TME interactions in the context of a physiologic 

microenvironment (30, 31). Both control and EBP-transduced Ewing sarcoma cells 

readily formed tumors on the CAM (Figure 3.6B & D). Significantly, a reproducible 

increase in blood vessel formation was observed in the context of EBP tumors (Figure 

3.6C & E), indicating that beta-catenin-activated Ewing sarcoma cells promote 

angiogenesis in the context of a physiologic microenvironment.  

We next sought to determine the mechanism through which activation of beta-

catenin contributes to an angiogenic phenotype. Having established that activation of 

canonical Wnt signaling alters the Ewing sarcoma secretome, specifically leading to 

increased secretion of AngioMatrix proteins, we hypothesized that secreted factors from 

beta-catenin-activated cells contribute to the angiogenic phenotype. To address this 
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hypothesis, we added conditioned media (CM) from control and EBP A673 and CHLA10 

cells to human umbilical vascular endothelial cells (HUVEC). We found that EBP CM 

increased HUVEC proliferation (Figure 3.7A) and viability (Figure 3.7B) compared to 

control CM. The effect was observable as early as 24 hours after addition of the CM but 

was most significant after 5 days in culture. Notably, there was no differential effect of 

EBP on endothelial branching morphogenesis in response to CM from beta-catenin 

activated Ewing sarcoma cells (Supplemental Figure 3.3). Thus, secreted factors in 

the CM of tumor cells with activated beta-catenin promote endothelial proliferation and 

survival. 

As shown in Table 3.2 the Wnt activated secretome is comprised of AngioMatrix 

proteins, including TNC. TNC is a known mediator of pro-angiogenic phenotypes and 

has been shown to be critical in driving the angiogenic switch (32-35). Additionally, TNC 

has been identified to specifically activate proliferation of HUVECs through binding to 

integrin alpha-9 (36). Therefore, we tested whether TNC contributes to the observed 

angiogenesis phenotype, specifically the increase in HUVEC proliferation and viability. 

We first verified that TNC is induced and secreted by EBP cells compared to controls 

(Figure 3.7C). We then used a monoclonal antibody against TNC to neutralize the 

secreted protein in CM. As shown in Figure 3.7D, neutralization of secreted TNC 

inhibited the induction of HUVEC proliferation in response to EBP CM, and also 

abrogated their enhanced viability (Figure 3.7E). Taken together, these studies 

implicate tumor cell-secreted TNC as a key mediator of canonical Wnt-induced 

angiogenesis in the Ewing sarcoma TME.  
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Figure 3.6. Beta-catenin activated Ewing sarcoma cells show increased 
angiogenesis. A. Ewing sarcoma cells engineered to express constitutively active beta 
catenin (EBP) demonstrate reproducible upregulation of canonical targets LEF1, AXIN2, 
TGFBR2, and TNC in three independent replicates.  Tumor cells were placed on the 
chick chorioallantoic membrane (CAM) for 72 hours. Tumors were located by GFP, and 
blood vessels were photographed under a stereoscope. In both A673 (B) and CHLA10 
(D), EBP tumors had a significantly higher area of blood vessels compared to empty 
vector control tumors. Quantification of blood vessel area is shown for A673 (C) and 
CHLA10 (E). *p<0.05, **p<0.01, n ≥ 12 independent experiments per condition.  
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Wnt/beta-catenin, TGF-beta, and the AngioMatrix are correlated with poor 

prognosis in patient cohorts 

 Prior studies of other tumors have demonstrated that a high AngioMatrix score is 

associated with worse clinical outcomes ((28)). Therefore, we sought to determine if a 

relationship exists between the AngioMatrix, Wnt-beta catenin, TGF-beta, and survival 

in Ewing sarcoma tumors in vivo. Consistent with other cancer types, Ewing sarcoma 

tumors with high AngioMatrix scores had higher rates of patient relapse and death than 

tumors with low scores (Figure 3.8A). We previously reported that high LEF1 

expression was associated with a worse prognosis in these patients (5) and high 

TGFBR2 was, likewise, associated with diminished survival (Figure 3.8B). Importantly, 

a 33-gene prognostic gene signature was previously reported for this patient cohort and 

was found to be inextricably linked to the presence of stroma, in particular to the 

presence of abundant fibrovascular matrix in tumor biopsies (6). LEF1 expression in 

these tumors was also found to correlate directly with poor prognosis genes, and 

inversely with good prognosis genes, in the 33-gene signature (Figure 3.8C). These 

LEF1 correlations were found to be reproducible and even more significant in an 

independent patient cohort (Supplemental Figure 3.4A). Notably, many of the most 

significantly correlated genes in both datasets are specifically involved in angiogenesis 

(e.g. ENG, HEY2, IL6, ITGA9, VEGFC, and VWF). We therefore hypothesized that 

beta-catenin activation might serve as a key regulator of stromal deposition in Ewing 

sarcoma. In support of this, higher expression of LEF1 was detected in stroma-rich than 

stroma-poor tumors (Figure 3.8D) and, as predicted, tumors with abundant stroma also 

had higher AngioMatrix scores (Figure 3.8E). In keeping with their induction  
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Figure 3.7. Beta-catenin activated Ewing cells secrete factors that promote 
HUVEC proliferation.  Conditioned media (CM) from A673 and CHLA10 cells 
containing either empty or EBP vector was collected and added to HUVECs. 
Proliferation  (A) and viability (B) of HUVECs was measured at day 1, 3, and 5 post 
addition of Ewing’s CM. A statistically significant increase in both proliferation and 
viability of HUVECs was observed after 5 days of CM from EBP cells as compared to 
empty vector CM. C. TNC secretion is increased in Ewing’s cells with the EBP vector in 
both A673 and CHLA10. In both CHLA10 and A673 cells, inhibition of TNC with a 
monoclonal antibody (anti-TNC) but not with control antibody (IgG) abrogates the effect 
of EBP CM on proliferation (D)  and viability (E) of endothelial cells. *p<0.05, **p<0.01, n 
≥ 3 independent experiments.  
 

downstream of Wnt/beta-catenin activation, TGFBR2, TNC, and COL1A1 were also 

more highly expressed in stroma-rich biopsies (Figure 3.8F). The absence of 
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differences in expression of canonical Wnt targets that are not induced by beta-catenin 

in Ewing sarcoma cells (e.g. MYC, CCND1, LGR5; Supplemental Figure 3.4B) 

supports the conclusion that Wnt-activated tumor cells, rather than stromal cells, 

contributed to higher expression of LEF1 in stroma-rich biopsies.  

Thus, the gene expression profiling studies of primary tumor biopsies reveal that 

highly significant and reproducible correlations exist in Ewing sarcoma between 

Wnt/beta-catenin signaling, TGFBR2 expression, and the AngioMatrix, corroborating 

our findings from experimental models. In addition, cell line models and patient tumor 

biopsies confirm that there is substantial inter- and intra-tumor heterogeneity with 

respect to Wnt/beta-catenin and TGF-beta signaling. Altogether, our results support the 

conclusion that functional cooperation between canonical Wnt and TGF-beta plays a 

key role in mediating tumor angiogenesis and disease progression and that this 

cooperation is dependent on dynamic crosstalk between subpopulations of Ewing 

sarcoma tumors cells and their TME. 
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Figure 3.8. Wnt/beta-catenin, TGF-beta, and the AngioMatrix are correlated with 
poor prognosis in patient cohorts. A. High AngioMatrix scores are associated with 
worse event-free and overall survival in patients with localized disease (GSE63157). B. 
High TGFBR2 expression is associated with worse overall survival. C. 43 patient tumors 
were grouped based on stroma content (stroma rich < 70% tumor content (N=10); 
stroma poor  > 70% tumor content (N=33)). LEF1 expression and D. AngioMatrix scores 
in stroma rich tumors vs. stroma poor tumors. E. TNC, TGFBR2, and COL1A1 
expression in stroma rich and stroma poor tumors. All p-values were determined using 
student’s t-test. F. Pearson correlations (r) of LEF1 expression (error bars: 95% 
confidence intervals (CI)) with 33 gene prognostic signature. Top 5 genes were 
identified as good prognosis biomarkers in this patient cohort. High expression of 
bottom 28 genes was associated with poor prognosis. NS indicates not significant. 
 

 

Discussion 
 

In this work, we provide evidence that activation of Wnt/beta-catenin signaling 

changes tumor: TME crosstalk to promote Ewing sarcoma disease progression by 
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cooperating with TGF-beta to increase expression of the AngioMatrix, and promote 

angiogenesis. Previous studies using subcutaneous xenografts and orthotopic 

xenografts in the tibia showed an increased propensity of metastasis when cells were in 

the bone TME (37). Additionally, identification of a poor prognostic gene signature in a 

patient cohort containing tumors with high stromal content, also indicated a role for the 

TME in driving more aggressive tumors (6). Here, we have built on these previous 

findings and specifically show a role for Wnt/beta-catenin signaling in dictating tumor: 

TME changes and suggest that a TME rich in Wnt ligands (i.e. a bone TME), would 

promote transition to a metastatic phenotype through secretion of the AngioMatrix and 

activation of angiogenesis.  

Previous studies from our group have indicated a role for Wnt/beta-catenin 

activation in EWS-FLI1 antagonism in Ewing sarcoma (5), resulting in derepression of 

EWS-FLI1 targets in Wnt activated cells. We have reported that activation of Wnt/beta-

catenin leads to derepression of the EWS-FLI1 target, TGFBR2, contributing to cell 

plasticity by transitioning cells from a TGF-beta unresponsive to TGF-beta responsive 

state. We also identified subpopulations of cells that are Wnt and TGF-beta responsive, 

Wnt responsive, TGF-beta responsive, or responsive to neither using our dual reporter 

system, further supporting findings from our group and others that Ewing’s tumors are 

heterogenous (3, 5, 8, 38-40). Among this heterogeneity is the observation that EWS-

FLI1 levels are variable between different cells, and that a population of EWS-FLI1 low 

cells exist in Ewing sarcoma tumors (39). We have hypothesized that this small 

subpopulation of TGF-beta responsive cells are indeed the EWS-FLI1 low cells, and by 

priming with Wnt3a, we are antagonizing EWS-FLI1 resulting in a larger population of 
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cells that are EWS-FLI1 low and subsequently TGF-beta responsive. However, the 

mechanism through which Wnt antagonizes EWS-FLI1 remains largely unknown and is 

outside the scope of this manuscript.  

Induction of angiogenesis is a hallmark of cancer (41). Ewing sarcoma tumors, 

like all cancers, require a vascular supply to maintain growth and disease progression. 

Major known regulators of angiogenesis in Ewing sarcoma include vascular endothelial 

growth factor (VEGF) (42-46) and insulin like growth-factor (IGF) signaling (47-49). Wnt 

signaling contributes to angiogenesis in numerous contexts. Under physiologic 

conditions, Wnt/beta-catenin activation and LEF1 expression in endothelial cells 

promote pro-angiogegnic phenotypes including proliferation and migration of endothelial 

cells (50-52). Furthermore, effects of Wnt signaling on endothelial pathogenesis and 

promotion of angiogenesis has been described in numerous disease states including 

cancer (52, 53). In cancer, Wnt signaling can promote angiogenesis by induction of 

secreted factors such as VEGFs, matrix metalloproteinases (MMPs), and basic 

fibroblast growth factor (bFGF) that promote pro-angiogenic phenotypes in endothelial 

cells (9, 54). Similarly, multiple cancers have demonstrated downregulation of the Wnt-

inhibitory molecule DKK1 during tumor progression, which is associated with increased 

VEGF expression and vascular density (55, 56). We are able to explore how Wnt/beta 

catenin activation in the tumor cells themselves is able to contribute to angiogenesis. 

