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Abstract 

 

The active materials of lithium-ion batteries exhibit volumetric deformation during 

lithium intercalation and de-intercalation. Stress stemming from this volume change affects not 

only the durability of the batteries, but also the electrochemical processes in the electrode. This 

dissertation focuses on the mechanical and electrochemical modeling and design of lithium-ion 

batteries, ranging from particle scale to electrode scale. 

Many electrode materials for lithium-ion battery applications are composed of secondary 

particles. Such an active material particle is not a solid particle, but consists of many fine 

primary particles. A mechanical and electrochemical coupled model is developed to simulate the 

intercalation-induced stress in a secondary particle with the agglomerate structure. In this model 

the electrochemical and transport processes are accounted for at both the secondary and primary 

particle levels. For mechanical analysis the secondary particle is treated as a continuum with 

stress calculated through lithium concentration and elastic deformation. Several important factors 

that affect stresses in secondary particles are revealed with this model. 

Active particles with a core–shell structure exhibit superior physical, electrochemical, 

and mechanical properties over their single-component counterparts in electrodes. A physically 

rigorous model is developed to describe the diffusion and stress inside the core-shell structure 

based on a generalized chemical potential. Including both chemical and mechanical effects, the 

generalized chemical potential governs the diffusion in both the shell and the core. The stress is 

calculated using the lithium concentration profile. As revealed by the simulations, the core–shell 

interface is prone to debonding for particles with a thick shell, while shell fracture is more likely 
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to occur for particles with a large core and a relatively thin shell. Based on the simulation results, 

a design map of the core and shell sizes is generated to avoid both shell fracture and core-shell 

debonding. 

As an inherent multiscale structure, a continuum scale battery electrode is composed of 

many microscale particles. A multiscale model is developed to couple mechanics and 

electrochemistry consistently at the microscopic and continuum scales. The microscopic particle 

stress is treated as a superposition of the intra-particle concentration gradient-induced stress and 

the particle interaction stress, with the latter being related to the continuum scale stress through a 

representative volume element. Solid diffusion and charge transfer kinetics are generalized with 

the mechanical effect. In a parallel effort, a direct three-dimensional particle network model is 

developed to serve as a standard. Comparison of results from the multiscale model and from the 

particle network model shows that the multiscale model gives good, satisfying accuracy with 

dramatically reduced computational cost.  

Simulation-based battery design encounters the difficulty of high computational cost. A 

systematic approach based on the artificial neural network is developed to reduce the 

computational burden of simulation based battery design. Two neural networks are constructed 

using the finite element simulation results from a thermo-electrochemical model. The first neural 

network serves as a classifier to predict whether a set of input variables is physically feasible. 

The second neural network yields specific energy and specific power. With a global sensitivity 

analysis using the neural networks, the effects of input variables on specific energy and specific 

power are quantified, which is computationally prohibitive for finite element simulations. A 

design map is generated to fulfill the requirements of both specific energy and specific power. 
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Chapter 1 Introduction 

 

1.1 Overview of Lithium-Ion Batteries 

Lithium-ion batteries are widely used in applications ranging from cell phones, laptop 

computers to electric vehicles. As shown in Figure 1.1, the lithium-ion battery consists of a 

positive electrode and a negative electrode, which are separated by the separator. The electrodes 

are comprised of a porous composite active material layer and a metal foil current collector. The 

composite active material layer contains active particles, additives and binder. The typical active 

materials of positive electrode are lithium metal oxides, including LiMn2O4, LiCoO2 and 

Li(Ni1/3Co1/3Mn1/3)O2.  For the negative electrode, the most common active material is graphite.  

During charging, lithium ions extract from the active particles of the positive electrode, 

move across the separator and intercalate into the active particles of the negative electrode. The 

movement direction of lithium ions is reversed during discharging.  

 

Figure 1.1. Schematic of lithium-ion battery 
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1.2 Mechanical Issues in Lithium-Ion Batteries 

The active materials of lithium-ion battery electrodes exhibit volume change during 

lithium intercalation or de-intercalation. For example, a 6.5% volume change has been reported 

for the LiMn2O4 particle during lithiation. Owing to the relatively slow rate of solid diffusion, 

lithium concentration gradient develops inside particles, resulting in inhomogeneous expansion 

or contraction. As a result, mechanical stress develops in the particles, which is termed as 

diffusion-induced stress (DIS) in many works.  

In addition to diffusion-induced stress due to intra-particle concentration gradient, stress 

also arises from particle interactions. The expansion or contraction of active particles is 

constrained by neighboring particles, current collectors and the battery case. This constraint can 

generate stress in a magnitude comparable to diffusion-induced stress [1, 2]. These stresses can 

lead to cracks and fractures of the electrode, such as cracks inside particles or in-between 

particles, causing isolation of active materials, disruption of the electrically conductive particle 

network and exposure of fresh surfaces for side reactions that result in capacity degradation. 

Mechanical stress can change the electrochemical potential of a solid and therefore (1) 

affects the diffusion in the solid, and (2) affects the electrochemical reaction between the solid 

and the electrolyte.  

For the first effect, the coupled stress and diffusion inside a single particle has been 

modeled by an analogy to thermal stress [3], which showed that the developed stress can enhance 

the solid diffusion by 35%. This approach has been extended to study many problems, such as 

the stress inside a nanowire [4]. The effect of active material parameters and morphology on 

stress has been explored [5, 6]. Researchers have investigated the fracture of a single particle [7-

9] and the stress in active particles with plastic deformation [10, 11]. Consideration of stress in a 
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single isolated particle extends the classic electrochemical model by giving more accurate solid 

diffusion in a particle and allowing analysis of particle scale mechanical behaviors such as 

plasticity and fracture in a particle. 

Stress can also affect the reaction kinetics. In a silicon particle coated by carbon shell, the 

lithiation-induced stress inside the silicon can halt the lithiation process [12]. The stress also 

affects the lithium deposition rate at the lithium metal surface, which suggests a mechanical 

approach to suppress the dendrite growth [13]. In a recent report [14], two identical Li-alloyed 

Si electrodes undergoing asymmetric bending-induced stresses create a difference in the 

chemical potential, and further generate an electrical current. 

1.3 Goal and Outline of this Dissertation 

The goal of this dissertation is to understand the mechanics, electrochemistry and their 

interactions in the lithium-ion batteries. The dissertation is organized as follows. 

Chapter 2 focuses on a secondary particle with an agglomerate structure, which is a 

common morphology for many active materials like LiNi0.8Co0.15Al0.05O2 (NCA). The secondary 

particle, consisting of many fine primary particles, is porous rather than a compact solid, as the 

electrolyte is found to be soaked into the agglomerate. Therefore, charge transfer reactions are 

expected to occur between the primary particle surface and the electrolyte inside a secondary 

particle. In Chapter 2, an electrochemical and mechanical coupled model for a secondary particle 

is developed. With this model, several important factors that affect stress in secondary particles 

are revealed. 

Active particles with a core-shell structure exhibit superior physical, electrochemical and 

mechanical properties over their single-component counterparts. For instance, cathode active 

particles with a LiNi0.8Co0.1Mn0.1O2 core and a LiNi0.5Mn0.5O2 shell structure have been 
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synthesized, where the Ni-rich core delivers high capacity while the Mn-rich shell improves the 

thermal and structural stabilities.  Chapter 3 develops a physically rigorous model to describe the 

diffusion and stress inside the core-shell structure based on a generalized chemical potential. A 

design map of the core and shell sizes is generated to avoid both shell fracture and core-shell 

debonding. 

The focus of Chapter 4 is extended to the battery electrode. A lithium-ion battery 

electrode is an inherent multiscale structure, which consists of many active material particles 

together with a small amount of binder and additivity materials. An electrode can be considered a 

continuum since its length scale is generally one or two orders of magnitude larger than the scale 

of the particles. Chapter 4 presents a multiscale model that couples mechanics and 

electrochemistry consistently at the microscopic and continuum scales. The microscopic particle 

stress is a superposition of the intra-particle concentration gradient-induced stress and the 

particle interaction stress, with the latter being related to the continuum scale stress through a 

representative volume element. In a parallel effort, we develop a direct three-dimensional 

particle network model, which consists of realistic active material particles. Comparison of 

results from the multiscale model and from the particle network model shows that the multiscale 

model gives good, satisfying accuracy while reducing the computational cost dramatically in 

comparison to the three-dimensional particle network model. 

Simulation-based battery design encounters the difficulty of high computational cost. 

Chapter 5 develops a systematic approach based on the artificial neural network to reduce the 

computational burden of battery design by several orders of magnitude. Two neural networks are 

constructed using the finite element simulation results from a thermo-electrochemical model. 

The first neural network serves as a classifier to predict whether a set of input variables is 
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physically feasible. The second neural network gives specific energy and specific power. Using 

the neural networks, many computationally expensive analyses can be performed with negligible 

computational cost. 
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Chapter 2 Modeling of Agglomerate Particles 

 

2.1 Introduction 

Lithium-ion batteries are widely used in applications ranging from cell phones, laptop 

computers to electric vehicles. Being able to provide a long cycle life is key to the lithium-ion 

battery technology. Mechanical degradation is one of the most significant mechanisms that affect 

the cycle life [15]. At the particle level, researchers have observed the formation of cracks and 

fractures in both cathode and anode active material particles, such as LiCoO2 (LCO) [16], 

LiNi0.8Co0.15Al 0.05O2 (NCA) [17] and graphite [18]. The cracks and fractures lead to isolation of 

active materials, disruption of the electrically conductive particle network and exposure of fresh 

surfaces that cause side reactions. These effects significantly reduce the battery capacity and 

increase the internal resistance. At the electrode level, X-ray computed tomography has shown 

evident deformation of the wounded electrode in cycled batteries [19]. The deformation 

increases the distance between anode and cathode, resulting in a loss of contact between the 

active materials and current collectors. This effect leads to an increase in electrical resistance and 

degradation of capacity. 

Modeling and simulation are essential approaches to study the generation and effects of 

stress inside batteries. For instance, the volume change and stress of a spherical particle during 

lithium-ion intercalation has been calculated [20]. Treating the intercalation-induced stress 

analogously to thermal stress, a coupled mechanical and electrochemical model has been 

developed to study the stress and concentration inside a particle [21]. This particle level model 
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has been widely used and extended to study various problems at both particle and cell levels, 

such as to calculate the thickness change of a pouch cell during discharge [22], to study the stress 

generation in a LMO and NCA blended electrode [23], and to study stress generation when both 

intercalation and phase transition happens simultaneously in a particle [24]. Nevertheless, it 

should be noted that these models are based on the assumption of solid particles. This 

assumption does not apply for active materials with an agglomerate structure, such as NCA [17]. 

In these materials, many nanometer-scale primary particles agglomerate to a micrometer-scale 

secondary particle by the adhesion of binder. The secondary particle is porous rather than a 

compact solid, as the electrolyte is found to be soaked into the agglomerate [17]. Therefore, 

charge transfer reactions are expected to occur between the primary particle surface and the 

electrolyte inside a secondary particle. Active materials composed of secondary particles are 

becoming more common for new battery materials. 

To investigate the characteristic of an agglomerate, researchers have proposed several 

electrochemical models to account for the effects of its internal structure. The agglomerate of 

LiFePO4 crystals has been investigated to estimate active material utilization [25]. An 

electrochemical impedance model has been proposed for a secondary particle [26]. A time-

domain model considering particles as agglomerates has been developed [27]. While these 

efforts have offered important insights into the agglomerate structure and its impact on 

electrochemical processes, no mechanical model has been developed to study the stress in 

agglomerates for lithium-ion batteries. Meanwhile, multiple experiments have reported 

observations of fracture of agglomerates after cycling [17], which is a major mechanism of 

capacity degradation. This calls for a fully understanding of the mechanical behaviors at the 

agglomerate level. 
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The objective of this chapter is to develop an electrochemical and mechanical coupled 

model for a secondary particle. Instead of considering it as a solid particle, we modelled a porous 

secondary particle by including the effects of electrochemical reactions inside the agglomerate. 

Our simulation results revealed that a major concentration gradient exists along the radius of the 

secondary particle, while the concentration is fairly uniform in each primary particle. Using the 

effective mechanical properties of the agglomerate, we incorporated mechanics equations into 

the model to capture the stress generation in the secondary particle. We identified several key 

factors that affect the stress level, including the primary particle size and the open circuit 

potential (OCP) profile. We also compared the mechanical behaviors of a porous secondary 

particle and a solid particle of the same size. The vast difference highlighted the importance of 

having a coupled electrochemical and mechanical porous model for a secondary particle. 

2.2 Model Development 

In our model the electrochemical part is built-up by applying the porous electrode theory 

at the secondary particle level [27]. We further extended the approach and incorporated the 

diffusion equation for primary particles to capture the holistic concentration distribution in both 

secondary and primary particles. The mechanical part is incorporated by integrating the 

concentration distribution and mechanical equations to obtain the intercalation-induced stress 

and displacement. 

2.2.1 Electrochemical model 

A secondary particle consists of fine primary particles, binders and pore space between the 

solids. The pore space is assumed to be filled with electrolyte. This assumption leads to the 

introduction of equations describing the concentration and potential distributions of electrolyte 

into the model.  
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Figure 2.1(a) shows the schematic of the model, where R represents the coordinate along 

the radius of a secondary particle and r represents the coordinate along the radius of a primary 

particle. 

 

Figure 2.1. Schematic of the agglomerate structure and the dimensionless model (a) Agglomerate 

structure (not to scale) (b) Dimensionless model 

Assumptions used in the model are listed below: 

1. The secondary particle is entirely soaked in the electrolyte. The electrolyte 

concentration at the surface of the secondary particle is given as the boundary condition. 

2. Since the size of the primary particle is much smaller than that of the secondary 

particle, the secondary particle is treated as the superposition of two continua: the electrolyte 

solution and solid primary particles. This treatment follows the basic assumption of the 

Newman’s model [28, 29], which is widely used for porous electrodes.  

3. Primary particles are assumed to be held together by binder rather than to be sintered 

together [26, 30]. Since lithium ions cannot diffuse across the binder, diffusion would not occur 

directly between two primary particles through their contacts. Diffusion can occur between two 

primary particles via the electrolyte. 
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Following the porous electrode theory, for a spherical secondary particle the electric 

potential in the electrolyte phase can be expressed by 

 
g2 2
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2 (ln )1
(1 )
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, (2-1) 

where R  is the secondary particle coordinate, l  is the effective electrolyte conductivity, l is 

the electric potential in the electrolyte, gR  is the ideal gas constant, T is the absolute 

temperature, F is the Faraday constant, t  is the transference number, lc  is the electrolyte 

concentration, a  is the active surface area per volume of the secondary particle and j is the 

charge transfer current density between the solid phase and the electrolyte phase. Note that 0j   

is for lithium ion deintercalating from the solid and 0j   is for lithium ion intercalating into the 

solid. 

The electric potential in the solid phase is given by 
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where s is the solid phase conductivity and s is the electric potential in the solid phase.  

The lithium concentration in the electrolyte follows 
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,  (2-3) 

where  is the porosity of the secondary particle and lD is the effective electrolyte diffusion 

coefficient. Equations (2-1)~(2-3) describe the electric potential and lithium-ion concentration at 

the secondary particle level.  

The lithium concentration in a primary particle follows the Fick’s law, 
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where sc is the lithium concentration in the solid phase, r is the primary particle coordinate, and 

sD is the solid diffusion coefficient. 

Now we introduce the over-potential, 

 s l refE   ,  (2-5) 

where refE is the equilibrium potential of the active material, depending on the lithium 

concentration in the solid. 

Combining Eqs. (2-1), (2-2) and (2-5), we have 
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The charge transfer current density is given by the Butler-Volmer equation, 
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, (2-7) 

where 0i is the exchange current density, a  is the anodic reaction rate coefficient and c  is the 

cathodic reaction rate coefficient. The exchange current density is given by 

 0 ,max( )a a c

l s s si kFc c c c     , (2-8) 

where k is the reaction constant and ,maxsc is the maximum lithium concentration in the solid. 

The active surface area per volume, a , is related to porosity by 

 
3
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a
r

  , (2-9) 

where pr is the radius of the primary particle. 
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Dimensionless coordinates are defined as 

 ,
s p

R r
x y

R r
   , (2-10) 

where sR is the radius of the secondary particle. 

With dimensionless coordinates Eq. (2-3) is rewritten as  
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Eq. (2-6) is rewritten as 
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The gradient of the equilibrium potential is given by 
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where ,s surfc is the concentration on the surface of the primary particle and z  is the stoichiometry 

in 2Li MOz , such as  1/3 1/3 1/3 2Li Ni Co Mn Oz  (NCM). The term /refK E z  , known as the 

thermodynamic factor in this work, represents the relationship between the equilibrium potential 

and the lithium concentration in the solid. 

The boundary conditions for Eq. (2-12) are defined as 
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  (2-14) 

At 0x  , symmetric boundary conditions are used. At 1x  , the electrolyte concentration and 

over-potential are assumed to be 0lc  and 0 .  Note that both the solid and electrolyte phases on 

the surface of the secondary particle carry current and they can have different potentials. This is 
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different from the typical constant current boundary condition prescribed on the solid phase in 

the Newman’s porous electrode model, where current collectors exist at the boundary so that 

only the solid phase carries electric current to the current collector. Prescribing a constant current 

boundary condition on the surface of the secondary particle is complicated, which requires 

consideration of current in both the electrolyte and the solid phase. The typical constant potential 

condition at current collectors for constant potential operation does not apply here since the 

potential on the surface of the secondary particle is not controlled. A convenient boundary 

condition for the secondary particle is to prescribe the over-potential on the surface, and the the 

Dirichlet boundary conditions of 0lc  and 0  can be easily linked to a higher electrode-level 

model, in a way similar as the Newman’s model. In the following section, the effect of 0  on 

stress generation will be investigated. 

With the dimensionless coordinate, diffusion in the solid primary particle is given by 
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The boundary conditions for Eq. (2-15) are given by 
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  (2-16) 

Figure 2.1(b) shows the schematic of the dimensionless model. Equations at the primary 

particle level (Eqs. (2-15) and (2-16)) and at the secondary particle level (Eqs. (2-7), (2-11), 

(2-12) and (2-14)) are coupled through the charge transfer current density j  and surface solid 

concentration ,s surfc . The concentration and electric potential fields are obtained by solving the 

coupled equations with their boundary conditions.  
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Figure 2.2 shows a representative result that gives the lithium concentration inside each 

primary particle along the radial direction of the secondary particle. The x axis represents the 

location of a primary particle inside the secondary particle, while the y axis represents the 

location of a spatial point inside the primary particle. As shown in Figure 2.2, the primary 

particle shows a fairly uniform concentration. A major concentration gradient exists along the 

radius of the secondary particle, which is attributed to the spatial variation of the charge transfer 

current density to be discussed in Section 0. 

 

Figure 2.2. Lithium concentration distribution in primary particles at four selected times: (a) 27 s, 

(b) 54 s, (c) 82 s and (d) 135 s. The unit of concentration is mol/m3.  For all these simulation 

results, 0 10 mV  and 0.5 VK  . 
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2.2.2 Mechanical model 

Simulation results from the electrochemical model revealed concentration gradient along 

the radius of the secondary particle. A mechanical model is developed to evaluate the stress. 

Assumptions used in the mechanical model are listed below: 

1. The secondary particle is assumed to be mechanically homogeneous with effective 

properties, which can be calculated from the porosity and properties of bulk materials. 

2. Because the primary particle is much smaller than the secondary particle, the 

secondary particle is regarded as a continuum. Each spatial point in the secondary particle is 

composed of many primary particles at that location. Therefore the stress at each spatial point 

represents the loading stress exerted on the primary particles at that location. This loading 

stress is important to know since it is the cause of separation of primary particles, i.e. fracture 

in the secondary particle. 

