
Locality of Distributed Graph Problems

by

Yi-Jun Chang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2019

Doctoral Committee:
Professor Seth Pettie, Chair
Assistant Professor Bernhard Haeupler, Carnegie Mellon University
Assistant Professor Viswanath Nagarajan
Assistant Professor Grant Schoenebeck
Assistant Professor Jukka Suomela, Aalto University

Yi-Jun Chang
cyijun@umich.edu

ORCID iD: 0000-0002-0109-2432

© Yi-Jun Chang 2019

mailto:cyijun@umich.edu
http://orcid.org/0000-0002-0109-2432

Acknowledgments
First and foremost, I would like to thank my advisor Seth Pettie for his guidance and
support. I would also like to thank Bernhard Haeupler, Viswanath Nagarajan, Grant
Schoenebeck, and Jukka Suomela for serving on my dissertation committee.

During my graduate studies, I was very fortunate to have had the opportunity to col-
laborate and discuss research with many talented people, from whom I learned a lot. I
thank all my past and current collaborators: Alkida Balliu, Sebastian Brandt, Varsha
Dani, Manuela Fischer, Mohsen Ghaffari, Thomas P. Hayes, Qizheng He, Kuan-Yi Ho,
Wenyu Jin, Tsvi Kopelowitz, Wenzheng Li, Dennis Olivetti, Seth Pettie, Mikaël Rabie,
Jukka Suomela, Jara Uitto, Ruosong Wang, Hsu-Chun Yen, Wei Zhan, Hengjie Zhang,
Yufan Zheng.

Last but not least, I thank my parents for their unconditional support.

ii

Table of Contents
Acknowledgments ii

List of Figures vii

List of Tables viii

Abstract ix

Chapter 1. Introduction 1
1.1 Computational Models, Problems, and Tools 4

1.1.1 Locally Checkable Labeling . 5
1.1.2 Distributed Lovász Local Lemma 6
1.1.3 Graph Shattering . 7
1.1.4 Other Computational Models . 10

1.2 Overview of Our Results . 10
1.2.1 Complexity Theory for the LOCAL Model 11
1.2.2 Complexity of Distributed Coloring 14
1.2.3 Bandwidth Constraint . 16

1.3 Publications that Constitute this Thesis 17

Chapter 2. Complexity Landscape of LCLs on General Graphs 19
2.1 Overview . 19

2.1.1 New Results on the Value of Random Bits 22
2.1.2 New Results on the Complexity Gaps 22

2.2 The Necessity of Graph Shattering . 24
2.3 Lower bounds for ∆-vertex coloring ∆-regular Trees 26
2.4 Gaps in Deterministic and Randomized Time Complexity 29
2.5 A Gap in the RandLOCAL Complexity Hierarchy 34
2.6 Speedup Implications of Naor & Stockmeyer 38

2.6.1 Requirements for Automatic Speedup 38
2.6.2 Automatic Speedup Theorems . 39
2.6.3 Discussion . 41

iii

Chapter 3. Complexity Landscape of LCLs on Trees 45
3.1 Overview . 45
3.2 An Infinitude of Complexities: Hierarchical 21

2
-Coloring 46

3.3 A Complexity Gap on Bounded Degree Trees 51
3.3.1 A Tour of the Proof . 51
3.3.2 Partial Labeled Graphs . 54
3.3.3 Graph Surgery . 54
3.3.4 A Tripartition of the Vertices . 55
3.3.5 An Equivalence Relation on Graphs 56
3.3.6 Properties of the Equivalence Relation 57
3.3.7 The Number of Equivalence Classes 60
3.3.8 A Pumping Lemma for Trees . 60
3.3.9 Rake & Compress Graph Decomposition 62
3.3.10 Extend and Label Operations . 64
3.3.11 A Hierarchy of Partially Labeled Trees 67
3.3.12 An O(logn)-time DetLOCAL Algorithm from a Feasible Labeling

Function . 70
3.3.13 Existence of Feasible Labeling Function 75

Chapter 4. Decidability of LCL Complexity 80
4.1 Overview . 80
4.2 Pumping Lemmas for Paths . 83
4.3 The ω(log∗ n)—o(n) Gap . 87
4.4 Partitioning a Cycle . 91
4.5 Feasible Function . 94
4.6 The ω(1)—o(log∗ n) Gap . 98

Chapter 5. The Complexity of Distributed Edge Coloring 101
5.1 Overview . 101

5.1.1 Edge Coloring Algorithms . 101
5.1.2 Lower Bounds . 103
5.1.3 Distributed Lovász Local Lemma 106
5.1.4 New Results . 106

5.2 Lower Bound for (2∆− 2)-Edge Coloring 109
5.3 Randomized Edge Coloring Algorithm 112

5.3.1 The Algorithm . 116
5.3.2 Maintenance of the Invariant . 120
5.3.3 Proof of Lemma 5.3 . 121

5.4 Proof of Lemma 5.5 . 123
5.4.1 Concentration of Vertex Degree 125
5.4.2 Concentration of Palette Size . 127
5.4.3 Concentration of Color Degree 130

iv

5.5 Distributed Lovász Local Lemma on Trees 139
5.5.1 Deterministic LLL Algorithm . 139
5.5.2 Randomized LLL Algorithm . 140
5.5.3 Criterion for Infection . 142
5.5.4 Contagion Process . 143
5.5.5 Finding a Small Stable Set . 145

5.6 Network Decomposition of Trees . 151
5.6.1 A Simple Network Decomposition 152
5.6.2 A Mixed-diameter Network Decomposition 155

5.7 Deterministic Algorithms for Edge Coloring Trees 157
5.8 Lower Bounds for Augmenting Path-Type Algorithms 159

Chapter 6. The Complexity of Distributed Vertex Coloring 163
6.1 Overview . 163

6.1.1 Fast Coloring using Excess Colors 166
6.1.2 Gaining Excess Colors . 167
6.1.3 Coloring Locally Dense Vertices 169
6.1.4 New Results . 170

6.2 Hierarchical Decomposition . 172
6.2.1 A Hierarchy of Almost Cliques 173
6.2.2 Block Sizes and Excess Colors . 173

6.3 Main Algorithm . 177
6.3.1 Initial Coloring Step . 178
6.3.2 Coloring Vertices by Layer . 179
6.3.3 Coloring the Remaining Vertices 181
6.3.4 Time Complexity . 184

6.4 Fast Coloring using Excess Colors . 186
6.5 Coloring Locally Dense Vertices . 190

6.5.1 Case 1: Many Excess Colors are Available 190
6.5.2 Case 2: No Excess Colors are Available 193

6.6 Proof of Lemma 6.3 . 207

Chapter 7. Distributed Triangle Detection via Expander Decomposition 213
7.1 Overview . 213

7.1.1 Technical Overview . 216
7.1.2 Additional Related Works . 217
7.1.3 Organization . 218

7.2 Algorithm for Graph Partitioning . 218
7.2.1 Subroutines . 221
7.2.2 Proof of Lemma 7.1 . 225

7.3 Algorithm for Finding a Sparse Cut . 229
7.3.1 Distributed Algorithm . 232

v

7.3.2 Implementation . 236
7.4 Triangle Enumeration . 240

7.4.1 Triangle Enumeration in High Conductance Graphs 241
7.4.2 Triangle Enumeration and Counting in General Graphs 246
7.4.3 Subgraph Enumeration . 248

Chapter 8. Conclusion and Future Directions 250

Appendix 255

Bibliography 257

vi

List of Figures
1.1 Complexity landscape for bounded-degree general graphs. 11

3.1 The graph Hk with parameters k = 3, x = 7. 49
3.2 A constant length path resulting from spliting up long degree-2 paths of

level-i vertices. 51
3.3 Class of a rooted tree. 52
3.4 Pumping lemma for trees. 53
3.5 The operation Replace. 55
3.6 A partially labeled subgraph H with poles S = (s, t), embedded in a larger

graph G. 56
3.7 Illustration of the Duplicate-Cut operation. 67
3.8 Construction of the partially labeled graph Ri. 74

4.1 Illustration of the tripartition ξ(P) = (D1, D2, D3) with r = 3. 83
4.2 Illustration of Lemma 4.17. 100

5.1 An example of the lower bound graph construction. 160

6.1 Almost-cliques and blocks. 174
6.2 The (∆ + 1)-list coloring algorithm. 183

8.1 An example illustrating the difficulty of (deg+1)-list coloring. 253

vii

List of Tables
2.1 The impact of “graph shattering” on three archetypical symmetry breaking

problems. 20

5.1 A history of notable edge coloring algorithms and lower bounds, in de-
scending order by palette size. Some (2∆ − 1)-edge coloring algorithms
that follow from vertex coloring L(G), such as [12, 17, 21, 103], have been
omitted for brevity. RandLOCAL algorithms are marked with R; all others
work in DetLOCAL. Those algorithms that are the “best” in any sense are
marked with a ⋆. 104

5.2 A survey of distributed LLL algorithms (with a symmetric LLL criterion).
MIS = O(min{d+ log∗ n, log d+2O(

√
log logn)}) [21, 68] is the complexity of

computing a maximal independent set in a graph with maximum degree
d. WeakMIS = O(log d) [68] is the task of finding an independent set I
such that the probability that v is not in/adjacent to I is 1/poly(d). All
lower bounds apply even to tree-structured instances. We do not optimize
the LLL criterion λ ≥ 2(4r + 8r). 105

6.1 Development of lower and upper bounds for distributed (∆+1)-list coloring
in the LOCAL model. The terms Det(n′) and Detd(n′) are the deterministic
complexities of (∆+1)-list coloring and (deg+1)-list coloring on n′-vertex
graphs. All algorithms listed, except for [86] and ours, also solve the
(deg+1)-list coloring problem. 165

6.2 Parameter setting for the low-degree case. 200
6.3 Parameter setting for the high-degree case. 203

viii

Abstract
Locality is one of the central themes in distributed computing. Suppose in a network
each node only has direct communication with its local neighbors, how efficiently can a
global task be solved? We aim to investigate the locality of fundamental distributed graph
problems. Toward this goal, we consider the following three basic abstract models of
distributed computing.

• LOCAL: each device has direct communication links with its neighbors, there is no
message size constraint.

• CONGEST: each device has direct communication links with its neighbors, the size
of each message is at most O(logn) bits.

• CONGESTED-CLIQUE: each device has direct communication links with all other
devices, the size of each message is at most O(logn) bits.

A brief summary of our results is as follows.

Complexity Theory for the LOCAL Model: We study the spectrum of natural problem
complexities that can exist in the LOCAL model. We provide answers to the fol-
lowing fundamental questions regarding the nature of the LOCAL model: (i) How
to classify the distributed problems according to their complexities? (ii) How much
does randomness help? (iii) Can we solve more problems given more time?

Complexity of Distributed Coloring: The coloring problem is a classical and well-studied
problem in distributed computing. We devise distributed algorithms for the edge-
coloring problem and the vertex-coloring problem in the LOCAL model that improve
upon the previous state of the art.

Bandwidth Constraint: We develop a new framework for algorithm design based on ex-
pander decompositions that allows us to apply CONGESTED-CLIQUE techniques to
the CONGEST model. Using this approach, we provide improved algorithms for the
triangle detection and enumeration problem in CONGEST.

ix

Chapter 1

Introduction

Large and complex networks naturally arise in various disciplines. The internet, social
interactions of humans, and some biological systems can be represented and analyzed
as networks. A network is often modeled as a graph G = (V,E), where each vertex
v ∈ V represents an node in the network, and each edge e = {u, v} ∈ E represents a
communication link between the two nodes u and v.

Our focus is the locality of distributed computing. Under the constraint that each node
only has direct communication with its local neighbors, how efficiently can a global task
be solved? This type of question has been studied extensively in the field of distributed
computing.

Computational Models. In this thesis, we consider the following three basic abstract
models of distributed computing.

• LOCAL: each node has direct communication links with its neighbors, there is no
message size constraint.

• CONGEST: each node has direct communication links with its neighbors, the size of
each message is at most O(logn) bits.

• CONGESTED-CLIQUE: each node has direct communication links with all other
nodes, the size of each message is at most O(logn) bits.

In all these models, the computation proceeds in synchronized rounds. The time com-
plexity of a given distributed task P is a minimum number of rounds of an algorithm that
solves P on a network of n nodes, where the minimum is taken over all algorithms.

1

Complexity Theory for the LOCAL Model. Most existing works in distributed com-
puting only focused on specific problems, such as leader election, consensus, broadcasting,
and finding a maximal independent set. There is a lack of a unified theory that can deal
with a large class of distributed problems.1 This is in contrast to the sequential computa-
tion models such as the Turing machine or the RAM model of computation, where a very
rich computational complexity theory has been developed [8].

We aim to develop a computational complexity theory for the LOCAL model that cap-
tures a wide range of “natural” distributed graph problems. Toward this goal, we will focus
our attention to the locally checkable labelings (LCL) problems [116], i.e., the distributed
problems whose solution is locally verifiable. The class of LCL problems is sufficiently gen-
eral that it includes many problems that are well-studied in the LOCAL model, such as the
maximal independent set problem and the graph coloring problem. By restricting ourselves
to LCLs, we can avoid dealing with some uninteresting artificial problems like “gathering
the IDs of all vertices within radius

√
n” and other inherently non-local problems such as

leader election.
We will study the class of LCL problems in the LOCAL model from the perspective of

computational complexity theory. Can we solve more problems given more time? Specif-
ically, are there any LCL problems with time complexity Θ((log∗ n)2), Θ(log logn), or
Θ(
√
logn)? What is the value of random bits? If each vertex in the network is capable

of generating independent random bits, then how much improvement in time complexity
do we obtain? Is there a generic way to derandomize any randomized algorithm to a de-
terministic one? If so, what is the overhead in the transformation? We will address these
fundamental questions in this thesis.

One surprising finding of our research is the existence of several gaps in the complexity
landscape. For example, we show that the deterministic complexity of any LCL problem
on bounded degree general graphs is either Ω(logn) or O(log∗ n); for paths and cycles,
we show that there are only three possible asymptotic complexities: Θ(1), Θ(log∗ n), and
Θ(n), and randomness do not help in improving the asymptotic complexity.

These complexity gaps are useful in several ways. For example, if we prove an Ω(log logn)
randomized or deterministic lower bound for an LCL problem P on bounded-degree graphs,
then the lower bound is automatically improved to Ω(logn) due to the aforementioned
ω(log∗ n)—o(logn) gap. We will show that some gaps are decidable in the sense that we

1See [66] for a discussion on this issue.

2

can write a compute program that, given a description of an LCL problem P , decides in
a finite amount of time which side of the gap P is on. In particular, we will show that
all gaps for paths and cycles are decidable. As a consequence, the process of designing
asymptotically optimal distributed algorithms on paths and cycles can be automated.

Complexity of Distributed Coloring. The goal of the k-vertex coloring (resp., k-edge
coloring) problem is to assign each vertex (resp., edge) a color from {1, 2, . . . , k} such that
no two adjacent vertices (resp., edges) are assigned the same color. There has been a long
line of research aiming at optimizing the time complexity and the number of colors. We
continue this line of research and give improved results over the previous works.

We devise a randomized algorithm for (1 + ϵ)∆-edge coloring, for any ϵ = Ω̃(1/
√
∆).

As long as ϵ ≥ (log3∆)/
√
∆, our algorithm takes only O(log∆ logn) time. The palette

size of our algorithm improves over the previous work of Elkin, Pettie, and Su [55], and it
approaches a natural limit for randomized coloring strategies.2

We devise a randomized algorithm for (∆ + 1)-vertex coloring running in 2O(
√

log logn)

time. This improves upon the previous state of the art by Harris, Schneider, and Su [86]
which requires O(

√
log∆) + 2O(

√
log logn) time, and it achieves the best asymptotic com-

plexity attainable via the graph shattering framework.

Bandwidth Constraint. The assumption of the LOCAL model that there is no message
size constraint is somewhat unrealistic. In this thesis, we also investigate the locality of
distributed graph problems under a bandwidth constraint. The CONGEST model is a
variant of LOCAL that requires the size of each message to be at most O(logn) bits. The
CONGESTED-CLIQUE model is a variant of CONGEST that allows all-to-all communication
for all pairs of vertices, even those not joined by an edge.

Intuitively, the CONGEST model captures two constraints in distributed computing:
locality and bandwidth, whereas the CONGESTED-CLIQUE model only focuses on the band-
width constraint. This difference makes the two models behave very differently. For in-
stance, the minimum spanning tree (MST) problem can be solved in O(1) rounds in the
CONGESTED-CLIQUE [93], but its round complexity is Θ̃(D +

√
n) in CONGEST [128,

133], where D is the diameter of the network.

2We need ϵ = Ω(1/
√
∆) to guarantee a constant probability of being able to color an edge e, given a

random feasible coloring of its neighboring edges.

3

Does non-local communication always help?3 Indeed, non-local communication is very
helpful for designing algorithms for many distributed problems. There are already several
successful cases where algorithms in CONGESTED-CLIQUE are designed by accelerating
known LOCAL or CONGEST algorithms using non-local communication [37, 72, 106, 124,
125]. In this thesis, we try to do the reverse of this. We develop a framework of algorithm
design based on expander decompositions that allow us to simulate CONGESTED-CLIQUE
algorithms efficiently in the CONGEST model. Using this tool, we obtain improved upper
bounds for the triangle detection and enumeration problems in CONGEST. This also
suggests that these problems might be instances where non-local communication does not
help much.

Organization. In Section 1.1, we present the computation models, problems, and tools
that we use. In Section 1.2, we present a more detailed overview of our results. The first
part of our work (complexity theory of the LOCAL model) is presented in Chapters 2, 3,
and 4. The second part of our work (complexity of distributed coloring) is presented in
Chapters 5 and 6. The third part of our work (bandwidth constraint) is presented in
Chapter 7. We conclude in Chapter 8 with comments on future research directions.

1.1 Computational Models, Problems, and Tools
In this section we review the major computation models, problems, and tools used in
this thesis. The main computational model considered is the LOCAL model [107, 127] of
distributed message-passing computation. In the LOCAL model, all local computation is
free and the size of messages is unbounded. Henceforth “time” refers to the number of
rounds. Each vertex v is initially aware of its degree deg(v), a port numbering mapping
its incident edges to {1, . . . , deg(v)}, certain global parameters such as n def

= |V |, ∆ def
=

maxv∈V deg(v), and possibly other information. The assumption that global parameters
are common knowledge can sometimes be removed; see Korman, Sereni, and Viennot [99].
The most important measure of efficiency is the number of rounds. The differences between
the randomized and the deterministic models are as follows.

DetLOCAL: In the deterministic model, all vertices are assumed to hold unique Θ(logn)-

3An analogous question has been considered in the centralized local computation model [82], and their
conclusion is that non-local probes are not helpful for a wide range of graph problems.

4

bit IDs. This assumption is needed in order to avoid trivial impossibilities. Except
for the information about deg(v), ID(v), and the port numbering, the initial state
of v is identical to every other vertex. The algorithm executed at each vertex is
deterministic.

RandLOCAL: In the randomized model each vertex may locally generate an unbounded
number of independent truly random bits, but there are no globally shared random
bits. Except for the information about deg(v) and its port numbering, the initial
state of v is identical to every other vertex. Algorithms in this model operate for
a specified number of rounds and have some probability of failure, the definition of
which is problem specific. Unless otherwise stated, the maximum tolerable global
probability of failure is 1/poly(n). Throughout the thesis, the term “w.h.p.” refers
to a success probability of 1− 1/poly(n).

Clearly RandLOCAL algorithms are capable of generate distinct IDs (w.h.p.) if desired.
Observe that the role of the parameter “n” is different in the two LOCAL models: in
DetLOCAL it affects the ID length whereas in RandLOCAL it affects the failure probability.

1.1.1 Locally Checkable Labeling

Naor and Stockmeyer [116] introduced locally checkable labelings (LCL) to formalize a large
class of natural graph problems in the LOCAL model. Fix a class G of possible input graphs
and let ∆ be the maximum degree in any such graph. Formally, an LCL problem P for G
has a radius r = O(1), input and output alphabets Σin,Σout (which can depend on ∆, but
not n), and a set C of acceptable configurations.

Each acceptable configuration C ∈ C is a graph centered at a specific vertex, in which
each vertex has a degree, a port numbering, and two labels from Σin and Σout. Given the
input graph G(V,E, ϕin) where ϕin : V (G) → Σin, an acceptable output is any function
ϕout : V (G)→ Σout such that for each v ∈ V (G), the “labeled subgraph” induced by N r(v)

is isomorphic to a member of C. Here the notion N r(v) not only considers the topology of
the r-neighborhood of v, but also considers the following information stored within vertices
in N r(v): (i) vertex degrees, (ii) port numberings, (iii) input labels, and (iv) output labels.

For bounded degree graphs, an LCL can be described explicitly by enumerating a finite
number of acceptable configurations. For graph classes with unbounded degrees, LCLs
can be defined by describing the set of acceptable configurations through some logical

5

expression. Many natural symmetry breaking problems can be expressed as LCLs, such as
MIS, maximal matching, (α, β)-ruling sets, (∆+1)-vertex coloring, and sinkless orientation.

Note that the class of LCL problems is analogous to the class NP in the sequential
computation model in the sense that a distributed problem P is an LCL if its solution can
be verified in r = O(1) rounds in the LOCAL model.

The following problems are examples of LCLs for r = 1 without input labels.

Maximal Independent Set (MIS). Given a graph G = (V,E), find a set I ⊆ V such that
for any vertex v ∈ V , we have N(v) ∩ I = ∅ iff v ∈ I.

k-Coloring. Given a graph G = (V,E), find a labeling V → {1, 2, . . . , k} such that for
each edge {u, v} ∈ E, u and v are labeled with different numbers (also called colors).

For MIS it suffices to label vertices with Σout = {0, 1} indicating whether they are in the
MIS. For k-Coloring we use Σout = {1, . . . , k}.

In this thesis we also consider the list coloring problem. In a k-list coloring problem,
each vertex v is given a palette Ψ(v) of k colors from an arbitrary universe. Each vertex v
is required to color itself by a color from its own list Ψ(v), and no two adjacent colors are
colored the same.

1.1.2 Distributed Lovász Local Lemma

The Lovász local lemma (LLL) is a tool in probabilistic method defined as follows. Consider
a set of independent random variables V and a set of bad events E , where each A ∈ E
depends on a subset vbl(A) ⊂ V . Define the dependency graph as

GE = (E , {(A,B) | vbl(A) ∩ vbl(B) ̸= ∅)}).

Symmetric versions of the Lovász local lemma are stated in terms of d, the maximum degree
in GE , and p = maxA∈E Pr[A]. A standard version of the LLL says that if ep(d + 1) < 1

then Pr[∩A∈EA] > 0, i.e., it is possible to avoid all bad events.
The constructive LLL problem is to assign values to all variables in V such that no

event in E happens. The distributed LLL problem [44] is to assign values to all variables
in V such that no event in E happens in the LOCAL model, where the communication
network is identical to the dependency graph GE of the LLL system. Specifically, each
vertex v in GE corresponds to an event A in E , and v is initially aware of vbl(A) and

6

N(v) = {A′ ∈ E \ {A} | vbl(A) ∩ vbl(A′) ̸= ∅}, but no other information about the global
structure of GE . It is straightforward to see that the distributed LLL is an LCL problem.

Moser and Tardos’s [112] parallel resampling algorithm for the constructive LLL implies
an O(log2 n) time RandLOCAL algorithm under the LLL criterion ep(d+1) < 1. Distributed
LLL was introduced by Chung, Pettie, and Su [44], and they gave an O(log1/epd2 n) time
algorithm under the LLL criterion epd2 < 1, an O(Tweak-MIS · log1/ep(d+1) n) time algorithm
under the LLL ep(d + 1) < 1, and an O(logn/ log logn) time algorithm under criterion
p · poly(d)2d < 1. They observed that under any criterion of the form p · f(d) < 1,
Ω(log∗ n) time is necessary. Ghaffari’s [68] weak MIS algorithm, together with [44], implies
an O(log d · log1/ep(d+1) n) algorithm under LLL criterion ep(d+ 1) < 1. Brandt et al. [31]
proved that Ω(loglog(1/p) logn) time in RandLOCAL is necessary, even under the permissive
LLL criterion p2d ≤ 1.

Roughly speaking, distributed LLL can be seen as a black box tool that is able to amplify
the (local) failure probability from 1/poly(d) to 1/poly(n). We illustrate a simple example
of applying distributed Lovász Local Lemma in algorithm design in RandLOCAL. Consider
the k-vertex coloring problem on a graph G = (V,E), and consider a randomized procedure
where each vertex chooses a color uniformly at random. For each edge e = {u, v}, we define
Ee as the event where u and v are assigned the same color. The set of bad events is defined
as E = {Ee | e ∈ E}. Each bad event in E occurs with probability p = 1/k and depends
on at most d = 2(∆ − 1) other events. It is clear that a distributed algorithm on GE can
be simulated by a distributed algorithm on G with a constant factor overhead. Therefore,
as long as ep(d + 1) = e(2∆ − 1)/k < 1, a k-vertex coloring can be computed in time
asymptotic to the time complexity of distributed LLL under the criterion ep(d+1) < 1. If
one applies the O(log d · log1/ep(d+1) n)-time algorithm of [44], then we obtain the runtime
of O(log d · log1/ep(d+1) n) = O(logn log∆). Of course, there are better algorithms (that
do not resort to distributed LLL) for solving the k-coloring problem when k > e(2∆− 1).
Nevertheless, there are several instances where the usage of distributed LLL appears to be
very essential [38, 44, 55, 61, 129]. Our edge coloring algorithm in Chapter 5 will also use
distributed LLL.

1.1.3 Graph Shattering

Graph shattering is a framework for designing RandLOCAL algorithms. This framework
was introduced in [23] (using the ideas in [25]) and was further used in [27, 44, 55, 68,

7

71, 86, 100, 129]. The idea is to apply a randomized procedure that fixes some fragment
of the output (e.g., part of the MIS is fixed, part of the coloring is fixed, etc.), thereby
effectively removing a large fraction of the vertices from further consideration. If it can
be shown that the connected components in the subgraph still under consideration have
size poly(logn), one can revert to the best available deterministic algorithm and solve the
problem on each component of the “shattered” graph in parallel. The randomized part is
called the pre-shattering phase; the deterministic part is called the post-shattering phase.

Next, we present a sufficient condition for the graph to be shattered into small connected
components. For a graph G = (V,E) we say that a subset S ⊆ V is a distance-k set if the
following two conditions are met:

1. The distance between any two distinct vertices u, v ∈ S is at least k.

2. Define Gk = (V,Ek), where there is an edge {u, v} ∈ Ek if and only if distG(u, v) = k.
Then it is required that S is connected in Gk.

Lemma 1.1 ([23]). The number of distinct distance-k sets of size t is less than 4t ·n·∆k(t−1).

Proof. A distance-k set is spanned by a tree in Gk. There are less than 4t distinct unlabeled
trees of t vertices, and there are less than n∆k(t−1) ways to embed a t-vertex tree in Gk.
The lemma follows since there is an injective mapping from the family of distance-k sets
of size t to subtrees of t vertices in Gk.

Lemma 1.2 (The Shattering Lemma). Consider a randomized procedure that generates
a subset of vertices B ⊆ V . Suppose that for each v ∈ V , we have Pr[v ∈ B] ≤ ∆−3c,
and this holds even if the random bits not in N c(v) are determined adversarially. With
probability at least 1 − n−Ω(c′), each connected component in the graph induced by B has
size at most (c′/c)∆2c log∆ n.

Proof. This lemma is well-known; see e.g., [23, 39, 61]. For the sake of completeness, we
provide a proof here. We set k = 2c+ 1 and t = (c′/c) log∆ n. By Lemma 1.1, the number
of distinct distance-k sets of size t is less than

4t · n ·∆k(t−1) = ∆
2t

ln ∆
+k(t−1)+log∆ n

= ∆2c′(1+o(1)) log∆ n.

8

Given a size-t distance-k set T , the probability that T ⊆ B is at most ∆−3ct = ∆−3c′ log∆ n.
By a union bound over all possible T , with probability 1 − n−Ω(c′), there is no size-t
distance-k set T such that T ⊆ B.

Let S be a connected subset of B of size at least (c′/c)∆2c log∆ n. Then there is a
distance-(2c + 1) set T ⊆ S of size t, which can be constructed greedily. By the above
discussion, with probability 1− n−Ω(c′), there is no such set S.

The shattering lemma allows us to argue that the bad vertices form connected compo-
nents of size O(poly(∆) · logn) with probability 1 − 1/poly(n), where n is the number of
vertices in the underlying network.

We remark that there is one subtle issue [23, Remark 3.6] about the post-shattering phase
that is often not discussed in the literature. To execute a τ -time DetLOCAL algorithm on an
n′-vertex graph, it is required that all vertices are equipped with IDs of length ℓ = O(logn′)

that are distinct within distance O(τ). If n′ = O(poly logn), then we have ℓ = O(log logn).
Therefore, we cannot use the initial O(logn)-bit IDs to run the DetLOCAL algorithm in
the post-shattering phase.

There exist DetLOCAL algorithms whose runtime depends on the ID length. For example,
the ruling set computation used in the network decomposition algorithm of [120] takes time
linear in the ID-length.

Fortunately, such O(log logn)-bit IDs can be generated in O(τ) time, and so the asymp-
totic time complexity is not affected. The algorithm for generating such IDs is based on
the following theorem of Linial.

Theorem 1.1 (Linial’s Coloring [107]). Let G be a graph which has been k-colored.

• There is a DetLOCAL algorithm that computes a 5∆2 log k-coloring in one round.

• There is a DetLOCAL algorithm that computes a β·∆2-coloring in O(log∗ k−log∗∆+1)

time, where β > 0 is a universal constant.

The initial O(logn)-bit IDs in DetLOCAL can be viewed as a poly(n)-coloring. The
desired O(log logn)-bit IDs can be generated by running Linial’s coloring on the graph
GO(τ) for O(1) iterations. Note that one round of Gs can be simulated using O(s) rounds
on the underlying network G.

9

1.1.4 Other Computational Models

Recall that the LOCAL model does not have a message size constraint, and so all prob-
lems can be solved in O(D) time by learning the entire graph topology, where D is the
diameter of the graph. This assumption is somewhat unrealistic, and so this motivates us
to consider computational models that impose a message size constraint. The CONGEST
model is the variant of the LOCAL model that imposes an O(logn) message size constraint.
The CONGESTED-CLIQUE model is a variant of CONGEST that allows all-to-all commu-
nication. In CONGESTED-CLIQUE, each vertex initially knows its adjacent edges and the
set of vertex IDs, which we can assume w.l.o.g. is {1, . . . , |V |}. In each round, each vertex
transmits n− 1 O(logn)-bit messages, one addressed to each vertex in the graph.

One of the main reasons that some problems can be solved efficiently in
CONGESTED-CLIQUE is due to the routing algorithm of Lenzen [105]. As long as each
vertex v is the source and the destination of at most O(n) messages, we can deliver all
messages in O(1) rounds.

Lemma 1.3 (Lenzen’s Routing). Consider a graph G = (V,E) and a set of point-to-
point routing requests, each given by the IDs of the corresponding source-destination pair.
As long as each vertex v is the source and the destination of at most O(n) messages,
namely O(n logn) bits of information, we can deliver all messages in O(1) rounds in the
CONGESTED-CLIQUE model.

Using this routing algorithm [105] as a communication primitive, many parallel algo-
rithms can be transformed to efficient CONGESTED-CLIQUE algorithms [34]. For example,
consider the distributed matrix multiplication problem, where the input matrices are dis-
tributed to the vertices such that the ith vertex initially knows the ith row. The problem
can be solved in the CONGESTED-CLIQUE model in Õ(n1/3) rounds over semirings, or
n1−(2/ω)+o(1) = o(n0.158) rounds over rings [34].

1.2 Overview of Our Results
In this section, we present an overview of our results.

10

1.2.1 Complexity Theory for the LOCAL Model

In this thesis we investigate the complexity of the locally checkable labeling (LCL) problems
in the LOCAL model. We are able to demonstrate that there exist several “gaps” in the
possible complexity landscape, and these gaps will reveal some interesting properties of
the LOCAL model. We will mostly focus on the case ∆ = O(1), but we note that all
of our results can be generalized to the unbounded degree setting by adding a suitable
dependence on ∆.

log log∗ 𝑛

O(1)

DETERMINISTIC

RANDOMIZED

log log 𝑛

log 𝑛log∗ 𝑛

𝑇𝐿𝐿𝐿
DENSEDENSE

? 𝑛

Figure 1.1: Complexity landscape for bounded-degree general graphs.

Bounded Degree General Graphs. See Figure 1.1 for an overview of the complexity
landscape of the LOCAL model on bounded degree general graphs. The four gaps indicated
by X are proved in Chapter 2. For instance, we show that the deterministic complexity of
any LCL problem on bounded degree general graphs is either Ω(logn) or O(log∗ n).

Surprisingly, in a recent work of Balliu et al. [15], they showed that the complexity
landscape of the two regions [Θ(log log∗ n),Θ(log∗ n)] and [Θ(logn),Θ(n)] are very dense
in the sense that there are many time complexities in these regions that can be realized by
LCL problems.4

Therefore, the only major puzzle (the question mark in Figure 1.1) that remains unsolved
is whether TLLL = Θ(log logn) on bounded degree general graphs, which we conjecture to
be true.

4Chronologically, in the conference version of [42] we proved the first time hierarchy-type theorem for
the LOCAL model by demonstrating an infinite sequence of LCL problems with complexities Θ(n1/k),
for k ∈ Z+, and this applies to both trees and general graphs. In the conference version of [42] we
conjectured that there is an ω(n1/(k+1))—o(n1/k) gap for each k ∈ Z+ for bounded degree general
graphs. Later, Balliu et al. [15] disproved our conjecture by showing that the complexity landscape for
bounded degree general graph is in fact very dense in some regions.

11

Bounded Degree Trees. The complexity landscape for trees is very different from the
case of general graphs. In particular, the aforementioned result of Balliu et al. [15] does
not apply to trees. In Chapter 3, we investigate the complexity landscape for trees, and
we have the following results.

We define an infinite class of LCL problems called Hierarchical 21
2
-Coloring. We show

that the complexity of the k-level Hierarchical 21
2
-Coloring problem is Θ(n1/k), for k ∈ Z+.

The upper bound holds in DetLOCAL on general graphs, and the lower bound holds even on
degree-3 trees in RandLOCAL. Therefore, not only general graphs, but also trees support
an infinite number of natural problem complexities.

We prove that on the class of bounded degree trees, no LCL has complexity within the
range [ω(logn), no(1)]. Moreover, we show that this gap is decidable in the sense that there
is a sequential algorithm that is able to do the following. Given any description of an LCL
problem P , within a finite amount of time the algorithm decides which side of the gap P
belongs to.

Paths and Cycles. For the case of paths and cycles, using the techniques developed in
Chapter 2, we can show that there are only three possible complexities that can be realized
by an LCL problem: Θ(1), Θ(log∗ n), and Θ(n), and random bits do not help in improving
the asymptotic time complexity. However, these proofs are non-constructive by nature.
In Chapter 4 we re-prove these gaps using a different approach that is able to give us a
decidability result.

In contrast, some complexity gaps are known to be undecidable. It is a well-known result
of Naor and Stockmeyer [116] that it is undecidable whether a given LCL problem can be
solved in O(1) time, even on grids and tori [32, 116].

Implications of the Complexity Gaps. These complexity gaps are useful in several
ways. In what follows, we discuss some implications of these complexity gaps.

Separation between the Randomized and Deterministic Complexities. Since there ex-
ists a problem (precisely, ∆-coloring trees) whose randomized complexity is
O(log∆ logn) [129], our deterministic ω(log∗ n)—o(log∆ n) gap provides the first in-
stance of an exponential separation between the randomized and deterministic com-
plexities in LOCAL.

12

Classification of Distributed Problems. “How to classify distributed problems into com-
plexity classes?” has been identified as the most intriguing question for the LOCAL
model [102, Section 6]. The existence of gaps implies that the distributed problems
can be naturally divided into classes. For instance, on paths/cycles topology, there
are only three possible complexities for LCL problems: Θ(1), Θ(log∗ n), and Θ(n).
Thus, distributed problems on paths/cycles naturally form three complexity classes.

Automatic Speedup. Underlying each complexity gap we proved is an automatic speedup
theorem, which is a tool that is sometimes applicable in algorithm design or lower
bound proofs. For instance, there is an a 2O(

√
log logn)-time randomized algorithm for

Lovász local lemma on bounded-degree graphs [61], which can be derandomized into
a 2O(

√
logn)-time deterministic algorithm; our ω(logn)—no(1) gap for bounded-degree

trees immediately implies that this algorithm can be accelerated to run in O(logn)
time deterministically on bounded-degree trees. Similarly, the complexity gaps can
be used to improve lower bounds. In view of the ω(log∗ n)—o(log∆ logn) gap in the
randomized model, any randomized lower bound that is in between ω(log∗ n) and
o(log∆ logn) is automatically improved to Ω(log∆ logn). In Chapter 5, we apply this
trick in our lower bound for edge-coloring.

Decidability. Some of the complexity gaps we proved are decidable. This suggests that we
might be able to automate the design of distributed algorithm for some cases. In
fact, in a recent work of Brandt et al. [32], they wrote a program to automate the
design of some distributed algorithms. Recall that in this thesis we prove that all
complexity gaps on paths and cycles are decidable. As a consequence, one can write
a computer program to automatically design an asymptotically optimal distributed
algorithm for any given LCL problem on paths or cycles.

Complete Problems. In this thesis we show the ω(TLLL)—o(logn) gap in randomized
LOCAL for bounded-degree graphs, where TLLL = o(logn) [61] is the randomized
complexity of distributed Lovász local lemma (under the criterion pdc < 1 for some
constant c). This implies that the distributed Lovász local lemma is a complete
problem for the class C of randomized sublogarithmic-time problems in the following
sense. If the distributed Lovász local lemma can be solved in randomized T (n) time
on bounded-degree graphs, then all problems in C can be solved in randomized T (n)
time on bounded-degree graphs.

13

Value of Random Bits. In Chapter 2, we prove that the randomized complexity for
any LCL problem on instances of size n is at least its deterministic complexity on instances
of size

√
logn. There are some implications of this result.

Optimally of Graph Shattering. It is impossible to improve the 2O(
√

log logn) terms in the
randomized O(log∆+2O(

√
log logn))-time MIS algorithm of [68] without also improv-

ing the 2O(
√

logn)-time deterministic algorithm of Panconesi and Srinivasan [120].
More generally, any randomized algorithm based on the graph shattering tech-
nique [23] is conditionally optimal, as we observe that the graph shattering often
results in complexities of the form f(∆) + TDet(poly logn), where TDet(n

′) is the
deterministic complexity of the same problem on an n′-vertex graph.

Derandomization. The 2O(
√

log logn)-time randomized algorithm for edge-coloring in Chap-
ter 5 and the 2O(

√
log logn)-time distributed Lovász local lemma algorithm in [61] can

be derandomized to run in deterministically 2O(
√

logn) time. Also, any randomized
algorithm for an LCL problem taking t(n) = 2O(log∗ n) time can be derandomized
without asymptotic penalty. This improves upon a classical result of Naor and Stock-
meyer [116]—the class of O(1)-time LCL problems in randomized and deterministic
models is identical.

We note that our randomized ω(log∗ n)—o(log logn) gap is in fact proved by combining
this derandomization tool and the deterministic ω(log∗ n)—o(logn) gap.

1.2.2 Complexity of Distributed Coloring

Much of the research effort on the LOCAL model have been devoted to understanding the
complexity of the four canonical symmetry breaking problems and their variants: maximal
independent set (MIS), (∆ + 1)-vertex coloring, maximal matching, and (2∆ − 1)-edge
coloring. In this thesis we focus on the coloring problems.

The numbers “2∆ − 1” and “∆ + 1” arise because they are the smallest palette size
with the property that any partial coloring can be extended to a complete coloring, by
the trivial greedy algorithm. Elkin, Pettie, and Su [55] gave randomized algorithms for
(1 + ϵ)∆-edge coloring, for any constant ϵ > 0, and ∆ sufficiently lartge depending on ϵ.
Vizing’s theorem guarantees the existence of a (∆ + 1)-edge coloring; but it is unknown
whether such a coloring can be efficiently computed in LOCAL.

14

To what extent the runtime and the number of colors can be lowered? This is a major
research topic in the field of distributed graph algorithms. In this thesis we investigate this
problem, and our main results are as follows.

Edge Coloring with Small Palettes. In Chapter 5 we devise a randomized algorithm for
(1 + ϵ)∆-edge coloring, for any ϵ = Ω̃(1/

√
∆). The palette size of our algorithm

approaches a natural limit for randomized coloring strategies. This is the threshold
at which we have a constant probability of being able to color an edge e, given a
random feasible coloring of its neighborhood. The round complexity of our algorithm
is of the form

O(log(1/ϵ)) · TLLL + (log logn)3+o(1),

where the parameters of LLL are d = poly(∆) and p = exp(−Ω(ϵ2∆/ log4+o(1) ∆)).
In particular, this is always upper bounded by O(log∆ logn) when ϵ ≥ (log3∆)/

√
∆.

A natural approach to computing (∆ + 1)-edge colorings (Vizing’s theorem) is to
extend partial colorings by iteratively re-coloring parts of the graph (via “alternating
paths”). We prove that this approach may be viable, but in the worst case requires
recoloring subgraphs of diameter Ω(∆ logn). This stands in contrast to distributed
algorithms for Brooks’ theorem [75, 122], which exploit the existence of O(log∆ n)-
length augmenting paths.

Faster Vertex Coloring Algorithm. In Chapter 6 we present a new algorithm for
(∆ + 1)-list coloring in the randomized LOCAL model running in O(log∗∆ +

Detd(poly logn)) = O(Detd(poly logn)) time, where Detd(n′) is the deterministic
complexity of (deg+1)-list coloring (v’s palette has size deg(v) + 1) on n′-vertex
graphs. This improves upon a previous randomized algorithm of Harris, Schneider,
and Su [86] with complexity O(

√
log∆+ log logn+ Detd(poly logn)).

Our algorithm appears to be optimal, as it reaches the limit within the graph shat-
tering framework. It sort of matches the Ω(Det(poly logn)) randomized lower bound
(Theorem 2.1), where Det is the deterministic complexity of (∆+1)-list coloring. The
best known upper bounds on Detd(n′) and Det(n′) are both 2O(

√
logn′) (Panconesi and

Srinivasan [120]) and it is quite plausible that the complexities of both problems are
the same, asymptotically.

In Chapter 5 we also study the complexity of LLL on tree-structured dependency graphs,
i.e., the underlying graph is T r for some tree T and some constant r, under the condition

15

p(ed)λ < 1. This dependency graph arises naturally when we consider a constant-round
randomized procedure on a tree. We show that in this setting LLL can be solved in
RandLOCAL in O(max{logλ logn, log logn

log log logn
}) time, when λ is a sufficiently large constant

depending on r.
The motivation for us to study the complexity of LLL on tree-structured graphs is to

establish nearly tight upper and lower bounds for edge coloring trees. Incorporating this
new LLL algorithm to our edge coloring algorithm, we infer that the RandLOCAL time
complexity of (1 + ϵ)∆-edge coloring trees is

O
(
log(1/ϵ) ·max{ log logn

log log logn
, loglog∆ logn}

)
.

This matches our RandLOCAL Ω(log∆ logn) lower bound for (2∆− 2)-edge coloring when
1/ϵ = O(1) and ∆ = O(1).

1.2.3 Bandwidth Constraint

In Chapter 7 we investigate the locality of distributed graph problems under a band-
width constraint. In particular, we aim at understanding the difference between CONGEST
(where only local communication is allowed) and CONGESTED-CLIQUE (where all-to-all
communication is possible).

We know that there are several successful cases where algorithms in
CONGESTED-CLIQUE are designed by accelerating known LOCAL or CONGEST al-
gorithms using all-to-all communication [37, 72, 106, 124, 125]. Are there any techniques
that allow us to efficiently adapt tools from CONGESTED-CLIQUE to CONGEST? Is there
any scenario that allows us to design a CONGEST algorithm with a time complexity near
the optimal complexity in CONGESTED-CLIQUE?

Ghaffari, Kuhn, and Su [77] proved that if each vertex v is the source and the destination
of at most O(deg(v)) messages, then all messages can be routed to their destinations in
τmix(G) · 2O(

√
logn log logn) rounds, where τmix(G) is the mixing time of the lazy random

walk on the graph G. The 2O(
√

logn log logn) factor was later improved [78] to 2O(
√

logn).
The implication of this result is that many problems that can be solved efficiently in the
CONGESTED-CLIQUE can also be solved efficiently in CONGEST, but only if τmix(G) is
small. In particular, MST can be solved in τmix(G) · 2O(

√
logn) rounds in CONGEST [78].

This shows that the Ω̃(
√
n) lower bound [128, 133] can be bypassed in networks with small

16

τmix(G).
A natural question to ask is whether or not this line of research [77, 78] can be extended

to a broader class of graphs (that may have high τmix(G)), or even general graphs. In
Chapter 7, we show that this is in fact doable. Based on this approach we improve the
state-of-the-art algorithms for triangle detection and enumeration.

The main technical novelty underlying in this result is a distributed graph partitioning
algorithm. We show that in Õ(n1−δ) rounds we can partition the edge set of the network
G = (V,E) into three parts E = Em ∪ Es ∪ Er such that

• Each connected component induced by Em has minimum degree Ω(nδ) and conduc-
tance Ω(1/poly log(n)). As a consequence the mixing time of a random walk within
the component is O(poly log(n)).

• The subgraph induced by Es has arboricity at most nδ.

• |Er| ≤ |E|/6.

Our triangle detection and enumeration algorithm is based on the following generic
framework, which we believe is of interest beyond this work. Roughly, we deal with the
set Es by an algorithm that is efficient for low-arboricity graphs, and deal with the set Er

using recursive calls. For each connected component induced by Em, we are able to simulate
CONGESTED-CLIQUE algorithms with small overhead by applying a routing algorithm due
to Ghaffari, Kuhn, and Su [77].

1.3 Publications that Constitute this Thesis
This thesis is based on a subset of my publications written during my PhD work at the
University of Michigan.5 Each of these research works is a result of a collaborative effort,
and the credit of each work is shared by all collaborators.

Sections 2.1–2.4 of Chapter 2 are based on the publication [39]:

• Y.-J. Chang, T. Kopelowitz, and S. Pettie. “An exponential separation between
randomized and deterministic complexity in the LOCAL model.” In Proceedings

5My works on contention resolution [36], energy efficient distributed computing [35, 40], and the com-
plexity of (∆ + 1)-vertex coloring in CONGESTED-CLIQUE and other models [37] are not included in
this thesis.

17

of the IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 615–624, 2016.

Sections 2.5–2.6 of Chapter 2 and Chapter 3 are based on the publication [42]:

• Y.-J. Chang and S. Pettie. “A time hierarchy theorem for the LOCAL model.”
In Proceedings of the 58th IEEE Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 156–167, 2017.

Chapter 4 is based on the publication [13]:

• A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, M. Rabie, and J. Suomela. “The
distributed complexity of locally checkable problems on paths is decidable.”
ArXiv e-prints 1811.01672, 2018.

Chapter 5 is based on the publication [38]:

• Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. “The complexity of dis-
tributed edge coloring withsmall palettes.” In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2633–2652,
2018.

Chapter 6 is based on the publication [41]:

• Y.-J. Chang, W. Li, and S. Pettie. “An optimal distributed (∆ + 1)-coloring
algorithm?” In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 445–456, 2018.

Chapter 7 is based on the publication [43]:

• Y.-J. Chang, S. Pettie, and H. Zhang. “Distributed Triangle Detection via Ex-
pander Decomposition.” In Proceedings of the 30th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 821–840, 2019.

18

Chapter 2

Complexity Landscape of LCLs on
General Graphs

2.1 Overview
The objective of this chapter is to understand the value of random bits in the LOCAL model
(i.e., how much advantage we can gain from switching from DetLOCAL to RandLOCAL?)
and establish gaps in the possible complexities in DetLOCAL and RandLOCAL models.

Value of Random Bits. One of the central problems of theoretical computer science
is to determine the value of random bits. If the distinction is between computable vs.
incomputable functions, random bits are provably useless in centralized models (Turing
machines) [137]. However, this is not true in the distributed world! The celebrated Fischer-
Lynch-Patterson theorem [60] states that asynchronous deterministic agreement is impos-
sible with one unannounced failure, yet it is possible to accomplish with probability 1
using randomization. See Ben-Or [26] and [30, 97, 130]. There are also a number of basic
symmetry breaking tasks that are trivially impossible to solve by identical, synchronized,
deterministic processes, for example, medium access control to an Ethernet-like channel.

Early work in the LOCAL models suggested that randomness is of limited help. Naor [115]
showed that Linial’s Ω(log∗ n) lower bound [107] for 3-vertex coloring the ring holds even
in RandLOCAL. Naor and Stockmeyer [116] proved that the class of problems solvable
by O(1)-round algorithms is the same in RandLOCAL and DetLOCAL. See also [59] for a
generalization of this result. However, in the intervening decades we have seen dozens of
examples of symmetry breaking algorithms for RandLOCAL that are substantially faster

19

than their counterparts in DetLOCAL; see [23] for an extensive survey or Table 2.1 for a
glimpse at three archetypal problems: maximal independent set (MIS), maximal matching,
and (∆ + 1)-vertex coloring.

Problem Model and Result
MIS DetLOCAL: O

(
min

{
∆+ log∗ n, 2O(

√
log n)

})
[21, 120]

RandLOCAL: O
(

log∆+ 2O(
√

log log n)
)

[68]

Lower Bound: Ω
(

min
{√

logn/ log logn, log∆/ log log∆+ log∗ n
})

[102, 107, 115]
Maximal Matching DetLOCAL: O

(
min

{
∆+ log∗ n, log2 ∆ logn

})
[63, 119]

RandLOCAL: O
(
log∆+ log3 logn

)
[23, 63]

Lower Bound: Ω
(

min
{√

logn/ log logn, log∆/ log log∆+ log∗ n
})

[102, 107, 115]
(∆ + 1)-vertex Coloring DetLOCAL: O

(
min

{√
∆ log∆ log∗ ∆+ log∗ n, 2O(

√
log n)

})
[20,

65, 120]
RandLOCAL: 2O(

√
log log n) [41]

Lower Bound: Ω(log∗ n) [107, 115]

Table 2.1: The impact of “graph shattering” on three archetypical symmetry break-
ing problems.

Graph Shattering. The randomized algorithms in Table 2.1 are exponentially faster
than their deterministic counterparts in two ways. Their dependence on ∆ is exponentially
faster and their dependence on n is usually identical to the best deterministic complex-
ity, but for poly(logn)-size instances. For example, 2O(

√
logn) becomes 2O(

√
log logn), and

O(log3 n) becomes O(log3 logn). This second phenomenon is no coincidence! It is a direct
result of the graph shattering approach to symmetry breaking used in [23] and further in [27,
44, 55, 68, 71, 86, 100, 129]. The idea is to apply a randomized procedure that fixes some
fragment of the output (e.g., part of the MIS is fixed, part of the coloring is fixed, etc.),
thereby effectively removing a large fraction of the vertices from further consideration. If
it can be shown that the connected components in the subgraph still under consideration
have size poly(logn), one can revert to the best available deterministic algorithm and solve
the problem on each component of the “shattered” graph in parallel.

Lower Bounds in the LOCAL Model. Until recently, the main principle used to prove
lower bounds in the LOCAL model was indistinguishability. The first application of this
principle was by Linial [107] himself, who argued that any algorithm for coloring degree-∆

20

trees either uses Ω(∆/ log∆) colors or takes Ω(log∆ n) time. The proof is as follows (i) in
o(log∆ n) time, a vertex cannot always distinguish whether the input graph G is a tree or
a graph with girth Ω(log∆ n), (ii) for all ∆ and all n, there exists a degree-∆ graph with
girth Ω(log∆ n) and chromatic number χ = Ω(∆/ log∆), hence6 (iii) any o(log∆ n)-time
algorithm for coloring trees could also color such a graph, and therefore must use at least
χ colors.

A more subtle indistinguishability argument was used by Kuhn, Moscibroda, and Wat-
tenhofer [102], who showed that O(1)-approximate vertex cover, maximal matching, MIS,
and several other problems have Ω(min{log∆/ log log∆,

√
logn/ log logn}) lower bounds.

Bar-Yehuda, Censor-Hillel, and Schwartzman [24] showed that a (2+ϵ)-approximate vertex
cover can be found in O(log∆/ log log∆) time, matching the above lower bound.

By its nature, indistinguishability is not very good at separating randomized and deter-
ministic complexities. Brandt et al. [31] developed a lower bound technique that explicitly
incorporates error probabilities and proved that several problems on graphs with constant
∆ take Ω(log logn) time in RandLOCAL (with error probability 1/poly(n)) such as sinkless
orientation, sinkless coloring, and ∆-vertex coloring. Refer to Section 2.3 for definitions of
these problems. Since the existence of a sinkless orientation can be proved with the Lovász
local lemma (LLL), this gave Ω(log logn) lower bounds on distributed algorithms for the
constructive LLL. See [44, 68] for upper bounds on the distributed LLL.

Organization. In Section 2.2, we establish a derandomization result that leads to the
necessity of graph shattering. In Section 2.3, we prove that ∆-vertex coloring takes
Ω(log∆ logn) time in RandLOCAL and Ω(log∆ n) time in DetLOCAL. In Section 2.4, we
prove the DetLOCAL ω(log∗ n)—o(logn) gap and the RandLOCAL ω(log∗ n)—o(log logn)
gap. In Section 2.5, we prove the RandLOCAL ω(TLLL)—o(logn) gap. In Section 2.6, we
review Naor and Stockmeyer’s characterization of O(1)-time LCL algorithms, using Ram-
sey theory, and explain how it implies gaps in the complexity hierarchy that depend on
the graph topology.

6Linial [107] actually only used the existence of ∆-regular graphs with high girth and chromatic number
Ω(
√
∆). See [28] for constructions with chromatic number Ω(∆/ log∆).

21

2.1.1 New Results on the Value of Random Bits

We exhibit an exponential separation between RandLOCAL and DetLOCAL for several spe-
cific symmetry breaking problems. More generally, we give new connections between the
randomized and deterministic complexities of all locally checkable labeling problems, a class
that includes essentially any natural symmetry breaking problem.

Separation of RandLOCAL and DetLOCAL. We extend Brandt et al.’s [31] randomized
lower bound as follows: ∆-vertex coloring ∆-regular graphs takes Ω(log∆ logn) time in
RandLOCAL and Ω(log∆ n) time in DetLOCAL. The hard graphs in this lower bound have
girth Ω(log∆ n), so by the indistinguishability principle, these lower bounds also apply
to ∆-vertex coloring trees. Combining this new Ω(log∆ n) lower bound with the known
O(log∆ logn+ log∗ n)-time algorithm in RandLOCAL from [129], we obtain an exponential
separation of RandLOCAL and DetLOCAL for the problem of ∆-vertex coloring trees.

Graph Shattering is Necessary. We prove the following derandomization result. The
RandLOCAL complexity for any LCL problem on instances of size n is at least its DetLOCAL
complexity on instances of size

√
logn. This reverses the implication proved above. For

example, if we begin with a proof that∆-vertex coloring takes Ω(log∆ n) time in DetLOCAL,
then we conclude that it must take Ω(log∆ logn) time in RandLOCAL.

2.1.2 New Results on the Complexity Gaps

We prove that there exist large “gaps” in the spectrum of possible complexities in
DetLOCAL and RandLOCAL. More specifically, we establish the following three gaps for
bounded-degree general graphs.7

• DetLOCAL ω(log∗ n)—o(logn) gap.

• RandLOCAL ω(log∗ n)—o(log logn) gap.

• RandLOCAL ω(TLLL)—o(logn) gap.

The notion TLLL refers to the complexity of the distributed LLL problem.

7The ω(logn)—no(1) gap on bounded degree trees is left to Chapter 3.

22

The DetLOCAL ω(log∗ n)—o(logn) Gap. The proof for the DetLOCAL ω(log∗ n)—
o(logn) gap actually shows that any f(∆) + o(log∆ n) time algorithm for an LCL prob-
lem can be transformed in a black box way to run in O(f(∆)(log∗ n − log∗∆ + 1)) time
(when f(∆) ≥ 1). Thus, on bounded-degree graphs, there are no deterministic time
bounds between ω(log∗ n) and o(logn). Any ω(log∗ n) lower bound for bounded degree
graphs (in either RandLOCAL or DetLOCAL) immediately implies an Ω(logn) lower bound
in DetLOCAL.

This reduction can be parameterized in many different ways. For example, if one
were to develop a deterministic O(

√
logn/ log logn)-time MIS or maximal matching

algorithm—matching one of the KMW [102] lower bounds—it immediately implies an
O((log∆/ log log∆) · (log∗ n− log∗∆+ 1))-time MIS/maximal matching algorithm, which
almost matches the other KMW lower bound. We show that any O(log1−

1
k+1 n)-time

DetLOCAL algorithm for an LCL problem can be transformed to run in O(logk ∆(log∗ n−
log∗∆+ 1))-time.

The RandLOCAL ω(log∗ n)—o(log logn) Gap. Combining the above reduction with the
proof of the necessity of graph shattering, we obtain the RandLOCAL ω(log∗ n)—o(log logn)
gap. Any randomized O(1)+ o(log∆ logn)-round algorithm can be derandomized to run in
deterministically O(1)+o(log∆ n) rounds, and hence can be transformed to run in O(log∗ n)
rounds.

The RandLOCAL ω(TLLL)—o(logn) Gap. The RandLOCAL ω(TLLL)—o(logn) gap is ob-
tained by a new method that is able to solve any sub-logarithmic time problem using a
distributed LLL algorithm. Roughly speaking, the proof shows that any sub-logarithmic
time RandLOCAL algorithm A can be re-implemented in a canonical way using the LLL.

Speedup Implications of Naor & Stockmeyer. We also revisit Naor and Stock-
meyer’s characterization of O(1)-time LOCAL algorithms for LCL problems [116] and cal-
culate the complexity gaps that are directly implied by their proof. For n-paths/cycles we
see a ω(1)—o(log∗ n) complexity gap, for (

√
n×
√
n)-grids/tori an ω(1)—o(

√
log∗ n) gap,

and for bounded-degree trees and bounded-degree general graphs, an ω(1)—o(log(log∗ n))

23

complexity gap.

ω(1)—o(log∗ n) for n-paths/cycles.

ω(1)—o
(√

log∗ n
)

for (
√
n×
√
n)-grids/tori.

ω(1)—o(log(log∗ n)) for bounded degree trees or bounded degree general graphs.

These gaps hold in both DetLOCAL and RandLOCAL.

2.2 The Necessity of Graph Shattering
Theorem 2.1 establishes that the graph shattering technique [23] is optimal and unavoid-
able in RandLOCAL. In particular, the randomized complexity of any symmetry breaking
problem always hinges on its deterministic complexity.

Theorem 2.1. Let P be an LCL problem. Define DetP(n,∆) to be the complexity of the
optimal deterministic algorithm for P in the DetLOCAL model and define RandP(n,∆) to
be its complexity in the RandLOCAL model, with global error probability 1/n. Then, for
sufficiently large n,

DetP(n,∆) ≤ RandP(2
n2

,∆).

Proof. Let ARand be a randomized algorithm for P . Each vertex running ARand generates
a string of r(n,∆) random bits and proceeds for t(n,∆) rounds, where r and t are two
arbitrary functions. The probability that the algorithm fails in any way is at most 1/n. Our
goal is to convert ARand into a deterministic algorithm ADet in the DetLOCAL model. Let
G = (V,E) be the network on which ADet runs. Initially each v ∈ V knows n = |V |,∆, and
a unique ID(v) ∈ {0, 1}c logn. Let Gn,∆ be the set of all n-vertex graphs with unique vertex
IDs in {0, 1}c logn and maximum degree at most ∆. Since c is a constant, for sufficiently
large n,

|Gn,∆| ≤ 2(
n
2
)+cn logn ≪ 2n

2 def
= N,

regardless of ∆.
Imagine simulatingARand on a graph G′ ∈ Gn,∆ whose vertices are given input parameters

(N,∆), that is, we imagine G′ is disconnected from the remaining N − n vertices. The
probability that ARand fails on an N -vertex graph is at most 1/N , so the probability that
any vertex in G′ witnesses a failure is also certainly at most 1/N .

24

Suppose we select a function ϕ : {0, 1}c logn → {0, 1}r(N,∆) uniformly at random from the
space of all such functions. Define ADet[ϕ] to be the deterministic algorithm that simulates
ARand for t(N,∆) steps, where the string of random bits generated by v is fixed to be
ϕ(ID(v)). We shall call ϕ a bad function if ADet[ϕ] fails to compute the correct answer on
some member of Gn,∆. By the union bound,

Pr
ϕ
(ϕ is bad) ≤

∑
G′∈Gn,∆

Pr
ϕ
(ADet[ϕ] errs on G′)

=
∑

G′∈Gn,∆

Pr(ARand errs on G′, with input parameters (N,∆))

≤ |Gn,∆| /N < 1.

Thus, there exists some good ϕ. Any ϕ can be encoded as a long bit-string ⟨ϕ⟩ def
=

ϕ(0)ϕ(1) · · ·ϕ(2c logn − 1). Define ϕ⋆ to be the good function for which ⟨ϕ⋆⟩ is lexico-
graphically first.

The algorithm ADet is as follows. Each vertex v, given input parameters (n,∆), first
computes N = 2n

2
, t(N,∆), r(N,∆), then performs the simulations of ARand necessary to

compute ϕ⋆. Once ϕ⋆ is computed it executes ADet[ϕ
⋆] for t(N,∆) rounds. By definition,

ADet[ϕ
⋆] never errs when run on any member of Gn,∆.

Remark 2.1. Theorem 2.1 works equally well when t and r are functions of n,∆, and
possibly other quantitative global graph parameters. For example, the time may depend on
measures of local sparsity (as in [55]), arboricity/degeneracy (as in [19, 23]), or neighbor-
hood growth (as in [136]).

Remark 2.2. The role of the LCL assumption in the proof of Theorem 2.1 is to make sure
that P does not depend on n. This rules out some silly tasks. For example, if P were the
task that asks each vertex v to report the number of vertices in N

√
logn(v), then clearly P

is not an LCL, and the RandLOCAL and DetLOCAL complexities of P are both Θ(
√
logn).

Naor and Stockmeyer [116] proved that the class of truly local (O(1)-time) problems
in RandLOCAL and DetLOCAL is identical for bounded ∆. Theorem 2.1 offers a slight
improvement over the Naor-Stockmeyer derandomization, since log∗ n and log∗(

√
logn)

differ by a constant.

25

Corollary 2.1. Any RandLOCAL algorithm for an LCL taking t(n) = 2O(log∗ n) time can
be derandomized without asymptotic penalty. The corresponding DetLOCAL algorithm runs
in O(t(n)) time.

2.3 Lower bounds for ∆-vertex coloring ∆-regular
Trees

In this section we prove that on ∆-regular graphs with girth Ω(log∆ n), ∆-vertex coloring
takes Ω(log∆ logn) time in RandLOCAL and Ω(log∆ n) time in DetLOCAL. Since the girth
of the graphs used to prove these lower bounds is Ω(log∆ n), by the indistinguishability
principle they also apply to the problem of ∆-vertex coloring trees.

Brandt et al. [31] considered the following problems.

∆-Sinkless Coloring. Given a ∆-regular graph G = (V,E) and a proper ∆-edge coloring
of E using colors in {1, 2, . . . ,∆}, find a ∆-vertex coloring of V using colors in
{1, 2, . . . ,∆} such that there is no edge {u, v} ∈ E for which u, v, and {u, v} all have
the same color.

∆-Sinkless Orientation. Given a ∆-regular graph G = (V,E) and a proper ∆-edge col-
oring of E, find an orientation of the edges such that all vertices have out-degree
≥ 1.

Observe that both ∆-Sinkless Coloring and ∆-Sinkless Orientation are LCL graph prob-
lems with r = 1. For Sinkless Orientation Σ = {→,←}∆ encodes the directions of all
edges incident to a vertex, and the radius r = 1 is necessary and sufficient to verify that
the orientations declared by both endpoints of an edge are consistent.

Brandt et al. [31] proved Ω(log logn) lower bounds on RandLOCAL algorithms that have
a 1/poly(n) probability of failure, for sinkless coloring and sinkless orientation of 3-regular
graphs. We say that a sinkless coloring algorithm A has failure probability p if, for each
individual edge e = {u, v}, the probability that Color⋆(u) = Color⋆(v) = Color⋆({u, v}) is
at most p. Thus, by the union bound, the global probability of failure is at most p|E|. We
say a that sinkless orientation algorithm A has failure probability p if, for each v ∈ V , the
probability that v is a sink is at most p. We say that monochromatic edges and sinks are
forbidden configurations for sinkless coloring and sinkless orientation, respectively.

26

The following two lemmas are proven in [31] for ∆ = 3. It is straightforward to go
through the details of the proof and track the dependence on ∆.

Lemma 2.1 ([31]). Let G = (V,E, ψ) be a ∆-regular graph with girth g that is equipped
with a proper ∆-edge coloring ψ. Suppose that there is a RandLOCAL algorithm A for
∆-sinkless coloring taking t < g−1

2
rounds such that for each e ∈ E, A outputs a forbidden

configuration at e with probability at most p. Then there is a RandLOCAL algorithm A′ for
∆-sinkless orientation taking t rounds such that for each v ∈ V , A′ outputs a forbidden
configuration at v with probability at most 2∆p1/3.

Lemma 2.2 ([31]). Let G = (V,E, ψ) be a ∆-regular graph with girth g that is equipped
with a proper ∆-edge coloring ψ. Suppose that there is a RandLOCAL algorithm A′ for
sinkless orientation taking t < g−1

2
rounds such that for each v ∈ V , A′ outputs a forbidden

configuration at v with probability at most p. Then there is a RandLOCAL algorithm A for
∆-sinkless coloring taking t − 1 rounds such that for each e ∈ E, A outputs a forbidden
configuration at e with probability at most 4p1/(∆+1).

The following theorem generalizes Corollary 25 in [31] to allow non-constant ∆ and
arbitrary failure probability p.

Theorem 2.2. Any RandLOCAL algorithm for ∆-vertex coloring a graph with degree at
most ∆ and error probability p takes at least t = min{ϵ log3(∆+1) ln(1/p), ϵ log∆ n} − 1

rounds for a sufficiently small constant ϵ > 0.

Proof. We assume that ϵ log3(∆+1) ln(1/p) ≥ 1, since otherwise the theorem is trivial as
t < 0. For any ∆ ≥ 3 there exists a bipartite ∆-regular graph with girth Ω(log∆ n); see [29,
48]. Such graphs are trivially ∆-edge colorable. Moreover, any ∆-vertex coloring of such a
graph is also a valid ∆-sinkless coloring. Applying Lemmas 2.1 and 2.2 we conclude that
any t-round ∆-sinkless coloring algorithm with error probability p can be transformed into
a (t − 1)-round ∆-sinkless coloring algorithm with error probability 4(2∆)

1
∆+1p

1
3(∆+1) <

7p
1

3(∆+1) . Iterating this process t times, it follows that there exists a 0-round ∆-sinkless
coloring algorithm with failure probability O(p(

1
3(∆+1)

)t). Notice that

p(
1

3(∆+1)
)t ≤ p(

1
3(∆+1)

)
ϵ log3(∆+1) ln(1/p)

= p(ln(1/p))
−ϵ

= exp(−(ln(1/p))1−ϵ).

Because the graph is ∆-regular and the vertices undifferentiated by IDs, any 0-round
RandLOCAL algorithm colors each vertex independently according to the same distribution.

27

The probability that any vertex is involved in a forbidden configuration (a monochromatic
edge) is therefore at least 1/∆2. Since ϵ log3(∆+1) ln(1/p) ≥ 1 we have ∆ < ln(1/p), but

1

∆2
≥ exp(−2 ln ln(1/p))≫ exp

(
− (ln(1/p))1−ϵ) .

This is a contradiction since we obtain a 0-round ∆-sinkless coloring algorithm with failure
probability less than 1/∆2. Thus, there is no RandLOCAL ∆-sinkless coloring algorithm
that takes t-rounds and errs with probability p.

Corollary 2.2 is an immediate consequence of Theorem 2.2.

Corollary 2.2. Any RandLOCAL algorithm for ∆-vertex coloring a graph with global error
probability 1/poly(n) takes Ω(log∆ logn) time.

Theorem 2.2 does not immediately extend to DetLOCAL. It is tempting to feel that
setting p = 0 yields a Ω(log∆ n) DetLOCAL lower bound. But this is not a correct inference.
Recall that in the DetLOCAL model vertices are initially endowed with O(logn)-bit IDs
whereas in RandLOCAL they are undifferentiated, and the naive way of generating such
IDs in RandLOCAL has failure probability 1/poly(n).

Theorem 2.3. Any DetLOCAL algorithm that ∆-vertex colors degree-∆ graphs with girth
Ω(log∆ n) or degree-∆ trees requires Ω(log∆ n) time.

Proof. Let ADet be a DetLOCAL algorithm that ∆-vertex colors a graph in t = t(n,∆)

rounds and G be the input graph. We construct a RandLOCAL algorithm ARand taking
O(t) rounds as follows. Before the first round each vertex locally generates a random n-bit
ID. Assume for the time being that these IDs are unique, and therefore constitute a 2n-
vertex coloring of G. Let G′ = (V, {{u, v} | distG(u, v) ≤ 2t + 1}). The maximum degree
∆′ in G′ is clearly less than n.

We explain the choice of the parameter 2t+1. Whether an edge e = {u, v} is monochro-
matic depends on the colors of u and v, and this depends on the graph topology and the
IDs in the subgraph induced by N t(u) ∪ N t(v). If all vertices in N t(u) ∪ N t(v) have dis-
tinct IDs, u and v must be colored differently. Notice that the maximum distance within
N t(u) ∪N t(v) is 2t+ 1. In general, for LCLs of radius r, a deterministic algorithm works
correctly as long as all vertices within distance 2t+ 2r have distinct IDs.

We apply one step of Linial’s recoloring algorithm of Theorem 1.1 to G′ and obtain a
coloring with palette size O(∆′2 log(2n)) = O(n3). A step of Linial’s algorithm in G′ is

28

simulated in G using O(t) time. Using these colors as (3 logn+O(1))-bit IDs, we simulate
ADet in G for t steps. Since no vertex can see two vertices with the same ID, this algorithm
necessarily behaves as if all IDs are unique. Observe that because ADet is deterministic,
the only way ARand can err is if the initial n-bit IDs fail to be unique. This occurs with
probability p < n2/2n. By Theorem 2.2, ARand takes Ω(min{log∆ log(1/p), log∆ n}) =

Ω(log∆ n) time.

2.4 Gaps in Deterministic and Randomized Time
Complexity

The Time Hierarchy Theorem informally says that a Turing machine can solve more prob-
lems given more time. A similar question can be asked in the setting of distributed compu-
tation. For example, are there natural or contrived problems with DetLOCAL complexity
Θ((log∗ n)2), Θ(log logn), or Θ(

√
logn), when ∆ = O(1)? In this section, we demonstrate

a general technique that allows one to speedup deterministic algorithms in the DetLOCAL
model. Based on this technique, we demonstrate the existence of a “gap” in possible
DetLOCAL and RandLOCAL complexities, answering the above question in the negative.

A graph class is hereditary if it is closed under removing vertices and edges. Examples of
hereditary graph classes are general graphs, forests, bounded arboricity graphs, triangle-
free graphs, and planar graphs. We prove that, for graphs with constant ∆, the DetLOCAL
complexity of any LCL problem on a hereditary graph class is either Ω(logn) or O(log∗ n).
Moreover, if the hereditary graph class is also closed under taking disjoint union, then the
RandLOCAL complexity of any LCL problem is either Ω(log logn) or O(log∗ n).

Notations. Throughout this section, β is the universal constant from Theorem 1.1
(Linial’s β∆2-vertex coloring algorithm). We only consider LCLs without input labels,
we write Σout = Σ. All results can be extended to LCLs with input labels in a straightfor-
ward manner.

Theorem 2.4. Let P be an LCL graph problem with parameters r, Σ, and C, and let A
be a DetLOCAL algorithm for solving P. Suppose that the runtime of A on an n-vertex
graph taken from a hereditary graph class is at most f(∆) + ϵ log∆ n, where f(∆) ≥ 1 and
ϵ = 1

4+4 logβ+4r
is a constant. Then there exists a DetLOCAL algorithm A′ that solves P on

the same instances in O (f(∆)(log∗ n− log∗∆+ 1)) time.

29

Proof. Notice that for any instance of P with n vertices and ID length ℓ, it must be that ℓ ≥
logn and so the running time of A on such instances is bounded by T (∆, ℓ) ≤ f(∆)+ ϵℓ

log∆
.

Let G = (V,E) be a graph in a hereditary graph class. The algorithm A′ on G works
as follows. Let τ = 1 + log β be a constant. We use Linial’s coloring technique to produce
short IDs of length ℓ′ that are distinct within distance 4f(∆) + 2τ + 2r. Let G′ = (V,E ′)

be the graph with

E ′ =
{
{u, v} ∈ V 2

∣∣∣ distG(u, v) ≤ 4f(∆) + 2τ + 2r, and u ̸= v
}
.

The maximum degree in G′ is clearly at most ∆4f(∆)+2τ+2r. Each vertex u ∈ V simulates
G′ by collecting N4f(∆)+2τ+2r(u) in O(f(∆) + τ + r) time.

We simulate the algorithm of Theorem 1.1 on G′ by treating each of the ℓ-bit IDs of
vertices in V as a color. This produces a β ·∆8f(∆)+4τ+4r-coloring, which is equivalent to
identifiers of length ℓ′ = (8f(∆) + 4τ + 4r) log∆ + log β. Although these identifiers are
not globally unique, they are distinct in N2f(∆)+τ+r(u) for each vertex u ∈ V . The time
complexity of this process is

(4f(∆) + 2τ + 2r) ·O (log∗ n− log∗∆+ 1) .

Finally, we apply A on G while implicitly assuming that the graph size is 2ℓ′ and using
the shorter IDs. The runtime of this execution of A is:

f(∆) +
ϵℓ′

log∆ = f(∆) +
ϵ((8f(∆) + 4τ + 4r) log∆+ log β)

log∆

= (1 + 8ϵ)f(∆) + 1 +
ϵ log β
log∆ ϵ(4τ + 4r) = 1

≤ (1 + 8ϵ)f(∆) + τ log∆ ≥ 1, ϵ < 1

≤ 2f(∆) + τ. 8ϵ =
2

τ + r
≤ 1

Whether the output labeling of u ∈ V is legal depends on the labeling of the vertices in
N r(u), which depends on the graph structure and the IDs in N2f(∆)+τ+r(u). Due to the
hereditary property of the graph class under consideration, for each u ∈ V , N2f(∆)+τ+r(u)

is isomorphic to a subgraph of some 2ℓ
′-vertex graph in the same class. Moreover, the

shortened IDs in N2f(∆)+τ+r(u) are distinct. Therefore, it is guaranteed that the output of
the simulation is a legal labeling.

30

The total time complexity is

(4f(∆) + 2τ + 2r) ·O(log∗ n− log∗∆+ 1) + 2f(∆) + τ

= O (f(∆)(log∗ n− log∗∆+ 1)) .

Combining Theorem 2.4 with Corollary 2.2 and setting f(∆) = O(1) provides a new
proof of Theorem 2.3 for small enough ∆. To see this, notice that any lower bound for the
RandLOCAL model with error probability 1/poly(n) can be adapted to DetLOCAL since we
can randomly pick O(logn)-bit IDs that are distinct with probability 1− 1/poly(n). From
Theorem 2.2 any DetLOCAL algorithm that ∆-colors a degree-∆ tree requires Ω(log∆ logn)
time. However, Theorem 2.4 states that any DetLOCAL algorithm running in O(1) +

o(log∆ n) time can be sped up to run in O (log∗ n− log∗∆+ 1) time. This contradicts
the lower bound whenever log∆ logn ≫ log∗ n − log∗∆ + 1. Hence ∆-coloring a degree-
∆ tree takes Ω(log∆ n) time in DetLOCAL for small enough ∆ such that log∆ logn ≫
log∗ n− log∗∆+ 1.

Another consequence of Theorem 2.4 is that the deterministic time complexity of a
problem can either be solved very efficiently (i.e. in O (f(∆)(log∗ n− log∗∆+ 1)) time)
or requires Ω(f(∆) + log∆ n) time, which is at least the order of the diameter when the
underlying graph is a complete regular tree. Such a consequence is the strongest when ∆

is small. For example, if ∆ is a constant, Theorem 2.4 implies the following corollary.

Corollary 2.3. The DetLOCAL complexity of any LCL problem on any hereditary graph
class that has constant ∆ is either Ω(logn) or O(log∗ n).

A simple adaptation of the proof of Theorem 2.4 shows an even stronger dichotomy when
∆ = 2.

Theorem 2.5. The DetLOCAL time complexity of any LCL problem on any hereditary
graph class with ∆ = 2 is either Ω(n) or O(log∗ n).

We remark that an intuitive explanation of the time complexity requirement in The-
orems 2.4 and 2.5 is that the diameter of a graph with maximum degree ∆ is at least
Ω(log∆ n) for ∆ ≥ 3 and Ω(n) when ∆ = 2. To ensure that the algorithm is indeed “local”,
it must not explore the entire graph.

Combining Theorem 2.4 and Theorem 2.1 also yields a gap in the complexities of the
RandLOCAL model.

31

Theorem 2.6. Let P be an LCL graph problem with parameters r, Σ, and C, and let
A be a RandLOCAL algorithm for solving P. Let G be a hereditary graph class that is
closed under taking disjoint union. Suppose that the runtime of A on an n-vertex graph
taken from G is at most f(∆) + (ϵ/2) log∆ logn, where f(∆) ≥ 1 and ϵ = 1

4+4 logβ+4r
is a

constant. Then there exists a DetLOCAL algorithm A′ that solves P on the same instances
in O (f(∆)(log∗ n− log∗∆+ 1)) time.

Proof. Since G is closed under taking disjoint union, by Theorem 2.1, for sufficiently large
n, the deterministic complexity of P is at most f(∆)+(ϵ/2) log∆ log 2n2

= f(∆)+ ϵ log∆ n.
Since G is a hereditary graph class, by Theorem 2.4, there exists a DetLOCAL algorithm
A′ that solves P in O (f(∆)(log∗ n− log∗∆+ 1)) time.

Setting ∆ = O(1) gives us the following corollary.

Corollary 2.4. Let G be any hereditary graph class with a constant degree bound ∆ that is
closed under taking disjoint union. The RandLOCAL complexity of any LCL problem on G
is either Ω(log logn) or O(log∗ n). Moreover, any O(log∗ n) algorithm can be implemented
in DetLOCAL.

Given a O(
√
logn)-time deterministic algorithm, one may feel that it is possible to use

Theorem 2.4 to improve the time complexity to O(log∗ n) since
√
logn = o(log∆ n) for the

case ∆ = exp(o(
√
logn)). However, the class of graphs with ∆ = exp(o(

√
logn)) is not

hereditary, and so Theorem 2.4 does not apply. Nonetheless, Linial’s coloring technique
can be made to speed up algorithms with time complexity of the form f(∆) + g(n).

Theorem 2.7. Let P be an LCL graph problem with parameters r, Σ, and C, and let A
be a DetLOCAL algorithm for solving P. Suppose that the runtime of the algorithm A
on an n-vertex graph taken from a hereditary graph class is at most O(logk ∆+ log

k
k+1 n).

Then there exists a deterministic algorithm A′ that solves P on the same instances in
O(logk ∆(log∗ n− log∗∆+ 1)) time.

Proof. Let the ID length be ℓ, then it must be that ℓ ≥ logn and so the running time of
A on such instances is bounded by ϵ1 logk ∆+ ϵ2ℓ

k
k+1 , for some constants ϵ1, ϵ2.

We set τ = ϵ logk ∆, with the parameter ϵ to be determined. Similar to the proof of
Theorem 2.4, the algorithm A′ first produces shortened ID that are distinct for vertices
within distance 2τ + 2r, and then simulates A on the shortened IDs in τ rounds.

32

Let G′ = (V,E ′) be the graph with

E ′ =
{
{u, v} ∈ V 2

∣∣∣ distG(u, v) ≤ 2τ + 2r, and u ̸= v
}
.

The maximum degree in G′ is at most ∆2τ+2r. Each vertex u ∈ V simulates G′ by collecting
N2τ+2r(u) in O(τ + r) time.

