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ABSTRACT

As the number of known exoplanets approaches four thousand, the fundamental tactic of

the field must shift from reductionist analyses of individual planets to systems-level coherent

analyses of entire planetary systems. The major contribution of this thesis is to make explicit

the study of emergent properties in exoplanetary systems, and the ways that emergent

properties can be forward-modeled and reverse-engineered to better understand the unseen

components in exoplanetary systems. In both cases, the (known) relationship between the

independent properties of the constituent parts of the system and the resultant emergent

properties is leveraged to provide a better understanding of the system as a whole and

constrain unknown properties for future analysis.

The specific contributions of this thesis are as follows. First, in Chapter II, I present

the forward modeling of system stability from the measured properties of multi-planet sys-

tems discovered by Kepler. In Chapter III, I constrain the presence of additional unseen

companions in these same systems by utilizing the observed emergent properties of each

system. In Chapter IV, I present the discovery of two additional planets in the WASP-47

system, constrain their masses using two independent methods (transit timing variations and

radial velocities) and then utilize dynamical models to measure the unseen properties of the

system. In Chapter V, I make population-level inferences about non-transiting companions

to hot Jupiters orbiting cool stars using the dynamics of the emergent interactions in the

systems. In Chapter VI, I present the discovery of five planets in the HIP 41378 system,

three of which have ambiguous orbital periods, and utilize a combination of supplementary

observations and dynamics to constrain the orbital periods, creating a road-map for future

similar analysis in K2/TESS systems. In Chapter VII, I present the discovery of four vali-
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dated planets and two additional candidates in the K2-266 system, which exhibit an unusual

geometry, and propose a novel mechanism for creating system geometries of these types.

In Chapter VIII, I use numerical simulations to explore how emergent properties of Kuiper

Belt Objects in our own solar system may be reproduced in the presence of Planet Nine, a

proposed new member of the solar system. In Chapter IX, I present the discovery of a new

Kuiper Belt Object, the first of a new class of high-inclination, long-orbital-period objects,

whose current-day inclination cannot be explained in our existing picture of the solar system.

The final goal of the work in this thesis is to enable a better understanding of the census

of exoplanets in the galaxy. In Chapter X, I both describe the impacts so far of the work

described in this thesis and summarize avenues of future work.
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CHAPTER I

Emergent Properties with a Focus on Astronomy

1.1 Emergence

The overarching goal of this thesis is to study the interplay between entire planetary

systems and their constituent, individual components. This thesis focuses on the dynamical

properties and long term evolution of this class of systems, properties which cannot be

accurately modeled until the entire system is considered coherently. Before embarking upon

the specifics of this dynamical exploration, it is useful to briefly consider the history of

emergence.

The connection between the individual self and the universal whole is one of the funda-

mental questions underpinning religion and philosophy. Marcus Aurelius, the stoic philoso-

pher and Roman emperor, wrote in his Meditations (Antoninus, 161 - 180 A.D.):

Ever consider this Universe as one living being, with one material substance and

one spirit. Observe how all things are referred to the one intelligence of this

being; how all things act on one impulse; how all things are concurrent causes of

all others; and how all things are connected and intertwined.

- Marcus Aurelius, Meditations, Book 4, Section 40

The concept that ‘all things are connected and intertwined’ is a tenant of stoic philosophy:

it serves partially to remind stoics of the humanity of others, that all people are connected,
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and to enable compassion and virtuous action. It also serves as justification for the state of

the world and the existence of suffering: despite hardship, life and its actions have meaning

and purpose, as one individual’s actions affect not only others in the world but also all of

the universe. For physicists, this quote also reminds us not to neglect the off-diagonal terms

in our eigenmatrices.

This aspect of natural interconnectedness must be considered when studying any rea-

sonably complex system. For such complex systems, independent analyses of isolated com-

ponents does not construct an accurate picture of the entire system. The concept of the

whole being more than the sum of its parts is commonly termed ‘emergence’, with the prop-

erties that the whole gains that the parts did not have being called ‘emergent properties’.

This concept stands in contrast to reductionism, a philosophy which attempts to understand

complex systems by reducing them to their parts. A reductionist would think that one can

understand a system by considering its simplest components, while studying the emergent

properties necessitates considering the entire system coherently.

In his 1843 book A System of Logic, British philosopher John Stuart Mill described in

depth the concept of emergence as it applies to life science, explaining that separate models

of many aspects of an organism’s behavior cannot merely be summed together to describe

its full action (Mill, 1843):

‘To whatever degree we might imagine our knowledge of the properties of the

several ingredients of a living body to be extended and perfected, it is certain

that no mere summing up of the separate actions of those elements will ever

amount to the action of the living body itself.’ - John Stuart Mill, A System of

Logic

Indeed, the example of a living organism is perhaps the most illustrative example of emer-

gence: if mammalian cytokines are studied in vitro, in isolation of the host cells with which

they interact, minimal useful information could be gained: perhaps the physical structure of

the molecule, its chemical properties, or its response to temperature and acidity. Studied in
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vitro but in the presence of immune cells and a pathogen, some novel reactions can become

clear: such as immune cell activation leading to pathogen destruction and removal. However,

even this cannot inform the entire picture, as many inflammatory molecules also modify and

signal host cells to initiate repair after an injury. Only once studied in a model organism

can all of these complex interactions be seen at once.

Particularly when the interplay between aspects of a system becomes complex (as it does

in the mammalian immune system), a system may reveal emergent properties that could not

have been predicted by modeling the constituent parts independently. Concrete examples

of this arise in many fields, demonstrating the importance of a systems-level approach to

studying complex phenomena. Before we turn our attention to the subject of this thesis

(the study and use of emergent properties in exoplanetary systems), we will first take a brief

survey through emergent properties as studied and applied in other fields to provide the

context for the use of the concept in planetary astrophysics.

1.1.1 Emergence in nature and ecology

In ecology, individual study of species or organisms often falls short in describing how they

exist together in nature, both as single-species populations and as multi-species ecosystems.

One remarkable example of this effect is Ection army ants, which construct bridges with their

bodies to navigate unfavorable geometry (Reid et al., 2015). A complete study of a single

ant (even including gene sequencing, behavior tests, microbiome analysis, etc) would not

reveal this behavior, as each ant is fully autonomous and functions independently without

its cohort. Only when an entire colony of ants is studied does this emergent property of their

problem-solving behavior become evident.

Similarly, other animal species become more than the sum of their parts when traveling

as a population: Cucker & Smale (2007) models a flock of migrating birds, whose flight

pattern and speed become uniform but cannot be predicted by studying any individual bird

(even in the same environment), by explicitly defining the variables which emerge as a result
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of group interactions. Population dynamics in fish are evident when gazing upon a school

of fish coherently swimming together, but cannot be derived from studying any single fish

(or even any two fish, Parrish et al., 2002). Even the pseudo-fluid dynamics of automobile

traffic jams requires a study of the entire population of commuters (Li et al., 2007), rather

than study of the car and its mechanical capabilities. Group dynamics in nature illustrate

that emergent properties can only be observed once a group is assembled and that the group

inherits properties not belonging individually to any of its members.

On a larger scale, the entire evolutionary process serves as an emergent property. Macroevo-

lution, defined as evolutionary change on a scale larger than a single species, occurs due to

interactions between species, the species and its environment, and other factors that only

become evident when the entire ecosystem is studied. The complex interplay between species

populations, especially when groups of predators and prey are introduced, is commonly mod-

eled (to first order) as a system of differential equations, with coefficients representing the

birth rates and death rates due to nature, hazards, and various predators, or in a generalized

model (Anderson et al., 1981; Mena-Lorcat & Hethcote, 1992; Yeakel et al., 2011). These

models have been used to great success to understand and predict the evolution of population

levels and also to describe food webs (Polis, 1991; Mccann & Hastings, 1997). However, one

difficulty in constructing these models resides in the fact that for a complete understanding

of the system, all species must be modeled and the interaction coefficients must be known.

In many ecosystems (such as the ocean), we have a yet incomplete mapping of the species

which exist, making such modeling incomplete. In this case, the reductionist approach falls

short: even an analysis of the dynamics of a single species cannot be derived without consid-

eration of the feedback effects resulting from the larger systems and its emergent properties

(Ulanowicz, 1997). Similarly, the exact interplay between species is often difficult to quantify

(ex: Angerbjorn et al., 1999) and can change depending on the presence of other species or

environmental factors, resulting in theoretical models often failing to match the real data

(Polis, 1991) unless they are tuned properly (Kratina et al., 2012).
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As a final example: there is nothing about the rabbit that made immediately clear the

danger it posed to the Australian ecosystem until it was placed into said ecosystem (Lees &

Bell, 2008). The invasive prey species destabilized the ecosystem, harming many indigenous

species. The full impact of many invasive species is not felt until years later and in most

cases cannot be easily predicted due to the complex interplay between environmental factors.

Even efforts to fix the problem were met with the same difficulties of modeling the impact of

changes in the ecosystem: for example, a series of viruses were introduced to attempt to cull

the rabbit population in Australia, starting with the myxoma virus in the 1950s (Kerr, 2012).

Though the myxoma virus was intended to decrease the rabbit population in Australia, it

resulted instead in an increase in the overall rabbit population (Dwyer et al., 1990) due to

the unexpected complex interplay between population levels and relative predation across

species. Eventually, years later, the accidental release of a different virus in 1995 successfully

culled the rabbit population, resulting in the re-emergence of previously threatened species

(Pedler et al., 2016). The entire dynamics of the rabbit population cannot be modeled

without including not only the strains of virus released and the natural predators, but

also other prey species and even environmental factors (James et al., 2011). This example

highlights the need for systems-level analysis, lest the emergent properties that mediate the

population dynamics are ignored.

1.1.2 Emergence in microbiology and medicine

The case for considering emergent properties is perhaps more cogent when considering

life. Synaptic plasticity is an emergent property of the human brain: when a large number

of individual synapses are networked together, they form structures which play important

roles in memory and learning. Individual neurons or even small networks cannot reproduce

the full capability of the human brain, meaning that to study the brain neuroscientists must

model the entire neural network instead of just isolated components (ex: Post & Weiss,

1997). Brain recovery after a stroke depends on the interplay between damaged neurons and
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the ability of the brain to regain lost connections; synaptic plasticity is one of the emergent

properties studied in an effort to increase stroke recovery (Bernhardt et al., 2016). Individual

neuron health does less to predict stroke recovery than the plasticity of the entire network.

Tissue morphogenesis involves the coherent migration of groups of cells, which requires

coordination between the cells in order to maintain tissue integrity (Londono et al., 2014),

a process which only occurs when cells are able to communicate and signal. In general, the

consideration of emergent proprieties is a necessity for medical research (Finzer, 2017), as

the human disease and targeted therapies are so complex that their full effects cannot be

studied except in vivo. Clinical trials require human subjects because there is no simple

model that can reproduce the emergent properties relevant to patient outcomes.

Even animal testing can be justified by the necessity of studying the emergent properties

of a living system. In Barr-Sinoussi & Montagutelli (2015), the authors argue for the use of

animal test subjects in medical and biological research by describing the necessity of animal

models as a consequence of our need to understand the entire system coherently:

‘Humans and other mammals are very complex organisms in which organs achieve

distinct physiological functions in a highly integrated and regulated fashion. Re-

lationships involve a complex network of hormones, circulating factors and cells

and cross-talk between cells in all the compartments.... Scientists are very far

from being able to predict the functioning of a complex organism from the study

of separate cells, tissues and organs. Therefore, despite arguments put forward

by [animal rights activists], studies on animals cannot be fully replaced by in

vitro methods, and it is still a long way before they can.’

Without animal models, the authors argue, we do not currently have the capabilities to study

the interplay between different aspects of the physiology of a living organism (be it mice or

humans). Animal models are often used to construct and study the emergent properties that

would occur in the human system.
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1.1.3 Modeling emergence mathematically

The mathematical definition of emergence used in Cucker & Smale (2007), for example,

is when a number of individuals reach a consensus without external forcing. In this case,

the emergent property is the variable which cannot be defined until the components are

assembled into a whole. In Almond et al. (2013), authors attempt to model a binary square

network, deriving the emergent properties of the system admittance and conductance from

the circuit structure. They find that with a combination of spectral and averaging techniques,

the behavior can be predicted and matched to experimental results.

The systems in which emergent properties can be modeled most effectively are the sim-

plest systems with the lowest numbers of important variables. This is why Almond et al.

(2013) can model emergent properties (such as system impedance) in circuits to good fidelity,

and biologists can do pretty well at modelling predator-prey population dynamics (as long

as all species are known), but the pathogen-human interaction is so much harder to model

because of the large number of distinct cell types and natural bacterial colonizing bacterial

in humans.

With a deep enough understanding of the physics behind a system, it would be possible

to model these emergent properties or even work backwards to solve for unknown variables

using Monte Carlo techniques and matching a model to observations. This is a point we will

return to in Section 1.3; but first, we turn to the more general topic of how exoplanets have

been discovered over the past 25 years.

1.2 Limitations of Exoplanet Discovery Methods

For a thesis about exoplanetary systems, some knowledge about the abundance and types

of exoplanets that exist is needed. The first exoplanet ever discovered orbited pulsar PSR

1257+12 (Wolszczan & Frail, 1992). Though significant, it was difficult to draw too many

conclusions about exoplanets from this initial discovery, which orbited a dead star. The
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first exoplanet discovery around a main sequence star, that of the hot Jupiter 51 Peg b,

announced in Mayor & Queloz (1995), was a paradigm shift. Previous to this point, Jupiters

were expected to reside past the ice line in systems (excluding the remarkable prediction of

Struve, 1952). A Jupiter orbiting∼ 0.05 AU from its host star upended previous assumptions

of planet formation, and begged the question: ‘What other types of planets are out there?’

In 2000, a planet first discovered via radial velocities, HD 209458 b, was found to also be

transiting Charbonneau et al. (2000a). Since those first significant discoveries, the number

of known exoplanets and the number of methods used to find them have both increased,

allowing the discovery of different classes of exoplanets. The thousands of planets which have

been found via recent surveys and methods have enabled the more thorough description of

exoplanet classes.

As of February 7, 2019, there were 3912 confirmed exoplanets, with a few thousand ad-

ditional known candidates (as measured by the NASA Exoplanet Archive; Akeson et al.,

2013a), which are plotted in Figure 1.1. We use in this section the set of ‘confirmed’ exo-

planets as designated by IPAC, although the standards for being a confirmed planet differ

by discovery method, as we will discuss. It is expected that some of the planets presented

here as confirmed are actually false positives (caused by other astrophysical signals such as

stellar rotation masquerading as planets, ex: Vanderburg et al., 2016a).

Transit and radial velocity discoveries always yield a measure of the radius or mass (in

the form of M sin i). In an effort to include all known planets on this plot, where accurate

measured masses were not available, masses were extrapolated from the radii measurements

using the following procedure: for planets with radii in the range rp = 1.5− 4R⊕, we use the

Wolfgang relationship from Wolfgang et al. (2016), which gives a probabilistic mass-radius

conversion function for planets from the Kepler sample (where the Kepler sample is all

exoplanets discovered by the transiting planet hunting mission Kepler, Borucki et al. 2010).

