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ABSTRACT

Although the landscape of nuclear safeguards changes as new technologies emerge,

gamma-ray spectroscopy remains a fundamental component of nuclear material detec-

tion and monitoring protocols. Systems that feature pixelated, large-volume CdZnTe

detectors provide a viable option for gamma-ray spectrometers owing to their porta-

bility, room-temperature operation, imaging capabilities and high-performance energy

resolution. Despite recent advances in data acquisition technology, CdZnTe detector

systems fail to achieve comparable energy resolution to the industry-leading per-

formance provided by high-purity germanium detectors. This limits the utility of

CdZnTe systems in gamma-ray spectroscopy, as the confidence intervals of analyses

pertinent to nuclear safeguards depend heavily on energy resolution.

In order to address this deficiency in CdZnTe detector technology, a fundamentally

new approach for calibrating energy is proposed. Conventional calibration methods

for position-sensitive semiconductor detectors rely heavily on theoretical models. De-

spite years of extensive study on charge transport properties in position-sensitive

semiconductor detectors, the underlying models introduce systematic error in the en-

ergy reconstruction process. Under the proposed framework, predictive models are

constructed via principal component analysis in an attempt to reduce the reliance on

theoretical models and human intuition.

This work provides a practitioner’s account of how one can leverage information

extracted by principal component analysis to improve energy resolution for position-

sensitive semiconductor detectors. This methodology is adapted to address unique

challenges presented by a variety of events observed in position-sensitive detectors.

xv



For the detectors used in this work, single-pixel, two-pixel and three-pixel event en-

ergy resolution at 662 keV improve by approximately 10% relative to the leading

alternative. The proposed calibration procedure is generalized to accommodate event

reconstruction for gamma-rays in the entire dynamic range.

Energy calibration via principal component analysis is intended to provide a prac-

tical alternative to conventional techniques. Calibration requirements and computa-

tional time are monitored closely to ensure that the application of the proposed

technique does not become overly burdensome. Calibration measurements based on

principal component analysis require no more time or data than conventional meth-

ods. The processing time per detection event is significantly reduced compared to

computationally-intensive alternatives under this framework, enabling the processing

speed necessary for a wide variety of nuclear safeguards applications.
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CHAPTER I

Introduction

1.1 Emergence of Nuclear Safeguards

The first nuclear tests conducted on July 16, 1945 in Alamogordo, NM marked a

pivotal moment in the history of warfare and rapidly changed the strategic landscape.

As Paul Kennedy writes in his expansive study The Rise and Fall of the Great Powers,

the United States did not maintain a monopoly on nuclear weaponry long after the

first tests in 1945 [1]. Soviet development of a nuclear arsenal quickly followed, and

other European powers - namely Great Britain and France - went to great lengths to

maintain pace in technological advancements of nuclear weaponry to compensate for

relative deficiencies in population and manufacturing capabilities. This technology

became a de facto prerequisite for aspiring world powers, or for those nations seeking

to maintain status as a world power.

Throughout the remainder of the 20th century, global powers in the Cold War era

maintained nuclear weapon capabilities primarily as a means of deterrence against

threats from opposing states. Although much has changed in the international land-

scape since these developments, the strategy of obtaining global relevance by amassing

nuclear arsenals continues into the 21st century, although not necessarily with the in-

tent of strictly deterring states from acts of aggression. In 2007, former chairman

of the Senate Armed Services Committee Sam Nunn, former United States Secre-
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tary of Defense William Perry, and former United States Secretaries of State George

Shultz and Henry Kissinger collectively suggested that the effectiveness of deterrence

had diminished as previously non-nuclear states aggressively sought to gain nuclear

weaponry [2]. In explicit references to the presiding regimes of North Korea and

Iran, they argued that such states did not adhere to the constraints of deterrence and

presented new challenges to national security. Among these challenges is the ability

to ensure that non-state groups do not obtain nuclear weapons through illicit means.

To this end, nuclear safeguards emerged as a means to maintain control of nuclear

materials that could enhance the ability of non-compliant actors to achieve nuclear

capabilities [3].

1.2 The Role of Gamma-Ray Spectroscopy in Nuclear Safe-

guards

Nuclear safeguards describe the collective efforts to detect and/or prevent diver-

sion of nuclear materials intended for such purposes. Radiation detection provides

a valuable tool for these purposes. The nuclear materials in question emit gamma-

ray radiation that is characteristic of material composition. If one is interested in

characterizing material composition, it is not sufficient to merely detect the presence

of radiation, but rather it is necessary to measure additional attributes about the

emitted radiation. To distinguish illicit nuclear materials from innocuous sources or

naturally occurring radioactive material (NORM), radiation detection systems ide-

ally possess the ability to measure the energy of emitted gamma rays. Isotopes

pertinent to the field of nuclear safeguards emit gamma-ray radiation of discrete and

well-characterized energies that allow one to identify the isotope from which it was

emitted. Several classes of radiation detectors provide such capabilities, but a select

few provide the performance required to meet the demands of nuclear safeguards.
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Detection system performance is evaluated by several considerations whose impor-

tance depend on specific applications. The analysis of gamma-ray energy spectra -

widely referred to as gamma-ray spectroscopy (or informally as ‘gamma spectroscopy’)

- relies heavily on the achievable energy resolution of a detector. The precision at

which gamma-ray energy can be measured depends on the underlying mechanics of

detection media for converting neutral radiation to detectable and sensible signals.

Semiconductor detectors provide the optimal energy resolution among alternatives

due to this consideration, whereas scintillator detectors require several conversion

stages that cumulatively degrade energy resolution [4, 5]. Energy resolution becomes

increasingly important for quantifying gamma-ray radiation energy in isotopes that

emit several gamma rays of similar energies or materials that contain several isotopes

[6, 7]. The inability to precisely measure gamma-ray energy may lead to inaccurate

analyses.

Gamma-ray detectors are not only judged on the basis of energy resolution, but

also by the rate at which gamma-ray radiation is detected. Gamma-ray detectors

may excel at properly quantifying incident gamma-ray energy, but they must they

do so efficiently to provide a significant degree of confidence in the ensuing analysis.

Some applications of gamma-ray spectroscopy may be conducted in the presence of

a source that emits relatively few gamma rays in a limited amount of time. In such

applications, gamma-ray detectors must be able to detect and quantify a high fraction

of the emitted gamma rays to reach a statistically-significant conclusion about the

source.

To further complicate matters, measurements may be performed in an environ-

ment in which there are multiple sources of gamma-ray radiation. In such scenarios,

it is beneficial to distinguish radiation by the source from which it was emitted [8, 9].

Radiation detectors do not inherently possess the capability to distinguish radiation

in the spatial domain, but they can be configured to offer position sensitivity. If the
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position at which gamma rays interact can be derived from the signals of a position-

sensitive detector, algorithms based on Compton scattering kinematics, coded aper-

tures or strategic attenuation may be performed to obtain an estimate of the spatial

distributions of gamma-ray sources [10–13].

Other practical considerations such as cost and field-readiness factor into detector

evaluation. The agencies and government entities that practice nuclear safeguards

have finite resources to obtain and implement radiation detectors, and they must do

so with cost in mind. Cost is ultimately determined by the price of the raw detec-

tion materials, associated data acquisition equipment, and the influence of patented

technology. They must also consider the environments in which they perform mea-

surements. For field applications where users must carry the detectors, instrument

weight and size are important factors, and this often entails a trade-off with detection

efficiency [14]. This may preclude the use of high-performance gamma spectrometers

such as high-purity germanium (HPGe) detectors, which must operate with a source

of external cooling.

Applications pertinent to nuclear safeguards often require gamma-ray spectroscopy.

From the measured spectrum of gamma-ray energy, one can make inferences about

sources of radiation from the intensity of select photopeaks. A popular method for es-

timating fissile content in uranium samples requires the ratio of peak intensities about

the 186 and 1001 keV emissions from 235U and 238U, respectively [15]. In a similar

fashion, relative intensities at characteristic, gamma-ray energies can provide valuable

insight on the concentration of plutonium isotopes in a sample [16–18]. Peak ratios

also help inspectors estimate spent nuclear fuel burnup in efforts to detect nuclear

material diversion [19–21].

The uncertainty in peak intensity propagates to the key ratios in these analyses,

and it is therefore crucial to use instruments with high-performance energy resolu-

tion and detection efficiency to reduce uncertainty in peak intensity. While peak
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area uncertainty is sensitive to both of these factors, energy resolution influences the

uncertainty more so than efficiency. Consider the tasks of estimating uranium en-

richment and plutonium isotope concentrations of special nuclear material (SNM).

Streicher et al. performed these estimations using 3-D, position-sensitive cadmium

zinc telluride (CdZnTe) technology and a commercially available HPGe instrument

with superior energy resolution [22]. Although the CdZnTe system is more efficient to

low-energy emissions from uranium isotopes, the relative uncertainty in net count rate

for the 186 keV emission is higher for the CdZnTe system (0.39% for 93% enriched

highly enriched uranium (HEU) and 3.6% for 0.2% enriched depleted uranium (DU))

compared to that of an HPGe detector (0.28% and 1.3% for HEU and DU, respec-

tively). The errors in the enrichment estimates reflect these results; the estimates

obtained from CdZnTe system data reveal uncertainties of 0.02 and 10.1 weight per-

cent for DU and HEU, respectively, whereas uncertainties of 0.01 and 2.5% weight

percent were achieved with the HPGe detector. Such results provide unequivocal

evidence of the importance of energy resolution for nuclear safeguards applications.

1.3 Development of Position-Sensitive Semiconductor Detec-

tors

Due to the influence of energy resolution in gamma spectroscopy, semiconductor

detectors are the focus of the content in this thesis. Semiconductor detectors provide

more desirable combinations of energy resolution and efficiency compared to alterna-

tive options such as scintillator devices and gaseous detectors. Due to the inherent

advantages of these detectors, research and development of semiconductor detector

technology remain active. The academic and scientific communities have collectively

produced significant advancements to semiconductor technology in the years preced-

ing this writing.
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Although many applications require semiconductor detectors, there are select

applications that require position-sensitive detector technology. Of note, position-

sensitive devices have been developed for applications in ultra-high-resolution single-

photon emission computed tomography (SPECT) [23–25] and single-polarity charge

sensing devices. The latter refers to the development of systems that feature de-

tection media with poor charge transport properties, which are presented in greater

detail in Chapter II. This undesirable characteristic implies that the energy resolu-

tion compares unfavorably to materials with superior charge transport properties like

HPGe. However, single-polarity charge sensing devices can be grown and fabricated

in position-sensitive configurations suitable for imaging, and several materials under

this classification can be operated at room temperature without the aid of external

cooling. Furthermore, poor transport properties can be circumvented in position-

sensitive devices to an extent. Given coordinates of a gamma-ray interaction, the

position-specific response may be modeled with greater precision. In principle, these

refined response models provide information that enhances spectral performance in

detection media that were previously impeded by poor charge transport.

Research in this field has produced several iterations of position-sensitive designs

for single-polarity charge sensing devices. Luke introduced the concept of coplanar

grid for semiconductor detectors, which enabled estimation of the depth of interaction

for gamma-ray interactions [26]. Subsequent developments of semiconductor detectors

with strip electrodes provided the ability to estimate lateral position in addition to

depth [27, 28]. Such configurations provided greater dimensionality to the system

response model, but the resulting spectral performance was sensitive to the operating

applied bias. Therefore, the implementation of strip electrodes were confined to thin

detectors better suited for imaging applications rather than applications requiring

high-performance energy resolution [29]. Detector electrode size was further reduced

in pixelated anode designs. Interaction position could be estimated with greater
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accuracy under this design, due in part to the favorable changes in detector weighting

potential and the finer discretization of lateral dimensions [30, 31].

1.4 Novel Contributions to Position-Sensitive Semiconduc-

tor Detector Technology

The devices featured predominantly in this work contain pixelated anodes designed

to achieve high-performance energy resolution and imaging capability. Although this

configuration enables one to precisely model the position-specific response model in

large-volume CdZnTe detectors, there is considerable room for improvement with re-

gards to energy resolution. This criticism may seem overly disparaging considering

the profound improvement in achievable energy resolution from the early inception of

CdZnTe as a radiation detector to the recent work by Streicher et al. [22], but sys-

tematic error still pervades the estimation of gamma-ray energy deposition. Modern

energy reconstruction techniques for position-sensitive CdZnTe detectors rely heav-

ily on physics-based models. Even with the extensive work performed by groups

from Brookhaven Radiation Detector Research and Development and this author’s

own affiliation, the Orion Radiation Measurement Group, there are limits to the

understanding of complex charge transport processes in position-sensitive CdZnTe

detectors. These limits prevent CdZnTe detector technology from achieving energy

resolution predicted by semiconductor detector theory.

This work takes a fundamentally different approach to energy reconstruction that

reduces the reliance on physics-based models. Instead, the methods presented in

this work attempt to leverage signatures in digitized signals generated by CdZnTe

detection events in hopes of estimating gamma-ray energy deposition more precisely.

The method of choice makes judicious use of principal component analysis (PCA) to

identify and quantify these signatures. It is not the intent of this author to completely
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detach physical meaning from the energy reconstruction process. Ideally, one should

be able to interpret the physical mechanisms represented by the products of the

analysis. For this reason, PCA is chosen over alternative means of statistical analysis.

The proposed methods make practical use of PCA to construct predictive mod-

els for estimating energy deposition. It is applied towards a comprehensive set of

gamma-ray event categories observed in pixelated CdZnTe detectors with the intent

of mitigating systematic error that is otherwise neglected by conventional techniques.

The PCA methodology is designed with the intent of providing a practical alterna-

tive to reconstruction methods suited for nuclear safeguards. This implies that the

calibration process should not require excessive amounts of time and the algorithms

used in the implementation of the PCA methodology should not be computationally

intensive so that it becomes burdensome for field applications.

To properly contextualize this work, Chapter II provides a thorough description

of the detection system used in these studies. It includes an overview of the CdZnTe

detector technology, the underlying theory necessary to perform event reconstruc-

tion, and the conventional techniques developed by the Orion Radiation Measurement

group to estimate gamma-ray interaction parameters. After the conceptual founda-

tion for CdZnTe detector technology is established, the theory of PCA is provided

in Chapter III. It emphasizes the application of PCA towards signals produced by

CdZnTe devices, and it details the process by which physical processes are interpreted

from the products of the analysis.

The construction of predictive models for energy reconstruction are further elab-

orated and demonstrated for the relatively simple single-pixel events in Chapter IV.

Given the lack of complexity for single-pixel events, the content in Chapter IV serves

as an effective tutorial for the data processing tasks, algorithms and practical consid-

erations before advancing to more complex topics. Chapters V and VI elaborate the

adaptations necessary to apply the PCA methodology towards multiple-pixel events
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and high-energy events, respectively. They describe the unique challenges for these

event categories and detail the steps taken to specifically address these concerns.

Chapter VII concludes this work and proposes ways in which the PCA methodology

could be further refined to address additional areas of the event reconstruction process

for optimal performance.
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CHAPTER II

Overview of Detection and Data Acquisition

Systems

The overwhelming majority of the work described in this thesis was implemented

and designed for use with pixelated CdZnTe detectors and the associated readout

technology. These systems provide many of the ideal characteristics for gamma-ray

spectrometers discussed in Section 1.2, and the underlying technology to support these

systems has matured significantly over the past twenty years. A description of the

components of the CdZnTe detector systems and data processing algorithms detailed

in this chapter provide context for the work performed in subsequent chapters.

2.1 Characteristics of Cadmium Zinc Telluride Detectors

The detection material forms the foundation for gamma-ray spectrometers. It

is responsible for converting neutral gamma-rays to a form of energy that can be

readily sensed and quantified by readout technology. This conversion can be accom-

plished by many forms of gamma-ray interactions with matter; those most pertinent

to gamma-ray spectroscopy are photoelectric absorption, Compton scattering and

pair production.

CdZnTe belongs to a family of detection media formed by semiconductor materi-
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als. It exists in the form Cd1−xZnxTe, where x is a stoichiometric value between 0.04

and 0.2. Such materials are widely considered the preeminent choice for gamma-ray

spectroscopy due in part to their ability to convert gamma-ray energy to quantifi-

able signals in the form of electron-hole pairs with a high degree of efficiency. The

resulting statistical uncertainty in the amplitude of the signals generated by a gamma-

ray interaction is lower than that of other forms of gamma-ray detection media like

scintillators or gaseous detectors [32].

While semiconductor detectors benefit from the efficient conversion to electron-

hole pairs, the band structure of these materials must not be too permissive. Other-

wise, electron-hole pairs may be generated by an electron’s inherent thermal energy.

The signal generated by thermally excited electrons contributes to the underlying

leakage current, and this form of noise hinders the ability to precisely measure the

amplitude of the signal generated by a radiation interaction.

The degree to which a material prevents thermal excitation is inferred from the

bandgap energy. Olego reported that CdZnTe can obtain a bandgap energy between

1.53 and 1.64 eV [33]. To put these values in context, insulating materials with

negligible thermal excitation have bandgap energies in excess of 5 eV [4], and HPGe

has a bandgap energy of 0.746 at 77 K [34].

HPGe detectors currently provide the best gamma-ray energy resolution. For

gamma rays with an incident energy of 661.7 keV - an energy at which energy reso-

lution is commonly measured and cited for semiconductor detectors - the achievable

energy resolution is 0.13% full width at half maximum (FWHM) [35]. Granted,

HPGe detectors must be operated at temperatures as low as 77 K to achieve high-

performance energy resolution. During room-temperature operation, HPGe leakage

current becomes excessive and severely degrades performance. CdZnTe detectors,

however, achieve near-peak performance at room-temperature, as the bandgap en-

ergy remains sufficiently high to prevent excessive leakage current [36].
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For the purposes of spectroscopy, semiconductor materials ideally have high charge

carrier mobilities. In this context, the scalar mobility, µ, describes a signal carrier’s

drift velocity, v, in response to an electric field, E (Equation 2.1).

v = µE (2.1)

As explained in more detail in Section 2.2, the movement of carriers generates the

signal from which energy deposition is estimated. Carriers drifting in materials with

low mobility are more susceptible to trapping and recombination, two mechanisms

by which signal carriers are stopped. The resulting reduction in the signal amplitude

degrades estimates of the energy deposition even further.

The superior carrier mobility in HPGe, 3.6× 104 and 4.2× 104 cm2

V−s for electrons

and holes, respectively, are significant reasons as to why HPGe is widely touted as the

gold standard for gamma-ray spectroscopy [34]. The same attributes for CdZnTe are

far lower; the electron and hole mobility measured for Cd0.8Zn0.2Te are 1350 and 120

cm2

V−s , respectively [37]. The hole mobility is low in absolute terms and relative to the

electron mobility. For this reason, CdZnTe detectors are considered single polarity

charge sensing devices.

Due in part to the low mobility values in CdZnTe, detectors are predominantly

fabricated in two configurations whose performance is not sensitive to the poor mobil-

ity: thin, planar devices and/or pixelated detectors of varying thickness. The latter

devices are position-sensitive. While this does not mitigate the trapping of hole carri-

ers, it allows one to compensate for it with detailed system response functions. This

process is described in more detail in Sections 2.4.1 and 2.4.2.

The detectors used in this work are 20×20×15 mm3, featuring an 11×11 array of

pixelated anodes with a single planar cathode (Figure 2.1). The pitch between anodes
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pixels is a relatively large 1.72 mm, which suits the detectors well for detecting and

localizing gamma-ray interactions within a wide dynamic range between 20 keV to

several MeV. While there are several vendors that can accommodate this design, those

grown and fabricated by Redlen Technologies are used predominantly in this work

[38].

Figure 2.1: Two 20× 20× 15 mm3 Redlen detectors directly coupled to ASICs.

2.2 The Shockley-Ramo Theorem

The means by which detector electrodes sense signal carriers are modeled by the

Shockley-Ramo theorem. This theorem describes how deposited energy translates to

a measurable signal. The eponymous theorem was originally developed separately by

Shockley [39] and Ramo [40] in 1938 and 1939, respectively, to model the induced

current on conductors produced by electrons moving in vacuum. The implication

of this theorem for semiconductor detectors was later published by He in 2001 [29].