We simulate the algorithm of Theorem 1.1 on G′ by treating each of the ℓ-bit IDs of
vertices in V as a color. This produces a β·∆4τ+4r-coloring, which is equivalent to identifiers
of length ℓ′ = (4τ + 4r) log∆ + log β. Although these identifiers are not globally unique,
they are distinct in N τ+r(u) for each vertex u ∈ V . The time complexity of this process is

(2τ + 2r) ·O (log∗ n− log∗∆+ 1) .

Finally, we applyA onG while implicitly assuming that the graph size is 2ℓ′ and using the
shorter IDs. By setting ϵ as a large enough number such that ϵ1+ϵ2 (4(ϵ+ r + log β))

k
k+1 ≤

ϵ, the runtime of this execution of A is

ϵ1 logk ∆+ ϵ2 (ℓ
′)

k
k+1 = ϵ1 logk ∆+ ϵ2 ((4τ + 4r) log∆+ log β)

k
k+1

≤ ϵ1 logk ∆+ ϵ2
(
4(ϵ logk ∆+ r + log β) log∆

) k
k+1

≤ ϵ1 logk ∆+ ϵ2
(
4(ϵ+ r + log β) logk+1∆

) k
k+1

=
(
ϵ1 + ϵ2 (4(ϵ+ r + log β))

k
k+1

)
logk ∆

≤ ϵ logk ∆
= τ.

Whether the output labeling of u ∈ V is legal depends on the labeling of the vertices in
N r(u), which depends on the graph structure and the IDs inN τ+r(u). Due to the hereditary
property of the graph class under consideration, for each u ∈ V , N τ+r(u) is isomorphic
to a subgraph of some 2ℓ

′-vertex graph in the same class. Moreover, the shortened IDs in
N τ+r(u) are distinct. Therefore, it is guaranteed that the output of the simulation is a
legal labeling.

The total time complexity is at most

(2τ + 2r) ·O(log∗ n− log∗∆+ 1) + τ = O(logk ∆(log∗ n− log∗∆+ 1)).

33

A Note about MIS Lower Bounds. Kuhn, Moscibroda, and Wattenhofer [102]
demonstrated that for a variety of problems (including MIS) there is a lower bound of

Ω(min{log∆/ log log∆,
√

logn/ log logn})

rounds. The lower bound graph they used to prove such these result has log∆/ log log∆ =

O(
√

logn/ log logn). The proof framework of Theorem 2.7 can be used to show that if there
is a deterministic algorithm A for MIS that runs in O(

√
logn/ log logn) time, then there

is another deterministic algorithm A′ running in O(log∆/ log log∆) · (log∗ n− log∗∆+1))

time. Let the runtime of A be ϵ1
√
ℓ/ log ℓ for ID length ℓ. Set τ = ϵ log∆/ log log∆. Then

ℓ′ = (4τ + 4r) log∆ + log β = Θ(log2∆/ log log∆). The runtime of A for ID length ℓ′ is
ϵ1
√
ℓ/ log ℓ = ϵ1 ·

√
ϵ/ log ϵ · O(log∆/ log log∆) < τ , by choosing a large enough constant

ϵ.
Interestingly, Barenboim, Elkin, Pettie, and Schneider [23] showed that an MIS algorithm

in RandLOCAL running in O(logk ∆ + f(n))-time implied another RandLOCAL algorithm
running in O(logk λ+ log1−

1
k+1 n+ f(n)) time on graphs of arboricity λ. This is analogous

to Theorem 2.7 but in the reverse direction.

2.5 A Gap in the RandLOCAL Complexity Hierarchy
We define TLLL(n, d, c) to be the RandLOCAL time to compute a point in the probability
space avoiding all bad events (w.h.p.), under a “polynomial” LLL criterion of the form

pdc < 1. (2.1)

It is conceivable that the distributed complexity of the LLL is sensitive to the criterion
used and depends on c. However, for our purpose (Theorem 2.8), any constant c is enough.
In the subsequent discussion, we slightly abuse the notation to denote TLLL(n, d) as the
distributed complexity of the LLL, where c is allowed to be an arbitrary constant. Earlier
results [31, 44] imply that TLLL(n, d) is Ω(loglog(1/p) logn), Ω(log∗ n), and O(log1/epd2 n).

In this section we prove an automatic speedup theorem for RandLOCAL sublogarithmic
algorithms. We do not assume that ∆ = O(1) in this section. Theorem 2.8 considers
algorithms that run in “sublogarithmic” time in RandLOCAL. The term sublogarithmic is
insufficiently detailed, for two reasons. First, asymptotic notation is not always well defined

34

when there are multiple free parameters (e.g., n and ∆). Second, and more importantly,
the proof of Theorem 2.8 considers what happens when n gets very small, rather than
n→∞. It is for these reasons that Theorem 2.8 assumes the running time can be written
in a specific form.

Theorem 2.8. Suppose that A is a RandLOCAL algorithm that solves some LCL problem
P (w.h.p.), in T∆(n) time. For any sufficiently small constant ϵ > 0 and some function
C, suppose T∆(n) is upper bounded by C(∆)+ ϵ log∆ n. It is possible to transform A into a
new RandLOCAL algorithm A′ that solves P (w.h.p.) in O(C(∆) · TLLL(n,∆O(C(∆)))) time.

Proof. Suppose that A has a local probability of failure 1/n, that is, for any v ∈ V (G),
the probability that N r(v) is inconsistent with P is 1/n, where r is the radius of P . Once
we settle on the LLL criterion exponent c in (2.1), we fix ϵ = O((2c)−1). Define n⋆ as the
minimum value for which

t⋆ = T∆(n
⋆) < (1/2c) · log∆ n⋆ − r.

It follows that t⋆ = O(C(∆)) and n⋆ = ∆O(C(∆)).
The algorithm A′ applied to an n-vertex graphG works as follows. Imagine an experiment

where we run A, but lie to the vertices, telling them that “n” = n⋆. Any v ∈ V (G) will
see a t⋆-neighborhood N t⋆(v) that is consistent with some n⋆-vertex graph. However, the
probability of the bad event that N r(v) is incorrectly labeled is 1/n⋆, not 1/poly(n), as
desired. We now show that this system of bad events satisfies the LLL criterion (2.1).
Define the following events, graph, and quantities:

Ev : the event that N r(v) is incorrectly labeled
according to P

X = {Ev | v ∈ V (G)} the set of bad events
GX = (X , {(Eu, Ev) | N r+t⋆(u) ∩N r+t⋆(v) ̸= ∅}) the dependency graph
d ≤ ∆2(r+t⋆)

p = 1/n⋆

The event Ev is determined by the labeling of N r(v) and the label of each v′ ∈ N r(v)

is determined by N t⋆(v′), hence Ev is determined by (the data stored in, and random
bits generated by) vertices in N r+t⋆(v). Clearly Ev is independent of any Eu for which

35

N r+t⋆(u) ∩ N r+t⋆(v) = ∅, which justifies the definition of the edge set of GX . Since the
maximum degree in G is∆, the maximum degree d in GX is less than∆2(r+t⋆). By definition
of A, Pr(Ev) ≤ 1/n⋆ = p. This system satisfies LLL criterion (2.1) since, by definition of
t⋆,

pdc = p∆2c(r+t⋆) < (1/n⋆) · n⋆ = 1.

The algorithm A′ now simulates a constructive LLL algorithm on GX in order to find a
labeling such that no bad event occurs. Since a virtual edge (Eu, Ev) exists iff u and v are at
distance at most 2(r+ t⋆) = O(C(∆)), any RandLOCAL algorithm in GX can be simulated
in G with O(C(∆)) slowdown. Thus, A′ runs in O(C(∆) · TLLL(n,∆O(C(∆)))) time.

Theorem 2.8 shows that when ∆ = O(1), o(logn)-time RandLOCAL algorithms can be
sped up to run in O(TLLL(n,O(1))) time. Another consequence of this same technique
is that sublogarithmic RandLOCAL algorithms with large messages can be converted to
(possibly slightly slower) algorithms with small messages. The statement of Theorem 2.9
reflects the use of a particular distributed LLL algorithm, namely [44, Corollary 1 and
Algorithm 2]. It may be improvable using future distributed LLL technology.

The LLL algorithm of [44] works under the assumption that epd2 < 1, and that each
bad event A ∈ X is associated with a unique ID. The algorithm starts with a random
assignment to the variables V . In each iteration, let F be the set of bad events that occur
under the current variable assignment; let I be the subset of F such that A ∈ I if and
only if ID(A) < ID(B) for each B ∈ F such that vbl(A) ∩ vbl(B) ̸= ∅. The next variable
assignment is obtained by resampling all variables in

∪
A∈I vbl(A). After O(log1/epd2 n)

iterations, no bad event occurs with probability 1− 1/poly(n).

Theorem 2.9. Let A be a (C(∆) + ϵ log∆ n)-time RandLOCAL algorithm that solves some
LCL problem P with high probability, where ϵ > 0 is a sufficiently small constant. Each
vertex locally generates r∆(n) random bits and sends m∆(n)-bit messages. It is pos-
sible to transform A into a new RandLOCAL algorithm A′ that solves P (w.h.p.) in
O(log∆ n) time, where each vertex generates O(logn + r∆(ζ) · logζ n) random bits, and
sends O(min{log(|Σout|) ·∆O(1) +m∆(ζ) + ζ, r∆(ζ) · ζ})-bit messages, where ζ = ∆O(C(∆))

depends on ∆.

Proof. We continue to use the notation and definitions from Theorem 2.8, and fix c = 3

in the LLL criterion (2.1). Since d = Ω(∆O(C(∆))) = Ω(ζ) and we selected t⋆ w.r.t. c = 3

(i.e., LLL criterion pd3 < 1), we have 1/epd2 = Ω(ζ). If A′ uses the LLL algorithm of [44],

36

each vertex v ∈ V (G) will first generate an O(logn)-bit unique identifier ID(Ev) (which
costs O(logn) random bits) and generate r∆(n⋆) ·O(log1/epd2 n) = O(r∆(ζ) · logζ n) random
bits throughout the computation. Thus, the total number of random bits per vertex is
O(logn+ r∆(ζ) · logζ n).

In each resampling step of A′, in order for v to tell whether Ev ∈ I, it needs the following
information: (i) ID(Eu) for all u ∈ N2(r+t⋆)(v), and (ii) whether Eu occurs under the current
variable assignment, for all u ∈ N2(r+t⋆)(v). We now present two methods to execute one
resampling step of A′; they both take O(C(∆)) time using a message size that depends on
∆ but is independent of n. There are O(log1/epd2 n) = O(logζ n) = O(log∆ n

C(∆)
) resampling

steps, so the total time is O(log∆ n), independent of the function C.

Method 1 Before the LLL algorithm proper begins, we do the following preprocessing
step. Each vertex v gathers up all IDs and random bits in its 3(t⋆ + r)-neighborhood.
This takes O((logn+ r∆(ζ) · logζ n) · ζ/b) time with b-bit messages (recall that ∆O(t⋆+r) =

∆O(C(∆)) = ζ). In particular, the runtime can be made O(log∆ n) if we set b = O(r∆(ζ) ·ζ).
During the LLL algorithm, each vertex u owns one random variable: an r∆(n⋆)-bit string

Vu. In order for v to tell whether Eu occurs for each u ∈ N2(r+t⋆)(v) under the current
variable assignment, it only needs to know how many times each Vu, u ∈ N3(r+t⋆)(v),
has been resampled. Whether the output labeling of u ∈ N2(r+t⋆)(v) is locally consistent
depends on the output labeling of vertices in N r(u), which depends on the random bits
and the graph topology within N r+t⋆(u) ⊆ N3(r+t⋆)(v). Given the graph topology, IDs,
and the random bits within N3(r+t⋆)(v), the vertex v can locally simulate A and decides
whether Ev ∈ I.

Thus, in each iteration of the LLL algorithm, each vertex v simply needs to alert its
3(r + t⋆)-neighborhood whether Vv is resampled or not. This can be accomplished in
O(r + t⋆) = O(C(∆)) time with ζ-bit messages.

Method 2 In the second method, vertices keep their random bits private. Similar to
the first method, we do a preprocessing step to let each vertex gathers up all IDs in its
2(t⋆ + r)-neighborhood. This can be done in O(log∆ n) time using ζ-bit messages.

During the LLL algorithm, in order to tell which subset of bad events {Ev}v∈V (G) oc-
cur under the current variable assignment, all vertices simulate A for t⋆ rounds, sending
m∆(n

⋆)-bit messages. After the simulation, for a vertex v to tell whether Ev occurs, it
needs to gather the output labeling of the vertices in N r(v). This can be done in r = O(1)

37

rounds, sending log(|Σout|) ·∆O(1)-bit messages. Note that an output label can be encoded
as a log(|Σout|)-bit string. We do not assume that ∆ is constant so |Σout|, which may
depend on ∆ but not directly on n, is also not constant. One example is the O(∆) vertex
coloring problem.

Next, for a vertex v to tell whether Ev ∈ I, it needs to know whether Eu occurs for all
u ∈ N2(r+t⋆)(v). This information can be gathered in O(C(∆)) time using messages of size
O(ζ). To summarize, the required message size is O(log(|Σout|) ·∆O(1) +m∆(ζ) + ζ).

An interesting corollary of Theorem 2.9 is that when ∆ = O(1), randomized algorithms
with unbounded length messages can be simulated with 1-bit messages.

Corollary 2.5. Let P be any LCL problem. When ∆ = O(1), any o(logn) algorithm
solving P w.h.p. using unbounded length messages can be made to run in O(logn) time
with 1-bit messages.

2.6 Speedup Implications of Naor & Stockmeyer
Let A be any T (n)-round DetLOCAL algorithm. Let η and η′ be any two order-
indistinguishable assignments of distinct IDs to NT (n)(v), i.e., for u,w ∈ NT (n)(v),
η(u) > η(w) if and only if η′(u) > η′(w). If, for every possible input graph fragment induced
by NT (n)(v), the output label of v is identical under every pair of order-indistinguishable
η, η′, then A is order-invariant.

Suppose that there exists a number n′ = O(1) such that ∆T (n′)+r < n′. If A is order-
invariant then it can be turned into an O(1)-round DetLOCAL algorithm A′, since we can
pretend that the total number of vertices is n′ instead of n.

Naor and Stockmeyer [116] proved that any DetLOCAL algorithm that takes τ = O(1)

rounds on a bounded degree graph can be turned into an order-invariant τ -round DetLOCAL
algorithm. A more careful analysis shows that the proof still works when τ is a slowly
growing function of n.

2.6.1 Requirements for Automatic Speedup

The multicolor hypergraph Ramsey number R(p,m, c) is the minimum number such that
the following holds. Let H be a complete p-uniform hypergraph of at least R(p,m, c)
vertices. Then any c-edge-coloring of H contains a monochromatic clique of size m.

38

Given the number τ ≥ 2, the three parameters p, m, and c are selected as follows. (See
the proof of [116, Lemma 3.2] for more details.)

• The number p is the maximum number of vertices inN τ (v), over all vertices v ∈ V (G)

and all graphs G under consideration. For paths/cycles, p = 2τ + 1. For grids/tori,
p ≤ 2(τ + 1)2. For trees or general graphs, p ≤ ∆τ .

• The number m is the maximum number of vertices in N τ+r(v), over all vertices
v ∈ V (G) and all graphs G under consideration. E.g., for paths/cycles, p = 2τ+2r+1

and for general graphs, p ≤ ∆τ+r.

• The number z counts the distinguishable radius-τ centered subgraphs, disregarding
IDs. For example, for LCLs on the n-cycle without input labels or port numbering,
z = 1, whereas with input labels and port numbering it is (2|Σin|)2τ+1 since each
vertex has one of |Σin| input labels and 2 port numberings. In general z is less than
2(

∆τ

2) · (∆!|Σin|)p.

• The number c is defined as |Σout|p!z. Intuitively, we can use a number in [c] to encode
a function that maps a radius-τ centered subgraph, whose vertices are equipped with
distinct vertex IDs drawn from some set S with cardinality p, to an output label in
Σout.

Recall that vertices in DetLOCAL have O(logn)-bit IDs, i.e., they can be viewed as
elements of [nk] for some k = O(1). Naor and Stockmeyer’s proof implies that, as long
as nk ≥ R(p,m, c), any DetLOCAL τ -round algorithm on a bounded degree graph can
be turned into an order-invariant τ -round DetLOCAL algorithm, which then implies an
O(1)-round DetLOCAL algorithm.

2.6.2 Automatic Speedup Theorems

According to the proof of [84, §1, Theorem 2], we have:

For p = 1, R(p,m, c) = c(m− 1) + 1

For p > 1, R(p,m, c) ≤ 2cx

where x =

R(p−1,m,c)−1∑
i=p−1

(
i+ 1

p− 1

)
< R(p− 1,m, c)p

39

Therefore, log∗(R(p,m, c)) ≤ p+ log∗m+ log∗ c+O(1).
Observe that in all scenarios described in Section 2.6.1, if the running time τ satisfies

τ = τ(n) = ω(1), we have log∗m + log∗ c = o(p). Therefore, having p ≤ ϵ log∗ n for some
small enough constant ϵ suffices to meet the condition nk ≥ R(p,m, c). We conclude that
the complexity of any LCL problem (with or without input labels and port numbering) in
the LOCAL model never falls in the following gaps:

ω(1)—o(log∗ n) for n-paths/cycles.

ω(1)—o
(√

log∗ n
)

for (
√
n×
√
n)-grids/tori.

ω(1)—o(log(log∗ n)) for bounded degree trees or bounded degree general graphs.

By Corollary 2.1, the DetLOCAL and RandLOCAL complexities of any LCL problem are
asymptotically the same if they are at most 2O(log∗ n). Therefore, the above gaps not only
apply to DetLOCAL but also RandLOCAL.

Due to the “Stepping-Up Lemma” (see [84, §4, Lemma 17]), we have a lower bound
log∗(R(p,m, 2)) = Ω(p) (for any p,m). Therefore, Naor and Stockmeyer’s approach alone
cannot give an ω(1)—o(log∗ n) gap for bounded degree trees. However, for a certain class
of LCL problems on (

√
n×
√
n)-grids/tori, the gap can be widened to ω(1)—o(log∗ n) [31,

p. 2]. The following proof is due to J. Suomela (personal communication).

Theorem 2.10 (J. Suomela). Let P be any LCL problem on (
√
n×
√
n)-grids/tori that does

not refer to input labels or port-numbering. The DetLOCAL and RandLOCAL complexity of
P is either O(1) or Ω(log∗ n).

Proof. Given a (
√
n×
√
n)-torus G, we associate each vertex v ∈ V (G) with a coordinate

(α, β), where α, β ∈ {0, . . . ,
√
n − 1}. We consider the following special way to generate

unique 2k logn-bit IDs. Let ϕx and ϕy be two functions mapping integers in {0, . . . ,
√
n−1}

to integers in {0, . . . , nk − 1}. We additionally require that ϕx(0) < · · · < ϕx(
√
n − 1) <

ϕy(0) < · · · < ϕy(
√
n − 1). If v is at position (α, β), it has ID ϕx(α) · nk + ϕy(β). Notice

that the IDs of all vertices in N τ (v) can be deduced from just 4τ + 2 numbers: ϕx(i),
i ∈ [α− τ, α + τ] and ϕy(j), j ∈ [β − τ, β + τ].

Suppose that the complexity of P is o(log∗ n). Let A be any τ -round DetLOCAL algo-
rithm for solving P , where τ = o(log∗ n). Notice that the algorithm A works correctly even
when we restrict ourselves to the above special ID assignment. Our goal is to show that P
is actually trivial in the sense that there exists an element σ ∈ Σout such that labeling all

40

vertices by σ gives a legal labeling, assuming w.l.o.g. that
√
n > 2r + 1. Thus, P can be

solved in O(1) rounds.
In subsequent discussion, we let v be any vertex whose position is (α, β), where τ + r ≤

α ≤ (
√
n− 1)− (τ + r) and τ + r ≤ β ≤ (

√
n− 1)− (τ + r). That is, v is sufficiently far

from the places where the coordinates wrap around.
Given A, we construct a function f as follows. Let S = (s1, . . . , s4τ+2) be a vector

of 4τ + 2 numbers in {0, . . . , nk − 1} such that sl < sl+1 for each l ∈ [4τ + 2]. Then
f(S) ∈ Σout is defined as the output labeling of v resulting from executing A with the
following ID assignment of vertices in N τ (v). We set ϕx(α − τ − 1 + i) = si for each
i ∈ [2τ + 1] and set ϕy(β − τ − 1 + j) = sj+2τ+1 for each j ∈ [2τ + 1]. Recall that P does
not use port-numbering and input labeling, so the output labeling of v depends only on
IDs of vertices in N τ (v).

We set p = 4τ + 2, m = 4τ + 4r + 2, and c = |Σout|. Notice that the calculation of the
parameter c here is different from the original proof of Naor and Stockmeyer. Since we
already force that ϕx(0) < · · · < ϕx(

√
n− 1) < ϕy(0) < · · · < ϕy(

√
n− 1), we do not need

to consider all p! permutations of the set S.
We have R(p,m, c)≪ nk (since p = o(log∗ n)). Thus, there exists a set S ′ of m distinct

numbers in {0, . . . , nk} such that the following is true. We label these m numbers ϕx(i),
i ∈ [α − τ − r, α + τ + r], and ϕy(j), j ∈ [β − τ − r, β + τ + r] by the set S ′ such that
ϕx(α − τ − r) < . . . < ϕx(α + τ + r) < ϕy(β − τ − r) < . . . < ϕy(β + τ + r). Then the
output labels of all vertices in N r(v) assigned by A are identical.

Therefore, there exists an element σ ∈ Σout such that labeling all vertices by σ yields a
legal labeling of G. Thus, P can be solved in O(1) rounds.

On grids, the proof above shows that the LCL P admits a labeling where all interior
vertices (those at distance greater than r from the boundary) can be labeled uniformly
by some σ ∈ Σout and every other vertex can be labeled according to an O(1)-round
order-invariant algorithm.

Similarly, by Corollary 2.1, the ω(1)—o(log∗ n) gap given in this proof applies to both
DetLOCAL and RandLOCAL.

2.6.3 Discussion

It still remains an outstanding open problem whether the gap for other cases can also be
widened to ω(1)—o(log∗ n).

41

The proof of Theorem 2.10 extends easily to d-dimensional tori, but does not extend to
bounded degree trees, since there is a non-trivial problem that can be solved in O(1) rounds
on a subset of bounded degree trees (see the proof of Theorem 2.10 for the definition of a
trivial problem). A weak coloring is a coloring in which every vertex is colored differently
than at least one neighbor. Naor and Stockmeyer [116] showed that on any graph class
in which all vertex degrees are odd, weak 2O(∆ log∆)-coloring can be solved in 2 rounds
and weak 2-coloring can be solved in O(log∗∆) rounds in DetLOCAL. This problem is
non-trivial in the sense that coloring all vertices by the same color is not a legal solution.
Since the d-dimensional torus is ∆-regular, ∆ = 2d, we infer that the complexity of weak
O(1)-coloring on ∆-regular graphs is Θ(log∗ n) for every fixed even number ∆ ≥ 2.

Theorem 2.10 also does not extend to LCL problems that use input labels or port-
numbering. If either input labels or port-numbering are allowed, then one can construct
a non-trivial LCL problem that can be solved in O(1) rounds even on cycle graphs. An
orientation of a vertex v ∈ V (G) is defined as a port-number in [deg(v)], indicating a
vertex in N(v) that v is pointed towards. An ℓ-orientation of a cycle G is an orientation of
all vertices in G meeting the following conditions. If |V (G)| ≤ ℓ, then all vertices in G are
oriented to the same direction, i.e., no two vertices point toward each other. If |V (G)| > ℓ,
then each vertex v ∈ V (G) belongs to a path P such that (i) all vertices in P are oriented
to the same direction (no two point to each other), and (ii) the number of vertices in P is
at least ℓ. Notice that ℓ-orientation, ℓ = O(1), is an LCL that refers to port-numbering.
We show that in O(1) rounds we can compute an ℓ-orientation of G for any constant ℓ.

Theorem 2.11. Let G be a cycle graph and ℓ be a constant. There is a DetLOCAL
algorithm that computes an ℓ-orientation of G in O(1) rounds.

Proof. This is a known result. See [85, Fact 5.2] or [63, Lemma 14 (Rounding Lemma),
Case B] for a sketch of the proof. For the sake of completeness, we present a full proof.
We first show how to compute a 2-orientation of a cycle G in O(1) rounds, and then we
extend it to any constant ℓ.

Computing a 2-orientation We assume |V (G)| ≥ 3. A DetLOCAL O(1)-round algo-
rithm to compute a 2-orientation is described as follows. First, each vertex v ∈ V (G)

computes an arbitrary orientation. With respect to this orientation of G, define sets
V1, V2, V3 as follows.

42

• v ∈ V1 if and only if there exists u ∈ N(v) such that u and v are oriented to the
same direction.

• v ∈ V2 if and only if there exists u ∈ N(v) \V1 such that u and v are oriented toward
each other.

• V3 = V (G) \ (V1 ∪ V2). Observe that for each v ∈ V3, there exists u ∈ N(v) ∩ V1.

A 2-orientation is obtained by re-orienting the vertices in V2 and V3. The vertices in V2

are partitioned into unordered pairs such that u, v ∈ V2 are paired-up if and only if (i)
{u, v} ∈ E(G) and (ii) u and v are oriented toward each other. For each pair {u, v}, reverse
the orientation of any one of {u, v}. For each vertex v ∈ V3, let u be any neighbor of v
such that u ∈ V1, and re-orient v to the orientation of u.

Computing an ℓ-orientation We define an O(1)-round DetLOCAL algorithm Aℓ that
computes an ℓ-orientation. It makes recursive calls to A⌈ℓ/2⌉. In what follows, we assume
ℓ ≥ 3 and |V (G)| ≥ 3.

First, execute A⌈ℓ/2⌉ to obtain a ⌈ℓ/2⌉-orientation of G. With respect to this orientation
of G, define the following terminologies. Let P be the set of all maximal-size connected
subgraphs in G such that all constituent vertices are oriented to the same direction. Notice
that if P contains a cycle, then P = {G}. Otherwise P contains only paths. Define P1

as the subset of P such that P ∈P1 if and only if the number of vertices in P is at least
ℓ. Define P2 as the subset of P \P1 such that P ∈P2 if and only if there exists another
path P ′ ∈ P \P1 meeting the following condition. There exist an endpoint u of P and
an endpoint v of P ′ such that {u, v} ∈ E(G), and u and v are oriented toward each other.
Define P3 = P \ (P1 ∪P2). Observe that each P ∈P3 is adjacent to a path in P1.

The paths in P2 are partitioned into unordered pairs such that P, P ′ ∈P2 are paired-up
if and only if there exist an endpoint u of P and an endpoint v of P ′ such that {u, v} ∈
E(G), and u and v are oriented toward each other. For each pair {P, P ′}, reverse the
orientation of all the vertices in any one of {P, P ′}. For each path P ∈ P3, let P ′ ∈ P1

be any path adjacent to P , and re-orient P to the orientation of P ′.
The round complexity of Aℓ satisfies the recurrence T (ℓ) = T (⌈ℓ/2⌉) + O(ℓ), which is

O(ℓ).

Notice that even though orienting all vertices in the cycle to the same direction gives
a legal labeling, ℓ-orientation is still a non-trivial LCL problem. Consider a subpath

43

(v1, v2, v3, v4) in the cycle. Suppose that the port-number of (v2, v3) stored at v2 is 1, but
the port-number of (v3, v4) stored at v3 is 2. Then we need to label v2 and v3 differently
(1 and 2, respectively) in order to orient them in the same direction ‘→’.

Lastly, we remark that for the case the given (
√
n ×
√
n)-torus is oriented in the sense

that the input port-numberings all agree with a fixed N/S/E/W orientation [32], then there
is no non-trivial LCL problem solvable in O(1) time.

44

Chapter 3

Complexity Landscape of LCLs on
Trees

3.1 Overview
In this chapter we study the LOCAL complexity landscape on bounded degree trees. We
establish a new (deterministic and randomized) complexity gap for bounded degree trees
and a new infinite hierarchy of coloring problems with polynomial time complexities.

An Infinite Hierarchy of Coloring Problems. We define an infinite class of LCL
problems called Hierarchical 21

2
-Coloring. A correctly colored graph can be confirmed by

simply checking the neighborhood of each vertex, so this problem fits into the class of
LCL problems. However, the complexity of the k-level Hierarchical 21

2
-Coloring problem

is Θ(n1/k), for k ∈ Z+. The upper bound holds in DetLOCAL on general graphs, and the
lower bound holds even on degree-3 trees in RandLOCAL.

This result is interesting in that this is the first time hierarchy-type theorem for the
distributed LOCAL model. In contrast to paths/cycles and grids/tori, trees and general
graphs support an infinite number of natural problem complexities.

A Complexity Gap on Bounded Degree Trees. We prove that on the class of
bounded degree trees, no LCL has complexity in the range ω(logn)—no(1). Specifically,
any no(1)-time RandLOCAL algorithm can be converted to an O(logn)-time DetLOCAL
algorithm. Moreover, given the description of an LCL problem P , it is decidable whether
the RandLOCAL complexity of P is nΩ(1) or the DetLOCAL complexity of P is O(logn). It

45

turns out that this gap is maximal. That is, we cannot extend it lower than ω(logn) [39,
107], nor higher than no(1).

Commentary. All the existing automatic speedup theorems are quite different in terms
of proof techniques. Naor and Stockmeyer’s approach is based on Ramsey theory. The
speedup theorems of Chapter 2 use the fact that o(log∆ n) algorithms on general graphs
(and o(n) algorithms on n-cycles/paths and o(

√
n) algorithms on (

√
n ×
√
n)-grids/tori)

cannot “see” the whole graph, and can therefore be efficiently tricked into thinking the
graph has constant size.

Our new no(1) → O(logn) speedup theorem introduces an entirely new set of techniques
based on classic automata theory. We show that any LCL problem gives rise to a regular
language that represents partial labelings of the tree that can be consistently extended to
total labelings. By applying the pumping lemma for regular languages, we can “pump”
the input tree into a much larger tree that behaves similar to the original tree. The
advantage of creating a larger imaginary tree is that each vertex can (mentally) simulate the
behavior of an no(1)-time algorithm on the imaginary tree, merely by inspecting itsO(logn)-
neighborhood in the actual tree. Moreover, because the pumping operation preserves
properties of the original tree, a labeling of the imaginary tree can be efficiently converted
to a labeling of the original tree.

Organization. In Section 3.2 we introduce Hierarchical 21
2
-Coloring and prove that the

k-level variant of this problem has complexity Θ(n1/k). In Section 3.3 we prove the no(1) →
O(logn) speedup theorem for bounded degree trees.

3.2 An Infinitude of Complexities: Hierarchical
212-Coloring

In this section we give an infinite sequence (Pk)k∈Z+ of LCL problems, where the complexity
of Pk is precisely Θ(n1/k).8 The upper bound holds on general graphs in DetLOCAL and
the lower bound holds in RandLOCAL, even on degree-3 trees. Informally, the task of Pk

is to 2-color (with {a,b}) certain specific subgraphs of the input graph. Some vertices

8Brandt et al. [32, Appendix A.3] described an LCL that has complexity Θ(
√
n) on general graphs, but

not trees. It may be possible to generalize their LCL to any complexity of the form Θ(n1/k).

46

are exempt from being colored (in which case they are labeled X), and in addition, it is
possible to decline to 2-color certain subgraphs, by labeling them D.

There are no input labels. The output label set is Σout = {a,b,D,X}. The problem Pk

is an LCL defined by the following rules.

Levels. Subsequent rules depend on the levels of vertices. Let Vi, i ∈ {1, . . . , k + 1}, be
the set of vertices on level i, defined as follows.

G1 = G

Gi = Gi−1 − Vi−1, for i ∈ [2, k + 1]

Vi = {v ∈ V (Gi) | degGi
(v) ≤ 2}, for i ∈ [1, k]

Vk+1 = V (Gk+1) (the remaining vertices)

Remember that vertices know their degrees, so a vertex in V1 deduces this with 0
rounds of communication. In general the level of v can be calculated from information
in Nk(v).

Exemption. A vertex labeled X is called exempt. No V1 vertex is labeled X; all Vk+1

vertices are labeled X. Any Vi vertex is labeled X iff it is adjacent to a lower level
vertex labeled a,b, or X. Define Xi ⊆ Vi to be the set of level i exempt vertices.

Two-Coloring. Vertices not covered by the exemption rule are labeled one of a,b,D.

— Any vertex in Vi, i ∈ [1, k], labeled a has no neighbor in Vi labeled a or D.

— Any vertex in Vi, i ∈ [1, k], labeled b has no neighbor in Vi labeled b or D.

— Any vertex in Vk−Xk with exactly 0 or 1 neighbors in Vk−Xk must be labeled
a or b.

Commentary. The Level rule implies that the graph induced by Vi consists of paths
and cycles. The Two-Coloring rule implies that each component of non-exempt vertices
in the graph induced by Vi − Xi must either (a) be labeled uniformly by D or (b) be
properly 2-colored by {a,b}. Every path in Vk−Xk must be properly 2-colored, but cycles
in Vk − Xk are allowed to be labeled uniformly by D. This last provision is necessary to
ensure that every graph can be labeled according to Pk since there is no guarantee that
cycles in Vk −Xk are bipartite.

47

Remark 3.1. As stated Pk is an LCL with an alphabet size of 4 and a radius k, since the
coloring rules refer to levels, which can be deduced by looking up to radius k. On the other
hand, we can also represent Pk as an LCL with radius 1 and alphabet size 4k by including
a vertex’s level in its output label. A correct level assignment can be verified within radius
1. For example, level 1 vertices are those with degree at most 2, and a vertex is labeled
i ∈ [2, k] iff all but at most 2 neighbors have levels less than i.

Theorem 3.1. The DetLOCAL complexity of Pk on general graphs is O(n1/k).

Proof. The algorithm fixes the labeling of V1, . . . , Vk, Vk+1 in order, according to the fol-
lowing steps. Assume that all vertices in V1, . . . , Vi−1 have already been labeled.

• Compute Xi according to the Exemption rule. (E.g., X1 = ∅, Xk+1 = Vk+1.)

• Each path in the subgraph induced by Vi−Xi calculates its length. If it contains at
most

⌈
2n1/k

⌉
vertices, it properly 2-colors itself with {a,b}; longer paths and cycles

in Vi −Xi label themselves uniformly by D.

This algorithm correctly solves Pk provided that it never labels a path in Vk −Xk with
D. Let Ui be the subgraph induced by those vertices in V1 ∪ · · · ∪ Vi labeled D. Consider
a connected component C in Ui whose Vi-vertices are arranged in a path (not a cycle).
We argue by induction that C has at least 2ni/k vertices. This is clearly true in the base
case i = 1: if a path component of U1 were colored D, it must have more than

⌈
2n1/k

⌉
vertices. Now assume the claim is true for i − 1 and consider a component C of Ui. If
the Vi-vertices in C form a path, it must have length greater than 2n1/k. Each vertex
in that path must be adjacent to an endpoint of a Vi−1 path. Since Vi−1 paths have two
endpoints, the Vi path is adjacent to at least

⌈
2n1/k

⌉
/2 ≥ n1/k components in Ui−1, each

of which has size at least 2n(i−1)/k, by the inductive hypothesis. Thus, the size of C is at
least n1/k · 2n(i−1)/k + 2n1/k > 2ni/k. Because there are at most n vertices in the graph, it
is impossible for Vk vertices arranged in a path to be colored D.

Theorem 3.2. The RandLOCAL complexity of Pk on trees with maximum degree ∆ = 3 is
Ω(n1/k).

Proof. Fix an integer parameter x and define a sequence of graphs (Hi)1≤i≤k as follows.
Each Hi has a head and a tail.

• H1 is a path (or backbone) of length x. One end of the path is the head and the other
end the tail.

48

Figure 3.1: The graph Hk with parameters k = 3, x = 7.

• To construct Hi, i ∈ [2, k− 1], begin with a backbone path (v1, v2, . . . , vx), with head
v1 and tail vx. Form x + 1 copies (H

(j)
i−1)1≤j≤x+1 of Hi−1, where v(j) is the head of

H
(j)
i−1. Connect v(j) to vj by an edge, for j ∈ [1, x], and also connect v(x+1) to vx by

an edge.

• Hk is constructed exactly as above, except that we generate x+2 copies of Hk−1 and
connect the heads of two copies of Hk−1 to both v1 and vx. See Figure 3.1 for an
example with k = 3. White vertices are in V1, gray in V2, and black in V3. V4 = Vk+1

is empty.

We make several observations about the construction of Hk. First, it is a tree with
maximum degree 3. Second, when decomposing V (Hk) into levels (V1, . . . , Vk, Vk+1), Vi is
precisely the union of the backbones in all copies of Hi, and Vk+1 = ∅. Third, the number
of vertices in Hk is Θ(xk), so a o(n1/k) algorithm for Pk must run in o(x) time on Hk.

Consider a RandLOCAL algorithm A solving Pk on Hk within t < x/5−O(1) time, that
fails with probability pfail. If A is a good algorithm then pfail ≤ 1/|V (Hk)|. However, we
will now show that pfail is constant, independent of |V (Hk)|.

Define Ei to be the event that Xi ̸= ∅ and pi = Pr(Ei). By an induction from i = 2 to k,
we prove that pi ≤ 2(i− 1) · pfail.

Base Case. We first prove that

Pr (Hk is not correctly colored according to Pk | E2) ≥ 1/2.

Conditioning on E2 means that X2 ̸= ∅. Fix any v ∈ X2 and let P be a copy of H1 (a path)
adjacent to v. In order for v ∈ X2, it must be that P is properly 2-colored with {a,b}.

49

Since t < x/5−O(1), there exist two vertices u and u′ in P such that

1. N t(u), N t(u′), and N t(v) are disjoint sets,

2. the subgraphs induced by N t(u) and N t(u′) are isomorphic, and

3. the distance between u and u′ is odd.

Let pa and pb be the probabilities that u/u′ is labeled a and b, respectively. A proper
2-coloring of P assigns u and u′ different colors, and that occurs with probability 2papb ≤
2pa(1 − pa) ≤ 1/2. Moreover, this holds independent of the random bits generated by
vertices in N t(v). The algorithm fails unless u, u′ have different colors, thus pfail ≥ p2/2,
and hence p2 ≤ 2 · pfail.

Inductive Step. Let 3 ≤ i ≤ k. The inductive hypothesis states that pi−1 ≤ 2(i−2)·pfail.
By a proof similar to the base case, we have that:

Pr (Hk is not correctly colored according to Pk | Ei\Ei−1) ≥ 1/2.

We are conditioning on Ei\Ei−1. If this event is empty, then pi ≤ pi−1 ≤ 2(i − 2) · pfail

and the induction is complete. On the other hand, if Ei\Ei−1 holds then there is some
v ∈ Xi adjacent to a copy of Hi−1 with backbone path P , where P ∩Xi−1 = ∅. In other
words, if Hk is colored according to Pk then P must be properly 2-colored with {a,b}.
The argument above shows this occurs with probability at least 1/2. Thus,

pfail = Pr(Hk is incorrectly colored) ≥ Pr(Ei\Ei−1)/2 ≥ (pi − pi−1)/2,

or pi ≤ 2pfail + pi−1 ≤ 2(i− 1)pfail, completing the induction.
Finally, let P be the path induced by vertices in Vk. The probability that Ek

holds (P ∩ Xk ̸= ∅) is pk ≤ 2(k − 1) · pfail. On the other hand, we have
Pr(Hk not colored correctly | Ek) ≥ 1/2 by the argument above, hence pfail ≥ (1−pk)/2, or
pk ≥ 1−2pfail. Combining the upper and lower bounds on pk we conclude that pfail ≥ (2k)−1

is constant, independent of |V (Hk)|. Thus, algorithm A cannot succeed with high proba-
bility.

50

3.3 A Complexity Gap on Bounded Degree Trees
In this section we prove an no(1) → O(logn) speedup theorem for LCL problems on bounded
degree trees. The progression of definitions and lemmas in Sections 3.3.2–3.3.13 is logical,
but obscures the high level structure of the proof. Section 3.3.1 gives an informal tour
of the proof and its key ideas. Throughout, P is a radius-r LCL and A is an no(1)-time
algorithm for P on bounded degree trees.

3.3.1 A Tour of the Proof

Consider this simple way to decompose a tree in O(logn) time, inspired by Miller and
Reif [109]. Iteratively remove paths of degree-2 vertices (compress) and vertices with
degree 0 or 1 (rake). Vertices removed in iteration i are at level i. If O(logn) rakes alone
suffice to decompose a tree then it has O(logn) diameter and any LCL can be solved in
O(logn) time on such a graph. Thus, we mainly have to worry about the situation where
compress removes very long (ω(1)-length) paths.

The first observation is that it is easy to split up long degree-2 paths of level-i vertices
into constant length paths, by artificially promoting a well-spaced subset of level-i vertices
to level i+1. Thus, we have a situation that looks like this (see Figure 3.2): level-i vertices
are arranged in an O(1)-length path, each the root of a subtree of level-(< i) vertices
(colored subtrees in the figure) that were removed in previous rake/compress steps, and
bookended by level-(> i) vertices (black in the figure). Call the subgraph between the
bookends H.

Figure 3.2: A constant length path resulting from spliting up long degree-2 paths
of level-i vertices.

In our approach it is the level-(> i) vertices that are in charge of coordinating the labeling

51

of level-(≤ i) vertices in their purview. In this diagram, H is in the purview of both black
bookends. We only have one tool available for computing a labeling of this subgraph: an
no(1)-time RandLOCAL algorithm A that works w.h.p. What would happen if we simulated
A on the vertices of H? The simulation would fail catastrophically of course, since it needs
to look up to an no(1) radius, to parts of the graph far outside of H.

The colored subtrees are unbounded in terms of size and depth. Nonetheless, they fall
into a constant number of equivalence classes in the following sense. The class of a rooted
tree is the set of all labelings of the r-neighborhood of its root that can be extended to
total labelings of the tree that are consistent with P (see Figure 3.3).

Figure 3.3: Class of a rooted tree.

In other words, the large and complex graph H can be succinctly encoded as a simple
class vector (c1, c2, . . . , cℓ), where cj is the class of the jth colored tree. Consider the set of
all labelings of H that are consistent with P . This set can also be succinctly represented
by listing the labelings of the r-neighborhoods of the bookends that can be extended to
all of H, while respecting P . The set of these partial labelings defines the type of H. We
show that H’s type can be computed by a finite automaton that reads the class vector
(c1, . . . , cℓ) one character at a time. By the pigeonhole principle, if ℓ is sufficiently large
then the automaton loops, meaning that (c1, . . . , cℓ) can be written as x ◦ y ◦ z, which has
the same type as every x ◦ yj ◦ z, for all j ≥ 1. This pumping lemma for trees lets us
dramatically expand the size of H without affecting its type, i.e., how it interacts with the
outside world beyond the bookends.

52

Figure 3.4: Pumping lemma for trees.

Figure 3.4 illustrates the pumping lemma with a substring of |y| = 3 trees (rooted at
gray vertices) repeated j = 3 times. Now let us reconsider the simulation of A. If we
first pump H to be long enough, and then simulate A on the middle section of pumped-
H, A must, according to its no(1) time bound, compute a labeling without needing any
information outside of pumped-H, i.e., beyond the bookends. Thus, we can use A to
pre-commit to a labeling of a small (radius-r) subgraph of pumped-H. Given this pre-
commitment, the left and right bookends no longer need to coordinate their activities:
everything left (right) of the pre-committed zone is now in the purview of the left (right)
bookend. Interestingly, these manipulations (tree surgery and pre-commitments) can be
repeated for each i, yielding a hierarchy of imaginary trees such that a proper labeling at
one level of the hierarchy implies a proper labeling at the previous level.

Roadmap This short proof sketch has been simplified to the point that it is riddled
with small inaccuracies. Nonetheless, it does accurately capture the difficulties, ideas,
and techniques used in the actual proof. In Section 3.3.2 we formally define the notion
of a partially labeled graph, i.e., one with certain vertices pre-commited to their output
labels. Section 3.3.3 defines a surgical “cut-and-paste” operation on graphs. Section 3.3.4
defines a partition of the vertices of a subgraph H, which differentiates between vertices
that “see” the outside graph, and those that see only H. Section 3.3.5 defines an equiva-
lence relation on graphs that, intuitively, justifies surgically replacing a subgraph with an
equivalent graph. Sections 3.3.6 and 3.3.7 explore properties of the equivalence relation.
Section 3.3.8 introduces the pumping lemma for trees, and Section 3.3.9 defines a spe-
cialized Rake/Compress-style graph decomposition. Section 3.3.10 presents the operations
Extend (which pumps a subtree) and Label (which pre-commits a small partial labeling)

53

in terms of a black-box labeling function f . Section 3.3.11 defines the set of all (partially
labeled) trees that can be encountered, by considering the interplay between the graph de-
composition, Extend, and Label. It is important that for each tree encountered, its partial
labeling can be extended to a complete labeling consistent with P ; whether this actually
holds depends on the choice of black-box f . Section 3.3.12 shows that P can be solved in
O(logn) time, given a feasible labeling function f . Section 3.3.13 shows how a feasible f
can be extracted from any no(1)-time algorithm A.

3.3.2 Partial Labeled Graphs

A partially labeled graph G = (G,L) is a graph G together with a function L : V (G) →
Σout∪{⊥}. The vertices in L−1(⊥) are unlabeled. A complete labeling L′ : V (G)→ Σout for
G is one that labels all vertices and is consistent with G’s partial labeling, i.e., L′(v) = L(v)
whenever L(v) ̸= ⊥. A legal labeling is a complete labeling that is locally consistent for
all v ∈ V (G), i.e., the labeled subgraph induced by N r(v) is consistent with the LCL P .
Here N r(v) is the set of all vertices within distance r of v.

All graph operations can be extended naturally to partially labeled graphs. For instance,
a subgraph of a partially labeled graph G = (G,L) is a pair H = (H,L′) such that H is a
subgraph of G, and L′ is L restricted to the domain V (H). With slight abuse of notation,
we usually write H = (H,L).

3.3.3 Graph Surgery

Let G = (G,L) be a partially labeled graph, and let H = (H,L) be a subgraph of G. The
poles of H are those vertices in V (H) that are adjacent to some vertex in the outside graph
V (G) − V (H). We define an operation Replace that surgically removes H and replaces it
with some H′.

Replace. Let S = (v1, . . . , vp) be a list of the poles of H and let S = (v′1, . . . , v
′
p) be a

designated set of poles in some partially labeled graph H′. The partially labeled
graph G ′ = Replace(G, (H, S), (H′, S ′)) is constructed as follows. Beginning with G,
replaceH withH′, and replace any edge {u, vi}, u ∈ V (G)−V (H), with {u, v′i}. If the
poles S, S ′ are clear from context, we may also simply write G ′ = Replace(G,H,H′).
Writing G ′ = (G′,L′) and H′ = (H ′,L′), there is a natural 1-1 correspondence
between the vertices in V (G)− V (H) and V (G′)− V (H ′). See Figure 3.5.

54

In the proof of our no(1) → O(logn) speedup thereom we only consider unipolar and
bipolar graphs (p ∈ {1, 2}) but for maximum generality we define everything w.r.t. graphs
having p ≥ 1 poles.

Figure 3.5: The operation Replace.

Given a legal labeling L⋄ of G, we would like to know whether there is a legal labeling
L′

⋄ of G ′ that agrees with L⋄, i.e., L⋄(v) = L′
⋄(v

′) for each v ∈ V (G) − V (H) and the
corresponding v′ ∈ V (G′) − V (H ′). Our goal is to define an equivalence relation ⋆∼ on
partially labeled graphs (with designated poles) so that the following is true: if (H, S) ⋆∼
(H′, S ′), then such a legal labeling L′

⋄ must exist, regardless of the choice of G and L⋄.
Observe that since P has radius r, the interface between V (H) (or V (H ′)) and the rest
of the graph only occurs around the O(r)-neighborhoods of the poles of H (or H′). This
motivates us to define a certain partition of H’s vertices that depends on its poles and r.

3.3.4 A Tripartition of the Vertices

Let H = (H,L) be a partially labeled graph with poles S = (v1, . . . , vp). Define ξ(H, S) =
(D1, D2, D3) to be a tripartition of V (H), where

D1 =
∪
v∈S

N r−1(v),

D2 =
∪
v∈D1

N r(v)−D1,

and D3 = V (H)− (D1 ∪D2).

55

See Figure 3.6 for an illustration. In the figure, the partition ξ(H, S) = (D1, D2, D3), D1

is the set of vertices in V (H) within radius r− 1 of S, D2 are those within radius 2r− 1 of
S, excluding D1, and D3 is the rest of V (H). When H is embedded in some larger graph
G, D0 denotes the remaining vertices in V (G)− V (H).

Figure 3.6: A partially labeled subgraph H with poles S = (s, t), embedded in a larger
graph G.

Consider the partition ξ(H, S) = (D1, D2, D3) of a partially labeled graph H = (H,L).
Let L∗ : D1 ∪D2 → Σout assign output labels to D1 ∪D2. We say that L∗ is extendible (to
all of V (H)) if there exists a complete labeling L⋄ of H such that L⋄ agrees with L where
it is defined, agrees with L∗ on D1 ∪D2, and is locally consistent with P on all vertices in
D2 ∪D3.9

3.3.5 An Equivalence Relation on Graphs

Consider two partially labeled graphs H and H′ with poles S = (v1, . . . , vp) and S ′ =

(v′1, . . . , v
′
p), respectively. Let ξ(H, S) = (D1, D2, D3) and ξ(H′, S ′) = (D′

1, D
′
2, D

′
3). Define

Q = (Q,L) and Q′ = (Q′,L′) as the subgraphs of H and H′ induced by the vertices in
D1 ∪D2 and D′

1 ∪D′
2, respectively.

The relation (H, S) ⋆∼ (H′, S ′) holds if and only if there is a 1-1 correspondence ϕ :

(D1 ∪D2)→ (D′
1 ∪D′

2) meeting the following conditions.

9We are not concerned whether L⋄ is consistent with P for vertices in D1. Ultimately, H will be a
subgraph of a larger graph G. Since the r-neighborhoods of vertices in D1 will intersect V (G)−V (H),
the labeling of H does not provide enough information to tell if these vertices’ r-neighborhoods will be
consistent with P. See Figure 3.6.

56

Isomorphism. The two graphs Q and Q′ are isomorphic under ϕ. Moreover, for each
v ∈ D1 ∪ D2 and its corresponding vertex v′ = ϕ(v) ∈ D′

1 ∪ D′
2, (i) L(v) = L′(v′),

(ii) if the underlying LCL problem has input labels, then the input labels of v and
v′ are the same, and (iii) v is the ith pole in S iff v′ is the ith pole in S ′.

Extendibility. Let L∗ be any assignment of output labels to vertices in D1 ∪D2 and let L′
∗

be the corresponding labeling of D′
1 ∪D′

2 under ϕ. Then L∗ is extendible to V (H) if
and only if L′

∗ is extendible to V (H ′).

Notice that there could be many 1-1 correspondences between D1 ∪D2 and D′
1 ∪D′

2 that
satisfy the isomorphism requirement, though only some subset may satisfy the extendibility
requirement due to differences in the topology and partial labeling of D3 and D′

3. Any ϕ
meeting both requirements is a witness of the relation (H, S) ⋆∼ (H′, S ′).

3.3.6 Properties of the Equivalence Relation

Let us consider the graph G ′ = Replace(G, (H, S), (H′, S ′)), and the two partitions
ξ(H, S) = (D1, D2, D3) and ξ(H′, S ′) = (D′

1, D
′
2, D

′
3). Let D0 = V (G) − V (H) and

D′
0 = V (G′)− V (H ′) be the remaining vertices in G and G′, respectively.
If (H, S) ⋆∼ (H′, S ′) then there exists a 1-1 correspondence ϕ : (D0 ∪ D1 ∪ D2) →

(D′
0 ∪D′

1 ∪D′
2) such that (i) ϕ restricted to D0 is the natural 1-1 correspondence between

D0 and D′
0 and (ii) ϕ restricted to D1 ∪D2 witnesses the relation (H, S) ⋆∼ (H′, S ′). Such

a 1-1 correspondence ϕ is called good. We have the following lemma.

Lemma 3.1. Let G ′ = Replace(G, (H, S), (H′, S ′)). Consider the two partitions ξ(H, S) =
(D1, D2, D3) and ξ(H′, S ′) = (D′

1, D
′
2, D

′
3) and let D0 = V (G)− V (H) and D′

0 = V (G′)−
V (H ′). Suppose that (H, S) ⋆∼ (H′, S ′), so there is a good 1-1 correspondence ϕ : (D0 ∪
D1 ∪D2) → (D′

0 ∪D′
1 ∪D′

2). Let L⋄ be a complete labeling of G that is locally consistent
for all vertices in D2 ∪ D3. Then there exists a complete labeling L′

⋄ of G ′ such that the
following conditions are met.

Condition 1. L⋄(v) = L′
⋄(v

′) for each v ∈ D0 ∪ D1 ∪ D2 and its corresponding vertex
v′ = ϕ(v) ∈ D′

0 ∪ D′
1 ∪ D′

2. Moreover, if L⋄ is locally consistent for v, then L′
⋄ is

locally consistent for v′.

Condition 2. L′
⋄ is locally consistent for all vertices in D′

2 ∪D′
3.

57

Proof. We construct L′
⋄ as follows. First of all, for each v ∈ D0 ∪D1 ∪D2, fix L′

⋄(ϕ(v)) =

L⋄(v). It remains to show how to assign output labels to vertices in D′
3 to meet Conditions

1 and 2.
Let L∗ be L⋄ restricted to the domain D1 ∪ D2. Similarly, let L′

∗ be L′
⋄ restricted to

D′
1 ∪ D′

2. Due to the fact that L⋄ is locally consistent for all vertices in D2 ∪ D3, the
labeling L∗ is extendible to all of H. Since (H, S) ⋆∼ (H′, S ′), the labeling L′

∗ must also be
extendible to all of H′. Thus, we can set L′

⋄(v
′) for all v′ ∈ D′

3 in such a way that L′
⋄ is

locally consistent for all vertices in D′
2 ∪D′

3. Therefore, Condition 2 is met.
To see that (the second part of) Condition 1 is also met, observe that for v ∈ D0 ∪D1,

N r(v) ⊆ D0 ∪D1 ∪D2. Therefore, if L⋄ is locally consistent for v ∈ D0 ∪D1, then L′
⋄ is

locally consistent for ϕ(v) since they have the same radius-r neighborhood view. Condition
2 already guarantees that L′

⋄ is locally consistent for all v′ ∈ D′
2.10

Theorem 3.3 provides a user-friendly corollary of Lemma 3.1, which does not mention
the tripartition ξ.

Theorem 3.3. Let G = (G,L) and H = (H,L) be a subgraph G. Suppose H′ is a graph for
which (H, S) ⋆∼ (H′, S ′) and let G ′ = Replace(G, (H, S), (H′, S ′)). We write G ′ = (G′,L′)

and H′ = (H ′,L′). Let L⋄ be a complete labeling of G that is locally consistent for all
vertices in H. Then there exists a complete labeling L′

⋄ of G ′ such that the following
conditions are met.

• For each v ∈ V (G) − V (H) and its corresponding v′ ∈ V (G′) − V (H ′), we have
L⋄(v) = L′

⋄(v
′). Moreover, if L⋄ is locally consistent for v, then L′

⋄ is locally consistent
for v′.

• L′
⋄ is locally consistent for all vertices in H ′.

Theorem 3.3 has several useful consequences. If L⋄ is a legal labeling of G, then the
output labeling L′

⋄ of G ′ guaranteed by Theorem 3.3 is also legal. Observe that setting
G = H in Theorem 3.3 implies G ′ = H′. Suppose that H admits a legal labeling. For
any (H′, S ′) such that (H′, S ′)

⋆∼ (H, S), the partially labeled graph H′ also admits a legal
labeling. Thus, whether H admits a legal labeling is determined by the equivalence class
of (H, S) (for any choice of S).
10It is this lemma that motivates our definition of the tripartition ξ(H, S). It is not clear how an analogue

of Lemma 3.1 could be proved using the seemingly more natural bipartition, i.e., by collapsing D1, D2

into one set.

58

Roughly speaking, Theorem 3.4 shows that the equivalence class of (G, X) is preserved
after replacing a subgraph H of G by another partially labeled graph H′ such that (H, S) ⋆∼
(H′, S ′).

Theorem 3.4. Let G = (G,L), and let H = (H,L) be a subgraph of G. Sup-
pose H′ is a graph that satisfies (H, S) ⋆∼ (H′, S ′) for some pole lists S, S ′. Let
G ′ = Replace(G, (H, S), (H′, S ′)) be a partially labeled graph. Designate a set X ⊆
(V (G)−V (H))∪S as the poles of G, listed in some order, and let X ′ be the corresponding
list of vertices in G ′. It follows that (G, X)

⋆∼ (G ′, X ′).

Proof. Consider the partitions ξ(H, S) = (B1, B2, B3), ξ(H′, S ′) = (B′
1, B

′
2, B

′
3), ξ(G, X) =

(D1, D2, D3), and ξ(G ′, X ′) = (D′
1, D

′
2, D

′
3). We write B0 = V (G) − V (H) and B′

0 =

V (G′)−V (H ′). Let ϕ be any good 1-1 correspondence from B0 ∪B1 ∪B2 to B′
0 ∪B′

1 ∪B′
2.

Because X ⊆ B0 ∪ S, we have D1 ∪D2 ⊆ B0 ∪ B1 ∪ B2 and D′
1 ∪D′

2 ⊆ B′
0 ∪ B′

1 ∪ B′
2. To

show that (G, X)
⋆∼ (G ′, X ′), it suffices to prove that ϕ (restricted to the domain D1 ∪D2)

is a witness to the relation (G, X)
⋆∼ (G ′, X ′).

Let L∗ : (D1 ∪ D2) → Σout and L′
∗ be the corresponding labeling of D′

1 ∪ D′
2. All we

need to do is show that L∗ is extendible to all of V (G) if and only if L′
∗ is extendible to

all of V (G′). Since we can also write G = Replace(G ′, (H′, S ′), (H, S)), it suffices to show
just one direction, i.e., if L∗ is extendible then L′

∗ is extendible.
Suppose that L∗ is extendible. Then there exists an output labeling L⋄ of G such that

(i) for each v ∈ D1 ∪ D2, we have L∗(v) = L⋄(v), and (ii) L⋄ is locally consistent for all
vertices in D2 ∪ D3. Observe that D2 ∪ D3 ⊇ B2 ∪ B3. By Lemma 3.1, there exists a
complete labeling L′

⋄ of G ′ such that the two conditions in Lemma 3.1 are met. We show
that this implies that L′

∗ is extendible.
Lemma 3.1 guarantees that L⋄(v) = L′

⋄(ϕ(v)) for each v ∈ B0 ∪ B1 ∪ B2 and its corre-
sponding vertex ϕ(v) ∈ B′

0∪B′
1∪B′

2. Since D′
1∪D′

2 ⊆ B′
0∪B′

1∪B′
2, we have L′

∗(v
′) = L′

⋄(v
′)

for each v′ ∈ D′
1 ∪D′

2.
Since L⋄ is locally consistent for all vertices in D2 ∪D3, Lemma 3.1 guarantees that L′

⋄

is locally consistent for all vertices in D′
2 ∪ D′

3. More precisely, due to Condition 1, L′
⋄

is locally consistent for all vertices in (D′
2 ∪ D′

3) − B′
3; due to Condition 2, L′

⋄ is locally
consistent for all vertices in B′

2 ∪B′
3.

Thus, L′
∗ is extendible, as the complete labeling L′

⋄ of G ′ satisfies: (i) for each v′ ∈
D′

1 ∪ D′
2, we have L′

∗(v
′) = L′

⋄(v
′), and (ii) L′

⋄ is locally consistent for all vertices in
D′

2 ∪D′
3.

59

3.3.7 The Number of Equivalence Classes

An important feature of ⋆∼ is that it has a constant number of equivalence classes, for any
fixed number p of poles. Which constant is not important, but we shall work out an upper
bound nonetheless.11

Consider a partially labeled graph H with poles S = (v1, . . . , vp). Let ξ(H, S) =

(D1, D2, D3) and define Q = (Q,L) to be the subgraph of H induced by D1 ∪D2. Observe
that the equivalence class of (H, S) is determined by (i) the topology of Q (including its
input labels from Σin, if P has input labels), (ii) the locations of the poles S ⊆ V (Q) in Q,
and (iii) the subset of all output labelings of V (Q) = D1 ∪D2 that are extendible.

The number of vertices in D1 ∪D2 is at most p∆2r. The total number of distinct graphs
of at most p∆2r vertices (with input labels from Σin and a set of p designated poles) is
at most 2(

p∆2r

2) |Σin|p∆
2r

. The total number of output labelings of D1 ∪ D2 is at most
|Σout|p∆

2r

. Therefore, the total number of equivalence classes of graphs with p poles is at
most 2(

p∆2r

2) |Σin|p∆
2r

2|Σout|p∆
2r

, which is constant whenever ∆, r, |Σin| , |Σout|, and p are.

3.3.8 A Pumping Lemma for Trees

In this section we consider partially labeled trees with one and two poles; they are called
unipolar (or rooted) and bipolar, respectively. Let T = (T,L) be a unipolar tree with pole
list S = (z), z ∈ V (T) being the root. Define Class(T) to be the equivalence class of (T , S)
w.r.t. ⋆∼. Notice that whether a partially labeled rooted tree T admits a legal labeling is
determined by Class(T) (Theorem 3.3). We say that a class is good if each partially labeled
rooted tree in the class admits a legal labeling; otherwise the class is bad. We write C

to denote the set of all classes. Notice that |C | is constant. The following lemma is a
specialization of Theorem 3.4.

Lemma 3.2. Let T be a partially labeled rooted (unipolar) tree, and let T ′ be a rooted
subtree of T , whose leaves are also leaves of T . Let T ′′ be another partially labeled rooted
tree such that Class(T ′) = Class(T ′′). Then replacing T ′ with T ′′ does not alter the class
of T .

Let H = (H,L) be a bipolar tree with poles S = (s, t). The unique oriented path in H

11For the sake of simplicity, in the calculation we assume that the underlying LCL problem does not refer
to port-numbering. It is straightforward to see that even if port-numbering is taken into consideration,
the number of equivalence classes (for any fixed p) is still a constant.

60

from s to t is called the core path of H. It is more convenient to express a bipolar tree as a
sequence of rooted/unipolar trees, as follows. The partially labeled bipolar treeH = (Ti)i∈[k]
is formed by arranging the roots of unipolar trees (Ti) into a path P = (v1, . . . , vk), where
vi is the root/pole of Ti. The two poles of H are s = v1 and t = vk, so P is the core path
of H. Define Type(H) as the equivalence class of (H, S = (s, t)) w.r.t. ⋆∼. The following
lemma follows from Theorem 3.4.

Lemma 3.3. Let H be a partially labeled bipolar tree with poles (s, t). Let T be H, but
regarded as a unipolar tree rooted at s. Then Class(T) is determined by Type(H). If we
write H = (Ti)i∈[k], then Type(H) is determined by Class(T1), . . . ,Class(Tk).

Let G = (G,L) be a partially labeled graph, and let H = (H,L) be a bipolar subtree
of G with poles (s, t). Let H′ be another partially labeled bipolar tree. Recall that G ′ =
Replace(G,H,H′) is defined as the partially labeled graph resulting from replacing the
subgraph H with H′ in G. We write G ′ = (G′,L′) and H′ = (H ′,L′). The following
lemmas follow from Theorems 3.3 and 3.4.

Lemma 3.4. Consider G ′ = Replace(G,H,H′). If Type(H′) = Type(H) and G admits a
legal labeling L⋄, then G ′ admits a legal labeling L′

⋄ such that L⋄(v) = L′
⋄(v

′) for each vertex
v ∈ V (G)− V (H) and its corresponding v′ ∈ V (G′)− V (H ′).

Lemma 3.5. Suppose that G = (Ti)i∈[k] is a partially labeled bipolar tree, H = (Ti, . . . , Tj)
is a bipolar subtree of G, and H′ is some other partially labeled bipolar tree with Type(H′) =

Type(H). Then G ′ = Replace(G,H,H′) is a partially labeled bipolar tree and Type(G ′) =
Type(G).

Lemma 3.6. Let H = (Ti)i∈[k] and H′ = (Ti)i∈[k+1] be identical to H in its first k trees.
Then Type(H′) is a function of Type(H) and Class(Tk+1).

Lemma 3.6 is what allows us to bring classical automata theory into play. Suppose that
we somehow computed and stored ci = Class(Ti) at the root of Ti. Lemma 3.6 implies that a
finite automaton walking along the core path of H′ = (Ti)i∈[k+1], can compute Type(H′), by
reading the vector (c1, . . . , ck+1) one character at a time. The number of states in the finite
automaton depends only on the number of types (which is constant) and is independent of
k+1 and the size of the individual trees (Ti). Define ℓpump = O(1) as the number of states
in this finite automaton. The following pumping lemma for bipolar trees is analogous to
the pumping lemma for regular languages.

61

Lemma 3.7. Let H = (T1, . . . , Tk), with k ≥ ℓpump. We regard each Ti in the string
notation H = (T1, . . . , Tk) as a character. Then H can be decomposed into three substrings
H = x ◦ y ◦ z such that (i) |xy| ≤ ℓpump, (ii) |y| ≥ 1, and (iii) Type(x ◦ yj ◦ z) = Type(H)
for each non-negative integer j.

We will use Lemma 3.7 to expand the length of the core path of a bipolar tree to be
close to a desired target length w. The specification for the function Pump is as follows.

Pump. Let H = (Ti)i∈[k] be a partially labeled bipolar tree with k ≥ ℓpump. The function
Pump(H, w) produces a partially labeled bipolar tree H′ = (T ′

i)i∈[k′] such that (i)
Type(H) = Type(H′), (ii) k′ ∈ [w,w + ℓpump], and (iii) if we let Z = {Ti}i∈[k] (resp.,
Z ′ = {T ′

i }i∈[k′]) be the set of rooted trees appearing in the tree list of H (resp., H′),
then Z ′ = Z.

By Lemma 3.7, such a function Pump exists.

3.3.9 Rake & Compress Graph Decomposition

In this section we describe an O(logn)-round DetLOCAL algorithm to decompose the ver-
tex set V (G) of a tree into the disjoint union V1 ∪ · · · ∪VL, L = O(logn). Our algorithm is
inspired by Miller and Reif’s parallel tree contraction [109]. We first describe the decom-
position algorithm then analyze its properties.

Fix the constant ℓ = 2(r+ ℓpump), where r and ℓpump depend on the LCL problem P . In
the postprocessing step of the decomposition algorithm we compute an (ℓ, 2ℓ)-independent
set, in O(log∗ n) time [107], defined as follows.

Definition 3.1. Let P be a path. A subset I ⊂ V (P) is called an (α, β)-independent set
if the following conditions are met: (i) I is an independent set, and I does not contain
either endpoint of P , and (ii) each connected component induced by V (P)− I has at least
α vertices and at most β vertices, unless |V (P)| < α, in which case I = ∅.

The Decomposition Algorithm. The algorithm begins with U = V (G) and i = 1,
repeats Steps 1–3 until U = ∅, then executes the Postprocessing step.

1. For each v ∈ U :

62

a) Compress. If v belongs to a path P such that |V (P)| ≥ ℓ and degU(u) = 2 for
each u ∈ V (P), then tag v with iC .

b) Rake. If degU(v) = 0, then tag v with iR. If degU(v) = 1 and the unique
neighbor u of v in U satisfies either (i) degU(u) > 1 or (ii) degU(u) = 1 and
ID(v) > ID(u), then tag v with iR.

2. Remove from U all vertices tagged iC or iR.

3. i← i+ 1.

Postprocessing Step. Initialize Vi as the set of all vertices tagged iC or iR. At this
point the graph induced by Vi consists of unbounded length paths, but we prefer constant
length paths. For each edge {u, v} such that v is tagged iR and u is tagged iC , promote v
from Vi to Vi+1. For each path P that is a connected component induced by vertices tagged
iC , compute an (ℓ, 2ℓ)-independent set IP of P , and then promote every vertex in IP from
Vi to Vi+1. Notice that the set Vi in the graph decomposition is analogous to (but clearly
different from) the set Vi defined in the Hierarchical 21

2
-coloring problem from Section 3.2.

Properties of the Decomposition. As we show below, L = O(logn) iterations suffice,
i.e., V (G) = V1 ∪ · · · ∪ VL. The following properties are easily verified.

• Define Gi as the graph induced by vertices at level i or above:
∪L

j=i Vj. For each
v ∈ Vi, degGi

(v) ≤ 2.

• Define Pi as the set of connected components (paths) induced by vertices in Vi that
contain more than one vertex. For each P ∈Pi, ℓ ≤ |V (P)| ≤ 2ℓ and degGi

(v) = 2

for each vertex v ∈ V (P).

• The graph GL contains only isolated vertices, i.e., PL = ∅.

As a consequence, each vertex v ∈ Vi falls into exactly one of two cases: (i) v has
degGi

(v) ≤ 1 and has no neighbor in Vi, or (ii) v has degGi
(v) = 2 and is in some path

P ∈Pi.

63

Analysis. We prove that for L = O(log1+1/ℓ n) = O(logn), L iterations of the graph
decomposition routine suffices to decompose any n-vertex tree. Each iteration of the routine
takes O(1) time, and the (ℓ, 2ℓ)-independent set computation at the end takes O(log∗ n)
time, so O(logn) time suffices in DetLOCAL.

Let W be the vertices of a connected component induced by U at the beginning of the
ith iteration. In general, the graph induced by U is a forest, but it is simpler to analyze
a single connected component W . We claim that at least a constant Ω(1/ℓ) fraction of
vertices in W are eliminated (i.e., tagged iC or iR) in the ith iteration. The proof of the
claim is easy for the special case of ℓ = 1, as follows. If W is not a single edge, then all
v ∈ W with degU(v) ≤ 2 are eliminated. Since the degree of at least half of the vertices in
a tree is at most 2, the claim follows. In general, degree-2 paths of length less than ℓ are
not eliminated quickly. If one endpoint of such a path is a leaf, vertices in the path are
peeled off by successive Rake steps.

Assume w.l.o.g. that |W | > 2(ℓ + 1). Define W1 = {v ∈ W | degU(v) = 1}, W2 = {v ∈
W | degU(v) = 2}, and W3 = {v ∈ W | degU(v) ≥ 3}.

Case 1: |W2| ≥ ℓ|W |
ℓ+1

. The number of connected components induced by vertices in W2 is
at most |W1| + |W3| − 1 < |W |

ℓ+1
. The number of vertices in W2 that are not tagged

iC during Compress is less than (ℓ−1)|W |
ℓ+1

. Therefore, at least ℓ|W |
ℓ+1
− (ℓ−1)|W |

ℓ+1
= |W |

ℓ+1

vertices are tagged iC by Compress.

Case 2: |W2| < ℓ|W |
ℓ+1

. In any tree |W1| > |W3|, so |W1| > |W1|+|W3|
2

= |W |−|W2|
2

≥ |W |
2(ℓ+1)

.
Therefore, at least |W |

2(ℓ+1)
vertices are tagged iR by Rake.

Hence the claim follows.

3.3.10 Extend and Label Operations

In this section we define three operations Extend, Label, and Duplicate-Cut which are used
extensively in Sections 3.3.11 and 3.3.12. All these operations are graph-theoretic opera-
tions, and they are not implemented in a distributed manner.

The operation Extend is parameterized by a target length w ≥ ℓ = 2(r + ℓpump). The
operation Label is parameterized by a function f which takes a partially labeled bipolar
tree H as input, and assigns output labels to the vertices in v ∈ N r−1(e), where e is the
middle edge in the core path of H.12 The function f will be constructed in Section 3.3.13.
12By definition, if e = {x, y} then Nr−1(e) = Nr−1(x) ∪Nr−1(y).

64

Let H = (T1, . . . , Tx) be a partially labeled bipolar tree with x ≥ ℓ. Let (v1, . . . , vx) be
the core path of H and e = {v⌊x/2⌋, v⌊x/2⌋+1} be the middle edge of the core path.
It is guaranteed that all vertices in N r−1(e) in H are not already assigned output
labels. The partially labeled bipolar tree H′ = Label(H) is defined as the result of
assigning output labels to vertices in N r−1(e) by the function f .13

Extend. Let H = (T1, . . . , Tx) be a partially labeled bipolar tree with x ∈ [ℓ, 2w]. The
partially labeled bipolar tree H′ = Extend(H) is defined as follows. Consider the
decomposition H = X ◦ Y ◦ Z, where Y = (T⌊x/2⌋−r+1, . . . , T⌊x/2⌋+r). Then H′ =

Pump(X , w) ◦ Y ◦ Pump(Z, w).

Intuitively, the goal of the operation Extend is to extend the length of the core path of
H while preserving the type of H, due to Lemma 3.5. Suppose that the number of vertices
in the core path of H is in the range [ℓ, 2ℓ]. The prefix X and suffix Z are stretched to
lengths in the range [w,w + ℓpump], and the middle part Y has length 2r, so the core path
of H′ has length in the range [2(w + r), 2(w + r + ℓpump)].

The reason that the Extend operation does not modify the middle part Y is to ensure
that (given any labeling function f) the type of H′ = Extend(Label(H)) is invariant over
all choices of the parameter w.14 We have the following lemma.

Lemma 3.8. Let G = (G,L) be a partially labeled graph andH = (H,L) be a bipolar subtree
of G with poles (s, t). Let H̃ be another partially labeled bipolar tree with Type(H̃) = Type(H)
and H′ = Extend(Label(H̃)). If G ′ = Replace(G,H,H′) admits a legal labeling L′

⋄, then G
admits a legal labeling L⋄ such that L⋄(v) = L′

⋄(v
′) for each vertex v ∈ V (G)− V (H) and

its corresponding vertex v′ ∈ V (G′)− V (H ′).

Proof. Recall that the operation Extend guarantees that

Type(Extend(H̃)) = Type(H̃) = Type(H).

Define H′′ = Extend(H̃) and G ′′ = Replace(G,H,H′′). Observe that the graph H′ =

Extend(Label(H̃)) can be seen as the result of fixing the output labels of some unlabeled
13Note that the neighborhood function is evaluated w.r.t. H. In particular, the set Nr−1(e) con-

tains the vertices v⌊x/2⌋−r+1, . . . , v⌊x/2⌋+r of the core path, and also contains parts of the trees
T⌊x/2⌋−r+1, . . . , T⌊x/2⌋+r.

14Notice that Extend is applied after Label. Thus, the vertices that are assigned output labels during Label
must be within the middle part Y, no part of which is modified during Extend.

65

vertices in H′′ = Extend(H̃). Therefore, L′
⋄ is also a legal labeling of G ′′. By Lemma 3.4,

the desired legal labeling L⋄ of G = Replace(G ′′,H′′,H) can be obtained from the legal
labeling L′

⋄ of G ′′.

In addition to Extend and Label, we also modify trees using the Duplicate-Cut operation,
defined below.

Duplicate-Cut. Let G = (G,L) be a partially labeled graph and H = (H,L) be a bipolar
subtree with poles (s, t). Suppose that H is connected to the rest of G via two edges
{u, s} and {v, t}. The partially labeled graph G ′ = Duplicate-Cut(G,H) is formed by
(i) duplicating H and the edges {u, s}, {v, t} so that u and v are attached to both
copies of H, (ii) removing the edge that connects u to one copy of H, and removing
the edge from v to the other copy of H.

Later on we will see that both poles of a bipolar tree are responsible for computing the
labeling of the tree. On the other hand, we do not want the poles to have to communicate
too much. As Lemma 3.9 shows, the Duplicate-Cut operation (in conjunction with Extend
and Label) allows both poles to work independently and cleanly integrate their labelings
afterward.

Lemma 3.9. Let H = Extend(Label(H̃)) for some partially labeled bipolar tree H̃. If
G ′ = Duplicate-Cut(G,H) admits a legal labeling L′

⋄, then G admits a legal labeling L⋄ such
that L⋄(v) = L′

⋄(v
′) for each vertex v ∈ V (G)−V (H) and a particular corresponding vertex

v′ in G ′.

Proof. Let G ′ = (G′,L′). We write H = (T1, . . . , Tx). Let (v1, . . . , vx) be the core path of
H, where s = v1 and t = vx are the two poles of H. Let {u, s} and {v, t} be the two edges
that connect H two the rest of G. Let e = {vj, vj+1} be the edge in the core path of H
such that the output labels of vertices in N r−1(e) in H were fixed by Label.15 We write Hu

(resp., Hv) to denote the copy of H in G ′ that attaches to u (resp., v). Define a mapping
ϕ from V (G) to V (G′) as follows.

• For z ∈ V (G)− V (H), ϕ(z) is the corresponding vertex in G′.

• For z ∈
∪j

i=1 Ti, ϕ(z) is the corresponding vertex in Hu.

15Since Pump usually does not extend X and Z by precisely the same amount, the edge e is generally not
exactly in the middle.

66

• For z ∈
∪x

i=j+1 Ti, ϕ(z) is the corresponding vertex in Hv.

We set L⋄(z) = L′
⋄(ϕ(z)) for each z ∈ V (G). It is straightforward to verify that the

distance-r neighborhood view (with output labeling L⋄) of each vertex z ∈ V (G) is the
same as the distance-r neighborhood view (with output labeling L′

⋄) of its corresponding
vertex ϕ(z) in G′. Thus, L⋄ is a legal labeling.

Notice that in the proof of Lemma 3.9, the only property of H that we use is that
N r−1(e) was assigned output labels in the application of Label(H̃).

Figure 3.7: Illustration of the Duplicate-Cut operation.

See Figure 3.7 for an illustration of the Duplicate-Cut operation. Left: A bipolar subtree
H is attached to the rest of the graph G via edges {u, s}, {v, t}. The pink vertices have
been pre-committed to output labels by Label (r = 1). Right: The Duplicate-Cut operation
duplicates H and attaches one copy to u and the other to v.

3.3.11 A Hierarchy of Partially Labeled Trees

In this section we construct several sets of partially labeled unipolar and bipolar trees—
{Ti}, {Hi}, and {H +

i }, i ∈ Z+—using the operations Extend and Label. If each member of
T ⋆ =

∪
i Ti admits a legal labeling, then we can use these trees to design an O(logn)-time

DetLOCAL algorithm for P . Each T ∈ T ⋆ is partially labeled in the following restricted
manner. The tree T = (T,L) has a set of designated edges such that L(v) ̸= ⊥ is defined
if and only if v ∈ N r−1(e) for some designated edge e; these vertices were issued labels by
some invocation of Label.

The sets of bipolar trees {Hi}i∈Z+ and {H +
i }i∈Z+ and unipolar trees {Ti}i∈Z+ are

defined inductively. In the base case we have T1 = {T }, where T is the unique unlabeled,
single-vertex, unipolar tree.

67

T Sets: For each i > 1, Ti consists of all partially labeled rooted trees T formed in
the following manner. The root z of T has degree 0 ≤ deg(z) ≤ ∆. Each child of z
is either (i) the root of a partially labeled rooted tree T ′ from Ti−1 (having degree at
most ∆− 1 in T ′), or (ii) one of the two poles of a bipolar tree H from H +

i−1.

H Sets: For each i ≥ 1, Hi contains all partially labeled bipolar trees H = (Tj)j∈[x]
such that x ∈ [ℓ, 2ℓ], and for each j ∈ [x], Tj ∈ Ti, where the root of Tj has degree
at most ∆− 2 in Tj. For example, since T1 contains only the single-vertex unlabeled
tree, H1 is the set of all bipolar, unlabeled paths with between ℓ and 2ℓ vertices.

H + Sets: For each i ≥ 1, H +
i is constructed by the following procedure. If i = 1,

initialize H +
1 ← ∅, otherwise initialize H +

i ← H +
i−1. Consider each H ∈ Hi in

some canonical order. If there does not already exist a partially labeled bipolar
tree H̃ such that Type(H̃) = Type(H) and Extend(Label(H̃)) ∈ H +

i , then update
H +

i ←H +
i ∪ {Extend(Label(H))}.

Observe that whereas {Ti} and {Hi} grow without end, and contain arbitrarily large
trees, the cardinality of H +

i is at most the total number of types, which is constant.16

This is due to the observation that whenever we add a new partially labeled bipolar tree
Extend(Label(H)) to H +

i , it is guaranteed that there is no other partially labeled bipolar
tree Extend(Label(H̃)) ∈ H +

i such that Type(H̃) = Type(H). The property that |H +
i |

is constant is crucial in the proof of Lemma 3.17. Lemmas 3.10–3.13 reveal some useful
properties of these sets.