For planets smaller than rp = 1.5R⊕, we use the relation from Weiss & Marcy (2014a). For

planets larger than the upper limit, we use a characteristic gas giant density generated by a
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Figure 1.1 Orbital Periods and Masses of Discovered Exoplanets. A diagram of all planets
discovered so far, and the methods by which they were discovered. For comparison to our
own solar system, Mars, Earth, and Jupiter are denoted by their initials. This population of
planets plotted here includes all those classified as validated planets by the NASA Exoplanet
Archive (Akeson et al., 2013a) as of February 12, 2019.

Gaussian draw from the observed gas giant densities (as done in Vanderburg et al., 2016b).

The relationships used are plotted in Figure 1.2.

Note that an updated version of the Wolfgang relation, a non-parametric approach which

uses Bernstein polynomials, is available in (Ning et al., 2018), and will likely be published

soon. If only M sin i values are available for a given planet, we assume that the inclination

is edge-on and use that value of M sin i for plotting purposes. When neither an accurately

measured mass nor radius was available, an estimate for the mass was chosen from the recent

literature. The cases in which this was done span several methods of discovery. The direct

imaging detections and sources of their mass estimates are Fomalhaut b (Kalas et al., 2008),

HR 8799 e (Wang et al., 2018), LkCa 15 b and c (Sallum et al., 2015), β Pictoris b (Chilcote
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Figure 1.2 Estimated Mass-Radius Relation.
The radius to mass conversion used when
planetary masses have not been measured.
For many of the transiting planets in the Ke-
pler sample, the host stars are too faint for
masses to be measured using radial velocity,
requiring an extrapolation any time masses
are needed (for example, for secular theory or
numerical N-body simulations).

et al. 2017, with an updated estimate available in Snellen & Brown 2018), Kepler-37 e was

detected via transit timing variations, and we use an estimate of its mass from Hadden &

Lithwick (2014). One of the three systems discovered via orbital brightness modulation,

KIC 10001893, was plotted with mass estimates drawn from Silvotti et al. (2014). The set

of known planets is clearly subject to some biases, as evident from a cursory glance at the

distribution of planets discovered thus far: the different discovery methods populate very

different regions of the plot, for instance we see transit-discovered planets populating shorter

orbital periods, radial velocity discoveries residing at longer periods and larger masses, and

direct imaging detections taking up the longest orbital periods.

In the remainder of this section, we list the methods by which exoplanets have been

discovered so far (all those represented on Figure 1.1), and the limitations of each method.

1.2.1 Methods Using Light Curves

When studying an astrophysical object, the amount of light received from an object is

one of the most useful pieces of information that we can use to derive the properties of that

object. When we measure the amount of light coming from the source at different points in

time, we can construct a time-series that describes how the brightness of the source changes

over a period of time. Many astrophysical sources have brightnesses that change drastically

over short periods of time: for example, a supernova explosion results in a rapid brightening

and then a subsequent decrease in brightness over a longer period of time (ex: Fox et al.,

2015). More common, however, are sources that remain roughly the same level of brightness
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over time, and most main sequence stars fit into this category. In either case, a time-series of

the changing brightness of a source is called a light curve. For any particular astrophysical

object, theoretical predictions can be compared to observed light curves to learn more about

an object’s specific properties.

Although stars are relatively constant in their brightness compared to more variable as-

trophysical sources, even main sequence stars do not reside at an exactly constant luminosity

level. Over the pre-main-sequence lifetime of a star, its luminosity will slowly decline at rates

too small to detect over our observational baselines (see the models of Baraffe et al., 2015,

for luminosity evolution by spectral type of star). Once descended to the main sequence,

stars will exhibit slightly increasing luminosities. Magnetic activity cycles (leading to the

birth, evolution, and death of star spots) may also modulate the luminosity of the star (Basri

et al., 2011; Roettenbacher & Kane, 2017) on shorter timescales. Brightness modulations

also occur due to star spots periodically crossing across the limb of the star as the star ro-

tates (ex: Roettenbacher et al., 2013), which occurs over much shorter and easily measurable

timescales, with the exact rate depending on the stellar rotation rate (Slettebak et al., 1975;

Fekel, 1997).

Variability in a stellar light curve can also be caused by objects passing in front of the

star as measured from our line of sight. The ‘dippers’, a source type found in the Kepler data

set characterized by large non periodic decreases in stellar flux, exhibit regions of decreased

brightness when a circumstellar disk is present (Bodman et al., 2017; Rodriguez et al., 2017d).

By studying the light curves of main sequence stars, we can learn more about the qualities

of the stars themselves, such as their variability timescales or the rotation rates, and more

about the presence of additional objects near the star. In this section, we describe the ways

that light curves can be used to discover planets.
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1.2.1.1 Transits

The vast majority of planets known as of 2019 came from the over 100 million light curves

produced by transit surveys, including among others Kepler, KELT, WASP, and HATNet.

The transit method functions via favorable geometry: a planet passing in front of a star can

be observed from Earth if its orbit takes it through our line of sight to the star. In this case,

the light observed from the star decreases as the planet blocks some fraction of the light.

The fractional flux blocked is

δF = (πr2
p)/(πr

2
∗), (1.1)

where δF is the fractional decrease in light observed during a transit event, rp is the planet’s

radius, and r∗ is the star’s radius. This ratio is commonly simplified as r2
p/r

2
∗. Typical

depths of transit include 0.0084% for earth-like planets transiting sun-like stars, and 1% for

Jupiter-sized planets transiting sun-like stars: clearly, it is much easier to detect exoplanets

with larger radii.

The depth of transit does not depend on the distance that the planet orbits from its host

star (also called the semi-major axis, a), for the reason that a is very small compared to

the distance from Earth to the distant planet-hosting star. As such, transiting planets are

essentially projected on the plane of the sky, which is why the Equation 1.1 is the ratio of

the projected areas of the planet and star, rather than a more complex expression using the

ratio of volumes of the spheres they represent.

The distance that a planet orbits from its host star does change its transit probability.

The geometric likelihood ratio that a planet will transit increases the closer the planet is

to its host star, for the reason that a larger fraction of randomly distributed inclinations

result in orbital trajectories passing in front of the star’s projected surface. When you con-

sider an ensemble of planets with isotropically distributed orbital inclinations, the geometric
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likelihood of transit Ptr can be written as (Kipping, 2014):

Ptr =
R∗ + rp

a

1 + e sinω

1− e2
(1.2)

where again a is semimajor axis, e is eccentricity, and ω is the argument of periapsis of the

planet. For circular planets and planets that are small compared to their host stars, this

simplifies to the commonly used expression

Ptr =
R∗
a
. (1.3)

This expression does not explicitly depend on the inclination, but inherent in its functional

form is the effect of orbital inclination on likelihood of transit. The orbital inclinations that

are small enough to allow a planet to be detected also decrease in amplitude the further away

you get from the star. In Figure 1.3, we show the orbital inclinations of the orbits that are

observable for three different masses of host star, and superimpose the (estimated) orbital

inclinations for the set of planets discovered with transits for which these observations exist.

We assume the longitude of ascending node is identical for all planets. This demonstrates

that the parameter space in which planets can be discovered with the transit method is

increasingly narrow at larger orbital period, explaining the functional form of Equation 1.3.

To discover a planet via transits, it is generally accepted that three or more transits need to

be observed for a planet to be a validated detection. What this means is a orbital baseline

will ideally be a total of three times as long as the orbital period of the planet.

Another important aspect of transit surveys is the baseline of the observations. A longer

baseline of observation allows more transits to be observed for a given planet, and similarly

a shorter orbital period (smaller a) allows a larger number of transits to be observed for

a given baseline. This is a very important effect given that most of planets discovered via

transit come from the Kepler mission. The Kepler mission functioned from 2009 until 2013,

and during this time it observed a 100 square degree section of sky continuously (Borucki
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Figure 1.3 Range of Transiting Inclination by Orbital Radius. For semi-major axis in the
range where planets tend to be discovered by Kepler, the range of inclinations that allow
a transiting geometry for three different spectral types of stars. Here we plot with shaded
regions the orbital inclinations that allow a planet to transit for three different types of host
stars, assuming identical geometries otherwise. Top panel: the inner part of the system,
where the largest number of planets were found with Kepler. Bottom panel: the area around
1 AU (where Earth is found), where the range of allowable inclinations is very narrow. In both
panels, we show planet inclinations as crosses. Note that by definition, observed inclinations
are reported as less than 90 degrees, but the true value may be either above or below the 90
degree plane.
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Planet Type Studied Occurrence Rate1 Ref.

2-4 R⊕ around GK-stars planets w/ P < 50 days 0.13 ± 0.008 H12
4-8 R⊕ around GK-stars planets w/ P < 50 days 0.023 ± 0.003 H12
8-32 R⊕ planets around GK-stars w/ P < 50 days 0.013 ± 0.002 H12

1-2 R⊕ planets around GK-stars with 200 < P < 400 days 5.7+1.7
−2.2% P13

FGK-stars with 0.8-1.25 R⊕ planets w/ P < 85 days 16.5% ± 3.6% F13
0.5-4 R⊕ around M-dwarf w/ P < 50 days 0.90+0.04

−0.04 DC13
0.5-4 R⊕ around M-dwarf w/ P < 50 days 0.51+0.06

−0.05 DC13
1-1.5 R⊕ around M-dwarf w/ P < 50 days 0.56+0.06

−0.05 DC15
1.5-2 R⊕ around M-dwarf w/ P < 50 days 0.46+0.07

−0.05 DC15

Compact multiple around mid M-dwarf w/ P < 10 days 21%+7%
−5% M15

Table 1.1 Various Estimates of the Occurrence Rate of Exoplanets. 1: when occurrence rate is
given in decimal form, it refers to the number of planes per star; when given as a percentage,
authors computed the percentage of host stars that host at least one planet / system of the
specified type. The full references are as follows: H12, Howard et al. (2012a); P13, Petigura
et al. (2013a); F13, Fressin et al. (2013a); DC13, Dressing & Charbonneau (2013a); DC15,
Dressing & Charbonneau (2015); M15, Muirhead et al. (2015).

et al., 2010). The results of the survey was a continuous and long observational baseline

which allowed the discovery of planets with orbital periods up to about a year, including

many multi-planet systems (Torres et al., 2011; Steffen & Farr, 2013; Rowe et al., 2014;

Steffen & Hwang, 2015).

Altogether, transits are an incredibly powerful technique that allows the measurement

of both the orbital radius and physical radius of the planet. Transits are more effective at

discovering planets at shorter orbital periods, and they are more effective at finding bigger

planets around smaller stars. Transits do not by default give any information about the

mass of the planet - planet-planet interactions are required for masses to be derivable (see

Section 1.2.1.4).

Despite these limitations, an extremely large number planets have been found by the

Kepler mission using this method. Since the biases for this method are very well known,

these discoveries have been used to great success to estimate the occurrence rate of planets

in the galaxy (Petigura et al., 2013c; Dressing et al., 2015a). The results of these surveys

are summarized in Table 1.1.
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From these studies, the current expectation is that there is (to an order of magnitude)

one planet per star in the regime we can currently measure. One important factor to note

of these studies is that they give estimates only for planets with orbital periods sufficiently

short that the Kepler sample allows the full occurrence rate to be derived; since there is

evidence that the planet occurrence rate changes by semi-major axis (Mulders et al., 2015),

these rates cannot be easily extrapolated. As such, the more exact qualities and quantities

of planets that exist outside this range, as well as what type of stars are most likely to host

what types of planets and what types of system architectures, are still largely open questions.

1.2.1.2 Microlensing

Microlensing can be applied to discover planets at extremely large distances from the

earth. In order to observe a microlensing event, a particularly favorable geometry must occur:

a foreground object must pass in front of a bright background source, and then the light from

the bright source in the background is gravitationally focused around the foreground object.

This results in an increase of the apparent brightness of the background source, followed by

a return to normal flux. During a microlensing event, the background star’s brightness can

be increased by several orders of magnitude for as long as the foreground star remains in a

position between the Earth and the bright background source. If the foreground star hosts

a planet, then instead of a smooth increase and then decrease in flux for the background

star, there may be a spike somewhere in the light curve. By analyzing the exact shape of

the spike in the light curve, the planet to star mass ratio and projected separation can be

recovered.

Microlensing is more sensitive to planets that have orbital periods near the Einstein ring,

which tends to be 1-8 AU for typical geometries, a very different parameter space than is

probed by transits. However, microlensing events are extremely difficult to predict. To do

so accurately would require complete knowledge of the relative spatial velocities of our all

stars near us, as well as the distant background sources. Because of our lack of knowledge of
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Figure 1.4 Distances to Planets Discovered with Gravitational Microlensing. A histogram
of distance to host star for all stars found to be hosting planets using the gravitational
microlensing method. Microlensing allows the discovery of planets around stars much more
distant than is typically possible with other discovery methods. Data retrieved February 12,
2018.

these populations, targeted microlensing studies are not possible. Instead, the best way to

find microlensing events is massive surveys of the entire sky. Because these events are low

probability, once the initial, single microlensing observation has been made, it is generally

not possible to re-observe the (potentially planet-hosting) foreground star.

Figure 1.4 shows a histogram of the distances from Earth for stars found to host planets

via microlensing for stars whose distances have been measured. Gravitational microlensing

can discover planets around stars at distances on scales of several kpc (Bennett et al., 2015),

much further than is typically possible with other exoplanet discovery methods.

OGLE, the Optical Gravitational Lensing Experiment (Udalski et al., 1994), has found

some planets using this technique (ex: Udalski et al., 2005), including some small planets

at larger orbital radii (Beaulieu et al., 2006) and even multi-planet systems (Gaudi et al.,

2008; Han et al., 2013). OGLE points a 1.3 meter telescope at a single field, waiting for

gravitational microlensing events to occur. When one does occur, they utilize a large number

of additional telescopes to follow the event and get an accurate light curve.
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Microlensing is plagued by difficulties of false positives, and it is difficult to determine

which planets are false positives because of the difficulty of following-up on planet candidates

once the microlensing event has ended. There is also often degeneracy in the solutions for

planet properties (Gaudi et al., 1998; Shin et al., 2019), particularly in multi-planet systems.

However, microlensing does have the remarkable ability to constrain the occurrence rates of

free-floating planets (Ma et al., 2016; Peña Ramı́rez et al., 2016; Henderson & Shvartzvald,

2016), which is not possible via the other methods listed here. WFIRST is a promising future

mission which will attempt to discover more planets via this method, and it is expected to

discover roughly 1400 bound exoplanets (Penny et al., 2018).

