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Abstract 
 
Transcription factor EB (TFEB) is a member of the microphthalmia transcription factor 

family, with adjacent basic helix-loop-helix and leucine zipper domains. Among them, TFEB has 

been found to be a master regulator of autophagy and lysosome biogenesis. TFEB is implicated 

in lysosomal storage diseases and neurodegenerative diseases.  However, the role of TFEB in 

vascular biology is poorly understood. In this study, we aim to explore the role of TFEB and 

underlying mechanisms in vascular diseases. 

Growing evidence suggests that endothelial cell dysfunction occurs in the initial stage of 

atherogenesis. Laminar shear stress, which protects against atherosclerosis, increased TFEB 

abundance in cultured primary human endothelial cells. The locations with a higher laminar 

shear stress of the rabbit aorta also show higher expression of TFEB.  Furthermore, TFEB 

overexpression in endothelial cells (ECs) suppressed adhesion molecule and inflammatory 

cytokine expression., whereas TFEB knockdown aggravated adhesion molecule and 

inflammatory cytokine expression. TFEB knockdown also diminished the effect of laminar shear 

stress to suppress adhesion molecule and inflammatory cytokine expression in ECs, indicating 

TFEB to be a mediator of the anti-inflammatory and anti-atherosclerotic effects of laminar shear 

stress. The anti-inflammatory effect of TFEB was, at least, partially due to reduced oxidative 

stress because TFEB overexpression in endothelial cells decreased the concentrations of reactive 

oxygen species and increased the expression of the antioxidant genes HO1 (which encodes heme 

oxygenase 1) and SOD2 (which encodes superoxide dismutase 2). Chromatin 
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immunoprecipitation (ChIP) assay and luciferase reporter assay indicated that TFEB directly 

bound to the promoter of HO1 and SOD2. To study the EC TFEB function in vivo, we generated 

mTie2-TFEB transgenic mice, in which TFEB was overexpressed in ECs. The transgenic mice 

exhibited reduced leukocyte recruitment to endothelial cells and decreased atherosclerosis 

development in ApoE-/- background.   

Abdominal aortic aneurysm (AAA) has a very high mortality rate in the event of rupture. 

It would be of high significance to identify novel strategies to prevent or treat AAA. We found 

that TFEB expression is reduced in the human aneurysm lesion. Both gain- and loss-of-function 

experiments demonstrated that TFEB inhibited the apoptosis of human aortic smooth muscle 

cells (HASMCs). Mechanistic studies showed that TFEB upregulated B-cell lymphoma 2 

(BCL2) and BCL2 inhibitor abolishes the anti-apoptotic effect of TFEB. ChIP and luciferase 

reporter assays indicated that TFEB directly bound to the promoter of BCL2, suggesting BCL2 is 

a direct target of TFEB.  To determine the role of TFEB in AAA in vivo, we utilized smooth 

muscle cell (SMC)- specific Tfeb knockout (KO) mice and applied two different mouse AAA 

models: β-aminopropionitrile/Angiotensin II- and PCSK9/Angiotensin II-induced murine 

aneurysm models. Consistent results were observed in the two AAA models, in which TFEB 

deficiency increases SMC apoptosis and promotes AAA formation. Of significance, we 

demonstrated that TFEB activator, 2-hydroxypropyl-β-cyclodextrin (HPβCD), attenuates 

aneurysm formation and inhibits HASMC apoptosis in the PCSK9/Angiotensin II model. Using 

SMC-TFEB KO mice, we further demonstrated that vascular smooth muscle cell (VSMC) TFEB 

is essential for the inhibitory effects of HPβCD on AAA formation and VSMC apoptosis in vivo. 

Our study suggests that TFEB regulates important biological functions in the vascular 

wall including ECs and VSMCs. As a transcription factor, TFEB directly increases the 
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transcription of anti-oxidant and anti-apoptotic genes. TFEB constitutes a molecular target for 

the treatment or prevention of vascular diseases such as atherosclerosis and aortic aneurysms.  
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Chapter 1 Introduction 
 

The RNA-sequencing result was published in the following journals: 

Congzhen Qiao, Shengdi Li, Haocheng Lu, Fan Meng, Yanbo Fan, Yanhong Guo, Y. 

Eugene Chen & Jifeng Zhang. Laminar Flow Attenuates Macrophage Migration Inhibitory 

Factor Expression in Endothelial Cells.  Sci Rep. 2018; 8: 2360. 

Congzhen Qiao, Fan Meng, Inhwan Jang, Hanjoong Jo, Y. Eugene Chen, and Jifeng 

Zhang.  Deep transcriptomic profiling reveals the similarity between endothelial cells cultured 

under static and oscillatory shear stress conditions. Physiol Genomics. 2016 Sep 1; 48(9): 660–

666. 

 

 

Overview 

Shear stress and endothelial biology 

Shear stress is the dragging frictional force of blood flow on the vascular endothelial 

cells. Decades of studies have shown that shear stress is critical to maintain healthy endothelial 

cells. Steady laminar shear stress (10-30 dyn/cm2) keeps endothelial cells quiescent and in an 

anti-coagulation, anti-inflammation, pro-survival condition, while low or oscillatory shear stress 

induces endothelial inflammation, reactive oxygen species production and apoptosis1. The lesser 

curvature of the aortic arch and carotid blub, which experience disturbed flow in vivo, are more 

susceptible to develop atherosclerosis1 and this is speculated to be due to the disrupted laminar 
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sheer stress in these regions compared to the laminar flow observed in other parts of the 

vasculature. Direct experimental evidence also comes from experiments using a perivascular 

carotid artery cuff to disturb local shear stress in an otherwise laminar vessel. These experiments 

show that local shear stress pattern contributes directly to the susceptibility to atherosclerotic 

plaque formation in mice2.  

Several mechanosensors in the endothelial cells have been found and transduce the 

extracellular mechanical force to intracellular signal pathways, including Occludin, 

mechanosensory complex, focal adhesion molecules, and ion channels3. The phenotypic changes 

induced by shear stress are mediated by several pathways, including nitric oxide4, mitogen-

activated protein kinase (MAPK)5, and protein kinase C (PKC)6 pathway in endothelial cells. 

These pathways merge at several transcription factors to influence the gene transcription under 

shear stress treatment. The first transcription factor identified to be uniquely induced by flow in 

endothelial cells is Krüppel-like factor 2 (KLF2)7. The target genes of KLF2 in ECs include 

adhesion molecules, cytokines8, and metabolic genes9. Another shear stress-responsive 

transcription factor is nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which coordinates the 

expression of anti-oxidative genes in the ECs10. The elucidation of these shear stress-regulated 

pathways increases our knowledge of endothelial cell biology and have potential to become 

novel therapeutic targets. 

Deep transcriptomic profiling of endothelial cells cultured under different shear stress 

conditions 

To understand the pathways mediating the protective effect of laminar shear stress, we 

utilized RNA-sequencing technology to profile the transcriptome of ECs under steady laminar 

shear stress (LS) (15 dyn/cm2), oscillatory shear stress (OS) (0 ~ ±5 dyn/cm2), and static 
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condition (ST)11, 12.  We found that more than 8000 genes were differentially expressed between 

LS vs OS or LS vs ST, while only 1618 genes were differentially expressed between OS and ST, 

which indicates that EC under laminar shear stress display a distinct transcriptome.  

TFEB is upregulated by laminar shear stress in deep transcriptomic profiling 

Among the differentially expressed genes, we found that transcription factor EB (TFEB) 

is significantly upregulated by LS, compared with OS or ST (Fig. 1.1). TFEB has emerged as a 

master regulator of lysosomal biogenesis13. However, the role of TFEB in vascular biology is 

poorly understood. Since TFEB can be upregulated by laminar shear stress in ECs, we 

hypothesized that TFEB may be a regulator of the vascular biology and partially mediate the 

protective effect of laminar shear stress on endothelial biology. In this dissertation, I will focus 

on the role of TFEB in vascular biology.  

  

Figure 1.1 TFEB is upregulated by laminar shear stress. 

Transcriptome of ECs under static condition, oscillatory shear stress, and steady laminar shear 
stress was profiled by RNA-sequencing. TFEB mRNA abundance was shown as fragments per 
million mapped fragments (FPM). Data were presented as mean ± SEM. N=4 for each group. 
**p<0.01.  
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TFEB Biology 

MiTF/TFE gene family 

TFEB is a member of the microphthalmia transcription factor family, together with 

microphthalmia transcription factor (MiTF), transcription factor EC(TFEC), and transcription 

factor E3(TFE3)14. They contain similar adjacent basic helix-loop-helix and leucine zipper 

domains (bHLH-Zip) and bind to E-box (CANNTG) as either homodimers or heterodimers to 

regulate target gene transcription15. TFE3 was cloned with a fragment of the µE3 motif within 

the immunoglobin heavy-chain enhancer16. TFEB was screened from a cDNA library from a 

human B-cell line, with the ability to bind to a sequence in the major late promoter of 

adenovirus17. MiTF was first cloned from a locus, in which mutation causes microphthalmia 

phenotype in mice. TFEC was cloned from a rat chondrosarcoma tumor cDNA library based on 

its similarity with TFE318. Disruption of Mitf by transgene insertion leads to the defection of 

pigmentation, eye size, bone development, mast cell, and hearing in mice19.  Tfec or Tfe3 

knockout mice are phenotypically normal and further study has shown that Mitf and Tfe3 have 

redundant function in osteoclast development20.  

TFEB global KO is embryonic lethal. 

To elucidate the biological function of TFEB, the global Tfeb knockout mice were 

generated by homologous recombination in embryonic cells21. Distinct from other family 

members, Tfeb deficient mice die between 9.5-10.5 days in the uterus due to the impaired 

placental vascularization21, underscoring the importance of TFEB in embryo development.   
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TFEB involved in renal cancer 

The fusion of TFEB gene and Alpha gene by chromosome translocation 

t(6;11)(p21.1;q12) has been reported to be involved in the renal tumor. The fusion happens at the 

5’ untranslated region of TFEB, leaving the coding sequence of TFEB intact in the genome, but 

promotes the abnormal expression of TFEB22, 23.  Other members in MiTF/TFE gene family, 

such as MiTF and TFE3, have also been reported to fuse with other genes in the human tumor 

samples, indicating a common role of MiTF/TFE family proteins in tumorigenesis24.  

TFEB is a master regulator of lysosomal biogenesis and autophagy. 

In 2009, TFEB was found to be a master regulator of lysosomal biogenesis and regulates 

a variety of lysosomal genes by binding to the palindromic 10–base pair (bp) GTCACGTGAC 

motif. This motif is named Coordinated Lysosomal Expression and Regulation (CLEAR) 

element, because of its enrichment in the promoter of lysosomal genes. Importantly, only TFEB, 

but not other members in the MiTF/TFE family, can activate the transcription of lysosomal 

genes25. Autophagy is an important process for the cell to clean and recycle damaged molecules 

and organelles. Autophagosome requires to be fused with lysosomes to degrade the protein and 

other macro molecules26. Consistent with this, TFEB also upregulates autophagy genes, together 

with lysosomal genes, to promote the autophagy, which is an important adaption for cells under 

starvation and stressed conditions13. 

Regulation of TFEB 

Regulation of TFEB by post-translational modification  

TFEB activation is mainly regulated by phosphorylation. Numerous phosphorylation site of 

TFEB has been identified. (1) The mechanistic target of rapamycin (mTOR) dependent 
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phosphorylation of Ser211 promotes TFEB binding to 14-3-3 protein and inhibits its nuclear 

translocation27, 28. (2) In osteoclasts, Protein Kinase Cβ (PKCβ) phosphorylates TFEB at 

Ser461/462, Ser466, and Ser468, which is required for RANKL induced TFEB activation. (3) 

The mechanistic target of rapamycin complex 1 (mTORC1)29 and extracellular signal-regulated 

kinases  (ERK)30 phosphorylate Ser142 of TFEB and retains TFEB in the cytoplasm. (4) A 

recent discovery found that Ser122 is also phosphorylated by mTORC1  and the 

dephosphorylation of Ser122 is essential for TFEB nuclear localization31. (5) TFEB Ser142 

phosphorylation primers the Ser138 phosphorylation by GSK3β and both phosphorylation 

activate nuclear export signal for TFEB shuttling between nuclear and cytoplasm32. (6) STIP1 

homology and U‐Box containing protein 1 (STUB1) preferentially target inactive phosphorylated 

TFEB to proteasome degradation33. (7) On the other hand, calcineurin, a phosphatase activated 

by intracellular Ca2+, dephosphorylates TFEB and induce its nuclear translocation34. (8) Protein 

phosphatase 2A also dephosphorylates TFEB at Ser211 and stimulates its nuclear translocation35.  

Besides phosphorylation, acetylation of lysine residual (K91, K103, K116, and K430) has 

been reported to promote TFEB activity36.  

The elucidation of these post-translational modifications of TFEB provides the 

pharmaceutical target to manipulate TFEB activity in the cells. 

Regulation of TFEB by transcription. 

TFEB is also regulated at the transcription level by several transcription factors. TFEB is 

induced in mice liver by starvation via a positive autoregulatory loop by binding to its own 

promoter region and promoting its own transcription37. (2) In Huntington’s disease mice, TFEB 

mRNA expression is compromised and peroxisome proliferator-activated receptor γ (PPARγ) 

coactivator 1α (PGC-1α) can bind to TFEB promoter to active its transcription and attenuate the 
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disease phenotype38. (3) In the mouse liver, cAMP response element-binding protein (CREB), 

together with its co-activator CREB regulated transcription coactivator 2 (CRTC2), up-regulates 

TFEB transcription. whereas farnesoid X receptor (FXR) disrupts this complex and inhibits 

TFEB transcription39. (4) In mouse astrocytes, PPARα-RXRα-PGC1α complex is capable of up-

regulating TFEB transcription via PPAR response element in the promoter40.  (5) In adipocytes, 

FOXO1 directly increases TFEB transcription 41. (6) Kruppel-like factor 2 (KLF2) increases 

TFEB transcription in EC under laminar shear stress42. These studies indicate a cell-dependent 

transcriptional regulation of TFEB and may provide the molecular basis of TFEB to be involved 

in various diseases.  

TFEB in cardiovascular and metabolic diseases. 

TFEB in endothelial biology 

The study of TFEB in endothelial biology is very limited. Our lab previously found that 

TFEB promotes postischemic angiogenesis via activating AMP-activated protein kinase α 

(AMPKα) signaling and autophagy pathway43. In human brain microvascular endothelial cells, 

TFEB-mediated lysosomal protein degradation pathway inhibits TNFα induced ICAM1 

expression44.  

TFEB in macrophages 

TFEB is essential for innate immune response and macrophage activation against 

microbial infections45-48. TFEB downregulation facilitates the alternative activation of 

macrophage in the tumor microenvironment and enhances tumor growth49. In the mouse 

atherosclerosis model, accumulation of excessive intracellular cholesterol impairs normal 

lysosome function in the macrophage. TFEB overexpression in macrophages rescues normal 
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lysosome function and reduces inflammasome activation and IL1β production. Intriguingly, the 

inhibition of IL1β is autophagy independent as Atg5 knockout (KO) did not abolish this effect50. 

