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ABSTRACT

A holy grail in materials science research remains the solution of the inverse design

of desired crystal structures, which seeks to identify a set of building block characteristics

(shape, interactions) that guarantee the self-assembly of a target colloidal crystal structure.

In this work, we solve the inverse design problem using the “Digital Alchemy” framework,

which is an extended ensemble method that takes the particle shape as a thermodynamic

parameter and produces the optimal shape that maximizes the entropy of a given target

structure at a given thermodynamic state point. Combining digital alchemy and machine

learning, we build a prediction model to predict crystal structures from building block

geometry features.

We carry out the inverse design of particles that can self-assemble target structures

due solely to the emergent effects of entropy arising from their shape. We extend the

alchemical Monte Carlo algorithm to hundreds of design dimensions, and sample hundreds

of millions of shapes to engineer optimal particles shapes for the self-assembly of six

target crystal structures, and one as-yet-unknown structure. We extract important shape

characteristics and design optimal symmetric shapes that are synthesizable by experiment.

We next predict crystal structures from building block attributes using digital alchemy

and machine learning. Our model correctly classifies more than ten thousand polyhedral

shapes into 13 different structures with a predictive accuracy above 95% using only two

geometric shape measures. We test our model on previously reported colloidal crystal

structures for 71 symmetric polyhedra and obtain 92% accuracy.

We also study the inverse design problem focusing on nanoparticle shapes that have

already been made in experiment. We determine for eight shape families reported in lab-

xiii



oratory synthesis optimal particle shapes for possible target colloidal crystal structures, in

an effort to guide experimentalists in choosing optimal building blocks to self-assemble

colloidal crystals.

Results from this dissertation demonstrate that the digital alchemy is a generative method

to solve the inverse material design problem. It can guide experimentalists to use optimal

building blocks to make colloidal materials. We provide a quantitative model to predict

crystals solely from the geometry of their building blocks, and prove that entropic col-

loidal crystals are controlled by surprisingly few parameters. The results give insight into

applying data science and machine learning techniques in the material design field.
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CHAPTER I

Introduction

1.1 Self-assembly in Colloidal Materials

Self-assembly is the process of individual building blocks spontaneously organizing

into ordered structures. Colloidal particles, whose size ranges from 10 nm to several mi-

crons, serve as a new building block self-assembling to novel materials. This is achieved

because of the recent development in particle synthesis and tunable particle sizes, shapes,

surface properties, and interactions [35, 49]. Colloidal structures have applications in

drug delivery, disease diagnostic system, energy storage, photonic devices and solar cells

[71]. Similar structures with atomic systems and novel structures with no known atomic

or molecular analogue have been discovered in colloidal assembly [19, 23, 84]. In partic-

ular, colloidal particles interacting with the excluded volume arising from their shape have

been observed to self-assemble complex crystals, liquid crystals, and even quasicrystals

in compute simulations and experiments [40, 20, 51, 89]. In the hard particle system, the

thermodynamic property can be understood through entropy maximization, which is an

emergent behavior and dominant when the system becomes crowded [27, 92].

1.2 Inverse Design from Hard Shapes

To design materials with desired properties, previous studies used a ‘forward’ approach

or trial and error, e.g., given a building block with a given set of anisotropies, of what or-

1



2

dered structures are possible [24, 1, 20, 30]. However, the inverse material design approach

by reverse engineering a target structure to obtain the building block that will give rise to

that structure via self-assembly is more efficient and powerful. Here, we carry out the in-

verse design of particles that can self-assemble target structures due solely to the emergent

effects of entropy arising from their shape. To do so, we generalize an extended ensemble

approach, “digital alchemy” [93], that treats particle shape parameters as thermodynamic

variables, and perform Alchemical Monte Carlo simulations that sample particle shapes

in the extended ensemble. By sampling hundreds of millions of shapes, we engineer op-

timal particle shapes for the self assembly of six target structures known to self-assemble

in simulations of hard particles, and one as-yet-unknown structure. This work is shown

in Chapter III, and is available online: “Engineering Entropy for the Inverse Design of

Colloidal Crystals from Hard Shapes”, Yina Geng, Greg van Anders, Paul M. Dodd, Julia

Dshemuchadse, Sharon C. Glotzer, arXiv:1712.02471.

The gulf between ordered phases predicted to form in computer simulation and what

has been so far realized in experiment is narrowing, but is still wide. Prior work shows that

synthesized particles are far from optimal “eigenshapes” for target superlattice structures.

By optimal “eigenshape”, we mean the shape that minimizes the free energy of the struc-

ture at a given density. We use digital alchemy to determine for eight families of shapes

reported in laboratory synthesis optimal particle shapes for possible target colloidal crystal

structures. Within each family we predict optimal building block shapes to obtain several

target superlattice structures. This work is shown in Chapter V and will be published.

1.3 Predicting Structures from Hard Shapes

A fundamental challenge for materials researchers is the ability to predict crystal struc-

tures solely from knowledge about the constituent atoms, molecules, or particles, without
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the need for simulations or experiments. Many researchers have attempted this quest; a

well-known example is the early effort of Pauling to predict crystal structures from atoms

based solely on their atomic radii [73]. Pauling’s rules have since been adopted to program

the assembly of DNA-functionalized nanospheres into colloidal crystals isostructural to

those Pauling considered for atoms, as well as ones with no atomic counterpart[65, 60, 58,

55]. Prediction of crystals from molecules or anisotropic particles is substantially harder

[92, 91, 51]. In 2012, a study of 145 different polyhedrally shaped particles and their

entropy stabilized crystals provided sufficient data to discover a correlation between coor-

dination number and isoperimetric quotient (IQ), a measure of the roundness of a particle

[20]. The study found that knowledge of the coordination number in the dense fluid (a

simple observable in simulations) and the particle IQ allows one to predict whether that

fluid of particles will crystallize and, if so, whether it will form a liquid crystal mesophase,

a medium-coordination crystal, or a close-packed crystal (including topologically close-

packed phases). Despite being only partially predictive, that was the state of the art in

2012 and in the half dozen years since, despite continued discoveries of colloidal crystals

that add to the knowledge base. Here we leverage two recent important computational ad-

vances, digital alchemy and machine learning to enable a much higher level of predictive-

ness of colloidal crystal structures from particle shape. This work is shown in Chapter IV,

and is available online: “Predicting colloidal crystals from shapes via inverse design and

machine learning”, Yina Geng, Greg van Anders, Sharon C. Glotzer, arXiv:1801.06219.



CHAPTER II

Methods

2.1 Hard Particle Monte Carlo

The fundamental problem of statistical mechanics is to calculate the average value of

a quantity of interest in a physical system in thermal equilibrium at temperature T. How-

ever, the computation is difficult due to the fact that the total number of microstates of a

thermodynamic system is extremely large. Importance sampling allows us to calculate a

correct average value by sampling the configuration state point with a relative probabil-

ity proportional to the Boltzmann factor. Markov chain Monte Carlo, in the Metropolis

scheme [64] is a method to do the importance sampling. The system moves from an old

(o) configuration state to a new (n) state by making a translation or rotation move of the

particle. The system would accept the state change with probability

(2.1) acc(o→ n) = min(1, exp{−β[U(n)− U(o)]}),

U(s), where s = {o, n}, is the potential energy of state s, and β = 1/kBT .

In the hard particle system, particles do not have attractive or repulsive interactions;

they simply can not overlap. The potential energy of interaction between two hard particles

P1 and P2 is given by

(2.2) U(P1, P2) =




∞ if P1 and P2 overlap;

0 otherwise.

4
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In the hard particle Monte Carlo, particle moves are rejected if they result in any particle

overlaps, and accepted otherwise.

2.2 Digital Alchemy Method

The digital alchemy method treats particle shapes as thermal parameters and allows

them to fluctuate in the system. It begins with the extended partition function [93]

(2.3) Z =
∑

σ

e−β(H−
∑
i µiNαi−λΛ) ,

where β is the inverse temperature, µi are so-called alchemical potentials that are thermo-

dynamically conjugate to the particle attribute parameters αi that describe particle shape,

N is the number of particles in the system, Λ is the external field that forces the particles to

sit in an Einstein crystal with spring constant λ, and the summation is over particle coor-

dinates and orientations and over the space of particle shapes, as in [93]. The combination

of λΛ serves as the design term. When λ is positive, the system is driven toward particle

shape parameters αi that favor increasing Λ, which allows one to design toward a target

structure encoded in Λ. To design purely entropic systems, we model particles with purely

hard interactions so that the partition function is a sum over all non-overlapping parti-

cle configurations, and the phase space part of the Hamiltonian reduces to kinetic terms,

which we can integrate analytically. Hereafter, we set µi = 0 to sample shapes without

bias. Unbiased shape sampling, coupled with detailed balance, drives randomly chosen

initial shapes to converge toward shapes that are thermodynamically optimal (maximizing

entropy) for the target structure at a given temperature and density. In the Alchemical

Monte Carlo simulation, system moves from state 2 to state 1 by taking particle transla-

tion, rotation, or shape moves. The Metropolis [64] criterion derived from detailed balance
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condition is

(2.4) Π2→1 = min

(
1,

(det(Iα1))N/2

(det(Iα2))N/2
e−β(Uα1−Uα2 )

)
,

Iαs , where s = {1, 2}, is the moment of inertia tensor of particle shape with shape param-

eter αs, and Uαs , where s = {1, 2}, is the potential energy of system with particle shapes

having parameter αs. Our method differs with previous extended ensemble methods [93]

in that we extend the algorithm to hundreds of design dimensions.



CHAPTER III

Engineering Entropy for the Inverse Design of Colloidal Crystals
from Hard Shapes

This chapter is adapted from Ref. [31], and is available online: “Engineering Entropy

for the Inverse Design of Colloidal Crystals from Hard Shapes”, Yina Geng, Greg van

Anders, Paul M. Dodd, Julia Dshemuchadse, Sharon C. Glotzer, arXiv:1712.02471.

3.1 Engineering Entropy

Our understanding of entropy has undergone three revolutions since its association with

lost heat by Clausius in the 1800s [18]. The first is the discovery by Boltzmann [11] and

Gibbs [34] of entropy’s central role in statistical mechanics and its colloquial association

with disorder. The second is the discovery by Shannon of entropy’s central role in in-

formation theory as a quantifier of statistical ignorance [83]. The third is the discovery

by Onsager [70] in the late 1940’s and then by Kirkwood and collaborators [3, 95] in

the late 1950’s of entropy’s seemingly paradoxical implication in ordering hard particles.

The systematic study via simulation of entropic ordering was pioneered by Frenkel and

collaborators in the 1980’s, see, e.g. Refs. [27, 28], leading to recent discoveries of a sur-

prisingly large number of possible structurally ordered phases from hard, anisotropically

shaped particles [1, 20, 30, 24]. In those works, simulation studies begin with a volume of

identical hard particles of fixed shape, and the entropy of the system is maximized to find

7
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thermodynamic equilibrium phases. In 2015 van Anders et al [93] introduced a method

to start not with a given particle shape, but instead with a target colloidal crystal structure,

and, via entropy maximization, find a shape within a limited family of shapes that max-

imizes entropy for that structure at the selected density. That inverse design approach –

“digital alchemy” – flips the usual idea of entropy optimization in hard particle systems on

its head.

In this work, we seek not only to optimize entropy starting from a target structure,

but to engineer it so as to inversely design shapes that will self-assemble back into the

target structure, and have a good chance of being synthesizable. Engineering entropy is

both conceptually and technically difficult because entropy is a globally defined, purely

statistical concept. This means there exists no obvious direct, quantitative link between

the macroscopic order that emerges from entropy maximization and the microscopic, des-

ignable details of a system’s components. Moreover, the range of designable attributes of

component particle shapes has exploded due to advances in colloidal synthesis, e.g. Refs.

[47, 97, 85, 38, 102, 14, 77, 80, 79, 81, 36], and now go well beyond what can be designed

by trial and error. In contrast to the design of particle shapes, pairwise interaction poten-

tials (force fields) between atoms or nanoparticles are now routinely designed for simple

target structures, and realized in experiment, in cases where potential energy, rather than

entropy, dominates [65, 68, 72, 62, 86, 45, 46].

Here, we generalize ‘digital alchemy’ [93], an extended ensemble approach that treats

particle shape parameters as thermodynamic variables, to sample hundreds of millions of

particle shapes with no restrictions other than convexity of the particle shape. Whereas

an extended ensemble approach was previously applied to ensembles extended in one or

two design dimensions [101, 93], here we extend ensembles to treat hundreds of design

dimensions, providing a general approach for quantitatively engineering entropy for struc-
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ture. We perform Alchemical Monte Carlo (Alch-MC) simulations and engineer optimal

particle shapes for the self-assembly of six target structures known to self-assemble in sim-

ulations of hard particles. In each case, we then identify key symmetry characteristics of

the particle shape necessary for that target structure, symmetrize the optimal particle shape,

and by re-running Alch-MC on the symmetrized particle with symmetry restrictions, find

an even better (higher entropy) shape that, because of its high symmetry, has the potential

to actually be made in the lab. Further, we propose an additional, as-yet-unknown struc-

ture and engineer a symmetrized particle shape that forms that structure in simulation. Our

approach demonstrates a general, quantitative paradigm for engineering entropy in large

design spaces that reflect the diversity of colloids and nanoparticles that can be synthesized

using current techniques [47, 97, 85, 38, 102, 14, 77, 80, 79, 81, 36]. Moreover, it opens

the possibility of quantitatively engineering entropy for other novel structures or behav-

iors [21], allows for the discovery of important features determining structural outcomes

in self-assembly [32], and can be generalized to systems with enthalpic interactions.