1.2.1.3 Orbital Brightness Modulation

Orbital brightness modulation, also called Doppler beaming (Loeb & Gaudi, 2003), mea-

sured the roughly sinusoidal variation of a star’s brightness due to the periodic radial velocity

of a star caused by a nearby planet’s orbit. This is the same concept used to discover planets

via radial velocity, but the stellar radial velocity is measured via brightness changed instead

of directly through spectra. A star’s motion through space will decrease or increase its flux

F by an amount δF = 4v⊥/c, when v⊥ is the velocity of the source perpendicular to the

observer and c is the speed of light. In theory, a visual inspection of a light curve would show

a sinusoidal variation in stellar brightness on the orbital period of the planet. In reality, the

signal is too small to be easily evident, so instead Fourier analyses and the like are commonly

used, where the light curve is transformed into a power spectrum. The high-frequency end of

this power spectrum is useful for asteroseimology, and the low-frequency end can in theory

hold evidence of planet signals.

Three systems of planets of varying reliability have been detected using this method, and

are plotted in Figure 1.1. These systems are Kepler-70 (also known as KIC 05807616), KIC

10001893, and Kepler-76 (KIC 4570949). Since there have been to date so few detections

made via orbital brightness modulation (Doppler beaming), we will discuss them all.
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A discovery using this method was announced in (Charpinet et al., 2011) around Kepler

target KIC 05807616 (later named Kepler-70). However, the existence of the planets around

Kepler-70 in particular has been hotly contested: Krzesinski (2015) used a larger set of

Kepler data than was used in the original discovery paper, and found that the low-frequency

signals used as evidence of planets were actually spurious. Although these planets are still

included in the NASA Exoplanets Archive, they are likely not real.

Subsequently, KIC 10001893 is a pulsating B-type sub-dwarf observed by Kepler, and

Silvotti et al. (2014) attempted to take advantage of the baseline afforded by continuous

Kepler observations to study the asteroseismological properties of the star. This analysis

showed signals in the low-frequency part of the spectrum, which the authors attribute to

planets. The candidate planets around KIC 10001893 have not been confirmed by any further

work, and Krzesinski (2015) suggests that the planets should be revisited in a manner similar

to what they did for Kepler-70, as the KIC 10001893 ‘planet signals’ might be plagued by

similar issues to those of Kepler-70.

The final discovery via orbital brightness modulation, Kepler-76 b, announced in (Faigler

et al., 2013), was a bit different than the planets around Kepler-70 and KIC 10001893:

Kepler-76 b was first identified as an eclipsing binary, and Faigler et al. (2013) subsequently

studied the brightness modulations and found evidence of a 2 Mjup planet, which they then

confirmed with radial velocities. Kepler-76 b is thus the only secure discovery of a planet

with orbital brightness modulation. The biases in orbital brightness modulation are extreme:

since the signal drops off as the orbital period of the planet increases and the mass decreases,

this method is extremely biased towards close and large exoplanets.

1.2.1.4 Transit Timing Variations

In a system with only one exoplanet, or where multiple planets are not gravitationally

interacting with each other, their orbital periods should be constant over time. However,

when systems become sufficiently tightly packed, the gravitational interactions between the
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planets may cause periodic accelerations and deaccelerations whenever planet-planet inter-

actions occur. Whenever this occurs, there will be some slight modulation of the observed

orbital period for the planet. By observing the deviations from the expected time of transit

for a single planet, additional planets that may be gravitationally perturbing the observed

planet can be discovered. The method of using observed variations in the time of transit

to infer the presence of additional planets in the system is called transit timing variations

(TTVs).

It is important to note that for extremely short-period exoplanets, TTVs can also be

caused by stellar activity or magnetic variations in the surface of the star. In this case, the

period of the variation signal will be extremely short (the length of the periodic variation

signal is commonly called the superperiod - stellar variability generally results in shorter

superperiods than planet-induced TTVs do). The existence of TTVs can also make it difficult

to determine the true orbital period of a planet from a short baseline of data. In the original

Kepler mission this was not too much of a problem, because the three years of observational

baseline generally allowed the recovery of multiple superperiods for tightly packed systems

in which TTVs might occur. For missions with shorter baselines, such as K2 or TESS, this

effect can be dangerous and occlude measurement of the ‘true’ orbital period.

TTVs can also be used to measure the masses of exoplanets. When two exoplanets that

both transit are observed to have anti-correlated TTVs, the amplitude of those variations

can be used to extract the planetary masses. The first system to be found to exhibit TTVs

was Kepler-9 (Holman et al., 2010), which was also the first multi-transiting system. TTVs

can also be used to deduce the presence of additional non-transiting companions, which was

done for the first time in the Kepler-19 system (Ballard et al., 2011). The specific techniques

and an application of this method will be discussed in Chapter IV.
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1.2.1.5 Eclipse Timing Variations

Eclipse timing variations is a well known method of finding exoplanets, specifically cir-

cumbinary ones. Circumbinary exoplanets are those that orbit a binary star system. As

opposed to a ‘transit’, a phrase generally used to describe a smaller planet crossing in front

of a larger star, ‘eclipse’ generally refers to the larger body being in the front: eclipse tim-

ing, then, refers to the deviations in star-in-front-of-star events (eclipses) compared to the

expected values. Every planetary system revolves around the system barycenter (see Sec-

tion 1.2.2). In the case of a binary star system, the barycenter of the system will change

significantly over time. In an isolated binary system, these changes will be periodic, leading

to a light curve in which the flux depends primarily on exactly where in their orbits each

component of the binary reside. If one star passes in front of the other along our line of

sight, then we can also measure the eclipse times in the light curve.

Just like for transit timing variations, the presence of an additional component in the

system (a third star, a planet, or many planets) can cause deviations from perfectly periodic

eclipses. Although other set-ups, such as redistribution of angular momentum in a short

period binary (Applegate, 1992), can cause the orbital period of the binary to change over

time, potentially mimicking the effect of a planet. Since the eclipsing binaries tend to have

very short orbital periods, this effect can be relevant, but the timescale tends to be long

compared to the orbits of detectable planets (in MXB 1658-298 b, both effects are visible

simultaneously: Jain et al., 2017).

The Kepler sample was ripe with thousands of eclipsing binaries (Slawson et al., 2011),

but only a few (ex: Kepler-451, Baran et al., 2015) have been discovered to host exoplanets,

with ETVs being a less favorable discovery method. The more famous circumbinary planets

Kepler-16 b (Doyle et al., 2011), Kepler 34 b and Kepler 35 b Welsh et al. (2012), Kepler-47

b and c (Orosz et al., 2012a), and Kepler-413 b (Kostov et al., 2014) were not discovered

via ETVs, but instead via transits. The rest of the thousands of eclipsing binaries in the

Kepler data may also host planets, but their geometries were not sufficiently favorable to
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Figure 1.5 Orbital Periods of ETV Detections.
The orbital periods for the nine planets de-
tected via eclipse timing variations. The or-
bital period of the binary is much shorter
in most cases, usually being less than a day.
In comparison, these planets have longer or-
bital periods compared to exoplanets discov-
ered using most other methods.

allow detection of a signal in the Kepler data. Gong & Ji (2017) suggests that the high

incidence rate of transiting circumbinary planets indicates that such planets form at high

rates in the plane of the binary’s orbit.

1.2.1.6 Pulsation Timing

Stars which change radius slightly over time in an effort to maintain equilibrium will

exhibit pulsations (Gautschy & Saio, 1996). Some stars, such as those on the instability strip

of the HR diagram (Cepheids), will have large, regular, easily measurable pulses. Other stars,

such as the sun, will pulse in non-regular manners: they can be studied asteroseismically with

a high-precision light curve to understand the modes propagating through their interiors, but

the pulses may not arrive regularly.

For stars that do pulse periodically, such as A-type variable stars, the presence of a planet

can cause slight deviations from perfect periodicity in the pulse. The planet parameters can

be derived from the semi-amplitude of the time-travel delays due to the planet’s affect. Sim-

ilar in form to the the radial velocity semi-amplitude K (Equation 1.9), the semi-amplitude

of the time-travel delays can be written as (Sowicka et al., 2017; Hermes, 2018):

Kpulsation =
a

c

mp

M
sin i (1.4)

where the units of this amplitude are time, and a is the semi-major axis of the planet’s orbit,
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mp the planetary mass, M the stellar mass, i the orbital inclination, the orbit is assumed to

be circular, and c is the speed of light. Murphy et al. (2016) announced the discovery of a

planet 12 times as massive as Jupiter via this method, and stellar companions (i.e., Handler

et al., 2002) have also been detected in this way.

It is important to note that the discovery in Silvotti et al. (2014), while around a pulsat-

ing star, was found via a Fourier analysis of the light curve (orbital brightness modulation)

and a direct extraction from that spectrum of additional low-frequency signals (taken to be

planets), rather than deviations in pulse timing as used in Murphy et al. (2016), although

Murphy et al. (2016) did use a Fourier spectrum to determine the dominant modes of oscil-

lation. Both of these methods are promising for finding planets around pulsating (and even

post-main-sequence) stars.

1.2.1.7 Pulsar Timing

The first-ever discovery of an exoplanet was announced in (Wolszczan & Frail, 1992)

and was discovered via pulsar timing. The planet orbited the pulsar PSR 1257+12, and

was extremely low mass and had a very short orbital period. Pulsars are rapidly rotating

neutron-degenerate stars (Goldreich & Julian, 1969; Sturrock, 1971; Shapiro & Teukolsky,

1983) which appear to emit pulses according to their rotation rate as their magnetic poles

periodically line up with Earth’s line of sight (Cheng et al., 1986; Maeder & Meynet, 2000;

Kramer et al., 2006). Pulsar timing is similar in its mechanism to TTVs, ETVs, and pulsation

timing: normally, the pulses of a pulsar are regular in timing as the rotation rate of the pulsar

is constant, the same way that transits and eclipses are expected to be perfectly periodic.

However, if a planet is present, its gravitational influence can lead to the pulses’ timing

deviating slightly from perfect periodicity, and the exact manner in which this occurs can

be used to predict the properties of the planet.
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1.2.2 Methods Using Stellar Reflex Motion

Another fundamental way to find planets around stars is to study their physical motion

through space over time. All stars in the galaxy are moving in some fashion; the Milky Way

galaxy itself has complex density and velocity substructures, which contribute to the bulk

motions of stars through the disk. On a smaller scale, when stars reach a close physical

proximity to other stars or clusters, they may interact, leading to local scattering motions

on shorter timescales (Laughlin & Adams, 2000; Boley et al., 2012; Li & Adams, 2015a).

These factors contribute to each star having a preferential direction of motion through space

at each point in time, although the direction and magnitude will change with time. Over

short timescales, this can be measured as a linear trend in a star’s position relative to the

solar system.

Over even shorter timescales, the motions within a gravitationally bound system can lead

to small variations of stars’ velocities through space: although it is common to colloquially

say that ‘planets orbit stars’, a more accurate description is that all objects in a gravitation-

ally bound system orbit the barycenter (center of mass) of the system. Then, the overall

velocity of a star is a sum of its bulk motion through the galaxy plus the instantaneous

perturbations due to objects with which it is gravitationally bound, such as planets or other

stars.

Perturbations in stellar velocity due to the influence of gravitationally bound companions

will occur over relatively short timescales. In the solar system, the orbital dynamics of bound

objects are dominated by the sun until they reach about 1,000 AU - 2,000 AU, at which

the galactic tide starts to significantly affect their dynamics (Bannister et al., 2017), and

eventually (closer to 10,000 AU) objects may become unbound from the solar system.

The amplitude of the reflex motion of a star due to a planet in a bound orbit can be

written as follows:

V = (mp/M)vp (1.5)
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where vp is the reflex velocity amplitude for the planet, V the solar reflex velocity amplitude,

mp the planetary mass, and M the stellar mass. This expression was derived assuming a

one planet system, but the general concept remains the same even when applied to systems

with larger multiplicities: all objects are in orbit around the center of mass of the system.

Massive planets, or planets with particularly short orbital periods, can cause the physical

location of the system barycenter to change over time, causing a larger stellar reflex velocity.

In any case, sufficiently large or close-in planets will cause the star to move in physical

space with an amplitude and periodicity that depends on the masses and orbital periods of

its planets. Depending on the orbital parameters of extra bodies in the system, this signal

might be measurable. There are several methods of detecting exoplanets that take advantage

of this fact.

1.2.2.1 Radial Velocities

In Section 1.2.1, we discussed the ways that a measure of the star’s brightness over time

(the light curve) can tell us about objects (including planets) orbiting the star. Another

technique that can be used to study stars is spectroscopy. In spectroscopy, the amount of

light coming from a star at different wavelengths is measured, and different wavelengths of

light correspond to different energies of photon via the expression:

E = hc/λemit (1.6)

where h is the Planck constant, c the speed of light, and λemit the wavelength of the emitted

(or absorbed, as the case may be) photon. For example, an x-ray photon is extremely high

energy and low wavelength. If we were to look at how bright in the x-ray a human being

was, they would not appear very bright, because humans do not emit significant amounts of

x-ray radiation. However, if we were to study an active galactic nuclei (AGN), which is an

extremely high-energy astrophysical source, it would have a high level of of x-ray emission.
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In contrast, a human would be dim in the x-ray, but bright if studied in infrared wavelengths.

Different objects, both astrophysical and human-like, have emission profiles that depend on

the properties of the object (commonly characterized as the effective temperature of the

object). In conjunction, because atoms are quantized, electrons can transition between only

particular energy states according to the expression:

λemit =
1

RZ2

(
n−2

1 − n−2
2

)−1
(1.7)

where λemit remains the true wavelength of the photon, R is the Rydberg constant, Z is the

atomic number of the atom under consideration, and n1 and n2 denote the two energy levels

between which the atom is transitioning. The exact value of λ is the exact wavelength at

which the photon will be emitted.

In stars, what one expects to see when looking in different wavelengths is well-studied and

a strict function of the size of the star. A stellar spectrum might include both emission and

absorption lines, which both result from the transitions of electrons between energy levels in

atoms as described above, or from the transitions between (vibrational, rotational) energy

levels in molecules. For absorption, features occur at particular wavelengths defined by

Equation 1.7, which correspond to where atoms and molecules can absorb energy. Stars have

a large number of absorption lines in their spectra because atoms in the stellar photosphere

absorb part of the continuum of light coming from the hotter center of the star. Depending

on the atoms present in the star’s photosphere, the absorption lines that can be seen will

vary. For example, a star with lots of calcium in its photosphere will have spectral features

at the wavelengths corresponding to the solutions to Equation 1.7 for calcium, which will be

a distinct and finite set of observable lines. For a star the mass of the Sun, the absorption

lines present will be the same as those present in a spectrum of the Sun: hydrogen, oxygen,

carbon, iron, etc. For stars much more massive than the sun, metallic absorption lines will

not be present, as the photosphere will be too hot for metals to generally remain unionized,
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Figure 1.6 Comparison of Spectra for the Sun and HR 6827. Stars of different masses
exhibit very different spectra at the same wavelengths, and the species present in the stellar
photosphere vary widely by stellar mass. Here, an illustrative comparison centered on the
410.1 nm Balmer line. Spectra taken from Becker et al. (2015a). Left panel: one HIRES
echelle order of the Solar spectrum measured by observing reflected sunlight from the asteroid
Vesta. This spectrum is representative of those of low-mass stars observed by the CPS
program. Right panel: the same HIRES order, this time showing an observation of an A-
type star, HR 6827. This rapidly rotating star has hundreds of times fewer spectral features
than are seen in the Solar spectrum.

and instead hydrogen absorption features will be most prominent (Struve, 1931). In Figure

1.6, we plot the difference in spectra observed for two stars: the sun, and rapidly rotating

A-type star HR 6827. In each of these two spectra, the 410.1 nm Balmer line is present and

obvious. In the sun, there are additionally a large number of additional absorption features.