The effective Young’s modulus, E , and Poisson’s ratio,  , of a porous microstructure 

can be expressed as [31] 
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where bE and b are bulk Young’s modulus and Poisson’s ratio of the solid, 0 , 1 ,n , m and 0 are 

fitted parameters obtained from the finite element simulation results of porous microstructures. 

The suggested values are 0 0.652  , 2.23n , 1 0.500  , 1.22m and 0 0.140   for the 

porous structure consisting of overlapping solid spheres [31]. 

The equilibrium equation in the secondary particle is given by 
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r t

d

dR R


    , (2-18) 
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where r  is the radial stress and t  is the tangential stress. The stress-strain relations are 
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where  is the partial molar volume of lithium ion and , 0( ) ( )s surf sc R c R c  is the change of 

surface concentration of the primary particle located at position R in the secondary particle.  0sc , 

the initial lithium concentration, is defined in Table I. 

Take u  as the radial displacement. The strains can be expressed by 

  r
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u

R
  . (2-21) 

Equations (2-18)-(2-21) can be solved by combining them into a displacement equation 

[21]. With the boundary condition of ( ) 0r sR R   , the stress and displacement in the 

secondary particle are given by 
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In Eqs. (2-22) and (2-23) tensile stress is positive while compressive stress is negative. 
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Special attention should be given at 0R  for Eqs. (2-22)-(2-24) as they include the term

2
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0

1
R

cr dr
R  ,where R appears in the denominator. We shall use L'Hôpital's rule at 0R , which 

gives 
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The calculated stress in the secondary particle can be comparted to the continuum 

material properties of the secondary particle to determine fracturing which is related to 

separation between primary particles, or yielding which is related to sliding between primary 

particles. It should be noted that the stress concentration occurs at the contact points between 

particles [1], while our model gives the homogenized stress at any spatial point. To capture the 

local contact stress between primary particles, one can explicitly model an ensemble of primary 

particles and their geometries using finite element, and apply Eqs. (2-22) and (2-23) as the 

boundary conditions of the ensemble. This bridging of scales allows analyzing various local 

mechanical behaviors between primary particles. 

2.2.3 Parameters 

Table 2.1 lists the parameters used in the model, which are applicable to an agglomerate 

of NCM. The mechanical properties of NCM are rarely given in the literature, so the values of 

LMO are used which are in the similar range. 

Two concentration dependent parameters, l and lD , are assumed as constant for 

simplicity. This assumption is acceptable considering the small scale of agglomerate and 

therefore small variation in electrolyte lithium concentration. In addition, l and lD listed in 
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Table 2.1 are calculated from the intrinsic values of electrolyte and porosity of the secondary 

particle using the Bruggeman correlation, where the tortuosity  is assumed as 0.5 .  

Table 2.1. Parameters used in the model. 

Parameter Symbol Value Reference 

Primary particle radius pr  0.2 μm [17] 

Secondary particle radius sR  10 μm [17] 

Porosity of the secondary particle   25% [32] 

Solid conductivity s  0.12 S/m [27] 

Solid diffusion coefficient sD  1×10-14 m2/s [27] 

Electrolyte conductivity l  0.0975 S/m [27]  

Electrolyte diffusion coefficient lD  1.85×10-11 m2/s [27]  

Initial electrolyte concentration 0lc  1000 mol/m3 [27]  

Maximum solid concentration ,maxsc  51830 mol/m3 [33] 

Initial solid concentration 0sc  ,max0.36 sc  [33]  

Reaction constant k  
6.15×10-11 m2.5 mol0.5 

s-1 
[34] 

Transference number t  0.38 [27]  

Temperature T  298 K [27]  

Anodic reaction rate coefficient a  0.5 [35] 

Cathodic reaction rate coefficient c  0.5 [35]  

Bulk Young’s modulus bE  100 GPa [36] 

Bulk Poisson’s ratio b  0.24 [37] 

Partial molar volume   3.497×10-6 m3/mol [21] 

 

Although the electrical conductivity of the electrode can be found in the literature [38], 

the conductivity of the agglomerate itself is still not clear. As the conductive additive mainly 

enhances the electrical conductivity at the electrode level rather than at the agglomerate level, it 

has been suggested that the electrical conductivity of the NCM agglomerate accounts for only 
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0.1% of that of the cathode [27]. We adopted this suggested value of electrical conductivity for 

the agglomerate.  

The model was implemented using the finite element software package COMSOL 

Multiphysics. 

2.3 Results and Discussions 

Figure 2.3(a) and (b) show the radial and tangential stresses in the secondary particle at 

five selected times. With the intercalation of lithium ions, the expansion of the particle results in 

tensile radial stress. Due to the strain differential between the outer and inner regions of the 

particle, the tangential stress is compressive at the surface while tensile at the center. As 

indicated in Eqs. (2-22) and (2-23), a larger concentration gradient in the secondary particle leads 

to a large stress. In Figure 2.3(a) and (b), both stresses increase during the period of 0 s to 27 s 

and then decrease, suggesting that the concentration gradient reaches its maximum at around 27 

s. This is supported by the concentration distribution shown in Figure 2.2. As lithium ions cannot 

diffuse directly across primary particles, the current density at the primary particle surface is the 

predominant factor that determines the concentration inside the primary particle. Hence, the 

lithium concentration gradient in the solid phase of the secondary particle stems from the 

variation in surface current density of primary particles. Figure 2.3(c) shows that the originally 

non-uniform current density becomes uniform after 27 s, which is consistent with the evolution 

of concentration gradient. Another note taken from Figure 2.3(c) is that the rate of lithium 

intercalation, j , decreases after 27 s. Therefore, the concentration gradient inside a primary 

particle built up before 27 s has an opportunity to be gradually smoothened. The shape of current 

density curves can be explained by the exchange current density and the over-potential, as shown 

in Figure 2.3(d) and (e).  
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Figure 2.3. Stress, current density, over-potential and radial displacement along the radius of the 

secondary particle at five selected time. (a) Radial stress. (b) Tangential stress. (c) Current 

density. (d) Exchange current density. (e) Over-potential. (f) Radial displacement. For all these 

simulation results, 0 10 mV  and 0.5 VK  . 
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The exchange current density at the surface of the secondary particle is slightly larger 

than that at the center in the beginning, because the electrolyte concentration keeps constant at 

the surface while the lithium ions in electrolyte is consumed at the center of the secondary 

particle. As the primary particles at the outer region gradually become saturated with intercalated 

lithium ions, the exchange current at the center slightly surpasses the exchange current at the 

surface after 82 s. In addition, Figure 2.3(d) shows that the exchange current density 

pronouncedly decreases with time, as the primary particles are gradually intercalated to full. This 

trend explains the decrease in the intercalation rate j , as shown in Figure 2.3(c). 

Initially, the spatial variation of exchange current is much smaller than that of current 

density, implying that over-potential plays a significant role in determining the distribution of 

current density. Figure 2.3(e) shows that the distribution of over-potential is non-uniform at 0 s 

but approaches uniform at later times. The transition of over-potential distribution can be 

elaborated through two negative feedback mechanisms. Note that the over-potential is fixed at 

the surface of the secondary particle. 

In the first mechanism, a decrease of   (meaning an increase of   since 0  ) leads to 

an increase of the lithium intercalation rate j , which further results in a faster increase of sc and 

thus a faster decrease of refE . As refE is always positive and appears as an additive term next to 

in Eq.(2-12), the faster decrease of refE finally leads to an increase of . We regard this negative 

feedback as the thermodynamic feedback due to the role played by refE . A strong dependence of 

refE  on sc causes significant contribution of the thermodynamic feedback, which will be 

discussed in the following section. 



22 

 

In the second mechanism, a decrease of  results in a faster increase of sc , consequently 

leading to a decrease of 0i  and j . As the intercalation current is the source term in Eq.(2-12), 

the decrease of j (meaning an increase of j since 0j  ) finally contributes to the increase of  . 

We regard this negative feedback as the kinetic feedback owing to the interplay between and

j . 

Figure 2.3(f) shows the radial displacement in the secondary particle at five selected 

times. The displacement is almost linear along the radius of the secondary particle, and the 

displacement at the surface is the largest. It should be noted that the maximum radial 

displacement is nearly 0.36 μm, which only accounts for 3.6% of the radius of the second 

particle. The calculated radial displacement at the secondary particle surface can serve as an 

input to an electrode-level model to calculate the electrode thickness change during discharge. 

Maximum stresses are important to evaluate the mechanical integrity of the secondary 

particle. The maximum radial stress and the maximum tensile tangential stress are equal and are 

located at the center of the secondary particle, 
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The maximum compressive tangential stress is located at the surface, 
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where the subscript “min” is used since the compressive stress is negative. 

Figure 2.4 shows that the peaks of ,maxr , ,maxt and ,mint  are reached at around 27 s, a 

time when the spatial distribution of current density along the secondary particle radius becomes 
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uniform. . Literature has shown that in a solid particle ,mint  should be greater than ,maxr and

,maxt  under a constant rate of lithium ion intercalation [23]. In contrast, the results in Figure 2.4 

show that ,mint  is not always larger than ,maxr and ,maxt for a porous secondary particle. This 

difference in the characteristics of maximum stress can be explained by the differences in 

governing equations and boundary conditions. Previous literature is based on the governing 

equation of diffusion in a solid particle with a constant Neamann boundary condition at the 

surface [23]. This work modeled the electrolyte phase in a porous secondary particle and adopted 

the Dirichlet boundary condition at the surface of the secondary particle. 

 

Figure 2.4. Maximum tensile stress, maximum compressive stress and current density with 

respect to time. As the compressive stress is negative, the absolute value of the compressive 

tangential stress is plotted. The maximum radial stress always equals to the maximum tangential 

tensile stress.  

2.3.1 Thermodynamic factor 

In this section, we examine the effect of thermodynamic factor K on the stress generation 

behavior. The thermodynamic factor is defined as the dependence of OCP on the stoichiometry 

of the active material in Section 2.2.1. Figure 2.5 shows the stress and concentration distributions 
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for K = -1 V and K = 0 V at the instant when the maximum radial stress peaks. A larger 

magnitude of K represents a stronger effect of the thermodynamic feedback mechanism, leading 

to more uniform concentration distribution and smaller stresses. This is supported by the 

comparison of the two cases shown in Figure 2.5. 

 

Figure 2.5. Stress and concentration distributions for different thermodynamic factors. For (a) 

and (c), K = -1 V. For (b) and (d), K = 0 V. The presented time is at the instant when the radial 

stress at the center reaches its maximum. The unit of concentration is mol/m3 in (c) and (d). 

Figure 2.6 shows the distribution of current density and over-potential for K = 0 V at the 

same selected times as those in Figure 2.3. As K = 0 V represents the special case of no 

thermodynamic negative feedback, both the current density and over-potential show large 

variation along the radius of the second particle at 135 s. The large spatial variation in current 
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density directly results in a large concentration gradient along the radius of the secondary 

particle, as shown in Figure 2.5(d). The magnitude of current density at the center surpasses the 

current density at the surface at 135 s, which is a result of heavy depletion of available lithium 

intercalation sites at the surface during 0~82 s. The reverse in the current density distribution is 

ascribed to the kinetic negative feedback. However, this reverse occurs near the end of discharge, 

leaving a still large concentration gradient. 

 

Figure 2.6. The distribution of (a) current density and (b) over-potential at five selected times. 

For the simulation results, 0 10 mV  and 0 VK  . 

The value of K can be determined from the OCP-z profile, which is shown in Figure 2.7(a).  

Figure 2.7(b) illustrates the temporal evolution of ,maxr , ,maxt and ,mint  using the OCP-z 

profile shown in Figure 2.7(a). Previous discussion concludes that small magnitude of K results 

in non-uniform current density and thus large stress. This is further shown in Figure 2.7(b), 

where the stresses and thermodynamic factor demonstrate similar trends with respect to time. 

The different values of K at different regimes of state of charge result in the change of stress over 

the course of intercalation or deintercalation, which may result in fatigue and reduced strength of 

the secondary particle.  
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Figure 2.7. (a) Open circuit potential ( refE ) and thermodynamic factor ( K ) with respect to the 

stoichiometry in  1/3 1/3 1/3 2Li Ni Co Mn Oz . (b) Simulated stress using the open circuit potential 

profile in (a). For the simulation results, 0 10 mV   

2.3.2 Over-potential 

The electrochemical model uses a given over-potential 0  at the surface of the secondary 

particle. This treatment can be easily linked to an electrode-level model, where the over-potential 

at any spatial point across the electrode thickness can be calculated and coupled to the particle 

level model. Figure 2.8 shows that the maximum radial stress increases almost linearly with the 

magnitude of 0 . A larger 0 not only causes a larger intercalation rate j , but also a non-

uniform distribution of intercalation rate along the radius of the secondary particle. It is this non-

uniform intercalation rate that results significant stress, as discussed previously. 
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Figure 2.8. Maximum radial stress increases with the magnitude of over-potential 

Previous studies have investigated the maximum radial stress for a solid particle under 

different discharge rates. [20, 21] These results showed that the maximum radial stress firstly 

increases but then decreases with the current density. The latter decrease in stress results from 

the fact that the concentration gradient is still undeveloped at the end of discharge under a large 

discharge current. In contrast, Figure 2.8 shows only an increase of the maximum stress with the 

magnitude of over-potential, which is positively correlated with the current density. This feature 

comes from the characteristic of the porous secondary particle model. The distribution of current 

density determines the concentration gradient along the radius of the secondary particle. The 

current density gradient is established immediately at the beginning of discharge, as there is no 

time-derivative term in Eq. (2-12). Hence, a large concentration gradient can still develop before 

the end of discharge even when a large magnitude of over-potential is used as the boundary 

condition. 

2.3.3 Primary particle size 

Figure 2.9 shows the effect of primary particle size on the maximum radial stress during 

intercalation. Interestingly, a smaller primary particle size leads to a larger maximum radial 
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stress. This is understandable when considering the role of the active surface area per volume. As 

defined in Eq. (2-9), the active surface area per volume decreases with the radius of the primary 

particle. This variable appears before the current density j as the source term in Eq. (2-6). A large 

active surface area per volume amplifies the spatial variation in current density, leading to larger 

concentration gradient and stress. Thus, the peak of maximum radial stress decreases with the 

increase of the primary particle size. 

 

Figure 2.9. Maximum radial stress as a function of time for three different primary particle radii 

Figure 2.10 compares the current density at the center (x = 0) and at the surface (x = 1) of 

the secondary particle with different size of primary particles. The current density difference 

between the center and the surface in Figure 2.10(a) is larger than that in Figure 2.10(b), 

demonstrating the effect of the active surface area per volume. 
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Figure 2.10. Current density evolution at the center ( 0x  ) and surface ( 1x  ) of the secondary 

particle for (a) 0.2 μmpr   and  (b) 0.6 μmpr  . 

The effect of diffusion inside the primary particle becomes more important with the 

increase of the primary particle size. Figure 2.11 demonstrates the concentration distribution of 

the agglomerate at the time when the maximum radial stress reaches its peak. With larger 

primary particle sizes, the concentrations in the primary particles become more non-uniform. 

This concentration gradient in a primary particle can induce an additional stress inside the 

primary particle. As shown in Figure 2.11(b), the assumption that the stress inside the primary 

particles is negligible becomes invalid as the particle radius turns to 0.6 μm. However, it should 

be noted that this additional stress has little effect on the interaction between particles since it is 

internal, while the calculated stress at the secondary particle level affects the interaction between 

primary particles significantly. Fracture often happens between primary particles due to their 

weak bonding. The stress at the secondary particle level is important in determining the fracture 

of an agglomerate. 
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Figure 2.11. Concentration distribution at the time when maximum radial stress reaches its peak 

for (a) 0.4 μmpr    and (b) 0.6 μmpr  . The unit of concentration is mol/m3. 

2.3.4  Comparison with a solid particle of the same size 

The stresses in a porous secondary particle and in a solid particle of the same size are 

compared in Figure 2.12. The stress in a solid particle is much larger than that in a porous 

secondary particle, which can be attributed to two reasons. First, the Young’s modulus of the 

solid particle (100 GPa) is nearly three times as large as that of a porous secondary particle (34 

GPa). As shown in Eqs. (2-22) and (2-23), the stress is proportional to the Young’s modulus, 

leading to three times larger stress in the solid particle. Second, and more importantly, the 

concentration gradient in the porous secondary particle is much smaller than that in the solid 

particle. The electrolyte inside the porous secondary particle provides a fast diffusion path for 

lithium ions, which greatly reduces the concentration gradient. Note that the current density at 

the surface of the solid particle shown in Figure 2.13 is close to the current density at the surface 

of the primary particle surface shown in Figure 2.3(c), suggesting that the pronounced difference 

in stress is not from the difference in current density. 
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Figure 2.12. Maximum stresses of (a) a solid particle and (b) a porous secondary particle. For 

these simulation results, 0 10 mV  . 

 

Figure 2.13. Current density at the surface of the solid particle 

2.4  Conclusion 

In this chapter, an electrochemical and mechanical coupled model is developed to 

calculate the stress generation in a secondary particle consisting of many primary particles. As 

the electrolyte fills the pore between primary particles, charge transfer reactions are assumed to 

take place inside the secondary particle, leading to the introduction of governing equations for 

electrolyte concentration and electrolyte potential. Simulation results reveal that a major 

concentration gradient exists along the radius of the secondary particle, while the concentration 
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distribution in each primary particle is fairly uniform. Based on this finding, the mechanical 

model focused on the stress generation at the secondary particle level. Assuming the secondary 

particle a continuum, the intercalation-induced stress is calculated using elastic equations.  

We have applied the developed model to investigate factors affecting the stress 

generation behaviors. The results are summarized as follows: 1) A strong dependence of OCP on 

the solid lithium concentration leads to a more uniform current density in the secondary particle, 

which reduces the stress level. 2) A large magnitude of over-potential at the secondary particle 

surface causes severely non-uniform current density, and thus larger stresses. 3) The primary 

particle size shows a significant effect on the current density, concentration and stress profiles. A 

larger primary particle size results in a smaller active surface area per volume, which reduces the 

impact of non-uniform current density and thus reduces the stress level in the secondary particle. 

However, the concentration gradient inside the primary particle becomes pronounced with the 

increase of the primary particle size, which may generate stress inside the primary particle. 4) 

The comparison between a porous secondary particle and a solid particle of the same size shows 

that the stress is greatly alleviated in the porous secondary particle. This is attributed to the lower 

Young’s modulus of the porous particle, and more importantly, to the smaller concentration 

gradient in the porous secondary particle. 

In this chapter we treat the secondary particle as a continuum in the stress calculation. 

The stress at each spatial point represents the loading stress exerted on the primary particles at 

that location. This loading stress can lead to fracture in the secondary particle in terms of 

separation of primary particles.  We plan to study this fracture behavior in future work by 

applying the stress predicted by this model as the loading boundary conditions on a 

representative volume of the particle network. In addition, the model proposed in this work can 
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be incorporated into a cell level mechanical model to provide valuable insights into the overall 

battery degradation. 
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Chapter 3 Modeling of Particles with Active Core-Shell Structure 

 

3.1 Introduction 

The growing demand for higher energy density and power density, longer cycle life and 

lower cost of lithium ion batteries has driven significant progress in battery materials research. 