Our data reveals that LEF1 expression is highly correlated with poor prognostic genes 

in two independent tumor cohorts. Notable genes in this dataset include VEGF family 

members and genes involved in the vascular endothelial growth factor receptor 

signaling pathway (Figure 3.8 and Table 3.1). VEGF family members, in particular the 
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VEGF165 isoform, are major mediators of angiogenesis in Ewing sarcoma (46, 57). We 

have also found that Wnt/beta-catenin promotes angiogenic phenotypes in vivo and in 

the chick CAM assay, and these phenotypes are in part mediated by tumor cell specific 

secreted factors that promote endothelial proliferation and survival.  

TGF-beta activation is supportive of both tumor suppressing and tumor activating 

processes, depending on the tumor context in carcinomas (22). Where as previous 

studies supported a role for TGF-beta to be tumor suppressive in early stages of Ewing 

sarcoma (24), we hypothesize that activation of TGF-beta as the tumor becomes more 

metastatic (i.e. through Wnt activation) plays a tumor promoting rather than tumor 

suppressive role in sarcomas. Specifically, TGF-beta signaling has been shown to 

promote angiogenesis, invasion, and metastasis through induction of EMT (22, 58). 

Interestingly, we show here that genes with high LEF1 correlation in patients are 

enriched for the EMT signaling pathway. Although Ewing sarcoma cells are initially 

mesenchymal, increasing evidence in sarcomas supports a role for an EMT like change 

resulting in increased cancer invasiveness (23). In particular, in Ewing sarcoma higher 

levels of ZEB2, a transcription factor upregulated in EMT, contributes to a more 

mesenchymal like and invasive phenotype, while lower ZEB2 levels better resemble 

epithelial like states (40). Activation of Wnt/beta-catenin had also previously been 

shown to induce transition to a more metastatic cell state through increased migration, 

an EMT associated process. Based on this data and the data we present here, we 

hypothesize that Wnt activated cells are are more responsive to TGF-beta, and 

activation of the TGF-beta pathway in Wnt primed cells induces an EMT like switch, 

including promotion of angiogenesis, migration, and invasion. 
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Using a RIP1-Tag2 model to model the angiogenic switch, a group of ECM 

associated proteins categorized as the AngioMatrix, and specifically TNC, were shown 

to be critical in driving the angiogenic switch (28). Interestingly, many of those genes 

found in the AngioMatrix are also induced by Wnt/beta-catenin in Ewing sarcoma cells 

and are targets of the TGF-beta pathway. In particular we show that TNC, COL1A1, and 

CTGF, all members of the AngioMatrix, are mediated by TGF-beta dependent signaling. 

Additionally, we saw a correlation of the AngioMatrix score with LEF1 and TGFBR2 in 

two independent patient cohorts, showing a link between Wnt/beta-catenin, TGF-beta 

response, and the AngioMatrix. Both TGF-beta and Wnt/beta-catenin play a large role in 

angiogenesis by directly binding to endothelial cells to regulate endothelial cell 

proliferation and vascular formation through activation of AngioMatrix secretion (51, 54, 

59). However, little is understood about the tumor specific contribution to the 

AngioMatrix. Here, we show that activation of both Wnt and TGF-beta in Ewing sarcoma 

results in tumor cell specific expression and secretion of the AngioMatrix, implying that 

tumor cells themselves can be critical in mediating the angiogenic switch. 

Finally, we show that induction and secretion of the AngioMatrix protein TNC is 

necessary for these Wnt/beta-catenin activated cells to promote HUVEC proliferation 

and the angiogenic phenotype. TNC is a multi-functional extracellular matrix protein that 

is both membrane bound and secreted, and is known to contribute to angiogenesis in 

normal and pathologic settings, in particular through promotion of endothelial 

proliferation and survival (32, 33, 60). While most studies show promotion of 

proliferation by TNC, in some experimental systems TNC antagonizes proliferation (34), 

demonstrating the context-specific function of this molecule. TNC signals through alpha-



 
 

 97 

v-beta-3 and alpha-9-beta-1 integrins to activate ERK and FAK signaling which 

promotes cellular proliferation, migration, and survival through inhibition of apoptosis 

(61-63). Given the strong association between LEF1 and ITGA9 (which encodes the 

alpha subunit of alpha-9-beta-1 integrin) in primary tumors (Figure 3.8), as well as 

enrichment for integrin and ERK signaling (Table 3.1), it is likely that the endothelial 

phenotypes observed in response to EBP conditioned media are through TNC signaling 

via these integrin receptors to promote endothelial proliferation and survival. In addition 

to functioning as a direct ligand to induce signal activation of pro-angiogenic 

phenotypes, TNC may also promote angiogenesis through other mechanisms. In 

glioma, TNC is associated with poor outcomes, and promotes angiogenesis indirectly 

through expression of the cell surface receptor ephrin B and its associated downstream 

signaling pathways (34). In breast cancer, TNC binds to multiple proteins and may 

function to bring protein moeities into closer proximity and thus modify cellular signaling 

(18). Of particular interest, VEGF, as well as other pro-angiogenic molecules such as 

PDGF, IGF binding proteins, TGF-beta, and FGF (56, 64) have been demonstrated to 

bind to TNC. The ability of TNC to bind to multiple pro-angiogenic proteins and modify 

their physical proximity raises the intriguing possibility that TNC expression may 

augment and impact the effects of a pro-angiogenic milieu in the extracellular 

microenvironment.  

Taken together, these data demonstrate a novel mechanism by which Wnt/beta-

catenin signaling, TGF-beta signaling, and TNC promote aggressive disease, namely 

through promotion of angiogenesis and alterations of tumor: TME crosstalk. We see that 

ligands in the TME can signal to tumor cells resulting in heterogeneous cell state 
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transitions. Cells can then signal back to the TME through secretion of proteins, 

suggesting that a bidirectional relationship exists between the TME and Ewing sarcoma 

cells. We specifically note the presence of heterogeneous subpopulations of Wnt and/or 

TGF-beta responsive cells, highlighting the presence of tumor heterogeneity and 

plasticity in Ewing sarcoma. Different subpopulations of tumor cells are able to 

communicate differently with the local TME, altering local tumor: TME crosstalk to 

promote processes such as angiogenesis, which could be a key regulator of Ewing 

sarcoma metastasis. Therapeutic strategies should focus on targeting the TME and 

secreted contents of tumor cells in order to eliminate signals between the tumor: TME 

that drive Ewing sarcoma progression. Specifically, targeting TNC could inhibit TNC-

mediated tumor:TME interactions, such as angiogenesis. The data presented here 

provides rationale for further investigation to the implications of tumor: TME crosstalk 

and how to better target these interactions to inhibit tumor metastasis.  

 
Methods 
 
Cell culture and reagents 
 
Ewing sarcoma cell lines were obtained from the COG cell bank (cogcell.org), and 

identities of the cells were verified by short tandem repeat (STR) profiling. Cells were 

routinely tested for mycoplasma contamination and verified to be negative. A673 and 

TC32 cells were cultured in RPMI 1640 media (Life Technologies, Waltham, MA) 

supplemented with 10% fetal bovine serum (FBS)(Atlas Biologicals, Fort Worth, CO) 

and 2mM L-glutamine (Life Technologies). CHLA9 and CHLA10 cells were culture in 

IMDM media (Life Technologies), 20% FBS, 2 mM L-glutamine, and 1X insulin-

transferrin-selenium (ITS) supplement. Human umbilical vascular endothelial cells 
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(HUVEC) were purchased from Lonza and cultured in medium 200 with low serum 

growth supplement (LSGS) (Thermo Fisher, Waltham MA). Cells were maintained at a 

low passage for all experiments. GFP-tagged cells expressing a constitutively active 

beta-catenin construct (EBP) or corresponding empty vector control were generated as 

previously described (5). To activate canonical Wnt signaling, cells were treated with 

recombinant human Wnt3a (R&D, 5036-WN) at a concentration of 100 ng/mL. To 

activate TGF-beta signaling, cells were treated with recombinant human TGF-beta 1 

(TGFB1) (R&D, 240-B) at a concentration of 10 ng/mL. To inhibit the TGF-beta 

signaling pathway, cells were treated with the ALK inhibitor SB-505124 (Cayman 

Chemical, 694433-59-5) at a concentration of 10 uM.  

 

Clinical correlations and gene set enrichment analyses  
 
Tumor gene expression data were extracted from previously published independent 

datasets from the Children’s Oncology Group (COG) (GSE 63157 (6)) and from 

European collaborative studies (GSE 34620 (19)). Correlations with LEF1 were 

measured by Pearson correlation and 95% confidence intervals determined. An in vivo 

signature of Wnt/beta-catenin signaling was generated by ranking genes based on 

correlation with LEF1 expression in the aforementioned data sets, and gene set 

enrichment analysis (GSEA) was performed using the GseaPreranked function of 

GSEA v2.1.0 software (Broad Institute) (21). Gene ontology enrichment was determined 

using the same list of genes with a cutoff of Pearson r>0.5, and interrogated using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 (20).  
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Western Blotting 
 
For phospho-SMAD3 (pSMAD3) western blots, cells were pretreated with vehicle or 

Wnt3a (100 ng/mL) for 24 hours prior to TGFB1 (10 ng/mL) for 15 minutes. Whole cell 

lysates were isolated using RIPA buffer + phosphatase inhibitor tablet (Roche, Cat # 

4906837001) + protease inhibitor tablet (Sigma, Cat # 4693116001). For secreted 

protein, CM from EBP and control cells was concentrated using three kilodalton cutoff 

Amicon Ultra Centrifugal Filter Units (Fisher, UFC900308). Protein concentration was 

measured using the DC Protein Assay (Bio-Rad). Western blot analysis was performed 

using the Bio-Rad Mini-PROTEAN Tetra System. Following transfer, nitrocellulose 

membranes were blocked in 5% BSA in TBS-T for 1 hour. Membranes were washed 

once with TBS-T and then incubated overnight at 4o C with either mouse-anti human 

Tenascin C (1:500, Sigma T2551) or rabbit anti-phospho-Smad3 (1:500, Cell Signaling 

9520). Membranes were washed three times in 1X TBS-T for 5 minutes each and then 

incubated with secondary antibody IRDye 800CW goat anti-mouse (1:10,000, LiCor) or 

IRDye 800CW goat anti-rabbit (1:10,000, LiCor) for 1 hour. They were then washed two 

times with 1X TBS-T and once with 1X TBS for 5 minutes prior to scanning the 

membrane using the LiCor Imaging system. Western blot analysis of secreted TNC was 

performed as previously described in (3).  

 

Reporter Studies and Flow Cytometry 
 
Ewing sarcoma cells stably transduced with a TCF/LEF-GFP reporter as previously 

described in (5), were transduced with a lentiviral smad binding element (SBE) – 

Luciferin reporter (Cignal Lenti SMAD Reporter (luc) Kit: CLS-017L). TCF/LEF-GFP 
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reporter cells were also transduced with a SBE-mCherry reporter construct, a kind gift of 

the Elaine Fuchs’ lab (25). Cells containing the TCF/LEF-GFP reporter and SBE-

luciferin reporter were treated with Wnt3a for 48 hours prior to sorting based on GFP. 

Cells were plated into a 96 well plate and treated with TGFB1 for 24 hours prior to 

measuring luciferin using the Pierce Firefly Luciferase Glow Assay Kit (Thermo Fisher, 

16176). For all other sorting experiments, cells were treated with Wnt3a for 48 hours 

before sorting based on GFP positivity and then used for subsequent experiments. For 

flow cytometry analysis, TCF/LEF-GFP reporter and SBE-mCherry reporter cells were 

treated with Wnt3a for 24 hours prior to treatment with TGFB1 for 72 hours before flow 

cytometry analysis for both GFP and mCherry positive cells.  