Lemma 3.10. We have (i) T1 ⊆ T2 ⊆ · · · , (ii) H1 ⊆H2 ⊆ · · · , and (iii) H +
1 ⊆H +

2 ⊆
· · · .

Proof. By construction, we already have H +
1 ⊆ H +

2 ⊆ · · · . Due to the construction of
Hi from the set Ti, it is guaranteed that if Tj ⊆ Tj+1 holds then Hj ⊆ Hj+1 holds as
well. Thus, it suffices to show that T1 ⊆ T2 ⊆ · · · . This is proved by induction.

For the base case, we have T1 ⊆ T2 because T2 also contains T ∈ T1, the unlabeled,
single-vertex, unipolar tree.

For the inductive step, suppose that we already have T1 ⊆ T2 ⊆ · · · ⊆ Ti, i ≥ 2. Then
we show that Ti ⊆ Ti+1. Observe that the set Ti+1 contains all partially labeled rooted

16However, it is not necessarily true that H +
i contains at most one bipolar tree of each type. The Extend

operation is type-preserving, but this is not true of Label: Type(Label(H)) may not equal Type(H), so
it is possible that H +

i contains two members of the same type.

68

trees constructed by attaching partially labeled trees from the sets H +
i and Ti to the root

vertex. We already know that H +
i−1 ⊆ H +

i , and by the inductive hypothesis we have
Ti−1 ⊆ Ti. Thus, each T ∈ Ti must also appear in the set Ti+1.

If T and H are arbitrary sets of unipolar and bipolar trees, we define Class(T) =

{Class(T) | T ∈ T } and Type(H) = {Type(H) | H ∈ H } to be the set of classes and
types appearing among them.

Lemma 3.11. Define k⋆ = |C |, where C is the set of all classes. Then we have Class(T ⋆) =

Class(Tk⋆).

Proof. For each i > 1, Class(Ti) depends only on Type(H +
i−1) and Class(Ti−1), due to

Lemmas 3.2 and 3.3. Let i∗ be the smallest index such that Class(Ti∗) = Class(Ti∗+1).
Then we have Type(Hi∗) = Type(Hi∗+1) and as a consequence, H +

i∗ = H +
i∗+1. This

implies that Class(Ti∗+1) = Class(Ti∗+2). By repeating the same argument, we conclude
that for each j ≥ i∗, we have Class(Tj) = Class(Ti∗) = Class(T ⋆). Since T1 ⊆ T2 ⊆ · · ·
(Lemma 3.10), we have i∗ ≤ |C |.

Lemma 3.12. For each i, Class(Ti) does not depend on the parameter w used in the
operation Extend.

Proof. Let H = (T1, . . . , Tx) be any partially labeled bipolar tree with x ≥ 2r + 2ℓpump.
The type of H′ = Extend(H) is invariant over all choices of the parameter w. Thus, by
induction, the sets Class(Ti), Type(Hi), and Type(H +

i) are also invariant over the choice
of w.

Lemma 3.13. The maximum number of vertices of a tree in Ti, over all choices of labeling
function f , is at most λi−1, where λ = 2∆(r + w + ℓpump).

Proof. For any i, we write ti (resp., hi) to denote the maximum number of vertices of a
tree in Ti (resp., H +

i). By the definition of these sets, we have the following formulas,
which together imply that ti ≤ λi−1, where λ = 2∆(r + w + ℓpump).

t1 = 1. (3.1)
ti ≤ ∆max{ti−1, hi−1}, for i > 1. (3.2)
hi ≤ (2(w + ℓpump) + 2r)ti, for i ≥ 1. (3.3)

69

We explain the numbers in the upper bound on hi. The operation Extend takes H =

X ◦ Y ◦ Z as an input, and returns H′ = Pump(X , w) ◦ Y ◦ Pump(Z, w); the length of the
core path of Y is 2r; the length of the core path of both Pump(X , w) and Pump(Z, w) is
at most w + ℓpump.

Notice that Formula 3.3 is not tight in the sense that we actually have H +
i∗ = H +

i∗+1 =

· · · , i.e., the sequence (hi) stops growing as i ≥ i∗. However, even for i ≥ i∗, the sequence
(ti) still grows exponentially in view of Formula 3.2.

Feasible Labeling Function. In view of Lemma 3.12, Class(T ⋆) depends only on the
choice of the labeling function f used by Label. We call a function f feasible if implementing
Label with f makes each tree in Class(T ⋆) good, i.e., its partial labeling can be extended
to a complete and legal labeling. In Section 3.3.12 we show that given a feasible function,
we can generate a DetLOCAL algorithm to solve P in O(logn)-time. In Section 3.3.13, we
show that (i) a feasible function can be derived from any no(1)-time RandLOCAL algorithm
for P , and (ii) the existence of a feasible function is decidable. These results together imply
the ω(logn)—no(1) gap. Moreover, given an LCL problem P on bounded degree trees, it is
decidable whether the RandLOCAL complexity of P is nΩ(1) or the DetLOCAL complexity
of P is O(logn).

3.3.12 An O(logn)-time DetLOCAL Algorithm from a Feasible
Labeling Function

In this section, we show that given a feasible function f for the LCL problem P , it is
possible to design an O(logn)-time DetLOCAL algorithm for P on bounded degree trees.

Regardless of f , the algorithm begins by computing the graph decomposition V (G) =

V1 ∪ · · · ∪ VL, with L = O(logn); see Section 3.3.9. We let the three infinite sequences
{Hi}i∈Z+ , {H +

i }i∈Z+ , and {Ti}i∈Z+ be constructed with respect to a feasible function f
and a sufficiently large parameter w. We will choose w to be large enough so that a feasible
function exists. Notice that the operation Extend already requires w ≥ ℓ = 2(r + ℓpump).

A Sequence of Partially Labeled Graphs. We define below a sequence of partially
labeled graphsR1,R2, . . . ,RL, whereR1 is the unlabeled tree G (the underlying communi-
cations network), andRi+1 is constructed fromRi using the graph operations Extend, Label,
and Duplicate-Cut. An alternative, and helpful way to visualize Ri is that it is obtained

70

by stripping away some vertices of G, and then grafting on some imaginary subtrees to its
remaining vertices. Formally, the graph Ri is formed by taking Gi (the subforest induced
by
∪L

j=i Vj, defined in Section 3.3.9), and identifying each vertex u ∈ V (Gi) with the root
of a partially labeled imaginary tree Tu,i ∈ Ti (defined within the proof of Lemma 3.14).
Since GL consists solely of isolated vertices, RL is the disjoint union of trees drawn from
TL.

Once each vertex v ∈ V (Gi) =
∪L

j=i Vj in the communication network G knows Tv,i,
we are able to simulate the imaginary graph Ri in the communication network G. In
particular, a legal labeling of Ri is represented by storing the entire output labeling of the
(imaginary) tree Tv,i at the (real) vertex v ∈ V (Gi).

The official, inductive construction of Ri is described in the proof of Lemma 3.14. We
remark that the “pre-commitment” of output labeling specified by the function f during
the operation Label (in the construction of R1,R2, . . . ,RL) is used only in the imaginary
trees. This does not directly lead to any real vertices committing to specific output labels.

Lemma 3.14. Suppose that a feasible function f is given. The partially labeled graphs
R1, . . . ,RL and partially labeled trees {Tv,i | v ∈ V (Gi), i ∈ [L]} can be constructed in
O(logn) time meeting the following conditions.

1. For each i ∈ [1, L], each vertex v ∈ V (Gi) =
∪L

j=i Vj knows Tv,i ∈ Ti.

2. For each i ∈ [2, L], given a legal labeling of Ri, a legal labeling of Ri−1 can be computed
in O(1) time.

Proof. Part (1) of the lemma is proved by induction.

Base Case. Define R1 = G. This satisfies the lemma since Tv,1 ∈ T1 must be the
unlabeled single-vertex tree, for each v ∈ V (G).

Inductive Step. We can assume inductively that Ri−1 and {Tv,i−1 | v ∈ V (Gi−1)}
have been defined and satisfy the lemma. The set Pi−1 was defined in Section 3.3.9. Each
P ∈Pi−1 is a path such that degGi−1

(v) = 2 for each vertex v ∈ V (P) and |V (P)| ∈ [ℓ, 2ℓ].
Fix a path P = (v1, . . . , vx) ∈Pi−1. The bipolar graphs HP and H+

P are defined as follows.

• Define HP to be the partially labelled bipolar tree (Tv1,i−1, . . . , Tvx,i−1). Notice that
HP is a subgraph of Ri−1. Since Tvj ,i−1 ∈ Ti−1, for each j ∈ [x], it follows that
HP ∈Hi−1.

71

• Construct H+
P as follows. Select the unique member H̃ ∈ Hi−1 such that (i)

Type(H̃) = Type(HP) and (ii) Extend(Label(H̃)) ∈ H +
i−1; and then set H+

P =

Extend(Label(H̃)) ∈ H +
i−1. Due to the way we define H +

i−1, such a graph H̃ ∈ Hi−1

must exist, as HP ∈Hi−1.

The partially labeled graph Ri is constructed from Ri−1 with the following three-step
procedure. See Figure 3.8 for a schematic example of how these steps work.

Step 1. Define R′
i−1 as the result of applying the following operations on Ri−1. For each

v ∈ Vi−1 such that Tv,i−1 is a connected component of Ri−1, remove Tv,i−1. Notice
that a tree Tv,i−1 is a connected component of Ri−1 if and only if v’s neighborhood in
G contains only vertices at lower levels: V1, . . . , Vi−2.

Step 2. Define R+
i−1 by the following procedure. (i) Initialize G̃ ← R′

i−1. (ii) For each
P ∈Pi−1, do G̃ ← Replace(G̃,HP ,H+

P). (iii) Set R+
i−1 ← G̃.

Step 3. Define Ri by the following procedure. (i) Initialize G̃ ← R+
i−1. (ii) For each

P ∈Pi−1, do G̃ ← Duplicate-Cut(G̃,H+
P). (iii) Set Ri ← G̃.

After Steps 1–3, for v ∈ V (Gi), Tv,i is now defined to be the tree in Ri − (V (Gi)− {v})
rooted at v. Notice that the two copies of H+

P generated during Step 3(ii) become subtrees
of Tu,i and Tv,i, where u and v are the two vertices in V (Gi) adjacent to the two endpoints
of P in the graph G.

Example. See Figure 3.8 for an illustration of the procedure constructing Ri.

Top: In this example v was a vertex in a long degree-2 path tagged (i − 1)C by the
decomposition procedure, and subsequently promoted to Vi. Black vertices are in Vi
(or above); white vertices are in Vi−1; gray vertices are in Vi−2 or below. The paths
P0 = (s0, . . . , t0) and P1 = (s1, . . . , t1) adjacent to v have constant length, between
ℓ and 2ℓ. The colored subtrees grafted onto white and gray vertices are imaginary
subtrees formed in the construction of Ri−1.

Middle: The graph is transformed by finding the graph H̃b ∈ H +
i−1, b ∈ {0, 1} that has

the same type as HPb
, and replacing HPb

with H+
Pb

= Extend(Label(H̃b)). The vertices
receiving pre-committed labels are indicated in pink (r = 1).

Bottom: We duplicate H+
Pb
, b ∈ {0, 1}, and attach one of the copies of each duplicate to

v. (The copies of H+
Pb

attached to v′, v′′ are not shown.) The tree Tv,i is the resulting
tree rooted at v. Since each subtree of v is in Ti−1 or H +

i−1, it follows that Tv,i ∈ Ti.

72

In this case v had no neighbors at higher levels (i+1 and above), so Tv,i is a connected
component of Ri. Thus, v can locally compute a legal labelling of Tv,i.

We now need to verify that Ri satisfies all the claims of the lemma. Given the partially
labeled graph Ri, the partially labeled trees Tv,i for all v ∈ V (Gi) are uniquely determined.
According to the construction of Ri, each connected component of Ri − V (Gi) must be
an imaginary tree that is either (i) some Tv,j, where v ∈ Vj and j ∈ {1, . . . , i − 1} or (ii)
a copy of H+

P , where P ∈ Pj and j ∈ {1, . . . , i − 1}. By induction (and Lemma 3.10),
for v ∈ V1 ∪ · · · ∪ Vj and j ∈ {1, . . . , i − 1}, we have Tv,j ∈ Tj ⊆ Ti−1; for each P ∈ Pj

where j ∈ {1, . . . , i − 1}, we have H+
P ∈ H +

j ⊆ H +
i−1. According to the inductive defi-

nition of Ti, for each v ∈ V (Gi) we have Tv,i ∈ Ti. This concludes the induction of Part (1).

We now turn to the proof of Part (2) of the lemma. Suppose that we have a legal labeling
of Ri, where the labeling of Tv,i is stored in v ∈ V (Gi). We show how to compute a legal
labeling of Ri−1 in O(1) time as follows. Starting with any legal labeling L1 of Ri, we
compute a legal labeling L2 of R+

i−1, a legal labeling L3 of R′
i−1, and finally a legal labeling

L4 of Ri−1. Throughout the process, the labels of all vertices in
∪L

j=i Vj are stable under
L1,L2,L3, and L4. Recall that Ri, R+

i−1, R′
i−1, and Ri−1 are all imaginary. “Time” refers

to communications rounds in the actual network G, not any imaginary graph.

From L1 to L2. Let s, t be the poles of H+
P and u, v be the vertices outside of H+

P in R+
i−1

adjacent to s, t, respectively. At this point u and v have legal labelings of Tu,i and
Tv,i, both trees of which contain a copy of H+

P . Using Lemma 3.9 we integrate the
labelings of Tu,i and Tv,i to fix a single legal labeling L2 of H+

P in R+
i−1.17

From L2 to L3. A legal labeling L3 of R′
i−1 is obtained by applying Lemma 3.8. For each

P ∈ Pi−1, the labeling L3 on HP in R′
i−1 can be determined from the labeling L2

of H+
P in R+

i−1. In greater detail, suppose s, t are the poles of HP/H+
P , which know

L2 on the (2r − 1)-neighborhood of {s, t} in H+
P . By Lemma 3.8, there exists a legal

labeling L3 on HP , which can be succinctly encoded by fixing L3 on the (2r − 1)-
neighborhoods of the roots of each unipolar tree on the core path (s = v1, . . . , vx = t)

of HP . Thus, once s, t calculate L3, they can transmit the relevant information with
constant-length messages to the roots v1, . . . , vx. At this point each vj ∈ Vi−1 can
locally compute an extension of its labeling to all of Tvj ,i−1.

17It is not necessary to physically store the entire L2 on H+
P . To implement the following steps, it suffices

that s, t both know what L2 is on the subgraph induced by the (2r− 1)-neighborhood of {s, t} in H+
P .

73

Figure 3.8: Construction of the partially labeled graph Ri.

74

From L3 to L4. Notice that Ri−1 is simply the disjoint union of R′
i−1—for which we al-

ready have a legal labeling L3—and each Tv,i−1 that is a connected component of
Ri−1. A legal labeling L4 of Tv,i−1 is computed locally at v, which is guaranteed to
exist since Tv,i−1 ∈ Ti−1.

This concludes the proof of the lemma.

Lemma 3.15. Let P be any LCL problem on trees with ∆ = O(1). Given a feasible
function f , the LCL problem P can be solved in O(logn) time in DetLOCAL.

Proof. First compute a graph decomposition in O(logn) time. Given the graph decompo-
sition, for each i ∈ [L], each vertex v ∈ Vi computes the partially labeled rooted trees Tv,j
for all j ∈ [1, i]; this can be done in O(logn) rounds. Since f is feasible, each partially
labeled tree in T ⋆ admits a legal labeling. Therefore, RL admits a legal labeling, and such
a legal labeling can be computed without communication by the vertices in VL. Starting
with any legal labeling of RL, legal labelings of RL−1, . . . ,R1 = G can be computed in
O(logn) additional time, using Lemma 3.14(2).

3.3.13 Existence of Feasible Labeling Function

In Lemmas 3.16 and 3.17 we show two distinct ways to arrive at a feasible labeling function.
In Lemma 3.16 we assume that we are given the code of a RandLOCAL algorithm A that
solves P in no(1) time with at most 1/n probability of failure. Using A we can extract a
feasible labeling function f .18 Lemma 3.16 suffices to prove our no(1) → O(logn) speedup
theorem but, because it needs the code of A, it is insufficient to answer a more basic
question. Given the description of an LCL P , is P solvable in O(logn) time on trees or
not? Lemma 3.17 proves that this question is, in fact, decidable, which serves to highlight
the delicate boundary between decidable and undecidable problems in LCL complexity [32,
116].

We briefly discuss some ideas behind the way we construct f . One natural attempt to
assigning the output labels during Label is by simulating the given no(1)-time RandLOCAL
algorithm A. If we choose w to be sufficiently large (depending on n), then we can still
force the runtime of the simulation to be less than w. This gives us a feasible function f

18The precise running time of A influences the w parameter used by Extend. For example, if A runs in
O(log2 n) time then w will be smaller than if A runs in n1/ log log log n time.

75

that is randomized, which is enough for the purpose of establishing the ω(logn)—no(1) gap
in RandLOCAL.

In Lemma 3.16, we derandomize the above process with a choice of w independent of the
size of the underlying graph n, thereby establishing the ω(logn)—no(1) gap in DetLOCAL.
In Lemma 3.17, we show that our construction of f leads to a decidability result.

Lemma 3.16. Suppose that there exists a RandLOCAL algorithm A that solves P in no(1)

time on n-vertex bounded degree trees, with local probability of failure at most 1/n. Then
there exists a feasible function f .

Proof. Define β = |Σout|∆
r to be an upper bound on the number of distinct output labelings

of N r−1(e), where e is any edge in any graph of maximum degree ∆. Define N as the
maximum number of vertices of a tree in Tk⋆ over all choices of labeling function f . As
∆, r, ℓpump, and k⋆ are all constants, we have N = wO(1); see Lemma 3.13. Define t to
be the running time of A on a (βN + 1)-vertex tree. Notice that t depends on N , which
depends on w.

Choices of w and f . We select w to be sufficiently large such that w ≥ 4(r + t). Such
a w exists since A runs in no(1) time on an n-vertex graph, and in our case n is polynomial
in w. By our choice of w, the labeled parts of T = (T,L) ∈ Tk⋆ are spread far apart.
In particular, (i) the sets N (r−1)+t(e) for all designated edges e in T are disjoint, (ii) for
each vertex v ∈ V (T), there is at most one designated edge e such that the set N r+t(v)

intersects N r−1+t(e).
Let the function f be defined as follows. Take any bipolar tree H = (H,L′) with middle

edge e on its core path. The output labels of N r−1(e) are assigned by selecting the most
probable labeling that occurs when running A on the treeH′ = Extend(H), while pretending
that the underlying graph has βN+1 vertices. Notice that even though A is a randomized
algorithm, there is no randomness involved in the definition of the labeling function f ; that
is, given the description of A, the function f is defined deterministically. In the subsequent
discussion, we will use the fact that the most probable labeling occurs with probability at
least |Σout|−∆r

= 1/β.

Proof Idea. To show that f is good, all we need is to show that each member of Tk⋆

admits a legal labeling. In what follows, consider any partially labeled rooted tree T =

76

(T,L) ∈ Tk⋆ , where the set Tk⋆ is constructed with the parameter w and function f . We
prove that T admits a legal labeling L⋄.

Suppose that we execute A on T while pretending that the total number of vertices
is βN + 1. Let v be any vertex in T . According to A’s specs, the probability that the
output labeling of N r(v) is inconsistent with P is at most 1/(βN + 1). However, it is
not guaranteed that the output labeling resulting from A is also consistent with T , since
T is partially labeled. To handle the partial labeling of T , our strategy is to consider a
modified distribution of random bits generated by vertices in T that forces any execution
of A to agree with L, wherever it is defined. We will later see that with an appropriately
chosen distribution of random bits, the outcome of A is a legal labeling of T with positive
probability.

Modified Distribution of Random Bits. Suppose that an execution of A on a (βN+

1)-vertex graph needs a b-bit random string for each vertex. For each designated edge e,
let Ue be the set of all assignments of b-bit strings to vertices in N (r−1)+t(e). Define Se as
the subset of Ue such that ρ ∈ Se if and only if the following is true. Suppose that the b-bit
string of each u ∈ N (r−1)+t(e) is ρ(u). Using the b-bit string ρ(u) for each u ∈ N (r−1)+t(e),
the output labeling of the vertices in N r−1(e) resulting from executing A is the same as the
output labeling specified by L. According to our choice of f , we must have |Se|/|Ue| ≥ 1/β.

Define the modified distribution D of b-bit random strings to the vertices in T as follows.
For each designated edge e, the b-bit strings of the vertices in N (r−1)+t(e) are chosen
uniformly at random from the set Se. For the remaining vertices, their b-bit strings are
chosen uniformly at random.

Legal Labeling L⋄ Exists. Suppose that A is executed on T with the modified distri-
bution of random bits D. Then it is guaranteed that A outputs a complete labeling that
is consistent with T . Of course, the probability that A outputs an illegal labeling under
D may be larger than under uniform randomness. We need to show that A nonetheless
succeeds with non-zero probability.

Consider any vertex v ∈ V (T). The probability that N r(v) is inconsistent with P is at
most β/(βN +1) under distribution D, as explained below. Due to our choice of w, the set
N r+t(v) intersects at most one set N r−1+t(e) where e is a designated edge. Let Uv be the set
of all assignments of b-bit strings to vertices in N r+t(v). For each ρ ∈ Uv, the probability
that ρ occurs in an execution of A is 1/|Uv| if all random bits are chosen uniformly at

77

random, and is at most β/|Uv| under D. Thus, the probability that A (using distribution
D) labels N r(v) incorrectly is at most β/(βN +1). The total number of vertices in T is at
most N . Thus, by the union bound, the probability that the output labeling of A (using
D) is not a legal labeling is βN/(βN + 1) < 1. Thus, T = (T,L) admits a legal labeling
L⋄.

Lemma 3.17. Given an LCL problem P on bounded degree graphs, it is decidable whether
there exists a feasible function f .

Proof. Throughout the construction of the three infinite sequences {Hi}i∈Z+ , {H +
i }i∈Z+ ,

and {Ti}i∈Z+ , the number of distinct applications of the operation Label is constant, as
|H +

i | is at most the total number of types.
Therefore, the number of distinct candidate functions f that need to be examined is

finite. For each candidate labeling function f (with any parameter w ≥ ℓ), in bounded
amount of time we can construct the set Tk⋆ , as k⋆ = |C | is a constant. By examining the
classes of the partially labeled rooted trees in Tk⋆ we can infer whether the function f is
feasible (Lemma 3.11). Thus, deciding whether there exists a feasible function f can be
done in bounded amount of time.

Combining Lemmas 3.15, 3.16, and 3.17, we obtain the following theorem.

Theorem 3.5. Let P be any LCL problem on trees with ∆ = O(1). If there exists a
RandLOCAL algorithm A that solves P in no(1) rounds, then there exists a DetLOCAL
algorithm A′ that solves P in O(logn) rounds. Moreover, given a description of P, it is
decidable whether the RandLOCAL complexity of P is nΩ(1) or the DetLOCAL complexity of
P is O(logn).

Discussion. To better understand Theorem 3.5, we consider some concrete examples.
What would happen if we tried to apply the speedup theorem to the hierarchical 21

2
-

coloring P2 defined in Section 3.2? Since the complexity of P2 is Θ(
√
n), there does not

exist a feasible function f for P2. In principle, one can write a program to test whether a
feasible function f exists for a given LCL; but it is not hard to see that there is no feasible
function for P2. Recall that H1 is the set of all bipolar, unlabeled paths with between ℓ and
2ℓ vertices. The partial labeling in H +

1 must not involve a and b, since the usage of these
colors will make some members in T2 to have no legal labeling, due to the two-coloring

78

rule. For example, consider a path H = H1 ◦ H2 ◦ H3, where both H1 and H3 are colored
by a and b, and H2 is unlabeled. Let H′

2 be the path resulting from contracting one edge
in H2, and let H′ = H1 ◦ H′

2 ◦ H3. If H admits a legal labeling, then H′ must not have a
legal labeling. Therefore, if there is a feasible function f for P2, then it must color all level
1 vertices D, since no V1 vertex can be labeled X by the exemption rule. This coloring
strategy clearly does not work (i.e., this does not give us an O(logn) time algorithm), since
this requires each level 2 path (whose length can be Θ(n)) to solve a 2-coloring problem.

Let us consider another problem. The problem of 3-coloring a 3-regular tree can be
solved in O(logn) time, and so it admits a feasible function f . It is not hard to see that
any function f that does a proper 3-coloring is feasible, i.e., the partial proper 3-coloring
of any trees in T ⋆ can be completed to a full proper 3-coloring. For example, consider the
above paths H and H′, but here H1 and H3 are properly 3-colored. As long as H2 contains
at least 2 vertices, both H and H′ admit a proper 3-coloring.

79

Chapter 4

Decidability of LCL Complexity

4.1 Overview
Consider the following fundamental decision problem: Decide whether a given LCL prob-
lem can be solved in O(1) rounds. Unfortunately, even for 2D grids this problem is un-
decidable [32, 116]. To our best knowledge, the problem is only known to be decidable
on paths/cycles without input labels. In fact, we have the following characterization. An
LCL problem P can be solved in Θ(1) rounds on cycles if and only if there exists α ∈ Σout

such that labeling all vertices with α yields a legal labeling for all cycles of length at least
2r + 2 [116].19 An LCL problem P requires Θ(n) rounds on cycles if and only if there are
infinitely many numbers n such that no legal labeling exists on an n-vertex cycle [32].

In this chapter we extend this decidability result to cycles with input labels. We show
that the two gaps ω(1)—o(log∗ n) and ω(log∗ n)—o(n) for LCL problems with input labels
on paths and cycles are decidable.20 More specifically, given a specification of an LCL
problem P , there is a sequential algorithm that outputs a description of an asymptotically
optimal deterministic LOCAL algorithm for P , as well as its time complexity.21

19The number 2r+2 is the minimum number which ensures that the subgraph induced by Nr(v) is a path,
for each v in the cycle. Some people define LCL in a slightly different manner that local consistency of
a labeling on a vertex v depends on the subgraph induced by Nr(v) excluding all edges e = {u1, u2}
such that dist(u1, v) = dist(u2, v) = r. In such a definition, the number can be reduced to 2r − 1.

20We only prove the statements for the case of cycles, as the analogous results for cycles and paths follows
as a simple corollary. We can use a special input label ⊥ to effectively remove some vertices in the
underlying cycle graph. Furthermore, having a promise that the input is a path does not change the
time complexity of an LCL problem. By the principle of indistinguishably, if a problem can be solved
by an o(n)-time algorithm A on paths, the same algorithm A also applies to cycles.

21Randomness does not affect the asymptotic time complexity for paths and cycles.

80

The proof of Theorem 4.1 is in Section 4.3; the proof of Theorem 4.2 is in Section 4.6.

Theorem 4.1. For any LCL problem P on cycle graphs, its deterministic LOCAL com-
plexity is either Ω(n) or O(log∗ n). Moreover, there is an algorithm that decides whether P
has complexity Ω(n) or O(log∗ n) on cycle graphs; for the case the complexity is O(log∗ n),
the algorithm outputs a description of an O(log∗ n)-round deterministic LOCAL algorithm
that solves P.

We allow the possibility for the LCL problem P to have no valid solution on some
graphs. In this case, our algorithm for Theorem 4.1 is guaranteed to decide that the time
complexity of P is Ω(n). We do not distinguish between (i) LCLs that are solvable in Θ(n)

time on all instances and (ii) LCLs that are unsolvable on some instances.

Theorem 4.2. For any LCL problem P on cycle graphs, its deterministic LOCAL com-
plexity is either Ω(log∗ n) or O(1). Moreover, there is an algorithm that decides whether
P has complexity Ω(log∗ n) or O(1) on cycle graphs; for the case the complexity is O(1),
the algorithm outputs a description of an O(1)-round deterministic LOCAL algorithm that
solves P.

All the above gaps can be proved using the known tools in Chapter 2. For example,
the (randomized and deterministic) ω(1)—o(log∗ n) gap can be established using Ramsey
theory. However, these proofs are non-constructive by nature. The main contribution of
this chapter is to re-prove these gaps using pumping lemmas in such a way similar to the
proof of the ω(logn)—no(1) gap on bounded degree trees in Chapter 3. The main advantage
of such proofs is that they come with a decidability result.

Notation. For convenience, in this section, a directed path P with input labels is alter-
natively described as a string in Σk

in, where k > 0 is the number of vertices in P . Similarly,
an output labeling L of P is alternatively described as a string in Σk

out. In subsequent
discussion, we freely switch between the graph-theoretic notation and the string notation.
Given an output labeling L of P , we say that L is locally consistent at v if the input
and output labeling assigned to N r(v) is acceptable for v. Note that N r(v) refers to the
radius-r neighborhood of v. Given two integers a ≤ b, the notation [a, b] represents the set
of all integers {a, a+ 1, . . . , b}. Given a string w, denote wR as the reverse of w.

81

Overview. Before we proceed, we briefly discuss the high level idea of the proofs. The
main tool underlying the proofs is the “pumping lemma” which we developed in Chapter 3.
Intuitively, we classify the set of all input-labeled paths into a finite number of equivalence
classes satisfying the following property. Let P be a subpath of G, and let P ′ be another
path that is of the same equivalence class as P . Given a complete legal labeling of G, if we
let G′ be the result of replacing P with P ′, then it is always possible to extend this partial
labeling of G′ to a complete legal labeling by appropriately labeling P ′. The pumping
lemma guarantees that for any path P whose length is at least the pumping constant
ℓpump, and for any number x ≥ ℓpump, there is another path P ′ of length at least x and P ′

is of the same equivalence class as P .
Informally, in the proof of Theorem 4.1, we show that any LCL problem P solvable in

o(n) rounds can be solved in O(log∗ n) rounds in the following canonical way based on a
“feasible labeling function” f . Intuitively, a labeling function f is feasible if for any given
independent set I that is sufficiently well-spaced, we can apply f to assign the output labels
to each v ∈ I and its nearby neighbors locally such that this partial labeling can always be
extended to a complete legal labeling. The ω(log∗ n)—o(n) gap and the decidability result
follows from these two claims.

• If there is an o(n)-round algorithm A that solves P , then a feasible function f exists.
This is proved by first create an imaginary graph where some paths are extended
using pumping lemmas, and then apply a simulation of A on the imaginary graph.

• Whether a feasible function exists is decidable. Intuitively, this is due to the fact that
the number of equivalence classes is finite.

The proof of Theorem 4.2 is a little more complicated since the time budget is only
O(1), so we cannot even afford to find an MIS. To solve this issue, we decompose the cycle
graph G into paths with unrepetitive patterns and paths with repetitive patterns, in O(1)
rounds. For paths with unrepetitive patterns, we are able to compute a sufficiently well-
spaced MIS in O(1) rounds by making use of the irregularity of the input patterns. Paths
with repetitive patterns are similar to the paths without input labels, and we will show
that we can always label them by repetitive output patterns, given that the underlying
LCL problem is o(log∗ n)-time solvable.

Organization. Section 4.2 established some pumping lemmas for paths, which lays down
the foundation for the proofs of the two main theorems. In Section 4.3, we prove Theo-

82

𝑠 𝑡

𝐷1𝐷1 𝐷2 𝐷2𝐷3

𝑠 𝑡

𝐷1𝐷1 𝐷2

Figure 4.1: Illustration of the tripartition ξ(P) = (D1, D2, D3) with r = 3.

rem 4.1. Section 4.4 considers an O(1)-round algorithm that partitions a cycle into paths
that are short or have a repeated input pattern. Section 4.5 defines a feasible function
whose existence characterizes the O(1)-round solvable LCL problems. In Section 4.6, we
prove Theorem 4.2.

4.2 Pumping Lemmas for Paths
Let P = (s, . . . , t) be a directed path, where each vertex has an input label from Σin. The
tripartition of the vertices ξ(P) = (D1, D2, D3) is defined as follows:

D1 = N r−1(s) ∪N r−1(t),

D2 =
(
N2r−1(s) ∪N2r−1(t)

)
\D1,

D3 = P \ (D1 ∪D2).

See Figure 4.1 for an illustration. More specifically, suppose P = (u1, . . . , uk), and let
i ∈ [1, k]. Then we have:

• ui ∈ D1 if and only if i ∈ [1, r] ∪ [k − r + 1, k].

• ui ∈ D2 if and only if i ∈ [r + 1, 2r] ∪ [k − 2r + 1, k − r].

• ui ∈ D3 if and only if i /∈ [1, 2r] ∪ [k − 2r + 1, k].

Let L : D1 ∪ D2 → Σout assign output labels to D1 ∪ D2. We say that L is extendible
w.r.t. P if there exists a complete labeling L⋄ of P such that L⋄ agrees with L on D1∪D2,
and L⋄ is locally consistent at all vertices in D2 ∪D3.

An Equivalence Class. We define an equivalence class ⋆∼ for the directed paths (i.e.,
the set of all non-empty strings in Σ∗

in), as follows.

83

Consider two directed paths P = (u1, . . . , ux) and P ′ = (v1, . . . , vy), and let ξ(P) =

(D1, D2, D3) and ξ(P ′) = (D′
1, D

′
2, D

′
3). Consider the following natural 1-to-1 corre-

spondence ϕ : (D1 ∪D2)→ (D′
1 ∪D′

2) defined as ϕ(ui) = vi and ϕ(ux−i+1) = vy−i+1 for
each i ∈ [1, 2r]. The 1-to-1 correspondence is well-defined so long as (i) x = y or (ii)
x ≥ 4r and y ≥ 4r. We have P ⋆∼ P ′ if and only if the following two statements are
met:

• Isomorphism: The 1-to-1 correspondence is ϕ well-defined, and for each ui ∈
D1 ∪D2, the input label of ui is identical to the input label of ϕ(ui).

• Extendibility: Let L be any assignment of output labels to vertices in D1 ∪D2,
and let L′ be the corresponding output labeling of D′

1 ∪ D′
2 under ϕ. Then L is

extendible w.r.t. P if and only if L′ is extendible w.r.t. P ′.

Note that for the special case of x ≤ 4r, we have P ⋆∼ P ′ if and only if P is identical
to P ′.

Define Type(P) as the equivalence class of P w.r.t. ⋆∼. The following technical lemma
is analogous to Lemma 3.1 in a specialized setting. We only use this lemma to prove the
lemmas in Section 4.2.

Lemma 4.1. Let G be a path graph or a cycle graph where all vertices have input labels
from Σin. Let P be a directed subpath of G, and let P ′ be another directed path such that
Type(P ′) = Type(P). We write ξ(P) = (D1, D2, D3) and ξ(P ′) = (D′

1, D
′
2, D

′
3). Let L⋄ be

any complete labeling of G such that L⋄ is locally consistent at all vertices in D2 ∪D3. Let
G′ = Replace(G,P, P ′) be the graph resulting from replacing P with P ′ in G. Then there
exists a complete labeling L′

⋄ of G′ such that the following two conditions are met.

1. For each v ∈ (V (G) \ V (P))∪ (D1∪D2) and its corresponding v′ ∈ (V (G′) \ V (P ′))∪
(D′

1 ∪D′
2), we have L⋄(v) = L′

⋄(v
′). Moreover, if v ∈ (V (G) \ V (P)) ∪D1 and L⋄ is

locally consistent at v, then L′
⋄ is locally consistent at v′.

2. L′
⋄ is locally consistent at all vertices in D′

2 ∪D′
3.

Proof. The labeling L′
⋄(v

′) of G′ for each v′ ∈ (V (G′) \ V (P ′))∪ (D′
1 ∪D′

2) is chosen “nat-
urally” as follows. For each v′ ∈ V (G′)\V (P ′), we set L′

⋄(v
′) = L⋄(v) for its corresponding

vertex v ∈ V (G) \ V (P). For each v′ ∈ D′
1 ∪D′

2, we set L′
⋄(v

′) = L⋄(v) for its correspond-
ing vertex v ∈ D1 ∪ D2 such that ϕ(v) = v′ in the definition of ⋆∼. At this point, it is

84

clear that if v ∈ (V (G) \ V (P)) ∪ D1 has a locally consistent labeling under L⋄, then its
corresponding vertex v′ ∈ (V (G′) \ V (P ′))∪D′

1 also has a locally consistent labeling under
L′

⋄, so Condition 1 holds.
Now, the labeling L′

⋄ is only undefined for vertices in D′
3. We show that we can complete

the labeling in such a way that is locally consistent at all vertices in D′
2 ∪D′

3. Denote L as
L⋄ restricted to D1∪D2. Since L⋄ is locally consistent at all vertices in P , the labeling L is
extendible w.r.t. P . Note that if we let L′ be L⋄ restricted to D′

1∪D′
2, then according to the

way we define L′
⋄, the two labeling L′ and L are identical under the 1-to-1 correspondence

ϕ specified in the definition of ⋆∼. That is, for each v′ ∈ D′
1 ∪ D′

2, we have L′(v′) = L(v)
for its corresponding vertex v ∈ D1 ∪D2 such that ϕ(v) = v′. Since P ⋆∼ P ′, the labeling
L′ must be extendible w.r.t. P ′. That is, there is a way to assign L′

⋄(v
′) for each v′ ∈ D′

3

such that all vertices in D′
2 ∪D′

3 have locally consistent labelings under L′
⋄, so Condition 2

holds.

One useful consequence of this lemma is that if we start with a path or a cycle G with a
legal labeling, after replacing its subpath P with another one P ′ having the same type as
P , then it is always possible to assign output labeling to P ′ to get a legal labeling without
changing the already-assigned output labels of vertices outside of P ′.

Lemma 4.2. Let G be a path graph or a cycle graph where all vertices have input labels
from Σin. Let P be a directed subpath of G, and let P ′ be another directed path such that
Type(P ′) = Type(P). Let L⋄ be complete labeling of G that is locally consistent at all
vertices in P . Let G′ = Replace(G,P, P ′) be the graph resulting from replacing P with P ′

in G. Then there exists a legal labeling L′
⋄ of G′ such that the following two conditions are

met.

1. For each v ∈ V (G)\V (P) and its corresponding v′ ∈ V (G′)\V (P ′), we have L⋄(v) =

L′
⋄(v

′). Moreover, if L⋄ is locally consistent at v ∈ V (G) \ V (P), then L′
⋄ is locally

consistent at v′.

2. L′
⋄ is locally consistent at all vertices in P ′.

Proof. We write ξ(P ′) = (D′
1, D

′
2, D

′
3). Condition 1 in this lemma is implied by Condition 1

in Lemma 4.1. To see that Condition 2 in this lemma holds, notice that in this lemma we
additionally require that L⋄ is locally consistent at all vertices in P . Therefore, Condition 1
of Lemma 4.1 implies that L′

⋄ is locally consistent at all vertices in D′
1. This observation,

85

together with Condition 2 of Lemma 4.1, implies that L′
⋄ is locally consistent at all vertices

in P ′.

The following lemma is analogous to Theorem 3.4 in a specialized setting. We only use
this lemma in Section 4.2.

Lemma 4.3. Let P = (v1, . . . , vk), and let P ′ = (v1, . . . , vk−1). Let the input label of vk be
α. Then Type(P) is a function of α and Type(P ′).

Proof. We prove the following stronger statement. Let G be a directed path, and let H be a
directed subpath ofG. SupposeH ′ is another directed path satisfying Type(H) = Type(H ′).
Let G′ = Replace(G,H,H ′) be the result of replacing H with H ′ in G. Then we claim that
Type(G) = Type(G′). The lemma is a corollary of this claim.

Consider the tripartitions ξ(H) = (B1, B2, B3), ξ(H ′) = (B′
1, B

′
2, B

′
3), ξ(G) =

(D1, D2, D3), and ξ(G′) = (D′
1, D

′
2, D

′
3). We write B0 = V (G) \ V (H) and B′

0 =

V (G′) \ V (H ′).
Let ϕ⋆ be the natural 1-to-1 correspondence from B0 ∪ B1 ∪ B2 to B′

0 ∪ B′
1 ∪ B′

2. Note
that D1∪D2 ⊆ B0∪B1∪B2 and D′

1∪D′
2 ⊆ B′

0∪B′
1∪B′

2. Also, the 1-to-1 correspondence
between D1 ∪D2 and D′

1 ∪D′
2 given by ϕ⋆ is exactly the 1-to-1 correspondence ϕ specified

in the requirement of G ⋆∼ G′.
Let L : (D1 ∪ D2) → Σout and let L′ be the corresponding output labeling of D′

1 ∪ D′
2,

under the 1-to-1 correspondence ϕ. To show that G ⋆∼ G′, all we need to do is show that
L is extendible w.r.t. G if and only if L′ is extendible w.r.t. G′. Since we can also write
G = Replace(G′, H ′, H), it suffices to show just one direction, i.e., if L is extendible then
L′ is extendible.

Suppose L is extendible. Then there exists an output labeling L⋄ of G such that (i) for
each v ∈ D1 ∪ D2, we have L⋄(v) = L(v), and (ii) L⋄ is locally consistent at all vertices
in D2 ∪D3. Since D2 ∪D3 ⊇ B2 ∪ B3, we can apply Lemma 4.1, which shows that there
exists a complete labeling L′

⋄ of G′ such that the two conditions in Lemma 4.1 are met.
We argue that this implies that L′ is extendible. We verify that (i) L′(v′) = L′

⋄(v
′) for each

v′ ∈ D′
1 ∪D′

2, and (ii) L′
⋄ is locally consistent at all vertices in D′

2 ∪D′
3.

• Condition 1 of Lemma 4.1 guarantees that L⋄(v) = L′
⋄(ϕ

⋆(v)) for each v ∈
(V (G) \ V (H)) ∪ (B1 ∪ B2) = B0 ∪ B1 ∪ B2 and its corresponding vertex ϕ⋆(v) ∈
B′

0 ∪ B′
1 ∪ B′

2. Since D′
1 ∪ D′

2 ⊆ B′
0 ∪ B′

1 ∪ B′
2, we have L′(v′) = L′

⋄(v
′) for each

v′ ∈ D′
1 ∪D′

2.

86

• The fact that L⋄ is locally consistent at all vertices in D2 ∪ D3, together with Con-
dition 1 in Lemma 4.1, guarantees that L′

⋄ is locally consistent at all vertices in
(D′

2 ∪D′
3) \B′

3. Condition 2 in Lemma 4.1 guarantees that L′
⋄ is locally consistent at

all vertices in B′
2 ∪ B′

3. Therefore, L′
⋄ is locally consistent at all vertices in D′

2 ∪D′
3,

as required.

The number of types can be upper bounded as follows.

Lemma 4.4. The number of equivalence classes of ⋆∼ (i.e., types) is at most |Σin|4r2|Σout|4r .

Proof. Let P be a directed path, and let ξ(P) = (D1, D2, D3). Then Type(P) is determined
by the following information.

• The input labels in D1∪D2. Note that there are at most |Σin|4r possible input labeling
of D1 ∪D2.

• A length-x binary string indicating the extendibility of each possible output labeling
of D1 ∪D2, where x = |Σout|4r.

Therefore, the number of equivalence classes of ⋆∼ is at most |Σin|4r2|Σout|4r .

Define ℓpump as the total number of types. Observe that Lemma 4.3 implies that Type(P)
can be computed by a finite automaton whose number of states is the total number of types,
which is a constant independent of P . Thus, we have the following two pumping lemmas
which allow us to extend the length of a given directed path P while preserving the type
of P . The following two lemmas follow from the standard pumping lemma for regular
language.

Lemma 4.5. Let P ∈ Σk
in with k ≥ ℓpump. Then P can be decomposed into three substrings

P = x ◦ y ◦ z such that (i) |xy| ≤ ℓpump, (ii) |y| ≥ 1, and (iii) for each non-negative integer
i, Type(x ◦ yi ◦ z) = Type(P).

Lemma 4.6. For each w ∈ Σ>0
in , there exist two positive integers a and b such that

a+ b ≤ ℓpump, and Type(wai+b) is invariant for each non-negative integer i.

4.3 The ω(log∗ n)—o(n) Gap
In this section we show that the ω(log∗ n)—o(n) gap is decidable. More specifically, we
show that an LCL problem P can be solved in O(log∗ n) rounds if and only if there exists
a feasible function, which is defined as follows.

87

Input: A directed path P = w1 ◦S ◦w2, where |w1| ∈ [ℓpump, 2ℓpump], |w2| ∈ [ℓpump, 2ℓpump],
and |S| = 2r. The decomposition P = w1 ◦ S ◦ w2 is considered part of the input.

Output: A string L ∈ Σ2r
out that represents the output labeling of S.

Requirement: Any such function f is said to be feasible if the following requirement
is met for any paths S1, S2 and wa, wb, wc, wd such that |S1| = |S2| = 2r and
{|wa|, |wb|, |wc|, |wd|} ⊆ [ℓpump, 2ℓpump]. Let P = wa ◦ S1 ◦ wb ◦ wc ◦ S2 ◦ wd, and
consider the following assignment of output labels to S1 ∪ S2.
• Either label S1 by f(wa ◦ S1 ◦ wb) or label SR

1 by f(wR
b ◦ SR

1 ◦ wR
a).

• Either label S2 by f(wc ◦ S2 ◦ wd) or label SR
2 by f(wR

d ◦ SR
2 ◦ wR

c).
It is required that given this partial labeling of P , the middle part wb ◦ wc can be
assigned output labels in such a way that the labeling of (i) the last r vertices of S1,
(ii) all vertices in wb ◦ wc, and (iii) the first r vertices of S2 are locally consistent.

Lemma 4.7. If a feasible function f exists, then there is an O(log∗ n)-round deterministic
LOCAL algorithm for P on cycles.

Proof. Given that the number of vertices n is at least some large enough constant, in
O(log∗ n) rounds we can compute the decomposition V = A ∪ B such that each con-
nected component of A has size 2r, and each connected component of B has size within
[2ℓpump, 4ℓpump]. This can be done using a ruling set computation. We further decompose
each connected component P of B into two paths P = P1 ◦ P2 in such a way that the size
of both P1 and P2 are within the range [ℓpump, 2ℓpump]. We write P to denote the set of
all these paths.

Let S be a connected component of A, and let w1 and w2 be its two neighboring paths
in P so that (w1 ◦S ◦w2) is a subpath of the underlying graph G. The output labels of S
is assigned either by labeling S with f(w1 ◦S ◦w2) or by labeling SR with f(wR

2 ◦SR ◦wR
1).

At this moment, all components of A have been assigned output labels using f . By the
feasibility of f , each connected component of B is able to label itself output labels in such
a way that the labeling of all vertices are locally consistent.

Lemma 4.8. If there is an o(n)-round deterministic LOCAL algorithm A for P on cycles,
then a feasible function f exists.

Proof. Fix s to be some sufficiently large number, and fix n = 8(s + ℓpump) + 2(2r). We
select s to be large enough so that the runtime of A is smaller than 0.1s.

88

For any given directed path w with |w| ∈ [ℓpump, 2ℓpump], we fix w+ as the result of
applying the pumping lemma (Lemma 4.5) on w so that the following two conditions are
met: (i) |w+| ∈ [s, s+ ℓpump] and (ii) Type(w) = Type(w+).

Constructing a Feasible Function f by Simulating A. The function f(w1 ◦S ◦w2)

is constructed by simulating a given o(n)-round deterministic LOCAL algorithm for P . The
output labeling given by f(w1 ◦ S ◦ w2) is exactly the result of simulating A on the path
P = w+

1 ◦ S ◦ w+
2 while assuming the number of vertices of the underlying graph is n.

Remember that the round complexity of A is o(n) on n-vertex graphs. By setting s to be
large enough, the runtime of A can be made smaller than 0.1s. Thus, the calculation of
f(w1 ◦ S ◦ w2) only depends on the IDs and the input labels of (i) the last 0.1s vertices
in w+

1 , (ii) all vertices in S, and (iii) the first 0.1s vertices in w+
2 . In the calculation of

f(w1 ◦ S ◦ w2), the IDs of the vertices that participate in the simulation of A are chosen
arbitrarily so long as they are distinct.

Feasibility of f . Now we verify that the function f constructed above is feasible.
Consider any choices of paths S1, S2 and wa, wb, wc, wd such that |S1| = |S2| = 2r and
{|wa|, |wb|, |wc|, |wd|} ⊆ [ℓpump, 2ℓpump]. Define P = wa ◦ S1 ◦ wb ◦ wc ◦ S2 ◦ wd, and let G
be the cycle graph formed by connecting the two ends of the path P . To show that f is
feasible, we need to consider the following four ways of assigning output labels to S1 ∪ S2.

1. Label S1 by f(wa ◦ S1 ◦ wb); label S2 by f(wc ◦ S2 ◦ wd).

2. Label S1 by f(wa ◦ S1 ◦ wb); label SR
2 by f(wR

d ◦ SR
2 ◦ wR

c).

3. Label SR
1 by f(wR

b ◦ SR
1 ◦ wR

a); label S2 by f(wc ◦ S2 ◦ wd).

4. Label SR
1 by f(wR

b ◦ SR
1 ◦ wR

a); label SR
2 by f(wR

d ◦ SR
2 ◦ wR

c).

For each of the above four partial labelings of P , we need to show that the middle part
wb ◦ wc can still be assigned output labels in such a way that the labeling of (i) the last
r vertices of S1, (ii) all vertices in wb ◦ wc, and (iii) the first r vertices of S2 are locally
consistent.

Proof of the First Case. In what follows, we focus on the first case, i.e., the partial
labeling is given by labeling S1 by f(wa◦S1◦wb) and labeling S2 by f(wc◦S2◦wd); the proof
for the other three cases are analogous. In this case, we define P ′ = w+

a ◦S1◦w+
b ◦w+

c ◦S2◦w+
d ,

and let G′ be the cycle graph formed by connecting the two ends of P ′. Note that the

89

number of vertices in G′ is at most 8(s + ℓpump) + 2(2r) = n. All we need to do is to find
an output labeling L of G such that the following conditions are satisfied.

(a) The output labels of S1 is given by f(wa ◦ S1 ◦ wb).

(b) The output labels of S2 is given by f(wc ◦ S2 ◦ wd).

(c) The labeling of (i) the last r vertices of S1, (ii) all vertices in wb ◦ wc, and (iii) the
first r vertices of S2 are locally consistent.

We first generate an output labeling L′ of G′ by executing A on G′ under the following
ID assignment. The IDs of (i) the last 0.1s vertices in w+

a , (ii) all vertices in S1, and (iii)
the first 0.1s vertices in w+

b are chosen as the ones used in the definition of f(wa ◦S1 ◦wb).
Similarly, the IDs of (i) the last 0.1s vertices in w+

c , (ii) all vertices in S2, and (iii) the first
0.1s vertices in w+

d are chosen as the ones used in the definition of f(wc ◦ S2 ◦ wd). The
IDs of the rest of the vertices are chosen arbitrarily so long as when we run A on G′, no
vertex sees two vertices with the same ID. Due to the way we define f , the output labeling
L′ of the subpath S1 is exactly given by f(wa ◦ S1 ◦ wb), and the output labeling L′ of S2

is exactly f(wc ◦ S2 ◦ wd). Due to the correctness of A, L′ is a legal labeling.
We transform the output labeling L′ ofG′ to a desired output labeling L ofG. Remember

that G is the result of replacing the for subpaths w+ of G′ by w, and we have Type(w+) =

Type(w). In view of Lemma 4.2, there is a legal labeling L of G such that all vertices in S1

and S2 are labeled the same as in G′. Therefore, the labeling L satisfies the above three
conditions (a), (b), and (c).

The Other Cases. We briefly discuss how we modify the proof to deal with the other
three cases. For example, consider the second case, where the partial labeling is given by
labeling S1 by f(wa ◦ S1 ◦ wb) and labeling SR

2 by f(wR
d ◦ SR

2 ◦ wR
c). In this case, the path

P ′ is defined as
P ′ = w+

a ◦ S1 ◦ w+
b ◦
(
(wR

c)
+
)R ◦ SR

2 ◦
(
(wR

d)
+
)R
.

During the ID assignment of G′, the IDs of (i) the last 0.1s vertices in w+
c , (ii) all vertices in

S2, and (iii) the first 0.1s vertices in w+
d are now chosen as the ones used in the definition of

f(wR
d ◦SR

2 ◦wR
c). Using such an ID assignment, the output labeling L′ of SR

2 as the result of
executing A on G′ will be exactly the same as the output labeling given by f(wR

d ◦SR
2 ◦wR

c).
The rest of the proof is the same.

Theorem 4.1 follows from the above two lemmas. The decidability result is due to the

90

simple observation that whether a feasible function exists is decidable.

4.4 Partitioning a Cycle
In the following sections, we prove the decidability result associated with the ω(1)—
o(log∗ n) gap. In this proof, we also define a feasible function, prove its decidability,
and show the existence given an o(log∗ n)-time algorithm. The main challenge here is that
a ruling set cannot be computed in O(1) time. To solve this issue, we decompose a cy-
cle into paths with unrepetitive patterns and paths with repetitive patterns. For paths
with unrepetitive patterns, we are able to compute a ruling set in O(1) time by making
use of the irregularity of the input patterns. Paths with repetitive patterns are similar to
the paths without input labels, and we show that we can always label them by repetitive
output patterns, given that the problem is o(log∗ n)-time solvable.

Section 4.4 considers an O(1)-round algorithm that partitions a cycle into long paths
of repeated input pattern or short paths. Section 4.5 defines a feasible function whose
existence characterizes the O(1)-round solvable LCL problems. In Section 4.6, we prove
Theorem 4.2.

Partitioning an Undirected Cycle into Directed Paths. Let G be a cycle graph.
An orientation of the vertices in G is called ℓ-orientation if the following condition is met.
If |V (G)| ≤ ℓ, then all vertices in G are oriented22 to the same direction. If |V (G)| > ℓ,
then each vertex v ∈ V (G) belongs to a path P such that (i) all vertices in P are oriented to
the same direction, and (ii) the number of vertices in P is at least ℓ. In O(1) rounds we can
compute an ℓ-orientation of G for any constant ℓ. The following lemma is a restatement
of Theorem 2.11.

Lemma 4.9. Let G be a cycle graph. Let ℓ be a constant. There is a deterministic LOCAL
algorithm that computes an ℓ-orientation of G in O(1) rounds.

In this section, we will use a generalization of an ℓ-orientation that satisfies an addi-
tional requirement that the input labels of each directed path P in the decomposition with
|V (P)| > 2ℓwidth (where 2ℓwidth is a threshold) must form a periodic string (whose period
length is at most ℓpattern).
22An orientation of a vertex v is an assignment to one of its neighbor. This can be specified using port-

numbering. See Section 2.6.3.

91

A string w ∈ Σ∗
in is called primitive if w cannot be written as xi for some x ∈ Σ∗

in and
i ≥ 2. Let G be a cycle graph or a path graph where each vertex v ∈ V (G) has an input
label from Σin. We define an (ℓwidth, ℓcount, ℓpattern)-partition as a partition of G into a set
of connected subgraphs P meeting the following criteria. We assume |V (G)| > 2ℓwidth and
ℓpattern ≥ ℓwidth.

Direction and Minimum Length: For each P ∈P, the vertices in P are oriented to
the same direction, and |V (P)| ≥ ℓwidth.

Short Paths: Define Pshort as the subset of P that contains paths having at most
2ℓwidth vertices. For each directed path P = (v1, . . . , vk) ∈ Pshort, each vertex vi
in P knows its rank i.

Long Paths: Define Plong = P \Pshort. Then the input labeling of the vertices in P
is of the form wk for some primitive string w ∈ Σ∗

in such that |w| ≤ ℓpattern and
k ≥ ℓcount. Moreover, each vertex v in P knows the string w.

Note that P may contain a cycle. This is possible only when G is a cycle where the
input labeling is a repetition (at least ℓcount times) of a primitive string w ∈ Σ∗

in of length
at most ℓpattern. In this case, we must have P = Plong = {G}. Otherwise, P contains
only paths.

The goal of this section is to show that an (ℓwidth, ℓcount, ℓpattern)-partition can be found
in O(1) rounds. First of all, in Lemma 4.10 we demonstrate how we can break symmetry
in O(1) rounds given that the underlying graph is directed and the input labels does not
form long periodic strings. Let G be a path or a cycle. A set I ⊆ V (G) is called an
(α, β)-independent set if the following conditions are met: (i) I is an independent set, and
I does not contain either endpoint of G (if G is a path), and (ii) each connected component
induced by V \ I has at least α vertices and at most β vertices, unless |V | ≤ α, in which
case we allow I = ∅. Note that finding an (α, β)-independent set takes O(log∗ n) rounds in
general, but in Lemma 4.10 we show that by leveraging the “irregularity” of input labels,
we can do this in O(1) rounds on directed paths or cycles without periodic patterns.

Lemma 4.10. Let γ and ℓ be any two constants with ℓ ≥ γ. Let G be a directed cycle or a
directed path that does not contain any subpath of the form wx, with |w| ≤ γ and |wx| ≥ ℓ.
There is a deterministic LOCAL algorithm that computes an (γ, 2γ)-independent set I of
G in O(1) rounds.

92

Proof. For the case G is a directed path P = (s, . . . , t), define V ′ as the set of vertices in G
whose distance to t is at least ℓ− 1. For the case G is a directed cycle, define V ′ = V (G).
In what follows, we focus on finding an (γ, 2γ)-independent set I ′ of the vertices in V ′.
Extending the set I ′ to produce the desired independent set I can be done with extra O(1)
rounds.

Recall that G is directed. Define the color of a vertex v ∈ V ′ by the sequence of the ℓ
input labels of v and the ℓ − 1 vertices following v in G. For each vertex v ∈ V ′, there
is no other vertex within distance γ to v having the same color as v, since otherwise we
can find a subpath whose input labels form a string wx, with |w| ≤ γ and |wx| ≥ ℓ.
By applying the standard procedure that computes an MIS from a coloring, within O(1)
rounds a (γ, 2γ)-independent set I ′ can be obtained.

Using Lemma 4.10, we first show that an (ℓwidth, ℓcount, ℓpattern)-partition can be found in
O(1) rounds for the case G is directed. That is, all vertices in G are initially oriented to
the same direction, and we are allowed to re-orient the vertices.

Lemma 4.11. Let G be a directed cycle or a directed path where each vertex v ∈ V (G) has
an input label from Σin, and |V (G)| > 2ℓwidth. Let ℓwidth, ℓcount, ℓpattern be three constants
such that ℓpattern ≥ ℓwidth. There is a deterministic LOCAL algorithm that computes an
(ℓwidth, ℓcount, ℓpattern)-partition in O(1) rounds

Proof. Let (w1, w2, . . . , wk) be any ordering of the primitive strings in Σ∗
in of length at

most ℓpattern. First, construct a set of subgraphs Plong as follows. Initialize U = V (G)

and Plong = ∅. For i = 1 to k, execute the following procedure. Let Si be the set of
maximal-size connected subgraphs formed by vertices in U such that the input labels form
the string wx

i with x ≥ ℓcount+2ℓwidth. Each vertex v ∈ U in O(1) rounds checks if v belongs
to a subgraph in Si; if so, remove v from U . For each P ∈ Si, define P ′ as follows. If P
is a cycle, then P ′ = P . If P is a path, then P ′ is the result of removing all vertices that
are within distance ℓwidth|wi| − 1 to an endpoint in P . Note that each vertex v in P knows
whether v belongs to P ′. Define S ′

i = {P ′|P ∈ Si}, and then update Plong ←Plong ∪ S ′
i.

It is straightforward to verify that each path or cycle P ∈ Plong satisfies the require-
ment in the definition of (ℓwidth, ℓcount, ℓpattern)-partition. Define the set of subgraphs
Pirreg as the connected components of the vertices not in any subgraph in Plong. De-
fine ℓ = (ℓpattern +2ℓwidth) · ℓcount. By our construction, the input labeling in each subgraph
P ∈ Pirreg does not contain any substring wx, with 1 ≤ |w| ≤ ℓpattern and |wx| ≥ ℓ. An

93

(ℓpattern, 2ℓpattern)-independent set of each P ∈ Pirreg can be computed using Lemma 4.10
in O(1) rounds. Observe that each subgraph P ∈Pirreg has at least ℓwidth vertices. Given
an (ℓpattern, 2ℓpattern)-independent set of a subgraph P ∈ Pirreg, in O(1) rounds P can be
partitioned into subpaths, each of which contains at least ℓpattern vertices and at most
2ℓpattern vertices. This finishes the construction of an (ℓwidth, ℓcount, ℓpattern)-partition.

Combining Lemma 4.11 and Lemma 4.9, we are able to construct an
(ℓwidth, ℓcount, ℓpattern)-partition in O(1) rounds for undirected graphs.

Lemma 4.12. Let G be a cycle or a path where each vertex v ∈ V (G) has an input label from
Σin, and |V (G)| > 2ℓwidth. Let ℓwidth, ℓcount, ℓpattern be three constants such that ℓpattern ≥
ℓwidth. There is a deterministic LOCAL algorithm that computes an (ℓwidth, ℓcount, ℓpattern)-
partition in O(1) rounds

Proof. The algorithm is as follows. Compute an ℓ-orientation of G by Lemma 4.9 in O(1)
rounds with ℓ = 2ℓwidth + 1. For each maximal-length connected subgraph P where each
constituent vertex is oriented to the same direction, find an (ℓwidth, ℓcount, ℓpattern)-partition
of P in O(1) rounds by Lemma 4.11.

4.5 Feasible Function
The goal of this section is to define a feasible function whose existence characterizes the
O(1)-round solvable LCL problems. With respect to an LCL problem P and a function f
which takes a string w ∈ Σk

in with 1 ≤ k ≤ ℓpump as input, and returns a string f(w) ∈ Σk
out,

we define some partially or completely labeled path graphs which are used in the definition
of a feasible function.

Completely Labeled Graph Gw,z: Let w ∈ Σ∗
in be any string of length at least 1 and at

most ℓpump. Let z be any non-negative integer. Define Gw,z = (Gw,z,L) as follows.
The graph Gw,z is a path of the form wr ◦ wz ◦ wr. The labeling L is a complete
labeling of the form f(w)z+2r. Define Mid(Gw,z) as the middle subpath wz of Gw,z.

Partially Labeled Graph Gw1,w2,S: Let w1, w2 ∈ Σ∗
in be any two strings of length at least

1 and at most ℓpump. Let S ∈ Σ∗
in be any string (can be empty). Define Gw1,w2,S =

(Gw1,w2,S,L) as follows. The graph Gw1,w2,S is the path of the form w
ℓpump+2r
1 ◦ S ◦

w
ℓpump+2r
2 . The labeling L is a partial labeling of Gw1,w2,S which fixes the output labels

94

of the first 2r|w1| and the last 2r|w2| vertices by f(w1)
2r and f(w2)

2r, respectively.
Define Mid(Gw1,w2,S) as the middle subpath wℓpump+r

1 ◦ S ◦ wℓpump+r
2 of Gw1,w2,S.

Feasible Function: We call f a feasible function if the following conditions are met: (i)
For each Gw,z = (Gw,z,L), the complete labeling L is locally consistent at all vertices
in Mid(Gw,z). (ii) Each partially labeled graph Gw1,w2,S admits a complete labeling L⋄

that is locally consistent at all vertices in Mid(Gw1,w2,S).

Lemma 4.13. Given an LCL problem P on cycle graphs. It is decidable whether there is
a feasible function.

Proof. Note that it is not immediate from its definition as to whether a feasible function
exists is decidable, since there appears to be infinitely many graphs Gw,z and Gw1,w2,S needed
to be examined. However, the following simple observations show that it suffices to check
only a constant number of these graphs.

• If the complete labeling L of Gw,1 = (Gw,1,L) is locally consistent at all vertices in
Mid(Gw,1), then for all z ≥ 1, the complete labeling L of Gw,z = (Gw,z,L) is also
locally consistent at all vertices in Mid(Gw,z).

• If Gw1,w2,S admits a complete labeling L⋄ that is locally consistent at all vertices in
Mid(Gw1,w2,S), then for each S ′ such that Type(S) = Type(S ′), the partially labeled
graph Gw1,w2,S′ also admits a complete labeling L⋄ that is locally consistent at all
vertices in Mid(Gw1,w2,S′). This is due to Lemma 4.2.

Therefore, to decide whether a function f is feasible, we only need to check all possible
Gw,z and Gw1,w2,S. For each w we only need to consider the graph Gw,z with z = 1. For each
w1 and w2, we do not need to go over all S; we only need to consider (i) the empty string
S = ∅, and (ii) for each type τ , a string S ∈ Σ∗

in such that Type(S) = τ . By Lemma 4.5,
for each type τ , there exists P ∈ Σx

in with x ≤ ℓpump such that Type(P) = τ . Therefore, a
string S with Type(S) = τ can be found in bounded amount of time; also notice that the
number of types is bounded; see Lemma 4.4.

For the rest of this section, we show that as long as the deterministic LOCAL complexity
of P is o(log∗ n) on cycle graphs, there exists a feasible function f . In Lemma 4.14 we show
how to extract a function f from a given o(log∗ n)-round deterministic LOCAL algorithm A,
and then in Lemma 4.15 we prove that such a function f is feasible. Intuitively, Lemma 4.14
shows that there exists an ID-assignment such that when we run A on a subpath whose

95

input labeling is a repetition of a length-k pattern w, the output labeling is also a repetition
of a length-k pattern w′. The function f will be defined as f(w) = w′.

Lemma 4.14. Let A be any deterministic LOCAL algorithm that solves P in t(n) =

o(log∗ n) rounds. Then there is a number n′ and function f which takes a string w ∈ Σk
in

with 1 ≤ k ≤ ℓpump as input, and returns a string f(w) ∈ Σk
out meeting the following

condition. For any P = wi ◦w2r+1 ◦wi such that |wi| ≥ t(n′) and 1 ≤ |w| ≤ ℓpump, there is
an assignment of distinct Θ(logn′)-bit IDs to the vertices in P such that the following is
true. Simulating A on P while assuming that the total number of vertices in the underlying
graph is n′ yields the output labeling f(w)2r+1 for the middle subpath w2r+1.

Proof. In this proof we assume that there is no such a number n′. Then we claim that using
A it is possible to obtain a deterministic LOCAL algorithm for MIS on an n-vertex directed
cycle G without input labeling, in O(t(n)) +O(1) = o(log∗ n) rounds. This contradicts the
well-known Ω(log∗ n) lower bound for MIS [107].

Let G be an n-vertex directed cycle without input labeling. The MIS algorithm on G

is described as follows. Let w ∈ Σk
in with 1 ≤ k ≤ ℓpump be chosen such that for any

function f , the string f(w) ∈ Σk
out does not satisfy the conditions stated in the lemma for

the number n′ = nk. Define G′ as the graph resulting from replacing each vertex v ∈ V (G)

with a path w. We can simulate the imaginary graph G′ in the communication network G
by letting each vertex v ∈ V (G) simulate a path w.

We execute the algorithm A on G′ while assuming that the total number of vertices is
n′. The execution takes t(n′) = O(t(n)) rounds. For each vertex v ∈ V (G), define the color
of v as the sequence of the output labels of the path w2r simulated by the vertex v and the
2r − 1 vertices following v in the directed cycle G. This gives us a proper O(1)-coloring,
since otherwise there must exist a subpath P = w2r+1 of G′ such that the output labeling
of P is of the form y2r+1 for some y, contradicting our choice of w. Using the standard
procedure of computing an MIS from a coloring, with extra O(1) rounds, an MIS of G can
be obtained.

Note that there is a subtle issue about how we set the IDs of vertices in V (G′). The
following method is guaranteed to output distinct IDs. Let v ∈ V (G), and let u1, . . . , uk
be the vertices in V (G′) simulated by v. Then we may use ID(ui) = k · ID(v) + i.

Lemma 4.15. Suppose that the deterministic LOCAL complexity of P is o(log∗ n) on cycle
graphs. Then there exists a feasible function f .

96

Proof. Let A be any deterministic LOCAL algorithm that solves P in t(n) = o(log∗ n)
rounds. Let n′ and f be chosen to meet the conditions in Lemma 4.14 for A. The goal
of the proof is to show that f is a feasible function. According to the conditions specified
in Lemma 4.14 for the function f , we already know that the complete labeling L of each
Gw,z = (Gw,z,L) is locally consistent at all vertices in Mid(Gw,z). Therefore, all we need to
do is the following. For each partially labeled graph Gw1,w2,S, find a complete labeling L⋄

that is locally consistent at all vertices in Mid(Gw1,w2,S).
Given the three parameters w1, w2, and S, define G as the cycle resulting from linking

the two ends of the path wℓpump
1 ◦ w2r+1

1 ◦ wℓpump
1 ◦ S ◦ wℓpump

2 ◦ w2r+1
2 ◦ wℓpump

2 . Define L as
the partial labeling of G which fixes the output labeling of the two subpaths w2r+1

1 and
w2r+1

2 by f(w1)
2r+1 and f(w2)

2r+1, respectively. We write Pmid
1 and Pmid

2 to denote the two
subpaths w2r+1

1 and w2r+1
2 , respectively.

In what follows, we show that the partially labeled graph G = (G,L) admits a legal
labeling L⋄. Since Gw1,w2,S is a subgraph of G = (G,L), such a legal labeling L⋄ is also a
complete labeling of Gw1,w2,S that is locally consistent at all vertices in Mid(Gw1,w2,S).

For the rest of the proof, we show the existence of L⋄. This will be established by
applying a pumping lemma. Define the graph G′ as the result of the following operations
on G.

• Replace the two subpaths wℓpump
1 by wx

1 , where the number x is chosen such that
x|w1| ≥ 2t(n′) + r, and Type(wℓpump

1) = Type(wx
1).

• Replace the two subpaths wℓpump
2 by wy

2 , where the number y is chosen such that
y|w2| ≥ 2t(n′) + r, and Type(wℓpump

2) = Type(wy
2).

The existence of the numbers x and y above is guaranteed by Lemma 4.6. The IDs of
vertices in G′ are assigned as follows. For i = 1, 2, select the IDs of the vertices in∪

v∈Pmid
i

N t(n′)(v) in such a way that the output labeling of Pmid
i resulting from executing

A on G′ while assuming that the total number of vertices is n′ is f(wi)
2r+1. The existence

of such an ID assignment is guaranteed by Lemma 4.14. For all remaining vertices in G′,
select their IDs in such a way that all vertices in N r+t(n′)(v) receive distinct IDs, for each
v ∈ V (G′). This ensures that the outcome of executing A on G′ while assuming that the
total number of vertices is n′ is a legal labeling.

Let L′
⋄ be the legal labeling of G′ resulting from executing A with the above IDs while

pretending that the total number of vertices is n′. Note that L′
⋄ must label Pmid

1 and Pmid
2 by

f(w1)
2r+1 and f(w2)

2r+1, respectively. A desired legal labeling L⋄ of G can be obtained from

97

the legal labeling L′
⋄ of G′ by applying Lemma 4.2, as we have Type(wℓpump

1) = Type(wx
1)

and Type(wℓpump
2) = Type(wy

2).

4.6 The ω(1)—o(log∗ n) Gap
In this section we prove that it is decidable whether a given LCL problem P has complexity
Ω(log∗ n) or O(1) on cycle graphs.

Lemma 4.16. Let f be any feasible function. Let G be any cycle graph. Let P be any set
of disjoint subgraphs in G such that the input labeling of each P ∈ P is of the form wx

such that x ≥ 2ℓpump + 2r, and w ∈ Σk
in is a string with 1 ≤ k ≤ ℓpump. For each P ∈P,

define the subgraph P ′ as follows. If P is a cycle, define P ′ = P . If P is a path, write
P = wℓpump ◦wi ◦wℓpump, and define P ′ as the middle subpath wi. Let L be a partial labeling
of G defined as follows. For each P = wx ∈P, fix the output labels of each subpath w of
P ′ by f(w). Then G = (G,L) admits a legal labeling L⋄.

Proof. Define V1 as the set of all vertices such that v ∈ V1 if v belongs to the middle
subpath wj of some path P = wℓpump ◦ wr ◦ wj ◦ wr ◦ wℓpump ∈ P. By the definition of
feasible function, L is already locally consistent at all vertices in V1. Thus, all we need
to do is to construct a complete labeling L⋄ of G = (G,L), and argue that L⋄ is locally
consistent at all vertices in V2 = V (G) \ V1.

There are two easy special cases. If P = ∅, then no output label of any vertex in G is
fixed, and so G trivially admits a legal labeling. If P contains a cycle, then P = {G},
and hence L is already a legal labeling as V1 = V (G).

In subsequent discussion, we restrict ourselves to the case that P is non-empty and
contains only paths. The output labeling L⋄ is constructed as follows. Define Punlabeled as
the maximal-length subpaths of G that are not assigned any output labels by L. A path
P ∈Punlabeled must be of the form w

ℓpump
1 ◦ S ◦ wℓpump

2 , where w1, w2 ∈ Σ∗
in are two strings

of length at least 1 and at most ℓpump, and S ∈ Σ∗
in can be any string (including the empty

string). Given P ∈Punlabeled, we make the following definitions.

• Define P+ as the subpath of G that includes P and the r|w1| vertices preceding P ,
and the r|w2| vertices following P in the graph G. Note that the set V2 is exactly the
union of vertices in P+ for all P ∈Punlabeled.

98

• Define P++ as the subpath of G that includes P and the 2r|w1| vertices preceding P ,
and the 2r|w2| vertices following P in the graph G. The path P++ must be of the
form w

ℓpump+2r
1 ◦S ◦wℓpump+2r

2 , and the labeling L already fixes the output labels of the
first 2r|w1| and the last 2r|w2| vertices of P++ by f(w1)

2r and f(w2)
2r, respectively.

Observe that the path P++ = w
ℓpump+2r
1 ◦ S ◦ wℓpump+2r

2 together with the labeling L is
exactly the partially labeled graph Gw1,w2,S. We assign the output labels to the vertices in
P by the labeling L⋄ guaranteed in the definition of feasible function. It is ensured that the
labeling of all vertices within P+ are locally consistent. By doing so for each P ∈Punlabeled,
we obtain a desired complete labeling that is locally consistent at all vertices in V2.

Lemma 4.17. Suppose that there is a feasible function f for the LCL problem P. Then
there is an O(1)-round deterministic LOCAL algorithm A on cycle graphs.

Proof. The first step of the algorithm A is to compute an (ℓwidth, ℓcount, ℓpattern)-partition
in O(1) rounds by Lemma 4.12. We set ℓcount = 2ℓpump + 2r and ℓwidth = ℓpattern = ℓpump.
We assume |V (G)| > 2ℓwidth. Recall that an (ℓwidth, ℓcount, ℓpattern)-partition decomposes
the cycle G into two sets of disjoint subgraphs Pshort and Plong.

Define G′ as the graph resulting from applying the following operations on G. For
each P ∈ Pshort, replace the path P by the path P ∗ = x ◦ yi ◦ z such that i = ℓcount,
1 ≤ |y| ≤ ℓpattern, and the type of P ∗ is the same as the type of P . The path P ∗ is obtained
via Lemma 4.5. Note that each path P ∈Pshort has at least ℓwidth = ℓpump vertices and at
most 2ℓwidth = 2ℓpump vertices. Define P∗ as the set of all P ∗ such that P ∈ Pshort. The
graph G′ is simulated in the communication graph G by electing a leader for each path
P ∈Pshort to simulate P ∗.

Calculate a partial labeling L′ of G′ using the feasible function f as follows. Recall
ℓcount = 2ℓpump + 2r. For each P ∗ = x ◦ yℓpump ◦ y2r ◦ yℓpump ◦ z ∈ P∗, label the middle
subpath y2r by the function f . For each P = wℓpump ◦wi ◦wℓpump ∈Plong, label the middle
subpath wi by f(w)i. Even though a path P ∈ Plong can have ω(1) vertices, this step
can be done locally in O(1) rounds due to the following property of (ℓwidth, ℓcount, ℓpattern)-
partition. All vertices in a path P ∈ Plong agree with the same direction and know the
primitive string w.

By Lemma 4.16, the remaining unlabeled vertices in G′ can be labeled to yield a legal
labeling of G′. This can be done in O(1) rounds since the connected components formed
by unlabeled vertices have at most O(1) vertices. Given any valid labeling of G′, a legal

99

𝑃 ∈ 𝒫short 𝑃′ = 𝑤𝑘 ∈ 𝒫long

𝑥 𝑦 𝑧

𝑃′ = 𝑤𝑘 ∈ 𝒫long

𝑥

𝑦𝑖

𝑧

𝐺

𝐺′

𝑃∗ 𝑃′ = 𝑤𝑘 ∈ 𝒫long

𝑥

𝑦𝑖

𝑧 𝑤ℓpump 𝑤ℓpump𝑤𝑗

𝑃′ = 𝑤𝑘 ∈ 𝒫long

𝑥

𝑦𝑖

𝑧 𝑤ℓpump 𝑤ℓpump𝑤𝑗

𝑃 ∈ 𝒫short 𝑃′ = 𝑤𝑘 ∈ 𝒫long

𝑥 𝑦 𝑧

(1)

(2) (3)

(4)

𝑃∗𝑃∗

Figure 4.2: Illustration of Lemma 4.17.

labeling of G can be obtained by applying Lemma 4.2 in O(1) rounds. Remember that
Type(P) = Type(P ∗) for each P ∈ Pshort, and G′ is exactly the result of replacing each
P ∈Pshort by P ∗.

See Figure 4.2 for an illustration of Lemma 4.17: (1) applying a pumping lemma to
extend each path P ∈ Pshort; (2) labeling the middle subpath y2r of P ∗ = x ◦ yℓpump ◦
y2r ◦ yℓpump ◦ z ∈ P∗ and the middle subpath wj of P ′ = wℓpump ◦ wi ◦ wℓpump ∈ Plong by
the function f ; (3) the remaining unlabeled vertices in G′ can be labeled to yield a legal
labeling of G′ by Lemma 4.16; (4) since Type(P) = Type(P ∗) for each P ∈Pshort, we can
recover a legal labeling of G by re-labeling vertices in each P ∈Pshort.

Combining Lemma 4.13, Lemma 4.15, and Lemma 4.17, we have proved Theorem 4.2.
That is, for any LCL problem P on cycle graphs, its deterministic LOCAL complexity is
either Ω(log∗ n) or O(1). Moreover, there is an algorithm that decides whether P has
complexity Ω(log∗ n) or O(1) on cycle graphs; for the case the complexity is O(1), the
algorithm outputs a description of an O(1)-round deterministic LOCAL algorithm that
solves P .

100

Chapter 5

The Complexity of Distributed Edge
Coloring

5.1 Overview
Recall that a k-edge coloring of a graph G = (V,E) is a function ϕ : E → {1, . . . , k}
such that edges sharing an endpoint are colored differently; the parameter k is called the
palette size. In this chapter, we study edge coloring problems in the LOCAL model. The
distributed complexity of computing a k-edge coloring depends heavily on the value of k,
relative to the maximum degree ∆, and whether vertices can generate random bits.

5.1.1 Edge Coloring Algorithms

In this section, we review previous edge coloring algorithms in descending order by palette
size; see Table 5.1 for a summary.

Edge coloring can be interpreted as a vertex coloring problem on the line graph L(G), in
which edges becomes vertices and two edges are adjacent if they share an endpoint; the line
graph has maximum degree ∆̂ = 2∆ − 2. Applied to L(G), Linial’s [107] vertex coloring
algorithm will compute an O(∆̂2)-edge coloring in O(log∗ n− log∗ ∆̂ + 1) time. Using the
fastest deterministic (∆̂+1)-vertex coloring algorithms [65, 120], (2∆− 1)-edge coloring is
solved in min{2O(

√
logn), Õ(

√
∆) + O(log∗ n)} time. Barenboim, Elkin, and Maimon [22]

gave deterministic algorithms for (2k∆)-edge coloring (k ≥ 2) in Õ(k∆1/2k) + O(log∗ n)
time.

Barenboim, Elkin, Pettie, and Schneider [23] proved that O(log∆) iterations of the

101

natural randomized (2∆ − 1)-edge coloring algorithm effectively shatters the graph into
uncolored components of n′ = poly(logn) vertices; then we can employ a deterministic list
coloring algorithm to color these components in 2O(

√
logn′) = 2O(

√
log logn) time [120]. Thus,

the total time complexity is O(log∆) + 2O(
√

log logn).
Elkin, Pettie, and Su [55] proved that when ∆ > (logn)1+γ (for some constant γ),

(2∆ − 1)-edge coloring can be solved in O(log∗ n) time in RandLOCAL. Fischer, Ghaf-
fari, and Kuhn [62] proved that (2∆ − 1)-edge coloring can be solved in O(log7∆ logn)
time in DetLOCAL. This was later improved to O(log2 n log4∆) by Ghaffari, Harris, and
Kuhn [69]. Together with [23] and [55], this implies an O((log logn)6)-time RandLOCAL
algorithm. Using a slightly larger palette of (2 + ϵ)∆ colors, ϵ > 1/ log∆, Ghaffari et
al. [70] (improving [GhaffariS17]) gave an O(ϵ−1 log2∆ log log∆(log log log∆)1.71 logn)-
time DetLOCAL edge coloring algorithm.

