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The basis for this research originally stemmed from my passion for the environment and 

research designed to protect its quality and integrity for future generations. Of particular interest 

is the notion of informal economies, where disadvantaged populations are employed in activities 

that are frequently degrading of natural resources and undermine environmental quality 

standards and enforcement, being demonized by media sources as creating environmental 

catastrophes. As real as the pollution may be, damage from informal sectors often pales in 

comparison to large formal industries, for example oil and gas. The lack of social and 

occupational security benefits from an informal industry makes it easier for the media and the 

world to disparage informal workers. Talked about far less frequently is the immense history of 

socio-political contexts that would explain the circumstances and decisions of informal workers. 

These conversations are the ones that are needed to reach the revelation that elimination of 

workers in the informal economy is not the solution to environmental devastation. 

 During my four years in my Ph.D. program, I came to love the field of occupational 

health and science. There is much overlap in the injustice between occupational and 

environmental health. Both healthy environments and healthy workers are often a position of 

privilege in a global context. The foundation I have built in my graduate school experience will 

allow me to continue forward on work that unites these two spheres of interest, searching for 

solutions that optimize each.
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Abstract 

 

Electronic waste, “E-waste”, is the fastest growing waste stream globally. Informal e-

waste recycling lacks the policy and regulatory controls found in formal industry, creating health 

hazards for workers and communities, while potentially achieving higher recovery rates of raw 

materials and related reductions in impacts. This dissertation evaluated routes of exposure to 

metals, physical hazards faced by workers, material and economic flows, and environmental and 

human health damages, through the lens of Total Worker Health (TWH). The research described 

took place in informal e-waste recycling communities in Thailand and Chile, countries with 

different cultural contexts and recycling paradigms.  

Following the introduction in Chapter 1, Chapter 2 examined and compared metal levels 

in a variety of environmental samples, surface dust, air, and human biomarkers. Concentrations 

of metals in environmental samples were elevated. Surface wipe samples from Thailand showed 

no significant difference in metal concentrations between surfaces used for food and work, while 

there was a difference in Chile. Despite having higher overall concentrations of metals in wipe 

samples, workers in Chile had lower concentrations of metal biomarkers than workers and non-

workers in Thailand. Results from an application of the Method of Triads showed that surface 

wipes generally had the highest validity coefficients of the various measures evaluated.  

 Chapter 3 evaluated the physical hazards of e-waste recycling.  No workers were exposed 

above the recommended occupational limit for noise of 85 dBA. However, a portion of workers 

had audiograms indicative of noise-induced hearing loss. Sixty percent of workers in each 



 

 

country experienced 1 work injury in the previous 6 months. Analysis of injury risk factors 

using survey data and a novel semi-quantitative video analysis indicated high frequencies of 

ergonomic stressors and working near sharp objects in both countries. Logistic regressions in 

Thailand showed that odds of injury were greater among workers who reported more frequent 

noise and regular use of personal protective equipment. In Chile, buying/selling of e-waste was 

associated with lower odds of injury. Poisson regressions showed that older and more educated 

workers in Thailand had a lower injury incidence rate ratio (IRR). In Chile, older, more educated 

workers, report of a dangerous task, increased frequency in the use of cotton gloves, repetitive 

arm motion, and lifting of <20 pounds had a higher IRR.  

 Chapter 4 combined material flow analysis (MFA) and life cycle assessment (LCA) 

methods to analyze the quantitative flow of materials, economic benefits, and human and 

environmental impacts of informal e-waste recycling. Four e-waste products were selected for 

the MFA in a Thai community and then fed into a LCA to estimate net avoided emissions. One 

village processed ~40,000 kg of e-waste monthly, worth a net value added of 157,000 THB 

(~$5,000). Recycling in one village avoided 0.2 Disability-Adjusted Life Years, 60,000 kg of 

CO2 equivalents, and nearly 400,000 megajoules each month.  Dismantling of e-waste by 

informal e-waste workers with downstream processes (e.g., recovery of dangerous, precious, and 

trace materials) completed by more formalized operations may be advantageous for both sectors.  

Finally, Chapter 5 provides overall conclusions and discussion. 

 This dissertation yielded important information on how to protect informal e-waste 

worker and community health. Exposures to metals occurred during both work and non-work 

activities, and the participating workers experienced a high rate of injury, affecting health and 



 

 

economic well-being. Short-term economic benefits may be out-weighed by long-term 

ecosystem damages.  

 



 

 

Chapter 1 : Introduction  

 

1.1 Introduction to informal e-waste recycling  

Electronics play a prominent role in modern society and will continue to grow as an 

integral part of daily life as technology continues to develop [1], [2]. Increasing consumer 

demand, availability of new technologies, incorporation of existing technology into new 

products, shortened product lifetimes, and a growing global consumer base all contribute to 

increased production of electronics and electrical equipment. Although technology has the 

potential to improve human welfare and experiences, the growing number of electronics comes 

with a growing number of discarded products. Without the policy, technological, or economic 

structures necessary to sustainably dispose of or recycle these products, the world has found 

itself in a quandary over electronic waste. 

Electronics and electrical equipment that have reached the end of their useable life,  

collectively known as “e-waste”, includes products such as personal and large appliances, 

communication and information technology, medical equipment, parts of vehicles, and all other 

products and components containing electrical circuitry [2]. E-waste is the fastest growing waste 

stream on earth with an estimated 44.7 million metric tons generated globally in 2014 alone [3]. 

The amount of e-waste generated annually per person is expected to increase from 5.8 kg/person 

in 2014 to 6.8 kg/person in 2021 [3]. This increase is multiplicative in effect when we consider 

the growing global population. Policy infrastructure, consumer behavior, and producer 



 

 

responsibility in the electronics industry have lagged behind technological innovation. As a 

result, much of the e-waste generated each year is disposed of in a landfill.  

The lack of sustainable end-of-life management of electronics results in negative 

environmental consequences. The failure to recover secondary materials from landfilled e-waste 

results in a larger need for extraction of primary materials, leaching of hazardous materials into 

the environment, and increases the volume of waste in landfills [1]. Beyond the socio-political 

limitations needed to improve electronic recycling systems, there is a need for technological 

development and economic investments in recycling infrastructure. The large mix of elements 

contained within e-waste, many of which are hazardous, combined with the diverse array of 

electronic products and the physical properties of different components makes the separation and 

recovery of materials difficult [4]. To maximize recycling efficiency, new methods of sorting, 

shredding, separating, and recovering e-waste products and materials are needed. Recycling 

methods need to be updated regularly to keep up with changes in technology and manufacturing 

methods [5]. 

Electronics contain an array of scarce and valuable materials that can be recovered and 

sold in secondary markets to be incorporated into new goods. Metals like gold, silver, copper, 

steel, and palladium, as well as plastics, trace elements, and other materials can be recovered 

from e-waste [6], [7]. In some cases, particularly with metals like gold and copper, it is more 

economically efficient to recover and process secondary materials than to produce primary 

materials through the extraction of virgin materials [8]. The formal, organized recycling of 

electronics is expensive, prompting many high-income countries to export a portion of collected 

e-waste to low- and middle-income countries despite a ban on this practice under the United 

Nations Basel Convention [6], [9]. It has been estimated that only 20% of e-waste generated in 



 

 

high-income countries is collected and recycled in the formal sector, and 76% is landfilled, 

traded, or recycled in substandard conditions [10]. Of the total amount of e-waste recovered in 

high-income countries, approximately 80% is shipped, frequently illegally, to low- and middle-

income countries [11]. Recycling in these destinations is often performed by workers in the 

informal sector with use of rudimentary methods to recover materials [12].  

 While e-waste represents an important source of income in lower-income parts of 

the globe, it also contains chemicals harmful to the environment. Persistent organic pollutants, 

such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), as 

well as heavy metals like cadmium, lead, and copper are released during the recycling process 

and are of great concern to human and environmental health [13]-[15]. Proper equipment and 

recycling technology is often lacking in the informal sector, along with health and environmental 

regulations [16]. Therefore, workers recover materials using primitive methods, including the 

burning of wires to remove plastic coating, dissolving circuit boards in acid baths to retrieve 

precious metals, and using homemade tools to disassemble products in inferior work settings 

[17]. The lack of proper controls results in the release of toxicants from e-waste, contaminating 

humans and the local environment.  

Communities and environments surrounding informal recycling have been found to have 

higher-than-background levels of heavy metals in soil, water, air and agricultural products [18]-

[20].  In informal settings, recycling activities often take place in or near homes or in community 

areas, exposing recyclers and their families to harmful substances. Workers in the informal 

sector frequently lack labor rights and occupational health regulations, making them more 

vulnerable to precarious workplace conditions [11]. In addition to workers, children are 

especially susceptible to health effects caused or exacerbated by exposure to heavy metals in e-



 

 

waste recycling areas [17], [21]. The tendency of informal workers to be from marginalized and 

lower socioeconomic status segments of the population further compound the justice issues 

surrounding e-waste. 

The global trade of e-waste saddles developing countries with a disproportionate burden 

of the environmental health impacts of recycling. Additionally, the domestic flow of e-waste in 

these countries is growing as the consumer base for new and used electronic goods grows. High 

volumes of e-waste and low capacity to regulate, contain, and properly handle hazardous 

materials interact to form a potential environmental health crisis for current and future 

generations.  

1.2 Dissertation background 

This dissertation encompasses work that is part of a collaborative project between researchers at 

the University of Michigan and partners in Chile and Thailand. Researchers, students, health 

professionals, community volunteers, local government officials, and local healthcare institutions 

were involved in the design and implementation of research projects in each country.  The 

decision to conduct research in Thailand and Chile stemmed from an observation that many of 

the environmental health studies published on e-waste recycling focus on a handful of countries, 

including China, India, and Ghana [22]. As e-waste recycling is still an emerging economy, 

geographic variances in product types, recycling methods, policies, and other characteristics are 

likely to have an influence on environmental health impacts. Using two geographically, socially, 

ethnically, and politically distinct populations allowed us to better contextualize our results. 

 The objective of the overall project was to employ a semi-community-based approach to 

investigate major questions regarding health issues related to e-waste with a multidisciplinary 

team of experts bringing together ideas from the fields of policy and ethnography, engineering, 



 

 

and public health. The focus of this dissertation was on the environmental health aspects of 

informal e-waste recycling in both countries; however, the research has been enriched by the 

interplay between experts in different fields and stakeholders involved in the research design and 

data collection processes. Figure 1-1 shows the location of the study sites in each country.

 

Figure 1-1 Location of study sites in Chile and in Thailand. 

The study site in Thailand is a traditionally agricultural community in the Northeastern 

region of the country where a large portion of the population has adopted e-waste recycling as a 

supplementary source of income. Workers often perform e-waste recycling activities between 

rice harvests alongside family in their home, or in the home of a community member for whom 

they work as a minimum wage employee. Outside of agriculture and e-waste recycling, there are 

few other employment opportunities in or near the community, and therefore e-waste has become 

a very important, and transformative, source of income. 

 Three study sites were used in Chile: Chillan, Temuco, and Santiago. Although Chile is 

classified by the World Bank as a high-income country, there is significant economic inequality 



 

 

between rich and poor. The participants in this study were from lower-income neighborhoods in 

each of the three sites. Similar to Thailand, e-waste recycling provides a valuable employment 

opportunity to lower-income populations, and additionally provides a benefit to the surrounding 

communities by sorting and collecting recyclables from waste streams. 

1.3 Motivation for research 

Global awareness of the growing e-waste problem has not escaped the attention of 

researchers. Figure 1-2 shows the number of publications, by year, under the topic search term 

“e-waste” on Web of Science [23]. Since the early 2000’s, the number of publications focused on 

e-waste has increased exponentially, and these publications span numerous fields, including 

policy, engineering, natural resources, and public health. This dissertation investigated three 

pressing and diverse questions under the umbrella of total worker health (TWH). TWH, an 

initiative created by the US National Institute for Occupational Safety and Health, is the 

integration of traditional occupational health and safety objectives with those that promote the 

overall well-being of workers through the concept that work is a social determinant of health 

[24]. This framework allows for a bridge between health promotion and occupational health 

practices [25]. Given the community exposures likely to occur with informal e-waste recycling, 

this dissertation addressed these to better understand non-occupational exposure, as well as 

differentiate between what a worker is exposed to during working hours and what additional 

exposures occur during non-working hours.  Despite the growing body of research in e-waste 

and environmental health, important questions remain on how workers and communities are 

impacted by e-waste recycling activities. 

 



 

 

 

Figure 1-2 Results from Web of Science search for "e-waste" showing the number of 

publications under the topic search term "e-waste" by year through December 2018. 

Exposures to metals from e-waste recycling is of particular concern to human health 

given their relative abundance in electronic products and environmental persistence. Workers 

and community members have been shown to be exposed to e-waste-related metals through 

several routes: inhalation of e-waste particulate matter during burning and manual disassembly, 

ingestion of particles generated by manual disassembly, dermal exposure and absorption to metal 

particles, and ingestion of plants and/o r animals that have taken up metals that have entered the 

environment [20], [26]-[31].  Several studies of metal concentrations in human biomarker 

samples have indicated elevated levels of metals, particularly lead [32]-[36]. Several studies have 

shown that metal biomarker concentrations in occupationally exposed groups are generally 

higher than non-occupationally exposed groups; however, this trend varies depending on the 

specific metal and population [34], [37]-[39]. The heterogeneity of e-waste materials, recycling 

methods, and the presence – or lack – of occupational controls, all contribute to the differences in 

study observations. It is not known what the largest contributing routes of exposure are for 

different metals, nor what the differences in levels of exposure are for occupational versus non-



 

 

occupational populations. These lines are further blurred in informal settings where recycling 

occurs inside of the home, where workers are then doubly-exposed during work and non-work 

hours. Furthermore, in terms of monitoring exposures to metals from e-waste, there is no 

evidence for the optimum sample type to best represent exposure risk.  It is not possible to 

measure the “true,” long-term exposure to metals; the methods available all provide varying 

degrees of approximation and estimation of this unmeasurable exposure [40].   Although studies 

have measured a variety of sample types, including biomarkers, surface wipe samples, air 

samples, and environmental samples, it is unclear which type of sample best measures the true 

exposure to metals from e-waste [20], [35], [39], [401]-[43].  

Beyond chemical exposure, e-waste workers in the informal sector encounter an array of 

workplace hazards that have potential to cause injury [13], [44]. Because they are not part of a 

formal, regulated industrial or commercial sector, these injuries are not reported to any 

regulatory or surveillance programs and therefore the frequency, causes, and types of injuries are 

not known. Accurate assessments of injury risk during informal e-waste recycling are important 

for the development of workplace interventions. What may otherwise be considered a small 

injury is of more concern is e-waste populations who are more likely to have limited access to 

health care in the event of an injury [45]. A qualitative study on the working conditions of e-

waste recyclers in Agbogbloshie, Ghana found that most workers were working in substandard 

conditions. Workplace sanitation, lack of training, absence of any personal protective equipment 

(PPE), poor wages, and long working hours were all cited as realities of the working conditions 

[46]. A study of 279 e-waste workers in Nigeria reported that 68% were injured during work in 

the previous 6 months, and 89% were injured at some point during their time working in 

recycling [47]. However, the external validity of these studies is unknown, and more information 



 

 

is needed to determine the risk of injury in e-waste recycling. Additionally, injury risk is likely to 

vary by job and task within e-waste recycling, and so again more information is needed to 

accurately describe workplace injury risks in order to develop results that can be translated into 

interventions to protect worker health. 

The potential hazards from informal e-waste recycling are rather apparent, given the 

litany of hazardous chemicals and precarious workplace conditions. Perhaps less apparent are the 

benefits, and opportunities for improvement. With the valuable materials contained in e-waste, 

recycling has the potential to be a lucrative industry. Formal recycling, however, has large 

overhead costs [48]. The informal sector has smaller individual overhead costs by comparison, 

sector and provides flexible and potentially lucrative individual employment opportunities [49]. 

Several studies have calculated the economic profit in the formal industry, but there is a dearth of 

information about informal industry profits [5]. Similarly, the flow of electronic products and 

materials in formal systems has been well-captured, particularly in some European countries, 

while there is a relative lack of information on the flow in informal systems [5], [50]-[52]. The 

true environmental health impacts from informal recycling cannot be estimated without 

understanding how much e-waste is being processed on smaller, local scales [53]. Informal 

recycling has been shown to be more efficient than formal recycling, both in the recovery of 

products from the waste stream and in the extraction of materials from products [54], [55]. 

Because informal e-waste recycling typically involves manual disassembly of products, the 

carbon emissions from electricity use can be expected to be low. A study comparing the benefits 

of a formal recycling system with an incineration scenario in Switzerland found that recycling e-

waste has a net positive environmental effect [50]. It is unknown if this positive environmental 

effect carries over to the informal sector considering the lack of environmental controls. In 



 

 

addition, the Swiss study calculated the impact for a mixture of electronic products. This 

dissertation evaluated the impact per individual product for four selected e-waste products, 

providing information on what types of e-waste have larger environmental impacts.   

1.4 Research Overview 

 

Figure 1-3 Diagram showing the relationship of the three dissertation chapters and the 

relationships between one another. 

The purpose of this dissertation was to explore the environmental health impacts of e-

waste recycling. Figure 1-3 shows the relationship between each chapter, and how all concepts 

are united under the concept of TWH. The chapters provide an exploration of chemical and 

physical hazards associated with e-waste as well as environmental and economic impacts and 

how they interact. The results allow for an in-depth understanding of the major areas of concern 

in informal e-waste recycling, and what potential interventions might be made that 

simultaneously protect the environment, the community, workers, and preserve the economic 



 

 

well-being of those dependent on the industry. The chapters of this dissertation are structured as 

follows: 

Chapter 2 evaluated the association between environmental exposures and internal 

biomarkers with a focus on Thailand and Chile. The primary objectives of this study were: to 

investigate which potential routes of exposures to metals are of greatest concern to humans and 

assess the relative levels of exposures between workers and non-workers; to determine the best 

sample type when selecting for a marker of exposure to a given metal; and to compare the blood 

and urine biomarkers measured in the population. 

Chapter 3 quantified the prevalence and risk of injury among e-waste workers with a 

focus on Thailand and Chile using a combination of survey data and risk factor information 

extracted from video footage. The primary objectives of this chapter were to determine which 

aspects of e-waste recycling in the informal sector present the greatest rates, and risks, of injury. 

We also examined exposures to noise during e-waste recycling and evaluated hearing outcomes. 

Chapter 4 utilized a material flow analysis (MFA) and life cycle assessment (LCA) to 

determine the economic and environmental benefit of e-waste recycling, with a focus on 

Thailand. The primary objectives of this chapter were: to quantify the flow of four select e-waste 

products into and out of a neighborhood in northeastern Thailand; to determine the economic 

benefit generated by this flow; and to determine the net environmental cost or benefit of 

recycling each of the four products by informal methods compared to a baseline scenario of 

disposal in a landfill. 

Chapter 5 integrates the findings from the previous three chapters and highlights 

significant findings and identifying future areas for research. The chapter includes 

recommendations for e-waste workers, public health practitioners, electronic recycling systems, 



 

 

and other researchers.  This chapter also provides a final note on the importance of the 

considerations of the environmental justice issues surrounding e-waste. 
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Chapter 2 : Evaluation of Routes of Exposures to Metals Among Electronic Waste 

Workers and Community Members in Thailand and Chile 

Chapter 2 Abstract 

Background: Informal e-waste recycling in Thailand and Chile potentially exposes 

workers and community members to metals through several routes. Recycling activities can 

contaminate the local environment and presents workers and community members alike with 

non-occupational exposures. Workers are more exposed to e-waste activities, and therefore may 

have increased risk of metal exposures. 

Objectives: This study had four objectives.  First, to measure concentrations of metals in 

environmental media, including soil, water, rice, environmental air, personal and area air, and 

surface dust. Second, to compare occupational and non-occupational exposures in Thailand 

through examination of metal biomarkers in blood and urine, and to compare occupational 

exposures between Thailand and Chile. Third, to compare the environmental metal 

concentrations with those of human exposure groups to determine which routes of exposure are 

most relevant for occupationally- and non-occupationally exposed groups. Fourth, to use the 

Method of Triads to determine which exposure sample types have the highest validity coefficient 

to estimate the true exposure.  

Methods: Samples of environmental media and biomarkers were collected in Thailand 

and Chile and then analyzed for metal concentrations. Summary statistics were run and 

comparisons using t-tests were made between the groups. Multiple linear regression models were 
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run with demographic variables to measure the association of socio-economic and biological 

explanatory variables with metal concentrations. Finally, the method of triads was used to 

calculate validity coefficients. 

Results: Elevated concentrations of metals were found in soil, rice, and surface water 

samples. The occupational exposure group in Thailand had overall higher concentrations of all 

metals in blood and urine except for Cadmium than both the Thai community exposure group 

and the Chilean occupational exposure group. The Thai community exposure group had higher 

biomarker concentrations of some metals than then Chilean occupational group, suggesting that 

environmental contamination presents an important route of exposure to metals from e-waste. 

The Method of Triads shows that wipe samples have the highest validity coefficient for a few 

metal types, but more studies are needed to increase confidence in this approach. 

Conclusions: Hygiene practices are important in containing e-waste exposures to metals. 

Communities where informal e-waste recycling occurs are at increased risk of exposure to 

metals. 
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2.1 Introduction 

2.1.1 Routes and Pathways of Exposure 

Metals contained in electronics can be released to the environment during recycling 

activities such as storage, dismantling, and burning of electronics [1]-[3]. These activities result 

in elevated levels of metals at e-waste recycling sites, which then present a chance for human 

exposure [4]-[6]. Improper controls to limit or contain releases of metals into the environment 

place e-waste workers, as well as community members, at risk of direct or indirect exposures to 

e-waste [7]. These potential exposures raise public health concerns [8]. 

Once in the environment, humans can be exposed to metals through multiple routes and 

pathways. Some of the more direct pathways of exposure include ingestion or inhalation of dust 

resulting from dismantling activities or from atmospheric deposition of particles after burning e-

waste [9], [10]. Surface dust at e-waste recycling facilities is known to contain metals and other 

toxicants [10]-[12]. In informal settings, e-waste may take place in or near homes, generating 

contaminated surface dust throughout the home. This represents an important exposure pathway, 

as surface dust can be easily ingested by adults and children alike. Metals can also be inhaled in 

the form of smoke during e-waste burning, or during dismantling when particles are aerosolized. 

Studies in formal recycling settings have found that workers are exposed to airborne lead (Pb), 

cadmium (Cd), and nickel (Ni) [13], [14].  Additionally, some metals, such as Ni and Pb, are 

known skin allergens and can even penetrate the skin, creating a dermal route of exposure under 

certain conditions, such as in the presence of sweat [15], [16].  

Indirect pathways of exposure include ingestion or inhalation of contaminated 

environmental media. The informal sector lacks the physical and regulatory infrastructure 

required to minimize the spread of metal contamination to the environment [17]. Dismantling of 
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e-waste can generate dust and metal scrap that enter the environment directly. Leaching during 

rain events and non-confined smoke plumes can also contaminate crops and the environment 

near e-waste recycling areas [18]. Once in the environment, metals may transform into 

biologically available forms and can disrupt ecosystems [19]. Additionally, metals such as Pb, 

Cd, and others found in e-waste are persistent pollutants and are difficult to remediate [20]. 

Metal particles, ash, and scrap pieces generated during e-waste disassembly can enter the 

environment directly through the soil. A study examining metal concentrations in a former e-

waste burn site in China found elevated concentrations of Cd, Pb, copper (Cu), and zinc (Zn) 

[21]. Other studies have found elevated levels of metals in soils from agricultural fields, road 

dust, and soil near e-waste recycling areas [4], [10], [18], [22], [23]. During rain events, these 

metals can wash into rivers and streams where they contaminate sediments and affect aquatic 

ecosystems [24], [25].  

The uptake of heavy metals by crops in areas where agriculture and e-waste occur in 

close proximity has been demonstrated in several studies, presenting an additional exposure 

pathway for workers and community members who consume these crops as a diet staple [21], 

[26]. Rice (Oryza sativa) has consistently been associated with heavy metal uptake near e-waste 

recycling operations around the globe [21], [27]-[29]. In particular, rice is known to uptake Cd 

and other metals from contaminated soils and incorporate the metals into the grains of the rice 

plant [30]. These metals then enter the food chain and are passed to humans once ingested.  

Surface waters near e-waste sites have been found to have a high concentration of metals 

through runoff of contaminated surface soils [18]. A 2015 study of a former e-waste recycling 

site in China showed that groundwater had low levels of heavy metal contamination, while 

surface waters, often used for crop irrigation, were highly contaminated with Cd and Cu [31]. A 
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different study found that groundwater near a large e-waste site had Pb concentrations higher 

than the acceptable range set by the US EPA, and that the exposure from ground water presented 

a greater risk than from inhalation or dermal contact with dust [28]. In summary, there is  

evidence in the literature indicating that unchecked e-waste recycling can pollute the 

environment with metals.  

2.1.2 Biomarkers 

In addition to environmental contamination, e-waste recycling presents a risk of human 

exposures to metals. Studies of e-waste workers in both the formal and informal sectors in other 

countries have shown higher levels of metals in blood and urine [13], [32]. Some metals found in 

e-waste, such as Cu, Zn, and iron (Fe), are essential elements that are only toxic at very high 

concentrations. Other metals, including Pb and Cd, are considered toxic even at very low doses 

[16], [33]. Workers in Agbogbloshie, Ghana were found to have elevated concentrations of blood 

Cd and Pb [34]. A second study conducted at the same e-waste site found elevated levels of 

urinary Fe, Sb, and Pb [35]. Other studies from e-waste sites worldwide have found varying 

concentrations of different metals in occupationally and non-occupationally-exposed populations 

[13], [36]-[40]. While a pattern of increased concentration of metals in biomarkers from human 

populations exposed to e-waste has been identified in the literature, the specific metals that are 

elevated vary from population to population, possibly due to the complex composition of the e-

waste stream. Additionally, previous research has studied various aspects of environmental 

contamination from e-waste sites, but few studies have compared environmental contamination 

with biomarkers [41].  



22 

 

The choice of biomarkers, including element types and biological sample type, is of 

critical importance. Exposure concentration, duration, and chemical form of metal are all factors 

affecting personal metabolism, including absorption and excretion. Blood biomarkers can 

include whole blood, serum, and plasma. Whole blood contains all parts of blood, while serum is 

similar to plasma but excludes clotting factors [42]. Depending on the toxicant, plasma 

biomarkers sometimes show a more linear relationship between exposure and concentration 

changes than whole blood [43]. Blood biomarkers for some metals, like Cu, Mn, and Pb, are 

more suitable for long-term exposure than urinary biomarkers [43]-[45]. 

 Urinary biomarkers are often used as an alternative to blood since urine collection 

is less invasive [46]. With most metals, we assume that absorption and excretion of the metal in 

urine is proportional. For some metals, including Cd, urinary concentrations are more an 

indication of long-term body burden that short-term exposures [44], [45]. Important 

considerations of urinary biomarkers include the time period during which the sample was 

collected (i.e., spot samples, 24-hour urine samples, first morning void, etc.), as the 

concentrations of metals in urine fluctuate throughout the day [47]. Urine concentrations are 

often adjusted for differences in hydration status through the use of creatinine concentration or 

specific gravity, and each method introduces its own potential sources of error [48].  

2.1.3 Study objectives 

This study had four core objectives. The first was to quantify the concentrations of metals 

in environmental media from an e-waste recycling community in Thailand. The second was to 

measure and compare the concentrations of metals in human blood and urine samples for e-waste 

workers in Thailand and in Chile, as well as to compare worker and non-worker concentrations 

within the Thai study site. Third, this study related the concentrations of metals found in 
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environmental samples with those found in human biomarkers to form hypotheses about which 

routes and pathways of exposure may be the most relevant for occupationally- and non-

occupationally exposed populations.  

The fourth and final objective of this study was to employ the Method of Triads to 

evaluate which type of sample (surface wipe, air samples, blood/serum, or urine) is most 

accurate in measuring exposures to different metals from e-waste.  This method has been used 

previously in epidemiological studies of nutritional intake [49]-[57],  and, to a lesser degree, for 

environmental health hazards and health sciences [58]-[61]. The method of triads offers a means 

to evaluate the validity of three different estimates of exposure by assessing the interrelationships 

between these estimates [62]. The results of the method of triads are a valuable tool for selecting 

which among the many possible routes and pathways of exposure is the most valid for estimating 

the true, unknown dose [49], [63]. This type of sample selection is particularly relevant given the 

high expense of collecting and analyzing samples and can be employed by future researchers, 

policy makers, and public health practitioner to regulate and monitor environmental and human 

contamination from e-waste metals. A visual explanation of the method of triads is given in 

Figure 2-1, which is modified from Pereira et al, 2016 [49].  
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Figure 2-1 Conceptual diagram of the method of triads which is used to estimate the exposure 

based on correlations, r, between urine, wipe, and blood concentrations of a given metal, X. The 

validity coefficient, ρ, is the correlation between the measurement and the true, unknown 

exposure. Modified from Pereira et al, 2016. 

2.2 Methods 

2.2.1 Study site  

This study was approved by the Institutional Review Board of the University of Michigan 

(HUM0014562) in the United States, Mae Fah Luang University (MFU) in Thailand (REH-

59104), and the University of Chile – Santiago (Archive Project No 101-2017; Act No 45). 

Informed consent was obtained from all subjects prior to participation in any study procedures. 

Data for this study were collected from Thailand and Chile. Three exposure groups were 

selected for this study: 



25 

 

• An occupationally-exposed group of e-waste workers in Thailand.  

• An occupationally-exposed group of e-waste workers in Chile. 

• A non-occupationally-exposed “community group” was recruited in Thailand from the 

same e-waste community. This community group, which did not perform e-waste 

recycling, was hypothesized to be exposed to e-waste metals not through job-related 

activities, but through various environmental media in the community or in their 

own/community member’s homes where e-waste recycling occurs. 

The study site in Thailand was a rural community in the northeastern part of the country. 

Historically agrarian, the community has incorporated e-waste recycling as a major source of 

income to supplement incomes still largely centered around rice farming. Recycling occurs in 

living spaces rather than in formal work areas, and is an activity often performed collectively 

among adult family members. The community contains an unlined refuse dump in the middle of 

community rice fields where some e-waste activities, primarily burning e-waste and 

breaking/disposing of leaded-glass, occurs. Data for this study were collected in Thailand 

between June 2016 and August 2017. Using convenience sampling, we recruited e-waste 

recyclers as well as community members. On the recommendation of local collaborators, random 

sampling was determined to be neither feasible nor appropriate due to local culture and custom.  

Three communities in Chile participated in this study.  The first was comprised of several 

neighborhoods within the urban capital city, Santiago, Chile. The second community, Chillan, 

and the third community, Temuco, were more rural and less densely populated than Santiago. E-

waste workers were recruited during July and August of 2017 using convenience sampling 

methods. Informal recyclers are not listed on registries in Chile, and so random sampling 

techniques were not feasible.  
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2.2.2 Survey methods 

Surveys were conducted through in-person interviews by a native language 

(Thai/Spanish) speaking member of the research team. Information was collected on 

occupational history, e-waste activities, and demographic variables (See Appendix A). In 

Thailand, data collected on income was compared with the Thai Ministry of Labor’s minimum 

wage law of 6,100 Thai Baht per month (based on 305 Thai Baht per day and a 5-day work 

week), approximately equivalent to 190 USD [64]. In Chile, self-reported monthly income data 

was compared with the Chilean monthly minimum wage of 270,000 pesos, approximately 400 

USD [64].  

2.2.3 Environmental sample collection and analysis 

Several types of environmental samples were collected. In both countries, surface wipe 

and area air samples were collected. In Thailand, samples of rice, soil, surface water, personal, 

and environmental air samples were collected in addition. Details on the methods used to collect 

and analyze each sample type are below.  

2.2.3.1 Rice and soil 

Locally-grown rice samples were purchased from various parts of the research site in 

Thailand. A one-kg sample of rice was weighed and collected in Ziploc bags. No rice or other 

agricultural samples were collected from Chile as the study sites were primarily urban areas. 

Soil samples were collected from various parts of the community, including in yards of 

homes and in communal areas using EPA soil collection procedures [65].  One-kg samples were 

mixed using quartering method, debris removed, and stored in a Ziploc bag. 



27 

 

Rice and soil samples were stored in a cool, dry location prior to analysis. Samples were 

analyzed for concentration of 8 heavy metals associated with electronic waste recycling: Cd, Cu, 

Fe, Mn, Ni, Pb, and Zn. These metals were selected based on their prevalence in electronic 

products [66], [67]. The International Organization for Standardization (ISO)-certified Thailand 

Central Laboratory used microwave-assisted acid digestion followed by Atomic Absorption 

Spectrophotometry to analyze rice and soil samples [68]. 

For comparison purposes, three recommended reference levels were used to evaluate 

metal concentrations in rice, as no one reference type was available for all seven metals. The 

Maximum Level (ML) is set by the Joint Food and Agriculture Organization of the United 

Nations/World Health Organization (Joint FAO/WHO) as the maximum concentration of a 

substance permitted in a commodity for human consumption [69]-[71]. The Provisional 

Maximum Tolerable Daily Intake (PMTDI) is also set by the Joint FAO/WHO, and is the 

maximum amount of a contaminant that can be ingested per day by body weight; this 

recommendation accounts for toxicants that accumulate within the body [72], [73]. The 

Tolerable Upper Intake Limit (TUIL), set by the Food and Nutrition Board at the Institute of 

Medicine, National Academies of the United States, is the maximum daily amount of a chemical 

that can be ingested where no health effects are expected for most individuals [74]. Rice sample 

concentrations from Thailand were calculated to be comparable to the associated reference type. 

For TUIL and PMTDI, the dietary intake was calculated for rice samples using a 60 kg body 

weight and 0.28 kg rice consumed daily, based on values taken from a study on a northeastern 

Thailand population [75]. 
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2.2.3.2 Surface water 

Water samples were collected from two areas: 1 and > 1 km of the community refuse 

dump.  Samples were collected according to EPA surface water sampling protocol SESDPROC-

201-R3 [76]. Samples were collected in high-density polyethylene bottles and stored at 4°C prior 

to analysis. Water samples were analyzed at the Thailand Central Laboratory using ICP-MS [77]. 

Samples were tested for Cd, Cu, and Pb as these elements are found in electronics, are known to 

impact human health (Cu toxicity occurs at levels beyond those needed for biological 

functioning), and because of the existence of regulatory limits for Cu and Pb in drinking water to 

which our results could be compared [66], [67], [78].   

2.2.3.3 Wipe and air samples 

Wipe samples were collected in Thailand and in Chile using OSHA surface wipe 

sampling protocols [79]. A 10 cm x 10 cm template was used to collect surface dust from areas 

where food was prepared or consumed, as well as on work benches. Samples were stored in 100-

mL plastic centrifuge tubes and sealed with parafilm for storage.  

Three types of air samples were collected. Area samples were collected in Thailand and 

Chile by mounting the pump and cassette on or adjacent to the subject’s work station. 

Environmental samples were collected in Thailand by affixing the pump and cassette to a tripod 

and placing the tripod in a communal area, such as a community temple.  Environmental air 

samples were not collected during rain events.  Finally, personal breathing zones (PBZ) samples 

were collected in Thailand by attaching the pump to the subject and placing the filter cassette in 

the sampled individual’s breathing zone.  

All air samples were collected using SKC Airchek-52 Personal Air Sampling Pumps. 

Pumps were calibrated before and after sampling events using a DryCal to check flow rate. The 
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average of the pre- and post-sampling flow rates was used to later calculate the volume of air 

sampled. Samples were collected on 37-mm cassette filters with 0.8 μm cellulose ester 

membranes. The target air sampling time was 8-10 hours, or one work shift; however, subject 

activities, such as short working hours, occasionally limited sampling time. After collection, 

cassettes were sealed with parafilm and stored into a Ziplock bag.  