 
RNA Sequencing Analysis and Gene Expression Analysis 
 
TC32 cells were treated with vehicle (PBS) or Wnt3a (100 ng/mL) for 4 hours prior to 

treatment with DMSO or SB505124 (10 uM) for 24 hours. RNA was collected for each 

condition in triplicate and single-end sequencing was done on the Illumina HiSeq 4000 

(University of Michigan Sequencing Core). Fastq generation was performed using 

Illumina’s CASAVA-1.8.2 software, analyzed for quality control using MultiQC, and 

aligned using Star. For differential transcript expression analysis we used the R 

package, DESeq2. Comparisons were made between vehicle and Wnt+DMSO and then 

Wnt+DMSO and Wnt+SB505. Genes that were upregulated in Wnt + DMSO vs. vehicle 

had an adjusted p-value of >.1 and log(fold change) > .6. Genes downregulated in Wnt 

+ DMSO vs. Wnt + SB505 had an adjusted p-value of >.1 and log(fold change) < -.6. 

Genes that were identified to be differentially expressed in both comparisons along with 

the complete list of genes that are both up in vehicle vs. Wnt and down in Wnt vs. 
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Wnt+SB505 are included in supplemental table 1. Gene ontology analysis was 

performed using DAVID (20). Gene expression was measured using standard methods 

of qRT-PCR. See supplemental Table 2 for primer sequences.  

 

Angiomatrix Score Calculation, Correlations, and Survival Curves 
 
The angiomatrix score was determined by averaging normalized gene expression in 

both GSE63157 and GSE34620 for 110 genes identified to be in the angiomatrix from 

(28). Pearson correlation coefficients and 95% confidence intervals were calculated 

between the angiomatrix score for each patient and LEF1, TGFBR2, and PECAM1. 

GSEA was also performed using the GseaPreranked function of GSEA with genes from 

each patient cohort ranked based on LEF1 correlation mapped against the angiomatrix 

gene set (21). Angiomatrix scores for each patient in the N=46 (GSE63157) were 

separated based on tumor content. Stroma rich were tumors with < 70% tumor content 

(N=10) and stroma poor were tumors with > 70% tumor content (N=33). 3 patients were 

excluded from this study because no tumor content information was available. 

Expression of LEF1, CCND1, MYC, TGFBR2, TNC, and COL1A1 was grouped by 

stromal content and student’s t-tests were used to look for statistically significant 

differences between groups. Kaplan-Meir survival curves were produced by grouping 

patients into the top 1/3 and bottom 2/3 for angiomatrix score and log2(signal intensity) 

of TGFBR2 in GSE63157.  

 

Chick chorioallantoic membrane (CAM) assay 
 
Fertilized eggs were obtained from the Michigan State University Department of Animal 
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Science Poultry Farm. Immediately upon arrival, eggs were placed in a humidified, 

rocking incubator (G.Q.F. Manufacturing, Savannah, GA) at 37°C for 11 days (E11). On 

E11, eggs were assessed for viability of the embryo using a handheld light source 

(G.Q.F. Manufacturing).  Eggs containing non-viable embryos were discarded. The 

CAM was “dropped” as previously described (30, 52), and 1x106 GFP-labeled A673 or 

CHLA10 cells were placed on the CAM in 10 μL of 2.5% growth-factor reduced Matrigel 

(BD Biosciences) in PBS. Cells were incubated for three days without rocking. On E14, 

the CAM was dissected out and fixed for 1 hr in 4% paraformaldehyde. Tumors on the 

CAM were identified and imaged by GFP fluorescence and bright field microscopy on 

an Olympus SZX16 Stereo-Dissecting macroscope and analyzed using NIS-Elements 

Imaging software. Vessel area was determined by quantifying the area of red pixels 

within the area of the tumor (per high powered field).  

 

HUVEC Proliferation and viability assays 
 
Conditioned media (CM) from EBP and control Ewing sarcoma cells was generated by 

plating 5x106 CHLA10 or 10x106 A673 or TC32 cells on ten-centimeter dishes. Once 

adherent, cells were serum starved and serum-free CM was aspirated after 24 hours 

and centrifuged at 900 rcf for 5 min to remove cell debris. CM was added in a 50:50 

concentration to HUVEC cells plated at a density of 7.5x104 cells per well on six well 

plates, in M200 containing 0.25X LSGS. At days 1, 3, and 5, cells were dissociated with 

Accutase (Corning) and stained with trypan blue (Invitrogen). Cell number and viability 

were determined using a Countess automated cell counter, and confirmed manually on 

a hemocytometer under a microscope. Each replicate was counted in duplicate and the 
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average cell number and viability were determined. Tenascin C was inhibited by 

addition of a neutralizing mouse monoclonal antibody (T2551, Sigma) at a concentration 

of 10 ng/ml at the time of CM addition to HUVECs. Mouse IgG1 isotype antibody (sc-

2025, Santa Cruz Technologies) was used at the same concentration as a control. 

 

Mouse xenograft studies 
 
A673 cells (2 x 105) were injected directly into the femur of 9-12 week old NOD-SCID-

gamma mice (Charles Rivers, Boston, MA). Femurs were harvested two weeks after 

injection, fixed in zinc formalin before decalcification for 12 days in 20% EDTA. 

Decalcified femurs were paraffin embedded and sectioned. Immunohistochemistry was 

performed on adjacent sections using hematoxylin and eosin and the following 

antibodies: mouse anti-human Tenascin C (1:4000, Sigma T2551), LEF1 (1:2000, 

Abcam ab137872), CD31 (1:200, Cell Signaling Technology 77699S), pSMAD2 (1:100, 

ThermoFisher Scientific #44-244G) and pSMAD3 (1:100, ThermoFisher Scientific #44-

246G) and CD99 (1:250, Abcam ab212605). 

 

Statistics  
 
For all gene expression analysis, student’s t-tests were performed and p-values were 

computed. Comparisons were considered statistical significant with p<0.05. Throughout 

figures, *indicates p<0.05 and **indicates p<0.005 unless indicated as otherwise. 

Correlation coefficients computed are all pearson r coefficients. Statistical significance 

of overlaps was determined using chi squared goodness of fit test. All error bars 

indicated represent mean ± SEM.  
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Chapter 4: Tenascin C and Src cooperate to promote invadopodia formation in 

Ewing sarcoma 

 

Summary 
 

Ewing sarcoma is a bone tumor most commonly diagnosed in adolescents and 

young adults. Survival for patients with recurrent or metastatic Ewing sarcoma is dismal 

and there is a dire need to better understand the mechanisms of cell metastasis specific 

to this disease. Our recent work demonstrated that microenvironmental stress leads to 

increased invasion in Ewing sarcoma through Src activation. Additionally, we have 

shown that the matricellular protein tenascin C (TNC) promotes metastasis in Ewing 

sarcoma. A major role of both TNC and Src is mediation of cell-cell and cell-matrix 

interactions resulting in changes in cell motility, invasion, and adhesion. However, it 

remains largely unknown, if and how, TNC and Src are linked in these processes. We 

hypothesized that TNC is a positive regulator of invadopodia formation in Ewing 

sarcoma through its ability to activate Src. We demonstrate here that both cell intrinsic 

and extrinsic TNC can enhance Src activation and invadopodia formation in Ewing 

sarcoma. We found that microenvironmental stress significantly upregulates TNC 

expression and this is dampened with application of the Src inhibitor dasatinib, 

suggesting that TNC expression and Src activation cooperate to promote the invasive 

phenotype. Importantly, this work highlights the impact of stress-induced TNC 
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expression on enhancing cell invadopodia formation and provides evidence for a feed 

forward loop between TNC and Src to promote metastatic behavior in Ewing sarcoma.  

 

Introduction 
 

Ewing sarcoma is a bone or soft tissue tumor that most commonly presents in 

adolescents. Patients who present with primary, localized disease have a survival rate 

of greater than 70% following intensive multi-modality therapy (1). However, patients 

who present with metastatic disease, or who experience relapse, have survival rates of 

<20% (2). Although much has been learned about the biology of Ewing sarcoma 

tumorigenesis, mostly related to the driver EWS/ETS fusion (3), comparatively little is 

known about the cellular mechanisms that drive metastatic progression. At present, the 

same multi-agent chemotherapy is used for patients who present with both localized 

and metastatic disease, and intensification of neoadjuvant and adjuvant therapy has 

proven to be of no benefit for patients with progressive disease. Gaining a better 

understanding of the biologic drivers of metastasis is necessary for the development of 

more specific and effective therapeutic targets to treat this cancer.  

We have recently reported that changes in the local tumor microenvironment can 

induce phenotypic changes in Ewing sarcoma cells to states that support migration, 

invasion, angiogenesis and metastatic engraftment (4-7) (Chapter 3). In particular, both 

microenvironmental stresses (hypoxia, nutrient deprivation, growth constraints) and 

activation of canonical Wnt signaling, can induce Ewing cells to activate pro-metastatic 

gene signaling programs that promote cytoskeleton changes, activation of CXCR4, Src 

and Rac/Cdc42, angiogenesis, and secretion of extra-cellular matrix (ECM) proteins, 
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such as tenascin C (TNC) and collagen I, that are known to contribute to pro-metastatic 

tumor niches (4-7). In particular, Ewing sarcoma cells that are exposed to hypoxia and 

growth factor deprivation rapidly induce the formation of actin-rich protrusions known as 

invadopodia, which trigger degradation of the surrounding ECM, through activation of 

Src kinase (4).  

Activation of Src kinase is found in many cancers and effects many processes 

including, but not limited to, adhesion, migration, invasion, and cell morphology (8). Src 

activity is mediated by phosphorylation of the negative regulatory Tyr530, displacement 

of SH3 and SH2 domains through ligand binding, and phosphorylation of the positive 

regulatory Tyr419 (9). Once Src is activated, its primary role is to mediate cell-cell and 

cell-matrix interactions. This occurs through interaction of Src with plasma membrane-

bound molecular partners, such as integrins to mediate cytoskeletal functions, or 

receptor tyrosine kinases to alter migration and proliferation (8, 10). As a key regulator 

of signaling pathways aberrantly activated in cancers, Src is a prime candidate for 

development of therapeutic targets (11). Of note, we have shown that application of the 

Src inhibitor dasatinib blocks the invasive phenotype in Ewing sarcoma (4).  

Invadopodia are actin-rich protrusions that extend into the ventral surface of 

invasive cells (12). Accumulation of the actin assembly protein, cortactin, and matrix 

metalloproteases (MMPs), specifically MMP14, are key factors in mediating formation 

and function of the invadopodia structure (12, 13). Formation of these invadopodia 

structures results in coordination of cell motility with ECM degradation. In Ewing 

sarcoma, we have reported that phosphorylation of Src at the Tyr419 activating site is 

increased with nutrient deprivation and hypoxia resulting in increased invadopodia 
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formation which can be pharmacologically blocked by the Src-kinase inhibitor dasatinib 

(4). However, the mechanism through which this increased invadopodia occurs remains 

to be determined. 

A key regulator of the metastatic phenotype in Ewing sarcoma is the matricellular 

protein, TNC (5). Activation of Wnt/beta-catenin induces transcription and secretion of 

TNC resulting in increased angiogenesis and lung engraftment in Ewing tumor 

xenografts (5, 6) (Chapter 3). TNC is a matricellular protein found in the ECM that binds 

to both fibronectin and collagen fibrils in the tumor microenvironment (TME) as well as 

integrins on the cell surface (14). TNC plays a variety of roles in dictating how cells 

interact with their local microenvironment, most prominently being its adhesive and 

counter-adhesive effects on cells (15, 16). TNC expression is limited in adult tissues, 

but can be induced in instances of injury and tissue remodeling (17). High expression 

and secretion of TNC by both stromal cells and tumor cells has been reported in a 

variety of cancers including, but not limited to, breast, colorectal, and prostate (18-20). 