Below the Greedy Threshold. The number “2∆− 1” arises because it is the smallest
palette size with the property that any partial coloring can be extended to a total coloring,
by the trivial greedy algorithm. Below the greedy threshold 2∆ − 1, iterative coloring
algorithms must be more careful in how they proceed. In particular, at intermediate
stages in the algorithm, edges must keep their available palettes relatively large compared
to the size of their uncolored neighborhood.

Using the Rödl nibble technique, Dubhashi, Grable, and Panconesi [52] gave a
RandLOCAL algorithm for (1 + ϵ)∆-edge coloring in O(logn) time, provided that ∆ is
sufficiently large, e.g., even when ϵ is constant, ∆ > (logn)1+γ. Elkin, Pettie, and Su [55]
gave RandLOCAL algorithms for (1 + ϵ)∆-edge coloring that are faster when ∆ is large
and work for all ∆ via a reduction to the distributed Lovász local lemma (LLL); see Sec-
tion 5.1.3 for a discussion of the distributed LLL. The (1 + ϵ)∆-edge coloring problem is
solved in O(log∗ n ·

⌈ logn
∆1−o(1)

⌉
) time. The running time of the Dubhashi-Grable-Panconesi

and Elkin-Pettie-Su algorithms depend polynomially on ϵ−1. In both algorithms it is clear
that ϵ need not be constant, but it is not self-evident how small it can be made as a
function of ∆.

The
⌈ logn
∆1−o(1)

⌉
-factor in the time complexity is due to the application of the Chung-Pettie-

Su LLL algorithm [44]. If ∆ is sufficiently small, this algorithm can be sped up using faster
LLL algorithms for small degree graphs [61, 69].

102

Limits to Coloring Strategies. A natural limit for randomized coloring strategies is a
(∆+O(

√
∆))-size palette. This is the threshold at which we have a constant probability of

being able to color e, given a random feasible coloring of its neighborhood. Edge coloring
with this palette size was achieved in 1987 by Karloff and Shmoys [95] in the context of
parallel (PRAM) algorithms, but has never been achieved in the LOCAL model.

We cannot hope to use fewer than ∆+ 1 colors on general graphs. Vizing [142] proved
that ∆ + 1 suffices for any graph, and Holyer [88] proved that it is NP-hard to tell if a
graph is ∆-colorable. The best sequential (∆ + 1)-edge coloring algorithms [7, 67] run in
O(min{∆m logn, m

√
n logn}) time and are not suited for implementation in the LOCAL

model. When the palette size is ∆ + o(
√
∆), a natural way to solve the problem [7, 67]

is to begin with any maximal partial coloring, and then iteratively recolor portions of the
graph (e.g., along “augmenting paths”) so that at least one uncolored edge can be legally
colored. This approach was successfully employed by Panconesi and Srinivasan [122] in
their distributed algorithm for Brooks’ theorem, which states that any graph with ∆ ≥ 3

having no (∆+1)-cliques is ∆-vertex colorable. They proved that for any partial coloring,
there exists an augmenting path with length O(log∆ n), and that given a (∆ + 1)-vertex
coloring, a ∆-vertex coloring could be computed in O(log2 n log∆ n) additional time (this
complexity was later improved in [75]).

5.1.2 Lower Bounds

Linial’s Ω(log∗ n) lower bound for O(1)-coloring the ring [107, 115] implies that f(∆)-edge
coloring also cannot be computed in o(log∗ n) time, for any function f . To the best of our
knowledge, none of the other published lower bounds applies directly to the edge coloring
problem. Kuhn, Moscibroda, and Wattenhofer’s Ω(min{ log∆

log log∆
,
√

logn
log logn

}) lower bounds
apply to MIS and maximal matching, but not to any vertex or edge coloring problem.
Linial’s Ω(log∆ n) lower bound [107] (see [129, p. 265]) on o(∆/ ln∆)-vertex coloring
trees does not imply anything for edge coloring trees. The lower bounds of Brandt et
al. [31] (RandLOCAL Ω(log∆ logn)) and the Chapter 2 of this thesis (DetLOCAL Ω(log∆ n))
for sinkless orientation and ∆-vertex coloring trees do not naturally generalize to edge
coloring. In fact, Brandt et al.’s lower bound technique requires that the input graph be
∆-regular and come equipped with a ∆-edge coloring.

103

Palette Size Time (Rand) Notes References
f(∆) Ω(log∗ n) R ∆ = O(1) [107, 115]
O(∆2) O(log∗ n− log∗ ∆+ 1) ⋆ Vertex coloring L(G) [107]
∆1+ϵ O(log∆ logn) Vertex coloring L(G) [18]
O(∆ logn) O(log4 n) [47]
t(2∆− 2) (∆/t)O(1) ·O(logn) Vertex coloring L(G) [18]
2k∆ Õ(k∆1/2k) +O(log∗ n) ⋆ k ≥ 2 [GhaffariS17, 22]

O(ϵ−3 log11 n) [GhaffariS17]
(2 + ϵ)∆

O(ϵ−1 log∆2+o(1) logn) ⋆ ϵ > 1/ log∆ [70]

2O(
√

log n) Vertex coloring L(G) [120]

Õ(
√
∆) +O(log∗ n) ⋆ Vertex coloring L(G) [65]

O(log∆) + 2O(
√

log log n) R Vertex coloring L(G) [23]
2∆− 1 O(log∗ n) R⋆ ∆ > (logn)1+o(1) [55]

2O(
√

log log n) R [55]
O(log4 ∆ log2 n) ⋆ [69]
O((log logn)6) R⋆ [23]+[55]+[69]
Ω(log∆ logn) R new

2∆− 2
Ω(log∆ n) new

1.6∆ O(logn) R ∆ > log1+o(1) n [121]
O(ϵ−1 log ϵ−1 + logn) R ∆ > (logn)1+γ(ϵ) [52]

(1 + ϵ)∆
O
(
(ϵ−2 log ϵ−1 + log∗ ∆)

⌈
log n

ϵ2∆1−o(1)

⌉)
R ∆ > ∆ϵ [55]

O
(

log ϵ−1
⌈

log n
ϵ2∆1−o(1)

⌉
+ log∗ n

)
R⋆ ϵ∆ > (logn)1+o(1) new

O
(

log ϵ−1
⌈

log n
ϵ2∆1−o(1)

⌉
+ (log logn)3+o(1)

)
R⋆ ∆ > ∆ϵ new

∆+ Õ(
√
∆) O

(
log∆

⌈
log n

ϵ2∆1−o(1)

⌉
+ (log logn)3+o(1)

)
R⋆ new

∆+ 1 diameter(G) ⋆ [142]

Table 5.1: A history of notable edge coloring algorithms and lower bounds, in de-
scending order by palette size. Some (2∆ − 1)-edge coloring algorithms
that follow from vertex coloring L(G), such as [12, 17, 21, 103], have been
omitted for brevity. RandLOCAL algorithms are marked with R; all others
work in DetLOCAL. Those algorithms that are the “best” in any sense are
marked with a ⋆.

104

Criterion Time Rand/Det Notes Reference
O(MIS · log1/ep(d+1) n) Rand also asymmetric criterion [112]

ep(d+ 1) < 1 O(WeakMIS · log1/ep(d+1) n) Rand also asymmetric criterion [44]
O(log d · log1/ep(d+1) n) Rand also asymmetric criterion [68]+[44]

epd2 < 1 O(log1/epd2 n) Rand also asymmetric criterion [44]
poly(d)2d < 1 O(logn/ log logn) Rand [44]

p(ed)λ < 1 O(n1/λ · 2O(
√

log n)) Det Any λ ≥ 1 [61]

p(ed)4λ < 1 O(d2 + (logn)1/λ · 2O(
√

log log n)) Rand Any λ ≥ 8 [61]

p(ed)32 < 1 2O(
√

log log n) Rand Requires d < (log logn)1/5 [61]

p20000d8 < 1 exp(i)

(
O

(√
log(i+1) n

))
Rand Requires d < 2

√
log(i+1) n [69]

p(ed)d
2+1 < 1 O(d2 + log∗ n) Det [61]

Lower Bounds (apply to tree-structured instances)
p · f(d) < 1 Ω(log∗ n) Rand Any f [44]
p · f(d) ≤ 1 Ω(loglog(1/p) logn) Rand Any f(d) ≤ 2d [31]
p · f(d) ≤ 1 Ω(logd n) Det Any f(d) ≤ 2d Theorem 2.3

LLL for Tree-Structured Instances
p(ed)2 < 1 O(logn) Det new
p(ed)λ < 1 O(max{logλ n,

log n
log log n}) Det λ ≥ 2 new

p(ed)λ < 1 O(max{logλ logn, log log n
log log log n}) Rand λ ≥ 2(4r + 8r) new

Table 5.2: A survey of distributed LLL algorithms (with a symmetric LLL criterion).
MIS = O(min{d + log∗ n, log d + 2O(

√
log logn)}) [21, 68] is the complexity of

computing a maximal independent set in a graph with maximum degree
d. WeakMIS = O(log d) [68] is the task of finding an independent set I such
that the probability that v is not in/adjacent to I is 1/poly(d). All lower
bounds apply even to tree-structured instances. We do not optimize the
LLL criterion λ ≥ 2(4r + 8r).

105

5.1.3 Distributed Lovász Local Lemma

Randomized coloring algorithms in the LOCAL model are often composed of O(1)-round
routines that commit to a partial coloring, whose local probability of failure is small, as a
function of ∆. Using a distributed Lovász local lemma (LLL) algorithm, we can guarantee
global success with probability 1− 1/poly(n) (using a randomized LLL algorithm) or even
1 (using a deterministic LLL algorithm). Table 5.2 summarizes distributed LLL algorithms
under different symmetric criteria p · f(d) < 1, where p is the local probability of failure
and d is the maximum degree in the dependency graph. In distributed coloring algorithms
it is typical to see d = poly(∆) and p = exp(−dΩ(1)), i.e., any polynomial LLL criterion of
the form p(ed)c < 1 where c = O(1) is good enough.

We conjecture that the RandLOCAL complexity of the LLL under some polynomial LLL
criterion is O(log logn), matching the Brandt et al. [31] lower bound. If this conjecture
were true, due to the necessity of graph shattering (Theorem 2.1), an optimal random-
ized LLL algorithm should be structured as follows. It must combine an O(logn)-time
deterministic LLL algorithm and an O(log logn)-time randomized graph shattering routine
to break the dependency graph into poly(logn)-size LLL instances. Fischer and Ghaf-
fari [61] exhibited a deterministic n1/λ+o(1)-time algorithm for LLL criterion p(ed)λ < 1,
and an O(d2 + log∗ n) routine to shatter the dependency graph into poly(logn)-size com-
ponents. More recently, Ghaffari, Harris, and Kuhn [69] developed a generic derandom-
ization method for the LOCAL model that implies randomized LLL algorithms with time
exp(i)(O(

√
log(i+1) n)) for sufficiently small d.

5.1.4 New Results

We present new upper and lower bounds on the complexity of edge coloring in the regimes
between palette size ∆ and 2∆− 2, i.e., strictly below the “greedy” threshold 2∆− 1.

Round Elimination. Our first result is a lower bound on (2∆− 2)-edge coloring using
a simplified version of Brandt et al.’s [31] round elimination technique. Roughly speaking,
their idea is to convert any randomized t-round algorithm with local error probability p into
a (t − 1)-round algorithm with error probability ≈ p1/∆. By iterating the procedure they
obtain a 0-round algorithm with error probability ≈ p∆

t . If any 0-round algorithm must
have constant probability of failure, then t = Ω(log∆ log p−1). By setting p = 1/poly(n) we
get Ω(log∆ logn) RandLOCAL lower bounds for some problems, e.g., sinkless orientation.

106

We present a much simplified round elimination technique that appears to give quantita-
tively worse bounds, but which can be automatically strengthened to match those of [31].
Rather than try to shave one round off the running time of every processor, it is signifi-
cantly simpler to do it piecemeal, which leads us to the useful concept of an irregular time
profile. Suppose that the graph is initially k-edge colored, k being at least 2∆−1 so as not
to trivialize the problem. An algorithm has irregular time profile t = (t1, . . . , tk) if edges
with input color i choose their output color by examining only their ti-neighborhood. In
our simplified round-elimination technique, we show that any algorithm with time profile
(t, t, · · · , t︸ ︷︷ ︸

i

, t− 1, · · · , t− 1︸ ︷︷ ︸
k−i

) and error probability p can be transformed into one with time

profile (t, t, · · · , t︸ ︷︷ ︸
i−1

, t− 1, · · · , t− 1︸ ︷︷ ︸
k−i+1

) and error probability O(p1/3), only by changing the algo-

rithm for edges initially colored i. By iterating this process we arrive at Ω(∆−1 log log p−1)

lower bounds, which has a weaker dependence on ∆ than [31]. By following the proofs in
Chapter 2, any randomized lower bound of this type implies Ω(log∆ n) lower bounds in
DetLOCAL, and hence Ω(log∆ logn) lower bounds in RandLOCAL.

Faster (1+ϵ)∆-edge Coloring. The (1+ϵ)∆-edge coloring algorithms of [52, 55] are slow
(with a polynomial dependence on ϵ−1) and have limits on how small ϵ can be, as a function
of ∆. We prove that the most “natural” randomized algorithm converges exponentially
faster with ϵ−1 and can achieve palette sizes close to the minimum of ∆+ Õ(

√
∆) allowed

by the nibble method. In particular, for any ϵ = Ω̃(1/
√
∆), (1 + ϵ)∆-edge coloring is

reducible to O(log ϵ−1) instances of the Lovász local lemma with local failure probability
exp(−ϵ2∆1−o(1)), plus one instance of O(∆)-edge coloring, which can be solved quickly
using [23, 55, 70]. When ϵ2∆ ≫ logn the error is 1/poly(n); otherwise we can invoke a
distributed LLL algorithm [44, 61, 112]. The

⌈ logn
ϵ2∆1−o(1)

⌉
-factor in Table 5.1 is due to the

O(log1/epd2 n)-time LLL algorithm of [44], with 1/epd2 = exp(ϵ2∆1−o(1)).

Upper Bounds on Trees. Our lower bound on (2∆− 2)-edge coloring applies even to
trees. In order to adapt our randomized (1+ϵ)∆-edge coloring algorithms to trees, we need
a special LLL algorithm for tree structured dependency graphs. Using the framework of
Fischer and Ghaffari [61], we give a deterministic O(max{logλ n, logn/ log logn})-time LLL
algorithm for such instances under criterion p(ed)λ < 1, λ ≥ 2. The algorithm is based on a
special network decomposition algorithm for tree-structured graphs, in which one color class

107

has diameter O(logλ n) while the other color classes have diameter 0. We also present a new
graph shattering routine for tree-structured LLL instances that runs in time O(logλ logn),
improving the O(d2 + log∗ n)-time shattering routine of [61] when d is not too small. (The
new graph shattering method can be viewed as an algorithm that computes the final state of
a certain contagion dynamic exponentially faster than simulating the actual contagion.) By
composing these results we obtain a randomized O(max{logλ logn, log logn/ log log logn})
LLL algorithm for trees, which essentially matches the lower bound of [31]. See Table 5.2.

A Distributed Vizing’s Theorem? Suppose that a distributed (∆ + 1)-edge color-
ing algorithm begins with a partial coloring and iteratively recolors subgraphs, always
increasing the subset of colored edges. If this algorithm works correctly given any partial
coloring, we prove that it takes Ω(∆ logn) time in any LOCAL model, and more generally,
(∆ + c)-coloring takes Ω(∆

c
logn) time. This establishes a quantitative difference between

the “locality” of Vizing’s theorem and Brooks’ theorem [122].

Organization. In Section 5.2 we give lower bounds on (2∆ − 2)-edge coloring. In Sec-
tion 5.3 we give a randomized (1+ϵ)∆-edge coloring algorithm, which requires a distributed
LLL algorithm when ϵ2∆ is sufficiently small. Some details in Section 5.3 are left to Sec-
tion 5.4.

In Section 5.5 we give new LLL algorithms for tree-structured dependency graphs. In
Section 5.6 we present new network decomposition algorithms for trees, which are used in
Section 5.5. In Section 5.7 we prove some bounds on the problems of ∆- and (∆+ 1)-edge
coloring trees. In Section 5.8 we give lower bounds on a class of “recoloring” algorithms
for Vizing’s theorem.

Remark 5.1. After the initial publication of this work in [38], we learned that Molloy and
Reed [111] also obtained a bound of ∆+O(

√
∆ log4∆) on the palette size for edge coloring.

Their algorithm was more general in that it extends to k-uniform hypergraphs (with palette
size ∆ + O(∆1−1/k log4∆)) and list-coloring. The main difference between our work and
theirs [111] is the analysis. We use a concentration bound [53, Equation (8.5)] that takes
into account the variance of each variable. The analysis of [111] is based on Talagrand’s
concentration inequality. Our result is slightly better in terms of the polylog-factor, and it
also improves the existential bound on the palette size for list edge coloring. Specifically,
if each edge is given a list of (1 + ϵ)∆ with ϵ = ω((log2.5∆)/

√
∆) colors, then the graph

admits a proper list edge coloring.

108

5.2 Lower Bound for (2∆− 2)-Edge Coloring
The sinkless orientation problem is to direct the edges such that no vertex has out-degree
zero. Since this problem becomes harder with fewer edges, we let ∆ denote the minimum
degree in this problem, whereas in the edge coloring problem∆ is still the maximum degree.
We first observe that sinkless orientation on 2-vertex colored bipartite graphs is reducible
to (2∆− 2)-edge coloring.

Theorem 5.1. Suppose Ae.c. is a t-round (2∆−2)-edge coloring algorithm with local failure
probability p. There is a (t+1)-round sinkless orientation algorithmAs.o. for 2-vertex colored
graphs with minimum degree ∆ whose local failure probability is p.

Proof. Ae.c. produces a proper partial (2∆− 2)-edge coloring ϕ : E → {1, . . . , 2∆− 2,⊥}
such that for all v ∈ V , Pr[∃(u, v) : ϕ(u, v) = ⊥] ≤ p, i.e., a vertex errs if not all of its
edges are colored. Suppose we are given a bipartite graph G = (V,E) with a 2-coloring
V → {0, 1} and minimum degree ∆. In the first round of As.o., each vertex selects ∆ of
its incident edges arbitrarily and notifies the other endpoint whether it was selected. Let
G′ = (V,E ′) be the subgraph of edges selected by both endpoints. The algorithm As.o.

runs Ae.c. on G′ for t rounds to get a partial coloring ϕ : E ′ → {1, . . . , 2∆ − 2,⊥}, then
orients the edges as follows. Recall that the underlying graph G is 2-vertex colored. Let
e = {u0, u1} ∈ E be an edge with uj colored j ∈ {0, 1}. If both u0 and u1 do not select e,
then e is oriented arbitrarily. Otherwise, As.o. orients e as follows.

As.o.({u0, u1}) =



0→ 1
if {u0, u1} ∈ E ′ and ϕ(u0, u1) ∈ {1, 2, . . . ,∆− 1,⊥},
or if only u0 selected {u0, u1}.

0← 1
if {u0, u1} ∈ E ′ and ϕ(u0, u1) ∈ {∆, . . . , 2∆− 2},
or if only u1 selected {u0, u1}.

The only way a vertex v can be a sink is if (i) v has degree exactly ∆ in G′, (ii) v is colored
1, and (iii) each edge e incident to v has ϕ(e) ∈ {1, 2, . . . ,∆ − 1,⊥}. Criterion (iii) only
occurs with probability at most p.

Thus, any lower bound for sinkless orientation on 2-vertex colored graphs also applies
to (2∆ − 2)-edge coloring. Define T∆ to be an infinite ∆-regular tree whose vertices are
properly 2-colored by {0, 1} and whose edges are assigned a proper (2∆ − 1)-coloring

109

uniformly at random. One could generate such a coloring as follows. Pick an edge and
assign it a random color, then iteratively pick any vertex u with one incident edge colored,
choose ∆ − 1 colors at random from the

(
2∆−2
∆−1

)
possibilities, then assign them to u’s

remaining uncolored edges uniformly at random. Randomized algorithms that run on
T∆ know the edge coloring and how it was generated. Thus, the probability of failure
depends on the random bits generated by the algorithm, and those used to generate the
edge coloring.

For simplicity we suppose that the edges host processors, and that two edges can com-
municate if they are adjacent in the line graph L(T∆). Define N t(e) to be all edges within
distance t of e in the line graph; we also use N t(e) to refer to all information stored in the
processors within N t(e); this includes edge coloring, vertex coloring, and the random bits.

Recall that an algorithm has irregular time profile t = (t1, . . . , tk) if edges with input
color i decide their output by examining only their ti-neighborhood. By definition, a time-t
algorithm has time profile (t, t, t, . . . , t).

Lemma 5.1 (Round Elimination Lemma). Suppose As.o. is a sinkless orientation algo-
rithm for T∆ with error probability p and time profile (t, t, . . . , t︸ ︷︷ ︸

i

, t − 1, . . . , t − 1), i.e.,

edges colored {1, . . . , i} halt after t rounds and the others after t − 1 rounds. There
exists a sinkless orientation algorithm A′

s.o. with error probability 3p1/3 and time profile
(t, t, . . . , t︸ ︷︷ ︸

i−1

, t− 1, . . . , t− 1).

Proof. Only edges colored imodify their algorithm; all others behave identically underA′
s.o.

and As.o.. Let e0 = {u0, u1} be an edge colored i with uj colored j ∈ {0, 1} and let the
remaining edges incident to u0 and u1 be {e1, . . . , e∆−1} and {e∆, . . . , e2∆−2}, respectively.
Consider the following two events regarding the output of As.o..

E0 : ∀j ∈ [1,∆− 1],As.o.(ej) = 0← 1 I.e., u0 has outdegree 0 in G− {e0}
E1 : ∀j ∈ [∆, 2∆− 2],As.o.(ej) = 0→ 1 I.e., u1 has outdegree 0 in G− {e0}

If both events hold, then either u0 or u1 must be a sink, so

Pr[E0 ∩ E1] ≤ 2p (5.1)

110

On edge e0, A′
s.o. runs for t− 1 rounds and determines whether the following events occur.

E⋆0 :
[
Pr[E0 |N t−1(e0)] ≥ p1/3

]
, E⋆1 :

[
Pr[E1 |N t−1(e0)] ≥ p1/3

]
Notice that if we inspect N t−1(e0), and condition on the information seen in N t−1(e0),
the events E0 and E1 become independent, since they now depend on disjoint sets of ran-
dom variables. Specifically, E0 depends on

∪
j∈[1,∆−1]N

t(ej)\N t−1(e0) and E1 depends on∪
j∈[∆,2∆−2]N

t(ej)\N t−1(e0). Thus,

Pr[E0 ∩ E1 | N t−1(e0)] = Pr[E0 |N t−1(e0)] · Pr[E1 |N t−1(e0)] (5.2)

Since E⋆0 , E⋆1 are determined by N t−1(e0), (5.2) implies that Pr[E0 ∩E1 | E⋆0 ∩E⋆1] ≥ p2/3, and
with (5.1) we deduce that

Pr[E⋆0 ∩ E⋆1] ≤ 2p1/3 (5.3)

The algorithm A′
s.o. orients e0 as follows.

A′
s.o.(e0) =

{
0→ 1 if E⋆0 holds
0← 1 otherwise

We now calculate the failure probabilities of u0 and u1.

Pr[u0 is a sink] = Pr[E⋆0 ∩ E0]
≤ Pr[E0 | E⋆0] ≤ p1/3, by definition of E⋆0

Pr[u1 is a sink] = Pr[E⋆0 ∩ E1]
≤ Pr[E⋆0 ∩ E⋆1] + Pr[E1 ∩ E⋆1]
≤ 2p1/3 + p1/3 = 3p1/3, by (5.3) and the definition of E⋆1 .

The failure probability of the remaining vertices (those not incident to any edge colored i)
is the same under As.o. and A′

s.o..

Lemma 5.2. Any sinkless orientation algorithm for T∆ with local error probability p has
time complexity Ω(∆−1 log log p−1).

Proof. Let As.o. be a t-round algorithm with error probability p, i.e., it has time profile

111

(t, t, . . . , t). Applying Lemma 5.1 t(2∆−1) times we get an algorithm A′
s.o. with time profile

(0, 0, . . . , 0) and error probability p0 = O(p3
−t(2∆−1)

). We now claim that p0 must also be
at least 8−∆. Any 0-round orientation algorithm can be characterized by a real vector
(q1, . . . , q2∆−1), where qi is the probability that an edge colored i is oriented as 0 → 1.
Without loss of generality, suppose that q1, . . . , q∆ ≥ 1/2. Fix any v ∈ V (T∆) labeled 1.
The probability that v is a sink is at least the probability that its edges are initially colored
{1, . . . ,∆} and that they are all oriented away from v, hence p0 ≥

(
2∆−1
∆

)−1 · 2−∆ ≥ 2−3∆.
Combining the upper and lower bounds on p0 we have

23∆ ≥ p−1
0 = Ω((p−1)3

−t(2∆−1)

)

and taking logs twice we have

log(3∆) ≥ log log p−1 − t(2∆− 1) log 3−O(1)

which implies that t = Ω(∆−1 log log p−1).

Theorem 5.2. Even on 2-vertex colored trees or 2-vertex colored graphs of girth Ω(log∆ n),
sinkless orientation and (2∆ − 2)-edge coloring require Ω(log∆ logn) time in RandLOCAL
and Ω(log∆ n) time in DetLOCAL.

Proof. Consider any sinkless orientation or (2∆ − 2)-edge coloring algorithm with local
probability of failure p. Lemma 5.2 applies to any vertex v and any radius t such that
N t(v) is consistent with a subgraph of T∆. Thus, on degree-∆ trees or graphs of girth
Ω(log∆ n) [29, 48], we get Ω(min{∆−1 log log p−1, log∆ n}) lower bounds. Following the
same proof as Theorem 2.3, this implies an Ω(log∆ n) lower bound in DetLOCAL, which also
implies an Ω(log∆ logn) lower bound in RandLOCAL. In other words, the weak RandLOCAL
lower bound Ω(∆−1 log logn) implied by Lemma 5.2 automatically implies a stronger lower
bound.

5.3 Randomized Edge Coloring Algorithm
Elkin, Pettie, and Su [55] showed that for any constant ϵ > 0, there is a number ∆ϵ such
that for ∆ > ∆ϵ, ∆(1 + ϵ)-edge coloring can be solved in

O(TLLL(n, poly(∆), exp(−ϵ2∆/poly(log∆))) + T ∗(n,O(∆)))

112

rounds in the RandLOCAL model, where

TLLL(n, d, p) is the RandLOCAL complexity for constructive LLL with the parameters d
and p on an n-vertex dependency graph.

T ∗(n,∆′) is the RandLOCAL complexity for 5∆′-edge coloring on an n-vertex graph of
maximum degree ∆′.

It is unclear to what extent the algorithm of [55] (or its predecessor [52]) still works if we
allow ϵ = o(1). For instance, it is unknown whether (∆+∆0.7)-edge coloring can be solved
in RandLOCAL.

Challenges to Reducing the Number of Colors. The analysis of our algorithm is
substantially more involved than all previous edge coloring algorithms [52, 55, 121]. Here
we give a short technical review of the types of issues faced in distributed edge coloring.

Previous algorithms [52, 55] are based on the Rödl Nibble method. In each round, ev-
ery uncolored edge nominates itself to be colored with probability O(ϵ) and remains idle
otherwise; a self-nominated edge picks a free color from its available palette and perma-
nently colors itself if the colors selected by adjacent edges do not conflict with it. The
goal is to show that natural quantities (palette size, degree of vertices in the uncolored
graph, etc.) are sharply concentrated around their expectations. The first issue is find-
ing the right concentration bound. Chernoff bounds are insufficient for several reasons,
one of which is the need for independence (or negative dependence [53, 54]) between the
events of interest. Azuma’s inequality and variants fall short due to the weakness of
Lipschitz properties (bounded differences).23 The algorithm of Dubhashi, Grable, and
Panconesi [52] used a specialized concentration inequality of Grable [83], whereas our al-
gorithm and that of Elkin, Pettie, and Su [55] use one [53, Thm. (8.5)] that is syntactically
closer to Chernoff/Hoeffding/Azuma-type inequalities. It is restated as Theorem 5.4 in
Section 5.4.

The purpose of the “self-nomination” step in [52, 55] is to simplify certain aspects of the
analysis. For example, the probability that an edge is successfully colored, conditioned on it
nominating itself, is a very high 1−O(ϵ). Because of this, we can afford to toss out any color

23This can be seen by considering the problem of bounding the c-degree of a vertex v (the number of
edges incident to v with color c in their palettes). This quantity potentially depends on the choices of
Ω(∆3) edges within distance 3 of v, and each such choice could affect v’s c-degree by 1 or more. The
sum of these Lipschitz constants completely dwarfs the expected c-degree, which makes Azuma-type
inequalities inapplicable.

113

c from e’s palette if any nominated edge e′ adjacent to e selects c— regardless of whether e′

successfully colors itself. This type of subtle change generally makes things simpler. Some
events which would ordinarily be dependent become independent, and some variables (e.g.,
a vertex’s c-degree) now depend on Θ(∆2) variables rather than Θ(∆3). The downside of
this approach is that Ω(ϵ−1) steps are necessary to color a large fraction of the graph,
and with each coloring step the quantities we are monitoring (c-degree, palette size, etc.)
deviate further from their expectations. When ϵ−1 is polynomial in ∆, the accumulated
deviation errors make it impossible to achieve palette sizes as small as ∆+ Õ(

√
∆).

Our algorithm is more “natural” than [52, 55]. Roughly speaking, in each step each edge
chooses a color uniformly at random from its available palette and permanently colors itself
if there are no local conflicts. I.e., we dispense with the low probability self-nomination
step. Let pi be a lower bound on the palette size after i such steps, and di, ti be upper
bounds on uncolored degree and c-degree of any vertex, respectively. It is straightforward
to show that if everything behaves precisely according to expectation, the (di) sequence
shrinks by a (1− e−2) factor in each step and both (pi), (ti) shrink by a (1− e−2)2 factor.
In reality these quantities do deviate from their expectations, and even tiny, (1 + o(1))-
factor deviations compound themselves and spin out of control. One reason our analysis
is more complex than [52, 55] is that we look at concentration up to lower order terms.
For example, although pi ≈ ti, we bound βi = pi

ti
− 1, which captures accumulated errors

beyond the leading constants.
As in [55], we obtain good concentration in di, pi, ti with probability 1 −

exp(−ϵ2∆/ log4+o(1)∆), which is 1 − 1/poly(n) if ∆ and ϵ are sufficiently large. If not,
we must invoke a Lovász Local Lemma algorithm to make sure each random coloring ex-
periment introduces bounded deviation errors in di, pi, ti. A constant fraction of the edges
are colored in each step. For many parameter regimes the running time is dominated by
O(log ϵ−1) calls to an LLL algorithm.

In this section, we prove the following theorem, which improves upon the algorithm
of [52, 55].

Theorem 5.3. Let ϵ = ω
(

log2.5 ∆√
∆

)
be a function of ∆. If ∆ > ∆ϵ is sufficiently large there

is a RandLOCAL algorithm for (1 + ϵ)∆-edge coloring in time

O (log(1/ϵ)) · TLLL
(
n, poly(∆), exp(−ϵ2∆/ log4+o(1)∆)

)
+ T ∗ (n,O(ϵ∆)) .

114

Notice that exp(−ϵ2∆/ log4+o(1)∆) = exp(−ω(log∆)), so we may use a distributed LLL
algorithm under any criterion p(ed)λ < 1. There is an inherent tradeoff between the palette
size and the runtime in Theorem 5.3. Selecting smaller ϵ allows us to use fewer colors, but
it leads to a higher p = exp(−ϵ2∆/ log4+o(1) ∆), which may increase the runtime of the
LLL algorithm.

Runtime of 5∆′-edge Coloring. It is known that T ∗(n,∆′) is at mostO(log∆′) plus the
DetLOCAL complexity of 3∆′-edge coloring on poly(logn)-size graphs. This is achieved by
applying the (∆̃+1)-vertex coloring algorithm of [23] to the line graph, where ∆̃ = 2∆′−2

is the maximum degree of the line graph.
For the special case of ∆′ = log1+Ω(1) n, (2∆′ − 1)-edge coloring can be solved in

RandLOCAL O(log∗ n) rounds [55]. The state-of-the-art DetLOCAL algorithm [70] for
(2 + x)∆′-edge coloring has complexity

O(log2∆′ · x−1 · log log∆′ · log1.71 log log∆′ · logn)

for any x > 1/ log∆′. Thus, combining [23, 55, 70] with x = 1, we have

T ∗(n,∆′) = O(log3 logn · log log logn · log1.71 log log logn) = (log logn)3+o(1).

This is achieved as follows. If ∆′ = Ω(log2 n), we run the O(log∗ n)-time RandLOCAL
algorithm of [55]. Otherwise, we run the RandLOCAL graph shattering phase of [23] (using
the first 2∆′ colors) followed by the DetLOCAL algorithm of [70] (using the remaining 3∆′

colors) on each component.

Runtime on Trees. Consider running our algorithm on a tree with palette size (1+ϵ)∆,
where ϵ = Ω

(
log2.5+x ∆√

∆

)
, for some positive constant x. Then the LLL parameters are

d = poly(∆) and p = exp(−ϵ2∆/ log4+o(1) ∆) in Theorem 5.3, which satisfy the criterion
p(ed)λ < 1 with λ = Ω(logx ∆). Using our randomized LLL algorithm for trees (Sec-
tion 5.5), we have

TLLL

(
n, poly(∆), exp(−ϵ2∆/ log4+o(1))

)
= O

(
max{ log logn

log log logn
, loglog∆ logn}

)
.

We claim that T ∗(n,∆′) = O(log∗∆′ + log∆′ logn) on trees. This is achieved as follows.
First, do a O(log∗∆′)-time randomized procedure to partially color the graph using the

115

first 2∆′ colors so that the remaining uncolored components have size poly(logn). This can
be done using the algorithm of [55] without invoking any distributed LLL algorithm. Then,
apply our deterministic O(log∆′ ñ)-time algorithm for ∆′-edge coloring trees (Section 5.7)
to each uncolored component separately, using a set of ∆′ fresh colors.

To sum up, the time complexity of (1 + ϵ)∆-edge coloring trees is

O
(
log(1/ϵ) ·max{ log logn

log log logn
, loglog∆ logn}+ log∗∆+ log∆ logn

)
= O

(
log(1/ϵ) ·max{ log logn

log log logn
, loglog∆ logn}

)
.

This matches our Ω(log∆ logn) lower bound (Section 5.2) when 1/ϵ,∆ = O(1).

5.3.1 The Algorithm

Our algorithm has two phases. The goal of the first phase is to color a subset of the
edges using the colors from C1

def
= {1, . . . ,∆(1+ ξ)} such that the subgraph induced by the

uncolored edges has degree less than ∆′ = 1
5
(ϵ− ξ)∆ = Θ(ϵ∆). The first phase consists of

O(log(1/ϵ)) executions of a distributed Lovász Local Lemma algorithm. The second phase
colors the remaining edges using the colors from C2

def
= {∆(1 + ξ) + 1, . . . ,∆(1 + ϵ)} using

the fastest available coloring algorithm, which takes T ∗(n,∆′) time.

Algorithm. In what follows we focus on the first phase. We write Gi to denote the graph
induced by the set of uncolored edges at the beginning of the ith iteration. Each edge e in
Gi has a palette Ψi(e) ⊆ C1. We write degi(v) to denote the number of edges incident to v
in Gi and degc,i(v) to denote the number of edges incident to v that have color c in their
palettes. For the base case, we set G1 = G and Ψi(e) = C1 for all edges. In the graph Gi

we maintain the following invariant Hi.

Invariant Hi: For each edge e, vertex v, and color c, we have:

degi(v) ≤ di,

degc,i(v) ≤ ti,

|Ψi(e)| ≥ pi.

Parameters. Given two numbers η ≥ 1 and ξ ∈ (0, ϵ) (which are functions of ∆), we
define three sequences of numbers {di}, {ti}, and {pi} as follows.

116

Base case (i = 1):

d1
def
= ∆ t1

def
= ∆ p1

def
= ∆(1 + ξ)

Inductive step (i > 1):

di
def
= (1 + δi−1)d

⋄
i−1 d⋄i−1

def
= di−1 ·

(
1− (1− 1/pi−1)

2(ti−1−1)
)

ti
def
= (1 + δi−1)t

⋄
i−1 t⋄i−1

def
= ti−1 ·

(
1− ti−1

pi−1

(1− 1/pi−1)
2ti−1

)(
1− (1− 1/pi−1)

2ti−1
)

pi
def
= (1− δi−1)p

⋄
i−1 p⋄i−1

def
= pi−1 ·

(
1− ti−1

pi−1

(1− 1/pi−1)
2ti−1

)2

Drifts (all i):

δi
def
=
βi
η

βi
def
=
pi
ti
− 1 (Notice that β1 = ξ)

The choice of parameters are briefly explained as follows. Consider an ideal situation
where degi−1(v) = di−1, degc,i−1(v) = ti−1, and |Ψi−1(e)| = pi−1 for all c, e, and v. Consider
a very simple experiment called OneShotColoring in which each uncolored edge attempts
to color itself by selecting a color uniformly at random from its available palette. An edge
e successfully colors itself with probability (1 − 1/pi−1)

2(ti−1−1), since there are 2(ti−1 −
1) edges competing with e for c ∈ Ψi−1(e), and each of these 2(ti−1 − 1) edges selects
c with probability 1/pi−1. Thus, by linearity of expectation, the expected degree of v
after OneShotColoring is d⋄i−1, and the parameter di is simply d⋄i−1 with some slack. The
parameters {t⋄i−1, ti, p

⋄
i−1, pi} carry analogous meanings. The term βi represents the second-

order error. We need control over {βi} since it influences the growth of the three sequences
{di}, {ti}, and {pi}.

For the base case, it is straightforward to see that we have deg1(v) = ∆, degc,1(v) = ∆,
and |Ψ1(e)| = ∆(1 + ξ), and thus G1 satisfies the invariant H1. For the inductive step,
given that Hi is met in Gi, we use a distributed LLL algorithm (based on OneShotColoring)
to color a subset of edges in Gi so that the next graph Gi+1 induced by the uncolored edges
satisfies Hi+1. We repeat this procedure until the terminating condition di ≤ 1

5
(ϵ− ξ)∆ is

met, and then we proceed to the second phase.

117

Analysis. Recall that ϵ = ω(log2.5 ∆√
∆

). We set η to be any function of ∆ that is ω(log∆)

such that ϵ ≥ η2.5√
∆
. We set ξ = ϵ

6η
. The following lemma shows that under certain criteria,

the parameters {di}, {ti}, {pi}, and {βi} are very close to their “ideal” values. The proof
is deferred to Section 5.3.3.

Lemma 5.3. Consider an index i > 1. Suppose min{di−1, ti−1, pi−1} = ω(log∆), βi−1 =

o(1/ log∆), and δi−1 = o(βi−1/ log∆). Then the following four equations hold.

di = di−1 · (1± o(1/ log∆))(1− e−2)

ti = ti−1 · (1± o(1/ log∆))(1− e−2)2

pi = pi−1 · (1± o(1/ log∆))(1− e−2)2

βi = βi−1 · (1± o(1/ log∆))/(1− e−2)

Based on Lemma 5.3, we have the following lemma.

Lemma 5.4. Let i⋆ = O(log(1/ϵ)) = O(log∆) be the largest index such that βi⋆−1 ≤ 1/η.
Then the following four equations hold for any 1 < i ≤ i⋆.

di = (1± o(1/ log∆))i−1∆(1− e−2)i−1 = (1± o(1))∆(1− e−2)i−1

ti = (1± o(1/ log∆))i−1∆(1− e−2)2(i−1) = (1± o(1))∆(1− e−2)2(i−1)

pi = (1± o(1/ log∆))i−1∆(1− e−2)2(i−1) = (1± o(1))∆(1− e−2)2(i−1)

βi = (1± o(1/ log∆))i−1ξ/(1− e−2)i−1 = (1± o(1))ξ/(1− e−2)i−1

Proof. To prove the lemma, it suffices to show that the condition of Lemma 5.3 is met for
all indices 1 < i ≤ i⋆. We prove this by an induction on i. By the induction hypothesis
the four equations hold at index i − 1. We show that the condition of Lemma 5.3 is met
for the index i, and so the four equations also hold for index i. Due to 1/η = o(1/ log∆),
we already have βi−1 = o(1/ log∆) and δi−1 = o(βi−1/ log∆). It remains to prove that

118

min{di−1, ti−1, pi−1} = ω(log∆).

min{di−1, ti−1, pi−1}

≥ (1± o(1))∆(1− e−2)2(i−1) (Induction hypothesis for di−1, ti−1, pi−1)
= (1± o(1))∆(1− e−2)2(i−2)(1− e−2)2

= (1± o(1))∆ ·
(
(1− e−2 ± o(1))ξ

βi−1

)2

(Induction hypothesis for βi−1)

≥ (1− e−2 ± o(1))ξ2η2∆ (βi−1 ≤ 1/η)

= Ω(η5) (ξ = Ω(
η1.5√
∆
))

= ω(log∆)

It remains to show that (i) the number of iterations it takes to reach the terminating con-
dition is O(log 1/ϵ), and (ii) in each iteration, in TLLL

(
n, poly(∆), exp(−ϵ2∆/ log4+o(1) ∆)

)
time, invariant Hi can be maintained. By Lemma 5.4, we have:

di⋆ = (1± o(1))∆(1− e−2)i
⋆−1 (Lemma 5.4 for di⋆)

= (1± o(1))∆ · ξ/βi⋆ (Lemma 5.4 for βi⋆)
≤ (1± o(1))ξη∆ (βi⋆ > 1/η)

For our choices of η and ξ, we have di⋆ ≈ ξη∆ = ϵ∆
6
. Thus, the terminating condition

di ≤ 1
5
(ϵ−ξ)∆ must be reached before the i⋆-iteration (since 1

5
(ϵ−ξ)∆ > ϵ∆

6
). The number

of iterations it takes to reach the terminating condition is O(log 1/ϵ) by Lemma 5.4 for di.
For each 1 < i ≤ i⋆, we have:

δ2i ·min{di, ti, pi}
= β2

i ti/η
2 (Definition of δi)

= (1± o(1)) ·
(
ξ/(1− e−2)i−1

)2 · (∆(1− e−2)2(i−1)
)
/η2 (Lemma 5.4 for ti, βi)

= (1± o(1)) ·∆(ξ/η)2

= Ω(ϵ2∆/η4) (Definition of ξ)
= ω(log∆). (Definition of ϵ)

We will later see in Section 5.3.2 that this implies that any LLL algorithm with parameters

119

d = poly(∆) and p = exp(−Ω(∆ϵ2/η4)) suffices to maintain the invariant in each iteration.
Notice that if we select η = log1+o(1)∆, then p = exp(−ϵ2∆/ log4+o(1)∆), as desired.

5.3.2 Maintenance of the Invariant

In this section we show how to apply a distributed LLL algorithm, with parameters d =

poly(∆) and p = exp(−Ω (δ2i ·min{di, ti, pi}), to achieve the following task: given a graph
Gi meeting the property Hi, color a subset of edges of Gi so that the graph induced by
the remaining uncolored edges satisfies the property Hi+1. We write Ψ(e) = Ψi(e) for
notational simplicity. Consider the following modification to the underlying graph Gi:

• Each edge e discards colors from its palette to achieve uniform palette size pi.

• Each vertex v locally simulates some imaginary subtrees attached to v and obeying
Hi to achieve uniform color degree ti. That is, if a color c appears in the palette of
some edge incident to a vertex v, then c must appear in the palette of exactly ti edges
incident to v.

These (imaginary) modifications to the underlying graph are introduced to enforce broadly
uniform progress in every part of the graph. Observe that if Hi applies to the imaginary
graph it also applies to the true graph as well, since we are concerned with lower bounds
on palette sizes and upper bounds on (c-)degrees. Our analysis largely focusses on how the
following O(1)-round procedure affects the imaginary graph.

OneShotColoring.

(1) Each edge e selects a color Color⋆(e) ∈ Ψ(e) uniformly at random.

(2) An edge e successfully colors itself Color⋆(e) if no neighboring edge also selects
Color⋆(e).

We write S(v) to denote the set of real edges incident to v, and we write Nc(v) to
denote the set of real and imaginary edges incident to v that have c in their palettes. Let
S⋄(v) (resp., N⋄

c (v)) be the subset of S(v) (resp., N⋄
c (v)) that are still uncolored after

OneShotColoring. Let Ψ⋄(e) be the result of removing all colors c from Ψ(e) such that some
edge incident to e successfully colors itself by c.

The following concentration bound implies that Hi+1 holds with high probability in the
graph induced by the real uncolored edges after OneShotColoring, and thus we can apply a

120

distributed LLL algorithm to obtain Gi+1 that meets the invariant Hi+1. See Section 5.4
for proof.

Lemma 5.5. Suppose that Hi holds. The following concentration bounds hold for any
δ > 0.

Pr [|S⋄(v)| > (1 + δ)d⋄i] = exp
(
−Ω(δ2di)

)
Pr [|N⋄

c (v)| > (1 + δ)t⋄i | N⋄
c (v) ̸= ∅] = exp

(
−Ω(δ2ti)

)
Pr [|Ψ⋄(e)| < (1− δ)p⋄i | e remains uncolored] = exp

(
−Ω(δ2pi)

)
We write Nk(v) to denote the set of all vertices within distance k of v. It is straightfor-

ward to see that (i) S⋄(v) depends only on the colors selected by the edges whose endpoints
are both in N2(v), (ii) N⋄

c (v) depends only on the colors selected by the edges whose end-
points are both in N3(v), and (iii) Ψ⋄(e) depends only on the colors selected by the edges
whose endpoints are both in N2(u) ∪ N2(v), where e = {u, v}. Thus, the parameters for
the distributed LLL are d = poly(∆) and p = exp (−Ω (δ2i ·min{di, ti, pi})), as desired.

5.3.3 Proof of Lemma 5.3

In this section, we prove Lemma 5.3. We assume min{di−1, ti−1, pi−1} = ω(log∆),
βi−1 = o(1/ log∆), and δi−1 = o(βi−1/ log∆). The two terms (1 − 1/pi−1)

2ti−1 and
ti−1

pi−1
(1− 1/pi−1)

2ti−1 show up in the definition of d⋄i−1, t⋄i−1, and p⋄i−1. We begin by showing
that these two terms are both e−2(1 + o(1/ log∆)). We use the fact that ti−1

pi−1
= 1

βi−1+1
in

the following calculation.

(1− 1/pi−1)
2ti−1

= e−2ti−1/pi−1(1−O(ti−1/p
2
i−1)) (Taylor expansion of ex)

= e−2 · e2(1−ti−1/pi−1)(1−O(ti−1/p
2
i−1))

= e−2 · e2(1−ti−1/pi−1)

(
1−O

(
1

(1 + βi−1)pi−1

))
(Defn. βi−1)

= e−2 · e2(1−ti−1/pi−1)(1− o(1/ log∆)) (pi−1 = ω(log∆))
= e−2 · e2βi−1/(βi−1+1)(1− o(1/ log∆))

= e−2 · (1 +O(2βi−1/(βi−1 + 1)))(1− o(1/ log∆))

121

= e−2 · (1 + o(1/ log∆))(1− o(1/ log∆))

= e−2(1 + o(1/ log∆)). (∗)

ti−1

pi−1

(1− 1/pi−1)
2ti−1

= e−2 · ti−1

pi−1

· (1 + o(1/ log∆)) by (*)

= e−2(1 + o(1/ log∆))/(1 + βi−1)

= e−2(1 + o(1/ log∆))/(1 + o(1/ log∆))

= e−2(1± o(1/ log∆)). (∗∗)

We are in a position to derive the first three equations in Lemma 5.3 (i.e., estimates of di,
ti, and pi). Recall that δi−1 = o(1/ log2∆) and 1/pi−1 = o(1/ log∆).

di = di−1 · (1 + δi−1)
(
1− (1− 1/pi−1)

2(ti−1−1)
)

= di−1 · (1 + o(1/ log2∆))
(
1− e−2(1 + o(1/ log∆))/(1− 1/pi−1)

2
)

By (*)
= di−1 · (1 + o(1/ log2∆))

(
1− e−2(1 + o(1/ log∆))

)
= di−1 · (1± o(1/ log∆))(1− e−2).

ti = ti−1 · (1 + δi−1)

(
1− ti−1

pi−1

(1− 1/pi−1)
2ti−1

)(
1− (1− 1/pi−1)

2ti−1
)

= ti−1 · (1 + o(1/ log2∆))
(
1− e−2(1± o(1/ log∆))

)2 By (**)
= ti−1 · (1± o(1/ log∆))(1− e−2)2.

pi = pi−1 · (1− δi−1)

(
1− ti−1

pi−1

(1− 1/pi−1)
2ti−1

)2

= pi−1 · (1− o(1/ log2∆))
(
1− e−2(1± o(1/ log∆))

)2 By (**)
= pi−1 · (1± o(1/ log∆))(1− e−2)2.

122

Lastly, we derive the last equation in Lemma 5.3: an estimate of the second-order error βi.

βi =
pi
ti
− 1

=
(1− δi−1)p

⋄
i−1

(1 + δi−1)t⋄i−1

− 1

= (1−O(δi−1)) ·
pi−1

ti−1

·
1− ti−1

pi−1
(1− 1/pi−1)

2ti−1

1− (1− 1/pi−1)2ti−1
− 1 Definition of p⋄i−1 and t⋄i−1

= (1−O(δi−1)) ·
pi−1

ti−1
− (1− 1/pi−1)

2ti−1

1− (1− 1/pi−1)2ti−1
− 1

=

(
pi−1

ti−1
− 1
)
+O(δi−1)

(
−pi−1

ti−1
+ (1− 1/pi−1)

2ti−1

)
1− (1− 1/pi−1)2ti−1

=

(
pi−1

ti−1
− 1
)
+O(δi−1)

(
−pi−1

ti−1
+ (1− 1/pi−1)

2ti−1

)
1− e−2(1 + o(1/ log∆))

by (*)

=
βi−1 −O(δi−1)

(1− e−2)(1− o(1/ log∆))
−pi−1

ti−1

+

(
1− 1

pi−1

)2ti−1

= −Θ(1)

=
βi−1(1− o(1/ log2∆))

(1− e−2)(1− o(1/ log∆))
δi−1 = o(1/ log2∆)

= βi−1 · (1± o(1/ log∆))/(1− e−2).

5.4 Proof of Lemma 5.5
In this section we prove the concentration bounds of Lemma 5.5. For notational simplicity,
we ignore all subscripts i, i.e., p, d, t are the palette size, degree, and c-degree before the
ith round of coloring, all of which satisfy invariant Hi. Recall that we introduce imaginary
edges, if necessary, to ensure that the entire graph has uniform c-degree t and uniform
palette size p. S(v) is the set of real edges incident to v, |S(v)| ≤ d, and Nc(v) the set
of real and imaginary edges incident to v with c in their palettes. The arguments of this
section do not differentiate between real and imaginary edges. From Lemma 5.3 we use
the fact that t = Θ(p), i.e., t and p are interchangeable in those parts of the proof that are
not sensitive to the leading constant.

We make extensive use of Theorem 5.4 and Lemma 5.6 to prove Lemma 5.5. The-

123

orem 5.4 is from Dubhashi and Panconesi’s book [53] on the concentration of measure,
where it is called the method of bounded variances. Ignoring the leading constant in the
exponent, Theorem 5.4 is strictly more powerful than Chernoff-Hoeffding and Azuma-type
inequalities, and is best suited in applications that have the following two features:

• We are interested in deviations of f(Xn) from its expectation (up to ±s) that are
significantly smaller than the number of underlying random variables (n) times the
Lipschitz bound satisfied by the martingale (M). This feature renders Azuma’s in-
equality too weak to be of any use.24

• The Lipschitz bound is pessimistic: although Di = E[f |Xi] − E[f |Xi−1] can be as
large as M , its variance (σ2

i) conditioned on any Xi−1 is substantially smaller.

For example, in the first round of coloring, the c-degree of a vertex v depends on Θ(∆3)

random variables (colors chosen by edges in the 3-neighborhood) but we are interested in
deviations from the expected c-degree that are s = O(∆). Any single edge could have
a significant effect on v’s c-degree (M = Θ(1)), but the variances of these effects are
substantially smaller. In particular, the sum of variances

∑
i σ

2
i will be O(∆).

Theorem 5.4 ([53, Equation (8.5)]). Let X1, . . . , Xn be an arbitrary set of random vari-
ables. Let f(X1, . . . , Xn) be such that E[f] is finite. We write Di

def
= E[f |Xi]− E[f |Xi−1].

Suppose that there exist M and values {σ2
i }1≤i≤n meeting the following conditions.

• For any assignment to the random variables Xi−1, Var[Di|Xi−1] ≤ σ2
i .

• For any assignment to the random variables Xi, |Di| ≤M .

Then Pr[f > E[f] + s] ≤ exp
(
− s2

2(
∑n

i=1 σ
2
i +Ms/3)

)
.

Lemma 5.6 follows from straightforward calculation.

Lemma 5.6. Let X be a random variable such that (i) E[X] = 0, (ii) Pr[X = a] = α and
Pr[X = b] = 1− α, and (iii) |a− b| ≤ k. Then we have the following.

• Var[X] ≤ α(1− α)k2 ≤ αk2.

• |b| ≤ αk.

• |a| ≤ (1− α)k ≤ k.

24A vector (X1, . . . , Xi) of random variables is written Xi.

124

Throughout this section, we use the following notation. For each edge e and each color
c, define ze,c as the indicator random variable that e successfully colors itself c, thus ze,c = 0

if c /∈ Ψ(e).

5.4.1 Concentration of Vertex Degree

Let v• be a vertex. We claim that E[|S⋄(v•)|] ≤ d⋄. An edge e successfully colors itself with
probability (1 − 1/p)2(t−1), since there are 2(t − 1) edges competing with e for Color⋆(e),
and each of these 2(t− 1) edges selects Color⋆(e) with probability 1/p. Thus, by linearity
of expectation,

E[|S⋄(v•)|] = (1− (1− 1/p)2(t−1))|S(v•)| ≤ (1− (1− 1/p)2(t−1))d = d⋄.

For brevity, we write S def
= S(v•), S⋄ def

= S⋄(v•), and z
def
= |S| − |S⋄|. The goal of this

section is to show that Pr[z < E[z] − s] = exp (−Ω(s2/|S|)), which implies the desired
concentration bound Pr [|S⋄(v•)| > (1 + δ)d⋄] = exp (−Ω(δ2d)), by setting s = δd⋄.

Notations. We write ze
def
=
∑

c∈Ψ(e) ze,c and zc
def
=
∑

e∈S ze,c. In other words, ze is the
indicator random variable that e successfully colors itself; zc is the indicator random vari-
able that some edge in S successfully colors itself by c. We can express z as z =

∑
e∈S ze

or z =
∑

c zc, where the summation is over all colors c ∈
∪

e∈S Ψ(e).
Let S ′ denote the set of edges such that e′ ∈ S ′ if there exists e = {v•, u} ∈ S such that

(i) Ψ(e) ∩ Ψ(e′) ̸= ∅, and (ii) e′ is incident to e. For each edge e′ ∈ S ′ and for each color
c ∈ Ψ(e′), we define R(e′, c) as the subset of S such that e ∈ R(e′, c) if (i) e is incident to e′,
and (ii) c ∈ Ψ(e). We write w(e′, c) = |R(e′, c)| and w(e′) =

∑
c∈Ψ(e′)w(e

′, c). Notice that
the value w(e′, c) may exceed 2 when e′ /∈ S is an imaginary edge incident to v•. Intuitively,
w(e′) measures the influence of Color⋆(e′) on z. Notice that

∑
e′∈S′ w(e′) ≤ 2|S|pt.

We consider the sequence of random variables (X1, . . . , X|S|+|S′|), where the initial |S ′|
variables are the colors selected by the edges in S ′, in arbitrary order, and the remaining
|S| variables are the colors selected by the edges in S, in arbitrary order. We let z =

f(X1, . . . , X|S|+|S′|) in Theorem 5.4. To prove the desired concentration bound, it suffices
to show that we can set M = O(1) and σ2

i to achieve
∑|S|+|S′|

i=1 σ2
i = O(|S|). In what

follows, we analyze the effect of exposing the value of the random variable Xi, given that
all variables in Xi−1 have been fixed.

125

Exposing an Edge in S ′. Consider the case where Xi = Color⋆(e⋆) is the color se-
lected by the edge e⋆ ∈ S ′. Recall Di = E[z|Xi] − E[z|Xi−1]. Our goal is to show that
Var[Di|Xi−1] = O(w(e)/(pt)) and |Di| = O(1). Hence we set σ2

i = O(w(e)/(pt)), which
implies

∑
1≤i≤|S′| σ

2
i = O(|S|), as desired.

By linearity of expectation, Di =
∑

c(E[zc|Xi]−E[zc|Xi−1]), where the summation ranges
over all colors c that appear in

∪
e∈S Ψ(e). We write Di,c = E[zc|Xi]−E[zc|Xi−1], and make

the following observations:

• Di,c ̸= 0 only if c ∈ Ψ(e⋆). For each c ∈ Ψ(e⋆), Di,c depends only on whether e⋆

selects the color c, which occurs with probability 1/p. In particular, Di,c < 0 only if
e⋆ selects c, and Di,c > 0 only if e⋆ does not select c. Thus, Cov[Di,c, Di,c′|Xi−1] ≤ 0

for all color pairs {c, c′}.

• For each e ∈ S, both E[ze,c|Xi] and E[ze,c|Xi−1] are within [0, 1/p], since ze,c = 1 only
if c ∈ Ψ(e) and e selects c, which occurs with probability 1/p. Thus, maxXi

Di,c −
minXi

Di,c ≤ w(e⋆, c)/p.

By Lemma 5.6 (with k ≤ w(e⋆, c)/p and α = 1/p), we have Var[Di,c|Xi−1] ≤
(1/p)(w(e⋆, c)/p)2. We bound the variance Var[Di|Xi−1] as follows.

Var[Di|Xi−1] =
∑
c

Var[Di,c|Xi−1] +
∑
c,c′

Cov[Di,c, Di,c′ |Xi−1]

=
∑
c

O((w(e⋆, c)/p)2/p) Cov[Di,c, Di,c′ |Xi−1] ≤ 0

=
∑
c

O(w(e⋆, c)/p2) w(e⋆, c) < t = Θ(p)

= O(w(e⋆)/p2)

= O(w(e⋆)/(pt)).

We bound |Di| as follows. Consider c ∈ Ψ(e⋆). Recall that we already have the bound
|Di,c| ≤ w(e⋆, c)/p ≤ (t − 1)/p. If c is not selected by e⋆, which occurs with probability
1 − 1/p, we have a tighter bound |Di,c| ≤ w(e⋆, c)/p2 ≤ (t − 1)/p2 by Lemma 5.6 with
k ≤ w(e⋆, c)/p and α = 1/p. Therefore,

|Di| ≤
∑
c

|Di,c| ≤ 1 · t− 1

p
+ (p− 1) · t− 1

p2
= O(1).

126

Exposing an Edge in S. Consider the case where Xi = Color⋆(e⋆) is the color selected
by the edge e⋆ ∈ S. Suppose that Xi = c⋆. Recall Di =

∑
cDi,c. It is straightforward to

see that (i) |Di,c| ≤ 1 if c = c⋆, (ii) |Di,c| ≤ 1/p if c ∈ Ψ(e⋆) − {c⋆}, and (iii) |Di,c| = 0

otherwise. Thus, |Di| = O(1), and Var[Di|Xi−1] = O(1). We set σ2
i = O(1), and so∑

|S′|<i≤|S|+|S′| σ
2
i = O(|S|).

5.4.2 Concentration of Palette Size

Let e• = {u, v} be an edge, and let c• = Color⋆(e•) be the color selected by e•. We do
not consider c• as a random variable in the analysis (i.e., we expose the color selected by
e• first). Let E be the event that e• does not successfully color itself. Since e• remains
uncolored with at least a constant probability, we are allowed to ignore the condition “e•

remains uncolored” in Lemma 5.5 in the subsequent calculation. To prove the desired con-
centration bound regarding palette size Pr [|Ψ⋄(e)| < (1− δ)p⋄ | e remains uncolored] =

exp (−Ω(δ2p)), it suffices to show that (i) |E[|Ψ⋄(e•)|]− p⋄| = O(1), and (ii) Pr[|Ψ⋄(e•)| <
(1− δ)E[|Ψ⋄(e•)|]] = exp(−Ω(δ2 E[|Ψ⋄(e•)|])).

Notations. We write Su (resp., Sv) to denote the set of edges e incident to e• on u

(resp., v) such that Ψ(e) ∩ Ψ(e•) − {c•} ̸= ∅. We write S ′ to denote the set of edges
such that e′ ∈ S ′ if there exists e ∈ Su ∪ Sv meeting the following conditions: (i) e′ is
incident to e, (ii) e′ /∈ Su ∪ Sv ∪ {e•}, and (iii) Ψ(e) ∩ Ψ(e′) ∩ Ψ(e•) − {c•} ̸= ∅. Notice
that Ψ⋄(e•) is determined by the colors selected by the edges in Su ∪ Sv ∪ S ′. We have
|Su| ≤ (p− 1)(t− 1) < pt, |Sv| ≤ (p− 1)(t− 1) < pt, and |S ′| ≤ 2(p− 1)(t− 1)2 < 2pt2.

Expected Value. In what follows, consider a color c ∈ Ψ(e•)− {c•}.

• Let e ∈ Su ∪ Sv such that c ∈ Ψ(e). We have E[ze,c] = 1
p
(1 − 1

p
)2t−3. Notice that e•

selects c• ̸= c, so there are 2t− 3 (rather than 2t− 2) edges competing with e for the
color c.

• Let e′ = {u, x} ∈ Su and e′′ = {v, y} ∈ Sv such that c ∈ Ψ(e′) ∩ Ψ(e′′). We
define ze′,e′′,c

def
= ze′,c · ze′′,c. If x = y, then ze′,e′′,c = 0. Otherwise, x ̸= y and

E[ze′,e′′,c] = 1
p2
(1− 1

p
)4t−6−b(e′,e′′), where b(e′, e′′) ≤ 3 is the number of edges e such that

(i) e ̸= e•, and (ii) e is incident to both e′ and e′′.

127

Let zc be the indicator random variable that some edge incident to e• successfully colors
itself by c, that is,

zc
def
=

∑
e : e∈Su∪Sv , c∈Ψ(e)

ze,c −
∑

e′,e′′ : e′∈Su, e′′∈Sv , c∈Ψ(e′)∩Ψ(e′′)

ze′,e′′,c.

The number of edges e ∈ Su ∪ Sv such that c ∈ Ψ(e) is exactly 2t − 2. The number of
pairs (e′ = {u, x} ∈ Su, e

′′ = {v, y} ∈ Sv) such that c ∈ Ψ(e′) ∩Ψ(e′′) and x ̸= y is at least
(t− 1)2 − (t− 1) and at most (t− 1)2. By linearity of expectation (recall t = Θ(p)),

E[zc] =
2t

p
(1− 1/p)2t − t2

p2
(1− 1/p)4t ±O(1/p).

Define z def
=
∑

c∈Ψ(e•)−{c•} zc. Then, we have:

E[|Ψ⋄(e•)|] = |Ψ(e•)| − E[z] |Ψ⋄(e•)| = |Ψ(e•)| − z

= p ·
(
1− 2t

p
(1− 1/p)2t +

t2

p2
(1− 1/p)4t ±O(1/p)

)
= p ·

(
1− 2t

p
(1− 1/p)2t +

t2

p2
(1− 1/p)4t

)
±O(1)

= p⋄ ±O(1). Definition of p⋄

Hence |E[|Ψ⋄(e•)|]− p⋄| = O(1).

Concentration Bound. Consider the sequence of random variables
(X1, . . . , X|Su|+|Sv |+|S′|), where the initial |S ′| variables are the colors selected
by the edges in S ′, in arbitrary order, and the remaining |Su| + |Sv| vari-
ables are the colors selected by the edges in Su ∪ Sv, in arbitrary order. Let
z = f(X1, . . . , X|Su|+|Sv |+|S′|) in Theorem 5.4. To prove the desired concentration
bound Pr[|Ψ⋄(e•)| < (1 − δ)E[|Ψ⋄(e•)|]] = exp(−Ω(δ2 E[|Ψ⋄(e•)|])), it suffices to show
that Pr[z > E[z] + s] = exp (−Ω(s2/p)), by setting s = δ E[|Ψ⋄(e•)|], and recall that
E[|Ψ⋄(e•)|] = p⋄ ± O(1) = Θ(p). In view of Theorem 5.4, we only need to show that we
can set M = O(1) and σ2

i such that
∑|Su|+|Sv |+|S′|

i=1 σ2
i = O(p).

Exposing an Edge in S ′. Consider the case where Xi = Color⋆(e⋆) is the color selected
by the edge e⋆ ∈ S ′. Our goal is to show that |Di| = O(1/t). This implies Var[Di|Xi−1] =

128

O(1/t2), and so we may set σ2
i = O(1/t2). Since |S ′| = O(pt2), we have

∑|S′|
i=1 σ

2
i = O(p).

Let R denote the set of edges in Su∪Sv that are incident to e⋆. Notice that 1 ≤ |R| ≤ 2.
We define:

z(i)c
def
=

∑
e′ : e′∈R, c∈Ψ(e′)

ze′,c −
∑

e′,e′′ : e′∈Su, e′′∈Sv , c∈Ψ(e′)∩Ψ(e′′), {e,e′′}∩R ̸=∅

ze′,e′′,c.

Intuitively, z(i)c is the result of subtracting all terms from the definition of zc not involving
edges in R. We now argue that E[zc|Xi]−E[zc|Xi−1] = E[z(i)c |Xi]−E[z(i)c |Xi−1]. This is due
to the two observations: (i) If e /∈ R, then E[ze,c|Xi] = E[ze,c|Xi−1]. (ii) If {e′, e′′} ∩R = ∅,
then E[ze′,e′′,c|Xi] = E[ze′,e′′,c|Xi−1].

Consider a color c ∈ Ψ(e⋆)∩Ψ(e•)−{c•}. The probability that some edge in R selects c
is at most |R|/p ≤ 2/p. Thus, the conditional expectations E[z(i)c |Xi] and E[z(i)c |Xi−1] must
be within [0, 2/p], and so |E[z(i)c |Xi] − E[z(i)c |Xi−1]| ≤ 2/p. For the case of c ̸= Xi, which
occurs with probability 1− 1/p, we have a tighter bound |E[z(i)c |Xi]−E[z(i)c |Xi−1]| ≤ 2/p2

by Lemma 5.6 with k ≤ 2/p and α = 1/p. We bound |Di| as follows.

|Di| ≤
∑

c∈Ψ(e•)−{c•}

|E[zc|Xi]− E[zc|Xi−1]|

=
∑

c∈Ψ(e⋆)∩Ψ(e•)−{c•}

|E[z(i)c |Xi]− E[z(i)c |Xi−1]|

≤ (2/p) + (2/p2)(|Ψ(e⋆) ∩Ψ(e•)− {c•}| − 1)

= O(1/p) = O(1/t).

Exposing an Edge in Su ∪ Sv. Consider the case where Xi = Color⋆(e⋆) is the color
selected by the edge e⋆ ∈ Su ∪ Sv. We define w(e⋆) def

= |Ψ(e⋆) ∩ Ψ(e•) − {c•}|. The
goal is to show that (i) |Di| = O(1) and (ii) Var[Di|Xi−1] = O(w(e⋆)/p). By setting
σ2
i = O(w(e⋆)/p), we achieve

|S′|+|Su|+|Sv |∑
i=|S′|+1

σ2
i =

∑
e∈Su∪Sv

O(w(e)/p) = O(pt/p) = O(t) = O(p).

By the linearity of expectation, Di =
∑

c∈Ψ(e⋆)∩Ψ(e•)−{c•}Di,c, where Di,c = E[zc|Xi] −
E[zc|Xi−1]. Since both E[zc|Xi] and E[zc|Xi−1] are within [0, 1], we have |Di,c| ≤ 1. We
have a tighter bound |Di,c| ≤ 1/p in the event that Color⋆(e⋆) ̸= c (by Lemma 5.6 with

129

k ≤ 1 and α = 1/p). Thus, |Di| ≤ 1 + (w(e⋆)− 1)/p = O(1).
In order to prove that Var[Di|Xi−1] = O(w(e⋆)/p), we need the following two observa-

tions.

• Consider a color c ∈ Ψ(e⋆) ∩ Ψ(e•) − {c•}. Recall that |Di,c| ≤ 1/p for the case c is
not selected by e⋆, which occurs with probability 1− 1/p. Thus, E[Di,c ·Di,c|Xi−1] ≤
(1/p) · 1 + (1− 1/p) · 1/p2 = O(1/p).

• Consider two distinct colors c and c′ in Ψ(e⋆)∩Ψ(e•)−{c•}. If e⋆ selects c or c′ (which
occurs with probability 2/p), Di,c ·Di,c′ ≤ 1·(1/p). Otherwise Di,c ·Di,c′ ≤ (1/p)·(1/p).
Therefore, E[Di,c ·Di,c′|Xi−1] ≤ (2/p) · 1/p+ (1− 2/p) · 1/p2 = O(1/p2).

We now bound Var[Di|Xi−1] as follows.

Var[Di|Xi−1] ≤
∑

c∈Ψ(e⋆)∩Ψ(e•)−{c•}

∑
c′∈Ψ(e⋆)∩Ψ(e•)−{c•}

E[Di,c ·Di,c′ |Xi−1]

≤ w(e⋆) ·O(1/p) + w(e⋆)(w(e⋆)− 1) ·O(1/p2)

= O(w(e⋆)/p).

5.4.3 Concentration of Color Degree

For the remainder of this section, fix a vertex v• and a color c• in the palette Ψ(e) for
some e incident to v•. For convenience, we write R def

= Nc•(v
•). Define R⋄ as the subset of

R such that e = {v•, u} ∈ R⋄ if (i) e is not successfully colored by a color in Ψ(e)− {c•},
and (ii) no edge incident to e on u successfully colors itself c•. We write z def

= |R \R⋄|. Let
E ′ be the event that N⋄

c•(v
•) ̸= ∅. Observe that if E ′ occurs, then no edge incident to v•

successfully colors itself c•. Thus, conditioning on E ′ happening, R \R⋄ equals N⋄
c•(v

•).
Our goal is to show that (i) Pr[z < E[z]− s] = exp(−Ω(s2/t)), and (ii) E[|R⋄|] = |R| −

E[z] = t⋄±O(1). Since E ′ occurs with constant probability, the above (i) and (ii) together
imply the desired concentration bound Pr[|N⋄

c•(v
•)| > (1 + δ)t⋄ | E ′] = exp(−Ω(δ2t)), by

setting s = δt⋄ ±O(1). Recall that t⋄ = Θ(t).

Expected Value. With respect to an edge e = {v•, u} ∈ R, we define the following
notations based on parts (i) and (ii) of the definition of R⋄.

• Define zae as the indicator random variable that some edge incident to e on u success-
fully colors itself c•. We have E[zae] = (t− 1) · 1

p
(1− 1

p
)2t−2 = t

p
(1− 1

p
)2t ±O(1/p).

130

• Define zbe as the indicator random variable that e is successfully colored by a color in
Ψ(e)− {c•}. We have E[zbe] = (p− 1) · 1

p
(1− 1

p
)2t−2 = (1− 1

p
)2t ±O(1/p).

Let za,be
def
= zae · zbe. Notice that zae and zbe are nearly independent but not independent. Let

ze
def
= zae + z

b
e− za,be , and so we have z = |R \R⋄| =

∑
e∈R ze. We calculate E[za,be] as follows.

Let e′ be any edge incident to e such that c• ∈ Ψ(e′), and let c be any color in Ψ(e)−{c•}.
With respect to (e, e′, c), we define the following two sets:

• Sa is the set of all edges e′′ such that (i) e′′ ̸= e, e′, (ii) e′′ is incident to e′, and (iii)
c• ∈ Ψ(e′′). Intuitively, Sa is the set of all edges other than e that contend with e′ for
the color c•. Notice that |Sa| = 2t− 3, since Ψ(e) must contain c•.

• Sb is the set of all edges e′′ such that e′′ ∈ Sb if (i) e′′ ̸= e, e′, (ii) e′′ is incident to e,
and (iii) c ∈ Ψ(e′′). Intuitively, Sb is the set of all edges other than e′ that contend
with e for the color c. Notice that 2t− 3 ≤ |Sb| ≤ 2t− 2, since Ψ(e′) may or may not
contain c. The extent to which Sa and Sb intersect is unknown.

Fixing the edge e incident to v•, let x(c, e′) denote the probability that (i) e′ successfully
colors itself c• and (ii) e successfully colors itself c. In view of the definition of Sa and Sb,
we have:

x(c, e′) =
1

p2

∏
e′′∈Sa\Sb

(1− 1/p)
∏

e′′∈Sb\Sa

(1− 1/p)
∏

e′′∈Sa∩Sb

(1− 2/p)

=
1

p2
(1− 1/p)|Sa\Sb|(1− 1/p)|Sb\Sa|(1− 2/p)|Sa∩Sb|

=
1

p2
(1− 1/p)|Sa\Sb|(1− 1/p)|Sb\Sa|(1− 1/p)2|Sa∩Sb|

(
1−O

(
|Sa ∩ Sb|

p2

))
=

1

p2
(1− 1/p)|Sa|+|Sb|(1−O(1/p)) (Notice that |Sa ∩ Sb| < t = Θ(p).)

=
1

p2
(1− 1/p)4t−O(1)(1−O(1/p))

=
1

p2
(1− 1/p)4t ±O(1/p3).

131

We now calculate E[za,be] and show that E[|R⋄|] = |R| − E[z] = t⋄ ±O(1).

E[za,be] =
∑

(c,e′) : e′ incident to e,
c• ∈ Ψ(e′), c ∈ Ψ(e)− {c•}

x(c, e′) (union of disj. events)

= (t− 1)(p− 1) ·
(

1

p2
(1− 1/p)4t ±O(1/p3)

)
=
t

p
(1− 1/p)4t ±O(1/p).

E[|R⋄|] = |R| − E[z]

= t−
∑
e∈R

(
E[zae] + E[zbe]− E[za,be]

)
= t ·

(
1− t

p
(1− 1/p)2t − (1− 1/p)2t +

t

p
(1− 1/p)4t ±O(1/p)

)
= t ·

(
1− t

p
(1− 1/p)2t − (1− 1/p)2t +

t

p
(1− 1/p)4t

)
±O(1)

= t⋄ ±O(1). (Definition of t⋄)

Concentration Bound. We have established that |R⋄| has the correct expectation and
now need to prove that it has sufficiently good concentration around that expectation.
The analysis here becomes more complicated because we have to consider the colors se-
lected in some 3-neighborhood. The palette size and degree analyses focussed only on
2-neighborhoods.

Based on the definition of zae and zbe, we define the following sets.

• Recall that R = Nc•(v
•). Let R1 be the set of all edges e such that (i) e /∈ R, (ii)

c• ∈ Ψ(e), and (iii) e is incident to some edge in R. Similarly, let R2 be the set of all
edges e such that (i) e /∈ R∪R1, (ii) c• ∈ Ψ(e), and (iii) e is incident to some edge in
R1. Notice that the value zae , for any e ∈ R, is determined by the information about
which edges in R ∪R1 ∪R2 select c•. We write α = |R ∪R1 ∪R2|.

• Let R′ be the set of all edges e′ such that (i) e′ /∈ R and (ii) there exists e ∈ R

such that Ψ(e) ∩ Ψ(e′) − {c•} ̸= ∅. Notice that the the value zbe, for any e ∈ R, is
determined by the colors selected by the edges in R ∪R′. We write β = |R ∪R′|.

For each e ∈ R, zae is simply the summation of ze′,c• over all edges e′ ∈ R1 incident to

132

e. For each e′′ ∈ R2, we write w(e′′) to denote the number of edges in R1 incident to e′′.
Intuitively, w(e′′) measures the influence of Color⋆(e′′) on

∑
e∈R z

a
e .

We consider the sequence of random variables (X1, . . . , Xα+β), where the initial α random
variables reveal which edges in R ∪ R1 ∪ R2 select the color c• according to the ordering
R2, R1, R, and the remaining β random variables reveal the colors selected by the edges
in R ∪ R′ according to the ordering R′, R. We let z = f(X1, . . . , Xα+β) in Theorem 5.4.
To prove the desired concentration bound Pr[z < E[z]− s] = exp(−Ω(s2/t)), it suffices to
show that we can set M = O(1) and σ2

i such that
∑α+β

i=1 σ
2
i = O(t). In what follows, we

analyze the effect of exposing the value of Xi, given that all variables in Xi−1 have been
fixed.

Revealing whether c• is Selected by an Edge in R ∪ R1 ∪ R2. Consider the case
where Xi reveals whether c• is selected by the edge e⋆ ∈ R ∪ R1 ∪ R2. Notice that Xi is
binary, and recall that Di = E[z|Xi]−E[z|Xi−1]. There are at most two distinct outcomes
of Di|Xi−1, in which one occurs with probability 1/p. Thus, by Lemma 5.6 we have:

Var[Di|Xi−1] ≤
(
max
Xi

Di|Xi−1 −min
Xi

Di|Xi−1

)2

/p = O(max
Xi

|Di|2/p).

Thus, to achieve
∑α

i=1 σ
2
i = O(t) and M = O(1) it suffices to show the following.

• For the case e⋆ ∈ R2, we must prove |Di| = O(w(e⋆)/p).25 Since w(e⋆) < t = Θ(p),
Var[Di|Xi−1] = O((w(e⋆)/p)2/p) = O(w(e⋆)/p2), so we can set σ2

i = O(w(e⋆)/p2).

• For the case e⋆ ∈ R ∪ R1, we must prove |Di| = O(1). Hence we may set σ2
i =

Var[Di|Xi−1] = O(1/p).

Notice that
∑

e⋆∈R2
w(e⋆) < t3, |R1| < t2, and |R| = t. Thus,

∑α
i=1 σ

2
i = O(t). With

respect to the edge e⋆ ∈ R ∪R1 ∪R2, we make the following definitions.

Y a def
= {e′ ∈ R1 : e′ = e⋆ or e′ is incident to e⋆} Da

i
def
=
∑
e′∈Y a

(E[ze′,c• |Xi] + E[ze′,c•|Xi−1])

Y b def
= {e ∈ R : e = e⋆ or e is incident to e⋆} Db

i
def
=
∑
e∈Y b

|E[zbe|Xi]− E[zbe|Xi−1]|

25Intuitively, if e⋆ chooses color c•, it prevents w(e⋆) edges in R1 from successfully coloring themselves
c•, but the prior probability of these edges coloring themselves c• was only O(1/p), hence the total
influence on the expectation of z should be O(w(e⋆)/p).

133

Intuitively, Y a and Y b are the subsets of R1 and R that are “relevant” to Di in the following
sense:

E[ze′′,c•|Xi] = E[ze′′,c•|Xi−1] for all e′′ ∈ R1 \ Y a,
E[zbe′|Xi] = E[zbe′ |Xi−1] for all e′ ∈ R \ Y b.

Our plan of bounding |Di| is as follows. First we show that |Di| ≤ 4Da
i +Db

i in Claim 1,
and then we bound Da

i and Db
i separately in Claims 2 and 3. The three claims together

establish a desired bound on |Di|.

Claim 1. |Di| ≤ 4Da
i +Db

i .

Proof. We define the following notations.