The final piece of the radial velocity puzzle is the effect of stellar motion on observations

of these spectral lines. When observing real stars, the spectral features may occur at different

wavelengths than expected, which is due to the motion of the star in the direction along our

line of sight. If the star moves along our line of sight, its absorption features will be subject

to a spectroscopic Doppler shift, the sign dependent upon the direction of motion. The speed

of the star is related to the wavelength of the light emitted and observed as follows:

λobs − λemit
λemit

= (v⊥/c) (1.8)

when λemit is the ’true’ wavelength of a spectral line, at which it was emitted, λobs is wave-
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length of the same feature as observed, v⊥ the radial velocity of the source, and finally c

again is the speed of light.

The next step of discovering planets via radial velocities is to convert the measured

amplitude of the stellar velocity’s curve into planet properties. First published in Paddock

(1913), the equation for the semi-amplitude of a radial velocity curve as it depends on the

parameters of the star and planet is:

K =

(
2πG

P

)1/3
mp

(M +mp)2/3

sin i√
1− e2

(1.9)

where G is the gravitational constant, P the orbital period, mp the planetary mass, M the

stellar mass, i is the inclination of the planet’s orbit (oriented such that 90 degrees denotes

an edge-on orbit relative to the plane of the sky), and e the planetary eccentricity. With

this expression, the amplitude of a radial velocity signal can be converted to an mp sin i and

an orbital period of the planet causing the signal.

No matter the spectral type of the star, the Doppler technique can be combined with

our knowledge of what that star’s spectrum should look like (that is, at what wavelengths

the spectral lines should reside) to get this additional information about the star’s velocity

in physical space. This method has been extremely efficient at discovering (and confirming)

planets, with to-date 727 confirmed planets being discovered in this way.

1.2.3 Methods Using Images

1.2.3.1 Astrometry

Astrometry is a planet discovery method very similar to the radial velocity method,

except that instead of measuring a star’s motion along our line of sight from Earth, we

measure the star’s motion perpendicular to our line of sight. Instead of using spectra to

derive a star’s instantaneous radial velocity, astrometry uses images taken over a long time

baseline and measures the star’s motion on the plane of the sky.
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Astrometry is similar in spirit to the way Kuiper Belt Objects are discovered: if multiple

images taken at different points in time show evidence that an object’s relative position (after

correcting for any systematic effects due to the changing position of the observer) is moving,

then its orbit can be reconstructed. For Kuiper Belt Objects, this means one can directly

detect the orbit of the object. For stars, this means one can model what extra components

in the system must be present in order to reproduce the observed periodic signal.

To date, the only ‘planet’ discovery via astrometry is DENIS-P J082303.1-491201 b, which

may be either an exoplanet or a brown dwarf (Sahlmann et al., 2013). The Gaia mission will

acquire astrometry over an extended baseline on a large number of stars, perhaps enabling

a new set of astrometric analyses on a large number of stars.

1.2.3.2 Direct Imaging

In direct imaging, planets are detected by blocking out the light from their host star and

directly measuring either the reflected starlight or thermal emission from the planet itself.

To discover planets via this method requires high-contrast imaging capabilities.

Fomalhaut b, discovered via direct imaging in 2008 using HST data (Kalas et al., 2008)

and subsequently studied in depth by other groups, is a good example of the unique type

of planet that can be discovered via direct imaging: its estimated orbital radius of 115 AU

makes it one of the most distant planets discovered. In Figure 1.1, a cursory glance shows

that direct imaging exclusively discovers planets at the largest orbital periods. However,

for Fomalhaut b, the nature of its discovery method makes its planetary mass uncertain.

In Figure 1.1, we use the current estimate of 0.5 Mjup, but competing theories give vastly

different planetary mass estimates: the discovery paper, Kalas et al. (2008), placed an upper

limit on its mass of 3 Mjup, and other works give vastly different values, including recent

results that doubt Fomalhaut b is a planet at all (Janson et al., 2012) and others which in

contrast confirm its planetary nature (Currie et al., 2012).

The HR 87999 system is a perfect example of the potential power of direct imaging. The

29



first three known planets orbiting this young star were announced in Marois et al. (2008). A

fourth planet was discovered in (Marois et al., 2010). Modern analysis, such as Wang et al.

(2018), utilize the power of a decades-long observational baseline to map the orbits of these

long-period planets. From a coherent analysis of all the data, accurate mass measurements

can be extracted for all planets, giving rare insight to the outer region of a planetary system.

With only visual clues provided by single epoch direct imaging to discriminate between

competing hypotheses, it is difficult to determine the correct answer. If images are taken

repeatedly over a long baseline, then information about the orbits of objects can be used

to derive masses (as done for HR 8799 in Wang et al., 2018) and information about the

variability of signals can be used to confirm the planetary nature of companions.

Going forwards, the increased capabilities of direct imaging (as well as increased baselines

allowing the study of planetary motion) will allow better studies of the outer regimes of

planetary systems. As this happens, direct imaging will grow to have more in common with

the methods utilizing stellar motion, as the motion of planets can be detected in successive

high-contrast images of a system (as has been done for HR 8799). Proposed direct imaging

missions such as the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-

Violet Optical Infra Red (LUVOIR) Surveyor will allow the study of new parameter spaces in

exoplanetary systems (Kopparapu et al., 2018), and allow us to fill in some of the occurrence

rate estimates missed by transit missions such as Kepler.

1.3 Emergence as Applied in Exoplanet Systems

One large problem facing modern exoplanetary astrophysics is how planets form (Mor-

bidelli & Raymond, 2016; Armitage, 2018). Despite the remarkable advances that have been

made in exoplanet detection over the past 25 years, we still do not understand the processes

by which planets and planetary systems form and assemble themselves, including even our

own solar system (Pfalzner et al., 2015).

One complicating factor is our incomplete knowledge of the systems that form our basis
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for understanding planet formation outside the solar system: when the observed systems are

used as constraints on the potential mechanisms of planet formation, the observational biases,

which manifest strongly in the distributions of exoplanet properties, must be accounted for.

One solution has been to attempt to reconstruct occurrence rates of planets of particular

types by modeling the specific biases inherent in each population. As described in the

previous section, the objects that we can discover in any exoplanet system are limited by the

observational biases of each method. For example, planets discovered via the transit method

will tend to have shorter orbital periods and will be by necessity confined to a few degrees of

the central plane, meaning that large longer-period planets will mostly remain undiscovered

due to their low transit probabilities. In contrast, planets discovered via the radial velocity

method will tend to be larger in mass, resulting in discoveries of the tightly packed systems of

super-Earths that appear so common from the Kepler data to be very unlikely. To attempt

to estimate the planetary occurrence rate of any type of planet is a difficult task: the bias

and detection efficiency of a survey must be characterized exactly, which requires a large

survey of uniformly collected data. Such a sample is difficult to collect, but one exists in the

Kepler data. Kepler observed the same 100 square degree patch of sky for roughly four years

from 2009 to 2013 (Howell et al., 2014a; Christiansen et al., 2013), resulting in a continuous,

long-baseline study of more than 500,000 stars, a population large enough from which to

derive statistics. Using the well-defined detection efficiency (Christiansen et al., 2015) and

detection probabilities for the Kepler sample, many groups calculated occurrence rates of

various types of planets in short orbital periods, which is the population that Kepler was the

most sensitive to detect (Fressin et al., 2013a; Petigura et al., 2013a; Howard et al., 2012a;

Dressing & Charbonneau, 2013a; Burke et al., 2015; Dressing & Charbonneau, 2015). The

results of these studies are summarized in Table 1.1. The end result was a rough estimate of

the occurrence rates of planets in the galaxy, which taught us that the order of magnitude

estimate is on the order of at least one planet per star.

However, as useful as these bulk estimates are, in order to start placing further constraints
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on planet formation more detail is required, both on individual systems and bulk population

abundances. The transit data from Kepler only describes the inner-most region of each

system: the region of our solar system where no planets reside. Even combining Kepler

transit data with follow-up radial velocity data yields an incomplete measure of what resides

where in parameter space: the radial velocity signal falls off as orbital period increases, so

extremely long-period planets (particularly Earth-size or Neptune-size ones) would need to

be found via another method entirely (direct imaging, for example).

This poses a difficulty when what we really want to study is the emergent properties

of these exoplanetary systems. To understand planet formation, and understand how any

particular system is assembled, we need to know about all the components of the system.

For example, if all Kepler tightly packed compact systems are accompanied by massive outer

companions, this has very different implications for their formation mechanisms than if they

are always lonely (Batygin et al., 2016a).

If all hot Jupiters are lonely and lack nearby planetary companions, then either those

companions do not form (indicating strong constraints on the initial conditions in the disk),

or they are destabilized during the migration of the giant planet. In contrast, if these com-

panions do exist, their occurrence rates can help us constrain what fraction of hot Jupiters

form via destabilizing mechanisms versus dynamically quiet ones.

The reason that it matters if we have incomplete pictures of these populations is that in

exoplanetary systems, the factors that we care about for determining the long-term dynamics

of a system are emergent properties which depend on the objects in the system.

The properties we measure from data are the current orbits of the objects. However,

these change over time. To provide insights about how systems formed and migrated, it is

often necessary to integrate/extrapolate backwards to the system’s history. For example, a

system could have formed in situ (where we observe it to be now), formed in a disk then

migrated inwards due to disk torques, or formed in a disk and been subject to scattering

interactions after the disk dissipates. The dissipation of the disk generally occurs fairly early
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in the star’s life: estimates vary from widely accepted estimates of 3-6 Myr (Hernández et al.,

2007) to more controversial estimates of 10 Myr or longer (Pfalzner et al., 2014).

Modeling of exoplanet systems is commonly done by necessity with the assumption that

the objects observed are the only objects present in the system (ex: Fressin et al., 2012;

Becker et al., 2015b; Gillon et al., 2016). However, this assumption is not always true, as

subsequent observations often find planets that were missed at first (ex: Marois et al., 2010;

Buchhave et al., 2016; Gillon et al., 2017).

When we only know about part of the system and attempt to derive inferences about

planet formation as a whole from the system’s existence, we are likely to make mistakes and

draw incorrect conclusions because we are using incomplete data. There are two solutions to

this problem: first, we could discover all planets in the system by using complementary dis-

covery methods, and put off any theoretical analysis until those system pictures are complete.

Second, when constructing our theoretical models from the existing data, we can account

for the incompleteness in our observations by using dynamical techniques and statistical

methods to supplement the data that we do have.

In the next section, the test case of K2-266 will demonstrate how the important emergent

properties of exoplanetary systems can change depending on our knowledge of the system

and subsequently be used to constrain the system properties beyond what is possible with

the initial observational data.

1.3.1 Emergence: the Test Case of K2-266

K2-266 is a system which hosts at least four and possibly six planets (Rodriguez et al.,

2018c). The observed orbital configuration of these planets is fairly tightly packed, leading

to significant planet-planet interactions. The unique orbital geometry of this system, shown

in Figure 1.7, is that of an inner planet highly misaligned (by 14 degrees) relative to the

outer five planets.

The Kepler data set is full of tightly packed systems of planets (Lissauer et al., 2012a),
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but these generally have inclination distributions with widths of 1.4 degrees (Fabrycky et al.,

2014a) or so. In comparison, the inclination of K2-266 b seems unusual, which is suggestive

towards how these systems form: it might seem that systems like K2266 are fundamentally

different from the typical Kepler system of tightly packed inner planets (called STIPs), and

thus is evidence of different formation pathways for these systems. However, K2-266 bs

transit was grazing, and the only reason the planet was found at all was its extremely short

orbital period allowed its discovery. As such, it is possible that more Kepler STIPs - maybe

even all of them! - host such planets which were not discovered due to unfavorable geometry.

This question - is K2-266 totally typical, or totally atypical? - encapsulates the difficulties of

making insights towards planet formation using limited, observationally biased data. Since

we do not know what the fundamental populations and abundances of exoplanets are, we

cannot fully correct for these observational biases, meaning that drawing correct conclusions

about planet formation is difficult.

This is similar to modeling predator-prey dynamics in nature: a differential model may

describe well the dynamics of a population, until the discovery of a previously unseen species

suggests that the previously measured interaction coefficients must be wrong. For example:

say a first model found that the lions are eating ten zebra per year each, and it suggested

that the system was in equilibrium; however, once crocodiles are discovered to live in the

population as well (and also will be eating zebras), where exactly the prey is coming from

to feed them all becomes unclear. Kepler STIPs can be produced via disk migration (Boley

& Ford, 2013) or in situ (Hansen & Murray, 2012), but if we find that the apparently

dynamically quiet systems are more active than thought, and they actually commonly have

misaligned inner planets as well (rather than K2-266 being just a weird outlier), we have

to return to the drawing board and look for the mechanism that can produce these planets

while also constructing the observed STIPs (and also look for that hidden trove of zebras).

As such, constructing complete pictures of the components that are, can be, and are not in

an exoplanetary system is imperative for future efforts to use these systems to make insights
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Figure 1.7 System Geometry of K2-266 Six-Planet System. System geometry (Rodriguez
et al., 2018c) projected along various axes. The black and red lines denote validated planets,
while the green lines denote candidates. The red line denotes the innermost planet, ultra-
short-period planet K2-266 b, whose orbit is inclined by roughly 14 degrees relative to the
other planets in the system. Plot created using Rebound N-body integration package’s
plotting tools (Rein & Tamayo, 2015a).

towards planet formation.

In Figure 1.8, we plot the difference in evolution computed using secular Laplace-Lagrange

theory (an orbit-averaging analytic technique described in detail in Chapter II, which de-

rives the equations of motion for individual planets as they depend on a matrix of the secular

eigenmodes of the system) when off-diagonal matrix terms (those that mediate the interac-

tions between the planets) are included versus ignored. To construct these secular evolution

curves, we draw a posterior from the EXOFAST fit results from Rodriguez et al. (2018c), ex-

cepting the inclination of K2-266 b (the ultra-short period planet), whose inclination we drew

from a Rayleigh distribution with a width of 1.4 degrees. A summary of the approximate

orbital periods and masses of the planets in this system are given in Table 1.2 for reference;

the complete table is available in Rodriguez et al. (2018c). We assume that the observed six

planets are the ‘true’ six planets in the system, and that there are no undiscovered planets

in the system (this is likely a faulty assumption, but beyond the scope of this introduction

to address).
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Planet : b K2-266.02 c d e K2-266.06
Period (days) 0.658524 6.1002 7.8140 14.69700 19.4820 56.682
Radius (r�) 3.3 0.646 0.705 2.93 2.73 0.90
Mass (m�) 11.3 0.209 0.29 9.4 8.3 0.70

Inclination i (deg) 75.32 87.84 88.28 89.46 89.45 89.40
Eccentricity e – 0.051 0.042 0.047 0.043 0.31

Table 1.2 A Summary of the Relevant Orbital Elements for Planets in the K2-266 System.
The approximate median values of the orbital parameters for the planets in the K2-266
system. In secular evolutions, starting inclinations were drawn from above or below the
midplane of the star with equal chance. Errors on measured values can be found in Rodriguez
et al. (2018c).