Theorem II.1 reproduces the results most pertinent to the work in this thesis.

Theorem II.1 (Shockley-Ramo Theorem). The charge induced, Q, on an electrode

by a signal carrier with charge q corresponds to the following relationship
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Q = −q∆φ0 (x) (2.2)

The weighting potential, φ0 (x), is only a function of the geometry of the electrodes

within a device. For devices in which there are several electrodes, the charge induced

on one electrode is independent of all other electrodes.

The proof of the Theorem II.1 depends on the following lemma.

Lemma II.2. During a time span between t0 and tf , the change in energy stored

within the electric field is independent of the electric field imposed by the capacitance

of the electrodes, E0. It is only a function of the electric fields created by the space

charge, Eρ, and the moving charge, Eq. Let E1 = Eρ + Eq.

1

2
ε

∫
D

[E0 (tf ) + E1 (tf )]
2 − [E0 (t0) + E1 (t0)]

2 dV

=
1

2
ε

∫
D

E1 (tf ) ·E1 (tf )−E1 (t0) ·E1 (t0) dV (2.3)

Consider a semiconductor device D with N electrodes held at potential Vi for

i ∈ {1, 2, ..., N} and relative permittivity ε. At a time t0, a charge carrier is generated,

and it begins to drift under the influence of electrical bias. In this system, there are

three components of the electric field: the electric field generated by the capacitance

of electrodes (E0), residual space charge within device D (Eρ) and the field imposed

by the moving charge (Eq). As a matter of convenience, E1 is the summation of the

latter two electric fields, Eρ and Eq. It is equivalent to the electric field in D when

all electrodes are held at ground by the power supplies.

Each component of the electric field is superimposed to form the cumulative elec-
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tric field, E. While charge moves in the time segment [t0, tf ], the energy stored in the

electric field changes according to Equation 2.5.

∆UE =
1

2
ε

∫
D

E (tf )
2 − E (t0)

2 dV (2.4)

=
1

2
ε

∫
D

(E0 (tf ) + E1 (tf ))
2 − (E0 (t0) + E1 (t0))

2 dV (2.5)

The electric field E0 is sensitive only to the geometry of the electrodes and the

potentials at which they are held; it is independent of the moving charge and space

charge. As a result, E0 does not change in the time frame [t0, tf ].

1

2
ε

∫
D

(E0 + E1 (tf ))
2 − (E0 + E1 (t0))

2 dV

=
1

2
ε

∫
D

2E0 · E1 (tf ) + E1 (tf ) · E1 (tf )− 2E0 · E1 (t0)− E1 (t0) · E1 (t0) dV (2.6)

This equation can be simplified further by evoking the relationship between po-

tential and the electric field in Equations 2.7 and 2.8 and Green’s first identity, which

relates the flux through the surface of an electrode, Si, to the volume integral of the

divergence in Equation 2.9 [41].

E0 = −∇φ0 (2.7)

E1 = −∇φ1 (2.8)∫
D

φ1∇2φ0 +∇φ1∇φ0dV =

∮
∂D

φ1∇φ0 · dSi (2.9)

From the boundary conditions of device D, the Laplacian of the potential field
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generated by electrode capacitance must be 0. Furthermore, the electrodes are effec-

tively grounded when only E1 is present; the potential φ1 evaluated on the surface of

the electrodes for such a configuration is 0. These conditions yield the simplification

of Equation 2.9 and confirm Lemma II.2.

∫
D

E0 · E1dV =

∫
D

∇φ1∇φ0dV = 0 (2.10)

1

2
ε

∫
D

[E0 (tf ) + E1 (tf )]
2 − [E0 (t0) + E1 (t0)]

2 dV

=
1

2
ε

∫
D

E1 (tf ) · E1 (tf )− E1 (t0) · E1 (t0) dV (2.11)

Lemma II.3. Let Vi represent the potential on the ith electrode that occupies space

on the surface of device D. During [t0, tf ], the work exerted by the power supplies and

the work performed by the electric field E0 + E1 on the moving charge q is equal to

the change in energy stored within the electric field of device D.

N∑
i

Vi∆Qi −
tf∫
t0

q (E0 + E1) · vdt =
1

2
ε

∫
D

E1 (tf ) ·E1 (tf )−E1 (t0) ·E1 (t0) dV

(2.12)

In this system, two additional forms of electrical work are performed: work per-

formed by electrical power supply and the work performed on the moving charge.

During device operation, all electrodes are held at constant potential by the power

supply. For electrode i, electrical potential of the form USi
= QiVi is present. As

the charge carrier induces charge on the electrode, the potential energy of electrode i
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must change accordingly. The power supply performs work on the electrode to keep

it at constant potential.

∆USi
= ∆ViQi + Vi∆Qi = Vi∆Qi (2.13)

Work is also performed to move the charge carrier from a higher potential energy

to a lower potential energy. The movement of the charge with scalar charge q is

influenced by both the static electric field E0 and the time-dependent components of

the electric field (E1). Equation 2.14 provides the corresponding model for electrical

work for charge moving with velocity v.

∆Uq =

tf∫
t0

q (E0 + E1) vdt (2.14)

According to the conservation of energy, the summation of Equations 2.11, 2.13

and 2.14 yield Lemma II.3.

Lemma II.4. Under conditions in which the electrodes of D are held at ground, there

is no transfer of energy from the power supply to the moving charge carrier. By the

conservation of energy, the change in energy stored in electric field E1 must result

from interactions with the moving charge.

tf∫
t0

qE1 · vdt =
1

2
ε

∫
D

E1 (tf ) ·E1 (tf )−E1 (t0) ·E1 (t0) dV (2.15)

Combining the results of Lemmas II.3 and II.4, Equation 2.17 is obtained. Note

that the conventional notation for Theorem II.1 does not include the potential on
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electrode i, Vi. Instead, weighting potential, φ (x), is normalized by the potential of

the electrode, and it ranges between 0 and 1. Such notation yields the Shockley-Ramo

theorem given by Equation 2.2.

N∑
i

Vi∆Qi =

tf∫
t0

qE0 · vdt =

x(tf)∫
x(t0)

qE0 · dx (2.16)

= −q [φ0 (x (tf ))− φ0 (x (t0))] (2.17)

For the Redlen CdZnTe detectors described in Section 2.1, bias is applied to the

planar cathode surface while the anode pixels remain at a potential near ground.

Applied bias on the cathode is set near 1 kV for every 5 mm of detector thickness to

optimize charge drift properties and leakage current. This forms a constant electric

field as a function of depth under ideal circumstances. This is represented by Equation

2.18 in which the C is a constant.

−dφ
dz

= E (z) = C (2.18)

Due to the planar geometry, the weighting potential for the cathode may be ob-

tained from Equation 2.19 by integrating with respect to the depth, z, and applying

boundary conditions 2.20 and 2.21. The solution to Equation 2.19 is featured graph-

ically in Figure 2.2. Recall that the mobility of holes in CdZnTe are insignificant

compared to the mobility of electrons. This entails that for fixed energy deposition,

the induced cathode signal provides a depth-dependent response.
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φCathode (z) = −Cz +D (2.19)

φCathode (z = Cathode) = 1 (2.20)

φCathode (z = Anode) = 0 (2.21)

Consider the two hypothetical gamma-ray interactions occurring at depths z1 and

z2 in Figure 2.2. The electrons produced by these interactions drift from the initial

depth of interaction towards the anode, at which point the cathode weighting potential

has a value of 0. The starting cathode weighting potential is determined entirely by

the depth of interaction. As shown in Figure 2.2, the resulting change in weighting

potential is linearly proportional to the depth of interaction.

Figure 2.2: Cathode weighting potential as a function of the depth of interaction
and the corresponding change in weighting potential for two hypothetical
interactions.

Unlike the cathode, the individual anodes occupy only a small fraction of the

opposing surface of the pixelated CdZnTe detector. If the anodes were replaced by
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a single plane, the solution for its weighting potential would be equal to the linear

general solution in Equation 2.19, albeit with boundary conditions 2.22 and 2.23.

φAnode (z = Cathode) = 0 (2.22)

φAnode (z = Anode) = 1 (2.23)

Denote the weighting potential solution for a planar anode by φPlanar (z) and the

solution for its constituent pixels by φi (z) for i ∈ 1, 2, ..., N . The pixels bound to

the anode surface are collectively equivalent to a planar electrode and operate under

conditions 2.24, 2.25 and 2.26.

φPlanar (z) =
N∑
i

φi (z) (2.24)

φPlanar (z) ≥ φi (z) (2.25)

φi (z = Anode) =


1, if pixel i is collecting

0, otherwise

(2.26)

These conditions do not imply that the weighting potential φi (z) must also be lin-

ear in depth; only the collective anode is bound to the solution in Equation 2.19. Due

to the exceedingly more intricate geometry for pixelated detectors, the solution for the

weighting potential is more difficult to derive. Eskin, Barrett, & Barber proposed an-

alytical solutions for the induced signal on segmented electrodes of position-sensitive

semiconductor detectors [42], and numerical methods provide alternative means of

modeling the weighting potential. For the purposes of this work, the 3-D weighting

potential was approximated via commercially-available Ansys Maxwell software.
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Figure 2.3 displays the numerical solution for a collecting pixel weighting potential.

Near the cathode surface (z = 0 mm according to Figure 2.3), all anode pixels are at

an initial weighting potential of 0. As the charge carrier begins its drift towards the

anode, the charge is effectively equidistant from all anode pixels. Thus the weighting

potential is nearly equally divided among all anode pixels. As the charge nears the

collecting pixel, the weighting potential becomes concentrated on the collecting pixel

due its proximity to the charge. This accounts for the rapid rise in weighting potential

for the collecting pixel in Figure 2.3.

Figure 2.3: Collecting pixel weighting potential as a function of depth (right) for the
highlighted region in the virtual detector volume (left).

Figure 2.4 provides a 2-D distribution of the weighting potential for a slice of the

detector volume that stretches from the cathode surface to the anode surface. Charge

carriers follow a path starting at the red dot and ending at the green dot. Consistent

with Figure 2.3, the central pixel collects the drifting charge, which is reflected by the

rapid rise in weighting potential near the point of charge collection. The remaining,

non-collecting pixels remain near 0 weighting potential throughout the charge carrier

drift.
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Figure 2.4: Weighting potential as a function of position for a slice in the middle of
the pixelated detector when charge carriers drift from the red to green
dots (right) and the corresponding detector slice in the detector (left).
The weighting potential profile in the x − z plane corresponds to the
solid, blue portion of the detector in the left pane.

2.3 Data Acquisition

Once gamma rays are generated in the detection medium, the resulting signals

must be sensed, measured and recorded. The components that perform these tasks

constitute the front-end and readout electronics. The former are responsible for

recording the induced charge on the collecting anode(s), and the latter digitize and

package event data for subsequent analysis.

This section does not focus on the development of the hardware, firmware and soft-

ware that make data acquisition possible; these designs were thoroughly established

and discussed in the theses by Zhu [43], Yang [44] and Streicher [45]. Rather, the in-

tent is to introduce the core subsystems of the data acquisition system to understand

the sources of measurement noise.

As charge is induced on any given electrode, the resulting current is integrated and

amplified via front-end electronics. As displayed in Figure 2.5 in its distilled form, the

front-end electronics associated with the CdZnTe detector system used for this work

consist of a charge-sensitive amplifier and its feedback circuit. Some of the induced

charge is distributed over the sensor capacitance, CD, and the rest is distributed over
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the implicit input capacitance to the operational amplifier. With the capacitor in the

feedback circuit, Cf , and sufficiently high amplifier gain, the voltage gain per unit

input charge is effectively 1
Cf

. For applications in which the signal must decay rapidly,

a resistive component may be placed in parallel with the feedback capacitor.

Figure 2.5: Diagram of a basic charge-sensitive amplifier used for amplifying the in-
duced charge on an electrode.

In realistic systems, the integration time response is not instantaneous, and the

voltage output is convolved with the responses of the sensor and amplifier. These

components for each pixel are embedded in the application-specific integrated cir-

cuit (ASIC) dedicated to a detector. The noise of the amplifier output has several

sources. There is inherent statistical noise in the voltage source that originates from

the variable amount of charge carriers generated by the seminal gamma-ray inter-

action. One must also consider the shot and thermal noise inherent to the sensor

and front-end circuitry. Unless the front-end and sensor system preserve phase, these

sources combine in quadrature as they are statistically independent.

The voltage output of the amplifier circuits is sampled and stored in the ASIC

capacitor bank where each waveform awaits digitization by a 14-bit analog-to-digital

converter (ADC). The ADC resolution is chosen in such a way that the digitization
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noise is less than that of the analog input. According to Spieler, the digitization noise

for an n-bit ADC with dynamic range V is modeled by Equation 2.27 [32].

σ2
v =

2−2nV 2

12
(2.27)

Depending on the detector system configuration, the ADC digitizes the signals

(colloquially referred to as ‘waveforms’) from between 1 and 3 ASIC modules in

serial. Due to this communication bottleneck, the dead time between acquired events

correlates strongly with the number of waveforms digitized as demonstrated in Figure

2.6.

Figure 2.6: Measured data acquisition dead time as function of the number of digi-
tized waveforms per event for two modes of operation.

To mitigate this bottleneck, only samples that are deemed pertinent to the analysis

of the event are digitized in sparse mode operation. Under this mode of operation,

only the triggering pixel(s) and pixels adjacent to a triggering pixel are digitized. This

limits system dead time otherwise consumed by pixels with no appreciable signal.

Sparse mode includes the two variants featured in Figure 2.6, and a “trigger +4”

option is also available.
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For the purposes of the methods presented in Chapter IV, trigger +4 is the default

setting. The digitized output for a generic single-pixel event are demonstrated in

Figure 2.7. This includes the waveform for the collecting anode pixel, the cathode

signal and the signals from the four adjacent neighbor pixels. The sample in Figure

2.7 is representative of the expected system behavior; the cathode signal is far more

receptive to interference due to its greater surface area. For this reason, system

readout is triggered by anode pixel signals to minimize false triggers.

Figure 2.7: Digitized signals for a generic single-pixel event under trigger +4 mode.

2.4 Event Reconstruction

Event reconstruction entails the methods and algorithms designed to estimate

the latent event variables - gamma-ray energy deposition and position of interaction

- from observed signals. The foundational work for these methods was developed

by Zhang [46] and Kaye [47]. While progress has been made in the development of

event reconstruction methods since these publications, they derive heavily from the

contributions from these researchers. This section provides a concise account of the

conventional methods that precede the development of event reconstruction methods

detailed in subsequent chapters.

While the position of a gamma-ray interaction is implicitly treated as a point esti-

mate, it more closely approximates the center of mass of all charge carriers generated
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by a single interaction. For the purposes of this work, the reconstructed position

is treated as the location at which the gamma-ray interact, although this assump-

tion is not entirely accurate. At increasingly higher gamma-ray energy, the scattered

gamma ray transfers considerable energy to the recoil electron of a Compton scatter-

ing interaction [48]. Such an interaction may have displacement between the position

of interaction and the point at which charge carriers are generated on the order of

millimeters.

2.4.1 Depth of Interaction and Energy Reconstruction

As discussed in Section 2.2, the amplitude of induced signals on the cathode and -

to a lesser extent - the pixelated anodes vary as a function of the depth of interaction.

For this reason, depth and energy reconstruction are tightly coupled. The cathode

signal amplitude is a function of both energy deposition and the depth of interaction.

If only the cathode signal amplitude is observed, one obtains an underdetermined

system of equations. The cathode signal alone does not provide sufficient information

to estimate the depth of interaction. Due to the pixelated detector geometry and

the resulting anode weighting potential (Figure 2.3), the anode signal amplitude is

relatively insensitive to changes in the depth of interaction. It may be used as a

normalization constant for the cathode signal amplitude to uniquely determine the

depth of interaction.

This method for depth sensing in single-polarity semiconductor devices was first

demonstrated by He et al. [49], and it became known as the cathode-to-anode ampli-

tude ratio (CAR) technique. This is explicitly modeled in Equation 2.28; a cathode-

side interaction tends closer to a CAR value of 1, while the CAR of an anode-side

interaction evaluates closer to 0.

CAR =
VCathode

VAnode

(2.28)
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In practice, the anode amplitude is not entirely independent of the depth of in-

teraction, but the CAR profile it produces is monotonically increasing in depth from

the anode as demonstrated in Figure 2.8. The observed CAR adheres to the expected

linear relationship at high depths from the anode, but it deviates from this linear

behavior insignificantly near the anode surface.

Figure 2.8: 137Cs photopeak amplitude for an anode pixel as function of depth from
the anode (top) and the corresponding CAR as a function of depth.

Despite the constant, known incident gamma-ray energy, the amplitude for a

generic anode pixel in Figure 2.8 varies as a function of depth. To compensate for

changes in depth, energy is estimated by multiplying the observed anode amplitude,

Vn, for pixel n by a depth-specific correction factor (Equation 2.29). This correction

factor is determined empirically for each channel and discrete depth bin.

E = f (n, z)Vn (2.29)

The empirical model for the correction factor is advantageous compared to ana-
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lytical models that are vulnerable to systematic error (bad regression fit) and model

complexity due to numerous free parameters (better fit, but susceptible to overfit-

ting). The only free parameter for the adopted, discrete model is the number of

virtual depth bins. The default value is based on a very conservative estimate of the

depth reconstruction uncertainty. To estimate depth in continuous space, depth is

generally determined by linear interpolation.

As demonstrated in Figure 2.9, depth correction provides demonstrable improve-

ment in energy resolution compared to the raw amplitude spectrum. The energy res-

olution improves from 0.81% to 0.34% FWHM, and the peak-to-Compton continuum

amplitude ratio increases threefold. However, depth corrections do not completely

mitigate the low-energy tail apparent in the photopeak of both spectra, which is at-

tributed to the loss of charge carriers to the gap between anode pixels [50]. Depth

corrections alone do not adequately address this mechanism; the centroids of the em-

pirical data that comprise the depth-specific corrections are relatively insensitive to

the effect of the outliers in the low-energy tail.

Figure 2.9: Energy spectrum obtained before (top) and after (bottom) applying depth
corrections to data collected from a 137Cs exposure.

The CAR provides a robust method for estimating the depth of interaction, but its
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application is limited to single-pixel interactions. When there are multiple, distinct

interactions observed in the same event, the cathode amplitude is the superposition of

the signals induced by multiple clusters of charge carriers. Such events rely on a proxy

for the electron drift time, which can be inferred from the difference in triggering times

between the cathode and triggering anode signals as demonstrated in Figure 2.10. In

practice, waveforms are first filtered using a CR-RCn filter before determining the

trigger time, but the same principle remains.

The anode-side interaction in the top partition reflects the relatively short time

elapsed between anode and cathode triggers, which are approximated by the ver-

tical, dotted lines. The digitized signals for a cathode-side interaction are juxta-

posed in the bottom partition, and the time between signal triggers is demonstrably

longer. In practice, the depth of interaction is a solution to the inverse problem

z = f−1 (drift time), and it provides approximately equal precision in depth estima-

tion as CAR for 662 keV single-pixel events according to Kaye [47].

2.4.2 Lateral Position Reconstruction

The known location of the triggering pixel provides an estimate of the lateral

position of interaction. The coarse precision is limited by the 1.72 mm pitch between

adjacent anode pixels, but Zhu introduced a method to achieve more precise estimates

of the lateral position using the induced signals on neighboring pixels [43]. Although

the final weighting potential for an adjacent, non-collecting neighbor pixel should be

0, the induced transient signal has appreciable amplitude at its peak.

The principle behind subpixel position sensitivity depends on the relative neighbor

signal amplitude for opposing neighbors. Consider the sample waveforms featured in

Figure 2.11. The center, triggering pixel contains two waveforms: one in which the

interaction occurs near the left pixel boundary and one in which the interaction occurs

near the right pixel boundary. While the triggering pixel waveforms are nearly iden-
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Figure 2.10: Generic waveforms for a single-pixel, 662 keV event and the associated
drift times for an anode-side interaction (top) and a cathode-side inter-
action (bottom).

tical, the sampled signals from adjacent pixels distinguish the interactions far more

effectively. The adjacent pixel signals record a high amplitude when the triggering

pixel interaction nears the boundary shared between the two pixels.