3.2 Digital Alchemy Simulations

We performed Digital Alchemy simulations using the HPMC plugin [5] for HOOMD-

Blue [4] in an NV Tµ ensemble at µ = 0. We placed no fewer than 100 particles in a

periodic simulation box. The exact number was chosen to be a multiple of the number of

particles in the unit cell of the target structure. Particle shapes were initialized randomly

with 32 or 64 vertices (arbitrary convex polyhedron case) or with each shape parameter

taken as either 0 or 1 as convenient (symmetry-restricted case). Monte Carlo (MC) sweeps

involve particle translations, rotations, and collective shape moves for all particles in the

system. For each shape move, we (i) either moved a vertex (arbitrary convex polyhedron

case) or generated a trial change in shape parameters (symmetry restricted case) (ii) resized
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the trial shape to unit volume; (iii) checked if the move induced any particle overlaps, and

then (iv) accepted the move based on the Boltzmann factor as described in Ref. [93].

Translation and rotation moves followed standard procedures (see, e.g., Refs. [40, 1, 30,

19, 20, 92, 91]). We compressed the system to packing fraction η = 0.6, with the spring

constant λ fixed to 1000 (where energy is specified in units of kBT , and length units are

given in terms of the particle volume). After we reached the target packing fraction, we

logarithmically relaxed the spring constant to zero. We then relaxed the system for millions

of MC sweeps.

3.3 Two-step Inverse Design

Our inverse design approach proceeds in two steps (see Fig. 3.1). The first step begins

with randomly generated, arbitrarily shaped convex polyhedra whose shape evolves during

a Monte Carlo (MC) simulation by sampling from particle “shape space” via an extended,

“alchemical” ensemble [93]. Unlike a traditional molecular MC simulation in which a sys-

tem of fixed particle shapes samples configurational states in phase space, in an Alch-MC

simulation particles sample not only positions and orientations but also shapes consistent

with the target structure, finding thermodynamically optimal shapes. Alch-MC for poly-

hedra with n vertices explore a D = 3n − 4 dimensional parameter space accounting for

fixed particle volume and rotational invariance, and produce mathematically irregular but

well-defined particle shapes that (i) maximize the entropy of the target structure and (ii)

successfully self-assemble the target structure in a MC simulation starting from a disor-

dered fluid. The second step symmetrizes the designed particles to obtain shapes that still

easily assemble the target structure, but because of their symmetry can be made today us-

ing existing synthesis methods [35, 97, 80, 36]. Depending on the target crystal structure

we symmetrized particle shapes either through truncation or through truncation and vertex
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Step One

Random
Shape Guess

Near Optimal
Shape Distribution

Step Two

Symmetric
Shape Guess

Optimal
ShapeAlch-MC

Extract Shape

Characteristics
Alch-MC

Figure 3.1: Schematic diagram illustrating the inverse design process. In step one, Alchemical Monte Carlo

(Alch-MC) starts from a random convex shape and then finds an unsymmetrized optimal shape

for the target (here, diamond) structure. Cosine of dihedral angle distribution and PMFT iso-

surface of the unsymmetrized optimal shape reveals that it has tetrahedral characteristics. In

the second step, fluctuating particle shape alchemical Monte Carlo (Alch-MC) simulation starts

from a tetrahedron and finds an optimal symmetrized shape for the diamond structure.

augmentation.

3.3.1 Step One - Designing Unsymmetrized Near Optimal Shapes

We targeted six structures – simple cubic (SC), body-centered cubic (BCC), face-

centered cubic (FCC), diamond, β-W, and β-Mn. In Alch-MC, we moved a vertex when

we perform a shape change move. After we reached the target packing fraction η = 0.6

and relaxed the spring constant to zero, we then relaxed the system for 1 × 106 (BCC,

FCC, SC, diamond) or 8 × 106 (β-W) or 3.6 × 107(β-Mn) MC sweeps. For each target

crystal structure, we performed 20 independent simulations and analyzed the shapes in the

final 1.5 × 105 sweeps. For validation we directly computed the free energy [26] of the

thermally sampled particle shapes as a function of Alch-MC time (Fig. 3.2) (step one), and

verified that after starting from random initial particle shapes, our simulations converged

to shapes comprising systems of lower free energy for a given target structure (β-Mn is

depicted) than for a geometric ansatz that is a hard, space-filling particle in the shape of

Voronoi cells of the target structure and gives a possible candidate to assemble its target

structure [82]. Details about the free energy calculation method are in section 3.3.2.
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Figure 3.2: Alch-MC for the inverse design of an unsymmetrized thermodynamically optimal hard particle

shape to form a target (here, β-Mn) structure. The structure is imposed by an auxiliary design

criterion, and detailed balance drives particles to take on shapes (selected shapes are displayed

in light yellow) that are favorable for the target structure (indicated by selected bond-order dia-

grams). Directly computed free energy confirms Alch-MC simulation over & 105 distinct shapes

converges to shapes that have lower free energy (by ≈ 0.7 kBT per particle; numerical errors

are smaller than markers) than shapes chosen by Voronoi construction. Desired shape features

can be inferred from the equilibrium particle shape distribution and used to create a symmetry-

restricted ansatz, which yields a thermodynamically optimal synthesizable shape (shown in dark

yellow).

3.3.2 Step Two - Designing Symmetrized Optimal Shapes

In step two, we designed symmetrized optimal shapes that are synthesizable in experi-

ments for the six target crystal structures using Alch-MC simulations. We generated a trial

change in shape parameters when we perform a shape move in Alch-MC.

For β-Mn, FCC and BCC, symmetrized, truncated shapes in step two produced lower

free energy crystal structures than sampled unsymmetrized polyhedra found in step one.

We give detailed results here for the most complex case, β-Mn. For β-Mn, the equilib-

rium distribution of convex polyhedra shapes resulting from our Alch-MC simulations at

packing density η = 0.6 in step one yields a family of shapes with characteristic cosine of

dodecahedral facet angles (distribution peaks at ≈ −0.447 and 0.448, see Fig. 3.3(1), vs.
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the perfect dodecahedron ≈ ±0.447). Consistent with the particle faceting, potential of

mean force and torque (PMFT) calculations [92] for a particle selected from the peak of

the shape distribution (Fig. 3.4A) produced isosurfaces with dodecahedral entropic valence

[91]. Alch-MC simulation of symmetrized shapes restricted to a one-parameter family of

truncated dodecahedra (see Fig. 3.6B) in step two yielded an optimal truncated shape with

facet area 0.36 (Fig. 3.3(1)); the peak in facet area differs by less than 3% from the peak

observed for the unrestricted shapes (0.37). The optimal shape parameters in step two can

be found in Table 3.2. To further validate that the particle shape with manifest dodeca-

hedral symmetry is the putative optimal shape, we directly compared the free energy of

the target colloidal crystal with the optimal truncated shape and a shape from the peak

of the angle distribution of arbitrary convex shapes (Fig. 3.5), and found the symmetric-

shape crystal has lower free energy. This result is consistent with our expectation that

the free energy landscape of the high-dimensional parameter space of shapes is rough

with nearly degenerate minima. For comparison, we also computed the free energy for a

packing-based estimate - the Voronoi shape [82]. There are two Voronoi cells in β-Mn,

only one of which can self assemble the structure without enthalpic interactions [20]. We

computed the free energy for the target structure with the Voronoi shape, and found that

our approach produced shapes with lower free energy than the Voronoi shape (Fig. 3.5).

Fig. 3.2 shows that Alch-MC converged rapidly to shapes that have lower free energy than

the Voronoi ansatz by ≈ 0.7kBT per particle, and implies the existence of a large space

of shapes that are all better than the geometric ansatz. The simulation trajectory shown

in Fig. 3.2 explores & 106 shapes that have lower free energy in the target structure than

the geometric ansatz. We follow standard conventions and express all (free) energies in

units of the thermal energy (kBT ). Consistent results were found for BCC (Fig. 3.3(2)) and

FCC (Fig. 3.3(3)) target structures. The connection between faceting and the emergence



14

−1.0 −0.6 −0.2 0.2 0.6 1.0

β-Mn

0.2 0.4 0.6 0.8

Pr
ob

ab
ili

ty
D

en
si

ty
(a

rb
itr

ar
y

un
its

)

cos θd facet area

−1.0 −0.6 −0.2 0.2 0.6 1.0

BCC

0.2 0.4 0.6

Pr
ob

ab
ili

ty
D

en
si

ty
(a

rb
itr

ar
y

un
its

)

cos θd facet area

−1.0 −0.6 −0.2 0.2 0.6 1.0

FCC

0.2 0.4 0.6

Pr
ob

ab
ili

ty
D

en
si

ty
(a

rb
itr

ar
y

un
its

)

cos θd facet area

−1.0 −0.6 −0.2 0.2 0.6 1.0

β-W

0.2 0.4 0.6 0.8

Pr
ob

ab
ili

ty
D

en
si

ty
(a

rb
itr

ar
y

un
its

)

cos θd facet area

−0.2 0 0.2

SC

0.7 0.8 0.9 1.0

Pr
ob

ab
ili

ty
D

en
si

ty
(a

rb
itr

ar
y

un
its

)

cos θd facet area

0.25 0.30 0.35 0.40

Diamond

1.0 1.2 1.4

Pr
ob

ab
ili

ty
D

en
si

ty
(a

rb
itr

ar
y

un
its

)

cos θd facet area

(1)

(2)

(3)

(4)

(5)

(6)

Figure 3.3: Two-step shape alchemical Monte Carlo (Alch-MC) entropic particle-shape optimization for six

target structures: β-Mn, BCC, FCC, β-W, SC and Diamond. For each target structure, an initial

Alch-MC simulation over 92- or 188-dimensional spaces of convex polyhedra in step one con-

verged to highly faceted modifications of identifiable Platonic, Archimedean, or Catalan solids,

obtained by calculation of the equilibrium distribution of the (left, light color, squares) cosine

of dihedral angles (cos θd) and (right, light color, squares) facet areas (Gaussian distributions

are plotted with solid lines for comparison). We show the mean of the cosine of dihedral angle

distributions in Table 3.1. In step two, Alch-MC simulation over symmetry-restricted families of

shapes determined a thermodynamically optimal and synthesizable shape (shown in dark color).

For each target structure, we calculate the equilibrium distribution of the (left, dark color, vertical

line) cosine of dihedral angles (cos θd) and (right, dark color points, with Gaussian distribution

fitting) facet areas for symmetrized optimal shapes. The distributions are in arbitrary units. In all

cases, representative shapes spontaneously self-assembled target structures in NV T simulations

with periodic boundary condition satisfied.

of entropic valence with local structural order is robust (BCC–Fig. 3.4B; FCC–Fig. 3.4C).

In the second step we repeat the procedure using symmetric truncated shapes suggested

by the shapes observed in the first step. In all cases we obtained lower free energy shapes

than the geometric ansatz (β-Mn −0.753 ± 0.001 kBT ; FCC −0.907 ± 0.001 kBT ; BCC

−0.334± 0.001 kBT ) (see Fig. 3.5).

For β-W, SC and diamond, we found that unsymmetrized polyhedra had lower free en-

ergy than symmetrized truncated polyhedra. For these crystals, we implemented step two

using symmetrized, truncated, and vertex-augmented polyhedra. We give detailed results
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here for the most complex case, β-W. For β-W, Alch-MC simulation of unsymmetrized

shapes in step one yielded an equilibrium distribution of convex polyhedra with facet an-

gle distribution peaks at ±0.458 (Fig. 3.3(4)). Like for β-Mn, this falls near the peaks for

dodecahedra, but for β-W the facet area distribution is bimodal, indicating, and confirmed

by visual inspection, the existence of two large parallel facets. Faceting is again consis-

tent with emergent entropic valence (Fig. 3.4D) evident in isosurfaces of PMFT measure-

ments [92]. Free energy calculations (Fig. 3.5) confirm that a geometric ansatz shape has

0.433 ± 0.006 kBT more free energy per particle in the target crystal than a shape at the

peak of the distribution of convex shapes. In contrast to the case 1 structures (β-Mn, FCC

and BCC), Alch-MC of symmetrized shapes restricted to a two-parameter family of trun-

cated dodecahedra (see Fig. 3.6E top) in step two yielded shapes with lower free energy in

the target β-W structure than the geometric ansatz, but higher free energy than for shapes

at the peak of the angle distribution of arbitrary convex polyhedra. This finding indicates

that the restriction to truncation alone is too severe for β-W. Alch-MC simulation of a

refined truncated dodecahedron with vertex-augmented faces (see Fig. 3.6E bottom) con-

verged to a shape with 0.620±0.001 kBT lower free energy per particle than the geometric

ansatz. Truncated and augmented free energy minimizing shapes were also found for SC

and diamond (Fig. 3.5) SC−0.704±0.006 kBT ; diamond−0.54±0.01 kBT ), which again

preserve the connection between faceting and entropic valence (SC–Fig. 3.4E; diamond–

Fig. 3.4F). Because this facet–valence connection persists, the facet area distributions for

SC (Fig. 3.3(5)) and diamond structures (Fig. 3.3(6)) are unimodal due to the simpler local

structural motif in those structures compared to β-W where the facet area distribution is

bimodal (Fig. 3.3(4)).