Macrophage-specific TFEB overexpression (TFEB transgene) in vivo promotes lysosomal 

biogenesis and autophagy in atherosclerotic plaque and reduces lesion size in an Atg5 and p62 

dependent manner51. 

TFEB in cardiomyocytes 

In the cardiovascular system, growing evidence shows that TFEB is an important 

transcription factor, regulating cell survival in cardiomyocytes under various conditions in the 

heart.  

In cardiac ischemia-reperfusion injury, Reactive oxygen species (ROS) generation and 

hypoxia-inducible protein BCL2 interacting protein 3 (BNIP3) upregulates beclin-1 and 

therefore inhibits TFEB transcription, indicating negative feedback between beclin-1 and TFEB. 

TFEB activation, together with PGC1α, restores mitochondria biogenesis and suppress 

cardiomyocytes death52. Repetitive intermittent fasting protects against myocardial ischemia-

reperfusion in mice and endogenous TFEB is required for this attenuation of hypoxia-

reoxygenation-induced cell death53. Senescence suppresses TFEB nuclear translocation and 

autophagy in the mouse heart, resulting in increased susceptibility of LPS-induced myocardial 

injury in aged mice54. Conditional KO of Rag GTPases A and B (RagA and RagB), which are 

involved in TFEB phosphorylation by mTOR, in skeletal and cardiac muscle tissues results in 

hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases. This effect cannot be 

rescued by constitutively activated TFEB, marking the complexity of lysosome and autophagy 

regulation in cardiomyocytes55. TFEB overexpression could also attenuate cardiac proteotoxicity 

in mice with cardiac-specific expression of a missense (R120G) mutant αB-crystallin56. 
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TFEB inhibition has been reported to be related to the cardiac toxicity of certain 

metabolites or drugs. Glucolipotoxicity suppress TFEB, leading to diminished lysosome function 

in cardiomyocytes57. Oxidative Stress induced by Monoamine Oxidase-A (MAO) leads to 

cardiomyocytes necrosis and heart failure via impairing TFEB activation. MAO activation 

promotes reactive oxidative species (ROS) production, blocks TFEB nuclear translocation and 

autophagic flux, while TFEB overexpression ameliorates autophagosome accumulation and 

mitochondria fission58. In addition, doxorubicin (DOX), a cancer chemotherapy drug, cause 

cardiomyopathy as a rare but severe side effect59. Bartlett et al., discovers that TFEB suppression 

by DOX mediates this cardiac toxicity. Restoration of TFEB prevents ROS production, caspase 

activation, and cell death60. Furthermore, cardiac stem cells cultured from explanted failing 

hearts are characterized by defective TFEB activation and autophagy, compared with cardiac 

stem cells from healthy donors, while mTOR inhibition activated TFEB and restores the 

autophagy function in senescent cardiac stem cells61. 

TFEB in metabolic diseases 

Metabolic diseases, including obesity, dyslipidemia, and diabetes are risk factors for 

cardiovascular diseases. Recent evidence reveals the indispensable role TFEB in regulating 

whole-body metabolism and energy expenditure.  

TFEB, together with TFE3, directly binds to peroxisome proliferator-activated receptor 

γ2 (Pparγ2) promoter in adipocytes and mediates the effect of adiponectin on blood glucose in 

mice62. TFEB is also essential for the metabolic adaptation of skeletal muscle during exercise. 

TFEB promotes glucose uptake, glucose utilization, mitochondria biogenesis, fatty acid 

oxidation, and ATP generation during exercise63. TFEB in hepatocytes controls lipid catabolism 

via inducing PGC1α transcription. TFEB overexpression by helper-dependent adenovirus 



 10 

injection reduces body weight and rescues metabolic syndrome in high-fat diet fed mice64.  Tfe3 

KO mice show more severe obesity and diabetes after high-fat diet and TFEB overexpression 

can compensate for metabolic abnormality caused by TEF3 deficiency65. In adipocyte, FOXO1 

increases mitochondrial uncoupling proteins (UCP1, UCP2, and UCP3) via up-regulation of 

TFEB transcription41. 

As a result, activating TFEB and autophagy has emerged as a promising strategy for 

cardiovascular and metabolic diseases66.  

TFEB as a potential drug target 

As a master regulator of lysosomal function, TFEB becomes an attractive target for 

lysosomal storage disorders (LSDs). LSDs are a group of diseases caused by a lack of important 

enzymes in lysosomal degradation pathways, which subsequently leads to the accumulation of a 

certain substance (glycosaminoglycans, sphingolipids, glycogen, and proteins) in the cellular 

compartments. Activation of TFEB can enhance the ability of cells to clear these substrates by 

enhancing lysosomal biogenesis and function67. Another interesting field regarding the 

implication of TFEB is the neurodegenerative diseases, which are characterized by intracellular 

aggregates in the brain68, 69. TFEB activation or overexpression successfully attenuates various 

neurodegenerative diseases in mouse models, including Alzheimer's disease70, 71, Parkinson's 

disease72, 73 and Huntington's disease74, and thus is promising for treating human 

neurodegenerative diseases.  

The nuclear translocation of transcription factor EB is under strict control. As a result, 

most drugs targeting TFEB influence its intracellular location and activity. There have been a 

number of compounds that can activate TFEB in different tissue and cell types through different 

mechanisms in publications. (1) An analog of curcumin, termed C1, was identified to directly 
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bind to TFEB and facilitate its nuclear translocation via inhibiting mTOR. Administration of this 

analog promotes autophagy both in vitro and in rat brain75. (2) 2-Hydroxypropyl-β-cyclodextrin 

(HPβCD), an excipient in drugs, has been revealed as a TFEB activator and enhances the cellular 

autophagic clearance of intracellular proteolipid aggregates76. (3) Trehalose (α-D-glucopyranosyl 

α-D-glucopyranoside), increases TFEB nuclear translocation by inhibiting Akt mediated TFEB 

Ser467 phosphorylation. Trehalose promotes the clearance of proteolipid and prolongs the 

lifespan in Batten disease mouse model (a neuron LSD)77. Besides LSDs, trehalose is also 

effective in macrophages to induced TFEB activity and reduces atherosclerotic lesion size in 

ApoE-/- mice78. (4) HEP14 (5β-O-angelate-20-deoxyingenol) and HEP15 (3β-O-angelate-20-

deoxyingenol), compounds from plants, activate TFEB and autophagy in a PKC dependent 

pathway. Administration of HEP14 to an Alzheimer’s disease mouse model ameliorate the 

amyloid β plaque formation79. (5) Ezetimibe, a prescribed cholesterol-lowering drug, activates 

TFEB nuclear translocation in a MAPK/ERK-dependent pathway. Ezetimibe promotes 

autophagy flux and attenuates lipid accumulation and inflammation in nonalcoholic 

steatohepatitis mice liver. This effect is abolished in atg7 KO mice, showing an indispensable 

role of autophagy80. (6) A nanotechnology-enabled high-throughput screen identified three novel 

compounds (digoxin, alexidine, and ikarugamycin) as agonists of TFEB and autophagosomal 

activity. These molecules activated TFEB via different Ca2+-dependent pathways81. An oral 

supplement of digoxin or intravenous injection of alexidine or ikarugamycin attenuated the 

metabolic syndrome in mice.  Other TFEB activators and their mechanisms to activate TFEB are 

listed in Table 1.1. 

Name Mechanism In vitro study In vivo study Ref 
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Gemfibrozil PPARα-RXRα-

PGC1α 

Astrocytes: 

Increase TFEB 

expression and lysosomal 

biogenesis 

Increase TFEB 

expression and lysosomal 

biogenesis in the cortex 

40 

Gypenoside 

XVII 

 PC12: 

Elimination of AβPP, 

Aβ40, and Aβ42 protein 

APP695 (APP695swe) 

and APP/PS1 mice: 

prevented the formation 

of Aβ plaques in the 

hippocampus and cortex 

of APP/PS1 mice 

82 

GDC-0941  Increase lysosomal 

function in glioblastoma 

cells 

 83 

Docetaxel Reactive 

oxygen species 

Different cancer cells ROS (reactive oxygen 

species) generation 

84 

Naringenin Reactive 

oxygen species 

Peritoneal macrophage: 

Inhibits cytokine 

production 

Attenuate LPS-induced 

endotoxemia and acute 

liver inflammation 

85 

Carbon 

monoxide 

PERK-

calcineurin 

Hepatocyte: 

Increase mitophagy 

Reduces liver injury in 

LPS/D-GalN injected 

mice. 

86 

Table 1.1 List of other TFEB activators. The table summarizes the TFEB activators and their 
mechanism to activate TFEB.  
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Summary 

Accumulating evidence indicating TFEB as an important regulator of lysosomal 

biogenesis and other intracellular processes, including inflammation and cell survival. These 

results enrich our understanding of the target genes of this transcription factor and the signaling 

pathway it is involved. The understanding of the dynamic regulation of TFEB subcellular 

location enables us to develop compounds to manipulate its activity. Currently, most of the 

studies regarding TFEB biology is related to lysosomal storage disease and neurodegenerative 

disease. To understand the biology of TFEB in vascular wall biology and cardiovascular diseases 

would help to understand the pathophysiology of these diseases and provide us novel therapeutic 

targets.  From the preliminary date, TFEB is upregulated by protective laminar shear stress. We 

hypothesize that TFEB is an important regulator of vascular biology. In chapter 2, we 

investigated the role of TFEB in endothelial inflammation and atherosclerosis. In chapter 3, we 

studied the role of TFEB in the vascular smooth muscle cell apoptosis and aortic aneurysm. In 

chapter 4, we discussed TFEB to be a potential pharmaceutical target for cardiovascular diseases.  
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Chapter 2 TFEB in endothelial inflammation and atherosclerosis 
 

Acknowledgement 

This chapter was previously published in the Science Signaling. 

Haocheng Lu, Yanbo Fan, Congzhen Qiao, Wenying Liang, Wenting Hu, Tianqing Zhu, 

Jifeng Zhang, and Y. Eugene Chen. TFEB inhibits endothelial cell inflammation and reduces 

atherosclerosis. Sci. Signal.  31 Jan 2017: Vol. 10, Issue 464, eaah4214 

Haocheng Lu and Yanbo Fan obtained and analyzed the data. Congzhen Qiao, Wenying 

Liang, Wenting Hu, and Tianqing Zhu provided technical and material support. The manuscript 

was drafted by Haocheng Lu and Yanbo Fan and then critically reviewed, including comments 

and feedback from Yuqing Eugene Chen and Jifeng Zhang. 

Introduction 

Every year, over 30% of all death in the US is attributable to cardiovascular diseases 

(CVDs), such as myocardial infarction, stroke or ischemic heart failure (WHO, 2014) and total 

direct and indirect cost of CVDs and stroke in the United States for 2010 was estimated to be 

over $315 billion87. Atherosclerosis causes most of the pathogenesis in CVDs88. Atherosclerosis 

is a progressive disorder of the vascular wall characterized by abnormal accumulation of lipid 

and immune cells in the subendothelial region. Growing evidence suggests that endothelial cell 

dysfunction occurs in the initial stage of atherogenesis and contributes to the formation, 

progression, and complication of the atherosclerotic plaque89. Atherosclerosis is considered to be 
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an inflammatory disease90, 91 and inflammatory responses are an important hallmark of 

endothelial dysfunction92. Many pro-inflammatory factors such as oxidized low-density 

lipoprotein (oxLDL), tumor necrosis factor α (TNFα), interleukin-1 (IL1) and other activate 

endothelial cells and lead to recruitment of circulatory monocytes and leukocytes.  

Accumulating evidence reveals a causal relation between oxidative stress and endothelial 

inflammation 93, 94. In the cardiovascular system, reactive oxygen species (ROS) exert critical 

physiological roles in controlling endothelial cell function and vascular tone and 

pathophysiological roles in inflammation, hypertrophy, proliferation, apoptosis, migration, 

fibrosis, angiogenesis, vascular remodeling, etc.95-98. Excessive ROS lead to inflammation and 

endothelial dysfunction in vitro and in vivo 95, 99. Endogenous ROS are involved in the 

pathophysiology of atherosclerosis by increasing the abundance of adherent molecules such as E-

selectin, intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 

(VCAM1) and chemotactic factors such as Interleukin 6 (IL6), monocyte chemoattractant 

protein1 (MCP1)94, leading to recruitment of inflammatory cells.   

TFEB is a basic helix-loop-helix transcription factor and an autophagy master gene, 

regulating lysosomal biogenesis and autophagy function in many cell types100. In macrophages, 

TFEB induces lysosomal biogenesis and rescues lipid-induced lysosomal dysfunction in 

atherosclerotic lesion101. In the heart, oxidative stress induced by monoamine oxidase-A impairs 

the transcriptional activity of TFEB102 and TFEB deficiency suppresses autophagy 103 and leads 

to cell death104.  

In the present study, we report that TFEB abundance was increased by laminar shear 

stress. Overexpression of TFEB in endothelial cells potently inhibited inflammation, while 

knockdown of TFEB aggravated inflammation. TFEB reduced intracellular ROS by increasing 
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the abundance of anti-oxidant genes such as heme oxygenase 1 (HO1) and superoxide dismutase 

2 (SOD2).  Mice overexpressing TFEB in an endothelial cell-specific manner exhibited 

decreased EC-leukocyte adhesion under inflammatory conditions in vivo.  In addition, EC-TFEB 

transgene inhibits atherosclerotic lesion formation in APOE-/- mice.    

Materials and methods 

Animal procedures 

EC-specific TFEB transgenic mice (EC-TFEB) were generated with a mTie2 promoter-

driven human TFEB coding region on C57BL/6 mice background. Mice had free access to water 

and rodent chow diet. EC-TFEB/ApoE-/- mice were generated by breeding EC-TFEB mice with 

ApoE-/- mice (Jackson Laboratory, Bar Harbor, ME).  Eight- to 10-week-old EC-TFEB/ApoE-/- 

mice and littermate ApoE-/- mice were fed high-cholesterol diet (HCD, 17.3% protein, 21.2% fat, 

48.5%carbohydrate, 0.2%cholesterol by mass, and 42% calories from fat; TD.88137, Envigo, 

Indianapolis, IN) for 8 weeks. Blood samples were sent to the Chemistry Laboratory of the 

Michigan Diabetes Research and Training Center to determine total cholesterol (TC), 

triglycerides (TG), LDL-c and HDL-c. All animal work was performed in accordance with the 

University of Michigan Animal Care and Use Committee.  

Materials and reagents 

Antibodies against E-selectin, VCAM1, GAPDH, p65, and actin were from Santa Cruz 

Biotechnology (Santa Cruz, CA). Antibodies against p-4EBP1, 4EBP1, TFEB, histone 3 were 

from Cell Signaling Technology (CST, Danvers, MA). Flag antibody was Sigma-Aldrich (St. 

Louis, MO). Recombinant human TNFα and IL1β were from R&D systems (Minneapolis, MN). 