Deposition of TNC by breast cancer cells is critical to production of a metastatic niche, 

supporting the importance of tumor cell-derived TNC in promotion of successful 

metastatic engraftment (19). 

Interestingly, TNC has also been reported in other solid tumors to promote 

transition to a metastatic cell state and enhance Src phosphorylation (21). Given our 

prior work independently demonstrating the importance of both Src and TNC in 

promoting Ewing sarcoma cell metastatic behavior, we sought to determine whether Src 

and TNC cooperate to alter invadopodia formation in Ewing sarcoma. We hypothesized 

that TNC is a positive regulator of invadopodia formation in Ewing sarcoma through its 
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ability to activate Src. In the current study, we investigate the impact of TNC and Src on 

invadopodia formation by determining both the ability of cell intrinsic and extrinsic TNC 

to activate Src and conversely, the role of Src activation on TNC expression.  

  

Results 
 
Tenascin C reduces Ewing sarcoma cell spreading 
 

Our previous work demonstrated that tumor cell-derived tenascin C (TNC) is 

necessary for metastatic lung engraftment in Ewing sarcoma (4). TNC secreted into the 

TME, by either tumor cells or stromal cells, can alter tumor: TME crosstalk through 

signaling to tumor cells, stromal cells, and components of the ECM. Specifically, TNC 

can bind and activate integrins, resulting in decreased or increased cell adhesion, 

dependent on the context (14, 16). Whether or not TNC contributes to adhesive or 

counter-adhesive effects in Ewing sarcoma has not been described previously. To 

determine the impact of exogenous TNC on Ewing sarcoma cell adhesion in culture, 

tissue culture dishes were coated with recombinant TNC or vehicle and adhesion of 

Ewing sarcoma cells was assessed. As shown (Figure 4.1A), a striking difference in 

adhesion to the tissue culture plate was noted. Whereas tumor cells readily adhered to 

control dishes and spread to form classic cell monolayers, under TNC conditions Ewing 

cells did not adhere to the plate and instead favored cell-cell interactions, growing as 

three-dimensional spheres (Figure 4.1A). Therefore, we conclude that presence of TNC 

in the TME decreases cell spreading and adhesion of Ewing sarcoma cells.  
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Tenascin C enhances Src phosphorylation 
 

The ability of cells to spread and adhere onto a surface, whether it be a 

basement membrane, ECM, or tissue culture dish, is highly dependent on dynamic 

changes in the activation of the focal adhesion kinase (FAK) and Src kinase (22). FAK 

and Src are intimately linked to each other and activated via “outside-in” signals, 

through binding of ligands to cell surface receptors, leading to changes in cytoskeletal 

organization, cell motility, and adhesion (9). TNC is able to bind to receptors on the cell 

surface and regulate FAK activity and in turn has been shown to enhance Src activity in 

breast cancer (21, 23). However, the relationship between TNC and Src has not been 

discussed in Ewing sarcoma. Therefore, we hypothesized that TNC present in the TME 

from either tumor cell secretion or stromal cell secretion, may bind to the cell surface 

and thus be able to activate Src kinase in Ewing sarcoma. To test this hypothesis, TC32 

and CHLA10 cells were treated with 3 uM recombinant TNC or vehicle control under 

unstressed conditions for 24 hours. At this concentration, there were no changes in cell 

adhesion to the tissue culture dish or changes in cell morphology. Cells were lysed and 

resulting lysates were analyzed by western blot for phosphorylation of Src on tyrosine 

Figure 4.1 Tenascin C reduces Ewing 
sarcoma cell spreading. Plates were 
coated with 5 ug/mL recombinant TNC 
or PBS prior to addition of Ewing 
sarcoma cells. Pictures of cells were 
taken 24 hours after seeding. Cells 
cultured in the presence of TNC are 
unable to spread onto the plate and 
form 3D spheroids. 
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418 (activating) -TNC application led to significantly increased Src activation (Figure 

4.2A).  

As published previously, Ewing sarcoma cells exposed to serum starvation and 

hypoxia result in increased activation of Src (4). Here we now show that extrinsic TNC 

can also enhance Src phosphorylation. Therefore, we hypothesized that stress 

dependent activation of Src would be dependent, at least in part, on cell intrinsic 

expression of TNC. Knockdown of TNC using two short hairpins (shTNC3 and shTNC5) 

was first confirmed by qRT-PCR (Figure 4.2B). Here we found that knockdown of TNC 

decreased both baseline and stress-dependent induction of p-Src on tyrosine 418 in 

CHLA10 (Figure 4.2C). In conclusion, we show that both cell extrinsic and cell intrinsic 

production of TNC mediates Src activation in Ewing sarcoma.  

   

Tenascin C promotes stress mediated formation of invadopodia 
 

Invadopodia are actin-rich cell structures that serve as lead points for cell 

mediated degradation of ECM (12). Src phosphorylation at tyrosine 418 is a positive 

regulator in generating these structures in many cancers, including Ewing sarcoma (4). 

Additionally, TNC expression in cancer is associated with a more metastatic phenotype, 

specifically through increased expression at the invasive front of many solid tumors 

(24). As we have now shown that TNC can increase Src activation, we next sought to 

determine if exogenous TNC present in the TME could also further enhance 

invadopodia formation under stress. Ewing sarcoma cells were seeded onto Oregon 

green 488 labeled gelatin-coated chamber slides as previously described (4) and 

subjected to serum deprivation in addition to application of vehicle or 3 micro-Molar 
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TNC for 24 hours. Cells/slides were fixed and invadopodia/areas of matrix degradation 

were imaged (Figure 4.3D) and quantified (Figure 4.3E). TNC application resulted in a 

statistically significant increase in matrix degradation than serum starved control cells. 

Together these data support the hypothesis that increased TNC in the 

microenvironment activates Src and enhances invadopodia formation and surrounding 

matrix degradation in Ewing sarcoma.  

 Given our finding that TNC enhances invadopodia formation through p-Src in 

Ewing sarcoma and that knockdown of TNC partially blocks stress dependent Src 

activation, we next sought to determine if TNC is necessary for stress induced 

invadopodia. We hypothesized that stress dependent activation of invadopodia 

structures is mediated by the expression and subsequent secretion of TNC into the local 

TME. To test this hypothesis, control and TNC knockdown Ewing cells were exposed to 

serum deprivation and hypoxic conditions and were cultured on Oregon green 488 

labeled gelatin-coated chamber slides. As shown (Figure 4.3A-D), loss of TNC 

significantly impeded stress induced activation of invadopodia, as indicated by loss of 

invasive structures and overall degradation. Based on these findings, we conclude that 

stress dependent activation of invadopodia is dependent on cell intrinsic TNC and TNC 

in the TME can enhance invadopodia formation, providing evidence for a link between 

Src, TNC, and the invasive phenotype.  
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Stress induces Tenascin C expression in Ewing sarcoma 
 

Here we show that stress-dependent induction of invadopodia is dependent on 

Src activation (4) and TNC. Our published studies showed that expression of TNC in 

Ewing sarcoma cells is heterogeneous and dynamic, and that it can be induced by 

canonical Wnt signaling (5). We wondered whether TNC expression was also dynamic 

in the presence of stress, explaining the dependency of stress-induced invadopodia 

formation on TNC expression. Ewing sarcoma cell lines, A673 and CHLA10 were 

exposed to conditions of no stress (full serum plus normoxia (control)), single stress (no 

serum plus normoxia (SS) or full serum plus hypoxia (Hypoxia)) or dual stress (no 

serum plus hypoxia (Hypoxia + SS)) for 24 hours and TNC was measured using RT-

PCR. Both single and dual stress conditions resulted in increased TNC expression in 

both cell lines (Figure 4.1A). Notably, although the degree of observed responses 

Figure 4.2. Tenascin C increases Src phosphorylation and invadopodia formation 
in Ewing sarcoma. A. TC32 and CHLA10 Ewing sarcoma cells were treated with 3 
micro-Molar recombinant tenascin C (TNC) or vehicle control for 24 hours. Lysates were 
prepared and subjected to western blot analysis for p-Y418 Src and vinculin (loading 
control). B. Ewing sarcoma cell lines CHLA10 and A673 stably transduced with 
lentivirus containing non-silencing hairpin (shNS) or two different TNC hairpins (shTNC3 
and shTNC5). Knockdown was confirmed via qRT-PCR for TNC. C. p-Src was 
measured via western blot in control CHLA10 cells (shNS) or CHLA10 TNC knockdown 
(shTNC3 and shTNC5) cells in the presence of single stress (SS) or dual stress (SS + 
Hypoxia). Ewing cells were then cultured in 0% FBS-containing culture media for 24-
hours on Oregon Green 488 labeled gelatin coated chamber slides in the presence of 
vehicle control or 3 micro-Molar TNC. D. Representative confocal microscopy images of 
invadopodia in CHLA10 cells under no stress (left), serum starved treated with vehicle 
(middle), or serum starved treated with 3 micro-Molar TNC (right) (green= Oregon green 
488 gelatin, red=566 cortactin, black=area of matrix degradation) Arrows indicate areas 
of invadopodia formation as indicated by punctate cortactin and gelatin degradation. E. 
Degradation was quantified using ImageJ analysis to determine degradation/cell 
number for each image. Quantification of area of degradation per cell in both CHLA10 
and TC32 Ewing sarcoma cells treated with vehicle control or 3 micro-Molar TNC.  
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varied among the cell lines in the different conditions, a statistically significant increase 

in TNC was reproducibly detected under conditions of dual stress (serum starvation and 

hypoxia). In parallel, immunocytochemistry detection of TNC showed that various single 

and dual stresses, dependent on cell line, resulted in statistically significant increases in 

TNC protein (Figure 4.1B, Figure 4.1C). Therefore, like canonical Wnt/beta-catenin 

signaling, exposure of Ewing cells to hypoxia and serum deprivation increases TNC 

transcript and protein levels, suggesting that stress induced invadopodia formation 

occurs, at least in part, 

because of stress-

induced expression of 

TNC.  

 

 

 

 

 

 

 

Figure 4.3. Knockdown of Tenascin C decreases invadopodia formation. A673 (A) 
and CHLA10 (B) were cultured for 24 hours on Oregon Green 488 labeled gelatin coated 
chamberslides. Cells were incubated on slides in 0% serum and hypoxia. Representative 
high-power field images are shown of gelatin (green only) and gelatin + cortactin (red) 
and DAPI (green= Oregon green 488 gelatin, red=566 cortactin, black=area of matrix 
degradation). Arrows indicate areas of invadopodia formation as indicated by punctate 
cortactin and gelatin degradation. C&D. Degradation was quantified using ImageJ 
analysis to determine degradation/cell number for each image. Experiments were 
performed in triplicate and p-values were determined using student’s t-tests and * 
indicates p<.05, ** indicates p<.005.  
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Figure 4.4. Stress induces Tenascin C expression in Ewing sarcoma. A. A673 
and CHLA10 cells were cultured with full serum (10% FBS for A673, 20% FBS for 
CHLA10) in normoxia (control), 0% serum in normoxia (SS), full serum in hypoxia 
(Hypoxia), and 0% serum in hypoxia (Hypoxia + SS). Cells were collected after 24 
hours in stress and TNC expression was measured using qRT-PCR. B. 
Representative images of CHLA10 cells cultured in the same conditions as 
described in (A) for 48 hours before immunocytochemistry staining for TNC, 
indicated in yellow. C. Proportion of cells that are positive for TNC in high power-
field images in A673 and CHLA10. P-values were determined using student’s t-
tests and * indicates p<.05, ** indicates p<.005.  
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The Src inhibitor dasatinib decreases Tenascin C expression in Ewing sarcoma 
 

Stress has now been shown to increase both Src activation and cell intrinsic 

expression of TNC, and stress-induced invadopodia formation is abrogated upon either 

TNC knockdown or inhibition of Src. Therefore, we sought to determine if stress 

dependent TNC expression in Ewing sarcoma cells was regulated by stress-dependent 

Src activation or vice versa. We first treated Ewing cells with nanomolar doses of 

dasatinib to block phosphorylation of Src (as described previously (4)) and measured 

baseline TNC expression to determine if Src activation regulates TNC in the absence of 

stress. Across three different cell lines, we observed a decrease in TNC expression in 

dasatinib treated cells as compared with vehicle treated cells (Figure 4.5A). This 

suggests, that activation of p-Src is upstream of cell intrinsic TNC expression. 