Cosine of dihedral angles and facet areas

Unsymmetrized shapes have 32 or 64 vertices. Facets with area af > a∗f (we use
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F DiamondD β-W

A β-Mn

Figure 3.4: Structure and potential of mean force and torque (PMFT) isosurfaces for optimal shapes in six

target structures: β-Mn, BCC, FCC, β-W, SC and diamond. Each panel shows structural coordi-

nation (global: BCC, FCC, SC, diamond; local: β-Mn, β-W), and PMFT isosurfaces at free en-

ergy values of 1.4 kBT (light gray) and 0.7 kBT (pink) above the minimum value, for an optimal

but unsymmetrized convex polyhedron (top) and for an optimal symmetry-restricted polyhedron

(bottom). PMFT isosurfaces indicate emergence of particle faceting corresponds with entropic

valence localized at particle facets that preferentially align along crystal lattice directions. PMFT

isosurfaces for symmetry-restricted polyhedra retain valence–lattice correspondence.

a∗f = 0.03 but our results are not sensitive to changes in a∗f ) were clustered by their normal

vector using the DBSCAN [25] scikit-learn module [74]. Clustered facets are represented

by area-weighted average normals. We computed aggregate facet areas and the cosine of

the angle between all average normals in a polyhedron, which for adjacent facets is just

the dihedral angle.

Direct Free Energy Computation

We computed the Helmholtz free energy difference between the target crystal and the

Einstein crystal using Frenkel-Ladd thermodynamic integration [26] via the implementa-



17

−1.2

−0.8

−0.4

0.0

β-Mn BCC FCC β-W SC Dia hP2-X

Fr
ee

E
ne

rg
y

pe
rP

ar
tic

le
(k

B
T

)

Voronoi

Unsymmetrized

Symmetrized

Figure 3.5: Direct free energy comparison of our entropic engineering strategy for seven target structures: β-

Mn, BCC, FCC, β-W, SC, diamond and hP2-X. For each structure we calculated the free energy

of the target crystal for a shape formed from a geometric ansatz based on the Voronoi decom-

position of the structure (triangles). Compared with the Voronoi ansatz, we find that Alch-MC

simulation over arbitrary convex polyhedra in step one produces shapes (circles) that sponta-

neously self-assemble the target structures with higher entropy. Symmetry restricted polyhedra

(squares) (truncated polyhedra for β-Mn, BCC and FCC; truncated and vertex-augmented poly-

hedra for β-W, SC, diamond and hP2-X) inferred from shapes in step one produce putatively

thermodynamically optimal particle shapes by maximizing entropy.

tion used in Refs. [39, 82]. We placed approximately 2000 particles in a periodic simula-

tion box; the exact number was chosen to be a multiple of the number of particles in the

unit cell of the target structure. For SC, BCC, diamond and hP2-X structures, particles

in the assembled structure have orientational order. Einstein crystal positions and orien-

tations were taken directly from the space-filling tessellation. For FCC, β-W, and β-Mn

structures, particles in the assembled structure do not show orientational order. To create

an appropriate Einstein crystal, we first initialized the simulation at a low packing fraction

η = 0.5, chose particle positions using the target structure, and randomly assigned a set of
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Structure mean of cosine of dihedral angle distribution
BCC -1/3 1/3 1 N/A
FCC -1/2 0 1/2 1
β-Mn -0.447 0.447 1 N/A
SC 0 1 N/A N/A
Diamond 1/3 N/A N/A N/A
β-W -0.447 0.447 1 N/A
hP2-X -0.531 -0.484 0.148 0.617

Table 3.1: Mean of cosine of dihedral angle distribution for unsymmetrized optimal shapes in step one for

seven target structures, which used to infer symmetry-restricted shapes in step two.

orientations observed in the assembly. Then we compressed the system to packing fraction

η = 0.6, allowing particles to rotate to resolve overlaps. We computed the alchemical free

energy of the target structure [93]. We normalized free energies in all plots by setting the

free energy of the target structure with the Voronoi particles to be zero. Negative values

of the free energy indicate lower free energy for a given particle than a Voronoi particle

shape.

We validated our methodology by performing the free energy calculation described

above for truncated tetrahedra in a diamond structure, and checked it reproduces the results

reported in Ref. [93] computed via the Bennett acceptance ratio method [9].

Symmetric Shape Constructions in Step Two

We describe the construction of symmetric shape families for inverse engineering op-

timal particle shapes for each candidate structure. In the Alch-MC in step two, when we

perform a shape move, we restrict the shape to change in the constructed symmetric shape

families for each target structure. In all cases, after the geometric construction below was

carried out, all particle shapes were normalized to unit volume to maintain constant system

density.

BCC and FCC

We focus on the spheric triangle group ∆4,3,2[15], which is constructed with three fam-
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Figure 3.6: Illustration of the geometric constructions used to create symmetric, convex polyhedra for the

target structures: SC, β-Mn, diamond, β-W and hP2-X in step two.
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Structure α β γ δ

BCC 0.476 0.194 N/A N/A
FCC 0.341 0.318 N/A N/A
β-Mn 0.263 N/A N/A N/A
SC 0.130 N/A N/A N/A
Diamond 0.392 0.111 0.350 N/A
β-W 0.564 0.486 0.122 0.081
hP2-X 0.451 0.608 0.487 0.043

Table 3.2: Optimal geometric parameters (see section 3.3.2 for parameter descriptions) from Alch-MC sim-

ulation for symmetric convex polyhedra in step two to self-assemble seven target structures.

ilies of planes that make up the faces of a rhombic dodecahedron, a cube, and an octahe-

dron. There are truncating planes of two types: type a corresponding to the location of the

cube faces, and type c which correspond to the position of the octahedron faces. We use α

to represent the location of the truncating planes of type a and β to represent the location

of the truncating planes of type c, both of which are linearly mapped to the interval be-

tween 0 and 1. (0, 0) is the cuboctahedron, (0, 1) is the cube, (1, 0) is the octahedron and

(1, 1) is the rhombic dodecahedron. For a detailed mathematical construction and images

of representative particle shapes see Ref. [15].

β-Mn

We truncate each vertex of a dodecahedron using planes with normals directed along a

ray that passes from the geometric center of the dodecahedron through the vertex, truncat-

ing by an amount α between 0 and 1. The perfect dodecahedron has α = 1, and α = 0

when two truncating vertices meet. Representative particles from this shape family are

shown in Fig. 3.6B.

SC

We first study the spheric triangle group ∆3,2,3[15] which is constructed with three

families of planes that make up the faces of a cube, a tetrahedron, and an octahedron. As

in the case of the ∆4,3,2 family, there are two shape parameters, a and c, which specify the



21

amount of truncation (or position of the bounding planes). For a detailed mathematical

construction and images of representative particle shapes see Ref. [15].

We then study a one-parameter family of shapes formed by adding a vertex at each face

center of a cube. Shape parameter α = 0 describes a perfect cube and α = 1 describes a

perfect rhombic dodecahedron. Representative particles from this shape family are shown

in Fig. 3.6A.

Diamond

We first study a one-parameter truncated tetrahedron family, where we truncate each

vertex of a tetrahedron by an amount α that ranges between a perfect tetrahedron (α = 1)

and an octahedron (α = 0). Representative particles from this shape family are shown in

Fig. 3.6C (top).

We then study a three-parameter shape family formed by truncating the vertices of a

tetrahedron and adding one more vertex to each face. Each augmenting vertex lies along

a ray that passes from the geometric center of the tetrahedron through the center of a face.

For this shape family, we again use α to parametrize the amount of truncation on each

vertex of the tetrahedron. For the hexagonal faces of a truncated tetrahedron, we use shape

parameter β to measure how far the augmenting vertex on the tetrahedron face away from

the original face center. We use β = 0 to indicate that the augmenting vertex lies in the

plane of the tetrahedron face (i.e. no augmentation), and β = 1 to indicate that the distance

between the augmenting vertex and center of mass (CM) is twice the distance between the

original face center and CM. For the triangular faces of the truncated tetrahedron, we

use shape parameter γ to measure the distance between the augmenting vertex and CM.

We use γ = 0 to indicate that the location of the augmenting vertex coincides with the

vertex location of a regular (i.e. untruncated) tetrahedron and γ = 1 to indicate that the

augmenting vertex lies at the CM. Representative particles from this shape family are
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shown in Fig. 3.6C (bottom).

β-W

We first study a two-parameter family of asymmetrically truncated dodecahedral shapes.

We divide the vertices of a dodecahedron into two groups of ten, with one group of vertices

on the two parallel faces. Taking the convex hull of the remaining “side” vertices yields

a pentagonal antiprism, with pentagonal faces parallel to the top and bottom faces of the

dodecahedron. We use α to parametrize the truncation of vertices on the top and bottom

faces by truncating planes that lie parallel to the top and bottom faces and are equidistant to

the particle CM. We use α = 1 to indicate the truncating planes are coplanar with the top

and bottom faces of the dodecahedron, and we use α = 0 to indicate the truncating planes

lie halfway between the top and bottom faces and the pentagonal faces of the antiprism.

We use β to parametrize the truncation of the side vertices. The truncations are formed

by situating ten equidistant planes that have face normals parallel with passing through

the particle CM and each side vertex. We use β = 1 to indicate no vertex truncation and

β = 0 means two truncated vertices meet. Representative particles from this shape family

are shown in Fig. 3.6E (top).

We then study a four-parameter shape family with two parameters describing the vertex

truncations as indicated above. The other two parameters describe vertex augmentation.

We use γ to parametrize vertex augmentation of the side faces. We use γ = 0 to indi-

cate the augmenting vertex lies in the plane of the face (i.e. no vertex augmentation) and

γ = 1 to indicate the distance between the augmenting vertex and CM is twice the dis-

tance between original face center and CM. We use δ to parametrize the position vertices

that augment the top and bottom faces along rays that pass from the center of the particle

through the center of the top and bottom faces. We use δ = 0 to indicate the the augment-

ing vertex lies at the initial pentagon face center and δ = 1 to indicate the augmenting
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vertex is at the CM. Representative particles from this shape family are shown in Fig. 3.6E

(bottom).

hP2-X

This hypothetical structure is a derivative of the hexagonally close-packed structure

(HCP). The structures are very similar from a crystallographic viewpoint: both exhibit

space group P63/mmc (space group no. 194) and in both of them, one Wyckoff site –

2c 1/3, 2/3, 1/4 – is occupied. However, the ratio of unit cell parameters c/a differs

substantially between these two cases. While for the close-packing of spheres c/a =

√
8/3 ≈ 1.633, this is a free parameter from a symmetry point of view. For the structure

used here, we chose a much lower value of c/a = 0.639.

This variant of the crystallographically identical unit cell exhibits a different local par-

ticle environment, due to the fact that particles can move closer together along the c-

direction and therefore are farther apart, relatively, in the a-b-plane. This leads to a coor-

dination number of 8 nearest neighbors – compared with 12 in HCP – and a coordination

polyhedron with the shape of a biaugmented hexagonal prism.

We first study a two-parameter family of asymmetrically truncated bipyramid shapes.

The dihedral angle between the upper and lower face of the bipyramid is 122.049 degrees.

We divide the vertices of a bipyramid into two groups, with one group of vertices at the top

and bottom, and another group of three vertices on the side. We use α to parametrize the

truncation of the top and bottom vertices. We use α = 1 to indicate no vertex truncation,

and α = 0 to indicate the vertices are truncated to the side vertex position. We use β to

parametrize the truncation of the side vertices. The truncations are formed by situating

three equidistant planes that have face normals parallel with passing through the particle

CM and each side vertex. We use β = 1 to indicate no vertex truncation and β = 0 means

two truncated vertices meet. Representative particles from this shape family are shown in
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Fig. 3.6D (left).

We then study a four-parameter shape family with two parameters describing the vertex

truncations as indicated above. The other two parameters describe vertex augmentation.

We use γ to parametrize the position vertices that augment the top and bottom faces along

rays that pass from the center of the particle through the top and bottom vertices.We use

γ = 0 to indicate the the augmenting vertex lies at the initial top and bottom vertices and

γ = 1 to indicate the augmenting vertex is at the particle CM. We use δ to parametrize

vertex augmentation of the side faces. We chose the augmenting vertex be the side face

center of shape with α = 0.435, β = 0.52, γ = 0.503. We use δ = 0 to indicate the

augmenting vertex lies in the plane of the face (i.e. no vertex augmentation) and δ = 1 to

indicate the distance between the augmenting vertex and CM is twice the distance between

the original augmenting vertex and CM. Representative particles from this shape family

are shown in Fig. 3.6D (right).

3.4 Optimal Shapes for a Novel Structure

We targeted the self-assembly of a hypothetical structure with no known atomic or

other equivalent. The structure is a modified version of the hexagonally-close packed (hcp)

structure with distorted lattice spacing, so that particles have eight nearest neighbors, see

Fig. 3.7A, whereas hcp has 12. We denote this structure as hP2-X. Alch-MC simulations of

convex polyhedra with 116 vertex parameters in step one yielded the faceted shape shown

in Fig. 3.7B (left). A symmetrized free energy minimizing shape was then found in step

two (Fig. 3.7B right). The details about the construction of symmetric shape family in step

two can be found in section 3.3.2. We tested that both the unsymmetrized and symmetrized

optimal shapes spontaneously self-assembled the target structure from a disordered fluid,

with the resulting structure shown in Fig. 3.7C. This demonstrates the inverse design of a
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Figure 3.7: Alch-MC design and self-assembly of a previously unreported novel crystal structure with no

known atomic equivalent. (A) The structure hP2-X is a distorted version of HCP with 8 rather

than 12 nearest neighbors. Alch-MC simulation produces a particle ((B)) that spontaneously self-

assembles the target structure ((C)) in simulation. Inset is a bond order diagram of the structure.