In the left panel, we set off-diagonal terms to zero, evolving the dynamics of each planet

only under the effect of its own and the star’s gravity. Unsurprisingly, the system evolves

forward in time at constant inclinations, as no perturbative forces change the orbits of the

planets over time. In the right panel, we plot system evolution under the effect of the

full interaction matrix, where planet-planet interactions are modeled. Then, the planetary

inclinations oscillate with time due to those planet-planet forces.

The secular inclination evolution of the planets is only evident when the planets are

considered together: this is an example of an emergent property of the system, as it only

becomes evident once all bodies in the system are considered together (rather than considered

individually and then the independent models added together). We note that for the system

evolutions plotted in Figure 1.8, we use only secular theory, which treats each planetary orbit

as a smeared ring of mass (rather than as particles). The full N-body dynamics will be even

more complex, but even the secular example makes evident the importance of considering the

interactions between planets in order to measure the emergent property of their long-term

dynamical evolution.

So, it is clear that the full modeling of system dynamics is imperative to studying the

evolution of a planetary system, as emergent properties can only be observed once the system

is considered in totality. However, the additional difficultly in modeling emergent properties
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Figure 1.8 The Effect of the Off-Diagonal Interaction Terms in the Secular Eigenmatrix.
Comparison of the evolution of the six candidate planets in K2-266 from their initial state
after the disk dissipates, plotting both when planet-planet interactions are (right panel) and
are not (left panel) considered. ‘USP’ denotes the ultra short period planet K2-266 b, while
the other more typical planets are labeled with the designations from the discovery paper
Rodriguez et al. (2018c).

occurs due to the issues discussed in Section 1.2: due to observational bias and the limited

capabilities of the methods by which we discover exoplanets, many planetary systems studied

will be incomplete. What we think is a single-planet system may actually host three planets

at varying inclinations; what we see as a six planet system may actually be a nine planet

system; what we see as a hot Jupiter with a vastly exterior companion may actually have

several smaller undetectable planets in between the two. As such, it is important to know

how our understanding of a system changes if we only know about some of the planets that

reside in the system.

In Figure 1.9, we demonstrate the effect that incomplete observations can have on the

derived emergent properties of the system. We plot two secular integrations of the system,

using the same methods and parameters as before but with different starting assumptions.

In the left panel, we plot the system if all planets were known, highlighting the evolution of

K2-266 d in red. In the right panel, we pretend that we had only discovered the inner three

planets, but again plot the evolution of K2-266 d in red. Note that the scales on the two

plots are the same, but the amplitude and period of K2-266 d’s evolution are very different.

When only the inner three planets are ‘known’, the more massive ultra-short period
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Figure 1.9 Effect of Including Inter-Planet Interactions on Secular Evolution. Two panels
showing the computed secular evolution of the K2-266 system if all (left panel) or just the
inner three (right panel) known planets are present. In red is K2-266 d, which has an orbital
period of roughly 7 days (in comparison to its inner neighbor’s 6-day period, and its outer
neighbor’s 14-day period).

planet (whose inclination here has again been decreased, and is not the true observed value)

tugs around planets .02 and d, leading to a higher amplitude of their inclination evolution

over time. When the outer three planets are also included in the model, the outer disk of five

planets becomes coupled and shares the evolution in angular momentum direction between

all five members instead of only between two.

Just between these two cases, it is clear that with only three planets known, the dynamics

of the system would appear very different than they do with all six planets known. As a

complicating factor, two of the planets in this system (.02 and .06) are only candidates rather

than validated planets.

It is clear from the K2-266 test case that which and how many planets are included in

the model can change drastically our understanding of the system. This is very dangerous,

and what I refer to in this thesis as the ‘reductionist trap’ - when we accidentally model a

system incompletely because we only know about some of the planets due to observational

bias, we inadvertently ignore the important emergent properties of the system.
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1.4 Solving Astrophysical Mysteries with Observations and Dy-

namics

The goal of this thesis is to use emergent properities to better understand exoplanetary

systems. Unlike medicine, in which the ‘system’ - the human body - is so complex that

it really cannot be modeled except through empirical methods, exoplanets have a huge

advantage in that the important aspects of the system can be turned into a mathematical

model fairly easily. Using numerical simulations (ex: Chambers, 1999a), the force equation

can be integrated to give exact solutions for evolution of planets over time (recent suites of

numerical simulations have been used to study planetary dynamics in, for example, Becker

& Batygin, 2013; Khain et al., 2018a; Puranam & Batygin, 2018). Similarly, approximate

solutions can be constructed using dynamical methods such as secular theory (Murray &

Dermott, 1999), which allows an easier but slightly less accurate solution to the orbital

evolution of planets over time (recent applications in the literature of secular theory include

Michtchenko & Malhotra, 2004; Van Laerhoven & Greenberg, 2012; Saillenfest et al., 2017a;

Li et al., 2018).

The main impact of how easy it is to construct a model for exoplanet interactions is that

emergent properties can be used in two ways: first, to forward model the system, and derive

an expected emergent property from the fundamental parameters of its constituent pieces;

second, to take an observed emergent property and reverse engineer the required planet

properties that allow the measured emergent property to exist in the system. In both cases,

the (known) relationship between the independent properties of the constituent parts of the

system and the resultant emergent properties is leveraged to provide a better understanding

of the system as a whole and constrain unknown properties for future analysis.
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1.4.0.1 Forward modeling

The term ‘forward modeling’ refers to taking known parameters and using them to pro-

duce a model of subsequent evolution. An example of this would be taking the observed

planets and orbital elements of a multi-planet system, then unfold the dynamics forward

using dynamical simulations to evaluate the changes of the planets’ orbits over time. Once

a complete enough picture of the system is assembled - one that measured the locations

and physical parameters of all bodies significantly affecting the evolution of the system -

these evolution predictions can be used to model future behavior of the system, or it can be

used to extract the past dynamical evolution of the system. This is useful towards making

conclusions about how a system may have formed, because you can construct a range of

possible histories for the system. For example, with a well-studied system, its past evolution

could be constrained to be dynamically quiet to the extent that it must have formed via disk

migration instead of another more dynamically active pathway. The caveat here is that for

forward modeling to work, the current state of the system must be well-known, or at least

a careful accounting of the possible parameters must exist for any components that are not

known. With an incomplete picture of a multi-planet system, the computed evolution may

be incorrect, if any significant modes of oscillations are unknown or measured incorrectly.

An example of this is the Kepler multi-planet systems, which will be discussed in depth

in Chapter II of this thesis. If the systems exist as they are currently observed and there

are no outer perturbers or additional unseen planets present, then a numerically computed

model of the current system will yield an accurate measure of its past evolution. For the

Kepler compact multi-planet systems, this may suggest either a lack of migration (in situ

formation) or a slow adiabatic migration through the disk. However, if additional external

companions exist in these systems, then the models constructed using currently measured

parameters may not be correct, depending on if the possible perturbers are decoupled from

the inner system. We show an example of what this might look like in Chapter III.

In order for numerical and secular models to be used correctly for determining how
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systems form, we must have very complete pictures of what is present in each system. These

pictures can be constructed by combining observations from multiple sources (for example,

transit data to understand the inner system plus radial velocity data to understand the

exterior system; see Chapter IV). However, when combining observations, we must also be

aware of what regimes in the system are not being studied, because planets that contribute

significantly to the dynamics of the system may hide in these undetectable regimes.

The emergent properties of a system, which depend on planet-planet interactions and

cannot be modeled correctly if not all components are known, do not emerge in their entirety

until a complete observational picture of the system has been constructed. This limitation

occludes the use of observationally incomplete systems for making insights towards planet

formation.

In Chapter II of this thesis, we use forward modeling to derive emergent properties

(transit duration variations, or how the time a planet takes to cross the face of the star

changes over time, and system stability) of systems from the measured properties of their

planets.

1.4.0.2 Reverse modeling

From measured emergent properties, the fundamental and independent properties of plan-

etary systems can be determined by working backwards. Just as the constituent properties

of planets that make up a system can be used to compute the evolution of the system over

time, the reverse can also be done: starting with some observable evolving property, such as

the transit timing variations of an observable planet, it is possible to construct a model for

what else must be present in the system to cause that signal.

Such reverse modeling of emerging properties requires a very deep understanding of how

constituent factors of the system interact to create these emergent properties. In plane-

tary astronomy, unlike in molecular biology, we do have complete models that describe the

evolution of factors we care about. Unlike the human body, which is extremely complex,
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interactions between planets in exoplanet systems are actually very simple. The evolving

orbits of stars and planets are mediated mainly by Newton’s laws, and can be described by

F = m(d2r/dt2). The most basic and reproducible way to model properties of exoplanet

systems is numerical simulations, which utilize Newton’s simple equations to incrementally

evolve a systems forward in time by repeatedly computing forces between particles, moving

them according to their computed velocities, and repeating the process. These simulations -

called N-body simulations for the fact they can model any number N of bodies - can model to

good fidelity the evolution of a planetary system (as long as all relevant particles are included

in the simulation). The true limitation with N-body simulations is computing power: al-

though it may be easy to model an eight planet system orbiting a single star, it is much more

difficult and computationally unfeasible to include the asteroid belt, comprised of more than

hundreds of thousands of asteroids, as individual particles in that same simulation. For that

reason, time saving techniques such as smooth particle hydrodynamics simulations to study

gas, dust, or planetesimal disks and analytical techniques such as secular Laplace-Lagrange

theory are commonly used to construct these models instead.

These techniques, among others, can be used to derive the inferred properties of planetary

systems from a measured emergent property. One important thing to keep in mind is that

the technique used (be it N-body simulations or a simple secular model) must accurately

account for all important parameters influencing the evolution of the system. For example,

when studying an old planetary system where the gas disk has disbursed, it may be reasonable

to neglect planeteismals and other smaller bodies in the system and use N-body simulations.

When studying a young system, however, this may not be a reasonable assumption and full

hydrodynamic simulations might need to be used.

The primary use of reverse modeling of emergent properties in this thesis is to derive the

properties of systems, including both the planetary properties and the system-wide limits

on orbital architecture. In Chapter III, we describe how the existence of a compact multi-

planet system (and its implicitly derived emergent property of dynamical stability) can be
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used to make inferences about the presence of planets in the exterior regions of the system.

In Chapter IV, we describe how a measured emergent property (in this case, a TTV time

series) can be used to derive the planetary parameters that would not be derivable from the

transit shape alone. In Chapter VI, we describe how the interplay between independent and

emergent properties can be used to better understand the components of a system, using

the HIP 41378 as a test case.

1.4.1 In This Thesis

Nobel Prize-winning physicist Robert Laughlin wrote in his book A Different Universe:

Reinventing Physics from the Bottom Down:

‘I think a good case can be made that science has now moved from an Age of

Reductionism to an Age of Emergence, a time when the search for ultimate causes

of things shifts from the behavior of parts to the behavior of the collective.’

- Robert Laughlin

Though the reductionist approach is more traditionally associated with string theorists and

particle physicists, it is easy in the study of exoplanets to accidentally fall into a reductionist

trap: every time we assume all parameters of a system are known, we inadvertently condense

a complex system to a much more simple but incomplete subset of its true dynamics.

The severe observational bias brought by our exoplanet discovery methods prevents the

construction of a full census of the types of planets existing in the galaxy. However, this bias

is not the problem, as to some extent occurrence rates can be corrected: the true problem

is the difficulty of measuring the correlations in planet occurrence, which in turn makes

it difficult to draw conclusions about the full architectures of systems that exist and their

relative abundances.

This thesis attempts to make explicit the study of emergent properties in exoplanetary

systems and emphasize the importance of such system-level analyses moving forward. We

utilize information gained from reductionist methods (which study individual properties in
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isolation to the rest of the system) to populate a systems-based model and study the emergent

properties of the system, which in turn enable a deeper understanding of its components

and dynamics. This process bolsters the information derivable from observational studies,

enabling a better understanding of the census of exoplanets in the galaxy.

In Chapter II, we begin with a dynamical exploration of the effectiveness of dynami-

cal mechanisms in exciting orbital inclination within the multi-planet exoplanetary systems

discovered by Kepler. We also provide constraints and predictions for the expected transit

duration variations (TDVs) for each planet under consideration. In Chapter III, we consider

perturbations due to possible additional outer planets in a subset of the Kepler multi-planet

systems considered in the previous chapter. We use the fact that the discovered compact sys-

tems sometimes contain multiple transiting planets with aligned orbital angular momentum

vectors which are tightly aligned with each other to place constraints on possible additional

(non-transiting) planets in these systems. In Chapter IV, we use data from the K2 mission

to show that WASP-47, a previously known hot Jupiter host, also hosts two additional tran-

siting planets: a Neptune-sized outer planet and a super-Earth inner companion. We study

the masses of these planets using transit timing variations and radial velocity observations.

When combined with new stellar parameters and reanalyzed transit photometry, our mass

measurements both place strong constraints on the compositions of the two small planets

and allow a precise dynamical analysis, which we use to constrain the orbital inclination of

WASP-47 c, the outer Jovian planet, and make insights towards the likely formation history

of this particular system. In Chapter V, we consider the dynamics of hot Jupiter-hosting

systems orbiting cool stars, and find that the orbits of most moderately wide planetary com-

panions must be well aligned with the orbits of the hot Jupiters and the spins of the host

stars. In Chapter VI, we present the discovery of a five planet system transiting a bright

(V = 8.9, K = 7.7) star called HIP 41378. We show that these estimates for the orbital

periods can be made more precise by taking into account dynamical stability considerations,

and then consider the system in the updated context of new data not available at the time
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we first announced the discovery of the five planets. In the additional data, the ambiguous-

period, long-period planets HIP 41378 d and HIP 41378 f both transit again, yielding a set

of discrete possible orbital periods for these two planets. We identify the most probable

orbital periods for these two planets using our knowledge of the planets’ transit durations,

the host star’s properties, the system’s dynamics, and data from the ground-based HATNet,

KELT, and WASP transit surveys. In Chapter VII, we describe our discovery of a compact

multi-planet system orbiting the K-type star K2-266. We identify up to six possible planets

orbiting K2-266 and validated four of these planets. The system has mutual misalignment

between the innermost planet and the rest of the system. We additionally provide a dynam-

ical mechanism that can explain the observed rare system geometry in the K2-266 system.