Next, to determine whether stress-induced TNC expression is also mediated by 

Src, cells were cultured in full serum plus normoxia or no serum plus hypoxia with and 

without dasatinib treatment. We observed an increase in TNC in cells treated with 

hypoxia and no serum, similar to observations seen in Figure 4.4, and that this 

induction of TNC by stress is blocked by the addition of dasatinib (Figure 4.5B). Based 

on these findings, we conclude that both basal and stress induced TNC expression is 

dependent on Src activation.  

Finally, we evaluated whether Src dependent activation of TNC expression was 

restricted to stress induction of TNC, or if TNC is dependent on Src when TNC is 

activated through other avenues. For example, we previously published that activation 

of the Wnt/beta-catenin pathway results in increased expression and secretion of TNC 

(5, 6). Src kinase has also been implicated in playing an important role in Wnt/beta-
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catenin driven cancers (25-27). Therefore, we hypothesized that Wnt dependent 

expression and secretion of TNC is also dependent on activation of Src in Ewing 

sarcoma. Here we see that in A673 and CHLA10 cells, dasatinib blocks the Wnt 

dependent induction of TNC (Figure 4.5C). To determine whether or not Wnt induced 

TNC secretion was also dependent on p-Src, we stimulated Ewing cells with Wnt3a for 

three days and then added dasatinib for 48 hours prior to collecting secreted protein 

and checking for secreted protein levels via western blot. We see that in both A673 and 

CHLA10 activation of Wnt/beta-catenin through treatment with Wnt3a induces TNC 

secretion and this is blocked with the combination of both Wnt3a and Dasatinib. This 

data shows that cell intrinsic TNC expression in both Wnt induced and stress induced 

conditions is downstream of Src activation. Together, these data suggests that TNC and 

Src are linked by a feed forward loop where stress (and/or Wnt) induces Src activation 

followed by an increase in cell intrinsic TNC expression and formation of invadopodia. 

TNC can then be secreted into the TME, either by Ewing cells or stromal cells, and 

signal back to tumor cells to further induce Src activation and enhance invadopodia 

formation.  
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Figure 4.5. The Src inhibitor Dasatinib decreases Tenascin C expression 
and secretion in Ewing sarcoma. A. A673, CHLA10, and TC32 cells were 
treated with either vehicle control (DMSO) or 50 uM dasatinib for 24 hours prior 
to collecting to determine TNC expression via qRT-PCR. B. Cells were cultured 
for 24 hours in full serum plus normoxia (control), 0% serum plus hypoxia 
(Hypoxia + SS + Vehicle), and 0% serum plus hypoxia in the presence of 
dasatinib (Hypoxia + SS + Dasatinib). TNC expression was measured using 
qRT-PCR. C. Cells were treated with Wnt3a (100 ng/mL) or vehicle (PBS) for 24 
hours with or without 50 uM dasatinib. TNC expression was measured using 
qRT-PCR. D. Cells were cultured for 5 days with or without Wnt3a treatment 
once a day and protein in the conditioned media was collected. 2 days prior to 
media collection, cells were serum starved and treated with either vehicle or 50 
uM dasatinib once a day. Western blot for TNC secretion was performed and 
showed an increase in TNC secretion with Wnt3a alone and a decrease in TNC 
secretion with both Wnt3a and dasatinib.  
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Discussion 
 

Work presented here and published data has demonstrated the importance of 

tumor microenvionmental stress/Src phosphorylation mediated TNC expression on 

Ewing sarcoma cell aggressiveness through the generation of invadopodia and in vivo 

tumor lung seeding, respectively (4). We propose a model in which stress induces 

activation of Src kinase, resulting in increased TNC expression. Cell intrinsic and 

extrinsic TNC then promote a feed forward loop in which TNC increases Src activation 

and enhances invadopodia formation (Figure 4.6). For the first time, we have shown the 

significant intersection of the stress/p-Src/TNC pathways in dictating Ewing sarcoma 

invasive potential.  

Here we show that TNC mediates two critical phenotypes important in cancer 

progression, cell-cell interactions and invasion. TNC has been shown to play both 

adhesive and counter adhesive roles in various microenvironments and is able to 

dictate cell-cell and cell-matrix interactions (14, 16). TNC is most predominantly studied 

for its ability to bind to fibronectin domains, thus blocking the ability of cells to bind to a 

fibronectin matrix and favoring cell-cell interactions over cell-matrix interactions (16). 

Ewing sarcoma cells have been shown to secrete high amounts of fibronectin (6), 

implying that high amounts of TNC in the TME could bind to the fibronectin secreted by 

Ewing cells to alter Ewing cell adhesion to the ECM. Our studies are the first to begin 

evaluating the role of TNC on mediating Ewing sarcoma cell-cell interactions and reveal 

that high levels of TNC lead to favoring of cell-cell interactions rather than cell spreading 

on the tissue culture plate. Although the exact mechanism through which this occurs 

has yet to be described and is outside the scope of the manuscript, this finding reveals 
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a novel link between TNC and signaling pathways involved in mediating cell-cell 

interactions and cell morphology such as Src in Ewing sarcoma.  

Reduced TNC expression results in a decrease in efficiency to form invadopodia 

while addition of TNC enhances invadopodia formation in Ewing sarcoma. TNC has 

been shown to promote an invasive phenotype in a neuroendocrine tumor model (28) 

as well as promote a metastatic phenotype through increased migration and activation 

of the epithelial to mesenchymal transition (21). However, TNC has yet to be described 

to contribute to formation of the invasive structures known as invadopodia in cancer. 

Invadopodia are defined by two distinct processes, the formation of the actin rich 

structure which is dependent on Src and the ability to degrade the local ECM primarily 

mediated by MMPs and changes in ECM composition (12, 29). TNC can bind to both 

fibronectin and collagen fibrils as well as other ECM proteins to alter ECM composition 

or enhance degradation and can bind to integrins on the cell surface to mediate motility 

and adhesion in cancer (14, 17, 24). Although we have yet to show the exact 

mechanism through which TNC activates invadopodia, we hypothesize that TNC 

activates the invasive phenotype either through integrin dependent activation of Src to 

form the actin rich core or through direct interaction with ECM proteins in the TME 

resulting in matrix degradation. Together, the data shown here implies that production of 

TNC by both Ewing sarcoma cells as well as other stromal cells in the TME, promotes 

the invasive potential of Ewing sarcoma tumors. 

We now have shown that enhanced TNC expression is one of the critical 

components of the Ewing cell response to TME-stress. TNC expression is controlled by 

mechanical stress, but this is the first study to link TNC to microenvironmental stress 
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that is not a result of mechanical alterations (30, 31). TNC is very lowly expressed in 

adult tissues outside of areas of wound repair (15). The activation of TNC through 

changes in external tensile stress has been heavily described in wound repair, but very 

little is understood about what activates TNC in a tumor environment. Here we have 

presented one avenue through which TNC expression could be increased and 

hypothesize that microenvironmental stresses, such as nutrient deprivation and hypoxia 

found in large, necrotic tumors contribute to the high expression of TNC in the stroma of 

solid tumors.     

We used low nM doses of dasatinib (previously shown by us to block p-Src 

mediated invadopodia in Ewing sarcoma (4)) to also block stress-induced increases in 

TNC expression, suggesting a dependency of TNC expression on Src activation. We 

show that application of TNC enhances Src phosphorylation and loss of TNC 

expression inhibits stress dependent Src activation. Therefore, we propose a positive 

feed forward loop in which microenvironmental stresses induce Src activation which 

results in increased TNC expression and subsequent secretion. Both cell intrinsic and 

extrinsic TNC present in the TME can then further induce Src activation, presumably 

through integrin binding, leading to increased invasion. As shown in Figure 4.6, this 

loop is stimulated by extrinsic signals in the local microenvironment including stress 

and/or Wnt activation.  

Interestingly, dasatinib also blocked Wnt-induced/non-stress mediated 

upregulation of TNC, suggesting that Src kinase may also be important in downstream 

Wnt signaling in Ewing sarcoma, although exact understanding of how Src kinase could 

be linked to canonical Wnt signaling is a remaining question to be answered. In fact, 
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there are reports of non-canonical Wnt signaling triggering the activation of Src (32). 

This finding suggests that there are multiple avenues that can affect Src 

phosphorylation and subsequently TNC expression in Ewing sarcoma to mediate a 

metastatic phenotype.  

In conclusion, the expression and function of TNC are important to consider 

when devising new treatment schema to test for the prevention or treatment of 

metastatic Ewing sarcoma, as inhibitors targeting the Wnt (33) pathway or Src alone (4, 

34) may not prevent stress-mediated increases in TNC expression. In this situation, 

acute stress (hypoxia, nutrient deprivation) may provide a means by which cells could 

rapidly upregulate TNC, activate Src and promote invasive behavior.  

 

 

 

 

 

 

 

 

 

Figure 4.6. Visual Overview. Both tumor microenvironmental (TME) 
stress and Wnt can upregulate TNC expression in Ewing sarcoma 
cells and can be blocked by application of dasatinib. Increased 
exposure to or expression of TNC results in increased invasive 
potential via formation of invadopodia. 
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Materials and Methods 
  
Cell culture  
 
Ewing sarcoma cell lines A673 and TC32 were maintained in RPMI 1640 media (Gibco) 

supplemented with 10% FBS (Atlas Biologicals) and 2mmol/L-glutamine (Life 

Technologies). CHLA10 was maintained in IMDM media (Fisher Scientific) 

supplemented with 20% FBS, 2mmol/L-glutamine and 1X Insulin-Transferrin-Selenium 

(Gibco). A673 was obtained from ATCC. CHLA10 and TC32 were obtained from the 

Children’s Oncology Group (COG) cell bank (cogcell.org). All cell lines were STR 

profiled and are mycoplasma negative. For hypoxia experiments, cells were cultured in 

1% O2 as previously described (4).  

 

Reagents 
 
Dasatinib was a gift from the Leopold lab (Ann Arbor, MI) and used at a concentration of 

50 uM. Recombinant tenascin C was purchased from R&D Systems (Cat # 3358TC, 

Minneapolis, MN). Recombinant Wnt3a was purchased from R&D Systems (Cat # 

5036-WN-010, Minneapolis, MN) and used at a concentration of 100 ng/mL. 

 

Lentiviral transduction 
 
Lentiviral production and transduction was performed as described previously (4) and 

Sigma TRCN0000230788 (shTNC) was used. Transduced cells were selected in 

puromycin (2 ug/mL).  
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Gene expression analysis  
 
Total RNA was extracted from cells using Quick-RNA MicroPrep (Zymo Research) and 

cDNA was generated using iScript (Bio-Rad). Quantitative real-time PCR (qRT-PCR) 

was performed using universal SYBR-Green Supermix (Bio-Rad) for designed primers. 

Analysis was performed in triplicate using the Light-Cycler 480 System (Roche Applied 

Science) and average Cp values were normalized relative to the housekeeping gene 

HPRT. The following primers were used:  

TNC forward: 5’GCAGCTCCACACTCCAGGTA3’, TNC reverse: 

5’TTCAGCAGAATTGGGGATTT3’, HPRT forward: 

5’TGACACTGGCAAAACAATGCA3’, and HPRT reverse: 

5’GGTCCTTTTCACCAGCAAGCT3’.  