This feature can be exploited to estimate the lateral position to greater precision

than the coarse estimate provided by the triggering pixel location. Equations 2.30

and 2.31 provide the primary metrics used for estimating subpixel x and y values,

respectively. The value Si indicates the maximum signal amplitude for pixel i, and

the function f relates the observed ratios Rx and Ry to the physical x and y locations,

respectively.
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Figure 2.11: Array of pixels (triggering pixel in the center surrounded by cardinal
neighbors) and the signals induced for interactions in which the position
is near the left and right pixel boundaries.

x = f (Rx) = f

(
SRight − SLeft

SRight + SLeft

)
(2.30)

y = f (Ry) = f

(
STop − SBottom

STop + SBottom

)
(2.31)

With this approach, Zhu & Anderson measured a position uncertainty of 230

µm at 662 keV with detectors similar to those used in this work [51]. Due to this

method’s dependence on the signal amplitude from neighboring pixels, the uncertainty

has positive correlation to noise in the amplitude estimate. This most severely affects

interactions with a low energy deposition where the fixed electronic noise of the system

is a more significant portion of the total induced amplitude.
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2.4.3 Reconstruction of Multiple-Pixel Events

As the name suggests, multiple-pixel events consist of events in which more than

one pixel triggers. This may be the result of a single interaction whose charge car-

riers occupy space over multiple adjacent pixels, or it may refer to events in which

multiple interactions belonging to the same parent gamma-ray deposit energy in two

or more pixels. While these two causes of multiple-pixel events are very different, the

reconstruction methods share many features in common.

Unlike single-pixel events, the signal induced on an electrode is not solely at-

tributed to a single cluster of charge carriers, but rather the induced signal con-

sists of the time-varying contributions from multiple clusters of charge carriers. De-

pending on the distance between anode pixels, the resulting weighting potential

crosstalk (WPCT) may alter the affected waveform and invalidate the underlying

assumptions of the event reconstruction methods. As a prime example, CAR no

longer applies to depth reconstruction because the cathode signal has an unknown

contribution from all interactions.

The underlying cause for WPCT can be visualized through examination of the

weighting potential of pixels adjacent to the collecting pixel. Consider a charge carrier

that drifts from the cathode surface and is collected by the central anode pixel. Figure

2.12 displays the corresponding weighting potential for various anode pixels. Before

collection on the center pixel, the charge induces a transient signal on all pixels in

close proximity.

Consequently, the effects of WPCT are most pronounced for side-neighbor events

as demonstrated in Figure 2.13. The top partition displays the anode and cathode

signal waveforms for an event in which two triggering anode pixels are well-separated

in the lateral dimension. Given this significant distance, WPCT is negligible, and

there is no apparent distortion of the collecting anode waveforms. Now consider the

side-neighbor, two-pixel event in the lower pane. The influence of WPCT from the
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Figure 2.12: Weighting potential profile for an event in which a charge carrier is
collected by the center pixel.

pixel with the large signal amplitude distorts the transient signal rise of the second

anode waveform demonstrably.

Figure 2.13: Anode and cathode signal waveforms for a two-pixel event with non-
neighboring triggered pixels (top) and neighboring triggered pixels (bot-
tom).

The presence of WPCT introduces systematic error into depth and energy recon-
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struction methods that are otherwise reliable for single-pixel events. Anode wave-

forms altered by WPCT have a propensity to trigger earlier, and the reconstructed

energy deposition tends to register lower than the actual energy deposition. Figure

2.14 demonstrates the systematic error in the reconstructed energy deposition for

two-pixel events. As the separation between interactions decreases, the photopeak

centroid decreases monotonically.

Figure 2.14: Photopeak centroid of two-pixel events at various degrees of separation
between triggering pixels for a 137Cs exposure.

The WPCT correction introduced by Zhang [46] mitigates the systematic error in

the reconstructed energy. Much like the depth-correction model, the WPCT energy

correction models the change in energy using a discrete model (Equation 2.32). The

correction f
(

∆z,
√

∆x2 + ∆y2
)

is determined empirically from data in the calibra-

tion measurement, and it is multiplied by the induced signal amplitude on the two

triggering pixels, V1 and V2. Such measures improve multiple-pixel energy resolution

by orders of 0.1%.
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E = f
(

∆z,
√

∆x2 + ∆y2
)

(V1 + V2) (2.32)

While the correction described in Equation 2.32 targets the systematic error at-

tributed to spatial separation, WPCT also varies with the difference in signal ampli-

tudes. The difference in amplitude is conventionally measured by the energy ratio,

defined as the normalized difference in energy (Equation 2.33). This metric ranges

between 0 (nearly equal signal amplitudes) and 1 (nearly all of the total signal am-

plitude attributed to one pixel).

RE =
|E1 − E2|
E1 + E2

(2.33)

To understand this effect, consider the trend between combined energy and energy

ratio for side-neighbor, two-pixel events in Figure 2.15. The events in question are

those with similar depth separation and lateral separation to isolate the effects of

energy ratio. Based on the Spearman correlation - a non-parametric measure of

correlation - there is considerable positive correlation between two-pixel event energy

and energy ratio.

Although the degree of WPCT varies significantly in three dimensions - depth

separation, lateral separation and energy ratio - the WPCT correction is convention-

ally modeled as a function of only the depth and lateral separations due to the curse

of dimensionality. The density of empirical, two-pixel event data used for finding

WPCT corrections are highly concentrated in regions of low depth and lateral sepa-

ration, whereas the data appear quite sparse for events separated by several depths

and pixels. Therefore, the data in these large separation regions cannot be further

divided without producing corrections with considerable statistical uncertainty.
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Figure 2.15: Two-pixel, side-neighbor event energy as a function of the energy ratio.

2.4.4 Reconstruction by System Response Function

The methods presented up to this section are a product of legacy methods devel-

oped during a time in which analog front-end electronics were predominantly used.

For each detection event, an analog ASIC provided only two values of interest per

pixel: the amplitude of the induced signal and a proxy for the electron drift time [52].

The reconstruction methods developed in this time reflect the most efficient use of

the meager data acquired from front-end electronics.

With the advent of digital front-end electronics, far more information can be

extracted from each event. Rather than relying blindly on the shaper output of

the analog front-end, one can preserve the entire digitized signal and use adaptive

approaches to greater effect. Upon the introduction of the digital front-end electronics

and the associated UM VAD readout system, early approaches focused heavily on the

application of digital filtering.

Among the filters adapted to digitized waveforms of pixelated CdZnTe detectors,

optimal energy resolution was obtained using trapezoidal filtering, which borrows
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from the work of Jordanov & Knoll [53]. As demonstrated in Figure 2.16, the high

frequency noise in raw waveforms is attenuated after the trapezoidal filter is applied

to the raw waveforms. The amplitude of the respective signal is measured by the

maximum amplitude of the filtered signal.

Figure 2.16: Raw and filtered waveforms for a generic single-pixel event.

The signal amplitudes and trigger times obtained by digitally filtered waveforms

replaced the estimates previously acquired by analog front-end electronics. Despite

the additional information provided by digitized waveforms, the procedures discussed

in Sections 2.4.1, 2.4.2, and 2.4.3 were still practiced to perform event reconstruction.

Zhu proposed a method to make more judicious use of the full digitized wave-

forms by implementing a template-matching scheme designed to estimate the depth

and energy deposition of gamma-ray interactions [43]. From the photopeak events

extracted from 137Cs calibration measurements, system response functions (SRF) are

formed for each channel and virtual depth bin as demonstrated in Figure 2.17. The

SRF captures essential information - including the slope and signal amplitudes of the

electrode waveforms - for determining depth of interaction and energy deposition.

The latent quantities - depth and energy deposition - of all subsequent single-

pixel and multiple-pixel events are thereby estimated by determining which SRF the
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Figure 2.17: SRF for a generic anode channel (top) and the corresponding cathode
SRF (bottom).

waveforms most resemble. This inverse problem is modeled symbolically by Equation

2.34 in which the variables x, y and f represent the latent variables, the observa-

tions (waveforms) and the function that maps the two quantities, respectively. Given

that the function is generally nonlinear, the Levenberg-Marquardt algorithm (LMA)

provides an effective way to determine which latent quantities produced the observed

waveforms [54, 55].

x = f−1 (y) (2.34)

The LMA iteratively determines a solution that minimizes the objective function

in Equation 2.35. The quantity
∑

i (yi − f (x, i))2 represents the sum of squares where

yi and f (x, i) are the observed amplitude and the predicted amplitude at waveform

index i.
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x = arg min
x

∑
i

(yi − f (x, i))2 (2.35)

For each iteration, the latent variables are incremented by a quantity ∆x. A Taylor

expansion of the function evaluated at x + ∆x approximates the update schema for

each iteration (Equation 2.36). The function Jacobian, J, measures the gradient at

x and provides direction to the optimal solution in the latent variable space. The

optimal value of ∆x for the unregularized sum of squares is given by Equation 2.37.

f (x + ∆x) ≈ f (x) + J∆x (2.36)

∆x =
(
JTJ

)−1
(y− f (x)) (2.37)

The numerical linear algebra procedure for finding this optimal value requires at

least 3n floating point operations for each iteration, where n represents the summed

length of all waveforms. Based on empirical observations of this scheme, between

ten and twenty iterations are required to find a local minimum for each event. For

this reason, reconstruction by SRF is relatively computationally intensive, and this

reconstruction may struggle to provide real-time processing in high count rate en-

vironments. This problem is compounded further when 3 and 4-pixel events are

reconstructed, as n increases linearly with the number of waveforms included in the

inverse problem.

The single-pixel event depth estimated by SRF yields similar results compared to

the more conventional CAR, albeit with varying consistency as a function of energy

deposition as demonstrated in Figure 2.18. The variance in the differential depth,

which is defined as the CAR estimate less the SRF estimate, appears quite small

when gamma-ray interactions deposit a large amount of energy, but the variance

monotonically increases as the energy deposition decreases. The distributions of low
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energy ranges skews towards positive values and indicates that the CAR estimates

produce depths that are systematically higher than that of SRF.

Figure 2.18: Difference in single-pixel event depth estimated by SRF and CAR for
various energy ranges.

Despite the increase in computational complexity, SRF reconstruction pays div-

idends in energy resolution for multiple-pixel events. The SRF is derived from a

single-pixel event devoid of the WPCT that afflicts multiple-pixel events, and it ef-

fectively allows that waveform to be reconstructed in the absence of the distorting

effects of WPCT in the transient regime. It does not completely mitigate the ef-

fect of WPCT, however, as the amplitude is still subject to underestimation. For

this reason, multiple-pixel events still require the WPCT correction described in Sec-

tion 2.4.3. Nevertheless, SRF can achieve significant improvement for multiple-pixel
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events [45].

2.4.5 Subpixel Energy Calibration

SRF reconstruction estimates event properties by matching observed signals to

predetermined templates. These templates correspond to the system responses aver-

aged over a small volume of the detection medium. While this methodology works

well for voxels with little response variation, the template for a voxel with spatial

response variation may be biased for a significant fraction of the interactions in that

voxel.

As discussed in Section 2.4.2, subpixel position sensitivity is achievable. It may

be leveraged to specifically address any systematic error due to nonuniform spatial

response. The subpixel energy calibration methodology closely resembles the basic

procedures presented in Section 2.4.1: each virtual detector volume is assigned a

specific energy conversion factor based on the photopeak event signal amplitude for

events within that detector region. The difference between subpixel energy calibration

and the more traditional approaches are the size of these detector regions. Subpixel

position-sensitivity enables one to partition the detection volume more finely, and it

targets detector regions with small-scale response variation more effectively.

Figure 2.19 demonstrates the utility of subpixel energy calibration, in which the

pixel-specific energy resolution observed at 662 keV is compared between the tradi-

tional and subpixel energy calibrations. The subpixel approach achieves the desired

effect as the energy resolution improves for the majority of the interior anode pixels.

However, it fails to address intrapixel variations in the exterior pixels where the worst

energy resolution is generally observed.

Recall from Equations 2.30 and 2.31 that subpixel position sensitivity relies on

the comparison of the transient signal amplitude induced on the opposing neighbor

pixels. These relationships do not apply to exterior pixels, as they lack the requisite
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Figure 2.19: Single-pixel energy resolution at 662 keV, expressed in FWHM, as a
function of the pixel location for traditional energy calibration (left) and
subpixel energy calibration (right).

number of adjacent pixels. Therefore, subpixel energy calibration is not applicable to

the exterior pixels, which comprise approximately 40% of the detection volume.

Subpixel energy calibrations require lengthy calibration measurements to acquire

a sufficient number of events for each of the finely discretized detector voxels. This

requirement can be burdensome, as typical applications of this technique may require

up to 48 hours of data acquisition for a single detector module. For this reason, its

use is primarily confined to research applications and material characterization.
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CHAPTER III

Principal Component Analysis Methodology

Despite the wealth of information embedded in digitized waveforms, conventional

reconstruction techniques do not fully leverage this information. Reconstructions

based on trapezoidal filtering are primarily concerned with the amplitude of signals

induced on triggering anodes and the cathode; energy deposition and depth of inter-

action are calculated entirely from these parameters. SRF improves this approach

by using all of the information encoded in a triggering waveform to find a suitable

waveform template. It reduces the dimensionality of the observations from an order

of hundreds to less than ten (i.e., signal amplitude and depth of interaction).

While SRF more effectively leverages the information provided by digitized wave-

forms, it is inherently limited by human intuition. It categorizes events according to

a set of attributes specified by a human operator - 3-D position, amplitude - without

consideration of additional sources of response variance. Herein lies the raison d’être

for applications of PCA for CdZnTe detector data.

Like the reconstruction methods that precede it, PCA reduces the dimension of

the high-dimensional waveform data. However, it identifies and quantifies attributes

that distinguish pixelated CdZnTe detector observations in a fundamentally different

way. PCA exploits the statistical properties of the underlying data to find the at-

tributes that account for the most variance between the observed waveforms, and it
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provides a systematic procedure for quantifying these attributes for individual wave-

forms without relying on human intuition to guide its analysis.

The subsequent sections describe the formulation of PCA and demonstrate its

usefulness in the context of analyzing digitized CdZnTe data. The ensuing discussion

of latent variables produced by this analysis provides a critical foundation for concepts

presented in Chapter IV. It does not provide a thorough description of any one

particular algorithm used to perform PCA. Those interested in numerical linear

algebra algorithms suited for this analysis are referred to the works of Trefethen &

Bau [56] and Golub & Van Loan [57].

3.1 Principal Component Analysis Theory

In essence, PCA summarizes data by a new set of characteristics. Like all useful

summaries, the most vital ideas are distilled into a set of information that is more

easily consumed and processed than the original content. In the context of this work,

PCA summarizes the most vital features from a high-dimensional set of observed

waveforms.

PCA achieves dimensionality reduction by finding orthogonal features in data

that account for a large degree of variance between observations. The degree to

which the dimensions of an observation may be reduced depends on the orthogonality

of the dimensions. Orthogonal dimensions of data contain information that cannot

be obtained from any other dimension, and are therefore essential to thoroughly

describing that observation. By contrast, dimensions possessing strong correlations

to another can be accurately estimated by knowing the value of another dimension.

Consider the sampled neighbor pixel waveform for a single-pixel event in Figure

3.1. Each of the 160 samples of a single waveform constitute a dimension of the

data. Ignoring the influence of electronic noise in the samples, the amplitudes in the

baseline and tail regions are roughly constant. With knowledge of the amplitude in
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these regions, the values of the dimensions in the entire region may be inferred with a

high degree of confidence. Therefore, the dimensionality in these regions is relatively

low.

The transient region of the signal, however, has several attributes that have less

correlation with the surrounding samples. Even with knowledge of one of the values in

this region, there is limited capacity for predicting the amplitude of adjacent samples.

Such values depend heavily on the the path of the collected charge carriers. The

amplitudes in this region account for a significant amount of the variance observed

between events, and the dimensions in this region are critical for approximating this

observation in a reduced number of dimensions. Such signal attributes provide useful

information for characterizing the event.

Figure 3.1: Generic neighbor pixel waveform for a single-pixel event.

PCA identifies a linear transformation of the data in which the dimensions are

orthogonal to one another. By this approach, the original high-dimensional data can

be faithfully represented by a relatively small number of dimensions. Of these dimen-

sions in the linear transformation, those that account for a large proportion of the

variance among observations are necessary to properly characterize the observation.

This foundational concept deserves a tangible example to translate abstract de-
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scriptions to a more intuitive understanding of the subject matter. Consider a col-

lection of football players, ranging from the preternatural talents of the sport - those

in the realm of Cruyff or Messi - to those less noteworthy players. These players may

be evaluated in several dimensions (e.g., agility, ball control, speed), but not all of

them significantly distinguish the players from one another. For example, the ability

to maneuver with and command the ball varies drastically among football players,

and it distinguishes those on the fringes of lower tier clubs from legends of the sport.

Some attributes, however, explain very little variance between players. All players

have two functional legs, and it is trivial to evaluate players on this basis.

According to Hotelling’s work on the matter, a linear transformation can be de-

termined by maximizing the variance between observations [58]. Let v represent a

vector that maps the original data, y, to a new projection space. The value in this

space, the principal subspace, is the principal component of y. Given a covariance

matrix, Σ, the variance in this projected space is modeled by Equation 3.1.

Projected Variance = vTΣv =
1

N

∑
i

(
vTyi − vT ȳ

)2
(3.1)

Equation 3.1 must be optimized with a constraint lest the variance tends towards

infinity. From first principles of calculus, this is performed by determining the eigen-

vector at which the derivative with respect to v is constant. Without loss of generality,

normalizing the inner product of vTv to a value of 1 satisfies this constraint, and it

may be enforced by means of a Lagrangian multiplier (Equation 3.2).

0 =
∂

∂v

[
vTΣv + λ

(
1− vTv

)]
(3.2)

0 = 2Σv− 2λv (3.3)

The result in Equation 3.3 implies that the optimized vector v must be an eigen-
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vector of the covariance matrix, and the Lagrangian multiplier forms an eigenvalue.

To further simplify, multiply Equation 3.3 by vT .

vTΣv = vTλv (3.4)

Projected Variance = λ (3.5)

The maximum variance obtained in the principal subspace corresponds to the

maximum eigenvalue of the data covariance matrix. For the specific case of digitized

data from CdZnTe, the length of the observations y corresponds to the number of

samples in the digitized waveforms. As such, the covariance matrix Σ has dimensions

n × n, and there are n eigenvalues of varying magnitude. The decomposition of the

covariance matrix into these n eigenvalues and their corresponding eigenvectors is the

familiar eigendecomposition.

Eigenvectors map the observations to a subspace; the variance in this subspace

is measured by its corresponding eigenvalue. Therefore, the features that distinguish

the observations most effectively (i.e., the features that contribute the most to the

explained variance between observations) are measured by the eigenvalue magnitude.

These eigenvectors are orthogonal. They provide unique information about a single

observation that cannot be obtained from any of the remaining n− 1 eigenvectors.

The mutual orthogonality of eigenvectors results from the symmetric nature of

the covariance matrix [59]. If the corresponding eigenvalues of two eigenvectors are

distinct, λi 6= λj, then the eigenvectors must be orthogonal. Consider the inner

product of eigenvectors vi and vj in Equation 3.6. According to the definition of

an eigenvalue, the quantity λivi is equivalent to ΣTvi. By a similar argument, the

quantity λjvj is equivalent to ΣTvj. The covariance matrix must be symmetric, which

produces the equivalent statement in Equation 3.7.
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λivi · vj = ΣTvi · vj (3.6)

= vi · (Σvj) (3.7)

= vi · (λjvj) (3.8)

= λjvi · vj (3.9)

According to the final equation (Equation 3.9), λivi ·vj and λjvivj are equivalent.

Considering that the initial condition states that the eigenvalues are distinct, the

only way in which equivalence is achieved is if the inner product of the corresponding

eigenvectors evaluates to 0.