Wipe and air samples were stored in cool, dry conditions until analysis at Bureau Veritas 

Laboratory in Novi, Michigan using OSHA method 125G for Inductively Coupled Plasma (ICP) 

analysis [80]. Wipe and air samples were analyzed for 13 metals associated with e-waste 

recycling: antimony (Sb), Beryllium (Be), Cd, chromium (Cr), cobalt (Co), Cu, Fe, Pb, Mn, 

molybdenum (Mo), Ni, vanadium (V), and Zn.  These metals were selected because they are 

known to be included in electronic products, and thus might be present in air and wipe samples 

of e-waste recycling areas [67], [81].  One field blank was collected and analyzed for each day of 

sampling for both wipe and air samples. All samples were blank-corrected.  

2.2.4 Blood and serum biomarker collection and analysis 

Blood, serum, and urine samples were collected for analysis of eight metals: Aluminum 

(Al), Cd, Fe, Pb, Mn, Ni, Cu, and Zn. These metals were selected based on their prevalence in 

electronic products [66], [67]. Antecubital blood samples were collected from participants in a 4 

mL heparin through assistance from certified nurses in Thailand and Chile. Serum samples were 

centrifuged immediately after collection. Freshly voided urine samples were collected in 50 mL 

acid-washed propylene sampling containers. Immediately after collection, a transfer pipette was 

used to place the urine into two 15-mL Corning Tubes. All samples were stored with parafilm to 

prevent leakage.  
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Blood samples for heavy metal analysis were stored at -20℃ prior to analysis. Al, Fe, 

Mn, and Ni in whole blood and Cu and Zn in serum were measured using an Agilent 7500 ce 

Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Pb and Cd were measured in whole 

blood samples with Graphite Furnace-Atomic Absorption Spectroscopy (GF-AAS) using an 

Agilent 280Z AA spectrometer and a SpectrAA 880 Varain Spectrometer, respectively, using 

previously described methods [82]. For all blood analytes, blanks were measured at a rate of 5% 

of the total number of samples. All samples were blank-adjusted. The blood results for metal 

concentrations will be reported in μg/L, except for Pb which is reported as µg/dL. 

2.2.5 Urine biomarker collection and analysis 

Urine samples were stored in Vacutainer Plus Urinalysis tubes in a freezer at 4 °C. 

Samples were then frozen and transferred to the Thai Ministry of Public Health Central 

Laboratory in Bangkok for analysis. Concentrations of Al, Cu, Fe, Pb, Mn, and Zn, were 

measured with an Agilent 7500ce inductively coupled plasma mass spectrometer (ICP-MS) 

using previously described methods [83]. Samples were diluted by a factor of 10 using a 2% 

HNO 3 solution. Urinary Cd, Ni concentrations were determined via GF-AAS with a Agilent 

280Z AA spectrometer using methods detailed previously [82]. Samples were diluted by a factor 

of 10 using a solution of 0.1% Triton X -100, 0.2% (NH4)2HPO4. Two types of reference 

materials were used to ensure instrument and procedure performance. Blanks were used as a 

quality control measure at a rate of 10% of the total number of urine samples. All samples were 

blank-adjusted. Urine samples were creatinine-adjusted to account for individual metabolism and 

hydration differences. The concentrations of urinary biomarkers will be reported as µg of analyte 

per g creatinine (µg/g). 
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2.2.6 Data cleaning and summary statistics 

Non-detectable samples were assigned a value equal to the limit of detection (LOD) 

divided by 2 [84]. Left-censored distributions with more than 80% of the samples below the 

relevant limit of detection were not assigned new values, and data are presented as the maximum 

value and percent larger than the limit of detection rather than measures of central tendency and 

variance. Biomarkers with a high percentage of negative concentration results after blank-

adjustment were dropped from the dataset. The normality of distributions was assessed visually 

using histograms. Data with skewed distributions were log-transformed. A value of 1.0 was 

added to analytes with concentrations smaller than 1 unit prior to log-transformation of that data 

series. Outliers were examined by plotting the data. Outliers were not removed unless the 

inclusion of the outlier created a significant association that was absent if the outlier were to be 

removed.  

All statistical tests were performed using SPSS v.25 (IBM, Armonk, New York) and 

Stata v.15 (StataCorp, LLC, College Station, TX). Independent samples t-test (assuming unequal 

variance) were performed on continuous variables, while χ2 tests were performed on categorical 

variables.  Results were considered significant where p <0.05. Tests of significance using two-

sample t-tests were run between either the Thailand community group and the Thailand 

occupational group, or the two occupational groups (Thailand and Chile). No t-tests were run to 

compare the Thailand community exposure group and the Chile occupational exposure group 

because the objectives of the study were to compare occupational and community exposures 

(Thailand groups) and occupational groups in different settings (occupational groups).  
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2.2.7 Multiple linear regression 

A multiple linear regression was conducted using several of the demographic variables to 

evaluate the association between demographic and work variables and concentrations of metals 

in blood and urine. All demographic predictor variables for all three exposure groups were 

checked for collinearity using variance inflation factors. Regressions were run separately for 

each exposure group using a robust estimator of variance. 

2.2.8 Method of Triads 

The Method of Triads can be used to estimate the validity coefficient of three methods of 

measuring a given exposure (in this case, metals exposure). This study evaluated which type of 

sample was the most valid measure of the “true” exposure to a given metal for each of the three 

study exposure groups (Thailand occupational exposure group, Thailand community exposure 

group, and Chile occupational exposure group). It should be noted that the term “validity” is the 

term used by the method, but does not mathematically represent the most valid measure. Rather, 

it represents the measure that is most correlated with the other two measures. The true internal 

exposure cannot be directly measured, as even biomarkers contain error introduced by laboratory 

analysis, temporal misalignment with environmental exposures and health outcomes of interest, 

and within-subject variation in concentrations and measurement errors [85], and can instead only 

be estimated (see Figure 2-1). 

The Method of Triads was used to examine air samples (personal or area), wipe samples 

(work or food), and biomarkers (serum or urine). To be valid for use in the Method of Triads, 

correlation coefficients between variables must have a positive, and the measured exposures 

should be linearly associated  linear associated with the underlying (unknown) “true” exposure 
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[76]. Additionally, the errors for each measure must be uncorrelated. The estimated validity 

coefficient represents the correlation between the unknown “true” internal exposure and the 

measured exposures to the metals of interest. All viable combinations were tested. Equation 1 

below shows a sample calculation for the method of triads. The validity coefficients resulting 

from the method of triads should lie between 0 and 1, with coefficients closer to 1 representing a 

better measure of the true exposure.  

 

VCBTX = √(
𝑟𝐵𝑈∗𝑟𝐵𝑊

𝑟𝑈𝑊
)             VCUTX = √(

𝑟𝑈𝐵∗𝑟𝑈𝑊

𝑟𝐵𝑊
)          VCWTX = √(

𝑟𝐵𝑊∗𝑟𝑈𝑊

𝑟𝐵𝑈
)      (1) 

Where:  

VC = Validity coefficient;  

r = correlation corrected for within-subject variation;  

T is the true (unknown) value; 

B = Blood concentration of metal X; 

U= Urine concentration of metal X;  

W=Wipe concentration of metal X. 

2.3 Results 

2.3.1 Environmental media measurements 

2.3.1.1 Soil 

Ten soil samples were collected from the study site in Thailand (Table 2-1).  All ten soil 

samples had concentrations over the limit of detection for the seven metal analytes. The Dutch 

Target Value and Thailand non-e-waste levels are provided as reference values, and the results 

from soil concentrations of metals in other e-waste sites in Ghana and China are provided as 



34 

 

comparisons [10], [86]-[88]. The mean Pb concentration was 104.5 mg/kg, which is 1.25 times 

higher than the Dutch Target Value and 6 times higher than the results from the non-e-waste 

study in Thailand [86], [87].  The mean soil Pb concentrations was below that found in studies 

from e-waste sites in Ghana, but slightly above the mean measured in China (3257, 213.6 mg/kg, 

respectively) [10], [88]. The mean Cd concentration of 1.69 mg/kg was more than double the 

Dutch Target value and 56 times higher than the non-e-waste site in Thailand. The mean Cd 

concentration in soil from this study was higher than that reported in the study from China, but 

lower than the mean reported in Ghana. Cu (306.1) and Zn (366.0) had mean concentrations near 

the Dutch Target Value (36 and 14.1 mg/kg, respectively) and the study from a non-e-waste site 

in Thailand (14.1, 23.9 mg/kg, respectively). The results from the Accra, Ghana study reported a 

mean Cu concentration nearly 4 times higher than our study (1190 mg/kg), but lower mean Zn 

(274 mg/kg). Overall, the soil samples in this study showed metal concentrations that were 

higher than the control values, and in some cases comparable or worse than concentrations found 

in other studies of major e-waste sites in other areas of the globe. 

Table 2-1 Concentration of seven metals in soil (n=10) from Kalasin, Thailand with comparison 

values. 

Site Kalasin, Thailand  

(this study) 

Dutch Target 

Value [86] 

Thailand 

(non-e-waste) 

[87] 

Accra, Ghana 

[88] 

Guiyu, China 

[10] 

Sample size (N) 10  N/A 318  70 44 

 Mean (sd) (mg/kg) 

Cd  1.69 (3.5) 0.8 0.03 4.58 (0.5) 0.3 

Cu 306.1 (681.5) 36 14.1 1190 (174) - 

Fe 11989 (13155.0) - - - - 

Mn  1174 (3243.0) - - - 606.6 

Ni  13.96 (22.1) 35 13.5 - - 

Pb  104.5 (283.3) 85 17.5 3257 (254) 213.6 

Zn  366.0 (972.2) 140 23.9 274 (14.5) - 

2.3.1.2 Water 

Results for Cd, Cu, and Pb concentrations in water samples from Thailand are displayed 

in Table 2-2. Cd concentrations are compared with the US EPA’s Aquatic Life Ambient Water 
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Quality Criteria (AWQC), 0.02 mg/L. None of the community samples (>1 km from refuse 

dump where e-waste burning and some disassembly occurs) had concentrations of Cd over the 

LOD, while 57.1% of the refuse dump samples (<1 km from refuse dump) were above the LOD. 

All water samples had Cu concentrations greater than the LOD. The mean and max values of the 

refuse dump samples were higher than those of the community samples. All but one sample had 

values of Pb above the LOD, and again the concentrations of the refuse dump samples were 

higher on average than those of the community samples.  

Table 2-2 Concentration of three metals in environmental surface water from Kalasin, Thailand. 

 Ref Refuse dump (n=14)  Community (n=7)  

Metal (mg/L) N(%) > LOD Mean (SD) 

(mg/L) 

Max (mg/L) N(%) > LOD Mean (SD) 

(mg/L) 

Max (mg/L) 

Cd1 0.002 8 (57.1) 0.04 (0.1) 0.4 0 - - 

Cu2 1.30 14 (100) 0.9 (1.5) 5.8 7 (100) 0.02 (0.02) 0.1 

Pb2 0.02 13 (92.9) 0.3 (0.8) 3.0 7 (100) 0.01 (0.02) 0.1 
1US EPA Aquatic Life Ambient Water Quality Criteria [89]; 2US EPA LCR Action Level [78]. 

2.3.1.3 Environmental air 

Samples were collected at the refuse dump during e-waste burning events, however the 

results are not reported here as the samples quickly became over-loaded and were not able to be 

analyzed. As shown in Table 2-3, only five of the 13 metals measured in environmental air 

samples (n=23) had at least one sample concentration above the LOD. Of those, only one to three 

samples were above the LOD.  An average of 441.8 L of air was collected during sampling of 

environmental air at a flow rate of 2.0 L per minute. Sb had a mean concentration (n=3) of 0.003 

mg/m3, while Cu had a mean concentration (n=3) of 0.005 mg/m3. Both means are below the 

standards set by American Conference of Governmental Industrial Hygienists (ACGIH) 

Threshold Limit Values (TLVs) of 0.5 mg/m3 for Sb and 5 mg/m3 for occupational exposures 

[90]. Taken together, these results show that some exposures, like those at or near burning 

activities, present a larger threat of exposure than manual dismantling. 
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Table 2-3 Environmental air samples (n=23) limits of detection and summary statistics from 

Thailand. 

Metal1  Reference2  

(mg/m3) 

N (%) > LOD Mean (SD) 

(mg/m3) 

Max 

(mg/m3) 

Sb 0.5  3 (13.0) 0.003 (0.003) 0.02 

Be 0.002 1 (4.3) - 0.00006 

Cu 1.0 3 (13.0) 0.005 (0.01) 0.05 

Fe - 1 (4.3) - 0.003 

Pb 0.05 2 (8.7) - 0.01 
1Cd, Cr, Co, Mn, Mo, Ni, V, and Z had no samples above the LOD and are therefore not reported.  
2ACGIH TLV [90]. 

2.3.1.4 Rice 

Seventeen rice samples were collected from Thailand as shown in Table 2-4.  The number 

and percent (N(%)) above the limit of detection (LOD) are shown in the first column. The 

corresponding reference type and limit are given, as well as the N(%) of rice samples from 

Thailand above the reference limit for each metal. Although all 17 rice samples had values above 

the LOD for Cu, Fe, and Zn, none exceeded the corresponding reference limit.  Approximately 

20% of Cd and Pb samples exceeded the reference limit. These results suggest that workers and 

community members may be at risk of ingesting metals, perhaps from e-waste, in rice. 

Table 2-4 Concentration of seven metals in rice samples from Thailand (n=17) with calculated 

reference values.  

 Metal N (%) >LOD Max 

(mg/kg)  

Mean 

(mg/kg) 

 Reference Type Reference Limit 

Cd 8 (47.1) 1.1 0.1 ML1  0.2 mg/kg (MPL)  

Cu 17 (100) 20.6 4.34 PMTDI2  0.5 mg/kg bw/day  
Fe 17 (100) 149.9 36.9 PMTDI 0.8 mg/kg bw/day   
Mn 17 (100) 104.4 36.3 TUIL3 11 mg/d 

Ni 17 (100) 7.7 2.0 TUIL 1.0 mg/d  
Pb 13 (76.5) 1.7 0.3 ML 0.2 mg/kg 

Zn 17 (100) 34.1 29.8 PMTDI 2.1 mg/kg bw/d  
1ML = Maximum Level [69]; 2 PMTDI = Provisional Maximum Tolerable Daily Intake [109]; 3Tolerable Upper Intake Limit 

[74]. 

2.3.1.5 PBZ and area air 

The results from personal and area air sampling are shown in Table 2-5. In Thailand, 46 

PBZ and 27 area air samples were collected. In Chile, 15 area air samples were collected. Five 

participants from Chile and three from the Thailand occupational exposure group had repeat area 
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air samples. Table 2-5 presents the results for all air samples collected, including duplicates. 

Mean values were calculated using each set of the repeated samples separately. The means 

between the two sets of values were not significantly different when we used the first sample or 

the second, and so the first sample was used for all further statistical tests where duplicates were 

not considered.  

No samples from Thailand (PBZ or area) contained concentrations of Sb over the LOD, 

while 40% of samples from Chile had Sb concentrations over the LOD, with a mean 

concentration of 0.001 mg/m3. Cu was detected in 15.2% of PBZ and 25.9% of area air samples 

from Thailand, while only 1 sample in Chile had Cu concentrations above the LOD. Fe was 

detected in samples from Thailand (PBZ and area) and Chile. The means between the three 

groups of air samples were significantly different for Fe (p=0.007). Only one sample, in the PBZ 

group from Thailand, exceeded the LOD for Pb. Finally, Zn was detected in all sample types. 

Overall, the results show low concentrations of metals in PBZ and area air samples from this 

study, and all samples were below occupational TLV limits set by ACGIH [90]. Additionally, 

there was a high percentage of samples with analyte concentrations below the LOD. 
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Table 2-5 Concentration of 13 metals in personal breathing zone and area air samples from 

Thailand and Chile.  

  
Personal Breathing Zone Samples 

 
Area Air Samples                                                 

  Thailand  

(n=46; average volume: 0.7 m3) 

 
Thailand  

(n=27; average volume: 1.3 m3) 

 
Chile  

(n=15; average volume: 1.0 m3) 

 Metal 2Ref N (%) 

>LOD 

Mean 

(SD) 

(mg/m3) 

GM 

(GSD) 

Max 

(mg/m3) 

 
N (%) 

 > 

LOD 

Mean 

(SD) 

(mg/m3) 

GM 

(GSD) 

Max 
 

N (%) 

>LOD 

Mean 

(SD) 

(mg/m3) 

GM 

(GSD) 

Max 

(mg/m3) 

Sb 0.5 0 - - - 
 

0 - - - 
 

6 (40.0) 0.001 

(0.0002) 

- 0.002 

Cu1 1.0 7 (15.2) - - 0.004 
 

7 

(25.9) 

0.001 

(0.001) 

0.001 

(0.001) 

0.002 
 

1 (6.7) - - 0.002 

Fe1†* - 39 

(84.8) 

0.07 

(0.08) 

0.003 

(0.005) 

0.04 
 

27 

(100) 

0.004 

(0.01) 

0.004 

(0.004) 

0.04 
 

13 

(86.7) 

0.01 

(0.009) 

0.005 

(0.004) 

0.002 

Pb 0.05 0 - - - 
 

1 (3.7) - - 0.001 
 

0 - - - 

Zn1 - 7 (15.2) - - 0.06 
 

10 

(37.0) 

0.002 

(0.003) 

0.001 

(0.001) 

0.01 
 

2 (13.3) - - 0.07 

1A value of 1.0 was added to the concentrations prior to log transformation of the values. 2ACGIH TLV [90]. †Indicates the 

sample means are significantly different using ANOVA (p<0.05). *Indicates sample means are significantly different using two-

sample t-test (for same-country) (p<0.05). Metals with 0% >LOD not shown: Be, Cd, Cr, Co, Mn, Mo, Ni, V. 

 

2.3.1.6 Surface wipes 

Metal concentrations of food surface wipe samples collected in Thailand (n=37) and Chile 

(n=22) are displayed in Table 2-6. Mean Cu, Fe, and Zn concentrations were higher in Chile 

(approximately 5, 1.3, and 1.8 times higher, respectively) than in Thailand. However, the 

geometric means were similar for Cu, Fe, and Zn in Chile and Thailand. The maximum value for 

Fe in Chile was 18,000 µg/100 cm2. This was not removed as an outlier as we believe the value 

to be correct and its inclusion did not affect statistical significance (see Figure 2-2). We observed 

a significant difference (p<0.001) between Thailand and Chile in the geometric mean 

concentration of Fe. Overall, work wipe samples had higher concentrations in Chile compared to 

Thailand. 
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Table 2-6 Concentration of 13 metals in food surface wipe samples in Thailand and Chile. 

 
Thailand (n=37) 

 
 Chile (N=22) 

  Metal N (%) > 

LOD 

Mean (SD) 
(µg/100 cm2) 

Med 
(µg/100 

cm2) 

GM 

(GSD) 

Max 
(µg/100 

cm2)  

 
N (%) > 

LOD 

Mean (SD) 
(µg/100 cm2) 

Med 
(µg/100 

cm2) 

GM 

(GSD) 

Max 
(µg/100 

cm2) 

Cr 1 (2.9) - - - 13.0 
 

1 (4.5) - - - 45.0 

Cu1 14 (40.0) 16.4 (20.5) 7.1 1.1 (0.3) 110.0 
 

6 (27.3) 82.1 (204.2) 7.1 1.1 (0.7) 790.0 

Fe 35 (100) 773.1 (894.4) 350.0 2.6*** (0.6) 3500.0 
 

16 (72.7) 1012.0 (3817.7) 50.5 1.2*** (0.9) 18000.0 

Pb 5 (14.3) - 7.1 - 720.0 
 

4 (18.2) - 7.1 - 34.0 

Mn1 18 (51.4) 19.2 (21.2) 7.1 1.1 (0.3) 110.0 
 

3 (13.7) - 7.1 - 110.0 

Ni 1 (2.9) - 7.1 - 21.0 
 

1 (4.5) - 7.1 - 36.0 

Zn1 17 (48.6) 68.4 (150.8) 7.1 1.3 (0.6) 744.0 
 

9 (40.9) 122.2 (466.8) 7.1 1.2 (0.6) 2100.0 

***P<0.001. Sb, Be, Cd, Co, Mo, and V all had 0% of samples above the LOD and are therefore not reported. 

Similar to Table 2-6, Table 2-7 displays the concentrations of wipe samples from work 

surfaces in Thailand (n=23) and Chile (n=16). Chile again had higher mean concentrations of 

Cu, Fe, and Zn (approximately 15, 10.8, and 8.9 times higher, respectively) compared with 

Thailand. We also saw very large maximum values in Chile (for example, Fe had a maximum 

value of 34,000 µg/100 cm2). Chile had a significantly higher arithmetic mean and geometric 

mean concentrations of Pb compared to Thailand (approximately 95 and 1.9 times higher, 

respectively). Of note, the maximum Pb concentrations in Chile was 19,000 µg/100 cm2. In sum, 

Chile had higher concentrations of metals in surface wipe samples for both food and work areas 

compared with Thailand. 

Table 2-7 Concentration of 13 metals in work surface wipe samples in Thailand and Chile. 

 Thailand (n=23) 
 

 Chile (n=16) 

 Metal N (%) > 

LOD 
Mean (SD) 
(µg/100 cm2) 

Med 
(µg/100 

cm2) 

GM (GSD) Max 
(µg/100 

cm2) 

 
N (%) > 

LOD 
Mean (SD) 
(µg/100 cm2) 

Med 
(µg/100 

cm2) 

GM (GSD) Max 
(µg/100 

cm2) 

Sb 0 - - - - 
 

1 (5.9) - - - 32.0  

Cd 0 - - - - 
 

3 (17.6) - - - 13 .0 

Cr 0 - - - - 
 

2 (11.8) - - - 37.0 

Cu 7 (30.4) 140.8 (601.8) 7.1 1.1 (0.6) 2900.0 
 

11 (64.7) 2119.6 (4655.2) 63.0 2.1 (1.2) 18000.0 

Fe 23 (100) 853.3 (1299.7) 350.0 2.6 (0.5) 5100.0 
 

17 (100) 3822.5 (8180.4) 860.0 3.0 (0.8) 34000.0 

Pb 5 (21.7) 19.4** (31.3) 7.1 1.0*** (0.4) 140.0 
 

11 (64.7) 1847.9** (4732.5) 26.0 1.9*** (1.2) 19000.0   

Mn 10 (43.5) 17.6 (21.2) 7.1 1.1 (0.3) 76.0 
 

9 (52.9) 24.8 (26.8) 17.0 1.2 (0.7) 110.0 

Ni 2 (8.7) 8.0 (3.3) 7.1 0.9 (0.1) 21.0 
 

7 (41.2) 15.2 (12.7) 7.1 1.1 (0.3) 45.0 

Zn 6 (26.1) 40.4*** (70.4) 7.1 1.7* (0.6) 234.0 
 

15 (88.2) 359.9*** (473.1) 240.0 2.1* (0.8) 1900.0 
**p<0.01; ***p<0.001. Be, Co, Mo, and V all had 0% of samples above the LOD and were therefore not reported. 
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Significant differences between food and work surface wipe samples, as well as significant 

difference between the same type of wipe sample between countries, are displayed in Figure 2-2. 

Concentrations of some metals, including Pb, were notably higher in work surface samples than 

food areas; however, statistical tests could not be performed due to a large percentage of the 

samples below the limit of detection in food samples. These are therefore not reflected in Figure 

2-2. There were significant differences in Chile between work and surface area concentrations of 

Cu, Fe, and Zn (the three metals for which we were able to calculate a mean for in Chile’s food 

surface wipe samples); however, we did not see the same significant differences in wipe sample 

types in Thailand. A non-significant p-value (p=0.07) is shown in Figure 2-2a for work samples 

because it is very near the alpha-value of 0.05 and may be important to consider in future studies.
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Figure 2-2 Results of independent samples t-test between arithmetic and geometric means of 

metal concentrations in surface wipe samples. 
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2.3.2 Demographic results 

From our Thai research community, we recruited 130 e-waste workers and 53 community 

members. From Chile, we recruited 95 e-waste workers. Demographics for each of the three 

groups are shown in Table 2-8. There was a significant difference (p<0.001) in residence time 

between the three groups, with the Thai occupational group residing in the same community for 

the longest period of time (average of 51.9 years) and the Chilean occupational group the 

shortest time (14.4 years). There was also a significant difference in the average number of years 

working in e-waste (t-test between occupational groups, p<0.005) with Thailand having a mean 

of 16.8 years and Chile having a mean of 12.4 years. Sex was also significantly different 

between the three comparison groups, with the Chilean occupational group having the highest 

proportion of males (73.1%), and the Thai community group the smallest (25.0%). 

The incomes for each country were compared to the minimum wage. The income categories 

on the survey did not match up exactly with minimum wage levels, and so a few participants in 

each country may incorrectly be categorized as below minimum wage. Finally, questions about 

cigarette use were considered culturally insensitive in at least one of our sample groups, and so 

these questions were omitted from our analysis. 
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Table 2-8 Demographic data for the three exposure populations (Thailand community, Thailand 

occupational, and Chile Occupational). 

 
Thailand Community 

 
Thailand Occupational 

 
Chile Occupational 

 Variable N Mean (sd)  
 

N Mean (sd)  
 

N Mean (sd)  

Age (years) 44 49.3 (9.5) 
 

130 51.2 (4.9) 
 

93 46.8 (14.3) 

Residence time (ys) 14 43.3 (10.5) 
 

125 51.9 (81.5) 
 

93 14.4 (15.1)*** 

E-waste time (years) NA NA 
 

120 16.8 (11.9) 
 

92 12.4 (11.8)** 

BMI (kg/m2) 28  23.5 (4.0) 
 

69 24.9 (4.2) 
 

93 30.1 (5.8)** 

         

   N N (%)  
 

N N (%)  
 

N N (%)  

Sex - Male 53 12 (22.6)*** 
 

130 71 (54.6)*** 
 

93 68 (73.1)*** 

Marital status - Single  42 3 (5.7)** 
 

130 9 (6.9)** 
 

87 19 (21.8)** 

          -Married   29 (54.7) 
 

  115 (88.5) 
 

  58 (66.7) 

       -Divorced   2 (3.8) 
 

  2 (1.5) 
 

  1 (1.1) 

       -Cohabitating   3 (5.7) 
 

  0 
 

  3 (3.4) 

       -Widowed   5 (9.4) 
 

  4 (3.1) 
 

  3 (3.4) 

       -Separated   0 
 

  0 
 

  3 (3.4) 

Education – None  39 0*** 
 

127 7 (5.5)*** 
 

 93 7 (7.5)*** 

       -Primary   32 (82.1) 
 

  57 (44.9) 
 

  30 (32.3) 

       -Secondary   7 (18.0) 
 

  48 (37.8) 
 

  41 (44.1) 

       -Some college   - 
 

  15 (11.8) 
 

  15 (16.1) 

Income > min wage 41 9 (17.0)*** 
 

130 49 (37.7)*** 
 

87 55 (63.2)*** 

Second-hand smoke 27 17 (32.1) 
 

36 10 (7.7) 
 

93 31 (33.3) 
**p<0.01;  ***p<0.001  

2.3.3 Biomarker results  

Results of the biomarker analyses are shown in Table 2-9. From the Thailand Community 

exposure group, 46 participants provided blood/serum samples and 47 participants provided 

urine samples. From Thailand’s Occupational exposure group, 105 blood/serum samples and 116 

urine samples were collected. Finally, from Chile’s Occupational exposure group, a total of 86 

blood/serum and 82 urine samples were collected. Blood Al and urinary Mn were dropped from 

the Thai dataset and analysis due to a high blank concentration, which resulted in negative blank-

adjusted values. The Thailand community exposure group had a higher concentration of urinary 

Cd than the Thailand occupational reference group. All other biomarkers had a higher mean 

concentration in the occupational exposure group compared to the community group in Thailand.  

From the Chilean occupational exposure group, several biomarkers, including blood Al, Fe, Ni 

and serum Cu, Zn were not analyzed due to data quality issues at the analyzing laboratory in 
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Thailand. The Chile exposure group had 0.6 times lower mean concentrations of blood Pb, and 

0.4 times lower concentration of blood Mn but 1.1 times higher blood Cd concentration 

compared with the Thai occupational group.  

Table 2-9 Concentrations of metals in blood and urine of the occupational exposure group in 

Chile and Thailand, and in the community exposure group in Thailand. 

Exposure 

Group 

Blood & Serum   Urine (creatinine adjusted) 

Thailand – Community (n=46)  (n=47) 

 LOD n(%)>LO

D 

Mean (SD) 

(µg/L) 

GM (GSD) Max 

(µg/L) 

LOD n(%)>LO

D 

Mean (SD) 

(µg/g) 

GM (GSD) Max 

(µg/g) 

Al1 - 46 (100) - - - 0.456 47 (95.7) 36.1 (59.7) 2.6 (1.6) 265.3 

Cd3 1.0 14 (30.4) 0.9 (0.4) 0.6 (0.2) 2.0 0.004 47 (100) 0.5 (0.8) 0.3 (0.4) 4.7 

Fe3 - 46 (100) 420239.3 

(133922.8) 

NA 686371.0 0.093 47 (100) 54.7 (101.7) 2.5 (2.0) 550.3 

Pb2,3 3.0 8 (17.4) - - 5.4 0.015 32 (68.1) 3.1 (6.6) 0.7 (1.0) 38.5 

Mn 5.0 46 (100) 13.8 (6.6) 2.5 (0.5) 31.8 0.005 20 (42.6) - - - 

Ni3 0.537 17 (37.0) - - - 0.072 45 (95.7) 2.9 (4.6) 01.0 (0.8) 27.1 

Serum           

Cu 1.000 46 (100) 1049.8 (241.3) 6.9 (0.2) 1842.6 0.013 16 (34.0) 12.6 (12.2) 2.2 (0.9) 62.2 

Zn  1.252 46 (100) 806.6 (263.9) 6.7 (0.3) 1499.1 0.151 42 (89.4) 363.9 (300.4) 5.4 (1.5) 1464.8 

     

Thailand – Occupational (n=105) (n=116)    

 LOD n(%)>LO

D  

Mean (SD) 

(µg/L) 

GM (GSD) Max 

(µg/L) 

LOD n(%)>LO

D 

Mean (SD) 

(µg/g) 

GM (GSD) Max 

(µg/g) 

Al1 NA 105 (100) - - -- 0.456 116 (100) 52.51 (54.8) 3.7 (0.9) 436.0 

Cd 1.0 29 (27.6) 1.0 (0.5) 0.7 (0.2) 3.10 1.000 2 (1.7) - - 0.9 

Fe3 - 105 (100) 579670.0 

(81686.6) 

- 769171.0 - 116 (100) 106.2 (134.3) 4.2 (1.0) 842.2 

Pb2,3 3.0 64 (61.0) 3.8 (2.0) 1.2 (0.5) 12.4 0.005 115 (99.1) 7.5 (7.4) 1.8 (0.8) 41.4 

Mn 3.0 105 (100) 15.9 (9.5) 2.7 (0.4) 86.2 0.537 - - - - 

Ni3,4 0.537 105 (100) - - - 0.229 116 (100) 5.0 (3.8) 1.6 (0.6) 19.4 

Serum           

Cu5 1.000 105 (100) 1095.1 (295.0) 7.0 (0.2) 2740.5 0.693 116 (100) 23.6 (38.8) 2.8 (0.8) 370.3 

Zn 1.252 105 (100) 1044.2 (295.9) 6.9 (0.2) 2844.5 0.590 116 (100) 671.1 (501.2) 6.3 (0.8) 3328.8 

       

Chile – Occupational (n=86)   (n=82)    

 LOD n(%)>LO

D 

Mean (SD) 

(µg/L) 

GM (GSD) Max 

(µg/L)  

LOD n(%)>LO

D 

Mean (SD) 

(µg/g) 

GM (GSD) Max 

(µg/g) 

Al1 - - - - - - - - -  

Cd 1.0 85 (98.8) 1.1 (0.8) 0.7 (0.3) 4.6 0.004 82 (100) 0.3 (0.2)  0.2 (0.2) 1.2 

Fe3 - - - - - 0.093 64 (78.0) 7.1 (8.1) 1.6 (1.2) 49.5 

Pb2,3 3.0 81 (94.1) 2.2 (1.7) 0.5 (0.7) 11.3 0.015 72 (87.8) 1.4 (1.5) 0.7 (0.5) 9.7 

Mn 5.0 86 (100) 6.9 (2.9) 1.9 (0.4) 15.5 0.005 82 (100) 1.4 (1.1) 0.1 (0.7) 5.7 

Ni3 - - - - - 0.072 78 (95.1) 2.8 (5.1) 1.0 (0.7) 38.6 

Serum           

Cu  - - - - - 0.013 82 (100) 9.6 (6.7) 2.1 (0.5) 51.6 

Zn - - - - - 0.151 82 (100) 257.2 (189.1) 5.3 (0.8) 948.7 
1One outlier removed (1336.3 µg/g) because inclusion resulted in a significant t-test and more than doubled the standard 

deviation.  2Shown in μg/dL. 3A value of 1.0 was added to the urine concentrations (µg/g) prior to log transformation of the 

values. 4Six negative values from the Thai occupational group removed. 5Two negative values from the urine from Thai 

occupational group removed NA indicates cells that are empty due to la normally-distributed sample.  
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Figure 2-3 Box plots showing statistically significant relationships between exposure groups in 

mean concentration of blood and serum biomarkers. 

Significant differences in blood and serum biomarkers are shown in Error! Reference 

source not found.. There was a significant difference between the mean concentrations in 

Thailand and Chile occupational groups for blood Pb and Mn, as well as the geometric mean 

concentrations of blood Pb and Mn. Between the two Thailand exposure groups, there was a 

significant difference in the arithmetic concentrations of blood Fe and serum Zn, as well as the 

geometric mean of serum Zn. Some differences could not be used for tests of significance due to 

a low % of samples <LOD. Therefore, some important differences, like the difference in blood 
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Pb concentrations between the Thai occupational and community exposure groups, are not 

reflected in the significant relationships found in Error! Reference source not found.. 

Significant differences between the three exposure groups were tested among urinary 

biomarkers through the same t-test methods described for Error! Reference source not found.. 

The results are displayed in the boxplots of  

Figure 2-4.  Between the Thailand and Chile occupational exposure groups, there was a 

significant difference in the arithmetic and geometric mean concentrations of urinary Cu, Fe, Pb, 

Zn, and Ni. Between the Thailand community and occupational exposure groups, there were also 

significant differences between the arithmetic and geometric mean concentrations of urinary Cu, 

Fe, Pb, Zn, and Ni. There were no significant differences between the two groups for the 

arithmetic and geometric mean urinary Al concentrations. There were no significant differences 

between the two Thailand exposure groups nor the two occupational exposure groups with 

respect to urinary Cd because the Thailand occupational exposure groups did not have enough 

samples above the limit of detection to calculate arithmetic or geometric mean concentrations. 

Table 2-10 Available reference values for metal biomarker concentrations in adults. 

Metal Whole Blood (µg/L) Urine (µg/g) 

Al N/A N/A 

Cd 5.01 5.01 

Fe N/A N/A 

Pb 30.01 µg/dL 0.52 

Mn 14-163 N/A 

Ni 1.13 4.43 

 Serum (µg/L)  

Cu 151.64 253 

Zn N/A 11003 

 1ACGIH BEI [90]; 3NHANES [126]; 4CHMS [92]; 5ATSDR [93];  

Compared with the community exposure group in Thailand and the occupational exposure 

group in Chile, the occupational exposure group in Thailand had higher concentrations of all 

biomarkers except for blood Cd, for which Chile had the highest mean concentration, and urinary 

Cd, for which the Thai community group had the highest mean concentration. Available 
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reference values are shown in Table 2-10. All of the exposure groups had mean and maximum 

concentrations below these BEI values. The maximum value for both occupational exposure 

groups did not exceed the National Institute of Occupational Safety and Health (NIOSH)’s 

reference value of 30.0 µg/dL for blood Pb [90], but did exceed the CDC’s blood lead reference 

value of 10.0 µg/dL for healthy adults [94]. Compared with the National Health and Nutrition 

Examination Survey (NHANES) study group of healthy adults, where the average urinary Pb 

concentration was 0.5 µg/g, the Thai community group was 6.2 times higher, the Thai 

occupational group was 15 times higher, and the Chilean occupational group was 2.8 times 

higher [91].  
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Figure 2-4 Box plots showing statistically significant relationships between exposure groups in 

mean concentration of urine biomarkers. 
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2.3.4 Regression model results 

Results of regressions run for each exposure group with the outcome variable as a biomarker 

and with demographic variables as co-variates are displayed in Figure 2-5. Covariates with a 

significant positive coefficient are shown in green, and significant negative coefficients are 

shown in red. Marginally significant (0.05<p<0.059) coefficients are shown in lighter shades, as 

these have the potential to become significant if the model were to be adjusted. For example, 

secondary education was a marginally significant (p=0.051) predictor for urinary log Fe among 

the Thailand occupational exposure group and became significant (p=0.049) when the minimum 

wage income predictor was removed. Secondary education was a marginally significant 

(p=0.052) predictor for urinary log Pb and became significant (p=0.047) when the predictor 

variables sex, and age were removed from the model.  