Chloroquine, 3M-A, and LPS were from Sigma-Aldrich (St. Louis, MO). Bafilomycin A1 was 

from Cayman Chemical (Ann Arbor, MI).  
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Cell culture and stimulation  

Human umbilical vein endothelial cells (HUVECs) and human coronary artery 

endothelial cells (HCAECs) were purchased from Lonza. HUVECs were cultured in M199 

medium supplemented with 16% fetal bovine serum (FBS), 1ng/ml of recombinant human 

fibroblast growth factor (Sigma, St. Louis, MO), 90μg/ml of heparin and 20mM HEPES and 

50mg/ml of Pen/Strep mix at 37°C/5% CO2 humidified incubator. HCAEC was cultured in 

EGM™-2MV medium (Lonza, Basel, Switzerland). Endothelial cells of passage less than 5 were 

used for experiments. Bovine aortic endothelial cells (BAEC) and AD-293 cells (ATCC, 

Manassas, VA) were cultured in DMEM with 10% FBS. Thioglycollate-elicited peritoneal 

macrophages and bone marrow monocytes were isolated from both wild-type and EC-TFEB mice 

as described previously 105, 106. The purity of isolated cells was measured by sorting with F4/80 

antibody. Endothelial cells were stimulated with TNFα (2ng/ml), IL1β (5ng/ml), or LPS (100 

ng/ml) for 4 hours, unless otherwise indicated. To block autophagy, endothelial cells were 

pretreated with 3-MA (5mM), bafilomycin A1 (200nM), or chloroquine (5μM) for 30 min or 16 

hours, and then treated with TNFα (2ng/ml) for 4 hours.  

Shear stress model 

A detailed protocol has been described previously 107. Briefly, HUVECs monolayers at 

80-90% confluence in 100-mm tissue culture dishes were exposed to arterial levels of 

unidirectional laminar shear stress (15 dyn/cm2), bidirectional oscillatory shear stress at 1 Hz 

cycle (±5 dyn/cm2) by rotating a Teflon cone (0.5° cone angle) with a stepping motor (Servo 

Motor) and computer program control (DC Motor Company, GA), and static cultured condition 

for the indicated time (n=3, respectively). siRNA was administrated 48 hours prior to shear stress 

treatment, followed by 24-hour shear stress treatment. 
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2’, 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA) Assay 

DCFH-DA assay was performed with Cellular ROS/Superoxide Detection Assay Kit 

(Abcam, UK) in accordance with the manufacturer’s protocol. In brief, HUVECs were washed 

with PBS and treated with 20μM DCFH-DA and TNFα at indicated doses and time. The plate 

was read with 488/520 fluorescence filter by a fluorometer (Promega, Madison, WI) or 

visualized with fluorescence microscopy. The fluorescence was normalized to protein content in 

each well. 

DHE superoxide assay 

Superoxide production was assessed by DHE (Cayman Chemical, Ann Arbor, MI) 

fluorometric assays. In brief, HUVECs were washed with PBS and treated with 5μM DHE and 

TNFα 10ng/ml for 1 hour. The plate was read with 510/595 fluorescence filter by a fluorometer 

(Promega, Madison, WI). The fluorescence was normalized to protein content in each well. 

Luminol chemiluminescence assay 

Luminol Chemiluminescence assay was performed as described before 108. In brief, 

HUEVCs were treated with TNFα at indicated dosage and time. After washing with PBS twice, 

cells were loaded with 1mM luminol (Cayman Chemical, Ann Arbor, MI). Luminescence was 

detected with Luminometer (Promega, Madison, WI) and normalized to protein content as 

determined by Bradford assay. 

Intravital microscopy 

Eight- to 10-week old EC-TFEB mice and wild-type mice were administered saline or 

Chloroquine (50mg/Kg, i.p.) for 1 week. Intravital microscopy analysis was performed as 

described before 109. In brief, mice were injected LPS (30μg/kg) by tail vein. Four hours later, 

mice were injected Rhodamine 6G Chloride (Thermo Scientific, Waltham, MA) to stain 
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leukocytes for 20 min. The cremaster muscle was dissected from surrounding tissues, cut 

longitudinally and kept flat by silk suture. The muscle was kept moist by saline at 37 °C. 

Intravital microscopy was used to monitor microcirculation. Leukocyte rolling was quantified by 

counting the number of cells rolling pass a fixed point in a minute. Leukocytes that stay 

stationary for more than 30s were counted as adherent to EC. All animal work was performed in 

accordance with the University of Michigan Animal Care and Use Committee.  

Immunostaining 

EC-TFEB and littermate wild-type mice were anesthetized with ketamine (50mg/kg) and 

xylazine (5mg/kg). The thoracic aorta was harvested and then fixed in 4% paraformaldehyde. 

The sample was embedded in O.C.T (Thermo Scientific, Waltham, MA) and cut to the 8μm 

section in a Leica cryostat. The section was blocked in 5% goat serum for 1 hour at room 

temperature and then incubated with primary TFEB antibody (Bethyl laboratories, A303-673A, 

TX, USA), VCAM1(Abcam, UK), CD31 (HistoBioTec LLC, FL, USA) 1:100 at 4 °C overnight. 

After washing with PBS, the sample was incubated with Alexa fluor-labeled secondary antibody 

(Jackson ImmunoResearch laboratory, PA, USA) 1:1000 at room temperature for 1 hour. Images 

were obtained with an Olympus IX73 microscope. Background correction was performed using 

the appropriate IgG negative controls. For en face immunostaining of TFEB on the rabbit aorta, 

the different regions of the aorta were harvested from wild-type New Zealand white rabbits and 

fixed in 4% paraformaldehyde. The samples were incubated with primary TFEB antibody 

(Biorbyt, orb332323, CA, USA) 1:100 for 2 days.  After washing with PBS, the sample was 

incubated with Alexa fluor-labeled secondary antibody (Jackson ImmunoResearch laboratory, 

PA, USA) 1:1000 at room temperature for 1 hour. Images were obtained with a Nikon A1 
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confocal microscope. Background correction was performed using the appropriate IgG negative 

controls. 

RNA preparation and RT-qPCR analysis 

Total RNA was extracted from cells using RNeasy Kit (QIAGEN, Hilden, Germany), 

followed by reverse transcription with SuperScript III kit (Invitrogen, Carlsbad, CA) and random 

primers. mRNA was determined by qPCR (BioRad, Hercules, CA), using iQ SYBR Green 

Supermix (BioRad, Hercules, CA). The mRNA level was normalized to internal control, 

GAPDH unless otherwise mentioned. The primers used are shown in Table 2.1. 
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Gene* Primer sequence 

hTFEB 
Forward: gcggcagaagaaagacaatc 

Reverse: ctgcatcctccggatgtaat 

hVCAM-1 
Forward: cgaacccaaacaaaggcaga 

Reverse: acaggattttcggagcagga 

hE-selectin 
Forward: actttctgctgctggactct 

Reverse: tagttccccagatgcacctg 

hMCP1 
Forward: ccccagtcacctgctgttat 

Reverse: tggaatcctgaacccacttc 

hIL6 
Forward: atgcaataaccacccctgac 

Reverse: atctgaggtgcccatgctac 

hHO1 
Forward: attctcttggctggcttcct 

Reverse: cccctctgaagtttaggcca 

hSOD2 
Forward: agggaaacactcggctttct 

Reverse: ttgcctttactgtgcaggtg 

HO1 ChIP 
Forward: tatgactgctcctctccacc 

Reverse: ctgaggacgctcgagagg 

SOD2 ChIP 
Forward: cctggtgttcccccttatct 

Reverse: tccttcaccgaaaactccag 

hGAPDH 
Forward: ccaaggagtaagacccctgg 

Reverse: tggttgagcacagggtactt 
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18S RNA 

Forward: catggccgttcttagttggt 

Reverse: cgctgagccagtcagtgtag 

hATG3 
Forward: ctggcggtgaagatgctatt 

Reverse: gtggcagatgagggtgattt 

hATG9B 
Forward: agggtttcaggtgaccacag 

Reverse: cacttgaccctgcactctga 

hSQSTM1 
Forward: ctgcctcctggtctcttcac 

Reverse: gttaggagggacagggttcc 

hLAMP1 
Forward: ctgcctttaaagctgccaac 

Reverse: tgttctcgtccagcagacac 

hATP6V1H 
Forward: tctggaaggttggaatggag 

Reverse: ttctccaacatcgtgagcag 

hCTSd1 
Forward: gacacaggcacttccctcat 

Reverse: ctctggggacagcttgtagc 

hHEXA 
Forward: gcacctttggaccagtgaat 

Reverse: cttgaagtcctcaccgaagc 

hGNS 
Forward: gtttaagggacccactgcaa 

Reverse: ctttgcatgagagggagagc 

hGLA 
Forward: agcctgggctgtagctatga 

Reverse: tgcctgtgggatttatgtga 

mVcam1 
Forward: acagacagtcccctcaatgg 

Reverse: acagtgacaggtctcccatg 

mE-selectin Forward: gtctagcgcctggatgaaag 
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Table 2.1 Primers used for Real-time PCR and genotyping. h=human m=mouse 

  

Reverse: tgaattgccaccagatgtgt 

mTie2-

TFEB genotyping 

Forward: gcggcagaagaaagacaatc 

Reverse: cattgatgagtttggacaaaccac 
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Protein extraction and Western blot 

Cells were lysed in RIPA lysis buffer (Thermo Scientific, Waltham, MA) with a protease 

inhibitor cocktail (Roche Applied Science, Penzberg, Germany). Proteins were resolved in 10% 

SDS-PAGE gel and transferred to nitrocellulose membrane (BioRad, Hercules, CA). Membranes 

were blocked for 1 hour at room temperature in TBST containing 5% fat-free milk and incubated 

with primary antibody (1:1000) at 4 °C overnight. After TBST washing, membranes were 

incubated with secondary antibody (Li-Cor bioscience, Lincoln, NE) (1:8000) for 1 hour at room 

temperature.  After TBST washing, bands were analyzed using an image-processing program 

(Li-Cor Odyssey). 

Chromatin immunoprecipitation assay (ChIP) 

ChIP assay was performed with EZ CHIP kit (Millipore, Billerica, MA), according to 

manufacturer’s protocol. Purified precipitated DNA was used as the template for qPCR and 

primers used were listed in Supplemental Table 1. 

Nuclear and cytoplasmic protein extraction 

Nuclear and cytoplasmic protein extraction was performed with NE-PER Nuclear and 

Cytoplasmic Extraction Reagents kit (Thermo Scientific, Waltham, MA) in accordance with the 

manufacturer’s protocol. Histone 3 (CST, Danvers, MA) served as an internal control of nuclear 

protein. Actin (Santa Cruz, CA) served as internal control for cytoplasmic protein. 

siRNA-mediated gene knockdown 

siTFEB (AGACGAAGGUUCAACAUCA), siTFEB #2 

(CUACAUCAAUCCUGAAAUG), and siHO1(pool of GGCAGAGGGUGAUAGAAGA, 

ACACUCAGCUUUCUGGUGG, AGAGAAUGCUGAGUUCAUG, and 

GAGGAGAUUGAGCGCAACA) were from (Dharmacon, Lafayette, CO). siAtg5 
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(SignalSilence Atg5 siRNA I, #6345) was from CST (Danvers, MA). siSOD2 

(CGCUUACUACCUUCAGUAGtt) was from Ambion (Austin, TA). Endothelial cells were 

transfected with siRNA or non-targeting siRNA (Ambion In Vivo Negative Control #1 siRNA, 

Thermo Scientific, Waltham, MA) (20nM) using Lipofectamine RNAiMAX Reagent 

(Invitrogen, Carlsbad, CA) in accordance with the manufacturer’s protocol. 

Plasmid construction and transfection 

Desired DAN fragments of HO1 promoter (-483-+14) and SOD2 intron2 (787-1769) 

from human genome were PCR-amplified and cloned into pGL4.11 luciferases reporter vector 

(Promega, Madison, WI). Mutation of the putative binding site was performed using Q5 Site-

Directed Mutagenesis Kit (New England Biolabs, Ipswich, MA). TFEB overexpression plasmid 

was generated by cloning human TFEB coding region to pcDNA3.1 mammalian expression 

vector (Thermo Scientific, Waltham, MA). All PCR products were verified by DNA sequencing. 

BAECs were co-transfected with plasmid at 70-80% confluence, using lipofectamine 2000 

(Invitrogen, Carlsbad, CA) in accordance with the suggested protocol. Promoter activity was 

detected by Firefly luciferase and normalized against Renilla luciferase activity. 

Construction of adenoviruses 

Adenoviruses encoding GFP and human TFEB were generated by cloning the coding 

region of human TFEB and control GFP into AdTrack-CMV (Aglient Technologies, Santa Clara, 

CA). Next, the coding region was cloned from Ad-track into Ad-Easy vector by homologous 

recombination in Escherichia coli. The adenovirus encoding LacZ and human TFEB were 

generated by cloning the coding region of TFEB and control LacZ into PCR8/GW/TOPO TA 

vector (Invitrogen, Carlsbad, CA). The adenovirus encoding flag-TFEB was generated by 

inserting flag tag to the N-terminal of human TFEB coding region. Next, the sequence was 
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cloned from Entry Vector to the pAd/CMV/V5-DEST Vector (Invitrogen, Carlsbad, CA) by LR 

recombination. The adenoviruses were packaged in HEK293 cells and purified by CsCl2 density 

gradient ultracentrifugation. Adenovirus titration was determined by the Adeno-XTM 

quantitative PCR titration kit (Clontech, CA, USA). 

Statistics 

Data are presented as mean ± SEM.  Student t test or 1-way ANOVA followed by Holm-

Sidak test was used to analyze data. A p<0.05 was considered as statistical significance.  All 

results were represented from at least 3 independent experiments.  

Results 

TFEB is a shear stress-responsive gene 

Shear stress is a biomedical force imposed on endothelium by blood flow, which is a 

critical factor regulating vascular homeostasis11. Laminar shear stress modules regional 

endothelial inflammation, nitric oxide production, reactive oxygen species, and permeability and 

determines the susceptibility to atherosclerotic plaque buildup110, 111  

Shear stress affects a diverse spectrum of the process in endothelial cells, including 

inflammation, proliferation, and survival112, 113. In contrast to oscillatory shear stress, which 

promotes atherosclerosis, laminar shear stress is protective against atherosclerosis114. In human 

umbilical vein endothelial cells (HUVECs), TFEB abundance was significantly increased by 48-

hour laminar shear stress compared with static conditions or oscillatory shear stress both at 

mRNA (5.19±0.76 fold compared to static conditions and 5.11±0.76 fold compared to oscillatory 

shear stress) and protein (2.38±0.17 fold compared to static conditions and 1.78±0.20 fold 

compared to oscillatory shear stress) (Fig. 2.1 A-B). Indeed, we found that laminar shear stress-

induced TFEB nuclear translocation (Fig. 2.1 C-D), and decreased mammalian target of 
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rapamycin (mTOR) activity with impaired phosphorylation at Thr37/46 of 4EBP1 (substrate of 

mTOR kinase) (Fig. 2.1 E). To determine the TFEB abundance pattern in vivo, we performed en 

face staining of TFEB on different sites of the rabbit aorta 115, 116. Our results showed that 

atherosclerosis-resistant regions (greater curvature and descending aorta) showed higher TFEB 

protein abundance, compared to atherosclerosis-prone areas (less curvature) (Fig. 2.1 F). In 

addition, we determined whether TNFα treatment affects TFEB abundance. Together, our data 

suggest that TFEB is a shear stress-responsive gene that could have a critical role in endothelial 

cell biology.  
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Figure 2.1 Laminar shear stress increased TFEB mRNA and protein abundance.  