Besides searching for new materials, engineering of material structure is equally important to 

fully exploit the potential of existing or new materials. Core-shell structure is an effective 

strategy to combine the advantages and avoid the disadvantages of two materials [39]. For 

example, cathode active particles with a LiNi0.8Co0.1Mn0.1O2 core and a LiNi0.5Mn0.5O2 shell 

structure have been synthesized [40, 41], where the Ni-rich core delivers high capacity while the 

Mn-rich shell improves the thermal and structural stabilities. The core-shell structure has also 

been used for anode materials. The silicon particle, which has a high theoretical capacity, suffers 

from dramatic volume change during lithiation/de-lithiation processes. Researchers have 

proposed to coat a layer of carbon[42] or silicon oxide[43] to restrict the volume change of 

silicon, thus to improve the cycle life. In addition to these purposely designed core-shell 

structures, passively formed core-shell structures can also be found in battery materials, such as 

the solid electrolyte interface (SEI) film forming at the surface of an active particle. Overall, in a 

core-shell structure the shell can (1) protect the core from environmental corrosion or side 

reactions, such as the SEI film on the surface of a graphite particle [44], (2) enhance physical or 

chemical properties, such as the carbon shell outside a Mn2O4 core to improve the conductivity 
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[45], or (3) restrict the volume change of the core to maintain structural integrity, such as the 

carbon shell outside a silicon core [46]. 

Stress generation associated with solid diffusion has been widely discussed in the 

literature. Researchers have investigated the mechanical and electrochemical behaviors of a 

single particle with a three-dimensional morphology [21] and a secondary particle with an 

agglomerate structure [47]. The developed stress inside the particle brings two effects. The first 

effect is the influence of stress on degradation in the core-shell structure. For the core-shell 

structure, the resulting stress from the lithium diffusion may lead to fracture of the shell or 

debonding between the core and the shell. For instance, a large void has been observed to form at 

the interface of the LiNi0.8Co0.1Mn0.1O2 core and the LiNi0.5Mn0.5O2 shell after long-term 

cycling, owing to the structural mismatch and the difference in volume change between the core 

and the shell [48]. Similarly, the expansion of lithiated graphite core can lead to fracture of the 

SEI film, which further causes solvent de-composition and capacity degradation [49]. 

The second effect is the influence of stress on electrochemistry in the core-shell structure. 

Mechanical stress can change the electrochemical potential of solids, and therefore affects the 

diffusion [21] or lithiation processes [12, 50] inside the particle. For example, the developed 

stress gradient inside a LiMn2O4 particle is predicted to increase the effective solid diffusivity by 

up to 35% [21]. Calculations have shown that the pressure generated from the shell can halt the 

lithiation process inside the core [12]. The plastic deformation of amorphous silicon accounts for 

a significant percentage of the energy dissipated during the cycling at low C-rates [51]. 

Modeling the core-shell structure has attracted significant attention recently [12, 44, 45, 

49, 50, 52].  However, current models typically treat the shell as mechanical constraint only 

without any electrochemical activity [12, 49, 52]. In this treatment, the lithium ions directly 
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insert into or extract from the core without moving across the shell, which is not consistent with 

physical reality. In one work [45], although the diffusion through the carbon shell is modeled, the 

associated expansion inside the shell is neglected. Moreover, the assumption that the lithium 

concentration is continuous through the core-shell interface often cannot be satisfied, since the 

core and shell are two phases with distinct affinity for the lithium. Physically, a more natural way 

to tackle the diffusion in multiple phases is to use the chemical potential instead of the 

concentration. As mechanical stress resulting from concentration gradient can affect the chemical 

potential, modeling the core-shell structure requires fully coupling mechanics and 

electrochemistry. 

In this work, we develop a physically rigorous model to describe lithium diffusion and 

the resulting stress generation inside a particle with a core-shell structure. The generated stress 

and its effect on debonding between the core and the shell or shell fracture are correlated to the 

design parameters of the core-shell structure. Using the energy release rate, a design map is 

developed to guide the synthesis and application of the core-shell structure.  

3.2 Model Development 

Figure 3.1 shows the schematic of the model, where phase 1 denotes the core with a 

radius of a and phase 2 denotes the shell with an outer radius of b. Both the core and the shell are 

electrochemically active for lithiation and de-lithation, and both undergo volume change. 

 

Figure 3.1. A schematic of the core-shell structure 
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3.2.1 Electrochemistry 

The lithium concentration in the particle, c, either in the core or in the shell, is governed by 

 0.
c

t


 


J   (3-1) 

The flux of lithium ions, J , is given by [53] 

 ,Mc  J   (3-2) 

where M is the lithium mobility in the solid, and  is the chemical potential of lithium in the 

active particle. A rigid definition of J and  can be found in the Appendix A. 

Taking into account the effect of mechanical stress, the chemical potential of lithium ion 

in the active particle is given by 

 ,c m      (3-3) 

where c denotes the chemical potential at the stress-free state and m denotes the effect of 

mechanical stress on the chemical potential. 

The expression of m  has been discussed in several works [54-57]. Under the assumption 

of small linear elastic deformation and no dependence of mechanical properties on lithium 

fraction, Eq. (3-3) can be written as [21] 

 ,c h      (3-4) 

where  is the partial molar volume of lithium ion in the active particle and h  is the 

hydrostatic stress in the particle. 

Explicit expressions of c  can be found in the literature [21, 53]. However, since it is the 

gradient of the chemical potential, rather than the chemical potential itself, that drives diffusion, 
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the explicit expression of the chemical potential is not crucial for the diffusion equation. 

Substituting Eq. (3-4) into Eq. (3-2), the flux is given by 

 .c
hMc c

c




 
    

 
J   (3-5) 

The open circuit potential (with respect to lithium metal) of the active particle, 
refE , 

depends on the difference in chemical potential between a lithium metal (
 ) and the active 

particle ( ), 

 ,c
refE

F

 
  (3-6) 

where F  is Faraday constant. Then the term /c c  can be determined through the profile of 

the open circuit potential as 

 
max max

,ref refc

Li

E EF FK
F

c c c x c

  
     

  
  (3-7) 

where maxc  is the maximum lithium concentration in the solid, Lix is the lithium fraction inside the 

active material, and /ref LiK E x   is called thermodynamic factor in this work. 

Given that the lithium ion diffusion in the active material occurs by a vacancy 

mechanism, the mobility decreases with the increase of lithium concentration. With this 

consideration, the mobility can be expressed by [53] 

 0

max

1
c

M M
c

 
  

 
 , (3-8) 

where 0 0 /M D RT  is the lithium ion mobility in the solid, 0D  is diffusivity, R is gas constant, 

and T is absolute temperature. 
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Combining Eqs. (3-2)‒(3-8) and considering the symmetry of a spherical particle, we can 

obtain that the flux of lithium ions is along the radial direction, r,  of the particle, which is given 

by  

 max

eff h
c m

D c
J FK c J J

RT r r

  
    

  
 , (3-9) 

where 0

max max

1eff

c c
D D

c c

  
   

  
 is the effective diffusivity, eff

c

D FK c
J

RT r





is the chemically 

driven flux, and maxeff h
m

D c
J

RT r

 



 is the mechanically driven flux. 

Equation (3-1) takes the form of 
2 2/ (1/ ) ( ) / 0c t r r J r       in the spherical 

coordinate. Solving this equation together with Eq. (3-9) gives the concentration field in the core 

and in the shell. In the following we use the subscript 1 and 2 to denote the field in the core and 

in the shell, respectively. 

Prior models assume that the lithium concentration is continuous across the phase 

interface, i.e. 1 2( ) ( )c r a c r a   [45]. However, as the core and the shell have different affinity 

for the lithium, a more rigorous expression to bridge the two regions is using the chemical 

potential, 

 1 2( ) ( )r a r a    . (3-10) 

The continuous chemical potential at the core-shell interface, 1 2( ) ( )r a r a    , can 

be transformed to 

    ,1 1 1 ,1 ,2 2 2 ,2c h c hc c       .  (3-11) 

As c
refE

F

 
  , the interface condition can further be derived as 
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,1 1 1 ,1 ,2 2 2 ,2( ) ( )ref h ref hFE c FE c     .  (3-12) 

Thus, the lithium concentration of the shell at the interface is 

 1 ,1 2 ,21
2 ,2 ,1 1( )h h

ref refc E E c
F

 
  

  
 

 ,  (3-13) 

where 1
,2refE is the inverse function of the open circuit potential of the shell. 

The lithium flux is continuous across the phase interface, 

 1 2( ) ( )J r a J r a   .  (3-14) 

The boundary conditions are given by 

 

1

2

0: 0;

: ,
app

s

c
r

r

i
r b J

Fa L


 



 

  (3-15) 

where appi  is the applied current density on the electrode in the unit of A m-2, 3 /s sa b  is the 

active surface area per unit electrode volume, s is the volume fraction of active solid particles in 

the electrode, and L  is the electrode thickness. Note that we define 0appi  for intercalation 

(discharging when the studied particle is used as cathode) and 0appi  for de-intercalation 

(charging when the studied particle is used as cathode). 

The initial conditions are given by 

 1 1,0 2 2,00: ,t c c c c    . (3-16) 

The initial concentration of the two phases should satisfy equal chemical potential, i.e. 

1 20:t    . 
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The solid diffusion inside the particle can be coupled with the electrode level behavior 

using the single particle model [58]. The cell voltage with respect to a lithium reference electrode 

is given by 

  
2

,2 2

2 4
( ) ln

2
ref app sol

RT m m
V E c r b i R

F

  
    

 
 

 , (3-17) 

where 
   

0.50.50.5
2 2,max 2( ) ( )

app

s e

i
m

Fa Lkc c r b c c r b


  
 , k is the reaction rate constant of the 

shell material, ec  is the lithium ion concentration in the electrolyte, solR  is the electrolyte 

resistance in the unit of Ω m2. 

3.2.2 Mechanics 

Stress equilibrium, either in the core or in the shell, is given by  

 2 0rr rr

r r
   

 


 , (3-18) 

where rr is the radial stress and   is the tangential stress. 

The strain components are written as functions of the displacement, 

 ,rr

du u

dr r
    , (3-19) 

where rr  is the radial strain,   is the tangential strain and u is the radial displacement. 

The relations between stress and strain are given by 

 

(1 ) 2 (1 ) ,
(1 )(1 2 ) 3

(1 ) ,
(1 )(1 2 ) 3

rr rr

rr

E c

E c



 

    
 

   
 

 
        

 
       

  (3-20) 
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where E  is Young’s modulus,  is Poisson’s ratio,  is the partial molar volume of lithium ion 

in the active particle, 0c c c   is the difference between lithium concentration at the current 

state, c , and the initial stress-free state, 0c . 

Substituting Eqs. (3-19) and (3-20) into Eq. (3-18), the radial displacement is governed 

by 

  2

2

1 1

1 3

d d dc
r u

dr r dr dr





  
 

 
 , (3-21) 

We use the subscript 1 and 2 to denote the field in the core and in the shell, respectively. 

The solutions of Eq. (18) in the core and in the shell take the forms of  

  In the core ( 0 r a  ):  21 1 1
1 1 12 2 0

1

(1 )

3(1 )

rB
u Ar c r dr

r r





 
  

  , (3-22) 

 In the shell ( a r b  ):  22 2 2
2 2 22 2

2

(1 )

3(1 )

r

a

B
u A r c r dr

r r





 
  

  ,   (3-23) 

where 1A , 1B , 2A , and 2B  are constants to be determined by the continuity conditions and the 

boundary conditions. The continuity of displacement and radial stress at the interface between 

the core and the shell is given by 

 
1 2

,1 ,2

( ) ( ),

( ) ( ).rr rr

u r a u r a

r a r a 

  

  
  (3-24) 

The boundary conditions are given by 

 
1

,2

( 0) 0,

( ) 0.rr

u r

r b

 

 
  (3-25) 
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Substituting Eqs. (3-22) and (3-23) into Eqs. (3-19) and (3-20), and further into Eqs. 

(3-24) and (3-25), we can solve for 1A , 1B , 2A , and 2B , and obtain the stress and displacement 

fields in the core and in the shell as below: 

The radial stress at the core-shell interface, cs
rr  

 

   

3

2 2
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3
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2
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a

r

b
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a
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b
E E E E

a
 



 

  
    

   

 
       







 
 (3-26) 

In the core ( 0 r a  ):  

2 21 1
, 1 13 30 0

1

1

2 1 1

3(1 )

a r
cs

rr rr

E
c r dr c r dr

a r





  
  

  
  ,  (3-27) 
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1 1
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2 1
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a r
r

E
c 



  
   

 
 

   , (3-28) 
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1 1

10 0
1

1 2 ) 2(1 2 ) 11 1

3 1 1

( cs
a r

rrr
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In the shell ( a r b  ):  
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3.2.3 Parameters 

In this work, the core is assumed to be LiNi0.8Mn0.1Co0.1O2 (NMC 811) while the shell is 

assumed to be LiNi0.4Mn0.4Co0.2O2 (NMC 442). The Ni-rich core is designed to provide high 

energy density while the Mn-rich shell is used to improve the stability. 

The open circuit potential and thermodynamic factor of the core (NMC 811) [59] and 

shell (NMC 442) [60] are shown in Figure 3.2. 

 
Figure 3.2. Open circuit potential and thermodynamic factor profiles of the core (NMC 811) and 

shell (NMC 442) 

 

The maximum lithium concentration inside the active particle can be approximated as 

 max ,
Q

c
F


   (3-33) 
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where Q  is the specific capacity,   is the density and F is Faraday constant. The theoretical 

capacity of NMC 811 is given as 202 mAh g-1, and the theoretical capacity of NMC 442 is given 

as 160 mAh g-1. Assuming the density of NMC particle is 4210 kg m-3, the maximum 

concentration of NMC 811 is 31730 mol m-3 and the maximum concentration of NMC 442 is 

25133 mol m-3. 

The partial molar volume of lithium inside the solid is given as 
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3 3
1 1 ,
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where 

1

3

0

1 1
V

V


 
   
 

 is the strain corresponding to a concentration change of c , 
0

V

V


is the 

volume change rate corresponding to a concentration change of c . 

As reported in Ref. [61], the volume change rate of NMC 811 lattice is 5.1% from 

Li0Ni0.8Mn0.1Co0.1O2 to LiNi0.8Mn0.1Co0.1O2. Thus, the partial molar volume of lithium in NMC 

811 is 1.6×10-6 m3 mol-1.  

As reported in Ref. [62], the volume change rate of NMC 442 lattice is 2.37% from 

Li0.05Ni0.4Mn0.4Co0.2O2 to LiNi0.4Mn0.4Co0.2O2. Thus, the partial molar volume of lithium in 

NMC 442 is 1.01×10-6 m3 mol-1. 

As shown in Ref. [63], the lithium diffusivity increases with the Ni content. In this work, 

we set the diffusivity of NMC 811 as 5.5×10-14 m2 s-1 and the diffusivity of NMC 442 as 4×10-14 

m2 s-1
. 

The mechanical properties of LiNixMnyCozO2 (NMC) have been predicted using first 

principle calculations [64]. The calculation results show that the composition has a small effect 
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on the Young’s modulus and Poisson’s ratio of the active materials. In this work, the Young’s 

modulus is assumed to be 175 GPa, and the Poisson’s ratio is assumed to be 0.3 [64].  

The parameters used in the model are summarized in Table 3.1. 

Table 3.1. Parameters used in the model 

Parameter Symbol Value 

Electrode Level   

Electrolyte resistance 
solR   3.245×10-4 Ω m2 

Cathode thickness L   50 μm 

Cathode solid phase ratio 
s   0.55 

Electrolyte concentration 
ec   1000 mol m-3 

Upper voltage  4.3 V 

Lower voltage  3.0 V 

Particle Level Core (NMC 811) Shell (NMC 442) 

Maximum lithium 

concentration 
maxc   31730 mol m-3 25133 mol m-3 

Partial molar volume of 

lithium 
   1.6×10-6 m3 mol-1 1.01×10-6 m3 mol-1 

Diffusivity 
0 0( )D M RT   5.5×10-14 m2 s-1 4×10-14 m2 s-1 

Young’s modulus E   175 GPa 175 GPa 

Poisson’s ratio    0.3 0.3 

Reaction constant k   - 5×10-10 m2.5 mol-0.5 s-

1 

Initial concentration for 

lithiation 
0c  max0.02c  Calculated from 

1 2   

Initial concentration for 

de-lithiation 
0c  max0.98c  Calculated from 

1 2   

3.3 Results and Discussion 

Simulation results of lithium intercalation are shown in Figure 3.3. Figure 3.3(a) shows 

the lithium concentration along the particle radius. A concentration jump can be observed at the 

core-shell interface, which results from the material difference (i.e. maximum lithium 

concentration and OCP) between the core and the shell. Initially, the lithium concentration of the 

shell is much higher than the core as required by the equilibrium of chemical potential between 

the core and the shell. As lithiation proceeds, the concentration jump evolves to ensure a 
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continuous chemical potential across the interface, as shown in Figure 3.3(b). Note that the 

chemical potential here includes both the chemical and mechanical effects. Figure 3.3(c) shows 

the dimensionless concentration normalized by the maximum concentration of the core and of 

the shell, respectively. The dimensionless concentration jump gradually vanishes since the OCV 

difference between the core and the shell decreases as the dimensionless concentration 

approaches to 1.  

 

Figure 3.3. Radial distribution of (a) concentration, (b) relative chemical potential, (c) 

dimensionless concentration, (d) dimensionless displacement, (e) radial stress and (f) tangential 

stress at eight times during lithium intercalation. The dimensionless concentration is defined with 

respect to the maximum concentration of the core and of the shell, respectively. The relative 

chemical potential is defined as
  , where 

 is the chemical potential of lithium in lithium 

metal. The vertical dash line represents the core-shell interface. In this simulation, a = 4 μm, b = 

5 μm and iapp = -100 A m-2. 
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The radial displacement associated with lithiation is shown in Figure 3.3(d). The shell has 

smaller radial expansion than the core because: 1) the shell has a smaller partial molar volume 

than the core, as listed in Table 3.1; and 2) the lithium concentration change of the shell is 

smaller than the core, as shown in Figure 3.3(a). Thus, the shell restricts the expansion of the 

core to certain extent. Also, note that the dimensionless displacement is small, showing that the 

elastic assumption is acceptable. 

The effect of the shell restriction is illustrated by the compressive radial stress shown in 

Figure 3.3(e). Generally, the particle with a single component undergoes tensile radial stress 

during lithiation. However, the core-shell structure exhibits a compressive radial stress. This 

opposite mechanical behavior is understandable considering the constraining effect by the shell. 

To balance the radial stress, the tangential stress has a distribution as shown in Figure 3.3(f). 

Note that the tangential stress is discontinuous across the core-shell interface. The tensile 

tangential stress in the shell may lead to shell fracture.  

Simulation results of lithium deintercalation are shown in Figure 3.4. Similar to lithium 

intercalation, a larger concentration change occurs in the core than that in the shell. 

Consequently, the shell hampers the contraction of the core, resulting in a large radial stress at 

the core-shell interface. This radial stress may cause debonding between the core and the shell.  
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Figure 3.4. Radial distribution of (a) concentration, (b) relative chemical potential, (c) 

dimensionless concentration, (d) dimensionless displacement, (e) radial stress and (f) tangential 

stress at eight times during lithium deintercalation. The dimensionless concentration is defined 

with respect to the maximum concentration of the core and of the shell, respectively. The relative 

chemical potential is defined as
  , where 

 is the chemical potential of lithium in lithium 

metal. The vertical dash line represents the core-shell interface. In this simulation, a = 4 μm, b = 

5 μm and iapp = 100 A m-2. 

As discussed above, two possible failure modes exist in the core-shell structure. To 

quantify the relation between stress and failure modes, we use the energy release rate defined in 

fracture mechanics. The energy release rate of shell fracture is given by[50] 

 
 

2

,2

2

( )fG Z b a
E


  , (3-35) 

where    2 2
,2 ,22

b

a
rdr b a     is the average tangential stress in the shell, Z = 2 is a 

dimensionless parameter for a channel crack in a spherical shell. 