The process of decomposing the original waveform data into eigenvectors may be

achieved by singular value decomposition (SVD). Consider a data matrix, A, with

m observations; any m× n matrix can be decomposed according to the relationship

in Equation 3.10 in which matrices U and V are orthogonal matrices, and S is a

diagonal matrix. The matrix U consists of the eigenvectors of the matrix formed

by AAT , while the eigenvectors of the ATA constitute the columns of V as modeled

by Equations 3.11 and 3.12, respectively [59]. Therefore, the diagonal entries of the

m × n matrix S comprise the singular values and, equivalently, the eigenvalues of

ATA. The diagonal matrix S obtains full rank when m ≥ n.

A = USV T (3.10)

AAT =
(
USV T

) (
V SUT

)
= USSUT (3.11)

ATA =
(
V SUT

) (
USV T

)
= V SSV T (3.12)

Despite seemingly different approaches between the eigendecompostion of the data
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covariance and the decomposition by SVD, the two approaches are equivalent. If Y

represents the column-wise centered data matrix of A (as it was similarly presented

in Equation 3.1), the covariance is modeled by Equations 3.13 and 3.14. The latter

represents the eigendecomposition into the orthogonal eigenvectors in the columns of

V , and the diagonal matrix Λ contains all eigenvalues λi.

Σ =
1

m− 1
Y TY (3.13)

= V ΛV T (3.14)

The matrix of eigenvectors V is equivalent to the right-singular values of Equation

3.10. To relate the two approaches, the singular values of the diagonal matrix S and

the diagonal matrix of eigenvalues Λ may be equated by replacing the centered data

matrix Y with its SVD (Equation 3.15).

Σ =
1

m− 1
Y TY =

1

m− 1
V SUTUSV T =

1

m− 1
V S2V T (3.15)

The diagonal entries of S from SVD, si, are equivalent to
√

(m− 1)λi. Note that

the data matrix A must be centered in order for these two approaches to achieve

the same result. While the magnitude of eigenvalues and singular values differ, the

effect is negligible as the relationship between singular values and eigenvalues (i.e.,

λi = 1
m−1s

2
i ) is a monotonic relationship in si. Therefore, the ranking of eigenvalue

magnitude does not change under conversion to singular values. The eigenvector

that accounts for the most explained variance under the eigendecomposition of the

covariance remains the same under SVD.

The eigendecomposition and SVD produce functionally identical results, but they

differ in other practical considerations. SVD is the preferred method owing to the
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numerically stable and efficient algorithms used in performing the decomposition.

Contemporary algorithms for SVD use a divide-and-conquer approach that minimizes

the costly data communication and provides backward stability [60]. The QR algo-

rithm commonly used for eigendecompositions does not achieve the same standard

for stability.

3.2 Interpretation of Principal Components

Common critiques of statistically-driven techniques include the opacity of the

decision-making processes. In wide-ranging applications from quantitative equity

trading to autonomous vehicle development, such systems can be called a “black

box”, owing to the lack of transparency in the way in which algorithms arrive at a

conclusion [61, 62].

The applications of PCA do not deserve the derogatory term “black box”. In

a minor concession, the principal components produced by this analysis can be ab-

stract; they are calculated by the inner product of an observation and an eigenvector.

However, there are practical methods that derive physical meaning from otherwise

opaque calculations.

The first of which requires a trial-and-error approach, and it entails visualizing

the correlation between principal components and readily observed quantities. In

the specific case of analyzing pixelated CdZnTe event data, there are well-known

event properties that can account for significant variance in the observed waveforms.

The most notable property that satisfies this criterion is the depth of interaction.

Due to the pixelated geometry and the corresponding anode weighting potential, the

induced amplitude for fixed energy deposition varies with the depth of interaction as

was demonstrated in Figure 2.8. This property also produces visible changes in the

waveforms: the slope of the signal rise and the amplitude of the neighbor pixel tail

region change according to the depth of interaction.
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This intuition can be confirmed in Figure 3.2, which visualizes the reconstructed

depth of interaction to the first principal component for a generic anode pixel. This

figure reveals that the relationship between the two quantities yields a prominent

correlation. While the correlation is not always sufficient to prove causality, one

can confidently assert that the first principal component provides complementary

information to the depth of interaction.

Figure 3.2: Reconstructed depth of interaction as a function of the first principal
component obtained from the decomposition of single-pixel event data
from a generic anode pixel.

The underlying mechanisms described by principal components may not always

correlate significantly with readily observed parameters. For more thorough analy-

sis, one can examine the eigenvector that produces the principal component. Recall

that principal components result from the projection of a data vector onto a princi-

pal subspace. More explicitly, the principal component is the inner product of the

eigenvector and that data vector, or equivalently, a weighted sum of the data vector.

The eigenvector reveals which samples in the data vector are most positively

or negatively weighted. Indices with a low-magnitude weight may be considered

insignificant to the the principal component. This analysis is demonstrated in Figure

3.3 in which the first principal eigenvector is juxtaposed with a sample observation.
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The data vector contains the majority of the samples from the collecting pixel and

the right, top, left, and bottom adjacent pixels for a single-pixel event.

From examination of the eigenvector in the top pane, it is apparent that the

regions that contain the anode signal rise and the neighbor signal tails obtain positive,

high-magnitude weighting. From principles of semiconductor detector physics, these

signal segments are highly correlated with depth; anode-side interactions often include

a more rapid rise time and neighbor tail amplitudes lower than the baseline. These

observations are consistent with the correlation presented in Figure 3.2. Anode-side

interactions obtain a low first principal component, while cathode-side interactions

obtain a higher value for the first principal component.

Figure 3.3: Eigenvector that maps data to the first principal eigenvector (top) and a
sample data vector for juxtaposition (bottom).

For further confirmation, one can corroborate the findings from the eigenvectors

by identifying data vectors that score excessively low and high with respect to the

first principal component as demonstrated in Figure 3.4. The waveforms from these

two categories should be distinguished by the waveform segments that correspond to
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indices of high magnitude in the eigenvector. As expected by the eigenvector, the

anode signal rise and neighbor tail regions are visibly different for the two categories

of waveforms.

Figure 3.4: Waveform vectors with excessively low and high first principal component
scores (top) and the eigenvector responsible for the projections (bottom).
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CHAPTER IV

Energy Reconstruction by Principal Component

Regression

The PCA process extracts signal properties that may be otherwise overlooked by

conventional reconstruction methods. To fully leverage this information, one must

pre-process waveform data to ensure that PCA extracts relevant information, and

the principal component values must be translated to physical event properties. This

chapter addresses these tasks specifically for energy reconstruction of single-pixel

events. Performance metrics and practical aspects - such as analysis of model com-

plexity, overfitting and sensitivity to electronic noise - follow in subsequent sections.

Supervised variants of PCA are introduced in the final sections as means for improving

performance.

While only single-pixel events are analyzed in this chapter, the presented methods

build a foundation for analyzing more complicated event structures in Chapters V and

VI, in which the adaptations required for applying these methods to multiple-pixel

events and high-energy events, respectively, are discussed in more detail.
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4.1 Data Preprocessing

While each pixelated anode occupies a similar area, the material underneath the

effective pixel area may differ due to localized crystal defects or concentrations of

trapping impurities [63, 64]. Exterior pixels exhibit additional deviations from the

theoretical weighting potential profiles due to what Shor, Eisen & Mardor describe

as ‘edge effects’ [65]. For these reasons, single-pixel events are separated and ana-

lyzed according to the pixel in which charge is collected, ensuring that pixel-specific

information is captured by PCA.

The data vectors subject to PCA should capture all relevant information about the

charge-carrier paths to extract the most pertinent event properties. At one extreme,

this includes signals induced on all anode pixels and the cathode. However, this

presents challenges in data acquisition and a posteriori processing. As mentioned in

Section 2.3, system dead time depends heavily on the number of digitized waveforms.

The digitization of all anode pixel signals comes at the costly expense of detection

efficiency. Furthermore, very little charge is induced on pixels that reside far away

from the collecting pixel. The cost of including the signal induced on these pixels is

not justified by the return in additional information about a given event.

One must also consider the constraints of performing PCA on such a large data

matrix and storing the requisite waveforms in memory. In consideration of execution

time, waveforms are stored in random-access memory (RAM) for rapid access during

the analysis. While this promotes fast execution, it imposes constraints on the mem-

ory to tens of GB for modern computers. For contemporary SVD algorithms, the

number of operations also depends heavily on the dimensionality. Golub & Van Loan

state that the complexity of such algorithms adhere to O (mn2 +Bn3), where m, n

and B are the number of observations (rows), number of dimensions of an observa-

tion (columns) and a constant, respectively [57]. This provides additional incentive to

limit the length of data vectors. Due to these considerations, at most four neighbor
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pixel signals are included in the data vector. This ensures that information encoded

in pixels close to the collecting pixel are included in the analysis while limiting the

length of data vectors.

One must also decide whether to include the cathode signal. Intuitively, the

cathode signal provides limited information about the charge carrier path, apart from

the depth of interaction, due to its planar geometry. However, even this quantity may

be inferred from other signal components. As demonstrated in Section 3.2, depth can

be effectively captured from the collecting and neighbor pixel signals.

The inclusion of the cathode signal can be more definitively determined by ex-

amination of eigenvalues. Recall from Section 3.1 that the eigenvalues measure the

variance explained by a given principal component, where explained variance serves

as a proxy for the ability to distinguish observations. It is expected that the addi-

tion of the cathode signal should add more explained variance due to the increased

dimensionality of the data vector. To more accurately compare the effect of the cath-

ode signal, the eigenvalues for the first three principal components are normalized

by the total number of dimensions in Table 4.1. Based on the first three principal

components, using the cathode signal increases the explained variance for single-pixel

events. While this is an admittedly heuristic comparison, it merits the inclusion of

the cathode signal. Empirical evidence further suggests that it does improve single-

pixel energy resolution by an order of 0.01% in absolute terms with little additional

computational resources.

Table 4.1: Comparison of single-pixel event eigenvalues normalized to data vector
length with and without the cathode signal included

Principal Component With Cathode Signal Without Cathode Signal

1 0.50 0.35

2 0.086 0.052

3 0.056 0.042
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PCA is performed using events of varying induced signal amplitudes to avoid over-

fitting to events within a narrow energy range. The signal amplitude also contributes

to the explained variance of events, but it is not considered crucial for the purposes

of PCA. Amplitude is readily quantified without the aid of principal components,

and its relationship to energy is trivial. Rather, it is more pertinent to analyze the

scalable aspects of waveforms (e.g., rising signal slope and width). To control for the

effects of signal amplitude, data vectors are normalized to the amplitude of the signal

induced on the collecting pixel. Methods for translating the principal components to

energy deposition for all events is deferred to the subject matter in Section 4.3.5.

Waveforms may also vary due to artifacts in the data acquisition process. For

example, all signals may be shifted in time due to the configuration of the front-end

electronics. The capacitive cells that store the signal amplitude for a given electrode

constantly revolve and overwrite, and the rising portion of the acquired signal may

start at any of the samples in the frame. It is only after data acquisition that the

signal rise is centered in the frame. While algorithms are implemented to align the

signal rise to the center of the frame, some misalignment still occurs as demonstrated

in Figure 4.1. It is pertinent to align similar points of waveform inflection in the same

data matrix column to more precisely compare scalable waveform features (e.g., point

of initial signal rise, the shape of the waveform as it reaches its maximum amplitude).

Therefore, waveforms are aligned to a common point of reference within a frame to

achieve this precise comparison.

Note that this alignment requires truncation of the waveform to properly align the

waveforms. This entails discarding some signal samples at the beginning and end of

the waveform frame. The dimensionality of these regions is low, and the cumulative

effect of discarding these samples on the analysis is negligible.
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Figure 4.1: Normalized, collecting pixel waveforms as they are acquired (top) and the
aligned waveforms used for PCA (bottom).

4.2 Principal Component Regression

Principal components obtained from the original waveform data reveal information

about systematic error in the reconstructed energy deposition. To compensate for

systematic trends in estimated energy deposition, they must be modeled as a function

of principal component values. Alharbi proposed this correction methodology to

compensate for the depth-dependent response in planar CdTe detectors [66]. While

this approach was implemented for a planar CdTe detector to great effect, it utilized

only the first principal component. The methods presented in this section derive

from this approach, but they are heavily adapted to address the unique challenges of

position-sensitive CdZnTe detectors. This section also introduces a methodology to

utilize the information encoded in multiple principal components to more thoroughly

compensate systematic error in reconstructed energy deposition.

For the pixelated CdZnTe detectors in question, the initial energy reconstruction

corrects for the depth-dependent response as discussed in Section 2.4.1. Therefore,

the relationship between reconstructed energy and the first principal component -
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consistently correlated with the depth of interaction - may yield no obvious systematic

trend. As demonstrated in Figure 4.2, data must be separated by depth to visualize

and regress systematic trends more completely.

Figure 4.2: Correlation between reconstructed energy and the first principal compo-
nent for all events (top) and for a specific depth bin near the anode surface
(bottom).

In practice, systematic trends are regressed by a linear model. As this does not

reflect any theoretical model of the systematic error, this could be considered a Pro-

crustean bed1. However, a linear model is the pragmatic choice to limit model com-

plexity for systematic trends.

Linear models predominantly use ordinary least squares (OLS) to estimate the

slope and intercept. However, this method is notoriously susceptible to the influ-

ence of outliers. Such outliers may originate from front-end electronics interference

or incomplete energy deposition from background radiation that coincidentally falls

1The term “Procrustean bed” refers to the unorthodox methods of Procrustes. According to
Greek mythology, he adjusted the height of his guests at his inn to conform to the size of his bed
by unnecessarily cruel methods.
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within the energy window of interest. To prevent outliers from corrupting the linear

model of prevailing systematic trends, the relationship between reconstructed energy

and principal components are regressed by a Theil-Sen estimator [67, 68].

OLS operates under the assumption that the random noise for each observation

is homoscedastic. Outliers violate this assumption, and they can significantly distort

the linear regression as demonstrated in Figure 4.3. The Theil-Sen estimator does not

rely on such assumptions. Rather it designates the median slope between all unique

pairs of points as the trend slope. The median statistic provides a robust estimator

of the linear model; nearly 30% of the data may consist of outliers without degrading

the accuracy of the Theil-Sen estimator [69].

Figure 4.3: Linear regression of energy and principal component correlation with ap-
parent data outliers.

To mitigate systematic error, data are projected along the regressed trend. As

presented in the top-left pane of Figure 4.4, the initial correlation between energy

and principal component contains a significant, systematic trend. The FWHM of the

corresponding energy histogram in the top-right pane is significantly reduced after

projecting that same data along the regression as shown in the bottom two panes.

The regression and correction process demonstrated in Figure 4.4 can be repeated

for each principal component. Recall from Section 3.1 that eigenvectors with distinct
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Figure 4.4: Correlation between the energy deposition estimate and principal compo-
nent before (top-left with the corresponding histogram in the top-right)
and after (bottom-left with the corresponding histogram in the bottom-
right) projecting the data long the regressed trends.

eigenvalues must be orthogonal. Therefore, one may perform this correction procedure

for each principal component serially without affecting the corrections based on any

proceeding principal components.

Consider the correlations presented in Figure 4.5. The energy values featured in

the first pane are the initial estimates obtained after depth-correction. The system-

atic trend with respect to the first principal component is regressed, and the initial

energy estimates are updated by the process of projecting the data along the line

of regression. At this point in the procedure, there is still demonstrable systematic

error in the reconstructed energy. The results of this projection replace the initial

energy estimates, and these values are subsequently correlated with the second prin-

cipal component in the second pane of Figure 4.5. This process is repeated to obtain

a second update of the energy reconstructed for each of the single-pixel events in

61



question. By the third iteration of this procedure, the systematic trend as a function

of the third principal component appears nearly constant and signifies the effective

mitigation of systematic error in the energy estimates.

Figure 4.5: Updated energy estimates as a function of the first three principal com-
ponents after regressing and projecting along each systematic trend.

4.3 Results for Single-Pixel Events

The PCA and regression methodology described in the preceding sections require a

137Cs calibration measurement. Events within an energy window around 662 keV are

collected for each channel, and the ensuing principal component regression procedure

generates energy calibration parameters that may be saved in a look-up table for

subsequent measurements. Corrections are applied on an event-by-event basis and

lends well to real-time processing applications.

The energy reconstruction process for a single event follows a procedure that

closely resembles the example depicted in Figure 4.5. Principal components for an

event are generated by projecting the corresponding waveform data onto the channel-

specific eigenvectors stored in memory. The energy of each event is iteratively up-

dated for each principal component using the linear model coefficients determined by

principal component regressions.
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The efficacy of the principal component methodology can be evaluated by com-

paring the single-pixel results against results of conventional methods for a 137Cs

calibration measurement. For the purposes of this analysis, the first five principal

components are used to update energy estimates. This is an arbitrarily low amount

of principal components; selection of the number of principal components is discussed

in greater detail in Section 4.3.1.

For thorough analysis, energy resolution metrics for the 662 keV photopeak are

displayed for each pixel as a function of the pixel location in Figures 4.6 and 4.7.

These figures compare the energy resolution obtained with conventional energy re-

construction methods against the updated performance after leveraging the informa-

tion from principal component regressions. The energy resolution metrics, FWHM

and full width at tenth maximum (FWTM) in Figures 4.6 and 4.7, respectively, are

color-coded for enhanced visualization. Good performance obtains a light shade of

gray, while darker shades indicate worse energy resolution.

Figure 4.6: Single-pixel FWHM observed at 662 keV for each anode pixel using con-
ventional energy reconstruction methods (left) and the FWHM after up-
dating energy estimates according to principal component correlations
(right).

For the vast majority of anode pixels, the FWHM improves between 1 - 10% rel-

ative to the baseline performance established with conventional reconstruction meth-
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Figure 4.7: Single-pixel FWTM observed at 662 keV for each anode pixel using con-
ventional energy reconstruction methods (left) and the FWTM after up-
dating energy estimates according to principal component correlations
(right).

ods. To understand the underlying cause of the improvement, the analysis must revert

back to the abstract concepts presented in Section 3.2. Examination of eigenvectors

provides valuable insight into the origin of the improvement. They indicate the spe-

cific mechanisms and event attributes of the underlying principal components. In the

interest of brevity, the first five eigenvectors are displayed for only two pixels. This

includes the central anode pixel and one of the corner pixels to capture the prevail-

ing eigenvectors for a pixel with little and significant intrapixel response variation,

respectively.

The corresponding eigenvectors are displayed in Figure 4.8. Note that the corner

pixel has only a neighboring pixel to the right and above the collecting pixel. There-

fore, the last two segments of the eigenvectors in the bottom pane have effectively no

amplitude. The first and second eigenvectors for both pixels give significant weight to

the cathode and neighbor signal tails. The second eigenvector gives relatively more

weight to the cathode signal rise, and it therefore gives more consideration to the slope

of the rising cathode signal. It is reasonable to infer that the two most significant

principal components are heavily dependent on the depth of interaction.
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Beyond the first two principal components, the eigenvectors for the pixels signify

different event properties. The third and fourth eigenvector for the interior pixel give

little weight to the collecting anode pixel and cathode signals. Rather, combinations

of the neighbor pixel signals have significant magnitude and opposing polarity. For

example, the third principal component has negative weight for the top neighbor tail

and positive weight for the bottom neighbor tail. It signifies the subpixel proximity

of the charge carrier paths to the top and bottom adjacent pixels. The same rationale

applies to the fourth eigenvector, which measures the subpixel proximity to the right

and left adjacent pixels.

Figure 4.8: First five eigenvectors for an interior pixel (top) and a corner pixel (bot-
tom).

The last remaining eigenvector for the interior pixel is most heavily weighted for

the collecting pixel signal tail. It identifies abnormalities in the collecting pixel as
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demonstrated in Figure 4.9. Waveform vectors with excessively high and low fifth

principal components accentuate the primary signal feature in the collecting anode

signal rise. Vectors with low principal components have an abnormal inflection that

may be attributed to a single-pixel event in which there are two distinct interac-

tions under one pixel. Yang implemented an event filter to identify these events for

digitally filtered waveforms [44], but principal components and the subsequent re-

gressions identify and compensate for the systematic error in energy at a far lower

computational expense.

Figure 4.9: Waveform vectors with excessively high and low fifth principal compo-
nents for an interior pixel (top) and the corresponding eigenvector (bot-
tom).