P1
def
= {(e, e′) : e ∈ R \ Y b, e′ ∈ Y a, e is incident to e′}

P2
def
= {(e, e′) : e ∈ Y b, e′ ∈ R1 \ Y a, e is incident to e′}

P3
def
= {(e, e′) : e ∈ Y b, e′ ∈ Y a, e is incident to e′}

Qj
def
= −

∑
(e,e′)∈Pj

(
E[ze′,c• · zbe|Xi]− E[ze′,c• · zbe|Xi−1]

)
(for each j = 1, 2, 3)

Fj
def
=
∑

e∈R (E[zje|Xi]− E[zje|Xi−1]) (for each j = a, b)

The definitions of P1, P2, and P3 depend on Y a and Y b, which depend on the edge e⋆.
For instance, if e⋆ ∈ R, then Y b = R, which implies that P1 = ∅. Recall that the edge
e⋆ can be any edge in R ∪ R1 ∪ R2, and the proof of this claim applies to all choices of
e⋆ ∈ R ∪R1 ∪R2.

Notice that for any pair (e ∈ R, e′ ∈ R1) such that e is incident to e′ but (e, e′) /∈
P1 ∪ P2 ∪ P3, we must have E[ze′,c• · zbe|Xi] = E[ze′,c• · zbe|Xi−1] due to the definition of Y a

and Y b. We rewrite the term Di as follows.

Di = E[z|Xi]− E[z|Xi−1]

=
∑
e∈R

(E[ze|Xi]− E[ze|Xi−1])

=
∑
e∈R

(
(E[zae |Xi]− E[zae |Xi−1]) +

(
E[zbe|Xi]− E[zbe|Xi−1]

)
−
(
E[zae · zbe|Xi]− E[zae · zbe|Xi−1]

))

134

(Recall that zae is the summation of ze′,c• over all edges e′ ∈ R1 incident to e.)

= Fa + Fb −
∑

(e,e′) : e∈R, e′∈R1, e′ incident to e

(
E[ze′,c• · zbe|Xi]− E[ze′,c• · zbe|Xi−1]

)
(Any pair (e, e′) /∈ P1 ∪ P2 ∪ P3 contributes zero to this summation.)

= Fa + Fb +Q1 +Q2 +Q3.

To prove this claim it suffices to show that (i) |Fa + Q1| ≤ 2Da
i , (ii) |Fb + Q2| ≤ Db

i , and
(iii) |Q3| ≤ 2Da

i . We expand Fa using the fact that zae is the summation of ze′,c• over all
edges e′ ∈ R1 incident to e.

|Fa +Q1| ≤

∣∣∣∣∣∣Q1 +
∑

(e,e′) : e∈R, e′∈R1, e′ incident to e

(E[ze′,c•|Xi]− E[ze′,c•|Xi−1])

∣∣∣∣∣∣
Since any pair (e, e′) /∈ P1 ∪ P3 contributes 0 in the summation,

≤

∣∣∣∣∣∣Q1 +
∑

(e,e′)∈P1∪P3

(E[ze′,c•|Xi]− E[ze′,c• |Xi−1])

∣∣∣∣∣∣
and by definition of Q1,

≤
∑

(e,e′)∈P1

∣∣E[ze′,c•(1− zbe)|Xi]− E[ze′,c•(1− zbe)|Xi−1]
∣∣

+
∑

(e,e′)∈P3

|E[ze′,c•|Xi]− E[ze′,c• |Xi−1]|

When e /∈ R \ Y b, E[zbe|Xi−1] = E[zbe|Xi], so

≤
∑

(e,e′)∈P1

(1− E[zbe|Xi−1]) |E[ze′,c•|Xi]− E[ze′,c•|Xi−1]|

+
∑

(e,e′)∈P3

|E[ze′,c•|Xi]− E[ze′,c• |Xi−1]|

135

and since 0 ≤ 1− E[zbe|Xi−1] ≤ 1,

≤
∑

(e,e′)∈P1∪P3

|E[ze′,c•|Xi]− E[ze′,c•|Xi−1]|

Finally, any edge e′ ∈ R1 is incident to at most 2 edges in R, so

≤ 2
∑
e′∈Y a

|E[ze′,c•|Xi]− E[ze′,c• |Xi−1]|

≤ 2Da
i .

For each e ∈ Y b, we write B(e) to denote the set of all edges e′ ∈ R1\Y a that are incident to
e, i.e., {e}×B(e) ⊆ P2. Notice that 0 ≤ E[

∑
e′∈B(e) ze′,c•|Xi−1] = E[

∑
e′∈B(e′) ze′,c• |Xi] ≤ 1,

since e = {v•, u} and all edges in B(e) share the vertex u, and so at most one could be
successfully colored c•. By definition, none are incident to e⋆. We can now bound |Fb+Q2|
as follows.

|Fb +Q2| ≤

∣∣∣∣∣Q2 +
∑
e∈Y b

E[zbe|Xi]− E[zbe|Xi−1]

∣∣∣∣∣
According to the definition of B(e) and Q2,

≤
∑
e∈Y b

∣∣∣∣∣∣E
zbe

1−
∑

e′∈B(e)

ze′,c•

∣∣∣∣∣∣Xi

− E

zbe
1−

∑
e′∈B(e)

ze′,c•

∣∣∣∣∣∣Xi−1

∣∣∣∣∣∣
For every e′ ∈ R1 \ Y a, we have E [ze′,c•|Xi] = E [ze′,c•|Xi−1], which implies

≤
∑
e∈Y b

1− E

 ∑
e′∈B(e)

ze′,c•

∣∣∣∣∣∣Xi−1

 · ∣∣E[zbe|Xi]− E[zbe|Xi−1]
∣∣

≤
∑
e∈Y b

∣∣E[zbe|Xi]− E[zbe|Xi−1]
∣∣

= Db
i .

136

Our last task is to bound the absolute value of Q3.

|Q3| ≤
∑

(e,e′)∈P3

(
E[ze′,c• · zbe|Xi] + E[ze′,c• · zbe|Xi−1]

)
≤

∑
(e,e′)∈P3

(E[ze′,c•|Xi] + E[ze′,c• |Xi−1])

Since any edge e′ ∈ R1 is incident to at most 2 edges in R,

≤ 2
∑
e′∈Y a

(E[ze′,c• |Xi] + E[ze′,c•|Xi−1])

≤ 2Da
i .

Claim 2. If e⋆ ∈ R2, then Da
i = O(w(e⋆)/p). If e⋆ ∈ R ∪R1, then Da

i = O(1).

Proof. We first consider the case that e⋆ ∈ R2. In this case |Y a| = w(e⋆). Recall that
Y a ⊆ R1, and so all e ∈ Y a have not yet decided whether to select c• when Xi is revealed.
Therefore, both E[ze,c•|Xi] and E[ze,c•|Xi−1] are within the range [0, 1/p], and so Da

i =

O(w(e⋆)/p). Next, consider the case that e⋆ ∈ R∪R1. All edges in Y a must share a vertex
with e⋆, and so at most two edges in Y a can successfully color themselves by c•. Hence

Da
i ≤

∑
e∈Y a

(E[ze,c• |Xi] + E[ze,c• |Xi−1]) ≤ 2 + 2 = 4 = O(1).

Claim 3. If e⋆ ∈ R1 ∪R2, then Db
i = O(1/p). If e⋆ ∈ R, then Db

i = O(1).

Proof. Recall that zbe =
∑

c∈Ψ(e)−{c•} ze,c for any edge e ∈ Y b, and so

Db
i ≤

∑
e∈Y b

∑
c∈Ψ(e)−{c•}

|E[ze,c|Xi]− E[ze,c|Xi−1]|.

We first show that |E[ze,c|Xi]−E[ze,c|Xi−1]| = O(1/p2) if e⋆ ̸= e. We write k1 (resp., k2) to
denote the number of edges incident to e that have decided to select c• (resp., have decided

137

to not select c•) by the time Xi is revealed.

E[ze,c|Xi−1] =


0 (e has decided to select c•)
1

p−1
· (1− 1/p)2t−1−k1−k2 · (1− 1/(p− 1))k2 (e has decided to not select c•)

1
p
· (1− 1/p)2t−1−k1−k2 · (1− 1/(p− 1))k2 (e has not made any decision)

In any case, E[ze,c|Xi−1] = O(1/p). There are two possibilities of E[ze,c|Xi] based on Xi,
i.e., whether e⋆ selects c•.

E[ze,c|Xi] =

E[ze,c|Xi−1]/(1− 1/p) (e⋆ selects c•)

E[ze,c|Xi−1] · (1− 1/(p− 1))/(1− 1/p) (e⋆ does not select c•)

In any case, |E[ze,c|Xi] − E[ze,c|Xi−1]| = O(1/p2). We are now in a position to bound
Db

i . For the case that e⋆ ∈ R1 ∪ R2, we have |Y b| ≤ 2 and e⋆ /∈ Y b, and so Db
i ≤

2 · (p − 1) · O(1/p2) = O(1/p). For the case that e⋆ ∈ R, we have |Y b| = |R| = t and
e⋆ ∈ Y b, and so Db

i ≤ 1 + (t− 1) · (p− 1) ·O(1/p2) = O(1).

Revealing the Color Selected by an Edge in R∪R′. Next, we analyze the effect of
exposing the value of Xi, where α < i ≤ α + β, given that all variables in Xi−1 have been
fixed.

Observe that zae , for all e ∈ R, are already determined by {Xj : j ∈ [α]}. If zae = 1,
then ze = 1 regardless of the value of zbe; if zae = 0, then ze = zbe. For those edges e ∈ R
such that ze is not determined by {Xj : j ∈ [α]}, the random variable ze = zbe behaves the
same as ze in the analysis of concentration of vertex degree, so the analysis in Section 5.4.1
can be applied here (think of S = R and S ′ = R′).

In more detail, for each edge e′ ∈ R′, we define w′(e′) as∑
e∈R, e′ incident to e |Ψ(e′) ∩Ψ(e)− {c•}|. We have

∑
e′∈R′ w′(e′) ≤ |R|(p − 1)(t − 1) < pt2.

Now consider the color Xi = Color⋆(e⋆) selected by the edge e⋆ ∈ R ∪ R′. From the
analysis in Section 5.4.1, we infer the following.

• If e⋆ ∈ R′, then |Di| = O(1) and Var[Di|Xi−1] = O(w′(e⋆)/(pt)). Hence we can set
σ2
i = O(w′(e⋆)/(pt)).

• If e⋆ ∈ R, then |Di| = O(1) and Var[Di|Xi−1] = O(1). Hence we can set σ2
i = O(1).

Thus,
∑α+β

j=α+1 σ
2
i = O(t), as desired.

138

5.5 Distributed Lovász Local Lemma on Trees
In this section, we study the distributed LLL on tree-structured dependency graphs, which
we define as follows. Let T be a tree. Each vertex v holds some variables V(v) and is
associated with a bad event E(v) that depends only on variables within distance r/2 of v;
that is, vbl(E(v)) =

∪
u∈Nr/2(v) V(u). If S is a subset of the vertices, we use vbl(S) to be

short for
∪

v∈S vbl(E(v)) =
∪

v∈S
∪

u∈Nr/2(v) V(u).
The dependency graph for the set of bad events E is exactly T r, which is the graph

obtained by adding edges to all pairs of vertices of distance at most r in T . Thus, the
maximum degree of the dependency graph is ∆r, where ∆ is the maximum degree of T .
We fix the parameter d = ∆r. Notice that the tree-structured dependency graphs (with
parameter r) arise naturally from any r/2-time RandLOCAL experiment that is run on a
tree T . Throughout this section we assume r/2 ≥ 1 is an integer and that ∆ ≥ 3.

5.5.1 Deterministic LLL Algorithm

A (λ, γ)-network decomposition is a partition of the vertex set into V1, . . . , Vλ such that each
connected component induced by each Vi has diameter at most γ. Fischer and Ghaffari [61]
showed that given a (λ, γ)-decomposition of G2

E , an LLL instance satisfying p(ed)λ <

1 is solvable in O(λ(γ + 1)) time. We use a slight generalization of standard network
decompositions. A (λ1, γ1, λ2, γ2)-network decomposition is a partition of the vertices into
V1, . . . , Vλ1 , U1, . . . , Uλ2 such that connected components induced by Vi have diameter at
most γ1 and those induced by Ui have diameter at most γ2.

Lemma 5.7 (Fischer and Ghaffari [61]). Suppose that a (λ1, γ1, λ2, γ2)-network decompo-
sition of G2

E is given. Any LLL instance on GE satisfying p(ed)λ1+λ2 < 1 can be solved in
DetLOCAL in O(λ1(γ1 + 1) + λ2(γ2 + 1)) time.

The proof of Theorem 5.5 is based on the network decompositions for trees found in
Section 5.6. A distance-d dominating set of a graph G is a vertex set S such that for each
vertex v in the graph G, there exists u ∈ S such that dist(u, v) ≤ d.

Theorem 5.5. Any tree-structured LLL satisfying p(ed)λ < 1 with λ ≥ 2 can be solved
in DetLOCAL in O(max{logλ s, log s

log log s
} + log∗ n) time, where s ≤ n is the size of any

distance-O(1) dominating set of the tree T .

139

Proof. Recall that the dependency graph is T r for some tree T and constant r. In Sec-
tion 5.6 we show that a standard (2, O(log s))-decomposition for (T r)2 = T 2r is computable
in O(log s + log∗ n) time, and if λ = Ω(1) is sufficiently large, a (1, O(logλ s), O(λ2), 0)-
decomposition for T 2r is computable in O(logλ s+ log∗ n) time.

When λ = O(1) is sufficiently small, we apply Lemma 5.7 with the first network de-
composition. Because the decomposition has two parts, this works with LLL criterion
p(ed)2 < 1. When λ is sufficiently large we compute a (1, O(logλ̂ s), O(λ̂2), 0)-decomposition
in O(logλ̂ s + log∗ n) time, where λ̂ = min{λ,

√
log s

log log s
}. We solve the LLL by applying

Lemma 5.7, which takes time O(λ̂2 + logλ̂ s + log∗ n) = O(max{logλ s, log s
log log s

} + log∗ n).
Observe that because of the λ̂2 term, we cannot benefit from LLL instances with λ ≫√

log s
log log s

.

Note that the time bound for Theorem 5.5 is in terms of s rather than n. We will
apply Theorem 5.5 after performing a graph shattering step, the output of which creates
many disjoint tree-structured instances with size poly(∆) logn, but which contain only
logn-size distance-O(1) dominating sets. We want the time bound to be in terms of
s = logn and independent of ∆. If we combine Theorem 5.5 with the O(d2+ log∗ n) Fischer
and Ghaffari’s [61] shattering routine, we obtain a O(d2 +max{logλ logn, log logn

log log logn
})-time

RandLOCAL LLL algorithm for criterion p(ed)λ < 1, λ ≥ 4, which is efficient only when
d is small. In Section 5.5.2 we present a new method for computing a partial assignment
to the variables that effectively shatters a large dependency graph into many independent
subproblems, each satisfying a polynomial LLL criterion w.r.t. the unassigned variables.

5.5.2 Randomized LLL Algorithm

Consider a tree-structured LLL instance T r with LLL criterion p(ed)λ < 1. In subsequent
discussion, unless otherwise stated, the underlying graph is, by default, assumed to be T .
Our shattering routine will work towards finding a good partial assignment.

Definition 5.1. A partial assignment ϕ to the variables in the LLL system is good if it
satisfies the following three properties.

1. If all variables in vbl(E(v)) =
∪

u∈Nr/2(v) V(u) are assigned, then the bad event E(v)
does not occur under the assignment ϕ.

2. Let V ′ be the set of all vertices v such that vbl(E(v)) contains some unassigned

140

variables. Each connected component C induced by V ′ has size at most poly(∆) ·
O(logn), and C contains a distance-2r dominating set with size at most O(logn).

3. Conditioned on the partial assignment ϕ, the probability of any bad event E(v) is at
most p′ = √p. (In particular, (3) implies (1) as a special case.)

Due to Definition 5.1(3), conditioned on a good partial assignment ϕ, the bad events in
each connected component C induced by V ′ form an LLL system with the LLL criterion
p′(ed)λ/2 < 1. Thus, the good partial assignment ϕ effectively shatters the tree T into
small components, each of which is an independent LLL system. In Sections 5.5.3–5.5.5
we prove the following efficient “shattering lemma.”

Lemma 5.8. Suppose we are given a tree-structured LLL instance T r satisfying LLL
criterion p(ed)λ < 1, where λ ≥ 2(4r + 8r). There is a RandLOCAL algorithm that
computes a good partial assignment ϕ in O(logλ logn) time.

By applying Lemma 5.8 and then Theorem 5.5 to the LLL instance of each component,
we are now able to efficiently solve tree-structured LLL instances in O(log logn) time or
faster, independent of the maximum degree d of the dependency graph. We have the
following theorem.

Theorem 5.6. Let T r be a tree-structured LLL instance satisfying criterion p(ed)λ < 1 with
λ ≥ 2(4r + 8r). This LLL can be solved in RandLOCAL in O(max{logλ logn, log logn

log log logn
})

time.

The statement of Lemma 5.8 actually suggests an algorithm to compute a good partial
assignment ϕ. First, draw a total assignment ϕ to V according to the distribution of the
variables. If any bad event E(v) occurs under ϕ, update ϕ by unsetting all variables in
vbl(E(v)). More generally, whenever Pr[E(v)|ϕ] exceeds √p, update ϕ by unsetting all
variables in vbl(E(v)). This can be viewed as a contagion dynamic played out on the
dependency graph. Bad events that occur under the initial total assignment are infected,
and infected vertices can cause nearby neighbors to become infected.

If this contagion process were actually simulated, it would take Ω(logn) parallel steps
to reach a stable state, which is too slow. We will provide a different method to achieve a
stable state that is exponentially faster, by avoiding a direct simulation.

141

5.5.3 Criterion for Infection

Let u be a vertex in the undirected tree T . Then T − {u} consists of deg(u) subtrees
T1, . . . , Tdeg(u); we call Tk the kth subtree of u. Define Cu(k, [i, j]) to be the set of vertices in
the kth subtree of u whose distance to u lies in the interval [i, j]. For example, Cu(k, [1, 1])

only contains the kth neighbor of u. For any vertex set S, define d̂egS(u) as follows,

d̂egS(u) = |{k : Cu(k, [1, r]) ∩ S ̸= ∅}| .

In other words, it is the number of distinct subtrees of u containing at least one S-vertex
within distance r.

Let µ ≥ 4 and λ′ ≥ 1 be two integers such that λ ≥ 2(µr+λ′). The following bad events
B(S, v) and B(v) are defined w.r.t. the following process. First, we fix a total assignment
ϕ to the variables, then progressively add vertices to the set S. All variables in vbl(S)
are considered unset; for example, conditioning on “vbl(E(v))\ vbl(S)” means keeping ϕ’s
assignment to vbl(E(v))\ vbl(S) and resampling vbl(S) according to their distribution.

B(S, v) :
[
Pr [E(v) | vbl(E(v))\ vbl(S)] ≥ (ed)−λ/2

]
,

B(v) :

[∪
S⊂Nr(v), |S|≤µr

B(S, v)

]
.

In other words, B(S, v) is the event that, if we were to resample vbl(S), the probability
that E(v) occurs is at least (ed)−λ/2. The event B(v) occurs if it is possible to find a subset
S of cardinality at most µr such that B(S, v) occurs.

We can now consider the probability that these events occur, over a randomly selected
initial total assignment ϕ.

Pr
ϕ
[B(S, v)] ≤ Prϕ[E(v)]

Prϕ[E(v) | B(S, v)]
≤ (ed)−λ

(ed)−λ/2
= (ed)−λ/2 ≤ (ed)−(µr+λ′).

By a union bound over the |N r(v)|µr ≤ dµ
r choices of S,

Pr
ϕ
[B(v)] ≤

∑
S

Pr
ϕ
[B(S, v)] < (ed)−λ′

.

142

Intuitively, B(v) is the event that E(v) is too close to happening. That is, relatively few
variables need to be resampled to give E(v) a likely probability of happening. Lemma 5.9
shows that the criterion for infection “d̂egS(v) > µ” is a good proxy for the harder-to-
analyze criterion “E(v) is too close to happening”.

Lemma 5.9. Fix a total variable assignment ϕ. Let S be any vertex set such that, for
each vertex v, if B(v) occurs under ϕ or d̂egS(v) > µ, then v must be in S. Then
Pr[E(v) | vbl(E(v)) \ vbl(S)] < (ed)−λ/2 for each vertex v.

Proof. If v ∈ S, then the probability of seeing E(v) after resampling vbl(S) is, according
to the original LLL criterion, at most p < (ed)−λ. In what follows we assume v ̸∈ S.

To prove the lemma, it suffices to show that there exists a vertex set S ′ such that (i)
S ′ ⊂ N r(v), (ii) |S ′| ≤ µr, and (iii) vbl(S ′) ∩ vbl(E(v)) = vbl(S) ∩ vbl(E(v)). Notice that
(iii) implies that resampling vbl(S ′) is equivalent to resampling vbl(S) from v’s point of
view. Since v ̸∈ S, by assumption, event B(v) does not occur. Since |S ′| ≤ µr, event
B(S ′, v) does not occur. Hence Pr[E(v) | vbl(E(v)) \ vbl(S ′)] < (ed)−λ/2, as desired.

Root the tree at v. We call a vertex u ∈ S “highest” if u is in N r(v) and no ancestor of u
is in S. If H is the set of highest vertices, then vbl(S)∩vbl(E(v)) = vbl(H)∩vbl(E(v)), so
we only need to bound |H| by µr. Suppose, for the sake of contradiction, that |H| ≥ µr+1.
Define the path (v = v0, v1, . . . , vr) by selecting vi as the child of vi−1 that maximizes the
number of vertices in H contained in the subtree rooted at vi. We prove by induction
that the subtree rooted at vi contains at least µr−i + 1 H-vertices. The base case i = 0

holds by assumption. If there are µ+1 subtrees of vi containing H-vertices, then vi would
be infected. Thus, by the pigeonhole principle, the number of H-vertices in the subtree
rooted at vi+1 must be at least ⌈(µr−i + 1)/µ⌉ = µr−(i+1) + 1. Hence the subtree rooted
at vr contains µ0 + 1 = 2 H-vertices; this is a contradiction since the only vertex in this
subtree eligible to be in H is vr itself.

5.5.4 Contagion Process

A (q0, r, µ)-contagion process on an n-vertex tree T is played out as follows. Initially, each
vertex is infected with probability q0, and these events are independent for vertices at
distance greater than r. If S is the set of infected vertices at some time and d̂egS(v) > µ,
then v becomes infected. In this section our goal is, given the initially infected vertices, to
compute a superset of those vertices that is stable and small.

143

Definition 5.2. Let S0 be the initially infected vertices and S ⊃ S0.

• S is called stable if it causes no more infection.

• S is called small if each connected component induced by
∪

v∈S N
r(v) contains a

distance-2r dominating set of size at most O(logn).

In Lemma 5.10, we show that one can efficiently compute a set S that is both stable and
small.

Lemma 5.10. Consider a (q0, r, µ)-contagion process played on an n-vertex tree T with
maximum degree ∆. There is a RandLOCAL algorithm that computes a small stable set S
in O(logµ logn) time, where r is constant, q0 ≤ (ed)−8r, d = ∆r, and µ ≥ 4.

The proof of Lemma 5.10 is deferred to Section 5.5.5. Lemma 5.11 connects the contagion
problem to finding a good partial assignment.

Lemma 5.11. Suppose there is a τ -round RandLOCAL algorithm for finding a small sta-
ble set S for a ((ed)−λ′

, r, µ)-contagion process. Then there exists a (τ + O(1))-round
RandLOCAL algorithm for finding a good partial assignment ϕ to a tree-structured LLL
instance with criterion p(ed)λ < 1, where λ ≥ 2(µr + λ′).

Proof. Let q0 = (ed)−λ′ . Consider the (q0, r, µ)-contagion process defined by choosing a
random assignment ϕ′ to the variables in the LLL system and initially infecting all vertices
v such that B(v) occurs. The lower bound on λ implies Pr[B(v)] ≤ q0 = (ed)−λ′ . Given
the small stable set S, we let ϕ be the result of unassigning all variables in vbl(S) =∪

v∈S vbl(E(v)) =
∪

v∈S
∪

u∈Nr/2(v) V(u).
We now verify that ϕ is a good partial assignment. Since S is stable, for each ver-

tex v, if B(v) occurs under ϕ or d̂egS(v) > µ, then v must be in S. By Lemma 5.9,
Pr[E(v) | vbl(E(v))\ vbl(S)] < (ed)−λ/2 <

√
p for each vertex v, and so Definition 5.1(1,3)

are satisfied. Let V ′ =
∪

v∈S N
r(v) be the set of all vertices v such that vbl(E(v)) contains

some unassigned variables. Since S is small, each connected component C induced by V ′

contains a distance-2r dominating set with size at most O(logn). Since 2r = O(1), the
cardinality of C is at most poly(∆) ·O(logn). Hence Definition 5.1(2) is also satisfied.

We are now in a position to prove Lemma 5.8. Recall that the LLL criterion of in
Lemma 5.8 is λ ≥ 2(4r +8r). We pick the largest even integer µ such that λ ≥ 2(µr +8r),
and we set λ′ = 8r. Notice that µ ≥ 4 and logµ = Θ(logλ). By Lemma 5.10, a small

144

stable set S for the ((ed)−8r, r, µ)-contagion process can be computed in O(logµ logn) =

O(logλ logn) time. By Lemma 5.11, this implies aO(logλ logn)-time RandLOCAL algorithm
to finding a good partial assignment ϕ under the LLL criterion p(ed)λ < 1.

5.5.5 Finding a Small Stable Set

We prove Lemma 5.10 in this section. The algorithm for Lemma 5.10 simulates a more
virulent contagion process for τ steps using threshold µ/2 rather than µ, then simulates a
reverse-contagion for τ steps, where vertices become uninfected if they were not initially
infected and they have nearby infected vertices in at most µ subtrees. We prove that
when τ = Θ(logµ logn), the final infected set S = Lτ is both stable and small. This
process is called Find-Small-Stable-Set. The sets generated by this process satisfy that
U0 ⊆ · · · ⊆ Uτ = L0 ⊇ · · · ⊇ Lτ .

Find-Small-Stable-Set.

(1) U0 ← {u ∈ V | u is initially infected}. That is, u ∈ U0 if B(u) occurs
initially.

(2) For 1 ≤ i ≤ τ , do Ui ← Ui−1 ∪ {u ∈ V | d̂egUi−1
(u) > µ/2}.

(3) L0 ← Uτ .

(4) For 1 ≤ i ≤ τ , do Li ← Li−1 \ {u ∈ Li−1 \ U0 | d̂egLi−1
(u) ≤ µ}.

(5) Return Lτ .

We show that S = Lτ is stable in Lemma 5.16. Let Lτ+1 be the set of all vertices u such
that d̂egLτ

(u) > µ. Our goal is to show that if u /∈ Lτ , then d̂egLτ
(u) ≤ µ (i.e., u /∈ Lτ+1)

with high probability.
Root T at an arbitrary vertex, and let T ′ refer to the rooted version. Define T ′

u to be the
subtree of T ′ rooted at u, and define C ′

u(k, [i, j]) as Cu(k, [i, j])∩T ′
u. Given a vertex set W ,

define deg′W (u) as the number of different k such that C ′
u(k, [1, r])∩W ̸= ∅. Although the

original contagion process is played on T , it is easier to analyze a similar process played
on T ′, where only descendants can cause a vertex to become infected.

In general, if {X(u)}u∈V is an ensemble of events associated with vertices and W a
subset of vertices, we write X(W) to denote the event

∪
u∈W X(u), i.e., there exists u ∈ W

such that X(u) occurs. We write X to denote the set of vertices {u ∈ V | X(u) occurs}.
For any two events A and B, we write A ⇒ B to denote A ⊆ B, i.e., A implies B. With

145

respect to a vertex u, consider the following three sequences of events.

(Fi(u)) : for each 0 ≤ i ≤ τ , let Fi(u) be (u /∈ Ui) ∧ (u ∈ Li+1).
(Hi(u)) : let H0(u) be (u ∈ U0);

for each 0 ≤ i < τ , let Hi+1(u) be H0(u) ∨ (deg′Hi
(u) ≥ µ/2).

(F̃i(u)) : let F̃0(u) be Hτ (u); for each 0 ≤ i < τ , let F̃i+1(u) be deg′F̃i
(u) ≥ µ/2.

Lemma 5.12. No vertex can belong to both Uτ \ Lτ and Lτ+1.

Proof. Suppose there were such a vertex u. If u ∈ Lτ+1 then it must have more than µ

neighbors in Lτ , which were also in Lτ−1 ⊆ · · · ⊆ L0 = Uτ . But if u ∈ Uτ then it would
also remain in L0, . . . , Lτ , contradicting the assumption that u ∈ Uτ \ Lτ .

By Lemma 5.12, to prove that S = Lτ is stable, it suffices to prove that

Pr[Fτ (u)] = Pr[(u /∈ Lτ) ∧ (u ∈ Lτ+1)] = 1/poly(n).

Lemma 5.13 connects the true contagion process on T to an imagined one played on T ′.

Lemma 5.13. For each vertex u in T , and for each 0 ≤ i ≤ τ , we have Fi(u)⇒ F̃i(u).

Proof. We first show that (u ∈ Ui) ⇒ Hi(u), for each 0 ≤ i ≤ τ . The base case (i = 0)
follows from the definition of H0(u). Assume by inductive hypothesis that (u ∈ Ui−1) ⇒
Hi−1(u). We have:

(u ∈ Ui \ U0)⇒
(
d̂egUi−1

(u) > µ/2
)
⇒
(
deg′Ui−1

(u) ≥ µ/2
)
⇒
(
deg′Hi−1

(u) ≥ µ/2
)
.

This implies (u ∈ Ui)⇒ Hi(u), since (u ∈ U0)⇒ H0(u)⇒ Hi(u).
Next, we prove by induction that Fi(u) ⇒ F̃i(u), for each 0 ≤ i ≤ τ . The base case

i = 0 follows from the above result:

F0(u)⇒ (u ∈ L1)⇒ (u ∈ L0 = Uτ)⇒ Hτ (u)⇒ F̃0(u).

Assume inductively that Fi−1(u) ⇒ F̃i−1(u). Let u be any vertex in Li+1 \ Ui, i.e., the
event Fi(u) occurs. Since u /∈ Ui ⊇ U0, the only way Find-Small-Stable-Set could put

146

u ∈ Li+1 \ Ui is if

d̂egLi
(u) > µ

and d̂egUi−1
(u) ≤ µ/2,

which implies

d̂egFi−1
(u) = d̂egLi

(u)− d̂egUi−1
(u) > µ/2.

and hence

deg′Fi−1
(u) ≥ µ/2.

By inductive hypothesis, we have(
deg′Fi−1

(u) ≥ µ/2
)
⇒
(
deg′F̃i−1

(u) ≥ µ/2
)
⇒ F̃i(u),

which completes the induction.

For brevity, define pi = maxu Pr[F̃i(u)] and qi = maxu Pr[Hi(u)]. We prove two auxiliary
lemmas.

Lemma 5.14. pτ ≤ (∆2((r2/2)+1)p0)
(µ
2
)τ/(r/2).

Proof. Suppose that u is a vertex such that F̃i(u) occurs. Then, by definition of F̃i(u),
there exist µ/2 different indices k such that F̃i−1(C

′
u(k, [1, r])) occurs. A consequence of

this observation is that

F̃i−1(C
′
u(k, [1, r]))⇒ F̃i−2(C

′
u(k, [2, 2r]))

⇒ F̃i−3(C
′
u(k, [3, 3r])) · · ·

⇒ F̃i−(r/2)(C
′
u(k, [r/2, r

2/2])).

Therefore, if F̃i(u) occurs, there must exist µ/2 indices k such that
F̃i−(r/2)(C

′
u(k, [r/2, r

2/2])) occurs. The µ/2 events {F̃i−(r/2)(C
′
u(k, [r/2, r

2/2]))} are
independent, since F̃i(v) depends only on vbl(T ′

v) =
∪

w∈Nr/2(v)∪T ′
v
V(w). This indepen-

147

dence property is one reason why it is easier to analyze a contagion on T ′ rather than
T .

By a union bound over all vertices in C ′
u(k, [r/2, r

2/2]), we have

Pr[F̃i−(r/2)(C
′
u(k, [r/2, r

2/2]))] ≤ ∆r2/2−1pi−(r/2).

Taking a union bound over at most
(

∆
µ/2

)
choices of µ/2 distinct indices k, we infer that

pi ≤ ∆µ/2(∆r2/2−1pi−(r/2))
µ/2 ≤ (∆(r2/2)pi−(r/2))

µ/2

for each r/2 ≤ i ≤ τ . Assume τ is a multiple of r/2, and recall µ/2 ≥ 2. We can bound pτ
as follows.

pτ ≤ p
(µ
2
)τ/(r/2)

0 ·
τ/(r/2)∏
j=1

(
∆(r2/2)

)(µ
2
)j

≤ (∆r2p0)
(µ
2
)τ/(r/2) .

Lemma 5.15. p0 = qτ ≤ ∆r/2q0.

Proof. Recall that Hi(u) is (u ∈ H0) ∨ (deg′Hi−1
(u) ≥ µ/2). This implies that

Hi−1(C
′
u(k, [1, r]))⇒ H0(C

′
u(k, [1, r])) ∨Hi−2(C

′
u(k, [2, 2r])).

Repeating this (r/2)− 1 times, Hi−1(C
′
u(k, [1, r])) implies that

H0(C
′
u(k, [1, r(r/2− 1)]) ∨Hi−(r/2)(C

′
u(k, [r/2, r

2/2])).

Since H0(C
′
u(k, [1, r(r/2− 1)])⇒ Hi−(r/2)(C

′
u(k, [r/2, r

2/2])), we conclude that

Hi−1(C
′
u(k, [1, r]))⇒ H0(C

′
u(k, [1, r/2− 1]) ∨Hi−(r/2)(C

′
u(k, [r/2, r

2/2])).

Thus, if Hi(u) occurs, then either (i) H0(N
r/2−1(u)) occurs, or (ii) there exist

µ/2 different indices k such that Hi−(r/2)(C
′
u(k, [r/2, r

2/2])) occurs. The events
Hi−(r/2)(C

′
u(k, [r/2, r

2/2])) for all k are independent, since Hi(v) depends only on vbl(T ′
v) =∪

w∈Nr/2(v)∪T ′
v
V(w).

By a union bound, Pr[Hi−(r/2)(C
′
u(k, [r/2, r

2/2]))] ≤ ∆r2/2−1qi−r/2. Suppose that τ is a
multiple of r/2. Taking a union bound over at most

(
∆
µ/2

)
choices of µ/2 distinct indices

148

k, we have

qτ ≤ Pr[H0(N
r/2−1(u))] +

(
∆

µ/2

)
·∆r2/2−1qτ−(r/2)

≤ ∆r/2−1q0 +∆µ/2(∆r2/2−1qτ−(r/2))
µ/2

≤ ∆r/2−1q0 + (∆r2/2qτ−(r/2))
µ/2

≤ ∆r/2−1q0 + q
(µ
2
)τ/(r/2)

0 ·
τ/(r/2)∏
j=1

(
∆r2/2

)(µ
2
)j

≤ ∆r/2−1q0 +
(
∆2(r2/2)q0

)(µ
2
)τ/(r/2)

(µ/2 ≥ 2)

≤ ∆r/2−1q0 +
(
∆2(r2/2)q0

)2
((µ/2)τ/(r/2) ≥ 2)

≤ ∆r/2−1q0 +∆4(r2/2)−8r2q0 (q0 ≤ (ed)−8r and d = ∆r)
≤ ∆r/2q0.

We are now ready to prove that S = Lτ is stable.

Lemma 5.16. For each vertex u /∈ Lτ , d̂egLτ
(u) ≤ µ with high probability, and so Lτ is

stable.

Proof. It suffices to show that Pr[Fτ (u)] = 1/poly(n). By Lemma 5.13, Pr[Fτ (u)] ≤
Pr[F̃τ (u)] = pτ . We show that pτ = 1/poly(n).

pτ ≤ (∆r2p0)
(µ
2
)τ/(r/2) (Lemma 5.14)

≤ (∆r2+r/2q0)
(µ
2
)τ/(r/2) (Lemma 5.15)

≤ (∆r2+r/2−8r2)(
µ
2
)τ/(r/2) (q0 ≤ (ed)−8r and d = ∆r)

≤ (∆−27)(
µ
2
)τ/(r/2) (r ≥ 2)

≤ (∆−27)Θ(logn) (τ = Θ(logµ logn) and r = O(1))
≤ 1/poly(n).

In Lemma 5.18 we prove that Uτ is small, which implies that S = Lτ ⊆ Uτ is also
small. We write T [a,b] to denote the graph defined by the vertex set V (T) and the edge set
{{u, v} | distT (u, v) ∈ [a, b]}. We first prove an auxiliary lemma.

149

Lemma 5.17. Fix a c ≥ 1. With probability 1 − n−Ω(c), the graph H = T [r+1,4r] has no
connected subgraph D such that (i) |D| ≥ c logn, and (ii) there is a subset D′ ⊆ D ∩ U0

containing at least half of the vertices in D, and distT (u, v) > r for distinct u, v ∈ D′.

Proof. The proof is similar to that of [23, Lemma 3.3]. Suppose that such D exists, and
consider a tree T̂ in H spanning D. There are at most 4c logn different rooted unlabeled
c logn-node trees; and each of them can be embedded into H in less that n · ∆4r(c logn−1)

ways. Moreover, there are at most 2c logn ways of selecting a subset D′ ⊆ D. Since
|D′| ≥ c logn/2 and distT (u, v) > r for distinct u, v ∈ D′, the probability that such T̂

exists is at most qc logn/2
0 .

Recall that q0 ≤ (ed)−8r, d = ∆r, r ≥ 2, and ∆ ≥ 3. A union bound over all possibilities
of T̂ implies that such D exists with probability at most

p′ = 4c logn · n ·∆4r(c logn−1) · 2c logn · qc logn/2
0

≤ n3c+1∆−4c(r2−r) logne−4cr logn

≤ n(4−4(r2−r) log∆−4 log e)c

≤ n−14c.

Lemma 5.18. With high probability, each connected component in the subgraph of T
induced by

∪
v∈Uτ

N r(v) contains a distance-2r dominating set of size at most O(logn),
and so Uτ is small.

Proof. Let C be any connected component induced by
∪

v∈Uτ
N r(v) We pick a distance-2r

dominating set D of C greedily, preferring vertices in U0 over U1, and U1 over U2, etc. Each
time a vertex v is picked we remove from consideration all vertices in N r(v). Recall that
U0 ⊆ · · · ⊆ Uτ . The set D is obviously a distance-r dominating set of Uτ ∩C. Since Uτ ∩C
is itself a distance-r dominating set of C, the set D is a distance-2r dominating set of C.

We write ui to denote the ith vertex added to D, and define Di = {u1, . . . , ui}. Let mi

denote the number of connected components induced by Di in the graph T [r+1,2r] (rather
than T). We claim that if ui /∈ U0, then mi < mi−1. This implies that at least half of the
vertices in D belong to U0. Observe that the set D is connected in H = T [r+1,4r] (since D
is a distance-2r dominating set of C), and so by Lemma 5.17, |D| = O(logn) with high
probability.

We prove the above claim in the remainder of the proof. Consider the moment some
ui /∈ U0 is added to D. We will show that the connected component of Di in the graph

150

T [r+1,2r] that contains ui is formed by merging ui with at least two connected components
of Di−1 in the graph T [r+1,2r].

The algorithm Find-Small-Stable-Set added ui to Uj because ui had at least µ/2 ≥ 2

subtrees containing Uj−1-vertices that are within N r(ui). Let T1 and T2 be any two such
subtrees. For each k = 1, 2, let vk be a Uj−1-vertex contained in both Tk and N r(ui). Then
there must be a vertex wk ∈ N r(vk) such that wk has been already added to D, since
otherwise the greedy algorithm should prefer vk over ui. Observe that w1 and w2 belong to
separate connected components of Di−1 in the graph T [r+1,2r], since ui /∈ N r(w1)∪N r(w2);
but w1, w2, and ui are in the same component of Di in the graph T [r+1,2r], since wk ∈
N r(vk) ⊆ N2r(ui), for both k = 1, 2.

We have proven (Lemmas 5.16 and 5.18) that the algorithm Find-Small-Stable-Set
computes a set S = Lτ that is stable and small, in O(logµ logn) time. Lemma 5.11 shows
that any such algorithm can be used to find a good partial assignment to the variables
in any tree-structured LLL instance with p(ed)λ < 1 and λ ≥ 2(4r + 8r).26 The stability
criterion is used to show that the derived LLL instances satisfy p′(ed)λ/2 < 1 and p′ = √p.
The smallness criterion implies that the instances have size poly(∆) logn and logn-size,
distance-O(1) dominating sets. Because logµ = Θ(logλ), the time to find the good partial
assignment is O(logλ logn).

5.6 Network Decomposition of Trees
Our interest in network decompositions stems from Lemma 5.7 due to [61], which shows
that they imply non-trivial deterministic LLL algorithms. Most work on network decom-
positions [120] has focussed on arbitrary graphs.

Recall that a (λ, γ)-network decomposition is a partition of the vertices into λ parts
V1, . . . , Vλ such that each Vi induces connected components with diameter at most γ. We
define a (λ1, γ1, λ2, γ2)-network decomposition to be a partition of the vertices into λ1+λ2

parts V1, . . . , Vλ1 , U1, . . . , Uλ2 such that each Vi (resp. Ui) induces connected components
with diameter γ1 (resp. γ2).

26It is possible to replace 2(4r + 8r) with 2(4r + cr) for some smaller c, but not too small. We do not
attempt to optimize this coefficient.

151

In this section we give two network decomposition algorithms for T k where T = (V,E)

is an n-vertex tree that contains a distance-d dominating set S of size s. In our application
d and k are constants. We assume all vertices agree on the numbers (d, k, s). We do not
need a specific dominating set S be given as an input.

5.6.1 A Simple Network Decomposition

We first design a simple decomposition that partitions any tree-structured graph T k into
2 parts.

Theorem 5.7. Let T be a tree containing a distance-d dominating set of size s. There is
a DetLOCAL algorithm A that computes a (2, O(log s+ d/k))-network decomposition of T k

in O(k log s+ d+ k log∗ n) time, i.e., O(log s+ log∗ n) time when d, k = O(1).

In what follows we prove Theorem 5.7. We assume the underlying communications
network is T rather than T k. Consider the following two tree operations. They are similar
to the ones described in Chapter 3, which are inspired by Miller and Reif [109]. The second
operation is parameterized by an integer ℓ ≥ 2. In our application we set ℓ = Θ(k).

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices that belong to some path P such that (i) all vertices in P
have degree at most 2, and (ii) the number of vertices in P is at least ℓ.

Let A′ be the algorithm on the tree T defined as follows. (1) Do 3d+1 Rake operations; (2)
repeat the following sequence log s times: perform one Compress and ℓ−1 Rake operations.

Lemma 5.19. Algorithm A′ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set of T . Root T at an arbitrary vertex
and let size(v) be the number of vertices in the subtree rooted at v that belong to S. For
any vertex v ∈ V , we prove by induction that (i) if size(v) ≤ 1, then v is removed in
Step (1) of A′, and (ii) if 1 < size(v) ≤ 2i, then v is removed on or before the ith iteration
of Step (2) of A′.

For the case size(v) ≤ 1, the height of the subtree rooted at v is at most 3d, and so the
entire subtree (including v) must be removed after 3d + 1 Rake operations. Consider the
case 2i−1 < size(v) ≤ 2i. By the inductive hypothesis, all vertices u with size(u) ≤ 2i−1

have been removed before the ith iteration of Step (2). With respect to the vertex v,

152

define V ′ to be the set of all vertices u such that (i) size(u) > 2i−1, and (ii) u is in the
subtree rooted at v. The set V ′ induces a path with one endpoint at v, since otherwise
size(v) > 2 · 2i−1 = 2i. Let C be a connected component induced by vertices in V ′ that
are not removed yet. If |C| ≥ ℓ, then all vertices in C are removed after 1 Compress.
Otherwise, all vertices in C are removed after ℓ− 1 Rake operations.

To compute a (2, O(log s+ d/k))-network decomposition of T k, it suffices to compute a
partition V = V1 ∪ V2 meeting the following two conditions.

(C1) For both labels c ∈ {1, 2}, any two vertices u and v in two distinct connected
components of Vc must have distT (u, v) > k. This guarantees that the set of connected
components of Vc remains unaltered if we change the underlying graph from T to T k.

(C2) For both labels c ∈ {1, 2}, each connected component of Vc has diameter at most
O(k log s + d). This implies the diameter upper bound of O(log s + d/k) when the
underlying graph is T k.

Recall that A′ performs Lr = (3d + 1) + (ℓ − 1) log s Rake and Lc = log s Compress
operations; let L = Lr + Lc = (3d + 1) + ℓ log s. We write Ui to denote the set of all
vertices that are removed during the ith operation. We are now in a position to present
the algorithm A. The algorithm A begins by computing the decomposition V =

∪L
i=1 Ui

using A′. Then, for i = L down to 1, label all vertices v ∈ Ui by {1, 2} as follows.

Case 1. If the ith operation is Rake, then label Ui as follows. Let v ∈ Ui. For the case
that v is of degree-1 in the subgraph induced by

∪L
j=i Uj, let u be the unique neighbor of

v in
∪L

j=i Uj. If u /∈ Ui, then v adopts the same label as u. Otherwise, u ∈ Ui must also
be of degree-1 in

∪L
j=i Uj, and we label both u and v the same by any c ∈ {1, 2}. For the

case that v is an isolated vertex of
∪L

j=i Uj, we label v by any c ∈ {1, 2}.

Case 2. If the ith operation is Compress, then label Ui as follows. Let P be a path that is
a connected component of Ui. The number of vertices in P is at least ℓ = Θ(k). Compute a
labeling of the vertices in P meeting the following conditions: (i) each connected component
induced by vertices of the same label has size within [k, 7k], (ii) if v is an endpoint of P
that is adjacent to a vertex u ∈

∪L
j=i+1 Uj, then the label of v is the same as the label of u.

Such a labeling of P can be computed in O(k) time if we are given an independent set
I of P such that each connected component of P \ I has size within [3k, 6k], i.e., I is a

153

(3k + 1, 3k)-ruling set. Suppose that we already have such a set I. For each v ∈ I, we
find an arbitrary subpath Pv ⊆ P that contains v and has exactly k vertices. All vertices
in
∪

v∈I Pv are labeled 1, and the remaining vertices in P are labeled 2. At this moment,
each connected component induced by vertices of label 1 has size k, and each connected
component induced by vertices of label 2 has size within [k, 6k]. If there is a component
C violating Condition (ii) of the previous paragraph, we flip the label of all vertices in C
(i.e., from 1 to 2 or from 2 to 1). If ℓ ≥ ck for some large enough universal constant c,
then we obtain a labeling satisfying both Condition (i) and Condition (ii).

The computation of the independent set I can be done in O(k log∗ n) time, as we ex-
plain below. Suppose that we have an independent set I ′ of P such that each connected
component of P \ I has size within [α, 2α]. We show that in O(α log∗ n) time we can
compute an independent set I ′′ of P such that each connected component of P \ I has size
within [β, 2β], for any prescribed number β ≤ 2α + 1. Let P̃ be the “imaginary path”
formed by contracting all vertices in P \ I. A maximal independent set Ĩ of P̃ can be
computed in O(α log∗ n) time. At this point, each connected component C of P \ Ĩ has
size within [2α + 1, 4α + 2]. The component size constraint [β, 2β] can be met by adding
new vertices to Ĩ to subdivide the oversized components. The desired independent set I
can be computed by log k iterated applications of the above procedure, and the runtime is∑log k

i=1 O(2
i log∗ n) = O(k log∗ n).

Time Complexity. The total running time of A is O(Lr + kLc) + O(k log∗ n) =

O(k log s+ d+ k log∗ n), since the independent set computation of paths removed by Com-
press operation can be computed in O(k log∗ n) time in parallel.

Validity of Labeling. We now verify that the labeling resulting from A satisfies the two
conditions (C1) and (C2). Consider two distinct connected components C and C ′ induced
by V1. In view of Case 2 of algorithm A, any path P ′ connecting a vertex in C and a
vertex in C ′ in T must contain a subpath P ′′ consisting of k vertices in V2. The same is
true if we swap V1 and V2, and so (C1) holds. Consider a connected component C by V1
or V2. Let i⋆ be the largest index i such that Ui ∩ C ̸= ∅, and let v⋆ be any vertex in
C ∩ Ui⋆ . We show that for any vertex u ∈ C, the unique path P connecting u and v⋆ in
T contains O(Lr + kLc) = O(k log s + d) vertices, and so (C2) holds. Consider any index
i ∈ [1, i⋆]. If the ith operation is Rake, then we have |P ∩Ui| ≤ 2 (in view of Case 1). If the
ith operation is Compress, then we have |P ∩ Ui| ≤ 7k (in view of Case 2). Thus, indeed

154

|P | = O(Lr + kLc).

5.6.2 A Mixed-diameter Network Decomposition

In this section we show how to compute a network decomposition where, for any parameter
λ, one part has diameter roughly logλ s and the remaining graph is properly O(λ2)-colored,
i.e., they form O(λ2) parts with diameter zero.

Theorem 5.8. Let T be a tree containing a distance-d dominating set of size s. There
is a DetLOCAL algorithm A that computes a (1, O(logλ/k s + (d/k)), O(λ2), 0)-network
decomposition of T k in O(k logλ/k s + d + k log∗ n) time, where λ = Ω(k) is sufficiently
large, i.e., λ ≥ ck for some universal constant c. When k, d = O(1) the time bound is
O(logλ s+ log∗ n).

In what follows we prove Theorem 5.8. We write Ti to denote the set of vertices that
are not removed during the first i − 1 tree operations. Consider the following two tree
operations.

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices v such that |N2.5k(v) ∩ Ti| ≤ λ.

We set m = λ
2.5k
− 1. Let A∗ be the algorithm on the tree T defined as follows. (1) Do

3d + 1 Rake operations; (2) repeat the following sequence logm s times: do one Compress
followed by 2.5k Rake operations.

Lemma 5.20. Algorithm A∗ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set of T . Root T at an arbitrary vertex,
and let size(v) be the number of vertices in the subtree rooted at v that belong to S. We
prove by induction that (i) if size(v) ≤ 1, then v is removed in Step (1) of A∗, and (ii) if
1 < size(v) ≤ mi, v is removed within the first i iterations in Step (2) of A∗.

For the case of size(v) ≤ 1, the height of the subtree rooted at v is at most 3d, and so
the entire subtree (including v) must be removed after 3d+1 Rake operations. For the case
of mi−1 < size(v) ≤ mi, we assume by induction that all vertices u with size(u) ≤ mi−1

have been removed within the first i − 1 iterations of Step (2). Let v be any vertex with
size(v) ∈ (mi−1,mi], and define V ′ as the set of all vertices u such that (i) size(u) > mi−1,
and (ii) u is in the subtree rooted at v. Notice that all descendants of v other than those

155

in V ′ have been removed within the first i− 1 iterations of Step (2). Therefore, the set V ′

induces a subtree rooted at v having at most m− 1 leaves. For those vertices u ∈ V ′ with
distT (u, v) ≥ 2.5k, we have |N2.5k(u) ∩ Ti| ≤ m(2.5k) + 1 ≤ λ, so they will be removed
after one Compress. The rest of the vertices in V ′ will be removed during the next 2.5k

Rake operations.

Now, we present our network decomposition algorithm A. First, we run A∗ on T . Then,
for any vertex v removed by Compress, we mark all vertices in Nk/2(v), i.e.,

M = {u | ∃v removed by Compress, u ∈ Nk/2(v)}

is the set of all marked vertices. We let T̃ be the graph defined as V (T̃) = M, and
{u, v} ∈ E(T̃) if distT (u, v) ≤ k.

The (1, O(k logλ/k s + d), O(λ2), 0) network decomposition of T k is computed by as-
signing color 0 to all unmarked vertices, and coloring the remaining vertices in T̃ with
{1, . . . , O(λ2)}. We next show that (i) ∆(T̃) ≤ λ, and so the O(λ2)-coloring can be
computed using Linial’s algorithm [107] in O(k log∗ n) time, and (ii) each connected com-
ponent induced by unmarked vertices (in T k) has diameter O(logλ/k s + (d/k)). Thus,
A indeed computes a (1, O(logλ/k s + (d/k)), O(λ2), 0)-network decomposition of T k in
O(k logλ/k s+ d+ k log∗ n) time.

Proof of (i). For any marked vertex v, we claim that |Nk(v) ∩ M| ≤ λ (in T), and
so ∆(T̃) ≤ λ. Let u be the first vertex marked in Nk(v). The vertex u is added to M
due to the removal of a vertex w ∈ Nk/2(u) in a Compress operation (it is possible that
u = w). Suppose that w was removed in i⋆th tree operation. Then we have |N2.5k(w) ∩
Ti⋆| ≤ λ. We claim that Nk(v) ∩M ⊆ Nk(v) ∩ Ti⋆ ⊆ N2.5k(w) ∩ Ti⋆ , and this implies
|Nk(v) ∩M| ≤ λ, and so ∆(T̃) ≤ λ. Since the i⋆th tree operation is the first iteration
such that a vertex in Nk(v) is marked due to the removal of another vertex during the
i⋆th tree operation, Nk(v) ∩ Ti⋆ contains all marked vertices within distance-k of v. Since
dist(v, w) ≤ dist(v, u) + dist(u,w) ≤ 1.5k, we have Nk(v) ∩ Ti⋆ ⊆ N2.5k(w) ∩ Ti⋆ .

Proof of (ii). The diameter of each connected component (in T) induced by the un-
marked vertices is O(k logλ/k s+ d), since the total number of Rake is O(k logλ s) + 3d+1,
and all vertices removed by Compress are marked. We show that the set of connected com-
ponents induced by the unmarked vertices remains the same if we change the underlying

156

graph from T to T k. This implies the diameter upper bound O(logλ/k s+ (d/k)) when the
underlying graph is T k.

Consider any pair of unmarked vertices u and v. Notice that u and v must be removed
by Rake. Suppose that u and v are not connected in T after deleting those vertices removed
by Compress from T . Assume the first time they become disconnected in T is iteration i,
which is due to the removal of a vertex w in Compress. Since all vertices in Nk/2(w) are
marked, the unique shortest path in T connecting u and v must has a subpath consisting
of at least 2(k/2)+1 > k marked vertices. Thus, u and v are also disconnected in T k after
deleting all marked vertices.

5.7 Deterministic Algorithms for Edge Coloring Trees
Let T = (V,E) be a tree with n vertices and N+(v) = N(v) ∪ {v} be the inclusive
neighborhood of v. We decompose T using two operations inspired by Miller and Reif [109],
the second of which is parameterized by an integer k ≥ 2.

Rake: Remove all leaves and isolated vertices from T .

Compress: Remove the set {v ∈ V | for every u ∈ N+(v), degT (u) ≤ k} from T .

Theorem 5.9. Alternately applying Compress and Rake logk n+1 times removes all vertices
from any n-vertex tree T .

Proof. Root T at an arbitrary vertex and let size(v) be the number of vertices in the
subtree rooted at v. We prove by induction that if size(v) ≤ ki, v will be removed after the
first i + 1 rounds of Compress and Rake. The claim is trivially true when i = 0. Assume
the claim is true for i − 1. Let v be any vertex with size(v) ∈ (ki−1, ki], and define V ′

to be the set of all vertices u such that (i) size(u) ∈ (ki−1, ki] and (ii) u is in the subtree
rooted at v. Notice that each vertex u ∈ V ′ has degV ′(u) ≤ k, since otherwise size(u) > ki.
By the inductive hypothesis, all descendants of v that are not in V ′ have been removed
after i rounds of Compress and Rake. The (i + 1)th Compress will remove any remaining
vertices in V ′ − {v}. However, the degree of the parent of v is unbounded, so v may not
be removed. If v still remains, the (i+ 1)th Rake will remove it.

Theorem 5.10. There is an O(log∆ n)-time DetLOCAL algorithm for ∆-edge coloring a
tree T with maximum degree ∆ ≥ 3.

157

Proof. Let β be the constant such that Linial’s algorithm [107] finds a β∆2-edge coloring
in O(log∗ n− log∗∆+1) time. We begin by decomposing T with Compress and Rake steps,
using parameter k = max{2, ⌊(∆/β)1/3⌋}. Define Ti = (Vi, Ei) to be the forest before the
ith round of Compress and Rake, and let V c

i and V r
i be those vertices removed by the ith

Compress and Rake, respectively.
We edge color the trees Tlogk n+1, . . . , T1 = T in this order. Given a coloring of Ti+1,

we need to color the remaining uncolored edges in Ti. Let u ∈ Ti+1 be a vertex, and let
v1, . . . , vx ∈ V r

i be the vertices adjacent to u removed by the ith Rake. At this point u
is incident to at most ∆ − x colored edges. We assign to {u, v1}, . . . , {u, vx} any distinct
available colors from their palettes.

We now turn to the vertices removed by the ith Compress. First, suppose that ∆ is large
enough such that k = ⌊(∆/β)1/3⌋. Let ϕ be a βk2-edge coloring of the (as yet uncolored)
subgraph of Ti (i.e., the edges that are incident to some vertices in V c

i). Partition the
palette {1, . . . ,∆} into βk2 parts P1, . . . , Pβk2 . Each part has size ∆/(βk2) ≥ k. Each
v ∈ V c

i colors each edge {v, u} any available color in Pϕ({v,u}). Since degTi
(u) ≤ k, at

most k− 1 of its incident edges may already be colored, and so there must be at least one
available color in Pϕ({v,u}) for {v, u} to use. All calls to Linial’s βk2-edge coloring algorithm
can be executed in parallel, so the overall time is O(logk n+ log∗ n− log∗ k) = O(log∆ n).

When k = 2, the subgraph induced by V c
1 ∪ · · · ∪ V c

logk n+1 consists of a set of paths.
In O(log∗ n) time, we find an initial 3-edge coloring of these paths. We now color
Tlogk n+1, . . . , T1 in this order. Coloring the edges removed during a Rake is done as be-
fore. The set V c

i removed in one Compress induces some paths, each end-edge of which
may be adjacent to one (previously colored) edge in Ti+1. If the initial color of an end-edge
conflicts with the coloring of Ti+1, we recolor it any available color. When k = 2 this
procedure takes O(log∗ n+ logk n) = O(log∆ n) time.

An oriented tree is a rooted tree where each vertex that is not the root knows its parent.
We show that a (∆ + 1)-edge coloring of an oriented tree can be found in O(log∗ n) time,
but ∆-edge coloring takes Ω(log∆ n) time.

Theorem 5.11. Any oriented tree T can be (∆ + 1)-edge colored in O(log∗ n) time.

Proof. Initially pick color ϕ0({u, parent(u)}) = i if ID(u) is the ith largest ID among its
siblings. Observe that for any i, ϕ−1

0 (i) is a subgraph consisting of oriented paths, and that
ϕ−1
0 (∆) is at most one edge, attached to the root. For each i ∈ {1, . . . ,∆− 1}, in parallel,

158

recolor ϕ−1
0 (i) using the color set {i,∆,∆+ 1} in such a way that the most ancestral edge

in each path remains colored i. The result is a legal (∆ + 1)-edge coloring. This takes
O(log∗ n) time [45, 107].

Theorem 5.12. Any ∆-edge coloring algorithm for oriented trees takes Ω(log∆ n) time in
RandLOCAL.

Proof. Let T be an oriented ∆-regular tree with height h = Θ(log∆ n) and A be an edge
coloring algorithm running in h/3 time. The color of {u, parent(u)} is uniquely determined
by the colors of the edges incident to leaf-descendants of u. Let V ′ denote the set of leaf-
descendants of u. In general, Nh/3(u) and

∪
v∈V ′ Nh/3(v) do not intersect. In this case, u

only has a 1/∆ chance of guessing the correct edge color; if it guesses incorrectly, there
must be a violation somewhere in the subtree rooted at u.

5.8 Lower Bounds for Augmenting Path-Type
Algorithms

In this section, we show that for c ∈ [1, ∆
3
], any algorithm for (∆ + c)-edge coloring based

on “extending partial colorings by recoloring subgraphs” needs Ω(∆
c
log cn

∆
) rounds.

Theorem 5.13. Let ∆ be the maximum degree and c ∈ [1, ∆
3
]. For any n, there exists

an n-vertex graph G = (V,E) and a partial edge coloring ϕ : E → {1, . . . ,∆+ c,⊥}, with
exactly one uncolored edge e0 (ϕ(e0) = ⊥) satisfying the following property. For any total
edge coloring ϕ′ : E → {1, . . . ,∆ + c} of G, ϕ and ϕ′ differ on a subgraph of diameter
Ω(∆

c
log(cn

∆
)).

Suppose that G is a partially (∆+ c)-edge colored graph, where an edge e0 in uncolored.
A natural approach to color e0 is to find an “augmenting path” e0e1 · · · eℓ, and then recolor
the path. That is, for 0 ≤ i ≤ ℓ − 1, let the new color of ei be the old color of ei+1,
and then color the last edge eℓ by choosing any available color (if possible). This type
of approach has successfully led to a distributed algorithm for Brooks’ theorem [122].27

However, Theorem 5.13 implies the existence of a graph where any augmenting subgraph
has diameter Ω(∆

c
log cn

∆
), which is expensive for large ∆. The remainder of this section is

a proof of Theorem 5.13.
27Specifically, given a (∆+1)-vertex coloring, a ∆-coloring can be computed in O(log3 n/ log∆) time, i.e.,

poly(logn) time, independent of ∆.

159

Figure 5.1: An example of the lower bound graph construction.

Construction. Without loss of generality, assume that ∆+ c is even, and let k = ∆+c
2

.
We divide the color palette {1, . . . ,∆ + c} into two equal-size sets S0 = {1, . . . , k} and
S1 = {k + 1, . . . ,∆+ c}. Let k′ = ∆− k.

The graph G∗(ℓ,∆, c) consists of one uncolored edge e0 = {u0, v0}; all other vertices are
arranged in layers 1, . . . , ℓ and all other edges connect two vertices in adjacent layers or
layers i and i+ 3, for some i. In G∗(ℓ,∆, c), e0 is a bridge and the subgraphs attached to
u0 and v0 are structurally isomorphic, but colored differently. Thus, we focus on the half
of G∗ attached to u0.

One may refer to Figure 5.1 for an example of the construction when ∆ = 5, c = 1,
k = 3, k′ = 2, and ℓ ≥ 7. Edges colored by palette S0 = {1, 2, 3} are blue, and edges
colored by palette S1 = {4, 5, 6} are pink. Leftover vertices in layer i− 2 are also depicted
(hollow) in layer i, and joined by a dashed curve. They represent the same vertex, not two
different vertices.

Base Case. Layer 1 consists of k vertices attached to u0. They are initially colored with
distinct colors from S0.

160

Inductive Step. The (i + 1)th layer is constructed as follows. We take all the vertices
at layer i and the leftover vertices at layer i − 2 and partition them into groups of size
k′; any ungrouped vertices are called leftovers at level i. (In Figure 5.1 a leftover vertex
in layer i − 2 is drawn twice, solid in layer i − 2 and hollow when it is promoted to layer
i; they are connected by a dashed line.) The grouping is arbitrary, so long as all vertices
promoted from layer i− 2 are grouped. Each group forms the lefthand side of a complete
bipartite graph Kk′,k. Layer i+1 consists of the righthand side of all the (disjoint) copies of
Kk′,k. All the edges in these graphs are properly colored with Sb where b = i mod 2. (The
subgraph attached to v0 is constructed in the same way, except that we flip the parity: the
complete bipartite graphs are colored with Sb, b = (i+ 1) mod 2.)

Define ni and li as the number of layer-i vertices and layer-i leftover vertices.28 According
to the construction, (ni) and (li) satisfy the following recurrences.

n1 = k

l−1 = l0 = 0

ni+1 = k⌊ni + li−2

k′
⌋ for i+ 1 ≥ 2

li = (ni + li−2) mod k′ for i ≥ 1

Clearly ni = Θ((k/k′)i). Since k/k′ = ∆+c
∆−c

= 1+ 2c
∆−c

= 1+ϵ, the total number of vertices
in G∗(ℓ,∆, c) is n = Θ(ϵ−1nℓ) = Θ(ϵ−1(1 + ϵ)ℓ) and ℓ = Θ(log1+ϵ(ϵn)) = Θ(∆

c
log cn

∆
). In

particular, when c is constant and ∆ < n1−Ω(1), ℓ = Ω(∆ logn). The diameter of the graph
is at least ℓ/3 since, by construction, no edge crosses more than 3 layers.

Let ϕ be the initial partial edge-coloring of G∗(ℓ,∆, c), with e0 left uncolored, and ϕ′

be any total edge-coloring. We claim that ϕ′ recolors at least one edge in the subgraph
induced by layers ℓ − 5, . . . , ℓ. Suppose otherwise. Fix any vertex v in layer ℓ − 6. It has
exactly k neighbors in a higher layer, either ℓ− 5 (if v is not a leftover vertex) or ℓ− 3 (if
v is a leftover vertex); each such neighbor u is adjacent to k edges to a higher layer, all of
which are colored from the palette S1 (without loss of generality, assume ℓ is even). That
means that all edges connecting v to a higher layer must be colored from S0. By a reverse
induction from ℓ− 6 down to 0, it follows that all edges from u0 to layer 1 must be colored
with S0. A symmetric argument on v0’s side shows that all edges from v0 to layer 1 must

28The leftover vertices at layer i − 2 are still considered as layer i vertices, even though they have been
promoted to layer i.

161

be colored with S1, hence e0 cannot be properly colored by ϕ′.

162

Chapter 6

The Complexity of Distributed
Vertex Coloring

6.1 Overview
Much of what we know about the LOCAL model has emerged from studying the complexity
of four canonical symmetry breaking problems and their variants: maximal independent
set (MIS), (∆ + 1)-vertex coloring, maximal matching, and (2∆ − 1)-edge coloring. The
palette sizes “∆+1” and “2∆− 1” are minimal to still admit a greedy sequential solution;
here ∆ is the maximum degree of any vertex.

Early work [3, 12, 107, 108, 115, 120] showed that all the problems are reducible to MIS,
all four problems require Ω(log∗ n) time, even with randomization; all can be solved in
O(poly(∆) + log∗ n) time (optimal when ∆ is constant), or in 2O(

√
logn) time for any ∆.

Until recently, it was actually consistent with known results that all four problems had the
same complexity.

Kuhn, Moscibroda, and Wattenhofer (KWM) [102] proved that the “independent set”
problems (MIS and maximal matching) require Ω

(
min

{
log∆

log log∆
,
√

logn
log logn

})
time, with

or without randomization, via a reduction from O(1)-approximate minimum vertex cover.
This lower bound provably separated MIS/maximal matching from simpler symmetry-
breaking problems like O(∆2)-coloring, which can be solved in O(log∗ n) time [107].

We now know the KMW lower bounds cannot be extended to the canonical coloring
problems, nor to variants of MIS like (2, t)-ruling sets, for t ≥ 2 [23, 27, 68]. Elkin,
Pettie, and Su [55] proved that (2∆− 1)-list edge coloring can be solved by a randomized

163

algorithm in O(log logn+ Det(poly logn)) time, which shows that neither the Ω
(

log∆
log log∆

)
nor Ω

(√
logn

log logn

)
KMW lower bound applied to this problem. Here Det(n′) represents the

deterministic complexity of the problem in question on n′-vertex graphs. Improving on [23,
135], Harris, Schneider, and Su [86] proved a similar separation for (∆+1)-vertex coloring.
Their randomized algorithm solves the problem in O(

√
log∆+ log logn+Detd(poly logn))

time, where Detd is the complexity of (deg+1)-list coloring.
The “Det(poly logn)” terms in the running times of [55, 86] are a consequence of the

graph shattering technique applied to distributed symmetry breaking. Barenboim, Elkin,
Pettie, and Schneider [23] showed that all the classic symmetry breaking problems could
be reduced in O(log∆) or O(log2∆) time, w.h.p., to a situation where we have indepen-
dent subproblems of size poly log(n), which can then be solved with the best available
deterministic algorithm.29

In Theorem 2.1 of this thesis, we give a simple proof illustrating why graph shattering
is inherent to the LOCAL model: the randomized complexity of any LCL problems is at
least its deterministic complexity on

√
logn-size instances. This lower bound explains why

the state-of-the-art randomized symmetry breaking algorithms have such strange stated
running times: they all depend on a randomized graph shattering routine (Rand.) and a
deterministic (Det.) algorithm.

• O(log∆+ 2O(
√

log logn)) for MIS (Rand. [68] and Det. [120]),

• O(
√
log∆+ 2O(

√
log logn)) for (∆ + 1)-vertex coloring (Rand. [86] and Det. [120]),

• O(log∆+ (log logn)3) for maximal matching (Rand. [23] and Det. [61]),

• O((log logn)6) for (2∆− 1)-edge coloring (Rand. [55] and Det. [62, 69]).

In each, the term that depends on n is the complexity of the best deterministic algorithm,
scaled down to poly log(n)-size instances. In general, improvements in the deterministic
complexities of these problems imply improvements to their randomized complexities, but
only if the running times are improved in terms of “n” rather than “∆.” For example,
a recent line of research has improved the complexity of (∆ + 1)-coloring in terms of
∆, from O(∆ + log∗ n) [21], to Õ(∆3/4) + O(log∗ n) [17], to the state-of-the-art bound of
O(
√
∆ log∆ log∗∆+log∗ n) due to Fraigniaud, Heinrich, and Kosowski [65], as improved by

Barenboim, Elkin, and Goldenberg [20]. These improvements do not have consequences for
29In the case of MIS, the subproblems actually have size poly(∆) logn, but satisfy the additional property

that they contain distance-5 dominating sets of size O(logn), which is often just as good as having
poly log(n) size. See [23, §3] or [68, §4] for more discussion of this.

164

Randomized Deterministic
O(Detd(poly logn)) new O(

√
∆ log∆ log∗ ∆+ log∗ n) [20, 65]

O(
√

log∆+ log logn+ Detd(poly logn)) [86] O(
√
∆ log5/2 ∆+ log∗ n) [65]

O(log∆+ Detd(poly logn)) [23] O(∆3/4 log∆+ log∗ n) [17]
O(log∆+

√
logn) [135] O(∆ + log∗ n) [21]

Upper O(∆ log logn) [103] O(∆ log∆+ log∗ n) [103]
Bounds O(logn) [3, 92, 108] O(∆ logn) [12]

O(∆2 + log∗ n) [80, 107]
O(∆O(∆) + log∗ n) [79]
2O(
√

log n) [120]
2O(
√

log n log log n) [12]

Lower Ω(log∗ n) [115]
Ω(log∗ n) [107]

Bounds Ω(Det(
√

logn)) Theorem 2.1

Table 6.1: Development of lower and upper bounds for distributed (∆+1)-list coloring
in the LOCAL model. The terms Det(n′) and Detd(n′) are the deterministic
complexities of (∆ + 1)-list coloring and (deg+1)-list coloring on n′-vertex
graphs. All algorithms listed, except for [86] and ours, also solve the
(deg+1)-list coloring problem.

randomized coloring algorithms using graph shattering [23, 86] since we can only assume
∆ = (logn)Ω(1) in the shattered instances. See Table 6.1 for a summary of lower and upper
bounds for distributed (∆ + 1)-list coloring in the LOCAL model.

In this chapter we prove that (∆ + 1)-list coloring can be solved in O(Detd(poly logn))
time w.h.p. Our algorithm’s performance is best contrasted with the Ω(Det(poly logn))
randomized lower bound of Theorem 2.1, where Det is the deterministic complexity of
(∆ + 1)-list coloring. Despite the syntactic similarity between the (deg+1)- and (∆ + 1)-
list coloring problems, there is no hard evidence showing their complexities are the same,
asymptotically. On the other hand, every deterministic algorithmic technique developed
for (∆ + 1)-list coloring applies equally well to (deg+1)-list coloring [12, 17, 20, 65, 120].
In particular, there is only one tool that yields upper bounds in terms of n (independent
of ∆), and that is network decompositions [12, 120].

Intellectually, our algorithm builds on a succession of breakthroughs by Schneider and
Wattenhofer [135], Barenboim, Elkin, Pettie, and Schneider [23], Elkin, Pettie, and Su, [55],
and Harris, Schneider, and Su [86], which we shall now review.

165

6.1.1 Fast Coloring using Excess Colors

Schneider and Wattenhofer [135] gave the first evidence that the canonical coloring prob-
lems may not be subject to the KMW lower bounds. They showed that for any constants
ϵ > 0 and γ > 0, when ∆ ≥ log1+γ n and the palette size is (1 + ϵ)∆, vertex coloring
can be solved w.h.p. in just O(log∗ n) time [135, Corollary 14]. The emergence of this
log-star behavior in [135] is quite natural. Consider the case where the palette size of each
vertex is at least k∆, where k ≥ 2. Suppose each vertex v selects k/2 colors at random
from its palette. A vertex v can successfully color itself if one of its selected colors is not
selected by any neighbor in N(v). The total number of colors selected by vertices in N(v)

is at most k∆/2. Therefore, the probability that a color selected by v is also selected by
someone in N(v) is at most 1/2, so v successfully colors itself with probability at least
1− 2−k/2. In expectation, the degree of any vertex after this coloring procedure is at most
∆′ = ∆/2k/2. In contrast, the number of excess colors, i.e., the current available palette
size minus the number of uncolored neighbors, is non-decreasing over time. It is still at
least (k − 1)∆ = (k − 1)2k/2∆′ Intuitively, repeating the above procedure for O(log∗ n)
rounds suffices to color all vertices.

Similar ideas have also been applied in other papers [55, 135]. However, for technical
reasons, we cannot directly apply the results in these papers. The main difficulty in our
setting is that we need to deal with oriented graphs with widely varying out-degrees, palette
sizes, and excess colors; the guaranteed number of excess colors at a vertex depends on its
out-degree, not the global parameter ∆.

Lemma 6.1 summarizes the properties of our ultrafast coloring algorithm when each
vertex has many excess colors; its proof appears in Section 6.4. Recall that Ψ(v) denotes
the palette of v, so |Ψ(v)| − deg(v) is the number of excess colors at v.

Lemma 6.1. Consider a directed acyclic graph, where vertex v is associated with a pa-
rameter pv ≤ |Ψ(v)| − deg(v) We write p⋆ = minv∈V pv. Suppose that there is a number
C = Ω(1) such that all vertices v satisfy

∑
u∈Nout(v)

1/pu ≤ 1/C. Let d⋆ be the maxi-
mum out-degree of the graph. There is an algorithm that takes O (1 + log∗ p⋆ − log∗C)
time and achieves the following. Each vertex v remains uncolored with probability at most
exp(−Ω(

√
p⋆)) + d⋆ exp(−Ω(p⋆)). This is true even if the random bits generated outside a

constant radius around v are determined adversarially.

We briefly explain the intuition underlying Lemma 6.1. Consider the following coloring
procedure. Each vertex selects C/2 colors from its available colors randomly. Vertex v

166

successfully colors itself if at least one of its selected colors is not in conflict with any color
selected by vertices in Nout(v). For each color c selected by v, the probability that c is
also selected by some vertex in Nout(v) is (C/2)

∑
u∈Nout(v)

1/pu ≤ 1/2. Therefore, the
probability that v still remains uncolored after this procedure is exp(−Ω(C)), improving
the gap between the number of excess colors and the out-degree (i.e., the parameter C)
exponentially. We are done after repeating this procedure for O(1+log∗ p⋆−log∗C) rounds.
Lemma 6.2 is a more user-friendly version of Lemma 6.1 for simpler situations.

Lemma 6.2. Suppose |Ψ(v)| ≥ (1 + ρ)∆ for each vertex v, and ρ = Ω(1). There is an
algorithm that takes O (1 + log∗∆− log∗ ρ) time and achieves the following. Each vertex v
remains uncolored with probability at most exp(−Ω(

√
ρ∆)). This is true even if the random

bits generated outside a constant radius around v are determined adversarially.

Proof. We apply Lemma 6.1. Orient the graph arbitrarily, and then set pv = ρ∆

for each v. Use the parameters C = ρ, p⋆ = ρ∆, and d⋆ = ∆. The time com-
plexity is O (1 + log∗ p⋆ − log∗C) = O (1 + log∗∆− log∗ ρ}). The failure probability is
exp(−Ω(

√
p⋆)) + d⋆ exp(−Ω(p⋆)) = exp(−Ω(

√
ρ∆)).

6.1.2 Gaining Excess Colors

Schneider and Wattenhofer [135] illustrated that vertex coloring can be performed very
quickly, given enough excess colors. However, in the (∆ + 1)-list coloring problem there
is just one excess color initially, so the problem is how to create them. Elkin, Pettie, and
Su [55] observed that if the graph induced by N(v) is not too dense, then v can obtain
a significant number of excess colors after one iteration of the following simple random
coloring routine. Each vertex v, with probability 1/5, selects a color c from its palette
Ψ(v) uniformly at random; then vertex v successfully colors itself by c if c is not chosen
by any vertex in N(v). Intuitively, if N(v) is not too close to a clique, then a significant
number of pairs of vertices in the neighborhood N(v) get assigned the same color. Each
such pair effectively reduces v’s palette size by 1 but its degree by 2, thereby increasing
the number of excess colors at v by 1.

There are many global measures of sparsity, such as arboricity and degeneracy. We are
aware of two locality-sensitive ways to measure it: the (1− ϵ)-local sparsity of [4, 55, 110,
143], and the ϵ-friends from [86], defined formally as follows.

167

Definition 6.1 ([55]). A vertex v is (1− ϵ)-locally sparse if the subgraph induced by N(v)

has at most (1− ϵ)
(
∆
2

)
edges; otherwise v is (1− ϵ)-locally dense.

Definition 6.2 ([86]). An edge e = {u, v} is an ϵ-friend edge if |N(u)∩N(v)| ≥ (1− ϵ)∆.
We call u an ϵ-friend of v if {u, v} is an ϵ-friend edge. A vertex v is ϵ-dense if v has at
least (1− ϵ)∆ ϵ-friends, otherwise it is ϵ-sparse.

Throughout this chapter, we only use Definition 6.2. Lemma 6.3 shows that in O(1)

time we can create excess colors at all locally sparse vertices.

Lemma 6.3. Consider the (∆+1)-list coloring problem. There is an O(1)-time algorithm
that colors a subset of vertices such that the following is true for each v ∈ V with deg(v) ≥
(5/6)∆.

(i) With probability 1 − exp(−Ω(∆)), the number of uncolored neighbors of v is at least
∆/2.

(ii) With probability 1− exp(−Ω(ϵ2∆)), v has at least Ω(ϵ2∆) excess colors, where ϵ is the
highest value such that v is ϵ-sparse.

The algorithm behind Lemma 6.3 is the random coloring routine described above. If a
vertex v is ϵ-sparse, then there must be Ω(ϵ2∆2) pairs of vertices {u,w} ⊆ N(v) such that
{u,w} is not an edge. If |Ψ(u) ∩Ψ(w)| = Ω(∆),30 then the probability that both u and v
are colored by the same color is Ω(1/∆), so the expected number of excess colors created
at v is at least Ω

(
ϵ2∆2

∆

)
= Ω(ϵ2∆).

Similar but slightly weaker lemmas were proved in [55, 86]. The corresponding lemma
from [55] does not apply to list coloring, and the corresponding lemma from [86] obtains
a high probability bound only if ϵ4∆ = Ω(logn). Optimizing this requirement is of impor-
tance, since this is the threshold about how locally sparse a vertex needs to be in order to
obtain excess colors. The proof of Lemma 6.3, which is not the main contribution of this
work, appears in Section 6.6.

The notion of local sparsity is especially useful for addressing the (2∆−1)-edge coloring
problem [55], since it can be phrased as (∆′+1)-vertex coloring the line graph (∆′ = 2∆−2),
which is everywhere (1

2
+ o(1))-locally sparse and is also everywhere (1

2
− o(1))-sparse.

30If the condition is not met, then we have |(Ψ(u)∪Ψ(w))\Ψ(v)| = Ω(∆), and so with constant probability
one of u and v successfully colors itself with a color not in Ψ(v), and this also increases the number of
excess colors at v by 1.

168

6.1.3 Coloring Locally Dense Vertices

In the vertex coloring problem we cannot count on any kind of local sparsity, so the next
challenge is to make local density also work to our advantage. Harris, Schneider, and
Su [86] developed a remarkable new graph decomposition that can be computed in O(1)
rounds of communication. The decomposition takes a parameter ϵ, and partitions the
vertices into an ϵ-sparse set, and several vertex-disjoint ϵ-dense components induced by
the ϵ-friend edges, each with weak diameter at most 2.

Based on this decomposition, they designed a (∆+ 1)-list coloring algorithm that takes
O(
√
log∆ + log logn + Detd(poly logn)) = O(

√
log∆) + 2O(

√
log logn) time. We briefly

overview their algorithm, as follows.