The energy release rate of core-shell debonding is given by [50] 
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where the effective Young’s modulus, eE , is calculated by  1 21 1 1 2eE E E  . The energy 

release rate is a quadratic function of the radial stress at the core-shell interface, cs
rr . 

With the developed model and energy release rates, we have investigated the effect of 

design and operational parameters on the mechanics of core-shell structures. While a thicker 

shell helps reduce the stress in the core more, the shell itself can fail by fracture or debonding if 

it is too thick. When this happens, all the benefit from the shell would be lost. Therefore it is 

important to identify the parameter windows to avoid shell failure. Figure 3.5(a) shows the effect 

of core radius on the stress and energy release rate under constant outer shell radius and 

magnitude of current density. With an increase in the core radius, the tensile tangential stress in 

the shell grows rapidly, because the shell confining the core expansion becomes thinner. The 

fracture energy release rate, fG , depends on both the tangential stress and the shell thickness. It 

increases and then decreases with the core radius, reaching a maximum at around a = 4 μm. In 

contrast, the debonding energy release rate, dG , which depends on both the radial stress and the 

shell thickness, decreases with the core radius. 

Figure 3.5(b) shows that the tangential stress decreases with the outer shell radius, while 

the radial stress increases with outer shell radius, when all other parameters are kept the same. 

fG  reaches a maximum at around b = 5 μm, while dG  grows rapidly with b. 
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Figure 3.5. (a) Effect of core radius on stress and energy release rate under constant outer shell 

radius and magnitude of current density. (b) Effect of outer shell radius on stress and energy 

release rate under constant core radius and magnitude of current density. (c) Effect of the 

magnitude of current density on stress and energy release rate under constant core radius and 

outer shell radius. For all results,   denotes the maximum average tangential stress of the shell 

during lithium intercalation and fG denotes the fracture energy release rate at the time when 

reaches maximum, rr  denotes the maximum radial stress at the core-shell interface during 

lithium deintercalation and dG  denotes the debonding energy release rate at the time when rr

reaches maximum 

For a particle of single component, high current density results in a large concentration 

gradient and therefore a large stress associated with the large concentration gradient. In contrast, 

the stress in the shell slightly decreases with the current density for a core-shell structure, as 

shown in Figure 3.5(c). The reason is the following. The stress inside the shell develops 

primarily from the difference between the concentration in the core and that in the shell. 
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Comparing with the large concentration jump across the interface of the core and the shell, the 

concentration within the core and the shell are relatively uniform, as shown in Figure 3.5(a) and 

Figure 3.5(a). Under a higher current density, less lithium ions intercalate into or de-intercalate 

from the particle, when discharging or charging terminates with the voltage hitting the lower or 

upper threshold. Thus, the volume change of the core and the resulted shell stress decrease with 

the current density. 

Using this model, we have systematically investigated the effect of core and shell sizes 

on failure. As shown in Figure 3.6(a), large fG  occurs for a particle with a large core and a 

moderately thin shell. However, dG  mainly depends on the shell thickness, and slightly 

decreases with the core radius. We can also find that dG is generally much larger than fG . This 

observation suggests that core-shell debonding may be the major failure mode for the core-shell 

structure. 

 

Figure 3.6. (a) Effect of core radius and shell thickness on fracture energy release rate. (b) Effect 

of core radius and shell thickness on debonding energy release rate. For all simulation results, the 

magnitude of current density is 100 A m-2. The black dots represent the sampling points for 

simulations. The contour is generated based on the results of sampling points using natural 

neighbor interpolation method. The smallest shell thickness calculated is 0.1 μm. 
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One application of the contours in Figure 3.6 is to guide the particle design. To 

demonstrate the idea, we assume that the critical energy release rates for shell fracture and shell 

debonding are both 10 J m-2. Then a feasible design map as shown in Figure 3.7 can be obtained. 

The green area denotes the feasible design region of core radius and shell thickness to avoid any 

shell failure. We can observe that the region defines an upper bound of the shell thickness as a 

function of the core radius. With the parameters used, the maximum shell thickness that can be 

used is less than ~ 0.7 m. A shell thickness smaller than ~ 0.18 m is able to avoid shell failure 

for the entire range of core radius from 1 m to 5 m. 

 

Figure 3.7. Application of the model for particle design. The green area denotes the feasible 

design region for the core-shell structure. The smallest shell thickness calculated is 0.1 μm. 

3.4 Conclusion 

In this work, we have developed a model to calculate the lithium concentration and stress 

inside a particle with the core-shell structure. The diffusion of lithium inside the particle is 

governed by the gradient of chemical potential, which includes both chemical and mechanical 

effects. The thermodynamic factor extracted from the open circuit voltage is used to characterize 

the chemical effect. For the mechanical part, the stress developed in the core-shell structure is 
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calculated using an analogy to thermal stress. As the core and shell are two phases with distinct 

affinity for lithium, we employ the continuous chemical potential, rather than the continuous 

lithium concentration, to bridge the core and the shell. 

Using this model, we have simulated the mechanical behavior for a particle with a 

LiNi0.8Mn0.1Co0.1O2 core and a LiNi0.4Mn0.4Co0.2O2 shell. Simulation results reveal that a large 

tensile tangential stress is generated in the shell during lithiation, while a large tensile radial 

stress is generated at the core-shell interface during de-lithiation. These stress states are 

significantly different from the stress inside a particle of a single component. Using the energy 

release rate defined in fracture mechanics, we have quantified the effect of core radius, shell 

thickness and applied current density on the two failure modes of shell fracture and shell 

debonding, and constructed a design map. These results can be used to guide the design of core-

shell structures. 
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Chapter 4 Modeling of Electrode 

 

4.1 Introduction 

A lithium-ion battery electrode is an inherent multiscale structure, which consists of 

many active material particles together with a small amount of binder and conductive additives. 

An electrode can be considered a continuum since its length scale is generally one or two orders 

of magnitude larger than the scale of the particles. Therefore, instead of resolving detailed 

electrode microstructures, the classic pseudo two-dimensional (P2D) electrochemical model [65] 

makes a separation between the electrode scale and the particle scale. The electrode scale is 

usually one dimensional along the electrode thickness direction, which accounts for solid 

potential, electrolyte potential and electrolyte concentration. The particle scale provides an 

additional dimension along the particle radius, which only resolves the solid concentration in the 

particle. The name of “pseudo two-dimensional” comes from the electrode dimension and the 

particle dimension, which are spatially separated. The two scales are coupled through the 

electrochemical kinetics at the particle surface. The P2D porous electrode model is widely used 

in the field of electrochemistry since it delivers good, satisfying accuracy with acceptable 

computational cost. 

The active materials of lithium-ion battery electrodes exhibit volume change during 

lithium intercalation or de-intercalation. Owing to the relatively slow rate of solid diffusion, 

lithium concentration gradient develops inside particles, resulting in inhomogeneous expansion 

or contraction [66]. As a result, mechanical stress develops in the particles. The developed stress 
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further affects solid diffusion. The coupled stress and diffusion inside a single particle has been 

modeled by an analogy to thermal stress [3], which showed that the developed stress can enhance 

the solid diffusion by 35%. This approach has been extended to study many problems, such as 

the stress inside a nanowire [4], a secondary particle consisting of many primary particles [47], 

or a particle with an active shell [67]. The effect of active material parameters and morphology 

on stress has been explored [5, 6]. Researchers have investigated the fracture of a single particle 

[7-9] and the stress in active particles with plastic deformation [10, 11]. Consideration of stress 

in a single isolated particle extends the classic P2D electrochemical model by giving more 

accurate solid diffusion in a particle and allowing analysis of particle scale mechanical behaviors 

such as plasticity and fracture in a particle. 

Stress can also affect the reaction kinetics. In a silicon particle coated by carbon shell, the 

lithiation-induced stress inside the silicon can halt the lithiation process [12]. The stress also 

affects the lithium deposition rate at the lithium metal surface, which suggests a mechanical 

approach to suppress the dendrite growth [13]. In a recent report [14], two identical Li-alloyed 

Si electrodes undergoing asymmetric bending-induced stresses create a difference in the 

chemical potential, and further generate an electrical current. However, this effect of stress on 

reaction kinetics has been omitted in most single-particle mechanical models, probably because 

those models adopt a constant intercalation rate as the boundary condition at the particle surface. 

Another limitation of the single-particle models is that the stress arising from particle interaction 

has not been addressed. The expansion or contraction of active particles is constrained by 

neighboring particles, current collectors and the battery case. This constraint can generate stress 

in a magnitude comparable to concentration gradient-induced stress [1, 2]. The lack of 

mechanical interaction between particles and effect of stress on the electrochemical reaction rate 



57 

 

makes mechanics and electrochemistry uncoupled at the continuum scale: an applied continuum 

scale stress in the electrode has no effect on the spatial distribution of electrochemical reaction in 

the electrode and vice versa. 

The significance of particle interaction is also highlighted by the mechanical failure in the 

continuum scale, which brings battery degradation. Cracking in-between particles has been well 

observed in experiments [68], which can lead to disruption of electronic network, isolation of 

active materials, and exposure of fresh surface causing side reactions. In order to consider the 

cracks in-between particles, a model must include the particle interaction effect. Meanwhile, the 

intercalation rate at each particle surface is affected by the stress states of different particles. 

Thus, a model should incorporate the coupling of mechanics and electrochemistry at the 

continuum electrode scale in addition to the microscopic particle scale. 

In this work, we develop two models using different approaches, i.e. a multi-scale model 

and a direct three-dimensional particle network model. Particle interaction and stress effect on 

the electrochemical reaction rate are incorporated in both models. We also use a general 

chemical potential that can capture the effects of both mechanical stress and phase transition on 

lithium diffusion. The first model couples mechanics and electrochemistry consistently at the 

microscopic and continuum scales through scale separation and local homogenization. The stress 

in each microscopic particle is a superposition of the intra-particle concentration gradient-

induced stress and the particle interaction stress, and the latter is related to the continuum scale 

macroscopic stress through a representative volume element (RVE). The second model treats all 

particles explicitly with fully coupled three-dimensional mechanical-electrochemical equations.  

The particles and their network structures are simulated directly and accurately without any scale 

separation or homogenization. By comparing the two models, we demonstrate the unique 
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strength of each model and also use the accurate particle network model to validate the multi-

scale model. Comparison of results shows that the multiscale model gives good, satisfying 

accuracy in simulating coupled mechanical and electrochemical behaviors while reducing the 

computational cost dramatically in comparison to the particle network model. The limitations of 

the multi-scale model are also pointed out through the comparison. 

By incorporating particle interaction and fully coupling mechanics and electrochemistry 

consistently from particle to continuum scales, the multi-scale model has provided new physical 

insights and also serves as a powerful tool to address various coupled problems beyond what can 

be done currently. For instance, the continuum scale stress at a spatial point is found to directly 

reflect the average interaction stress for a particle at that point. The inter-particle interaction 

locally influences lithium intercalation and reaction rate. The continuum scale stress affects the 

lithium flux distribution in an electrode. As a tool, the multi-scale model enables quantitative 

investigation of various electrode-level behaviors, such as crack initiation and growth in an 

electrode, which is a critical problem for battery design. These cracks occur in-between particles 

and a model that incorporates particle interaction is essential. The multi-scale model can be 

further used to investigate how inter-particle cracks lead to the exposure of fresh surface 

resulting in side reactions, isolation of active particles, and disruption of electronic network. 

These effects cause capacity fade and an increase of internal resistance. With the multiscale 

model, the battery electrode is treated as a continuum solid so that existing method for fracture 

mechanics analysis can be directly applied. It is known that extending fracture mechanics to 

piezoelectric materials has generated lots of new understanding and interesting results. Similarly, 

the multiscale model in this work allows extending fracture mechanics to study electrochemical 

materials. We expect that exciting new findings and results can be generated. The model can be 
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used to study coupled mechanical-electrochemical degradation behaviors and provide design 

guidance for increasing the cycle life of a battery. The model will enable the study of new 

mechanisms and problems not addressed before. For example, imagine a small 'dead' region in 

an electrode which is electronically isolated from the rest due to poor electronic connection. This 

region is mechanically the same as the rest, so it is not a crack. This dead region does not 

participate in lithium intercalation while its surrounding neighbor region does. The expansion of 

the neighbor region causes stress concentration, reduction of electronic connection, and further 

growth of the dead region. Such a new type of non-crack damage can be captured only with the 

proposed fully coupled multiscale model. As another example, the model can be used to study 

the interesting electrochemical reaction behaviors associated with the stress concentration around 

a crack tip, or be used to study the self-generated stress and deformation in an electrode for 

possible actuation applications. As a tool for battery electrode design, the proposed model can be 

used to design material or electrode patterns to reduce electrode fracture for long battery cycle 

life, or to design the stress field to facilitate electrochemical reaction and transport for fast 

charging and other applications beyond what can be done with existing models. 

4.2 Multi-Scale Model 

4.2.1 Scale Separation and Coupling 

In the electrochemical part, consistent with the porous electrode theory, we separate the 

microscopic particle scale and the continuum electrode scale. The continuum scale resolves the 

spatial distribution of solid potential, electrolyte potential and electrolyte lithium concentration in 

the electrode, while the particle scale resolves the lithium concentration distribution in a particle 

located at any spatial point in the electrode. Following the widely accepted and validated 

assumption in electrochemical modeling, we assume spherical particle shape and locally uniform 
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particle size. The condition of locally uniform particle size allows one particle to represent all the 

particles in its small local region, which corresponds to a spatial point in the continuum scale. 

Note that in the continuum scale the particle size can be a function of spatial position, so that a 

distribution of particle sizes can be considered by the model. An example is varying particle 

sizes along the electrode thickness direction. The essence of multi-scale modeling is that the 

detail of microstructures becomes insignificant after homogenization, which has been widely 

used in the mechanical modeling of composites. It should be noted that here our focus is to lay 

down a framework, which can be extended to consider more general cases such as locally mixed 

particle sizes or material properties. For instance, if there are two different particle sizes in a 

local region, we need to consider two representative particles to represent a local region, which 

corresponds to a spatial point in the continuum scale. This can be done by extending the work. 

In the mechanical part, to address particle interaction, consider a particle in the electrode 

surrounded by other particles as shown in Figure 4.1(a). The stress in particle 1 can be divided 

into two components. The first component is the intra-particle concentration gradient-induced 

stress, denoted as c
ij . The second component, denoted as i

ij , stems from the particle 

interaction loading, t . Note that t  includes both normal and tangential effects. It should be 

noted that c
ij  and i

ij  affect each other. For instance, particle interaction will regulate the Li 

concentration in a particle and therefore alter the stress field within the particle. However, such 

interaction does not mean the two fields are not separable. As will be shown later, the two fields 

have clear definitions and are uniquely determined without any ambiguity. For instance, i
ij  is 

uniquely determined by the force exerted on the particle surface, t . i
ij  is uniquely determined 

by the concentration field in the particle. Another way to look at the separation of these two 

fields is to consider it as an approach to facilitate the analytical derivation, since the total stress 
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in a particle is eventually calculated for the electrochemical-mechanical coupling. In this point of 

view, we do not even require the field separation to be unique, though the two fields are indeed 

unique and have clear physical meanings. 

For a linear elastic problem, the total stress in the particle is a superposition of c
ij and 

i
ij . c

ij
 
can be easily determined using the intra-particle concentration profile given in the 

electrochemical part. However, the determination of i
ij is more complex because solving the 

exact t  exerted on each particle by neighboring particles could be cumbersome. Generally, t  

depends on not only the magnitude of neighboring particle deformation, but also the local 

morphology of particle network. Our approach is to consider a RVE that consists of many 

particles as shown in Figure 4.1(b), and relate the particle interaction stress to the continuum 

scale stress, ij , which can be viewed as a far-field load on the RVE. 

Based on volume average, the continuum scale stress is given by  

 
c i

ij s ij ij s
f     , (4-1) 

where 
c i
ij ij s

   is the volume average of stress in the solid and s  is the volume fraction of the 

solid. Note that 0c
ij s

   since the concentration-induced stress field in the particle is self-

equilibrium. Thus we have 
i

ij s ij s
f   . This equation provides an important insight that the 

continuum scale stress at a spatial point directly reflects the average interaction stress for a 

particle at that point. The hydrostatic component of the interaction stress is then given by 

 
3

xx yy zzi
h s

sf


  
 . (4-2) 
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Figure 4.1(c) shows a schematic of the multi-scale model, illustrating the coupling 

between electrochemistry and mechanics and the coupling between scales. At the microscopic 

particle scale electrochemistry and mechanics are coupled through (1) the solid lithium 

concentration in the particle, sc , which affects the particle stress; and (2) the hydrostatic stress in 

the particle, h , which affects the solid diffusion. At the continuum scale, the coupling between 

electrochemistry and mechanics are reflected by the relation between the potential in the solid, 

s , the potential in the electrolyte, e , the lithium ion concentration in the electrolyte, ec , and 

the continuum scale stress, ij . The electrochemistry fields s , e , ec  and the mechanics 

fields ij  are coupled at the continuum scale in consistency with the microscale coupling 

through (1) the intercalation reaction current density, i , which at any spatial point in the 

electrode depends on the concentration, ,s surfc , and stress, ,h surf , on the surface of a particle 

located at that point; and (2) the particle interaction stress 
i
ij  which depends on the average 

lithium concentration in the particle, ,s avgc .  
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Figure 4.1. (a) The stress in a particle is the superposition of the concentration gradient-induced 

stress, 
c
ij , and the stress from particle interaction, i

ij . (b) The particle interaction stress is 

related to the continuum scale stress, ij .  c) Schematic of the multi-scale model illustrating the 

coupling between electrochemistry and mechanics and the coupling between continuum and 

microscopic scales. Electrochemistry and mechanics are coupled at the microscopic scale 

through the lithium concentration, sc , and the hydrostatic stress, h , in the particle, and 

consistently at the continuum scale through the intercalation reaction current density, i  , which 

depends on the concentration, ,s surfc , and stress, ,h surf , on the particle surface, and the particle 

interaction stress, 
i
ij , which depends on the average lithium concentration in the particle, ,s avgc . 
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4.2.2 Electrochemistry  

Continuum Scale 

The current density in the electrolyte, H
ei , the lithium flux density in the electrolyte, H

eN , 

and the lithium flux in the solid, H
si , are given by 

  
2 ln

1 1 ln ,
ln

H H
e e e e

e

RT d f
t c

F d c
 



  
        

  
i   (4-3) 

 ,
H

H H e
e e e

t
D c

F
  

i
N   (4-4) 

 ,H H
s s s i   (4-5) 

where the superscript 'H' denotes continuum locally homogenized quantities. In other words, 

each spatial point of the electrode represents a local volume containing both the solid phase and 

the electrolyte solution phase. The flux density per area at a spatial point in the electrode is an 

average over a local cross-sectional area of the electrode at that spatial point. Take H
eN  as an 

example. For a plane with a normal unit vector of n, H
en N represents the amount of lithium 

crossing a unit area of this plane through the solution phase. Note that this density is defined on 

the unit area referring to the whole cross-sectional area rather than the pore area occupied by the 

solution phase. This definition is required by the continuum porous electrode theory. In contrast, 

we define the flux density on the area of each phase in the particle network model in section 3, 

where the particles and the electrolyte are modeled explicitly so that they always occupy 

difference spaces. In that definition the superscript 'H' is removed. In these equations R  is ideal 

gas constant, T is temperature, F is Faraday constant, f  is the electrolyte activity coefficient, 

and t  is the lithium ion transference number.  