(D) Particle organization relative to lattice directions. (E) PMFT isosurface for optimal shapes.

colloidal particle shape to entropically self assemble a previously unknown target structure

using only digital alchemy [93].

3.5 Successful Self-assembly of Optimal Shapes

For the structures BCC, FCC, β-Mn, SC, diamond, β-W and HP2-X, we confirmed that

the successful self-assembly of each target structure using a geometric ansatz where parti-

cles have the shape of the Voronoi cell of the target crystal structure, a near optimal unsym-

metrized shape from Alch-MC simulation in step one, and the symmetric optimal shape
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Figure 3.8: Successful self-assembly from disordered fluid. Representative system snapshots indicating the

successful self-assembly in NVT MC simulations of near-optimal convex polyhedra obtained

from Alch-MC simulation in step one (left column), NVT MC simulation of optimal symmetric

convex polyhedra obtained from Alch-MC simulation in step two (center column), and geometric

ansatz (right column) for six structures at packing fraction η = 0.6. Particle images and bond-

order diagrams are on the left.
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from Alch-MC simulation in step two. See Fig. 3.8 for representative system snapshots.

Self-assembly validation was performed using the Hard Particle Monte Carlo (HPMC) [5]

plugin for HOOMD-Blue [4]. We simulated in the NV T ensemble with 2197 particles for

all structures at packing fraction η = 0.6, with between 4×107 and a maximum of 1×109

Monte Carlo sweeps. We identified an assembled crystal structure by computing bond or-

der diagrams and diffraction patterns using particle centroids, following the approach used

in Ref. [20].

3.6 Discussion

Particle shape has, in principle, an infinite-dimensional parameter space. Here, for

tractability, and motivated by shapes that can be realized using nanoparticle synthesis

techniques, we searched for optimal particle shapes over 92- and 188-dimensional pa-

rameter spaces of convex shapes, using a precisely defined entropic design criterion. Our

method yields not only thermodynamically optimal particle shapes, but also distributions

of candidate shapes that provide insight into the sensitivity of target structures to shape

features (Fig. 3.3). Emergent entropic valence that is commensurate with the emergence

of faceting in an ensemble of arbitrary convex polyhedra, both of which are, in turn, com-

mensurate with local structural coordination, is a strong indication in favor of the hypoth-

esized connection between faceting, emergent directional entropic forces, and structural

order [92, 91]. By consistently establishing the connection between the emergence of

faceting and entropic valence, our results suggest future work could assume this connec-

tion, and either skip our intermediate step of facet characterization by reading particle

faceting directly from PMFT measurements, and/or rather than working agnostically, start

the Alch-MC shape evolution from a Voronoi cell shape.



CHAPTER IV

Predicting Colloidal Crystals from Shapes via Inverse Design and
Machine Learning

This chapter is adapted from Ref. [32], and is available online: “Predicting colloidal

crystals from shapes via inverse design and machine learning”, Yina Geng, Greg van An-

ders, Sharon C. Glotzer, arXiv:1801.06219.

A fundamental challenge in materials design is linking building block attributes to crys-

tal structure. Addressing this challenge is particularly difficult for systems that exhibit

emergent order, such as entropy-stabilized colloidal crystals. Here we combine two re-

cent computational advances to build a prediction model to predict crystal structures from

building block geometry features. One advance is the inverse design methodology of

digital alchemy [93, 31], a molecular simulation method in which particle attributes (e.g.,

particle shapes) are treated as thermodynamic variables in a generalized, or extended, ther-

modynamic ensemble [59, 101]. Digital alchemy simulations produce optimal particle at-

tributes for target thermodynamic phases, including complex colloidal crystals with very

large unit cells [31]. The other advance is the application of machine learning methods to

materials problems [63, 33, 2, 57, 56, 76]. Machine learning can discover hidden corre-

lations in large datasets, providing clues to the long-sought relationship between building

block and structure. By combining these two approaches to thermodynamic systems of

hard, polyhedrally shaped particles, we find an empirical but highly predictive model for

28
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entropically ordered colloidal crystals from solely geometric measures of their constituent

particles. Our model is capable of predicting 13 different entropically stable crystal struc-

tures formed by millions of different colloidal polyhedra with 98% fidelity using just two

geometric measures of particle shape (see Fig. 4.1 for an illustration of our approach).

Though far from a first principles theory, this model can be used immediately to inform

experiments and select building blocks for self-assembling nanoparticle superlattices and

colloidal crystals.

4.1 Optimal Shapes via Digital Alchemy

To construct the predictive model we performed Alchemical Monte Carlo (Alch-MC)

simulations based on the Digital Alchemy framework [93], using an implementation [31]

that extends an open-source Monte Carlo plugin, Hard Particle Monte Carlo (HPMC)

[5], for the open-source molecular dynamics package HOOMD-Blue [4] to generalized

thermodynamic ensembles that include particle shape change. Details about the digital

alchemy method is available in section 2.2. We simulated NV Tµ ensembles at constant

temperature T , fixed volume V , and alchemical potential µ = 0 for 13 target structures

reported previously in entropic self-assembly: simple cubic (SC), body-centered cubic

(BCC), hP2-X , face-centered cubic (FCC), simple chiral cubic (SCC), hexagonal (HEX-

1-0.6), diamond (D), graphite (G), honeycomb (H), body-centered tetragonal (BCT-1-1-

2.4), high-pressure Lithium (Li), β-Manganese (β-Mn), and β-Tungsten (β-W). hP2-X

is a hypothetical structure with no known atomic or other equivalent. The structure is a

modified version of the hexagonally-close packed (HCP) structure with distorted lattice

spacing, so that particles have eight nearest neighbors, whereas HCP has 12 [31]. The

variable µ is conjugate to the shape variable that is allowed to fluctuate in the simulation.

We placed a minimum of N = 100 particles in a periodic simulation box, with the exact
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SC BCC FCC Dia Hex Honeycomb Graphite

BCT Li SCC β-W β-Mn hP2-X

Digital Alchemy

cos θd, det(I), Tr(I), rc/ri, IQ,
Re(χ), Im(χ), Nf, α,

∑
i[I]ii

Machine Learning

cos θd, Tr(I)

Figure 4.1: We use the Digital Alchemy inverse materials design approach to find optimal and near-optimal

hard, convex, colloidal, polyhedral shapes for 13 target structures. We use the Random Forest

technique from machine learning to classify shapes. We find that, of 10 measures of shape, two –

the dihedral angle (cos(θd)) and the trace of the moment of inertia tensor (Tr(I)) – are sufficient

to predict the self-assembly behavior of a shape.
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number chosen (for convenience) to be a multiple of the number of particles in the unit

cell of one of the 13 target structures. Particle shapes were initialized with as many as 64

vertices randomly generated to create a convex shape. Monte Carlo (MC) sweeps were

performed to allow particle translations, rotations, and shape moves via vertex re-location.

For each shape move, we (i) moved a vertex, (ii) resized the trial shape to unit volume,

(iii) checked if the move induced any particle overlaps, and then (iv) accepted the move

based on the Boltzmann factor as described in Ref. [93] and rescaled the trial move domain

in the same way as the particle volume overall. Translation and rotation moves followed

standard procedures (see, e.g., Refs. [40, 1, 30, 19, 20, 92, 91]).

We slowly compressed the target crystal structure comprised of a randomly generated

shape to the target packing fraction, with springs of spring constant 1000 (where energy

is specified in units of kBT and length units are set by the particle size) at each node

to maintain the integrity of the structure during the compression phase. In this initial

stage, it is highly unlikely that the structure is thermodynamically stable, so fixing the

positions of the centers of the particles over an initial set of MC steps allows the system

to explore shape space during compression without falling apart. After reaching the target

packing fraction, we logarithmically relaxed the spring constant to zero. We then further

evolved the system at fixed packing fraction η for 106 − 107 MC sweeps, depending on

the target crystal structure (Table 4.1). For each target crystal structure, we performed

10 independent simulations and randomly selected and analyzed 100 shapes in the final

5 × 105 sweeps. The output of the Alch-MC simulation procedure for each of the 13

crystal structures is a family of optimal shapes (that is, shapes that minimize the system

free energy) with shape measures that fluctuate about some average value.
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Target struc-
ture

packing
fraction
η

MC
sweeps

Target struc-
ture

packing
fraction
η

MC
sweeps

BCC 0.6 1× 106 graphite 0.65 1× 106

FCC 0.6 1× 106 BCT-1-1-
2.4

0.7 1× 106

SC 0.6 1× 106 Li 0.65 1× 106

diamond 0.6 1× 106 SCC 0.7 2× 106

hP2-X 0.6 1× 106 β-W 0.6 8× 106

honeycomb 0.65 1× 106 β-Mn 0.6 3.6×107

HEX-1-0.6 0.7 1× 106

Table 4.1: In Alch-MC, packing fraction and MC sweeps for 13 target crystal structures.

4.2 Geometric Features Calculation

We calculated 10 measures of shape motivated by prior works studying the relationship

between particle geometry and self-assembly behavior.[20] The shape measures calcu-

lated for each polyhedral shape are: the cosine of the average dihedral angle cos θd; the

number of facets Nf ; the determinant of the moment of inertia tensor det(I); the trace

of the moment of inertia tensor Tr(I); the sum of principal minors of the moment of

inertia tensor
∑

i[I]ii; the ratio of the circumsphere radius to the insphere radius rc/ri;

IQ; the asphericity α; and the real and imaginary parts of the chiral parameter χ (Re(χ),

Im(χ)). To calculate cos θd, facets with area af > a∗f (we use a∗f = 0.02 but our results

are not sensitive to changes in a∗f ) were clustered by their normal vector using DBSCAN

[25], a standard clustering algorithm implemented in the open-source Python machine

learning package scikit-learn [74]. Clustered facets are represented by area-weighted av-

erage normals. We computed the clustered-facets-area-weighted cosine of the angle be-

tween average normals of neighboring clustered facets in a polyhedron. The equation

is cos θd =
∑

i,j(si + sj)| cos(θdij)|/
∑

i,j(si + sj), where si is the area of ith clus-

tered facets (sum of component facets), cos(θdij) is cosine of the dihedral angle between

clustered facet i and j, and the sum is over all adjacent clustered facets i and j (two
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Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.03 0.02 -0.1 0.01 -0.09 0 0.08 0.02 0.02
rc/ri 0.03 1 0.51 -0.23 0.04 -0.06 -0.06 0.3 0.52 0.54
det(I) 0.02 0.51 1 -0.51 0.09 -0.03 -0.07 0.58 1 0.99
IQ -0.1 -0.23 -0.51 1 -0.02 0.27 -0.31 -0.97 -0.5 -0.5
Re(χ) 0.01 0.04 0.09 -0.02 1 -0.03 0 0.02 0.08 0.08
Im(χ) -0.09 -0.06 -0.03 0.27 -0.03 1 -0.14 -0.22 -0.03 -0.03
Nf 0 -0.06 -0.07 -0.31 0 -0.14 1 0.21 -0.06 -0.06
α 0.08 0.3 0.58 -0.97 0.02 -0.22 0.21 1 0.58 0.57∑

i[I]ii 0.02 0.52 1 -0.5 0.08 -0.03 -0.06 0.58 1 1
Tr(I) 0.02 0.54 0.99 -0.5 0.08 -0.03 -0.06 0.57 1 1

Table 4.2: Correlation matrix of 10 geometric measures for the β-Mn structure. A cell is blue when the

magnitude of the correlation ≤ 0.2, and a cell is orange when the magnitude of the correlation ≥
0.8 (same for Table 4.3 - 4.14).

clustered facets are adjacent if they have two adjacent component facets). The number

of facets is the number of clustered facets using DBSCAN. The isoperimetric quotient

IQ = 36πv2/s3, where v is the volume and s is the surface area of a polyhedron). The

asphericity α = Rs/3v, where R is the integrated mean curvature normalized by 4π. Fi-

nally, χ is the lowest order measure of the degree of chirality of a molecule [41] and it is

zero for achiral molecules. χ ∝ ∑mnC(234;mn)ρ2mρ3nρ
∗
4,m+n, where C(234;mn) are

the appropriate Clebsch-Gordan coefficients and ρlm are mass-weighted distance moments

with ρlm =
∑

τ∈T |rτ |lYlm(θτ , φτ ), where the sum is over atoms τ in the molecule T . We

calculated χ for a polyhedron by assuming a unit mass atom at each vertex of its vertices.

Table 4.2 reports correlations found for the β-Mn structure between the 10 tested geo-

metric measures applied to 1000 free-energy minimizing shapes randomly selected from

among the millions of shapes generated by the Alch-MC simulations. Tables reporting

correlations for all other structures studied can be found in Tables 4.3- 4.14.