Coloring ϵ-Sparse Vertices. By utilizing the excess colors, Harris et al. [86] showed
that the ϵ-sparse set can be colored in O(log ϵ−1 + log logn + Detd(poly logn)) time using
techniques in [55] and [23]. More specifically, they applied the algorithm of [55, Corol-
lary 4.1] using the ϵ′∆ = Ω(ϵ2∆) excess colors, i.e., ϵ′ = Θ(ϵ2). This takes O (log(ϵ−1)) +

T
(
n,O

(
log2 n
ϵ′

))
time, where T (n′,∆′) = O(log∆′ + log logn′ + Detd(poly logn′)) is the

time complexity of the (deg+1)-list coloring algorithm of [23, Theorem 5.1] on n′-vertex
graphs of maximum degree ∆′.

Coloring ϵ-Dense Vertices. For ϵ-dense vertices, Harris et al. [86] proved that by
coordinating the coloring decisions within each dense component, it takes only O(log1/ϵ ∆+

log logn+Detd(poly logn)) time to color the dense sets, i.e., the bound improves as ϵ→ 0.
The time for the overall algorithm is minimized by choosing ϵ = exp(−Θ(

√
log∆)).

The algorithm for coloring ϵ-dense vertices first applies O(log1/ϵ∆) iterations of dense
coloring steps to reduce the maximum degree to ∆′ = O(logn) ·2O(log1/ϵ ∆), and then apply
the (deg+1)-list coloring algorithm of [23, Theorem 5.1] to color the remaining vertices in
O(log∆′ + log logn+ Detd(poly logn)) = O(log1/ϵ ∆+ log logn+ Detd(poly logn)) time.

In what follows, we informally sketch the idea behind the dense coloring steps. To finish
in O(log1/ϵ∆) iterations, it suffices that the maximum degree is reduced by a factor of ϵ−Ω(1)

in each iteration. Consider an ϵ-dense vertex v in a component S induced by the ϵ-friend
edges. Harris et al. [86] proved that the number of ϵ-dense neighbors of v that are not in
S is at most ϵ∆. Intuitively, if we let each dense component output a random coloring
that has no conflict within the component, then the probability that the color choice of a

169

vertex v ∈ S is in conflict with an external neighbor of v is O(ϵ). Harris et al. [86] showed
that this intuition can be nearly realized, and they developed a coloring procedure that is
able to reduce the maximum degree by a factor of O(

√
ϵ−1) in each iteration.

6.1.4 New Results

In this chapter we give a fast randomized algorithm for (∆ + 1)-vertex coloring. It is
based on a hierarchical version of the Harris-Schneider-Su decomposition with log log∆−
O(1) levels determined by an increasing sequence of sparsity thresholds (ϵ1, . . . , ϵℓ), with
ϵi =

√
ϵi+1. Following [86], we begin with a single iteration of the initial coloring step

(Lemma 6.3), in which a constant fraction of the vertices are colored. The guarantee of
this procedure is that any vertex v at the ith layer (which is ϵi-dense but ϵi−1-sparse),
has Ω(ϵ2i−1∆) pairs of vertices in its neighborhood N(v) assigned the same color, thereby
creating that many excess colors in the palette of v.

At this point, the most natural way to proceed is to apply a Harris-Schneider-Su style
dense coloring step to each layer, with the hope that each will take roughly constant time.
Recall that (i) any vertex v at the ith layer already has Ω(ϵ2i−1∆) excess colors, and (ii)
the dense coloring step reduces the maximum degree by a factor of ϵ−Ω(1) in each iteration.
Thus, in O

(
log1/ϵi

∆
ϵ2.5i−1∆

)
= O(1) time we should be able to create a situation where

any uncolored vertices have O(ϵ2.5i−1∆) uncolored neighbors but Ω(ϵ2i−1∆) excess colors in
their palette. With such a large gap, a Schneider-Wattenhofer style coloring algorithm
(Lemma 6.2) should complete in very few additional steps.

It turns out that in order to color ϵi-dense components efficiently, we need to maintain
relatively large lower bounds on the available palette and relatively small upper bounds
on the number of external neighbors (i.e., the neighbors outside the ϵi-dense component).
Thus, it is important that when we first consider a vertex, we have not already colored too
many of its neighbors. Roughly speaking, our algorithm classifies the dense blocks at layer
i into small, medium, and large based chiefly on the block size, and partitions the set of
all blocks of all layers into O(1) groups. We apply the dense coloring steps in parallel for
all blocks in the same group. Whenever we process a block B, we need to make sure that
all its vertices have a large enough palette. For large blocks, the palette size guarantee
comes from the lower bound on the block size. For small and medium blocks, the palette
size guarantee comes from the ordering of the blocks being processed; we will show that
whenever a small or medium block B is considered, each vertex v ∈ B has a sufficiently

170

large number of neighbors that have yet to be colored.
All of the coloring steps outlined above finish in O(log∗∆) time. The bottleneck pro-

cedure is the algorithm of Lemma 6.2, and the rest takes only O(1) time. Each of these
coloring steps may not color all vertices it considers. The vertices left uncolored are put
in O(1) classes, each of which either induces a bounded degree graph or is composed of
O(poly logn)-size components, w.h.p. The former type can be colored deterministically in
O(log∗ n) time and the latter in Detd(poly logn) time. In view of Linial’s lower bound [107]
we have Detd(poly logn) = Ω(log∗ n) and the running time of our (∆ + 1)-list coloring
algorithm is

O(log∗∆) +O(log∗ n) +O(Detd(poly logn)) = O(Detd(poly logn)).

Recent Developments. After the initial publication of this work, our algorithm was
adapted to solve (∆ + 1)-coloring in several other models of computation, namely the
congested clique, the MPC31 model, and the centralized local computation model [11, 37,
124, 125]. Chang, Fischer, Ghaffari, Uitto, and Zheng [37], improving [124, 125], showed
that (∆ + 1)-coloring can be solved in the congested clique in O(1) rounds, w.h.p. In the
MPC model, Assadi, Chen, and Khanna [11] solve (∆ + 1)-coloring in O(1) rounds using
Õ(n) memory per machine, whereas Chang et al. [37] solve it in O(

√
log logn) time with

just O(nϵ) memory per machine. In the centralized local computation model, Chang et
al. [37] proved that (∆ + 1)-coloring queries can be answered with just polynomial probe
complexity ∆O(1) logn.

Organization. In Section 6.2 we define a hierarchical decomposition based on [86]. Sec-
tion 6.3 gives a high-level description of the algorithm, which uses a variety of coloring
routines whose guarantees are specified by the following lemmas.

• Lemma 6.1 analyzes the procedure ColorBidding, which is a generalization of the
Schneider-Wattenhofer coloring routing; it is proved in Section 6.4.

• Lemma 6.3 shows that the procedure OneShotColoring creates many excess colors; it
is proved in Section 6.6.

• Lemmas 6.7–6.10 analyze two versions of an algorithm DenseColoringStep, which is a

31massively parallel computation

171

generalization of the Harris-Schneider-Su routine [86] for coloring locally dense ver-
tices; they are proved in Section 6.5.

6.2 Hierarchical Decomposition
In this section, we extend the work of Harris, Schneider, and Su [86] to define a hierarchical
decomposition of the vertices based on local sparsity. Let G = (V,E) be the input graph,
∆ be the maximum degree, and ϵ ∈ (0, 1) be a parameter. An edge e = {u, v} is an ϵ-friend
edge if |N(u) ∩ N(v)| ≥ (1 − ϵ)∆. We call u an ϵ-friend of v if {u, v} is an ϵ-friend edge.
A vertex v is called ϵ-dense if v has at least (1 − ϵ)∆ ϵ-friends, otherwise it is ϵ-sparse.
Observe that it takes one round of communication to tell whether each edge is an ϵ-friend,
and hence one round for each vertex to decide if it is ϵ-sparse or ϵ-dense.

We write V s
ϵ (and V d

ϵ) to be the set of ϵ-sparse (and ϵ-dense) vertices. Let v be a vertex
in a set S ⊆ V and V ′ ⊆ V . Define d̄S,V ′(v) = |(N(v)∩V ′) \S| to be the external degree of
v with respect to S and V ′, and aS(v) = |S \ (N(v)∪ {v})| to be the anti-degree of v with
respect to S. A connected component C of the subgraph formed by the ϵ-dense vertices
and the ϵ-friend edges is called an ϵ-almost clique. This term makes sense in the context
of Lemma 6.4 from [86], which summarizes key properties of almost cliques.

Lemma 6.4 ([86]). Fix any ϵ < 1/5. The following conditions are met for each ϵ-almost
clique C, and each vertex v ∈ C.

(i) d̄C,V d
ϵ
(v) ≤ ϵ∆. (Small external degree w.r.t. ϵ-dense vertices.)

(ii) aC(v) < 3ϵ∆. (Small anti-degree.)

(iii) |C| ≤ (1 + 3ϵ)∆. (Small size, a consequence of (ii).)

(iv) distG(u, v) ≤ 2 for each u, v ∈ C. (Small weak diameter.)

Lemma 6.4(iv) implies that any sequential algorithm operating solely on C can be sim-
ulated in O(1) rounds in the LOCAL model. The node in C with minimum ID can gather
all the relevant information from C in 2 rounds of communication, compute the output of
the algorithm locally, and disseminate these results in another 2 rounds of communication.
For example, the DenseColoringStep algorithm (versions 1 and 2) presented in Section 6.5
are nominally sequential algorithms but can be implemented in O(1) distributed rounds.

172

6.2.1 A Hierarchy of Almost Cliques

Throughout this section, we fix some increasing sequence of sparsity parameters (ϵ1, . . . , ϵℓ)
and a subset of vertices V ⋆ ⊆ V , which, roughly speaking, are those left uncolored
by the initial coloring procedure of Lemma 6.3 and also satisfy the two conclusions of
Lemma 6.3(i,ii). The sequence (ϵ1, . . . , ϵℓ) always adheres to Definition 6.3.

Definition 6.3. A sequence (ϵ1, . . . , ϵℓ) is a valid sparsity sequence if the following con-
ditions are met: (i) ϵi =

√
ϵi−1 = ϵ2

−(i−1)

1 , and (ii) ϵℓ ≤ 1/K for some sufficiently large
K.

Layers. Define V1 = V ⋆∩V d
ϵ1
and Vi = V ⋆∩(V d

ϵi
\V d

ϵi−1
), for i > 1. Define Vsp = V ⋆∩V s

ϵℓ
=

V ⋆ \ (V1 ∪ · · · ∪ Vℓ). It is clear that (V1, . . . , Vℓ, Vsp) is a partition of V ⋆. We call Vi the
layer-i vertices, and call Vsp the sparse vertices. In other words, Vi is the subset of V ⋆ that
are ϵi-dense but ϵi−1-sparse. Remember that the definition of sparsity is with respect to
the entire graph G = (V,E) not the subgraph induced by V ⋆.

Blocks. The layer-i vertices Vi are partitioned into blocks as follows. Let {C1, C2, . . .} be
the set of ϵi-almost cliques, and let Bj = Cj ∩ Vi. Then (B1, B2, . . .) is a partition of Vi.
Each Bj ̸= ∅ is called a layer-i block. See Figure 6.1 for an illustration; the shaded region
indicates a layer-i block B and the hollow regions are those ϵi−1-almost cliques.

A layer-i block B is a descendant of a layer-i′ block B′, i < i′, if B and B′ are both
subsets of the same ϵi′-almost clique. Therefore, the set of all blocks in all layers naturally
forms a rooted tree T , where the root represents Vsp, and every other node represents a
block in some layer. For example, in Figure 6.1, the blocks contained in C1, . . . , Ck are at
layers 1, . . . , i− 1, and are all descendants of B.

6.2.2 Block Sizes and Excess Colors

We classify the blocks into three types: small, medium, and large. A block B at layer i is
called large-eligible if

|B| ≥ ∆

log(1/ϵi)
.

Large blocks. The set of large blocks is a maximal set of unrelated, large-eligible blocks,
which prioritizes blocks by size, breaking ties by layer. More formally, a large-eligible

173

Figure 6.1: Almost-cliques and blocks.

layer-i block B is large if and only if, for every large-eligible B′ at layer j that is an
ancestor or descendant of B, either |B′| < |B| or |B′| = |B| and j < i.

Medium blocks. Every large-eligible block that is not large is a medium block.

Small blocks. All other blocks are small.

Define V S
i , V M

i , and V L
i , to be, respectively, the sets of all vertices in layer-i small

blocks, layer-i medium blocks, and layer-i large blocks. For each X ∈ {S,M, L}, we write
V X
2+ =

∪ℓ
i=2 V

X
i to be the set of all vertices of type X, excluding those in layer 1.

Overview of Our Algorithm. The decomposition and T are trivially computed in
O(1) rounds of communication. The first step of our algorithm is to execute an O(1)-round
coloring procedure (OneShotColoring) which colors a small constant fraction of the vertices
in G; the relevant guarantees of this algorithm were stated in Lemma 6.3. Let V ⋆ be the
subset of uncolored vertices that, in addition, satisfy the conclusions of Lemma 6.3(i,ii).
Once V ⋆ is known, it can be partitioned into the following sets

(
V S
1 , . . . , V

S
ℓ , V

M
1 , . . . , V

M
ℓ , V

L
1 , . . . , V

L
ℓ , Vsp

)
These are determined by the hierarchical decomposition with respect to a particular spar-
sity sequence (ϵ1, . . . , ϵℓ).32 We color the vertices of V ⋆ \ Vsp in six stages according to the

32Note that the classification of vertices into small, medium, and large blocks can only be done after
OneShotColoring is complete. Recall that if C is an ϵi-almost clique, B = C ∩ Vi is the subset of C
that is both ϵi−1-sparse and uncolored by OneShotColoring. Thus, whether the layer-i block in C is
large-eligible depends on how many vertices are successfully colored.

174

ordering (
V S
2+, V

S
1 , V

M
2+, V

M
1 , V

L
2+, V

L
1

)
.

As we argue below, coloring vertices in the order small, medium, large ensures that when a
vertex is considered, it has sufficiently many remaining colors in its palette, as formalized
by Lemma 6.5 below. The reason for dealing with layer-1 vertices separately stems from
the fact that a vertex at layer i > 1 is known to be ϵi-dense but ϵi−1-sparse, but layer-1
vertices are not known to have any non-trivial sparsity. At the end of this process a small
portion of vertices U ⊆ V ⋆ \Vsp may remain uncolored. However, they all have sufficiently
large palettes such that U ∪ Vsp can be colored efficiently in O(log∗ n) time.

Lemma 6.5. For each layer i ∈ [1, ℓ], the following is true.

• For each v ∈ V S
i with |N(v)∩V ⋆| ≥ ∆/3, we have |N(v)∩(V M

2+∪V M
1 ∪V L

2+∪V L
1 ∪Vsp)| ≥

∆
4

.

• For each v ∈ V M
i , we have |N(v) ∩ (V L

2+ ∪ V L
1 ∪ Vsp)| ≥ ∆

2 log(1/ϵi) .

In other words, regardless of how we proceed to partially color the vertices in small
blocks, each v ∈ V S

i always has at least ∆
4
available colors in its palette, due to the number

of its (still uncolored) neighbors in medium and large blocks, and Vsp. Similarly, regardless
of how we partially color the vertices in small and medium blocks, each v ∈ V M

i always has
at least ∆

2 log(1/ϵi) available colors in its palette.
Before proving Lemma 6.5 we first establish a useful property that constrains the struc-

ture of the block hierarchy T . Intuitively, Lemma 6.6 shows that a node (block) in T can
have exactly one child of essentially any size, but if it has two or more children then the
union of all strict descendants must be very small.

Lemma 6.6. Let C be an ϵi-almost clique and C1, . . . , Cl be the ϵi−1-almost cliques con-
tained in C. Either l = 1 or

∑l
j=1 |Cj| ≤ 2(3ϵi + ϵi−1)∆. In particular, if B is the layer-i

block contained in C, either B has one child in T or the number of vertices in all strict
descendants of B is at most 2(3ϵi + ϵi−1)∆ < 7ϵi∆.

Proof. Suppose, for the purpose of obtaining a contradiction, that l ≥ 2 and
∑l

j=1 |Cj| >
2(3ϵi + ϵi−1)∆. Without loss of generality, suppose C1 is the smallest, so

∑l
j=2 |Cj| >

(3ϵi + ϵi−1)∆. Any v ∈ C1 is ϵi−1-dense and therefore has at least (1 − ϵi−1)∆ neighbors
that are ϵi−1-friends. By the anti-degree property of Lemma 6.4, v is adjacent to all but
at most 3ϵi∆ vertices in C. Thus, by the pigeonhole principle v is joined by edges to more

175

than ϵi−1∆ members of C2 ∪ · · · ∪ Cl. By the pigeonhole principle again, at least one of
these edges is one of the ϵi−1-friend edges incident to v. This means that C1 cannot be a
connected component in the graph formed by ϵi−1-dense vertices and ϵi−1-friend edges.

Proof of Lemma 6.5. First consider the case of v ∈ V M
i . Let B be the layer-i medium

block containing v. Every medium block is large-eligible but not large, meaning it must
have a large ancestor or descendant B′ with at least as many vertices. If B′ is a layer-j
block, then

|B′| = max {|B′| , |B|} ≥ ∆

log(1/ϵk)
, where k = max{i, j}.

Let C be the layer-k almost clique containing both B and B′. By Lemma 6.4, v has at
most 3ϵk∆ non-neighbors in C, which, since B′ ⊆ C, means that the number of neighbors
of v in B′ is at least

|B′| − 3ϵk∆ ≥
∆

log(1/ϵk)
− 3ϵk∆

≥ ∆

2 log(1/ϵk)
{ϵk ≤ ϵℓ sufficiently small}

≥ ∆

2 log(1/ϵi)
{log(1/ϵk) ≤ log(1/ϵi)}

Therefore, |N(v) ∩ (V L
2+ ∪ V L

1 ∪ Vsp)| ≥ ∆
2 log(1/ϵi) .

Now consider any vertex v ∈ V S
i with |N(v) ∩ V ⋆| ≥ ∆/3. Let B be the layer-i small

block containing v. We partition the set N(v) ∩ V ⋆ into three groups A1 ∪ A2 ∪ A3.

A1 = N(v) ∩
(
V M
2+ ∪ V M

1 ∪ V L
2+ ∪ V L

1 ∪ Vsp
)
.

A2 = the neighbors in all ancestor and descendant small blocks of B, including B.

A3 = the remaining neighbors.

To prove the lemma, it suffices to show that |A1| ≥ ∆
4
. Since |A1 ∪A2 ∪A3| ≥ ∆

3
, we need

to prove |A2 ∪ A3| ≤ ∆
12
. We first bound |A3|, then |A2|.

Note that v is ϵj-dense for j ∈ [i, ℓ], so, according to Lemma 6.4, v must have at least
(1− ϵj)∆ ϵj-friends. Let u be any neighbor of v not in an ancestor/descendant of B, which
means that either (i) u ∈ Vsp or (ii) for some j ∈ [i, ℓ], v and u are in distinct ϵj-almost
cliques. In case (i) u is counted in A1. In case (ii) it follows that u cannot be an ϵj-friend

176

of v. Since, by Lemma 6.4, v has at most ϵj∆ ϵj-non-friends,

|A3| ≤
ℓ∑

j=i

ϵj∆ < 2ϵℓ∆.

We now turn to A2. Define i⋆ ∈ [1, i− 1] to be the largest index such that B has at least
two descendants at layer i⋆, or let i⋆ = 0 if no such index exists. Let A2,low be the set of
vertices in A2 residing in blocks at layers 1, . . . , i⋆, and let A2,high = A2 \ A2,low. By the
definition of small blocks,

|A2,high| <
ℓ∑

j=i⋆+1

∆

log(1/ϵj)

<
2∆

log(1/ϵℓ)
. {geometric sum}

If i⋆ = 0 then A2,low = ∅. Otherwise, by Lemma 6.6, the number of vertices in A2,low is at
most 7ϵi⋆+1∆ ≤ 7ϵi∆ ≤ 7ϵℓ∆. Since ϵℓ is a sufficiently small constant,

|A2 ∪ A3| < 2ϵℓ∆+
2∆

log(1/ϵℓ)
+ 7ϵℓ∆ < ∆/12,

which completes the proof.

Remark 6.1. The reader might wonder why the definition of medium blocks is needed, as
all layer-i medium blocks already have the block size lower bound ∆

log(1/ϵj) , which guarantees
a sufficiently large palette size lower bound for the vertices therein. It might be possible to
consider all the medium blocks as large blocks, but this will destroy the property that for
any two blocks B and B′ in different layers, if B is a descendant of B′, then B and B′

cannot both be large; without this property, the coloring algorithm for large blocks will likely
be more complicated.

6.3 Main Algorithm
Our algorithm follows the graph shattering framework [23]. In each step of the algorithm, we
specify an invariant that all vertices must satisfy in order to continue to participate. Those
bad vertices that violate the invariant are removed from consideration; they form connected

177

components of size O(poly logn) w.h.p., so we can color them later in Detd(poly logn) time.
More precisely, the emergence of the small components is due to the shattering lemma [23,
61] (Lemma 1.2).

As we will see, some parts of our randomized algorithm consist of t = O(log∗∆) steps,
and so whether a vertex v is bad actually depends on the random bits in its radius-t
neighborhood. Nonetheless, we are still able to apply Lemma 1.2. The reason is that we
are able to show that, for any specified constant k, each vertex v becomes bad in one
particular step with probability at most ∆−k, and this is true regardless of the outcomes
in all previous steps and the choices of random bits outside of a constant radius of v.

Sparsity Sequence. The sparsity sequence for our algorithm is defined by ϵ1 = ∆−1/10,
ϵi =

√
ϵi−1 for i > 1, and ℓ = log log∆ − O(1) is the largest index such that 1

ϵℓ
≥ K for

some sufficiently large constant K.

6.3.1 Initial Coloring Step

At any point in time, the number of excess colors at v is the size of v’s remaining palette mi-
nus the number of v’s uncolored neighbors. This quantity is obviously non-decreasing over
time. In the first step of our coloring algorithm, we execute the algorithm of Lemma 6.3,
which in O(1) time colors a portion of the vertices. This algorithm has the property that
each remaining uncolored vertex gains a certain number of excess colors, which depends
on its local sparsity. In order to proceed a vertex must satisfy both conditions.

• If v is ϵℓ-dense, the number of uncolored neighbors of v is at least ∆/2.

• if v is ϵi-sparse, v must have Ω(ϵ2i∆) excess colors.

If either condition fails to hold, v is put in the set Vbad. We invoke the conditions of
Lemma 6.3 only with ϵ ≥ ϵ1 = ∆−1/10. Thus, if ∆ = Ω(log2 n), then with high probability
(i.e., 1 − 1/poly(n)), Vbad = ∅. Otherwise, each component of Vbad must, by Lemma 1.2,
have size O(poly(∆) · logn) = O(poly logn), w.h.p. We do not invoke a deterministic
algorithm to color Vbad just yet. In subsequent steps of the algorithm, we will continue to
add bad vertices to Vbad. These vertices will be colored at the end of the algorithm.

178

6.3.2 Coloring Vertices by Layer

By definition, V ⋆ is the set of all vertices that remain uncolored after the initial coloring
step and are not put in Vbad. The partition V ⋆ = V S

2+ ∪ V S
1 ∪ V M

2+ ∪ V M
1 ∪ V L

2+ ∪ V L
1 ∪ Vsp is

computed in O(1) time. In this section, we show how we can color most of the vertices in
V S
2+∪V S

1 ∪V M
2+∪V M

1 ∪V L
2+∪V L

1 , in that order, leaving a small portion of uncolored vertices.
Consider the moment we begin to color V S

2+. We claim that each layer-i vertex v ∈ V S
2+

must have at least ∆/6 > ∆
2 log(1/ϵi) excess colors w.r.t. V S

2+. That is, its palette size minus
the number of its neighbors in V S

2+ is large. There are two relevant cases to consider.

• If the condition |N(v) ∩ V ⋆| ≥ ∆/3 in Lemma 6.5 is already met, then v has at least
∆/4 > ∆/6 excess colors w.r.t. V S

2+.

• Suppose |N(v) ∩ V ⋆| < ∆/3. One criterion for adding v to Vbad is that v is ϵℓ-dense
but has less than ∆/2 uncolored neighbors after the initial coloring step. We know
v is ϵℓ-dense and not in Vbad (because it is in V S

2+), so it must have had at least
∆/2 uncolored neighbors after initial coloring. If |N(v) ∩ V ⋆| < ∆/3 then at least
(∆/2−∆/3) = ∆/6 of v’s uncolored neighbors must have joined Vbad, which provide
v with ∆/6 excess colors w.r.t. V S

2+.

Similarly, for the sets V S
1 , V M

2+, and V M
1 , we have the same excess colors guarantee ∆

2 log(1/ϵi)
for each layer-i vertex therein.

We apply the following lemmas to color the locally dense vertices V ⋆ \ Vsp; refer to
Section 6.5 for their proofs. For small and medium blocks, we use Lemma 6.7 to color V S

2+

and V M
2+, and use Lemma 6.8 to color V S

1 and V M
1 .

The reason that the layer-1 blocks need to be treated differently is that layer-1 vertices
do not obtain excess colors from the initial coloring step (Lemma 6.3). For comparison, for
i > 1, each layer-i vertex v is ϵi−1-sparse, and so v must have Ω(ϵ2i−1∆) = Ω(ϵ4i∆) excess
colors. If we reduce the degree of v to ϵ5i∆, then we obtain a sufficiently big gap between
the excess colors and degree at v.

Lemma 6.7 (Small and medium blocks; layers other than 1). Let S = V S
2+ or S = V M

2+.
Suppose that each layer-i vertex v ∈ S has at least ∆

2 log(1/ϵi) excess colors w.r.t. S. There
is an O(1)-time algorithm that colors a subset of S meeting the following condition. For
each vertex v ∈ V ⋆, and for each i ∈ [2, ℓ], with probability at least 1− exp(−Ω(poly(∆))),
the number of uncolored layer-i neighbors of v in S is at most ϵ5i∆. Vertices that violate
this property join the set Vbad.

179

Lemma 6.8 (Small and medium blocks; layer 1). Let S = V S
1 or S = V M

1 . Suppose that
each vertex v ∈ S has at least ∆

2 log(1/ϵ1) excess colors w.r.t. S. There is an O(1)-time
algorithm that colors a subset of S meeting the following condition. Each v ∈ S is colored
with probability at least 1− exp(−Ω(poly(∆))); all uncolored vertices in S join Vbad.

The following lemmas consider large blocks. Lemma 6.9 colors V L
2+ and has guarantees

similar to Lemma 6.7, whereas Lemma 6.10 colors nearly all of V L
1 and partitions the

remaining uncolored vertices among three sets, R,X, and Vbad, with certain guarantees.

Lemma 6.9 (Large blocks; layer other than 1). There is an O(1)-time algorithm that
colors a subset of V L

2+ meeting the following condition. For each v ∈ V ⋆ and each layer
number i ∈ [2, ℓ], with probability at least 1− exp(−Ω(poly(∆))), the number of uncolored
layer-i neighbors of v in V L

2+ is at most ϵ5i∆. Vertices that violate this property join the set
Vbad.

Remember that our goal is to show that the bad vertices Vbad induce connected compo-
nents of size O(poly logn). However, if in a randomized procedure each vertex is added
to Vbad with probability 1 − 1/poly(∆), then the shattering lemma only guarantees that
the size of each connected component of Vbad is O(poly(∆) logn), which is not necessarily
poly logn. This explains why Lemma 6.10 has two types of guarantees.

Lemma 6.10 (Large blocks; layer 1). Let c be any sufficiently large constant. Then there
is a constant time (independent of c) algorithm that colors a subset of V L

1 while satisfying
one of the following cases.

• The uncolored vertices of V L
1 are partitioned among R or Vbad. The graph induced by

R has degree O(c2); each vertex joins Vbad with probability ∆−Ω(c).

• If ∆ > logαc n, where α > 0 is some universal constant, then the uncolored vertices of
V L
1 are partitioned among R and X, where the graph induced by R has degree O(c2)

and the components induced by X have size logO(c) n, w.h.p.

In our (∆ + 1)-list coloring algorithm, we apply Lemmas 6.7, 6.8, 6.9, and 6.10 to color
the vertices in V ⋆ \ Vsp, and they are processed in this order: (V S

2+, V
S
1 , V

M
2+, V

M
1 , V

L
2+, V

L
1).

Coloring the Leftover Vertices X and R. Notice that the algorithm for Lemma 6.10
generates a leftover uncolored subset R which induces a constant-degree subgraph, and
(in case ∆ > logΘ(c) n) a leftover uncolored subset X where each connected component

180

has size at most O(poly logn). Remember that the vertices in R and X do not join Vbad.
All vertices in X are colored deterministically in Detd(poly logn) time; the vertices in R

are colored deterministically in O(poly(∆′) + log∗ n) = O(log∗ n) time [20, 65, 107], with
∆′ = O(c2) = O(1).

The Remaining Vertices. Any vertex in V ⋆ that violates at least one condition spec-
ified in the lemmas is added to the set Vbad. All remaining uncolored vertices join the set
U . In other words, U is the set of all vertices in V ⋆ \ (Vsp ∪ Vbad ∪ R ∪ X) that remain
uncolored after applying the lemmas.

6.3.3 Coloring the Remaining Vertices

At this point all uncolored vertices are in U ∪ Vsp ∪ Vbad. We show that U ∪ Vsp can be
colored efficiently in O(log∗∆) time using Lemma 6.1, then consider Vbad.

Coloring the Vertices in U . Let G′ be the directed acyclic graph induced by U , where
all edges are oriented from the sparser to the denser endpoint. In particular, an edge
e = {u, u′} is oriented as (u, u′) if u is at layer i, u′ at layer i′, and i > i′, or if i = i′ and
ID(u) > ID(u′). We write Nout(v) to denote the set of out-neighbors of v in G′.

For each layer-i vertex v in G′, and each layer j, the number of layer-j neighbors of v
in G′ is at most O(ϵ5j∆), due to Lemmas 6.7 and 6.9. The out-degree of v is therefore at
most

∑i
j=1 ϵ

5
j∆ = O(ϵ5i∆) = O(ϵ

5/2
i−1∆).

We write Ψ(v) to denote the set of available colors of v. The number of excess colors
at v is |Ψ(v)| − deg(v) = Ω(ϵ2i−1∆). Thus, there is an Ω(1/

√
ϵi−1)-factor gap between the

palette size of v and the out-degree of v.
Lemma 6.1 is applied to color nearly all vertices in U in O(log∗∆) time, with any

remaining uncolored vertices added to Vbad. We use the following parameters of Lemma 6.1.
In view of the above, there exists a constant η > 0 such that, for each i ∈ [2, ℓ] and each
layer-i vertex v in G′, we set pv = ηϵ2i−1∆ ≤ |Ψ(v)| − deg(v). There is a constant C > 0

such that for each i ∈ [2, ℓ] and each layer-i vertex v ∈ U , we have:

∑
u∈Nout(v)

1/pu ≤
i∑

j=2

O

(
ϵ
5/2
j−1∆

ϵ2j−1∆

)
=

i∑
j=2

O(ϵ
1/2
j−1) < 1/C.

181

The remaining parameters to Lemma 6.1 are

p⋆ = ηϵ21∆ = Ω(∆8/10), d⋆ = ∆, C = Ω(1).

Thus, by Lemma 6.1 the probability that a vertex still remains uncolored (and is added to
Vbad) after the algorithm is

exp(−Ω(
√
p⋆)) + d⋆ exp(−Ω(p⋆)) = exp(−Ω(∆2/5)).

Coloring the Vertices in Vsp. The set Vsp can be colored in a similar way using
Lemma 6.1. We let G′′ be any acyclic orientation of the graph induced by Vsp, e.g.,
orienting each edge {u, v} towards the vertex v such that ID(u) > ID(v). The number of
available colors of each v ∈ Vsp minus its out-degree is at least Ω(ϵ2ℓ∆), which is at least
γ∆, for some constant γ > 0, according to the way we select the sparsity sequence. We
define pv = γ∆ < |Ψ(v)| − deg(v). We have

∑
u∈Nout(v)

(1/pu) ≤ outdeg(v)/(γ∆) ≤ 1/γ.
Thus, we can apply Lemma 6.1 with C = γ. Notice that both p⋆ and d⋆ are Θ(∆), and so
the probability that a vertex still remains uncolored after the algorithm (and is added to
Vbad) is exp(−Ω(

√
∆)).

Coloring the Vertices in Vbad. At this point, all remaining uncolored vertices are
in Vbad. If ∆ ≫ poly logn, then Vbad = ∅, w.h.p., in view of the failure probabilities
exp(−Ω(poly(∆))) specified in the lemmas used in the previous coloring steps. Otherwise,
∆ = O(poly logn), and by Lemma 1.2, each connected component of Vbad has size at most
poly(∆) logn = O(poly logn). In any case, it takes Detd(poly logn) to color all vertices in
Vbad deterministically.

See Figure 6.2 for a synopsis of every step of the (∆ + 1)-list coloring algorithm. Steps
1, 2, and 3(a–f) take constant time. Steps 4, 6, and 7 take O(log∗ n) = O(Detd(poly logn))
time [107, 115]. The bottleneck in the algorithm are Steps 5 and 8, which take
O(Detd(poly logn)) time. The algorithm succeeds in the prescribed time, so long as the
input to Steps 4, 5, and 8 are as they should be, i.e., inducing subgraphs with constant
degree, or poly logn-size components, respectively. (These are instances of (deg+1)-list
coloring.) When ∆ ≫ poly logn is sufficiently large, the set Vbad is empty, w.h.p., but X
may be non-empty, and induce components with size poly logn.

182

(∆ + 1)-List Coloring Algorithm

1. Determine the ϵ-almost cliques, for ϵ ∈ {ϵ1, . . . , ϵℓ}. (Lemma 6.4.)

2. Perform the initial coloring step using algorithm OneShotColoring (Lemma 6.3) and
partition the remaining uncolored vertices into V ⋆ and Vbad. Further partition V ⋆

into a sparse set Vsp and a hierarchy T of small, medium, and large blocks. Partition
V ⋆\Vsp into 6 sets: V S

2+, V
S
1 , V

M
2+, V

M
1 , V L

2+, V
L
1 .

3. Color most of V S
2+, V

S
1 , V

M
2+, V

M
1 , V L

2+, V
L
1 in six steps.

a) Color a subset of V S
2+ using algorithm DenseColoringStep (version 1). Any ver-

tices that violate the conclusion of Lemma 6.7 are added to Vbad.
b) Color V S

1 using algorithm DenseColoringStep (version 1). Any remaining uncol-
ored vertices are added to Vbad (Lemma 6.8).

c) Color a subset of V M
2+ using algorithm DenseColoringStep (version 1). Any ver-

tices that violate the conclusion of Lemma 6.7 are added to Vbad.
d) Color V M

1 using algorithm DenseColoringStep (version 1). Any remaining uncol-
ored vertices are added to Vbad (Lemma 6.8).

e) Color a subset of V L
2+ using algorithm DenseColoringStep (version 2). Any ver-

tices that violate the conclusion of Lemma 6.9 are added to Vbad.
f) Color V L

1 using algorithm DenseColoringStep (version 2). Each remaining un-
colored vertex is added to one of X,R, or Vbad. (See Lemma 6.10.)

4. W.h.p. R induces a graph with constant maximum degree. Color R in O(log∗ n) time
deterministically using a standard algorithm [20, 65, 107].

5. W.h.p. X induces a graph whose components have size poly logn. Color X in
O(Detd(poly logn)) time deterministically; see [120].

6. Color those uncolored vertices U in
(
V S
2+ ∪ V M

2+ ∪ V L
2+

)
\Vbad in O(log∗∆) time using

algorithm ColorBidding (Lemma 6.1). Any vertices in U that remain uncolored are
added to Vbad.

7. Color Vsp in O(log∗∆) time using algorithm ColorBidding (Lemma 6.1). Any vertices
that remain uncolored are added to Vbad.

8. W.h.p. Vbad induces components of size poly logn. Color Vbad in O(Detd(poly logn))
time deterministically; see [120].

Figure 6.2: The (∆ + 1)-list coloring algorithm.

183

6.3.4 Time Complexity

The time for OneShotColoring (Fig. 6.2, Step 2) is O(1). The time for processing each of V S
2+,

V S
1 , V M

2+, V M
1 , V L

2+, V L
1 (Steps 3(a–f)) is O(1). Observe that each of Steps 2 and 3(a–f) may

put vertices in Vbad, that Steps 3(a,c,e) leave some vertices uncolored, and that Step 3(f)
also puts vertices in special sets X and R. With high probability, R induces components
with constant degree, which can be colored deterministically in O(log∗ n) time (Step 4).
The uncolored vertices (U) from Steps 3(a,c,e) have a large gap between their palette
size and degree, and can be colored in O(log∗∆) time using the ColorBidding algorithm
(Lemma 6.1) in Step 6. The same type of palette size-degree gap exists for Vsp as well so
ColorBidding colors it in O(log∗∆) time; for Step 7 we are applying Lemma 6.1 again, but
with different parameters.

Finally, Steps 5 and 8 solve a (deg+1)-list coloring problem on a graph whose compo-
nents have size poly logn. Observe that Vbad is guaranteed to induce components with size
poly(∆) logn, which happens to be poly logn since no vertices are added to Vbad, w.h.p., if
∆≫ poly logn is sufficiently large. In contrast, in Step 5 X can be non-empty even when
∆ is large, but it still induces components with size poly logn.

Since log∗∆ ≤ log∗ n = O(Detd(poly logn)) [107], the bottleneck in the algorithm is
solving (deg+1)-list coloring, in Steps 5 and 8.

Theorem 6.1. In the LOCAL model, the (∆+1)-list coloring problem can be solved, w.h.p.,
in O(Detd(poly logn)) time, where Detd(n′) is the deterministic complexity of (deg+1)-list
coloring on n′-vertex graphs.

Next, we argue that if the palettes have poly logn extra colors initially, we can list color
the graph in O(log∗∆) time.

Theorem 6.2. There is a universal constant γ > 0 such that the (∆+ logγ n)-list coloring
problem can be solved in the LOCAL model, w.h.p., in O(log∗∆) time.

Proof. For all parts of our (∆ + 1)-list coloring algorithm, except the first case of
Lemma 6.10, the probability that a vertex v joins Vbad is exp(−Ω(poly(∆))). Let α and
c be the constants in Lemma 6.10 and k1 = Θ(c) ≥ αc be such that if ∆ > logk1 n,
then the probability that a vertex v joins Vbad in our (∆ + 1)-list coloring algorithm is
exp(−Ω(poly(∆))) = 1/poly(n). Note that when ∆ > logk1 n, no vertex is added to Vbad

in Lemma 6.10.

184

Let R′ = R ∪X be the leftover vertices in Lemma 6.10 for the case ∆ > logk1 n. There
exists a constant k2 > 0 such that the subgraph induced by R′ has maximum degree
logk2 n. We set γ = max{k1, k2} + 1. Now we show how to solve the (∆ + logγ n)-list
coloring problem in O(log∗∆) time.

If ∆ ≤ logγ−1 n, then we apply the algorithm of Lemma 6.2 directly, with ρ = logγ n
∆
−1 =

Ω(logn). The algorithm takes O(1+ log∗∆− log∗ ρ) = O(1) time, and the probability that
a vertex v is not colored is exp(−Ω(

√
ρ∆)) = exp(−Ω(logγ/2 n))≪ 1/poly(n).

If ∆ > logγ−1 n, then we apply Steps 1,2,3,6, and 7 of our (∆+1)-list coloring algorithm.
Due to the lower bound on ∆, we have Vbad = ∅, w.h.p., which obviates the need to
implement Step 8.

This algorithm takes O(log∗∆) time, and produces an uncolored subgraph R′ = R ∪X
that has maximum degree ∆′ ≤ logk2 n. In lieu of Steps 4 and 5, we apply the algorithm
of Lemma 6.2 to color R′ in O(1 + log∗∆′ − log∗ ρ) = O(1) time, where ρ = logγ n

∆′ − 1 =

Ω(logn).

If every vertex is ϵ-sparse, with ϵ2∆ sufficiently large, then the algorithm of Lemma 6.3
gives every vertex Ω(ϵ2∆) excess colors, w.h.p. Combining this observation with Theo-
rem 6.2, we have the following result, which shows that the (∆ + 1)-list coloring problem
can be solved very efficiently when all vertices are sufficiently locally sparse.

Theorem 6.3. There is a universal constant γ > 0 such that the following holds. Suppose
G is a graph with maximum degree ∆ in which each vertex is ϵ-sparse, where ϵ2∆ > logγ n.
A (∆ + 1)-list coloring of G can be computed in the LOCAL model, w.h.p., in O(log∗∆)

time.

Remark 6.2. Theorem 6.3 insists on every vertex being ϵ-sparse according to Defini-
tion 6.2. It is straightforward to show connections between this definition of sparsity and
others standard measures from the literature. For example, such a graph is (1− ϵ′)-locally
sparse, where ϵ′ = Ω(ϵ2), according to Definition 6.1. Similarly, any (1− ϵ′)-locally sparse
graph is Ω(ϵ′)-sparse. Graphs of degeneracy d ≤ (1 − ϵ′)∆ or arboricity λ ≤ (1/2 − ϵ′)∆
are trivially (1− Ω(ϵ′))-locally sparse.

Remark 6.3. We have made no effort to minimize the constant γ in Theorems 6.2 and
6.3, and it is impractically large. It would be useful to know if these theorems remain true
when γ is small, say 1, i.e., is (∆ + logn)-coloring solvable in O(log∗∆) time, w.h.p.?

185

6.4 Fast Coloring using Excess Colors
In this section, we prove Lemma 6.1. Consider a directed acyclic graph G = (V,E),
where each vertex v has a palette Ψ(v). Each vertex v is associated with a parameter
pv ≤ |Ψ(v)| − deg(v), i.e., pv is a lower bound on the number of excess colors at v. All
vertices agree on values p⋆ ≤ minv∈V pv, d⋆ ≥ maxv∈V outdeg(v), and C = Ω(1), such that
the following is satisfied for all v. ∑

u∈Nout(v)

1/pu ≤ 1/C. (6.1)

Intuitively, the sum
∑

u∈Nout(v)
1/pu measures the amount of “contention” at a vertex v.

In the ColorBidding algorithm each vertex v selects each color c ∈ Ψ(v) with probability
C

2|Ψ(v)| <
C
2pv

and permanently colors itself if it selects a color not selected by any out-
neighbor.

Procedure ColorBidding.

1. Each color c ∈ Ψ(v) is added to Sv independently with probability C
2|Ψ(v)| .

2. If there exists a color c⋆ ∈ Sv\

 ∪
u∈Nout(v)

Su

, v permanently colors itself c⋆.

In Lemma 6.11 we present an analysis of ColorBidding. We show that after an iteration of
ColorBidding, the amount of “contention” at a vertex v decreases by (roughly) an exp(C/6)-
factor, with very high probability.

Lemma 6.11. Consider an execution of ColorBidding. Let v be any vertex. Let D be the
summation of 1/pu over all vertices u in Nout(v) that remain uncolored after ColorBidding.
Then the following holds.

Pr[v remains uncolored] ≤ exp(−C/6) + exp(−Ω(p⋆)).
Pr[D ≥ (1 + λ) exp(−C/6)/C] ≤ exp

(
−2λ2p⋆ exp(−C/3)/C

)
+ d⋆ exp(−Ω(p⋆)).

Proof. For each vertex v, we define the following two events.

Egood
v : v selects a color that is not selected by any vertex in Nout(v).

186

Ebad
v : the number of colors in Ψ(v) that are selected by some vertices in Nout(v) is at
least 2

3
· |Ψ(v)|.

Notice that Egood
v is the event where v successfully colors itself. We first show that

Pr[Ebad
v] = exp(−Ω(p⋆)). Fix any color c ∈ Ψ(v). The probability that c is selected

by some vertex in Nout(v) is

1−
∏

u∈Nout(v)

(
1− C

2|Ψ(u)|

)
≤ 1−

∏
u∈Nout(v)

(
1− C

2pu

)
≤

∑
u∈Nout(v)

C
2pu
≤ 1

2
,

where the last inequality follows from (6.1). Since these events are independent for different
colors, Pr[Ebad

v] ≤ Pr[Binomial(n′, p′) ≥ 2n′

3
] with n′ = |Ψ(v)| ≥ pv and p′ = 1

2
. By a

Chernoff bound, we have:

Pr
[
Ebad

u

]
≤ exp(−Ω(n′p′)) = exp(−Ω(p⋆)).

Conditioned on Ebad
v , v will color itself unless it fails to choose any of |Ψ(v)|/3 specific

colors from its palette. Thus,

Pr
[
Egood

v

∣∣∣ Ebad
v

]
≤
(
1− C

2|Ψ(v)|

)
|Ψ(v)|/3 ≤ exp

(−C
6

)
. (6.2)

We are now in a position to prove the first inequality of the lemma. The probability that
v remains uncolored is at most Pr

[
Egood

v

∣∣∣ Ebad
v

]
+Pr

[
Ebad

v

]
, which is at most exp(−C/6)+

exp(−Ω(p⋆)).

Next, we prove the second inequality, on the upper tail of the random variable D. Let
Nout(v) = (u1, . . . , uk). Let Ebad

i and Egood
i be short for Ebad

ui
and Egood

ui
, and let E be the

event
∪

iE
bad
i . By a union bound,

Pr [E] ≤ outdeg(v) · exp(−Ω(p⋆)) ≤ d⋆ · exp(−Ω(p⋆)).

LetX =
∑k

i=1Xi, whereXi = 1/pui
if either Egood

i or Ebad
i occurs, andXi = 0 otherwise.

Observe that if we condition on E , then X is exactly D, the random variable we want to
bound.

187

By linearity of expectation,

µ = E[X | E] =
∑
i

E[Xi | E]

≤
∑
i

1

pui

· Pr
[
Egood

i

∣∣∣ Ebad
i

]
≤
∑
i

exp(−C/6)/pui
Equation (6.2)

≤ exp(−C/6)/C Equation (6.1)

Each variable Xi is within the range [ai, bi], where ai = 0 and bi = 1/pui
. We have∑k

i=1(bi − ai)2 ≤
∑

u∈Nout(v)
1/(pu · p⋆) ≤ 1/(Cp⋆). By Hoeffding’s inequality,33 we have

Pr[X ≥ (1 + λ) exp(−C/6)/C | E] ≤ Pr[X ≥ (1 + λ)µ | E]

≤ exp
(

−2(λµ)2∑k
i=1(bi − ai)2

)
≤ exp

(
−2(λ exp(−C/6)/C)2(p⋆C)

)
= exp

(
−2λ2p⋆ exp(−C/3)/C

)
.

Thus,

Pr[D ≥ (1 + λ) exp(−C/6)/C] ≤ Pr[X ≥ (1 + λ) exp(−C/6)/C | E] + Pr[E]
≤ exp

(
−2λ2p⋆ exp(−C/3)/C

)
+ d⋆ exp(−Ω(p⋆)).

Proof of Lemma 6.1. In what follows, we show how Lemma 6.11 can be used to derive
Lemma 6.1. Our plan is to apply ColorBidding for k⋆ = log∗ p⋆ − log∗C + O(1) iterations.

33The variables {X1, . . . , Xk} are not independent, but we are still able to apply Hoeffding’s inequality.
The reason is as follows. Assume that Nout(v) = (u1, . . . , uk) is sorted in reverse topological order, and
so for each 1 ≤ j ≤ k, we have Nout(uj) ∩ {uj , . . . , uk} = ∅. Thus, conditioning on (i) Ebad

i and (ii)
any colors selected by vertices in

∪
1≤j<i Nout(uj) ∪ {uj}, the probability that Egood

i occurs is still at
most exp(−C

6).

188

For the kth iteration we use the parameter Ck, which is defined as follows:

C1 = min{
√
p⋆, C},

Ck = min
{√

p⋆,
Ck−1

(1 + λ) exp(−Ck−1/6)

}
k⋆ = min{k | Ck =

√
p⋆} (the last iteration)

Here λ > 0 must be selected to be a sufficiently small constant so that (1 +

λ) exp(−Ck−1/6) < 1. This guarantees that the sequence (Ck) is strictly increasing. For
example, if C ≥ 6 initially, we can fix λ = 1 throughout.

We analyze each iteration of ColorBidding using the same (initial) vector of (pv) values,
i.e., we do not count on the number of excess colors at any vertex increasing over time.

At the end of the kth iteration, k ∈ [1, k⋆], we have the following invariant Hk that we
expect all vertices to satisfy:

• If k ∈ [1, k⋆), Hk stipulates that for each uncolored vertex v after the kth iteration,
the summation of 1/pu over all uncolored u ∈ Nout(v) is less than 1/Ck+1.

• Hk⋆ stipulates that all vertices are colored at the end of the k⋆th iteration.

The purpose of Hk, k ∈ [1, k⋆), is to guarantee that Ck+1 is a valid parameter for the
(k + 1)th iteration of ColorBidding. For each k ∈ [1, k⋆], at the end of the kth iteration we
remove from consideration all vertices violating Hk, and add them to the set Vbad. Thus,
by definition of Hk⋆ , after the last iteration, all vertices other than the ones in Vbad have
been colored.

To prove the lemma, it suffices to show that the probability of v joining Vbad is at most
exp(−Ω(

√
p⋆))+d⋆ exp(−Ω(p⋆)), and this is true even if the randomness outside a constant

radius around v is determined adversarially. By Lemma 6.11, the probability that a vertex
is removed at the end of the kth iteration, where k ∈ [1, k⋆), is at most

exp(Ω(p⋆/Ck+1)) + d⋆ exp(−Ω(p⋆)) ≤ exp(−Ω(
√
p⋆)) + d⋆ exp(−Ω(p⋆)).

The probability that a vertex is removed at the end of the k⋆th iteration is at most
exp(−Ck⋆/6) + exp(−Ω(p⋆)) ≤ exp(−Ω(

√
p⋆)). By a union bound over all k⋆ = log∗ p⋆ −

log∗C + O(1) iterations, the probability that a vertex joins Vbad is exp(−Ω(
√
p⋆)) +

d⋆ exp(−Ω(p⋆)).

189

6.5 Coloring Locally Dense Vertices
Throughout this section, we consider the following setting. We are given a graph G =

(V,E), where some vertices are already colored. We are also given a subset S of the
uncolored vertices, which is partitioned into g disjoint clusters S = S1 ∪S2 ∪ · · · ∪Sg, each
with weak diameter 2. (In particular, this implies that otherwise sequential algorithms can
be executed on each cluster in O(1) rounds in the LOCAL model.) Our goal is to color a
large fraction of the vertices in S in only constant time.

We assume that the edges within S are oriented from the sparser to the denser endpoint,
breaking ties by comparing IDs. In particular, an edge e = {u, u′} is oriented as (u, u′) if
u is at layer i, u′ at layer i′, and i > i′, or if i = i′ and ID(u) > ID(u′). Notice that this
orientation is acyclic. We write Nout(v) ⊆ S to denote the set of out-neighbors of v in S.

In Section 6.5.1 we describe a procedure DenseColoringStep (version 1) that is efficient
when each vertex has many excess colors w.r.t. S. It is analyzed in Lemma 6.12, which
is then used to prove Lemmas 6.7 and 6.8. In Section 6.5.2 we describe a procedure
DenseColoringStep (version 2), which is a generalization of Harris, Schneider, and Su’s [86]
procedure. It is analyzed in Lemma 6.13, which is then used to prove Lemmas 6.9 and
6.10.

6.5.1 Case 1: Many Excess Colors are Available

In this section we focus on the case where each vertex v ∈ S has many excess colors w.r.t. S.
We make the following assumptions about the vertex set S.

Excess colors. Each v ∈ S is associated with a parameter Zv, which indicates a lower
bound on the number of excess colors of v w.r.t. S. That is, the palette size of v
minus |N(v) ∩ S| is at least Zv.

External degree. For each cluster Sj, each vertex v ∈ Sj is associated with a parameter
Dv such that |Nout(v) ∩ (S \ Sj)| ≤ Dv.

The ratio of these two quantities plays an important role in the analysis. Define δv as

δv = Dv/Zv.

We briefly explain how we choose the clustering S = S1 ∪ S2 ∪ · · · ∪ Sg and set these
parameters in the settings of Lemma 6.7 and Lemma 6.8. For Lemma 6.8, S is either V S

1

190

or V M
1 , and each cluster of S is the intersection of S and an ϵ1-almost clique (a layer-1

block). For Lemma 6.7, S is either V S
2+ or V M

2+, and each cluster of S is the intersection of
S and an ϵℓ-almost clique. In all cases, clusters have weak diameter 2. All vertices in the
same layer adopt the same D- and Z-values. A layer-i vertex v takes

Zv =
∆

2 log(1/ϵi)
,

and Dv = ϵi∆.

The choices of these parameters are valid in view of the excess colors implied by Lemma 6.5
and the external degree upper bound of Lemma 6.4.

Procedure DenseColoringStep (version 1).

1. Let π : {1, . . . , |Sj|} → Sj be the unique permutation that lists Sj in increasing
order by layer number, breaking ties (within the same layer) by ID. For q from 1

to |Sj|, the vertex π(q) selects a color c(π(q)) uniformly at random from

Ψ(π(q)) \ {c(π(q′)) | q′ < q and {π(q), π(q′)} ∈ E(G)} .

2. Each v ∈ Sj permanently colors itself c(v) if c(v) is not selected by any vertices
in Nout(v).

Notice that π is a reverse topological ordering of Sj, i.e., if π(q′) precedes π(q), then
π(q) /∈ Nout(π(q

′)). Because each Sj has weak diameter 2, Step 1 of DenseColoringStep can
be simulated with only O(1) rounds of communication. Intuitively, the probability that a
vertex v ∈ S remains uncolored after DenseColoringStep (version 1) is at most δv, since it
is guaranteed not to have any conflicts with neighbors in the same cluster. The following
lemma gives us the probabilistic guarantee of the DenseColoringStep (version 1).

Lemma 6.12. Consider an execution of DenseColoringStep (version 1). Let T be any
subset of S, and let δ = maxv∈T δv. For any t ≥ 1, the number of uncolored vertices in T

is at least t with probability at most Pr[Binomial(|T |, δ) ≥ t].

Proof. Let T = {v1, . . . , v|T |} be listed in increasing order by layer number, breaking ties
by vertex ID. Remember that vertices in T can be spread across multiple clusters in S.

191

Imagine exposing the color choices of all vertices in S, one by one, in this order v1, . . . , v|T |.
The vertex vk in cluster Sj will successfully color itself if it chooses any color not already
selected by a vertex in Nout(vk) ∩ (S \ Sj). Since |Nout(vk) ∩ (S \ Sj)| ≤ Dvk and vk

has at least Zvk colors to choose from at this moment, the probability that it fails to be
colored is at most Dvk/Zvk = δvk ≤ δ, independent of the choices made by higher priority
vertices v1, . . . , vk−1. Thus, for any t, the number of uncolored vertices in T is stochastically
dominated by the binomial variable Binomial(|T |, δ).

Proof of Lemma 6.7. We execute DenseColoringStep (version 1) for 6 iterations, where each
participating vertex x ∈ S uses the same (initial) values of Zx and Dx, namely Zx =

∆
2 log(1/ϵi) and Dx = ϵi∆ if x is at layer i.
Consider any vertex v ∈ V ⋆, and any layer number i ∈ [2, ℓ]. Let T be the set of

layer-i neighbors of v in S. To prove Lemma 6.7, it suffices to show that after 6 iterations
of DenseColoringStep (version 1), with probability 1 − exp(−Ω(poly(∆))), the number of
uncolored vertices in T is at most ϵ5i∆.

We define the following parameters.

δ = max
u∈T
{δu} = 2ϵi log(1/ϵi),

t1 = |T |,

and tk = max
{
(2δ)tk−1, ϵ

5
i∆
}
.

Since (2δ)6|T | ≤ ϵ5i∆, we have t7 = ϵ5i∆.
Assume that at the beginning of the kth iteration, the number of uncolored vertices

in T is at most tk. Indeed for k = 1, we initially have t1 = |T |. By Lemma 6.12,
after the kth iteration, the expected number of uncolored vertices in T is at most δtk ≤
tk+1/2. By a Chernoff bound, with probability at most exp(−Ω(tk+1)) ≤ exp(−Ω(ϵ5i∆)) =

exp(−Ω(poly(∆))), the number of uncolored vertices in T is more than tk+1.
Therefore, after 6 iterations of DenseColoringStep (version 1), with probability 1 −

exp(−Ω(poly(∆))), the number of uncolored vertices in T is at most t7 = ϵ5i∆, as re-
quired.

Proof of Lemma 6.8. In the setting of Lemma 6.8 we only consider layer-1 vertices, but
have the higher burden of coloring each vertex with high enough probability. Since ϵ1 =

∆−1/10, we have Zv =
∆

2 log(1/ϵ1) , Dv = ϵ1∆, and δv = Dv/Zv = 2ϵ1 log(1/ϵ1), for all vertices
v ∈ S.

192

We begin with one iteration of DenseColoringStep (version 1). By Lemma 6.12 and a
Chernoff bound, for each v ∈ S, the number of uncolored vertices of N(v) ∩ S is at most
2δv∆ = ∆′ < O(∆9/10 log∆) with probability 1−exp(−Ω(poly(∆))). Any uncolored vertex
v ∈ S that violates this property, i.e., for which |N(v) ∩ S| > ∆′, is added to Vbad and
removed from further consideration.

Consider the graph G′ induced by the remaining uncolored vertices in S. The maximum
degree of G′ is at most ∆′. Each vertex v in G′ satisfies |Ψ(v)| ≥ Zv =

∆
2 log(1/ϵ1) = (1+ρ)∆′,

where ρ is ∆Ω(1). We run the algorithm of Lemma 6.2 on G′, and then put all vertices
that still remain uncolored to the set Vbad. By Lemma 6.2, the time for this procedure is
O(log∗∆ − log∗ ρ) = O(1), and the probability that a vertex v remains uncolored and is
added to Vbad is at most exp(−Ω(

√
ρ∆)) = exp(−Ω(poly(∆))).

6.5.2 Case 2: No Excess Colors are Available

In this section we focus on the case where there is no guarantee on the number of excess
colors. The palette size lower bound of each vertex v ∈ Sj comes from the assumption that
|Sj| is large, and v is adjacent to all but a very small portion of vertices in Sj. For the case
S = V L

2+ (Lemma 6.9), each cluster Sj is a large block in some layer i ∈ [2, ℓ]. For the case
S = V L

1 (Lemma 6.10), each Sj is a layer-1 large block. For each v ∈ S, we define N⋆(v)

to be the set of all vertices u ∈ N(v) ∩ S such that the layer number of u is smaller than
or equal to the layer number of v. Observe that Nout(v) ⊆ N⋆(v) since Nout(v) excludes
some vertices at v’s layer, depending on the ordering of IDs. For the case of S = V L

1 , all
clusters S1, . . . , Sg are layer-1 blocks, and so N⋆(v) = N(v) ∩ S. We make the following
assumptions.

Identifiers. List the clusters S1, . . . , Sg in non-decreasing order by layer number. We as-
sume each cluster and each vertex within a cluster has an ID that is consistent with
this order, in particular:

ID(S1) < · · · < ID(Sg)

max
v∈Sj

ID(v) < min
u∈Sj+1

ID(u), for all j ∈ [1, g)

Given arbitrary IDs, it is straightforward to compute new IDs satisfying these prop-
erties in O(1) time. (It is not required that each cluster Sj to know the index j.)

Degree upper bounds. Each cluster Sj is associated with a parameter Dj such that all

193

v ∈ Sj satisfy the following two conditions:
(i) |Sj \ (N(v) ∪ {v})| = |Sj \ (N⋆(v) ∪ {v})| ≤ Dj (anti-degree upper bound),
(ii) |N⋆(v) \ Sj| ≤ Dj (external degree upper bound).

Shrinking rate. Each cluster Sj is associated with a parameter δj such that

1/K ≥ δj ≥
Dj log(|Sj|/Dj)

|Sj|
,

for some sufficiently large constant K.

The procedure DenseColoringStep (version 2) aims to successfully color a large fraction of
the vertices in each cluster Sj. In Step 1, each cluster selects a (1−δj)-fraction of its vertices
uniformly at random, permutes them randomly, and marches through this permutation one
vertex at a time. As in DenseColoringStep (version 1), when a vertex v is processed it picks a
random color c(v) from its available palette that were not selected by previously processed
vertices in Sj. Step 2 is the same: if c(v) has not been selected by any neighbors of Nout(v)

it permanently commits to c(v). There are only two reasons a vertex in Sj may be left
uncolored by DenseColoringStep (version 2): it is not among the (1−δj)-fraction of vertices
participating in Step 1, or it has a color conflict with an external neighbor in Step 2.
The first cause occurs with probability δj and, intuitively, the second cause occurs with
probability about δj because vertices typically have many options for colors when they are
processed but few external neighbors that can generate conflicts. Lemma 6.13 captures
this formally; it is the culmination and corollary of Lemmas 6.14–6.16, which are proved
later in this section. Lemma 6.13 is used to prove Lemmas 6.9 and 6.10.

Procedure DenseColoringStep (version 2).

1. Each cluster Sj selects (1 − δj)|Sj| vertices u.a.r. and generates a permutation π
of those vertices u.a.r. The vertex π(q) selects a color c(π(q)) u.a.r. from

Ψ(π(q))− {c(π(q′)) | q′ < q and {π(q), π(q′)} ∈ E(G)} .

2. Each v ∈ Sj that has selected a color c(v) permanently colors itself c(v) if c(v) is
not selected by any vertices u ∈ Nout(v).

194

Lemma 6.13. Consider an execution of DenseColoringStep (version 2). Let T be any
subset of S, and let δ = maxj:Sj∩T ̸=∅ δj. For any number t, the probability that the number
of uncolored vertices in T is at least t is at most

(|T |
t

)
· (O(δ))t.

Our assumption about the identifiers of clusters and vertices guarantees that for each
v ∈ Sj, we have Nout(v) ⊆

∪j
i=1 Si. Therefore, in the proof of Lemma 6.13, we expose the

random bits of the clusters in the order (S1, . . . , Sg). Once the random bits of S1, . . . , Sj

are revealed, we can determine whether any particular v ∈ Sj successfully colors itself.
Our proofs of Lemmas 6.9 and 6.10 are based on a constant number of iterations of

DenseColoringStep (version 2). In each iteration, the parameters Dj and δj might be dif-
ferent. In subsequent discussion, the term anti-degree of v ∈ Sj refers to the number of
uncolored vertices in Sj \ (N(v) ∪ {v}), and the term external degree of v ∈ Sj refers to
the number of uncolored vertices in N⋆(v) \ Sj. Suppose Sj is a layer-i large block. The
parameters for Sj in each iteration are as follows. Let β > 0 be a sufficiently large constant
to be determined.

Degree upper bounds. By Lemma 6.4, D(1)
j = 3ϵi∆ upper bounds the initial anti-degree

and external degree. For k > 1, the parameter D(k)
j is chosen such that D(k)

j ≥
βδ

(k−1)
j · D(k−1)

j . We write D(k)
j to denote the invariant that at the beginning of the

kth iteration, D(k)
j is an upper bound on the anti-degree and external degree of all

uncolored vertices in Sj \ Vbad.

Cluster size upper bounds. By Lemma 6.4, U (1)
j = (1 + 3ϵi)∆ is an upper bound on

the initial cluster size. For k > 1, the parameter U (k)
j is chosen such that U (k)

j ≤
βδ

(k−1)
j · U (k−1)

j . We write U (k)
j to denote the invariant that at the beginning of the

kth iteration, the number of uncolored vertices in Sj \ Vbad is at most U (k)
j .

Cluster size lower bounds. L(1)
j = ∆

log(1/ϵi) . For k > 1, the parameter L(k)
j is chosen such

that L(k)
j ≥ δ

(k−1)
j ·L(k−1)

j . We write L(k)
j to denote the invariant that at the beginning

of the kth iteration, the number of uncolored vertices in Sj \ Vbad is at least L(k)
j . By

the definition of large blocks, L(1)
j holds initially.

Shrinking rates. For each k, the shrinking rate δ(k)j of cluster Sj for the kth iteration is
chosen such that

1/K ≥ δ
(k)
j ≥

D
(k)
j log (L(k)

j /D
(k)
j)

L
(k)
j

.

Additionally, we require that δ(k)1 ≤ · · · ≤ δ
(k)
g , with δ(k)j = δ

(k)
j+1 if Sj and Sj+1 are in

195

the same layer.

Although the initial values of D(1)
j , U

(1)
j , L

(1)
j are determined, there is considerable free-

dom in choosing the remaining values to satisfy the four rules above. We refer to the
following equations involving D(k)

j , U
(k)
j , L

(k)
j , and δ

(k)
j as the default settings of these pa-

rameters. Unless stated otherwise, the proofs of Lemmas 6.9 and 6.10 use the default
settings.

D
(k)
j = βδ

(k−1)
j ·D(k−1)

j , U
(k)
j = βδ

(k−1)
j · U (k−1)

j ,

L
(k)
j = δ

(k−1)
j · L(k−1)

j , δ
(k)
j =

D
(k)
j log

(
L
(k)
j /D

(k)
j

)
L
(k)
j

.

Validity of Parameters. Before the first iteration the invariants D(1)
j , U (1)

j , and L(1)
j

are met initially, for each cluster Sj. Suppose Sj is a layer-i large block. Lemma 6.4 shows
that the initial value of D(1)

j is a valid upper bound on the external degree (at most ϵi∆)
and anti-degree (at most 3ϵi∆). We also have

U
(1)
j = (1 + 3ϵi)∆ ≥ |Sj| ≥

∆

log(1/ϵi)
= L

(1)
j ,

where the lower bound is from the definition of large and the upper bound is from
Lemma 6.4.

For k > 1, the invariants D(k)
j and U (k)

j might not hold naturally. Before the kth iteration
begins we forcibly restore them by removing from consideration all vertices in the clusters
that violate either invariant, putting these vertices in Vbad. Notice that DenseColoringStep
(version 2) always satisfies invariant L(k)

j .

Maintenance of Invariants. We calculate the probability for the invariants D(k+1)
j and

U (k+1)
j to naturally hold at a cluster Sj. In what follows, we analyze the kth iteration of the

algorithm, and assume that D(k)
j and U (k)

j hold initially. Let T ⊆ S be a set of vertices that
are uncolored at the beginning of the kth iteration, and suppose δ(k)j = maxj′:Sj′∩T ̸=∅ δ

(k)
j′ .

By Lemma 6.13, after the kth iteration, the probability that the number of uncolored
vertices in T is at least t is at most

(|T |
t

)
·
(
O(δ

(k)
j)
)t
. Using this result, we derive the

196

following bounds:

Pr
[
U (k+1)
j

]
≥ 1− exp

(
−Ω(U (k+1)

j)
)
,

Pr
[
D(k+1)

j

]
≥ 1−O

(
U

(k)
j

)
exp

(
−Ω(D(k+1)

j)
)
.

We first consider Pr
[
U (k+1)
j

]
. We choose T as the set of uncolored vertices in Sj \ Vbad at

the beginning of the kth iteration, and set t = U
(k+1)
j . We have t = U

(k+1)
j = βδ

(k)
j ·U

(k)
j ≥

βδ
(k)
j |T |, and this implies δ(k)j |T |/t ≤ 1/β. If we select β to be a large enough constant,

then

1− Pr
[
U (k+1)
j

]
≤
(
|T |
t

)
·
(
O(δ

(k)
j)
)t

≤
(
O
(
δ
(k)
j

)
· e|T |/t

)t
≤ (O(1/β))t

= exp
(
−Ω
(
U

(k+1)
j

))
.

Next, consider Pr
[
D(k+1)

j

]
. For each vertex v ∈ Sj \Vbad that is uncolored at the beginning

of the kth iteration, define Eav (resp., Eev) as the event that the anti-degree (resp., external
degree) of v at the end of the kth iteration is higher than D

(k+1)
j . If we can show that

both Pr[Eav] and Pr[Eev] are at most exp
(
−Ω
(
D

(k+1)
j

))
, then we conclude Pr[D(k+1)

j] ≥

1− O
(
U

(k)
j

)
exp

(
−Ω(D(k+1)

j)
)
by a union bound over at most U (k)

j vertices v ∈ Sj \ Vbad

that are uncolored at the beginning of the kth iteration.
We show that Pr[Eev] ≤ exp

(
−Ω
(
D

(k+1)
j

))
. We choose T as the set of uncolored vertices

in N⋆(v) \ (Sj ∪ Vbad) at the beginning of the kth iteration, and set t = D
(k+1)
j . Since the

layer number of each vertex inN⋆(v)\(Sj∪Vbad) is smaller than or equal to the layer number
of Sj, our requirement about the shrinking rates implies that δ(k)j ≥ maxj′:Sj′∩T ̸=∅ δ

(k)
j′ .

We have t = D
(k+1)
j = βδ

(k)
j · D

(k)
j ≥ βδ

(k)
j |T |, and this implies δ(k)j |T |/t ≤ 1/β. If we

select β to be a large enough constant, then

Pr[Eev] ≤
(
|T |
t

)
·
(
O
(
δ
(k)
j

))t
≤
(
O
(
δ
(k)
j

)
· e|T |/t

)t
≤ (O(1/β))t = exp

(
−Ω
(
D

(k+1)
j

))
.

The bound Pr[Eav] ≤ exp
(
−Ω
(
D

(k+1)
j

))
is proved in the same way. Based on the proba-

197

bility calculations above, we are now prepared to prove Lemmas 6.9 and 6.10.

Proof of Lemma 6.9. We perform 6 iterations of DenseColoringStep (version 2) using the
default settings of all parameters. Recall that the shrinking rate for the kth iteration

is δ(k)j =
D

(k)
j log

(
L
(k)
j /D

(k)
j

)
L
(k)
j

for each cluster Sj. If Sj is a layer-i block, we have δ(k)j =

O
(
ϵi log2(1/ϵi)

)
for each k ∈ [1, 6] sinceD(·)

j and L(·)
j decay at the same rate, asymptotically.

Consider any vertex v ∈ V ⋆, and a layer number i ∈ [2, ℓ]. Let T be the set of layer-
i neighbors of v in S. To prove Lemma 6.9, it suffices to show that after 6 iterations
of DenseColoringStep (version 2), with probability 1 − exp(−Ω(poly(∆))), the number of
uncolored vertices in T is at most ϵ5i∆.

Define (tk) as in the proof of Lemma 6.7.

t1 = |T |,

and tk = max
{
βδ

(k−1)
j tk−1, ϵ

5
i∆
}
.

Here δ(k)j is the common shrinking rate of any layer-i cluster Sj. We have t7 = ϵ5i∆ since
ϵi ≤ ϵℓ is sufficiently small.

Assume that at the beginning of the kth iteration, the number of uncolored vertices in
T \ Vbad is at most tk, and the invariants D(k)

j , L(k)
j , and U (k)

j are met for each cluster Sj

such that Sj ∩ T ̸= ∅. By Lemma 6.13, after the kth iteration, the probability that the
number of uncolored vertices in T \ Vbad is more than tk+1 is(

tk
tk+1

)
·
(
O
(
δ
(k)
j

))tk+1

≤
(
O
(
δ
(k)
j

)
· etk/tk+1

)tk+1

≤ (O(1/β))tk+1 = exp(−Ω(tk+1)).

Notice that exp(−Ω(tk+1)) ≤ exp(−Ω(ϵ5i∆)) = exp(−Ω(poly(∆))). For the mainte-
nance of the invariants, L(k+1)

j holds with probability 1; the probability that the in-
variants D(k+1)

j and U (k+1)
j are met for all clusters Sj such that Sj ∩ T ̸= ∅ is at least

1−O(|T |) exp(−Ω(poly(∆))) = 1− exp(−Ω(poly(∆))). By a union bound over all six iter-
ations, with probability 1− exp(−Ω(poly(∆))), the number of uncolored layer-i neighbors
of v in S \ Vbad is at most t7 = ϵ5i∆.

Proof of Lemma 6.10. In the setting of Lemma 6.10, we deal with only layer-1 large blocks,
and so D(k)

1 = · · · = D
(k)
g , U (k)

1 = · · · = U
(k)
g , L(k)

1 = · · · = L
(k)
g , δ(k)1 = · · · = δ

(k)
g , for each

198

iteration k. For this reason we drop the subscripts. Our algorithm consists of three phases,
as follows. Recall that c is a large enough constant related to the failure probability
specified in the statement of Lemma 6.10.

The Low Degree Case. The following algorithm and analysis apply to all values of
∆. The conclusion is that we can color most of V L

1 such that the probability that any
vertex joins Vbad is ∆−Ω(c) and all remaining uncolored vertices (i.e., R) induce a graph
with maximum degree O(c2). Since the guarantee on Vbad is that it induces components
with size poly(∆) logn, this analysis is only appropriate when ∆ is, itself, poly logn. We
deal with larger ∆ in The High Degree Case and prove that the uncolored vertices can be
partitioned into R and X with the same guarantee on R, and the stronger guarantee that
X induces poly logn-size components, regardless of ∆.

Phase 1. The first phase consists of 9 iterations of DenseColoringStep (version 2), using
the default settings of all parameters. Due to the fact that ϵ1 = ∆−1/10, we have
δ(k) = O(∆−1/10 log2∆) for each k ∈ [1, 9]. Therefore, at the end of the 9th iteration,
we have the parameters

D(10) = Θ(log18∆),

L(10) = Θ(∆1/10 log17∆),

and U (10) = Θ(∆1/10 log18∆).

In view of the previous calculations, the probability that all invariants hold for a
specific cluster Sj and all k ∈ [1, 10] is at least 1− exp(−Ω(log18∆)). If a cluster Sj

does not satisfy an invariant for some k, then all vertices in Sj halt and join Vbad.
They do not participate in the kth iteration or subsequent steps.

Phase 2. For the 10th iteration, we switch to a non-default shrinking rate

δ(10) = ∆−1/20.

However, we still define

U (11) = βδ(10) · U (10) = Θ(∆1/20 log18∆)

and L(11) = δ(10) · L(10) = Θ(∆1/20 log17∆)

199

according to their default setting. Since βδ(10) ·D(10) = o(1), we should not adopt the
default definition of D(11). Instead, we fix it to be the sufficiently large constant c.

D(11) = c.

Using the previous probability calculations, for each cluster Sj the invariant U (11)

holds with probability at least 1− exp(−Ω(∆1/20poly log∆)), and the invariant L(11)

holds with certainty. We will show that for a given cluster Sj, the probability that
D(11) is a valid degree bound (i.e., D(11) holds) is at least 1−∆−Ω(c). If a cluster Sj

does not meet at least one of U (11), L(11), or D(11), then all vertices in Sj halt and join
Vbad.

Phase 3. For the 11th iteration, we use the default shrinking rate

δ(11) =
D(11) log(L(11)/D(11))

L(11)
= Θ

(
1

∆1/20 log16∆

)
.

We will show that after the 11th iteration, for each cluster Sj, with probability at
least 1−∆−Ω(c), there are at most c2 uncolored vertices v ∈ Sj such that there is at
least one uncolored vertex in Nout(v) \ Sj. If Sj does not satisfy this property, we
put all remaining uncolored vertices in Sj to Vbad. For each cluster Sj satisfying this
property, in O(1) additional rounds we color all vertices in Sj but c2 of them since at
most c2 have potential conflicts outside of Sj. At this point, the remaining uncolored
vertices R induce a subgraph of maximum degree at most c2+D(10) = c2+ c = O(c2).

The choice of parameters are summarized as follows (Table 6.2). Note that we use the
default shrinking rate δ(i) = D(i) log(L(i)/D(i))

L(i) for all i except i = 10.

D(i) L(i) U (i) δ(i)

i ∈ [9] Θ
(
∆

10−i
10 log2i−2 ∆

)
Θ
(
∆

11−i
10 log2i−3 ∆

)
Θ
(
∆

11−i
10 log2i−2 ∆

)
Θ
(
∆− 1

10 log2 ∆
)

i = 10 Θ
(
log18 ∆

)
Θ
(
∆

1
10 log17 ∆

)
Θ
(
∆

1
10 log18 ∆

)
∆− 1

20

i = 11 c Θ
(
∆

1
20 log17 ∆

)
Θ
(
∆

1
20 log18 ∆

)
Θ
(
∆− 1

20 log−16 ∆
)

Table 6.2: Parameter setting for the low-degree case.

200

Analysis of Phase 2. Recall δ(10) = ∆−1/20 and D(10) = Θ(log18∆). By Lemma 6.13,
the probability that the external degree or anti-degree of v ∈ Sj is at most c is:

1−
(
D(10)

c

)(
O
(
δ(10)

))c ≥ 1−
(
O
(
log18∆

)
c

)(
O
(
∆−1/20

))c ≥ 1−∆−Ω(c).

By a union bound over at most U (10) = Θ(∆1/10 log18∆) vertices v ∈ Sj that are uncolored
at the beginning of the 10th iteration, the parameter setting D(11) = c is a valid upper
bound of external degree and anti-degree for Sj after the 10th iteration with probability
at least 1−∆−Ω(c).

Analysis of Phase 3. Consider a vertex v ∈ Sj that is uncolored at the beginning of
the 11th iteration. Define the event Ev as follows. The event Ev occurs if, after the 11th
iteration, v is still uncolored, and there is at least one uncolored vertex in Nout(v) \ (Sj ∪
Vbad). Our goal is to show that the number of vertices v ∈ Sj such that Ev occurs is at
most c2 with probability at least 1−∆−Ω(c).

Consider any size-c2 subset Y of Sj. As a consequence of Lemma 6.13, we argue that
the probability that Ev occurs for all v ∈ Y is at most

(
D(11)

)c2 · (O(δ(11)))c2(1+1/D(11))
.

The reason is as follows. Pick some v ∈ Y . If Ev occurs, then there must exist a neighbor
v′ ∈ Nout(v) \ (Sj ∪ Vbad) that is uncolored. The number of uncolored vertices in Nout(v) \
(Sj ∪ Vbad) at the beginning of the 11th iteration is at most D(11), so there are at most
(D(11))c

2 ways of mapping each v ∈ Y to a vertex v′ ∈ Nout(v) \ (Sj ∪ Vbad) of v. Let
T =

∪
v∈Y {v, v′}. A vertex outside of Sj can be adjacent to at most D(11) vertices in

Sj, and so |T | ≥ c2(1 + 1/D(11)). The probability that all vertices in T are uncolored is(
O(δ(11))

)c2(1+1/D(11)) by Lemma 6.13. By a union bound over at most
(
D(11)

)c2 choices of
T , we obtain the desired probabilistic bound.

Recall that U (11) = Θ(∆1/20 log18∆) = L(11) ·Θ(log∆) and L(11) = Θ(∆1/20 log17∆) are
the cluster size upper bound and lower bound at the beginning of the 11th iteration. By a
union bound over at most

(
U (11)

)c2 choices of a size-c2 subset of Sj, the probability f that
there exists c2 vertices v ∈ Sj such that Ev occurs is

f =
(
U (11)

)c2 · (D(11)
)c2 · (O(δ(11)))c2(1+1/D(11))

.

201

Recall that D(11) = c is sufficiently large. We have

(
U (11)

)c2
=
(
O
(
L(11) log∆

))c2
, (6.3)(

D(11)
)c2

= O(1), (6.4)(
O
(
δ(11)

))c2(1+1/D(11))
=
(
O
(

log(L(11))

L(11)

))c2+c

. (6.5)

where L(11) = Θ(∆1/20 log8∆). Taking the product of (6.3), (6.4), and (6.5), we have:

f = Θ(log∆)O(c2) ·Θ
(
∆−1/20

)c
= ∆−Ω(c),

as required.

Remark 6.4. The analysis of Phase 2 would proceed in the same way if we had chosen
δ(10) according to its default setting of Θ(∆−1/10 log2∆). We choose a larger value of δ(10) in
order to keep L(11) artificially large (∆Ω(1)), and thereby allow Phase 3 to fail with smaller
probability ∆−Ω(c).

The High Degree Case. The Low Degree Case handles all ∆ that are poly logn. We
now assume ∆ is sufficiently large, i.e., ∆ > logαc n, where α is some large universal
constant, and we want to design an algorithm such that no vertex joins Vbad, and all
uncolored vertices are partitioned into R and X, with R having the same O(c2)-degree
guarantee as before, and the components induced by X have size logO(c) n = poly logn,
regardless of ∆. Intuitively, the proof follows the same lines as the Low Degree Case, but
in Phase 1 we first reduce the maximum degree to ∆′ = logO(c) n then put any bad vertices
that fail to satisfy an invariant into X (rather than Vbad). According to the shattering
lemma (Lemma 1.2), the components induced by X have size poly(∆′) logn = logO(c) n.
The High Degree Case consists of 13 iterations of DenseColoringStep (version 2) with the
following parameter settings (Table 6.3).