65 

 

The homogenized electrolyte conductivity, H
e , solid conductivity, H

s , and electrolyte 

diffusivity, H
eD , are given by the Bruggemen relation, 

 
1.5 1.5 1.5, , ,H H H

e e e s s s e e ef f D D f        (4-6) 

where e  is the bulk electrolyte conductivity, e  is the volume fraction of electrolyte, s  is the 

bulk solid conductivity, s  is the volume fraction of solid, and eD  is the bulk electrolyte 

diffusivity. 

The conservation of charge and mass gives relations to the intercalation reaction current 

density, i , by 

 ,H
e sa i i   (4-7) 

 ,H
s sa i i   (4-8) 

 ,He s
e e

c a i
f

t F


 


N   (4-9) 

where the active surface area per unit electrode volume, sa , is given by  

 
3 s

s

p

f
a

r
 , (4-10) 

where pr  is the particle radius. The intercalation current density i  is given later. 

Microscale 

The lithium diffusional flux in a solid particle is governed by the gradient of chemical 

potential [53], 

 ,s sMc  N   (4-11) 
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where M is the mobility and  is the chemical potential of lithium in the solid particles. The 

diffusion of lithium is associated with the replacement of vacancy with lithium. A rigorous 

definition of sN  and   is given in Appendix A, which has been shown equivalent to this 

expression. 

Under the assumptions of small linear elastic deformation and no dependence of 

mechanical properties on lithium fraction [56], the chemical potential of lithium in the active 

particle is given by 

 ( ) ,c s hc      (4-12) 

where ( )c sc denotes the chemical potential at the stress-free state,   is the partial molar 

volume of lithium in the particle, and h  is the hydrostatic stress in the particle. Substituting Eq. 

(4-12) into Eq. (4-11), we have 

 c
s s s h

s

Mc c
c




 
    

 
N  . (4-13) 

The dependence of chemical potential on concentration, c sc  , can be obtained from the open 

circuit potential (OCP) curve. The OCP (with respect to lithium metal) of the active particle, 
refE , 

depends on the difference in chemical potential between a lithium metal (
0
Li ) and the active particle 

( ) . In the OCP state the battery is in equilibrium, the lithium concentration in the particle is uniform, 

and there is no applied external force. Therefore, the OCP state is stress-free with ( )c sc  . The OCP 

is given by      

 

0
Li .c

refE
F

 
  (4-14) 

The term /c sc  can be determined by the OCP as 
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, ,

,
ref refc

s s s max Li s max

E EF FK
F

c c c x c

  
  

  
  (4-15) 

where 
s,maxc  is the maximum lithium concentration in the solid, Lix  is the lithium fraction inside 

the active material, and /ref LiK E x   is called thermodynamic factor in this work. Note that 

the thermodynamic factor gives the value corresponding to the stress-free state. 

Lithium diffusion in some classic active materials (such as graphite and lithium 

manganese oxide) occurs by a vacancy mechanism. The mobility decreases with the increase of 

lithium concentration, which can be written as [53] 

 0

,

1 s

s max

c
M M

c

 
   

 
 , (4-16) 

where 0M  is the lithium mobility in the solid under the condition of dilute lithium concentration, 

which relates to the diffusion coefficient by 0 0D M RT .  The diffusion flux in a spherical solid 

particle is along the radial r direction due to symmetry.  With Eqs. (4-12)-(4-16), the diffusion 

flux ( )sN r  is given by 

 
0

,

1s s s h
s s,max

s max s,max

D c c c
N FK c

RT c c r r

     
           

. (4-17) 

The expression of h  is given later. 

The diffusion equation is 

 

2

2

( )1
0s sc r N

t r r

 
 

 
. (4-18) 

The boundary and initial conditions for the solid diffusion are 
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0

0 at 0,

 at ,

( ) at 0.

s

s p

s s

c
r

r

i
N r r

F

c r c t


 



 

 

  (4-19) 

Charge Transfer Kinetics 

Traditionally, the charge transfer kinetics at the solid and electrolyte interface is 

described using the Bulter-Volmer equation,  

 0

(1 )
exp exp ,

F F
i i

RT RT

        
      

    
  (4-20) 

where 0i is the exchange current density given by 

 
1 1

0 , ,( ) ,s surf e s max s,surfi Fkc c c c       (4-21) 

where is the cathodic symmetry factor and   is overpotential given by  

 ,( ).s e ref s surfE c     (4-22) 

In this work, the charge transfer kinetics is generalized to include the effect of stress. The 

detailed derivation can be found in Appendix B. The generalized charge transfer kinetics is given 

by 

 
 ,

0

(1 )
exp exp exp ,h surf m m mF F

i i
RT RT RT

             
        

     
  (4-23) 

where , ( )h surf h pr   is the hydrostatic stress on the particle surface, m is the mechanical 

cathodic symmetry factor, and m  is the overpotential including the mechanical effect given by 

 
,

,( ) .
h surf

m s e ref s surfE c
F





      (4-24) 
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The inclusion of mechanical stress brings two effects: the scaling of exchange current 

density and the shift of equilibrium potential. 

4.2.3 Mechanics 

Continuum Scale 

The effective elastic modulus of the porous electrode can be determined from those of 

solid particles using several methods, such as self-consistent method [69], Mori-Tanaka method 

[70, 71] and finite element method [72]. In this work, we use the asymptotic homogenization 

method [73, 74]. The details and results of calculation can be found in Appendix C. 

The macroscopic stress in the electrode scale, ij , is given by 

 0( )H
ij ijkl kl klC e e   , (4-25) 

where H
ijklC  is the effective elastic modulus and kle  is the strain. The eigenstrain of a RVE, 0 kle , 

comes from its volumetric change associated with the lithium intercalation/deintercalation of its 

particles. Here ij  is the Kronecker delta. 0e  is determined by the average concentration of the 

particle,  ,s avgc , and the initial concentration, 0sc , giving 

 0 , 0( )
3

H

s avg se c c


  , (4-26) 

where the “effective” partial molar volume of RVE, 
H , may differ from the   in Eq.(4-12) 

since only the active particles in the porous RVE are associated with the intercalation-induced 

strain. The relation between 
H and   is analogously to the relation between the thermal 

expansion coefficient of a porous solid and a bulk solid. In this work the “effective” 
H is 



70 

 

calculated using the asymptotic homogenization method shown in Appendix C, which yields 

H . 

The equilibrium of macroscopic stress gives 

 . Σ 0  (4-27) 

Microscale 

In this section, we focus on the calculation of h  in the particle. Here we consider the 

average interaction stress of a particle because of interaction with all its neighbors. The 

hydrostatic stress on the particle surface is given by  ,
c i

h surf h p h s
r    . Eq. (4-2) has 

already related 
i
h s

  to the macroscopic stress. So here we focus on c
h , the concentration-

induced stress in an isolated particle. 

The radial strain, c
rr , and the tangential strain, c

 , are given by the radial displacement, 

u , 

 
c
rr

du

dr
  ,  

c u

r
  . (4-28) 

The strains include an elastic part and a lithiation-induced part that is analogous to thermal strain, 
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3
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p

c c c c
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
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   

    


  


   

  (4-29) 

where 0s sc c c   is the difference between lithium concentration at the current state, sc , and the 

initial stress-free state, 0sc . pE
 
is the Young’s modulus of the particle, p  is the Poisson’s ratio 

of the particle, rr  is the radial stress,  and   is the tangential stress.  
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The equilibrium equation is given by 

  2
0

c
c crr
rr

d

dr r



    . (4-30) 

The boundary conditions are 

 
0 at 0,

0 at .c
rr p

u r

r r

 

 
 (4-31) 

Solving Eqs. (4-28)-(4-31), we get  

 
2 2

3 30 0

2 1 1
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3(1 )
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rr

p p

E
r cr dr cr dr

r r




 
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   , (4-32) 
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

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      

 .  (4-34) 

Eq. (4-34) shows that c
h  is determined by the concertation profile in the particle and can be 

obtained by an integration. We can also get the radial displacement at the particle surface, 

  2
, 02 0

( )
3

pr pc
p s avg s

p

r
u r cr dr c c

r


    , (4-35) 

where 
3 2

, 0
(3/ ) ( )

pr

s avg p sc r c r r dr   is the average lithium concentration inside the particle. Eq. 

(4-35) shows that the overall expansion or contraction of a particle, , 0( ) / ( /3)( )p p s avg su r r c c  

, only depends on the average concentration regardless of the concentration profile. This result 

provides the basis of using the average concentration in Eq. (4-26).  
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4.3 Direct Three-dimensional Particle Network Model 

In this model we consider all particles and their network structure explicitly with fully 

coupled three-dimensional mechanical-electrochemical equations. 

The ionic current inside the electrolyte is described by 

  
2 ln

1 1 ln ,
ln

e e e e

e

RT d f
t c

F d c
 



  
        

  
i   (4-36) 

where e  is the electrolyte conductivity. Note that although the form of Eq. (4-36) appears 

similar as Eq. (4-3), a major difference is that here the current density per area, ei , is defined on 

the cross-sectional area of a single phase instead of on the cross-sectional area of local phase 

mixtures, so e  instead of H
e  appears in the equation. Also note that in giving Eq. (4-36), e is 

defined as the potential of a lithium metal reference electrode at the point of interest in the 

electrolyte with respect to another lithium metal reference electrode at a fixed point (see more 

discussion on the definition of electrolyte potential in section 12.4 of [75]).  

The lithium ion flux inside the electrolyte is driven by diffusion and migration,  

 ,e
e e e

t
D c

F
  

i
N   (4-37) 

where eD  is lithium ion diffusivity in the electrolyte. 

The current in the solid particle matrix is given by 

 ,s s s i   (4-38) 

where s  is solid conductivity. 

Similar as Eq. (4-17) but using the general gradient operator, the lithium flux in solid is 

given by 



73 

 

  0

,

1s s
s s s,max h

s max s,max

D c c
FK c c

RT c c


  
       

  
N . (4-39) 

Note that a particle is no longer spherically symmetric with explicit modeling of the particle 

network, therefore a general gradient operator is used. 

The conservation of mass requires 

 0e
e

c

t


 


N , (4-40) 

 0s
s

c

t


 


N . (4-41) 

The conservation of charge requires 

 0e i , (4-42) 

 0s i .  (4-43) 

The charge transfer kinetics at the particle surface follows Eq. (4-23), with the exchange current 

density given by Eq. (4-21) and the generalized overpotential given by Eq. (4-24). 

Using the charge transfer current at the electrolyte-particle interface, the boundary 

conditions for eN , sN , ei  and si  are 
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n N

n N

n i

n i

 (4-44) 

where n  is the unit normal vector pointing from the solid particle to the electrolyte. 

The particle network forms a continuum solid of complicated geometry. The stress is the 

solid is given by 
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 0( ),ij ijkl kl klC e e     (4-45) 

where ( )ijkl ij kl ik jl il jkC          is the elastic modulus,  / (1 )(1 2 )E       and  

 / 2(1 )E   . The eigenstrain at each spatial point in the solid is 

 0 0( ),
3

s se c c


    (4-46) 

where 0sc  is the initial lithium concentration of the solid at the stress-free state. 

The equilibrium of stress is given by 

 . σ 0   (4-47) 

4.4 Examples 

In the following we layout the detailed boundary and initial conditions using specific 

examples. For comparison, we will calculate the same setup using both the multiscale model and 

the particle network model. To introduce the setup we start with the particle network model since 

it provides more microstructure details. 

4.4.1 Direct Simulation with Three-dimensional Particle Network Model 

Figure 4.2 shows the schematic of the three-dimensional particle network model. The 

overlapping active particles constitute the backbone of the electrode, while the porous volume in-

between the particles is occupied by the electrolyte. Binder, carbon black and other additives are 

omitted in the geometry. Lithium metal serves as the counter electrode. In application, there is a 

separator sandwiched between the electrode and lithium metal to avoid internal short-circuit. 

With a focus on modeling the electrode and the separator is very compliant, here we use a space 

to represent the separator. 
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Figure 4.2. Schematic of the three-dimensional particle network model. pr  denotes the particle 

radius, L  denotes the electrode thickness, H  denotes the electrode height, W  denotes the 

electrode width and sL  denotes the separator thickness. The distance between the centers of two 

neighboring particles is 1.9 pr . 

The symmetrical boundary conditions hold for eN , sN , ei  and si  at the boundaries of 

0y  , y W , 0z   and z H , which are given by 

 
0,  0,

0,  0.

e s

e s

   

   

n N n N

n i n i
  (4-48) 

where n is the unit normal vector pointing outside from the model domain. 

At 0x  , where particles or electrolyte meet the current collector, we have 

 
0,  0,

0,  .

e s

e s appi

   
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n N n N

n i n i
  (4-49) 

where n is the unit normal vector pointing from the current collector to the electrode, appi  is the 

applied current density and 0appi   for discharge. 

The boundary conditions at the lithium metal surface, sx L L   , are given by 
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i
i

F
   n N n i   (4-50) 

where n is the unit normal vector pointing from the electrode to lithium metal. 

The initial conditions are given by 

 0 0,  at 0.e e s sc c c c t     (4-51) 

The mechanical boundary conditions are given by 

 

 at 0,

0 at 0, , 0, ,

 at particle electrolyte interface.
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y y W z z H
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 

u 0

n u

n σ 0

  (4-52) 

where u is displacement, n is the unit normal vector pointing outside from the model domain in 

the expression of 0  n u , and n is the unit normal vector pointing from the particle to the 

electrolyte at the particle electrolyte interface in the expression of  n σ 0. 

4.4.2 Multi-Scale Model 

Now we solve the same setup in Figure 4.2 using the multi-scale model. Note that at the 

continuum scale the problem is essentially one dimensional in the x axis because of symmetry in 

the y and z axes. The fluxes H
ei , H

eN , and H
si are all along the x axis, or the electrode thickness 

direction. Therefore, in the following we remove the vector form for conciseness. The boundary 

and initial conditions are given by 
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H H
s e app

appH H
s e app e s

e e

i i i N x

i i i x L

i
i i N x L L

F

c x c t

   
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 

  (4-53) 

The mechanical boundary conditions are given by 
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  (4-54) 

4.4.3 Parameters 

In this work we choose LixMn2O4 as the cathode for two reasons. First, as a well studied 

material, the chemical and mechanical properties of LixMn2O4 are available in the literature. 

Second, the lithiation of LixMn2O4 is associated with phase transition, which can demonstrate the 

capability of the generalized solid diffusion equation to capture this phase transition effect. The 

open circuit potential and the thermodynamic factor of LixMn2O4 are given in Figure 4.3. 

 

Figure 4.3. Open circuit potential and thermodynamic factor profiles of LiMn2O4. 

 

Table 4.1 lists the input parameters for the two models. Note that different literatures may 

give quite different values of material parameters depending on the measurement techniques they 

used. Our focus is to demonstrate how the framework works so the discrepancy among measured 

material parameters in the literature is not of concern. Here we choose values of material 
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parameters that have been widely used before. With the same inputs, we compare the predictions 

from the two models. 

Table 4.1. Input parameters for the two models 

Parameter Symbol Value 

Microscale 

Particle radius pr   5 μm 

Diffusivity of lithium ions in solid 0D   1×10-14 m2 s-1 

Reaction rate constant [76] 
k   5×10-10 m2.5 mol-0.5 

s-1 

Maximum lithium concentration in solid [76] s,maxc  24161 mol m-3 

Initial lithium concentration in solid [76] 0sc   0.19
s,maxc   

Young’s modulus of the solid particle [3] pE   10 GPa 

Poisson’s ratio of the solid particle [3] p   0.3 

Lithium ion partial molar volume [3]   
3.497×10-6 m3 mol-

1 

Continuum Scale 

Cathode thickness L 52.5 μm 

Cathode width W 28.5 μm 

Cathode height H 28.5 μm 

Separator thickness Ls 
17.5 μm 

Initial lithium ion concentration in electrolyte 0ec  1000 mol m-3 

Cathode porosity e  0.40 

Volume fraction of active material s  0.60 

Lithium ion transference number t  0.38 

Solid electronic conductivity [76] 0s  10 S m-1 

Electrolyte conductivity [76] 0e  1 S m-1 

Diffusivity of lithium ions in bulk electrolyte [76] 0eD  3.23×10-10  m2 s-1 

Temperature T  298 K 

Activity coefficient term 
ln

1
ln e

d f

d c


  2.83 

Cathodic symmetry factor   0.5 

Mechanical cathodic symmetry factor m  0.5 

 

For the direct three-dimensional particle network model the applied current density is appi  

=64 A m-2. Note that this current density is defined based on the cross-sectional area of the solid 
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phase, i.e. the total cross-sectional area of all the particles that meet the current collector (the 

blue area in the y-z plane at x=0 in Figure 4.2). For the multiscale model, we keep the same 

amount of current passing through the electrode so that the results are comparable. Since the 

current density of the multiscale model is defined on the apparent cross-sectional area of the 

electrode, the corresponding applied current density is smaller, and the calculation gives appi = 

54.2 A m-2 for the multiscale model. 

  The direct multiscale model and the three-dimensional particle network model are both 

solved using finite element software package COMSOL Multiphysics. In terms of computational 

cost, the three-dimensional model takes more than 9 hour on a workstation while the multiscale 

model takes less than 1 hour on the same workstation. 

4.5 Results and Discussion 

4.5.1 Simulation Results from Multi-Scale Model 

Figure 4.4(a) shows the distribution of lithium concentration inside particles at different 

positions along the electrode thickness. The phase transition induced concentration jump 

vanishes in particles closer to the separator ( / 1x L ), while still exists in particles closer to the 

current collector ( / 0x L ). The concentration gradient-induced stresses are shown in Figure 

4.4(b) and (c). The particles with concentration jump exhibit significantly larger radial and 

tangential stresses. This result highlights the importance to include the phase transition effect 

into solid diffusion, otherwise the calculated stress will be significantly underestimated. Figure 

4.4(d) shows the macroscopic stress in the electrode. Note that 0xx   since the electrode is free 

to expand in the x direction. Particles near the separator shows larger compression stresses of yy  

and zz
 
because more lithium ions intercalate into those particles. 
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Figure 4.4. Distribution of (a) lithium concentration, (b) radial stress, and (c) tangential stress 

along particle radius inside all particles. In (a) ‒ (c), the horizontal axis represents particle 

location along the electrode thickness direction and the vertical axis represents a point in the 

particle. (d) Distribution of macroscopic stress inside the electrode, where the horizontal axis 

represents the location along the thickness direction and the vertical axis represents the location 

along the width direction. All results shown are at the instant of 500 s. 

In terms of temporal profiles, we choose one particle at the location of / 0.36x L . As 

shown in Figure 4.5(a), the radial and tangential stress at the particle center (

( 0), ( 0)rr r r   ) peak at the time of about 500 s, while the tangential stress at the particle 

surface ( ( )pr r  ) reaches its maximum magnitude at about 200 s. This time lag corresponds 

to the radial inward movement of the concentration jump. In contrast, Figure 4.5(b) shows that 
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the continuum scale stress is compressive and its magnitude gradually increases with time, as the 

increasing lithium concentration in the solid results in larger and larger expansion. 

 
Figure 4.5. Temporal profiles of (a) concentration gradient-induced stress in a microscale particle 

and (b) continuum electrode scale stress at the location of / 0.36x L . 

Figure 4.6 shows the distribution of interaction stress inside a RVE. This is obtained by 

modeling the local detailed particle structure in the RVE with finite element and applying the 

solved continuum scale stress as boundary loads. Large stress concentration shows up naturally 

at the contact between particles. This indicates that the detailed contact-induced local 

inhomogeneous stress distribution at any spatial point of interest in the electrode, if needed, can 

be recovered by using the solved continuum scale stress and a RVE. 
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Figure 4.6. (a) Schematic of the RVE and the boundary conditions. Distribution of (b) i

xx , (c) 

i
yy  and (d) i

zz  inside a RVE. 