Outcome variable Blood Serum Urine 

Metal Cd* Fe Pb* Mn* Cu* Zn* Al* Cd* Cu* Fe* Pb* Mn* Ni* Zn* 

Exposure group1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

Age                                           

BMI                                           

Sex - Female                                           

Minimum wage                                           

Education - primary                                           

Education - secondary                                           

Education – some college                                           

*Indicates the log-transformed data was used. 1Group 0 = Thailand community; Group 1 = Thailand occupational; Group 2 = 

Chile occupational. 

 

Figure 2-5 Selected demographic variables and their strengths of association with biomarker 

outcome variables.  

Significant (p<0.05) positive coefficient 

Significant (0.05<p<0.059) positive coefficient 

Significant (p<0.05) negative coefficient 

Significant (0.05<p<0.059) negative coefficient 

Exposure group is missing the indicated biomarker, or the number of uncensored samples were <20%. 
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The heat map in Figure 2-5 shows a trend for female participants to have higher 

concentrations of log metals in all but log Fe in models where sex was a significant predictor. 

Education was a significant predictor in several models; however, there was inconsistency in the 

direction of the coefficient. The numerical value of significant coefficients for the regressions 

shown in the heat map are displayed in Error! Reference source not found..  

Table 2-11 Coefficients for significant demographic variables in regression models for the three 

exposure groups. 

Exposure 

Group 

Biomarker Constant Age BMI Sex -

Female 

Minimum 

wage 

Education – 

1o 

Education – 

2o 

Education – 

SC 

Adj 

R2 

 Blood          

Thai Occup     Log Cd 1.162* 0.003 -0.005 0.046 -0.388** -1.03** -0.908* -0.798* 0.166 

Thai Comm     Log Mn 1.508 -0.008 0.029 0.812* 0.153 NA -0.254 NA 0.149 

Thai Occup      Log Mn 1.582 0.418* -0.015 0.079 0.116 0.106 0.294 0.341 0.078 

 Serum          

Chile Occup     Log Cu 6.854 -0.002 0.006 0.129* -0.022 NA -0.025 NA 0.086 

 Urine          

Chile Occup     Log Al 5.751*** -0.015 -0.053* 0.459* -0.516 NA -0.414 NA 0.117 

Thai Occup      Log Cd 0.533** 0.004* -0.008 0.125** -0.123** -0.221 -0.202 -0.177 0.272 

Thai Occup      Log Cu 1.076* 0.006 0.022 0.317* -0.161 0.158 -0.067 0.052 0.152 

Thai Comm      Log Mn 4.65 -0.030 -0.123 0.264 1.153 NA -2.266* NA 0.015 

Thai Occup      Log Mn -1.577* 0.012* 0.001 0.504** -0.133 1.157* 0.982* 0.578 0.256 

Thai Occup      Log Ni -4.643** 0.023 0.032 0.833* -0.375 3.110** 2.623* 1.930 0.243 

Thai Comm      Log Zn 4.851* 0.002 0.026 -0.2994 0.170 NA -1.013* NA 0.115 

Thai Comm = Thailand community; Thai Occup = Thailand occupational; Chile Occup = Chile occupational. SC = Some 

college. NA: Only 2 categories represented by exposure group. *p<0.05, **p<0.01, ***p<0.001. 

 

 Two models were further developed to determine which, if any, demographic variables 

explained differences in blood and urine concentrations observed among the Chile occupational 

group. Results are displayed in Tables B-1 and B-2 of Appendix B. Differences in log blood Cd 

concentrations were significantly negatively correlated with income above the minimum wage, 

and higher levels of education. Urinary concentrations of log Cd were significantly negatively 

correlated with income over the minimum wage, and significantly positively correlated with 

being female and age. 

Three models were also developed for the three biomarkers with significant predictors 

among the non-occupational exposure group in Thailand. The results can be found in Tables B3-

B5 of Appendix B. Female sex was a positive significant predictor of log blood Mn, and having 
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a secondary education was marginally significant for a negative association with log urine Mn. 

In model 2 of Table B-4, education was significant but becomes less significant when minimum 

wage was removed from the model. Because the unadjusted coefficient for education changed by 

11% between models 2 and 3, there was evidence for potential confounding of the effect of 

education on urinary log Mn concentrations by wage. Finally, Table B-5 shows model 

development for the log urinary Zn concentrations among the Thai community group. Model 3 

shows that both having a secondary education or higher and being female were negatively 

significantly associated with log urinary Zn concentrations.   

2.3.5 Method of Triads results 

By definition, three measures of exposure are needed in order to apply the Method of Triads. 

Error! Reference source not found. shows the counts for the number of samples collected by 

sample type for each of the three exposure groups. Due to logistical and financial limitations, 

there was not a wipe, biomarker, and air sample collected for every study participant. The bottom 

row, “3 or more”, is the number of participants for which three or more sample types were 

available and is thus the number of participants in each group eligible to be included in the 

Method of Triads analysis. 
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Table 2-12 Sample counts by exposure group for use in method of triads analysis. Note that 3 or 

more sample types for an individual participant are needed to apply the method of triads. 

Samples Thailand –  

Community 

Thailand –  

Occupational 

Chile –  

Occupational  

Participants (Total) 47 130 95 

Blood 46 (97.9) 105 (80.8) 82 (86.3) 

Urine 47 (100) 116 (89.2) 86 (90.5) 

Wipe - Food 18 (38.3) 43 (33.1) 45 (47.4) 

Wipe – Work 17 (36.2) 41 (31.5) 43 (45.3) 

Air – Personal 0 32 (24.6) 0 

Air – Area 11 (23.4) 7 (5.4) 35 (36.8) 

3 or more sample types 24 (51.1) 45 (34.6) 53 (55.8) 

 

All two-way Spearman correlation coefficients are listed in Table B-6 of Appendix B, which 

also includes the sample size for each statistical test. The results of the Method of Triads are 

displayed in Table 2-13. Seventeen percent of validity coefficients were greater than one (e.g., 

Heywood cases [95]) and were dropped. Of 110 sample combinations for which Spearman 

correlation coefficients were calculated, 40% had negative correlation coefficients and were 

dropped from further use in the Method of Triads calculations (See Appendix B, Table B-6). 

Between work wipe, urine, and serum samples, work wipe samples had the highest validity. 

Similarly, for food wipe, urine, and serum samples, the most valid estimate of Cu exposure was 

food wipe samples. Between food wipe, work wipe, and serum samples, food wipes had the 

highest validity for Cu. Between food wipe, work wipe, and urine samples, work wipes had the 

highest validity for Cu. When comparing food wipe, area air, and urine samples, urine was the 

most valid measure of exposure for Zn. Out of six sets of three validity coefficients, food wipes 

had the highest validity coefficient in 50% of cases, work wipes in 33% of cases, urine in 17% of 

cases, and serum and area air samples in 0% of cases. 
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Table 2-13 Spearman correlation coefficients between exposure and biomarker samples and the 

validity coefficient determined by the method of triads for electronic waste workers stratified by 

exposure group.  

Metal Exp Group ρ1  ρ2 ρ3 VC1TX VC2TX VC3TX 

  Work*Serum Work*Urine Serum*Urine Work wipe Serum Urine 

Cu Thai Comm 0.218 0.470 0.193 0.729 0.299 0.645 

Zn Thai Comm 0.030 0.300 0.626 0.120 0.250 H 

Zn Thai Occup 0.010 0.100 0.152 0.081 0.123 H 

  Food*Serum Food*Urine Serum*Urine Food wipe Serum Urine 

Cu Thai Comm 0.553 0.255 0.193 0.855 0.646 0.298 

Zn Thai Comm 0.048 0.017 0.626 0.015 H 0.471 

  Food*Serum Work*Serum Food*Work Food wipe Work wipe Serum 

Cu Thai Comm 0.553 0.218 0.284 0.849 0.335 0.652 

Zn Thai Comm 0.048 0.030 0.661 H 0.064 0.047 

  Food*Urine Work*Urine Food*Work Food wipe Work wipe Urine 

Cu Thai Comm 0.255 0.470 0.284 0.393 0.723 0.650 

Mn Thai Occup 0.001 0.203 0.042 0.014 H 0.070 

Mn Chile Occup 0.052 0.002 0.012 0.559 0.021 0.029 

Zn Thai Comm 0.017 0.300 0.661 0.088 0.194 H 

  Food*Area Air Food*Urine Area Air*Urine Food wipe Area Air Urine 

Zn Chile Occup 0.11 0.08 0.19 0.15 0.34 0.55 

Thai Comm = Thailand community; Thai Occup = Thailand occupational; Chile Occup = Chile occupational. Food = food 

surface wipe sample; Work = work surface wipe sample; r denotes the correlation between two sample types. VC = the 

coefficient of variation corresponding to the sample type listed directly above the value in the table. TX = the “true” 

concentration of metal X, corresponding with the metal listed in the left-most column. H = Heywood case. 1Serum; otherwise 

whole blood biomarker. 

2.4 Discussion 

This study examined the concentration of metals in environmental media (soil, rice, 

water, air, surface dust wipes) and human blood and urine biomarkers. The Method of Triads 

was then used to determine which type of sample was the best estimate of the true, unknown 

exposure. This study is novel in several ways. First, it is the first study to compare biomarker 

concentrations in e-waste worker groups from two geographically and culturally distinct 

locations. Secondly, the extensive sampling of media from the Thai community, including 

environmental and human groups, allows for a deeper understanding of which routes of exposure 

are important for human health. Finally, the application of the Method of Triads to samples of 

environmental and biological media is innovative for assisting future sample media selection.  
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2.4.1 Environmental samples 

Some samples of rice, water, and soil all had concentrations of Pb above limits designed 

to protect human health. This indicates that environmental exposures to Pb from e-waste are a 

concern to workers and non-workers in the Thai community where research was conducted. 

2.4.1.1 Soil 

Several environmental samples had elevated concentrations of metals. As demonstrated 

in Table 2-1, the soil samples from the Thai research site had mean concentrations of Cd, Cu, Pb, 

and Zn that exceeded the recommended reference values, with only Ni having a lower value than 

the Dutch Target Value.  When compared to the concentrations of metals from studies in other e-

waste sites in Ghana and in China [88] (Table 2-1), the soil samples from the Thai study site had 

lower concentrations of Cd, Cu, and Pb compared to Ghana, but higher levels of Zn.  The Thai 

study site had higher levels of Cd and Mn than were observed in China, but lower levels of Pb. 

Of particular concern, due to their impact on human and ecological health, are Pb and Cd. Cd can 

enter into paddy soil and rice through several routes in addition to e-waste recycling, including 

application of Cd-containing fungicides and fertilizers, and so e-waste recycling may not be the 

only or even the primary source of soil Cd [96]. The concentrations of metals in the soil of the 

Thai research site, particularly lead, are concerning. 

2.4.1.2 Rice  

The elevated concentration of some metals in soil was reflected in rice samples, with 

17.5% of rice samples having Cd levels over the reference limit, and 23.5% of samples 

exceeding the Pb reference limit [69]. Fu et al., 2008 examining rice in an e-waste site in China 

found a mean concentration of Cd double that measured in our study [97]. The same study 
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reported a mean Pb concentration nearly ten times higher than our results. A second study of rice 

by Zhang et al., 2013 from an e-waste site in China reported higher mean concentrations of Cd 

but lower concentrations of Pb compared to our study (0.44 mg/kg, 0.2 mg/kg, respectively) 

[28]. Several rice samples in this study exceeded the TUIL for Mn and Ni [71]. The 

concentrations for these metals exceeded those found in  Fu et al., 2008, which reported a mean 

concentration of Mn as 28.64 mg/kg and Ni as 0.76 mg/kg [97]. Zheng et al, 2013 [28] also 

reported a lower mean concentration of Ni compared with our results (1.33 mg/kg). The results 

suggest that rice grown near the Thai study site is at risk of metal contamination. Although Cd 

concentrations appear to be lower than other e-waste areas, Pb, Ni, and Mn concentrations were 

similar or higher than found in comparable studies from e-waste sites in China. Workers and 

community members are exposed to metals through ingestion of locally-grown agricultural 

products.  

2.4.1.3 Surface water 

Mean (0.04 mg/L) and maximum (0.4 mg/L) values for Cd in surface water were above 

the EPA AWQC level; however, only 57.1% of samples were above the LOD. No measurements 

from the community water samples (>1 km from e-waste burn site) had Cd concentrations above 

the LOD. These concentrations are less than those reported in a study of water in two surface 

ponds near an e-waste site in China (1.66 and 1.59 mg/L) [31]. The same study had mean Cu 

concentrations (31.1 and 55.1 mg/L) well above the mean Cu concentration found in this study 

(0.9 mg/L in refuse dump samples). However, this study had a higher mean Pb concentration in 

the refuse dump samples (0.3 mg/L) compared with Wu et al, 2015 (0.10 and 0.12 mg/L) [31]. 

The mean concentration of Pb in refuse dump samples is 15 times larger than that of the 

reference value of 0.02 mg/L set by the US EPA lead and copper rule for drinking water. The 
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results show that surface water samples near the refuse dump, where e-waste is burned and 

occasionally recycled, had higher mean concentrations of Cd, Cu, and Pb compared to samples 

taken more than 1 km from the e-waste site. The elevated Pb concentration might be in part 

explained by the recycling of CRT glass which occurs at the refuse dump. These results suggest 

that e-waste recycling activities at the dump site are contaminating the water with metals. 

2.4.1.4 Environmental air 

It is possible that dismantling activities create localized air pollution rather than 

exposures that would be found in community areas away from e-waste recycling activities. The 

fact that our air samples collected during burning events at the e-waste refuse dump were 

overloaded suggests that workers near the burning plumes in the refuse site may have higher 

exposures than those described in our results.  Exposures to smoke plumes from e-waste presents 

an occupational and public health hazard. 

2.4.1.5 PBZ and area air 

Collection of air samples in the direct vicinity of e-waste dismantling activity, including 

PBZ and area air samples, revealed detectable concentrations of Cu, Fe, and Zn in both Thailand 

and Chile. Sb concentrations above the LOD were found in 40% of samples in Chile. More 

communications technology e-waste was observed in Chile, and Sb is a component of the circuit 

boards used in communications devices [98]. A study examining the concentration of metals in 

PBZ samples from the formal sector had a substantially higher geometric mean concentration of 

Fe (66.0) compared to the PBZ samples from Thailand (0.003). Between the PBZ and area air 

samples in Thailand, Fe was the only metal for which means could be compared using a t-test, 

for which the means were significantly different (p<0.05). Chile had a higher mean concentration 

of Fe (0.7 mg/m3) in area samples compared to Thailand (0.1 mg/m3). The concentration was 
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higher in the PBZ compared to the area air sample. These results are consistent with 

methodological studies that report an increase in trace element concentrations in PBZ samples 

over static samples [99], [100]. When feasible, PBZ sampling techniques should be used to 

measure e-waste worker exposure to metals. Our results showed that exposures to metals 

suspended in air during dismantling were below concentrations recommended to protect human 

health. 

2.4.1.6 Surface wipe 

Food wipe samples in Thailand had a higher mean concentration of Cu and lower mean 

concentrations of Fe and Zn compared to Chile. The maximum concentration of Pb in both 

countries exceeded the EPA’s dust sample standards for houses (Floors: 4.3 µg/100 cm2; 

windowsills: 26.9 µg/100 cm2). There are no other studies of food surface areas in e-waste areas 

with which to compare these results. Among work wipe samples, Thailand had higher mean 

concentrations for all metals for which there are comparable values (Cu, Fe, Pb, Mn, Ni, and Zn). 

Chile had significantly higher arithmetic mean concentrations in work wipe samples for all three 

metals for which there were comparable means in food samples (Cu, Fe, Zn), while Thailand did 

not show any significant differences between food and work wipe mean concentrations. Other 

studies from e-waste shops in China have also found concentrations of Cd, Cu, Pb, Ni and Zn in 

dust that vary by associated task and location [11], [28], [101]. These results suggest that hygiene 

of surfaces may play an important role in prevention of both occupational and non-occupational 

exposures from informal e-waste recycling. 
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2.4.2 Biomarkers 

The results for biomarkers for the two occupational groups showed that the mean 

concentrations for metals were below the BEI reference levels set by the ACGIH [90]. However, 

the maximum values for Pb exceeded the BEI reference value for urine. Urinary Pb is useful for 

long-term occupational exposure monitoring as it reflects Pb excreted from blood, bones, and 

other organs through filtration from the kidney [43]. Studies measuring blood Pb concentrations 

in other e-waste populations from China, Vietnam, Ghana, and Sweden reported higher levels in 

workers than our study results in Thailand and Chile [13], [36]-[38], [102].  

In addition to the toxic metals Pb and Cd, essential elements were examined in this study. 

Essential elements are different from toxic elements in that the body relies upon small 

concentrations for normal metabolic functioning. Serum concentrations of Cu in the Thailand 

exposure groups were similar to those found in other studies of non-exposed populations (1516 

µg/L) [93]. Reference levels for serum Zn were not available. Compared to reference values 

based on a healthy Canadian population (from the Canadian Health Measures Survey (CHMS)), 

Thailand’s two exposure groups had blood Mn concentrations (15.9 µg/L for the occupational 

exposure group and 13.8 µg/L for the community exposure group) within the reference range of 

14-16 µg/L, while Chile was below this value (6.9 µg/L) [92]. Blood Fe reference values were 

not found in the literature. Urinary Cu, Ni, and Zn concentrations were near or below the 

reference values in the Canadian population.  

Though mean concentrations of biomarkers were near reference ranges for essential 

elements and below limits for toxic elements, there is evidence that occupational exposures in 

Thailand to metals from e-waste are higher than those in Chile and in the non-occupational group 

based on biomarker concentrations. Although several biomarkers in the Thai community group 
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were higher than those in the Chile occupational group, including blood Mn, and urinary Fe, Pb, 

Ni, Cu and Zn, more studies are needed to determine if this difference is due to home and 

community exposures to e-waste or from other factors, including diet or background levels in the 

environment. Overall, we found that levels of some toxic metals in biomarkers were approaching 

levels of concern, while essential metals were found to be within or below reference ranges. 

2.4.3 Regression models 

The regressions performed using demographic variables as predictors indicated that some 

variation within the individual exposure groups of some of the biomarkers could be explained by 

sex, age, income, BMI, and education. However, for several biomarkers we did not see any 

significant explanatory variables correlated with the biomarker of interest, nor did any of the 

demographic variables alone explain all observed variability. This suggests that there are other 

explanations for the variations in concentrations of different biomarkers; personal genetics, diet, 

and behavior may explain part of the observed variation. 

2.4.4 Routes of exposure 

A common observation amongst informal e-waste workers is a lack of exposure controls, 

personal protective equipment (PPE), and training to reduce or prevent exposures [67], [103], 

[104]. This increases the likelihood of occupational exposures to metals. In addition, 

environmental contamination seen in informal e-waste settings may expose workers and 

community members alike [103], [105]-[107]. Elevated concentrations of Pb were found in rice, 

soil, water, environmental air samples, and surface wipe samples from Thailand. We also saw the 

highest levels of blood lead in the Thailand occupational exposure group for both blood and 
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urine biomarkers. This finding is consistent with other studies that have examined non-

occupationally exposed populations near e-waste sites in Ghana and China. Concentrations of 

metal biomarkers for these non-exposed groups were similar to the concentrations of workers 

themselves [36], [102], [108], [109]. The higher concentrations found in workers in Thailand 

compared to Chile may be accounted for by differences in industrial hygiene practices. The 

highest maximum concentrations in work surface wipe samples were found in Chile, but the 

biomarker concentrations were higher in the Thai occupational group with the sole exception of 

Cd. This finding elucidates an important opportunity for intervention to protect worker and 

community health near e-waste sites. Potential routes of exposure for different metals as 

determined by this study are shown in Figure 2-6. 

 

 

Figure 2-6 Study summary showing the media in which at least one metal was measured and the 

potential routes of exposure in this study. 
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2.4.5 Method of Triads 

Food surface and work surface wipe samples for both Thai exposure groups tended to be 

highly correlated, which was not true in the Chile exposure group (data shown in Appendix B, 

Table B-6). Food and wipe samples from Chile had weaker correlation coefficients in general 

and also were more likely to have significantly different means than the Thailand samples, as 

shown, in part, in Figure 2-2. In total, only six of the eleven eligible calculations (Table 2-13) 

were valid for the method of triads as five validity coefficients were calculated to be greater than 

one and were therefore Heywood cases. Heywood cases can occur for several reasons, including 

low sample sizes, which may be likely in this case (see Appendix B, Table B-6 for sample sizes) 

[95]. Additionally, it is possible that not all area and personal exposures are positively correlated 

in all cases. Other studies have found that Heywood cases are not uncommon [110]. Of the valid 

cases, work wipes had the highest validity coefficient for Cu in the community exposure group 

when compared with the two biomarkers (serum and urine), but food wipe samples had the 

highest concentration when compared with biomarkers or with either biomarker (serum or urine) 

and food wipe samples. For Mn samples among the Chile exposure group, work wipe samples 

had a higher validity coefficient than food wipe or urine samples. Finally, Zn concentrations in 

samples from the Chile exposure group had the highest validity coefficient in urine when 

compared with food wipe and area air sampling. Overall, we see that work and food wipes had 

higher validity for Cu and Mn exposures in Thailand, but that the urinary biomarker for Zn was 

the most valid measure in Chile. More studies are needed to determine whether wipe samples 

might be better measurements of exposure in informal recycling that occurs in homes in a setting 

like Thailand, or if wipe samples are better for certain metals, like Cu and Mn, but not 

necessarily for all metals, like Zn 
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2.4.6 Impacts on Public Health 

This study provided evidence of environmental contamination from e-waste recycling 

activities and the need for public health interventions. Elevated metal concentrations were found 

in samples of rice, soil, and surface water in Thailand. Although surface water is not used for 

drinking in this community, it is used to water poultry and livestock and to irrigate crops, and 

therefore presents a risk to humans who consume these agricultural goods. A safe area is needed 

for the disposal of waste from e-waste recycling. For example, in Thailand, CRTs that are broken 

and disposed of in the refuse dump contain leaded glass, which can leach into the local 

environment. Proper community controls to limit and contain e-waste exposures are needed to 

protect communities in e-waste sites.  

The lack of significant differences between work and food surface wipe samples in 

Thailand and environmental concentrations of metals near the refuse dump, considered together 

with the biomarker results, suggest that community members in areas where e-waste recycling is 

prevalent are at risk to exposures to metals. Furthermore, workers in informal settings like those 

in Thailand are at risk of a double-exposure where they are in contact with e-waste metals not 

only during work hours, but also in their homes and in the community through environmental 

pathways.  

In future studies or in public health practice, our Method of Triads results can guide 

sampling decisions for monitoring exposures and health of an e-waste population. This 

information will be especially useful in settings where the collection and analysis of samples is 

expensive so that the single best sample type for exposures of concern can be identified and 

implemented by practitioners. Similarly, knowing which sample type to collect can help 

researchers to be consistent across studies to accurately assess and compare exposures to e-waste 



63 

 

metals over time and space.The extensiveness of the sampling campaign offers valuable 

information to researchers. The numerous metal types tested for provide information on what 

metals are important to include in future exposure analyses. The variation of exposure is 

demonstrated between the three exposure groups, which is valuable for consideration by future 

researchers who should include the use of a reference and/or control population. Finally, this 

research demonstrates that concentrations of different metals may vary by sample type, and so 

failure to find concentrations of a metal in one medium does not necessarily mean those metals 

are absent from the study site. 

2.4.7 Limitations  

This study had several important limitations. First, the low number of environmental 

samples collected may not reflect the true mean concentrations in soil, air, water, and rice, and 

may also vary seasonally. Next, the biomarkers collected were analyzed at the same certified 

laboratory; however, the LODs were different for a few metals between the three exposure 

groups. For example, urinary Cd had a LOD of 1.0 µg/L in the Thai occupational group, which 

was 250 times higher than the LOD of 0.004 µg/L in the other two groups. This is important to 

consider as the urinary Cd mean was not calculated for the Thai occupational group due to the 

high percentage of samples <LOD. Additionally, we did not consider diet in this study, which is 

likely an important contributor to biomarker concentrations, particularly for metals. Fourth, the 

study had to use convenience sampling methods for recruitment due to circumstances outside of 

the control of the study design, including the informal nature of the work and social norms and 

practices in each country. Therefore, our study population may not be representative of the larger 

population from any of the exposure groups. 
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Finally, there were only six valid calculations for use in comparison of exposure 

measurements in the Method of Triads. The number of participants who had valid air samples 

was limited, and so we were unable to run Pearson correlations or use them in the method of 

triads. For example, the number of participants in the community exposure group from Thailand 

who had viable wipe and area air samples for Fe and Cu was six. This prohibits the inclusion of 

these variables in the method of triads. However, this also provided useful information about the 

limitations of using area air samples as markers of exposure for e-waste settings where activities 

are performed outdoors and through use of hand tools.  

2.4.8 Future directions 

This study identifies opportunities for future research. A comprehensive study on air 

concentrations of different metals is needed to better identify the exposure risks associated with 

inhalation from e-waste recycling. Collection of air samples over a longer time period (or with a 

higher flowrate) and downwind of the refuse dump during burning events would help determine 

the extent to which burning of e-waste pollutes the local air. Future studies should collect PBZ 

samples for at least eight hours to ensure that there is sufficient volume of air collected to 

determine concentrations. Because the Method of Triads results were limited due to small sample 

sizes and Heywood Cases, more studies are needed to replicate and increase confidence in our 

findings. Future studies should also consider the biological interaction of toxic and essential 

metals. For instance, both Cd and Pb competitively inhibit the uptake of essential metals by the 

body [111], [112]. Finally, for all environmental sample types, further studies are needed to 

determine that the elevated metal concentrations are from e-waste recycling and not from a 

different source, or from non-anthropogenic processes.  
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2.5 Conclusions 

Elevated concentrations of Pb were found in soil, surface water, rice, and dust samples 

from Thailand, and in surface dust samples from Chile, suggesting multiple routes of exposure to 

Pb for occupational and non-occupational populations exposed to e-waste recycling activities. 

Biomarker concentrations were highest among Thai e-waste recyclers, and this group is likely at 

risk of both occupational and non-occupational exposures to metals from e-waste. Despite higher 

concentrations in surface wipe samples in Chile, the workers had lower concentrations of blood 

and urine biomarkers, which may be due to better hygiene practices, including separation of 

work and food areas. Results from the method of triads analysis suggest that work and food wipe 

samples had the highest validity for at least one metal in Thailand, while urine samples had the 

highest validity for measuring exposure to Zn in Chile. More studies are needed to determine 

under what conditions biomarkers have greater validity as a measure of exposure than wipe 

samples.  
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Chapter 3 : Occupational Noise Exposure and Injuries Among E-waste Workers 

 in Thailand and Chile 

 

Chapter 3 Abstract 

Background: Informal e-waste recycling workers use crude methods to disassemble and 

recovery valuable materials from waste electronics. Poor access to personal protective equipment 

and regulated work space potentially exposes workers to hazards, including loud noise and 

conditions that might cause injuries. There is a lack of quantitative studies examining the 

physical hazards associated with e-waste work in informal settings. 

Methods: Surveys were collected from e-waste workers in Thailand and Chile. Data 

from the surveys included demographic information, noise exposures, work tasks, occupational 

injuries, and information about the worst injury over the previous six months. Hearing tests were 

administered to participants and personal noise exposures were measured during a work shift. In 

addition, video footage was collected of workers performing routine work tasks and enumerated 

using a tool designed to quantify the frequency of tool use, tasks, ergonomic stressors, and use of 

personal protective equipment. Regression models were developed to determine the odds of 

injury (logistic regression) and the incidence rate ratio of injury (Poisson regression) based on 

the frequency of different work attributes for both the survey and video data sets. 

Results: The mean time-weighted average occupational noise exposure was below the 

recommended limit of 85 dBA for all workers. Evidence of noise induced hearing loss was found 
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in the audiograms from both countries, with the highest prevalence of mild or worse hearing loss 

found in Thailand. In both countries, 60% of workers were injured at least once in the previous 

six months. Of those injured, 43% in Thailand and 66% in Chile were injured more than once 

during the same time period. From the video analysis, we found a high frequency of ergonomic 

stressors and working near sharp metals in both countries. Odds of injury occurrence in Thailand 

were predicted to increase based on increased frequencies of work noise and to decrease with 

regular use of PPE. In Chile, odds of injury were predicted to increase with report of having a 

work task that results in more frequent injury and decreases with report of frequently buying or 

selling of e-waste as a work task. In Thailand, the incidence rate ratio of injury was reported to 

increase with younger age groups, lower levels of education, more frequent use of pliers/scissors, 

and working near sharp metal. In Chile, the injury incidence rate ratio increased with older age 

groups, higher education, report of a task frequently resulting in injury, use of cotton gloves, 

repetitive arm motion, and frequent lifting of <20 pounds; the incidence rate ratio decreased with 

more frequent work noise and more frequently engaging in buying/selling of e-waste materials. 

Conclusion: Time-weighted average noise exposures of e-waste workers were below the 

level associated with noise induced hearing loss, but self-reported perceived noise was associated 

with injury in Thailand. Evidence of NIHL was present in majority of the workers despite the 

lower levels of noise exposure measured. This study found a high incidence of injury among 

informal e-waste workers. A variety of predictors were found to be significant in the models 

estimating the odds or incidence of injury, including demographic variables, tasks, perceived 

noise levels, PPE use, tools, and product type.
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3.1 Introduction 

3.1.1 Introduction to occupational safety in global settings 

Inadequate workplace health and safety practices are estimated to cost 3.94% of global 

Gross Domestic Product each year in the formal sector [1]. Occupational injuries can be 

disabling or fatal, producing a considerable negative health and economic impact on workers 

who experience them. Comprehensive hazard identification and risk assessment activities can 

provide information that facilitates prevention of injuries in the work place, as well as 

development of training programs for workers [2]. Prevention of injuries is one of the goals 

identified in the National Institute for Occupational Safety and Health (NIOSH)’s Total Worker 

Health (TWH) framework [3].  

There may be a greater number of injuries in the informal sector than is reflected in 

current estimations of workplace injury prevalence in the formal sector; however, there are few 

data available on this sector, making accurate estimation difficult [4]-[6]. Workers in developing 

countries and the informal sector are considered to be at a greater risk to injury due to minimal 

legal regulation and enforcement, and the rarity or absence of occupational health and safety 

programs [7]. Occupational health and safety services cover only 5% to 10% of the population of 

the developing world, and the rate of occupational injury and illness in these countries is 

expected to double by 2025 [8]. Impacts of injuries experienced by workers in the informal 

sector, particularly in developing countries, may be larger than those in other industries as 

informal workers typically lack access to health care and social safety nets, including workers 

compensation [9], [10].  
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Informal electronic waste recycling is a growing industry around the globe, as the amount 

of discarded electronics, “e-waste”, grows each year [11].  E-waste is comprised of electronic 

products, parts, and equipment that has reached the end of its useable life. Despite a ban under 

the United Nations Basel Convention on Hazardous Waste, e-waste is shipped from high- and 

middle- income countries to middle- and low-income countries where it is recycled by 

rudimentary methods to recover valuable materials [12]-[14]. Although e-waste recycling 

provides a valuable source of income, it contains many hazardous materials, and is expensive to 

recycle in a formal manner that protects the health of workers, communities, and the 

environment [15]-[17]. E-waste workers in the informal sector are largely from lower 

socioeconomic and marginalized populations [17], [18]. Globalization has resulted in a trend of 

shifting of the highest risk jobs, including e-waste recycling, to developing countries, and has 

created a greater need for improved standards in new and emerging informal occupational 

settings [9], [19]. 

3.1.2 Noise exposure, health outcomes, and injury risk 

Workers are at risk of noise induced hearing loss (NIHL) from occupational sources of 

noise. In 2005, it was estimated that, globally, 16% of disabling hearing loss was due to 

workplace noise exposure, with higher rates of NIHL in developing countries [20]. E-waste 

workers exposed to possible ototoxins (e.g., heavy metals) in addition to noise potentially have a 

further increased risk for hearing loss [21]. NIOSH has a recommended exposure limit (REL) for 

noise to protect against NIHL of 85 A-weighted decibels (dBA) expressed as an 8-hour Time-

Weighted Average (TWA) [22]. However, this limit does not provide protection for non-auditory 

effects of noise exposure [23], [24]. In addition to NIHL, noise exposure is associated with other 
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negative health outcomes, including hypertension, ischemic heart disease, stress, sleep 

disturbance, performance, and psychosocial impacts [25]. 

Noise exposures at work have also been shown to increase injury risk [26], [27]. 

Occupational noise exposure has been linked to an increase in injury in different types of formal 

industry jobs [28]-[30]. However, this association has not been tested among informal workers. 

Several studies show that among occupational groups exposed to noise there is a further increase 

in risk of work-related injury among workers who suffered from NIHL [31]-[33]. Workers with 

compromised hearing may miss verbal cues or other hearing-critical environmental stimulus that 

would alert them to danger, increasing risk of injury.  

3.1.3 Hazards and injuries in e-waste 

Informal e-waste workers engage in multiple tasks throughout the process of recycling of 

electronic equipment. The first step in the process is the collection of e-waste or components. In 

some locations, for example Thailand, workers reported travelling to nearby larger cities to 

purchase and collect e-waste material in a pickup truck. In other locations, for example Chile, 

waste electronics were collected by individuals on motor taxis using the municipal system of 

placing recyclables by the curb or exchanged at markets. After materials are collected, they are 

sorted by type and sold or distributed to workers for further processing. 

The next step in the process is the manual disassembly of electronics into raw materials 

or components such as printed circuit boards. The process of manual disassembly largely 

depends on the type of electronic being recycled. For example, one of the first steps in manual 

disassembly of cathode ray tube (CRT) monitors is to break the glass, either with a hammer or by 

dropping the monitor from a height. For other types of electronics, basic hand tools and power 
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tools are often used by workers to separate components. The last step in the process is to again 

sort the materials and components after disassembly, and then to sell the recovered materials.  

Workers engaged in e-waste recycling are directly exposed to a variety of occupational 

health hazards, including metals, physical hazards (e.g. noise and musculoskeletal issues), and 

injuries [13], [34]. Several studies have described physical hazards of e-waste, including the use 

of primitive or inappropriate tools, lack of personal protective equipment (PPE), and burning of 

e-waste to recover materials [13], [17], [35]-[38]. A study of e-waste recyclers in Agbogbloshie, 

Ghana reported unhygienic working conditions, no use of personal protective equipment, long 

working hours and little to no job training [38]. Studies on informal recyclers report low worker 

knowledge of health hazards associated with e-waste recycling [39]-[41]. One of the few studies 

to report on occupational injuries in e-waste recycling found a high prevalence of injuries among 

e-waste recyclers, and a low utilization of PPE [42]. Of the limited studies published on noise 

exposures and NIHL among e-waste workers, one study reported that 40% of workers were 

exposed to levels above the NIOSH 85 dBA REL, and that complaints of hearing loss were 

common [36]. Although the body of scientific literature focused on informal e-waste recycling is 

rapidly expanding, there is a paucity of information on which tasks, tools, PPE and e-waste 

products recycled are more likely to result in injury. Additionally, the association between noise 

exposure and injury rates among e-waste workers has not been explored. 