(A and B) HUVECs were exposed to static conditions, oscillatory shear stress, or laminar 
shear stress for 48 hours. (A) TFEB mRNA was determined by quantitative polymerase 
chain reaction (qPCR) and normalized against 18S RNA. (B) TFEB protein was determined 
by Western blot. (C and D) HUVECs were infected with adenovirus encoding Flag-TFEB. 
After 4-hour shear stress treatment, TFEB protein abundance was determined in the 
cytoplasmic and nuclear fractions. (E) After 4-hour shear stress treatment, phosphorylated 
(p) and total 4E-BP1 protein in HUVECs was determined by (F) TFEB protein abundance 
in different areas of the rabbit aorta were determined by en face immunostaining. Data are 
representative of three independent experiments. 
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Overexpression of TFEB inhibits endothelial cell inflammation 

Laminar shear stress exhibits anti-inflammatory effects in endothelial cells both in vitro 

117 and in vivo114. Endothelial cell inflammation is characterized by the induction of various 

adhesion molecules and cytokines 91. TFEB overexpression suppressed the expression of E-

selectin (SELE), monocyte chemoattractant protein 1 (MCP1) and vascular cell adhesion 

molecule 1 (VCAM1) mRNA in HUVECs in response to the proinflammatory stimuli TNFα, 

interleukin 1β (IL1β) or lipopolysaccharide (LPS) (Fig. 2.2 A). TFEB also significantly 

decreased E-selectin and VCAM1 protein abundance by 49±12% and 46±11%, respectively (Fig. 

2.2 B). The anti-inflammatory function of TFEB was not limited to HUVECs, as TFEB also 

exerted a similar anti-inflammatory effect in primary human coronary artery endothelial cells 

(HCAECs) (Fig. 2.2 C-D). Thus, TFEB exerted a potent inhibitory effect on inflammation in the 

presence of a variety of proinflammatory factors.  
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Figure 2.2 TFEB potently inhibits inflammation in endothelial cells.  

(A-B) HUVECs were infected with adenovirus encoding GFP or human TFEB and treated with 
tumor necrosis factor α (TNFα), interleukin 1β (IL1β) or lipopolysaccharide (LPS). (A) SELE, 
VCAM1 and MCP1 mRNA were determined by qPCR. (B) TFEB, E-selectin and VCAM1 
protein were determined by Western blot. Band densities were quantitatively analyzed and 
normalized against GAPDH. (C-D) HCAECs were infected with Ad-GFP or Ad-TFEB and 
treated with TNFα, IL1β or LPS. (C) SELE, VCAM1 and MCP1 mRNA were determined by 
qPCR. (D) TFEB, E-selectin and VCAM1 protein were determined by Western blot.  Data were 
from 3 independent experiments and presented as mean ± SEM. *p<0.05 **p<0.01.  
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TFEB knockdown aggravates inflammation in endothelial cells 

To further elucidate the essential role of TFEB in regulating inflammation, we used a 

small interfering RNA (siRNA) strategy and achieved a >90% knockdown of TFEB mRNA and 

protein in HUEVCs (Fig. 3 A). The knockdown of TFEB increased the expression of SELE, 

VCAM1, MCP1, and IL6 by 2.67±0.18, 8.44±2.2, 1.42±0.08 and 2.26±0.35 fold, respectively 

(Fig. 2.3 B) and increased the protein abundance of E-selectin and VCAM1 by 0.65±0.12, 

0.3±0.07 fold, respectively, upon TNFα stimulation (Fig. 2.3 C). To determine whether TFEB 

mediates the anti-inflammatory effect of laminar shear stress in endothelial cells, we conducted 

TFEB knockdown prior to shear stress treatment (Fig. 2.3 D-E). We found that laminar flow 

could suppress pro-inflammatory adhesion molecules in the presence of TNFα in the control 

cells. However, TFEB knockdown significantly attenuated the anti-inflammatory effect of 

laminar flow on endothelial cells (Fig. 2.3 D-E). Taken together, our results suggest that 

endogenous TFEB suppresses inflammation in response to pro-inflammatory stimuli and 

mediates the protective effect of laminar shear stress in endothelial cells. 
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Figure 2.3 TFEB knockdown aggravates inflammation in endothelial cells.   

HUVECs were transfected with siCt or siTFEB before treatment with TNFα. (A) TFEB 
knockdown efficiency was determined by qPCR and Western blot. (B) E-selectin, VCAM1, 
MCP1 and IL6 mRNA were determined by qPCR. (C) E-selectin and VCAM1 protein were 
determined by Western blot. (D-E) HUVECs were transfected with small interfering RNA 
(siRNA)-control (siCt) or siRNA-TFEB (siTFEB) before exposure to static condition or laminar 
shear stress for 24 hours, and then treated with TNFα. VCAM-1 and E-selectin abundance was 
determined by qPCR (D) and Western blot (E). Data were from 3 independent experiments and 
presented as mean ± SEM. *p<0.05; **p<0.01. 
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TFEB reduces intracellular ROS in HUVECs   

Oxidative stress induced by ROS in endothelial cells triggers the production of 

proinflammatory molecules and cytokines 94, 96, 108, 118, 119. We found that overexpression of 

TFEB reduced ROS production, while TFEB knockdown augmented ROS production, both 

basally and in response to TNFα treatment using 2’, 7’-dichlorofluorescein diacetate (DCFH-

DA) assay (Fig. 2.4 A-B). We also repeated the results using luminol chemiluminescence as an 

additional method to determine ROS concentrations (Fig. 2.4 C-E).  We also measured 

superoxide by dihydroethidium (DHE) fluorescence assay in TFEB overexpressing and 

knockdown endothelial cells. Our data show that TFEB significantly inhibited intracellular 

superoxide in endothelial cells (Fig. 2.4 F-G).  
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Figure 2.4 TFEB reduces intracellular ROS concentrations in HUVECs.  

(A-B) HUVECs were infected with (A) Ad-LacZ or Ad-TFEB or (B) transfected with siCt or 
siTFEB. Endothelial cells were loaded with 2’, 7’-dichlorodihydrofluorescin diacetate (DCFH-
DA) to probe for reactive oxygen species (ROS) before treatment with TNFα. Fluorescence was 
determined by fluorescence microscopy (left panel, representative image of 3 independent 
experiments) or microplate reader (right panel). (C-D) HUVECs were infected with Ad-GFP or 
Ad-TFEB before treatment with TNFα for the indicated dosages (C) and time (D), followed by 
luminol loading. Luminescence was detected with a luminometer. (E) HUVECs were transfected 
with siCt or siTFEB, followed by TNFα treatment and luminol loading. Luminescence was 
detected with a luminometer. (F) HUVECs were infected with Ad-GFP or Ad-TFEB or (G) 
transfected with siCt or siTFEB before treatment with TNFα and DHE loading. Fluorescence 
was determined by microplate reader. Data were from 3 independent experiments and presented 
as mean ± SEM. *p<0.05; **p<0.01. Scale bar: 100μm. 
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TFEB increases the transcription of antioxidant genes 

In endothelial cells, enzymatic and non-enzymatic antioxidant systems prevent cells from 

oxidative damage. Major enzymatic antioxidants include superoxide dismutase (SOD), Catalase, 

glutathione peroxidase (GPX1), heme oxygenase 1 (HO1), thioredoxin (TXN1) and 

peroxiredoxin (PRX) 95, 120. HO1 and SOD2 protect against endothelial dysfunction and 

atherosclerosis. TFEB overexpression increased both mRNA and protein for HO1 and SOD2 

(Fig. 2.5 A-C). TFEB binds to a palindromic 10–base pair (bp) GTCACGTGAC motif and 

induces the transcription of its target genes 121. We found a putative TFEB binding site located at 

-19/-12 in the HO1 promoter (Fig. 2.5 D). A transcriptional activity reporter containing this 

binding site from the HO1 promoter displayed higher luciferase activity in TFEB overexpressing 

cells when compared to cells expressing endogenous TFEB (vector control), an effect that was 

abolished by mutation of this motif (Fig. 2.5 E). Chromatin Immunoprecipitation (ChIP) assays 

also demonstrated that TFEB bound the HO1 promoter in the area that harbors this motif (Fig. 

2.5 F). We also found a putative TFEB binding site in the intron2 region of SOD2 (Fig. 2.5 G), 

which is consistent with evidence that intron2 harbors several elements that regulate SOD2 

expression 122-124. Luciferase assays confirmed that the reporter driven by this region harboring 

the binding site was activated by TFEB overexpression, an effect that was lost by mutation of the 

binding site (Fig. 2.5 H) and TFEB bound to this site in SOD2 intron 2, as determined by ChIP 

assay (Fig. 2.5 I). To determine whether SOD2 or HO1 are necessary for TFEB-dependent 

inhibition of inflammation in endothelial cells, we knocked down HO1 and SOD2 in the TFEB 

overexpressing endothelial cells. We found that HO1 knockdown largely attenuated the anti-

inflammatory effect of TFEB, while SOD2 knockdown had a modest effect on the TFEB 

regulation of the inflammatory status (Fig. 2.5 J-L). Together, these results indicate that TFEB 
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directly increases the transcription of the HO1 and SOD2 genes. Although other anti-

inflammatory signaling pathways cannot be excluded, enhanced anti-oxidative capacity through 

increasing HO1 and SOD2 could contribute in part to the anti-inflammatory effect of TFEB in 

endothelial cells.  
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Figure 2.5 TFEB increases mRNA and protein abundance of anti-oxidant genes.  

(A-C) HUVECs were infected with Ad-GFP or Ad-TFEB before treatment with TNFα or IL1β. 
(A) Heme oxygenase 1 (HO1) and superoxide dismutase 2 (SOD2) mRNA was determined by 
qPCR. (B) HO1 and SOD2 protein were determined by Western blot. (C) Band densities in (B) 
were quantitatively analyzed and normalized against GAPDH. (D) Wild-type and mutant HO1 
promoter or (G) SOD2 intron2 region was cloned into the pGL4.11 luciferase reporter vector. (E-
H) Luciferase activity was determined in AD-293 cells transfected with HO1 pGL4.11 (E) or 
SOD2 pGL4.11 plasmids (H), together with pcDNA 3.1 empty vector or pcDNA3.1 encoding 
human TFEB. (F&I) HUVECs were infected with Ad-LacZ or Ad-flag-TFEB. The binding of 
TFEB to HO1 promoter (F) or SOD2 intron2 region (I) was determined by ChIP assay (J-L) 
HUVECs were transfected with siCt, siHO1 or siSOD2 before TNFα treatment. (J&K) HO1 and 
SOD2 knockdown efficiency were determined by qPCR and Western blot. (L) SELE and 
VCAM1 mRNA was determined by qPCR. Date were from 3 independent experiments and 
presented as mean ± SEM. *p<0.05; **p<0.01 
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TFEB overexpression did not inhibit the NF-κB pathway in ECs. 

 The Nf-κb pathway is one of the most important inflammatory pathways125. However, 

our data suggested that TFEB overexpression did not inhibit the TNFα-induced activation of the 

NF-κB pathway in endothelial cells, as assessed by both NF-κB element driving luciferase (Fig. 

2.6 A), IκBα degradation (Fig. 2.6 B) and p65 nuclear translocation (Fig. 2.6 C).   

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.6 TFEB did not inhibit NF-kB pathway in endothelial cells.  

(A) Bovine aortic endothelial cells (BAECs) were transfected with Nuclear Factor κB (NF-κB)-
luciferase for 24 hours and then transfected with Ad-GFP or Ad-TFEB. Promoter activity was 
determined after TNFα treatment for 12 hours by Firefly luciferase and normalized against 
Renilla luciferase activity.  Data were from 3 independent experiments and presented as mean ± 
SEM. (B-C) HUVECs were infected with Ad-GFP or Ad-TFEB and then treated with TNFα for 
the indicated time. Data is representative of 3 independent experiments. (B) IκBα protein was 
determined by Western blot. (C) After isolation of nuclear and cytoplasmic protein extracts, p65 
protein was determined by Western blot in the different fractions. 
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Inhibition of autophagy did not diminish the inhibitory effect of TFEB on endothelial cell 

inflammation 

Autophagy is an evolutionarily conserved process that degrades protein and damaged 

organelles. TFEB is a master regulator of lysosomal biogenesis and autophagy in various cell 

types 100, 126.  We determined the expression of autophagy genes in TFEB overexpressing 

HUVECs. TFEB significantly increased the mRNA abundance of autophagy related 3 (ATG3), 

autophagy related 9B (ATG9B), sequestosome 1 (SQSTM1), lysosomal associated membrane 

protein 1 (LAMP1), ATPase H+ transporting V1 Subunit H (ATP6V1H), glucosamine (N-

Acetyl)-6-sulfatase (GNS), galactosidase alpha (GLA) and hexosaminidase A (HEXA) (Fig. 2.7 

A). TFEB overexpression also increased ATG3, microtubule-associated protein 1A/1B-light 

chain 3-I (LC3-I) and LC3-II protein abundance (Fig. 2.7 B). 

We examined whether the anti-inflammatory effect of TFEB in endothelial cells was 

autophagy dependent. Autophagy related 5 (ATG5) is required for the formation of 

autophagosomes 127. In HUVECs with ATG5 knockdown (Fig. 2.7 C), TFEB overexpression still 

potently decreased the mRNA of SELE, VCAM1, and MCP1 to a comparable extent as in 

controlled endothelial cells (Fig. 2.7 D). In addition, pharmacological inhibition of autophagy by 

pretreatment with 3-Methyladenine (3-MA) 128, chloroquine (CQ) 129 or bafilomycin A1 130 for 

either 30 minutes or 16 hours, did not attenuate the inhibitory effect of TFEB on inflammation in 

endothelial cells (Fig. 2.7 E-F). Therefore, TFEB inhibition of endothelial cell inflammation may 

be independent of its activation of the canonical autophagy pathway. 

  

http://www.sigmaaldrich.com/catalog/product/sigma/m9281?cm_sp=Insite-_-prodRecCold_xviews-_-prodRecCold10-1
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Figure 2.7 Inhibition of autophagy cannot attenuate the inhibitory effect of TFEB on 
inflammation in endothelial cells.  