4.5.2 Simulation Results from Direct Particle Network Model 

Figure 4.7(a) shows the lithium concentration distribution at the instant of 500 s. A sharp 

concentration jump is observed to form inside most particles, except for those near the separator. 

This concentration jump results from the phase transition of LixMn2O4 during 0.25 0.5x  , 

which correspond to the OCP plateau of 4.15 V shown in Figure 4.3. With lithium intercalation, 

the concentration jump gradually moves towards particle center until vanishes. The radial 

locations of concentration jump at different particles thus represent the history of intercalation 
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current: the particles near the separator with a larger intercalation rate has finished the phase 

transition, while the particles near the current collector still have a moving concentration jump. 

Another observation is that the concentration is almost spherically symmetrical, thus the 

assumption of radial diffusion in the multi-scale model is reasonable. 

 
Figure 4.7. Distribution of (a) dimensionless concentration, (b) xx (c) yy and (d) zz at the time 

instant of 500 s. 

Note that the stresses in Figure 4.7(b) ‒ (d) result from both concentration gradient in the 

particles and from particle interactions. At the particle center, the large tensile xx  mainly results 

from the effect of concentration gradient. However, yy
 
and zz  at the particle center turn out to 
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be compressive due to the constraints imposed by other particles. Large stresses appear at the 

particle contact regions due to stress concentration.  

4.5.3 Comparison between Two Models 

The direct three-dimensional particle network model can serve as the benchmark for 

validation of the multiscale model. This is especially valuable since it is challenging to conduct 

direct experimental validation against the multiscale model at present: although experimental 

works focusing on the measurement of deformation or strain of the electrode are available in the 

literature [77, 78], the direct measurement of stress distribution inside the particles remains 

prohibitively difficult. Comparison between the two models demonstrates that the multi-scale 

model can achieve good satisfying accuracy. 

As the first validation, Figure 4.8 compares the simulated voltages from the two models. 

The comparison demonstrates the capability of the multi-scale model to predict the voltage 

precisely. 

 

Figure 4.8. Comparison of voltages from the direct three-dimensional particle network model 

(shown in lines) and from the multi-scale model (shown in dots) 
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Figure 4.9 shows the concentration evolution inside a particle at the location of 1x L . 

The two models agree well with each other. 

 

Figure 4.9. Comparison of solid dimensionless concentration from the direct three-dimensional 

particle network model (shown in lines) and from the multi-scale model (shown in dots). 

In order to compare the stress from the direct three-dimensional particle network model 

and from the multi-scale model, six points are selected as listed in Table 4.2.  

Table 4.2. Coordinates of points selected for stress comparison. 

Point Coordinates in direct 3D particle network 

model 

Coordinates in 

multi-scale model 

Coordinates in RVE 

model 

A 0.36 , 0.33 , 0.66x L y W z H    0.36 , 0x L r   0, 0, 0x y z    

B 0.36 0.5 , 0.33 , 0.66px L r y W z H     0.36 , 0.5 px L r r   0.5 , 0, 0px r y z    

C 0.36 , 0.33 0.5 , 0.66px L y W r z H     0.36 , 0.5 px L r r   0, 0.5 , 0px y r z    

D 0.36 , 0.33 , 0.66 0.5 px L y W z H r     0.36 , 0.5 px L r r   0, 0, 0.5 px y z r    

E 0.36 , 0.33 , 0.66px L r y W z H   
 

0.36 , px L r r 
 

, 0, 0px r y z  
 

F 0.36 , 0.33 , 0.66 px L y W z H r   
 

0.36 , px L r r 
 

0, 0, px y z r  
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Four points are inside a particle at the location of / 0.36x L . Point A is at the particle 

center, Points B, C, D are 0.5 pr  away from Point A along the x, y and z axes, respectively. Points 

E and F are at pr  away from Point A along the x and z axes, respectively. 

The stress from the direct three-dimensional particle network model is shown in solid line 

in Fig. 10. To compare these results with the results from the multi-scale model, we first 

transform the radial and tangential stress ( c
rr  and c

 ) obtained from the multi-scale model to

c
xx , c

yy  and c
zz . The coordinate relation is shown in Table 4.3. 

Table 4.3. The coordinate relation between c
xx , c

yy  , c
zz  and c

rr , c
  for concentration 

gradient-induced stress in a particle from the multiscale model. 

 
c
xx  

c
yy  c

zz  

Point A ( 0)c
rr r   ( 0)c

rr r   ( 0)c
rr r   

Point B ( 0.5 )c
rr pr r   ( 0.5 )c

pr r   ( 0.5 )c
pr r   

Point C ( 0.5 )c
pr r   ( 0.5 )c

rr pr r   ( 0.5 )c
pr r   

Point D ( 0.5 )c
pr r   ( 0.5 )c

pr r   ( 0.5 )c
rr pr r   

Point E ( ) 0c
rr pr r  

 
( )c

pr r 
 

( )c
pr r 

 

Point F ( )c
pr r 

 
( )c

pr r 
 

( ) 0c
rr pr r  

 
 

Next, we use the calculated  inhomogeneous 
i
ij  in the RVE shown in Figure 4.6, which 

has been listed in Table 4.4, to account for the particle interaction effect. Our purpose is to see 

whether the stress distribution recovered with RVE can correctly capture the local 

inhomogeneous stress state. For a given RVE, 
i
ij  linearly depends on the loads yy  and 

zz . 

Thus, the temporal profile of 
i
ij at any point in the particle can be determined by scaling 

linearly with the temporal profile of yy  and 
zz  as shown in Figure 4.5(b). 
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Table 4.4. Interaction stress in the RVE under the boundary loads of 0xx  , 

27 MPayy zz    

 i
xx  i

yy  
i
zz  

Point A 31.9 MPa -55.2 MPa -55.4 MPa 

Point B 14.1 MPa -26.3 MPa -27.0 MPa 

Point C 21.3 MPa -111.2 MPa -34.2 MPa 

Point D 21.5 MPa -33.4 MPa -111.1 MPa 

Point E 1.8 MPa 3.3 MPa 3.4 MPa 

Point F -73.9 MPa -102.6 MPa -143.1 MPa 

The total stress based on the multi-scale model is given as 
c i
ij ij  . Figure 4.10 compares 

the results from the direct three-dimensional particle network model and from the multi-scale 

model, which shows good agreement at all points. 

 
Figure 4.10. Comparison of stress from the direct three-dimensional particle network model 

(shown in solid lines, PN) and from the multi-scale model (shown in dash lines, MS) at (a) Point 

A, (b) Point B, (c) Point C and (d) Point D. 
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4.5.4 Limitations of the Multi-Scale Model 

An important assumption of the multi-scale model is the spherically symmetrical 

concentration distribution at the microscopic particle scale. This assumption is generally justified 

by the direct three-dimensional particle network simulation results shown in Figure 4.7(a). 

However, a closer investigation shows that this assumption may not be valid in the particle 

contact regions. As shown in Figure 4.11(a), the concentration at the Points E and F differ from 

that at the solid electrolyte interface. At 300 s, the phase transition induced concentration jump 

starts to emerge on the particle surface. Without exposure to the electrolyte, the particle 

overlapping region does now allow direct intercalation of lithium ions from the electrolyte at 

Points E and F: it has to wait for the relatively slow solid diffusion to become lithiated. However, 

the solid diffusion is associated with a rather sharp concentration jump, thus Points E and F 

exhibit significantly different concentration than other particle surface points. When the 

concentration jump moves inside the particles at 500 s, the electrode shows a spherically 

symmetrical distribution of concentration surrounding each particle as in Figure 4.11(b). This 

mechanism cannot be captured by the multi-scale model which does not consider detailed 

particle structure: all surface points of particles, including Points E and F, are considered to be 

directly exposed to the electrolyte. 



89 

 

 
Figure 4.11. Distribution of lithium concentration in particles at (a) 300 s and (b) 500 s from the 

direct three-dimensional particle network simulation. The two-dimensional slice is at y=0.33W in 

Fig. 2. 

The asymmetrical concentration distribution shown in Figure 4.11(a) leads to a difference 

of stress predicted with the two models, as shown in Figure 4.12. To understand the mechanical 

effect of large local concentration gradient at Points E and F, we can treat these two points as if 

they are at the centers of two small virtual “particles” noted by the white circles in Figure 4.11. 

At 300 s, Points E and F undergo tensile stress because the outer parts of “particles” have much 

larger lithium concentration. This explains why the solid lines are higher than their dash line 

counterparts at 300 s in Figure 4.12. In addition, the gap between two corresponding lines for 

each stress component is similar at 300 s, because the stress due to local concentration gradient 

at the “particle” center is almost hydrostatic. The two models agree well with each other at 500 s, 

as shown in Figure 4.11(b), because by now the inhomogeneous concentration distribution on a 

particle surface between the particle contact regions and no contact regions has vanished. 
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Figure 4.12. Comparison of stress from the direct three-dimensional particle network model 

(shown in solid lines, PN) and from the multi-scale model (shown in dash lines, MS) at (a) Point 

E and (b) Point F. 

We also note that the two models agree better at Point F than at Point E. As there is no 

constraint for the electrode expansion along the x  direction, the particle interaction stress 
i
ij  is 

much smaller at Point E than at Point F, which can be seen in Table 4.4. Thus, the stress at Point 

E depends more on the concentration in the particle. The multiscale model captures the intra-

particle concentration gradient-induced stress 
c
ij  but does not address any asymmetrical inter-

particle concentration distribution. In contrast, the stress at Point F can be predicted well using 

our multiscale model except for the times when phase transition induces inter-particle 

concentration gradient.  

4.6 Conclusions 

We have developed two models, a multi-scale model and a direct three-dimensional 

particle network model, to fully couples mechanics and electrochemistry consistently at both 

micro and continuum scales. 
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The pseudo-2D model based on porous electrode theory is widely used in the field of 

electrochemistry due to its efficiency and predicting capability without the need to directly 

model detailed particle configurations. The multi-scale model developed in this work offers 

similar advantage. The electrochemical part of the multiscale model is consistent with the 

pseudo-2D model with several important revisions. First, we extend the solid diffusion equation 

using the OCP curve and its derived thermodynamic factor to account for the phase transition 

effect. This revision is important since the phase transition can lead to large concentration 

gradient inside the particle, which further results in large concentration gradient induced-stress. 

Second, we include the effect of stress on the electrochemical reaction kinetics in addition to the 

stress effect on solid diffusion, which fully couples electrochemical and mechanical behaviors. 

The mechanical stress in the particle is described by the superposition of concentration gradient-

induced stress and particle interaction stress. The concentration gradient-induced stress is given 

by the solid concentration profile while the particle interaction stress is captured by the 

continuum scale stress. The detailed information such as local contact stress concentration can be 

recovered by performing a RVE calculation of a representative particle structure with the 

continuum scale stress at the boundary loads. 

In this chapter we considered uniform particle size as an example to demonstrate the 

multiscale model. One can readily consider a distribution of particle sizes along the electrode 

thickness by taking ( )p pr r x  instead of a constant pr , or extend to three dimensional 

distribution. One can also address locally mixed particle sizes, e.g. using a mixture of two sizes 

of particles for the electrode, by considering two representative particles. The equations for each 

particle are the same as shown in this work, except that the homogenization should be taken over 

the two particles to connect particle scale quantities such as stress and intercalation current 
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density to the continuum scale equations. We expect that such a mixed particle system will 

demonstrate rich behaviors. For instance, smaller particles may intercalate and swell faster than 

larger particles in the same region. This will change the stress state of surrounding neighbors in a 

manner different than uniform simultaneous swelling of particles with the same size. In this work 

we considered particles to be spherical, which is a reasonable representation of the shape of 

many active material particles. It is possible to engineer particles into other geometries such as 

disc or rod shapes. In such cases, one can consider ellipsoidal particles and use the orientation 

distribution function to describe their orientations. A distinct effect is that if the orientation 

distribution is not random, the active material will exhibit anisotropic reaction rates and 

interactions in the electrode. 

The three-dimensional particle network model directly models the particle network 

explicitly using fully coupled electrochemical-mechanical equations. This model can be applied 

to arbitrary particle geometries and networks, but is associated with high computational cost. 

Using the three-dimensional particle network model as a benchmark, we validate the accuracy of 

the multi-scale model. The comparison shows that the two models agree well in both the 

electrochemical behaviors and the local stress distribution, which demonstrates the capability of 

the multiscale model in predicting coupled electrochemical-mechanical behaviors. Deviation 

from the three-dimensional particle network model occurs only when the concentration in the 

particle is highly different from spherical symmetry. In other words, the multiscale model can be 

applied to all situations where the standard pseudo-2D electrochemical model is applicable. 

We envision that the multi-scale model can be used to address various coupled 

mechanical-electrochemical problems at continuum scale such as cracking in-between particles, 

delamination of the electrode from the current collector, and evaluation of the impact of fracture 
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and other defects on battery performance. The three-dimensional particle network model allows 

studying coupled processes related to particle network details, such as particle shape and size 

distribution on battery performance, intra-particle fracture in inhomogeneous environment, and 

deboning of individual particles from the network. 
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Chapter 5 Design of Lithium-Ion Batteries Using Artificial Neural Networks  

 

5.1 Introduction 

Lithium-ion batteries have been widely used in various applications, ranging from 

consumer electronics to electric vehicles. To satisfy the ever-growing demands for higher energy 

and power capability, durability and safety of batteries, the design of lithium-ion batteries has 

become essential to avoid any unexpected loss of performance. Battery design based on 

experiments is time-consuming and expensive. In contrast, simulation-based design is not only 

more efficient, but also provides deeper insights into the mechanisms governing the battery 

performance. 

Serving as a crucial step for simulation-based design, battery modeling has attracted a 

growing interest. The majority of current battery models are based on the pseudo two-

dimensional (P2D) electrochemical model, which is based on the porous electrode theory [65]. 

The P2D model have been used to optimize the cathode and anode thickness, porosity, particle 

size and many other important electrode parameters [79-81]. 

The lithium-ion battery is inherently a multi-physical system. A representative example 

showing its multi-physical nature is the interplay between electrochemical and thermal 

behaviors. Heat generated by electrochemical reactions alters the temperature distribution of the 

electrode, which successively affects the electrochemical processes. Note that many properties of 

battery components, such as the electrolyte diffusivity and conductivity, are strongly related to 

temperature [82]. Thus, an accurate simulation often requires a thermal model to be coupled with 
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the P2D model. In order to appropriately address the thermal effect, researchers have contributed 

in thermal property characterization [83], heat generation rate measurement [84] and thermo-

electrochemical coupled modeling [85-87]. 

Despite the significant progress in the thermo-electrochemical coupled modeling of 

lithium-ion batteries, there remains a large gap between modeling and simulation-based design. 

The computational cost can be prohibitively expensive if a fully coupled thermo-electrochemical 

model is directly applied for battery design. In simulation-based battery design, thousands of 

simulations are often required to determine the optimal design variables. Moreover, the complex 

non-linear nature of the battery model may result in convergence issues under some sets of 

design variables. Besides, sensitivity analysis of the design variables is also difficult to perform 

due to the very high computational cost. Without sensitivity analysis the possible reduction of 

design space through eliminating insensitive design variables becomes inapplicable. 

Recently, artificial neural networks (ANN, also termed as neural networks when there is 

no ambiguity) has been shown to solve complex non-linear problems. A notable example is the 

application of deep neural networks in the state-of-the-art artificial intelligence of Go [88]. 

Loosely analogous to biological neuron systems, ANN is a computational model that consists of 

a large collection of connected artificial neurons. The neurons and their connections can be 

trained with data to represent the relations between inputs and outputs. Compared with the 

physical modeling, ANN has advantages in predicting the output without the knowledge of the 

exact analytic information of the modeled system. Another major benefit of ANN is its 

computational efficiency, which enables its deployment in real time applications. ANN has been 

extensively used in computer sciences, finance, engineering and many other fields. In the battery 

field the neural network approach has been explored for state of charge estimations [89, 90]. 
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However, ANN has not received enough attention for battery design applications. Considering 

the potential of ANN in handling highly nonlinear complex problems with significant 

computational cost, we propose an approach to combine the strengths of physical modeling and 

ANN. 

The objective of this chapter is to present a method of applying the neural network in 

simulation-based battery design. Using the simulation results from the electrochemical-thermal 

model as training data, we obtained two neural networks with satisfied accuracy. The first neural 

network, acted as a classifier, is used to predict whether a set of input variables is physically 

feasible. The second neural network is used to calculate the specific energy and specific power 

for any given set of input variables. These two trained neural networks are used to perform very 

large scale Monte Carlo simulations, which are computationally too expensive to be achievable 

using the finite element method (FEM). The analysis of Monte Carlo simulation results provides 

many important insights on the battery design. In this work, we firstly demonstrate that this 

neural network can be used to generate the Ragone plot, which is an important characteristic 

curve for electrochemical devices. Secondly, global sensitivity analysis based on the Monte 

Carlo simulation results provides a sensitivity ranking of the input variables on specific energy 

and specific power. This ranking is helpful to identify the limiting process inside the battery, thus 

reduce the design space. The sensitivity analysis can also contributes to understand the influence 

of input inaccuracy on the outputs, thus determining the acceptable inaccuracy range for each 

input parameter. Finally, we characterize the battery performance with respect to most sensitive 

parameters, and generate a design map to satisfy the requirements of both specific energy and 

specific power.  
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5.2 Methodology 

The first step to construct a neural network is to determine the inputs and outputs. In this 

work, we are particularly interested in design variables that can be controlled in battery 

manufacturing. As the two most important battery performance indicators, specific energy and 

specific power are selected as outputs. Once the input variables are determined, we samples 

representative sets of variables using the design of experiments (DOE) algorithms. Using the 

sampled variables as inputs, a thermo-electrochemical finite element model is run to give 

specific energy and specific power. The inputs and associated outputs are utilized to train the 

neural network. In order to validate the neural network, predictions from the finite element 

simulation and neural network are compared. Once the artificial neural network is constructed 

with satisfied accuracy, Monte Carlo simulations are performed for further analysis, such as the 

global sensitivity analysis and optimization. 

5.2.1 Electrochemical and Thermal Modeling 

We use the P2D model, as listed in Table 5.1, to resolve the solid concentration in the 

particle domain (the coordinate along particle radius is denoted as r ), and the electrolyte 

concentration, electrolyte potential  and solid potential  in the electrode domain (the coordinate 

along electrode thickness is denoted as x ). We denote the thickness of the negative electrode as 

nL  , the thickness of the separator as sL , and the thickness of the positive electrode as L . The 

negative electrode, the separator and the positive electrode occupy the regions of 0 nx L  , 

n n sL x L L   , and 
n s n sL L x L L L     , respectively. 