The corner pixel eigenvectors extract similar event properties as those for the in-
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terior pixel, albeit in a different order. The third eigenvector for the corner pixel

identifies events with abnormal signal rise inflection in a similar fashion to the fifth

eigenvector of the central pixel in Figure 4.9. The fourth and fifth eigenvectors indi-

cate the proximity to the neighboring pixels and the relative amplitudes of the neigh-

bor pixel signals to the collecting pixel signal, respectively. Based on observations of

pixelated CdZnTe detectors, relatively poor energy resolution is expected from exte-

rior pixels [50]. The PCA methodology addresses these flaws to some extent. However,

the improvement in exterior pixel energy resolution significantly outperforms that of

interior pixels in FWTM only, as displayed in Figure 4.10.

Figure 4.10: Energy resolution improvement at 662 keV for exterior and interior pixels
with respect to FWHM (top) and FWTM (bottom).

Figure 4.11 displays the aggregate single-pixel energy spectrum, making note of

the 10% relative improvement in FWHM and FWTM. The right pane plots the

pixel-specific energy resolution obtained after principal component corrections as a

function of the original energy resolution. The line y = x provides a reference, and

it corresponds to no net change in energy resolution. The vast majority of pixels fall
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below the reference line, regardless of the initial energy resolution.

Figure 4.11: Aggregate single-pixel event energy spectrum obtained before and after
principal component regressions (left) and the pixel-specific improve-
ments for the original and corrected energy spectra (right).

According to the aggregate energy spectra in Figure 4.11, the low-energy tail

persists. It provides evidence of the limitations to principal component regression.

Even with the addition of more principal component corrections - and at the risk

of severely increasing model complexity - the low-energy tail is not mitigated. This

observation presents three, mutually exclusive conclusions: the source of the low-

energy tail originates from a source of unexplained variance, PCA cannot produce

reliable signatures of the source of the low-energy tail, or the systematic error from this

flaw is encoded in subsequent principal components. The last explanation is unlikely;

the cumulative variance explained by principal components beyond 200 account for

less than 5% of the total explained variance. It is also unlikely that this results from a

source of unexplained variance - sources of variance that occur randomly. As noted by

Bolotnikov [63], this primarily occurs when charge is lost to the gap between pixels.

Therefore, it should theoretically be encoded in the principal components that are

strongly influenced by the lateral position of the charge carrier paths. This leaves the
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second conclusion as the prevailing hypothesis.

4.3.1 Selection of the Number of Principal Components

The number of principal components used in PCA regression is a free parameter;

its value is not determined by any physical or theoretical properties of the system,

but rather it is chosen by the user. To make an informed decision on its value, it is

critical to understand the influence of the number of principal components on system

performance to strategically choose its value.

Recall from Section 3.1 that the eigenvectors produced by SVD arrange in such

a way that the first principal component explains the most variance, the second

principal component explains the next highest amount, and so forth. This principle

is demonstrated by Figure 4.12, which features the cumulative variance explained (i.e.,

cumulative eigenvalues normalized to one) as a function of the principal component

rank. This convex trend increases monotonically at a rapid rate for an exterior

pixel and, to a lesser extent, an interior pixel. As the principal component rank

increases in magnitude, the underlying mechanism distinguishes the waveform vectors

less effectively. Beyond a certain principal component, the systematic trends in the

reconstructed energy become increasingly insignificant compared to random noise.

The energy resolution trends in Figure 4.13 support this claim. The variance

explained by a principal component and the net improvement in energy resolution

after applying its correction correlate positively at low principal components. The

greatest improvement in energy resolution occurs after the correction derived from

the first principal component, but the energy resolution approaches an asymptotic

value after correcting for subsequent principal components.

The results featured in Figure 4.13 were obtained using self-calibrated data, im-

plying that the performance was evaluated for the same data set from which the en-

ergy calibration parameters were derived. Under these self-calibration circumstances,
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Figure 4.12: Cumulative explained variance of single-pixel events as a function of
principal component for two anode pixels.

Figure 4.13: Single-pixel energy resolution metrics as a function of the number of
principal component corrections. Asymptotic values are indicated by
dotted lines.

energy resolution should improve monotonically within the constraints of statistical

noise. However, this does not accurately reflect the expected performance of out-of-

sample data.

Regressions with respect to principal components from calibration measurement

data are subject to statistical and electronic noise, and deviations in the regres-

sion model coefficients depend on the random noise present in the calibration data.
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Self-calibrated performance does not suffer from this random noise, regardless of the

regression model complexity, as the regression coefficients are optimal given the exact

noise patterns in the calibration measurement data. However, out-of-sample mea-

surement performance degrades, as it is effectively impossible to replicate the exact

noise patterns that were present in the calibration measurement data.

The severity of out-of-sample performance degradation depends on model com-

plexity. As the model increases in complexity - or equivalently, as more principal

component corrections are used - the model gains flexibility to adapt to the system-

atic trends in the calibration data. However, this may allow the model to overfit

the calibration data. Bishop refers to this dilemma as the bias-variance trade-off

[70]. If the model is kept simple by limiting the number of principal components,

bias remains in the energy reconstruction procedure. However, if the model becomes

overly complex, the principal component regressions develop increasing sensitivity to

random noise in the calibration data. The variance of the estimated energy resolution

increases in subsequent, out-of-sample measurements.

To gain intuition about this trade-off for single-pixel energy reconstruction, energy

resolution at 662 keV for a generic detector was tabulated with varying degrees of

model complexity in Table 4.2 to gain intuition about this trade-off. To approximate

out-of-sample performance, k-fold cross-validation was implemented. This method

divides calibration data into k partitions. For each of the k iterations, one of the

partitions of the data is designated the test data, and the remaining k − 1 parti-

tions constitute the training data. Calibration parameters are regressed from the

training data and subsequently used to process the test partition [71]. It allows one

to approximate out-of-sample performance without exposing the system to extrinsic

factors that may alter system performance between the calibration and out-of-sample

measurements. Therefore, k-fold cross-validation isolates the degradation attributed

to the stimulus in question - regression parameter error.
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Despite increasing model complexity, the self-calibrated performance in Table 4.2

improves monotonically, and it benefits from over-fitting. However, the performance

from the cross-validated test data indicates that the out-of-sample performance is

optimal between 1 and 20 principal component corrections. Consistent with the

bias-variance trade-off, energy resolution degrades as additional principal component

corrections are applied beyond this model complexity. In light of the effects of model

complexity - and in the interest for in-field applications - the number of principal

component corrections are conservatively limited to five.

Table 4.2: Single-pixel energy resolution at 662 keV for self-calibrated data and cross-
validation results

Self-Calibration Cross-Validation

Principal Component FWHM [%] FWTM [%] FWHM [%] FWTM [%]

0 0.40 0.97 0.40 0.97

10 0.36 0.82 0.37 0.82

20 0.36 0.80 0.38 0.82

50 0.34 0.72 0.39 0.83

100 0.31 0.72 0.40 0.86

200 0.27 0.63 0.42 0.90

4.3.2 Sensitivity to Statistical and Electronic Noise

Although PCA and the subsequent regression enable significant improvement in

energy resolution, the observed energy resolution does not meet the theoretical per-

formance limit. A portion of this discrepancy may be attributed to pixelated detector

design specifications (e.g., pixel pitch and gap width) [31], but some of the remaining

discrepancy may be attributed to intrinsic factors of principal component regression.

As discussed in Section 4.3.1, statistical noise adversely affects the accuracy of re-

gression models as a function of principal component. Furthermore, electronic noise
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in the initial energy estimates may degrade the accuracy of those same regression

models.

To understand the sensitivity to statistical and electronic noise, these values are

perturbed, and the resulting energy resolution metrics are monitored. Statistical noise

is modulated by using various amounts of events per principal component regression,

whereas Gaussian noise is added to the response variable in principal component

regressions. For the latter, Gaussian noise is only imposed for the regression; it is not

imposed on the final processed energy spectrum to avoid distorting the monitored

energy resolution. All reported results in Tables 4.3 and 4.4 are obtained with five

principal component corrections.

Both energy resolution metrics suffer significantly when the number of events

used for each voxel’s regressions are limited to a low number. They progressively

improve as the event limit is raised and the statistical noise is reduced. When there

is effectively no limit - corresponding to a limit of 500 events per voxel - the energy

resolution recovers its unperturbed performance.

Table 4.3: Summary of single-pixel energy resolution as a function of the events used
for principal component regression

Maximum Events Regressed FWHM [%] FWTM [%]

10 0.42 0.97

25 0.35 0.82

50 0.33 0.75

75 0.32 0.73

100 0.32 0.73

500 0.31 0.70

According to the energy resolution summarized in Table 4.4, electronic noise does

not appear to limit the regression performance. Even with 2 keV electronic noise

imposed on the response variable, the regressions produce similar performance to the
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baseline performance established with conventional methods.

Table 4.4: Summary of single-pixel energy resolution as a function of the electronic
noise added to the response variable

Additive Noise [keV] FWHM [%] FWTM [%]

0.25 0.32 0.71

0.50 0.32 0.71

0.75 0.32 0.72

1.00 0.33 0.72

1.25 0.33 0.73

1.50 0.33 0.74

1.75 0.34 0.75

2.00 0.34 0.76

The tabulated results suggest that statistical noise limits the efficacy of principal

component regressions. This is far more preferable to the alternative. Electronic noise

improvements require intricate front-end electronics design and careful consideration

of detector electrode dimensions. As demonstrated in Table 4.3, statistical noise can

be mitigated by allowing adequate calibration measurement time to collect a sufficient

number of events.

4.3.3 Comparison to Sub-Pixel Energy Calibrations

Based on the single-pixel eigenvectors in Figure 4.8, PCA possesses potential to

correct for intrapixel response variation. The first two eigenvectors account for depth-

dependent systematic error, and the third and fourth eigenvectors embed information

about the subpixel, lateral position. By forming corrections based on the regression

of the resulting principal components, the PCA reconstruction methodology begins

to encroach on the territory previously dominated by subpixel energy calibrations

(Section 2.4.5).
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The PCA methodology implicitly corrects for intrapixel variation through prin-

cipal component regression. The same applies to the exterior pixels, in which some

eigenvectors account for the lateral position as demonstrated in Figure 4.8. This

reveals one of the primary advantages over subpixel energy calibrations; PCA ad-

dresses subpixel response variation for all pixels, not just those in which the lateral

position can be precisely estimated. Subpixel energy calibrations cannot replicate the

performance for exterior pixels, as the subpixel position in exterior pixels cannot be

explicitly calculated.

The performance of these two alternatives is compared in Figure 4.14, in which

the single-pixel FWHM values are plotted in correspondence to the location in the

pixelated anode. While data were acquired in trigger+8 mode to obtain optimal

position reconstruction for subpixel energy calibrations, only the signals from the

four cardinal neighbor pixels were included in the PCA waveform vectors for the

purposes of consistency. As before, the number of principal component corrections

was limited to five to keep the PCA correction model relatively simple.

Figure 4.14: Single-pixel FWHM as a function of pixel location obtained by subpixel
energy calibration (left) and PCA (right).

The performance of exterior pixels systematically improves under the PCA method-

ology, but PCA cannot consistently outperform the subpixel energy calibration met-

rics for interior pixels - at least not without risking overfitting by the addition of
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more principal component corrections beyond the fifth principal component. It sug-

gests that principal component corrections cannot entirely compensate for intrapixel

variation to the same extent of the precise subpixel energy calibrations.

The PCA methodology provides another critical advantage over subpixel energy

calibration. Recall that an excessive amount of events - with corresponds to upwards

of 48 hours - must be acquired to generate energy corrections for each small detector

volume with a high degree of statistical significance. The PCA methodology decreases

the calibration time requirement by orders of magnitude compared to traditional

subpixel corrections compared to traditional subpixel corrections.

Unlike subpixel energy calibrations - which requires eight neighbors to obtain

optimal lateral position resolution - PCA only requires the four cardinal neighbors

in its default configuration. PCA can perform identically using data acquired in

trigger +8 mode and trigger +4 mode - the mode in which at most four cardinal

neighbors are digitized per collecting pixel. As noted in Section 2.3, the system dead

time depends heavily on the number of digitized waveforms. Therefore, operating

in trigger +8 mode substantially decreases detection efficiency. This consideration

also contributes significantly to the discrepancy in calibration times between the two

competing methods.

4.3.4 Event Processing Time

Real-time processing applications - those that reflect the operating conditions for

field applications - require fast event processing to account for all incoming events

and maintain optimal detection efficiency. These demands limit the use of more

computationally intensive reconstruction methods such as SRF. Therefore, recon-

struction methods based on trapezoidal filtering are currently the primary choice for

field operation.

Trapezoidal filters require a Fourier transform, complex number multiplication and
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an inverse Fourier transform to the time domain for each acquired waveform. The

transforms use the Fastest Fourier Transform in the West (FFTW) software library,

in which the transform algorithms run in O (n log n) time [72, 73]. The processing

time for each event also requires fixed overhead to prepare for the trapezoidal filter

and apply energy corrections.

PCA reconstruction methods rely on O (n) processes; the projection onto prin-

cipal subspaces requires the inner product subroutine and the requisite processing

overhead. Therefore, the processing time for an event depends heavily on the number

of principal components used in the reconstruction. The software suite developed

for these purposes make judicious use of the Intel Math Kernel Library (MKL) to

accelerate processing speed for commonly used linear algebra subroutines [74].

Although the theoretical complexity of PCA methods compares well against the

O (n log n) behavior for trapezoidal filters, it is difficult to predict which method

processes more quickly. In the case of trapezoidal filtering, the variable n refers to

the length of the padded waveform in the Fourier domain - 256 indices - whereas n

corresponds to the length of the waveform vector for the PCA methodology. The

waveform vector length for a typical application of PCA is generally 450 indices.

The processing time is compared more definitively by the observed, single-pixel

processing-time distributions in Figure 4.15, in which the processing time for each

event of a calibration measurement data set was measured by a high-resolution timer

from the C++ chrono library [75]. PCA reconstruction with the default five principal

components provides a clear advantage over the alternatives, but PCA with an ex-

cessive amount of principal components becomes comparable to the processing time

obtained by trapezoidal filtering.

The processing time distribution obtained for trapezoidal filtering varies far less

than that of PCA. The filtering process is performed on only one waveform for

the purposes of this analysis, and the number of operations is constant for all events.
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Figure 4.15: Single-pixel event processing-time distributions for various reconstruc-
tion methods.

However, the number of operations for PCA depends on the number of adjacent pixels

to the collecting pixel. For single-pixel events, this can correspond to two (corner

pixels), three (edge pixels, excluding corners) or four neighbors (interior pixels). Each

neighbor pixel in the event must be normalized to the collecting pixel signal amplitude

as described in Section 4.1, and this O (n) process for a variable amount of neighbors

accounts for the greater variance observed in the PCA processing time distributions.

4.3.5 Adaptations for Different Incident Gamma-Ray Energy

The results presented to this point examine the performance of the PCA method-

ology at the point of calibration, 662 keV. To accommodate energy reconstruction at

other energies, the regression procedures must be agnostic of the true energy deposi-

tion. Consider the equation used to update the estimated energy deposition discussed

in Section 4.2. When an event is processed, it must be projected along the regression

line and scaled to the proper energy as modeled in Equation 4.1. The variables m, b

and x refer to the linear model slope, intercept and the principal component value,

respectively. The quantity (EInitial −mx) has units of keV, and it projects the energy

value to a common point of reference - the y-axis where the principal component
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value is zero. To ensure that this value is scaled properly to keV, it is multiplied by

the conversion factor 662
b

.

EUpdated = (EInitial −mx)
662

b
(4.1)

The slope and energy conversion factor in Equation 4.1 are regressed for 662 keV

photopeak events, therefore they are not applicable to other energies of interest. To

accommodate all energies, these model parameters must be normalized to the true

energy deposition. The revised regression model in Equation 4.2 addresses this con-

cern, regardless of the calibration point (ETrue). While the equation for updating the

energy estimate in Equation 4.1 only applies to 662 keV, its replacement in Equation

4.3 applies for all energies. This revised update equation implicitly assumes that the

integral nonlinearity of the front-end electronics is negligible, which is generally true

up to approximately 1 MeV for the ASIC design used for this work [44]. Events

in which the energy deposition is greater than 1 MeV are addressed specifically in

Chapter VI.

ETrue

EInitial

= mx+ b (4.2)

EUpdated = EInitial (mx+ b) (4.3)

The efficacy of the energy-agnostic technique may be visualized through a compar-

ison of the single-pixel energy spectra of a plutonium source2 reconstructed via PCA

and SRF. Figure 4.16 highlights two energy windows of interest between 300 - 450

keV and 550 - 750 keV. In both of these regions, the advantage of PCA reconstruction

of SRF is visually apparent. The peaks of the former contain higher maximum ampli-

tudes, and the regions on either side of the peaks - colloquially referred to as “valleys”

2The source in question refers to a well-characterized, α-phase plutonium source [76]
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- are lower than that of the SRF spectrum. Both of these spectral features enhance

the ability to resolve the characteristic photopeaks of various plutonium photopeaks.

Figure 4.16: Processed BeRP ball spectrum obtained with PCA and SRF for the
energy ranges of 300 - 450 keV (left) and 550 - 750 keV (right).

While PCA reconstruction applies towards all energies, its effectiveness varies as

a function of energy. The fixed electronic noise of the subsystem comprised of the

detector and front-end electronics account for a higher proportion of the total noise

at lower energies. At progressively higher gamma-ray energy, the contribution from

systematic error accounts for increasingly higher proportions of the total noise.

Principal component decomposition identifies sources of explained variance be-

tween the observed waveforms. Principal component regression can correct for such

sources to an extent, but it offers no solution to the adverse effects of electronic noise

- a source of unexplained variance. For this reason, the improvement of PCA relative

to alternative methods of energy reconstruction increases as a function of the incident

gamma-ray energy.

Consider the energy resolution trends as a function of gamma-ray energy for PCA

and SRF in Figure 4.17. These results were obtained with a detector operating with a

3 MeV dynamic range, implying that the electronic noise is slightly higher than that

of the previous results presented in this chapter that were obtained with a dynamic
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range of 700 keV. At 238 keV, the comparative advantage for PCA is negligible.

As the incident energy increases, the advantage progressively increases owing to the

expected contributions of systematic error to the total error.

Figure 4.17: Energy resolution as a function of incident gamma-ray energy for PCA
and SRF as measured by FWHM (top) and FWTM (bottom).

4.4 Supervised Principal Component Analysis

The information provided by PCA is useful to the extent that it helps form predic-

tive models for event parameters of interest. According to the formulation in Section

3.1, PCA decomposes data so that the data in a principal subspace has maximal

variance. This does not necessarily imply that it provides the optimal predictive

capability for a response variable like energy deposition.

Alternative methods address this by considering the response variable when per-

forming decomposition; such methods are referred to as supervised principal com-

ponent analysis (SPCA) as they include a priori knowledge of at least one response
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variable to guide the analysis. In certain academic disciplines, the supervised meth-

ods may be designated by constrained PCA due to the consideration of a response

variable in the formulation. By contrast, the decomposition presented in Section

3.1 is referred to as unconstrained PCA to distinguish it from the supervised alter-

natives. While many methods for performing supervised dimension reduction exist

(e.g., Fisher’s discriminant analysis, partial least squares), two were chosen for further

investigation primarily due to their reported prediction performance and the ability

to interpret latent variables.

Bair et al. proposed decomposition of a data matrix comprised of only dimensions

that depend heavily on the response variable [77]. The dependence between each

dimension j and the response variable is measured according to the standardized

regression coefficient in Equation 4.4, in which x represents the jth column of the

data matrix, and y is a vector containing the response variable. Only the dimensions

in which the magnitude of the coefficient βj exceeds a threshold are included in the

data matrix.

βj =
xTj y

||xj||
(4.4)

The dimension selection process ensures that the response variable and the princi-

pal components have significant correlation and a meaningful regression model. The

authors of this work demonstrate the utility of supervised decomposition by measur-

ing the p value of a hypothesis test on the resulting regression between the response

variable and the first principal component. With respect to the p value, the regression

model formed from supervised principal components outperforms alternative methods

by orders of magnitude.