Then, we turn briefly away from planets around other stars and examine the properties of

objects in the furthest reaches of our own solar system. In Chapter VIII, we demonstrate the

effect of proposed solar system member Planet Nine on the known extreme Trans-Neptunian

Objects (TNOs), and study how the observed properties of these Kuiper Belt Objects may

be reproduced in the presence of Planet Nine. In Chapter IX, we present the discovery of

a new Kuiper Belt Object, 2015 BP519, which is to date the most extreme (defined by the

reduced Kozai action) TNO in our solar system, and has the highest orbital inclination out

of all long-orbital-period TNOs. Finally, in Chapter X we end with a summary of the results

of this work and its significance in the study of exoplanets moving forwards.
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CHAPTER II

Oscillations of Relative Inclination Angles in Compact

Extrasolar Planetary Systems

Results in this chapter were published in: Becker, J. C., & Adams, F. C. 2016. Oscillations
of Relative Inclination Angles in Compact Extrasolar Planetary Systems. Monthly Notices of the
Royal Astronomical Society, 455, 2980 and are presented here with minor revisions.

2.1 Abstract

The Kepler Mission has detected dozens of compact planetary systems with more than four tran-

siting planets. This sample provides a collection of close-packed planetary systems with relatively

little spread in the inclination angles of the inferred orbits. A large fraction of the observational

sample contains limited multiplicity, begging the question whether there is a true diversity of multi-

transiting systems, or if some systems merely possess high mutual inclinations, allowing them to

appear as single-transiting systems in a transit-based survey. This chapter begins an exploration of

the effectiveness of dynamical mechanisms in exciting orbital inclination within exoplanetary sys-

tems of this class. For these tightly packed systems, we determine that the orbital inclination angles

are not spread out appreciably through self-excitation. In contrast, the two Kepler multi-planet

systems with additional non-transiting planets are susceptible to oscillations of their inclination

angles, which means their currently observed configurations could be due to planet-planet interac-

tions alone. We also provide constraints and predictions for the expected transit duration variations

(TDVs) for each planet. In these multi-planet compact Kepler systems, oscillations of their incli-
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nation angles are remarkably hard to excite; as a result, they tend to remain continually mutually

transiting (CMT-stable). We study this issue further by augmenting the planet masses and deter-

mining the enhancement factor required for oscillations to move the systems out of transit. The

oscillations of inclination found here inform the recently suggested dichotomy in the sample of solar

systems observed by Kepler.

2.2 Introduction

The Kepler mission has discovered a large number of compact extrasolar systems containing

multiple planets that can be observed in transit (Lissauer et al., 2012a; Batalha et al., 2010).

Roughly forty of these such systems have four or more planets. The inventory of these four-plus

planet systems includes mostly super-Earth sized planets, which have radii RP = 2 − 5R⊕ and

orbital periods in the range 1 – 100 d. Moreover, the orbital periods of the planets within a

given system are regularly spaced (roughly logarithmically uniform in period or semimajor axis).

Because all of the planets were observable by Kepler at their times of discovery, these systems have

an additional stringent dynamical constraint: they must have retained a relatively narrow spread

in their orbital inclination angles. On the other hand, orbital inclination can often be excited in

close-packed planetary systems. The goal of this chapter is thus to explore the oscillations of orbital

inclination within solar systems of this class. Excitation of inclination can be driven by a variety

of mechanims, incluing unseen additional companions, perturbations from stellar encounters in

clusters (Adams & Laughlin, 2001; Li & Adams, 2015b), and self-excitation through interactions

among the observed planets. This chapter focuses on this latter mechanism.

Slight deviations from true coplanarity in these systems (e.g., as observationally supported in

Rowe et al. 2014; Lissauer et al. 2011a; and others) allow for the possibility of oscillations in the

inclination angles of the planetary orbits, e.g., due to secular interactions between the planets (see

also Van Laerhoven & Greenberg, 2012). If such oscillations were common, and had sufficient

amplitude, then not all members of a solar system could be seen in transit at every epoch. As

a result, multi-planet systems would display evidence for “missing” planets, i.e., exceptions to

the (roughly) logarithmically even spacing of orbits that are often observed. The ubiquity of this
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class of exoplanetary systems places strong constraints on both their architectures and dynamical

histories. We note that the inclination angle oscillations for Jupiter and Saturn in our own solar

system are large enough to periodically move the orbits out of a mutually transiting configuration.

Statistical analyses of the Kepler system architectures suggest that there could exist two distinct

populations of planetary systems (Ballard & Johnson, 2016a; Morton & Winn, 2014a), namely, a

population with single-transiting planets and an additional population of multi-planet systems.

The existence of these two distinct populations could be explained by either two true distributions

of solar systems (e.g., created by two different formation histories) or a single distribution in which

some systems exhibit a high degree of scatter in orbital inclination angles. Excitation of inclination

in nearly coplanar systems could shift some planets out of a transiting configuration, thereby leading

to the population of single-transit systems. In this case, the single-transit systems would be a subset

of the multi-transiting group rather than a distinct population.

This chapter explores possible oscillations of the inclination angles in compact extrasolar sys-

tems. The measured planetary radii RP = 2−5R⊕ imply planetary masses MP = 4−30M⊕, where

we use a conversion law based primarily on the probabilistic mass-radius relationship derived in

Wolfgang et al. (2016):

M

M⊕
∼ Normal

(
µ = 2.7

(
R

R⊕

)1.3

, σ = 1.9

)
(2.1)

where M refers to the mass of a body, R its radius, and this expression represents a r1.3 scaling

law with a normal distribution of scatter due to potential planetary composition variation. The

Wolfgang relationship describes the a distribution of the potential masses for planets in the range

RP = 1.5 − 4R⊕. Since a small number of planets in our sample lie outside these bounds, we

supplement the Wolfgang relation in two ways: for planets with radii RP < 1.5R⊕, we supplement

with the rocky relation from Weiss & Marcy (2014b); for planets with radii RP > 4R⊕, we determine

starting density using the Wolfgang relation, then add a scatter and choose a radius anomaly to

account for varying core masses and inflation due to thermal effects (Laughlin et al., 2011). Of the

208 planets in our sample, only 9 fall above the regime described by the Wolfgang relation.

With relatively large masses and close proximity, planet-planet interactions can be significant.

48



On the other hand, these planetary systems orbit relatively old stars (with ages of ∼ 1 − 6 Gyr,

weighted toward the lower end of this range; see Walkowicz & Basri 2013), so that they are expected

to be dynamically stable over ∼Gyr time scales. These systems are also generally non-resonant.

These considerations — significant interactions coupled with long-term stability and non-resonance

— suggest that the planetary systems are subject to secular interactions (Murray & Dermott,

1999). In the present context, we are interested in secular oscillations of the inclination angles of

the orbits. If such oscillations have sufficient amplitudes, the resulting spread of inclinations angles

in the system will sometimes be large enough that not all of the planets can be seen in transit.

When observed in such a configuration, the system will appear to have gaps in the regular spacing

of planetary orbits that these systems usually exhibit. The goal of this chapter is to understand the

amplitude of self-excitation of inclination angle oscillations and provide limits on transit duration

variations, an observable with amplitude directly related to inclination evolution over time, for

observed Kepler systems with no unseen companions. This analysis will allow future observations

of transit durations for these systems to inform the presence of massive outer companions in these

systems.

We note that spreads in the inclination angles can be produced by a variety of astronomical

processes. This work will focus on secular oscillations of the inclination angles by the compact solar

system planets themselves (with semi-major axes a > 0.5 AU). Future work will focus on the effect

of possible additional bodies in the outer part of the solar system (where a ≈ 5− 30 AU), roughly

analogous to the giant planets in our outer Solar System.

We stress that oscillations of inclination angles are not rare. Within our Solar System, for

example, the orbital inclinations of Jupiter and Saturn oscillate with a period of about 51,000 years

and an amplitude of about 1◦ (see Figure 7.1 in Murray & Dermott 1999). The inclination angles

of the two orbits coincide every half period (25,500 years), so that an observer oriented in that

plane would see both planets in transit at that epoch. However, the amplitude of the oscillation is

sufficient to move both planets out of transit for an appreciable fraction of the secular cycle.

This chapter focuses on the case of self-excitation of inclination angles for Kepler systems with

four or more planets, where the secular dynamics of such systems are considered in Section 3. An

analysis of the observed compact, mutually transiting systems is presented in Section 2.4.1, which
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shows that the systems are consistently mutually transiting over time. An orbital architecture that

is continually mutually transiting is denoted here as CMT-stable (which should not be confused with

dynamical stability). We consider a generalized class of systems in Section 3.2, and study compact

systems which have been discovered to host an additional non-transiting planet in Section 3.3

(where these systems are shown to be more active). We also compare these results with numerical

simulations in Section 2.4.4. Section 2.5 presents observables for the compact Kepler systems

discovered to date; specifically, the transit durations are predicted to vary and the magnitude of

these variations are determined. In Section 2.6, we study the stability of the observed Kepler

systems by considering how the predicted oscillation amplitudes would vary if planet masses are

scaled upward: the systems are found to be remarkably dynamically stable. The chapter concludes,

in Section 2.7, with a summary of our results and a discussion of their implications, as well as a

statement on our plans for future work.

2.3 Secular Theory for Inclination Angles

To evaluate the behavior of mutual inclination for these isolated systems, we apply Laplace–

Langrange secular theory (Murray & Dermott, 1999). This formalism allows the use of the long-

period terms of the disturbing function to describe orbital motion over many secular periods.

2.3.1 Review of the Theory

We expand to second order in inclination and eccentricity, and first order in mass. With this

expansion, inclination and eccentricity are decoupled, so we can write the disturbing function as a

function of inclination alone:

R(sec)
j = nja

2
j

[
1

2
BjjI

2
j +

N∑
k=1

(BjkIjIk cos (Ωj − Ωk))

]
, (2.2)

where j is the planet number, n is the mean anomaly, I is the inclination, ω is argument of

pericenter, and Ω is the longitude of the ascending node. The coefficients Bij are defined by
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Bjj = −nj
[

1

4

∑ mk

Mc +mj
αjkᾱjkb

(1)
3/2(αjk)

]
, (2.3)

and

Bjk = nj

[
1

4

mk

Mc +mj
αjkᾱjkb

(1)
3/2(αjk)

]
, (2.4)

where Rc is the stellar radius, mk indicates the mass of the kth planet, Mc denotes the mass of

the central star, αjk denotes the semi-major axis ratio aj/ak, and ᾱjk denotes the semi-major axis

ratio aj/ak < 1. The quantities b
(1)
3/2 is the Laplace coefficient, which is defined by

b
(1)
3/2 =

1

π

2π∫
0

cosψ dψ

(1− 2α cosψ + α2)3/2
, (2.5)

(as given in Murray & Dermott 1999). All of the coefficients Bjk can be considered as frequencies

that describe the interaction between each pair of planets, and are elements of the matrix denoted

as B. This application of secular theory allows us to evaluate the problem analytically, but neglects

higher-order terms. In this formulation, the only terms in the disturbing function are those that

do not depend on the mean longitudes, as we assume that the short-period terms average out over

long timescales. The coefficient matrix B describes inclination evolution. Solving for the matrix

elements of B allow us to determine the time evolution of inclination.

The matrix B defines an eigenvalue problem (Murray & Dermott, 1999), where the eigenvalues

describe the interaction frequencies between any pair of planets. The eigenfrequencies of this matrix,

denoted here as fi, along with the eigenvectors Ijk, can be used to describe the time evolution of

the system. Given the matrix B, we can solve for the eigenvalues and eigenvectors using standard

methods. With these quantities specified, we also need the initial conditions to specify the full

solution for the time evolution of the inclination angles Ij and the angles Ωj . It is convenient to

transform the dependent variables according to

pj = Ij sin Ωj and qj = Ij sin Ωj , (2.6)
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so that the solutions take the form

pj(t) =
N∑
k=1

Ijk sin(fkt+ γk) (2.7)

and

qj(t) =

N∑
k=1

Ijk cos(fkt+ γk) , (2.8)

where the phases γk, along with the overall amplitudes, are determined by the initial conditions.

The quantities Ijk are eigenvectors, where we use the standard (but awkward) notation such that

the first index j specifies the planet number and hence the components of the eigenvector and the

second index k runs over the different eigenvectors. It is also useful to define normalized eigenvectors

Ijk and corresponding scaling factors Tk such that

Ijk = TkIjk . (2.9)

The initial conditions then specify the scaling factors through the expressions

pj(t = 0) =
N∑
k=1

TkIjk sin γk (2.10)

and

qj(t = 0) =

N∑
k=1

TkIjk cos γk . (2.11)

The scaled eigenvectors Ijk (which conform to the system’s boundary conditions), the eigenval-

ues fk, and the phases γk are sufficient to specify the time evolution of the orbital inclination of

each body in the system, i.e.,

Ij(t) =

√
[pj(t)]

2 + [qj(t)]
2 , (2.12)

where the solutions pj(t) and qj(t) are given by equations (5.6) and (5.7). Implicit in this solution

is the linear dependance on the interaction coefficients (the matrix elements given by equations

[5.3]). From this solution, we note that the inclination evolution has a linear dependance on mass

ratio and a second order dependence on the semi-major axis ratio between the planet in question

and each planet exterior to its orbit.
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Figure 2.1 Illustrative Evolution of Kepler-256’s Orbital Inclination. Plotted here are the
inclination evolutions of five roughly coplanar planets, with initial conditions drawn from the
priors of Kepler-256. Although the inclinations of the planets generally stay within a plane,
there is also instantaneous variation, which manifests as a range in the inclinations of plane
of planets. This variation may lead planets to be knocked out of a transiting configuration.
The mutual inclination, shown on the right panel, changes as planets precess, meaning that
the width of the plane containing all the planets oscillates over time.

2.4 Inclination Oscillations due to Self-Excitation

The compact Kepler systems with four or more planets are tightly packed systems with minimal

mutual inclinations. From this population, it appears that planets in multi-transiting systems

generally have non-null values of mutual impact parameter, and subsequently inclination (Rowe

et al., 2014). Systems with non-null mutual inclinations exhibit non-parallel angular momentum

vectors, allowing the possibility of excitation in inclination and other orbital elements. To test the

magnitude of these excitations, we take the population of all Kepler systems with four or more

transiting planets as examples of compact, multi-body, transiting systems. We obtain our data

from the NASA Exoplanet Archive1, updating system parameters when newer values have been

found (such as in the case of Kepler-296; Barclay et al., 2015a).