(A-B) HUVECs were infected with Ad-GFP or Ad-TFEB. (A) mRNA for autophagy and 
lysosome biogenesis related genes was determined by qPCR. (B) ATG3, LC3-I and LC3-II 
protein were determined by Western blot (n=2 blots). (C-D) HUVECs were transfected with siCt 
or si-autophagy related 5 (siATG5) and then infected with Ad-GFP or Ad-TFEB, followed by 
treatment with TNFα. (C) ATG5 knockdown efficiency was determined by qPCR and Western 
blot. (D)  SELE, MCP1, and VCAM1 mRNA were determined by qPCR. (E) HUVECs were 
infected with Ad-GFP or Ad-TFEB and pretreated with the autophagy inhibitors 3-MA or 
bafilomycin A1 for 30 min before treatment with TNFα. (F) HUVECs were infected with Ad-
GFP or Ad-TFEB and pretreated with the autophagy inhibitors 3-MA, CQ or bafilomycin A1 for 
16 hours before treatment with TNFα. SELE, VCAM1, and MCP1 mRNA were determined by 
qPCR. Data were from 3 independent experiments and presented as mean ± SEM. *p<0.05 
**p<0.01. 
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Generation of EC-TFEB transgenic mouse. 

We generated a transgenic mouse that overexpressed TFEB under the mTie2 promoter in 

endothelial cells (EC-TFEB) (Fig. 2.8 A-B). The overexpression of TFEB is confirmed by 

immunofluorescence (CD31 as an EC marker) (Fig. 2.8 C). We also assessed the TFEB protein 

in the peritoneal macrophage and bone marrow hematopoietic cells and did not find a significant 

change (Fig. 2.8D-E).  
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Figure 2.8 Characterization of EC-TFEB transgenic mice.  

(A) Schematic of EC-TFEB transgene (coding region sequence, CDs). (B) Genotyping results of 
EC-TFEB transgenic (Tg) and control wild-type mice (in 2% agarose gel). (C) 
Immunofluorescence for cluster of differentiation 31 (CD31) (Ex/Em = 650/665) and TFEB 
(Ex/Em = 590/617) in the thoracic aorta from EC-TFEB and littermate wild-type mice. Normal 
rabbit IgG was used as a negative control. Data are representative of 3 independent experiments. 
Scale bar: 50 μm. (D-E) Peritoneal macrophages and bone marrow hematopoietic cells were 
isolated from EC-TFEB and wild-type mice. TFEB protein abundance in these cells was 
determined by Western blot, n=4 for each group. 
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EC-TFEB transgene inhibits endothelial inflammation and reduces atherosclerosis development 

in mice  

Endothelial cell activation is an early event step of atherogenesis and inhibition of this 

step can largely attenuate the development of atherosclerosis 131. The adhesion of leukocytes to 

vascular endothelium is a hallmark of endothelial cell inflammation.  After administration of 

LPS, EC-TFEB mice demonstrated significantly decreased leukocyte rolling and adhesion on 

endothelial cells by 68±19% and 59±20%, respectively, in the vessels in the cremaster muscles. 

Comparable to the in vitro study, administration of CQ did not abolish this phenotype in EC-

TFEB mice when compared with wild-type mice (Fig. 2.9 A-B). Furthermore, compared with 

littermate control mice, the aortas from EC-TFEB mice showed decreased VCAM1 abundance 

assessed by immunostaining after LPS administration (Fig. 2.9 C). Consistent with these 

findings, SELE and VCAM1 mRNA abundance were significantly decreased in the aortas of EC-

TFEB mice after LPS administration when compared with control mice (Fig. 2.9 D). To 

determine if TFEB overexpression in endothelial cells prevented atherosclerosis development, 

we crossbred EC-TFEB mice with atherosclerosis-prone ApoE-/- mice and mice were fed a high-

cholesterol diet. Measurement of the atherosclerotic lesion areas revealed that EC-TFEB/ApoE-/- 

mice exhibited significantly decreased atherosclerotic lesion formation by 46±16% (p<0.01), 

compared with littermate ApoE-/- mice (Fig. 2.9 E-F). These results indicate that TFEB is a 

critical suppressor of endothelial cell inflammation and atherosclerosis in vivo. 
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Figure 2.9 Fig. 2.9 EC-TFEB transgene inhibits endothelial cell inflammation and reduces 
atherosclerosis development.  

(A-B) EC-TFEB transgenic and littermate WT mice were treated with saline or CQ for 7 days 
followed by administration of LPS. (A) Leukocyte recruitment was analyzed with intravital 
microscopy. Scale bar: 50μm. (B) The adhesion and rolling of leukocytes on vascular walls were 
quantitatively analyzed. N=5-6 mice for each group. (C) Immunostaining for VCAM1 (Ex/Em = 
590/617) and CD31 (Ex/Em = 650/665) in the thoracic aortas from EC-TFEB and littermate WT 
mice after LPS administration. Normal rabbit IgG was used as a negative control. (D) Sele and 
Vcam1 mRNA in the aortas from EC-TFEB and littermate control mice after LPS injection was 
determined by qPCR (normalized against 18S RNA). (E-F) EC-TFEB/ ApoE-/- and ApoE-/- mice 
were fed a high cholesterol diet. (E) En face analysis of atherosclerotic lesions in the aortic tree 
was performed after oil-red O staining. (F) The area of atherosclerotic lesions was quantified. 
N=10-11 mice for each group. Data were presented as mean ± SEM. *p<0.05; **p<0.01. Scale 
bar: 50μm. 
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The EC-TFEB transgene does not affect plasma lipid profile in ApoE-/- mice  

Plasma samples from the two groups showed no significant differences in total 

cholesterol, high-density lipoprotein cholesterol (HDL-c), triglycerides (TG) and low-density 

lipoprotein cholesterol (LDL-c) concentrations (Fig. 2.10).  

   

Figure 2.10 The EC-TFEB transgene did not alter plasma lipid profile in ApoE-/- mice.  

EC-TFEB/ApoE-/- and ApoE-/- mice were placed on a high cholesterol diet for 8 weeks. 
Plasma total cholesterol, HDL-c, TG and LDL-c were measured. N=5-6 mice for each group. 
Data are presented as mean ± SEM. 
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Discussion 

CVDs are the leading cause of death in the United States132. Current evidence supports 

the central role of endothelial cell inflammation in atherosclerosis133.  Physiological laminar 

shear stress is well-recognized as protective by inhibition of endothelial cell inflammation both 

in vitro and in vivo134. The finding that endothelial TFEB is significantly induced by laminar 

shear stress, compared with the static condition or oscillatory shear stress prompted us to 

investigate the relationship between TFEB and endothelial cell inflammation. Our data suggest 

that TFEB is indispensable to modulate the inflammatory status and enhance the anti-oxidative 

capacity in endothelial cells (Fig. 2.11).  

 

  

Figure 2.11 The role of TFEB in endothelial inflammation and atherosclerosis.  

Diagram summarizing the findings indicating that endothelial TFEB has a protective effect on 
atherosclerosis through inhibition of oxidative stress and inflammation. 
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We found that laminar shear stress induced the TFEB nuclear translocation which is 

known to induce TFEB transcription in an auto-regulatory loop 135. Furthermore, when TFEB is 

phosphorylated by mammalian target of rapamycin complex1 (mTORC1), it is retained in the 

cytoplasm 28, 136, 137.  We found that laminar shear stress decreased mTORC1 activity (Fig. 1E), 

suggesting that laminar shear stress may induce TFEB nuclear translocation in endothelial cells. 

Thus, enhanced TFEB nuclear translocation may account for the increased TFEB abundance 

induced by laminar flow in endothelial cells. 

Recruitment of leukocytes to endothelial cells is an initial stage of atherogenesis and is 

mediated by adhesion molecules (E-selectin, VCAM1) and proinflammatory cytokines (MCP1, 

IL6). We used both gain-of-function and loss-of-function strategies to demonstrate that TFEB 

behaves as an anti-inflammatory transcription factor in endothelial cells, induced by a variety of 

proinflammatory stimuli. Consistent with our in vitro data, endothelial cell-specific TFEB 

transgene also inhibits endothelial cell-leukocyte adhesion in vivo, reinforcing that TFEB 

promotes an anti-inflammatory phenotype in endothelial cells. We also observed decreased 

atherosclerotic lesion formation in EC-TFEB/ApoE-/- mice, compared with littermate ApoE-/- 

mice, indicating that TFEB could be a potential target to prevent and treat atherosclerosis and 

associated CVDs.  

TFEB reduces ROS in endothelial cells both at the basal level and under the condition of 

TNFα treatment. This phenomenon could be attributed to increased transcription of antioxidant 

genes in endothelial cells, including HO1, SOD2, and TXN1. We demonstrate that HO1 and 

SOD2 are the direct targets of TFEB in endothelial cells. ROS are key signaling molecules in the 

progression of inflammation 138.  Thus, enhanced TFEB-mediated anti-oxidative capacity could 

partially explain its anti-inflammatory function. Although the NF-κB pathway plays a critical 
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role in the inflammatory response in many different cell types 139, recent studies have identified 

that many proteins could regulate endothelial cell inflammation in an NF-κB-independent 

manner 108, 140, 141. IκBα phosphorylation and degradation is induced by proinflammatory 

cytokines or stress stimulation, resulting in nuclear translocation of p65 to activate downstream 

genes. Our data revealed that neither IκBα degradation nor p65 translocation was altered in the 

TFEB overexpressing endothelial cells, suggesting that the role of TFEB in endothelial cells is 

NF-κB-independent.  Based on our present study, we cannot rule out that TFEB affects other 

inflammatory pathways in endothelial cells, such as p38 mitogen-activated protein kinases (p38 

MAPK), Janus N-terminal Kinase (JNK), Extracellular signal-regulated kinases (ERK), Janus 

kinase/signal transducers and activators of transcription (JAK-STAT), which will require further 

investigation in follow up studies. 

Increased ROS have been observed virtually in every aspect of atherosclerotic plaque 

formation142.  As a result, there are numerous methods to measure ROS, although each method 

has its own pitfalls. DCFH-DA is the most common used probe for intracellular ROS. It is 

cleaved and trapped in the cell. Upon oxidized, it becomes highly fluorescent product 

dichlorofluorescein (DCF).  One major concern is that photoreduction of DCF will generate 

superoxide radical, amplifying the oxidative stress143.  Luminol is a cell-permeable 

chemiluminescent probe used to detect various kinds of ROS. However, it is not only oxidized 

by ROS but also ONOO-. Luminol is also criticized to undergo redox cycling and may 

overestimate ROS144. To overcome these limitations, we used multiple assays, including DCFH-

DA, luminol, and DHE, to assess intracellular ROS and got the consistent results that TFEB 

inhibits intracellular ROS.  
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TFEB has been well-established as a master transcription factor regulating lysosomal 

biogenesis and autophagy. The role of autophagy in inflammation is not fully understood, 

especially in cardiovascular system145. Autophagy protects cells from inflammation-related cell 

death146, but also serves an indispensable role in inflammation and immunity against infection147. 

Although we observed an increase of E-selectin, VCAM1, and MCP1 after ATG5 knockdown, 

compared with the siRNA-control group, siATG5 did not abolish the effect of TFEB on 

endothelial cell inflammation. This effect is reminiscent of the TFEB inhibition of IL1β secretion 

induced by LPS and cholesterol crystals independent of Atg5 in macrophages 101. To further 

address this dichotomy of effects, we used three autophagy inhibitors, which block autophagy at 

different steps (3-MA inhibits the initial step of autophagy, bafilomycin and CQ inhibits 

autophagosome acidification), and got similar results. Although most studies of TFEB focus on 

autophagy related processes, TFEB has also been found to regulate other types of genes, such as 

lipid degradation and β-oxidation genes in the liver 64, 148. Our data here demonstrate that TFEB 

inhibits endothelial inflammation independent of the canonical autophagy pathway as well, 

which indicates that TFEB has critical functions beyond acting as an autophagy master gene.  

Autophagy inhibitors 3-MA, CQ and bafilomycin A1 were used to block autophagy in this study, 

although there are certain obvious limitations when using these inhibitors. 3-MA is a widely used 

autophagy inhibitor by inhibiting Class I and Class III phosphatidylinositol-4,5-bisphosphate 3-

kinase (PI3K) 128, although it may have dual roles in the modulation of autophagy, depending on 

nutritional conditions and treatment time 149, 150 and inhibiting PI3K affects diverse signaling 

pathways and trafficking process, besides autophagy 151. CQ is a weak base and inhibits 

autophagy by impairing lysosomal acidification. In addition to blocking autophagy, CQ also 

affects other cellular processes such as mitosis and endocytosis 151. Bafilomycin A1 inhibits the 
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proton pump on the lysosome membrane thus reducing vesicle acidification 152-154. However, the 

function of V-ATPase is also involved in intracellular ions transportation 155, vesicle trafficking 

156, proliferation and migration 157. All these limitations increase the complexity in the a priori 

interpretation of our data requiring that we use a more specific ATG5-deficient in vitro model to 

demonstrate that impaired autophagy cannot attenuate the anti-inflammatory effect of TFEB.  

Indeed, we found that bafilomycin A1 treatment enhanced the anti-inflammatory effect of TFEB 

in the ECs. Perturbation of lysosomal function by bafilomycin A1  promotes TFEB nuclear 

translocation 158. In addition, ATP hydrolysis by the v-ATPase is critical to regulate the v-

ATPase-Ragulator interaction and promote mTORC1 translocation 153. Inhibition of lysosome 

function decreases mTORC1 activity in a feedback loop and induces autophagy 159. Bafilomycin 

A1 may decrease mTORC1 activity and possibly induce TFEB nuclear translocation and 

therefore enhance TFEB anti-inflammatory activity. 

In summary, here we demonstrate that TFEB, as an anti-inflammatory factor, negatively 

regulates leukocyte recruitment and atherosclerosis development. This finding extends our 

understanding of TFEB in inflammation, oxidative stress, and vascular disease and reveals TFEB 

as a potential molecular target for treatment of atherosclerosis and associated CVDs. 
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Chapter 3 TFEB in the vascular smooth muscle cell and aneurysm 

Introduction 

Aneurysm is a segmental dilatation of the aorta or artery over the normal diameter by 

50%, due to the weakness of the vessel wall, leading to over 10,000 deaths every year in the 

United States. Based on the location of the aneurysm, it can be further divided into abdominal 

aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and cerebral aneurysm. Among them, 

AAA is the most common type of aneurysm160. The risk factor of AAA includes older age, male 

sex, family history, hypertension, elevated cholesterol level, obesity, and preexisting 

atherosclerotic occlusive disease161. An aneurysm can develop over years without any obvious 

symptoms, making an early diagnosis challenging.  Rupture of an aneurysm is often lethal with 

the mortality over 85%161. Current medical intervention for AAA is endovascular repair or repair 

by surgery. The treatment to control the growth of AAA is to reduce the risk factor with anti-

hypertensive drugs or cholesterol-lowering drugs. The drugs targeted at the aneurysm lesion 

itself is still not available.  

The aorta wall composes of different layers. (1) The intima lays the inner face of the 

aorta. The endothelial cell direct interacts with various cells and signaling molecules in the blood 

flow; (2) The media layer is the middle layer of the aorta and is mainly made up of smooth 

muscle cell, elastic fiber, and collagen; (3) The adventitia is the outermost layer of the aorta, 

providing additional nutritional supporting for the aorta162. Vascular smooth muscle cells 

(VSMCs) are the major residing cell type in the aorta. The contraction of VSMC maintains the 
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vessel tone and blood pressure163. VSMCs also synthesize extracellular matrix protein, such as 

collagen type I164 and elastin165. VSMCs and the extracellular matrix in the aortic wall withstand 

the high pressure of the circulating blood in the lumen.  