The hypothesis test assigns a probability that the regressed model coefficients

could be produced by chance. A low p value indicates that the null hypothesis, which

assumes that there is no systematic trend in the data, is improbable. Low p values
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provide evidence to reject such a null hypothesis, and it suggests that the regression

coefficients are statistically significant given the probability distribution of possible

coefficients. The validity of hypothesis testing is somewhat controversial; as Gill

notes, the null hypothesis is not unique [78]. Estimates of the p value may vary due

to the existence of different null hypotheses, leading some to criticize the validity of

this significance test.

The method was replicated for the purposes of comparing waveform data. The

threshold for the dependence metric, βj, was heuristically selected by identifying

the median value of |βj| ∀j, thereby ensuring that only dimensions above the 50th

percentile in dependence to the response variable are included in the decomposition.

This implies that the number of columns in the reduced data matrix are half of that

in the unconstrained PCA methods described in this chapter.

The eigenvectors produced by this heuristic approach are juxtaposed to those

generated by unconstrained PCA for a generic anode pixel in Figure 4.18. The con-

strained PCA eigenvectors are padded with zeros as a matter of convenience; it allows

one to align the eigenvector indices to those in the original waveform vectors, and it

provides a modular way to project data onto principal subspaces regardless of the

decomposition method.

The constrained eigenvectors lead to notable observations. The cathode signal

does not appear, implying that it does not correlate strongly with the energy depo-

sition deviation. Rather, these eigenvectors give significant weight to the transient

anode signals - collecting and adjacent pixels alike - and there is emphasis on the

anode signal tails. The comparison also suggests that the competing methods do not

necessarily identify the same mechanisms through decomposition. For example, the

third eigenvector for the unconstrained variety appears to distinguish waveform vec-

tors by the proximity to the top or bottom neighboring pixels. It negatively weights

the vector segment corresponding to the top neighbor pixel signal tail and positively
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weights the segment for the bottom neighbor pixel signal tail. However, constrained

PCA targets a different event property. Virtually no weight is given to neighbor

pixels, but significant weight is placed on a portion of the collecting pixel signal tail.

Figure 4.18: First three eigenvectors for events collected by a single, interior pixel
using unconstrained PCA (top) and the using the constrained method
described in Bair et al. (bottom).

Although Bair’s method for constrained PCA produced superior p values for the

regressions featured in the seminal publication, the results for single-pixel waveform

data are inconclusive as demonstrated in Figure 4.19. The p values of each regression

with respect to the first three principal components are calculated using constrained

and unconstrained PCA for one anode pixel. The p values are plotted against the

depth bin in which the events for these regressions occur. The values produced by

constrained PCA do not consistently produce better regressions. The processed en-

ergy spectra obtained with the competing methods reveal similar, uninspiring results

for constrained PCA performance in Figure 4.20. The observed energy resolution is

indistinguishable between the two methods.
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Figure 4.19: Comparison of the p values obtained from regressions based on the un-
constrained and constrained principal components as a function of the
depth bin containing the corresponding events.

For matters of model selection, the principle of Occam’s razor provides valuable

insight. It is a rule of thumb that is more explicitly quantified by metrics such as

Akaike Information Criterion [79], or the Bayesian analog, the Schwarz criterion [80].

In qualitative terms, it dictates that one should select a simpler model if there is not

sufficient evidence to support a more complex model.

In this context, the constrained variety requires a free parameter for the thresh-

old that determines which dimensions are included in the analysis. As Bair et al.

reported, performance is sensitive to this parameter. The free parameter contributes

to model complexity, and it leaves the reconstruction method based on this model
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Figure 4.20: Aggregate, single-pixel energy spectrum obtained using unconstrained
and constrained PCA.

susceptible to data-snooping - the process by which a model is repeatedly modified to

produce optimal results. Based on the findings in this section, there is not sufficient

reason to favor Bair’s methodology over unconstrained PCA.

Barshan et al. presented a variant of SPCA that does not entail free parameters

[81]. The objective remains the same in that of Bair et al., but it identifies dimensions

with significant dependence on the response variable by different means, namely the

Hilbert Schmidt independence criterion (HSIC). The HSIC measures the dependence

of two random variables - i.e., a response variable and the value in a dimension -

from the norm of the cross-covariance operator in their respective reproducing kernel

Hilbert space (RKHS) [82].

In the case that two such random variables are independent, the norm of the

cross-covariance tends to a value of zero. Therefore, one must must maximize the

HSIC between the response variable and a given dimension of data. For the purposes

of this work, the dependence between the response variable and the data projected

onto a subspace is maximized to produce the most meaningful principal component

regressions.

The ingenuity of Bair’s method lies in the maximization scheme and its connection
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to unconstrained PCA. Let the variables X and Y represent the waveform matrix

and the outer product of the response variable, respectively. The column space of

matrix V contains the eigenvectors that map data X to the principal subspace such

that the principal components are given by XTV. Equation 4.5 models the empirical

estimate of the HSIC, which measures the dependence between principal components

and the response variable.

Ĥ = Tr
(
VTXYTYXTV

)
(4.5)

To maximize this measure of dependence, the eigenvectors must be modified ac-

cordingly. The solution for V that maximizes the HSIC corresponds to the eigenvec-

tors of the matrix XYTYXT . These eigenvectors serve the same purpose as those in

the unconstrained variant of PCA.

For the sake of argument, suppose that there is no a priori knowledge of the

response variable. Under these circumstances, the standardized response variable

kernel YTY reduces to the identity matrix. Using the same rationale, the eigenvectors

that produce the optimal solution to Equation 4.5 correspond to the eigenvectors of

the matrix formed by XXT , an alternate expression for the covariance of the waveform

data. As shown in Section 3.1, the eigendecomposition is one approach to performing

PCA. Based on this observation, unconstrained PCA, or equivalently SPCA with no

a priori information, generalizes the supervised decomposition proposed by Barshan

et al.

Unfortunately, the constrained PCA eigenvectors obtained by this method do not

reveal more information than the unconstrained variety, as shown in Figure 4.21. All

information is collapsed, as it were, into the eigenvector for the first principal com-

ponent, and it therefore discards the information that could otherwise correlate with

subpixel lateral position or abnormal collecting pixel signals. Instead, the eigenvec-

tors for the second and third principal components - and all subsequent eigenvectors
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for that matter - are random noise.

Figure 4.21: Eigenvectors for the first three principal components obtained by uncon-
strained PCA (top) and Barshan’s method (bottom).

The spectrum obtained via Barshan’s method provides no significant improvement

over the results obtained by unconstrained PCA (Figure 4.22). It also lacks the ability

to interpret the underlying mechanisms of the principal components. Unconstrained

PCA remains the default implementation for principal component regression, due to

this deficiency of Barshan’s method.
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Figure 4.22: Single-pixel energy spectra for unconstrained PCA and principal com-
ponent regression via Barshan’s method.
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CHAPTER V

Adaptations for Principal Component Regression

for Multiple-Pixel Events

The contents of this chapter address the application of the PCA reconstruc-

tion methodology towards the unique challenges of estimating energy deposited in

multiple-pixel events. The reconstruction process must account for the effects of

WPCT, which is conventionally corrected after estimating the energy deposited by

individual interactions. The SRF reconstruction methodology operates under the

assumption that interaction properties can be estimated by matching an observed

waveform to idealized templates derived from single-pixel observations. While this

template-matching scheme can partially mitigate the influence of WPCT, this method

still requires corrections to the cumulative, estimated energy deposition as discussed

in Section 2.4.3.

This approach does not necessarily translate to the PCA methodology; the eigen-

vectors produced by the decomposition of single-pixel observations may not accu-

rately reflect the specific characteristics of interactions that constitute multiple-pixel

events. Most notably, the principal components determined from single-pixel event

decomposition fail to account for the distortion caused by WPCT. Therefore, the

methods presented in Chapter IV must be adapted to uniquely characterize multiple-

pixel events. Subsequent sections thoroughly describe these adaptations for two-pixel
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events and provide analysis of the resulting energy resolution. These methods are

generalized for higher-order events at the conclusion of this chapter.

5.1 Adaptations for Multiple-Pixel Events

To effectively capture the relevant properties of a two-pixel event, the observations

must include signals induced on both collecting pixels. The signals that correspond

to the second collecting pixel are appended to the observations from the first pixel

(Figure 5.1). This format ensures that all pertinent signals are captured by a signal

observation.

Figure 5.1: Sample, two-pixel observation annotated with the corresponding pixel
descriptions.

Note that the collecting pixel with the greater signal amplitude is arranged first

in the observation featured in Figure 5.1. As a matter of convention, this collecting

pixel signal - referred to as the primary pixel - precedes the collecting pixel with

lower amplitude - the secondary pixel. The observations of a given primary pixel

constitute the rows of a pixel-specific data matrix. The decompositions of these

separate matrices ensure that the eigenvectors provide some information about pixel-

specific tendencies to account for idiosyncratic, systematic errors in the reconstructed

energy deposition.

For more thorough analyses, events could be arranged in matrices devoted to
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unique combinations of primary and secondary pixels. Although, this requires 121×

120 separate matrices and strains the limits of feasible calibration measurement statis-

tics and computational resources required for the analysis. Limiting the number of

waveform matrices to one per primary pixel relaxes these constraints and promotes

more pragmatic use of the analysis.

The format of the waveform observations can accentuate key aspects of a two-pixel

observation that provide critical information about a given event. It requires system-

specific knowledge of the underlying physical processes to effectively emphasize these

properties. In machine learning disciplines, this may be more formally referred to

as ‘feature engineering’ [83]. By this process, one can suggest that the principal

component regression embeds information about known sources of systematic error.

The preprocessing steps required for multiple-pixel event analysis share many tasks

in common with those required for single-pixel events. As with single-pixel events, an

event-specific time offset is applied to properly align columns with similar features in

a data matrix. For the purposes of two-pixel events, all subsequent signals - collecting

pixel and adjacent pixel signals alike - are aligned with respect to the time offset of

the primary collecting pixel signal. This is preferred over the alternative, in which a

time offset is determined for both collecting pixel signals in an observation. Figure

5.2 contrasts the observations formed by these approaches for a two-pixel event. The

primary pixel signal remains unchanged between the two approaches, but the signal

of the secondary pixel may shift significantly in time. The magnitude of this shift

depends on the difference in trigger times between the collecting pixel signals.

The preference for a single, consistent offset reflects an intentional choice to pre-

serve information regarding the difference in depth between the collecting anode pixel

signals. Recall that the offset corresponds to the time at which the primary pixel sig-

nal exceeds half of its maximum amplitude, which serves as a reliable proxy for the

electron drift time and depth of interaction. The index at which the secondary pixel
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Figure 5.2: Sample, two-pixel observation configured with a single time offset de-
termined by the primary pixel signal (blue) and separate time offsets
determined for each collecting pixel signal separately (red).

signal rising edge starts varies according to the difference in depth. In the event that

this form of explained variance is quantified by a principal component, the regression

with respect to this component can compensate for any systematic error imposed by

the resulting WPCT.

The correlations depicted in Figure 5.3 justify this choice. The second principal

component correlates significantly with the reconstructed depth difference, and the

two panes in Figure 5.3 plot the depth difference as a function of this principal

component. The top pane features second principal components computed when a

single, consistent time offset is applied to all waveform signals in an observation,

whereas the bottom pane applies a time offset specific to each collecting pixel signal.

The former preserves the relative trigger time difference between the collecting pixel

signals, and higher correlation is expected between the observed depth difference

and principal components. The strength of these correlations, as quantified by the

Spearman rank correlation, confirm that a single offset produces the intended effect

more definitively.

As demonstrated in Chapter II, the energy ratio also influences the magnitude
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Figure 5.3: Difference in reconstructed depth for interactions in non-neighboring, two-
pixel events as a function of the second principal component when using
a single offset computed from the primary pixel signal (top) and using
two, pixel-specific offsets (bottom).

of WPCT. Given its influence on WPCT, it would be advantageous to account for

changes in energy ratio within the principal component regression framework. To

accentuate the effect of energy ratio, two-pixel data vectors are normalized to the

primary pixel signal amplitude. Under this approach, the amplitude of the secondary

pixel signal tail ranges between zero and one. The correlation between energy ratio

and the second principal component for a select anode pixel (Figure 5.4) provides

evidence that the normalization scheme effectively captures this aspect of two-pixel

events. This relationship obtains a functionally perfect Spearman correlation, imply-

ing that the effects of energy ratio are embedded within the decomposed data. If

the signals for the primary and secondary pixels were normalized to their respective

collecting pixel signal amplitudes, this relationship would provide insufficient correla-

tion with any prominent principal component. Therefore, all signals are normalized

by the primary pixel signal amplitude to maintain this correlation.
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Figure 5.4: Energy ratio as a function of the second principal component for side-
neighbor events for a given primary pixel.

The preprocessing steps necessary for multiple-pixel events differ from those used

for single-pixel events at a critical juncture. The observations of multiple-pixel events

omit the cathode signal, and the rationale behind this choice requires some foresight

on the effect for higher-order events. This decision is elaborated in Section 5.5.

5.2 Categorization of Two-Pixel Events

Principal regression for two-pixel events requires a more nuanced approach than

that of single-pixel events. To perform principal regression on reconstructed energy,

events must be strategically divided to fully leverage the predictive capabilities of the

regression. Consider the plot of combined, reconstructed energy for two-pixel events

as a function of the first principal component in Figure 5.5. Based on the plotted

data, no discernible trend is apparent in the first principal component.

These data represent a wide variety of events with significantly different prop-

erties. The data partially consist of neighboring events - events in which adjacent

pixels trigger - which are frequently caused by the charge carriers originating from

a single interaction [84, 85]. The remaining balance of events are attributed to non-
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Figure 5.5: Combined, reconstructed energy of two-pixel events as a function of the
first principal component for a given primary pixel.

neighboring events - events in which distinct gamma-ray interactions deposit energy

in nonadjacent pixels. Such events may have different dependencies on the first prin-

cipal component, as demonstrated in Figure 5.6. Although trends slowly come into

focus after separating the neighboring and non-neighboring events, they cannot be

fully exploited to correct the systematic error in the combined, reconstructed energy.

Additional, strategic event categorization promotes more effective regression with

respect to principal components. A number of readily quantified event attributes

divide the events into categories in which the systematic trends become more appar-

ent. At this point of the reconstruction methodology, this resembles the conventional

WPCT corrections from Section 2.4.3 where events are categorized by different factors

(e.g., lateral separation, depth separation). However, principal component regression

enables the two-pixel event energy to be modeled and corrected beyond common

attributes while avoiding the deficiencies of these conventional calibration methods.

Of the event attributes that can distinguish two-pixel events, data is nearly uni-

formly distributed in only a few of these properties. Given the finite amount of

calibration data, uniformity is a necessary condition to form regression models with

a high degree of statistical significance for all events. Consider the distributions of
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Figure 5.6: Combined energy for events of a given primary pixel as a function of
the first principal component for neighboring events (top) and non-
neighboring events (bottom).

event properties in Figure 5.7. Some categories are sparsely populated with events in

certain regimes. For example, relatively few non-neighboring events have an energy

ratio greater than 0.5, whereas the density below this threshold is far greater. Regres-

sion coefficients derived from sparsely-populated regions of data render the regression

model susceptible to statistical uncertainty. One might assume that poor regressions

for rare events does not significantly impact energy resolution. However, this line of

reasoning may lead to overfitting calibration data; rarely observed events at 662 keV

may become increasingly more common for gamma rays of different incident energies.

The required data density for statistically significant regressions leave two options

for neighboring and non-neighboring events. Energy ratio and primary depth are vi-

able options for neighboring events, whereas non-neighboring events contain relatively

uniform distributions in primary depth of interaction and lateral separation. To limit

model complexity, only one category is chosen for each. In either case, it is preferable
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Figure 5.7: Distributions of the primary pixel depth of interaction (top-left), depth
difference (top-right), lateral separation (bottom-left) and energy ratio
(bottom-right) for non-neighboring, two-pixel events recorded for a single
primary pixel.

that the categorization provides stronger dependence between energy and principal

components. The Spearman rank serves as a valuable metric for this dependence.

The Spearman rank correlation values in Figure 5.8 correspond to the correlation

between reconstructed energy and principal components for a set of non-neighboring

events divided by the specified categories. The first and second principal component

correlations for non-neighboring events categorized by lateral separation appear more

consistent, and occasionally have higher magnitude, than those divided by primary

pixel depth. It also confirms intuition about the nature of WPCT and its effect

on multiple-pixel events. Charge carriers induce relatively small amounts of charge

on pixels separated by a large lateral distance, and these events are less susceptible

to the systematic error attributed to WPCT. Figure 5.9 depicts principal compo-

nent regressions for non-neighboring events from three regimes of lateral separation.
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While no appreciable trends emerged in the principal component regression of all

non-neighboring events in Figure 5.6, the category-specific principal component re-

gressions reveal more information about the systematic error in reconstructed energy.

Figure 5.8: Spearman rank correlations for principal component regressions of non-
neighboring events divided by the primary pixel depth (left) and lateral
separation (right).

Figure 5.9: Principal component regressions for three regimes of lateral separation of
non-neighboring, two-pixel events for a primary pixel.

The same analysis applies for neighboring events in Figure 5.10, in which absolute

Spearman rank correlation measures the quality of the principal regressions between

reconstructed energy and the first two principal components for the noted event cate-
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gories. When categorized by depth of interaction in the primary pixel (left pane), re-

gressions yield relatively high Spearman correlation for the first principal component.

However, there is relatively weak dependence with the second principal component.

Although the Spearman correlation with respect to the first principal component has

less magnitude when categorized by energy ratio (right pane), it maintains an advan-

tage in the correlation strength with respect to the second principal component. This,

along with empirical results, justify the use of energy ratio to adequately categorize

neighboring, two-pixel events. The quality of these regressions for the combined en-

ergy of neighboring events as a function of the first principal component is visualized

more explicitly in Figure 5.11. As indicated by the trends for three regimes of energy

ratio, the regressions of combined energy yield recognizable trends when separated

by energy ratio.

Figure 5.10: Spearman rank correlations for principal component regressions of neigh-
boring events divided by the primary pixel depth (left) and energy ratio
(right).

While two-pixel categorization enables principal component regression to more

readily identify systematic trends in energy deposition, it leaves the principal compo-

nent regression model more susceptible to free parameters and data-snooping. The

binning parameters for event categories of non-neighboring and neighboring two-pixel
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Figure 5.11: Principal component regressions for three regimes of energy ratio of
neighboring two-pixel events for a primary pixel.

events - lateral separation and energy ratio, respectively - are free parameters. In the

event that these categories are binned finely, the regression model may overfit the

energy deposition trends according to the small amount of data within each bin. Al-

ternatively, a coarse binning structure may degrade the regression accuracy. With

this consideration in mind, the binning parameters are chosen so that the number of

events in each category generate robust results. However, no rigorous optimization

of the binning parameters were performed.

5.3 Results for Two-Pixel Events

Once events are categorized according to event type and category, principal com-

ponent regression follows similar procedures as those outlined for single-pixel events.

For each principal component, a linear model approximates the dependence of the

combined energy as function of principal components, and combined energy is itera-

tively updated upon each principal component correction. As depicted in Figure 5.12,

the spectral FWHM of all two-pixel events monotonically decreases as a function of

the number of principal components applied.
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Figure 5.12: Processed, two-pixel energy spectra as a function of the number of ap-
plied principal component corrections.

The spectrum obtained without principal component corrections corresponds to

the estimated energy after applying the standard depth corrections to the estimated

energy deposition for each interaction. There is demonstrable systematic error in

this initial spectrum; the observed centroid is significantly lower than the 662 keV

energy of the incident photons, primarily due to the adverse effects of WPCT. The

most significant improvement in energy resolution occurs after the application of the

first principal component correction, in which the energy resolution improves by a

factor greater than two. Beyond the first principal component, the energy resolution

improves in small increments.

The PCA methodology compares favorably against conventional techniques for

two-pixel events, as indicated by the energy spectra of a 137Cs exposure measurement

in Figure 5.13. Relative to trapezoidal filtering and SRF, the observed FWHM at

662 keV for the PCA methodology improves by 7 and 14%, respectively in relative

terms. The PCA methodology owes much of its success to the performance of side-

neighboring events, which constitutes approximately 75 and 60% of all two-pixel

events and two-pixel photopeak events, respectively.