 

 



98 

 

Table 5.1. Governing equations and boundary conditions of the electrochemical model 

Domain Governing Equations Boundary and Initial Conditions 

Particle 
2

2
s s sc D c

r
t r r r

   
  
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p s
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r r r D
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0eff s
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In Table 5.1, sc  is the lithium concentration in the solid (mol L-1), sD  is the lithium 

diffusivity in the solid (m2 s-1), 
pr  is particle radius (m), F  is the Faraday constant (C mol-1), i  

is the intercalation current per unit area (A m-2), 0sc  is the initial lithium concentration in the 

solid (mol L-1), eff
s  is the effective solid conductivity (S m-1), s  is the potential in the solid 

(V), sa  is the active surface area per unit electrode volume (m-3), 
appi  is the applied current 

density to the electrode (A m-2) with the sign defined as 0appi   for discharge, eff
e  is the 

effective electrolyte conductivity (S m-1), e  is the potential in the electrolyte (V), R  is the gas 

constant (J K-1 mol-1), T  is temperature (K), f  is the electrolyte activity coefficient, t  is the 

lithium ion transference number, e  is the electrolyte volume fraction, ec  is the lithium 

concentration in the electrolyte (mol L-1), eff
eD  is the effective electrolyte diffusivity (m2 s-1) and 

0c  is the initial lithium concentration in the electrolyte (mol L-1).
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The intercalation current density, i  (A m-2), is zero in the separator region. In the 

negative and positive electrode regions the current density is given by the Butler-Volmer 

equation, 

 0

(1 )
exp exp

F F
i i

RT RT

       
      

    
,  (5-1) 

where 0i  is the exchange current density (A m-2),    is the anodic charge transfer coefficient, 

and   is the over-potential (V) defined as 

 
,surf( )s e sU c   , (5-2) 

where U  is the open circuit potential (V) which depends on the lithium concentration at the 

particle surface, 
,surfsc  (mol L-1). The exchange current density is given by 

  1
0 ,surf ,max ,surfs e s si Fkc c c c

   , (5-3) 

where k  is the reaction rate constant (m1+3 mol- s-1) and 
,maxsc  is the maximum lithium concentration in 

the particle (mol L-1). The reaction rate constant k  is assumed to follow an Arrhenius temperature-

dependent relation, 

 
act,

0

0

1 1
exp kE

k k
R T T

  
   

  
, (5-4) 

where 
act,kE  is the activation energy (kJ mol-1) for k , and the subscript 0 denotes values at the 

reference state. 

In Table 5.1, the active surface area per unit electrode volume (m-1) is given by 

3 /s pa r , where  is the solid volume fraction. The effective solid conductivity, effective 

electrolyte diffusivity and effective electrolyte conductivity are given as 

 , , ,eff eff effe e
s s e e e e

e e

D D
 

   
  

     (5-5) 
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where s  is the solid bulk conductivity (S m-1),  is the solid tortuosity, eD  and e  are the bulk 

electrolyte diffusivity (m2 s-1) and conductivity (S m-1), e  is the electrolyte volume fraction and 

e  is the electrolyte tortuosity. The tortuosity of the solid and the electrolyte are given by the 

Bruggeman relation, 

 1 1, e e
        , (5-6) 

where α is the Bruggeman constant. Typically, α is set as 1.5 in battery simulations. However, 

recent reports [91-93] reveal that α may have different values. In this work, we will investigate 

the effect of α on battery performance. The electrolyte bulk conductivity and diffusivity are 

functions of temperature and concentration, which are adopted from Ref. [82]. 

As the reaction constant, the electrolyte diffusivity and conductivity depend on 

temperature, accurate modeling requires a full coupling of thermal and electrochemical 

behaviors. The temperature of the electrode is governed by 
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where ρ is the density (kg m-3), 
pC  is the specific heat capacity (J kg-1 K-1), K  is the thermal 

conductivity (W m-1 K-1), and the heat generation rate q  (W m-3) is given by 
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The thermal boundary condition is given by 
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where 0T  is the environmental temperature (K) as well as the initial temperature of the cell 

setting at 25°C, and h  is the heat convection coefficient (W m-2 K-1). We implemented the 

thermo-electrochemical model using the finite element software package COMSOL 

5.2.2 Inputs 

The first step in design optimization is to determine the appropriate input variables and 

their ranges. In this work, our focus lies on the variables that are controllable during battery 

manufacturing. Specifically, this work is focused on the positive electrode. The inherent 

properties, such as diffusivity and conductivity, are constants for a given material. The positive 

electrode thickness, positive solid phase volume fraction, positive Bruggeman constant and 

positive active material particle radius and C-rate are chosen as the input variables.  

Among all the design variables, the electrode thickness, solid phase volume fraction and 

particle radius are easy to control in battery manufacturing. The initial electrolyte concentration 

is another important and tunable variable. Generally, this variable is set as 1 mol L-1, where the 

maximum conductivity can be reached [94]. However, this concentration may lead to local 

electrolyte dry-up, which may decrease available energy or even accelerate capacity degradation. 

This effect has been found in both simulations and experiments [95], highlighting the benefits of 

high initial concentration. In this work, we prescribe three levels of initial electrolyte 

concentrations to explore the effect of initial electrolyte concentration. 

The Bruggeman constant is not a directly controllable variable. Physically, the tortuosity 

of two electrodes can be different even when the volume fraction is the same. The Bruggeman 

constant can be regarded as a variable characterizing the electrode microstructure. In addition, 

while most prior studies assume that this constant is 1.5, we are interested in whether this 

assumption has a major influence on the simulation results. 
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The applied C-rate, although an operational variable rather than a design variable, is also 

selected as an input variable. The primary reason is that the battery performance is usually 

evaluated at several C-rates. Thus, the neural network should provide the capability to adjust the 

C-rate. The applied C-rate can be related to the current density by 

 C-rateapp pi L Q   , (5-10) 

where 
pQ  is the volumetric capacity of the positive electrode active material. 

Table 5.2 lists the 6 design variables and their ranges. After determining the design 

variables, 900 sets of design-of-experiment variables are generated based on the Latin hypercube 

design (LHD) algorithm and the face centered composite design (FCCD) algorithm [96].  

Table 5.2. Design variables and their ranges 

Variable Symbol (Unit) Range 

Positive electrode thickness L (μm) 50~130 

Positive solid phase volume fraction  ε 0.5~0.8 

Positive Bruggeman constant  α 1.5~2.0 

Positive active material particle radius  rp (μm) 3 ~ 12 

Electrolyte Li+ concentration c0 (mol L-1) 0.8, 1, 1.2 

Applied C-rate C-rate (h-1) C/2, 1C, 3C 

 

In this work, the positive electrode is LixNi1/3Co1/3Mn1/3O2 (NCM) and the negative 

electrode is LixC6. The capacity ratio of the negative electrode over the positive electrode, 
npR , is 

kept at a constant of 1.05. A ratio slightly larger than 1 is chosen in order to ensure the full 

utilization of the more expensive positive electrode active material, as well as to avoid 

overlithiation and lithium plating. 

 1.05n n n
np

p

Q L
R

Q L




  ,  (5-11) 
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where nQ  is the volumetric capacity of the negative electrode active material and n  is the 

volume fraction of the negative electrode active material. Given L  and  , the thickness and 

solid volume fraction of the negative electrode are given as 

 /1.15, /1.086n nL L    .  (5-12) 

Table 5.3 lists the parameters for the electrochemical-thermal model. 
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Table 5.3. Input parameters for the coupled electrochemical-thermal model 

Parameters (Unit) 
Positive 

electrode 

Negative 

electrode 
Separator 

Entire 

cell 

Dimensional & microstructural parameters 

Thickness (μm)  L L/1.15 20  – 

Solid phase volume fraction ε ε/1.086 0.61 – 

Bruggeman constant α α 2.6  – 

Particle radius (μm)  rp 8 –  

Cell projected area, A (m2) – – – 0.01 

Thermodynamic parameters 

Volumetric capacity, 
pQ , nQ  (A h m-3) 561.5  736.4    

Open circuit voltage, U  (V) Ref. [97] Ref. [98]   

Entropy coefficient, U T   (V K-1) Ref. [99] Ref. [98]   

Transport parameters 

Solid diffusivity, sD  (m2 s-1) 110-13  110-13  – – 

Solid electrical conductivity, s (S m-1) 0.1 100 – – 

Electrolyte diffusivity, eD  (m2 s-1) Function of T  and ec , cited from Ref. [82] 

Electrolyte conductivity, e  (S m-1) Function of T  and ec , cited from Ref. [82] 

Mean molar activity, 
ln

1
ln e

d f

d c
  Function of T  and ec , cited from Ref. [82] 

Kinetic parameters 

Reaction rate constant at 25°C, k0 (m2.5 

mol-0.5 s-1) 

6.1510-11 6.1510-11  – – 

Reaction activation energy, Eact,k (kJ mol-

1)  

30 30  – – 

Anodic charge transfer coefficient,   0.5 0.5 – – 

Thermal parameters 

Specific heat capacity, Cp (J kg-1 K-1) 900 1437 1978  – 

Thermal conductivity, K (W m-1 K-1)  5 5 1 – 

Heat convection coefficient, h (W m-2 K-1) – – – 5 
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5.2.3 Outputs 

The objective functions of the simulation-based design involve specific energy and 

specific power, which are defined as 

 0

dt

IVdt
E

m



 ; (5-13) 

 0
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mt
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

 , (5-14) 

where 
appI i A  is the applied discharge current, A  is the cell projected area given in Table 5.3, 

V  is the voltage profile given by the finite element simulation, dt  is the discharge time when V  

hits the low voltage threshold of 2.5 V, and m is the cell mass. 

The cell mass is the sum of the current collectors, separator and electrodes, 

 Al Al pos sep neg Cu Cu
pos sep neg

+i i i i i i
i i i

m A d d d d d    
  

 
    

 
   , (5-15) 

where   is the density, d  is the thickness and   is the volume fraction. As the positive 

electrode consists of active particles, electrolyte, binder and additives, the mass of the positive 

electrode is the sum of those phases. The summation also applies for the separator and the 

negative electrode. The parameters needed in Eq. (5-15) are listed in Table 5.4. 
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Table 5.4. Density, volume fraction and thickness of the components inside the battery 

 Density Volume fraction Thickness 

Al current collector 2707 kg m-3 1 25 μm 

Positive electrode 

Active particle (NCM) 4210 kg m-3 ε 

L Binder and additive 1800 kg m-3 0.1 

Electrolyte 1324 kg m-3 1-0.1- ε 

Separator 

PP 855 kg m-3 0.61 
20 μm 

Electrolyte 1324 kg m-3 0.39 

Negative electrode 

Active particle (LiC6) 2260 kg m-3  ε/1.086 

L/1.15 Binder and additive 1800 kg m-3 0.1 

Electrolyte 1324 kg m-3 1-0.1- ε/1.086 

Cu current collector 8954 kg m-3 1 25 μm 

5.2.4 Neural Network Construction 

The simulation results from the electrochemical and thermal modeling provide the 

training data to construct neural network that correlate the inputs and outputs. Physically, some 

sets of inputs may lead to “abnormal” outputs, such as significantly low specific energy because 

of local depletion of electrolyte, which prevents lithium transport. The “abnormal” results occur 

when the combination of input parameters are outside of the range for sustaining intercalation or 

deintercalation. The accuracy of neural network in calculating outputs will be diminished if the 

training data contain those “abnormal” results since they cause a sharp discontinuity of system 

behavior. Our solution to this problem is to introduce another neural network, which acts as a 

classifier to judge whether a set of inputs is normal or abnormal. The calculator neural network 

performs calculation only for inputs which are classified by the classifier neural network as 

normal. Thus, the classifier neural network is trained using the whole sets of inputs, while the 

calculator neural network is trained using only normal sets of inputs. 

The classifier and calculator neural networks are both constructed using the MATLAB 

Neural Network Toolbox. As shown in Figure 5.1(a), the input vector is six-dimensional 
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consisting of the six input variables, while the output is a value ranging from 0 to 1. The value 0 

represents abnormal while the value 1 represents normal. The hidden layer between the input and 

the output consists of 10 neurons, which has been proven enough for our applications. The 

symbol “w” represents weight and “b” represents bias. The transfer function in the hidden layer 

is the sigmoid function while the transfer function in the output layer is the softmax function. 

Figure 5.1(b) shows the schematic of the calculator artificial neural network. Similar to Figure 

5.1(a), the input vector is six-dimensional consisting of the six input variables, while the output 

vector is two-dimensional consisting of specific energy and specific power. The hidden layer 

between the input and the output consists of 10 neurons with the sigmoid transfer function. The 

output layer has a linear transfer function. The training data for this neural network come from 

the FEM simulation results classified as normal by the classifier neural network. 

 

Figure 5.1. (a) Schematic of the classifier neural network. (b) Schematic of the calculator neural 

network. 

With the trained neural networks, we performed 10000 sets of Monte Carlo simulations, 

which are computationally prohibitive for the finite element method. These simulations provide 

the global sensitivity of each input on the output. The details can be found in section 3.3. The 

sensitivity analysis results help to narrow down the battery design space by eliminating the 
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insensitive design variables. In the refined design space, the neural networks generate a design 

map relating sensitive design variables with specific energy and specific power. The details of 

battery performance optimization can be found in Section 5.3.4. 

5.3 Results and Discussion 

5.3.1 Classifier Neural Network 

Figure 5.2(a) shows the specific energy and specific power obtained from FEM 

simulations of the electrochemical-thermal model with the 900 sets of input variables. Each dot 

represents a set of input variables, and the color illustrates the C-rate. What stands out in Figure 

5.2(a) is that tens of simulations deliver negligible specific energy. Closer investigation reveals 

that those simulations abruptly terminate when the electrolyte concentration in the positive 

electrode drops below than 1 mol m-3. This is understandable because electrolyte concentration 

cannot further decrease to negative during the simulation of discharge. The depletion of 

electrolyte brings physical implications. The dry up of electrolyte can lead to the loss of 

electrochemical activity in local regions, which may further grow because of the particle 

interaction effect [100]. Consequently, we are interested in avoiding input variables that may 

result in the depletion of electrolyte. In the following text, the simulation that results in very low 

electrolyte concentration (<10 mol m-3) at the final instant is termed as abnormal. Figure 5.2(b) 

shows the classified normal and abnormal simulations. Note that some abnormal simulations 

may still give considerable specific energy, as those simulations proceed to discharge until 

reaching a very low final electrolyte concentration. 
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Figure 5.2. Specific power with respect to specific energy from finite element simulations of the 

electrochemical-thermal model. (a) The color of the dot represents the applied C-rate. (b) The 

color and symbol represents the normal or abnormal simulations. 

Then we look at using the classifier neural network to predict abnormal simulations, 

which can be regarded as a typical classifier problem in machine learning. The abnormal cases in 

Figure 5.2(a) are tagged as Class 0, while the remaining normal cases are tagged as Class 1. The 

900 sets of input variables and their resulting classes are used to train a neural network-based 

classifier. The confusion matrix in Figure 5.3(a) visualizes the performance of this neural 

network. The target class represents the actual class, while the output class represents the class 

predicted by the neural network. Of the 900 cases, the neural network correctly predicts 760 

cases of Class 1 (among 764 cases) and 132 cases of Class 0 (among 136 cases). The false 

positive rate is 2.9% and the false negative rate is 0.5%. The accuracy of each target class and 

output class can be found in the gray grid. Overall, the accuracy of the trained neural network is 

(760+132)/900 = 99.1% as shown in the blue grid. 
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Figure 5.3. (a) Confusion matrix of neural network-based classifier. (b) Relation between   and 

the minimum electrolyte concentration of positive electrode at the end of discharge. 

The results from the classifier neural network motivate us to think whether there exists a 

physical characteristic number to separate the normal and abnormal cases. Physically, the 

electrolyte lithium concentration in the positive electrode decreases due to the intercalation of 

lithium ions into positive electrode active particles. Meanwhile, lithium ions diffuse across the 

separator to replenish the consumed lithium ions. Thus, a non-dimensional characteristic number 

can be used to compare the two effects, 

 
0 0

app app

eff eff
e e

i F i L

D c L FD c
    , (5-16) 

where 
appi F  can be regarded as the lithium consumption rate required by the applied current 

and 
0

eff
eD c Lcan be regarded as the electrolyte supply rate due to diffusion. As shown in Figure 

5.3(b), 4   serves as a satisfying threshold to determine whether a simulation is abnormal or 

normal. The input variables yielding 4   generally result in very low final electrolyte 

concentration, and thus abnormal simulations. This is a rather remarkable outcome as  can be 

calculated without running the computationally expensive simulation. 
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In order to further evaluate the performance of the characteristic number and the neural 

network, we conducted 11 more simulations. Note that the 11 simulations are not included in the 

previous 900 simulations. In Figure 5.4(a), the threshold of 4   successfully separates the 

normal and abnormal cases. The prediction from the neural network is a value ranging from 0 to 

1, while the value of 0.5 can be used as the threshold in Figure 5.4(b). The results in Figure 5.4 

show that both the characteristic number and the neural network work well in telling whether a 

simulation is normal or abnormal. It is interesting to further compare the two approaches. First, 

we note that Γ calculated in Eq. (5-16) can only represent the initial state. However, significant 

temperature increase in cold environment leads to salient change in electrolyte diffusivity, 

making Γ not representative of the whole discharging course. This thermal effect may diminish 

the usefulness of Γ. Second, although this work only considers the depletion of electrolyte as the 

sole reason for abnormal simulations, other factors may become important under different ranges 

of inputs. For example, the slow solid diffusion may lead to over-lithiation or over-delithiation 

for large particles with low diffusivity. In this regard, various characteristic numbers should be 

proposed to describe the different limiting processes. In contrast, the neural network approach 

provides a unified framework to classify the abnormal simulations.  
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Figure 5.4. Comparison between electrochemical-thermal simulations based on the finite element 

method (FEM) and (a) non-dimensional characteristic number, (b) neural network-based 

classifier. The green region denotes the normal area. Five of the design variables are kept 

constant as shown in the figure, while the C-rate changes from 0.5 C to 3 C. 

5.3.2 Calculator Neural Network 

This section is focused on the calculation of specific energy and specific power using the 

neural network. The construction of the calculator neural network can be found in section 5.2.4.  

To validate the constructed neural network, we compare the Ragone plots from the neural 

network and finite element simulations. Providing the relation between specific energy and 

specific power, Ragone plot has been widely used to characterize the performance of energy 

storage devices [101, 102]. As shown in Figure 5.5, the Ragone plots from the neural network 

agree well with the finite element simulations, meanwhile the computational cost is greatly 

reduced. Note that the input variables for this validation are out of the training dataset. Each 

FEM dot in Figure 5.5 takes about 6 minutes of computation, thus the FEM simulations can only 

be performed at several discrete C-rates due to the computational cost. The orange dots in Figure 

5.5 take a total of 3 hours of computation. In contrast, it takes less than 1 second for the 

calculator neural network to generate the entire continuous curve. This dramatic acceleration of 
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calculation by several orders of magnitude highlights the great value of neural network in battery 

design applications.  

 

Figure 5.5. Ragone plots from neural network calculations and electrochemical-thermal 

simulations based on the finite element method (FEM). Each FEM dot represents a finite element 

simulation. Five of the design variables are kept constant as shown in the figure, while the C-rate 

changes from 0.5 C to 3 C. 

5.3.3 Global Sensitivity Analysis 

Given a generic model 1 2( , , )kY f X X X , sensitivity analysis provides a systematic 

approach to quantify the influence of input iX on the output Y . Two main categories of 

sensitivity analysis have been proposed in the literature. The local sensitivity analysis is based on 

the derivative iY X  . Although having the attraction of being computationally efficient, this 

approach can only provide information at specific points where the derivative is calculated. 

Thus, the derivative-based local sensitive analysis is unwarranted when the model inputs are 

highly uncertain or when the model is non-linear in nature. In contrast, global sensitivity analysis 

can provide comprehensive information over the whole input range even when the model is 
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nonlinear [103]. Based on the variation decomposition principle [103, 104], the first order global 

sensitivity is defined as 

 
[ ( | )]

,
( )

i
i

V E Y X
S

V Y
   (5-17) 

where ( | )iE Y X  is the conditional expectation over each iX , and ( )V  stands for variance.  

Intuitively, ( | )iE Y X can be calculated by cutting the input domain into iX  slices and averaging 

Y over each slice. If this conditional expectation has a large variation across iX , then this factor 

is regarded as important. The first order sensitivity essentially represents the fraction of output 

variance that can be explained by considering the input iX  alone [105]. Notably, global 

sensitivity analysis can also be used to explore the possible interaction effect among inputs. 

More details can be found in Ref. [106]. 