3.1.4 Research Objectives   

The overall objective of this study was to determine which aspects of informal e-waste 

recycling present the greatest likelihood and rate of injury. In order to accomplish this, three 

specific aims were developed. The first was to determine the extent of noise exposure and 
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subsequent NIHL of e-waste workers in informal settings in Thailand and Chile. The second aim 

was to examine the occurrence of injuries amongst e-waste workers in each country, and to 

estimate the likelihood of injury through examination of job tasks, tool use, PPE, and other 

characteristics of the job. The third aim was to determine the frequency of injuries amongst e-

waste workers based on these same job characteristics.  

3.2 Methods 

3.2.1 Study sites 

Data for this study were collected during 2016-2017 in Thailand and during 2017 in 

Chile. The research site in Thailand was a rural, agricultural community in the northeastern part 

of the country. E-waste recycling in this community often occurs inside of homes and workers 

are either self-employed and work with family or are employed at minimum wage by a member 

of the community. Some e-waste activities, including the burning of e-waste and dismantling of 

cathode ray tube (CRT) television screens, occur in the community dump site, which is an 

unlined, walled-off area in the middle of a rice paddy that the community uses as a landfill. No 

data collection occurred in the dump site. Some workers in the Thai research site reported only 

working with e-waste when they were not planting or harvesting crops, while other workers 

conducted both work activities in parallel.  

In Chile, three study sites were selected: the urban towns of Chillan and Temuco and 

capital city of Santiago. E-waste recyclers in Chile are more likely to work in a designated work 

space away from the home than in Thailand, although in-home recycling does occur. 

Additionally, informal e-waste recycling in Chile appears to typically be a primary job, unlike in 

Thailand.  In both Thailand and in Chile, researchers and students from the University of 
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Michigan partnered with researchers and students from local universities, as well as local 

governmental bodies, healthcare professionals, and community members. 

3.2.2 Human subjects 

This study was approved by the Institutional Review Board of the University of Michigan 

(HUM0014562) in the United States, Mae Fah Luang University (MFU) in Thailand (REH-

59104), and the University of Chile – Santiago (Archive Project No 101-2017; Act No 45). 

Informed consent was obtained from all subjects prior to participation in any study procedures. 

Participants were selected in each country using convenience sampling as random sampling was 

not feasible and was deemed culturally inappropriate by our in-country collaborators.  

3.2.3 Survey  

In both Thailand and in Chile, surveys were administered by students and community 

members who were native speakers in each country. Information was collected on personal 

demographics, hearing, noise, work history, current work tasks, and injury history (Appendix A). 

Workers in each country were asked about the tasks that they perceived to put them at greatest 

risk of injury, as well as how often they engaged in certain work behaviors, including wearing 

PPE, handling different tools and materials, and performing certain job tasks. Workers were 

asked if they had been injured in the last 6 months; those who had were asked a series of follow-

up questions about the worst injury received during that time period. After the survey was 

completed in Thailand, the Chilean survey was revised to ask for more detail, including 

questions on the length of time working with e-waste (years), the specific tasks performed, 

questions about which task(s) participants are the most familiar with, and whether or not there 
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are tasks that more frequently result in injury.  Therefore, some variables that were available 

from Chile are not available from Thailand. 

3.2.4 Noise exposure and hearing ability 

Participants answered questions regarding their hearing ability, including whether they 

had been diagnosed by a medical professional as having hearing loss, if and for how long they 

had experienced trouble hearing, whether they work in a noisy environment, and if they had ever 

experienced a temporary change in their hearing such as muffled sounds or ringing following 

noise exposure.  This latter question was intended to identify the occurrence of a potential 

temporary change in auditory thresholds, or temporary threshold shift (TTS). Noise exposures 

were measured over the course of an entire work shift (nominally 8 hours) using a doseBadge 

(Cirrus Research PLC, Hunmanby, North Yorkshire, United Kingdom) personal noise dosimeter 

attached to the shirt of participants near the ear. Dosimeters were calibrated immediately before 

use and were configured to measure a TWA exposure level according to the NIOSH REL: 85 

dBA criterion level, 8-hour criterion duration, 80 dBA threshold level, and 3 dBA exchange rate.  

Finally, participants were administered a pure-tone audiometric test in a quiet 

environment by a technician certified by the Council for Accreditation in Occupational Hearing 

Conservation using an Earscan 3 audiometer and Earscan 3 TDH-39 circumaural headphones. 

Seven frequencies were tested: 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hertz (Hz).  

3.2.5 Video data 

In addition to survey data, video footage of participants performing routine e-waste 

recycling tasks was captured in each country. The video footage was edited to only include 
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segments where the participant was actively working in the camera frame. Ten two-minute 

segments from the edited footage for each participant was then sampled at equal intervals 

depending on the total footage time available per participant. The activities, tasks, tools used, 

electronic products being recycled, as well as various health and safety issues, were summarized 

using a tool developed for this study (see Appendix C, table C-1). The tasks performed and tools 

used were enumerated based on frequency (either number of occurrences or length of time of 

occurrence) for each two-minute segment. The values for frequency ranged from zero (occurred 

zero times in the segment or occurred for zero of 120 seconds) to three (occurred >10 times in 

the segment or occurred for >80 of 120 seconds). Enumeration of electronic products being 

recycled in the sampled videos was dichotomous (yes/no) rather than a frequency scale (0-3).  

Five research assistants collaborated in the analysis of video footage using the developed tool. 

To evaluate interrater agreement, all research assistants watched the same five video segments 

and a kappa test of interrater agreement was run on each of set of responses to ensure a suitable 

level of agreement (kappa >0.6).  

3.2.6 Statistical methods 

Statistical tests were performed using SPSS v.25 (IBM, Armonk, New York) and Stata   

v.15 (StataCorp, LLC, College Station, TX). Normality of data distributions was evaluated in 

variables using histograms. Association between pairs of variables were made using scatterplots. 

Summary statistics were calculated for demographic, hearing, injury, and video variables. 

Independent two-sample t-tests were used to evaluate differences in continuous variables 

between workers in Thailand and Chile. Chi-squared tests were used to test differences in 

categorical variables between Thailand and Chile. For variables containing less than five 
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observations in a category, Fisher’s exact test was used. Individual-level mean frequency scores 

in the video data were determined by calculating the mean across all 10 repeated video 

observations per participant. The maximum mean score possible was 3.0, which would 

correspond to a participant scoring a 3 (occurred >10 times or for >80 seconds) across all ten of 

that participant’s 2-minute video segments. The lowest possible mean score was 0, which 

indicated that no participant scored above a “0” for any of the ten 2-minute video segments. 

Logistic regression models were developed to estimate the odds ratio (OR) of injury 

occurring based on e-waste recycling job tasks, PPE use, and other related variables. Poisson 

regression models were used  to estimate incidence rate ratios for injuries using similar methods 

to the logistic regression models. Poisson regressions were run separately for survey and video 

data. Multivariate regressions were run with inclusion of significant variables from the univariate 

analysis. 

3.3 Results 

3.3.1 Demographics 

A total of 130 e-waste workers were recruited for the study in Thailand, and 94 in Chile. 

Demographic characteristics for the participants in Thailand and Chile are displayed in Table 

3-1. The Thai workers had a significantly lower mean BMI and worked significantly fewer hours 

per week than the Chilean workers. There were significantly more females and married workers 

in Thailand compared to Chile, but age, level of education, income (in PPP, a measure which 

allows for comparison of international monetary units by converting to the purchasing power of 

1 USD), and percentage of workers reporting e-waste as the primary source of income were not 

statistically different.  
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Table 3-1 Demographic data for Thai and Chilean e-waste workers. 

  Thailand   Chile 

Variable N Mean (sd)  N Mean (sd) 

Age 130 51.2 (4.9)  94 54.9 (8.2) 

BMI 70 24.9 (0.5)***  93 30.14 (0.6)*** 

Years working E-waste - -  92 19.4 (9.1) 

Hours per week 121 40.9 (15.4)*  95 50.5 (37.6)* 

      

 N n (%)  N N (%) 

Sex – Male 130 71 (54.2)**  94 68 (72.3)** 

Married 128 74 (57.8)*  93 41 (44.1)* 

Education – 2o and up 127 63 (49.6)  93 56 (60.2) 

Income > $1250 PPP1 128 31 (24.2)  87 31 (35.6) 

E-waste Primary Job 130 72 (55.4)  94 58 (61.7) 

*p<0.05; **p<0.01; ***p<0.001. 1PPP = Purchasing power parity (PPP) conversion factor. World Bank, International Comparison 

Program database. N denotes the total number of valid observations per variable, or the number of observations represented by 

“yes” in the dichotomous variable. 

3.3.2 Noise exposures and hearing loss 

Noise exposures and hearing characteristics are shown in Table 3-2. The mean and 

standard deviation run time for personal noise dosimetry in Chile was 5.961.34 hours, and 

6.030.65 hours in Thailand (data not shown). The mean TWA noise exposure in Thailand was 

70.0 dBA and was significantly higher than the mean TWA in Chile of 55.2 dBA. There were no 

significant differences between the two countries in the reported frequency of working in noisy 

environments, experiencing a TTS, or wearing PPE to protect hearing.  
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Table 3-2 Noise and hearing self-reported survey results from e-waste workers from Thailand 

and Chile. 

  Thailand   Chile 

Variable N Mean (sd)  N Mean (sd) 

Noise TWA (dBA) 67 70.0 (36.5)**  84 55.2 (32.4)** 

Years working in loud noise 88 9.2 (9.8)  68 9.53 (10.2) 

      

 N N (%)  N N (%) 

Self-reported hearing difficulty 125 33 (26.4)  92 25 (27.2) 

Diagnosed poor loss 122 5 (4.1)  90 4 (4.4) 

Hearing test  69   71  

    Normal  37 (53.6)**   55 (77.5)** 

    Mild hearing loss  19 (27.5)   7 (9.9) 

    Moderate hearing loss  13 (18.84)   8 (11.3) 

    Severe hearing loss1  0   1 (1.4) 

Perceived noisy work  95   76  

    Never  23 (24.2)         19 (25.0) 

    Almost never  11 (11.6)   4 (5.3) 

    Sometimes  29 (30.5)   24 (31.6) 

    Almost always  25 (26.3)   22 (29.0) 

    Always  7 (7.4)   7 (9.21) 

Temporary threshold shift  119   88  

    Never  99 (83.2)   77 (87.5) 

    Almost never  6 (5.0)   3 (3.4) 

    Sometimes  10 (8.4)   5 (5.7) 

    Almost always  3 (2.5)   2 (2.7) 

    Always  1 (0.8)   1 (1.1) 

Wears Ear PPE 129 5 (3.9)  93 8 (8.6) 

**p<0.05. 

3.3.3 Audiometric testing 

Audiometric hearing threshold results are shown for Chile and Thailand in Table 3-2 and 

Figure 3-1. Sixty-nine workers in Thailand received a hearing test, and 71 in Chile. Thresholds 

of “0” in Figure 3-1 represent normal hearing at each frequency.  Thresholds over 25 dB HL 

represent a mild hearing loss. The elevated thresholds at 500 Hz were likely due to background 

noise resulting from administration of the audiometric tests in a field setting, and likely do not 

reflect actual hearing loss at those frequencies. The frequencies considered most reflective of 

noise-induced hearing loss are 4,000 and 6,000 Hz; as shown in Figure 3-1, thresholds were 

highest (worst) at 6,000 Hz in both Chile and Thailand.  There was a significant difference in 

categorical measures of hearing ability between Thailand and Chile, with 46.4% of Thai 

participants having mild or worse hearing loss compared to 22.5% in Chile. 
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Figure 3-1 Audiometric results for electronic waste recyclers in Chile and Thailand by ear. 

3.3.4 Injuries 

Self-reported injury results are displayed in Table 3-3. Workers in Chile reported more 

than twice as many injuries (mean of 3.0 injuries) than in Thailand (mean of 1.4 injuries) during 

the previous six months; this different was statistically significant. While a similar number of 

workers reported experiencing an injury during the previous six months in Thailand and Chile 

(59.2% and 61.1%, respectively), significantly more workers reported being injured more than 

once during the same time in Chile (65.5%) compared to Thailand (42.9%). Approximately one-

third of workers in each country reported seeking no medical care for their worst injury over the 

previous six months, while 45.6% of and 47.5% Chilean participants reported administering self-

care for their injury. Approximately 75% of workers in Thailand and Chile reported wearing 

some type of PPE regularly. Workers in Thailand most frequently reported that use of a hammer 

resulted in injury, whereas workers in Chile reported the angle grinder.   
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Table 3-3 Self-reported injury characteristics among e-waste workers in Thailand and Chile for 

the previous 6 months. 

  Thailand   Chile 

 Variable N Mean (sd)  N Mean (sd) 

Number of Injuries  130 1.4 (2.4)*  95 3.0 (7.3)* 

      

 N N (%)  N N(%) 

Injured at least once 130 77 (59.2)  95 58 (61.1) 

More than 1 injury 77 33 (42.9)**  58 38 (65.5)** 

Medical attention  74   29  

    None  25 (33.4)   20 (33.9) 

    Self-administered  34 (45.6)   28 (47.5) 

    Pharmacy  2 (2.7)   0 

    Hospital/clinic  13 (17.6)   11 (18.6) 

Wears PPE regularly 125 89 (71.2)  93 70 (75.3) 

Frequent injury  23   55  

    Hammer  15 (65.2)   6 (10.9) 

    Blade  4 (17.4)   0  

    Drill  0   4 (7.3) 

    Angle Grinder  0   11 (20.0) 

    Soldering  0   9 (16.4) 

    Plastic  1 (4.4)   1 (1.82) 

    Metal  0   4 (5.5) 

    Dismantling  0   4 (7.3) 

    Collecting  0   2 (3.6) 

    Welding  0   3 (5.5) 

    Loading  0   11 (20) 

 *p<0.05; **p<0.01.  

3.3.5 Noise exposures and injuries 

The activity being performed during the worst injury in the previous 6 months is 

displayed by mean noise TWA for Chile and Thailand in Figure 3-2.  There was no significant 

difference between the mean TWA across the different activities within countries. There was no 

difference in TWA between participants who reported an injury and those who did not (data not 

shown). 

 



89 

 

 
Figure 3-2 Boxplot showing measured noise level (TWA (dBA)) by e-waste recycling task being 

performed during time of worst injury in previous six months. 

3.3.6 Worst injury in the previous six months 

Figure 3-3 shows the results of self-reported injury type reported for the worst injury over 

the previous six months for Thailand (n=77 workers) and Chile (n=58 workers) by activity 

performed when the injury occurred. In Thailand, the most common type of reported worst injury 

was a contusion during dismantling, followed by a cut during dismantling. In Chile, the most 

common type of worst injury reported was a cut during dismantling, followed by a cut during 

sorting. Injuries counted in the “other injury” category include fractures, strains, and electrical 

shocks.  
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Figure 3-3 Counts by injury type and task performed during time of injury occurrence for worst 

injury over the previous 6 months for Thailand (n=77) and Chile (n=58) e-waste workers. 

The body part injured as well as the task being performed during the worst injury 

sustained during e-waste recycling in the previous six months are displayed in Figure 3-4. In 

Thailand (n=77 workers) and Chile (n=58 workers), the body part and activity most frequently 

reported in both countries were the hand and dismantling, respectively.  
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Figure 3-4 Counts by body part affected and task performed during time of injury occurrence for 

worst injury over the previous 6 months for Thailand (n=77) and Chile (n=58) e-waste workers. 

3.3.7 Regression analysis using survey data 

The results from the univariate and multivariate logistic regressions using self-reported 

injury data for Thailand are shown in Table 3-4. In the univariate analyses, workers who reported 

being exposed to perceived noise at work sometimes had an increased odds of injury (ORs of 

8.44 and 5.89, respectively) compared with participants who reported never being exposed to 

noisy work environments. Regular use of PPE was shown to have a protective effect (OR=0.20) 

on injury occurrence compared to participants who did not report regularly using PPE. In the 

multivariate analysis, perceived noise and regular PPE use remained significant predictors of 

injury occurrence. 
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Table 3-4 Results of logistic regression for Thailand injury survey data showing the odds ratios 

for injury occurrence. 

 
N Univariate analysis 

 
N Multivariate analysis 

Variable 
 

OR (95% CI) 
  

OR (95% CI) 

Age 130 0.7 (0.3, 1.4) 
  

  

Sex - Female 130 1.0 (1.0, 1.0) 
  

  

Education1 – Secondary and up 127 1.0 (0.5, 2.0) 
  

  

TWA 67 1.7 (1.0, 1.0) 
  

  

Perceived Noise2  95 
  

91  

    Almost never 11 8.4 (1.4, 49.3)*   3.7 (0.5, 28.8) 

    Sometimes 29 5.9 (1.8, 19.9)** 
 

 5.8 (1.6, 21.4)** 

    Almost always 25 2.4 (0.7, 7.7) 
 

 3.0 (0.8, 10.8) 

    Always 7 4.7 (0.7, 30.1) 
 

 4.6 (0.7, 29.7) 

Regular PPE use 125 0.2 (0.1, 0.5)** 
 

91 0.2 (0.1, 0.6)** 

*p<0.05; **p<0.01. 1Reference category is primary and below. 2Reference category is Never. 

Table 3-5 shows the results of univariate and multivariate logistic regressions for Chile 

using self-reported data on injuries. In the univariate analyses, report of a work task which 

frequently results in injury by participants is a significant positive predictor of injury occurrence 

(OR = 2.43). Participants who reported buying and selling e-waste materials had a significantly 

lower odds of injury occurrence (OR=0.26) compared to those who did other e-waste recycling 

activities. In the multivariate analysis, reporting frequently engaging in buying/selling e-waste 

remained significant. 
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Table 3-5 Results of logistic regression for Chile injury survey data showing the odds ratios for 

injury occurrence. 

 
N Univariate 

analysis 

 
N Multivariate analysis 

Variable 
 

OR (95% CI) 
  

OR (95% CI)) 

Age 94 1.0 (1.0, 1.0) 
  

  

Sex - Female 94 0.6 (0.2, 1.0) 
  

  

Education1 – Secondary and up 93 1.5 (0.6, 3.5) 
  

  

TWA 84 1.0 (1.0, 1.0) 
  

  

Perceived Noise2 76 
   

  

    Almost never 4 -    

    Sometimes 24 0.7 (0.2, 2.3) 
   

    Almost always 22 0.4 (0.1, 1.4) 
   

    Always 7 0.6 (0.1, 3.7) 
   

Regular PPE use 93 2.2 (0.8, 5.8) 
  

  

Frequent Injury Task 93 2.4 (1.0, 5.8)* 
 

87 2.4 (1.0, 6.0) 

Buy/Sell Task Familiarity 87 0.3 (0.1, 0.9)* 
 

87 0.3 (0.1, 0.8)* 

Years working on e-waste 92 1.0 (0.9, 1.0) 
  

  

*p<0.05. 1Reference category is Primary or below. 2Reference category is Never. 

The Poisson regression results for self-reported injury data from Thailand are shown in 

Table 3-6. The univariate analyses show that participants aged 30 to 55 years and participants 

who had secondary education or higher had a significantly lower incidence rate of injury 

(IRR=0.6, and 0.6, respectively).  Both variables remained significant in the multivariate 

analysis. The overall incidence rate ratio for Thailand was 1.4 injuries over 6 months. 

Table 3-6 Results of Poisson regression using Thailand survey data showing the Incidence Rate 

Ratio for injuries. 

 
N  Univariate analysis 

 
N Multivariate analysis 

Variable 
 

IRR (95% CI) 
  

IRR (95% CI) 

Age1 – 30-55 years 130 
  

127 
 

   30-55 years 76 0.6 (0.5, 0.9)*   0.6 (0.4, 0.9)**  

    >55 years 30 0.7 (0.5, 1.1) 
  

0.8 (0.5, 1.2) 

Sex - Female 130 0.8 (0.6, 1.1) 
  

  

Education2 – Secondary and up 127 0.6 (0.5, 0.8)** 
 

127 0.6 (0.5, 0.8)** 

Perceived Noise3 95  
   

    Almost never 11 1.0 (0.6, 1.7)    

    Sometimes 29  1.0 (0.6, 1.5) 
   

    Almost always 25 0.8 (0.5, 1.3) 
   

    Always 7 1.4 (0.8, 2.5) 
   

Regular PPE use 125 1.1 (0.8, 1.6) 
   

*p<0.05; **p<0.01. 1Reference category is 18 to <30 years.  2Reference category is primary and below. 3Reference category is 

Never. 

Univariate and multivariate Poisson regression results for self-reported injury data from 

Chile are displayed in Table 3-7. In the univariate analysis, being 30 to 55 years, as well as being 
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>55 years, old resulted in a significantly greater incidence of injury (IRRs=1.61 and 2.96, 

respectively) compared to those who were 18-29 years of age. Participants who had an education 

at the secondary level or higher had a significantly higher incidence rate of injury compared to 

those who did not (IRR=1.74). Workers who reported having one work task that more frequently 

results in injury had a significantly higher incidence of injury (IRR=2.03). Participants who 

reported working in noise reported a lower incidence of injury that those who reported never 

working in noise. Workers who reported frequently engaging in buying and trading e-waste had 

a significantly lower incidence of injury (IRR=0.28). In the multivariate analysis, age above 55, 

education, perceived noise, reporting a work task with higher incidence of injury, and having the 

most familiarity with buying and selling e-waste materials all remained significant in predicting 

the rate of injury incidence. The overall incidence rate ratio for Chile was 3.0 injuries over 6 

months. Thailand had a rate ratio for injuries of 0.63 compared with Chile (data not shown). 

Table 3-7 Results of Poisson regression using Chile survey data showing the Incidence Rate 

Ratio for injuries. 

 
 N Univariate analysis 

 
N Multivariate analysis 

Variable 
 

IRR (95% CI) 
  

IRR (95% CI) 

Age1  94 
  

69 
 

    30-55 years 44 1.61 (1.08, 2.41)*   1.86 (0.96, 3.61) 

    >55 years 31 2.96 (2.0, 4.39)*** 
  

8.93 (4.63, 17.26)*** 

Sex - Female 94 0.38 (0.27, 0.54) 
   

Education2 – Secondary and up 93 1.74 (1.34, 2.25)*** 
  

2.73 (1.88, 3.97)*** 

Perceived Noise3 76 
    

    Almost never 4 0.12 (0.04, 0.36)***   0.07 (0.02, 0.23)*** 

    Sometimes 24 0.29 (0.21, 0.42)*** 
  

0.22 (0.15, 0.32)*** 

    Almost always 22 0.29 (0.20, 0.41)*** 
  

0.28 (0.19, 0.42)*** 

    Always 7 0.62 (0.41, 0.93)* 
  

0.87 (0.57, 1.33) 

Regular PPE use 93 1.14 (0.81, 1.58) 
  

  

Frequent Injury Task 93 2.03 (1.55, 2.64)*** 
  

3.71 (2.62, 5.24)*** 

Buy/Sell Familiarity 87 0.28 (0.16, 1.48) 
  

0.34 (0.16, 0.70)** 

Years E-waste4 92 
   

  

    2-5 years 6 1.00 (0.27, 1.37)    

    5-10 years 9 3.04 (0.94, 9.81) 
   

    >10 years 75 2.08 (0.67, 6.50) 
   

*p<0.05; **p<0.01; ***p<0.001.  1Reference category is 18 to <30 years.  2Reference category is primary and below. 3Reference 

category is Never. 4Reference category is <2 years. 
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3.3.8 Video Analysis 

Mean frequency scores for different work activities are shown by country in Table 3-8. 

Some tasks, such as burning e-waste and breaking glass, were never recorded on video and so are 

not included in the results. The number of participants included in the videos was 19 in Thailand 

and 20 in Chile. The average number of minutes of edited video footage per participant in 

Thailand was 119.6, and in Chile was 72.5. The work tasks/tools most commonly reported in 

Thailand were blunt striking instrument (0.9) working near scrap metal (0.8).  This means that, 

on average, workers in the videos engaged in these work characteristics between 0-3 times, or for 

<20 seconds. The work tasks/tools most commonly reported in Chile were working near sharp 

metal and working near noisy activities. On average, workers engaged in these work activities 

between 1 and 10 times per 2-minute video. 
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Table 3-8 Individual-level results of video analysis enumerating job tasks and characteristics 

pertinent to injury risk. 

Variable Thailand Chile 

Number of participants 19 20 

Average edited footage per participant (mins) 119.6 (89.4) 72.5 (76.6) 

Range edited footage per participant (mins) 44.7, 439.5 13.7, 209.1 

 Score mean (sd)1 

Hand tool use   

    Sharp blade 0.1 (0.1) 0.02 (0.1) 

    Blunt striking instrument 0.9 (0.6)*** 0.1 (0.4)*** 

    Screw driver 0.2 (0.2) 0.2 (0.3) 

    T-wrench 0.1 (0.2) 0 

    Wrench 0.02 (0.1) 0.2 (0.1) 

    Pliers/scissors 0.3 (0.3)* 0.1 (0.2)* 

    Bolt cutters 0.01 (0.1) 0 

    Chisel 0.2 (0.3) 0.1 (0.3) 

    Other – At least one other type of tool 0.1 (0.2) 0 

Power tool use  

    Power drill 0.2 (0.3) 0.03 (0.1)* 

    Soldering iron 0 0.1 (0.2) 

Ergonomics   

  Repetitive hand motion 0.5 (0.8) 0.2 (0.4) 

  Repetitive arm motion 0.5 (0.6)* 0.1 (0.2)* 

  Constant grip 0.8 (1.0) 0.4 (0.7) 

  Lifting <20 pounds 0.4 (0.6) 0.6 (1.3) 

  Lifting >20 pounds 0.6 (0.7) 0.6 (1.3) 

  Bending neck 1.9 (0.7) 1.4 (2.0) 

  Bending back 1.4 (1.1) 1.5 (1.9) 

  Squatting/kneeling 0.8 (1.2)* 0.2 (0.5)* 

  Sitting low to ground 1.8 (1.3)*** 0.02 (0.05)*** 

  Pushing/pulling 0.1 (0.2) 0.3 (0.9) 

Work tasks  

    Removing broken glass from electronic 0.3 (0.8) 0 

    Working near broken glass 0.5 (1.0)* 0.02 (0.1)* 

    Working near sharp metal 0.8 (1.3) 1.3 (4.0) 

    Removing sharp metal from electronic 0.1 (0.3) 0.01 (0.04) 

    Handling/moving sharp metal 0.1 (0.4) 0.04 (0.1) 

Noisy activities 1.3 (0.9)* 0.7 (0.9)* 

PPE use 

    Cotton gloves 2.0 (1.4) 1.4 (4.1) 

    Latex gloves 0.4 (1.1) 0.6 (1.3) 

    Close-toed shoes 1.3 (1.4)*** 3.3 (1.6)*** 

    Dust mask 0.2 (0.7) 0 

    Fabric as mask 0.3 (0.8) 0 

    Long sleeves 2.2 (1.3) 2.7 (0.7) 

    Long pants 2.2 (1.3) 2.7 (0.7) 

    Hearing protection 0 0 

Electronic product Mean (sd)  

    Cathode ray tube TV 0 0.03 (0.1) 

    Refrigerator 0 0 

    Washing machine 0 0.03 (0.1) 

    Electric fan 0.3 (0.4) 0 

    Desktop monitor -CRT 0.01 (0.02) 0.01 (0.03) 

    Desktop monitor or TV-flat screen 0 0.1 (0.2) 

    Computer tower 0.01 (0.03) 0.01 (0.1) 

    Cell phone 0 0.2 (0.6) 

    Laptop 0 0.01 (0.02) 

    Printed circuit board 0 0.1 (0.2) 

    Parts 0.8 (0.4) 0.7(1.3) 

    Other – At least one other type of electronic 0.02 (0.1) 0.2 (0.5) 
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The cumulative scores across categories from the video analysis are displayed in Figure 

3-5. Section 3-5a shows the cumulative frequency for tools used in each country. In Thailand, 

blunt striking instruments, such as hammers, had the highest frequency of use, while in Chile, the 

most frequently used tool was the screw driver. The “other” hand tools in each country was 

mostly comprised of specialized types of wrenches. In Chile, the “other” power tool category 

included heat guns. Section 3-5b shows that the most common ergonomic factor in Thailand was 

bending of the back, followed closely by sitting low to the ground and bending the neck. In 

Chile, the most frequent ergonomic factors included bending of the neck and back, followed by 

constant hand grip.   

Section 3-5c displays different observed work tasks/hazards.  Noisy environments and 

working near scrap metal had the highest cumulative frequency in both Thailand and Chile. 

Section d shows that use of long-sleeve shirts, long pants, and closed-toed shoes was common in 

each country, as was use of cotton gloves in Thailand. The “other” category of PPE in Chile 

included protective eye wear and a helmet.  
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Figure 3-5 Cumulative frequency results of video analysis enumerating job tasks and 

characteristics pertinent to injury risk. 

As shown in Table 3-9, the univariate Poisson regression in Chile produced two 

predictors that had a significantly lower rate of injury incidence, including work on a flat screen 
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monitor (IRR=0.02), and work on a cell phone (IRR=0.4). Significant predictors of increased 

rate of injury incidence included repetitive arm motion (IRR=3.8), lifting less than 20 pounds 

(IRR=1.3), bending of the back and neck (IRR=1.2 and 1.2, respectively), pushing or pulling 

(IRR=1.4), as well as working near sharp metal (IRR=1.1) and use of cotton gloves as PPE 

(IRR=1.1). Results from the Thailand univariate Poisson regression using video-derived data 

shows that use of pliers/scissors was associated with an increased incidence of injury (IRR=3.4).  

Cell phones remained a significant predictor in the multivariate logistic regression shown 

in Model 2 of Table 3-10 (OR=0.3). Two models were built using the univariate Poisson 

regression results for Chile. Model 3 in Table 3-10 includes variables that were the most 

significant and most likely to cause wound-type injuries. These included the use of cotton gloves 

(IRR=1.2) and working near sharp metal (0.9). Model 4 included significant predictors of 

ergonomic or strain type injuries. Repetitive arm motion was significantly associated with an 

increased incidence of injury (IRR=9.2), as was lifting of less than 20 pounds (IRR=8.3).  
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Table 3-9 Results of univariate analysis using Poisson (incidence rate of injuries) regression for 

quantitative injury and task data derived from videos. 

 Thailand  Chile 

Variable IRR (95% CI)  IRR (95% CI) 

Hand tool use  

    Sharp blades 9.4 (0.8, 108.2)  - 

    Blunt striking  1.7 (0.9, 3.1)  1.1 (0.8, 1.5) 

    Screwdriver 0.5 (0.1, 3.0)  1.0 (0.6, 1.7) 

    T-wrench 4.9 (0.3, 76.6)  - 

    Wrench -  26.7 (0.05, 15629.3) 

    Pliers/scissors 3.4 (1.1, 10.8)*  0.1 (0.01, 2.3) 

    Bolt cutters -  - 

    Chisel 1.2 (0.4, 3.4)  1.3 (0.8, 2.1) 

Power tool use  

    Power drill 1.9 (0.7, 5.1)  - 

    Soldering iron -  3.9 (0.2, 84.9) 

Ergonomics    

    Repetitive hand motion 1.0 (0.7, 1.4)  1.8 (0.8, 1.5) 

    Repetitive arm motion 1.5 (0.9, 2.4)  3.8 (1.8, 7.8)*** 

    Constant grip 1.1 (0.8, 1.5)  2.2 (0.9, 5.3) 

    Lifting <20 pounds 1.6 (0.9, 2.9)  1.3 (1.2, 1.4)*** 

    Lifting >20 pounds 0.7 (0.5, 1.1)  1.3 (0.9, 1.9) 

    Bending back 1.9 (0.8, 4.0)  1.2 (1.0, 1.3)* 

    Bending neck 1.2 (0.9, 1.5)  1.2 (1.1, 1.4)*** 

    Squatting/kneeling 0.9 (0.7, 1.2)  1.8 (1.0, 3.4)† 

    Sitting low to ground 1.2 (0.9, 1.5)  - 

    Pushing/pulling 1.7 (0.7, 4.3)  1.4 (1.1, 1.7)** 

Work tasks    

    Removing broken glass 0.8 (0.5, 1.4)  - 

    Working near broken glass 1.0 (0.7, 1.4)  - 

    Removing sharp metal 0.8 (0.2, 2.7)  - 

    Working near sharp metal 1.3 (1.0, 1.6)†  1.1 (1.0, 1.1)* 

    Handling sharp metal 0.7 (0.2, 2.3)  4.1 (0.03, 512.4) 

Noisy activities 1.1 (0.8, 1.7)  1.3 (0.9, 1.8) 

PPE    

    Cotton gloves 1.1 (0.8, 1.5)  1.1 (1.0, 1.1)* 

    Latex gloves 0.8 (0.5, 1.3)  1.2 (0.8, 1.9) 

Electronic product    

    Electric fan 0.8 (0.3, 1.8)  - 

    Flat screen monitor -  0.02 (0.002, 0.4)** 

    Cell phone -  0.4 (0.2, 0.9)* 

    PCB -  4.8 (0.1, 244.7) 

    Parts 2.2 (0.6, 8.0)  1.2 (0.9, 1.5) 
*p<0.05; **p<0.01; ***p<0.001.   †0.05<p<0.055 

The multivariate models in Table 3-10 selected from the significant predictors in  Table 

3-9 to predict the incidence rate of injuries (Poisson regression). The Poisson regression for 

Thailand, Model 1 in Table 3-10, included two predictors, use of pliers/scissors and working 

near sharp metal, which were significant (or nearly so) in the univariate models. Both predictors 

lost significance in the multivariate analysis.  Models 2 and 3 are Poisson regression models for 

the Chilean data set. Model 2 focuses on traumatic injury predictors, while Model 3 looks at 
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ergonomic stressors. In Model 2, use of cotton gloves was unexpectedly significantly associated 

(p<0.05) with a 1.2 higher incidence rate compared to workers who do not use cotton gloves (but 

could potentially be using other types of gloves). Working near sharp metal lost significance in 

the model. The ergonomic stressors in Model 3 show that repetitive arm motion and lifting less 

than 20 pounds were each significantly associated with increased rates of injury incidence 

compared to workers who do not perform these tasks (IRR=9.2 and 8.3, respectively). 

Table 3-10 Results of multivariate analysis using Poisson regression for quantitative injury and 

task data derived from videos. 

Poisson Regression Model IRR (CI) 

 Thailand 

Model 1 IRR (CI) 

Constant 0.9 (0.5, 1.7) 

Pliers/Scissors 2.9 (0.9, 10.0) 

Working near sharp metal 1.2 (0.9, 1.5) 

  

 Chile 

Model 2 IRR (CI) 

Constant 7.3 (3.0, 17.6)*** 

Cotton gloves 1.2 (0.8, 1.7)* 

Working near sharp metal 0.9 (0.6, 1.3) 

  

Model 3 IRR (CI) 

Constant 2.8 (1.2, 6.4)* 

Repetitive arm motion 9.2 (3.6, 23.3)*** 

Lifting <20 pounds 8.3 (1.5, 47.8)* 

          *p<0.05; ***p<0.001 

3.4 Discussion 

This study examined occupational noise exposure and NIHL among informal e-waste 

recyclers, and also examined the risk of injury associated with specific tools, tasks, and other job 

features characteristic of e-waste recycling. In addition to providing novel information about the 

prevalence of NIHL and injuries, this study is the first to provide a detailed, quantitative analysis 

on the hazards of e-waste recycling through prediction of odds ratios and incidence rate ratios of 

injury occurrence by specific job features. The use of a novel video tool to create a quantitative 

data set of the work tasks, tools, ergonomic stressors, PPE use, and other physical stressors 
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provided information about the frequency with which different hazards are used by informal e-

waste workers, as well as the risk of injury of each. 