The energy resolution of side-neighboring, two-pixel events is visualized as a func-
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Figure 5.13: Two-pixel energy spectra of a 137Cs exposure processed by trapezoidal
filtering, SRF and PCA reconstructions techniques.

tion of the primary pixel location in Figure 5.14, which compares the FWHM between

SRF in the left pane to that of principal component regression in the right pane. The

data in Figure 5.15 provides a direct comparison of the side-neighboring, two-pixel

energy resolution for each primary pixel. It includes the line y = x as a benchmark;

data that fall below the benchmark indicate net improvement between PCA recon-

struction and SRF. Regardless of the baseline performance achieved by SRF, the

energy resolution improves for the majority of anode pixels.

Figure 5.14: Neighboring, two-pixel event energy resolution for each primary pixel as
a function of its physical location for SRF (left) and PCA (right).
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Figure 5.15: Neighboring, two-pixel event energy resolution for each primary pixel for
PCA as a function of the resolution obtained by SRF.

The PCA methodology decomposes two-pixel observations separately for each

primary pixel in an attempt to preserve information regarding pixel-specific tendencies

and local material properties. Conventional methods do not preserve these effects,

but rather derive two-pixel energy corrections from aggregate two-pixel event data

from all pixels. Such an approach ignores differences in the position-specific response.

It is a nontrivial matter to determine how much of the improvement may be

attributed to principal component regression or the pixel-specific decomposition, as

there may be some indeterminable amount of codependency between these two fac-

tors. However, the contribution of pixel-specific PCA may be inferred by evaluating

the performance under a framework in which all two-pixel events are analyzed in a

single data matrix. This hypothetical application of PCA ignores position-sensitive

response information and treats all events as though they are collected by a generic

anode pixel.
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Under this hypothetical framework, the energy resolution observed for all two-

pixel events degrades to 0.59%, nearly matching that of the SRF methodology. The

loss of pixel-specific eigenvectors negatively affects exterior pixels more severely, as the

neighboring event FWHM recorded in exterior pixels degrades by 0.06% on average,

doubling the average interior pixel degradation of 0.03%. While principal component

regression alone helps the PCA methodology nearly match the performance achieved

by SRF, the pixel-specific decomposition of waveform data gives PCA the comparative

advantage. Pixel-specific corrections are not feasible for SRF or trapezoidal filtering

largely due to the curse of dimensionality. In its current configuration, the WPCT

correction divides two-pixel events by lateral and depth separation. Dividing these

events further would degrade the statistical significance of the WPCT correction.

5.4 Processing Time

The rapid processing speed for the PCA methodology for single-pixel events bene-

fits from the O (n) processes that govern event reconstruction processes. The circum-

stances change under the framework required for two-pixel event reconstruction. The

processes pertaining to PCA evaluation and projection still rely on inner products

among other O (n) processes, albeit with a larger value of n. The waveform vector

nearly doubles upon the addition of the signals corresponding to the secondary pixel.

Although the length of n nearly doubles, the time allocated to the depth re-

construction accounts for the most significant increase in processing time under the

multiple-pixel framework. The underlying assumptions of the CAR methodology no

longer apply, and multiple-pixel event reconstruction relies on the trigger time to esti-

mate depth of interaction. To extract robust estimates of the trigger time, waveforms

must be filtered - a process that is optimally performed with a CR-RCn filter. The

filtering process runs in O (n log n) using the FFTW implementation, and it dictates

the overall run time complexity for reconstruction under the PCA framework.
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The trigger-time filter and the increase in waveform vector length change the rel-

ative processing time performance with respect to the standard trapezoidal filtering

reconstruction. As with single-pixel events, trapezoidal filtering runs in O (n log n)

time for each observed waveform, and it implements the same depth reconstruction

procedure as that of the PCA methodology. The comparison of processing time

distributions for two-pixel events are shown in Figure 5.16. Due to the additional

computational load for the PCA methodology, trapezoidal filtering obtains an advan-

tage. However, the observed processing speed is still far faster than the maximum

throughput of approximately 3000 events per second.

Figure 5.16: Processing time distribution for two-pixel events under various recon-
struction methods.

5.5 Generalization for All Multiple-Pixel Events

The PCA framework must accommodate the reconstruction of higher-order events

- events in which three or more pixels trigger - to provide a complete and effective alter-

native to conventional reconstruction methods. Such events are frequently associated

with Compton scattering interactions, although they may result from charge sharing

events or mixtures of the two. These events comprise a small, yet non-negligible,

proportion of all detected events. In concrete terms, approximately 20% of events
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in a typical, 137Cs exposure trigger three or more pixels. This fraction increases as

a function of incident gamma-ray energy, due in part to changes in the gamma-ray

interaction cross sections in CdZnTe and the electron cloud dimensions.

The logistics of decomposing higher orders of events in the same manner as single

and two-pixel events render it impractical. The predominant concern is the amount

of higher-order event data and the categorization thereof. Much of the success of

principal component regression of two-pixel event data is predicated on event cate-

gorization. Event categorization strategies for two-pixel events correspond to funda-

mental parameters (i.e., lateral separation, energy ratio), but quantifying equivalent

metrics for higher-order events becomes increasingly difficult as the number of trig-

gered pixels increases. For example, the distribution of the energy deposited between

two pixels is concisely quantified by the energy ratio, but more complex schemes are

required to quantify the distribution of energy deposition for higher-order events with

a single value. Even with the aid of an effective event categorization scheme, the rel-

atively small amounts of higher-order events present challenges for the generation of

statistically-significant corrections by means of principal component regression.

The more pragmatic approach to higher-order event reconstruction relies on the

corrections derived from two-pixel events, owing to the abundance of two-pixel pho-

topeak data and the salient information embedded in their eigenvectors. To properly

apply principal component corrections derived from two-pixel events towards higher-

order events, one must divide the constituent interactions into pairs. For an n-pixel

event, there are n(n−1)
2

unique combinations of interactions. Consider the case of a

generic three-pixel event. In such an event, there are three unique pairs of interac-

tions: the first and second, first and third, and the second and third pixels all form

two-pixel events in isolation.

Under this framework, each pair is processed as though it is a two-pixel event. As

modeled in Equation 5.1, the summation of the net change in energy for the pseudo-
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events formed by pixels i and j produces the cumulative energy change for an n-pixel

event. This concept serves as an analogue to the WPCT developed by Zhang [46],

albeit with principal component corrections.

∆ETotal =
n∑

i,j>i

∆Ei,j (5.1)

To rationalize Equation 5.1, it is convenient to recall the Shockley-Ramo theorem

introduced in Chapter II. It dictates that the net charge induced on an electrode, ∆Q,

by several units of charge, individually represented by qi, corresponds to Equation

5.2. The charge induced by qi on an electrode is independent of any other qj (j 6= i).

Therefore, the net induced charge is the superposition of the signal induced by all

charges qi. This ignores the effects of charge repulsion, which may alter the path of

qi to an insignificant extent. If only the charge carriers collected by pixels i and j are

considered, one can therefore approximate the signals induced by the hypothetical

two-pixel event formed by this pair. On a macroscopic scale, the energy collectively

deposited by this pseudo-event may be estimated from the initial, depth-corrected

energy for pixels i and j. This estimate may be updated with the aid of principal

component corrections, and the change relative to initial energy is ∆Ei,j.

∆Q = −
N∑
i

qi
[
φ0

(
xtf
)
− (xt0)

]
(5.2)

Certain assumptions must be made to apply this approach for higher-order events,

as the effects of WPCT cannot be completely decoupled from the sampled waveforms.

Consider a combination of two interactions from a three-pixel event. The WPCT im-

posed by the third interaction is embedded in the waveforms of the pseudo-event, even

though it is not considered in the pair. Due to this contribution, the projection of the

pseudo-event onto the principal subspace is biased to some extent. Without a method
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for isolating the induced signals from the interactions in question, this bias cannot be

mitigated. Promising methods such as independent component analysis (ICA) allow

one to separate mixtures of signals [86]. However, ICA relies on restrictive assump-

tions of independent signals that do not necessarily apply to the signals induced by

multiple-pixel events in pixelated CdZnTe detectors.

Note that the cathode signal is omitted from the observations of multiple-pixel

events. Compared to an anode pixel, the signal induced on the planar cathode surface

is far more sensitive to the movement of all charge carriers. The amplitude of this

signal corresponds to the summation of the contributions from all moving charge

carriers, while the anodes are only sensitive to those that move in close proximity to

the pixel in question. Therefore, the observed cathode signal in a higher-order event

does not accurately reflect the cathode signal pertaining to the pseudo-event formed

by a pair of interactions. The observed cathode signal consistently overestimates the

latter and adds a source of systematic error to the calculation of principal component

values for higher-order events.

To prevent exhaustive evaluation of the higher-order energy resolution, the com-

parison is limited to the performance for three and four-pixel events in Figure 5.17.

It provides a direct comparison of trapezoidal filtering, SRF and PCA methodology

applied to identical 137Cs exposure data. The PCA methodology compares favorably

with respect to three-pixel event performance, but SRF achieves the best performance

for four-pixel events by a significant margin.

The relative performance between trapezoidal filtering and PCA do not change

for three and four-pixel energy reconstruction. However, the performance achieved

by SRF surpasses the two alternatives only for four-pixel events. The reason for

this shift in performance lies in the depth reconstruction mechanics for this suite of

reconstruction methods.

The depth reconstruction and subsequent depth-correction process for trapezoidal

109



Figure 5.17: Comparison of three-pixel (top) and four-pixel (bottom) energy spectra
for a 137Cs exposure processed via trapezoidal filtering, SRF and the
PCA methodology.

filtering and the PCA methodology are fundamentally identical, as they both estimate

depth of interaction based on trigger time. The SRF framework follows a different

procedure in which it determines the best depth estimate by matching the observed

waveforms to the system response templates that they most closely resemble. The two

approaches yield insignificant differences in estimated depth for single-pixel events as

demonstrated in Chapter II. However, this consistency is not true of multiple-pixel

events.

The estimated trigger time, and therefore depth of interaction for trapezoidal

filtering and PCA, for multiple-pixel events is much more sensitive to the effects of

WPCT. The transient signals imposed on collecting pixels cause a systematically low

estimate of the trigger time and depth of interaction. This is increasingly true for

interactions with little induced charge, as the transient signal from WPCT may have

larger magnitude.
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Consider the waveforms of a generic two-pixel event in Figure 5.18, which features

raw waveforms and the corresponding filtered waveforms used in the trigger time

estimation process. The primary pixel signal imposes a considerable transient signal

on the secondary pixel. This is readily apparent to the human eye, as the secondary

pixel signal initially rises, declines as the WPCT induced charge in a neighboring

pixel decreases, and rises once again as it collects charge. However, the filtered

waveform fails to make this distinction and severely underestimates the trigger time

of the secondary pixel signal. If the secondary pixel amplitude signal were greater,

the transient signal would be less likely to exceed the trigger threshold.

Figure 5.18: Raw waveforms acquired for a generic two-pixel event (top) and the
corresponding, filtered waveforms used in calculating the trigger times
(bottom). The trigger times are indicated by the dashed, vertical lines.

The resulting systematic error in depth may not be significant for cathode-side

interactions, as the induced signal amplitude is approximately constant as a function

of depth in this regime. However, systematic error can be more consequential for

interactions near the anode where the response changes significantly as a function of
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depth. As it pertains to energy reconstruction, the depth correction shared by PCA

and trapezoidal filtering aggressively compensates for the assumed loss of amplitude

for anode-side events and overestimates the energy deposition for the affected, collect-

ing pixel. The energy deposition estimated by SRF is less sensitive to these sources

of systematic error.

This consideration becomes relevant when analyzing higher-order events, as the

total energy deposition is shared among more pixels. As indicated by the distribution

of energy deposited in individual pixels for 137Cs photopeak events in Figure 5.19,

the most probable energy deposition per pixel in three and four-pixel events are

those with a low amount of energy. This distribution of energy deposition increases

the potential for systematic error for higher-order events reconstructed by PCA and

trapezoidal filtering.

Figure 5.19: Distribution of energy deposited in individual pixels for 137Cs photo-
peak events resulting in three-pixel events (top) and four-pixel events
(bottom).

Based on these arguments, the performance of PCA and trapezoidal filtering de-
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pends much more heavily on the presence of low-energy interactions than SRF as

shown in Figure 5.20. To modulate the influence of events containing interactions

with small energy deposition, the energy resolution is calculated at several threshold

values. The threshold value places a lower limit on the energy deposited in an individ-

ual pixel; events containing interactions that do not meet this threshold are excluded

from the energy resolution calculation. By removing events with low-energy interac-

tions, the sources of systematic error in trapezoidal filtering and PCA reconstruction

should progressively diminish as threshold increases. This is apparent in Figure 5.20

where the four-pixel energy resolutions obtained with trapezoidal filtering and PCA

reconstruction improve by 0.10 and 0.06%, respectively, as the threshold increases

from 0 to 30 keV. The energy resolution achieved by SRF changes insignificantly in

this range of thresholds and indicates that the reconstruction method is resilient to

the presence of low-energy interactions. It is this resilience that allows SRF to surpass

the resolution of alternatives for events in which low-energy depositions are prevalent.

Figure 5.20: Observed, four-pixel energy resolution at 662 keV as a function of a low-
energy threshold for trapezoidal filtering, SRF, and PCA reconstruction
methods. Events that contain individual interactions with energy depo-
sition below the threshold are removed and excluded from the energy
resolution calculation.
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CHAPTER VI

Adaptations for Principal Component Regression

for High-Energy Events

Event reconstruction of high-energy depositions differs from the interactions ana-

lyzed in Chapters IV and V enough to justify a chapter devoted to its unique chal-

lenges. This subject matter is relevant to niche applications in which numerous,

high-energy gamma-ray emissions must be resolved and quantified, such as neutron-

capture prompt gamma-ray activation analysis (PGAA) [87–89]. Additional applica-

tions, such as imaging prompt gamma rays induced by the delivery of clinical proton

beams [90, 91], bear some dependence on accurate energy reconstruction of high-

energy, gamma-ray interactions.

For the purposes of this work, high-energy depositions are those in which more

than 1 MeV is deposited. Beyond this energy, conventional reconstruction meth-

ods and principal component regression propagate sources of systematic error. The

systematic error in question manifests itself in the form of misaligned photopeak cen-

troids as shown in Table 6.1. Tabulated data for various 228Th and 22Na gamma-ray

emissions1 indicate that all viable reconstruction methods systematically underesti-

mate photopeak centroids below the calibration energy of 661.7 keV and overestimate

incident gamma-ray energy above the calibration point. The differential nonlinearity

1Gamma-ray emission energies were extracted from the Idaho National Laboratory (INL) gamma-
ray spectrum catalog
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is more explicitly featured in Figure 6.1. Bias appears at low-energy depositions to a

small extent, but it is far more pronounced for incident gamma-rays possessing energy

above the calibration point.

Table 6.1: Observed, single-pixel photopeak centroids as a function of incident
gamma-ray energy as reconstructed by PCA, SRF and trapezoidal filtering

Emission Energy
[keV]

PCA Centroid
[keV]

SRF Centroid
[keV]

Filtering
Centroid [keV]

238.632 273.2 237.95 237.96

300.087 298.6 299.27 299.27

510.770 509.9 510.46 510.24

583.191 582.7 583.25 583.01

727.330 728.1 728.53 728.24

785.370 787.1 787.27 787.16

860.564 863.0 863.24 862.75

1274.53 1283.3 1283.40 1282.28

1592.521 1608.0 1607.50 1606.28

2614.533 2654.6 2654.00 2651.77

Mechanisms specific to high-energy gamma-ray interactions also degrade energy

resolution above the calibration point. Of the factors that dictate energy resolu-

tion, the most prominent contributions arise from statistical error, electronic noise,

variance in the charge-carrier transport, and systematic error. Electronic noise is a

property determined by the sensor and front-end electronics subsystem design, and

it remains constant over the entire energy domain. Statistical variation arises from

fluctuations in the amount of charge carriers generated by the interaction between

radiation and matter. The Fano factor succinctly describes the statistical properties

of this fluctuation, and it measures the ratio between the observed signal amplitude

variance to that predicted by Poisson statistics [92]. The Fano factor depends entirely
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Figure 6.1: Differential nonlinearity for reconstructed, single-pixel photopeak cen-
troids as a function of incident gamma-ray energy for various reconstruc-
tion methods.

on the detection medium, and its contribution to the observed FWHM is modeled

by Equation 6.1, in which W , F , ε and E represent the FWHM, Fano factor, the

efficiency at which charge carriers are generated and the incident radiation energy,

respectively. Note that the factor 2.352 relates the variance to FWHM under the

assumption of a Poisson distribution.

W 2 = 2.352FεE (6.1)

Based on Equation 6.1, the statistical contribution of FWHM depends on the

square root of the incident gamma-ray energy, and its relative contribution to the

FWHM as a percentage of the energy deposition - which is the preferred form for

reporting this metric - decreases as a function of incident energy. Variations in charge-

carrier transport is not characterized as precisely as the contributions from electronic

noise and statistical variation. It ultimately depends on electrode geometry and the

detector material. Owens suggests that the FWHM attributed to variations in charge-

carrier transport depends linearly on incident energy for a coaxial HPGe detector [93],

but the implications for pixelated CdZnTe detectors have not been evaluated with
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the same level of detail and rigor. The contribution of systematic error in the event

reconstruction process also lacks thorough characterization as a function of incident

gamma-ray energy.

Despite the uncertain contributions of charge-carrier transport variation and sys-

tematic error as a function of incident energy, the prevailing sentiment suggests that

energy resolution in pixelated CdZnTe detectors should monotonically decrease as in-

cident energy increases. The observed FWHM of single-pixel events under the PCA

framework deviates from the expected behavior as demonstrated in Figure 6.2. En-

ergy resolution at low incident energy degrades due to the fixed contribution from

electronic noise, and it progressively improves until approximately 1500 keV.

Figure 6.2: Single-pixel energy resolution as a function of incident gamma-ray energy
obtained with PCA reconstruction.

Given current designs of detector geometry, electrode configuration and front-end

electronics, the task of improving energy resolution for high-energy depositions fo-

cuses on compensating for the variance in charge-carrier transport more effectively.

Statistical variance, electronic noise and charge-carrier transport variations are inher-

ent properties to the detection system used in this work, and the focus of this chapter

rests on mitigating sources of systematic error that prevail at higher gamma-ray en-

ergies. For conventional methods, this is performed by characterizing the differential
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nonlinearity for each anode pixel. Such methods yield energy resolution that more

accurately reflects the expected performance at high incident energy, but they neglect

the position-specific responses for high-energy depositions. The intent of this work

seeks to leverage the analysis provided by PCA to mitigate the underlying causes of

poor performance in high-energy depositions.

Event properties that distinguish high-energy events from the events studied in

previous chapters are elaborated in subsequent sections. The adaptations developed

to address these challenges and the corresponding performance for these adaptations

are presented for single-pixel and multiple-pixel events. The performance of the PCA

methodology is compared directly to the leading alternative for energy resolution,

SRF. The evaluation of the performance for these methods leads to discussion of the

factors that limit performance of principal component regression.

6.1 Challenges Unique to High-Energy Events

As indicated by Zhang, Kaye & He, some portion of the systematic error arises

from the front-end electronics [94]. In more concrete terms for the data acquisition

systems used in this work, the manufacturers of the VAD UM2 ASIC, Integrated

Detector Electronics AS (IDEAS), cite a 0.35% integral nonlinearity [95]. For a

complete analysis of this effect, one must also consider the operating dynamic range.

The VAD UM2 ASIC offers several dynamic ranges that allow users to tailor their

data acquisition for specific applications. This includes a 700 keV dynamic range as

well as the 3, 7 and 9 MeV dynamic ranges that are more appropriate for this subject

matter. As feedback capacitors in the front-end electronics change to accommodate

varying dynamic ranges, the extent to which integral nonlinearity affects the energy

resolution at a fixed gamma-ray energy varies. The intent of this work is not to

characterize nonlinearity effects for each of the applicable dynamic ranges, but rather

to provide a framework that can compensate for the adverse effects of nonlinearity

118



independently of dynamic range.