Figure 5.6 shows the first order sensitivity of the six input variables on specific energy 

and specific power. The electrode thickness and porosity are the dominant factors affecting 

specific energy. In contrast, the applied current density is the decisive factor on specific power. 

The salient effect of C-rate on specific power can also be found in Figure 5.2. Another 

observation from Figure 5.6 is that the initial electrolyte concentration, the Bruggeman constant 

and the particle radius have minor influence on both specific energy and specific power. Thus, 

we keep these factors as constant in the following optimization section. 
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Figure 5.6. First order sensitivity of the six input variables on specific energy and specific power. 

5.3.4 Optimization 

Another application of the constructed neural networks is to optimize the battery design. 

As the initial electrolyte concentration, the Bruggeman constant and the particle radius have 

negligible influence on specific energy and specific power, we focus on the optimization of the 

electrode thickness and the solid volume fraction in this section. 

As the practical application often requires a specific current density instead of C-rate, we 

prescribe a constant current density of 60 A m-2 in the optimization. The C-rate can be calculated 

from the applied current density using Eq. (5-10). 

The first step is to distinguish the infeasible design regions, where the simulations may be 

abnormal. Using the classifier neural network developed in 5.3.1, the input is judged as 

infeasible when the predicted class value is lower than 0.5. As a result, the infeasible region is 

shown black in Figure 5.7.  

Using the calculator neural network, the specific energy and specific power with respect 

to the electrode thickness and the solid volume fraction are shown in Figure 5.7. Thick electrode 
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and high volume fraction of active materials lead to high specific energy at the cost of low 

specific power. These results coincide with current battery design principles: the energy-type 

batteries (used for high-energy applications, such as pure electric vehicles) usually have thick 

and dense electrodes, while the power-type batteries (used for high-power applications, such as 

hybrid electric vehicles) are associated with thin and porous electrodes. The contours of Figure 

5.7(a) and (b) can be combined to fulfill both requirements of specific energy and specific 

power. As shown in Figure 5.7(c), the green area denotes the feasible region where the specific 

energy is larger than 160 W h kg-1 and the specific power is larger than 300 W kg-1.  
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Figure 5.7. Design map generated with neural network. (a) Specific energy contour with respect 

to the positive electrode thickness and the positive electrode solid volume fraction. (b) Specific 

power contour with respect to the positive electrode thickness and the positive electrode solid 

volume fraction. (c) Application of the contours to determine the design area. The green region 

denotes the feasible region satisfying both requirements of specific energy and specific power. In 

all figures, the black region denotes the infeasible region where the Class predicted by the 

classifier neural network is less than 0.5. Other inputs to the neural network are 
-2 -1

060 A m , 1.5, 5 μm, 1 mol Lapp pi r c    .  



118 

 

5.4 Conclusions 

The high computational cost of coupled electrochemical-thermal model has prevented its 

utilization in the simulation-based battery design. In this work, we demonstrated that neural 

networks are highly valuable for battery design, which reduce the computational burden by 

several orders of magnitude. Two neural networks have been constructed, trained and validated 

using the data from finite element simulations. The first neural network, the classifier, was used 

to predict whether a set of input variables is physically feasible. The second neural network, the 

calculator, was used to calculate specific energy and specific power. Comparison between the 

neural networks and finite element simulations demonstrated that both the two neural networks 

achieved satisfying accuracy.  

Using the neural networks, many computationally expensive analyses can be performed 

with negligible computational cost. As an example, a continuous Ragone plot was generated, 

which was in good agreement with the discrete Ragone plot from finite element simulations. 

Moreover, we performed global sensitivity analysis to rank the sensitivity of input variables on 

specific energy and specific power. We found that the applied C-rate is the dominant factor 

affecting specific power, while the electrode thickness and porosity are most significant input 

variables for specific energy. Based on the finding, we obtained contours that characterize the 

specific energy and specific power with respect to the most important variables. Finally, a design 

map was generated to fulfill the requirements of both specific energy and specific power. With 

high computational efficiency, the developed neural networks can potentially be extended to 

other battery applications such as advanced battery management systems for real time control. 
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Chapter 6 Conclusions and Future Work 

 

This dissertation is focused on the mechanical and electrochemical modeling of lithium-

ion batteries ranging from particle scale to electrode scale. The developed mathematical models 

are further used to optimize the design of active particles and electrodes.  

Many electrode materials for lithium-ion battery applications are composed of secondary 

particles. Such an active material particle is not a solid particle, but consists of many fine 

primary particles. Chapter 2 presents a coupled mechanical and electrochemical model to predict 

the intercalation-induced stress in a secondary particle with an agglomerate structure. In this 

model the electrochemical and transport processes are accounted for at both the secondary and 

primary particle levels. For mechanical analysis the secondary particle is treated as a continuum 

with stress calculated through lithium concentration and elastic deformation. With this model we 

revealed several important factors that affect stresses in secondary particles. Our simulations 

show that a stronger dependence of the open circuit potential of the active material on lithium-

ion concentration reduces the stress level. A larger magnitude of over-potential at the surface of a 

secondary particle causes larger stresses. A larger primary particle size helps to reduce the 

stresses in the secondary particle as long as the secondary particle is a continuum containing 

many primary particles. Finally, a comparison between a porous secondary particle and a solid 

particle of the same size shows that the stress level in a porous secondary particle is much 

smaller. 
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Active particles with a core–shell structure exhibit superior physical, electrochemical, 

and mechanical properties over their single-component counterparts in lithium-ion battery 

electrodes. Modeling plays an important role in providing insights into the design and utilization 

of this structure. In Chapter 3, a physically rigorous model is developed to describe the diffusion 

and stress inside the core–shell structure based on a generalized chemical potential. Including 

both chemical and mechanical effects, the generalized chemical potential governs the diffusion 

in both the shell and the core. The stress is calculated using the lithium concentration profile. 

Simulations reveal that a lithium concentration jump forming at the core–shell interface, which is 

only possible to capture by modeling the shell as electrochemically active. In sharp contrast to a 

single-component particle, a tensile radial stress develops at the core–shell interface during 

delithiation, while a tensile tangential stress develops in the shell during lithiation. The core–

shell interface is prone to debonding for particles with a thick shell, while shell fracture is more 

likely to occur for particles with a large core and a relatively thin shell. A design map of the core 

and shell sizes is shown by considering both shell fracture and shell debonding. 

As an inherent multiscale structure, a continuum scale battery electrode is composed of 

many microscale particles. Currently it is generally assumed that each particle is isolated while 

the stress in a particle only affects solid diffusion. The lack of mechanical interaction between 

particles and effect of stress on the electrochemical reaction rate makes mechanics and 

electrochemistry uncoupled at the continuum scale: an applied continuum scale stress in the 

electrode has no effect on the spatial distribution of electrochemical reaction in the electrode and 

vice versa. Chapter 4 first presents a multiscale model that couples mechanics and 

electrochemistry consistently at the microscopic and continuum scales. The microscopic particle 

stress is a superposition of the intra-particle concentration gradient-induced stress and the 
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particle interaction stress, with the latter being related to the continuum scale stress through a 

representative volume element. The electrochemical charge transfer kinetics is generalized with 

the stress effect. Diffusion in a particle is described by a chemical potential that includes stress 

and phase transition. In a parallel effort, we develop a direct three-dimensional particle network 

model, which consists of realistic active material particles. Unlike the multiscale model, there is 

no scale separation and homogenization in the particle network model: all particles are modeled 

explicitly with fully coupled three-dimensional mechanical-electrochemical equations and the 

finite element method. The results from the particle network model are accurate and can serve as 

a standard, but the size of particle network that can be calculated is limited due to high 

computational cost. Comparison of results from the multiscale model and from the particle 

network model shows that the multiscale model gives good, satisfying accuracy while reducing 

the computational cost dramatically in comparison to the three-dimensional particle network 

model. The multiscale model is a power tool to address various coupled problems in the 

electrode, from inter-particle crack growth to electrode structure design for high performance 

and long cycle life. 

Simulation-based battery design encounters the difficulty of high computational cost. 

Chapter 5 presents a systematic approach based on the artificial neural network to reduce the 

computational burden of battery design by several orders-of-magnitude. Two neural networks are 

constructed using the finite element simulation results from a thermo-electrochemical model. 

The first neural network serves as a classifier to predict whether a set of input variables is 

physically feasible. The second neural network yields specific energy and specific power. Both 

neural networks are validated using extra finite element simulations out of the training data. With 

a global sensitivity analysis using the neural network, we quantify the effect of input variables on 
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specific energy and specific power by evaluating large combinations of input variables, which is 

computationally prohibitive for finite element simulations. Among all parameters, the applied C-

rate has the largest influence on specific power, while the electrode thickness and porosity are 

the dominant factors affecting specific energy. Based on this finding, we generate a design map 

that fulfills the requirements of both specific energy and specific power. In particular, we 

highlight the value of neural network in handling the non-linear, complex and computationally 

expensive problem of battery design and optimization. 

In this dissertation, the modeled active materials (e.g. LiNi1/3Co1/3Mn1/3O2 in Chapter 2 

and LiMn2O4 in Chapter 4) undergo intercalation-type reactions and exhibit small elastic 

deformation. However, many promising active materials experience conversion-type reactions, 

and show very significant volume deformation. A typical example is that silicon, which has a 

theoretical capacity as high as 4200 Ah kg-1, suffers from the 300% volume expansion during 

lithiation. Such large deformation induces very large stress and leads to fast fading after cycling. 

In such conversion-type electrode materials, mechanics plays an even more important role. The 

coupling of plasticity, fracture mechanics and electrochemistry is essential to understand the 

degradation behaviors of those materials. 

Another direction extended from current research is to model the dendrite growth of 

lithium metal anode with consideration of mechanical stress. Previous modeling reports suggest 

that the usage of stiff solid electrolyte can prevent the unstable dendrite growth through the 

mechanical effect. The lithium metal is soft and easy to yield, thus the effects of plasticity must 

be carefully considered.  
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Appendix A. Solid Diffusion with Mechanical Stress 

 

In this work, we follow the modeling framework of [107] to consider the coupled stress 

and diffusion in solids. The solid is assumed to consist of a lattice network, which undergoes 

mechanical deformation and stress. Three species (lithium, host material and vacancy) occupy 

the lattice sites, and their total number is conserved. The host material, i.e. Mn2O4 in this work, is 

considered immobile, while the lithium and vacancy can exchange lattice sites with each other. 

The lithium diffusion process is in nature a process that lithium gradually occupies the vacancy 

sites, i.e. Li  N N 0, where LiN  is the lithium flux and N  is the vacancy flux. Here we 

use the subscript ' ' to denote vacancy and the substrate ' Li ' to denote lithium ion while 

highlighting the existence of vacancy. 

As the lithiation induced volume change in LiMn2O4 is small, we consider the 

deformation as infinitesimal. Thus, the solid lithium concentration described using the 

Lagrangian coordinate system is the same as that using the Euler coordinate system. The 

convective lithium flux in solid due to lattice expansion is also assumed as zero (see Eq. (18) in 

[107]). 

The lithium diffusional flux is governed by the gradient of chemical potential, 

  Li LiL        N N , (A1) 

where the coefficient L can be determined using the Stefan-Maxwell equation. After some 

algebraic manipulations,  the flux is given by [107]   
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The chemical potential is given by 
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where 0
i  represents the standard state chemical potential of phase i , ia  is the activity of phase 

i , i  is the partial molar volume of phase i  and h  is the hydrostatic stress experienced  by the 

lattice network. The chemical potential of lithium in active particles used in Eq. (4-11),  , is 

rigorously defined as 

 Li .       (A4) 

Thus, 

    Li Li-ln ln ,hRT a a               (A5) 

where Li-   is the partial molar volume of lithium in the solid.  

The activity can be related to the measured open circuit potential, refE . refE is usually 

measured as the open circuit potential of a LiMn2O4-Li half-cell under equilibrium conditions, 

where the solid lithium concentration and electrolyte lithium concentration are both uniform, and 

there is no mechanical stress. The overall reaction of the half-cell is  

 Li- Li .   (A6) 

Thus, refE  can be obtained by the Nernst equation as 
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aRT
E E
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 , (A7) 
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where  0 0 0 0
Li Li-refE F       and 0

Li is the chemical potential of pure lithium metal. 
0
refE is 

constant because 0
Li , 0

 and 0
Li- 

are all constant. Thus,  

  Li-

,

ln ln ,ref s

s max

FK
RT a a F E c

c
 


        (A8) 

where 
ref LiK E x  . Combining Eqs. (A2) (A5) and (A8), we have 

  0
Li 1s s

s s,max h

s,max s,max

D c c
FK c c

RT c c


  
      

  
N .  (A9) 

This equation is the same as Eq. (4-17) or Eq. (4-39), where 
sN  is 

LiN . 
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Appendix B. Charge Transfer Kinetics with Mechanical Stress 

 

The lithium intercalation or deintercalation reaction can be written as 

 Li- Li e     (B1) 

where Li  represents the lithium ion in the electrolyte, e  represents the electron,  represents 

the intercalation site in the electrode solid, and Li- represents the lithium in the electrode solid. 

The forward and backward reaction rates,  r  and r , are given by the transition state 

theory, 
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 

  (B2) 

Here 0r  is a rate constant, 
i  represents the chemical potential of phase i  and 'TS' stands for the 

transition state. The expressions of the reactant chemical potentials can be written as 

 

0
Li- Li- Li-

0

0

Li Li Li

e

ln ,

ln ,

ln ,

,

e

s

RT a

RT a

RT a F

F

 

 

  

 

  



  

  

 

 

  

 

  (B3) 

where ia  is the activity of phase i , e  is the electric potential of electrolyte near the interface, 

and s  is the electric potential of solid near the interface. Note that e  and s should be defined 

with respect to the same reference point, say the current collector of the negative electrode. If so, 
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s  is equivalent to s  used in Eq. (4-22) while e  is different from e  but their relation will be 

given later. The transition state chemical potential is given by 

 
0 (1 ) ( ),TS TS e sF          (B4) 

where   is the cathodic symmetry factor, which represents the fraction of applied potential in 

promoting the cathodic reaction, i.e. the backward reaction in Eq. (B2). 

With Eqs. (B3) and (B4), the forward and backward reaction rates are given by 
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  (B5) 

The anodic and cathodic reaction rate constants are defined as 
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Then, the net reaction rate is 
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A typical method to simplify Eq. (B7) is to introduce the equilibrium potential,  
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which results in zero net reaction rate. This gives 
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Note that U depends on both the electrolyte lithium concentration and the solid lithium 

concentration, which differs from the refE  in Eq. (4-22), which only depends on the solid lithium 

concentration. 

The overpotential is defined as 

 .s e U       (B10) 

Then, the charge transfer current can be given as 
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where the exchange current density is given by 
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Next, we should establish a relation between e  and e , and another relation between 

U  and refE . At the point of interest that has a “real” electrolyte potential of e , we put a lithium 

metal reference electrode, and measure the potential difference between this reference electrode 

with respect to the chosen fixed point. The measurement potential under equilibrium is e . The 

reaction at this reference electrode is given as 

 
+Li Li e .    (B13) 

The equilibrium condition of reaction gives 
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where 0
Li  is the chemical potential of pure lithium metal. Thus, 
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refE is usually measured as the open circuit potential of a half-cell under equilibrium 

conditions with lithium metal as the negative electrode, where the solid lithium concentration 

and electrolyte lithium concentration are both uniform. The overall reaction of the half-cell is  

 Li Li .    (B16) 

Thus, refE  can be given by the Nernst equation as 
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Note that no electrolyte lithium concentration appears in Eq. (B17). Combining Eqs. 

(B9), (B15) and (B17), the over- potential in Eq. (B10) can be re-written as 

 ,s e refE     (B18) 

which is what used in this work.  

Now, we consider the influence of mechanical stress on the charge transfer kinetics. The 

mechanical stress has no effect on the chemical potential of electrolyte lithium ions and 

electrons, but adds additional terms in Li-  and  , 
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where i is the partial molar volume of phase i  and h  is the hydrostatic stress. 

The transition state energy is given by 
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where m  is the mechanically cathodic symmetry factor. The forward and backward reaction 

rates are then given by 
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where Li-   is the partial molar volume of lithium in the solid. 

Thus, the net reaction rate is 
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Similarly, we introduce the equilibrium potential with the influence of mechanical stress 

as 
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and the revised overpotential as 

 ,m s e mU       (B24) 

then the charge transfer current is given by 
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Following the same procedure to remove the dependence of equilibrium potential on 

electrolyte lithium concentration, we can get 
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Note that the exchange current density given by Eq. (B12) depends on activity instead of 

concentration. Rigorously speaking, the activity of solid phase can be derived and fitted from the 
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measured refE  (see more in [108-111]). In this work, we utilize the common approximation in 

the porous electrode model to replace the activity with concentration, which gives 
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Appendix C. Determination of Elastic Modulus and Expansion Coefficient 

 

As derived in [112], the homogenized elastic tensor using the asymptotic homogenization 

method is 
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where Y denotes a periodic RVE structure whose volume is denoted as Y , y is the coordinate 

system in the RVE (note that here we use 1 2 3, ,y y y  instead of , ,x y z  to denote the components 

of the RVE coordinate system), ( )ijklC y is either the elastic modulus of particles or zero 

depending on the location y ,
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characteristic displacement field tensor, and 1 2 3dY dydy dy . The asymptotic homogenization 

method has developed an approach to calculate mn
k , and then the homogenized elastic modulus 

using Eq. (C1). 

mn
k is a third-order tensor with the symmetry  of mn nm
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The periodic structure gives the following periodic boundary conditions 

 

0
2 3 1 2 3

0
1 3 1 2 3

0
1 2 1 2 3

(0, , ) ( , , ),

( ,0, ) ( , , ),

( , ,0) ( , , ),

mn mn
k k

mn mn
k k

mn mn
k k

y y y y y

y y y y y

y y y y y

 

 

 







  (C3) 
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where 0
1y , 0

2y , 0
3y are the length of RVE along the 

1y , 
2y , 

3y  axes and 0
1 10,y y   , 

0
2 20,y y   , and 0

3 30,y y   . We also need to impose a fixed constraint at one point to 

eliminate the singularity, which can be given as 

 (0,0,0) 0.mn
k    (C4) 

The calculated results for the continuum scale mechanical properties are 

 

1111 2222 3333

1122 2211 1133 3311 2233 3322

1212 2323 1313

2.43 GPa,

0.374 GPa,

0.80 GPa,

H H H

H H H H H H

H H H

C C C

C C C C C C

C C C

  

     

  

  (C5) 

and other elastic components are zero. Using the matrix expression, the elastic modulus can be 

written as 

 

2.43 0.374 0.374

0.374 2.43 0.374

0.374 0.374 2.43
 GPa.

0.80

0.80

0.80

H

 
 
 
 

  
 
 
 
 

C   (C6) 

The calculated results show that the homogenized elastic modulus has only three 

independent components, 2.33 GPa, 0.13, 0.80 GPaH H HE G   . See more at [113]. 

If we treat the concentration in analogy as temperature, the determination of 

homogenized 
H is equivalent to the determination of homogenized thermal expansion 

coefficient 
H
ij . As given in [114],

H
ij is given by 

 
1

( ) ( ) ,H H k
ij ijpq pqkl kl

lY

S C dY
Y y


 

 
  

 
 y y   (C7) 
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where 
H
ijklS is the homogenized compliance tensor, which is the inverse of 

H
ijklC . The thermal 

expansion coefficient of the particle is isotropic as 11 22 33 , 0( )ij i j        , and the 

thermal expansion of the pore is always 0. The characteristic displacement k  in Eq. (C7) is 

determined by 

 ( ) ( ) 0.k
ijkl kl

j l

C
y y




  
   

   
y y   (C8) 

The calculated result is
H
ij ij  . Thus, 

H . 
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