One key feature of the aneurysm is the depletion of vascular smooth muscle cell by 

apoptosis in the media166. Vascular smooth muscle cell apoptosis is prominent in both human 

and mouse aortic aneurysmal lesion167, 168. The loss of VSMC and decreased extracellular protein 

secretion from VSMCs contribute to the weakness of the aortic wall. Vascular smooth muscle 

cell apoptosis could be induced by a variety of molecules in the development of the aneurysm, 

including (1) death-promoting proteins (perforin, Fas, FasL) expressed by infiltrated 

inflammatory cells167; (2) increased oxidative stress from inflammatory cells or VSMC NADPH 

oxidase; (3) cytotoxic oxidized LDL169; (4) loss of survival factors from extracellular matrix170, 

171. Apoptosis inhibitor shows a promising effect to inhibit the aneurysm development in mouse 

angiotensin II (Ang II) infusion model172. 

Apoptosis is a programmed cell death process, inherent in all cell types. Apoptosis was 

first characterized by distinct morphological changes during cell death, including blebbing but 

intact cytoplasm and condensed nucleus. Mechanistically, apoptosis involves multiple 

biochemistry processes, including membrane flipping, proteinase activation, and DNA 

fragmentation. Nevertheless, Caspase family proteins act as the final executor of the apoptosis by 

the cleavage of multiple target proteins in the cell. Apoptotic cells quickly undergo phagocytosis 

by macrophages. Apoptosis is crucial to maintaining homeostasis, especially in the case of 

immune cell development, sexual differentiation, neuron network, and infection173. Apoptosis 

can be initiated by 2 pathways - extrinsic and intrinsic pathway. The extrinsic pathway is mainly 

through the activation of death receptor on the cell surface. Death receptors belong to the TNFα 
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receptor superfamily and can be activated with the presence of molecules such as TNFα or Fas 

ligand (FasL)174. The activation of the death receptor forms the death-inducing signaling 

complex (DISC) with the recruitment of Fas-associated death domain protein (FADD)175.  DISC 

then activates the initial Caspase – Caspase 8 in the extrinsic pathway. The alternative way to 

activate the apoptosis is the intrinsic pathway, in which mitochondria lie at the center of the 

process. Intrinsic pathway can be initiated by withdrawing of growth factor, DNA damage or 

chemotherapy. These pathways converge on mitochondrial outer membrane and lead to the 

release of content from mitochondria into the cytoplasm. Releases of Cytochrome c from 

mitochondria activates Caspase 9/Apaf-1 complex and triggers downstream apoptotic steps176. 

 Here, we found that TFEB mRNA and protein abundance is reduced in the human 

aneurysmal lesion. TFEB inhibits VSMC apoptosis by promoting BCL2 transcription. Smooth 

muscle cell (SMC) specific Tfeb knockout (KO) promotes VSMC apoptosis and aortic aneurysm 

development in both proprotein convertase subtilisin/kexin type 9 (PCSK9) / Angiotensin II 

(AngII)177 and β-aminopropionitrile (BAPN) / AngII 178 mouse aneurysm model. Administration 

of (2-Hydroxypropyl)-β-cyclodextrin (HPβCD), a TFEB activator, prevents mouse aneurysm in 

PCSK9/AngII model.  

Materials and methods 

Materials and reagents 

Antibodies against TFEB, β-actin, PARP, Caspase3 were from Cell Signaling 

Technology (CST, Danvers, MA). BCL2 antibody was from Abcam (UK). Flag antibody, 

alexidine dihydrochloride, and HPβCD were Sigma-Aldrich (St. Louis, MO). Recombinant 

human TNFα, IL1β, IFNγ, and pan-caspase inhibitor Z-VAD-FMK were from R&D systems 

(Minneapolis, MN). Recombinant Fas Ligand was from Enzo Life Science (Ann Arbor, MI). 



 58 

Chloroquine, 3MA were from Sigma-Aldrich (St. Louis, MO). Bafilomycin A1, cycloheximide, 

ABT199 and HA14-1 were from Cayman Chemical (Ann Arbor, MI).  Human aorta and 

aneurysm samples were from cardiac surgery department of the University of Michigan hospital.  

Cell culture 

Human aortic smooth muscle cells (HASMCs) were purchased from Lonza. HCAECs were 

cultured in Smooth Muscle Cell Growth Medium 2 (Promo Cell, Germany) at 37°C/5% CO2 

humidified incubator. CV-1 cells for the luciferase assay was purchased from ATCC and 

cultured in DMEM with 10% FBS (Gibco).  

Animal procedures 

C57BL/6N-Atm1Brd/a Tfebtm1a(EUCOMM)Wtsi/BcmMmucd mice were produced at BCM from 

ES cells provided by the Wellcome Trust Sanger institute within the NIH funded KOMP2 

project. The Tfebflox mice contain loxP sites flanking exons 4 and 5 of Tfeb179. Myh11-creERT2 

mouse was purchased from Jackson Laboratory (Jackson Laboratory Stock No: 019079, Bar 

Harbor, ME).  The cre was driven by mouse smooth muscle myosin, heavy polypeptide 11, 

smooth muscle (Myh11) promoter/enhancer regions on the BAC transgene and used for deletion 

of genes in smooth muscle cells180. The cre transgene is on the Y chromosome, so only male 

mice were used for this study. Tfebflox mice were crossbreeding Myh11-creERT2 to generate 

SMC specific Tfeb KO mice (TfebΔSMC). Tfebflox and TfebΔSMC mice were injected with tamoxifen 

(T5648, Sigma-Aldrich) 2mg for continuously 5 days intraperitoneally and wait for 9 days before 

the experiment.  

The PCSK9/AngII model was performed according to previously publication177. Ten- to 

12-week-old mice were injected with Adeno-associated Virus (AAV, serotype 8) containing 

PCSK9D377Y gain-of-function mutation with the dosage 2* 1011 genome copy per mouse and 
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fed with high-cholesterol diet (HCD, 17.3% protein, 21.2% fat, 48.5%carbohydrate, 

0.2%cholesterol by mass, and 42% calories from fat; TD.88137, Envigo) to induce 

hyperlipidemia. After 2 weeks, Angiotensin II (1,000 or 1500 ng/kg/min) (H1706, Bachem) was 

infused subcutaneously via mini-pump (Alzet, model 2004) for 4 weeks. Mice were sacrificed 4 

weeks after the surgery. The diameter of the aorta was measured with a digital caliper in a 

double-blind way. Aneurysm was defined as a dilation of aorta greater than 50% of the normal 

aorta (greater than 1.2mm).  

The BAPN/Ang II model was performed according to the previous publication178. Ten- to 

12-week-old mice were infused with AngII (1000ng/kg/min) for 4 weeks with mini-pump (Alzet, 

model 2004). BAPN (150mg/kg/day) was infused subcutaneously for the first 2 weeks with 

mini-pump (Alzet, model 2002). Mice were sacrificed 4 weeks after the surgery.   

HPβCD (H107, Sigma-Aldrich) intraperitoneally injection (2g/kg) was performed twice a 

week during AngII infusion. HPβCD was dissolved in saline freshly before injection.  

Blood samples were sent to the Chemistry Laboratory of the Michigan Diabetes Research 

and Training Center to determine lipid profile All animal work was performed in accordance 

with the University of Michigan Animal Care and Use Committee.  

Annexin V apoptosis assay 

HASMCs were treated with TNFα (100ng/mL) + CHX (20µM) for 4 hours in Opti-MEM 

medium (31985062, Gibco). Cells were disassociated with 0.25% trypsin (25200056, Gibco). 

The cells were stained with FITC Annexin V Apoptosis Detection Kit I (556548, BD 

Biosciences).  In brief, cells were washed with cold PBS, suspended in 1* binding buffer and 

stained with FITC Annexin V and Propidium Iodide (PI). The flow cytometry was performed in 

flow cytometry core of the University of Michigan.  
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TUNEL apoptosis assay 

Paraffin-Embedded Tissue sections of aorta were stained with ApopTag Peroxidase In 

Situ Apoptosis Detection Kit (S7100, Millipore Sigma) and counterstained with 0.5% methyl 

green.  

 RNA preparation and RT-qPCR analysis 

Total RNA was extracted from cells using RNeasy Kit (QIAGEN, Hilden, Germany), 

followed by reverse transcription with SuperScript III kit (Invitrogen, Carlsbad, CA) and random 

primers. mRNA was determined by qPCR (BioRad, Hercules, CA), using iQ SYBR Green 

Supermix (BioRad, Hercules, CA). The mRNA level was normalized to internal control - ACTB 

unless otherwise mentioned. The primers used are shown in Table 3.1. 
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Gene* Primer sequence 

hTFEB 
Forward: GCGGCAGAAGAAAGACAATC 

Reverse: CTGCATCCTCCGGATGTAAT 

hBCL2 
Forward: TCATGTGTGTGGAGAGCGTC 

Reverse: GCCGTACAGTTCCACAAAGG 

hBCL2A1 
Forward: AGTGCTACAAAATGTTGCGTTC 

Reverse: GGCAATTTGCTGTCGTAGAAGTT 

hBAD 
Forward: CCCAGAGTTTGAGCCGAGTG 

Reverse: CCCATCCCTTCGTCGTCCT 

hBAX 
Forward: CCCGAGAGGTCTTTTTCCGAG 

Reverse: CCAGCCCATGATGGTTCTGAT 

hBCLx 
Forward: GACTGAATCGGAGATGGAGACC 

Reverse: GCAGTTCAAACTCGTCGCCT 

hBAK1 
Forward: CATCAACCGACGCTATGACTC 

Reverse: GTCAGGCCATGCTGGTAGAC 

hBIM 
Forward: CCAGGCCTTCAACCACTATC  

Reverse: CCCTCCTTGCATAGTAAGCG 

hBID 
Forward: ATGGACCGTAGCATCCCTCC 

Reverse: GTAGGTGCGTAGGTTCTGGT 

hP53 
Forward: GAGGTTGGCTCTGACTGTACC 

Reverse: TCCGTCCCAGTAGATTACCAC 
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Table 3.1 Primers used for Real-time PCR. h=human m=mouse 

 

 

  

mTFEB 
Forward: GGGCTACATCAACCCTGAGA 

Reverse: CTGCATCCTCCGGATGTAAT 

mBCL2 
Forward: ATGCCTTTGTGGAACTATATGGC 

Reverse: GGTATGCACCCAGAGTGATGC 

hBCL2 

ChIP 

Forward: CCTCTCCCCTGTCTCTCTCC 

Reverse: CCCTTCTCGGCAATTTACAC 
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Lactate Dehydrogenase (LDH) Activity Assay 

LDH assay was performed with the LDH kit (MAK066) from Sigma-Aldrich following 

the manufacturer's protocol. 

Protein extraction and Western blot 

Cells were lysed in RIPA lysis buffer (Thermo Scientific, Waltham, MA) with a protease 

inhibitor cocktail (Roche Applied Science, Penzberg, Germany). Proteins were resolved in 10% 

SDS-PAGE gel and transferred to nitrocellulose membrane (BioRad, Hercules, CA). Membranes 

were blocked for 1 hour at room temperature in TBST containing 5% fat-free milk and incubated 

with primary antibody (1:1000) at 4 °C overnight. After TBST washing, membranes were 

incubated with secondary antibody (Li-Cor bioscience, Lincoln, NE) (1:8000) for 1 hour at room 

temperature.  After TBST washing, bands were analyzed using an image-processing program 

(Li-Cor Odyssey). 

Chromatin immunoprecipitation assay (ChIP) 

ChIP assay was performed with SimpleChIP Enzymatic Chromatin IP Kit (Magnetic 

Beads) (#9003, CST), according to manufacturer’s protocol. Purified precipitated DNA was used 

as the template for qPCR and primers used were listed in Supplemental Table 3.1. 

siRNA-mediated gene knockdown 

siTFEB (AGACGAAGGUUCAACAUCA)) was from (Dharmacon, Lafayette, CO). 

siAtg7 (GCUCGCUUAACAUUGGAGUtt) was from Ambion (Austin, TA). Endothelial cells 

were transfected with siRNA or non-targeting siRNA (Ambion In Vivo Negative Control #1 

siRNA, Thermo Scientific, Waltham, MA) (30nM) using Lipofectamine RNAiMAX Reagent 

(Invitrogen, Carlsbad, CA) in accordance with the manufacturer’s protocol. 

Plasmid construction and transfection 
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Desired DNA fragments of BCL2 promoter (-547 - +16) from human genome were PCR-

amplified and cloned into pGL4.11 luciferases reporter vector (Promega, Madison, WI). 

Mutation of the putative binding site was performed using Q5 Site-Directed Mutagenesis Kit 

(New England Biolabs, Ipswich, MA). All PCR products were verified by DNA sequencing. 

CV1 cells were transfected with luciferase plasmid at 70-80% confluence, using lipofectamine 

2000 (Invitrogen, Carlsbad, CA) in accordance with the suggested protocol. Promoter activity 

was detected by Firefly luciferase and normalized against Renilla luciferase activity. 

Construction of adenoviruses 

Adenoviruses encoding GFP and human TFEB were generated by cloning the coding 

region of human TFEB and control GFP into AdTrack-CMV (Aglient Technologies, Santa Clara, 

CA). Next, the coding region was cloned from Ad-track into Ad-Easy vector by homologous 

recombination in Escherichia coli. The adenovirus encoding LacZ and human TFEB were 

generated by cloning the coding region of TFEB and control LacZ into PCR8/GW/TOPO TA 

vector (Invitrogen, Carlsbad, CA). The adenovirus encoding flag-TFEB was generated by 

inserting flag tag to the N-terminal of human TFEB coding region. Next, the sequence was 

cloned from Entry Vector to the pAd/CMV/V5-DEST Vector (Invitrogen, Carlsbad, CA) by LR 

recombination. The adenoviruses were packaged in HEK293 cells and purified by CsCl2 density 

gradient ultracentrifugation. Adenovirus titration was determined by the Adeno-XTM 

quantitative PCR titration kit (Clontech, CA, USA). 

Statistics 

Data are presented as mean ± SEM.  Student t test or 1-way ANOVA followed by Holm-

Sidak test was used to analyze data. A p<0.05 was considered as statistical significance.  All 

results were represented from at least 3 independent experiments.  
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Results 

TFEB is reduced in human aneurysmal lesion 

To address if TFEB expression is altered in the human aneurysm, we took the aortic 

tissue removed in the aorta repair surgery from the patient with the aneurysm. We compare the 

TFEB expression in the aneurysmal lesion, with the adjacent non-lesion site. 