4.3 Random Forest Method

The geometric feature dataset is to be interrogated using machine learning (ML), with

the aim of identifying salient geometric criteria for predicting structures. We utilized the
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Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.02 -0.1 0.2 0.02 0.07 -0.05 -0.2 -0.1 -0.09
rc/ri 0.02 1 0.55 -0.44 -0.03 -0.07 -0.05 0.45 0.55 0.56
det(I) -0.1 0.55 1 -0.91 0.03 0.1 -0.08 0.89 1 1
IQ 0.2 -0.44 -0.91 1 -0.06 -0.13 0.03 -0.96 -0.9 -0.9
Re(χ) 0.02 -0.03 0.03 -0.06 1 -0.02 -0.03 0.05 0.03 0.03
Im(χ) 0.07 -0.07 0.1 -0.13 -0.02 1 -0.12 0.11 0.1 0.1
Nf -0.05 -0.05 -0.08 0.03 -0.03 -0.12 1 -0.03 -0.08 -0.08
α -0.2 0.45 0.89 -0.96 0.05 0.11 -0.03 1 0.89 0.88∑

i[I]ii -0.1 0.55 1 -0.9 0.03 0.1 -0.08 0.89 1 1
Tr(I) -0.09 0.56 1 -0.9 0.03 0.1 -0.08 0.88 1 1

Table 4.3: Correlation coefficient between 10 geometric measures for the SC structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0 -0.02 0.02 0.03 0.08 0.09 0.02 -0.02 -0.02
rc/ri 0 1 0.41 -0.35 0.04 0 -0.03 0.44 0.41 0.41
det(I) -0.02 0.41 1 -0.82 0.02 0.03 0.07 0.79 1 1
IQ 0.02 -0.35 -0.82 1 -0.01 0.01 -0.08 -0.95 -0.81 -0.81
Re(χ) 0.03 0.04 0.02 -0.01 1 0.03 0.02 0.01 0.02 0.02
Im(χ) 0.08 0 0.03 0.01 0.03 1 0.02 -0.01 0.03 0.02
Nf 0.09 -0.03 0.07 -0.08 0.02 0.02 1 0 0.07 0.07
α 0.02 0.44 0.79 -0.95 0.01 -0.01 0 1 0.79 0.79∑

i[I]ii -0.02 0.41 1 -0.81 0.02 0.03 0.07 0.79 1 1
Tr(I) -0.02 0.41 1 -0.81 0.02 0.02 0.07 0.79 1 1

Table 4.4: Correlation coefficient between 10 geometric measures for the BCC structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.06 -0.04 0.05 0.01 0.01 0.39 0.03 -0.04 -0.04
rc/ri 0.06 1 0.64 -0.47 0 0.12 -0.19 0.5 0.64 0.65
det(I) -0.04 0.64 1 -0.88 -0.02 0.15 -0.43 0.88 1 1
IQ 0.05 -0.47 -0.88 1 0.03 -0.17 0.56 -0.98 -0.87 -0.86
Re(χ) 0.01 0 -0.02 0.03 1 -0.03 0.03 -0.03 -0.02 -0.02
Im(χ) 0.01 0.12 0.15 -0.17 -0.03 1 -0.08 0.17 0.16 0.16
Nf 0.39 -0.19 -0.43 0.56 0.03 -0.08 1 -0.53 -0.43 -0.42
α 0.03 0.5 0.88 -0.98 -0.03 0.17 -0.53 1 0.87 0.86∑

i[I]ii -0.04 0.64 1 -0.87 -0.02 0.16 -0.43 0.87 1 1
Tr(I) -0.04 0.65 1 -0.86 -0.02 0.16 -0.42 0.86 1 1

Table 4.5: Correlation coefficient between 10 geometric measures for the FCC structure.
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Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.38 0.06 0.26 -0.02 -0.03 0.35 -0.14 -0.12 -0.24
rc/ri 0.38 1 0.23 0 -0.02 0.2 -0.01 0.14 0.09 -0.02
det(I) 0.06 0.23 1 -0.65 0.02 -0.2 0.03 0.66 0.95 0.87
IQ 0.26 0 -0.65 1 -0.05 -0.05 0.09 -0.96 -0.61 -0.55
Re(χ) -0.02 -0.02 0.02 -0.05 1 0.06 0.02 0.03 0.05 0.06
Im(χ) -0.03 0.2 -0.2 -0.05 0.06 1 -0.06 0.13 -0.2 -0.19
Nf 0.35 -0.01 0.03 0.09 0.02 -0.06 1 -0.08 0.05 0.06
α -0.14 0.14 0.66 -0.96 0.03 0.13 -0.08 1 0.57 0.48∑

i[I]ii -0.12 0.09 0.95 -0.61 0.05 -0.2 0.05 0.57 1 0.98
Tr(I) -0.24 -0.02 0.87 -0.55 0.06 -0.19 0.06 0.48 0.98 1

Table 4.6: Correlation coefficient between 10 geometric measures for the SCC structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 -0.04 -0.05 0.09 0.02 -0.07 0.24 -0.1 -0.05 -0.04
rc/ri -0.04 1 0.61 -0.44 -0.01 0.06 -0.05 0.45 0.6 0.6
det(I) -0.05 0.61 1 -0.58 0.02 0.13 -0.06 0.57 1 1
IQ 0.09 -0.44 -0.58 1 0 -0.13 0.21 -0.99 -0.55 -0.51
Re(χ) 0.02 -0.01 0.02 0 1 -0.03 0.02 0 0.02 0.02
Im(χ) -0.07 0.06 0.13 -0.13 -0.03 1 0.05 0.09 0.13 0.13
Nf 0.24 -0.05 -0.06 0.21 0.02 0.05 1 -0.22 -0.05 -0.04
α -0.1 0.45 0.57 -0.99 0 0.09 -0.22 1 0.54 0.51∑

i[I]ii -0.05 0.6 1 -0.55 0.02 0.13 -0.05 0.54 1 1
Tr(I) -0.04 0.6 1 -0.51 0.02 0.13 -0.04 0.51 1 1

Table 4.7: Correlation coefficient between 10 geometric measures for the HEX structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 -0.02 -0.01 -0.04 0 -0.01 -0.07 0.04 -0.01 -0.01
rc/ri -0.02 1 0.42 -0.29 0.03 -0.14 0.05 0.39 0.43 0.43
det(I) -0.01 0.42 1 -0.72 0.03 0.04 0.01 0.77 1 1
IQ -0.04 -0.29 -0.72 1 0.02 -0.1 -0.01 -0.97 -0.71 -0.71
Re(χ) 0 0.03 0.03 0.02 1 -0.06 0.03 0 0.03 0.03
Im(χ) -0.01 -0.14 0.04 -0.1 -0.06 1 0.04 0.08 0.04 0.04
Nf -0.07 0.05 0.01 -0.01 0.03 0.04 1 0 0.01 0.01
α 0.04 0.39 0.77 -0.97 0 0.08 0 1 0.77 0.77∑

i[I]ii -0.01 0.43 1 -0.71 0.03 0.04 0.01 0.77 1 1
Tr(I) -0.01 0.43 1 -0.71 0.03 0.04 0.01 0.77 1 1

Table 4.8: Correlation coefficient between 10 geometric measures for the diamond structure.



36

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.07 0.18 -0.2 0.02 -0.01 0 0.14 0.18 0.18
rc/ri 0.07 1 0.33 -0.43 0.01 -0.2 0.03 0.64 0.18 0.13
det(I) 0.18 0.33 1 -0.61 0.02 -0.04 -0.02 0.48 0.96 0.94
IQ -0.2 -0.43 -0.61 1 0 0.15 0 -0.86 -0.44 -0.39
Re(χ) 0.02 0.01 0.02 0 1 -0.11 -0.01 0 0.03 0.03
Im(χ) -0.01 -0.2 -0.04 0.15 -0.11 1 0.01 -0.2 -0.01 0.01
Nf 0 0.03 -0.02 0 -0.01 0.01 1 0.03 -0.03 -0.04
α 0.14 0.64 0.48 -0.86 0 -0.2 0.03 1 0.27 0.2∑

i[I]ii 0.18 0.18 0.96 -0.44 0.03 -0.01 -0.03 0.27 1 1
Tr(I) 0.18 0.13 0.94 -0.39 0.03 0.01 -0.04 0.2 1 1

Table 4.9: Correlation coefficient between 10 geometric measures for the graphite structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.05 0.03 -0.09 -0.04 -0.02 -0.03 0.09 0.03 0.03
rc/ri 0.05 1 0.51 -0.37 -0.01 -0.04 0.02 0.39 0.5 0.49
det(I) 0.03 0.51 1 -0.71 -0.02 -0.05 -0.01 0.72 0.99 0.96
IQ -0.09 -0.37 -0.71 1 0.02 0.21 0.08 -0.94 -0.63 -0.58
Re(χ) -0.04 -0.01 -0.02 0.02 1 0.05 -0.05 -0.02 -0.01 -0.01
Im(χ) -0.02 -0.04 -0.05 0.21 0.05 1 0.17 -0.21 -0.02 -0.01
Nf -0.03 0.02 -0.01 0.08 -0.05 0.17 1 -0.16 0.02 0.03
α 0.09 0.39 0.72 -0.94 -0.02 -0.21 -0.16 1 0.64 0.58∑

i[I]ii 0.03 0.5 0.99 -0.63 -0.01 -0.02 0.02 0.64 1 1
Tr(I) 0.03 0.49 0.96 -0.58 -0.01 -0.01 0.03 0.58 1 1

Table 4.10: Correlation coefficient between 10 geometric measures for the honeycomb structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.29 -0.21 0.72 -0.01 0.11 0.7 -0.8 0.1 0.27
rc/ri 0.29 1 0.33 0.17 -0.1 0.08 0.12 -0.17 0.47 0.52
det(I) -0.21 0.33 1 -0.52 -0.01 -0.01 -0.06 0.49 0.94 0.85
IQ 0.72 0.17 -0.52 1 -0.02 0.19 0.38 -0.98 -0.21 -0.03
Re(χ) -0.01 -0.1 -0.01 -0.02 1 -0.1 0 0.02 -0.02 -0.03
Im(χ) 0.11 0.08 -0.01 0.19 -0.1 1 0.02 -0.19 0.05 0.08
Nf 0.7 0.12 -0.06 0.38 0 0.02 1 -0.46 0.12 0.22
α -0.8 -0.17 0.49 -0.98 0.02 -0.19 -0.46 1 0.17 -0.03∑

i[I]ii 0.1 0.47 0.94 -0.21 -0.02 0.05 0.12 0.17 1 0.98
Tr(I) 0.27 0.52 0.85 -0.03 -0.03 0.08 0.22 -0.03 0.98 1

Table 4.11: Correlation coefficient between 10 geometric measures for the BCT-1-1-2.4 structure.
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Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0 0.01 0.06 0.08 0 0.29 -0.02 0.01 0.01
rc/ri 0 1 0.53 -0.44 0.03 0.07 -0.13 0.51 0.54 0.54
det(I) 0.01 0.53 1 -0.87 -0.03 0.03 -0.13 0.81 1 1
IQ 0.06 -0.44 -0.87 1 0.04 -0.04 0.14 -0.89 -0.87 -0.87
Re(χ) 0.08 0.03 -0.03 0.04 1 -0.02 0.09 -0.03 -0.04 -0.04
Im(χ) 0 0.07 0.03 -0.04 -0.02 1 -0.04 0.1 0.02 0.02
Nf 0.29 -0.13 -0.13 0.14 0.09 -0.04 1 -0.13 -0.14 -0.14
α -0.02 0.51 0.81 -0.89 -0.03 0.1 -0.13 1 0.8 0.8∑

i[I]ii 0.01 0.54 1 -0.87 -0.04 0.02 -0.14 0.8 1 1
Tr(I) 0.01 0.54 1 -0.87 -0.04 0.02 -0.14 0.8 1 1

Table 4.12: Correlation coefficient between 10 geometric measures for the Li structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.14 0.03 0.07 0.03 0.13 -0.12 -0.05 0.05 0.07
rc/ri 0.14 1 0.79 -0.7 0.01 0.09 -0.04 0.74 0.8 0.8
det(I) 0.03 0.79 1 -0.87 0.01 0.07 -0.08 0.9 1 1
IQ 0.07 -0.7 -0.87 1 0.01 -0.04 0.12 -0.99 -0.85 -0.84
Re(χ) 0.03 0.01 0.01 0.01 1 -0.04 0.04 0 0.01 0.01
Im(χ) 0.13 0.09 0.07 -0.04 -0.04 1 0.07 0.04 0.08 0.08
Nf -0.12 -0.04 -0.08 0.12 0.04 0.07 1 -0.13 -0.08 -0.08
α -0.05 0.74 0.9 -0.99 0 0.04 -0.13 1 0.89 0.87∑

i[I]ii 0.05 0.8 1 -0.85 0.01 0.08 -0.08 0.89 1 1
Tr(I) 0.07 0.8 1 -0.84 0.01 0.08 -0.08 0.87 1 1

Table 4.13: Correlation coefficient between 10 geometric measures for the hP2-X structure.

Correlation cos θd rc/ri det(I) IQ Re(χ) Im(χ) Nf α
∑

i[I]ii Tr(I)
cos θd 1 0.01 0.01 0.19 -0.02 0.01 -0.11 -0.17 0.02 0.03
rc/ri 0.01 1 0.58 -0.41 0.05 0.05 -0.01 0.47 0.58 0.57
det(I) 0.01 0.58 1 -0.47 0.05 -0.14 0.08 0.44 1 0.99
IQ 0.19 -0.41 -0.47 1 -0.06 -0.06 -0.15 -0.94 -0.43 -0.4
Re(χ) -0.02 0.05 0.05 -0.06 1 -0.01 -0.01 0.07 0.05 0.05
Im(χ) 0.01 0.05 -0.14 -0.06 -0.01 1 -0.09 0.07 -0.15 -0.16
Nf -0.11 -0.01 0.08 -0.15 -0.01 -0.09 1 0.09 0.08 0.07
α -0.17 0.47 0.44 -0.94 0.07 0.07 0.09 1 0.4 0.37∑

i[I]ii 0.02 0.58 1 -0.43 0.05 -0.15 0.08 0.4 1 1
Tr(I) 0.03 0.57 0.99 -0.4 0.05 -0.16 0.07 0.37 1 1

Table 4.14: Correlation coefficient between 10 geometric measures for the β-W structure.
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random forest ML classification technique in scikit-learn. Random forest is an ensemble

method that combines a collection of individual decision trees, each trained on a separate

bootstrap sample of the input data [13, 12]. The prediction of random forest is the majority

vote of the predictions of all trees. The aggregate model is capable of high predictive

accuracy and is applicable in high-dimensional problems with highly correlated variables.