Additional systematic error originates in assumptions for the event reconstruction

model. The reconstruction methods established for low-energy depositions implicitly

assume that the position of interaction resembles a point estimate. This approxi-

mation becomes increasingly inaccurate as the energy deposition increases, and the

locations at which charge carriers are born frequently extend beyond the virtual voxel

boundaries of position-sensitive CdZnTe detectors. Consider the simulated gamma-

ray depositions in a CdZnTe detector volume for 500 and 3000 keV incident gamma

rays in Figure 6.32. The 500 keV deposition (left pane) is enclosed in a small volume

where the extent in the largest dimension is approximately 0.15 mm, whereas the

track of a 3000 keV deposition (right pane) consumes a far larger volume. The length

of the largest dimension of the 3000 keV track is approximately ten times greater

than that of the 500 keV deposition, despite only only a factor of six between the

energy depositions. Visualizing these two examples of charge clouds offers admittedly

anecdotal evidence to the spatial extent of charge carriers, but it provides insight as to

how increasing energy deposition affects the underlying assumptions of conventional

reconstruction procedures.

In the event of a large energy deposition, charge carriers may originate across

regions of disparate weighting potentials. If they terminate their paths at the same

location, the resulting variance in their respective charge induction on the collecting

pixel obfuscates the actual energy deposition. This phenomenon affects anode-side

events more severely due to the higher weighting potential sensitivity to changes in

position. Furthermore, some charge may not be collected by any pixel, but rather

fall to the gap between anode pixels. In such an event, the recorded signal may have

a significant amplitude deficit [63].

Low detection efficiency for high-energy gamma rays further complicates the study

2Interactions and radiation transport are simulated via the Geant4 simulation toolkit [96, 97]
and the associated Livermore low-energy, electromagnetic models [98].
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Figure 6.3: Simulated interactions in which 500 keV (left) and 3000 keV (right) are
deposited in a CdZnTe detector. The location and size of the circles
indicate the location and the relative magnitude of the energy deposition,
respectively.

and correction of such events. Meaningful and statistically-significant insights may

be derived from the acquisition of high-energy gamma-ray interactions, but they are

exceedingly difficult to record with low-activity calibration sources. The methods

presented in this text predominantly use a 228Th check source and its associated 2614

keV emission to acquire such data, but the acquisition includes a litany of low energy

and relatively high-probability emissions that accompany it.

6.2 Principal Component Regression for Single-Pixel Events

Following the structure of previous chapters, the analysis of principal component

regression for high-energy interactions begins with relatively uncomplicated single-

pixel events before advancing to the challenges of multiple-pixel events. To achieve

optimal single-pixel energy resolution, corrections must address the voxel-specific

sources of systematic error as was demonstrated in Chapter IV, and they must also

target mechanisms that afflict high-energy interactions in particular. As evidenced

by the non-monotonic single-pixel energy resolution trend as a function of incident

gamma-ray energy in Figure 6.2, only accounting for voxel-specific systematic error
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via principal component corrections is insufficient.

Much like conventional reconstruction techniques, the PCA methodology is not

impervious to the effects of integral nonlinearity. Pixel-specific gain amplification

must be characterized to properly compensate for any misalignment that may re-

sult from the energy-dependent nonlinearity. The nonlinearity is readily quantified

without the aid of principal components; to do so with the PCA methodology would

require significant modifications that are otherwise unnecessary. Therefore, the non-

linearity calibration is performed in a similar fashion to the method described by

Zhang [46], in which the true incident gamma-ray energy is modeled as a function

of energy deposition estimates. Nonlinearity is modeled for each anode pixel indi-

vidually to specifically target differences in front-end electronics and the effects of

pixel orientation. As demonstrated in Figure 6.4, the true energy can be accurately

regressed as a function of the observed centroids using a polynomial model. The re-

gressed trend closely resembles perfect linearity up to approximately 1 MeV. Beyond

this threshold, observed photopeak centroids systematically exceed their true value.

Uncertainty in polynomial regression model parameters transfers to the updated,

gain-corrected energy estimate. The independent variable for this gain-correction

model, observed photopeak centroid, is severely heteroscedastic due to the single-pixel

event efficiency in pixelated CdZnTe detectors. Low-energy centroids may be esti-

mated with greater precision compared to high-energy centroids at which detection

occurs infrequently. The heteroscedastic nature of data precludes theoretical esti-

mates of the regression precision as a function of energy. However, the uncertainty in

gain-corrected energy deposition can be estimated more effectively via bootstrapping

[99]. This method entails replicating the single-pixel energy spectrum from which the

observed photopeak centroids were determined. For each realization of this spectrum,

regress the nonlinearity model and use it to estimate the gain-corrected energy depo-

sition of an event. By these means, one can estimate the statistical variance in the
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Figure 6.4: Model of nonlinearity derived from the observed photopeak centroids
(top) in the spectrum of single-pixel events collected by a single anode
pixel (bottom).

gain-corrected energy estimate attributed to the nonlinearity regression model.

Figure 6.5 provides the distributions of gain-corrected energy estimates at various

energies for 1 × 104 realizations of the single-pixel energy spectrum aquired by an

anode pixel. The distributions suggest that nonlinearity compensation induces more

uncertainty for gamma-ray events at the high ened of the energy spectrum, whereas

the uncertainty in gain-corrected below 1 MeV is relatively negligible. Despite the

statistical variance at high gamma-ray energy, it is preferable to the systematic error

that existed prior to the nonlinearity correction.

After application of nonlinearity corrections, the single-pixel energy resolution

achieved by PCA monotonically decreases as a function of incident gamma-ray energy,

and it adheres to the behavior that is predicted by conventional thought (Figure 6.6).

With the same gain-correction procedure, the energy resolution achieved by SRF

also improves at high incident gamma-ray energies, yet fails to produce the same
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Figure 6.5: Distribution of gain-corrected energy estimates produced from 1 × 104

realization of the 228Th spectrum for various gamma-ray energies.

improvement as that of PCA. Note that the energy resolution at the lower end of the

spectrum does not change significantly, as this energy regime is less severely affected

by nonlinearity.
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Figure 6.6: Single-pixel energy resolution as a function of incident gamma-ray energy
for SRF and PCA with and without gain corrections.

Despite identical gain-correction procedures, the performance of PCA improves

more significantly than SRF. The gain correction aligns the pixel-specific photopeaks

under one aggregate photopeak with a common centroid. The correction eliminates

variance in pixel-specific centroids, but makes no attempt to reduce variance in energy

deposition estimates acquired by individual pixels. The nonlinearity correction multi-

plies the original energy estimates by a factor, which only serves to scale the variance

of energy estimates of interactions collected by any given pixel. This is more concisely

described by the axiomatic relationship in Equation 6.2, in which b is analogous to

the nonlinearity correction factor and E represents the energy deposition estimates

of a collection of monoenergetic photopeak events. As all samples of E correspond

to a single incident gamma-ray energy, the factor b remains roughly constant. The

correction factor merely scales the variance in a photopeak, implying that a pixel

achieving better energy resolution under the PCA methodology remains superior to

SRF after nonlinearity correction.

V ar (bE) = b2V ar (E) (6.2)
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To illustrate this point, consider the distributions of pixel-specific energy resolu-

tion for two select photopeaks in Figure 6.7. The pixel-specific energy resolutions

that constitute these distributions are obtained before the application of nonlinearity

corrections. Relative to the resolution achieved by SRF, the corresponding distri-

butions for the PCA methodology are more heavily weighted towards lower FWHM

values. These observations provide evidence consistent with the greater improvement

in single-pixel energy resolution for PCA upon application of nonlinearity correction.

Figure 6.7: Distribution of single-pixel energy resolution achieved by SRF and prin-
cipal component regression before the application of nonlinearity com-
pensation. The top pane displays the distribution for 860 keV photo-
peaks, whereas the bottom pane contains the distribution for the 1592
keV single-escape peak.

The next logical question in this analysis is whether PCA can provide some insight

into ways in which energy resolution can improve further. As the gain-correction

model is determined from aggregate data across all depths of interaction, it does not
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account for the depth-specific gain. As detailed in Chapter II, anode-side interactions

have lower amplitude response due to the small-pixel effect. Therefore, anode-side

interactions still have some deficit in reconstructed energy, as demonstrated in Figure

6.8. Despite the application of nonlinearity compensation, the reconstructed energy

of anode-side interactions - indicated by low values of the depth in arbitrary units -

appears systematically lower than the 2614 keV incident energy. Given the paucity of

empirical data for high-energy interactions, determining a depth-specific nonlinearity

correction is impractical. The question now shifts to whether PCA can provide some

path for correction that is more resilient to insufficient amounts of empirical data.

Figure 6.8: Gain-compensated, reconstructed energy of single-pixel, 2614 keV inter-
actions as a function of depth for a single channel.

Up to this point in the analysis, principal components were determined by the

eigenvectors from decomposition of observations in which less than or equal to 662

keV was deposited. While these principal components helped construct predictive

models for energy deposition in events with less than 1 MeV, they may not necessarily

embed pertinent information for interactions at higher energies. In an attempt to

target mechanisms more relevant to high-energy interactions, PCA was performed

on the observations collected from a separate 228Th measurement. Only observations

that exceeded 1.5 MeV were included in the analysis.
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Select eigenvectors produced by this revised analysis are compared to those from

the 137Cs data in Figure 6.9. As in previous plots of eigenvectors, vertical lines

separate signals from the collecting anode pixel, cathode, and four pixels adjacent to

the collecting pixel. The eigenvector that corresponds to the first principal component

(top pane) reveals effectively similar information about the depth of interaction. This

is indicated by the substantial weight given to the cathode signal and the neighbor

pixel tail regions.

Figure 6.9: Comparison of eigenvectors generated from 137Cs data and high-energy
data for the first three principal components for an anode pixel. The
first, second and third principal component eigenvectors are featured in
the top, middle and bottom panes, respectively. The vertical, dotted lines
separate the signals obtained from the collecting anode pixel, cathode and
four neighbor pixels adjacent to the collecting pixel.
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However, the two subsequent eigenvectors exhibit demonstrable differences. Con-

sider the eigenvectors for the second principal component (middle pane). The 137Cs

data eigenvectors provide information about subpixel position, as indicated by the

opposite polarities of the top and bottom neighbor pixel tail regions (fourth and sixth

segments, respectively). The high-energy eigenvector provides no preference for any

neighbor pixel tails, and it implies that this eigenvector does not embed subpixel

position information. This observation also applies to the third eigenvector (bottom

pane).

These observations are consistent with intuition regarding high-energy, single-

pixel events. When a large amount of energy is deposited, interactions near pixel

boundaries generally trigger at least one of the neighboring pixels. Only interactions

that occur in the lateral center of a pixel generate single-pixel events eligible for this

analysis. For this reason, high-energy events cannot be distinguished effectively by

lateral, subpixel position.

Upon gathering these high-energy-specific eigenvectors, principal component re-

gression was evaluated once again to obtain new calibration parameters. The resulting

energy resolution was tabulated, and the results are compared to those obtained with

the standard set of calibration parameters in Figure 6.10. Despite changes in the

eigenvectors, there are negligible changes in the achievable energy resolution across

the energy domain. As with the results presented in Chapters IV and V, most of

the improvement is achieved after the first principal component correction. The first

principal component is effectively unchanged between the two approaches, and the

results in Figure 6.10 suggest that the subsequent principal component corrections

mitigate systematic error in energy reconstruction to nearly similar effect.
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Figure 6.10: Single-pixel energy resolution as a function of incident gamma-ray en-
ergy for principal component regression with standard and high-energy
principal components.

6.3 Principal Component Regression for Multiple-Pixel Re-

sults

As with single-pixel events, the interactions constituting multiple-pixel events are

subject to integral nonlinearity from the front-end electronics. The gain-compensation

model regressed from single-pixel events provides the requisite information to com-

pensate for this nonlinearity. These corrections are applied before application of the

principal component corrections to preserve consistent relationships between total en-

ergy deposition and principal components. The resulting two-pixel energy resolution

is compared to the results achieved by SRF in Figure 6.11.

The energy resolution obtained with the PCA methodology compares favorably to

SRF, but the advantage diminishes at progressively higher incident energy. The two

approaches feature nearly identical gain-correction procedures. As discussed in the

previous section, the uncertainty introduced by nonlinearity compensation is negligi-

ble at low energies. However, this uncertainty increases in energy due to statistical

uncertainty in the training data for high-energy centroids. Principal component re-

gression fails to mitigate statistical uncertainty of this nature, which accounts for the
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Figure 6.11: Two-pixel energy resolution as a function of incident gamma-ray energy
for SRF and PCA.

diminishing returns in achievable energy resolution at high incident energy.

Similar to the methods presented for single-pixel events, PCA can be performed

on a set of high-energy observations exclusively. However, statistical uncertainty in

the nonlinearity compensation still afflicts the results obtained with the PCA method-

ology as demonstrated in Figure 6.12. Therefore, the modified principal components

obtained with these high-energy eigenvectors do not yield significant improvement

over the standard principal components for 137Cs. Despite the additional statistical

uncertainty associated with nonlinearity correction, it remains necessary to achieve

the optimal performance from principal component regression.
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Figure 6.12: Two-pixel energy resolution as a function of incident gamma-ray energy
for PCA with a variety of modifications.
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CHAPTER VII

Summary and Future Work

7.1 Summary

Judicious use of digitized waveforms has been an elusive goal for event reconstruc-

tion with 3-D position-sensitive CdZnTe detector technology since the introduction

of the digital ASIC front-end architecture. Previous reconstruction methods such as

SRF partially achieved this goal, but it did not diminish the reliance on a posteriori

corrections for sources of systematic error that obfuscate the estimation of gamma-ray

interaction attributes. Despite marginal improvements in energy resolution for cer-

tain subsets of gamma-ray interactions, it requires computationally intensive inverse

methods that render it impractical for applications that need rapid event processing.

The novel methods presented in this work provide yet another approach to lever-

aging the full extent of digitized waveforms by means of PCA. As demonstrated

in Chapter III, the decomposition provided by PCA identifies gamma-ray interac-

tion characteristics in the form of principal components from digitized samples. This

methodology allows one to extract valuable information embedded within digitized

waveforms that may be otherwise neglected by methods developed by human intuition

and physics-based models. It does so without sacrificing the capability to interpret

physical meaning from these latent variables that would otherwise be obscured by

alternative, statistically-driven methods like deep learning.
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The principal component regression methodology described in Chapter IV models

the relationship between principal components and energy deposition. It reveals the

ways in which systematic error manifests in the initial estimates of energy deposition,

and it corrects for this error accordingly. This methodology offers on the order of

10% improvement relative to established reconstruction techniques with respect to

FWHM and FWTM for single-pixel events. This performance relies on computational

subroutines with O (n) complexity. As such, the processing time per single-pixel event

for principal component regression consumes approximately 75% of the time required

to process an event with the fastest alternative, trapezoidal filtering.

The proposed PCA methodology is extended to multiple-pixel events in Chapter

V, albeit with the aid of feature engineering to address challenges specific to these

increasingly complex events. Under this framework, the two-pixel event FWHM at

662 keV was improved by 10% compared to the leading alternative technique for this

metric, SRF. The improved energy resolution comes at a minor expense of event pro-

cessing speed, as it requires approximately 10% more time to process a two-pixel using

the default configurations than that of the expedient trapezoidal filtering approach.

This PCA framework was generalized for application to higher-order events, and the

performance was presented for three and four-pixel events. Three-pixel event FWHM

improves by an order of 10% with principal component regression, but the results

become comparable to alternative methods for four-pixel events. The results for the

latter reveal the sensitivity to systematic error in depth reconstruction of interactions

with small energy depositions for the PCA methodology.

Energy reconstruction for high-energy events entails additional sources of system-

atic error, but not all of which require principal components. Integral nonlinearity

in front-end electronics comprises a significant component of systematic error, and it

is readily quantified and modeled without principal components. After application

of nonlinearity compensation, single-pixel energy resolution obtained with principal
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component regression improves considerably. This improvement becomes increas-

ingly more significant as a function of incident gamma-ray energy, and it enables

PCA to achieve an approximately 30% reduction in FWHM at 2614 keV relative

to SRF. An alternative set of eigenvectors were computed using high-energy events

exclusively to target the remaining sources of systematic error, but this new set of

information yielded negligible improvement relative to the performance achieved with

eigenvectors produced by the decomposition of relatively low-energy 137Cs data. The

reconstruction of high-energy, multiple-pixel events also benefited significantly from

nonlinearity compensation. Upon this correction, PCA consistently provided better

two-pixel energy resolution up to events with 1500 keV energy deposition. However,

the statistical uncertainty introduced by gain correction limited the ability to mitigate

systematic error at higher energies. Consequently, SRF and PCA produced nearly

similar two-pixel energy resolution beyond 1500 keV.

7.2 Future Work

The principal component regression methods presented in this work address the

elusive goal of achieving full utilization of the sampled waveforms. The PCA method-

ology decomposes such waveforms in pursuit of the fundamental properties that dis-

tinguish waveforms, and the implications of this analysis with regards to performing

energy reconstruction have been detailed thoroughly in Chapters IV, V and VI. How-

ever, event reconstruction describes the process by which all interaction parameters

are estimated, not just energy deposition. The event reconstruction process also

entails the estimation of the position of interaction.

The application of principal component regression towards the estimation of 3-

D position was investigated, but the efforts towards this task yielded uninspiring

results. The presented methods provided promising results for energy reconstruction

due in part to a well-characterized ground truth. The energy of emitted gamma

134



rays are known with a small degree of uncertainty, and this enables the judicious

use of supervised regression to model the estimated energy as a function of principal

components.

The position parameters for gamma-ray interactions do not have known values

with which to perform supervised learning. Having precise position estimates is theo-

retically achievable, but it requires inefficient, collimated measurements to restrict the

position of interaction to within a small volume in a detector. The best estimates of

such parameters are derived from physics-based models. Consequently, any hypothet-

ical regression models designed to estimate these parameters in a supervised fashion

cannot achieve better precision than those predicted by the established methods dis-

cussed in Section 2.4. Doing so would undermine the use of principal component

regression.

This does not imply that the information embedded within sampled waveforms

provides no predictive capability for 3-D gamma-ray interaction position. One may

resort to forms of unsupervised learning to properly leverage such information without

relying on the presence of a ground truth. At the time of this writing, these methods

are well-established for numerous classification and regression tasks. With adequate

knowledge of such methods, the author speculates that systematic error may be mit-

igated to the same extent as that of energy reconstruction. This achievement offers

profound implications for improving the performance of Compton imaging with 3-D

position-sensitive CdZnTe detectors, as imaging resolution tends to be more sensitive

to errors in position estimates than energy estimates [48].

The implications for progress in position estimation are not limited to Comp-

ton imaging performance. In the context of multiple-pixel event reconstruction, the

accuracy of energy reconstruction in higher-order events - and in particular those con-

taining interactions in which only a small amount of energy is deposited - depend on

accurate depth reconstruction to an extent. Systematic error in depth reconstruction
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propagates into energy reconstruction, and it is not completely mitigated by principal

component regression. If the position were estimated using the underlying statisti-

cal properties embedded within sampled waveforms rather than the existing, heavy

reliance on physics-based models, it is expected that principal component regression

can yield better energy resolution for higher-order events than that demonstrated in

this work.

The recommendations for future work are not limited to position reconstruction;

aspects of PCA for energy reconstruction also require attention. The methods de-

tailed in this work implicitly assume that the date on which PCA is performed is

homoscedastic across and within observations despite the overwhelming evidence to

suggest otherwise. The difference in noise between the anode and cathode signals

accounts for heteroscedasticity within samples, and low-amplitude events have higher

noise compared to observations with higher amplitude.

Future work on this subject matter should consider the impact of heteroscedastic

data - within and across observations - more thoroughly. As indicated by Hong et

al., asymptotic recovery of the principal subspace is sensitive to heteroscedasticity

across observations [100]. With regards to heteroscedasticity within samples, it is

expected that a more appropriate scaling strategy for the input signals would promote

homoscedastic tendencies. In a closely-related matter, future developments should

evaluate the impact of outlier data on subspace recovery. This impact was ignored

throughout this work, but it merits consideration as indicated by the work of [101].
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