There are observational biases inherent in the Kepler systems, as a photometric transit survey

is by definition more likely to find systems with low mutual inclinations and aligned argument of

pericenters (Ragozzine & Holman, 2010). The Kepler multi-planet systems are likely more aligned

and more compact in inclination plane width than an ’average’ system, but the sample found by

Kepler is representative of the type of system we would expect to see from photometric transit

1http://exoplanetarchive.ipac.caltech.edu
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surveys such as Kepler (Borucki et al., 2010), K2 (Howell et al., 2014a), and TESS (Ricker et al.,

2015). It is not currently clear, however, whether the Kepler multi-planet systems that we do

see in transit are CMT-stable or if we are catching them at a lucky moment in which all planets

appear to be in transit. This differentiation is important because the former possibility describes a

much less dynamically active system than the latter. To test the stability against exciting planets

out of the transiting plane, we used the secular theory described in Section 2.3 to numerically

evolve each system in the Kepler multi-planet sample for several secular periods. This procedure

results in a measure of the spread in impact parameter ∆b(t) (see below). We also compute the

probability that the system is mutually transiting, marginalized over all trials and realizations

in our simulations. If ∆b(t) < 2 for an entire secular period and the probability of all planets

transiting simultaneously for a random time-step in a random realization of the system is high

(P (transit) > 0.85) then the system is said to be CMT-stable in a transiting configuration. Note

that the condition of being CMT-stable against oscillating planets out of transit is much more

confining that being dynamically stable against planet ejection. For a given Kepler system, we can

use a Monte Carlo analysis to evaluate ∆b(t) not just once, but many times, with starting orbital

elements for each realization selected from observationally motivated priors. For parameters that

have been measured (for transiting systems, the radius of the planet rp and the semi-major axis ap,

and sometimes the inclination Ip or eccentricity ep), we draw each planet’s orbital element from a

normal distribution with mean and standard deviation determined from observations. For orbital

elements not measured, we draw a value from priors summarized in Table 2.1.

Observationally measured inclinations have been fit from photometric light curves, and for these

planets there is a degeneracy between angles over 90 degrees and under 90 degrees. The literature

reports inclination angles as < 90 degrees, so when we use a literature measurement, we choose a

value not only from that planet’s measured posterior but also choose its orbit to fall above or below

the midplane of the star with equal probability. For planets without measured inclinations, we

choose a plane width from a Rayleigh distribution with width 1.5 degrees (Fabrycky et al., 2014b),

subject to the constraint that all planets must be transiting. This choice of distribution follows

work done by Fabrycky & Winn (2009); Lissauer et al. (2012a); Fang & Margot (2012); Ballard

& Johnson (2016a). In these recent works, Rayleigh distributions with varying widths are used to
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Orbital Element Distributions

Parameter Prior
ω uniform on (0◦, 360◦)
Ω uniform on (0◦, 360◦)
e uniform on (0, 0.1)
I Rayleigh distribution with width σ = 1.5 degrees

Table 2.1 Priors on Unconstrained Orbital Elements. When orbital elements have not been
measured observationally, we draw their values randomly from the prior distributions sum-
marized in this table.

describe the size of the plane containing the planets. The value we use here, 1.5 degrees, is within

the range suggested by the work of Fabrycky et al. (2014b).

We note that the argument of the ascending node is not necessarily independent of the value

of inclination angle as assumed here. As planetary systems evolve to attain nonzero inclination

angles, modeled here by a Rayleigh distribution, the nodes will evolve into some other distribution,

which should be characterized in future work.

Once we have the initial conditions for each Kepler system, we can evolve orbits as according

to the secular theory described in Section 2.3. This must be done individually for each realization

of initial conditions for each system.

2.4.1 Evaluating the Secular Behavior of the Compact, Multi-Planet Kepler

Systems

A tightly packed, roughly coplanar system of planets will trade angular momentum as the

system evolves (while keeping the total angular momentum vector of the system constant). The

magnitude of this exchange determines the magnitude of the variations in orbital elements of each

body. Equation 5.11 describes the inclination evolution for each body in a system. Once the

inclination solutions for each planet in a system have been found using equation 5.11, a comparison

between them (see Figure 2.1, which illustrates how the mutual inclination can change over time)

yields a measure of the mutual inclination between all planets in the system. This mutual inclination

describes the width of the plane containing all the planets.

As the condition for transiting is more rigorous than approximate coplanarity (even as planets’
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inclinations vary in concert, the planets with larger orbital separations are more likely to cease

transiting), we remove the dependence on orbital and stellar properties by working in terms of

impact parameter, b, which is defined as:

bj =
aj
R∗

cos (Ij) (2.13)

where j is planet number, a is the semi major axis, R∗ the radius of the central star, and I the

inclination. When −1 < bj < 1, planet j will transit. Using the analytic expression for inclination

evolution (Equation 5.11), we can describe the long-term behavior of not only individual planets

but the range of their respective impact parameters. The process of extracting the mutual impact

parameter ∆b is shown in Figure 2.2.

Using this technique, we explored the evolution of orbits for the entire initial condition parame-

ter space for each Kepler multi-planet system. For a given system, we conducted 4000 Monte Carlo

trials for each Kepler system, resulting in 4000 realizations of ∆b(t), with different initial conditions

drawn from the observational priors, supplemented with the values in Table 2.1. This sample can

be used to calculate the mean range of the impact parameter over time for the Kepler system, as

well as the width of the plane of planets in impact-parameter space.

We repeated this process of 4000 Monte Carlo trials for each for the 43 systems in our sample

of multi-planet Kepler systems, resulting in a measure of the inclination evolution behavior for

each system. Figure 2.3 visualizes the results of these trials, where each point represents the mean

mutual impact parameter for a different Kepler system. Mean mutual impact parameter is the

typical width of the plane containing all planets in the system, and must be smaller than the

diameter of the star for all planets to transit. An impact parameter plane width of ∆b = 2, marked

on the plot, is the upper limit for all planets in the plane to be transiting.

For each point in Figure 2.3, the height of the point as compared to the transit limit (δb = 2)

corresponds to the width of the plane containing all the planets. The scatter (represented by error

bars) corresponds to the width of the distribution due to the variations between realizations. For

all systems, the projected plane containing the planets is much smaller than the diameter of the

star, which means we would expect to see all the planets in transit at for the majority of the secular
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Figure 2.2 The Meaning of the Mutual Impact Parameter. The parameterization of mutual
impact parameter, as illustrated by test case Kepler-11. First, a plot of inclination for all
bodies in a system (upper left) is generated by solving equation 5.11 with the initial param-
eters of the system as boundary conditions. The semi-major axis dependency is removed
using equation 2.13, and the result, impact parameter over time for each planet, is shown
(upper right). The inclinations attained by each planet result in vastly different impact pa-
rameters due to the differences in semi-major axis. Planets closer to the star can attain more
inclination with less effect on their impact parameter. Finally, the range between impact
parameters is calculated (lower right) as was done for mutual inclination in Figure 1. The
result is a measure of the range of the mutual impact parameter over time, ∆b(t). As long
as this width describes a plane that lies entirely within the limbs of the star, the planets will
be CMT-stable.
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Figure 2.3 Mean Mutual Impact Parameter for True Kepler Systems. For each multi-planet
Kepler system, the parameters of the system were sampled 4000 times and evolved forward
in time. The resulting inclination angles for the planetary orbits were converted to a mutual
impact parameter (see text). The mean and scatter of these values are plotted here for each
system as a function of the total mass of the transiting planets, given in earth masses. The
dotted horizontal line indicates the level above which it is not possible to observe all the
planets in transit.
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history of the system.

This parameterization represents the average behavior of each system over time. The plane

width demonstrates how much range in impact parameter is normal for each architecture of system.

However, we care about the transiting behavior of each system with respect to a single line of sight:

that of the observer (Kepler) who originally identified the planets as mutually transiting. For

example, it would be possible for a system’s impact parameter range to be small enough for it to

be possible for all planets to transit, but for the plane to be situated in such a location that only

some planets transit. To understand how likely this is to happen, we plot in Figure 2.4 the mutual

transit probability for each observed system as blue circular points. This probability is defined as

the probability that a random time-step from a random realization, chosen from the sample of all

4000 realizations considered in the construction of Figure 2.3, will have all planets transiting along

the line of sight to Earth. A probability of 1 would mean that the planets never left a transiting

configuration in any time-step in any of our simulations, while a probability of 0 means that the

system was never mutually transiting in any time-step in any realization.

Figure 2.4 shows that for the observed Kepler systems, all planets are expected to be transiting

more than 85% of the time. Indeed, for most systems the probability of mutual transit is even

closer to 100%. This demonstrates that not only do we expect the Kepler multi-planet systems to

have plane widths small enough to potentially be transiting (Figure 2.3), the majority of the time

they should maintain these transiting configurations with respect to our line of sight (Figure 2.4).

From an analysis of the results in Figure 2.3 and Figure 2.4, it appears that while Kepler systems

do excite mutual inclinations due to their dynamical interactions with each other (as their mutual

impact parameters do change over time), the magnitude of these interactions are small enough that

although an initially non-null mutual inclination exists, it remains, through the process of secular

evolution, smaller than the threshold necessary for planets to not be observed in transit. From this,

we can state that the observed Kepler systems are generally CMT-stable.

The Kepler systems with four or more planets do not exhibit sensitivity to self-excitation of

inclination due to dynamic interactions between the inner, roughly coplanar planets. This result

indicates that self-excitation (in the mode considered here) is not a dominant mechanism in knocking

planets out a transiting plane and thereby creating tightly-packed systems in which only some
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Figure 2.4 Computed Probabilities that all Planets Transit. For all realizations considered
in Sections, 2.4.1, 2.4.2, and 2.4.3, we plot as circles the probability that a randomly chosen
time-step from a randomly chosen realization will have all planets transiting along the line
of sight to Earth. For the observed Kepler systems, all systems are mutually transiting more
than 85% of the time. This result indicates that statistically the observed Kepler systems
are seen in transit an overwhelming majority of the time. The generalized systems, plotted
as crosses, are mutually transiting a much lower fraction of the time, as are Kepler-48 and
-68, the observed currently non transiting systems.

planets transit.

It it important to note that the analysis of these observed Kepler system is limited by several

factors: the measured mutual inclinations will be artificially low compared random systems drawn

from the true distribution of planetary architectures, as these are systems with narrow enough

ranges in inclination to be discovered in transit in the first place; the impact parameters of observed

systems are likely artificially low due to the signal-to-noise bias against higher impact parameters;

the deviation between measured planetary arguments of pericenter will also be artificially low

(Ragozzine & Holman, 2010). These systems are not a representative sample of the true distribution

of systems. As a result, the analysis presented here for the observed Kepler systems is not an

analysis of the underlying planet population, but only of this particular class of heretofore discovered

systems.
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2.4.2 Inclination Oscillations in Generalized Kepler Systems

The Kepler systems that we see are observationally biased in that they likely have unusually low

mutual inclinations and aligned arguments of pericenter (Ragozzine & Holman, 2010). As we have

shown in Section 2.4.1, the observed Kepler systems are remarkably CMT-stable in their transiting

configurations. We are not simply lucky to see these systems in transit, merely viewing them at

an opportune time: instead, we are seeing systems that will likely be consistently transiting over

many secular timescales. The Kepler systems are indeed a special class of system. It would also be

interesting to compare their behavior with that of generalized Kepler systems, with a wider range

of starting orbital parameters.

To construct these systems, we repeat the following process for each Kepler system in our

sample:

• Generate a compact planetary system based on the target Kepler system. To do this, we

draw each orbital parameter from an inflated distribution, treating measured 3σ errors as

the width of our prior from which to draw orbital parameters. We convert radii to masses

using the extended Wolfgang relation.

• We evaluate the system for dynamical stability using the Hill-radii criteria outlined in Fab-

rycky et al. (2014b). We compute the separation between two orbits (∆) in terms of their

Hill radii:

∆ = (aout − ain)/RH (2.14)

when the mutual Hill radius is given by:

RH =

(
Min +Mout

3M∗

)1/3

(aout − ain)/2 (2.15)

and for a system to be considered dynamically stable, ∆ > 2
√

3 and for each pair of planets,

∆in + ∆out > 18 (Fabrycky et al., 2014b).

• If the system is dynamically stable according to these Hill arguments, we evolve the system
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and repeat the process for another set of starting parameters.

Once this process is completed for each Kepler system, we have a sample of analog Kepler systems,

which are based on the observed systems but no longer exactly the systems that we observe. This

sample allows us to compute the mean mutual impact parameter over time, just as we did for the

observed Kepler systems in the previous section.

The result is shown in Figure 2.5, which shows the same statistic plotted in Figure 2.3 computed

from the generalized Kepler systems. For these generalized systems, the range of the impact

parameter over time is higher, suggesting that the Kepler systems we observe are a particularly

CMT-stable subset of the dynamically possible compact systems that could exist. Figure 2.4 shows

as red crosses the mutual transit probability (over all time-steps and all realizations) for these

generalized systems, demonstrating that the generalized systems spend significant amounts of time

in non-mutually transiting configurations, as their plane widths imply they should.

2.4.3 Inclination Oscillations in Systems with Non-transiting Planets

Long-term RV followup to systems with transiting planets has not only found masses for Kepler

planets, but has also resulted in the characterization of additional, non-transiting companions

to some transiting systems (Marcy et al., 2014). Additionally, transit-timing variation analysis

(Agol et al., 2005a; Holman & Murray, 2005) has both confirmed masses of planets and provided

additional candidate planets (Cochran et al., 2011; Hadden & Lithwick, 2014). The current state

of these systems provides insight to their dynamical history: assuming that systems form from

roughly coplanar protoplanetary disks, something in the evolution of these systems has resulted in

sufficiently large spread in inclinations to prevent all planets from being seen in transit.

As shown in Section 2.4.1, the observed multi-transiting Kepler systems are CMT-stable against

self-perturbation (mutual inclinations excited by dynamical interactions between the transiting

planets). Furthermore, the generalized Kepler systems are more likely than not to be seen in

mutual transit. For multi-planet systems with some planets transiting and additional non-transiting

companions, something in the dynamical history of the systems has resulted in misalignment in

inclination between the planets. This effect could be explained in one of many ways: it could be

due to a difference in formation mechanism between the purely multi-transiting systems and the
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Figure 2.5 Mean Mutual Impact Parameter for Generalized Kepler Systems. For the gener-
alized multi-planet Kepler systems, the parameters of the system were sampled 4000 times
and evolved forward in time, just as in Figure 2.3. The resulting inclination angles for the
planetary orbits were converted to a mutual impact parameter (see text). The mean and
scatter of these values are plotted here for each system as a function of the total mass of
the transiting planets, given in earth masses. The dotted horizontal line indicates the level
above which it is not possible to observe all the planets in transit.
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systems with some planets outside the transiting plane; it could be due to some other perturbation,

such as an as-yet undiscovered stellar or massive planetary companion (a possibility beyond the

scope of this chapter); or finally, it could be due to the effect of self-excitation between all (known)

planets in the system. Our analysis probes this final possibility, which would apply if all discovered

planets (both those that are currently transiting and those that are currently non-transiting) in a

system had started out roughly coplanar, in a potentially transiting configuration, and then through

secular interactions some planets had been perturbed out of the transiting plane.

We can test this explanation for the currently observed misalignment of Kepler systems that

have been discovered to have multiple transiting planets and additional, non-transiting companions

using the same method that was used to evaluate the transit stability of the most tightly packed

Kepler systems in Section 2.4. Two examples of systems of this architecture are Kepler-48 and

Kepler-68. By starting the planets of these systems in transiting configuration, we force the starting

conditions to be a roughly coplanar disk containing all the planets.