We use gini impurity [13] as a measure of feature relevance in decision trees. There

are two parameters that influence the performance of random forest: number of decision

trees ntree and number of features maxfeature considered for each tree split. We used

the optimal value for ntree = 10 as obtained from a cross-validation analysis [29] and

used the recommended maxfeature =
√
numberoffeatures [74]. Here the 10 shape

measures for 1000 shapes in each crystal structure are provided as input features and the

13 crystal structures are produced as output.

4.4 The Prediction Model

Table 4.2 shows that some shape measures are highly correlated, e.g. α and IQ. When

strong correlation exists between features, the feature selection method in random forest

is unstable and less able to detect the most relevant features [37, 6, 87]. Thus we did

not use the feature selection method for random forest in scikit-learn. Instead, we built

random forest models with all possible combinations of shape features and computed the

10-fold cross-validation accuracy to see which feature combination gives the best predic-

tive ability. The ML analysis (see Fig. 4.2) of low density data indicates that two shape

features – Tr(I) and cos(θd) – are the strongest predictors of the shape–structure relation-

ship. The two-parameter model predicts structure from shape with 98% accuracy (using

10-fold cross-validation, see Fig. 4.2 orange point). Fig. 4.3 shows shape distributions

for the 13 candidate structures using Tr(I) and cos(θd). In the correlation tables of the
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ten geometric features (Table 4.2 - 4.14), a cell is blue when the magnitude of the cor-

relation ≤ 0.2, and a cell is orange when the magnitude of the correlation ≥ 0.8. The

correlation tables have similar patterns, where cos(θd) is uncorrelated with all other nine

features. The three features Tr(I), det(I) and
∑

i[I]ii are perfectly correlated with each

other, and rc/ri, IQ, and α are highly correlated with the three former measures. This

indicates that cos(θd) and Tr(I) are uncorrelated and the other features can be explained

by these two. The remaining three features are the real and imaginary part of the chiral

parameter (Re(χ), Im(χ)) and the number of facetsNf . The chiral parameters appear to be

unimportant. The number of facets Nf is not important because (1) it is a noisy measure

that is based on the number of facets clustered by the DBSCAN algorithm; and (2) it is an

integer value and thus is not sufficiently finely resolved among structure.

The self-assembly of shapes that are now understood to be far from optimal [31] has

been reported in the literature [1, 20]. To develop a model that also correctly predicts

assemblies for highly suboptimal shapes, we run additional simulations at other densities

to broaden our data set. We further generate shape distributions at high densities with

different number of shape vertices (FCC: number of vertices=32, η=0.65; 32, 0.7; 32, 0.8;

32, 0.9; 32, 0.95; 32, 0.99; 10, 0.6; 12, 0.6; 14, 0.6; 20, 0.6; 50, 0.6; 120, 0.6; BCC: 6, 0.6;

14, 0.64), shape distributions are shown in Fig. 4.5. From this we find that distributions

of particle shapes are clustered by geometry, and several structures exhibit multiple free

energy basins. The existence of these basins indicates that for those structures multiple

distinct particle shapes provide good candidate shapes for self-assembly.

We further note that shape distributions vary in form by structure. For example, G and H

structures exhibit a narrow range of cos(θd) relative to the distributions for SC, SCC, BCC,

BCT, and FCC. Conversely SC, SCC, BCC, BCT, and FCC all exhibit a narrow range of

Tr(I) relative to the distributions for G and H. We expect that this relative sensitivity
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Figure 4.2: From low density shape distributions produced via Alch-MC, we classify shapes using combi-

nations of 10 geometric criteria via the random forest method from machine learning. We build

random forest models with different number of geometric features and all possible combina-

tions of features. Each point shows a 10-fold cross-validation (CV) accuracy of a random forest

model. The line connects points with best accuracy. We find that two shape features cos(θd) and

Tr(I) give 98% accuracy (using 10-fold cross-validation) in predicting structures (orange point).

is an important consideration in the synthesis of appropriately shaped particles for self-

assembly. Moreover, Fig. 4.4 shows regions that BCC, FCC, β-W, and β-Mn distributions

locate tightly together in shape space with some overlap. The existence of this overlap

accords with prior work [20] that found some hard polyhedra spontaneously self-assemble

more than one structure (e.g. β-Mn and FCC).

Fig. 4.6 shows the two-parameter empirical model, obtained from the Alch-MC sim-

ulation data, that maps particle shape to structure. Each color region represents a crystal

structure that the random forest model would predict for the specific data point on the
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Figure 4.3: Shape distributions from Alch-MC plotted as a function of the two primary shape features (In-

cluding both low density and high density shapes). Each mark represents an observed shape, and

is colored by its corresponding crystal structure.

(cos(θd), Tr(I)) space. The dark color means the prediction probability is high, and the

light color means the prediction probability of low.

We also extracted thermodynamically optimal shapes from the peaks of the shape distri-

butions in the two salient parameters. Fig. 4.7 shows peak positions, inset particle images

show representative particle shapes, and inset bond order diagrams of crystal structures

show the spontaneous self-assembly of the optimal shapes from fluid phase.

4.5 Testing the Prediction Model

As a further test of the model’s predictive ability, we compared our model’s predictions

against the previously reported self-assembly behavior [20] of 81 known crystal-forming
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Figure 4.4: Zoom in of the densely distributed structure region in Fig. 4.3.

polyhedra, in which 71 shapes formed target structures included in our set of 13. Contained

in that set are the cube [42, 78], truncated cube [98, 42], octahedron [98, 42], truncated

octahedron [42], cuboctahedron [42], and rhombic dodecahedron [98], each of whose self-

assembled colloidal crystal structures have been shown in experiments to match the sim-

ulated structures. In Ref. [20], shapes were self-assembled into crystals without the use

of alchemical variables, and thus the shapes are not necessarily the optimal ones for the

obtained crystal structure. For that reason, we expect the accuracy of our predictions to be

lower than that obtained for optimal shapes. We found that the two-parameter model cor-

rectly predicts the crystal structure formed by 65 shapes in the 2012 study with a fidelity of

91.55%. The model is, of course, unable to correctly predict the structure for shapes that

formed structures not included in our set of 13, and also failed to predict structures where
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Figure 4.5: (a) Shape distributions for BCC produced via Alch-MC, including suboptimal shapes. (b) Shape

distributions for FCC produced via Alch-MC, including suboptimal shapes.

multiple structures were reported. Model predictions and shapes are given in Fig. 4.8.

4.6 Discussion

Our coupling of inverse design and machine learning techniques to create a purely

geometric, two-parameter, empirical model that predicts the self assembly of colloidal

crystals of convex polyhedra with a fidelity of 98% is a considerable advance over the

two-parameter, empirical model presented in Ref. [20]. Nevertheless, there is room for

further improvement. First, our model was based on considering only 10 different shape

features. It is possible that there are other shape features that could prove better predictors

of self-assembly behavior. To facilitate investigations into this possibility, we have made

raw shape data available online at https://deepblue.lib.umich.edu/data/

concern/generic_works/6q182k84r?locale=en. (doi:10.7302/Z2T72FN9)

We encourage the community to use the data to look for increasingly accurate predictive

models. Second, in regions of shape space that are either sparsely populated by our data

and so yield poor statistics, or in which different structures are densely clustered, the model

may fail to predict the correct structure. We encourage the community to add data to the

online data set for additional shapes and structures beyond those considered here. Third,

https://deepblue.lib.umich.edu/data/concern/generic_works/6q182k84r?locale=en
https://deepblue.lib.umich.edu/data/concern/generic_works/6q182k84r?locale=en


44

Figure 4.6: The prediction probability from the two-feature random forest model. We train the model using

cos(θd) and Tr(I) data from the 13000 optimal shapes. The test data is comprised of 67500

(cos(θd), Tr(I)) combinations distributed evenly on the plot. For each predicted crystal structure

class, we divide the prediction probability based on the test data evenly into 10 levels and use the

transparency to represent the probability value. Opaque means probability 1 and transparency

means probability 0. Inset is the zoom in of the densely distributed structure region.

Digital Alchemy as implemented here does not consider the free energy of the fluid phase,

and thus provides no information on the driving force for self assemblies. Such extension

could be included in future work.

The fact that as few as two geometric criteria are sufficient to predict structure formation

in crystals with as many as 20 (β-Mn) particles in a unit cell suggests that appropriate

geometric criteria might be useful for predicting order in colloidal systems with other

forces at play, including hydrogen bonding between DNA-programmable colloidal shapes,

van der Waals attraction between ligands or between particle cores, depletion interactions,

and so on. Alch-MC or other inverse design methods can treat any of these cases to



45

0.45

0.5

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6 0.8 1
BCC

hP2-X
Dia

FCC

Hex

Honeycomb

BCT

Graphite

SCC

SC

Li

Tr
(I

)

cos θd

β-Mn

β-W

Figure 4.7: Optimal shape representations and self-assembly of optimal shapes. Back lines are the deci-

sion boundary of random forest based on (cos(θd) and Tr(I)). Marks indicate observed particle

shapes and are colored by structure (same with Fig. 4.3). Black marks indicate shape distribu-

tion peaks corresponding to thermodynamically optimal particle shapes. Example near-optimal

particle shapes and the bond order diagrams of crystal structure spontaneously assembled by the

near-optimal particle shape are shown.

produce optimized forces as well as shapes. Nevertheless, our predictions should extend

to experimental systems of anisotropic colloids and nanoparticles in which entropy plays

a major role.[61, 92]

There are two ways in which future work could find results that conflict with ours. We

discuss briefly what form those conflicts could take, and what new knowledge would be

generated as a result of each conflict.

One possible conflict is if other investigations generate shape distributions that conflict

with model predictions in regions of shape space that are sparsely populated by our data.
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Figure 4.8: Test of empirical model prediction against previously reported dataset describing crystal self-

assembly of 71 convex polyhedra. Model correctly predicts crystal structure observed via self-

assembly in 65 of 71 cases (91.55%). Black lines are the decision boundary of random forest

based on the cos(θd) and Tr(I) of optimal shapes from Alch-MC. Circle points are the cos(θd)

and Tr(I) of the convex polyhedra in the training data. Black points indicate correct predictions,

and gray points indicate incorrect predictions. Convex polyhedra are plotted near their corre-

sponding point and colored by the crystal structure observed from self-assembly in Ref. [20].

Shape space regions that are sparsely populated by our data suggest the possibility that

shapes in those regions could correspond to target structures that are not in our candidate

set, free energy basins not captured by Alch-MC, or disordered or liquid crystal shape

formers. Alch-MC without structural bias, but with shape bias targeting these regions

could potentially uncover the existence of new entropically stabilized structures. It is our

hope that future work will invalidate our predictions in sparsely sampled regions of shape

space and thereby discover new entropically stabilized structures.

Another possible conflict is if other investigations generate shape distributions that con-
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flict with model predictions in regions of shape space that are densely populated by our

data. To search for shape distributions that conflict with our results in densely popu-

lated regions of shape space, one approach would be to generate shape distributions with

Alch-MC that includes both structural bias and shape bias that are incommensurate with

the model prediction. Such a search would provide a direct means of determining the

limitations of our model. As in the case of sparsely populated regions of shape space,

though conflicts with our model prediction offer potential positive benefits because they

would provide “nearby” shapes that assemble into different crystal structures, which would

present opportunities for reconfigurable structures [22].

In the most general space of shapes, our approach only samples near free energy min-

ima. BCC and FCC are unusual structures in the sense that particles that are far from

absolute free energy minima will produce those structures. To incorporate this under-

standing into our model we used more restricted shape spaces that do not have access to

the global free energy minimum to find disconnected local free energy minima. In princi-

ple it is possible to do this for all structures but we did not do so because we are unaware

of highly sub-optimal shapes that produce structures other than BCC and FCC. Hence an

arbitrary search for local free energy minima with all possible vertex numbers of all struc-

tures with no indication that such minima might exist would not be a responsible use of

our computational resources.



CHAPTER V

Optimized Synthesizable Nanoparticle Shapes for Self Assembly

The study of this chapter by Yina Geng, Greg van Anders and Sharon C. Glotzer will

be poptimalublished following the completion of this dissertation.

Anisotropic colloids and nanoparticles assemble into a great diversity of colloidal crys-

tals in computer simulation [40, 1, 19, 20, 30, 82]. However, the gulf between the outcomes

predicted in simulation [20] and the outcomes realized in experiment [43, 77] is wide. Re-

cent work has shown that many of the ordered structures observed in simulation occur for

particles with shapes that are far from those of the “eigenshapes” that minimize the free

energy of a system in a given structure [31, 32]. Moreover, the application of machine

learning techniques to distributions of particles [32] that result from Digital Alchemy

simulations [93, 31] indicate that ordered structures display vastly different amounts of

sensitivity to different forms of variation in particle morphologies [32]. Recent work has

reported eigenshapes and parametric sensitivities for a large number of structures [32].