3.4.1 Demographics 

The demographic characteristics of our sample confirm that these informal e-waste 

workers are a marginal and vulnerable community. Most of our participants reported a monthly 

household income below $1,250 PPP. In comparison, the United States had an average monthly 

wage for full-time equivalent workers of $4,893 PPP in 2015 [43]. Additionally, approximately 

half of workers in each country did not have a high school education. Reports and studies from 

other parts of the world have similarly reported that e-waste workers tend to be from lower 

socioeconomic segments of the population [17], [18], [35], [37], [44]-[47]. Workers in Thailand 

reported an average of 41 hours worked per week, while in Chile the mean was 51 hours per 

week. Notably, more than half of workers in each country reported e-waste recycling as their 

primary job, meaning that many workers likely work many more hours per week when 

secondary jobs are considered. 

3.4.2 Noise and hearing 

The mean TWA (dBA) in each country was well below the Recommended Exposure 

Limit of 85 dBA set by NIOSH [48].  These results were in contrast to those reported by Burns, 

et al., 2016, which reported that 40% of e-waste workers surveyed in Accra, Ghana were 

exposed to TWA noise levels > 85 dBA [36].   However, exposure to brief but intense transient 

noises has been shown to increase risk of NIHL in workers even when the TWA is below 85 

dBA [49]-[50]. 
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Results from the audiometric tests show that participants in Chile had a similar rate of 

hearing loss, 22.5%. However, 46.4% of participants in Thailand had mild or worse hearing loss. 

The higher rates of hearing loss as well as the higher TWA in Thailand might be explained by 

transient noise exposure; such exposures were observed frequently among e-waste workers in 

Thailand who often use rudimentary, hand-made tools. Approximately 23% of noise-exposed 

workers in the U.S. have hearing loss, and 5% report tinnitus [51].  

Although no association was found between noise TWA and injuries, there was an 

association found between self-reported perceived noise and injury rate in Thailand. As the level 

of perceived noise frequency increased, with the exception of the highest frequency level, the 

odds ratio decreased, suggesting that less noisy environments resulted in more injuries (Table 

3-4).  This finding directly contradicts studies that show a dose-response relationship between 

noise and injury in occupational settings [51]-[52]. One possible explanation is that workers in 

quieter settings are more likely to work alone and injure themselves when they are unable to seek 

assistance for a task. Alternatively, the tasks associated with the greatest risk of injury in e-waste 

recycling may be quieter tasks. An example of this is found in the multivariate regressions in 

Table 3-10, where we see working near sharp metal as a predictor of increased injury incidence 

rate in Thailand. Merely working near sharp metal is not necessarily associated with any level of 

noise. More information and repeated measurements are needed to determine the difference in 

noise exposure by task in order to better protect workers [53].  

3.4.3 Injury 

Nearly two-thirds of workers in Thailand and Chile reported an injury in the previous six 

months. The results of the injury findings were consistent with those among a group of informal 
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e-waste workers in Nigeria, who reported a 68% prevalence of injuries in the preceding six 

months [42]. Th prevalence of occupational injury in both research populations in this study is 

higher than that found in a group of 2,907 informal workers in Brazil, where the annual 

incidence rate was 6.2 injuries per 100 full-time equivalent workers [53]. 

The body part with the highest number of reported injuries for the previous six months in 

both Thailand and Chile was the hand. This finding is consistent with occupational injury reports 

in the United States, where 33% of emergency room visits for occupational injuries are for hand 

trauma [54]. Although approximately 75% of workers in each country reported regular use of 

PPE (presumably to reduce injury risk), this did not match our field observations. Workers also 

frequently used PPE in the videos of work activities; however, this again did not match our field 

observations and may not be representative of typical workplace behaviors. The PPE that was 

observed, for example cotton and latex gloves, are not suitable for protecting workers against 

many types of hazards associated with e-waste. In Model 3 of Table 3-10, use of cotton gloves 

was associated with 1.2 times higher incidence of injury compared to workers who did not wear 

cotton gloves in the video. The association between cotton gloves and increased incidence rates 

might be explained by false confidence in protection from injury resulting from the use of cotton 

gloves, where workers believe they are protected but the cotton glove is not adequately 

protective against cuts, punctures, burns, etc.  

In both Thailand and Chile, access to PPE may be limited and, per conversations with 

workers in each country, is funded by the worker as a personal expense. The video enumeration 

for PPE use showed that many participants wore long pants and sleeves. This may vary 

seasonally in Chile, as it was winter when the study occurred. In Thailand it is unlikely to differ 

by season, given the relatively invariant temperatures across the year, but such PPE may be worn 
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to preserve personal hygiene rather than as protection against injury. In both countries, the use of 

specific clothing is likely not sufficient to protect against all injuries.  

When asked what activity was being performed during their worst injury in the previous 

six months, workers in Thailand most commonly identified dismantling and sorting, while 

Chilean workers named collection and sorting most frequently (Figure 3-3). In conversations 

with Chilean e-waste workers, traffic accidents during collection of curbside e-waste and lifting 

of heavy e-waste equipment were among the hazards identified during collection. More than half 

of workers in Thailand reported use of a hammer as the task they believe most frequently results 

in injury (Table 3-3). The IRR in the univariate analysis for video data from Thailand found that 

use of a blunt striking instrument (such as a hammer) had an incidence rate ratio of 1.7; however, 

it was not significant (95% CI = 0.9, 3.1) (Table 3-9). 

The results of the self-report injury regressions (Table 3-4, Table 3-5, Table 3-6, and 

Table 3-7) showed several trends. In the Poisson regressions for self-reported survey data for 

each country, age was significantly associated with injury incidence; however, the trends for the 

two countries were in opposite directions. In Thailand, our results were consistent with other 

studies that show that younger workers, who might have less experience, tend to have higher 

rates of injury than older workers [55]. In Chile, workers who were aged 30 to 55 years had a 

1.61 higher incidence rate, and those aged more than 55 years had a 2.96 higher incidence rate, 

than workers who were 18 to >30 years old in the multivariate analysis. This might be explained 

by the prevalence of repair of electronics observed in Chile, where workers would sometimes 

repair parts or rebuild electronic products using parts from other waste electronics. Repair 

workers require technical training, and from field observations, tended to be younger, whereas 
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collectors and recyclers tended to be untrained and from older generations. However, more 

research is needed to determine why age in Chile is associated with higher incidence of injury.  

The results from Chile showed an increased odds and incidence rate of injury for workers 

who reported that one of their work tasks results in more frequent injury. This finding suggests 

that the knowledge of e-workers about their own job tasks might be an informative, and perhaps 

better, source of injury assessment data than what can feasibly be obtained through observation.  

Workers who identified buying and selling of e-waste products and materials as a task 

with which workers engaged in regularly was a significant predictor of lower odds and incidence 

of injury. This fits with field observations where the workers who were responsible for buying 

and selling were usually of higher rank in the work place and did not engage in dismantling and 

other activities as frequently as lower-rank workers. Similar systems of job task differences exist 

in Ghana, where scrap dealers collect a large portion of the income but do minimal dismantling 

and collecting work [56].   

The cumulative task frequencies derived from video data in Figure 3-5 showed a high 

number of ergonomic stressors in each country. There is a lack of studies on ergonomic stressors 

in e-waste workers; however, other studies have demonstrated a serious impact on worker 

physical and economic health in the presence of workplace ergonomic stressors [57]. Our field 

observations revealed several concerning ergonomic issues, particularly in Thailand, where 

workers often sit on small buckets near to the ground to perform their work. In Chile, where 

work benches were seen more often, workers were observed to be bent over their work space, 

producing strain in the back and neck. In both countries we observed potential hand-arm 

vibration, static grip, and repetitive motion exposures.  
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The univariate logistic regressions shown in Table 3-9 reveal that workers who were 

more frequently observed recycling cell phones had an incidence rate that was 0.2 times lower 

than those who were less frequently observed recycling cell phones (p<0.01). This predictor 

maintained significance in the multivariate regression in Model 2 of Table 3-10. The univariate 

Poisson regression for Chile shows that participants who more frequently recycled flat screen 

monitors and cell phones had lower incidence rates of injury (IRR=0.02, p<0.01; and IRR=0.4, 

p<0.05, respectively). These findings suggest that product type influences injury hazard.  

The univariate Poisson regressions for Thailand and Chile using video data (Table 3-9) 

each found an association between working near sharp metal and increased incidence rate of 

injury (IRR=1.1, p<0.05 in Chile; IRR=1.3, 0.05<p<0.055 in Thailand). Increased injury 

incidence rates due to the lack of occupational hygiene and housekeeping in workplace settings 

has been reported in studies of other occupational groups [58], [59]. However, this variable lost 

significance in the multivariate models in both countries (Table 3-10). Sharp materials, like scrap 

metal and broken glass, present important hazards in the workplace [60]. This suggests that a 

relatively simple and immediate safety intervention that workers can implement themselves is to 

simple improving workplace housekeeping.  

There was a difference in the significance of predictor variables in the Poisson 

regressions for the self-reported and the video data. For example, the Poisson regression in 

Thailand using self-reported survey data included perceived noise as a significant predictor for 

injury, while the Poisson regression built off of video data showed noise was not a significant 

risk of injury.  This may be because of the variability in tasks among e-waste worker, or because 

the enumeration of video noise levels was based on the viewer’s subjective decision about how 

noisy activities in the video are rather than actual noise measurements. The use of self-report and 



108 

 

surveillance data together revealed that different methods are useful for assessing certain aspects 

of e-waste recycling from an occupational safety standpoint. Personal recall proved to be 

effective for determining which job titles and demographic data are associated with injuries, 

while observational (video) data was useful in predicting which tools, tasks, ergonomic stressors, 

and product types present an occupational injury hazard. 

3.4.4 Limitations 

As with any research, this study has a number of limitations.  First, the data collected 

during our field visits may not have been representative of a typical day of work for our study 

populations. Many of the analyses in this study assumed that individual worker tasks, work on 

types of products, and personal behaviors are static over time. Similarly, for injury self-report 

data, we assumed that the tasks workers performed over the previous 6 months are the same or 

similar to what we enumerated using the video tool. If workers were performing different tasks 

than normal, or if there is a great deal of variation in their work tasks, then our results would not 

be representative. However, based on observations at field sites and conversations with 

individual participants in each country, workers appear to perform similar routine tasks and do 

not frequently change their work habits.  

The second limitation is the ability of workers to accurately recall the number of injuries 

over the previous six months, as well as the task performed when the injury occurred, will affect 

the validity of our outcome variable and results. Because our outcome variable for the Poisson 

regression was the injury count in the previous six months, the validity of our findings depends 

on the ability of workers to recall even minor injuries in detail. Additionally, it is possible that 

there are differences in the perception of what constitutes an injury between countries as well as 



109 

 

between individuals, and so there may a reporting bias in the outcome injury variables. If one 

group was more likely to over- or under-report injuries, then our results are biased. Third, the 

number of participants included in the video analysis data was low in each country, limiting the 

validity of the findings. Workers captured on video may have been subject to observation bias, 

changing their work behavior because they are being recorded. We were unable to capture some 

of the more dangerous tasks, such as burning e-waste or breaking and removing broken glass 

from e-waste, in our video footage. These activities likely carry a high risk of injury that we were 

unable to represent in our study. 

3.4.5 Future Directions 

The results of this research suggest several potential future directions. First, more work is 

needed to compare non-auditory outcomes, such as blood pressure, with noise exposure in e-

waste recyclers. Long-term exposure to environmental noise, such as that found in communities 

where e-waste recycling is prevalent, can result in negative cardiovascular outcomes at noise 

levels lower than those where NIHL is expected [61], [62]. Additionally, further studies are 

needed to measure impulsivity or “peakiness” in noise exposures in each site, as well as to 

evaluate the link between hearing loss and peak noise exposures among workers. Next, future 

studies should focus on conversations with workers to help determine hazardous tasks, as 

workers demonstrated knowledge about the physical hazards of their work. Community-based 

participatory research approaches that examine behaviors of e-waste workers and use their 

knowledge would allow researchers who are less familiar with e-waste recycling work to better 

select for variables to use in risk assessments of e-waste recycling. Inclusion of the more 

hazardous work tasks that could not be assessed in the current study (e.g., burning e-waste and 
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use of acid baths for recycling) in future studies will help contextualize the hazards of other 

dismantling tasks and provide a more complete picture of injury risks in e-waste recycling. 

However, due to the illegality or socially unacceptable nature of these activities, such research 

will likely be difficult to conduct. Future ergonomic studies should address the lack of proper 

posturing of e-waste workers to protect against this type of injury. Finally, to determine the 

representativeness of our samples with regard to injury occurrence and frequency, a follow-up 

study with existing participants would provide information on the variability in the incidence of 

e-waste injuries over time.  

3.5 Conclusions 

This study was the first quantitative assessment of occupational injury hazards among 

informal e-waste workers.  The study also developed and applied a novel method to enumerate 

observational video data into a quantitative data set allowed for analysis of the association 

between frequency of different job tasks and attributes and injury incidence rates.  Measured 

noise exposures (TWA) of workers were below the limit recommended by NIOSH, though 

evidence of NIHL was found in audiograms. There was no association between TWA and injury; 

however, an association was found between self-reported occupational noise exposures and 

injury.   Approximately 60% of e-waste workers surveyed in Chile and Thailand reported having 

at least one occupational injury in the past 6 months, with 43% in Thailand and 66% in Chile 

reporting more than one injury in the same time period. Results from this study suggest that 

worker age, education, job task, PPE, ergonomic stressors, and e-waste product type have an 

impact on the occurrence and rate of injury incidence.   Collectively, these findings highlight the 

need for effective interventions to improve workplace safety, hygiene, and health behaviors for 

e-waste workers. Interventions to provide education to workers on the importance and execution 
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of properly using PPE and maintaining proper workplace hygiene could reduce the number of 

hazards surrounding workers and would empower workers to protect their own health.  
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Chapter 4 : Material Recovery, Income, and Avoided Emissions from Informal E-waste 

Recycling in a Thai Community 

Chapter 4 Abstract 

Introduction: Recovery and recycling of materials found in e-waste is an informal work 

sector that is growing in low-income areas across the globe. The informal sector is often cited as 

polluting humans and the environment; however, there is potential for the informal sector to 

produce environmental benefit in the form of avoided emissions. The informal sector may be 

more efficient in the collection of e-waste and recovery of materials, and additionally relies 

mostly on manual labor, reducing electricity consumption in the process. 

Methods: Four e-waste products (washing machine, refrigerator, Cathode Ray Tube 

(CRT) television, and fan) were selected for use in a combined Material Flow Analysis (MFA) 

and Life Cycle Assessment (LCA). Data collection took place in an informal e-waste recycling 

community in Thailand where the materials recovered for each product were recorded along with 

the product flow data for one village. These results were fed into a LCA to calculate the avoided 

emissions and damages (in terms of human health, ecosystem quality, global warming, and 

resource use) per material type, per product and for the entire community. 

Results: Recyclers recovered approximately 93% or better of the original mass of the 

product. The village recycled nearly 40,000 kg of e-waste comprised of these four product types 

per month, with an associated net value added of 157,000 THB. The net avoided human health 

damages are 0.2 DALYs. Additionally, nearly 60,000 kg CO2 equivalents are avoided in climate 
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change impacts and nearly 400,000 MJ are avoided in resource damages. The community 

sustains approximately 3 million Potentially Disappeared Fraction*m2*yr in ecosystem damages 

each month, largely due to lead from landfilled CRT screens. This will be offset when comparing 

e-waste recovery with landfilling. 

Conclusions: Informal e-waste recycling appears to have net benefits in terms of avoided 

emissions with the exception of improper handling and disposal of hazardous materials, such as 

leaded CRT screens. In addition, informal recycling is showed to be relatively efficient in 

recovery of materials and economically beneficial to communities who engage in recycling 

activities. 
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4.1 Introduction 

4.1.1 E-waste and end of life scenarios 

By the year 2020, it is estimated that the world will produce more than 50 megatons of e-

waste per year [1]. Electronics that have reached the end of their use phase will eventually enter 

one of three main end-of-life (EOL) scenarios: repair, landfill, or recycling [2]. An overview of 

the life cycle and main EOL scenarios of e-waste is shown in Figure 4-1. The generation of e-

waste has outpaced solutions to process the growing waste stream, including formalized 

recycling systems [3]-[5]. This deficiency of technology and infrastructure, combined with a lack 

of regulatory and economic incentives in many countries, results in hoarding and/or improper 

disposal of e-waste products by consumers [6], [7]. E-waste globally is the fastest growing waste 

stream, and though estimates vary depending on country and region, a portion of e-waste ends up 

in landfills in every country each year [1]. An estimated 1.3 million tons of e-waste was disposed 

of in landfills in the United States in 2014 [8]. Landfilled e-waste results in a loss of their 

valuable materials, including copper, steel, gold, rare earth elements, and some plastics, that 

could have potentially been recycled and reused [9]. Repaired electronics can also re-enter the 

use phase, extending the life cycle of the product. 

EOL processes are different between formal and informal recycling. Part of the e-waste 

that enters the informal recycling stream is repaired rather than recycled, or parts are kept during 

the recycling process to use in future repairs [10]. This repair process is less frequent in formal 

recycling, due to additional complications associated with legal considerations regarding 

company contracts and data security [11]. Informal e-waste collectors in some areas of the globe 

sort through waste streams to recover disposed electronics and divert them into the e-waste 
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recycling or repair stream [10], [12]. Both formal and informal recycling yield waste products 

that cannot be recycled, such as certain plastics, small concentrations of rare metals, and coated 

glass, which are landfilled [13], [14].  

  

Figure 4-1 Life cycle of electronic waste showing three end-of-life scenario and the relationship 

between informal recycling and other life stages of products. 

4.1.2 Comparison between formal and Informal e-waste recycling  

There is no definitive definition of what constitutes informal e-waste recycling; however, 

as in other informal industries, it is generally associated with a lack of regulation and 

infrastructure [15]. As a result of lax oversight and inadequate resources, informal e-waste 

recycling often coincides with contamination of local environments, workers, and communities 

[16]-[22]. Informal e-waste workers employ dangerous methods in the recovery of recyclable 

materials, including the burning of copper wires and improper handling and disposal of CRT 
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glass [12], [23]-[25]. Informal e-waste recycling sites are expected to increase in number 

throughout the developing world as the quantity of e-waste generated globally increases, 

resulting in an increase in pollution [1], [26], [27]. 

Some studies suggest that formalization of the informal e-waste recycling sector could 

reduce the impacts caused by informal recycling by imposing and enforcing occupational and 

environmental health standards [1], [28]-[30]. Formalized recycling of e-waste can potentially 

reduce environmental contamination, worker and community exposures to hazardous chemicals, 

and offers recuperation of valuable materials, reducing demand for virgin materials [31]. 

However, while formal recycling might offer some protection through controls, workers in 

formal recycling facilities in the U.S. and in Sweden have also been shown to be exposed to e-

waste chemicals [32]-[34]. Recycling of e-waste containing hazardous materials, including 

leaded glass, polybrominated diphenyl ethers (flame retardants), and chlorofluorocarbon 

(insulation foam), requires specialized techniques in controlled conditions to prevent these 

chemicals from entering the environment [35].  Similarly, specialized methods and economies of 

scale are needed to extract rare and trace elements from electronics [36]-[38]. Extraction of rare 

and trace elements involves the use of hazardous chemicals and creates a stream of hazardous 

waste that can be costly to dispose of appropriately [14], [37]. 

Despite the benefits offered by formalized recycling, informal e-waste recycling offers 

several important advantages compared to the formal sector. First, the formal sector does not 

currently have the capacity to handle the global e-waste stream, and so the informal sector is 

needed [1], [13]. In part, the lacking capacity of the formal sector is due to the high cost 

associated with formal recycling [39]. Until formal recycling becomes a prevalent and affordable 

option, informal recycling offers recovery of materials that would otherwise be landfilled.  The 
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informal sector therefore provides environmental and economic benefits by reducing the demand 

for mining of virgin materials [31], [40]. Secondly, informal recycling can be more efficient in 

some tasks, such as the collection of e-waste from waste streams, sorting of e-waste products, 

and recovery of materials during preliminary dismantling activities [30], [39], [41], [42]. For 

example, e-waste streams are heterogenous in their composition of products, and individual 

categories of products are variable in their material composition with differences between 

brands, models, years, and geographic locations [13], [43]. To deal with this complexity, the 

formal sector is forced to develop expensive technology to sort e-waste into similar materials. 

The informal sector relies on lower-cost manual sorting and disassembly, sometimes resulting in 

higher recovery yields [44]. Finally, repair and reuse of e-waste products and parts is common in 

the informal sector, reducing the demand for new products and parts [25], [45], [46].   

4.1.3 Valuable materials and economics of e-waste recycling 

The value of secondary raw materials contained in e-waste was estimated at 

approximately 63 billion USD in 2017 [7]. Valuable materials and components, including 

copper, ferrous metals, aluminum, and printed circuit boards (PBCs), can be recovered from e-

waste and sold to generate income. The value of individual e-waste products is determined by the 

concentration of valuable materials inside, the ability of workers to recover those materials, and 

market prices for raw secondary materials [31]. Additionally, costs are saved in the reduced need 

to extract virgin materials and the avoided processing steps of primary materials in the form of 

energy savings [47], [48]. While some information exists on the income generated by formal 

recycling companies in countries like Sweden, little information exists on the income for e-waste 

workers in the informal sector. 
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The informal e-waste recycling sector serves as an important source of employment for a 

large number of low-skilled workers across the globe [49]-[51]. For example, in Ghana, an 

estimated 0.5% to 0.8% of the total population is employed in the informal e-waste sector [52]. 

In Guiyu, China, 80% of the city’s residents are employed in e-waste recycling [53]. In India, an 

estimated 85,000 workers are employed in the informal e-waste sector in the capital city of Delhi 

alone [54]. Informal recycling provides an important source of employment in Thailand, too, 

though no official estimates of size of the sector exist. As China has gradually increased 

regulations and enforcements on e-waste recycling, Thailand has become a major dumping 

ground for e-waste [55]. Therefore, the expected trend of poor and marginalized populations 

seeking employment in the sector [56] will likely continue in Thailand as the e-waste stream 

grows.  

Despite the importance of e-waste as an income for populations across the globe, little is 

known about the earnings of informal workers. Studies from Ghana report that the income of e-

waste workers to be higher than the daily minimum wage [57], [58]. Other studies, like one from 

Pakistan, merely comment on the importance of e-waste as an income [59]. A more 

comprehensive assessment on the income of e-waste workers, including the income generated on 

individual products, is required for consideration in conjunction with environmental and human 

health effects to inform decision makers on best practices for e-waste policy and interventions. 

4.1.4 Material flow and environmental life cycle assessment of e-waste 

Material flow analysis (MFA) is an analytical method than can be used to measure the 

flows of products or materials through a defined system [60]. The tracking of informal and 

illegal e-waste is difficult due to multiple endpoints, lack of organization and systems to track 
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products, etc. [61]. Therefore, there is a dearth of studies on the flow of materials in the informal 

e-waste recycling sector. Available information on the flow of e-waste materials, as well as end-

of-life recycling scenarios using life cycle assessments, are largely limited to formal sectors and 

middle- or high-income countries [62], [63]. Additionally, many studies have focused on the 

generation or collection of e-waste products but have failed to examine the flow of e-waste 

materials from the product to the secondary raw material stage [25], [28], [64], [65]. The few 

studies that have examined these issues in the informal sector often have not relied on primary 

data, but rather a conglomeration of estimates [10], [66], [67]. Some materials are not recovered 

from e-waste during formal and informal recycling due to factors including worker behaviors, 

available tools and techniques, and material recycling technology limitations [68]. In the 

informal sector, decisions and recovery rates are possibly influenced by other factors, including 

market prices of products and materials as well as manual dismantling abilities. Detailed data 

from informal recycling operations is needed to estimate the performance of the informal 

sector’s ability to recover material compared with the formal sector, as well as to estimate the 

flows of products and materials in e-waste communities.  

Life cycle assessment (LCA) is a decision-making tool that characterizes the entire life 

cycle of a product or process [69]. LCA methods can be applied to EOL processes for a product, 

allowing for the comparison of each process in the treatment of waste. Although some studies 

have shown that the EOL does not have the dominant environmental impacts for some 

electronics [70]-[72]. LCAs focusing on EOL treatment options of e-waste have shown positive 

environmental benefits in formal recycling facilities compared to other EOL scenarios [62], [63], 

[71], [73], [74]. Existing LCA literature focuses on impacts of recycling in the formal sector, 

excluding differences in techniques, processes, and inputs found in the informal sector [75], [76]. 
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This exclusion in the informal sector is important because processes like the burning of e-waste 

and improper disposal of e-waste is likely to have additional important impact, whereas avoided 

environmental impacts associated with the EOL of e-waste in informal recycling are unknown 

and a main source of uncertainty. More information is therefore needed to address the 

environmental and human hazards associated with informal e-waste recycling. 

4.1.5 Research objectives 

The overall aim of this study was therefore to consistently and comprehensively assess 

the material flow, economic performance, and environmental damages due to operations in an 

informal e-waste recycling community in Northeastern Thailand. The first objective was to 

determine the material recovery efficiency and economic impact of e-waste recycling at the 

product- and community-level using MFA and economic analyses. The second objective was to 

determine the environmental impact of informal e-waste recycling at the product- and 

community-level using life cycle impact assessment (LCIA) methods for the EOL product phase. 

Together, this information will help inform decision-makers on which products and materials 

have the largest economic impact, as well as which will have the largest environmental impacts. 

Both aspects are important when considering how to improve the environmental health aspects 

of informal recycling as well as preserving this important source of employment for workers.  

4.2 Methods 

4.2.1 Study site, participants, and product selection 

Data for this study were collected from four neighborhoods in a larger e-waste recycling 

community near the city of Kalasin, in Northeast Thailand. This community was selected for 
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several reasons, including the recovery and recycling of most types of materials. Unlike recyclers 

in other areas, such as Chile, recyclers in Thailand recover and recycle nearly all materials from 

e-waste, including plastics. Additionally, recyclers were observed to recycle using relatively 

similar methods, which allowed for an assumption of similar recovery rates between recyclers. 

Participants were selected with the assistance of local community health workers and local 

researchers using convenience sampling methods. The study methods were approved of by the 

Institutional Review Board at the University of Michigan (HUM0014562) in the United States 

and at Mae Fah Luang University (REH-59104) in Thailand. 

Four e-waste products were selected based on their relatively simple design in terms of 

numbers of materials and components as well as their abundance in the community. These four 

products were: washing machines, refrigerators, CRT televisions, and upright fans. One of the 

four villages, “Village 4”, was selected for additional surveys of all e-waste recycling households 

within that neighborhood.  

4.2.2 Material recovery and economic data collection 

This study employs a combined MFA and LCA approach. The boundaries for the MFA 

were set on the physical and process boundaries in Village 4. Materials recovered from each of 

the four selected products were obtained in the field while workers were actively recycling items 

(See Appendix D). Masses of individual products were first recorded in the field – along with the 

mass of each type of material, including waste, recovered from the individual products – using a 

digital food scale for smaller items and a large analog scale for heavier items. A mass balance 

was run on each product as data quality check to ensure accuracy of measurements (See 

Appendix D). Products with incomplete mass records or with invalid mass balances were 
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removed from the data set. Materials were categorized by workers who knew from experience 

the difference between metal composition in different products and subassemblies.  

The flow of the selected four e-waste product types was collected from all known 

households in Village 4 that engaged in e-waste recycling activities through in-person surveys. 

The average number of each product type recycled per month was calculated, along with the 

average number of products recycled per month for all of Village 4. These results were then 

multiplied by the material recovery data from individual products to complete our material flow 

at community level.  

Workers provided economic data for the products. Information was collected on the 

purchase price for each electronic product for which mass data was collected. In addition, 

workers provided the current market price for different material types. Finally, additional 

overhead costs, including labor, electricity use, and out-sourcing of processes were considered. 

Cost of tools was not included. The net value added was then calculated by combining the 

product specific material flows with purchase and material prices. An economic balance was run 

for each observation as a data quality check. 

4.2.3 Life Cycle Assessment 

An LCA study was conducted using the per product and community MFA results and 

combining it with Life Cycle Assessment data of material production and recycling to estimate 

the net impacts of informal e-waste recycling, focusing on EOL processes and related raw 

material substitution. The informal recycling scenario was compared to the entire landfilling of 

e-waste as baseline scenario to derive a net benefit or impact; The landfilling of inert waste 

materials and CRT glass from the informal sector is the same in the baseline scenario, but the 
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associated impacts were nevertheless estimated to also evaluate the entire impacts of informal 

recycling and discuss the further benefits that can be obtained by proper disposal of CRT glass 

with lead. The LCA was used to calculate the human health, ecosystem quality, climate change, 

and resource impacts for each product, related material type and associated processes.  A 

normalization step was applied at the end to aid the interpretation of results [77], [78]. 

4.2.3.1 LCA goal, system boundaries and functional unit 

The goal of this LCA was to quantify the environmental impacts of informal e-waste 

recycling for four products. The system boundaries for this analysis are shown in Figure 4-2. The 

e-waste recycling system begins when the e-waste enters the Thai community where it will be 

recycled and considers all processes up through the production of secondary materials. The 

boundary ends at a point where the processing of primary raw materials and secondary raw 

materials is comparable to compared with the mining of virgin materials. We did not consider 

transport to the community for the products due to the heterogeneity of origin. The e-waste 

recycling system is split between two major steps. The first step is the manual dismantling, 

sorting, and disposal of e-waste that occurs in the Thai community. The second step is the 

transportation and processing of recovered materials at facilities in Bangkok, Thailand. Data 

from the product specific MFA were used to inform the first step. The processes from second 

step were adapted from two main studies, i.e. a 2005 study by Hischier et al. and a 2011 study by 

Wager et al. on the Swiss e-waste recycling system [63], [79]. The net impacts are then 

calculated assuming a substitution of virgin material, and subtracting the emissions, extractions 

and impacts associated with the production of primary virgin materials. The recovery scenario is 

then qualitatively compared with a baseline scenario of landfilling of the products. For each of 
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the four selected e-waste products. The functional unit (FU) was one product unit recycled in the 

informal sector.  

   

Figure 4-2 System boundaries of the e-waste in the modeled informal e-waste system, including 

steps occurring between the arrival of e-waste in the community through the production of 

secondary materials. 
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4.2.3.2 Inventory data and LCIA 

For each product, the starting mass and the mass of all recovered materials were taken as 

the average value from all included MFA data for that product type. Tool use was added to each 

product type for three commonly used tools: hammer, pliers, and electric drill (See Appendix F, 

Section F-1). All three tools were modelled in the inventory database and then integrated in the 

process flow of each of the four product types. The quantity of each tool added per product was 

calculated based on the estimated average lifetime of a tool (based on conversations with 

participants) and the number of products recycled during that lifetime (based on village 4 product 

flow results). Duration of use of the electric drill was estimated for each product based on field 

observations and video recordings of several participants (see Chapter 3) and multiplied by 

measured power usage to provide the drill electricity consumption (kWh) per FU.   

All inventory processes are shown in Appendix E. To model copper recovery from 

burning of cables, a collection of e-waste cables from different products in the Thai community 

were collected and stripped to determine the mass of the copper without coating. An additional 

percentage loss from vaporization of copper during burning was calculated based on experiments 

characterizing e-waste burning by Gullet et al., 007 [80]. Air Emission factors per kg cable 

burned were also taken from this same paper. Copper recovered from cables was treated the 

same as copper recovered from other e-waste components. 

Processes in secondary material treatment (part 2 of Figure 4-2) were characterized using 

existing and modified data in the Life Cycle Inventory (LCI) database Ecoinvent v3.5 [81]. Table 

4-1 summarizes the major assumptions made for different processes in the LCA, whereas 

additional assumptions and processes are shown in Appendix D. For transport to the secondary 

processing facilities, a distance of 520 km was used as the distance between the e-waste study 

site and Bangkok. Printed circuit boards (PCBs) were modeled using a cascade of treatments to 
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recover copper, gold, silver, and palladium. To model the informal e-waste recycling scenario 

comparison with the complete landfilling of e-waste products, avoided emissions are calculated 

by subtracting the emissions associated with virgin mining of materials from the processes 

required to transform recovered scrap material from e-waste to raw secondary materials. Where 

possible, primary production processes were taken from the Rest of World (RoW) Ecoinvent 

datasets. If RoW was not available for a process flow, then Global (GLO) or the next best 

alternative was used. The cut-off unit process was selected from the Ecoinvent database for all 

applicable process flows.  
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Table 4-1 Assumptions and estimates for materials and processes in the LCIA. 

Inventory item Author assumptions 

Metals recycling • Transport to treatment plant 520 km, 3.5-7.5 metric ton lorry, EURO3. Thailand’s 

current emission limits correspond better to EURO2 emission standards; therefore, 

emissions for CO and NOx were updated in process flow to reflect EURO2 

standards [82]. 

• Ratios for inputs of secondary scrap metal to outputs of secondary raw materials 

were taken from methods on previous WEEE studies by Empa Technology & 

Society Laboratory experts of St. Gallen, Switzerland [63], [79].  

• Processing of scrap metal modelled on technology available in Europe, early 2000s. 

Plastic recycling • Transport to treatment plant 520 km, 3.5-7.5 metric ton lorry, EURO3. 

• Electricity mixture: medium voltage, Thailand. 

• Process heat: Heat, central or small-scale, natural gas {GLO}. 

• Input of MBA polymers contain 11.5% of metals (Al, Cu, steel); results in 40% 

output of secondary polymers (ABS, PS, PP). Energy input, chemicals consumption, 

waste treatment parameters kept constant. 

• Scrap plastic processes modelled on technology available in one plastics recycling 

facility in Austrian the early 2000s. Plastics analysis performed by Dr. Roland 

Hischier of Empa Technology & Society Laboratory experts of St. Gallen, 

Switzerland; process is confidential data until 2022. 

• Avoided plastics were assumed to be 42% ABS, 28% PS, 20% PP based on Stenvall 

et al., 2013 [83]. 

PCB recycling • Separation and shredding of PCBs and cascade process to remove Au, Ag, and Pd 

from circuit boards modelled based on methods used in Europe.  

• Only Au, Ag, Pd, and Cu recovery from PCB considered. Remaining materials 

treated as inert landfill waste. 

CRT glass • Pb concentration in  CRT glass calculated based on Mear et al, 2006: 33% of CRT 

glass is leaded; 25% of leaded glass is PbO by mass [84].  

• Assume 100% of Pb will leach from CRT glass (including long-term) to soil. 

Cable burning • Assume 67.5% copper recover (by cable mass) based on plastic coating striping 

experiments by author (-28%) and loss of copper to vaporization from combustion 

experiments (-4.5%) by Gullet et al., 2007 [80]. 

• Emissions to air from combustion based on findings from Gullet et al., 2007 [80]. 

Waste • Waste that was recovered was modelled as inert landfill waste. 

 

Uncertainty was estimated using the Pedigree Approach assuming lognormal 

distributions [85]. Geometric standard deviations were calculated using data quality indicators 

and default uncertainty factors as detailed in Jolliet et al., 2016 [86]. For the uncertainty on the 

material mass decomposition from the MFA, a normal distribution was assumed, and standard 

deviations calculated from field data.  
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4.2.3.3 Impact assessment methods and normalization 

Two LCIA methods were selected as results between methods are known to vary in some 

cases [87]-[89]. The impact assessment was performed using the Impact 2002+ methods [78], 

[87] run by the SimaPro PhD software. A sensitivity analysis was also performed with the 

Hierarchist scenario of ReCiPe 2016 v1.1 midpoint and endpoint method [88] (Appendix G) 

covering a wide range of impact categories [89]. Similarities and differences in endpoint damage 

and endpoint characterization categories are shown for each method in Table 4-2. Damages were 

calculated for each method and reported for each material type (impact per kg recovered e-waste 

material) and by product (impact per product). Finally, monthly neighborhood impacts and 

benefits were calculated using the overall mass flows of each product type treated in Village 4 . 