 

Immunocytochemistry 
 
Cells were plated directly onto gelatin coated chamber slides and treated under 

conditions of serum starvation (0% FBS in media) and/or hypoxia (1% oxygen using a 

BioSpherix Incubator). After 48 hours of serum starvation and/or hypoxia, slides were 

fixed with 4% paraformaldehyde, permeabilized with .05% Triton-X, and blocked with 

5% goat serum for 30 minutes. Slides were incubated with mouse anti-tenascin C (Cat # 

T2551 Sigma Aldrich) at a concentration of 1:100 in 5% goat serum overnight before 

incubation with a goat anti-mouse AlexaFluor 555 secondary antibody (Cat # A-21422 

Life Technologies). Nuclei were stained with DAPI. Images were visualized using an 

Olympus IX83 inverted microscope. Number of total cells and number of TNC positive 

cells were counted in at least four high-power field images using ImageJ.  
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Western blotting 
 
Conditioned media from tumor cells was collected and protein was concentrated using 

three kilodalton cutoff amicon Ultra Centrifugal Filter Units (Fisher). Protein 

concentration was measured using the DC Protein Assay (Bio-Rad). Western blot 

analysis was performed using the Bio-Rad Mini-PROTEAN Tetra System. See 

reference for TNC western blot protocol(6).  Antibodies were obtained from the following 

sources: pSrc (Tyr418 Cat # 44-660G Invitrogen/Thermo Fisher, Waltham, MA) and 

tenascin C (Cat # T2551 Sigma Aldrich).  Density of all protein of interest bands were 

normalized to either vinculin or total protein and fold change relative to vehicle or control 

was determined and is displayed under each western blot.  

 

Invadopodia/matrix degradation assay 
 
Oregon Green 488 labeled gelatin coated chamber slides were made as previously 

described (4). Ewing tumor cells were cultured on the slides and following completion of 

the experiment, the cells/slides were fixed with paraformaldehyde, permeabilized with 

.1% Triton X, and quenched with 50mM NH4Cl prior to blocking in 5% goat serum in 

PBS. Slides were incubated with anti-cortactin (EMD Millipore 16-229, Temecula, CA) at 

1:500 and DAPI at 1:10,000 in 5% goat serum in PBS overnight. Slides were then 

imaged using a Zeiss LSM 710 confocal microscope. Total degradation was quantified 

using ImageJ as described in (35) in 5 high power field images per chamber. 

Degradation was normalized to the number of cells in each field and averaged over all 5 

images.  
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Statistics 
 
All p-values were calculated using student’s t-test. * indicates p < 0.05 and ** indicates p 

< 0.005.   



 
 

 133 

References 
 
1. Grunewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Alava E, Kovar H, 

et al. Ewing sarcoma. Nature reviews Disease primers. 2018;4(1):5. 
2. Lawlor ER, and Sorensen PH. Twenty Years on: What Do We Really Know about 

Ewing Sarcoma and What Is the Path Forward? Critical reviews in oncogenesis. 
2015;20(3-4):155-71. 

3. Janknecht R. EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene. 
2005;363:1-14. 

4. Bailey KM, Airik M, Krook MA, Pedersen EA, and Lawlor ER. Micro-
Environmental Stress Induces Src-Dependent Activation of Invadopodia and Cell 
Migration in Ewing Sarcoma. Neoplasia. 2016;18(8):480-8. 

5. Pedersen EA, Menon R, Bailey KM, Thomas DG, Van Noord RA, Tran J, et al. 
Activation of Wnt/beta-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS 
Function and Promotes Phenotypic Transition to More Metastatic Cell States. 
Cancer research. 2016;76(17):5040-53. 

6. Hawkins AG, Basrur V, da Veiga Leprevost F, Pedersen E, Sperring C, 
Nesvizhskii AI, et al. The Ewing Sarcoma Secretome and Its Response to 
Activation of Wnt/beta-catenin Signaling. Molecular & cellular proteomics : MCP. 
2018;17(5):901-12. 

7. Krook MA, Hawkins AG, Patel RM, Lucas DR, Van Noord R, Chugh R, et al. A 
bivalent promoter contributes to stress-induced plasticity of CXCR4 in Ewing 
sarcoma. Oncotarget. 2016;7(38):61775-88. 

8. Sen B, and Johnson FM. Regulation of SRC family kinases in human cancers. J 
Signal Transduct. 2011;2011:865819. 

9. Huveneers S, and Danen EH. Adhesion signaling - crosstalk between integrins, 
Src and Rho. Journal of cell science. 2009;122(Pt 8):1059-69. 

10. Shattil SJ. Integrins and Src: dynamic duo of adhesion signaling. Trends Cell 
Biol. 2005;15(8):399-403. 

11. Creedon H, and Brunton VG. Src kinase inhibitors: promising cancer 
therapeutics? Critical reviews in oncogenesis. 2012;17(2):145-59. 

12. Murphy DA, and Courtneidge SA. The 'ins' and 'outs' of podosomes and 
invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 
2011;12(7):413-26. 

13. Clark ES, and Weaver AM. A new role for cortactin in invadopodia: regulation of 
protease secretion. Eur J Cell Biol. 2008;87(8-9):581-90. 

14. Yoshida T, Akatsuka T, and Imanaka-Yoshida K. Tenascin-C and integrins in 
cancer. Cell adhesion & migration. 2015;9(1-2):96-104. 

15. Jones PL, and Jones FS. Tenascin-C in development and disease: gene 
regulation and cell function. Matrix biology : journal of the International Society 
for Matrix Biology. 2000;19(7):581-96. 

16. Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, and Chiquet M. Tenascin 
interferes with fibronectin action. Cell. 1988;53(3):383-90. 

17. Midwood KS, and Orend G. The role of tenascin-C in tissue injury and 
tumorigenesis. Journal of cell communication and signaling. 2009;3(3-4):287-
310. 



 
 

 134 

18. Li M, Peng F, Li G, Fu Y, Huang Y, Chen Z, et al. Proteomic analysis of stromal 
proteins in different stages of colorectal cancer establishes Tenascin-C as a 
stromal biomarker for colorectal cancer metastasis. Oncotarget. 
2016;7(24):37226-37. 

19. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et 
al. Breast cancer cells produce tenascin C as a metastatic niche component to 
colonize the lungs. Nature medicine. 2011;17(7):867-74. 

20. Ni WD, Yang ZT, Cui CA, Cui Y, Fang LY, and Xuan YH. Tenascin-C is a 
potential cancer-associated fibroblasts marker and predicts poor prognosis in 
prostate cancer. Biochemical and biophysical research communications. 
2017;486(3):607-12. 

21. Nagaharu K, Zhang X, Yoshida T, Katoh D, Hanamura N, Kozuka Y, et al. 
Tenascin C induces epithelial-mesenchymal transition-like change accompanied 
by SRC activation and focal adhesion kinase phosphorylation in human breast 
cancer cells. The American journal of pathology. 2011;178(2):754-63. 

22. Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, and Ronde P. 
Regulation of focal adhesion dynamics and disassembly by phosphorylation of 
FAK at tyrosine 397. Journal of cell science. 2005;118(Pt 19):4415-25. 

23. Midwood KS, and Schwarzbauer JE. Tenascin-C modulates matrix contraction 
via focal adhesion kinase- and Rho-mediated signaling pathways. Mol Biol Cell. 
2002;13(10):3601-13. 

24. Lowy CM, and Oskarsson T. Tenascin C in metastasis: A view from the invasive 
front. Cell adhesion & migration. 2015;9(1-2):112-24. 

25. Polakis P. Wnt signaling in cancer. Cold Spring Harbor perspectives in biology. 
2012;4(5). 

26. Sirvent A, Benistant C, and Roche S. Oncogenic signaling by tyrosine kinases of 
the SRC family in advanced colorectal cancer. American journal of cancer 
research. 2012;2(4):357-71. 

27. Taylor S, and Bagrodia S. Src and Wnt converge to seal cell's fate. Molecular 
cell. 2002;10(1):10-1. 

28. Saupe F, Schwenzer A, Jia Y, Gasser I, Spenle C, Langlois B, et al. Tenascin-C 
downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a 
neuroendocrine tumor model. Cell reports. 2013;5(2):482-92. 

29. Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Diaz B, et al. 
Src-dependent Tks5 phosphorylation regulates invadopodia-associated invasion 
in prostate cancer cells. Prostate. 2014;74(2):134-48. 

30. Mackie EJ, Scott-Burden T, Hahn AW, Kern F, Bernhardt J, Regenass S, et al. 
Expression of tenascin by vascular smooth muscle cells. Alterations in 
hypertensive rats and stimulation by angiotensin II. The American journal of 
pathology. 1992;141(2):377-88. 

31. Fluck M, Tunc-Civelek V, and Chiquet M. Rapid and reciprocal regulation of 
tenascin-C and tenascin-Y expression by loading of skeletal muscle. Journal of 
cell science. 2000;113 ( Pt 20):3583-91. 

32. Sedgwick AE, and D'Souza-Schorey C. Wnt Signaling in Cell Motility and 
Invasion: Drawing Parallels between Development and Cancer. Cancers. 
2016;8(9). 



 
 

 135 

33. Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, et al. 
Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft 
model of Ewing sarcoma. Oncotarget. 2017;8(45):78265-76. 

34. Indovina P, Casini N, Forte IM, Garofano T, Cesari D, Iannuzzi CA, et al. SRC 
Family Kinase Inhibition in Ewing Sarcoma Cells Induces p38 MAP Kinase-
Mediated Cytotoxicity and Reduces Cell Migration. J Cell Physiol. 
2017;232(1):129-35. 

35. Martin KH, Hayes KE, Walk EL, Ammer AG, Markwell SM, and Weed SA. 
Quantitative measurement of invadopodia-mediated extracellular matrix 
proteolysis in single and multicellular contexts. Journal of visualized experiments 
: JoVE. 2012(66):e4119. 

 
 
 
 
 

 
 

 
 
 
  



 
 

 136 

 
 

Chapter 5: Conclusion and Future Directions 

 

 Ewing sarcoma is an aggressive bone and soft tissue tumor with peak incidence 

in adolescents and young adults, however it can present at any age (1). High dose 

chemotherapy combined with radiation and/or surgery has led to improved survival 

rates for patients with only primary tumors. In contrast, no improvement in the past 30 

years has been made in treating the third of patients who go on to develop metastatic 

disease or relapse, most commonly in the form of metastatic disease (2). These 

patients have less than a 20% chance of 5 year survival and this is further decreased to 

a dismal 10% chance of survival for patients developing metastasis to the bone (1). Not 

only have we made no improvement in treatment of metastatic disease, high dose 

systemic chemotherapy given to all patients results in acute and long-term toxicities 

even long after they are cured of the disease (2). Future research should not only focus 

on finding better therapies for patients with metastatic disease but also on improving 

current treatment strategies to improve overall survival while decreasing long term 

toxicities.  