However, the reported eigenshapes were computed without regard to potential synthesis

methods that could produce them.

Here, we investigate for a variety of structures optimal colloidal particle shapes, com-

puted through inverse design, for families of particles that have been reported in Refs.

[50, 7, 104, 53, 94, 88, 43, 17, 44, 54, 75, 100, 16, 103, 67]. These families include shapes

48
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that are synthesizable via vertex truncation, edge truncation, or facet augmentation. We

model the nanoparticles as hard shapes and discover thermodynamically optimal shapes

within the shape family that minimize the free energy of target crystal structures using Dig-

ital Alchemy. Digital Alchemy is an extended ensemble method that treats particle shape

parameters as thermodynamic variables, and allows the exploration of shape space in Al-

chemical Monte Carlo (Alch-MC) simulations to find optimal shapes for the self-assembly

of target structures.

Our approach involves two steps. We first identify colloidal crystal structures that self-

assemble from a given shape in a shape family. We then fix the crystal structure and

determine the optimal shape for that structure within that shape family. By optimal shape,

we mean the shape that minimizes the free energy of the structure at a given density.

Although we do not optimize for self-assembly explicitly, which would involve optimizing

for assembly pathways, we find in practice that most shapes found from Digital Alchemy

in fact self-assemble their target structures [31, 32].

5.1 Shape Families Accessible to Experiments

We consider eight shape families accessible to experiments. Below, we describe each

family and give examples of shapes from the families made in experiments and reported

in the literature. The first six shape families contain shapes that have been studied in

simulation [48]. They are predicted to form only simple cubic (SC), body-centered cubic

(BCC), face-centered cubic (FCC), diamond, and high-pressure Lithium (Li) structures,

depending on shape. For the last two families, we calculate the cosine of dihedral angle

cos θd and the trace of moment of inertia tensor Tr(I) and predict the preferred structures

should be SC and FCC, or run regular MC simulations to predict the preferred structure.

The octahedron to cube shape family via vertex truncation is shown in Fig. 5.1a; the
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octahedra has truncation equal to 0 and the cube has truncation equal to 1. This shape

family belongs to the spheric triangle group ∆3,2,3[15] which is constructed with three

families of planes that make up the faces of a cube, a tetrahedron, and an octahedron. There

are two shape parameters, a and c, that specify the amount of truncation (or position of the

bounding planes). The shape family we study is the same as the ∆3,2,3 family with a = c.

The target structures predicted to assemble in this shape family are simple cubic (SC),

body-centered cubic (BCC), and face-centered cubic (FCC) [48]. This shape family can be

realized in the lab [50, 7, 104, 53, 94, 88, 17, 44, 54, 75, 96]. Chiu et.al. used a biomimetic

approach to synthesize platinum nanocrystals enclosed by particular facets, where peptide

sequences that recognize Pt-100 and Pt-111 planes have been rationally identified and used

in directing the shape formation of platinum nanocrystals of typical size 6 nm in a colloidal

nanocrystal synthesis process [17] (Fig. 5.2I-a(1)). Liu and coworkers developed a simple

method for the direct synthesis of Pd nanocrystals with average size 50 nm in aqueous

solution with systematic shape evolution from octahedral to cubic structures through fine

control of the amount of KBr introduced [54] (Fig. 5.2I-a(2)). Ho and Huang developed

a facile room temperature procedure for the synthesis of Cu2O nanocrystals capable of a

systematic shape evolution from cubic to octahedral structures by varying the amount of

reductant added to the reaction mixture [44]. The crystals are generally submicrometer-

sized (Fig. 5.2I-a(3)). Tao et.al. synthesized this shape family with polyhedra size 80-300

nm using the polyol method [88] (Fig. 5.2I-a(4)). Xia and coworkers used seed-mediated

growth to obtain this shape family with size 40 nm - 75 nm [96] (Fig. 5.2I-a(5)). Liu et.al.

obtain 20 nm palladium octahedra with controlled edge lengths from Pd cubes using a

transformation involving oxidative etching and regrowth [53] (Fig. 5.2I-a(6)). Wang et.al.

obtain this shape family with polyhedra size 5-15 nm by seed-mediated growth method

[94] (Fig. 5.2I-a(7)). Zhu and coworkers use an aqueous method to synthesize 11 nm Pd
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nanocrystals with shapes in the cube to octahedra family [104] (Fig. 5.2I-a(8)). Bao et.al.

produced Pd nanocrystals of typical size 10 nm with shapes in the cube to octahedra family

using seed-mediated growth [7] (Fig. 5.2I-a(9)). Lim et.al. used the seeded growth method

to convert Pd nanocrystals from cubes to truncated and regular octahedrons with average

size 10-15 nm [50] (Fig. 5.2I-a(10)).

The octahedron to tetrahedron shape family via vertex truncation is shown in Fig. 5.1b;

the octahedron has truncation equal to 0 and the tetrahedron has truncation equal to 1. This

shape family is the same as the spheric triangle group ∆3,2,3[15] family with c = 1. The

target structures predicted to assemble in this shape family are BCC, diamond, Lithium

(Li) [19]. This shape family has also been realized in experiments [94, 17] (Fig. 5.2I-b(1),

Fig. 5.2I-b(2)).

The cube to rhombic dodecahedron shape family via vertex truncation is shown in

Fig. 5.1d; the cube has truncation equal to 0 and the rhombic dodecahedron has trunca-

tion equal to 1. This shape family belongs to the spheric triangle group ∆4,2,3[15], which

is constructed with three families of planes that make up the faces of a rhombic dodec-

ahedron, a cube, and an octahedron. There are truncating planes of two types: type a

corresponding to the location of the cube faces, and type c which correspond to the posi-

tion of the octahedron faces. The shape family we study is the same with the ∆4,2,3 family

with c = 3. The target structures predicted to assemble in this shape family are SC and

FCC [48]. 110 nm Fe nanocrystals with shape in this shape family were synthesized by

means of an electrochemical route [16] (Fig. 5.2I-d).

The vertex and edge truncated cube shape family is shown in Fig. 5.1e; the cube has

truncation equal to 0 and the maximum truncation we study is 0.2. This shape family is the

same as the spheric triangle group ∆4,2,3[15] family with c = 4 − a. The target structure

predicted to assemble in this shape family is SC [48]. This shape family has also been
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Figure 5.1: We study eight shape families that have been realized in the lab: (a) the cube to octahedron

shape family; (b) the octahedron to tetrahedron shape family; (c) the cube to rhombic dodecahe-

dron shape family; (d) the cube to rhombic dodecahedron shape family; (e) the vertex and edge

truncated cube shape family; (f) the tetrahedron to cuboctahedron shape family; (g) the rhombic

dodecahedron to tetragonal bipyramid shape family; (h) the spheric triangle group ∆4,2,3[15]

family. For each target structure in each shape family, we calculated the equilibrium distribution

of the shape and then fit the data with a Gaussian distribution. Square points show the histogram

of the thermodynamic shape parameters from Alch-MC simulations. The curve shows the Gaus-

sian fit to the histogram. We show the optimal shape (mean of the Gaussian distribution) and

two boundary shapes that are three standard deviations away from the optimal value. The shape

parameters for the optimal and boundary shapes are presented in Fig. 5.3. Both the optimal shape

and the boundary shapes self-assemble their target structure from a fluid phase. For each target

structure in each shape family, we show the bond order diagram of the structure assembled by

the optimal shape.

realized in the lab [17] (Fig. 5.2I-e).

The tetrahedron to cuboctahedron shape family via vertex and edge truncation is shown

in Fig. 5.1f; the tetrahedron has truncation equal to 0 or 1 and the cuboctahedron has trun-

cation equal to 0.5. This shape family is the same as the spheric triangle group ∆3,2,3[15]

family with c = 4 − a. The target structure predicted to assemble in this shape family is

BCC [48]. This shape family has also been realized in experiments [17, 103]. Zheng and

coworkers synthesized Au nanocrystals with typical size 45 nm via seed-mediated growth

[103] (Fig. 5.2I-f(1)).

The spheric triangle group ∆4,2,3[15] family is shown in Fig. 5.1h. The target structures

predict to assemble in this shape family are SC, BCC and FCC [48]. Niu and coworkers

used the seed-mediated growth method to synthesize palladium nanocrystals with shapes

varying in this family [67] (Fig. 5.2I-h).

The cube to rhombic dodecahedron shape family via facet augmentation is shown in

Fig. 5.1c; the cube has truncation equal to 0 and the rhombic dodecahedron has truncation

equal to 1. Details about the construction can be found in Ref. [31]. We calculate the
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cosine of the dihedral angle cos θd and the trace of the moment of inertia tensor Tr(I) for

shapes in this family and predict via a machine learning model [32] the preferred structures

should be SC and FCC with greater than 90% confidence. This shape family has also been

realized in experiment [100]. Through a controlled heteroepitaxial growth process on

preformed Au trisoctahedral NC templates, 50 nm nanocrystals with different polyhedral

shapes were synthesized (Fig. 5.2I-c).

The rhombic dodecahedron to tetragonal bipyramid shape family via 3-fold vertex trun-

cation is shown in Fig. 5.1g; the rhombic dodecahedron has truncation equal to 0 and the

tetragonal bipyramid has truncation equal to 1. The machine learning model [32] predicts

structures from this shape family with less than 60% probability, due to most shapes in

this family being suboptimal (as we determine later). Instead we run hard particle Monte

Carlo [5] simulations for this shape family and find all shapes either assemble FCC or do

not assemble. This shape family has also been realized in experiment [16] (Fig. 5.2I-g).
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Figure 5.2: I-a Cube to octahedra shape family synthesized in experiment. (1) TEM and HRTEM images

of platinum nanocrystals from cuboctahedra to cube. Scale bars: 2 nm (b), 5 nm (e,h) [17]. (2)
SEM images of (a1) Pd octahedra, (b1) truncated octahedra, (c1) cuboctahedra, (d1) truncated

cubes, and (e1) nanocubes. All scale bars are equal to 100 nm [54]. (3) SEM images of the Cu2O

nanocrystals: (a) cubes, (b) truncated cubes, (c) cuboctahedra, (d) type I truncated octahedra, (e)

type II truncated octahedra, (f) octahedra, (g) short hexapods, and (h) extended hexapods. Scale

bar: 1 µm [44]. (4) a) A schematic of the nucleation and growth process. b-f) SEM images

of cubes, truncated cubes, cuboctahedra, truncated octahedra, and octahedra, respectively (scale

bar: 100 nm) [88]. (5) SEM images of Ag polyhedrons grown from 40 nm cubic seeds. The

inset shows the corresponding 3D model for each type of polyhedron [96]. (6-1) (a) Schematic

illustration of the five major steps involved in the oxidative etching and regrowth process. (b)

Schematic illustrations showing the formation of Pd octahedra with different edge lengths [53].

(6-2) TEM images of (a) Pd nanocubes and (b-d) Pd octahedra [53]. (7) (a) Schematic illustra-

tion showing the formation of Pd octahedrons and tetrahedrons, respectively. (b-d) Typical TEM

images of the Pd cuboctahedral seeds, octahedrons, and tetrahedrons. [94]. (8) TEM images of

Pd nanocrystals [104]. (9) TEM images of the Pd polyhedra and the insets show geometrical

models of individual nanocrystals [7]. (10) A) Schematic illustration of seeded growth of Pd oc-

tahedrons with and without truncation at corners from cubic Pd seeds. B) TEM and C) HRTEM

images of Pd truncated octahedrons. D) TEM and E) HRTEM images of Pd octahedrons [50]. I-
b Octahedra to tetrahedra shape family synthesized in experiment. (1) TEM and HRTEM images

of platinum tetrahedron nanocrystals. Scale bars: 2 nm (c), 5 nm (f,i) [17]. (2) see I-a (7). I-c
Cube to rhombic dodecahedra shape family via facet augmentation synthesized in experiment.