Immunofluorescence indicated that TFEB is decreased in the media layer of the aneurysmal 

lesion (Fig. 3.1 A). After the removal of adventitia, we also determined that both TFEB mRNA 

and protein abundance is reduced in the aneurysmal lesion (Fig. 3.1 B-D). Consistent with the in 

vivo data, pro-inflammatory cytokines (TNFα, IL1β or IFNγ) also reduces TFEB protein in the 

human aortic smooth muscle cells (HASMCs) (Fig. 3.1 E-F). 
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Figure 3.1 TFEB is reduced in human aneurysmal lesion.  

(A) TFEB protein was determined by immunofluorescence in human aneurysmal lesion, 
compared with adjacent normal site. (B) TFEB mRNA was determined by qPCR in human 
aneurysmal lesion, compared with adjacent normal site. (C and D) TFEB protein was determined 
by Western blot in human aneurysmal lesion, compared with adjacent normal site. (E and F) 
HASMCs were treated with TNFα (20ng/mL), IL1β (10ng/mL) or IFNγ (50ng/mL) for 72 hours. 
TFEB protein was determined by Western blot.  * p<0.05 **p<0.01 Data are presented as mean 
± SEM.  
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TFEB inhibits HASMC apoptosis 

Apoptosis of VSMCs in the aorta media is critical for the weakness of aortic wall and the 

subsequent development of an aneurysm. To determine if TFEB affects HASMC apoptosis, we 

used multiple assays to assess apoptosis in vitro. TFEB knockdown promotes HASMC death 

induced by either Fas ligand (FasL)181 or TNFα+cycloheximide (CHX)182, assessed by lactate 

dehydrogenase (LDH) released into the medium. The cell death can be blocked by pan-caspase 

inhibitor - carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone (zvad), 

indicating it is an apoptosis-dependent process (Fig. 3.2 A). To specifically investigate the 

apoptosis, we used Western blot to probe for the apoptosis markers – the cleavage of Poly (ADP-

ribose) polymerase (PARP)183 and cysteine-aspartic proteases, cysteine aspartases 3 

(Caspase3)184. TFEB overexpression by adenovirus in HASMC significantly decreases the 

cleavage of both PARP and Caspase3 (Fig. 3.2 B-C). Consistently, TFEB knockdown in 

HASMC significantly increases the cleavage of both PARP and Caspase3 (Fig. 3.2 D-E). The 

exposure of phosphatidylserine at the outer leaflet of the plasma membrane is an early marker of 

apoptosis. Annexin V can bind to the exposed PS phosphatidylserine of the apoptotic cells. 

Combined with propidium iodide (PI) staining, this assay can distinguish apoptotic cells 

(Annexin V+/PI-) from necrotic cells (Annexin V+/PI+).  By performing Annexin V assay in 

both TFEB overexpressed or knockdown cells, we confirmed that TFEB overexpression reduces 

(17.03% to 11.2%) (Fig. 3.2 F), while TFEB knockdown increase (10.77% to 15.73%) (Fig. 3.2 

G), apoptotic cell population, induced by TNFα+CHX. 



 68 

  



 69 

 

Figure 3.2 TFEB inhibits HASMC apoptosis.  

(A) HASMCs were treated with FasL (100ng/mL) or TNFα (100ng/mL) + CHX 
(20μg/mL) for indicated time and LDH activity in the medium was measured 
respectively. (B and C) HASMCs were infected with adenovirus encoding LacZ (Ad-
lacZ) or TFEB (Ad-TFEB) (30MOI). After 48 hours, cells were treated FasL or 
TNFα+CHX for 6 hours before protein was harvest for Western blot. (D and E) 
HASMCs were transfected with small interfering (siRNA) negative control (siCt) or 
siRNA against TFEB (siTFEB). After 72 hours, cells were treated FasL or TNFα+CHX 
for 6 hours before protein was harvest for Western blot. (F) HASMCs were infected with 
Ad-lacZ or Ad-TFEB (30MOI) for 48 hours and then treated with TNFα+CHX for 4 
hours before Annexin V and PI staining. (G)  HASMCs were transfected with siCt or 
siTFEB for 72 hours and then treated with TNFα+CHX for 4 hours before Annexin V 
and PI staining. * p<0.05 **p<0.01 Data are presented as mean ± SEM of three 
independent experiments. 
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TFEB inhibits HASMC apoptosis via upregulation of BCL2 

To investigate the possible pathways mediating the anti-apoptotic effect of TFEB in 

HASMCs, we assess the important anti-apoptotic BCL2 family and pro-apoptotic P53 mRNA in 

HASMCs after TFEB overexpression and knockdown (Fig. 3.3 A-B). Among them, we found 

that BCL2, an important anti-apoptotic protein on the mitochondria membrane, is increased by 

TFEB overexpression and decreases by TFEB knockdown. This is further confirmed by Western 

blot (Fig. 3.3 C-D). Since TFEB is a transcription factor, we performed chromatin 

immunoprecipitation (ChIP) assay and found that TFEB directly binds to the putative E-box in 

the promoter of BCL2 (Fig 3.3 E). TFEB also increases BCL2 promoter driving luciferases 

activity and mutation of the putative binding site diminish this effect (Fig 3.3 F), further 

confirming the direct binding of TFEB. Importantly, pretreated the cells with BCL2 inhibitor 

ABT199185 or HA14-1186 abolishes the anti-apoptotic effect of TFEB in HASMC induced by 

TNFα + CHX, indicating an indispensable role of BCL2 as a downstream pathway of TFEB 

(Fig. 3.3 G-H). 
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Figure 3.3 TFEB inhibits HASMC apoptosis via upregulation of BCL2.  

(A and C) HASMCs were infected with Ad-lacZ or Ad-TFEB (30MOI) for 48 hours and RNA or 
protein was harvest for qPCR. (B and D) HASMCs were transfected with siRNA negative 
control or against TFEB for 72 hours and RNA was harvest for qPCR. (E) HASMCs were 
infected with Ad-lacZ and Ad-flag-TFEB for 48 hours. ChIP were performed using antibodies 
against flag or normal rabbit IgG. The binding of TFEB to BCL2 promoter was determined by 
qPCR. (F) CV1 cells were transfected with BCL2 promoter driving luciferase in PGL4 vector. 
After 24 hours, cells were infected with Ad-lacZ and ad-TFEB for 48 hours and the luciferase 
activity was determined by luminometers. (G-H) HASMCs were infected with Ad-lacZ and Ad-
TFEB (30MOI) for 48hours. After that, cells were pretreated with ABT199 (200nM) or HA14-1 
(20µM) for 1 hour and then treated with TNFα+CHX for 6 hours before protein was harvested 
for Western blot. * p<0.05 **p<0.01 Data are presented as mean ± SEM of three independent 
experiments. 
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TFEB inhibits apoptosis independent of autophagy 

TFEB has emerged as a master regulator of lysosomal biogenesis and autophagy. To 

determine if the autophagy pathway is related to the anti-apoptotic effect of TFEB in HASMC, 

we used autophagy inhibitor - Bafilomycin A1 (BFA) and 3-Methyladenine (3MA). Pretreat 

HASMC with BFA(200nM) or 3-Methyladenine (3MA) (5mM) for 12 hours before adding 

apoptosis inducer cannot abolish the effect of TFEB on cleavage of Caspase3 and PARP (Fig. 

3.4A). In addition to pharmacological inhibition, we also used siRNA against ATG7187, an 

essential protein for autophagy, to inhibit the autophagy in HASMCs. Knockdown of ATG7 

cannot abolish the anti-apoptotic effect of TFEB in HASMCs either (Fig. 3.4B). As a result, 

TFEB inhibits apoptosis independent of autophagy. 
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Figure 3.4 TFEB inhibits apoptosis independent of autophagy.   

(A) HASMCs were infected with Ad-lacZ and Ad-TFEB (30MOI) for 36 hours. After that, cells 
were pretreated with bafilomycin A1 (BFA) (200nM) or 3-Methyladenine (3MA) (5mM) for 12 
hours and then treated with TNFα+CHX for 6 hours before protein was harvested for Western 
blot. (B) HASMCs were transfected with siRNA and siAtg7 for 12 hours and then infected with 
Ad-lacZ or Ad-TFEB (30MOI) for 48 hours. After that, cells were treated with TNFα+CHX for 
6 hours before protein was harvested for Western blot.  * p<0.05 **p<0.01 Data are presented as 
mean ± SEM of three independent experiments. 

 



 74 

Characterization of SMC specific Tfeb KO mice. 

To determine the role of SMC TFEB in vivo, we generated SMC specific Tfeb KO mouse 

(TfebΔSMC) by crossbreeding Tfebflox mice with Myh11-cre/ERT2 mice (Fig. 3.5 A). The knockout 

efficiency was determined by both qPCR and Western blot (Fig. 3.5 B-D). Consistent with the in 

vitro data, knockout Tfeb in vivo also significantly reduces BCL2 mRNA and protein abundance 

in the aorta.  To exclude the possible compensation of other MIT/TFE family genes, MITF and 

TFE3 protein in the aorta from Tfebflox and TfebΔSMC were determined by Western blot and we 

did not find a significant change of either gene. (Fig. 3.5 E-F). 
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Figure 3.5 Characterization of SMC specific Tfeb KO mice.  

(A) Schematics of SMC specific Tfeb KO mice (TfebΔSMC). (B-F) After adventitia was 
removed, the aorta was lysed for qPCR (B) and Western blot (C-F). * p<0.05 **p<0.01 
Data are presented as mean ± SEM. 
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Tfeb KO promotes aneurysm development and VSMC apoptosis in PCSK9/Ang II model. 

To determine the role of TFEB in VSMC in vivo, we induced aneurysm in both Tfebflox 

and TfebΔSMC mice by the AAV-PCSK9 injection and Ang II infusion (Fig. 3.6 A). The mice 

were euthanized at day 28 and the diameter of the abdominal aorta was measured. Tfeb KO in 

SMC significantly increases both the maximal diameter of the abdominal aorta (1.182 to 

1.51mm) and the incidence of the AAA (40.9% to 64%) (Fig. 3.6 B and D). Blood pressure was 

comparable between Tfebflox and TfebΔSMC (Fig. 3.6 C). We also assessed the VSMC apoptosis in 

the aorta by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. 

Consistent with the in vitro data, Tfeb KO in SMC also significantly increases the apoptotic cell 

numbers in the aortic media (Fig 3.6 E).  
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Figure 3.6 Tfeb KO promotes aneurysm development and VSMC apoptosis in PCSK9/Ang II 
model.   

(A) Schematics of the PCSK9/Ang II model. (B) Maximal diameter and abdominal aneurysm 
incidence were determined at day 28. (C) Blood pressure was measured on day 0 and day 28 of 
angiotensin II infusion. (D) Representative photo of the aortas from 2 groups.  (E) Representative 
section of the abdominal aorta from 2 groups (HE staining and TUNEL). * p<0.05 **p<0.01 
Data are presented as mean ± SEM. n=3 for saline treatment n=22 for Ang II treatment.  
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Tfeb KO promotes aneurysm development and VSMC apoptosis in BAPN/Ang II model. 

We also applied another murine aneurysm model to investigate the role of TFEB in 

VSMC and aneurysm development, in which aneurysm is induced by β-aminopropionitrile 

(BAPN) and Ang II.  (Fig. 3.7 A). Because of the high incidence and mortality rate of this 

model, we found that Tfeb SMC KO significantly increases the rupture and reduces the survival 

rate of the mice (66.67% to 16.67%) (Fig. 3.7 B-C). Tfeb KO in SMC significantly increases 

both the maximal diameter of both the thoracic (1.632 to 1.862mm) and abdominal aorta (1.182 

to 1.51mm) (Fig. 3.7 D and F) without affecting the blood pressure (Fig 3.7 E). TUNEL assay 

also demonstrated the increase of VSMC apoptosis in TfebΔSMC mouse aorta. (Fig 3.7 G). 
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Figure 3.7 Tfeb KO promotes aneurysm development and VSMC apoptosis in BAPN/Ang II 
model.   

(A) Schematics of the BAPN/Ang II model. (B) Survival curve of Tfebflox and TfebΔSMC mice.  
(C) Representative photo of the ruptured aorta.  (D) Blood pressure was measured on day 0 and 
day 28 of angiotensin II infusion. (E) Maximal diameter of thoracic and abdominal aorta were 
determined at day 28. (F) Representative photo of the aortas from 2 groups.  (G) Representative 
section of the abdominal aorta from 2 groups (HE staining and TUNEL). * p<0.05 **p<0.01 
Data are presented as mean ± SEM. n= 12 for each genotype. 
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HPβCD activates TFEB and attenuates aneurysm development 

There has been numerous of TFEB activators has been published as discusses in Chapter 

1. We test alexidine dihydrochloride (AD) 188, digoxin188, 2-hydroxypropyl-β-cyclodextrin 

(HPβCD)189, and naringenin85. They all significantly increase the nuclear translocation of the 

TFEB-EGFP fusion protein in HASMCs (Fig. 3.8 A). To further explore the pharmaceutical 

potential of TFEB activator in the aneurysm, we performed the injection of AD and HPβCD in 

the PSCK9/Ang II aneurysm model (twice per week) (Fig. 3.8 B). After 28days, we found that 

HPβCD, but not AD, reduces the maximal abdominal aorta diameter and abdominal aorta 

aneurysm incidence (Fig. 3.8 C). Either of the drug influences mouse body weight, plasma total 

cholesterol or triglycerides, indicating a possible localized effect of the drug (Fig. 3.8 D). To 

confirm if HPβCD indeed attenuates aneurysm in a TFEB dependent manner, we performed the 

injection and aneurysm model in both Tfebflox and TfebΔSMC mice (Fig. 3.8 E).  HPβCD 

attenuates aneurysm development in Tfebflox but not TfebΔSMC mice, indicating the 

pharmaceutical effect of HPβCD requires SMC TFEB (Fig. 3.8 F).  
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Figure 3.8 HPβCD activates TFEB and attenuates aneurysm development.  

(A) HASMCs were infected with adenovirus encoding TFEB-EGFP fusion protein 
(20MOI) for 24 hours and treated with the indicated drug for 6 hours. (B) Schematics of 
the drug injection and aneurysm model. (C) Maximal diameter of abdominal aorta and 
abdominal aorta aneurysm (AAA) incidence were determined at day 28. (D) Body weight 
and plasma lipid profile were determined at day 28. (E) Schematics of the drug injection 
and aneurysm model. (F) Maximal diameter of abdominal aorta were and abdominal aorta 
aneurysm (AAA) incidence were determined at day 28. * p<0.05 **p<0.01 Data are 
presented as mean ± SEM. 
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HPβCD inhibits HASMC apoptosis dependent of TFEB 

HASMCs were pretreated with different dosage of HPβCD (6, 8, 10 mg/mL) before 

adding apoptosis inducer and the result indicating HPβCD inhibits apoptosis in a dosage-

dependent manner (Fig 3.9 A). In addition, TFEB knockdown by siRNA abolishes the anti-

apoptotic effect of HPβCD in HASMCs (Fig 3.9 B). From the aforementioned study, BCL2 is a 

target of TFEB in HASMCs. Consistently, HPβCD increase both BCL2 mRNA and protein in 

HASMCs in a TFEB dependent manner (Fig 3.9 C). Furthermore, HPβCD also upregulates other 

well-known TFEB target genes, such as GLA, MAP1LC3B, and SQSTM1 as well as the 

turnover of autophagy markers LC3 in a TFEB-dependent way (Fig. 3.9 D).  
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Figure 3.9 HPβCD inhibits HASMC dependent of TFEB.  