We use the default shrinking rate δ(i) = D(i) log(L(i)/D(i))

L(i) for all i except i ∈ {10, 11, 12}.
Phase 1 consists of all iterations i ∈ [11]; Phase 2 consists of iteration i = 12; Phase 3
consists of iteration i = 13. The algorithm and the analysis are similar to the small
degree case, so in subsequent discussion we only point out the differences. In order to have
all δ(i) ≪ 1, we need to have ∆1/20 ≫ log5c n. We proceed under the assumption that
∆ > logαc n (α is some large universal constant), so this condition is met.

202

D(i) L(i) U (i) δ(i)

i ∈ [9] Θ
(
∆

10−i
10 log2i−2 ∆

)
Θ
(
∆

11−i
10 log2i−3 ∆

)
Θ
(
∆

11−i
10 log2i−2 ∆

)
Θ
(
∆− 1

10 log2 ∆
)

i = 10 Θ
(
max{log18 ∆, logn}

)
Θ
(
∆

1
10 log17 ∆

)
Θ
(
∆

1
10 log18 ∆

)
∆− 1

20 log−18 ∆

i = 11 Θ(logn) Θ
(
∆

1
20 / log∆

)
Θ
(
∆

1
20

)
∆− 1

20 log5c n

i = 12 Θ(logn) Θ

(
log5c n
log∆

)
Θ
(
log5c n

)
log−3c n

i = 13 c Θ

(
log2c n
log∆

)
Θ
(
log2c n

)
Θ

(
log∆ log logn

log2c n

)

Table 6.3: Parameter setting for the high-degree case.

Phase 1. In view of previous calculations, all invariants hold for a cluster Sj (U (i), L(i),
and D(i), for i ∈ [1, 12]) with probability at least 1− exp(−Ω(logn)) = 1−1/poly(n), since
all parameters D(i), L(i), and U (i) are chosen to be Ω(logn). Therefore, no cluster Sj is
put in Vbad due to an invariant violation, w.h.p.

Phase 2. Consider iteration i = 12. It is straightforward that the invariants U (13) and
L(13) hold w.h.p., since L(13) = Ω(logn) and U (13) = Ω(logn). Now we consider the
invariant D(13). By Lemma 6.13, the probability that the external degree or anti-degree of
v ∈ Sj is at most c is:

1−
(
D(12)

c

)(
O
(
δ(12)

))c ≥ 1−
(
O(logn)

c

)(
O
(
log−3c n

))c ≥ 1− (logn)−Ω(c2) .

This failure probability is not small enough to guarantee that D(13) holds everywhere w.h.p.
In the high degree case, if a vertex v belongs to a cluster Sj such that D(13) does not hold,
we add the remaining uncolored vertices in Sj (at most U (12) = O(log5c n) of them) to X.

Phase 3. Similarly, we will show that after the 13th iteration, for each cluster Sj, with
probability at least 1 − (logn)−Ω(c2), there are at most c2 uncolored vertices v ∈ Sj such
that there is at least one uncolored vertex in Nout(v) \ (Sj ∪X). If Sj does not satisfy this
property, we put all remaining uncolored vertices in Sj to X. For each cluster Sj satisfying
this property, in one additional round we can color all vertices in Sj but c2 of them. At
this point, the remaining uncolored vertices induce a subgraph R of maximum degree at
most c2 + D(13) = c2 + c = O(c2). Following the analysis in the small degree case, the

203

probability that a vertex v is added to X in the 13th iteration is

f =
(
U (13)

)c2 · (D(13)
)c2 · (O(δ(13)))c2(1+1/D(13))

= O
(
log2c n

)c2 ·O(1) ·O(log∆ log logn
log2c n

)c2+c

= O
(
(logn)−2c2 · (log∆ log logn)c2+c

)
= (logn)−Ω(c2) .

Size of Components in X. To bound the size of each connected component of X, we
use the shattering lemma (Lemma 1.2). Define G′ = (V ′, E ′) as follows. The vertex set V ′

consists of all vertices in S that remains uncolored at the beginning of iteration 12. Two
vertices u and v are linked by an edge in E ′ if (i) u and v belong to the same cluster, or
(ii) u and v are adjacent in the original graph G. It is clear that the maximum degree ∆′

of G′ is U (12) +D(12) = O(log5c n). In view of the above analysis, the probability of v ∈ X
is 1 − (logn)−Ω(c2) = 1 − (∆′)−Ω(c), and this is true even if the random bits outside of a
constant-radius neighborhood of v in G′ are determined adversarially. Applying Lemma 1.2
to the graph G′, the size of each connected component of X is O(poly(∆′) logn) = logO(c) n,
w.h.p., both in G′ and in the original graph G, since G′ is the result of adding some
additional edges to the subgraph of G induced by V ′.

The reader may recall that the proofs of Lemmas 6.9 and 6.10 were based on the veracity
of Lemma 6.13. The remainder of this section is devoted to proving Lemma 6.13, which
bounds the probability that a certain number of vertices remain uncolored by DenseCol-
oringStep (version 2). By inspection of the DenseColoringStep (version 2) pseudocode, a
vertex in Sj can remain uncolored for two different reasons:

• it never selects a color, because it is not among the (1− δj)|Sj| participating vertices
in Step 1, or

• it selects a color in Step 1, but is later decolored in Step 2 because of a conflict with
some vertex in Sj′ with j′ < j.

Lemmas 6.14–6.16 analyze different properties of DenseColoringStep (version 2), which
are then applied to prove Lemma 6.13. Throughout we make use of the property that
every δj < 1/K for some sufficiently large K.

204

Lemma 6.14. Let T = {v1, . . . , vk} be any subset of Sj and c1, . . . , ck be any sequence of
colors. The probability that vi selects ci in DenseColoringStep (version 2), for all i ∈ [1, k],
is
(
O
(

log(|Sj |/Dj)

|Sj |

))|T |
.

Proof. Let p⋆ be the probability that, for all i ∈ [1, k], vi selects ci. Let M = (1 − δj)|Sj|
be the number of participating vertices in Step 1. Notice that if vi is not among the
participating vertices, then vi will not select any color, and thus cannot select ci. Since we
are upper bounding p⋆, it is harmless to condition on the event that vi is a participating
vertex. We write pi to denote the rank of vi ∈ T in the random permutation of Sj.

Suppose that the ranks p1, . . . , pk were fixed. Recall that each vertex vi ∈ Sj is adjacent
to all but at most Dj vertices in Sj. Thus, at the time vi is considered it must have at
least

M − pi + δj|Sj| −Dj

≥M − pi +Dj log(|Sj|/Dj)−Dj (constraint on δj)
= (M − pi) +Dj(log(|Sj|/Dj)− 1)

available colors to choose from, at most one of which is ci. Thus,

p⋆ ≤ E
p1,...,pk

[
k∏

i=1

1

(M − pi) +Dj(log(|Sj|/Dj)− 1)

]
.

We divide the analysis into two cases: (i) k ≥ M/2 and (ii) k < M/2. For the case
k ≥M/2, regardless of the choices of p1, . . . , pk, we always have

k∏
i=1

1

(M − pi) +Dj(log(|Sj|/Dj)− 1)
≤ 1

k!
= (O(1/k))k ≤ (O(1/|Sj|))|T | .

We now turn to the case k < M/2. We imagine choosing the rank vector (p1, . . . , pk)

one element at a time. Regardless of the values of (p1, . . . , pi−1), we always have

E
[

1

((M − pi) +Dj(log(|Sj|/Dj)− 1)

∣∣∣∣ p1, . . . , pi−1

]
≤ 1

M − (i− 1)

M−i∑
x=0

1

x+Dj(log(|Sj|/Dj)− 1)
,

205

since there are M − (i − 1) choices for pi and the worst case is when {p1, . . . , pi−1} =

{1, . . . , i− 1}. Observe that the terms in the sum are strictly decreasing, which means the
average is maximized when i = k < M/2 is maximized. Continuing,

≤ 1

M/2

M/2∑
x=0

1

x+Dj(log(|Sj|/Dj)− 1)

The sum is the difference between two harmonic sums, hence

= O

(
1

M
·
(
logM − log(Dj(log(|Sj|/Dj)− 1))

))
= O

(
log(|Sj|/Dj)

|Sj|

)
, since M = Θ(|Sj|).

Therefore, regardless of k, p⋆ ≤
(
O
(

log(|Sj |/Dj)

|Sj |

))|T |
, as claimed.

Lemma 6.15. Let T be any subset of Sj. The probability that all vertices in T are decolored
in DenseColoringStep (version 2) is

(
O
(

Dj log(|Sj |/Dj)

|Sj |

))|T |
, even allowing the colors selected

in S1, . . . , Sj−1 to be determined adversarially.

Proof. There are in total at most D|T |
j different color assignments to T that can result

in decoloring all vertices in T , since each vertex v ∈ T ⊆ Sj satisfies |Nout(v) \ Sj| ≤
|N⋆(v) \ Sj| ≤ Dj. By Lemma 6.14 (and a union bound over D|T |

j color assignments

to T) the probability that all vertices in T are decolored is D|T |
j ·

(
O
(

log(|Sj |/Dj)

|Sj |

))|T |
=(

O
(

Dj log(|Sj |/Dj)

|Sj |

))|T |
. Recall that for each v ∈ T ⊆ Sj, we have Nout(v) \ Sj ⊆

∪j−1
k=1 Sk,

and so whether v is decolored is independent of the random bits in Sj+1, . . . , Sg. The
above analysis (which is based on Lemma 6.14) holds even allowing the colors selected in
S1, . . . , Sj−1 to be determined adversarially.

Lemma 6.16. Let T be any subset of Sj. The probability that all vertices in T do not
select a color in Step 1 of DenseColoringStep (version 2) is (O(δj))

|T |. The probability only
depends on the random bits within Sj.

Proof. The lemma follows from the fact that in DenseColoringStep (version 2) a vertex
v ∈ Sj does not participate in Step 1 with probability δj, and the events for two vertices
u, v ∈ Sj to not participate in Step 1 are negatively correlated.

206

Proof of Lemma 6.13. Recall that we assume the clusters S = {S1, . . . , Sg} are ordered in
such a way that for any u ∈ Sj, we have Nout(u) ⊆ N⋆(u) ⊆

∪j
k=1 Sk. In the proof we

expose the random bits of the clusters in the order (S1, . . . , Sg).
Consider any subset T ⊆ S. Let U = U1∪U2 be a size-t subset U ⊆ T . We calculate the

probability that all vertices in U1 do not participate in Step 1, and all vertices in U2 are
decolored in Step 2. Notice that there are at most 2t ways of partitioning U into U1 ∪ U2.

We write U (j)
1 = U1 ∩ Sj. Whether a vertex v ∈ U (j)

1 fails to select a color only depends
on the random bits in Sj. Thus, by Lemma 6.16, the probability that all vertices in U1 fail
to select a color is at most

∏k
j=1 (O(δj))

∣∣∣U(j)
1

∣∣∣ ≤ (O(δ))|U1|. Recall δ = maxj:Sj∩T ̸=∅ δj.
We write U (j)

2 = U2 ∩ Sj. Whether a vertex v ∈ U
(j)
2 is decolored only depends the

random bits in S1, . . . , Sj. However, regardless of the random bits in S1, . . . , Sj−1, the
probability that all vertices in U

(j)
2 are decolored is (O(δj))

∣∣∣U(j)
1

∣∣∣ by Lemma 6.15. Recall
δ ≥ δj ≥ Dj log(|Sj |/Dj)

|Sj | . Thus, the probability that all vertices in U2 are decolored is at most∏k
j=1 (O(δj))

∣∣∣U(j)
2

∣∣∣ ≤ (O(δ))|U2|.
Therefore, by a union bound over at most

(|T |
t

)
choices of U and at most 2t ways of

partitioning U into U1 ∪ U2, the probability that the number of uncolored vertices in T

is at least t is at most 2t ·
(|T |

t

)
· (O(δ))t =

(|T |
t

)
· (O(δ))t. This concludes the analysis of

DenseColoringStep (version 2).

6.6 Proof of Lemma 6.3
In this section, we prove Lemma 6.3. Fix a constant parameter p ∈ (0, 1/4). The procedure
OneShotColoring is a simple O(1)-round coloring procedure that breaks ties by ID. We
orient each edge {u, v} towards the endpoint with lower ID, that is, Nout(v) = {u ∈
N(v) | ID(u) < ID(v)}. We assume that each vertex v is associated with a palette Ψ(v)

of size ∆+ 1, and this is used implicitly in the proofs of the lemmas in this section.

Procedure OneShotColoring.

1. Each uncolored vertex v decides to participate independently with probability p.

2. Each participating vertex v selects a color c(v) from its palette Ψ(v) uniformly at
random.

207

3. A participating vertex v successfully colors itself if c(v) is not chosen by any vertex
in Nout(v).

After OneShotColoring, each vertex v removes all colors from Ψ(v) that are taken by
some neighbor u ∈ N(v). The number of excess colors at v is the size of v’s remaining
palette minus the number of uncolored neighbors of v. We prove one part of Lemma 6.3 by
showing that after a call to OneShotColoring, the number of excess colors at any ϵ-sparse v
is Ω(ϵ2∆), with probability 1− exp(−Ω(ϵ2∆)). The rest of this section constitutes a proof
of Lemma 6.3.

Consider an execution of OneShotColoring with any constant p ∈ (0, 1/4). Recall that we
assume 1/ϵ ≥ K, for some large enough constant K. Let v be an ϵ-sparse vertex. Define
the following two numbers.

f1(v) : the number of vertices u ∈ N(v) that successfully color themselves by some
c /∈ Ψ(v).

f2(v) : the number of colors c ∈ Ψ(v) such that at least two vertices in N(v) successfully
color themselves c.

It is clear that f1(v) + f2(v) is a lower bound on the number of excess colors at v after
OneShotColoring. Our first goal is to show that f1(v) + f2(v) = Ω(ϵ2∆) with probabil-
ity at least 1 − exp(−Ω(ϵ2∆)). We divide the analysis into two cases (Lemma 6.19 and
Lemma 6.20), depending on whether f1(v) or f2(v) is likely to be the dominant term. For
any v, the preconditions of either Lemma 6.19 or Lemma 6.20 are satisfied. Our second
goal is to show that for each vertex v of degree at least (5/6)∆, with high probability, at
least (1−1.5p)|N(v)| > (1− (1.5)/4) · (5/6)∆ > ∆/2 neighbors of v remain uncolored after
after OneShotColoring. This is done in Lemma 6.21.

Lemmas 6.17 and 6.18 establish some generally useful facts about OneShotColoring, which
are used in the proofs of Lemma 6.19 and 6.20.

Lemma 6.17. Let Q be any set of colors, and let S be any set of vertices with size at most
2∆. The number of colors in Q that are selected in Step 2 of OneShotColoring by some
vertices in S is less than |Q|/2 with probability at least 1− exp(−Ω(|Q|)).

Proof. Let Ec denote the event that color c is selected by at least one vertex in S. Then
Pr[Ec] ≤ p|S|

∆+1
< 2p < 1/2, since p < 1/4 and |S| ≤ 2∆. Moreover, the collection of events

{Ec} are negatively correlated [54].

208

Let X denote the number of colors in Q that are selected by some vertices in S. By
linearity of expectation, E[X] < 2p · |Q|. We apply a Chernoff bound with δ = (1/2)−2p

2p
and

µ = 2p · |Q|. Recall that 0 < p < 1/4, and so δ > 0. For the case of δ ∈ [0, 1], we have:

Pr[X ≥ (1 + δ)µ = |Q|/2] ≤ exp(−δ2µ/3) = exp(−Ω(|Q|)).

Similarly, if δ > 1, we still have:

Pr[X ≥ (1 + δ)µ = |Q|/2] ≤ exp(−δµ/3) = exp(−Ω(|Q|)).

Lemma 6.18. Fix a sufficiently small ϵ > 0. Consider a set of vertices S = {u1, . . . , uk}
with cardinality ϵ∆/2. Let Q be a set of colors such that each ui ∈ S satisfies |Ψ(ui)∩Q| ≥
(1 − ϵ/2)(∆ + 1). Moreover, each ui ∈ S is associated with a vertex set Ri such that (i)
S∩Ri = ∅, and (ii) |Ri| ≤ 2∆. Then, with probability at least 1− exp(−Ω(ϵ2∆)), there are
at least pϵ(∆ + 1)/8 vertices ui ∈ S such that the color c selected by ui satisfies (i) c ∈ Q,
and (ii) c is not selected by any vertex in Ri ∪ S \ {ui}.

Proof. Define Qi = Ψ(ui)∩Q. We call a vertex ui happy if ui selects some color c ∈ Q and
c is not selected by any vertex in Ri ∪ S \ {ui}. Define the following events.

Egood
i : ui selects a color c ∈ Qi such that c is not selected by any vertices in Ri.

Ebad
i : the number of colors in Qi that are selected by some vertices in Ri is at least |Qi|/2.

Erepeat
i : the color selected by ui is also selected by some vertices in {u1, . . . , ui−1}.

Let Xi be the indicator random variable that either Egood
i or Ebad

i occurs, and let X =∑k
i=1Xi. Let Yi be the indicator random variable that Erepeat

i occurs, and let Y =
∑k

i=1 Yi.
Assuming that Ebad

i does not occur for each i ∈ [1, k], it follows thatX−2Y is a lower bound
on the number of happy vertices. Notice that by Lemma 6.17, Pr[Ebad

i] = exp(−Ω(|Qi|)) =
exp(−Ω(∆)). Thus, assuming that no Ebad

i occurs merely distorts our probability estimates
by a negligible exp(−Ω(∆)). We prove concentration bounds on X and Y , which together
imply the lemma.

We show that X ≥ pϵ∆/7 with probability 1− exp(−Ω(ϵ∆)). It is clear that

Pr[Xi = 1] ≥ Pr
[
Egood

i | Ebad
i

]
≥ p · |Qi|/2

∆ + 1
≥ p(1− ϵ/2)

2
>
p

3
.

Moreover, since Pr[Xi = 1 | Ebad
i] = 1, the above inequality also holds, when condi-

209

tioned on any colors selected by vertices in Ri. Thus, Pr[X ≤ t] is upper bounded by
Pr[Binomial(n′, p′) ≤ t] with n′ = |S| = ϵ∆/2 and p′ = p

3
. We set t = pϵ∆/7. Notice

that n′p′ = pϵ∆/6 > t. Thus, according to a Chernoff bound on the binomial distribution,
Pr[X ≤ t] ≤ exp(−(n′p′−t)2

2n′p′
) = exp(−Ω(ϵ∆)).

We show that Y ≤ pϵ2∆/2 with probability 1 − exp(−Ω(ϵ2∆)). It is clear that
Pr[Yi = 1] ≤ p(i−1)

∆+1
≤ pϵ

2
, even if we condition on arbitrary colors selected by vertices

in {u1, . . . , ui−1}. We have µ = E[Y] ≤ pϵ
2
· |S| = pϵ2∆

4
. Thus, by a Chernoff bound (with

δ = 1), Pr[Y ≥ pϵ2∆/2] ≤ Pr[Y ≥ (1 + δ)µ] ≤ exp(−δ2µ/3) = exp(−Ω(ϵ2∆)).
To summarize, with probability at least 1− exp(−Ω(ϵ2∆)), we have X − 2Y ≥ pϵ∆/7−

2pϵ2∆/2 > pϵ(∆ + 1)/8.

Lemma 6.19 considers the case when a large fraction of v’s neighbors are likely to color
themselves with colors outside the palette of v, and therefore be counted by f1(v). This
lemma holds regardless of whether v is ϵ-sparse or not.

Lemma 6.19. Suppose that there is a subset S ⊆ N(v) such that |S| = ϵ∆/5, and for
each u ∈ S, |Ψ(u) \ Ψ(v)| ≥ ϵ(∆ + 1)/5. Then f1(v) ≥ pϵ2∆

100
with probability at least

1− exp(−Ω(ϵ2∆)).

Proof. Let S = (u1, . . . , uk) be sorted in increasing order by ID. Define Ri = Nout(ui), and
Qi = Ψ(ui) \Ψ(v). Notice that |Qi| ≥ ϵ∆/5. Define the following events.

Egood
i : ui selects a color c ∈ Qi and c is not selected by any vertex in Ri.

Ebad
i : the number of colors in Qi that are selected by vertices in Ri is more than |Qi|/2.

Let Xi be the indicator random variable that either Egood
i or Ebad

i occurs, and let
X =

∑k
i=1Xi. Given that the events Ebad

i for all i ∈ [1, k] do not occur, we have
X ≤ f1(v),34 since if Egood

i occurs, then ui successfully colors itself by some color c /∈ Ψ(v).
By Lemma 6.17, Pr[Ebad

i] = exp(−Ω(|Qi|)) = exp(−Ω(ϵ∆)). Thus, up to this negligible
error, we can assume that Ebad

i does not occur, for each i ∈ [1, k].
We show that X ≥ ϵ2∆/100 with probability 1−exp(−Ω(ϵ2∆)). It is clear that Pr[Xi =

1] ≥ Pr[Egood
i | Ebad

i] ≥ p|Qi|/2
∆+1

≥ pϵ
10
, and this inequality holds even when conditioning

on any colors selected by vertices in Ri and
∪

1≤j<iRj ∪ {uj}. Since S = (u1, . . . , uk) is
sorted in increasing order by ID, ui /∈ Rj = Nout(uj) for any j ∈ [1, i). Thus, Pr[X ≤ t]

34In general, X does not necessarily equal f1(v), since in the calculation of X we only consider the vertices
in S, which is a subset of N(v).

210

is upper bounded by Pr[Binomial(n′, p′) ≤ t] with n′ = |S| = ϵ∆/5 and p′ = pϵ
10
. We set

t = n′p′

2
= pϵ2∆

100
. Thus, according to a lower tail of the binomial distribution, Pr[X ≤ t] ≤

exp
(

−(n′p′−t)2

2n′p′

)
= exp(−Ω(ϵ2∆)).

Lemma 6.20 considers the case that many pairs of neighbors of v are likely to color them-
selves the same color, and contribute to f2(v). Notice that any ϵ-sparse vertex that does
not satisfy the preconditions of Lemma 6.19 does satisfy the preconditions of Lemma 6.20.

Lemma 6.20. Let v be an ϵ-sparse vertex. Suppose that there is a subset S ⊆ N(v) such
that |S| ≥ (1 − ϵ/5)∆, and for each u ∈ S, |Ψ(u) ∩ Ψ(v)| ≥ (1 − ϵ/5)(∆ + 1). Then
f2(v) ≥ p3ϵ2∆/2000 with probability at least 1− exp(−Ω(ϵ2∆)).

Proof. Let S ′ = {u1, . . . , uk} be any subset of S such that (i) |S ′| = pϵ∆
100

, (ii) for each ui ∈ S ′,
there exists a set Si ⊆ S\(S ′∪N(ui)) of size ϵ∆

2
. The existence of S ′, S1, . . . , Sk is guaranteed

by the ϵ-sparseness of v. In particular, S must contain at least ϵ∆−ϵ∆/5 > pϵ∆/100 = |S ′|
non-ϵ-friends of v, and for each such non-friend ui ∈ S ′, we have |S \ (S ′ ∪ N(ui))| ≥
|S| − |S ′| − |N(ui)| ≥ ∆((1− ϵ/5)− pϵ/100− (1− ϵ)) > ϵ∆/2.

Order the set S ′ = {u1, . . . , uk} in increasing order by vertex ID. Define Qi = Ψ(ui) ∩
Ψ(v). Define Qgood

i as the subset of colors c ∈ Qi such that c is selected by some vertex
w ∈ Si, but c is not selected by any vertex in (Nout(w)∪Nout(ui))\S ′. Define the following
events.

Egood
i : ui selects a color c ∈ Qgood

i .

Ebad
i : the number of colors in Qgood

i is less than pϵ(∆ + 1)/8.

Erepeat
i : the color selected by ui is also selected by some vertices in {u1, . . . , ui−1}.

Let Xi be the indicator random variable that either Egood
i or Ebad

i occurs, and let X =∑k
i=1Xi. Let Yi be the indicator random variable that Erepeat

i occurs, and let Y =
∑k

i=1 Yi.
Suppose that Egood

i occurs. Then there must exist a vertex w ∈ Si such that both ui and w
successfully color themselves c. Notice that w and ui are not adjacent. Thus,X−Y ≤ f2(v),
given that Ebad

i does not occur, for each i ∈ [1, k]. Notice that Pr[Ebad
i] = exp(−Ω(ϵ2∆))

(by Lemma 6.18 and the definition of Qgood
i), and up to this negligible error we can assume

that Ebad
i does not occur. In what follows, we prove concentration bounds on X and Y ,

which together imply the lemma.

211

We show that X ≥ p3ϵ2∆
1000

with probability 1 − exp(−Ω(ϵ2∆)). It is clear that Pr[Xi =

1] ≥ p · pϵ(∆+1)/8
∆+1

= p2ϵ
8
.35 Thus, Pr[X ≤ t] is upper bounded by Pr[Binomial(n′, p′) ≤ t]

with n′ = |S ′| = pϵ∆
100

and p′ = p2ϵ
8
. We set t = p3ϵ2∆

1000
< n′p′. According to a tail bound of

binomial distribution, Pr[X ≤ t] ≤ exp(−(n′p′−t)2

2n′p′
) = exp(−Ω(ϵ2∆)).

We show that Y ≤ p3ϵ2∆
2000

with probability 1 − exp(−Ω(ϵ2∆)). It is clear that Pr[Yi =
1] ≤ p · (i−1)

∆+1
≤ p2ϵ

100
regardless of the colors selected by vertices in {u1, . . . , ui−1}. We have

µ = E[Y] ≤ p2ϵ
100
· |S ′| = p3ϵ2∆

10,000
. Thus, by a Chernoff bound (with δ = 4), Pr[Y ≥ p3ϵ2∆

2000
] ≤

Pr[Y ≥ (1 + δ)µ] ≤ exp(−δµ/3) = exp(−Ω(ϵ2∆)).
To summarize, with probability at least 1 − exp(−Ω(ϵ2∆)), we have X − Y ≥

p3ϵ2∆/1000− p3ϵ2∆/2000 = p3ϵ2∆/2000.

Lemma 6.21. The number of vertices in N(v) that remain uncolored after OneShotColoring
is at least (1− 1.5p)|N(v)|, with probability at least 1− exp(−Ω(|N(v)|)).

Proof. Let X be the number of vertices in N(v) participating in OneShotColoring. It
suffices to show that X ≤ 1.5p|N(v)| with probability 1− exp(−Ω(|N(v)|)). Since a vertex
participates with probability p,

Pr[X ≥ (1 + 1/2)p|N(v)|] ≤ exp
(
−(1/2)2p|N(v)|

3

)
= exp(−Ω(|N(v)|))

by Chernoff bound with δ = 1/2.

35In the calculation of X, we first reveal all colors selected by vertices in V \ S′, and then we reveal
the colors selected by u1, . . . , uk in this order. The value of Xi is determined when the color selected
by ui is revealed. Regardless of the colors selected by vertices in V \ S′ and {u1, . . . , ui−1}, we have
Pr[Xi = 1] ≥ p2ϵ

8 .

212

Chapter 7

Distributed Triangle Detection via
Expander Decomposition

7.1 Overview
We consider Triangle Detection problems in distributed networks. In the LOCAL
model [127], which has no limit on bandwidth, all variants of Triangle Detection can be
solved in exactly one round of communication: every vertex v simply announces its neigh-
borhood N(v) to all neighbors. However, in models that take bandwidth into account, e.g.,
CONGEST, Triangle Detection becomes significantly more complicated. Whereas many
graph optimization problems studied in the CONGEST model are intrinsically “global”
(i.e., require at least diameter time) [2, 56, 57, 73, 74, 89, 101], Triangle Detection is some-
what unusual in that it can, in principle, be solved using only locally available information.

The Congested Clique Model. Remember that the CONGESTED-CLIQUE model is
a variant of CONGEST that allows all-to-all communication. One of the main reasons
that some problems can be solved efficiently in CONGESTED-CLIQUE is due to Lenzen’s
routing [105]. As long as each vertex v is the source and the destination of at most O(n)
messages, we can deliver all messages in O(1) rounds. Using this routing algorithm [105]
as a communication primitive, many parallel algorithms can be transformed to efficient
CONGESTED-CLIQUE algorithms [34].

Distributed Routing in Almost Mixing Time. A uniform lazy random walk moves
a token around an undirected graph by iteratively applying the following process for some

213

number of steps: with probability 1/2 the token stays at the current vertex and otherwise
it moves to a uniformly random neighbor. In a connected graph G = (V,E), the stationary
distribution of a lazy random walk is π(u) = deg(u)/(2|E|). Informally, the mixing time
τmix(G) of a connected graph G is the minimum number of lazy random walk steps needed
to get within a negligible distance of the stationary distribution. Formally:

Definition 7.1 (Mixing time [77]). Let pst(v) be the probability that after t steps of a lazy
random walk starting at s, the walk lands at v. The mixing time τmix(G) is the minimum
t such that for all s ∈ V and v ∈ V , we have |pst(v)− π(v)| ≤ π(v)/|V |.

Ghaffari, Kuhn, and Su [77] proved that if each vertex v is the source and the destination
of at most O(deg(v)) messages, then all messages can be routed to their destinations in
τmix(G)·2O(

√
logn log logn) rounds. The 2O(

√
logn log logn) factor has recently been improved [78]

to 2O(
√

logn). The implication of this result is that many problems that can be solved
efficiently in the CONGESTED-CLIQUE can also be solved efficiently in CONGEST, but
only if τmix(G) is small. In particular, MST can be solved in τmix(G) · 2O(

√
logn) rounds

in CONGEST [78]. This shows that the Ω̃(
√
n) lower bound [128, 133] can be bypassed in

networks with small τmix(G).
At this point, a natural question to ask is whether or not this line of research [77, 78]

can be extended to a broader class of graphs (that may have high τmix(G)), or even general
graphs. The main contribution of this chapter is to show that this is in fact doable, and
based on this approach we improve the state-of-the-art algorithms for triangle detection,
counting, and enumeration.

Expander Decomposition. It is well known that any graph can be decomposed into
connected components of conductance Ω(ϵ/ logn) (and hence poly(ϵ−1, logn) mixing time)
after removing at most an ϵ-fraction of the edges [9, 94, 126, 139, 141]. Moshkovitz and
Shapira [113] showed that this bound is essentially tight. In particular, removing any
constant fraction ϵ of the edges, the remaining components have conductance at most
O((log logn)2/ logn).

The task of finding a good expander decomposition (optimizing the number of removed
edges and the conductance of the components) was first studied by Kannan Vempala and
Vetta [94] (in the sequential computation model), and was further studied in many other
subsequent works [10, 117, 118, 126, 132, 139, 141]. The expander decomposition has a

214

wide range of applications, and it has been applied to solving linear systems [139], unique
games [9, 131, 141], minimum cut [96], and dynamic algorithms [114].

In the expander decomposition algorithm of [139], they used random walks to explore
the graph locally to find a sparse cut. If the output cut is S, then the time spent is
Õ(Vol(S)).36 By iteratively finding a sparse cut and removing it from the graph, in Õ(|E|)
time an expander decomposition is obtained in which all components have Ω(1/poly log(n))
conductance.

In this work, we show that a variant of expander decomposition can be constructed
efficiently in the CONGEST model. The new twist is to partition the edge set in three
parts, rather than two (i.e., removed and remaining edges).

Distributed Triangle Detection. Many variants of the triangle detection problem have
been studied in the literature [34, 90].

Triangle Detection. Each vertex v reports a bit bv, and
∨

v bv = 1 if and only if the graph
contains a triangle.

Triangle Counting. Each vertex v reports a number tv, and
∑

v tv is exactly the total
number of triangles in the graph.

Triangle Enumeration. Each vertex v reports a list Lv of triangles, and
∪

v Lv contains
exactly those triangles in the graph.

Local Triangle Enumeration. It may be desirable that every triangle be reported by one of
the three participating vertices. It is required that Lv only contain triangles involving
v.

Dolev, Lenzen, and Peled [50, Remark 1] showed that Triangle Enumeration can be
solved deterministically in O(n1/3/ logn) time in the CONGESTED-CLIQUE. Censor-
Hillel et al. [34] presented an algorithm for Triangle Detection and Counting in
CONGESTED-CLIQUE that takes Õ(n1−(2/ω)+o(1)) = o(n0.158) time via a reduction to
matrix multiplication. Izumi and Le Gall [90] showed that in CONGEST, the Detec-
tion and Enumeration problems can be solved in Õ(n2/3) and Õ(n3/4) time, respec-
tively. They also proved that in both CONGEST and CONGESTED-CLIQUE, the Enu-
meration problem requires Ω(n1/3/ logn) time, improving an earlier Ω(n1/3/ log3 n) bound
of Pandurangan et al. [123]. Izumi and Le Gall [90] proved a large separation between

36By definition, Vol(S) =
∑

v∈S deg(v).

215

the complexity of the Enumeration and Local Enumeration problems. If triangles must
be reported by a participating vertex, Ω(n/ logn) time is necessary (and sufficient) in
CONGEST/CONGESTED-CLIQUE. More generally, the lower bound on Local Enumera-
tion is Ω(∆/ logn) when the maximum degree is ∆.

In this chapter, we show that Triangle Detection, Enumeration, and Counting can be
solved in Õ(n1/2) time in CONGEST. This result is achieved by a combination of our
new distributed graph partition algorithm, the multi-commodity routing of [77, 78], and
a randomized version of the CONGESTED-CLIQUE algorithm for Triangle Enumeration
of [34, 50]. We also show that when the input graph has high conductance/low mixing
time, that Triangle Enumeration can be solved even faster, in O(τmix(G)n

1/3+o(1)) time.

7.1.1 Technical Overview

Consider a graph G = (V,E). For a vertex subset S, we write Vol(S) to denote∑
v∈S deg(v). Note that by default the degree is with respect to the original graph

G. We write S̄ = V \ S, and let ∂(S) = E(S, S̄) be the set of edges e = {u, v}
with u ∈ S and v ∈ S̄. The sparsity (or conductance) of a cut (S, S̄) is defined as
Φ(S) = |∂(S)|/min{Vol(S),Vol(S̄)}. The conductance ΦG of a graph G is the minimum
value of Φ(S) over all vertex subsets S.

We have the following relation [91] between the mixing time τmix(G) and conductance
ΦG:

Θ

(
1

ΦG

)
≤ τmix(G) ≤ Θ

(
logn
Φ2

G

)
.

In particular, if the inverse of the conductance is no(1), then the mixing time is also no(1).

Our Graph Partition. We introduce a new, efficiently computable graph decomposition
that partitions the edge set into three parts.

Definition 7.2. An nδ-decomposition of a graph G = (V,E) is a tripartition of the edge
set E = Em ∪ Es ∪ Er satisfying the following conditions.

(a) Each connected component induced by Em has O(poly logn) mixing time, and each
vertex in the component has Ω(nδ) incident edges in Em. That is, for each vertex
v ∈ V , either degEm

(v) = 0 or degEm
(v) = Ω(nδ).

(b) Es =
∪

v∈V Es,v, where Es,v is a subset of edges incident to v and |Es,v| ≤ nδ. We

216

view Es,v as oriented away from v. The overall orientation on Es is acyclic, which
certifies that Es has arboricity37 at most nδ. Each vertex v knows Es,v.

(c) |Er| ≤ |E|/6.

Throughout the chapter we assume δ ∈ (0, 1) is a constant. The main difference between
our graph partition and the ones in other works [139] is that we allow a set Es that induces
a low arboricity subgraph. The purpose of having the set Es is to allow us to design an
efficient CONGEST algorithm to construct the partition. In the sequential computation
model, a common approach to find a graph partition is to iteratively find a vertex set S
with small Φ(S) = O(1/poly log(n)), and then include the boundary edges ∂(S) in the set
Er and remove them from the current graph. The number of iterations can be as high as
Θ̃(n) since we could have |S| = Õ(1).

To reduce the number of iterations to at most O(n1−δ), before we start to find S, we
do a preprocessing step that removes low degree vertices in such a way that each vertex
has degree at least Ω(nδ) in the remaining graph. This guarantees that |S| = Ω(nδ), and
so the number of iterations can be upper bounded by O(n1−δ), since the total number of
vertices is n.

7.1.2 Additional Related Works

Drucker et al. [51] showed an Ω
(

n

e
√

log n logn

)
lower bound for triangle detection in the

broadcast CONGESTED-CLIQUE model, where each vertex can only broadcast one message
to all other vertices in each round. In the CONGEST model, lower bounds for finding a
triangles and other motifs (subgraphs) has been studied in [1, 51, 81, 98]. The problem
of detecting a k-cycle has an Ω̃(

√
n) lower bound, for any even number k ≥ 4 [51, 98].

Detecting a k-clique requires Ω̃(
√
n) rounds for every 4 ≤ k ≤

√
n, and Ω̃(n/k) rounds for

every k ≥
√
n [46].

Any one-round deterministic algorithm for the triangle membership problem (each vertex
decides whether it belongs to a triangle) requires messages of size Ω(∆ logn) [1], which
meets the trivial upper bound; for the randomized model, there is an Ω(∆) lower bound [64].
The distributed triangle detection problem has also been studied in the property testing
setting in the CONGEST model [58].

37The arboricity of a graph is the minimum number α such that its edge set can be partitioned into α
forests.

217

Das Sarma et al. [134] first studied the distributed sparsest cut problem. Specifically,
given two parameters b and ϕ, if there exists a cut of balance at least b and conductance at
most ϕ, their algorithm outputs a cut of conductance at most Õ(

√
ϕ) in Õ((n+ (1/ϕ))/b)

rounds. This result was later improved by Kuhn and Molla [104] to Õ(D+1/(bϕ)).38 Their
algorithms are built upon techniques in [49].

7.1.3 Organization

In Section 7.2 we present a new distributed algorithm for partitioning a graph into ex-
panding subgraphs and a low-arboricity subgraph. A key subroutine for finding a sparse
cut is described in Section 7.3. Section 7.4 presents Triangle Enumeration algorithms for
both expanding graphs and general graphs.

7.2 Algorithm for Graph Partitioning
We first introduce some notation. Let degH(v) be the degree of v in the subgraph H,
or in the graph induced by edge/vertex set H. Let V (E∗) be the set of vertices in-
duced by the edge set E∗ ⊆ E. The strong diameter of a subgraph H of G is defined
as maxu,v∈H distH(u, v) and the weak diameter of H is maxu,v∈H distG(u, v).

The goal of this section is to prove the following theorem.

Theorem 7.1. Given a graph G = (V,E) with n = |V |, we can find, w.h.p., an nδ-
decomposition in Õ(n1−δ) rounds in the CONGEST model.

The algorithm for Theorem 7.1 is based on repeated application of a black box algorithm
A∗, which is given a subgraph G′ = (V ′, E ′) of the original graph G = (V,E), where
V ′ = V (E ′), n′ = |V ′|, and m′ = |E ′|. In A∗, vertices may halt the algorithm at different
times.

Specification of the Black Box. The goal of A∗ is, given G′ = (V ′, E ′), to partition
E ′ into E ′ = E ′

m ∪ E ′
s ∪ E ′

r satisfying some conditions. The edge set E ′
m is partitioned

into E ′
m =

∪t
i=1 Ei for some t. We write Vi = V (Ei) and Gi = (Vi, Ei), and define S =

V ′ \
(∪t

i=1 Vi
)
.

38Kuhn and Molla [104] further claimed that the output cut of their algorithm has balance at least b/2,
but this claim turns out to be incorrect (Anisur Rahaman Molla, personal communication, 2018).

218

(C1) The vertex sets V1, . . . ,Vt, S are disjoint and partition V ′.

(C2) The edge set E ′
s can be decomposed as E ′

s =
∪

v∈S E
′
s,v, where E ′

s,v is a subset of
edges incident to v, viewed as oriented away from v. This orientation is acyclic. For
each vertex v such that E ′

s,v ̸= ∅, we have |E ′
s,v| + degE′

m
(v) ≤ nδ. Each vertex v

knows the set E ′
s,v.

(C3) Consider a subgraph Gi = (Vi, Ei). Vertices in Vi halt after the same number of
rounds, say K. Exactly one of the following subcases will be satisfied.

(C3-1) All vertices in Vi have degree Ω(nδ) in the subgraph Gi, each connected component
of Gi has O(poly logn) mixing time, and K = O(poly logn). Furthermore, every
vertex in Vi knows that they are in this sub-case.

(C3-2) |Vi| ≤ n′ − Ω̃(Knδ), and every vertex in Vi knows they are in this subcase.

(C4) Each vertex v ∈ S halts in Õ(n′/nδ) rounds.

(C5) The following inequality is met:

E ′
r ≤

(
|E ′| log |E ′| −

t∑
i=1

|Ei| log |Ei|
)
/(6 logm).

(C6) Each cluster Vi has a distinct identifier. When a vertex v ∈ Vi terminates, v knows
the identifier of Vi. If v ∈ S, v knows that it belongs to S.

We briefly explain the intuition behind these conditions. The algorithm A∗ will be
applied recursively to all subgraphs Gi that have yet to satisfy the minimum degree and
mixing time requirements specified in Theorem 7.1 and Definition 7.2. Because vertices
in different components halt at various times, they also may begin these recursive calls at
different times.

The goal of (C2) is to make sure that once a vertex v has E ′
s,v ̸= ∅, the total number of

edges added to Es,v cannot exceed nδ. The goal of (C3) is to guarantee that the component
size drops at a fast rate. The idea of (C5) is that the size of E ′

r can be mostly charged to
the number of the edges in the small-sized edge sets Ei; this is used to bound the size of
Er in the final output of our graph partitioning algorithm.

Note that in general the strong diameter of a subgraph Gi can be much higher than the
maximum running time of vertices in Gi, and it could be possible that Gi is not even a
connected subgraph of G. However, (C6) guarantees that each vertex v ∈ Vi still knows

219

that it belongs to Vi. This property allows us to recursively execute A∗ on each subgraph
Gi.

Lemma 7.1. There is an algorithm A∗ that finds a partition E ′ = E ′
m ∪ E ′

s ∪ E ′
r meeting

the above specification in the CONGEST model, w.h.p.

Assuming Lemma 7.1, we are now in a position to prove Theorem 7.1.

Proof of Theorem 7.1. Let A∗ be the algorithm for Lemma 7.1. Initially, we apply A∗ with
G′ = G, and this returns a partition E ′ = E ′

m ∪ E ′
s ∪ E ′

r.
For each subgraph Gi in the partition output by an invocation of A∗, do the following.

If Gi satisfies (C3-1), by definition it must have O(poly logn) mixing time, and all vertices
in Gi have degree Ω(nδ) in Gi; we add the edge set Ei to the set Em and all vertices in Vi
halt. Otherwise we apply the algorithm recursively to Gi, i.e., we begin by applying A∗

to G′ = Gi to further partition its edges. All recursive calls proceed in parallel, but may
begin and end at different times. Conditions (C1) and (C6) guarantee that this is possible.
(Note that if Gi is disconnected, then each connected component of Gi will execute the
algorithm in isolation.)

Initially Er = ∅ and Es = ∅. After each invocation of A∗, we update Er ← Er ∪ E ′
r,

Es ← Es ∪ E ′
s, and Es,u ← Es,u ∪ E ′

s,u for each vertex u.

Analysis. We verify that the three conditions of Definition 7.2 are satisfied. First of all,
note that each connected component of Em terminated in (C3-1) must have O(poly logn)
mixing time, and all vertices in the component have degree Ω(nδ) within the component.
Condition (a) of Definition 7.2 is met. Next, observe that Condition (b) of Definition 7.2
is met due to (C2). If the output of A∗ satisfies that E ′

s,v ̸= ∅, then |Es,v| together with
the number of remaining incident edges (i.e., the ones in E ′

m) is less then nδ. Therefore,
|Es,v| cannot exceed nδ, since only the edges in E ′

m that are incident to v can be added
to Es,v in future recursive calls. Lastly, we argue that (C5) implies that Condition (c)
of Definition 7.2 is satisfied. Assume, inductively, that a recursive call on edge set Ei
eventually contributes at most |Ei| log |Ei|/(6 logm) edges to Er. It follows from (C5) that
the recursive call on edge set E ′ contributes |E ′| log |E ′|/(6 logm) edges to Er. We conclude
that |Er| ≤ |E| log |E|/(6 log |E|) = |E|/6.

Now we analyze the round complexity. In one recursive call of A∗, consider a component
Gi in the output partition, and let K be the running time of vertices in Vi. Due to

220

(C3), there are two cases. If Gi satisfied (C3-1), it will halt in K = O(poly logn) rounds.
Otherwise, (C3-2) is met, and we have |Vi| ≤ n′ − Ω̃(Knδ). Let v ∈ V be any vertex,
and let K1, . . . , Kz be the running times of all calls to A∗ that involve v. (Whenever v
ends up in S or in a component satisfying (C3-1) it halts permanently, so K1, . . . , Kz−1

reflect executions that satisfy (C3-2) upon termination.) Then we must have
∑z

i=1Ki ≤
Õ(n/nδ) + O(poly logn) = Õ(n1−δ). Thus, the whole algorithm stops within Õ(n1−δ)

rounds.

7.2.1 Subroutines

Before proving Lemma 7.1, we first introduce some helpful subroutines. Lemma 7.3 shows
that for subgraphs of sufficiently high strong diameter, we can find a sparse cut of the
subgraph, with runtime proportional to the strong diameter. Lemma 7.4 offers a procedure
that removes a set of edges in such a way that the vertices in the remaining graph have
high degree, and the removed edges form a low arboricity subgraph. Lemma 7.5 shows
that if a subgraph already has a low conductance cut, then we can efficiently find a cut of
similar quality.

All these subroutines are applied to a connected subgraph G∗ = (V ∗, E∗) of the under-
lying network G = (V,E), and the computation does not involve vertices outside of G∗.
In subsequent discussion in this section, the parameters n and m are always defined as
n = |V | and m = |E|, which are independent of the chosen subgraph G∗.

Lemma 7.2. Let m and D be two numbers. Let (a1, . . . , aD) be a sequence of positive
integers such that D ≥ 48 log2m and

∑D
i=1 ai ≤ m. Then there exists an index j such that

j ∈ [D/4, 3D/4] and

aj ≤
1

12 logm ·min
(

j−1∑
i=1

ai,
D∑

i=j+1

ai

)
.

Proof. Define Sk =
∑k

i=1 ai to be the kth prefix sum. By symmetry, we may assume
S⌊D/2⌋ ≤ SD − S⌊D/2⌋, since otherwise we can reverse the sequence. Scan each index j

from D/4 to D/2. If an index j does not satisfy aj ≤ 1
12 logm

· Sj−1, then this implies that
Sj > Sj−1

(
1 + 1

12 logm

)
. If no index j ∈ [D/4, D/2] satisfies this condition then S⌊D/2⌋ is

221

larger than

S⌊D/4⌋ ·
(
1 +

1

12 logm

)D/4

≥ S⌊D/4⌋ ·
(
1 +

1

12 logm

)12 log2 m

≥ S⌊D/4⌋ ·m,

which is impossible since
∑D

i=1 ai ≤ m. Therefore, there must exist an index j ∈ [D/4, D/2]

such that aj ≤ 1
12 logm

·Sj−1 =
1

12 logm
·
∑j−1

i=1 ai. By our assumption that S⌊D/2⌋ ≤ SD−S⌊D/2⌋,
we also have aj ≤ 1

12 logm
·min

(∑j−1
i=1 ai,

∑D
i=j+1 ai

)
.

In Lemma 7.3, the requirement that there are no edges linking two vertices in Vlow implies
that the strong diameter of G∗ = (V ∗, E∗) is O(n1−δ), and so the runtime of Lemma 7.3 is
always at most O(n1−δ).

Lemma 7.3 (High Diameter subroutine). Let G∗ = (V ∗, E∗) be a connected subgraph
and x ∈ V ∗ be a vertex for which D̃ = maxv∈V ∗ distG∗(x, v) ≥ 48 log2m. Define
Vlow = {v ∈ V ∗ | degG∗(v) ≤ nδ/2}. Suppose there are no edges linking two ver-
tices in Vlow. Then we can find a cut (C, C̄) of G∗ such that min(|C|, |C̄|) ≥ D̃

32
nδ and

∂(C) ≤ min(Vol(C),Vol(C̄))/(12 logm) in O(D̃) rounds deterministically in the CONGEST
model. Each vertex in V ∗ knows whether or not it is in C.

Proof. The algorithm is as follows. First, build a BFS tree of G∗ rooted at x ∈ V ∗ in O(D̃)

rounds. Let Li be the set of vertices of level i in the BFS tree, and let pi be the number of
edges e = {u, v} such that u ∈ Li and v ∈ Li+1. We write La..b =

∪b
i=a Li. In O(D̃) rounds

we can let the root x learn the sequence (p1, . . . , pD̃).
Note that in a BFS tree, edges do not connect two vertices in non-adjacent levels. By

Lemma 7.2, there exists an index j ∈ [D̃/4, 3D̃/4] such that

pj ≤
1

12 logm ·min

 j−1∑
i=1

pi,

D̃∑
i=j+1

pi


≤ 1

12 logm ·min
(
Vol(L1..j),Vol(Lj+1..D̃)

)
,

and such an index j can be computed locally at the vertex x.

222

The cut is chosen to be C = L1..j, so we have ∂(C) ≤ min(Vol(C),Vol(C̄))/(12 logm).
As for the second condition, due to our assumption in the statement of the lemma, for any
two adjacent levels Li, Li+1, there must exist a vertex v ∈ Li ∪Li+1 such that v /∈ Vlow. By
definition of Vlow, v has more than nδ/2 neighbors in G∗, and they are all within Li−1..i+2.
Thus, the number of vertices within any four consecutive levels must be greater than nδ/2.
Since j ∈ [D̃/4, 3D̃/4], we have

min(|C|, |C̄|) ≥ D̃

4
/4 · nδ/2 ≥ D̃

32
nδ.

To let each vertex in V ∗ learn whether or not it is in C, the root x broadcasts the index j
to all vertices in G∗. After that, each vertex in level smaller than or equal to j knows that
it is in C; otherwise it is in C̄.

Intuitively, Lemma 7.4 says that after the removal of a subgraph of small arboricity (i.e.,
the edge set E⋄

s), the remaining graph (i.e., the edge set E⋄) has high minimum degree.
The runtime is proportional to the number of removed vertices (i.e., |V ∗| − |V ⋄|) divided
by the threshold nδ. Note that the second condition of Lemma 7.4 implies that E⋄

s,v = ∅
for all v ∈ V ⋄.

Lemma 7.4 (Low Degree subroutine). Let G∗ = (V ∗, E∗) be a connected subgraph with
strong diameter D. We can partition E∗ = E⋄ ∪ E⋄

s meeting the following two conditions.

1. Let V ⋄ be the set of vertices induced by E⋄. Each v ∈ V ⋄ has more than nδ/2 incident
edges in E⋄.

2. The edge set E⋄
s is further partitioned as E⋄

s =
∪

v∈V ∗\V ⋄ E⋄
s,v, where E⋄

s,v is a subset
of incident edges of v, and |E⋄

s,v| ≤ nδ. Each vertex v knows E⋄
s,v.

This partition can be found in O(D + (|V ∗| − |V ⋄|)/nδ) rounds deterministically in the
CONGEST model.

Proof. To meet Condition 1, a naive approach is to iteratively “peel off” vertices that have
degree at most nδ/2, i.e., put all their incident edges in Es, so long as any such vertex
exists. On some graphs this process requires Ω(n) peeling iterations.

We solve this issue by doing a batch deletion. First, build a BFS tree of G∗ rooted at an
arbitrary vertex x ∈ V ∗. We use this BFS tree to let x count the number of vertices that
have degree less than nδ in the remaining subgraph in O(D) rounds.

223

The algorithm proceeds in iterations. Initially we set E⋄ ← E∗ and E⋄
s ← ∅. In each

iteration, we identify the subset Z ⊆ V ∗ whose vertices have at most nδ incident edges
in E⋄. We orient all the E⋄-edges touching Z away from Z, if one endpoint is in Z, or
away from the endpoint with smaller ID, if both endpoints are in Z. Edges incident to v
oriented away from v are added to E⋄

s,v and removed from E⋄. The root x then counts the
number z = |Z| of such vertices via the BFS tree. If z > nδ/2, we proceed to the next
iteration; otherwise we terminate the algorithm.

The termination condition ensures that each vertex has degree at least (nδ+1)−z > nδ/2,
and so Condition 1 is met. It is straightforward to see that the set E⋄

s generated by the
algorithm meets Condition 2, since for each v, we only add edges to E⋄

s,v once, and it is
guaranteed that |E⋄

s,v| ≤ nδ. Tie-breaking according to vertex-ID ensures the orientation
is acyclic.

Throughout the process, each time one vertex puts any edges into E⋄
s , it no longer stays

in V ⋄. Each iteration can be done in O(D) time. We proceed to the next iteration only
if there are more than nδ/2 vertices being removed from V ⋄. A trivial implementation
can lead to an algorithm taking O(D

⌈
(|V ∗| − |V ⋄|)/nδ

⌉
)) rounds. The round complexity

can be further improved to O(D + (|V ∗| − |V ⋄|)/nδ) by pipelining the iterations. At some
point the root x detects that iteration i was the last iteration; in O(D) time it broadcasts
a message to all nodes instructing them to roll back iterations i+ 1, i+ 2, . . ., which have
been executed speculatively.

The proof of the following lemma is deferred to Section 7.3. It is a consequence of
combining Lemmas 7.9 and 7.10.

Lemma 7.5 (Low Conductance subroutine). Let G∗ = (V ∗, E∗) be a connected subgraph
with strong diameter D. Let ϕ ≤ 1/12 be a number. Suppose that there exists a subset
S ⊂ V ∗ satisfying

Vol(S) ≤ (2/3)Vol(V ∗) and Φ(S) ≤ ϕ3

19208 ln2(|E∗|e4)
.

Assuming such an S exists, there is a CONGEST algorithm that finds a cut C ⊂ V ∗ such
that Φ(C) ≤ 12ϕ in O(D+poly(log |E∗|, 1/ϕ)) rounds, with failure probability 1/poly(|E∗|).
Each vertex in V ∗ knows whether or not it belongs to C.

224

7.2.2 Proof of Lemma 7.1

We prove Lemma 7.1 by presenting and analyzing a specific distributed algorithm, which
makes use of the subroutines specified in Lemmas 7.3, 7.4, and 7.5.

Recall that we are given a subgraph with edge set E ′ and must ultimately return a
partition of it into E ′

m∪E ′
s∪E ′

r. The algorithm initializes E ′
m ← E ′, E ′

s ← ∅, and E ′
r ← ∅.

There are two types of special operations.

Remove. In an Remove operation, some edges are moved from E ′
m to either E ′

s or E ′
r. For

the sake of a clearer presentation, each such operation is tagged Remove-i, for some
index i.

Split. Throughout the algorithm we maintain a partition of the current set E ′
m. In a Split

operation, the partition subdivided. Each such operation is tagged as Split-i, for some
index i, such that Split-i occurs right after Remove-i.

Throughout the algorithm, we ensure that any part E⋆ of the partition of E ′
m has an

identifier that is known to all members of V (E⋆). It is not required that each part forms
a connected subgraph. The partition at the end of the algorithm, E ′

m =
∪t

i=1 Ei, is the
output partition.

Notations. Since we treat E ′
m as the “active” edge set and E ′

s and E ′
r as repositories

of removed edges, deg(v) refers to the degree of v in the subgraph induced by the current
E ′

m. We write Vlow = {v ∈ V ′ | deg(v) ≤ nδ}.

Algorithm. In the first step of the algorithm, we move each edge {u, v} ∈ E ′
m in the

subgraph induced by Vlow to the set E ′
s,u (Remove-1), assuming ID(u) < ID(v). Note that

breaking ties by vertex-ID is critical to keep the orientation acyclic. This step only removes
all edges in the subgraph induced by Vlow; edges between Vlow and V ′ \ Vlow are left as is,
so the identity of Vlow is unchanged after this step.

After that, E ′
m is divided into connected components. Assume these components are

G1 = (V1, E1), G2 = (V2, E2), . . ., where Vi = V (Ei). Let Di be the depth of a BFS tree
rooted at an arbitrary vertex in Gi. In O(Di) rounds, the subgraph Gi is assigned an
identifier that is known to all vertices in Vi (Split-1). Note that this step is done in parallel
for each Gi, and the time for this step is different for each Gi. From now on there will
be no communication between different subgraphs in {G1, G2, . . .}, and we focus on one
specific subgraph Gi in the description of the algorithm.

225

Depending on how large Di is, there are two cases. If Di ≥ 48 log2m, we go to Case 1,
otherwise we go to Case 2.

Case 1: In this case, we have Di ≥ 48 log2m. Since there are no edges connecting two
vertices in Vlow, we can apply the High Diameter subroutine, Lemma 7.3, which finds a
cut (C, C̄) of Gi such that min(|C|, |Vi \ C|) ≥ Di

32
nδ and ∂(C) ≤ min(Vol(C),Vol(Vi \

C))/(12 logm) in O(Di) rounds. Every vertex in Vi knows whether it is in C or not. All
edges of the cut (C, C̄) are put into E ′

r (Remove-2). Then Ei splits into two parts according
to the cut (C, C̄) (Split-2). After that, all vertices in Vi terminate. (Observe that the part
containing the BFS tree root is connected, but the other part is not necessarily connected.)

Case 2: In this case, we have Di ≤ 48 log2m. Since Gi = (Vi, Ei) is a small diameter
graph, a vertex v ∈ Vi is able broadcast a message to all vertices in Vi very fast. We
apply the Low Degree subroutine, Lemma 7.4, to obtain a partition Ei = E⋄ ∪ E⋄

s . We
add all edges in E⋄

s to E ′
s in such a way that E ′

s,v ← E ′
s,v ∪ E⋄

s,v for all v ∈ Vi \ V ⋄, where
V ⋄ = V (E⋄) (Remove-3).

After removing these edges, the remaining edges of Ei are divided into several connected
components, but all remaining vertices have degree larger than nδ/2. Assume these con-
nected components are Gi,1 = (Vi,1, Ei,1), Gi,2 = (Vi,2, Ei,2), Let Di,j be the depth of
the BFS tree from an arbitrary root vertex in Gi,j. In O(Di,j) rounds we compute such a
BFS tree and assign an identifier that is known to all vertices in Vi,j (Split-3). That is, the
remaining edges in Ei are partitioned into Ei,1, E1,2,

In what follows, we focus on one subgraph Gi,j and proceed to Case 2-a or Case 2-b.

Case 2-a: In this case, Di,j ≥ 48 log2m. The input specification of the High Diameter
subroutine (Lemma 7.3) is satisfied, since every vertex has degree larger than nδ/2. We
apply the High Diameter subroutine to Gi,j. This takes O(Di,j) rounds. This case is similar
to Case 1, and we do the same thing as what we do in Case 1, i.e., remove the edges in
the cut found by the subroutine (Remove-4), split the remaining edges (Split-4), and then
all vertices in Vi,j terminate.

Case 2-b: In this case, Di,j ≤ 48 log2m. Note that every vertex has degree larger than
nδ/2, and Gi,j has small diameter. What we do in this case is to test whether Gi,j has any
low conductance cut; if yes, we will split Ei,j into two components. To do so, we apply the

226

Low Conductance subroutine, Lemma 7.5, with ϕ = 1
144 logm

. Based on the result, there
are two cases.

Case 2-b-i: The subroutine finds a set of vertices C that Φ(C) ≤ 12ϕ = 1
12 logm

, and
every vertex knows whether it is in C or not. We move ∂(C) to E ′

r (Remove-5), and then
split the remaining edges into two edge sets according to the cut (C, C̄) (Split-5). After
that, all vertices in Vi,j terminate.

Case 2-b-ii: Otherwise, the subroutine does not return a subset C, and it means with
probability at least 1− 1/poly(|Ei,j|) = 1− 1/poly(n), there is no cut (S, S̄) with conduc-
tance less than ϕ3

19208 ln2(|Ei,j |e4)
= Θ(log−5m). Recall the relation between the mixing time

τmix(Gi,j) and the conductance Φ = ΦGi,j
: Θ(1

Φ
) ≤ τmix(Gi,j) ≤ Θ(

log |Vi,j |
Φ2) [91]. Therefore,

w.h.p., Gi,j has O(poly logn) mixing time. All vertices in Vi,j terminate without doing
anything in this step.

Note that in the above calculation, we use the fact that every vertex in Vi,j has degree
larger than nδ/2 in Gi,j, and this implies that |Vi,j| = Ω(nδ) and |Ei,j| = Ω(n2δ), and so
Θ(logm) = Θ(logn) = Θ(log |Ei,j|) = Θ(log |Vi,j|).

Analysis. We show that the output of A∗ meets its specifications (C1)–(C6). Recall
that E ′

m =
∪t

i=1 Ei is the final partition of the edge set E ′
m when all vertices terminate.

Once an edge is moved from E ′
m to either E ′

r or E ′
s, it remains there for the rest of the

computation. Condition (C1) follows from the fact that each time we do a split operation,
the induced vertex set of each part is disjoint. Condition (C6) follows from the fact that
each vertex knows which part of E ′

m it belongs to after each split operation. In the rest of
this section, we prove that the remaining conditions are met.

Claim 4. Condition (C2) is met.

Proof. Note that only Remove-1 and Remove-3 involve E ′
s. In Remove-1, any E ′

s,u that
becomes non-empty must have had u ∈ Vlow, so deg(u) ≤ nδ before Remove-1, and therefore
|E ′

s,u|+deg(u) ≤ nδ after Remove-1. In Remove-3, the Low Degree subroutine of Lemma 7.4
computes a partition Ei = E⋄∪E⋄

s , and then we update E ′
s,u ← E ′

s,u∪E⋄
s,u for all u ∈ Vi\V ⋄.

By Lemma 7.4, for any u such that E⋄
s,u ̸= ∅, we have |E⋄

s,u| ≤ nδ, and u /∈ V ⋄, where V ⋄ is
the vertex set induced by the remaining edge set E⋄. In other words, once u puts at least
one edge into E ′

s,u, we have deg(u) = 0 after Remove-3.

227

Claim 5. Conditions (C3) and (C4) are met.

Proof. We need to verify that in each part of the algorithm, we either spend only
O(poly logn) rounds, or the size of the current component shrinks by Ω̃(nδ) vertices per
round.

After removing all edges in the subgraph induced by Vlow, the rest of E ′ is partitioned
into connected components E1, E2, Consider one such component Ei, and suppose it
goes to Case 1. We find a sparse cut (C, C̄), and moving ∂(C) to E ′

r breaks Ei into E1i
and E2i . By Lemma 7.3, we have min(|C|, |C̄|) ≥ Di

32
nδ, so the size of both V (E1i) = C and

V (E2i) = C̄ are at most |V (Ei)| − Di

32
nδ ≤ n′ − Ω(Di)n

δ. Since the running time for each
vertex in V (E1i) and V (E2i) is O(Di), the condition (C3-2) is met.

Now suppose that Ei goes to Case 2. Note that the total time spent before it reaches Case
2 is O(Di) = poly logn. In Case 2 we execute the Low Degree subroutine of Lemma 7.4,
and let the time spent in this subroutine be τ . By Lemma 7.4, it is either the case that (i)
τ = O(Di) or (ii) the remaining vertex set V ⋄ satisfies |V (Ei)| − |V ⋄| = Ω(τnδ). In other
words, if we spend too much time (i.e., ω(Di)) on this subroutine, we must lose Ω(nδ)

vertices per round.
After that, Ei is split into Ei,1, Ei,2, We consider the set Ei,j. If Ei,j goes to Case 2-a,

then the analysis is the same as that in Case 1, and so (C3-2) is met.
Now suppose that Ei,j goes to Case 2-b. Note that the time spent during the Low

Conductance subroutine of Lemma 7.5 is O(poly logn). Suppose that a low conductance
cut (C, C̄) is found (Case 2-b-i). Since the cut has conductance less than 1

12 logm
, by the

fact that every vertex has degree higher than nδ/2, we must have min(|C|, |C̄|) = Ω(nδ).
Assume Ei,j \ ∂(C) is split into E1i,j and E2i,j. The size of both V (E1i,j) and V (E2i,j) must be
at most |V (Ei,j)| − Ω(nδ). Thus, (C3-2) holds for both parts E1i,j and E2i,j.

Suppose that no cut (C, C̄) is found (Case 2-b-ii). If the running time K among vertices
in Vi,j is O(poly logn), then (C3-1) holds. Otherwise, we must have |Vi,j| ≤ n′ − Ω̃(Knδ)

due to the Low Degree subroutine, and so (C3-2) holds.
Condition (C4) follows from the the above proof of (C3), since for each part of the

algorithm, it is either the case that (i) this part takes O(poly logn) time, or (ii) the number
of vertices in the current subgraph is reduced by Ω̃(nδ) per round.

Claim 6. Condition (C5) is met.

228

Proof. Condition (C5) says that after the algorithm A∗ completes, |E ′
r| ≤ f , where

f =

(
|E ′| log |E ′| −

t∑
i=1

|Ei| log |Ei|
)
/(6 logm).

We prove the stronger claim that this inequality holds at all times w.r.t. the current
edge partition E1 ∪ · · · ∪ Et of E ′

m. In the base case this is clearly true, since t = 1 and
E ′ = E ′

m = E1 and E ′
r = ∅. Moving edges from E ′

m to E ′
s increases f and has no effect

on E ′
r, so we only have to consider the movement of edges from E ′

m to E ′
r. Note that this

only occurs in Remove-i and Split-i, for i ∈ {2, 4, 5}, where in these operations we find a
cut (C, C̄) and split one of the parts Ej according to the cut. In all cases we have

|∂(C)| ≤ min(Vol(C),Vol(C̄))
12 logm .

Suppose that removing ∂(C) splits Ej into E1j and E2j , with |E1j | ≤ |E2j | and C = V (E1j). We
bound the change in |E ′

r| and f separately. Clearly

∆|E ′
r| = |∂(C)| ≤

2|E1j |+ ∂(C)

12 logm ≤
|E1j |

6 logm +
∂(C)

12 logm.

and

∆f =
1

6 logm ·

|Ej| log |Ej| − ∑
k∈{1,2}

|Ekj | log |Ekj |


≥ 1

6 logm ·
(
|E1j | log(|Ej|/|E1j |) + ∂(C) log |Ej|

)
> ∆|E ′

r|. (Because |E1j | < |Ej|/2)

Thus, |E ′
r| ≤ f also holds after Remove-i and Split-i, for i ∈ {2, 4, 5}.

7.3 Algorithm for Finding a Sparse Cut
Recall that in our decomposition routine, we search for a sparse cut in a subgraph G∗ =

(V (E∗), E∗) of G. In this section, we do not care about anything outside of G∗, and so we
slightly abuse the notation to write G = (V,E) to denote the subgraph G∗, and we use

229

n = |V (G∗)| and m = |E(G∗)| to be the number of vertices and edges in the subgraph.
In this section we prove Lemma 7.5, which concerns an efficient distributed analogue of
Spielman and Teng’s [138, 139] Nibble routine.

Many existing works [6, 49, 104, 139] have shown that looking at the distribution of
random walks is a good approach to finding a sparse cut. The basic idea is to first sample
a source vertex s according to the degree distribution, i.e., the probability that v is sampled
is deg(v)/(2m), and do a lazy random walk from s. Assume there is a sparse cut S with
conductance Φ(S), and Vol(S) ≤ Vol(V)/2. If s ∈ S, then the probability distribution
of the random walk will be mostly confined to S within the initial t0 = O(1

Φ(S)
) steps. A

common way to utilize this observation is to sort the vertices (v1, . . . , vn) in decreasing
order of their random walk probability, and it is guaranteed that for some choice of j, the
subset C = {v1, . . . , vj} is a sparse cut that is approximately as good as S.

The papers [104, 134] adapted this approach to the CONGEST model. If the cut S
satisfies that b · 2|E| ≤ Vol(S) (i.e., S has balance b), then a cut C satisfying Φ(C) =

O(
√

Φ(S) logn) can be found in Õ(D + 1/(bΦ(S))) rounds. The algorithm is inefficient
when 1/b = Θ(|E|/Vol(S)) is large. The main source of this inefficiency is that if we sample
a vertex s according to the degree distribution, then the probability that s ∈ S is only
O(b). This implies that we have to calculate many random walk distributions before we
find a desired sparse cut. If we calculate these random walk distributions simultaneously,
then we may suffer from a huge congestion issue.

Spielman and Teng [139] show that a random walk distribution with truncation (rounding
a probability to zero when it becomes too small) can reveal a sparse cut, provided the
starting vertex of the random walk is good. The main contribution of this section is a
proof that the Spielman-Teng method for finding cuts of conductance roughly ϕ can be
implemented in poly(ϕ−1, logn) time in the CONGEST model, i.e., with no dependence on
the balance parameter b.

Terminology. We first review some definitions and results from Spielman and Teng [139].
Let A be the adjacency matrix of the graph G. We assume a 1-1 correspondence between
V (G) and {1, . . . , n}. In a lazy random walk, the walk stays at the current vertex with
probability 1/2 and otherwise moves to a random neighbor of the current vertex. The
matrix realizing this walk can be expressed as T = (AD−1+ I)/2, where D is the diagonal
matrix with (d(1), . . . , d(n)) on the diagonal, and d(i) = deg(i).

Let pvt be the probability distribution of the lazy random walk that begins at v and walks

230

for t steps. In the limit, as t→∞, pt(x) approaches d(x)/2m, so it is natural to measure
pt(x) relative to this baseline.

ρt(x) = pt(x)/d(x),

Define πt to be the permutation that sorts V = {1, . . . , n} in decreasing order of ρt-values,
breaking ties by vertex ID. We never actually compute πt. To implement our algorithms,
it suffices that given ρt(u), ρt(v), ID(u), ID(v), we can determine whether or not u precedes
v according to πt.

ρt(πt(i)) ≥ ρt(πt(i+ 1)), for all i.

Let p be a distribution on V . The truncation operation [p]ϵ rounds p(x) to zero if it falls
below a threshold that depends on x.

[p]ϵ(x) =

p(x) if p(x) ≥ 2ϵd(x),

0 otherwise.

The truncated random walk starting at vertex v is defined as follows. In subsequent
discussion we may omit v if it is known implicitly.

p̃v0(x) =

1 x = v and 1 ≥ 2ϵd(x),

0 otherwise.

p̃vt = [T p̃t−1]ϵ.

The description of the algorithm Nibble and Lemma 3.1 in [139] implies the following
lemma.39

Lemma 7.6 ([139]). For each ϕ ≤ 1, define the parameters

t0 =
49 ln(me4)

ϕ2

and γ =
5ϕ

392 ln(me4) .

39There are many versions of the paper [139] available; we refer to https://arxiv.org/abs/cs/
0310051v9.

231

https://arxiv.org/abs/cs/0310051v9
https://arxiv.org/abs/cs/0310051v9

For each subset S ⊂ V satisfying

Vol(S) ≤ 2

3
· Vol(V)

and Φ(S) ≤ ϕ3

19208 ln2(me4)
,

there exists a subset Sg ⊆ S with the following properties. First, Vol(Sg) ≥ Vol(S)/2.
Second, Sg is partitioned into Sg =

∪logm
b=1 Sg

b such that if a random walk is initiated
at any v ∈ Sg

b with truncation parameter ϵ = ϕ
56 ln(me4)t02b

, then there exists a number
t ∈ [1, t0] and an index j such that the following four conditions are met for the cut
C = {π̃v

t (1), . . . , π̃
v
t (j))}.

(i) Φ(C) ≤ ϕ,

(ii) ρ̃t(π̃t(j)) ≥ γ/Vol(C),

(iii) Vol(C ∩ S) ≥ (4/7)2b−1,

(iv) Vol(C) ≤ (5/6)Vol(V).

In subsequent discussion, with respect to a given parameter ϕ ≤ 1, for any subset S ⊂ V

satisfying the condition of Lemma 7.6, we fix a subset Sg ⊆ S and its decomposition
Sg =

∪logm
b=1 Sg

b to be any choices satisfying Lemma 7.6.

7.3.1 Distributed Algorithm

Now we give our algorithm Distributed Nibble. To simplify things, we present it as a
sequential algorithm, and prove in Lemma 7.10 that it can be implemented efficiently in
the CONGEST model. For any permutation π, we use the notation π(i..j) to denote the
set {π(i), π(i+ 1), . . . , π(j)}.

232

Algorithm 1 Distributed Nibble
Input: ϕ.
for parameter b = 1 to ⌈logm⌉ do

Set parameters t0 = 49 ln(me4)/ϕ2, and ϵb = ϕ
56 ln(me4)t02b

, as in Lemma 7.6.
(1) Independently randomly sampleK = c logm·Vol(V)

2b
vertices v1, ..., vK proportional

to their degrees, where c is a large enough constant.
Initialize p̃vi0 .
for t = 1 to t0, for every vi do

(2) Calculate p̃vit = [T p̃vit−1]ϵb .
Denote jmax as the largest index such that p̃vit (π̃vi

t (jmax)) > 0.
for x = 0 to log1+ϕ(5/6)Vol(V) do

(3) Set j ≤ jmax to be the largest index that Vol(π̃vi
t (1..j)) ≤ (1 + ϕ)x.

(4) If Φ(π̃vi
t (1..j)) ≤ 12ϕ, output the sparse cut C = π̃vi

t (1..j) and halt.
end for

end for
end for
Return failed.

From Lemma 7.6 we know that we can obtain a cut C with some good properties if
we start the truncated random walk at a vertex v ∈ Sg

b with parameter ϵb. Therefore,
what we do in Distributed Nibble is to just sample sufficiently many vertices as the
starting points of random walks so that with sufficiently high probability at least one them
is in the set Sg

b . The danger here is that calculating all these random walk distributions
simultaneously may be infeasible if any part of the graph becomes too congested.

In this section we analyze the behavior of Distributed Nibble (as a sequential algo-
rithm) and prove that it operates correctly. In Section 7.3.2 we argue that Distributed
Nibble can be implemented efficiently in the CONGEST model, in poly(logm, 1/ϕ) time.

Roughly speaking, Lemma 7.7 shows that if the sets π(1..j) and π(1..j′) have similar
volume, then the cuts resulting from these two sets have similar sparsity. This justifies
lines (3) and (4) of Distributed Nibble and allows us to examine a small number of
prefixes of the permutation π̃vi

t .

Lemma 7.7. Let π be any permutation, and let ϕ ≤ 1/12. If, for some index j,
Φ(π(1..j)) ≤ ϕ and Vol(π(1..j)) ≤ (5/6)Vol(V), then Φ(π(1..j′)) ≤ 12ϕ for all indices

233

j′ > j such that
Vol(π(1..j′)) ≤ (1 + ϕ)Vol(π(1..j)).

Proof. Let x = Vol(π(1..j)) and y = Vol(π(1..j′)). Recall that 2m = 2|E| = Vol(V), and
so x ≤ (5/6)Vol(V) = (5/6)2m. We have x ≤ y ≤ (1 + ϕ)x. Since x ≤ (5/6)2m and
ϕ ≤ 1/12, we have ϕx ≤ x/12 ≤ (2m− x)/2. Therefore,

2m− y ≥ 2m− x− ϕx ≥ (2m− x)/2.

We calculate an upper bound of Φ(π(1..j′)) as follows.

Φ(π(1..j′)) =
∂(π(1..j′))

min(y, 2m− y)

≤
∂(π(1..j)) +

∑j′

i=j+1 d(π(i))

min(x, (2m− x)/2)

≤ ∂(π(1..j)) + ϕx

min(x, (2m− x))/2
≤ 12ϕ.

We explain the details of the derivation. The first inequality is due to x ≤ y and (2m −
x)/2 ≤ 2m − y, which follow from the above discussion. The second inequality is due to
the fact that

∑j′

i=j+1 d(π(i)) = Vol(π(1..j′))−Vol(π(1..j)) ≤ ϕ ·Vol(π(1..j)) = ϕx. For the
third inequality, note that ∂(π(1..j))

min(x,(2m−x))
≤ ϕ and ϕx

min(x,(2m−x))
≤ 5ϕ, since x ≤ (5/6)2m.

Lemma 7.8. Let S ⊂ V be any subset satisfying

Vol(S) ≤ (2/3)Vol(V) and Φ(S) ≤ ϕ3

19208 ln2(me4)
.

Then there exists a number b such that Vol(Sg
b) ≥ 2b/32.

Proof. Denote x = Vol(S). From Condition (iii) of Lemma 7.6 we deduce that if Sg
b ̸= ∅,

then there exists a set of vertices C such that Vol(S) ≥ Vol(C ∩ S) ≥ (4/7)2b−1. Thus,
for all b such that b ≥ ⌈logx⌉+ 2, we must have Sg

b = ∅. If the statement of this lemma is
false, i.e., Vol(Sg

b) < 2b/32 for all b, then

Vol(Sg) ≤
⌈logx⌉+1∑

b=1

2b

32
<

2⌈logx⌉+2

32
< x/4,

234

which contradicts the requirement Vol(Sg) ≥ Vol(S)/2 specified in Lemma 7.6.

Lemma 7.9 (Correctness). For any ϕ ≤ 1/12, if there exists a subset S ⊂ V satisfying

Vol(S) ≤ (2/3)Vol(V) and Φ(S) ≤ ϕ3

19208 ln2(me4)
,

then Distributed Nibble outputs a set of vertices C such that Φ(C) ≤ 12ϕ with proba-
bility at least 1− 1/poly(m).

Proof. From Lemma 7.8 we know there exists a number b such that Vol(Sg
b) ≥ 2b/32. Since

we sample vi proportional to the degree distribution,

Pr[vi ∈ Sg
b] =

Vol(Sg
b)

Vol(V)
≥ 2b

32 · Vol(V)
.

Since we sample K = c logm · Vol(V)
2b

number of vertices,

Pr[∃i s.t. vi ∈ Sg
b] ≥ 1−

(
1− 2b

32Vol(V)

)c logm
Vol(V)

2b

≥ 1−m−Ω(c).

Now we focus on the truncated random walk starting at this vertex vi ∈ Sg
b . We fix

two numbers t ∈ [1, t0] and j such that the four conditions in Lemma 7.6 are satisfied. In
particular, Condition (i) and Condition (iv) in Lemma 7.6 say that

Vol(π̃vi
t (1..j)) ≤ (5/6)Vol(V),

Φ(π̃vi
t (1..j)) ≤ ϕ.

Therefore, we are able to apply Lemma 7.7, and so we have Φ(π̃vi
t (1..j

′)) ≤ 12ϕ for all
indices j′ such that Vol(π̃vi

t (1..j)) ≤ Vol(π̃vi
t (1..j

′)) ≤ (1 + ϕ)Vol(π̃vi
t (1..j)).

In Distributed Nibble, we search for a cut with target volume (1+ϕ)x, for all possible
integers x. Note that Condition (ii) in Lemma 7.6 implies j ≤ jmax. Therefore, in Step (3)
of Distributed Nibble, at least one index j⋆ picked by the algorithm satisfies

Vol(π̃vi
t (1..j)) ≤ Vol(π̃vi

t (1..j
⋆)) ≤ (1 + ϕ)Vol(π̃vi

t (1..j)).

235

By Lemma 7.7, the cut C = π̃vi
t ({1, ..., j⋆}) associated with this index j⋆ found in Step (4)

meets the requirement Φ(C) ≤ 12ϕ of the lemma.

7.3.2 Implementation

We show how to implement Distributed Nibble in the CONGEST model. The goal of
this section is to prove Lemma 7.10. Note that Lemma 7.5 is a consequence of Lemmas 7.9
and 7.10.

Lemma 7.10. Distributed Nibble can be implemented in the CONGEST model using
O(D+ log9m/ϕ10) rounds, with success probability 1−1/poly(m), where D is the diameter
of graph. If Distributed Nibble outputs a set C successfully, then each vertex knows
whether or not it belongs to C.

To prove this lemma, we shall analyze Distributed Nibble step by step.

Lemma 7.11 (Step (1)). The samples for every level b (from 1 to ⌈logm⌉) can be generated
in O(D + logm) time.

Proof. We build a BFS tree rooted at an arbitrary vertex x. For each vertex v, define s(v)
as the sum of d(u) for each u in the subtree rooted at v. In O(D) rounds we can let each
vertex v learn the number s(v) by a bottom-up traversal of the BFS tree.