Human health endpoint damage categories were reported in disability-adjusted life years 

(DALYs) and represent the number of years of life lost due to mortality and morbidity over the 

entire population [90]. The ecosystem quality damage category has the unit PDF*m2*year and 

represents the “potentially disappeared fraction” (PDF) of species over a certain area (1 m2) 

during a year [87]. Climate change is given in unit of kg CO2 equivalents (CO2 eq) to 

characterize the cumulative effect of greenhouse gases. Finally, the resources damage impact 

category is reported in megajoules (MJ) and represents the amount of energy extracted, or the 

amount of energy needed to extract a resource [87]. Units for endpoint damage characterization 

used in IMPACT2002+ methods are further detailed in the Impact 2002+ User Guide by 

Humbert et al., 2012 [87]. 
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Table 4-2 Comparison of endpoint damage categories and endpoint damage characterization 

categories for Impact 2002+ and ReCiPe 2016 LCIA methods. 

Impact 2002+ Category   ReCiPe 2016 Category  

Endpoint damage categories Unit  Endpoint damage categories Unit 

     Human health DALY  Human health DALY 

     Ecosystem quality PDF*m2*yr  Ecosystem quality species.yr 

     Climate change kgCO2 eq.  N/A N/A 

     Resources MJ primary  Resources USD 2013 

      

Endpoint characterization categories  

Unit 

 Endpoint characterization categories  

Unit 

H
u

m
an

 h
ea

lt
h
 

    Carcinogens kg C2H3Cl eq  Human carcinogens kg 1,4-DCB 

    Non-carcinogens kg C2H3Cl eq  Human non-carcinogens kg 1,4-DCB 

    Respiratory inorganics kg PM2.5 eq  Fine particulate matter formation PM2.5 eq 

    Ionizing radiation Bq C-14 eq  Ionizing radiation kB1 Co-60 eq 

    Ozone layer depletion kg CFC-11 eq  Ozone depletion kg CFC-11 eq 

    Respiratory organics kg C2H4 eq    

   Ozone formation  kg NOx eq 

   Global warming, human health kg CO2 eq 

E
co

sy
st

em
 q

u
al

it
y
 

    Aquatic ecotoxicity kg TEG water  Freshwater ecotoxicity kg 1,4-DCB 

   Marine ecotoxicity kg 1,4-DCB 

    Terrestrial ecotoxicity kg TEG soil  Terrestrial ecotoxicity kg 1,4-DCB 

    Terrestrial acidification kg SO2 eq  Terrestrial acidification kg SO2 eq 

    Land occupation m2
 org.arable  Land use m2a crop eq 

    Aquatic acidification kg SO2 eq    

    Aquatic eutrophication kg PO4 P-lim    

    Global warming kg CO2 eq  Global warming* kg CO2 eq 

   Water consumption* m3 

R
es

o
u

rc
es

     Non-renewable energy MJ primary    

    Mineral extraction MJ surplus    

   Mineral resource scarcity kg Cu eq 

   Fossil resource scarcity kg oil eq 

*Also contributes to human health endpoint category. 

A normalization step was applied to the IMPACT 2002+ results. Normalization allows 

for comparison between impact categories by converting them to relative contributions of the 

product to average global impacts [77]. Rather than provide damage category specific results, it 

allows for relative comparisons of impacts per functional unit to the total effect on a global scale 

for a given category [78]. 
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4.3 Results 

4.3.1 Mass flow analysis and material recovery 

The total number of observed and included products for each of the four selected types of 

e-waste to be used in the material flow analysis is shown in Table 4-3. Products for which the 

recovery of all materials was higher than 80% of the initial weight were included. Average 

masses for each of the four products ranged from 2.7 kg for fan up to 32.3 kg for refrigerators. 

Table 4-3 Product sample sizes and starting masses for the four e-waste product types 

considered in the mass flow analysis. 

Product Washing machine Refrigerator CRT television Upright fan 

Total observed 8 7 8 8 

Total included 6 5 5 4 

Mean (SD) (kg)  18.3 (2.4) 32 .3 (3.4) 21.5 (1.8) 2.7 (0.4) 

 

Figures 4-3 through 4-6 are material recovery diagrams displaying the mean recovered 

masses of the four different e-waste products, along with the standard deviation. Additionally 

shown are the masses of some sub-components, including the mass of the CRT and compressor. 

The mass of recovered waste is shown, however the mass of any unrecovered mass, that is the 

mass of materials lost to the surrounding environment, was not measured. The pictures shown 

are from the field and represent the sources and components of the various material types for 

each product. 
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Figure 4-3 Average material composition by mass percentages for washing machines in research 

community in Thailand. 

Average: 21.5 kg 

SD:  6.7 kg 
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Figure 4-4 Average material composition by mass percentages for refrigerators in research 

community in Thailand. 

Average: 32.5 kg 

SD:  1.5 kg 
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Figure 4-5 Average material composition by mass percentages for televisions in research 

community in Thailand. 
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Figure 4-6 Average material composition by mass percentages for upright fans in research 

community in Thailand. 

 

 

Average: 3.0 kg 

SD:  0.8 kg 
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The material recovery from individual products are shown in Figure 4-7. Copper 

recovery after burning of cables was calculated to be 68.3% based on field tests and data in 

Gullet et al., 2007 [80]. All products had a material recovery rate of approximately 93% or better 

by mass. Overall, televisions had the largest recovery rate based on mass; however, its recyclable 

recovery fraction is substantially lower when considering that the large mass of the CRT screen 

is landfilled. The difference in initial and recovered masses is due to loss of materials to 

surroundings. In some cases, e-waste workers may occasionally collect lost materials in their 

surroundings at irregular time intervals; however, this was not considered in our analysis since 

this is not a systematic practice. Refrigerators contain a foam lining that is not recyclable, 

resulting in the largest waste mass among the four product types after CRT units, which are 

mostly landfilled. E-waste recyclers in this community reported occasionally burning the foam 

lining to aid in the combustion of electronic cables; however, we did not include this occasional 

practice in our analysis. Overall, steel comprises the largest portion of the masses for fans, and 

refrigerators, whereas plastic represents the highest mass in washing machines. More than half 

the recovered mass of the television is CRT screen (64.1%, see Figure 4-5). The highest copper 

concentration was found in refrigerators, followed by washing machines. The only product with 

PCB materials was televisions (See Appendix D). Future e-waste products that have not 

previously contained PCB  materials, including washing machines and refrigerators, may contain 

PCB materials in future waste streams as they are incorporated in “smart” technologies.  
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Figure 4-7 Quantities of materials recovered from informal recycling per piece of the four e-

waste products. 

The product flow in Village 4 is shown in Table 4-4. A total of 14 out of 165 households 

in Village 4 recycled e-waste products in 2017 according to government estimates (A. Arain, 

personal communication with field assistant and local government officials, July 2018). Table 4-

4 summarizes the average number of products recycled per household month and the average 

number of products recycled per village per month by all 14 e-waste recycling households in 

village 4. The product with by far the most units recycled per month in Village 4 was fans 

(n=1185); roughly half as many televisions, refrigerators, and washing machines were recycled 

monthly (n=450-555). 
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Table 4-4 Product flow for four types of e-waste in one neighborhood of study site. 

Product Average/household/month Average/neighborhood/month 

Washing machine 32.1 450 

Refrigerator 34.3 480 

Television 32.5 555 

Fan 84.6 1185 

 

Multiplying the number of products recycled monthly by the material recovery quantities 

yield the recovered material amounts recovered by the Village 4 community for the four selected 

(Figure 4-8). Summing the four products, a total of 40,673 kg product is treated monthly, with 

38,562 kg of materials or close to 95% recovered by informal e-waste against 2,111 kg or about 

5% dispersed in the local environment. Of the recovered fraction, approximately 28,740 kg is 

recyclable material, excluding waste, CRT screens, and 32.5% plastic coating on cables. This 

implies that not all recovered materials are recyclable, and so a higher recovery rate does not 

necessarily equal a higher recycling rate. Despite having the highest quantity of products 

processed per month, the MFA shows that fans result in the smallest amount of materials due to 

the limited mass of each fan compared to the other products. Refrigerators again result in the 

highest lost waste, even when accounting for having the highest collective mass of all products. 

Once again, the foam lining likely accounts for much of the difference in the initial and 

recovered masses. Field observations revealed that the foam often broke and crumbled, and e-

waste workers often left the foam where it lay.  
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Figure 4-8 Monthly mass recovery by material type for four e-waste product types in one 

neighborhood in the study site in Thailand. 

4.3.2 Economic analysis  

The average scrap price (THB) per kg of recovered material from e-waste is given in 

Figure 4-9 for each material type. Recovered copper has the highest selling price of 175 THB 

($5.30) per kg. Copper recovered from cables is sold at the same price, but must have the plastic 

PVC coating removed, usually by burning or striping the wires before being sold. 

In addition to materials, CRT screens are sold for 10 THB per piece to other e-waste 

recyclers in the research site who break the glass and recover materials contained inside of the 

glass in the electron gun. The recycling of the electron gun was not considered in this economic 

analysis since it is outsourced outside of the community.  
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Figure 4-9 Sell price (in Thai Baht - THB) per kg of scrap material at research site during 2016-

2017. 

Figure 4-10 compares for each product the purchasing price with the cumulative revenue 

from the recovered recyclable materials, the difference between the two stacked bar representing 

the net value added per product type. Participating recyclers reported payment of 30 THB for the 

service of a welder to open the refrigerator compressor, which adds up to the refrigerator 

purchase price. The largest resulting value-added margin is in refrigerators at 101.7 THB per 

piece. Washing machines had a similar value added to refrigerators in the amount of 97.2 THB, 

while televisions (55.7 THB) and fans (32.5) were lower in absolute value, but higher 

proportionally to the purchase price. 
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*30 THB cost paid for welding services to open compressor in addition to purchase price. 

Table 4-5 Purchase price for four e-waste products compared to total revenues associated with 

each recyclable material and product part recovered by informal methods in Thailand. Numbers 

of top of bars are the average net value added per product piece (THB/piece). 

  Figure 4-10 presents the combines the product flows from the MFA with the product-

specific added values to yield the Village 4 added value at community level. Recycling of 

refrigerators in Village 4 results in a monthly value added of 48,800 THB per month. The 

combined value added for all four product types equals 157,100 THB (after welding costs). The 

minimum daily wage for a Thai worker in 300 THB. Assuming 22 working days per month, the 

value added by these four products alone in Village 4 generates enough income to pay for nearly 

24 full-time minimum wage workers. The 14,400 THB paid to a welder each month to open the 

compressors would equal the equivalent of 48 days working minimum wage for the welder. 
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*30 THB cost to pay for welding services to open compressor. 

Figure 4-10 Purchase price compared to total revenues associated with each recyclable material 

and product part recovered by informal methods in Thailand for one village during one month. 

Numbers on top of bars are the net value added per product type per month. “Cables” include 

the revenue from copper recovery from these cables. Numbers on top of the stacked column 

above refrigerator display the value added before and after costs to open the compressor. 

4.3.3 Per material LCIA midpoint results 

All results from the LCIA are given per kg of secondary material entering the recycling 

process.  Results of the Impact 2002+ LCIA human health damage midpoint characterization per 

kg recovered material are displayed in Figure 4-11. Negative values indicate an avoided impact 

as a result of e-waste recycling compared to if the material had been landfilled. For respiratory 

inorganics and organics, ionizing radiation, and ozone layer depletion, PCBs had the largest 

avoided impacts per kg. In contrast, plastic had the largest net damage impact on ozone layer 

depletion, while steel had the largest net impact for ionizing radiation. Cables had the highest 

0

50,000

100,000

150,000

200,000

250,000

Washing machine Refrigerator Television Fan

V
al

u
e 

ad
d

ed
 (

T
H

B
) 

p
er

 m
o

n
th

Purchase price Steel Copper Aluminum Cables Plastic PCB CRT screen

63,197

48,797*

43,723

30,925
38,429



145 

 

impact in the carcinogen and non-carcinogen impact categories due to the combustion emission 

of the plastic coating. Copper had the largest avoided benefit in the non-carcinogens category, 

while aluminum had the largest avoided value for carcinogens.  
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Figure 4-11 Human health midpoint impact characterization per kg material. “Cables” in this 

figure and in subsequent figures include the burning and the copper recovery from these cables. 
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Figure 4-12 Ecosystem quality midpoint impact damage characterization per kg material. 
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Figure 4-12 shows the endpoint characterization per kg recovered material for ecosystem 

quality. For all categories, PCB has the largest avoided impact per kg material. CRT glass has 

the largest damaging impact for ecotoxicity (18,200.0 and 52,100.00 kg triethylene glycol (TEG) 

equivalents (eq), terrestrial and aquatic, respectively), but would be cancelled if the landfilling 

impact of the base scenario would be considered in a comparative assessment. Terrestrial 

acidification showed the highest per kg impact in cables (0.546 kg SO2 eq), while plastic had the 

highest positive impact per kg for aquatic acidification (0.003 kg TEG eq). Results from CRT 

glass, inert waste, and plastic show positive comparable impacts in the land occupation and 

terrestrial ecotoxicity categories. 
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Figure 4-12 Ecosystem quality midpoint impact damage characterization per kg material. 
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Results of LCIA midpoint characterization for the climate change impact category are 

shown in Figure 4-13. PCBs have the largest avoided impact per kg recovered material (-18.8 kg 

CO2 eq), followed by aluminum and cables (-7.0 and -2.8 kg CO2 eq, respectively). The largest 

positive impact per kg is CRT glass at 0.005 kg CO2 eq per kg material. 

 

 

Figure 4-13 Climate change midpoint impact characterization per kg material. 

The midpoint characterization categories for resources are shown in Figure 4-14. Copper 

and cables had the greatest avoided mineral extraction impact (-31.6 and -31.3 MJ surplus, 

respectively), while plastic had a damage of 0.003 MJ surplus/kg recovered. PCBs had the 

largest avoided non-renewable energy impact at nearly -295.0 MJ primary, while landfilling of 

inert materials and CRT glass had the largest positive impact at 0.2 MJ primary each.   
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Figure 4-14 Resources midpoint impact characterization per kg material. 

4.3.4 Per material LCIA endpoint results 

The next four graphs show the results of the LCIA at endpoint level by material type, 

broken into its different processes. Figure 4-15 shows the endpoint human health damage per kg 

of  each material type, the diamond in the figures representing the overall net impact for a given 

material type. There is a net benefit (negative damage) for all material types except three: inert 

waste, CRT glass, and cables that are burned. For the cables, the net impact is substantial with 

nearly 0.0001 DALY per kg of cable, which is nearly 30 times the next largest damage found in 

CRT screens. Burning (of cables), treatment, and transport make up the majority of the damages, 

while avoided materials account for the benefits. By treatment, we are referring to the processes 

of refining secondary scrap to the point where it is comparable with virgin materials for 

manufacturing. 
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Figure 4-15 Endpoint damages on human health in DALYs per kg material or part. “Cables” in 

this figure and in subsequent figures include the burning and the copper recovery from these 

cables. 

The results of the ecosystem quality damages by material type are shown in Figure 4-16. 

Once again, the processes of transport and treatment, and burning of cables all contribute to 

damages on the ecosystem quality. Plastic has a net damage of 0.07 PDF*m2*yr per kg, while 

inert waste has a factor of 30 times smaller damage per kg. The improper landfilling of CRT 

glass generated a damage on ecosystem quality of 413 PDF*m2*year per kg. PCB, followed by 

copper and cables, had the largest net benefit of all materials shown for ecosystem quality. Inert 

waste materials had a net positive (damaging) impact on ecosystem quality; however, the amount 

is negligible.  
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Figure 4-16 Endpoint damages on ecosystem quality damages in PDF*m2*year per kg material 

or part. 

The damages on climate change are shown below in  Figure 4-17. Just as in the 

ecosystem quality damages category, PCBs result in the largest net avoided damages or benefits. 

Recycling of PCBs showed an avoided emission of 20 kg of CO2 equivalents per kg recycled. 

The only net damages on climate change were found in CRT glass and inert waste, with a close 

to zero net damage of 0.005 kg of CO2 eq per kg. Transport and treatment processes again 

accounted for the majority of the damages. Burning of copper wires accounted for some of the 

positive damages, however the benefit of avoided copper extraction was greater than the 

damages caused by burning. 
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Figure 4-17 Endpoint damages on climate change in kg CO2 eq per kg material or part. 

Figure 4-17 presents the damages on resources, PCBs also having the largest net avoided 

damages to resources, driven by the avoided resource burden of primary gold, silver, and 

palladium (see appendix F). Recycling of PCBs results in a benefit of 306 MJ per kg PCB. 

Treatment and transport again accounted for the majority of the damages in resources. CRT glass 

and inert waste generated a close to zero net damage of 0.2 MJ per kg recycled.  
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Figure 4-18 Endpoint damages on resources MJ per kg material or part. 

The normalized impact by treatment stage for PCBs is further detailed in Figure 4-19. 

The avoided impacts of virgin gold, silver, and palladium extraction accounted for most of the 

avoided impacts. Similar trends were seen for aluminum, steel, copper, cable burning and 

recycling processes (Appendix F, Section F.2). ReCiPe results showed similar trends, where the 

avoided impacts of material recovery for metals resulted in an overall net avoided impact for that 

material when considering all processes, including transportation and refining (Appendix F, 

Section F.1). 
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Figure 4-19 Normalized endpoint damages per kg printed circuit boards by material type and 

associated treatment. 

Figure 4-20 shows the normalized impacts for burning of copper cables and copper 

recovery. The burning process results in impacts for all three damage categories relevant for this 

process: human health (0.021 person-years), ecosystem quality (2.06 E-4 person-years), and 

climate change (4.54E-5 person-years). However, we observe a net benefit for ecosystem quality 

and climate change when avoided mining of virgin copper is considered.  Human health remains 

a net damage as the harms from burning of cables is larger than the benefit of avoided primary 

copper extraction. The ReCiPe method net avoided impact values were found for the cable 

burning process as well (Appendix F, Section F.2). 
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Figure 4-20 Normalized endpoint damage per kg recovered copper from burning, including 

associated treatments. 

4.3.5 Per product LCIA results 

Figure 4-21 shows the per-product LCIA endpoint damages on human health. All four 

products show a net benefit for human health, indicating that the avoided DALYs are larger than 

the accrued DALYs for the informal recycling process.  Recycling of washing machines and 

refrigerators both resulted in a net avoided impact of nearly -0.0001 DALYs per product   The 

PCBs recovered from televisions had the overall largest avoided impact on human health, 

resulting in a net benefit of -0.0002 DALYs per product. Impact 2002+ estimated that the 

process of landfilling leaded CRT glass from televisions results in a net damage of 4.16E-5 

DALYs.  Fans recycled by informal methods resulted in the smallest net avoided human health 

impact, about 1/10th as great as washing machines or refrigerators. Tools and electricity to power 

the electric drill were negligible compared to the total human health impact per product (For 

more information, see Appendix F, Section F-1).  
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Figure 4-21 Human health impacts in DALYs of recovered materials per product piece. 

“Cables” in this figure and in subsequent figures include the burning and the copper recovery 

from these cables. 

Figure 4-22 shows the endpoint damages on ecosystem quality of recycling each of the 

four products by informal methods is shown in. The net ecosystem quality impact shown for 

each product is negative with the exception of the television due to the CRT glass. Washing 

machines result in a net benefit for ecosystem of -46 PDF*m2*yr, meaning there is a net avoided 

potential loss equivalent to 100% of species lost over 46 m2 of Earth’s surface during the course 

of one year. Recycling of one refrigerator resulted in a net avoided impact on ecosystem quality 

of 82 PDF*m2*yr, while fans had a net avoided impact of 12 PDF*m2*yr. Tool use for all four 

products was negligible in the LCIA calculations (See Appendix F, Section F.1). 

If CRT screens are removed from the LCIA, then televisions have a net avoided impact 

on ecosystem quality of 90.0 PDF*m2*yr. However, if CRT screens are included, then the 

damage is substantial, with ecosystem quality damages of 5,510.0 PDF*m2*yr. Landfilling of 
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CRT glass in the average television by this community results in large damages to the ecosystem. 

Though this impact would be offset if the landfilling impact of the base scenario was considered 

in a comparative assessment, this emphasizes the importance of a proper disposal of lead in these 

CRT screens. 

 

 

Figure 4-22 Ecosystem quality damage in PDF*m2*yr per product piece, differentiated by 

recovered materials (excludes leaded CRT glass). 

Figure 4-23 shows the climate change impacts for the four selected e-waste products. All 

four products have a net benefit for climate change. The net avoided climate change damages are 

largest for refrigerators (-25.4 kg CO2 eq per product) and smallest for fans (-2.7 kg CO2 eq per 

product). Landfilling of inert materials were responsible for the damage associated with each 

product, and CRT glass had an impact of 0.071 kg CO2 eq per kg glass. The use of tools was 

negligible in terms of climate change damages (Appendix F, Section F.1). 
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Figure 4-23 Climate change potential (kg CO2 eq per product piece) for e-waste products, 

differentiated by recovered material. 

Figure 4-24 displays the final endpoint damage on resources. For all four e-waste 

products, there is a net benefit on resources per piece of recycled product. The largest net 

avoided resource per product is found for washing machines (-875 MJ), followed by refrigerators 

(-660), televisions (-625 MJ) and fans (-93 MJ). Once again, inert landfill waste is responsible 

for the resource damage across all four products, as well as CRT screens for TVs. The impact of 

tool use on resources was negligible (see Appendix F, Section F.1). 
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Figure 4-24 Impact on resources (MJ Primary per product piece) for e-waste products, 

differentiated by recovered material. 

Figure 4-25 Figure 4-25 Normalized endpoint damage scores per piece of each electronic 

product, differentiated by material type, and excluding CRT glass.provides the normalized scores 

for each damage endpoint category. The CRT television screen is included to show the 

substantial importance of this material on overall impact, with a normalized impact score of 

0.006 person-year/TV for human health, 0.41 person-year/TV for ecosystem quality, 0.00001 kg 

person-year/TV for climate change, and 0.00001 person-year/TV for resources.  Cables have the 

largest impact on human health, with the recovery and burning of cables from one refrigerator 

having a normalized damage of 0.009 person-year. This can be interpreted to mean that informal 

recycling of cables from one refrigerator has an equivalent impact on human health to the 

pollution generated by 0.009 persons during one year.  
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HH= human health; EQ = ecosystem quality; CC = climate change; R = resources. 

Figure 4-25 Normalized endpoint damage scores per piece of each electronic product, 

differentiated by material type, and excluding CRT glass. 

4.3.4 Environmental impacts and benefits at community level 

The results of the MFA conducted in Village 4 for the selected four e-waste products are 

combined with the per-product LCA results to determine monthly environmental benefits and 

impacts associated with the Village 4 recovering activities (Table 4-6). Each month, the 

community avoids 0.2 DALYs in health damages (or 2.4 DALY per year activity), 58,300 kg 

CO2 eq in climate change damages, and 873,000 MJ in resource damages through the recycling 

of washing machines, refrigerators, televisions, and fans. The community also creates ecosystem 

quality damages in the amount of nearly 3 million PDF*m2*yr per month. 
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Table 4-6 Endpoint damages associated with all four e-waste products recovered in one 

neighborhood per month. 

Endpoint damage Washing machine Refrigerator Television  Fan Sum 

Human health (DALY) -0.03 -0.02 -0.12 -0.01 -0.2 

Ecosystem quality (PDF*m2*yr) -20,583.1 -39,232.1 3,058,069.7 -13,737.8 2,984,516.7 

Climate change (kg CO2 eq) -15,719.8 -19,150.3 -17,513.3 -5,955.8 -58,339.2 

Resources (MJ primary) -393,458.2 -316,817.9 -51,743.9 -110,480.3 -872,800.3 

4.4 Discussion 

To our knowledge, this is the first study to conduct a combined MFA and LCA using 

primary data from small-scale informal e-waste recycling operations. Through the examination 

of four e-waste products, human health, environmental, climate change, and resource impacts 

were characterized. 

4.4.1 Material flow and economics 

Our results showed that one village in the studied community had 14 households that 

engaged in e-waste recycling activities. Each month, informal recyclers in this village process 

nearly 40,000 kg of e-waste for four product types, of which approximately 29,000 kg is 

recyclable materials. Informal recyclers were able to recover an average of 93% of materials 

across the four products. This high recovery rate is likely driven by the economic opportunity 

derived from recovery of materials, particularly copper [68]. The unrecovered 7% was typically 

lost to the soil at the work site. E-waste recyclers may have taken opportunities to occasionally 

collect lost materials; however, work sites were littered with e-waste materials suggesting that at 

least some of the material is never recovered.  

The masses of recovered materials agree with the limited information available on similar 

electronic products in the literature. For example, in CRT TVs we found a mean copper recovery 

weight of 0.42 kg, or 1.04% (not including copper content in PCBs). A 2007 study found copper 

concentrations of 3.4% total weight in CRT TVs, while a 2015 study found 0.66 kg of copper in 
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a CRT TV [31], [91]. Some of the differences found in weight and percent composition are due 

to variations in product design in different regions of the world, while some of the difference is 

due to the material recovery potential associated with the considered recycling methods (manual 

versus machine) and the ability to recycle individual materials from PCBs. Our results agree with 

a study conducted on the formal sector in the United States which found that of the materials 

recovered, metal provided the greatest economic reward [92]. A 2015 study found that one CRT 

television generates 18 Euros/product [31], while our results showed a total value of 

approximately 4 Euros, and a value added of just 1.5 Euros. This difference is most likely due to 

the ability of the formal sector to recover all components of the CRT screen, including lead, 

glass, and electron gun materials, as well as the ability to recycle and refine PCB boards rather 

than selling the boards to someone else for recovery. In addition, the size of the television makes 

a difference on the overall value, and it is possible that televisions being recycled in Thailand are 

smaller than those being recycled in Europe.  

 The selling price of raw materials was comparable in the study site to that reported in the 

literature [52], [65]. The net value added from these four products in Village 4 was more than 

157,000 THB, which would be enough to pay for 24 full-time minimum wage workers among 14 

households. Many more people in the community are likely to benefit from e-waste activities 

beyond just recyclers. Scrap buyers, sellers of e-waste products, welders, persons engaged in 

electronic repair, and other sectors would benefit from e-waste economic activities. Given the 

need to subsidize formal recycling to generate a profit [48], the informal sector may contain 

lessons for profitability of e-waste recycling. 
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4.4.2 LCA results per material or e-waste part 

Recovery and recycling of metals from e-waste resulted in a net avoided damages, for 

most midpoint and endpoint categories. This indicates that there is overall a net benefit in terms 

of human health, ecosystem quality, global warming, and resources. These beneficial trends 

might be reduced in the future, as electronic products increasingly use a mixture of metals and 

materials, making it more difficult to recover, recycle and reuse these mixtures [68]. 

Plastic recycling showed a benefit for all damage categories except ecosystem quality, 

which had a net damage impact of 0.07 PDF*m2*yr per kg recovered (See Appendix F). A study 

examining the benefits of plastics recycling in the formal sector compared to virgin plastics 

similarly found a 25% increase in terrestrial ecotoxicity in the later processes compared to the 

former [93]. However, compared to alternative scenarios of production of virgin plastics in 

European countries, the literature estimates that recycling of e-waste plastics results in fewer 

damages than production of virgin materials [79], [93]. The ReCiPe results showed an overall net 

benefit for plastics recycling (Appendix G). 

 Burning of copper cables, including the subsequent recovery and recycling of 

copper from the cables, resulted in a damage of 9.2E-05 DALYs using the Impact 2002+ 

method, versus an avoided -2.3E-04 DALYs using the ReCiPe method. Although both methods 

show an overall human health damage from the burning of copper cables, the avoided emissions 

calculated by ReCiPe are slightly higher than for Impact 2002+ therefore yielding a net benefit. 

Net ecosystem and resources impact were estimated as beneficial by both methods. Electronic 

cable coating is made of poly vinyl chloride (PVC) plastic, which releases harmful toxins when 

combusted, including PVC, brominated flame retardants, polycyclic aromatic hydrocarbons, and 

dioxins [96], [97]. These can be particularly harmful to workers who engage directly in burning 
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activities, as they often stay near the burning cables throughout the process in the Thai research 

community but was not directly considered in the present approach that focused on ambient air 

emissions and associated exposure of the general population. 

 This study suggested an average of 0.9 kg Pb per CRT screen, based on Mear, et al., 

2010 combined with field data [84]. This estimate is slightly below the estimate of 1.2 kg 

Pb/CRT screen reported by Meng et al., [94]. Combined with the product flow MFA results from 

Village 4, we can then estimate that over 6,000 kg of Pb are being improperly disposed of in the 

local dump site each year from this one village alone.  A study examining leachability of PbO 

from CRT glass found that 1% of Pb was released from CRT glass after a 10-step leaching test 

and concluded that Pb would continue to leach for a long period of time [95]. Conditions such as 

increased water saturation and size of broken glass are known to increase lead leaching in the 

environment [96], [97]. Although it is not possible to exactly model the timescale at which the 

Pb will leach from the CRTs disposed of in the study dump site, the results indicate that the 

environmental and human health damages caused by the leaching of lead are substantial and 

constitute a health concern for the community. The dump site is not lined, and so lead can leach 

into surrounding soil and water, contaminating water, crops, humans, and the ecosystem. The 

LCA results using Impact 2002+ methods indicate that handling of 1 kg of CRT screen results in 

human health damages of 3.07E-06 DALYs, relatively close to the ReCiPe method of 1.64 E-06 

DALYs, considering that damage on human health are to be interpreted on a log scale due to 

their high uncertainties. 

Recycling of PCBs resulted in net avoided damages for all endpoint categories. 

Manufacturing of PCBs is energy-intensive, as is the extraction of the precious minerals. A 2012 

study found that the greatest environmental impacts in the manufacturing of a CRT television set 
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was due to PCB production [71]. Our results show that for the end-of-life informal e-waste 

treatment scenario, PCBs provide the greatest avoided damages the benefit. Results from Impact 

2002+ and ReCiPe methods showed similar trends. Although endpoint categories differed, PCBs 

in both models were shown to drive the net avoided human health, ecosystem and resource 

benefits in CRT television recycling. 

 4.4.3 LCA results per product 

All four products resulted in a net benefit for all endpoint damage categories except for 

televisions in environmental impacts (large damages from CRT screen landfilling). Our results 

demonstrate that informal e-waste recycling provides environmental human health, climate 

change, and resource benefits through avoided impacts of virgin metals substituted by the 

secondary recycled metals. This net benefit will be further increased when considering the 

alternative scenario (avoided landfilling of e-waste). This suggests that products with similar 

components and low concentrations of hazardous chemicals, such as washing machines and fans, 

might be advantageous to recycle manually in the informal sector, while products with hazardous 

materials, like CRT televisions, are damaging if not properly disposed of. Dismantling of e-waste 

by informal e-waste workers with downstream processes, including recovery of dangerous, 

precious, and trace materials, being completed by more formalized operations may be 

advantageous for both sectors [44], [67]. Manual labor, high percent recovery of materials, and 

efficiency in manual collection and sorting of e-waste are all beneficial aspects of the informal 

sector resulting in avoided damages.  

Despite some differences in the LCIA results for recovered material types, the overall 

benefits at the product level are similar and would provide decision-makers with similar 
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information. For example, with either method, we see that although televisions have the largest 

net avoided impact, they also present a large threat to human health due to the lead content of the 

CRT glass. It is essential to ensure a proper disposal and treatment of both CRT glass lead 

content and of copper wires. However, the severity and resulting net impacts on two vital 

processes, improper landfilling of CRT televisions and burning of copper cables, differs between 

the two. First, landfilling of the CRT could occurs both in the recovery scenario and in the 

reference landfilling scenario and will therefore be offset in a comparative assessment between 

these scenarios. In contrast the burning of wires might not occur in the landfill and this impact 

will therefore remain even when comparing to landfill. In addition, results from ReCiPe the 

hazards associated with burning of copper wires are compensated by the avoided impacts from 

the substituted virgin material, yielding a net avoided for all damage categories, whereas Impact 

2002+ was giving a net damage for human health. In this case, the net damage is the difference 

between two larger numbers and can therefore change sign depending on the magnitude of the 

burning impacts assessed by each method.  

Studies have shown that during pre-processing steps, such as those performed in our 

study community, the informal sector actually produces higher yields than mechanized processes 

found in the formal sector [44]. In addition, the manual process of sorting and disassembly in the 

informal sector utilizes less energy and causes fewer environmental impacts than the highly 

mechanized formal sector [98]. However, the recovery of individual metals may be more 

important in terms of environmental impacts than energy expenditure during formal recycling 

[99].  
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4.4.4 Comparison with landfilling scenario 

The life cycle assessment in this chapter considered the impacts associated with informal 

e-waste recycling. If we were to compare these impacts with a landfill scenario, we would 

subtract emissions associated with the landfilling of e-waste materials. First, we subtracted 

impacts of the landfill scenario with the informal recycling scenario, then the net difference in 

damages for the CRT TV would be 0 since the materials would generate the same landfill related 

impacts in both cases. A proper disposal of lead in these CRT screens would then even further 

improve the comparative advantage of the material recovery. We would expect to see a further 

increase in net avoided emissions, in particular for heavy metals in the PCB. A simplified LCA 

study from 2006 found that, compared with formal recycling, landfilling of e-waste had larger 

damages than recycling as long as the distance travelled did not cause even greater damages in 

the form respiratory inorganics and fossil fuel use [76]. However, this study did not look at the 

avoided emissions in the recycling scenario, and if included, may have changed the landfilling 

scenario to be more damaging regardless of distance. This 2006 study did not consider the 

impact of different materials within the landfill. There is arguably an even greater benefit in 

dismantling and recycling of e-waste materials if we consider the avoided impacts of some 

materials, like PCB in landfills. PCBs are known to leach lead and other hazardous materials 

[97], which might lead to substantial ecosystem quality damages from landfilled e-waste 

containing PCB. In contrast no offset can be expected for the cables, since the wire burning only 

occurs in the e-waste recovery scenario, emphasizing the importance of proper copper extraction 

from wires. 
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4.4.5 Public health implications 

This study has demonstrated that while informal e-waste dismantling can offer benefits 

depending on the product, improper handling of some products has the potential to cause 

damages. Despite its label as a hazardous waste in the U.S. and globally, and a UN ban on cross-

border transportation, improper disposal of e-waste continues to plague the globe. In 2010 in the 

U.S. alone, an estimated seven to nine million computers were landfilled [25]. While many 

authors have suggested a need for formalization of the sector, the informal e-waste sector 

continues to grow [30], [100]. This growth, combined with the results from this study, suggest a 

need to shift focus to providing recommendations for informal e-waste recyclers, to focus on 

dismantling, while the final extraction and recycling step are better performed by formal and 

regulatory compliant actors and processes.  

 Demand for CRT TVs and computer screens has dramatically fallen due to development 

and growth of flat-screen technologies [101]. Although no estimate exists for the current number 

of CRT screens that will one day need to be recycled, it is reasonable to expect that the time 

frame during which CRT recycling will be prevalent activity is limited. This, however, does not 

limit the significance of our study. Lead is contained in a variety of electronic items, and so the 

impacts from lead in CRTs can be applied to other e-waste products as well. Secondly, lead is a 

persistent compound that remains in the environment for long periods of time indicating that the 

impacts of lead from improperly recycled e-waste will far out-live the time period when CRTs 

are recycled. Finally, the findings of our study provide insight into how future e-waste streams 

may impact human health, ecosystem quality, climate change, and resources for other hazardous 

materials that may be contained in e-waste. Although the exact damage quantities among the 
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different categories will vary depending on product type, we have provided a model for how to 

consider the different processes. 

4.4.6 Limitations 

This study had several important limitations. First, we did not consider what happens to 

waste materials. During visits to the study site, for examples, it was observed that the toxic foam 

liner of refrigerators often served dangerous purposes, including outdoor storage bins for other 

types of e-waste, fuel to light fires, and was consumed by free-range chickens. Similarly, we did 

not consider that unrecovered material may contain metals or other hazardous substances that 

enter the environment and may result in ecosystem and human health damages.  

Next, this study only considered four product types. Other e-waste products that contain 

different materials may produce very different damages. Additionally, products of the same type 

but manufactured differently may also have different impacts. We were unable to include all 

chemicals and processes in the analysis. Older refrigerators contain harmful CFCs and other 

chemicals that are released early in the recycling process [35]. Similarly, electron guns contain 

nickel [102]. If not handled properly, these chemicals can cause environmental damage. 