SEM images showing the overall morphology of Au@Pd nanocrystals in (A) high and (B) low

magnifications and (C) individual nanocrystals in different orientations, with the corresponding

geometrical models shown on the right of each SEM image. The scale bar is 50 nm [100]. I-d
(a-e)Shape transformation of Fe nanocrystals from rhombic dodecahedra to a series of 18-facet

polyhedral shapes and finally to cubic [16]. I-e TEM and HRTEM images of shape evolution

of platinum cube synthesis. Scale bars: 2 nm (c), 5 nm (f,i) [17]. I-f (1) TEM images of Au

nanocrystals. The scale bar in (a) applies to (b-d). The models at the bottom correspond to those

particles in the TEM images labeled with the same number [103]. (2) TEM and HRTEM images

of platinum tetrahedron nanocrystals. Scale bars: 2 nm (b), 5 nm (e,h) [17]. I-g SEM images

of Fe nanocrystals and their geometrical model [16]. I-h (1) Geometrical models of palladium

nanocrystals presented in Figure I-h (2). The 100, 111, and 110 facets are shown in green, blue,

and purple, respectively [67]. (2) SEM images of polyhedral palladium nanocrystal samples

(scale bar: 200 nm) [67]. Note: Permissions to reproduce images need to be approved.
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5.2 Inverse Design of Optimal Shapes

5.2.1 Alch-MC Simulations for Eight Shape Families

Following the protocol demonstrated in Ref. [31], we performed Alchemical Monte Carlo

(Alch-MC) simulations of symmetric convex polyhedra, with shapes varying within the

shape families described in the previous section, in target crystal structures. Alch-MC sim-

ulations based on the Digital Alchemy framework [93], using an implementation [31] that

extends an open-source Monte Carlo plugin, Hard Particle Monte Carlo (HPMC) [5], for

the open-source molecular dynamics package HOOMD-Blue [4] to generalized thermody-

namic ensembles that include particle shape change. We simulated NV Tµ ensembles at

constant temperature T , fixed volume V , and alchemical potential µ = 0. The variable µ is

conjugate to the shape variable that is allowed to fluctuate in the simulation. We placed no

fewer than 100 particles in a periodic simulation box. The exact number was chosen to be

a multiple of the number of particles in the unit cell of the target structure. Particle shapes

were initialized with each shape parameter taken as either 0 or 1. Monte Carlo (MC)

sweeps involve particle translations, rotations, and shape moves. For each shape move,

we (i) generated a uniform trial shape for all particles in the system with modified shape

parameters, (ii) resized the trial shape to unit volume, (iii) checked if the move induced

any particle overlaps, and then (iv) accepted the move based on the Boltzmann factor as

described in Ref. [93]. Translation and rotation moves followed standard procedures (see,

e.g., Refs. [40, 1, 30, 19, 20, 92, 91]). We compressed the system to packing fraction

η = 0.6 (SC, BCC, FCC, diamond) or η = 0.75 (Li), with the spring constant fixed to

1000 (where energy is specified in units of kBT , and length units are given in terms of the

particle volume). After we reached the target packing fraction, we logarithmically relaxed

the spring constant. We then relaxed the system for 1 × 106 MC sweeps. For each tar-

get crystal structure, we performed at least 60 independent simulations and analyzed the
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Structure mean mean-3σ mean+3σ
SC 0.77 0.71 0.82
BCC 0.25 0.22 0.27
FCC 0.34 0.31 0.37

a

Structure mean mean-3σ mean+3σ
BCC 0.01 N/A 0.03
diamond 0.38 0.34 0.42
Li 0.11 0.10 0.13

b

Structure mean mean-3σ mean+3σ
SC 0.13 0.10 0.16
FCC 0.62 0.54 0.69

c

Structure mean mean-3σ mean+3σ
SC 0.10 0.07 0.14
FCC 0.51 0.43 0.59

d

e
Structure mean mean-3σ mean+3σ
SC 0.11 0.07 0.14

f
Structure mean mean-3σ mean+3σ
BCC 0.50 0.48 0.52

g
Structure mean mean-3σ mean+3σ
FCC 0.02 N/A 0.06

h
Structure mean (a, c) (a-3σ, c) (a+3σ, c) (a, c-3σ) (a, c+3σ)
SC (0.08, 0.71) (0.06, 0.71) (0.11, 0.71) (0.08, 0.55) (0.08, 0.88)
BCC (0.47, 0.20) (0.40, 0.20) (0.53, 0.20) (0.47, 0.15) (0.47, 0.25)
FCC (0.34, 0.31)

(0.47, 0.62)
N/A N/A N/A N/A

Figure 5.3: In each shape family a-h, we show the mean shape parameter and the two boundary shape pa-

rameters. Both the optimal shape and the boundary shapes self-assemble the target structure.

The optimal shape suggests the best shape to assemble the target structure, and the two boundary

shapes show the tolerance of a shape deviating from the optimal shape. The boundary shape

parameters can also help glide synthesis protocols.

shapes in the final 1.5× 105 sweeps.

For each target structure in each shape family, we calculated the equilibrium distribution

of the shape and then fit the data with a Gaussian distribution. We show the optimal shape

and two boundary shapes that are three standard deviations away from the optimal value

(see Fig. 5.1). The shape parameters for the optimal and boundary shapes are presented

in Fig. 5.3. Both the optimal shape and the boundary shapes self-assemble their target

structure from a fluid phase. The optimal shape suggests the best shape to assemble the

target structure, and the two boundary shapes show the tolerance of a shape deviating

from the optimal shape. The boundary shape parameters can also help decide synthesis

protocols.
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5.2.2 Direct Free Energy Computation

For SC, BCC and FCC structures, optimal shapes in different shape families assemble the

same target structure. We compare the alchemical free energy to get the optimal shape

that minimizes the free energy of the target structure. We computed the Helmholtz free

energy difference between the target crystal and the Einstein crystal using Frenkel-Ladd

thermodynamic integration [26] via the implementation used in Refs. [39, 82]. We placed

approximately 2000 particles in a periodic simulation box; the exact number was chosen

to be a multiple of the number of particles in the unit cell of the target structure. For SC

and BCC structures, particles in the assembled structure have orientational order. Einstein

crystal positions and orientations were taken directly from the space-filling tessellation.

For FCC, particles in the assembled structure do not show orientational order. To create

an appropriate Einstein crystal, we first initialized the simulation at a low packing fraction

η = 0.5, chose particle positions using the target structure, and randomly assigned a set

of orientations observed in the assembly. Then we compressed the system to packing

fraction η = 0.6, allowing particles to rotate to resolve overlaps. The Einstein crystal of

BCC with octahedron shape can not be compressed to packing fraction η = 0.6, so we

followed the same protocol as for FCC. We computed the alchemical free energy of the

target structure assembled by the optimal shape in each shape family [93]. We normalized

the free energies in Fig. 5.4 by setting the largest free energy of the target structure to be

zero. In Fig. 5.4, we order the optimal shape by the free energy of the system. For each

structure, the rightmost optimal shape optimizes the target structure.

5.3 Discussion

The self-assembly of anisotropic nanoparticles into colloidal crystal structures have been

shown in experiments [99, 43, 77]. For example, cubes self assemble into SC [43, 77],
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Figure 5.4: (a) Free energy for SC assembled by the optimal shape in each shape family. (b) Free energy for

BCC assembled by the optimal shape in each shape family. (c) Free energy for FCC assembled

by the optimal shape in each shape family. For each structure, we normalized free energies by

setting the largest free energy of the target structure to be zero. We order the optimal shape by

the free energy of the system. For each structure, optimal shapes from different shape families

can assemble the target structure, and the optimal shape at the furthest right is the best. Error

bars are calculated from ten independent free energy computations for each shape (smaller than

the data symbols if not shown).

truncated cubes self assemble into SC [99, 43], and truncated octahedra self assemble

into BCC [43]. The experiment results match the simulated structures. Here we suggest

the best shape to use to self-assemble the target structure. In this work, we used a hard

particle model, but future work should include effects of stabilizing ligands. In those cases,

the organization of ligands according to the so-called orbifold topological model (OTM)

of Travesset controls the structure and stability of the superlattices that can be assembled

in experiment [90].



CHAPTER VI

Conclusion and Outlook

6.1 Summary of Results

This dissertation has studied the inverse material design problem. Given a target colloidal

crystal structure, we design the optimal building blocks (shapes) that self-assemble the tar-

get structure. We also design optimal shapes focusing on colloidal particle shape families

have already been made in experiment. Combining the inverse design and random forest –

supervised machine learning technique, we build a prediction model to predict the crystal

structure from building block geometric features.

In Chapter III, we demonstrate that the digital alchemy method is a general and powerful

method to solve the inverse material design problem. It treats the shape parameter as a

thermodynamic variable and generates the optimal shape that minimizes the free energy

of the target structure system. We design optimal shapes for six simple and complex crystal

structures, and one as-yet-unknown structure. We extract important shape characteristics

and design optimal symmetric shapes to be synthesizable in experiment.

In Chapter IV, we build a prediction model to predict the crystal structure from build-

ing block geometric features. We produce optimal shapes for 13 crystal structures using

digital alchemy, and calculate 10 geometric features for each shape. Next, we build a pre-

diction model to classify shapes into structures that the shape optimized for. Our model

61
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achieves 98% prediction accuracy with only two geometric features, and 92% accuracy

on the prediction of previously reported structures assembled by 71 symmetric polyhedra.

In the future, if we have a new shape, our model helps decide the structure that the shape

assembles, without any further simulation or experiment needed.

In Chapter V, we consider shape families that have already been synthesized in experi-

ments and design optimal shapes in those shape families. Our results help experimentalist

choose best colloidal particles to synthesize crystal structures and further study their prop-

erties.

6.2 Outlook

We successfully apply the digital alchemy method to 13 crystal structures and design op-

timal shapes that minimize the free energy of the target structure and also spontaneously

self-assemble the target structure from fluid phase. Does the method work for all crystal

structures? Do we need to modify the design process? Moreover, we design one shape

for a target structure. However, some structures have several different Wyckoff positions,

e.g.β-Mn, β-W and AlB2. Should we have one type of particle for one Wyckoff position?

Is the structure system with multiple shapes better (having a lower free energy) than the

system assembled by one shape? These questions need to be answered in the future.

We build the prediction model using optimal shapes from 13 structures. The limit of our

model is that we can not predict other structures outside of the 13 structures. Including

more structures and shapes would improve our model’s generality and prediction abil-

ity. We come up with 10 geometric features based on our experience and literature. It’s

possible that there are other powerful features we can use to improve the model. In our

prediction model, we only consider predicting crystal structures and ignoring disordered

or glass phases. How to build a model to predict crystals and other phases? What data can
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we generate and use? What shape features we should use? These questions need further

study.

We design optimal shapes that can be made experimentally, and help experimentalist

choose shapes to synthesize colloidal crystals. However, the gap between what simula-

tion predicts and what experiment can control and achieve is still big. We do not consider

polydispersity, which often happens in experiments. This question should be solved in the

future.
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APPENDIX A

Evolutionary Algorithm Trial

We first solve the inverse design problem using the evolutionary algorithm, specifically

the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Evolutionary computa-

tion has been applied successfully to a wide range of problems, including robotics design

[52], crystal structure prediction [69, 10], and granular materials mechanical property op-

timization [66]. The optimization mechanism of evolutionary computation starts with an

initial population of objects, from which those with highest fitness are selected and mu-

tated to create offsprings, comprising the subsequent generation. Here we use evolution

strategies (ES) due to their emphasis of manipulation on real domain. Specifically, we

use the Covariance Matrix Adaptation Evolution Strategy or CMA-ES which produces a

population using a multivariate Gaussian distribution. The key feature of this algorithm is

that it uses information from prior generations to deterministically update the mean and

covariance matrix. The mean of the distribution is updated to maximize the likelihood of

drawing a previously found individual with favorable characteristics (high fitness), and the

covariance matrix is updated in order to increase the probability of producing a successful

mutation step.

Our design method works as follows: 1) a initial population of guesses (shapes) are cre-

ated and quenching simulations are performed with particles in each system interacting

according to one of these guesses; 2) each system’s performance is evaluated by compar-
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Figure A1: Optimal shapes found for diamond structure, using RDF difference as the fitness function in the

CMA-ES. a, Fitness (RDF) convergence curve and optimal shapes (yellow) in each generation.

The fitness value point is the minimum fitness in each generation in the CMA-ES. The light

purple shape is the initial shape. The bond order diagram of diamond crystal assembled by

optimal shape is shown. b, Shape distance between optimal shape found by minimizing RDF

difference and truncated tetrahedra. The optimal shape is closest to truncated tetrahedron with

truncation 0.59.

ing the absolute difference between its RDF and that of the target crystal 3) best scoring

populations are then combined and mutation is introduced 4) we start back at (1) until

algorithmic convergence.

We start with the diamond crystal as a benchmark. Our goal is to find a shape assembling

diamond structure. Previous simulations have shown that the Archimedean truncated tetra-

hedron shape can self-assemble a diamond structure from the fluid at moderate packing

fractions [19]. We start with a truncated tetrahedron but tessellate its shape from 12 to

56 vertices to allow for shape evolution (Fig. A1a). We then use a vector containing the

3-dimensional coordinates of these 56 vertices as the variable to be optimized. Nineteen

random candidate shapes are generated from the convex hull of the positions of these

points. Next, we replace the particle shape in our previously assembled diamond lattice

with each of the candidate shapes, already in their proper orientation, but keep particle

positions and orientations fixed, totalizing 19 independent systems that will be simulated
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in parallel. For each system of 2048 particles, we run a hard particle Monte Carlo simula-

tion [5] for 6.4e5 sweeps with packing fraction being increased from 0.56 to 0.7. Fitness

function we minimize in the CMA-ES is the least square difference between target RDF

and the RDF of system with candidate shape. After each simulation and computation of

the fitness function, 19 new candidates are created and the process is restarted until con-

vergence is found. Fig. A1a shows the evolution of the fitness function for the best shape

in each generation, demonstrating the fast convergence of the algorithm. The final shape

(Fig. A1a) self-assembles diamond from liquid phase.

To find what truncated tetrahedron the final shape is closest to, we use shape matching [8]

to measure similarity between shapes. The measurement of similarity is preceded by solv-

ing for correspondence between points on the two shapes and using the correspondences

to estimate an aligning transform. The dissimilarity between the two shapes is computed

as a sum of matching errors between corresponding points, together with a term measuring

the magnitude of the aligning transform. We find the final shape is closest to the truncated

tetrahedron with truncation 0.59, as shown in Fig. A1b.

However, digital alchemy was recently proposed and it’s able to design optimal shapes

that minimize the free energy of target structures [93]. The study shows that the truncated

tetrahedra with truncation 0.63 is the best shape for diamond structure at packing density

0.6. The evolutionary algorithm method can find a shape to assemble a target structure,

but not necessarily the best shape. So we change our design idea to the digital alchemy

framework, as shown in previous sections 3.1- 3.6.
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