In the beginning, for each b = 1, . . . , ⌈logm⌉, we generate Kb = c logmVol(V)
2b

number
of b-tokens at the root x. Let L = Θ(D) be the number of layers in the BFS tree. For
i = 1, . . . , L, the vertices of layer i do the following. When a b-token arrives at v, the
token disappears at v with probability d(v)/s(v) and v includes itself in the bth sample;
otherwise, v sends the token to a child u with probability s(u)

s(v)−d(v)
. Note that v only needs

to tell each child u how many b-tokens u gets. Thus, for each b, the process of choosing
Kb = c logmVol(V)

2b
vertices from the degree distribution can be done in L rounds. By

pipelining, we can do this for all b in O(D + logm) rounds.
This method has the virtue of selecting exactly Kb vertices in the bth sample. We can

also select Kb vertices in expectation, in just O(D) time, simply by computing Vol(V) with
a BFS tree, disseminating it to all vertices, and letting each v join the sample independently
with probability Kb deg(v)/Vol(V).

It is not obvious why Step (2) of Distributed Nibble should be efficiently imple-
mentable in the CONGEST model. Before analyzing it, we give some helpful lemmas about
lazy random walks.

236

Lemma 7.12 ([139]). For all u, v, and t, ρvt (u) = ρut (v).

Proof. This lemma was observed in [139] without proof. For the sake of completeness, we
provide a short proof here. A sequence of vertices W = (x0, x1, . . . , xt) is called a walk of
length t if xi+1 ∈ N(xi)∪{xi} for each i ∈ [0, t). We write Pr[W] to be the probability that
the first t steps of a lazy random walk starting at x0 tracksW . LetWR = (xt, xt−1, . . . , x0)

be the reversal of W .
Let Wu,v

t be the set of walks of length t starting at u and ending at v. It is clear that
ρut (v) =

∑
W∈Wu,v

t
Pr[W]/d(v) and ρvt (u) =

∑
W∈Wv,u

t
Pr[W]/d(u). Since Wv,u

t = {WR |
W ∈ Wu,v

t }, to prove the lemma it suffices to show that Pr[W]/d(v) = Pr[WR]/d(u) for
each W ∈ Wu,v

t .
Fix any W ∈ Wu,v

t and let W∗ = (y0, . . . , ys) be the subsequence of W resulting from
splicing out immediate repetitions in W . It is clear that Pr[W] = 2−t ·

∏s−1
i=0 1/d(yi), and

so
Pr[W]

d(v)
=

Pr[W]

d(ys)
= 2−t ·

s∏
i=0

1

d(yi)
=

Pr[WR]

d(y0)
=

Pr[W]

d(u)
.

Lemma 7.13. Fix the parameter b (which influences ϵb and hence the truncation operation
of the random walk) and define

Zt(u) = {vi | vi is in the bth sample and p̃vit−1(u) > 0}.

For every vertex u and every t, with high probability, |Zt(u)| ≤ O(log3m/ϕ3).

Proof. Define S = {v ∈ V | p̃vt−1(u) > 0}. By definition Zt(u) = S∩{v1, . . . , vKb
}. For each

v ∈ S, we have pvt−1(u) ≥ p̃vt−1(u) ≥ 2ϵbd(u). Recall that pt−1 is the probability distribution
obtained after t− 1 steps of the lazy random walk without truncation. By Lemma 7.12,

put−1(v) = (pvt−1(u)/d(u))d(v) ≥ 2ϵb · d(v).

Therefore, 2ϵb · Vol(S) ≤
∑

v∈S p
u
t−1(v) ≤ 1, and so Vol(S) ≤ 1

2ϵb
, which implies

Pr[vi ∈ S] ≤
1

2ϵb · Vol(V)
.

Recall that t0 = 49 ln(me4)
ϕ2 and ϵb = ϕ

56 ln(me4)t02b
. Rewrite the number Kb = c logmVol(V)

2b

as Kb = Θ(ϵb ·Vol(V) · log3m/ϕ3). Since each of v1, . . . , vKb
is chosen independently, using

237

a Chernoff bound we conclude that there exists a constant c′ > 0 depending on c such that

Pr[|Zt(u)| > c′ log3m/ϕ3] ≤ exp(−Ω(log3m/ϕ3)).

Lemma 7.14 (Step (2)). Fix the parameter b. Suppose each vertex v knows p̃vit−1(v), for
all vi in the bth sample. Then with high probability, each vertex v can calculate p̃vit (v), for
all vi, within O(log3m/ϕ3) rounds.

Proof. The normal way to calculate [T p̃t−1(u)]ϵb is as follows. For each vi, each vertex
v broadcasts the number p̃

vi
t−1(v)

2d(v)
to all its neighbors, and then v collects messages from

neighbors. The vertex v can calculate p̃vit (v) locally by adding p̃vit−1(v)/2 and all numbers
received from its neighbors, then applying the truncation operation. Note that a straight-
forward analysis of this protocol leads to a terrible round complexity, since we have to do
this for each vi.

One crucial observation is that a vertex v does not need to care about those vi with
p̃vit−1(v) = 0 at time t. We modify this protocol a little bit in such a way that we never send
a number if it is 0. Define Zt(u) = {vi | p̃vit−1(u) > 0} as in Lemma 7.13, and so each vertex
v only needs to spend |Zt(v)| rounds to simulate the time step t of the lazy random walk.
By Lemma 7.13 and the discussion above, we have proved that Step (2) can be executed
in O(log3m/ϕ3) time, for every vi and any specific t.

Lemma 7.15 (Steps (3,4)). Fix parameters b, t and x. Steps (3) and (4) can be imple-
mented in O(log6m/ϕ7) rounds for all vi in the bth sample. For any sparse cut C found
in Step (4), every vertex in C knows that it belongs to C.

Proof. Now we focus on the random walk starting at vi. Let U = {u | ∃t′ ≤ t, p̃vit′ (u) > 0}.
We claim that U is a connected vertex set. Suppose U is disconnected. Let W be a
connected subset of U such that vi /∈ W . Let t′ be the minimum number such that there
exists a vertex u′ ∈ W with p̃vit′ (u′) > 0. By our choice of u′, there is no neighbor v′ of u′

such that p̃vit′−1(v
′) > 0, and this contradicts the fact that p̃vit′ (u′) > 0. Therefore, U must

be a connected vertex set.
Obviously all π̃vi

t (j) for j ≤ jmax are in U . We build a BFS tree of U rooted at vi, which
has t+1 levels. We will execute Step (3) and Step (4) by sending requests from the root to
all vertices in U , collecting information from U to the root, and making a decision locally
at the root. Recall that each vi has its own BFS tree, and in general a vertex u belongs to

238

multiple BFS trees for different vi. Luckily, each vertex u only belongs to the BFS tree of
those vi ∈

∪
1≤t≤t0+1 Zt(u), so with only a (t0+1) ·maxu,t |Zt(u)| = O(log4m/ϕ5) overhead

of running time, we can do Step (3) and Step (4) for all vi in parallel.
To find each index j specified in Step (3), we can do a “random binary search” on vertices

in U . Let π̃ = π̃vi
t and ρ̃ = ρ̃vit be with respect to p̃vit . Note that by our choice of U we can

assume U is a prefix set of π̃. We maintain two indices L and R that control the search
space. Initially, L← 1 and R← |U |. In each iteration, we randomly pick one vertex π̃(j)
among π̃(L..R) and calculate Vol(π̃(1, · · · , j)) by broadcasting ρ̃(π̃(j)) to all vertices in U
and propagating information up the BFS tree.40 If Vol(π̃(1, · · · , j)) ≤ (1+ϕ)x, we update
L← j; otherwise we let R = j − 1. In each iteration, with probability 1/2 we sample j in
the middle half of [L,R] and the size of search space [L,R] shrinks by a factor of at least
3/4. Therefore, w.h.p., after O(logm) iterations, we will have isolated L = R = j. Each
iteration can be done in O(t) = O(t0) rounds. Due to the congestion overhead, Step (3)
can be implemented in O(logm · t0 · log4m/ϕ5) = O(log6m/ϕ7) rounds.

Step (4) can be done by simply collecting information about ∂(π̃vi
t (1..j)) and

Vol(π̃vi
t (1..j)); its round complexity is of a lower order than that of Step (3). If the root vi

finds a cut C with Φ(C) ≤ 12ϕ, it broadcasts ρ̃(π̃(j)) to all vertices in U to let the vertices
in C know that they are in C. Note that for each vertex u in U , it can infer whether it is
in C by comparing ρ̃(u) and ρ̃(π̃(j)).

Proof of Lemma 7.10. Combining Lemmas 7.11, 7.14, and 7.15, the running time in
Step (1) is O(D+logm), Step (2) is O(log5m/ϕ5), and Steps (3) and (4) are O(log9m/ϕ10).
The dominating term O(log9m/ϕ10) comes from enumerating logm · t0 · logm/ϕ =

Θ(log3m/ϕ3) combinations of (b, t, x), spending O(log6m/ϕ7) rounds for each combina-
tion.

Whenever a vertex vi finds a sparse cut C, it broadcasts a message to the entire graph
saying that it has found a cut, and this takes O(D) rounds. If multiple cuts are found by
different vertices, we can select exactly one cut, breaking ties arbitrarily. A more oppor-
tunistic version of the algorithm could also take a maximal independent set of compatible
cuts.

40Each vertex u ∈ U does not know the index j such that u = π̃(j), so we cannot do the search determin-
istically.

239

7.4 Triangle Enumeration
We use the routing algorithm from [77, 78]. Theorem 7.2 was first stated in [77, Theo-
rem 1.2] with round complexity τmix(G) · 2O(

√
logn log logn); this was recently improved to

τmix(G) · 2O(
√

logn) in [78].

Theorem 7.2 ([77, 78]). Consider a graph G = (V,E) and a set of point-to-point routing
requests, each given by the IDs of the corresponding source-destination pair. If each vertex
v is the source and the destination of at most deg(v) · 2O(

√
logn) messages, there is a

randomized distributed algorithm that delivers all messages in τmix(G) · 2O(
√

logn) rounds,
w.h.p., in the CONGEST model.

Remark 7.1. The claim of Theorem 7.2 appears to be unproven for arbitrary ID-
assignments (Hsin-Hao Su, personal communication, 2018), but is true for well-behaved
ID-assignments, which we illustrate can be computed efficiently in CONGEST. In [77, 78]
each vertex v ∈ V simulates deg(v) virtual vertices in a random graph G0 which is negligibly
close to one drawn from the Erdős-Rényi distribution G(2m, p) for some p. Presumably
the IDs of v’s virtual vertices are (ID(v), 1), . . . , (ID(v), deg(v)). It is proven [77, 78] that
effecting a set of routing requests in G0 takes 2O(

√
logn) time in G0; however, to translate a

routing request ID(x)⇝ ID(y) in G to G0, it seems necessary to map it (probabilistically)
to (ID(x), i)⇝ (ID(y), j), where i, j are chosen uniformly at random from [1, deg(x)] and
[1, deg(y)], respectively. (This is important for the global congestion guarantee that y’s
virtual nodes receive roughly equal numbers of messages from all sources.) This seems to
require that x know how to compute deg(y) or an approximation thereof based on ID(y).
Arbitrary ID-assignments obviously do not betray this information.

Lemma 7.16. In O(D + logn) time we can compute an ID assignment ID : V →
{1, . . . , |V |} and other information such that ID(u) < ID(v) implies ⌊log deg(u)⌋ ≤
⌊log deg(v)⌋, and any vertex u can locally compute ⌊log deg(v)⌋ for any v.

Proof. Build a BFS tree from an arbitrary vertex x in O(D) time. In a bottom-up fashion,
each vertex in the BFS tree calculates the number of vertices v in its subtree having
⌊log deg(v)⌋ = i, for i = 0, . . . , logn. This takes O(D + logn) time by pipelining. At this
point the root x has the counts n0, . . . , nlogn for each degree class, where n =

∑
i ni. It

partitions up the ID-space so that all vertices in class-0 get IDs from [1, n0], class-1 from
[n0+1, n0+n1], and so on. The root broadcasts the numbers n0, . . . , nlogn, and disseminates

240

the IDs to all nodes according to their degrees. (In particular, the root gives each child
logn intervals of the ID-space, which they further subdivide, sending logn intervals to the
grandchildren, etc.) With pipelining this takes another O(D+logn) time. Clearly knowing
n0, . . . , nlogn and ID(v) suffice to calculate ⌊log deg(v)⌋.

Lemma 7.16 gives us a good ID-assignment to apply Theorem 7.2. It is also useful in our
triangle enumeration application. Roughly speaking, vertices with larger degrees also have
more bandwidth in the CONGEST model, and therefore should be responsible for learning
about larger subgraphs and enumerating more triangles.

Before we present our triangle enumeration algorithm for general graphs, we address the
important special case of finding triangles with at least one edge in a component of high
conductance.

7.4.1 Triangle Enumeration in High Conductance Graphs

Recall that our graph decomposition routine returns a tripartition Em∪Es∪Er. Triangles
that intersect Es will be enumerated separately. The purpose of this section is to provide
a routine to enumerate triangles that intersect Em but not Es, i.e., they are (i) completely
contained in Em or (ii) have at least one edge in Em and Er.41 Whereas each component
of Em has low mixing time, we can say nothing about the mixing time of a component of
Em plus all incident Er edges.

Definitions. The underlying network is G = (V,E). The input is a subgraph Gin =

(Vin, Ein) with low mixing time, together with some additional edges Eout joining vertices
in Vin to V . Let degin(v) and degout(v) be the number of Ein and Eout edges incident to v.
In this section we write n = |V | and min = |Ein|. We assume V = V (Ein ∪ Eout). Note
that Condition (i) of Theorem 7.3 implies that min ≤ |Ein ∪ Eout| ≤ 3min.

Theorem 7.3. Suppose that Gin and Eout meet the following conditions:

(i) For each v ∈ Vin, degin(v) ≥ degout(v).

(ii) τmix(Gin) = no(1).

41Our algorithm for constructing the tripartition Em ∪ Es ∪ Er satisfies the property that there is no
triangle with two edges in Em and one edge in Er. However, all algorithms in Section 7.4 do not rely
on this property.

241

In the CONGEST model, all triangles in Ein ∪Eout can be counted and enumerated, w.h.p.,
in O(n1/3+o(1)) rounds.

Note that Theorem 7.3 applies to the class of graphs with no(1) mixing time by setting
Eout = ∅. We first describe the algorithm behind Theorem 7.3 and then analyze it in
Lemmas 7.17–7.20.

The Easy Case. We first check whether any vertex v⋆ ∈ V (Ein ∪ Eout) has

degin(v
⋆) + degout(v

⋆) ≥ m/(40n1/3 logn) = ζ.

If so, we apply Theorem 7.2 to the subgraph G+
in induced by Ein and all edges Eout incident

to v⋆, and have every vertex u ∈ Vin transmit to v⋆ all its incident edges in Ein ∪ Eout.42

Condition (i) of Theorem 7.3 implies that |Ein ∪ Eout| ≤ 3min, so the total volume of
messages entering v⋆ is O(min). Therefore the routing takes O(τmix(G

+
in)·2O(

√
logn) ·m/ζ) =

n1/3+o(1), and thereafter, v⋆ can report all triangles in Ein ∪ Eout. In the analysis of the
following steps, we may assume that the maximum degree in the graph induced by Ein∪Eout

is at most min/(40n
1/3 logn).

Vertex Classes. Let δ = 2⌊log(2min/n)⌋ be the average number of incident edges in Ein

among all n vertices V , rounded down to the nearest power of 2. Write degin(v) = kv · δ,
and call v a class-0 vertex if kv ∈ [0, 1/2) and a class-i vertex if kv ∈ [2i−2, 2i−1). We use
the fact that ∑

v∈Vin : kv≥1/2

2kv ≥ n.

By applying Lemma 7.16 to reassign IDs, we may assume that the ID-space of Vin is
{1, . . . , |Vin|} and that any vertex can compute the class of v, given ID(v).

Randomized Partition. Our algorithm is a randomized adaptation of the
CONGESTED-CLIQUE algorithm of [50]. We partition the vertex set V into V1∪ · · · ∪Vn1/3

42Note that when v⋆ ∈ V \Vin, τmix(Gin) = no(1) implies that τmix(G
+
in) = no(1) as well. This follows from

the observation that the conductance ΦG+
in

of G+
in is at least 1/3 of the conductance ΦG of Gin. Pick a

sparsest cut (S, S̄) of G+
in, and let (S′, S̄′) be the corresponding cut of Gin. The sparsity Φ(S) of (S, S̄)

must be at least 1/3 of the sparsity Φ(S′) of (S′, S̄′), because Vol(S) ≤ 2|S′| + Vol(S′) ≤ 3Vol(S′).
Therefore, ΦG+

in
= Φ(S) ≥ 1

3Φ(S
′) ≥ 1

3ΦGin .

242

locally, without communication. Each vertex v ∈ V selects an integer rv ∈ [1, n1/3] uni-
formly at random, joins Vrv , and transmits ‘rv’ to its immediate neighbors in Vin. We
allocate the (less than) n triads

T =
{
(j1, j2, j3) | 1 ≤ j1 ≤ j2 ≤ j3 ≤ n1/3

}
to the vertices in Vin in the following way. Enumerate the vertices in increasing order of
ID. If v is class-0, then skip v. If v is class-i, i ≥ 1, then kv < 2i−1/δ. Allocate to v the
next 2i/δ ≥ 2kv triads from T , and stop whenever all triads are allocated.

We use Lemma 7.16 to generate the IDs of vertices in Vin. In view of how vertex class is
defined, Lemma 7.16 guarantees that each vertex v ∈ Vin knows the class of all vertices in
Vin, and can therefore perform this allocation locally, without communication.

A vertex v ∈ V that is assigned a triad (j1, j2, j3) is responsible for learning the set
of all edges E(Vj1 , Vj2) ∪ E(Vj2 , Vj3) ∪ E(Vj1 , Vj3) and reporting/counting those triangles
(x1, x2, x3) with xk ∈ Vjk .43

Transmitting Edges. Every vertex v ∈ Vin knows the IDs of all its neighbors in V

and which part of the vertex partition they are in. For each v ∈ Vin, each incident edge
(v, u) ∈ Ein ∪ Eout, and each index r∗ ∈ [1, n1/3], v transmits the message “(v, u), rv, ru”
to the unique vertex x handling the triad on {ru, rv, r∗}. Observe that the total message
volume is exactly Θ(minn

1/3).
We analyze the behavior of this algorithm in the CONGEST model, where the last step

is implemented by applying Theorem 7.2 to Gin. Recall from Condition (i) of Theorem 7.3
that the number of edges in the graph we consider, m̄ = |Ein ∪ Eout|, is in the range
[min, 3min].

Lemma 7.17. Consider a graph with m̄ edges and n̄ vertices. We generate a subset S by
letting each vertex join S independently with probability p. Suppose that the maximum degree
is ∆ ≤ m̄p/20 log n̄ and p2m̄ ≥ 400 log2 n̄. Then, with probability at least 1− 10(log n̄)/n̄5,
the number of edges in the subgraph induced by S is at most 6p2m̄.

Proof. For an edge ei, define xi = 1 if both two endpoints of edge ei join S, otherwise
xi = 0. Then X =

∑m̄
i=1 xi is the number of edges in the subgraph induced by S. We have

43In the Triangle Counting application, it is important that v not count every triangle it is aware of. For
example, if v is assigned (j, j, j′), v knows about triangles in the subgraph induced by Vj but should
not count them; these triangles will be counted only by the vertex u that is assigned (j, j, j).

243

E[X] = p2m̄, and by Markov’s inequality,

Pr[X ≥ 6E[X]] = Pr[Xc ≥ (6E[X])c] ≤ 1

6c
E[Xc]

p2cm̄c
,

where c = 5 log n̄ is a parameter.

E[Xc] =
∑

i1,...,ic∈[1,m̄]

E
[

c∏
j=1

xij

]

=
2c∑
k=2

fk · pk,

where fk is the number of choices {i1, . . . , ic ∈ [1, m̄]} such that the number of distinct
endpoints in the edge set ei1 , . . . , eic is k.

For any choice of (i1, . . . , ic ∈ [1, m̄]), we project it to a vector ⟨k1, . . . , kc⟩ ∈ {0, 1, 2}c,
where kj indicates the number of endpoints of eij that overlap with the endpoints of the
edges ei1 , . . . , eij−1

. Note that 2c −
∑
kj is the number of distinct endpoints in the edge

set {ei1 , . . . , eic}. We fix a vector ⟨k1, . . . , kc⟩ and count how many choices of (i1, . . . , ic)
project to this vector.

Suppose that the edges ei1 , . . . , eij−1
are fixed. We bound the number of choices of eij

as follows. If kj = 0, the number of choices is clearly at most m. If kj = 1, the number
of choices is at most (2c)(pm̄/20 log n̄), since one of its endpoints (which overlaps with the
endpoints of the edges ei1 , . . . , eij−1

) has at most 2c choices, and the other endpoint (which
does not overlap with the endpoints of the edges ei1 , . . . , eij−1

) has at most∆ ≤ m̄p/20 log n̄
choices. If kj = 2, the number of choices is at most (2c)2.

Based on the above calculation, we upper bound fk as follows. In the calculation, x is
the number of indices j such that kj = 1, and y is the number of indices j that kj = 2. Note
that

(
c
x

)(
c−x
y

)
is the number of distinct vectors ⟨k1, . . . , kc⟩ realizing the given parameters

244

c, x, and y. The number fk is at most

∑
x+y≤c

2c−x−2y=k

m̄c−x−y

(
c

x

)(
c− x
y

)(
2cpm̄

20 log n̄

)x

(4c2)y

≤
∑

x+y≤c
2c−x−2y=k

m̄c3c
(

2cp

20 log n̄

)x(
4c2

m̄

)y

≤
∑

x+y≤c
2c−x−2y=k

(3m̄)c
(

2cp

20 log n̄

)x+2y

≤ c(3m̄)c
(

2cp

20 log n̄

)2c−k

.

The third inequality is due to the fact p2m̄ ≥ 400 log2 n̄, which implies (2cp/20 log n̄)2 ≥
(4c2/m̄). Using the fact that 2c

20 log n̄
≤ 1/2, we upper bound E[Xc] as follows.

E[Xc] ≤
2c∑
k=2

fk · pk

= c(3m̄)cp2c
2c∑
k=2

(
2c

20 log n̄

)2c−k

< 2c(3m̄)cp2c.

Therefore,
Pr[X ≥ 6E[X]] ≤ 1

6c
E[Xc]

p2cm̄c
≤ 2c3c

6c
≤ 10 log n̄

n̄5
.

Note that the probability can be amplified to n̄−t for any constant t by setting c = t log n̄
and using different constants in the statement of the lemma.

Lemma 7.18. With probability at least 1−1/n4, we have |E(Vj1 , Vj2)| ≤ 6|Ein∪Eout|/n2/3

for all j1, j2 ∈ [1, n1/3].

Proof. Recall that each v ∈ V joins the set Vi with probability 1/n1/3. Thus, the probability
that a vertex v ∈ V is in Vj1 ∪ Vj2 is at most p = 2n−1/3.44

We apply Lemma 7.17 to the subgraph induced by Ein∪Eout having m̄ = |Ein∪Eout| edges
and n̄ = n vertices, with sampling probability p = 2n−1/3 and S = Vj1∪Vj2 . By assumption,
44For the case of j1 = j2, the probability is n−1/3.

245

the maximum degree (of the subgraph induced by Ein ∪Eout) is at most minp/(20 logn) ≤
m̄p/(20 log n̄), since otherwise we go to the easy case. The maximum degree upper bound
implies n̄ ≥ (20 log n̄)/p, and p2m̄ ≥ (pn̄)2 ≥ 400 log2 n̄. By Lemma 7.17, we conclude that
Pr[|E(Vj1 , Vj2)| > 6m̄/n2/3] ≤ 10 logn

n5 . Note that |E(Vj1 ∪ Vj2)| ≥ |E(Vj1 , Vj2)|.
By a union bound over all n2/3 choices of j1 and j2, the stated upper bound holds

everywhere, with probability at least 1− 1/n4.

Lemma 7.19. With high probability, each vertex v ∈ Vin receives O(degin(v) · n1/3) edges.

Proof. Consider any vertex v ∈ Vin. If kv < 1/2, then v receives no message; otherwise
v is responsible for between 2kv and 4kv triads, and v collects the edge set E(Vj1 , Vj2)
for at most 12kv pairs of Vj1 , Vj2 . By Lemma 7.18, w.h.p., |E(Vj1 , Vj2)| = O(min/n

2/3).
Remember that our choice of kv implies kv = Θ(degin(v) · n/min), and so v receives

O(min/n
2/3) · 12kv = O(degin(v) · n1/3)

messages, with high probability.

Lemma 7.20. Each vertex v ∈ Vin sends O(degin(v) · n1/3) edges with probability 1.

Proof. By Condition (i) of Theorem 7.3, v ∈ Vin is responsible for degin(v) + degout(v) ≤
2 degin(v) incident edges, and each is involved in exactly n1/3 triads.

Lemmas 7.17–7.20 show that the message volume in to/out of every vertex is close to
its expectation. By applying Theorem 7.2 and Lemma 7.16, all messages can be routed
in n1/3+o(1) time. This concludes the proof of Theorem 7.3. Corollary 7.1 is a simple
consequence of Theorem 7.3.

Corollary 7.1. Let G be a graph with τmix(G) = no(1). In the CONGEST model, Triangle
Detection, Enumeration, and Counting can be solved on G, with high probability, in n1/3+o(1)

time.

7.4.2 Triangle Enumeration and Counting in General Graphs

The algorithm for Theorem 7.4 is based on an n1/2-decomposition. Since the connected
components induced by Em have low mixing time, we can solve Triangle Enumera-
tion/Counting on them very efficiently using Theorem 7.3, in n1/3+o(1) time, i.e., much
less than the time required to compute the n1/2-decomposition.

246

Theorem 7.4. In the CONGEST model, Triangle Detection, Counting, and Enumeration
can be solved, w.h.p., in Õ(n1/2) rounds.

Proof. The underlying graph is G = (V,E). We set the parameter δ = 1/2. By Theo-
rem 7.1, we compute an nδ-decomposition E = Em ∪ Es ∪ Er using Õ(n1−δ) rounds. We
divide the task of enumerating triangles into three cases. By ensuring that every triangle
is output by exactly one vertex, this algorithm also solves Triangle Counting.

The algorithm has three steps. In the first step, we list all triangles intersecting Es.
In the second step, we identify a subset Enew

r ⊆ Em, and in this step we list all triangles
intersecting Em \ Enew

r . At this point, all remaining triangles that are not yet listed are
contained in Enew

r ∪ Er, and they will be listed in the third step.

Case 1: All Triangles Intersecting Es. We handle this case as follows. By Condition
(b) of Definition 7.2, Es =

∪
v∈V Es,v, where {Es,v} defines an acyclic nδ-orientation. We

let each v announce Es,v to all its neighbors, in O(nδ) time. For the Triangle Counting
application it is important that every triangle {x, y, z} intersecting Es be reported by
exactly one vertex. If (x, y) and (x, z) are oriented and ID(y) < ID(z), then y detects and
reports the triangle. If (x, z) is oriented, {x, y} is unoriented, and {y, z} is unoriented or
oriented as (z, y), then y detects and reports the triangle. If (x, z), (y, z) are oriented but
{x, y} is not, and ID(y) < ID(x), y reports the triangle.45

Case 2: Some Triangles Intersecting Em. Consider a single connected component
Gin = (Vin, Ein) induced by Em, which has mixing time no(1). We classify vertices in Vin as
good or bad depending on whether they naturally satisfy Condition (i) of Theorem 7.3. A
vertex is good if degin(v) ≥ degEr

(v). Let Eout be the subset of Er-edges incident to good
vertices in Vin, and let Enew

r be the subset of Em-edges incident to bad vertices in Vin. We
now apply Theorem 7.3 to enumerate/count all triangles in the edge set Ein ∪ Eout.

Because triangles completely contained in Enew
r will also be found in Case 3, the Triangle

Counting algorithm should refrain from including these in the tally for Case 2.

Case 3: Triangles Contained in Enew
r ∪ Er. Since each edge in Enew

r can be charged
to an endpoint of an edge in Er, we have |Enew

r ∪ Er| ≤ 3|Er| ≤ |E|/2. We apply the

45Most of these cases do not occur in the parital orientations produced by our algorithm; nonetheless,
they can occur in arbitrary partial acyclic orientations.

247

algorithm recursively to the graph induced by Enew
r ∪ Er. The depth of the recursion is

obviously at most logm.

Round Complexity. Computing an nδ-decomposition E = Em∪Es∪Er takes Õ(n1−δ)

rounds. The algorithm for Case 1 takes O(nδ) rounds. The algorithm for Case 2 takes
O(n1/3+o(1)) rounds. The number of recursive calls (Case 3) is logm. Thus, the overall
round complexity is

logm ·
(
O(nδ) + Õ(n1−δ) +O(n1/3+o(1))

)
= Õ(n1/2).

7.4.3 Subgraph Enumeration

In this section we show that Corollary 7.1 can be extended to enumerating s-vertex sub-
graphs in O(n(s−2)/s+o(1)) rounds. Note that the Ω(n1/3/ logn) lower bound for triangle enu-
meration on Erdős-Rényi graphs G(n, 1/2) [90] can be generalized to an Ω(n(s−2)/s/ logn)
lower bound for enumerating s-vertex cliques; see [64]. This implies that Theorem 7.5 is
nearly optimal on G(n, 1/2) for enumerating certain s-vertex subgraphs.

Theorem 7.5. Let s = O(1) be any constant. Given a graph G of n vertices with τmix(G) =

no(1), we can list all s-vertex subgraphs of G in O(n(s−2)/s+o(1)) rounds, w.h.p., in the
CONGEST model.

It has been shown in [50] that listing all s-vertex subgraphs of G can be done in
O(n(s−2)/s/ logn) rounds in the deterministic CONGESTED-CLIQUE model. This result,
together with the routing algorithm of Lemma 7.2, does not immediately imply Theo-
rem 7.5, since deg(v) could be much less than n.

Theorem 7.5 is proved using a variant of Theorem 7.3 with Eout = ∅. The proof of
Theorem 7.5 is almost the same as that of Theorem 7.3, and so in what follows we only
highlight the difference.

Let G = (V,E) and m = |E|. Similarly, we assume the maximum degree is
m/
(
40n1/s logn

)
, since otherwise we are in the easy case, where we can apply Theorem 7.2

to have one vertex v learn the entire edge set E in O(n1/s+o(1)) ≤ O(n(s−2)/s+o(1)) rounds,
and we are done after that.

We partition V into n1/s subsets V1, . . . , Vn1/s . Instead of considering triads, here we
consider s-tuples:

{
(i1, . . . , is) | 1 ≤ i1 ≤ . . . ≤ is ≤ n1/s

}
. After a vertex v learns the edge

248

set
∪

j1,j2∈[1,s]E(Vij1 , Vij2), it has ability to list all s-vertex subgraphs in which the jth
vertex is in Vij . We prove a variant of Lemma 7.18, as follows.

Lemma 7.21. W.h.p., |E(Vi, Vj)| = O(m/n2/s) for all i, j ∈ [1, n1/s].

Proof. We set p = 2n−1/s. The maximum degree is at most m/
(
40n1/s logn

)
≤

mp/20 logn, and p2m ≥ 400 log2 n. By applying Lemma 7.17 and use the same analy-
sis in Lemma 7.18, we conclude this lemma.

Proof of Theorem 7.5. Here we only consider the time complexity to deliver all messages.
Consider a vertex v. If kv < 1/2, then v receives no message. Otherwise v is responsible
for between 2kv and 4kv s-tuples, and v collects E(Vi, Vj) for at most 4s2kv pairs (Vi, Vj).
By Lemma 7.21, w.h.p., |E(Vi, Vj)| = O(m/n2/s) for all i, j. Hence the number of edges v
received is at most O(m/n2/s) · 4s2kv = O(deg(v) · n(s−2)/s).

Note that each vertex v sends at most O(deg(v)n(s−2)/s) messages since for each incident
edge e of v, there are at most O(n(s−2)/s) s-tuples involving e. By Theorem 7.2, the delivery
of all messages can be done in O(n(s−2)/s+o(1)) rounds, w.h.p.

249

Chapter 8

Conclusion and Future Directions

In this thesis, we have investigated several fundamental questions of the locality of dis-
tributed graph problems. In particular, one of the main objectives of our research is to
understand the spectrum of natural problem complexities that can exist in the LOCAL
model. After a sequence of works [13, 14, 15, 31, 32, 38, 39, 42, 61, 69], we now have a
pretty good understanding of the LOCAL complexity landscape for paths/cycles, bounded
degree trees, and bounded degree general graphs; but there are still plenty of intriguing
open questions.

The Complexity of Distributed LLL. In view of Figure 1.1, one of the most impor-
tant open problems of the LOCAL complexity landscape is to determine the complexity of
distributed LLL.

Conjecture 1. There exists a sufficiently large constant c such that the complexity of
the distributed LLL problem under criterion pdc < 1 is O(log logn) in RandLOCAL and
O(logn) in DetLOCAL.

Conjecture 1 is known to be true for tree-structured dependency graphs. In Chap-
ter 5 we proved the following upper bounds. Under criterion p(ed)λ < 1, dis-
tributed LLL can be solved in O(max{logλ n, logn/ log logn}) time in DetLOCAL and
O(max{logλ logn, log logn/ log log logn}) time in RandLOCAL, with no dependency on d.
In the proof of our tree-structured LLL algorithm, first we developed a specialized network
decomposition for trees that, with [61], yields a deterministic LLL algorithm with complex-
ity O(max{logλ n, logn/ log logn}), under LLL criterion p(ed)λ < 1. Second, we developed
a new method for shattering the dependency graph into poly(∆) logn-size components,

250

in just O(logλ logn) time. Interestingly, the shattering routine is not concerned with the
parameters of the LLL per se; it simply finds a stable state in a certain contagion process
played out on the tree. By composing the graph shattering routine and the deterministic
algorithm, we arrive at a final complexity of O(max{logλ logn, log logn/ log log logn}). We
would like to see whether this approach can be applied to a broader graph class than trees.

For bounded degree general graphs, the current best upper bound [69] for TLLL is

exp(i)

(
C

√
log(i+1) n

)
, for any 1 ≤ i ≤ log∗ n − 2 log∗ log∗ n, where C is some universal

constant. Here exp(i) and log(i) are iterated i-fold application of exp and log, respectively.

The Complexity Landscape on Bounded Degree Trees. The results of Balliu et
al. [15] imply that the complexity hierarchies for bounded degree trees and bounded degree
general graphs are definitely different. Whereas trees have no natural complexities between
ω(logn) and no(1) (Theorem 3.5), there are an infinite number of such complexities on
general graphs [15].

Are there any LCL problems whose complexity on bounded degree trees is in the range
Ω(log(log∗ n))—o(log∗ n)? From the results of Balliu et al. [15] we know that the complexity
landscape of this region is very dense for the case of bounded degree general graph, but
the construction of the LCLs in [15] relies heavily on the fact that the graph class under
consideration supports short cycles, so it is unlikely the result of [15] can be generalized to
the case of trees.

Conjecture 2. There exists no LCL problem whose RandLOCAL and DetLOCAL complex-
ities are within ω(1) and o(log∗ n) on bounded degree trees.

We conjecture that the known gap ω(1)—o(log(log∗ n)) for bounded degree trees can be
extended to ω(1)—o(log∗ n). In a recent work of Balliu et al. [16], they showed that the
weak 2-coloring46 problem has complexity Ω(log∗ n) on even degree regular trees, improving
upon the previous Ω(log log∗ n) lower bound. As a corollary of this result, they showed
that Conjecture 2 is true for the case of even degree regular trees (without input labels).
This offers a compelling evidence in favor of Conjecture 2.

Decidability of LCL Complexity. Our results in Chapter 4 implies that one can
write a computer program that is able to automatically design an asymptotically optimal
46The weak 2-coloring problems asks for a 2-coloring of the vertices such that each vertex v has at least

one neighbor u ∈ N(v) that is colored differently than v.

251

distributed algorithm for any given LCL problem on paths or cycles. Is it possible to
extend this result to a broader graph class?

Naor and Stockmeyer [116] showed that it is undecidable whether a given LCL problem
can be solved in O(1) time, even on grid graphs. The intuition underlying their proof is
that one can encode a Turing machine as an LCL in such a way that an execution of the
Turing machine corresponds to a valid labeling of the LCL on the grid graph. Extending
such an undecidability proof to trees seems to be impossible, and so we have the following
conjecture.

Conjecture 3. The asymptotically optimal RandLOCAL and DetLOCAL complexities of an
LCL problem on bounded degree trees are decidable.

Recall that in Theorem 3.5 we proved that the ω(logn)—no(1) gap on bounded degree
trees is decidable, which is an evidence supporting Conjecture 3.

The Complexity of Distributed Edge Coloring. In Chapter 5 we have proved several
new upper and lower bounds on the complexity of edge-coloring problems on general graphs
and trees. Pedagogically, our simplified Ω(log logn) lower bound for sinkless orientation [31]
and (2∆ − 2)-edge coloring is appropriate for a single lecture in a distributed computing
course. Our (∆ + Õ(

√
∆))-edge coloring algorithm is simple, but tricky to analyze, and

requires a general distributed LLL algorithm to be made efficient.
After our work [38], the palette size of distributed edge coloring has been significantly

improved [76, 140]. In particular, Su and Vu recently showed that a (∆+ 2)-edge coloring
can be found in O(poly(∆, logn)) time. Note that this palette size is only one color away
from the existential bound of ∆ + 1 from Vizing’s theorem! However, these improved
algorithms [76, 140] have time complexity O(poly(∆, logn)), which is inefficient when ∆

is large. In Section 5.8 we proved that such a time complexity is necessary for a natural
class of algorithms based on recoloring. It is still open whether a (∆+ Õ(1))-edge coloring
can be found in O(poly logn) time.

The Complexity of Distributed Vertex Coloring. In Chapter 6 We have presented
a randomized (∆ + 1)-list coloring algorithm that requires O(Detd(poly logn)) rounds of
communication, which is syntactically close to the Ω(Det(poly logn)) lower bound. Recall
that Det and Detd are the deterministic complexities of (∆+1)-list coloring and (deg+1)-list
coloring. When ∆ is unbounded (relative to n), the best known algorithms for (∆+1)- and

252

(deg+1)-list coloring are the same: they use Panconesi and Srinivasan’s [120] 2O(
√

logn)-
time construction of network decompositions. Even if optimal (O(logn), O(logn))-network
decompositions could be computed for free, we still do not know how to solve (∆ + 1)-
list coloring faster than O(log2 n) time. Thus, reducing the Detd(poly logn) term in our
running time below O((log logn)2) will require a radically new approach to the problem.

It is an open problem to generalize our algorithm to solve the (deg+1)-list coloring
problem, and here it may be useful to think about a problem of intermediate difficulty, at
least conceptually. Define (deg+1)-coloring to be the coloring problem when v’s palette is
{1, . . . , deg(v)+1} (rather than an arbitrary set of deg(v)+1 colors).47 Whether the prob-
lem is (deg+1)-coloring or (deg+1)-list coloring, the difficulty is generalizing the notion
of “ϵ-friend edge” and “ϵ-sparse vertex” to graphs with irregular degrees. See Figure 8.1
for an extreme example illustrating the difficulty of (deg+1)-list coloring. Suppose N(v)

is partitioned into sets S1, S2 with |S1| = |S2| = |N(v)|/2 = s. The graphs induced by
S1 ∪ {v} and S2 ∪ {v} are (s + 1)-cliques and there are no edges joining S1 and S2. The
palettes of vertices in S1 and S2 are, respectively, [1, s+ 1] and [s+ 1, 2s+ 1].

Figure 8.1: An example illustrating the difficulty of (deg+1)-list coloring.

Notice that v is ϵ-sparse according to our definition (for any ϵ < 1/2) and yet regardless
of how we design the initial coloring step, we cannot hope to create more than one excess
color at v since the two palettes [1, s + 1] ∩ [s + 1, 2s + 1] = {s + 1} only intersect at
one color. Thus, it must be wrong to classify v as “ϵ-sparse” since it does not satisfy key
properties of ϵ-sparse vertices. On the other hand, if v is to be classified as “ϵ-dense”
then it is not clear whether we can recover any of the useful properties of ϵ-dense vertices
from Lemma 6.4, e.g., that they form almost cliques with O(1) weak diameter and have
47We are aware of one application [5] in distributed computing where the palettes are fixed in this way.

253

external degrees bounded by O(ϵ∆). This particular issue does not arise in instances of
the (deg+1)-coloring problem, which suggests that attacking this problem may be a useful
conceptual stepping stone on the way to solving (deg+1)-list coloring.

Distributed Expander Decomposition. In Chapter 7 we have presented a new ap-
proach of designing CONGEST algorithms using expander decomposition. Based on this
approach, we showed that all variants of Triangle Detection, Enumeration, and Count-
ing can be solved in Õ(n1/2) rounds in the CONGEST model. In contrast, the previous
state-of-the-art bounds for Triangle Detection and Enumeration were Õ(n2/3) and Õ(n3/4),
respectively, due to Izumi and Le Gall [90].

The bottleneck in our Triangle Detection algorithm is not triangle-finding per se, but
in the decomposition of the graph into expanding subgraphs. Our graph decomposition
routine takes Õ(n1/2) time and produces three edge sets, the third one inducing a sub-
graph with arboricity O(n1/2). We believe that this third set is unnecessary, and that the
running time can be improved substantially. Also, we would like to further investigate
the trade-off between the runtime and the quality of the decomposition (e.g., the mix-
ing time/conductance of the components in Em, the size of Er, and the arboricity of the
subgraph induced by Es).

If the runtime for the graph decomposition can be reduced to n1/3+o(1), then the time
complexity of Triangle Enumeration in CONGEST can be improved to n1/3+o(1), which
nearly matches the Ω̃(n1/3) lower bound in CONGESTED-CLIQUE [90, 123]. This will
confirm that Triangle Enumeration is indeed a distributed problem where non-local com-
munication does very little help.

Expander decomposition has found applications in various fields of theoretical computer
science [9, 96, 114, 139]. Can this tool be applied to other distributed problems than
Triangle Detection and Enumeration? It would be interesting to see more applications of
this technique in the field of distributed computing.48

48We are aware of an application of expander decomposition in the GOSSIP model of distributed comput-
ing [33]. In their work [33], the expander decomposition is used in the analysis, not in the algorithm.

254

Appendix A

Concentration Bounds

A.1 Concentration Bounds
We make use of the following standard tail bounds [53]. Let X be binomially distributed
with parameters (n, p), i.e., it is the sum of n independent 0-1 variables with mean p. We
have the following bound on the lower tail of X:

Pr[X ≤ t] ≤ exp
(
−(µ− t)2

2µ

)
, where t < µ = np.

Chernoff Bound. We have the following multiplicative Chernoff bounds on the up-
per/lower tail of X with mean µ = np.

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ2µ
3

)
if δ ∈ [0, 1]

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δµ
3

)
if δ > 1

Pr[X ≤ (1− δ)µ] ≤ exp
(
−δ2µ
2

)
if δ ∈ [0, 1]

Chernoff bounds also hold when X is the sum of n negatively correlated 0-1 random vari-
ables [53, 54] with mean p, i.e., total independence is not required.

Hoeffding’s Inequality. Consider the scenario where X =
∑n

i=1Xi, and each Xi is an
independent random variable bounded by the interval [ai, bi]. Let µ = E[X]. Then we have

255

the following concentration bound (Hoeffding’s inequality) [87].

Pr[X ≥ (1 + δ)µ] ≤ exp
(

−2(δµ)2∑n
i=1(bi − ai)2

)
.

256

Bibliography
[1] A. Abboud, K. Censor-Hillel, S. Khoury, and C. Lenzen. “Fooling Views: A New

Lower Bound Technique for Distributed Computations under Congestion”. In: arXiv
preprint arXiv:1711.01623 (2017).

[2] U. Agarwal, V. Ramachandran, V. King, and M. Pontecorvi. “A Deterministic Dis-
tributed Algorithm for Exact Weighted All-Pairs Shortest Paths in Õ(n3/2) Rounds”.
In: Proceedings 38th ACM Symposium on Principles of Distributed Computing
(PODC). 2018, pp. 199–205.

[3] N. Alon, L. Babai, and A. Itai. “A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem”. In: J. Algor. 7 (1986), pp. 567–583.

[4] N. Alon, M. Krivelevich, and B. Sudakov. “Coloring Graphs with Sparse Neighbor-
hoods”. In: J. Comb. Theory, Ser. B 77.1 (1999), pp. 73–82. doi: 10.1006/jctb.
1999.1910.

[5] A. Amir, O. Kapah, T. Kopelowitz, M. Naor, and E. Porat. “The Family Holiday
Gathering Problem or Fair and Periodic Scheduling of Independent Sets”. In: Pro-
ceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 2016, pp. 367–375.

[6] R. Andersen, F. R. K. Chung, and K. J. Lang. “Local Partitioning for Directed
Graphs Using PageRank”. In: Internet Mathematics 5.1 (2008), pp. 3–22.

[7] E. Arjomandi. “An Efficient Algorithm for Colouring the Edges of a Graph With
∆ + 1 Colours”. In: INFOR: Information Systems and Operational Research 20.2
(1982), pp. 82–101.

[8] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[9] S. Arora, B. Barak, and D. Steurer. “Subexponential Algorithms for Unique Games
and Related Problems”. In: J. ACM 62.5 (Nov. 2015), 42:1–42:25. issn: 0004-5411.

[10] S. Arora, S. Rao, and U. Vazirani. “Expander Flows, Geometric Embeddings and
Graph Partitioning”. In: J. ACM 56.2 (Apr. 2009), 5:1–5:37. issn: 0004-5411.

[11] S. Assadi, Y. Chen, and S. Khanna. “Sublinear Algorithms for (∆ + 1) Vertex
Coloring”. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 767–786.

257

https://doi.org/10.1006/jctb.1999.1910
https://doi.org/10.1006/jctb.1999.1910

[12] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. “Network Decomposition
and Locality in Distributed Computation”. In: Proceedings 30th IEEE Symposium
on Foundations of Computer Science (FOCS). 1989, pp. 364–369.

[13] A. Balliu, S. Brandt, Y.-J. Chang, D. Olivetti, M. Rabie, and J. Suomela. “The
Distributed Complexity of Locally Checkable Problems on Paths is Decidable”. In:
ArXiv e-prints 1811.01672 (2018). arXiv: 1811.01672 [cs.DC].

[14] A. Balliu, S. Brandt, D. Olivetti, and J. Suomela. “Almost Global Problems in
the LOCAL Model”. In: 32nd International Symposium on Distributed Computing
(DISC 2018). Ed. by U. Schmid and J. Widder. Vol. 121. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 9:1–9:16.

[15] A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D. Olivetti, and J. Suomela.
“New Classes of Distributed Time Complexity”. In: Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing. STOC 2018. New York, NY,
USA: ACM, 2018, pp. 1307–1318.

[16] A. Balliu, J. Hirvonen, D. Olivetti, and J. Suomela. “Hardness of Minimal Symme-
try Breaking in Distributed Computing”. In: CoRR abs/1811.01643 (2018). arXiv:
1811.01643.

[17] L. Barenboim. “Deterministic (∆+ 1)-Coloring in Sublinear (in ∆) Time in Static,
Dynamic and Faulty Networks”. In: Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing (PODC). 2015, pp. 345–354. doi: 10.1145/
2767386.2767410.

[18] L. Barenboim and M. Elkin. “Deterministic Distributed Vertex Coloring in Poly-
logarithmic Time”. In: J. ACM 58.5 (2011), p. 23.

[19] L. Barenboim and M. Elkin. “Sublogarithmic Distributed MIS Algorithm for Sparse
Graphs using Nash-Williams Decomposition”. In: Distributed Computing 22.5-6
(2010), pp. 363–379.

[20] L. Barenboim, M. Elkin, and U. Goldenberg. “Locally-Iterative Distributed
(∆ + 1)-Coloring below Szegedy-Vishwanathan Barrier, and Applications to Self-
Stabilization and to Restricted-Bandwidth Models”. In: Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing (PODC). 2018, pp. 437–
446.

[21] L. Barenboim, M. Elkin, and F. Kuhn. “Distributed (∆+ 1)-Coloring in Linear (in
∆) Time”. In: SIAM J. Comput. 43.1 (2014), pp. 72–95.

[22] L. Barenboim, M. Elkin, and T. Maimon. “Deterministic Distributed (∆ + o(∆))-
Edge-Coloring, and Vertex-Coloring of Graphs with Bounded Diversity”. In: Pro-
ceedings of the 2017 ACM Symposium on Principles of Distributed Computing
(PODC). 2017.

258

http://arxiv.org/abs/1811.01672
http://arxiv.org/abs/1811.01643
https://doi.org/10.1145/2767386.2767410
https://doi.org/10.1145/2767386.2767410

[23] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. “The Locality of Distributed
Symmetry Breaking”. In: J. ACM 63.3 (2016), 20:1–20:45. issn: 0004-5411.

[24] R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. “A Distributed (2 + ϵ)-
Approximation for Vertex Cover in O(log∆/ϵ log log∆) Rounds”. In: Proceedings
35th Annual ACM Symposium on Principles of Distributed Computing (PODC).
2016, pp. 3–8.

[25] J. Beck. “An Algorithmic Approach to the Lovász Local Lemma. I”. In: Random
Struct. Algorithms 2.4 (1991), pp. 343–366.

[26] M. Ben-Or. “Another Advantage of Free Choice: Completely Asynchronous Agree-
ment Protocols”. In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC). 1983, pp. 27–30. doi: 10.1145/
800221.806707.

[27] T. Bisht, K. Kothapalli, and S. V. Pemmaraju. “Brief Announcement: Super-fast
t-ruling Sets”. In: Proceedings 33rd ACM Symposium on Principles of Distributed
Computing (PODC). 2014, pp. 379–381.

[28] B. Bollobás. “Chromatic Number, Girth and Maximal Degree”. In: Discrete Math-
ematics 24.3 (1978), pp. 311–314. doi: http://dx.doi.org/10.1016/0012-
365X(78)90102-4.

[29] B. Bollobás. Extremal graph theory. Vol. 11. London Mathematical Society Mono-
graphs. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1978.

[30] G. Bracha. “An Asynchronous (n−1)/3-Resilient Consensus Protocol”. In: Proceed-
ings of the 3rd ACM Symposium on Principles of Distributed Computing (PODC).
1984, pp. 154–162. doi: 10.1145/800222.806743.

[31] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela,
and J. Uitto. “A Lower Bound for the Distributed Lovász Local Lemma”. In: Pro-
ceedings 48th ACM Symposium on the Theory of Computing (STOC). 2016, pp. 479–
488.

[32] S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, P. R. Östergård, C. Purcell,
J. Rybicki, J. Suomela, and P. Uznański. “LCL Problems on Grids”. In: Proceed-
ings of the ACM Symposium on Principles of Distributed Computing. PODC ’17.
Washington, DC, USA, 2017, pp. 101–110. isbn: 978-1-4503-4992-5.

[33] K. Censor-Hillel, B. Haeupler, J. Kelner, and P. Maymounkov. “Rumor Spreading
with No Dependence on Conductance”. In: SIAM Journal on Computing 46.1 (2017),
pp. 58–79.

[34] K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz, and J. Suomela.
“Algebraic Methods in the Congested Clique”. In: Distributed Computing (2016).
doi: https://doi.org/10.1007/s00446-016-0270-2.

259

https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/http://dx.doi.org/10.1016/0012-365X(78)90102-4
https://doi.org/http://dx.doi.org/10.1016/0012-365X(78)90102-4
https://doi.org/10.1145/800222.806743
https://doi.org/https://doi.org/10.1007/s00446-016-0270-2

[35] Y.-J. Chang, V. Dani, T. P. Hayes, Q. He, W. Li, and S. Pettie. “The Energy Com-
plexity of Broadcast”. In: Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing (PODC). 2018, pp. 95–104.

[36] Y.-J. Chang, W. Jin, and S. Pettie. “Simple Contention Resolution via Multiplica-
tive Weight Updates”. In: 2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Ed. by J. T. Fineman and M. Mitzenmacher. Vol. 69. OpenAccess Series in In-
formatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 16:1–16:16.

[37] Y.-J. Chang, M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng. “The Complexity
of (∆ + 1) Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation”. In: CoRR abs/1808.08419 (2018). arXiv: 1808.
08419.

[38] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. “The Complexity of Distributed
Edge Coloring with Small Palettes”. In: Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2018, pp. 2633–2652.

[39] Y.-J. Chang, T. Kopelowitz, and S. Pettie. “An Exponential Separation between
Randomized and Deterministic Complexity in the LOCAL Model”. In: SIAM Jour-
nal on Computing 48.1 (2019), pp. 122–143.

[40] Y.-J. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan. “Exponential Sep-
arations in the Energy Complexity of Leader Election”. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing. STOC 2017. New
York, NY, USA: ACM, 2017, pp. 771–783.

[41] Y.-J. Chang, W. Li, and S. Pettie. “An Optimal Distributed (∆+1)-coloring Algo-
rithm?” In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing. STOC 2018. New York, NY, USA: ACM, 2018, pp. 445–456.

[42] Y.-J. Chang and S. Pettie. “A Time Hierarchy Theorem for the LOCAL Model”.
In: SIAM Journal on Computing 48.1 (2019), pp. 33–69.

[43] Y.-J. Chang, S. Pettie, and H. Zhang. “Distributed Triangle Detection via Expander
Decomposition”. In: Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2019, pp. 821–840.

[44] K.-M. Chung, S. Pettie, and H.-H. Su. “Distributed Algorithms for the Lovász Local
Lemma and Graph Coloring”. In: Distributed Computing 30 (2017), pp. 261–280.

[45] R. Cole and U. Vishkin. “Deterministic Coin Tossing with Applications to Optimal
Parallel List Ranking”. In: Information and Control 70.1 (1986), pp. 32–53.

260

http://arxiv.org/abs/1808.08419
http://arxiv.org/abs/1808.08419

[46] A. Czumaj and C. Konrad. “Detecting Cliques in CONGEST Networks”. In: Pro-
ceedings 32nd International Symposium on Distributed Computing (DISC). Ed. by
U. Schmid and J. Widder. Vol. 121. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 16:1–16:15. isbn: 978-3-95977-092-7.

[47] A. Czygrinow, M. Hanckowiak, and M. Karonski. “Distributed O(∆ logn)-edge-
coloring algorithm”. In: Proc. ESA 2001. 2001, pp. 345–355.

[48] X. Dahan. “Regular graphs of large girth and arbitrary degree”. In: Combinatorica
34.4 (2014), pp. 407–426. doi: 10.1007/s00493-014-2897-6.

[49] A. Das Sarma, S. Gollapudi, and R. Panigrahy. “Sparse Cut Projections in Graph
Streams”. In: Proceedings 17th European Symposium on Algorithms (ESA). 2009,
pp. 480–491.

[50] D. Dolev, C. Lenzen, and S. Peled. ““Tri, Tri Again”: Finding Triangles and Small
Subgraphs in a Distributed Setting”. In: Proceedings 26th International Symposium
on Distributed Computing (DISC). 2012, pp. 195–209.

[51] A. Drucker, F. Kuhn, and R. Oshman. “On the power of the congested clique
model”. In: Proceedings 33rd ACM Symposium on Principles of Distributed Com-
puting (PODC). 2014, pp. 367–376.

[52] D. P. Dubhashi, D. A. Grable, and A. Panconesi. “Near-Optimal, Distributed Edge
Colouring via the Nibble Method”. In: Theor. Comput. Sci. 203.2 (1998), pp. 225–
251. doi: 10.1016/S0304-3975(98)00022-X.

[53] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

[54] D. P. Dubhashi and D. Ranjan. “Balls and bins: A study in negative dependence”.
In: J. Random Structures and Algs. 13.2 (1998), pp. 99–124.

[55] M. Elkin, S. Pettie, and H.-H. Su. “(2∆ − 1)-Edge Coloring is Much Easier than
Maximal Matching in the Distributed Setting”. In: Proceedings 26th ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2015, pp. 355–370.

[56] M. Elkin. “A Simple Deterministic Distributed MST Algorithm, with Near-Optimal
Time and Message Complexities”. In: Proceedings 37th ACM Symposium on Prin-
ciples of Distributed Computing (PODC). 2017, pp. 157–163.

[57] M. Elkin. “Distributed exact shortest paths in sublinear time”. In: Proceedings 49th
Annual ACM Symposium on Theory of Computing (STOC). 2017, pp. 757–770.

[58] G. Even, O. Fischer, P. Fraigniaud, T. Gonen, R. Levi, M. Medina, P. Monteale-
gre, D. Olivetti, R. Oshman, I. Rapaport, and I. Todinca. “Three Notes on Dis-
tributed Property Testing”. In: Proceedings 31st International Symposium on Dis-
tributed Computing (DISC). Vol. 91. Leibniz International Proceedings in Informat-
ics (LIPIcs). 2017, 15:1–15:30.

261

https://doi.org/10.1007/s00493-014-2897-6
https://doi.org/10.1016/S0304-3975(98)00022-X

[59] L. Feuilloley and P. Fraigniaud. “Randomized Local Network Computing”. In: Pro-
ceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 2015, pp. 340–349.

[60] M. J. Fischer, N. A. Lynch, and M. Paterson. “Impossibility of Distributed Con-
sensus with One Faulty Process”. In: J. ACM 32.2 (1985), pp. 374–382. doi: 10.
1145/3149.214121.

[61] M. Fischer and M. Ghaffari. “Sublogarithmic Distributed Algorithms for Lovász
Local Lemma with Implications on Complexity Hierarchies”. In: Proceedings 31st
International Symposium on Distributed Computing (DISC). 2017, 18:1–18:16.

[62] M. Fischer, M. Ghaffari, and F. Kuhn. “Deterministic Distributed Edge Coloring
via Hypergraph Maximal Matching”. In: Proceedings 58th IEEE Symposium on
Foundations of Computer Science (FOCS). 2017, pp. 180–191.

[63] M. Fischer. “Improved Deterministic Distributed Matching via Rounding”. In: 31st
International Symposium on Distributed Computing (DISC 2017). Ed. by A. W.
Richa. Vol. 91. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 17:1–17:15.

[64] O. Fischer, T. Gonen, F. Kuhn, and R. Oshman. “Possibilities and Impossibilities
for Distributed Subgraph Detection”. In: Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures (SPAA). Vienna, Austria: ACM, 2018,
pp. 153–162. isbn: 978-1-4503-5799-9.

[65] P. Fraigniaud, M. Heinrich, and A. Kosowski. “Local conflict coloring”. In: Proceed-
ings 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
2016, pp. 625–634.

[66] P. Fraigniaud. “Distributed Computational Complexities: Are You Volvo-addicted
or Nascar-obsessed?” In: Proceedings of the 29th ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing. PODC ’10. New York, NY, USA:
ACM, 2010, pp. 171–172. doi: 10.1145/1835698.1835700. url: http://doi.
acm.org/10.1145/1835698.1835700.

[67] H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada. Algorithms for
edge-coloring graphs. Technical Report TRECIS-8501. Tohoku University, 1985.

[68] M. Ghaffari. “An improved distributed algorithm for maximal independent set”. In:
Proceedings 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2016, pp. 270–277. doi: 10.1137/1.9781611974331.ch20.

[69] M. Ghaffari, D. G. Harris, and F. Kuhn. “On Derandomizing Local Distributed
Algorithms”. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS). 2018, pp. 662–673.

262

https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/1835698.1835700
http://doi.acm.org/10.1145/1835698.1835700
http://doi.acm.org/10.1145/1835698.1835700
https://doi.org/10.1137/1.9781611974331.ch20

[70] M. Ghaffari, J. Hirvonen, F. Kuhn, Y. Maus, J. Suomela, and J. Uitto. “Improved
Distributed Degree Splitting and Edge Coloring”. In: Proceedings 31st International
Symposium on Distributed Computing (DISC). 2017, 19:1–19:15.

[71] M. Ghaffari and H.-H. Su. “Distributed Degree Splitting, Edge Coloring, and Ori-
entations”. In: Proceedings 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 2017, pp. 2505–2523. doi: 10.1137/1.9781611974782.166.

[72] M. Ghaffari. “Distributed MIS via All-to-All Communication”. In: Proceedings of
the ACM Symposium on Principles of Distributed Computing. PODC ’17. Washing-
ton, DC, USA: ACM, 2017, pp. 141–149. isbn: 978-1-4503-4992-5. doi: 10.1145/
3087801.3087830. url: http://doi.acm.org/10.1145/3087801.3087830.

[73] M. Ghaffari and B. Haeupler. “Distributed Algorithms for Planar Networks I: Planar
Embedding”. In: Proceedings 36th ACM Symposium on Principles of Distributed
Computing (PODC). 2016, pp. 29–38.

[74] M. Ghaffari and B. Haeupler. “Distributed Algorithms for Planar Networks II: Low-
Congestion Shortcuts, MST, and Min-Cut”. In: Proceedings 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 2016, pp. 202–219.

[75] M. Ghaffari, J. Hirvonen, F. Kuhn, and Y. Maus. “Improved Distributed Delta-
Coloring”. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing. PODC ’18. New York, NY, USA: ACM, 2018, pp. 427–436.

[76] M. Ghaffari, F. Kuhn, Y. Maus, and J. Uitto. “Deterministic distributed edge-
coloring with fewer colors”. In: Proceedings of the 50th Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC). ACM. 2018, pp. 418–430.

[77] M. Ghaffari, F. Kuhn, and H.-H. Su. “Distributed MST and Routing in Almost
Mixing Time”. In: Proceedings 37th ACM Symposium on Principles of Distributed
Computing (PODC). 2017, pp. 131–140. doi: 10.1145/3087801.3087827. url:
http://doi.acm.org/10.1145/3087801.3087827.

[78] M. Ghaffari and J. Li. “New Distributed Algorithms in Almost Mixing Time via
Transformations from Parallel Algorithms”. In: Proceedings 32nd International Sym-
posium on Distributed Computing (DISC). Ed. by U. Schmid and J. Widder.
Vol. 121. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 31:1–31:16. isbn:
978-3-95977-092-7.

[79] A. V. Goldberg and S. A. Plotkin. “Parallel (∆ + 1)-coloring of constant-degree
graphs”. In: Information Processing Letters 25.4 (1987), pp. 241–245.

[80] A. Goldberg, S. Plotkin, and G. Shannon. “Parallel symmetry-breaking in sparse
graphs”. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing. ACM. 1987, pp. 315–324.

263

https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1145/3087801.3087830
http://doi.acm.org/10.1145/3087801.3087830
https://doi.org/10.1145/3087801.3087827
http://doi.acm.org/10.1145/3087801.3087827

[81] T. Gonen and R. Oshman. “Lower Bounds for Subgraph Detection in the CON-
GEST Model”. In: Proceedings 21st International Conference on Principles of Dis-
tributed Systems (OPODIS). Vol. 95. Leibniz International Proceedings in Infor-
matics (LIPIcs). 2018, 6:1–6:16.

[82] M. Göös, J. Hirvonen, R. Levi, M. Medina, and J. Suomela. “Non-local Probes
Do Not Help with Many Graph Problems”. In: Distributed Computing. Ed. by
C. Gavoille and D. Ilcinkas. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 201–214.

[83] D. A. Grable. “A Large Deviation Inequality for Functions of Independent, Multi-
Way Choices”. In: Combinatorics, Probability & Computing 7.1 (1998), pp. 57–63.

[84] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory. 2nd. New York:
John Wiley and Sons, 1990.

[85] M. Hańćkowiak, M. Karoński, and A. Panconesi. “On the distributed complexity
of computing maximal matchings”. In: SIAM J. Discrete Mathematics 15.1 (2001),
41–57 (electronic).

[86] D. G. Harris, J. Schneider, and H.-H. Su. “Distributed (∆+ 1)-Coloring in Sublog-
arithmic Rounds”. In: J. ACM 65.4 (Apr. 2018), 19:1–19:21. issn: 0004-5411. doi:
10.1145/3178120. url: http://doi.acm.org/10.1145/3178120.

[87] W. Hoeffding. “Probability Inequalities for Sums of Bounded Random Variables”.
In: Journal of the American Statistical Association 58.301 (1963), pp. 13–30.

[88] I. Holyer. “The NP-Completeness of Edge-Coloring”. In: SIAM Journal on Com-
puting 10.4 (1981), pp. 718–720.

[89] C. Huang, D. Nanongkai, and T. Saranurak. “Distributed Exact Weighted All-Pairs
Shortest Paths in Õ(n5/4) Rounds”. In: Proceedings 58th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2017, pp. 168–179.

[90] T. Izumi and F. Le Gall. “Triangle Finding and Listing in CONGEST Networks”. In:
Proceedings 37th ACM Symposium on Principles of Distributed Computing (PODC).
2017, pp. 381–389. doi: 10.1145/3087801.3087811. url: http://doi.acm.org/
10.1145/3087801.3087811.

[91] M. Jerrum and A. Sinclair. “Approximating the Permanent”. In: SIAM Journal on
Computing 18.6 (1989), pp. 1149–1178.

[92] Ö. Johansson. “Simple Distributed ∆+ 1-coloring of Graphs”. In: Info. Proc. Lett.
70.5 (1999), pp. 229–232.

[93] T. Jurdziński and K. Nowicki. “MST in O(1) Rounds of Congested Clique”. In:
Proceedings 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2018, pp. 2620–2632.

264

https://doi.org/10.1145/3178120
http://doi.acm.org/10.1145/3178120
https://doi.org/10.1145/3087801.3087811
http://doi.acm.org/10.1145/3087801.3087811
http://doi.acm.org/10.1145/3087801.3087811

[94] R. Kannan, S. Vempala, and A. Vetta. “On Clusterings: Good, Bad and Spectral”.
In: J. ACM 51.3 (May 2004), pp. 497–515. issn: 0004-5411. doi: 10.1145/990308.
990313. url: http://doi.acm.org/10.1145/990308.990313.

[95] H. J. Karloff and D. B. Shmoys. “Efficient Parallel Algorithms for Edge Coloring
Problems”. In: J. Algorithms 8.1 (1987), pp. 39–52. doi: 10.1016/0196-6774(87)
90026-5.

[96] K.-I. Kawarabayashi and M. Thorup. “Deterministic Edge Connectivity in Near-
Linear Time”. In: J. ACM 66.1 (Dec. 2018), 4:1–4:50. issn: 0004-5411. doi: 10.
1145/3274663. url: http://doi.acm.org/10.1145/3274663.

[97] V. King and J. Saia. “Byzantine Agreement in Expected Polynomial Time”. In: J.
ACM 63.2 (Mar. 2016), 13:1–13:21. issn: 0004-5411. doi: 10.1145/2837019. url:
http://doi.acm.org/10.1145/2837019.

[98] J. H. Korhonen and J. Rybicki. “Deterministic Subgraph Detection in Broadcast
CONGEST”. In: Proceedings 21st International Conference on Principles of Dis-
tributed Systems (OPODIS). Vol. 95. Leibniz International Proceedings in Infor-
matics (LIPIcs). 2018, 4:1–4:16.

[99] A. Korman, J.-S. Sereni, and L. Viennot. “Toward more localized local algorithms:
removing assumptions concerning global knowledge.” In: Distributed Computing
26.5–6 (2013), pp. 289–308.

[100] K. Kothapalli and S. V. Pemmaraju. “Super-Fast 3-Ruling Sets”. In: Proceedings
IARCS Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS). Vol. 18. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2012, pp. 136–147.

[101] S. Krinninger and D. Nanongkai. “A Faster Distributed Single-Source Shortest
Paths Algorithm”. In: Proceedings 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS). 2018, pp. 686–697.

[102] F. Kuhn, T. Moscibroda, and R. Wattenhofer. “Local Computation: Lower and
Upper Bounds”. In: J. ACM 63.2 (2016), 17:1–17:44.

[103] F. Kuhn and R. Wattenhofer. “On the Complexity of Distributed Graph Color-
ing”. In: Proceedings 25th Annual ACM Symposium on Principles of Distributed
Computing (PODC). 2006, pp. 7–15.

[104] F. Kuhn and A. R. Molla. “Distributed Sparse Cut Approximation”. In: Proceedings
19th International Conference on Principles of Distributed Systems (OPODIS).
2015, 10:1–10:14.

[105] C. Lenzen. “Optimal Deterministic Routing and Sorting on the Congested Clique”.
In: Proceedings 33rd ACM Symposium on Principles of Distributed Computing
(PODC). 2013, pp. 42–50. isbn: 978-1-4503-2065-8. doi: 10 . 1145 / 2484239 .
2501983. url: http://doi.acm.org/10.1145/2484239.2501983.

265

https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
http://doi.acm.org/10.1145/990308.990313
https://doi.org/10.1016/0196-6774(87)90026-5
https://doi.org/10.1016/0196-6774(87)90026-5
https://doi.org/10.1145/3274663
https://doi.org/10.1145/3274663
http://doi.acm.org/10.1145/3274663
https://doi.org/10.1145/2837019
http://doi.acm.org/10.1145/2837019
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1145/2484239.2501983
http://doi.acm.org/10.1145/2484239.2501983

[106] C. Lenzen and R. Wattenhofer. “Brief Announcement: Exponential Speed-up of
Local Algorithms Using Non-local Communication”. In: Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. PODC
’10. New York, NY, USA: ACM, 2010, pp. 295–296.

[107] N. Linial. “Locality in Distributed Graph Algorithms”. In: SIAM J. Comput. 21.1
(1992), pp. 193–201.

[108] M. Luby. “A simple parallel algorithm for the maximal independent set problem”.
In: SIAM J. Comput. 15.4 (1986), pp. 1036–1053.

[109] G. L. Miller and J. H. Reif. “Parallel Tree Contraction–Part I: Fundamentals”. In:
Advances in Computing Research 5 (1989), pp. 47–72.

[110] M. Molloy and B. A. Reed. “A Bound on the Strong Chromatic Index of a Graph”.
In: J. Comb. Theory, Ser. B 69.2 (1997), pp. 103–109. doi: 10.1006/jctb.1997.
1724.

[111] M. Molloy and B. Reed. “Near-optimal list colorings”. In: Random Structures &
Algorithms 17.3‐4 (2000), pp. 376–402.

[112] R. A. Moser and G. Tardos. “A constructive proof of the general Lovász local
lemma”. In: J. ACM 57.2 (2010). doi: 10.1145/1667053.1667060.

[113] G. Moshkovitz and A. Shapira. “Decomposing a graph into expanding subgraphs”.
In: Random Struct. Algorithms 52.1 (2018), pp. 158–178.

[114] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. “Dynamic minimum spanning
forest with subpolynomial worst-case update time”. In: Proceedings of IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2017,
pp. 950–961.

[115] M. Naor. “A Lower Bound on Probabilistic Algorithms for Distributive Ring Col-
oring”. In: SIAM J. Discrete Mathematics 4.3 (1991), pp. 409–412. doi: 10.1137/
0404036.

[116] M. Naor and L. J. Stockmeyer. “What Can be Computed Locally?” In: SIAM
J. Comput. 24.6 (1995), pp. 1259–1277. doi: 10.1137/S0097539793254571.

[117] L. Orecchia and N. K. Vishnoi. “Towards an SDP-based Approach to Spectral Meth-
ods: A Nearly-Linear-Time Algorithm for Graph Partitioning and Decomposition”.
In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2011, pp. 532–545.

[118] L. Orecchia and Z. A. Zhu. “Flow-based Algorithms for Local Graph Clustering”.
In: Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’14. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2014, pp. 1267–1286.

[119] A. Panconesi and R. Rizzi. “Some simple distributed algorithms for sparse net-
works”. In: Distributed Computing 14.2 (2001), pp. 97–100.

266

https://doi.org/10.1006/jctb.1997.1724
https://doi.org/10.1006/jctb.1997.1724
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/0404036
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571

[120] A. Panconesi and A. Srinivasan. “On the Complexity of Distributed Network De-
composition”. In: J. Algor. 20.2 (1996), pp. 356–374.

[121] A. Panconesi and A. Srinivasan. “Randomized Distributed Edge Coloring via an
Extension of the Chernoff-Hoeffding Bounds”. In: SIAM J. Comput. 26.2 (1997),
pp. 350–368. doi: 10.1137/S0097539793250767.

[122] A. Panconesi and A. Srinivasan. “The Local Nature of ∆-Coloring and its Algo-
rithmic Applications”. In: Combinatorica 15.2 (1995), pp. 255–280. doi: 10.1007/
BF01200759. url: https://doi.org/10.1007/BF01200759.

[123] G. Pandurangan, P. Robinson, and M. Scquizzato. “On the Distributed Complexity
of Large-Scale Graph Computations”. In: Proceedings of the 30th ACM Symposium
on Parallelism in Algorithms and Architecture (SPAA). 2018, pp. 405–414.

[124] M. Parter. “(∆ + 1) coloring in the congested clique model”. In: 45th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2018). Ed.
by I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella. Vol. 107. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 160:1–160:14.

[125] M. Parter and H.-H. Su. “Randomized (∆+1) coloring in O(log∗∆) congested clique
rounds”. In: 32nd International Symposium on Distributed Computing (DISC 2018).
Ed. by U. Schmid and J. Widder. Vol. 121. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 39:1–39:18.

[126] M. Pǎtraşcu and M. Thorup. “Planning for Fast Connectivity Updates”. In: Pro-
ceedings 48th IEEE Symposium on Foundations of Computer Science (FOCS). 2007,
pp. 263–271.

[127] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
[128] D. Peleg and V. Rubinovich. “A Near-tight Lower Bound on the Time Complexity

of Distributed Minimum-weight Spanning Tree Construction”. In: SIAM J. Comput.
30.5 (2000), pp. 1427–1442.

[129] S. Pettie and H.-H. Su. “Distributed algorithms for coloring triangle-free graphs”.
In: Information and Computation 243 (2015), pp. 263–280.

[130] M. O. Rabin. “Randomized Byzantine Generals”. In: Proceedings of the 24th IEEE
Symposium on Foundations of Computer Science (FOCS). 1983, pp. 403–409. doi:
10.1109/SFCS.1983.48.

[131] P. Raghavendra and D. Steurer. “Graph Expansion and the Unique Games Con-
jecture”. In: Proceedings 42nd ACM Symposium on Theory of Computing (STOC).
2010, pp. 755–764.

267

https://doi.org/10.1137/S0097539793250767
https://doi.org/10.1007/BF01200759
https://doi.org/10.1007/BF01200759
https://doi.org/10.1007/BF01200759
https://doi.org/10.1109/SFCS.1983.48

[132] T. Saranurak and D. Wang. “Expander Decomposition and Pruning: Faster,
Stronger, and Simpler”. In: Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 2019, pp. 2616–2635.

[133] A. D. Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D.
Peleg, and R. Wattenhofer. “Distributed verification and hardness of distributed
approximation”. In: SIAM J. Comput. 41.5 (2012), pp. 1235–1265.

[134] A. D. Sarma, A. R. Molla, and G. Pandurangan. “Distributed Computation of
Sparse Cuts via Random Walks”. In: Proceedings 16th International Conference on
Distributed Computing and Networking (ICDCN). 2015, 6:1–6:10.

[135] J. Schneider and R. Wattenhofer. “A new technique for distributed symmetry break-
ing”. In: Proceedings 29th Annual ACM Symposium on Principles of Distributed
Computing (PODC). 2010, pp. 257–266.

[136] J. Schneider and R. Wattenhofer. “An optimal maximal independent set algo-
rithm for bounded-independence graphs”. In: Distributed Computing 22.5-6 (2010),
pp. 349–361.

[137] M. Sipser. Introduction to the Theory of Computation. 3rd. International Thomson
Publishing, 2012.

[138] D. A. Spielman and S.-H. Teng. “A Local Clustering Algorithm for Massive Graphs
and Its Application to Nearly Linear Time Graph Partitioning”. In: SIAM J. Com-
put. 42.1 (2013), pp. 1–26.

[139] D. A. Spielman and S.-H. Teng. “Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems”. In: Proceedings 36th Annual
ACM Symposium on Theory of Computing (STOC). 2004, pp. 81–90.

[140] H.-H. Su and H. T. Vu. “Towards the Locality of Vizing’s Theorem”. In: Proceedings
of the 51th Annual ACM SIGACT Symposium on Theory of Computing (STOC).
ACM. 2019.

[141] L. Trevisan. “Approximation Algorithms for Unique Games”. In: Theory of Com-
puting 4.5 (2008), pp. 111–128.

[142] V. G. Vizing. “On an estimate of the chromatic class of a p-graph”. In: Diskret.
Analiz No. 3 (1964), pp. 25–30.

[143] V. H. Vu. “A General Upper Bound On The List Chromatic Number Of Locally
Sparse Graphs”. In: Combinatorics, Probability & Computing 11.1 (2002), pp. 103–
111. doi: 10.1017/S0963548301004898.

268

https://doi.org/10.1017/S0963548301004898

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1. Introduction
	Computational Models, Problems, and Tools
	Locally Checkable Labeling
	Distributed Lovász Local Lemma
	Graph Shattering
	Other Computational Models

	Overview of Our Results
	Complexity Theory for the LOCAL Model
	Complexity of Distributed Coloring
	Bandwidth Constraint

	Publications that Constitute this Thesis

	Chapter 2. Complexity Landscape of LCLs on General Graphs
	Overview
	New Results on the Value of Random Bits
	New Results on the Complexity Gaps

	The Necessity of Graph Shattering
	Lower bounds for -vertex coloring -regular Trees
	Gaps in Deterministic and Randomized Time Complexity
	A Gap in the RandLOCAL Complexity Hierarchy
	Speedup Implications of Naor & Stockmeyer
	Requirements for Automatic Speedup
	Automatic Speedup Theorems
	Discussion

	Chapter 3. Complexity Landscape of LCLs on Trees
	Overview
	An Infinitude of Complexities: Hierarchical 212-Coloring
	A Complexity Gap on Bounded Degree Trees
	A Tour of the Proof
	Partial Labeled Graphs
	Graph Surgery
	A Tripartition of the Vertices
	An Equivalence Relation on Graphs
	Properties of the Equivalence Relation
	The Number of Equivalence Classes
	A Pumping Lemma for Trees
	Rake & Compress Graph Decomposition
	Extend and Label Operations
	A Hierarchy of Partially Labeled Trees
	An O(logn)-time DetLOCAL Algorithm from a Feasible Labeling Function
	Existence of Feasible Labeling Function

	Chapter 4. Decidability of LCL Complexity
	Overview
	Pumping Lemmas for Paths
	The omega(log* n)—o(n) Gap
	Partitioning a Cycle
	Feasible Function
	The omega(1)—o(log* n) Gap

	Chapter 5. The Complexity of Distributed Edge Coloring
	Overview
	Edge Coloring Algorithms
	Lower Bounds
	Distributed Lovász Local Lemma
	New Results

	Lower Bound for (2 Delta - 2)-Edge Coloring
	Randomized Edge Coloring Algorithm
	The Algorithm
	Maintenance of the Invariant
	Proof of Lemma 5.3

	Proof of Lemma 5.5
	Concentration of Vertex Degree
	Concentration of Palette Size
	Concentration of Color Degree

	Distributed Lovász Local Lemma on Trees
	Deterministic LLL Algorithm
	Randomized LLL Algorithm
	Criterion for Infection
	Contagion Process
	Finding a Small Stable Set

	Network Decomposition of Trees
	A Simple Network Decomposition
	A Mixed-diameter Network Decomposition

	Deterministic Algorithms for Edge Coloring Trees
	Lower Bounds for Augmenting Path-Type Algorithms

	Chapter 6. The Complexity of Distributed Vertex Coloring
	Overview
	Fast Coloring using Excess Colors
	Gaining Excess Colors
	Coloring Locally Dense Vertices
	New Results

	Hierarchical Decomposition
	A Hierarchy of Almost Cliques
	Block Sizes and Excess Colors

	Main Algorithm
	Initial Coloring Step
	Coloring Vertices by Layer
	Coloring the Remaining Vertices
	Time Complexity

	Fast Coloring using Excess Colors
	Coloring Locally Dense Vertices
	Case 1: Many Excess Colors are Available
	Case 2: No Excess Colors are Available

	Proof of Lemma 6.3

	Chapter 7. Distributed Triangle Detection via Expander Decomposition
	Overview
	Technical Overview
	Additional Related Works
	Organization

	Algorithm for Graph Partitioning
	Subroutines
	Proof of Lemma 7.1

	Algorithm for Finding a Sparse Cut
	Distributed Algorithm
	Implementation

	Triangle Enumeration
	Triangle Enumeration in High Conductance Graphs
	Triangle Enumeration and Counting in General Graphs
	Subgraph Enumeration

	Chapter 8. Conclusion and Future Directions
	Appendix
	Bibliography