4.4.7 Future directions 

This study uses primary field data to conduct for the first time a combined MFA and 

LCA analysis of informal e-waste dismantling and recycling. In order to promote a healthy, 

environmentally-conscious informal e-waste sector, additional combined MFA and LCA studies 

are needed. Understanding which manual recycling techniques result in the highest recovery 

yield will improve environmental impacts as well as worker income. Small-scale MFAs are 
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needed to track the amount of e-waste being processed in the informal sector to allow for 

estimations of impacts.  LCA studies that examine which products and processes have larger 

associated damages will help form recommendations for the industry to make decisions about 

which products should only be handled by formal recycling methods. Finally, comparison studies 

are needed in other study sites as recycling methods depend on culture, product availability, 

economics, and regulations. For example, e-waste recyclers in Chile were observed to only 

recover materials which they were able to sell (i.e. plastic was considered as a waste whereas it is 

sold in Thailand), which would likely result in lower recovery yields (field observations by 

author). Further studies would help to contextualize our results.  

4.5 Conclusions 

This study has shown that informal e-waste recycling can provide net human health, 

ecosystem quality, climate change, and resources benefits in the form of avoided emissions for 

some products. In addition, informal e-waste recycling offers important economic benefits for 

our study population and other communities around the globe. Policy-makers and scientists 

should focus on recommendations designed to focus the informal sector on dismantling tasks and 

ensure that the recycling of products that contain hazardous chemicals, like CRT glass screens or 

copper wires are properly handled in environmentally optimized processes. 
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Chapter 5 : Conclusions and Recommendations 

5.1 Summary 

This dissertation investigated impacts of informal e-waste recycling on human and 

environmental health. The main contributions of this dissertation to our understanding of 

informal e-waste recycling in the field of environmental health relate to the relative importance 

of potential routes of exposure, occupational exposures to, and impacts of, physical, and the 

impacts of informal recycling on the environment and human health. Each chapter is linked to 

the others through the concept of Total Worker Health (TWH). 

In Chapter 2, potential exposures to metals from e-waste were measured in environmental 

samples as well as biomarkers for three exposure groups: community members from the study 

site in Thailand (non-e-waste workers), e-waste workers in Thailand, and e-waste workers in 

Chile. Linear regression models were run to determine which demographic variables are 

significant explanatory variables in log-metal concentrations for each group. The Method of 

Triads was employed to determine which type of sample  exposure to e-waste metals. Results 

showed elevated concentrations of several metals, including lead, in soil, rice, and surface water 

samples from Thailand. This suggests that e-waste recycling activities are polluting the local 

environment, creating exposures for humans and the ecosystem alike. Surface wipe samples from 

Thailand showed no significant differences in concentration of metals between working surfaces 

and surfaces where food is prepared and/or consumed, while significant differences were found 

in Chile. This again suggests that workers and community members alike in Thailand are being 
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exposed to e-waste metals during non-work activities. These findings were corroborated in the 

biomarker results, which showed higher concentrations of all metals except urinary and blood Cd 

in e-waste workers in Thailand compared to e-waste workers in Chile. Although mean 

concentrations for both occupational groups were below the BEI reference levels set by ACGIH, 

these findings are still concerning from a public health perspective as some metals, for example 

lead, have no safe limit in the body [1]. BEIs are guidelines, not standards, and represent the 

exposure at which experts believe there is no unreasonable risk of injury or disease, but do not 

guarantee that there is no risk of exposure or disease. Additionally, there is no reference level for 

metal mixtures, or mixtures of metals with other contaminants found in e-waste, that might have 

interaction effects. Some metal exposures in the Thai community group, including mean urinary 

Pb, were higher than the mean concentrations in the Chilean exposure group. This finding is 

particularly concerning as elevated concentrations of Pb were found in environmental samples in 

the community. This study only included adults; however, it can be assumed that children are 

also being exposed to lead, which causes permanent developmental and neurological damage [2].  

The findings of Chapter 2 highlight the importance of workplace hygiene. For example, 

separation of food and work spaces in Chile resulted in significantly lower concentrations of 

metals on food surfaces. This hygiene practice may have contributed to lower ingestion of metals 

and accounted, in part, for the lower concentrations of biomarker metals relative to the Thailand 

occupational group. Using the Method of Triads, it was determined that wipe samples were the 

best approximation of the true exposure to e-waste metals. However, the number of tests that 

were eligible for use in the Method of Triads was low, and further testing is needed to 

substantiate these results.  
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In Chapter 3, physical hazards associated with informal recycling of e-waste were 

investigated. Survey data, hearing tests, personal noise dosimetry measurements, and videos 

were collected from informal e-waste workers in Thailand and in Chile. Videos were edited and 

enumerated using a tool to quantify frequency of tasks, tools used, use of PPE, and ergonomic 

stressors. Logistic regressions were run using the survey data to determine odds of injury 

occurrence. Poisson regressions were run using survey and video data to predict the rate of injury 

occurrence. The results showed that workers were not exposed to time-weighted average noise 

levels above the recommended exposure limit intended to prevent noise induced hearing loss (85 

dBA). However, 46% of workers in Thailand and 23% in Chile showed signs of mild or worse 

hearing loss in their audiometric test results. In the previous six months, approximately 60% of 

workers in each country reported being injured at least once. Of those, 43% in Thailand and 66% 

in Chile reported being injured more than once during the same time frame. Results from 

regressions indicated that a variety of predictors were significant in predicting odds (logistic 

regression) or incidence rate ratio (Poisson regression) of injury, including demographic 

variables, tasks, PPE use, perceived noise levels, product being recycled, and tools.  

These results from Chapter 3 highlight several potential areas for occupational health and 

safety interventions to protect worker health. Use of hearing protection may protect against 

impulsive noise exposures, like that experienced by frequent hammering. Improved 

housekeeping would reduce the number of sharp materials, like metals and broken glass, with 

which the workers have the potential to come into contact. Proper PPE to protect hands would 

reduce the number of injuries overall. Finally, consideration of ergonomic stressors in workplace 

design would cut down on musculoskeletal injuries. 
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Chapter 4 employed mixed material flow analysis and life cycle assessment methods to 

examine the economic and environmental impacts of informal e-waste recycling in a community 

in Thailand. For this chapter, four specific e-waste products were considered: washing machines, 

refrigerators, televisions, and fans. Data were collected on the initial and recovery masses of 

each material type for all four products. In addition, product flow data were collected for one 

neighborhood in the study site. These data were fed into a life cycle impact assessment to 

examine the impact of informal e-waste recycling relative to landfilling of the same products. 

Damages to human health, ecosystem quality, climate change, and resources were calculated for 

each material recovered and for each of the four products using Impact 2002+ methods [3]. A 

duplicate analysis was run using ReCiPe methods [4] and was included in the appendix. Results 

showed that recyclers were efficient in their recovery of materials, with 93% or better average 

recovery rates of the initial product mass. In sum, the studied village had 14 houses that engaged 

in e-waste recycling that collectively recycled approximately 40,000 kg of e-waste of the 

selected product types per month. The net value added from these products was 157,000 Thai 

Baht, or approximately 5,000 USD per month. The life cycle impact assessment showed that 

recycling of these four products by one village resulted in a net human health benefit of 0.2 

DALYs avoided per month. Similarly, the damages to climate change and resources resulted in a 

net benefit of 60,000 kg CO2 eq and 400,000 MJ, respectively, per month. Ecosystem damages 

resulted in a positive net impact of nearly 3 million PDF*m2*yr, largely due to the improper 

handling and disposal of CRT glass.  

The results from Chapter 4 show that informal e-waste recycling is efficient for 

dismantling operation.  It has the potential to be an interesting alternative to formal recycling, by 

providing socio-economic benefits in developing countries as well as important environmental 
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and human health benefits compared to landfilling, provided that hazardous materials, like 

leaded CRT glass, are properly handled and disposed of. The value added is an important source 

of income for the community. We found evidence that the informal sector is efficient at sorting 

and dismantling materials without the electricity consumption of large machinery in the formal 

sector; however, a more systematic comparison is needed to make this conclusion.  

5.2 Future directions 

A growing number of publications have contributed to our knowledge about the 

implications of e-waste on environmental health, but many questions remain. One issue with the 

existing literature is that most health-related studies at e-waste sites have been cross-sectional in 

nature. A longitudinal cohort study would allow for understanding of how e-waste affects public 

health, and specifically the long-term health impacts for e-waste workers and community 

members. This is particularly important as many of the diseases we might expect to see in 

populations exposed to chemicals from e-waste likely have long latency periods [5]. A cohort 

study allows the opportunity to examine the burden of health impacts from informal e-waste 

recycling. 

The results of this dissertation suggest that interventions are needed to improve 

occupational health and safety in the informal sector, along with studies evaluating the 

effectiveness of different intervention strategies. The uptake and effectiveness of e-waste 

interventions depends on the consideration of the local culture, resources accessibility of 

vulnerable populations, and local socio-political systems. 

This dissertation has demonstrated that e-waste workers are exposed to multiple types of 

chemicals simultaneously. Chemical mixtures can have different impacts on human health than 
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exposure to individual chemicals [6]. Considering the variety of toxicants present in e-waste, 

exposure to these mixtures should be a priority research area for e-waste exposure science. 

Lastly, repair has been touted as an alternative to e-waste recycling as it is more 

profitable, and ideally, less hazardous to human and environmental health [7]. However, repair 

of electronics requires training, and exposures to hazardous chemicals inside of e-waste still 

exists for repair workers, particularly in lead solder. More research is needed on the specific 

hazards associated with workers who engage in repair work to characterize exposure risks. 

5.3 E-waste recycling and TWH 

Total Worker Health (TWH) is a strategy developed by the National Institute of 

Occupational Safety and Health (NIOSH) that is comprised of policies, programs, and practices 

to integrate injury and illness prevention efforts within the workplace to enhance overall worker 

health [8]. A successful TWH program is one that integrates health prevention and health 

promotion to avoid occupational disease and injury, leading to favorable health and economic 

outcomes [9]. Health conditions previously thought to be unrelated to the workplace can be 

related to workplace health risks [10].  

In the informal sector, particularly in places like Thailand and Chile where recycling in 

some places occurs inside or near the home, TWH offers a framework with which to improve 

both health in the work place as well as promote worker health outside of work. The World 

Health Organization (WHO)’s International Minimum Requirements for Health Protection in the 

Workplace requires housekeeping, careful design of work space, separate areas to rest, wash, and 

change clothes, protection from noise and vibration, and a first aid kit on premises [9]. In 

Thailand, we saw that failure to separate the work and living areas resulted in similar 

concentrations of metals in surface dust in work and food areas. A simple intervention to 
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promote TWH in Thailand would be to create a separate area for work activities, away from the 

home. Similarly, workers could protect their health through increased access to PPE and training 

on its proper use and maintenance. Changing of clothes after work could reduce non-work 

exposures to metals and could additionally reduce contamination of the home, protecting 

children and family members. Improved housekeeping of work areas in both countries would 

reduce injury hazards from cuts, trips, and bruising. Conducting e-waste recycling activities 

indoors, or on cement or other non-permeable surfaces, would allow for control of e-waste 

material and prevention from metals entering the local environment. This would protect worker 

and community health through reduced contamination of soil, water, and agricultural products. 

Finally, education of informal workers on the hazards associated with different e-waste products 

would empower them to make decisions to protect their own health and the health of their 

community.  

These interventions would collectively promote worker health during and after working 

hours. Such a program would provide economic benefits to worker through a reduction in lost 

worker productivity due to poor health. In addition, promoting cleaner work places would help to 

reduce the 7% loss in product mass seen in Chapter 4 in the MFA, allowing for additional 

income of these recovered materials and benefit to the environment through avoided emissions 

from primary materials and reduced pollution of metals. Most importantly, use of the TWH 

framework to develop interventions would protect worker health both inside and outside of the 

work place. 

5.4 Public health recommendations 

E-waste recycling is not a sustainable industry if the short-term economic benefits are 

outweighed by the long-term public health impacts. In places where informal e-waste recycling 
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occurs, community members as well as workers are at risk of exposures to chemicals from e-

waste. One recurrent theme in Chapters 2 and 4 was the prevalence of lead in the environment of 

the Thai community. In Chapter 2, we saw elevated concentrations of lead in water, soil, rice, 

and surface wipe samples. In Chapter 4, we calculated that over 6,000 kg of lead is disposed of 

in the unlined dump site in the community yearly. Children are especially vulnerable to 

exposures to lead and other toxicants as they are still developing and have a smaller mass than 

adults. E-waste contains a mixture of hazardous chemicals, several of which are known 

neurotoxicants [11]. Children living in e-waste sites in China had significantly elevated blood 

lead levels compared to nearby communities [11]. Children of formal e-waste workers are at risk 

of exposure to lead and other hazardous chemicals, too [12]. Children who live in areas where e-

waste recycling occurs, or who have a parent that recycles e-waste, are in danger of permanent 

health consequences from exposures. Adults exposed to e-waste are at risk of changes in thyroid 

function, cellular functions, negative impacts on pregnancy and birth, changes in oxidative stress, 

and mixtures of chemicals known to be carcinogens, teratogens, mutagens, and a plethora of 

other known toxicological effects [3], [13], [14]. E-waste workers and their families are often 

from vulnerable populations, and may have lower access to health care, making exposures to e-

waste all the more problematic [14]-[16].  

Public health interventions designed to reduce exposures to all people, and especially 

children, are needed in e-waste sites. Despite global attempts to ban the illegal trade of e-waste, 

the informal industry is growing [17].  For this reason, public health interventions designed to 

improve the status quo in the informal sector must be developed alongside longer-term solutions 

like corporate social responsibility and end-of-life product design. One area of opportunity is the 

design of facilities for the proper disposal of hazardous materials, such as lead. A disposal 
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facility or system would enable the containment of these materials rather than allowing them to 

enter the environment and could be a shared resource among recyclers.  

Alternatively, areas where e-waste recycling occurs should focus on targeting of the most 

hazardous e-waste activities, rather than banning all informal recycling. For example, banning 

the informal recycling of certain products, such as CRT television screens, may allow space for 

informal workers to continue to generate income through e-waste while avoiding products with 

the largest health impacts. Prohibiting the burning of e-waste and cables would prevent the 

creation of toxic smoke plumes that endanger human and environmental health. Finally, the best-

of-two-worlds scenario suggests utilizing the strengths of the informal industry (collection, 

sorting, preliminary manual dismantling) in partnership with the formal industry (recycling of 

trace materials, handling of hazardous materials, refining) [18]. Whichever solutions are 

implemented to protect public health, education and involvement of e-waste workers in the 

decision-making process is imperative to intervention success. 

5.5 E-justice 

Fundamentally, e-waste is an issue of environmental justice. Work is a social determinant 

of health, and the type of work a person engages in is determined by distribution of power and 

resources at different scales, including global. Informal e-waste recycling results in a 

disproportionate burden of harm among vulnerable populations in lower-income countries.  

The export of hazardous materials found in e-waste places cost of workplace injury and disease 

onto workers with high-risk jobs, who may not have access to healthcare in the event of injury or 

disease [19]. Images of e-waste recycling in Agbogloshie Market in Accra, Ghana in popular 

media depict a situation where contentious government oversight, poverty, and crime rule a 

wasted landscape, calling for an end to the harms of informal recycling across the globe. The 
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story that is not told is that of failing government oversight of electronic trade in high-income 

countries, consumers who are outraged by the images of Agbogbloshie but who do not change 

their consumption habits, and larger issues that create a population of people so desperate for 

work that they engage in dangerous recycling activities like burning e-waste. In this context, the 

devastating conditions of informal recycling portrayed by the media is not a problem, but rather 

an inevitable symptom of something much larger- and something to which we have all 

contributed. 

5.6 Significance 

Informal e-waste recycling work is an important and emerging form of work associated 

with a range of potential health impacts.  Individuals conducting e-waste recycling are directly 

exposed to a variety of occupational health hazards, including heavy metals, physical hazards 

(e.g. noise and musculoskeletal issues), and injuries.  Members of communities where e-waste 

work occurs may have exposures to many of these hazards, as well – particularly in situations 

where e-waste recycling work is done in homes. Given that fact that  thousands of individuals are 

involved in e-waste recycling globally, with millions of people exposed to e-waste toxicants 

[16], [20], research to identify health impacts of e-waste recycling, and to inform the 

development of appropriate interventions, is needed.   

This dissertation has provided a comprehensive overview of informal e-waste recycling 

through three interrelated studies that individually and collectively made useful contributions to 

the field of informal e-waste studies. All three chapters were designed to address hazards 

associated with e-waste recycling and to provide information about what types of public and 

occupational health interventions may be most successful.  The data collected in Chapter 2 

regarding occupational and non-occupational exposure to metals within a community provided 
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information that stakeholders and policy makers can use to decide how to best control the spread 

of e-waste pollution in communities and among community members. Chapter 3, which involved 

characterization of injury risks by task, method of disassembly used, type of e-waste product 

recycled, and other factors, yielded information that can help guide the development of 

appropriate injury prevention strategies among e-waste workers.  Chapter 4, which applied 

material flow analysis and life cycle assessment methods, provided information that may 

improve decision analysis and inform occupational and public health e-waste recycling 

interventions to target the most harmful products and materials while simultaneously fulfilling 

the financial and health needs of e-waste workers.  Finally, the collective results of all three 

chapters provided an investigation of multiple facets of e-waste through an environmental health 

lens, the results of which may allow for better decision-making to affect positive changes to 

protect human and environmental health while still allowing space in the solution for informal 

workers to exist and thrive in a more conscientious manner. The framing of these issues within 

the TWH context allows for understanding and decision-making that best protects workers in this 

informal industry, where boundaries between work and non-work life are blurred.  

5.7 Conclusions 

The results of this dissertation show that: 1) Increased concentrations of metals in rice, 

soil, and surface water in an e-waste community in Thailand may be due to informal e-waste 

recycling; 2) Poor workplace hygiene and failure to separate work and living spaces in Thailand 

may explain elevated concentrations of metals found in blood and urine; 3) Informal e-waste 

workers experience a high rate of injury, and the odds and incidence rate of injury are influenced 

by the types of tools used, tasks performed, ergonomic stressors, workplace housekeeping, and 

use of personal protective equipment; 4) Informal e-waste workers in Chile and Thailand were 
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exposed to noise levels below thresholds set to protect hearing, but nevertheless experienced 

moderate rates of noise-induced hearing loss; 5) Informal e-waste workers are efficient at 

recovering material from products, and it is a profitable industry for low-income communities; 6) 

Informal e-waste recycling has the potential to result in a net benefit to human and 

environmental health in the form of avoided emissions, but can have a net damaging effect if 

hazardous materials are not properly handled. This work has highlighted several important areas 

for potential intervention design to improve the occupational, community, and environmental 

health of informal e-waste communities.  
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APPENDIX A:  

 

Survey 

 

PART 1: SURVEY INFORMATION 

Interview Date:  Day: ____________  Month: ____________  Year: ______________ 

Interview Start Time: _ _:_ _ am / pm   

Interpreter Name(s)  ___________________________________________________                     

 
PART 2: DEMOGRAPHICS 

 

Now I will ask you some questions about yourself. 

 

1. What gender do you currently identify as? ☐1 Male ☐2 Female  ☐3 Other 

 

2. What was your age at your last birthday? years 

 

3. How long have you been living in your current residence? years months 

 

4. What is your total household income per month? 

☐1 Less than $50,000 ☐2 $50,000-100,000  ☐3 $101,000- 200,000 

 ☐4 $201,000-300,000  ☐5 $301,000-500,000  ☐ 6 $501,000-700,000 

☐ 7 $700,000-1,000,000  ☐ 8 more than $1,000,000  ☐666 Prefer not to answer 

 

5. What are your household’s sources of income: 

 

a. Agriculture? 
☐2Primary income source  

☐1Secondary income 

source  
☐0Not a source of income 

b. Electric or electronic waste? 
☐2Primary income source 

☐1Secondary income 

source 
☐0Not a source of income 

c. Other types of waste? 
☐2Primary income source 

☐1Secondary income 

source 
☐0Not a source of income 

d. Construction/labor/mining/blue 

collar?        ☐2Primary income source 
☐1Secondary income 

source 
☐0Not a source of income 

e. Textiles/Artisan goods? 
☐2Primary income source 

☐1Secondary income 

source 
☐0Not a source of income 

f. Professional (nurse, teacher, 

etc)? ☐2Primary income source 
☐1Secondary income 

source 
☐0Not a source of income 

g. Other:? 
☐2Primary income source 

☐1Secondary income 

source 
☐0Not a source of income 

 

6. What is your marital status? 

☐1 Single         ☐2 Married      ☐3 Divorced    

☐4 Living with partner       ☐5 Widowed     ☐6 Separated 
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7. How many family members (including yourself) are supported by your household’s income?  

 

8. What is the highest level of school you attended? 

☐0 None   ☐1 Basic  ☐2 Medium  ☐3Superior   

 

 
PART 3: WORK HISTORY 

 

Now I will ask you some questions about your work history. 

 

9. Are you currently working?  ☐1  Yes   ☐0 No 

 

10. What is/are your current job(s)? (Check all that apply) 

☐1 Farming/agricultural work   ☐2 Electronics repairer 

☐3 Electric or electronic waste recycling  ☐4 Artisan (Mason/Carpenter/Electrician/Plumber) 

☐5 Scrap Dealer                                  ☐6 Mechanic 

☐7 Shop owner/ Retailer                     ☐8 Trading                

☐9 General Employee                            ☐10 Electronics collection  

☐11 Food vendor                     ☐12 Taxi/Minibus/Truck Driver 

☐13 Factory/industry/private section worker  ☐14  Government staff    

☐15 Retired         ☐16 Keeping house/housewife/caring for children      

☐17 School/full time study           ☐777 Other:  

 

11. Of these jobs, which is your primary?  

 

12. How long have you worked at your primary job? years months 

 

13. What was your previous job?  [Mark “none” if no previous job and skip to 16] 

14. What years did you begin and end your previous job? Start year: Stop year: 

 
PART 4: HEALTH 

 

Now I will ask you some questions about your health. 

 

15. In general, my overall health is: 

☐1 Poor       ☐2 Fair          ☐3  Good      ☐4  Very Good     ☐5 Excellent 

 

16. Do you have any health impairments or health problems that limit the kind or amount of work that 

you can do? 

☐1Yes  ☐0No  

[Display if yes] Describe: 

 
17. In the last two weeks, how often have you had the following conditions? 
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a. Skin rashes ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

b. Headache or dizziness ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

c. Shaking or tremors ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

d. Blood in your urine ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

e. Blood in your stool ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

f. Cough, shortness of breath, or 

difficulty breathing 
☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

g. Heart beating abnormally ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

h. Loose or watery stools ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

i. Fever  ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

j. Nausea or stomach ache ☐1 Rarely or never  ☐2Occasionally  ☐3 Always or frequently 

 

18. Have you sought medical care or treatment for any medical conditions? 

☐1 Yes                ☐0 No [Skip to 21]           ☐888 Don't know 

[Display if yes] Explain: 

 

19. Where did you seek medical treatment for the most severe of these conditions? (Select all that apply) 

☐789 N/A                      ☐1 Self Medication                      ☐2 Alternative Medicine                  

 ☐3 Pharmacy  ☐4 Clinic/Hospital             ☐777 Other 

 

20. In the past year, have you recently experienced unintentional weight loss? 

☐1 Yes                ☐0 No           ☐888 Don't know 

 

21. Have you ever been told by a doctor or health professional that you have any of the following medical 

conditions?  

☐1 High Blood Pressure  ☐2 Diabetes Melitus   ☐3 Asthma 

☐4 Heart disease   ☐5 Stroke                                      ☐6 Kidney disease 

☐7 Liver disease                       ☐789 NA/None of these               ☐777Other: 

 

22. Are you taking medicine for any of these conditions? 

☐1  Yes               ☐0  No  ☐789  N/A ☐888 Don't know 

 

23. Are you pregnant now? 

☐789  N/A   ☐1 Yes          ☐0 No           ☐888 Don't know 

 

24. Do you have any children under 21 years of age? 

☐1  Yes               ☐0  No [Skip to 30]   

 

25. How many children do you have and what are their ages?  

 

26. In general, my child/children’s overall health is: 

☐1 Poor       ☐2 Fair          ☐3  Good      ☐4  Very Good     ☐5 Excellent  

☐6 Mixed (i.e., at least one poor/fair and at least one good/excellent)  ☐888 Don't know/Unsure 

 

27. What do you think is the greatest health problem your children currently experience?   

 

28. In what ways, if any, do you think your job affects your children?  

 

PART 5: STRESSORS 

 

Now I will ask you some questions about stress in your life. 
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29. In the last month, how often have you felt that you were unable to control the important things in your 

life? 

☐0 Never     ☐1 Almost never     ☐2  Sometimes        ☐3 Fairly often         ☐4 Very often 

☐ Prefer not to answer    

 

30. In the last month, how often have you felt confident about your ability to handle your personal 

problems? 

☐0 Never     ☐1 Almost never     ☐2  Sometimes        ☐3 Fairly often         ☐4 Very often 

☐ Prefer not to answer    

 

31. In the last month, how often have you felt that things were going your way? 

☐0 Never     ☐1 Almost never     ☐2  Sometimes        ☐3 Fairly often         ☐4 Very often 

☐ Prefer not to answer    

 

32. In the last month, how often have you felt difficulties were piling up so high that you could not  

overcome them? 

☐0 Never     ☐1 Almost never     ☐2  Sometimes        ☐3 Fairly often         ☐4 Very often 

☐ Prefer not to answer    

 

33. How often does someone else decide your work methods, pace, and/or order? 

☐1 Rarely or never         ☐2Occasionally     ☐3 Always or frequently 

☐ Prefer not to answer    

 

34. How often do you experience violence or harassment at work? 

☐1 Rarely or never                  ☐2Occasionally     ☐3 Always or frequently 

☐ Prefer not to answer    

 

35. How often does your work interfere with your family responsibilities or leisure time activities? 

☐1 Rarely or never                  ☐2Occasionally     ☐3 Always or frequently 

☐ Prefer not to answer    

 

36. How often do you feel your income is not sufficient to support yourself and your family? 

☐1 Rarely or never                  ☐2Occasionally     ☐3 Always or frequently 

☐ Prefer not to answer    

 

37. How many hours do you work in a typical week? hours 

 
PART 6: NOISE AND HEARING 

 

Now I will ask you some questions about noise and hearing. 

The term “loud noise” here means loud enough that a person has to raise their voice  

to talk to someone arm’s length away (about one meter) 

 

38. How often are you exposed to loud noise at work? 

☐0 Never                ☐1 Almost never            ☐2 Sometimes           

☐3 Fairly often                  ☐4 Very often                       ☐888 Don’t Know      

 

39. How many years total have you worked in loud noise? years 

 

40. Do you have difficulties with your hearing? ☐1  Yes               ☐0  No 
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41. If yes, how long have you had difficulties with your hearing? 

☐1 Since birth     ☐2 Since childhood              ☐3 Since adolescence     

☐4 Since adulthood  ☐888 Don’t Know              ☐789 N/A  

 

42. Have you ever been told by a healthcare professional that you have hearing loss or another hearing 

problem?   

☐1  Yes               ☐0  No 

 

43. After spending time in loud noise, how often do you hear ringing or whistling sounds in your ears, or 

does you hearing feel muffled? 

☐0 Never      ☐1 Almost never       ☐2  Sometimes            ☐3 Fairly often  ☐4 Very often 

 
PART 7: OCCUPATIONAL INJURIES 

 

Now I will ask you some questions about injuries at work. 

 

44. How many times have you been injured while performing electronic waste recycling work in the past 

6 months? times (If 0, Skip to 53) 

 

45. In the last six months, for your worst injury during electric or electronic waste recycling work, what 

were you doing at the time of injury? 

☐1  Collecting electronic waste      ☐2  Sorting  electronic waste   

☐3  Removing covering of wires    ☐4  Dismantling Electronic Equipment   

☐5  Burning Activities                    ☐6 Ash/wire collection after burning     

☐777 Other  

 

46. In the last six months, for your worst injury during electric or electronic waste recycling work, what 

type of medical care did you receive? 

☐789 N/A                      ☐1 Self Medication                      ☐2 Alternative Medicine           

☐3 Pharmacy   ☐4 Clinic/Hospital             ☐777 Other 

 

47. In the last six months, for your worst injury during electric or electronic waste recycling work, were 

you hospitalized (spent at least one night in the hospital)?  ☐1  Yes               ☐0  No 

 

48. In the last six months, how much work did you miss due to your worst injury during electric or 

electronic waste recycling work? 

☐1 Did not miss any work and worked regular job       

☐2 Did not miss any work but could not do regular job            

☐3 Missed work:  days 

 

49. In the last six months, for your worst injury during electric or electronic waste recycling work, what 

body part(s) were injured? (Check all that apply) 

☐1  Head           ☐2  Eye(s)               ☐3  Face                  ☐4  Mouth/teeth 

☐5  Neck           ☐6  Shoulder           ☐7  Arm                  ☐8  Hand 

☐9  Chest                     ☐10 Spine                ☐11 Waist                ☐12 Hip 

☐13 Thigh                     ☐14 Knee                 ☐15 Lower leg          ☐16 Ankle 

☐17 Foot            ☐18 Abdomen                  ☐777 Other 

 

50. In the last six months, for your worst injury during electric or electronic waste recycling work, what 

type of injury did you sustain? (Check all that apply) 

☐1 Contusions/abrasions          ☐2 Burns/scalds                               ☐3 Concussions        

☐4 Cuts/lacerations                  ☐5 Punctured wounds                     ☐6 Amputations 
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☐7 Dislocations                        ☐8 Fractures (simple/compound)     ☐9 Sprains/strains 

☐10 Asphyxiation                           ☐11 Internal bleeding                       ☐12 Electric shock 

☐777 Other 

 

51. In the last six months, for your worst injury during electric or electronic waste recycling work, prior 

to injury, had you received any instructions/training on how to avoid injury while doing your work? 

☐1  Yes                   ☐0  No               ☐888 Don’t know 

 

52. Do you regularly wear any of the following safety equipment at work? 

 
a. Safety glasses, goggles, face shields, or other eye protection? ☐1  Yes                    ☐0  No           

b. Rubber-soled boots or shoes? ☐1  Yes                    ☐0  No           

c. Latex or plastic gloves? ☐1  Yes                    ☐0  No           

d. Leather or rubber gloves?  ☐1  Yes                    ☐0  No           

e. Dust mask? ☐1  Yes                    ☐0  No           

f. Earplugs or earmuffs? ☐1  Yes                    ☐0  No           

i. Other (please list):? ☐1  Yes                    ☐0  No           

 

53. Are there any tools/parts of your job that lead to more frequent injuries?   

☐1 Yes          ☐0 No    ☐888  Unsure 

 

54. [Display if yes] What are they? 

 

55. Do you ever feel any pain in your hands or wrists after working with e-waste? 

☐1 Yes          ☐0 No    ☐888  Unsure 

a. [Display if yes] Where do you feel the pain? 

[Display if yes] How severe is the pain (Scale of 1-10)? 

b.  [Display is yes] How frequent is the pain? 

 

56.  Do you ever feel any muscle soreness in your body from sitting in the same position for a long period 

of time? 

☐1 Yes          ☐0 No    ☐888  Unsure 

a. [Display if yes] Where do you feel the soreness? 

b. [Display if yes] How severe is the muscle soreness? 

c.  [Display is yes] How frequent is the muscle soreness? 

 

57. Is there any job task that you have experienced more injuries, including minor injuries, when 

performing the task? 

☐1 Yes          ☐0 No    ☐888  Unsure 

a. [Display if yes] What job task presents the injury or risk? 

b. [Display if yes] How severe is the injury? 

c. [Display is yes] How frequent is the injury? 

 

PART 8: DIET 

 

Now I will ask you some questions about your diet. 

 

58. How many meals did the adults in your household eat yesterday? meals 

 

59. How many meals did the children in your household eat yesterday? meals 

 

60. In the past four weeks, how often was there no food of any kind to eat in your household?              

☐0 Never    ☐1 Rarely (once or twice)  ☐2Sometimes (once a week)  
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☐3 Often (twice a week or more) ☐789 N/A    ☐888 Don’t know 

 

61. In the past four weeks, how often did you or any member of your household go to sleep at night 

hungry because there was not enough food?              

☐0 Never    ☐1 Rarely (once or twice)  ☐2Sometimes (once a week)  

☐3 Often (twice a week or more) ☐789 N/A    ☐888 Don’t know 

 

62. In the past four weeks, how often did your household not have enough food to eat?  

☐0 Never   ☐1 Rarely (once or twice)  ☐2Sometimes (once a week)  

☐3 Often (twice a week or more) ☐789 N/A    ☐888 Don’t know 

 

PART 9: ELECTRIC AND ELECTRONIC WASTE 

 

Now I will ask you some questions related to your work with electric or electronic waste. 

 

63. Have you ever been involved in electric or electronic waste activities? ☐1  Yes   ☐0 No 

[Skip to 137] 

 

64. Are you currently involved in electric or electronic waste activities?  ☐1  Yes  ☐0 No  

[Display a-c if no, then skip to 74] 

a. How long did you work in electric or electronic waste?  years 

b. How long ago did you stop working in electric or electronic waste?  years 

c. Why did you stop working in electric or electronic waste?  

 

65. How long have you been working with electric or electronic waste?  years 

 

66. How long do you typically work in one day?  hours  

 

67. How many days per week do you work?  days 

 

68. How many breaks do you take during days that you work?  

 

69. How long is a typical break?  minutes 

 

70. Do you typically work the same number of hours every week throughout the year?  

☐1  Yes   ☐0 No  

 

71. Is electric or electronic waste recycling your main source of income?  ☐1  Yes   ☐0 No 

 

72. What are your other sources of income?  

 

73. Why did you choose to recycle e-waste?  

 

74. How did you hear about working with electric or electronic waste?  

 

75. How do you feel about working with electric or electronic waste?  

 

76. How many different types of products have you recycled/look for?  

 

77. What are the different types of products that you have recycled/look for?  

 

78. What electronic products do you normally recycle/look for (products, subassemblies, components) 

the most?  
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79. At what point do you stop working on your product/subassembly?  

 

80. What form do you pass the product on in (raw material, component, subassembly)?  

 

81. What are your alternatives for income (other types of electric or electronic waste, other types of 

work)?  

 

82. How has that time been split between the different products/roles you have taken on?  (For example, 

20% of your time working with televisions, and 80% working with household appliances/white goods)  

 

83. With which electric or electronic waste recycling tasks are you the most familiar?   

 

84. Do you know the new Producer's Extended Responsibility law (REP)?  ☐1  Yes   ☐0 No 

 

85. [Display if "Yes"] What do you think of the new REP law?  

 

86. [Display if  "No"] Have you considered signing up?  

 

87. How do you consider your work to be involved in environmental care?  

 

88. What is your role in recycling electric or electronic waste? Do you… 

a. Go out to find products to bring back to recycle? [COLLECTORS]  

☐1  Yes [Display Part 10]   ☐0 No  

b. Disassemble and break down the materials? [RECYCLERS]  

☐1  Yes [Display Part 11]   ☐0 No   

c. Repair electronics and resell them? [REPAIR SHOP] 

☐1  Yes [Display Part 12]   ☐0 No  

d.  Operate within a company that purchases raw materials? [RAW MATERIALS BUYER] 

☐1  Yes [Display Part 13]   ☐0 No 

 
Part 10: Collector Questions 

 

89. What electric or electronic products do you look for?  

 

90. Why do you choose to look for these electric or electronic products?  

 

91. Could you switch the electric or electronic products you get?  ☐1  Yes  ☐0 No  

a. [Display if yes] How?   

b. Why or why not?    

92. How much electric or electronic waste do you usually bring to your community?  ☐ Units ☐ Kilograms  

a. How often?  

b. How do you choose your amounts?  

93. Do you know of other collectors who collect more or less electric or electronic waste than you?   

   ☐1  Yes    ☐0 No  

a. [Display if yes]  Why do they collect the amounts they do?  

 

94. Could you increase or decrease your amounts whenever you want?  ☐1  Yes   ☐0 No  

 

95. When you have a technical problem (for example, how to transport e-waste to your location), who do you 

go to ask?  

a. Why?  