 Ewing sarcoma is driven by EWS-ETS fusion proteins, most commonly EWS-

FLI1 identified in 85% of patients (3). However, as EWS-FLI1 is a transcription factor, it 

is an extremely poor drug target (4). EWS-FLI1 functions as a pioneer factor leading to 
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global reprogramming of the epigenome that alters gene expression to create an EWS-

FLI1-dependent gene signature (5, 6). Failed targeting of the fusion itself, led to ongoing 

efforts to target direct protein interactions with RNA helicase A (RHA) that are thus far 

unsuccessful (7). Attempts to reverse the EWS-FLI1 gene signature through treatment 

with trabectedin that interferes with activated transcription has also been unsuccessful 

as a single agent in a phase II clinical trial (8). Focus has thus shifted from targeting 

EWS-FLI1 directly to targeting other pathways that are hijacked in Ewing tumors. Some 

examples of other approaches that are still being evaluated include CXCR4 inhibitors, 

lysine-specific demethylase 1 (LSD1) inhibitors, Poly (ADP-ribose) enzyme (PARP) 

inhibitors, anti-VEGF monoclonal antibodies, insulin-like growth factor-1 receptor (IGF-

1R) inhibitors, and inhibitors of bone resorption (2, 4). It is imperative that we focus our 

efforts on understanding the biological drivers of both local and metastatic disease in 

hopes of exploiting new therapeutic targets such as the ones mentioned here to 

improve patient survival.  

Notably, many of these potential therapeutic targets include pathways that alter 

tumor: TME interactions rather than tumor cells directly. In this thesis work, we propose 

a role for two more pathways affecting tumor: TME interactions to drive an aggressive 

phenotype, the Wnt/beta-catenin pathway and the TGF-beta pathway. We show that 

activation of the Wnt/beta-catenin pathway leads to increased secretion of ECM 

components like TNC, a matricellular protein critical in dictating tumor: TME crosstalk 

through increased angiogenesis and invadopodia formation (9). We then show that Wnt 

sensitizes cells to activation of the TGF-beta pathway through derepression of the 

EWS-FLI1 target, TGFBR2. Expression of the pro-metastatic TNC is then shown to be 
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dependent on the cooperation between Wnt and TGF-beta signaling. Furthermore, we 

show a connection between TNC expression and activation of Src kinase, a key 

accelerator of the invasive phenotype in Ewing sarcoma. Both Wnt and TGF-beta have 

independently been shown to mediate Src kinase in other cancer types, suggesting that 

all three of these pathways are linked in driving Ewing sarcoma metastasis (10, 11). 

Preclinical studies using a porcupine inhibitor, resulting in decreased Wnt ligand 

secretion, have shown decreased tumor growth in xenograft models, revealing that 

targeting the Wnt pathway may be a potential avenue to improve patient survival (12). 

Based on these findings, we hypothesize that inhibiting a combination of Wnt, TGF-

beta, and Src signaling could decrease the metastatic phenotype and improve overall 

survival for metastatic patients.  

 

Wnt and TGF-beta remodel the Tumor Microenvironment 
  
Invasion and Matrix Degradation  
 

Here we are the first to show that activation of the Wnt pathway sensitizes cells 

to activation of the TGF-beta pathway, resulting in increased expression of the pro-

angiogenic TNC. However, activation of both the Wnt and TGF-beta pathways alter 

many cellular processes and it is highly unlikely that angiogenesis is the only change in 

the TME that occurs upon pathway activation (13, 14). A prominent role for TGF-beta is 

in driving an invasive phenotype and specifically, heterogeneous activation of TGF-beta 

at the invasive front has been identified in squamous cell carcinoma (15). Activation of 

the TGF-beta pathway was originally found to act as a tumor suppressor in primary 

xenograft models of Ewing sarcoma (16). However, recent understanding of the 
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conflicting roles of TGF-beta throughout tumor progression in carcinoma models 

suggests that TGF-beta may also be context dependent in Ewing sarcoma (17).  

Wnt pathway activation results in increased migration but is unable to induce 

invadopodia formation and matrix degradation in vitro (18). Therefore, we hypothesized 

that Wnt activated cells are primed to respond to TGF-beta ligands in the TME, creating 

a pro-invasive phenotype and contributing to the metastatic phenotype observed in Wnt 

activated Ewing sarcoma xenografts. In support of this hypothesis, preliminary data in 

2D shows that cells pretreated with Wnt3a prior to activation of the TGF-beta pathway 

have increased matrix degradation and matrix remodeling in comparison to either ligand 

alone (Figure 5.1). Next, we hope to explore the role of Wnt and TGF-beta activation in 

a 3D collagen matrix and evaluate both cell motility as well as matrix degradation to 

definitively determine if Wnt and TGF-beta promote invasion.  

 

Extracellular Matrix Remodeling 
 

A major finding of this dissertation work is that activation of the Wnt pathway 

leads to increased expression and secretion of proteins involved in ECM organization 

and composition. We then go on to show that Wnt-dependent induction of these ECM 

genes is dependent on the TGF-beta pathway. We therefore hypothesize that 

cooperation between these pathways drives changes in structure and composition of 

the local TME.  

In order to accurately show the contribution of Ewing sarcoma cells to ECM 

remodeling and ECM composition we need to utilize 3D systems that allow for cells to 

grow in the context of a local ECM. To begin addressing this question, we collaborated 



 
 

 140 

with Dr. Joerg Lahann’s group in the chemical engineering department to use their 3D 

fibronectin (FN) coated scaffold (19). Here, scaffolds are coated using phase separation 

technology to allow for FN to reveal its FNIII sites and be in its extended form vs. the 

globular form found in tissue culture dishes (20, 21). This allows for the FN to form in it’s 

physiological state and results in an almost uniform 3D matrix (Figure 5.2A). We can 

then culture cells on this 3D matrix and look for changes in the FN matrix.  

 

 

Figure 5.1 Wnt and TGF-beta cooperate to promote matrix degradation. A. Cells are 
cultured in the presence or absence of Wnt and/or TGFB1 on FITC-labeled gelatin (Green). 
Matrix degradation and remodeling is indicated by black holes in gelatin and changes in 
gelatin color intensity. B. Matrix degradation is quantified across three replicates with a 
minimum of 5 high power field images and averaged. Total degradation is normalized to 
cell number present in each image. Statistically significant increases in matrix degradation 
is observed in cells treated with both Wnt3a + TGFB1. This is blocked with addition of the 
TGF-beta inhibitor, SB505124 (indicated as SB in figure). Student’s t-tests were used to 
determine statistical significance. * indicates p<0.05 
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To begin these studies, we focused our efforts specifically on understanding the 

effect of TNC on the FN matrix. Throughout this thesis, we have discussed the 

importance of TNC in mediating the metastatic phenotype and also note that TNC is 

one of the many ECM proteins dependent on cooperation between Wnt and TGF-beta 

signaling. TNC is a key mediator of tumor: TME interactions and primarily binds to 

fibronectin via FNIII domains. This extended form of FN coated on the FN scaffold is 

particularly useful for studying the effect of TNC on cell-matrix crosstalk due to the 

repetitive FNIII binding domains present in the TNC protein (22). Therefore, we 

hypothesized that expression of TNC alters how Ewing sarcoma cells remodel the FN 

matrix. Ewing sarcoma cells cultured on these FN scaffolds results in massive changes 

in FN structure and leads to formation of a “holy” matrix (Figure 5.2B-C). In the 

presence of TNC knockdown, Ewing sarcoma cells can no longer alter the FN matrix 

and the matrix has a more uniform appearance (Figure 5.2B-C). These findings lead us 

to the conclusion that expression of TNC is critical in driving tumor cell – matrix 

interactions and alters how tumor cells are able to remodel the ECM.  

Here, we present one preliminary finding in which a Wnt and TGF-beta target, 

TNC, is important in mediating remodeling of a FN matrix. Future experiments should 

address whether or not this is specific to TNC production, or does activation of Wnt and 

TGF-beta together cooperate to change how the ECM is structured. Additionally, 

culturing cells on a more physiological ECM containing collagen I, as is found in the 

bone TME, the primary site for many Ewing sarcoma tumors, would better model the 

TME interactions and ECM remodeling occurring in the bone. Finally, development of in 

vivo models to examine the effect of Ewing sarcoma cells on local ECM remodeling in 
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the primary tumor itself would help us better understand the role of tumor cells in 

altering composition and structure of the local ECM. If our findings are consistent with 

our preliminary data, we can conclude that activation of both Wnt and TGF-beta is 

critical in driving changes in the TME and matrix remodeling to promote the invasive 

phenotype discussed earlier.  

 

Changing the bone tumor microenvironment  
 

One of the drivers of Ewing sarcoma progression is dictated by the osteolytic 

environment found in the bone. In the bone microenvironment, osteoblast differentiation 

Figure 5.2 Loss of TNC alters fibronectin matrix remodeling. A. 3D scaffold coated 
with fibronectin using phase separation technology gives rise to a mostly uniform 3D 
fibronectin coated matrix (green = fibronectin). 10X (B) and 60X (C) images of Ewing 
sarcoma TC32 cells containing either non silencing (shNS) or TNC targeted hairpin 
(shTNC) cultured on the fibronectin matrix for 4 days before fixation and 
immunofluorescent staining. Fibronectin shown in purple, actin shown in green, and 
nuclei indicated by DAPI staining. Loss of TNC changes the fibronectin matrix and 
decreases holy matrix observed in shNS.   
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and activation lead to osteoclast activation resulting in bone resorption and osteolysis. 

During bone resorption, growth factors sequestered in the matrix, such as TGF-beta 

ligands, are released into the microenvironment, increasing their bioavailability (23). 

Both Wnt and TGF-beta ligands have been shown to signal to tumor cells, such as 

osteosarcoma cells, resulting in increased secretion of proteins that further enhance this 

“vicious cycle” between osteoblasts and osteoclasts in the bone (23, 24). One such 

secreted protein previously shown to be upregulated in pro-metastatic Ewing sarcoma 

cells is parathyroid hormone related protein (PTHrP) (25). PTHrP is a TGF-beta target, 

therefore we hypothesize that Wnt and TGF-beta treated cells would have increased 

expression and subsequent secretion of proteins, such as PTHrP, leading to increased 

osteolysis either through direct activation of osteoclasts or indirect activation through 

osteoblasts. Preliminary exploration of this pathway revealed an increase in PTHrP 

expression in cells treated with Wnt3a and TGFB1 (Figure 5.3A). This increase is 

abrogated with application of the TGF-beta inhibitor, SB505124, implying that PTHrP 

expression is dependent on TGF-beta (Figure 5.3B). We are currently testing the 

hypothesis that increased expression of PTHrP translates into increased secretion of 

PTHrP followed by activation of osteoclasts. Ongoing studies include culturing 

osteoclast precursor cells with conditioned media from Ewing sarcoma cells treated with 

Wnt3a and TGFB1 to determine if proteins secreted from Wnt and TGF-beta activated 

cells can induce osteoclast activity. Finally, if our findings support our hypothesis, we 

will specifically test the contribution of PTHrP to the osteolytic phenotype through gain 

and loss of function studies in vivo. Further investigation into the crosstalk between 
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tumor cell expression of osteoblast and osteoclast activating factors will help describe 

the role of Wnt and TGF-beta activation on changing the bone TME.  

 

 

 

 

Cell cooperation and metastasis 
 

Interestingly, we also highlighted that only subpopulations of Ewing cells are able 

to activate the Wnt and/ or TGF-beta pathways, but we do not yet understand the 

distinction between a Wnt and/or TGF-beta responsive vs. unresponsive cell. Recent 

literature on tumor heterogeneity has supported a theory referred to as clonal 

cooperation, in which genetically, epigenetically, and/or phenotypically different 

subpopulations within a tumor cooperate to promote tumor progression (26-28). For 

example, a zebrafish melanoma xenograft model was used to identify inherently 

invasive and non-invasive cells that invade the local TME together in what is described 

as “cooperative invasion” (29). In our studies we show distinct subpopulations of Wnt 

responsive, TGF-beta responsive, and Wnt and TGF-beta responsive cells, however 

activation of these smaller subpopulations are enough to induce a metastatic cell state. 