(A) HASMCs were incubated with HPβCD at different dosage for 18 hours and then treated 
with TNFα+CHX for 6 hours. (B) HASMCs were transfected with siRNA negative control 
and siRNA against TFEB. After 48hours, cells were incubated with HPβCD (10mg/mL) for 
18 hours and then treated with TNFα+CHX for 6 hours. (C-D) HASMCs were incubated 
with HPβCD (10mg/mL) for 24 hours and then mRNA and protein were determined by 
qPCR and Western blot respectively. * p<0.05 **p<0.01 Data are presented as mean ± SEM 
of three independent experiments.  
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Discussion 

In this study, we demonstrated that TFEB is down-regulated in the human aneurysm 

samples and is a key player in the formation and development of aortic aneurysm. The in vitro 

study has shown that TFEB is a crucial negative regulator of apoptosis in VSMCs. Although 

TFEB has emerged as an important regulator of lysosomal biogenesis and autophagy, the anti-

apoptotic effect of TFEB in HASMCs cannot be attributed to this pathway, as inhibition of 

lysosome function and autophagy did not abolish it. Here, we found that BCL2 is a direct target 

of TFEB and BCL2 inhibitor abolishes the anti-apoptotic effect of TFEB overexpression. Using 

two different murine aneurysm models, we found that SMC specific Tfeb KO significantly 

increases VSMC apoptosis and aneurysm formation in the mouse. Based on this finding, we 

tested different TFEB activator in the murine aneurysm model and demonstrated that HPβCD 

attenuates aneurysm formation in vivo in a TFEB dependent manner. The mechanistic study also 

confirmed that HPβCD increases TFEB nuclear translocation in HASMC and increases the 

transcription of BCL2 as well as other TFEB target genes.  

There have been numerous animal models reported for the study of the aneurysm.190 

Although these models all have their own drawbacks, they provide valuable tools to study the 

pathophysiology of the aneurysm and test the potential treatment before going to clinical trials.  

(1) Infusion of Ang II in ApoE-/- background is the most popular model to establish murine 

aneurysm, originally described in 2000191. The ApoE-/- background can be substituted with the 

injection of AAV encoding gain-of-function PCSK9 (D377Y)177, which saves the time of the 

breeding work. This model recapitulates several important features of the human aneurysm, 

including atherosclerosis, thrombosis, lymphocyte infiltration, media dissection, and elastin 

network degradation191. However, the location of the aneurysm is limited to the suprarenal or the 
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ascending aorta, whereas human aortic aneurysms are usually in the infrarenal region. (2) 

Infusion of β-Aminopropionitrile (BAPN), a potent lysyl oxidase inhibitor, disrupts the crosslink 

of procollagens and tropoelastin and destroys the integrity of the aortic wall192. Co-treatment of 

Ang II and BAPN induces a high incidence of the aneurysm, with frequent rupture193, 194. The 

aneurysm can happen along the descending thoracic and abdominal aorta. The disruption of the 

elastic fiber occurs early, followed by neutrophil infiltration and VSMC apoptosis190. In this 

study, we employed both models to confirm the protective role of TFEB in the aortic aneurysm. 

 Apoptosis of the VSMCs was rare in the healthy aorta but become prominent during the 

development of aneurysm in human195. VSMC apoptosis has also been reported to be associated 

with aneurysm rupture in human196. The apoptosis can also be seen in various animal aneurysm 

models (CaPO4168, BAPN178, 197, ApoE/angiotensin II198, elastase199). It is noteworthy that the 

administration of apoptosis inhibitor (pan-caspase inhibitor quinolone-Val-Asp-

difluorophenoxymethylketone (Q-Vd-OPh)) starting before AngII infusion can significantly 

reduce aneurysm incidence and VSMC apoptosis in the ApoE/Ang II model200. All the evidence 

shows a clear causal relationship between VSMC apoptosis and aneurysm and targeting VSMC 

apoptosis remains a promising strategy to halt aneurysm development. 

BCL2 family is the most important participator in the intrinsic apoptotic pathway. BCL2 

was discovered in the human follicular lymphoma with the association with chromosomal 

translocation t(14;18)201, 202. Overexpression of BCL2 is capable of blocking cell death in various 

cell lines and primary cells203, 204. BCL2 family protein serves as a highly conservative 

mechanism to regulate cell death in the evolution205 and acts at the convergence of the multiple 

upstreaming apoptotic pathways. BCL2 is localized to the nuclear envelope, the endoplasmic 

reticulum and the outer mitochondrial membrane in the cell206. BCL2 inhibits apoptosis by 
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binding to the pro-apoptotic BAK and BAX, preventing the mitochondrial outer membrane 

permeabilization (MOMP)207. BCL2 itself is also inhibited by several BH3-only proteins, such as 

BAD, BIK, BID. The relative abundance and interaction between pro- and anti-apoptotic BCL2 

family protein determined the survival and death of the cell208. Although originally discovered as 

an oncogene, decades of study has shown that BCL2 is implicated in a variety of biological 

processes, such as kidney development, hair follicle cycling, neurodegenerative disorders, and 

angiogenesis209. Moreover, in the human aneurysmal lesion, BCL2 expression is decreased and 

related to the VSMC apoptosis210, 211. In this study, we found that TFEB deficiency reduces 

BCL2 expression and aggravates the VSMC apoptosis in murine aneurysm models, reinforcing 

the potential importance of BCL2 in the aneurysm. Notably, MITF, another member of the MITF 

family, has been shown to regulate BCL2 transcription in melanoma, indicating a similar pattern 

between different members in the MIT/TFE family212, 213. The anti-apoptotic effect of TFEB has 

been reported in other cell types, mainly in cancer cells214, 215 , neurons216 and cardiomyocytes217, 

218. Here, we identified TFEB inhibits HASMC apoptosis in a novel BCL2-dependent but 

autophagy-independent pathway. 

HPβCD is an FDA-proved agent to increase the solubility and delivery of hydrophobic 

drugs219. However, the potential pharmaceutical effect of HPβCD was not noticed until 

recently220, 221. HPβCD has shown a beneficial effect in Niemann-Pick Disease222 and 

atherosclerosis regression223. HPβCD activates TFEB and promotes the clearance of ceroid 

lipopigment in fibroblasts189.  In macrophages, HPβCD mediated TFEB activation suppresses 

M2 polarization in tumor microenvironment49. The biology of HPβCD could be due to its 

capacity to remove intracellular cholesterol and lipid. Lysosomal cholesterol depletion by 

methyl-cyclodextrin (another derivative of cyclodextrin) suppresses mTORC1 activation and 
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activates TFEB in HEK-293T cells224. Considering that HPβCD also can solubilize the 

cholesterol in the cell, it is reasonable to assume HPβCD activates TFEB also in a similar way as 

methyl-cyclodextrin225. Our finding further expanded the potential application of HPβCD in the 

clinics. 

There are several limitations to this study. First, there may be difficulties in translating 

murine aneurysm study into clinical applications due to the species difference. Although HPβCD 

shows a promising effect on inhibiting the apoptosis of the human aortic smooth muscle cells, it 

still requires further investigation of the in vivo pharmaceutical effect of HPβCD. It is also of 

interest to elucidate the mechanism of how HPβCD activates TFEB in VSMCs. The regulation of 

TFEB mainly happens at the post-translational level, including phosphorylation and acetylation. 

Because of the sparse of the modification-specific TFEB antibody, it may require profiling by 

mass spectrometry. In addition, HPβCD exerts diverse biological activities in cells. We 

confirmed the TFEB-dependent effect of HPβCD in HASMCs by in vitro knockdown and in vivo 

KO experiment. However, we still cannot exclude HPβCD may also activate other pathways in 

HASMC, such as LXR226.  

In conclusion, we found that TFEB is decreased in the human aneurysm and TFEB 

negatively regulates VSMC apoptosis. SMC specific Tfeb KO promotes VSMC apoptosis and 

aneurysm formation in murine aneurysm models. Administration of TFEB activator HPβCD 

attenuates VSMC apoptosis and aneurysm formation in the mouse. 
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Chapter 4 Summary and Perspectives 
 

Summary 

Endothelial cell and vascular smooth muscle cells are two major residential cells in the 

vascular wall and maintain vascular homeostasis. In this dissertation work, we identified TFEB 

as an important regulator of the vascular wall biology in these 2 cell types. In the endothelial 

cells, TFEB is upregulated by protective laminar shear stress and mediates the anti-inflammatory 

effect of laminar shear stress in ECs, including TFEB is crucial to maintaining quiescent EC in 

vivo. By both gain-of-function and loss-of-function method, we demonstrated TFEB potently 

reduced endothelial cell inflammation in vitro and leukocyte adhesion in vivo.  Using ApoE KO 

mice, we observed attenuated atherosclerotic development in EC specific TFEB transgenic mice. 

Notably, another group also reported the same anti-inflammatory effect of TFEB in EC in 

diabetic mice42. In VSMCs, we found that TFEB is downregulated in human aneurysm sample 

and TFEB could inhibit HASMC apoptosis via upregulation of BCL2. Based on this, we tested 

TFEB activator, HPβCD, and indeed found that HPβCD ameliorates the aneurysm formation in 

mice. These findings indicate activating TFEB could be an effective approach against 

cardiovascular diseases.  

Perspective 

TFEB as a master transcription factor regulating lysosomal biogenesis and autophagy. 

Autophagy is a house-keeping process for maintaining intracellular homeostasis via degradation 
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and recycling of proteins, lipids, and polysaccharides. Autophagy and lysosomal dysfunction 

have been implicated in several cardiovascular diseases, including atherosclerosis and 

cardiomyopathy. As a result, the restoration of autophagy and lysosomal function becomes a 

promising strategy to treat such diseases. TFEB regulates multiple steps in the process of 

autophagy and lysosomal function. In neuronal degenerative disease and lysosomal storage 

diseases, genetic or pharmacological activation of TFEB is able to attenuate the disease 

progression. Although less studied, TFEB overexpression or activation also shows a protective 

effect on atherosclerosis disease and cardiomyopathy. Activation of TFEB in vascular 

endothelial cell or macrophage by genetic or pharmacological strategies shows a promising 

beneficial effect on atherosclerosis and ischemia.  

Although most studies focusing on the pro-autophagy role of TFEB in various cell types, 

there are also many studies indicating TFEB also regulates diverse pathways besides autophagy. 

TFEB promotes osteoblast differentiation by inhibiting activating transcription factor 4 (ATF4) 

and CCAAT/enhancer-binding protein homologous protein (CHOP)227. TFEB is a mediator of 

Ang II-induced skeletal muscle wasting by transcriptional control of muscle-enriched E3 

ubiquitin ligase muscle RINGfinger-1 (MuRF1) expression228. In tumor-associated macrophages, 

the downregulation of TFEB promotes M2 polarization through suppressor of cytokine signaling 

3 (SOCS3) signal transducer and activator of transcription 3 (STAT3) pathway49. In vascular 

endothelial cells, TFEB inhibits vascular inflammation and atherosclerosis via upregulation of 

anti-oxidative genes229.  Considering that autophagy is a complicated multi-step indispensable 

process maintaining cell homeostasis, it is very hard to completely inhibit autophagy in the cells 

to study the autophagy-independent role of TFEB function, either genetically or 
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pharmacologically.  However, the aforementioned studies shed lights on the comprehensive 

function of TFEB in different cell types under different conditions.  

Current studies indicate that TFEB may play different roles in different tissue or cell 

types. It is crucial to understand what determines this cell-specific selection of target genes. The 

RNA-seq or ChIP-seq profiling could be used to explore the target genes of TFEB in different 

cell types. In mammalian cells, the initiation of transcription requires the recruitment of general 

RNA polymerase II machinery by multiple transcription activator and co-activators230. The cell 

type-specific expression pattern of the co-activators could determine the accessibility of TFEB to 

its target genes. The co-activators of TFEB are still not clear and the elucidation of these co-

activators of TFEB could provide a means to manipulate TFEB activity in a specific cell type in 

vivo. 

TFEB is mainly regulated by post-translational modifications and most TFEB activator 

targeted on the phosphorylation step. A myriad of pathways (mTOR, Akt, PKC, Ca2+) has been 

manipulated by different chemicals to influence the phosphorylation and nuclear translocation of 

TFEB. However, it still remains challenging how these drugs would affect other downstream 

targets in the same pathway. This will require in-detailed studies to avoid unwanted off-target of 

these drugs to be used in the clinical trials. In addition, TFEB exerts diverse functions in 

different tissue, it is also of concern how to differentiate cell types in response to TFEB activator 

to avoid possible detrimental effect in certain cell type, such as potential tumorigenesis effect in 

renal cells231.    

Although this dissertation work has established that TFEB in endothelial cells and 

smooth muscle cells is an important player in the pathogenesis of vascular disease there are 

several unresolved areas for potential future research. First, it is still questionable if autophagy 
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plays some role in the protective effect of TFEB in vascular biology. Autophagy involves 

multiple protein complexes and organelles and there are several negative feedback pathways 

regulating autophagy process232. Systemic knockout of important autophagy genes leads to 

embryonic lethal or growth retardation, showing that autophagy is indispensable for 

development233. As a result, it is difficult to totally block autophagy in vivo to rule out the 

involvement of autophagy as a downstream pathway. Mice with tissue-specific KO of Atg7 have 

been reported and are available for the study of autophagy in various cell types in vivo234.  This 

model could used to demonstrate if autophagy contributes to the phenotype caused by TFEB 

transgene or activation in mice. Second, there have always been challenges translating mouse 

studies to human diseases, particularly in cardiovascular disease research. For example, mice 

have heart rates that are ten times the normal resting heart of humans and are highly resistant to 

atherosclerosis due to high fat diet alone due to differences in cholesterol metabolism and LDL 

particle content. Therefore in some cases disease models in mice, for example that require loss of 

ApoE or genetic expression of PSCK9,  cannot perfect mimic the human condition of acquired 

cardiovascular disease and there are evolutionary differences between the two specie235. No 

population genetic study shows a relationship between TFEB and any human diseases and this 

may be because of the importance of TFEB in embryonic development. Nevertheless, more work 

needs to be done to validate the mouse models and move the research from preclinical to clinical 

stages, perhaps using larger animals such as the rabbit or pig that can more readily develop 

atherosclerotic vascular disease by diet alone, and have cardiovascular physiology more similar 

to human. 
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Concluding remarks 

In this dissertation, we provide evidence that TFEB is a crucial transcription factor to 

maintain vascular homeostasis. TFEB is responsive to the physiological (laminar shear stress) 

and pathophysiological (aneurysm) conditions in the vessel. TFEB overexpression or activation 

inhibits atherosclerosis and aortic aneurysm in mice. This study provides new insight into 

cardiovascular disease mechanisms and potential molecular target to treat human diseases.  
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