96. Where do you get your electric or electronic products from?  

a. Why?   

b. Do you pay to take these products?  ☐1  Yes   ☐0 No  
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c. [Display if yes to b] How much do you pay?  ☐Per unit   ☐Per week  ☐Per month 

d. Do you ever change where you get the products from?  ☐1  Yes   ☐0 No 

e. Why or why not?  

 

97. Where do you bring your electric or electronic products to?  

a. Why?  

b. How did you decide who to distribute to?  

c. How did you establish these relationships/connections?  

d. Do you get money for the products? ☐1  Yes   ☐0 No 

e. [Display if yes to d] How much?  

f. [Display if yes to d] Why?  

g. Who gets the products from there (if a pickup location)?  

h. How did you find out about this method of selling it?  

i. What do the buyers do with it?  

j. Do you keep any products for your own home to recycle? ☐1  Yes   ☐0 No 

k. [Display if yes to j] How do you decide what to keep?  

 

98. Do you consider it beneficial to partner with other collectors and marketers, for example, in 

cooperatives? 

☐1  Yes   ☐0 No  

 

99. When you have a problem with your work, who do you go to ask?  

a. Why do you go to that person?  

 

Part 11: Recycler Questions 

 

100. Do you ever recycle TVs or computers?  ☐1  Yes   ☐0 No  

 

101. How did you choose these products to work with/recycle?  

a. What characteristics do you look for?   

b. Why?  

c. What is the process if you wanted to switch e-waste items (i.e. recycle fans instead of 

TVs)?  

d. How many TVs/computers do you recycle per week?  units 

e. How much time does it take one recycler to complete their work on a TV/computer?   

f. How much does a TV/computer weigh before recycling begins?  

g. Does one recycler process the entire item, or is there a division of tasks per item?  

☐1  One recycler  ☐0 Division of tasks 

h. [Display if ‘Division of tasks’ selected in g] How is the division of tasks organized?  

 

102. What primary materials are the product(s) made out of (for example, plastic, aluminum, printed 

circuit board, steel)?  

a. Which are important to you?  

b. What do you do with them?  

c. How much of each material (raw material) do you recover per TV/computer?  % of total 

material 

d. Do you sell any components? ☐1  Yes   ☐0 No  

e. [Display if yes to d] If so, to who?  

f. [Display if yes to d] What do they do with it?  

g. What parts are you unable to sell/recycle?  

h. What do you do with these parts?  

 

103. Do you work with anyone else to recycle product(s)?  ☐1  Yes   ☐0 No [Skip to 103] 

a. Who?  
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b. Why?  

c. Where?  

d. Do you hire anyone else or do you work for somebody?  

              ☐1  Hire someone else  ☐0 Work for somebody 

e. Why? 

f. If you are an employee, who pays you? 

g. How are your paid? ☐0  Per hour  ☐1 Per unit ☐2 Per day  ☐3 Other 

h. How much are you paid?  Chilean Pesos 

 

104. Can you walk me through an overview of the process each of you go through? 

a. How much time does each task take? ☐0Hours ☐1Days  ☐2Weeks 

b. How many tasks do you have? 

c. How many tasks do the others have? 

d. How are the tasks split?  

e. Does everyone do the same task for all the same product/subassembly? 

 ☐1  Yes   ☐0 No 

f. How was this decided? 

g. Why?  

h. Could you switch your task to something else?  ☐1  Yes   ☐0 No 

i. Why or why not?  

 

105. What methods do you use to carry out each task?   

a. Why do you use these methods?  

b. Did you learn any techniques or tips from others?  ☐1  Yes   ☐0 No  

c. [Display if yes to b] Who did you learn from?  

d. [Display if yes to b] What were the methods you learned from others?  

 

106. How much time does it usually take from when the product/subassembly arrives to when the end 

product leaves?  ☐0Hours  ☐1Days  ☐2Weeks  

a. Why does it take this long? 

 

107. How do you know when to stop working on it and move it onto the next person?  

a. What does the product look like when it leaves your hands?   

b. How was this decided?  

c. What do you do with the rest of the waste product parts?  

 

108. What tools do you use to do each task? 

a. Could you use something else?  ☐1  Yes   ☐0 No  

b. [Display if yes to a] What else could you use?  

c. Why did you choose these tools?  

 

109. Where do you store the e-waste when you haven’t worked on it yet?   

a. Why do you store it in that location?  

 

110. Where do you do each of your disassembly/recycling tasks?   

a. Why? 

b. Is it inside or outside? ☐1  Inside   ☐0 Outside 

 

111. Where do you store the waste after you have worked on it / finished with it?   

a. Why?  

 

112. When you have a problem with your work, who do you go to ask?  

a. Why do you go to that person?  
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113. Where do you usually get your food from?  

a. Is food cooked in the kitchen often?  ☐1  Yes   ☐0 No 

b. How far is the kitchen from e-waste recycling work or storage? meters 

 

Part 12: Repair Shop Questions 

 

114. When you have a problem with the shop, who do you go to ask?  

a. Why do you go to that person?  

 

115. How do you get electric or electronic products?  

 

116. How did you choose to get the product this way?  

 

117. How much do you pay for the products (include units, e.g., pesos/unit or pesos/kg)? 

 

118. What do you with the electric or electronic product after you work on it?  

a. Do you give it to someone or sell it to someone?   

☐1  Give it   ☐2 Sell it  ☐3 Both 

b. Who do you give it to?  

c. Who do you sell it to?  

d. How did you choose who to pass it on to?  

e. Do you go to one person/shop more often than the others?  ☐1  Yes   ☐0 No 

f. Could you switch to another person or shop?   ☐1  Yes   ☐0 No 

g. Why or why not?  

h. Where do you sell it?  

i. How much do you sell it for?  

j. Why do you sell it for that much?  

k.  How did you find out about this method of selling it?  

l. What do the buyers do with it?  

 

Part 13: Raw Materials Buyer - Company 

 

119. How many people work in your shop? 

 

120. What are their different roles?  

 

121. What types of products/materials do you receive?  

 

122. How much do you buy the materials listed in question 118 for? 

 

123. How are these buying prices determined? 

 

124. How many kgs of each material do you buy per month?     

 

125. Who do you sell the recyclable materials to?  

 

126. How did you decide to sell to the company(ies) in question 122? 

 

127. Could you change who you sell to? 

 

128. How much do you sell the materials for? 

 

129. How are these selling prices determined? 

 

130. How many kgs of these materials do you sell per month? 
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131. Why do you accept these materials? 

 

132. What do you look for when receiving these materials? 

 

133. Who brings materials to you? 

 

134. How do people know to bring materials to you? 

 

135. Do you do business with the same people or do people choose to recycle at multiple shops? 

 

136. Why do people come to you over other places to sell their materials? 

 

137. How do you sort the materials?   

 

PART 14: TOBACCO AND ALCOHOL USE 

 

Now I will ask you some questions about your tobacco and alcohol use. 

 
138. Have you smoked at least 100 cigarettes during your entire life (equivalent to about 5 packs)? 

☐1  Yes                       ☐0  No                ☐888 Don’t know ☐999 Prefer not to answer 

 

139. Do you smoke cigarettes now? 

☐1  Yes                       ☐0  No                ☐888 Don’t know ☐999 Prefer not to answer 

a. [Display if yes] How many days do you smoke per week?days 

b. [Display if yes] How many cigarettes do you smoke per day?cigarettes 

c. [Display if yes] How long have you been smoking? years 

 

140. Do you ever smoke inside the house? 

☐1  Yes                       ☐0  No                ☐789 N/A  ☐999 Prefer not to answer 

 

141. Are you often around people who smoke? 

☐1  Yes                       ☐0  No                ☐888 Don’t know ☐999 Prefer not to answer 

 

142. Compared to yourself, how often do your family/friends/co-workers smoke cigarettes? 

☐1 Much more than me       ☐2 A little more than me ☐3 About the same as me      

☐4 A little less than me ☐5 Much less than me  ☐888 Don't know/Unsure  

☐999 Prefer not to answer 

 

143. On average, how many days per week do you think your friends and co-workers consume alcohol? 

☐0 Never               ☐1 1-3 days   ☐2  4-6 days       ☐3 Daily 

☐888 Don’t Know            ☐999 Prefer not to answer 

 

144. In the past month on the days when your friends/co-workers drank, on average, how many drinks do 

you think they consumed? [A drink= 1 beer, 1 shot of liquor, 1 glass of wine] 

 Drinks          ☐888 Don’t Know             ☐789 N/A  ☐999 Prefer not to answer 

 

143. Interview Stop Time:  :  am / pm   

Thank you for your time! 
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APPENDIX B:  

 

Additional tables from Chapter 2 

 

 

Table B-1 Regression coefficients for log Blood Cd concentration in Chile occupational 

exposure group (n=71).  

 Model 1   Model 2   Model 3   

Variable β SE β p β SE β p β SE β p 

Constant 1.162 0.505  0.025 1.150 0.501  0.025 1.156 0.343  0.001 

Over Min Wage -0.388 0.119 -0.375 0.002 -0.393 0.118 -0.380 0.001 -0.410 0.113 -0.396 0.001 

Education – 1o -1.027 0.350 -1.008 0.005 -1.009 0.343 -0.991 0.005 -1.009 0.337 -0.990 0.004 

Education – 2o -0.908 0.352 -0.835 0.012 -0.892 0.346 -0.821 0.012 -0.897 0.341 -0.825 0.011 

Education - SC -0.798 0.374 -0.522 0.037 -0.791 0.371 -0.517 0.037 -0.790 0.364 -0.516 0.034 

Age 0.003 0.004 0.072 0.547 0.002 0.004 0.059 0.599     

BMI -0.005 0.010 -0.573 0.635 -0.004 0.009 -0.043 0.703     

Sex – Female 0.046 0.137 0.042 0.739         

Adj. R2 0.166    0.177    0.197    

C = college. 

 

 

 

Table B-2 Regression coefficients for log urinary Cd concentrations among Chile occupational 

exposure group (n=68).  
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 Model 1   Model 2   Model 3   

Variable β SE β p β SE β p β SE β p 

Constant 0.533 0.167  <0.001 0.356 0.140  0.014 0.533 0.168  0.002 

Over Min Wage -0.168 0.039 -0.477 <0.001 -0.150 0.039 -3.80 <0.001 -0.123 0.041 -0.350 0.004 

Education – 1o -0.204 0.115 -0.587 0.082 -0.194 0.113 -0.557 0.091 -0.221 0.112 -0.636 0.052 

Education – 2o -0.185 0.117 -0.493 0.118 -0.175 0.114 -0.466 0.131 -0.202 0.113 -0.539 0.078 

Education - C -0.171 0.124 -0.335 0.171 -0.158 0.121 -0.309 0.196 -0.177 0.119 -0.347 0.141 

Sex – Female 0.076 0.042 0.198 0.079 0.096 0.043 0.252 0.028 0.125 0.045 0.327 0.007 

Age     0.003 0.001 0.223 0.053 0.004 0.002 0.309 0.013 

BMI         -0.008 0.004 -0.225 0.069 

Adj. R2 0.208    0.243    0.272    

 

 

 

Table B-3 Regression coefficients for log blood Mn concentrations among Thailand community 

exposure group (n=27). 

 Model 1   Model 2   Model 3   

Variable β SE β p β SE β p β SE β p 

Constant 1.508 1.293  0.257 1.033 0.792  0.206 0.990 0.776  0.215 

Sex – Female 0.812 0.365 0.455 0.037 0.889 0.321 0.498 0.011 0.870 0.314 0.487 0.011 

BMI 0.029 0.032 0.170 0.370 0.028 0.031 0.164 0.378 0.031 0.030 0.184 0.305 

Education – 2o -0.254 0.258 -0.188 0.336 -0.224 0.246 -0.166 0.371 -0.200 0.237 -0.148 0.409 

Over Min Wage 0.153 0.276 0.106 0.584 0.143 0.270 0.099 0.602     

Age -0.008 0.178 -0.098 0.643         

Adj R2 0.149    0.179    0.205    

 

Table B-4 Regression coefficients for log urine Mn concentrations among Thailand community 

exposure group (n=27).  

 Model 1   Model 2   Model 3   

Variable β SE β p β SE β p β SE β p 

Constant 4.645 5.346  0.395 3.442 3.027  0.268 2.816 2.92  0.345 

BMI -0.123 0.134 -0.191 0.368 -0.128 0.128 -0.199 0.328 -0.097 0.122 -0.151 0.435 

Education – 2o -2.266 1.083 -0.443 0.049 -2.188 1.015 -0.428 0.042 -1.947 0.971 -0.381 0.057 

Over Min Wage 1.153 1.300 0.193 0.385 1.068 1.123 0.179 0.396     

Sex – Female 0.264 1.533 0.039 0.865         

Age -0.030 0.074 -0.093 0.68         

Adj R2 0.015    0.090    0.100    

 

Table B-5 Regression coefficients for log urine Zn concentrations among Thailand community 

exposure group (n=26). 
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 Model 1   Model 2   Model 3   

Variable β SE β p β SE β p β SE β p 

Constant 4.851 1.887  0.018 4.931 1.124  <0.001 6.062 0.461  <0.001 

Education – 2o -1.013 0.376 -0.524 0.014 -0.991 0.344 -0.513 0.008 -1.151 0.542 -0.548 <0.001 

Sex – Female -0.294 0.533 -0.115 0.588 -0.338 0.455 -0.132 0.465 -0.558 0.515 -0.150 <0.001 

BMI 0.026 0.046 0.105 0.584 0.030 0.043 0.124 0.493     

Over Min Wage 0.170 0.402 0.082 0.678         

Age 0.002 0.026 0.019 0.929         

Adj. R2 0.115       0.185 0.298    
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Table B-6 Spearman correlation coefficient between blood or serum and urine samples by 

exposure group. 

Samples Group n Cd Cu Fe Pb Mn Ni Zn 

B/S*U 0 42 0.108 0.193 0.453 0.632 -0.100 0.334 0.626 

 1 103 NA 0.010 -0.189 0.178 -0.171 0.038 0.152 

 2 82 0.176 NA NA 0.362 -0.140 NA NA 

B/S*FW 0 17 NA 0.553 0.184 NA 0.051 -0.200 0.048 

 1 33 NA -0.336 0.031 NA -0.284 NA 0.152 

 2 38 NA NA NA -0.081 0.012 NA NA 

B/S*WW 0 15 NA 0.218 -0.534 -0.143 0.238 0.252 0.030 

 1 29 NA -0.186 -0.346 -0.220 0.048 -0.249 0.010 

 2 37 NA NA NA -0.135 -0.007 NA NA 

U*FW 0 17 NA 0.255 -0.057 NA 0.255 -0.332 0.017 

 1 38 NA 0.175 0.088 NA 0.001 NA -0.015 

 2 36 NA 0.049 0.441 0.187 0.052 NA -0.151 

U*WW 0 15 NA 0.470 0.226 -0.184 -0.044 -0.042 0.300 

 1 34 NA 0.023 -0.221 -0.304 0.203 -0.217 0.010 

 2 35 NA -0.007 0.043 -0.043 0.002 -0.144 0.204 

FW*WW 0  8 NA 0.284 0.992 0.473 -0.284 0.284 0.661 

 1 39 NA -0.203 -0.013 0.273 0.042 NA -0.165 

 2 38 NA 0.231 -0.111 0.281 0.012 NA -0.411 

AA*FW 0 7 NA NA -0.261 NA NA NA -0.500 

 1 2 NA NA NA NA NA NA NA 

 2 21 NA NA -0.473 NA NA NA -0.287 

AA*WW 0 6 NA NA 0.870 NA NA NA NA 

 1 2 NA NA NA NA NA NA NA 

 2 21 NA NA 0.242 NA NA NA 0.015 

AA*B 0 10 NA NA 0.107 NA NA NA 0.095 

 1 4 NA NA -0.200 NA NA NA -0.316 

 2 NA NA NA NA NA NA NA NA 

AA*U 0 10 NA NA 0.142 NA NA NA 0.057 

 1 7 NA NA -0.464 NA NA NA 0.259 

 2 29 NA NA -0.028 NA NA NA 0.032 

PA*FW 1 22 NA NA -0.064 NA NA NA NA 

PA*WW 1 20 NA NA 0.038 NA NA NA NA 

PA*B 1 25 NA NA -0.017 NA NA NA NA 

PA*U 1 27 NA NA 0.127 NA NA NA NA 

% pos ρ1   100 78.6 50.0 50.0 61.1 40.0 69.6 

NA indicates that one or more variables did not meet the assumptions for the Pearson correlation test. PA, personal air 

sample; AA, area air sample; WW, work surface wipe sample; FW, food surface wipe sample; B, blood biomarker; S, serum 

biomarker; U, urine biomarker. 1% of positive Spearman ρ within a metal type. 
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APPENDIX C:  

 

Semi-Quantitative Video Hazard Analysis Tool 

Hazard Type Attribute, Item   Frequency  

Never Occasional Frequent Always Undetermined 

Mechanical Hand tools      

      Sharp blade      

      Blunt striking instrument      

      Screw driver      

      T-wrench      

      Wrench      

      Pliers/scissors      

      Bolt cutters      

 Power tools      

      Power drill      

      Power Saw      

      Angle grinder      

Musculoskeletal Repetitive hand motion      

 Repetitive arm motion      

 Constant hand grip      

 Lifting > 20 pounds      

 Lifting < 20 pounds      

 Bending      

      Back      

      Neck      

 Squatting or kneeling      

 Sitting low to ground      

 Pushing or pulling      

Chemicals Use of chemicals      

Lacerations Breaking glass      

 Handling broken glass      

 Collecting broken glass      

 Working near broken glass      

 Working near sharp metal      

 Removing sharp metal       

 Handling/moving sharp metal      

 Cutting      

Burns Soldering      

 Burning e-waste      

Noise Noisy activities      

PPE Must be wearing      

      Cotton Gloves      

      Latex gloves      

      Close-toed shoes      

      Dust mask      

      Fabric as mask      

      Respirator      
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      Long sleeves      

      Long pants      

      Hearing protection      
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APPENDIX D:  

 

Mass Balances for Individual Products  

 

Table D-1 Mass balance of washing machines in kg. 

Make and model Starting 

mass 

Steel Copper Aluminum Cables Plastic Waste Sum Change 

 Kg  
PAL PC650- Alpha 16.4 5.2 0.6 0.0 0.1 10.2 0.01 16.0 2.3 

Peacock PW 57 17.4 4.1 0.03 0.4 0.2 11.8 0.0 16.6 4.64 

Samsung SW-458 22.82 13.1 0.9 0.3 0.3 7.6 0.0 22.82 N/A 

Kia 105 21.0 5.6 0.7 0.1 0.4 14.0 0.1 20.8 1.1 

Toshiba VH-1250ST 32.9 14.7 1.1 0.2 0.5 15.4 0.2 32.1 2.6 

N/A1 19.6 8.1 0.4 0.0 0.3 10.9 0.0 19.7 -0.3 

Average 18.3 8.5 0.7 0.2 0.3 11.8   0.1 21.2 1.7 

SD 2.4 4.4 0.3 0.2 0.1 2.8 0.1 5.8 1.8 
1Label eroded; make and model not identifiable. 
2Starting weight unavailable due to lack of field assistance to weigh starting product, so starting mass set equal to 

weight of recovered materials. This product not included in average calculations for starting weight or % difference. 
3There was no copper in this product; wiring in the motor used aluminum instead of copper.  

 

Table D-2 Mass balance of refrigerators in kg. 

Make and model Starting 

mass 

Steel Copper Aluminum Cables Plastic Waste Sum Change 

 Kg  
Sanya PB 1978B 31.5 16.1 0.83 1.2 0.6 4.0 2.7 25.4 19.44 

Hatachi R-17DP 33.5 19.6 0.93 1.0 0.6 7.0 4.2 33.2 0.8 

National1 32.52 20.8 0.93 0.9 0.4 3.0 2.1 28.1 0.0 

Toshiba1 31.0 20.3 1.1 0.9 0.9 4.2 4.1 31.5 -1.5 

N/A1 34.1 19.7 0.93 1.1 1.0 6.4 4.2 33.2 2.7 

Average 32.5 19.3 1.53 1.0 0.7 4.9 3.5 30.3 4.3 

SD 1.5 1.9 0.3 0.1 0.2 1.7 1.0 3.4 8.6 
1Label eroded; make and/or model not identifiable. 
2Starting weight estimated based on median of other refrigerator weights. 
3Estimated based on average copper composition of 3 recycled compressors (data not shown) using individual 

product compressor weight (data not shown). 
4The large % change is due in part to the failure of recycler to recover materials. 
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Table D-3 Mass balance of televisions in kg. 

Make and 

model 

Starting 

mass 

Steel Copper Aluminum Cables Plastic PCB CRT Waste Sum % 

Change 

 Kg  
Distar DT-

2116AY 

21.0 2.3 0.2 0.1 0.04 4.0 1.2 13.2 0.0 21.0 0.12 

National1 19.0 1.3 0.2 0 0.2 3.8 1.2 12.0 0.3 19.0 -0.1 

Sony1 24.0 3.2 0.3 0 0.5 3.2 1.0 14.5 0.1 22.8 5.1 

SHARP1 22.0 2.5 0.3 0 0.3 3.8 1.0 13.8 0.3 22.0 0.1 

SHARP1 21.6 2.2 0.2 0 0.2 3.6 0.8 13.8 0.3 21.2 1.8 

Average 21.5 2.3 0.2 NA 0.3 3.7 1.0 13.3 0.2 21.2 1.4 

SD 1.8 0.7 0.1 NA 0.2 0.3 0.2 1.8 0.1 1.4 2.2 
1Label eroded; make and/or model not identifiable. 
2Calculated using non-rounded values. 

 

Table D-4 Mass balance of fans in kg. 

Make and model Starting 

mass 

Steel Copper Aluminum Cables Plastic Waste Sum % 

Change 

 Kg  
Mitsubishi1 3.3 1.6 0.2 0.3 0.1 0.4 0.2 2.8 14.9 

Tefal VU3520 2.8 1.1 0.2 0.2 0.1 1.0 0.0 2.6 7.3 

N/A1 2.0 0.9 0.1 0.0 0.1 0.7 0.1 2.0 2.3 

N/A1 3.8 1.9 0.2 0.1 0.1 1.1 0.3 3.7 1.6 

Average 3.0 1.4 0.2 0.2 0.1 0.8 0.2 2.8 6.5 

SD 0.8 0.4 0.1 0.1 0.02 0.3 0.1 0.7 6.1 
1Label eroded; model not identifiable. 

 

 

 

 

 

 

 

 

 

 



214 

 

 

APPENDIX E:  

 

Life Cycle Inventory 

 

Table E-1 Life cycle inventory processes for recycled e-waste materials and processes. 

Inventory   Amount  Process 

Steel    

Avoided products 

per 1.12 kg recycled 

 1.0 kg Steel, low-alloyed {GLO}| market for | Cut-off, U 

    

Inputs from 

technosphere 

 1.0 kg Steel, low-alloyed {RER}| steel production, electric, low-alloyed | Cut-off, U, 

adjusted for removal of input flow of 1.1209 kg iron scrap, sorted, pressed. 

  582.4 kgkm Transport, freight, lorry 3.5-7.5 metric ton, EURO3 {RoW}| transport, freight, lorry 

3.5-7.5 metric ton, EURO3| Cut-off, S adapted for Thailand using ratio of EURO2 

emissions where possible. 

Copper    

Avoided products 

per 1.31 kg recycled 

 1.0 kg Copper {RoW}| production, primary | Cut-off, U 

    

Inputs from 

technosphere 

 1.0 kg Copper {RER}| treatment of scrap by electrolytic refining | Cut-off, U, adjusted for 

removal of input flow of 1.31 kg of copper scrap, sorted, pressed. 

  681.2 kgkm Transport, freight, lorry 3.5-7.5 metric ton, EURO3 {RoW}| transport, freight, lorry 

3.5-7.5 metric ton, EURO3| Cut-off, S adapted for Thailand using ratio of EURO2 

emissions where possible. 
Aluminum    

Avoided products 

per 1.009 kg 

recycled 

 1.0 kg Aluminum, primary, ingot (IAI Area, Russia & RER w/o EU27 & EFTA)| 

aluminum production, primary, ingot |Cut-off, U 

    

Inputs from 

technosphere 

 1.0 kg Aluminum, wrought alloy {RoW}| treatment of aluminum scrap, post-consumer, 

prepared for recycling, at remelter |Cut-off, U, adjusted for removal of input flow of 

1.009 kg of aluminum scrap, post-consumer, prepared for melting. 

  524.7 kgkm Transport, freight, lorry 3.5-7.5 metric ton, EURO3 {RoW}| transport, freight, lorry 

3.5-7.5 metric ton, EURO3| Cut-off, S adapted for Thailand using ratio of EURO2 

emissions where possible. 

    

Plastic    

Avoided products 

per X kg recycled 

 N/A N/A: Industry secret 

    

Inputs from 

technosphere 

 0.42 kg Acrylonitrile-butadiene-styrene copolymer {RoW}| production | Cut-off, U 

 0.20 kg Polypropylene, Granulate {GLO}| market for | Cut-off, U 

  0.28 kg Polystyrene, high impact {GLO}| market for | Cut-off, U 

  N/A Transport, freight, lorry 3.5-7.5 metric ton, EURO3 {RoW}| transport, freight, lorry 

3.5-7.5 metric ton, EURO3| Cut-off, S (weight is industry secret) 

Table continued on next page… 
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Table E-1 (Continued). 

Inventory   Amount  Process 

Cables    

Avoided products 

per 1.31 kg recycled 

 0.675 kg Copper {RoW}| production, primary | Cut-off, U 

    

Inputs from 

technosphere 

 1.0 kg Copper {RER}| treatment of scrap by electrolytic refining | Cut-off, U, adjusted for 

removal of input flow of 1.31 kg of copper scrap, sorted, pressed. 

  351 kgkm Transport, freight, lorry 3.5-7.5 metric ton, EURO3 {RoW}| transport, freight, 

lorry 3.5-7.5 metric ton, EURO3| Cut-off, S adapted for Thailand using ratio of 

EURO2 emissions where possible. 

    

Emissions/air  5000 ng Dioxin, 2,3,7,8 Tetrachlorodibenzo-p- 

  140 mg Antimony 

  171 mg Bromine 

  785 mg Chlorine 

  106 mg Copper 

  964 mg Lead 

  25.6 mg Potassium 

  42.9 mg Sodium 

  3.02 mg Sulfur 

  81.2 mg Tin 

  98.2 mg  Zinc 

  0.4496 kg Carbon dioxide, fossil 

  17,500 mg Particulates 

    

PCB    

Avoided products 

per 2.7228 kg 

recycled 

 0.0016 kg Gold {RoW} production | Cut-off, U 

 0.0029 kg Palladium {RU}| platinum group metal mine operation, ore with high content| Cut-

off, U 

 0.0945 kg Silver {RoW}| gold-silver mine operation with refinery | Cut-off, U 

    

Inputs from 

technosphere 

 0.00095 kg Silver {SE}| treatment of precious metal from electronics scrap, in anode slime, 

precious metal extraction | Cut-off, U, adapted by deleting input flows of blister 

copper processes from the inputs for this process. 

  0.0016 kg Gold {SE}| treatment of precious metal from electronics scrap, in anode slime, 

precious metal extraction | Cut-off, U, adapted by deleting input flows of blister 

copper processes from the inputs for this process. 

  0.0028 kg Palladium {SE}| treatment of precious metal from electronics scrap, in anode 

slime, precious metal extraction | Cut-off, U, adapted by deleting input flows of 

blister copper processes from the inputs for this process. 

  1420 kgkm Transport, freight, lorry 3.5-7.5 metric ton, EURO3 {RoW}| transport, freight, 

lorry 3.5-7.5 metric ton, EURO3| Cut-off, S adapted for Thailand using ratio of 

EURO2 emissions where possible. 

Outputs to 

technosphere 

 2.7228 kg Used printed wiring boards {CA-QC}| treatment of scrap printed wiring boards, 

shredding and separation | Cut-off, U 

    

CRT    

Inputs from 

technosphere 

 1.0 kg Glass cullet, lead containing, from used cathode ray tube {GLO}| treatment of, 0% 

water, inert material landfill | Cut-off, U  

    

Emissions to soil  0.06905 kg Lead 
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APPENDIX F:  

 

LCA Impact 2002+ Supplementary Materials 

F.1 Tool use calculations and LCA results 

Table F-1 LCA inputs for tools used by informal e-waste recyclers. 

Tool Process  Mass for process (kg) Life time  

Drill   5 years 

Nylon plastic (injection moulding) 0.454  

Steel, unalloyed production 1.701  

Steel processing 1.701  

PVC production 0.032  

PVC  processing 0.032  

Copper production 0.082  

Copper processing 0.082  

    

Hammer   1 year 

Steel production 0.464  

Steel processing 0.464  

Fiberglass production & processing 0.072  

    

Pliers  0.272 1 year 

Steel production 0.272  

Steel processing 0.272  

 

 

Table F-2 Calculations for average tool use per product based on tool life time and average 

number of products per month. 

Item 

Avg 

item/mo 

Avg 

item/year 

Avg 

Drill/item 

Avg 

Hammer/item 

Avg 

Pliers/item 

Television 46 552 0.0004 0.0018 0.0018 

Fan 92 1104 0.0002 0.0009 0.0009 

Washing machine 33 396 0.0005 0.0025 0.0025 

Refrigerator 35 420 0.0005 0.0024 0.0024 
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Table F-3 Calculations showing average drill use time and electricity consumption per product 

type. 

Item Time (s) Time (h) Watts Wh kWh/product piece 

Television 90 0.025 700 17.5 0.0175 

Fan 150 0.042 700 29.167 0.029 

Washing machine 30 0.008 700 5.833 0.006 

Refrigerator 30 0.008 700 5.833 0.006 

 

 

 

 

 

 

Figure F-1 Human health (DALY) endpoint damages in informal e-waste recycling by tool type 

per recycled product piece for four product types using Impact 2002+. 
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Figure F-2 Ecosystem (PDF*m2*yr) endpoint damages in informal e-waste recycling by tool 

type per recycled product piece for four product types using Impact 2002+. 

 

Figure F-3 Climate change (kg CO2 eq) endpoint damages in informal e-waste recycling by tool 

type per recycled product piece for four product types using Impact 2002+. 
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Figure F-4 Resources in MJ endpoint damages in informal e-waste recycling by tool type per 

recycled product piece for four product types using Impact 2002+. 

F.2 Per product LCIA results 

 

 

Figure F-5 Endpoint damages for human health, ecosystem quality, climate change, and 

resources for aluminum materials and processes. 
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Figure F-6 Endpoint damages for human health, ecosystem quality, climate change, and 

resources for copper materials and processes. 

 

 

 

Figure F-7 Endpoint damages for human health, ecosystem quality, climate change, and 

resources for steel materials and processes. 
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Figure F-8 Endpoint damages for human health, ecosystem quality, climate change, and 

resources for landfilling of CRT glass materials. 

 

 

 

Figure F-9 Endpoint damages for human health for plastic recycling. 

 

3.07E-06

413

0.00519 0.162
-25.00

25.00

75.00

125.00

175.00

225.00

275.00

325.00

375.00

425.00

Human health

(DALY)

Ecosystem quality

(PDF*m^2*yr)

Climate change

(kg CO2 eq)

Resources

(MJ Primary)

CRT glass

-3.5E-06

-3.0E-06

-2.5E-06

-2.0E-06

-1.5E-06

-1.0E-06

-5.0E-07

0.0E+00

5.0E-07

1.0E-06

1.5E-06

Human health (DALY)

Plastic Recycled ABA PS PP



222 

 

 

Figure F-10 Endpoint damages for ecosystem quality and climate change for plastic recycling. 

 

 

 

Figure F-11 Endpoint damages for resources for plastic recycling. 
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Figure F-12 Endpoint damages for human health, ecosystem quality, climate change, and 

resources for inert waste disposed of in landfill. 
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APPENDIX G:  

 

LCA ReCiPe Results 

G.1 ReCiPe LCIA midpoint damage category results by material type 

Table G-7 Midpoint characterization by recovered material type using ReCiPe 2016 LCIA 

method. 

Impact category* Avoided impact per kg material 

Human health  Aluminum Copper Steel Cables PCB CRT glass Plastic Inert waste  

Human carcinogenic toxicity -2.3 -4.3 0.5 -3.71 -18.5 5.3E-09 0.1 1.4E-04 

Human non-carcinogenic toxicity 4.6 -701 -5.2 -657.0 -3,480.0 4.0E-07 0.8 1.7E-03 

Fine particulate matter formation -1.8E-02 -0.1 -2.83E-03 -0.1 -1.1 8.6E-09 3.6E-03 1.34E-05 

Ozone formation, Human health -9.9E-03 -3.0E-02 -7.4E-04 -3.4E-02 -0.2 4.1E-11 7.9E-03 4.5E-05 

Ionizing radiation -0.1 -3.0E-02 -5.2E-02 -0.2 -1.3 1.4E-12 1.3E-02 1.6E-04 

Stratospheric ozone depletion -2.2E-06 -8.0E-06 -2.2E-07 -8.2E-06 -4.3E-05 2.0E-12 3.5E-07 3.8E-09 

Ecosystem quality          

Global warming -6.9 -2.6 -1.0 -3.2 -20.5 1.5E-11 -2.7 5.4E-03 

Ozone formation, terrestrial -1.0E-02 -3.1E-02 -9.2E-04 -3.5E-02 -0.2 6.0E-12 -4.0E-03 4.6E-05 

Terrestrial acidification -3.7E-02 -0.3 -3.3E-03 -0.3 -3.6 6.5E-12 -6.8E-03 3.1E-05 

Freshwater eutrophication -1.9E-03 -0.1 -1.2E-03 -9.9E-02 -0.5 4.2E-13 2.3E-05 6.3E-07 

Marine eutrophication -2.3E-04 -1.5E-03 -3.0E-05 -1.5E-03 -7.6E-03 8.7E-17 -3.8E-05 5.1E-08 

Terrestrial ecotoxicity 22.8 -3,800.0 -2.4 -3,360.0 -154.0 1.5E-13 1.4 1.3E-02 

Freshwater ecotoxicity -7.6E-02 -18.3 -0.2 -17.8 -101.0 1.3E-13 -4.0E-03 5.4E-05 

Marine ecotoxicity -9.3E-02 -27.1 -0.2 -26.2 -141.0 1.6E-14 -4.2E-03 8.4E-05 

Land use -3.7E-02 -0.2 -1.4E-02 -0.3 -2.0 8.4E-12 4.7E-03 9.5E-04 

Water consumption -0.2 -6.3E-02 -2.6E-03 -7.2E-02 -0.2 2.3E-12 -4.0E-02 1.7E-04 

Resources          

Mineral resource scarcity -0.2 -1.1 -8.3E-02 -0.8 -6.9 2.4E-06 7.9E-05 1.1E-05 

Fossil resource scarcity -1.1 -0.6 -0.2 -7.2E-02 -5.9 1.5E-03 -1.4 3.5E-03 

*For units, see Table 4-2. 
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G.2 ReCiPe LCIA endpoint damage category results by material type 

 

Figure G-1 Human health endpoint damages per kg material using ReCiPe 2016 LCIA method. 

 

 

Figure G-2 Ecosystem quality endpoint damage assessment by material type using ReCiPe 2016 

LCIA method. 
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Figure G-3 Resources endpoint damage assessment by material type using ReCiPe 2016 LCIA 

method.  

 

 

 

Figure G-4 Endpoint damage categories using ReCiPe LCIA method showing results for copper 

cable burning by process and material. 
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G.3 ReCiPe LCIA results by product 

 

  

Figure G-5 Results of LCA using ReCiPe 2016 methods displaying human health damages 

(DALYs) by material recovered per e-waste product piece.  

 

 

Figure G-6 Results of LCA using ReCiPe 2016 methods displaying ecosystem quality damages 

(Species.yr) by material recovered per e-waste product.  
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Figure G-7 Results of LCA using ReCiPe 2016 methods displaying resource damages (USD 

2013) by material recovered per e-waste product. 
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