Therefore, we hypothesize that these subpopulations are able to cooperate to promote 

Figure 5.3 Wnt and TGF-beta activated cells have increased expression of 
PTHrP. A. Ewing sarcoma cell lines were treated with TGFB1 alone or Wnt and 
TGFB1 in combination. Increased expression of PTHrP was observed with both 
treatments. B. Inhibition of TGF-beta with the TGF-beta inhibitor SB505124 (SB in 
figure) blocked induction of PTHrP expression with both Wnt3a and TGFB1 in 3 of 
4 cell lines. All experiments were performed in triplicate and student’s t-tests were 
used to determine statistical significance. * indicates p<0.05 and ** indicates 
p<0.005.  
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these metastatic phenotypes and that both unresponsive and responsive cells are 

necessary for Ewing sarcoma progression. To test this hypothesis, functional assays to 

measure each subpopulations’ effect on angiogenesis and invasion will be performed. 

Further understanding of the individual roles of each subpopulation will elucidate the 

precise function that Wnt and TGF-beta responsive cells have within a Ewing sarcoma 

tumor.  

It is clear based on the studies presented here that the Wnt and TGF-beta 

pathways are playing a critical role in dictating cell phenotype. We reported clear 

changes in angiogenesis and future studies will focus on determining if there is a role 

for these pathways in mediating invasion and/ or the osteolytic TME in the bone. Both of 

these pathways and all of the processes discussed regulate tumor: TME interactions, 

further proving the importance of the TME in driving Ewing sarcoma progression.  

 

TNC as an “Achilles heel”  
 

Prior to the work discussed in this thesis, expression of TNC in Ewing sarcoma 

cells had been shown to be necessary for lung engraftment in a xenograft model. 

Additionally, Wnt/beta-catenin was published to increase TNC expression in Ewing 

sarcoma cell lines (18). Here, we build on this finding and show that Wnt activation also 

increases TNC secretion. Although loss of TNC blocked the metastatic phenotype, the 

exact mechanism through which TNC alters metastatic potential has yet to be 

elucidated.  

TNC is a matricellular protein whose primary role is in mediating adhesion of 

cells to the local ECM. TNC is unique in that it can bind and activate integrins on the cell 
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surface while also binding to fibronectin, collagen, and other ECM proteins (30). High 

expression of TNC in solid tumors is correlated with poor prognosis and has been 

published to promote invasion, changes in adhesive properties, and angiogenesis (31). 

In this thesis, we have discussed at length the specific involvement of TNC in Ewing 

sarcoma and show that it contributes to both the invasive and angiogenic phenotypes.  

We also show that TNC expression is dependent on activation of Wnt, TGF-beta, 

and Src, and that expression is dynamic under conditions of microenvironmental 

stresses. This supports the hypothesis that TNC can be upregulated in Ewing sarcoma 

via multiple avenues, dependent on the state of the TME. Additionally, Wnt/beta-catenin 

mediated angiogenesis and Src dependent invadopodia formation were both blocked 

with loss of TNC expression or function. These are two critical phenotypes in driving 

metastasis as discussed in the introduction. The first step of metastasis relies on the 

ability of cells to invade into the local ECM and one of the rate limiting steps of 

metastasis is the ability to induce angiogenesis to create a pro-tumorigenic TME at a 

distal site (32). We have now shown that TNC, which can be induced through Wnt, Src, 

TGF-beta, and microenvironmental stress, is critical for both of these key metastatic 

processes. In addition to these processes found to be affected by TNC in Ewing 

sarcoma, TNC can also alter cell adhesion and structure of the extracellular matrix to be 

conducive to tumor growth and metastasis (33). Although we have not discussed these 

other two phenotypes in Ewing sarcoma, it is very likely that TNC may be involved in 

either or both of those processes.  

Based on the prominent role that TNC is playing in Ewing sarcoma, we 

hypothesize that targeting TNC directly, rather than the Wnt, TGF-beta, and/or Src 
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pathways individually, may in fact block invasion, angiogenesis, and matrix remodeling 

and thus reverse the harmful effects of activating these pathways. Additionally, TNC is 

only expressed in conditions of wound repair but otherwise is not expressed in the body 

(30). This makes TNC a prime target for Ewing sarcoma in order to block tumor growth 

and minimize off target effects and long-term toxicities commonly affecting Ewing 

sarcoma patients. Attempts to block TNC expression and function through inhibitory 

compounds, antibodies, and small peptides are currently ongoing and future studies 

should focus on testing these compounds in Ewing sarcoma models (34). Although we 

recognize that many other secreted proteins could be contributing to the angiogenic and 

invasive phenotypes, these studies make it clear that TNC is a very large factor. As a 

downstream target of all the pathways discussed here that promote Ewing sarcoma 

progression, TNC may in fact be an “Achilles heel” in metastatic Ewing sarcoma and 

exploitation of this target could be crucial to improving overall patient survival.  

 

Conclusions 
 

In conclusion, this thesis addresses the contribution of Wnt/beta-catenin 

signaling to changes in tumor: TME interactions, revealing a novel link between Wnt 

and TGF-beta, and further highlighting the importance of TNC in Ewing sarcoma 

(Figure 5.4). We discuss multiple routes through which TNC expression can be altered 

based on the TME, supporting previous findings in Ewing sarcoma cells that these cells 

are extremely plastic and dynamic (18, 35, 36). Of note, we also see heterogeneous 

responses to these various microenvironmental stimuli accompanied by significant 

changes in phenotype, suggesting the potential for these heterogeneous populations to 
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cooperate in driving metastasis. Ewing sarcoma tumors will not be eradicated simply by 

targeting the tumor cell, rather we should focus on targeting the tumor: TME interactions 

that promote disease progression. We have identified that two key signaling pathways 

cooperate to promote metastatic phenotypes and changes in tumor: TME crosstalk. 

Furthermore, we find that activation of the pathways discussed converge on TNC, 

therefore we propose that targeting TNC, a protein expressed by both tumor cells and 

stromal cells in the TME, will improve overall survival in Ewing sarcoma patients.  

 

 
 
 
 
 
 

Figure 5.4 Thesis Summary. Cooperation between Wnt/beta-catenin and TGF-
beta signaling induce a metastatic phenotype via increased expression and 
secretion of TNC. TNC induces endothelial cell proliferation and activates Src 
kinase to increase invadopodia formation. 
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Appendices 

Appendix 1: Supplemental Figures 

Supplemental Figure 2.1. Wnt activated transcripts are enriched for tumor: tumor 
microenvironment interactions. A. Pathway analysis using the Genomatix Pathway System tool on 
genes identified to be upregulated in response to Wnt3a alone or Wnt3a + Rspondin2 in Pedersen et al., 
2016. All statistically significant pathways are shown. B. Gene ontology analysis using DAVID on the 
same list of genes as in A. Cellular compartment is shown along with corresponding -log(FDR). 
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Supplemental Figure 2.2. Secreted proteins are not biased towards low or high abundant proteins. 
Secreted proteins (red) are found to have the same distribution of PSMs as all proteins identified (blue) in 
the analysis in both TC32 and CHLA10.  
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Supplemental Figure 2.3. The Wnt dependent secretome is enriched for extracellular matrix 
components. A. GSEA analysis of ranked list of proteins identified in the secretome in TC32. Ranking is 
done based on fold change between Wnt treated and vehicle treated samples. The top 2 gene sets are 
shown. B. GSEA analysis of ranked list of proteins identified in the secretome in CHLA10. The top 2 gene 
sets are shown.  
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Supplemental Figure 3.1. Ewing sarcoma cells are heterogeneous in response to Wnt and TGF-
beta. A. Western blot of pSMAD3 in cells that were pretreated with vehicle or Wnt3a before treatment 
with TGFB1. B. Cells containing the TCF/LEF-GFP reporter were treated with Wnt3a for 48 hours prior to 
sorting on GFP. Average percentage of GFP positive cells and standard deviation for each cell line are 
shown in each plot. C. Dual reporter Ewing sarcoma cells containing a TCF/LEF-GFP reporter and SBE-
mCherry reporter were pretreated with Wnt3a prior to treatment with TGFB1 +/- SB505124. FACS plots 
show percentage of GFP positive (Wnt responsive), mCherry positive (TGF-beta responsive), and double 
positive (Wnt and TGF-beta responsive) cells in a representative experiment in A673, CHLA10, and 
TC32. D. IHC staining for CD99, pSMAD2, pSMAD3, and LEF1 in a representative A673 femur xenograft.  
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Supplemental Figure 3.2. The AngioMatrix score is correlated with angiogenesis in Ewing 
sarcoma. Correlation of the AngioMatrix score (as calculated in Figure 3.5E and 3.5F) with log2(signal 
intensity) of PECAM1 in two independent patient cohorts of N=46 (GSE63157) and N=117 (GSE34620). 
All correlation coefficients shown are Pearson r values and p-values are determined using a student’s t-
test.  
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Supplemental Figure 3.3. EBP Conditioned media does not enhance vascular morphogenesis. 
Conditioned media from EBP cells does not enhance branching morphogenesis of cultured HUVECs 
(bottom). Control HUVECs with/without endothelial growth factor media are shown for comparison (top). 
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Supplemental Figure 3.4. The AngioMatrix is correlated with poor prognosis in patients. A. Classic 
Wnt target genes, MYC, CCND1, and LGR5, are not induced by Wnt3a in Ewing sarcoma and are not 
differentially expressed between stroma poor (N=33) and stroma rich tumors (N=10). P-values were 
determined using student’s t-test. B. Pearson correlations (r) of LEF1 expression (error bars: 95% 
confidence intervals (CI)) with 33 prognostic signature genes in 117 primary, localized patient tumor 
biopsies. Top 5 genes were identified as good prognosis biomarkers, whereas high expression of bottom 
28 genes was associated with poor prognosis. ND indicates no data available for indicated gene. NS 
indicates not significant.  
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Appendix 3: List of Oligonucleotide Primers 
 

Primer Sequence Figure 

HPRT Forward 5' TGACACTGGCAAAACAATGCA 3' 
2.3, 2.5, 3.1, 3.4, 3.6, 

4.2, 4.4, 4.5 

HPRT Reverse 5' GGTCCTTTTCACCAGCAAGCT 3' 
2.3, 2.5, 3.1, 3.4, 3.6, 

4.2, 4.4, 4.5 
TNC Forward 5' GCAGCTCCACACTCCAGGTA 3' 2.5, 3.4, 3.6, 4.2, 4.4, 4.5 
TNC Reverse 5' TTCAGCAGAATTGGGGATTT 3' 2.5, 3.4, 3.6, 4.2, 4.4, 4.5 
COL1A1 Forward 5' CTGGACCTAAAGGTGCTGCT 3 2.5, 3.4 
COL1A1 Reverse 5' GCTCCAGCCTCTCCATCTTT 3' 2.5, 3.4 
CTGF Forward 5' CTGGTCCAGACCACAGAGTG 3' 3.4 

CTGF Reverse 
5' GCACTTTTTGCCCTTCTTAATGT 
3' 3.4 

TGFBR2 Forward 5' AATGTGAAGGTGTGGAGAC 3' 3.1, 3.6 
TGFBR2 Reverse 5' GGTAGGCAGTGGAAAGAG 3' 3.1, 3.6 
LEF1 Forward 5' TGGATCTCTTTCTCCACCCA 3' 2.3, 3.6 
LEF1 Reverse 5' CACTGTAAGTGATGAGGGGG 3' 2.3, 3.6 
AXIN2 Forward 5' AAGTGCAAACTTTCGCCAAC 3' 2.3, 3.6 
AXIN2 Reverse 5' ACAGGATCGCTCCTCTTGAA 3' 2.3, 3.6 

NKD1 Forward 
5' TCGCCGGGATAGAAAACTACA 
3' 2.3 

NKD1 Reverse 5' CAGTTCTGACTTCTGGGCCAC 3' 2.3 
 

Table A.3 List of oligonucleotide primers used in each figure.  

 

 

 

 

 

 

 