Kepler-48 (Steffen et al., 2013a; Marcy et al., 2014) is a four planet system with three inner

transiting planets and one non-transiting companion at more than 1 AU (a minimum mass 657

M⊕ companion with a period of roughly a 980 day period). Kepler-68 (Gilliland et al., 2013) is

a three planet system with two transiting planets and one non-transiting planet, also outside of 1

AU (with a minimum mass of 0.95 Mjup companion in roughly a 580 day period).

To evaluate the transit stability of Kepler-48 and Kepler-68, we performed the same Monte

Carlo evolution described in Section 2.4.1, with all orbital parameters drawn from observationally

constrained priors except inclination. Though the true orbital inclination of the outer planets in the

Kepler-48 and Kepler-68 systems is not known, we choose the orbital inclinations for the giant outer

planets in each system by drawing a mutual inclination plane width from a Rayleigh distribution

with a width of 1.5 degrees (from Fabrycky et al., 2014b, which suggested a Rayleigh distribution

width between 1.0 degrees and 2.2 degrees). We constrain this choice of plane width such that the

planets all start out mutually transiting, to mimic the starting conditions of the compact Kepler

systems. With these starting conditions, we are probing what would happen to the observability

of these systems over time, if they did start on feasibly observable architectures.

Through 4000 trials, Kepler-48 and Kepler-68 exhibited significantly more range in their mutual
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impact parameters than the other compact Kepler systems. Figure 2.6 plots the behavior of Kepler-

48 and Kepler-68 overlaid on the previous result for the compact Kepler systems. Kepler-68’s mean

mutual impact parameter is well above the limit for a mutually transiting system, while Kepler-48

spends about 60% of its orbits in a transiting configuration (marginalized over starting parameters).

We treat Kepler-48 and Kepler-68 as isolated systems. In other words, in our experiments, the

only perturbation available to excite oscillations in inclination is that of the interactions between

known bodies in each system. Thus, by generating the mean mutual impact parameter over one

secular period for these systems after they start in a transiting configuration, we can make a

statement about the amplitude of self-excitation in these compact systems. As shown in Figure

2.6, both Kepler-48 and Kepler-68 would be expected to develop significant mutual inclinations that

prevent all planets from being seen in transit purely through excite self-excitations of inclination.

Figure 2.4 shows as salmon points the mutual transit probability for these two systems, confirming

that it is unlikely that the magnitude of the secular interactions would allow these two planets to

be seen in transit.

This result indicates that even if these systems were to begin their secular evolution in a roughly

coplanar configuration, they would be expected to self-excite sufficient oscillations to produce the

current orbital state (where not all planets transit - we do not have sufficient limits on the observed

inclinations to make a stronger comparison). Kepler-48 and Kepler-68 are examples of systems

that ‘make sense’ dynamically: it is not required to add additional effects (such as a perturbing

companion or stellar flyby) to their systems to explain their current non-transiting nature. It is

important to note that the outer planets in these two systems are significantly external to the

standard compact systems described in Section 2.4.1, which generally fell within 0.5 AU of their

host star. Kepler-48 and -68 have outer companions at roughly 1.4 and 1.8 AU, respectively. It is

possible that part of the reason for the activity of these systems is the lower transit probability of

these outer companions, but the presence of Kepler-90 (which has an outer companion semi-major

axis of roughly 1 AU) in the CMT-stable sample indicates that external companions do not ensure

non-transiting configurations.
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Figure 2.6 Comparison of Kepler Systems With and Without Non-Transiting Companions.
Kepler systems in which all discovered planets are transiting are plotted as black points
(they correspond to the same data presented in Figure 2.3), while Kepler systems where
additional non-transiting planets have been discovered are plotted as red points. Kepler-48,
marked (Steffen et al., 2013a; Marcy et al., 2014) is a four planet system with three inner
transiting planets and one non-transiting companion outside of 1 AU. Kepler-68 (Gilliland
et al., 2013), marked, is a three planet system with two transiting planets within 0.1 AU and
one additional non-transiting planet at 1.4 AU.
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Figure 2.7 Comparison between Secular Theory and Numerical Simulations for Kepler-341
b. An illustrative realization of Kelper-341b, with the result from the numerical N-body
code Mercury6 plotted in black and the secular theory evolution plotted in red.

2.4.4 Comparison to Numerical Integrations

The discussion thus far has considered inclination oscillations as described by second-order

Laplace-Lagrange theory. Although the amplitudes of the oscillations are small, so that the sec-

ond order theory is expected to be accurate, in this section we compare the results to numerical

simulations. These latter calculations, by definition, include interactions to all orders.

For these compact systems, eccentricity and inclination are generally low, but to evaluate the

error inherent in our second-order expansion, we evolved each compact system using hybrid sym-

plectic and Bulirsch-Stoer integrator Mercury6 (Chambers 1999). The numerical integrator should

provide the effectively ‘right’ answer, and significant deviations between the second-order theory

and numerical results would indicate that second order secular theory is insufficient to describe

the evolution of the orbital architectures. We compared 400 numerical N-body realizations with

400 secular evolutions (see the visualization of one realization of the comparison in Figure 2.7)

to compute the deviations plotted in Figure 2.8, which describe the mean deviation, in degrees,
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between secular theory and the numerical results. This comparison yielded a standard deviation of

the difference in inclination angle obtained using secular theory and numerical results; this value

was found to be less than 0.01 degrees.

For our use of second order second theory to be adequate for further analysis, we would want

this variation between the numerical result and secular result to be much smaller than the threshold

for significant inclination (which can cause a planet to become non-transiting). The planet in our

sample with the largest semi-major axis and largest number of planets in the system, Kepler-11g,

orbits a star with a radius R∗ = 0.0053 AU. This planet would need to attain an inclination of

0.65 degrees out of the plane of the other planets to no longer transit. Planets with semi-major

axes less than this value would need an even larger range of inclinations to be no longer seen as

mutually transiting. Given that the typical deviation between the Mercury6 numerical results and

secular theory is less than 0.01 degrees, the match between secular theory and N-body numerics is

good enough to use the second order secular theory for these compact systems.

We additionally note that although there is variation in the period of secular effects between

numerical and second-order secular theory (Veras & Ford, 2012), this does not affect our result,

as we are concerned with the amplitude rather than period of inclination oscillations, and these

amplitudes are well-predicted to a reasonable precision. If we were concerned with the exact period

of secular effects, second-order Laplace-Lagrange theory would not always be sufficient.

Finally, for completeness we note that the standard deviation of the residuals between the

secular and numerical results is not the only measure of the difference (e.g., one could use the

difference between the ranges of inclination angles instead). In this case, however, the differences

between the two approaches is small: The differences would have to be nearly 100 times larger in

order to change our main conclusion, i.e., that the Kepler compact systems remain CMT-stable.

2.5 Transit Duration Variations

Oscillations of the orbital inclination angles, as described in secular theory through equation

5.11, result in planets taking different paths across the face of the star as a function of time. These

changing chords, in turn, result in the duration of the planetary transit varying with inclination

68



100 101 102

Period, days

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
D

ev
ia

ti
on

in
in

cl
in

at
io

n
,
d
eg

re
es

(n
u
m

er
ic

-
se

cu
la

r)

100 101 102

Period, days

−0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

D
ev

ia
ti
on

in
ec

ce
n
tr

ic
it
y

(n
u
m

er
ic

-
se

cu
la

r)

Figure 2.8 The Measured Deviation between Numerical and Secular Results. A residuals plot
of (top panel) the deviation in inclination over several secular periods for each planet in our
sample and (bottom panel) the deviation in eccentricity for the sample sample of realizations.
The averaged deviation in inclination between the numerical and secular methods is generally
below 0.01 degrees for all planets. We do not want to use fractional residuals here because
inclination is plane invariant, so 0 degrees and 90 degrees are different only by convention.
To take a fractional value imputes some importance to the frame of reference we use.

and hence with time. For the case of vanishing eccentricity, we can write τT , the time from first to

fourth contact (the transit duration) for a single transit analytically (see Seager et al. 2007), in the

form

τT (t) =
P

π
arcsin Θ (2.16)

where we have defined the effective angle

Θ ≡ R∗
a

[
(1 + rp/R∗)

2 − (a/R∗ cos2 i)

1− cos2 i

]1/2

, (2.17)

where P is the period of the planet, a is its semi-major axis, R∗ the radius of the central star, rp

is the radius of the planet, and i is the inclination of the plane; note that the inclination angle is a

function of the time t at which the duration is evaluated (so that the duration will also be a function

of time). We also assume that orbital elements are effectively constant during a single transit, but

that variations occur from transit to transit. Substituting equation 5.11 into this expression then

yields a measure of the transit duration, τ , at any point during a planet’s secular evolution. The

second order secular theory used in this work computes motions with the evolution of inclination

decoupled from that of eccentricity, so the null eccentricity approximation for extracting transit

69



durations from our derived transit parameters is sufficient. A product of our stability study of

the Kepler systems is time series of I(t) and subsequently ∆b(t). From these expressions, we can

compute the times series τT (t), evaluated at each transit epoch for each planet in a system.

Thus far, observational study of secular TDVs has been limited by two main factors: (1) the

signature of TDVs caused by even massive planets is generally small due to small yearly changes

in inclination and eccentricity, and (2) to find TDVs to good precision, the cadence of photometric

measurements must be high enough such that durations can be extracted from individual transits.

Through TTVs can been used to determine dynamical quantities of multi-planet systems with good

success (Agol et al., 2005a; Holman & Murray, 2005), TDVs in multi-planet systems are generally

as much as several order of magnitude smaller in amplitude (see, for example, Figure 4 in Nesvorný

et al., 2013, which demonstrates the difference in amplitude between a TTV and TDV signal for

one system). However, there has been recent success measuring the amplitude of planetary TDVs

(Maciejewski et al., 2013). Since transit duration depends on the chord a planet takes across its star

in our line of sight and oscillating inclination can directly change this chord, secular interactions

exciting inclinations will also lead to potentially observable transit duration variations.

Transit duration variations are thought to be one of the few (but currently feasible) promising

ways to find moons around extrasolar planets (Kipping, 2009), as the perturbing effect of a moon

would alter both the time of center transit and the duration of said transit for a transiting planet.

Secular TDVs can also be used to constrain the oblateness of the central body, which has been done

observationally for the KOI-13 system (Szabó et al., 2012). In this context, the stellar oblateness

leads to precession of the orbital elements and thereby mimics the effects of secular interactions

among multiple planets (see equation 5.2, which depends on the stellar oblateness J2). In order

for TDVs to be a useful method to detect exomoons or measure stellar oblateness, the amplitude

due to these effects must be large compared to the intrinsic variation which we determine here. We

also note that TDVs are now being compiled from the Kepler data (Mazeh et al., 2015), with more

data expected in the near future. The time series τT (t) yields two useful measures: first, it yields

the transit duration variation rate, which can be parameterized as δτT,t, the change in duration

per unit time (in Table 1, we parameterize this as as a variation per year. For example: a TDV

of 1 sec yr−1 would mean that over one year, the expected duration would change by one second,
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regardless of when or how frequently the transits occur). Second, it yields the duration variation

per orbit, δτT,n, which can be directly compared to the magnitude of other effects that can also

cause TDVs. Both of these measures provide useful constraints on the properties of the system: the

yearly TDVs provide approximate limits for the signal due to secular interactions between planets

only. The duration variation per orbit allows for a fit to a series of durations over time, where:

τT (t) = τT (0) + δτT,n n (2.18)

where n is the number of orbits observed. If this is done, then variation accumulates as (∆τT ) =

δτT,n n when (∆τT ) is the total change in duration over an extended baseline of time. In this case,

when the time series contains N independent measurements, the precision in fitting δτT,n, as given

in Equation 2.18, is increased. The uncertainty scales like σ ∝ N−3/2, with one factor of N−1 being

due to the number of observed transits, a factor of N−1/2 being due to the independent nature of

these observations (as used in Pl & Kocsis, 2008). In this way, a large number of transit duration

measurements can better constrain the TDV per orbit than would be possible looking at yearly

drift alone using two widely separated transits (see Figure 3 in Szabó et al., 2012, which is the first

example of observed long-period TDVs of the type we would see for secular interactions considered

in this work).

The effect of secular interactions between planets in a multi-planet system can occlude obser-

vations of other parameters traced by transit durations (such as the presence of exomoons or solar

oblateness), but it can also provide evidence for additional planets in the system, as non-transiting

planets contribute to the duration variations even if they are not directly observable.

In Table 2, we present expected yearly TDVs for each planet considered in this work. These

values are also presented in histograms in Figure 2.9. Though these values are small because the

yearly change in inclination for each planet is very small, they provide limits for the kind of TDVs

expected in the observed Kepler multi-planet systems without the presence of a perturber. The

presence of a perturbing secondary in any of these systems would lead to transit durations outside

the expected range. For example, circumbinary planets can exhibit TDVs on the order of hours

(such as for Kepler-47, as in Welsh et al., 2014). For exomoons, the TDV amplitude is expected
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Figure 2.9 Transit Duration Variation Amplitudes for Kepler Multis. A histogram of the
derived annual TDV values in this work, for Kepler systems with four or more coplanar
planets. Data is presented in (upper panel) TDV year−1 and (lower panel) TDV orbit−1.
The bulk of the transit duration variations range from 0.01 to 10 seconds per orbit. The
data visualized here is also given in Table 2. This histogram includes only compact mutually
transiting systems with four or more planets (Kepler-37, -48, and -68 are not included).

to scale with Msa
−1/2
s , when s denotes a satellite (Kipping, 2009). This amplitude is typically on

the order of tens of seconds, being 13.7 seconds for the Earth-Moon system (Kipping, 2011). In

comparison, typical values for the secular interactions within a compact system are a bit smaller

(being typically between 10−2 − 101 seconds per orbit).

Significant deviation in transit durations above these predicted values would suggest the pres-

ence of an additional effect (perturbing planet, extreme solar oblateness, exomoon, etc.) in the

system. The range of transit duration variations summarized in Figure 2.9 thus serves as a baseline

of the expected TDV distribution for tightly packed, coplanar, multi-planet systems.

2.6 Planetary Mass Constraints

The observed current coplanarity of the Kepler multi-planet systems is a stringent constraint

on the planets’ orbital properties. For most of the planets in the Kepler system, the ratio Rp/R∗

is well-known. Combined with a value of the stellar radius (determined from either spectroscopy

or interferometry), this value yields a measure of the planetary radius.
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To perform a dynamical analysis, these measured radii must be converted to mass. Although

some Kepler planets have masses measured via long-term radial velocity surveys (Marcy et al.,

2014), the population of four-plus planet systems generally do not have measured masses due to

the difficultly of measuring masses for small planets in multi-planet systems. Much recent work

has been conducted aimed at finding a mass-radius relationship for exoplanets (Wolfgang et al.,

2016; Weiss & Marcy, 2014b; Rogers, 2015a). When testing the CMT-stability of the compact

Kepler systems, we use a supplemented version of the Wolfgang relation (Wolfgang et al., 2016).

This relation introduces a large amount of scatter in density for planets that could be gaseous or

rocky, which is useful for exploring the entire extent of parameter space in which the real planets

could be living. However, another question that the apparent relative CMT-stability of the Kepler

systems engenders is the effect of systematic mass enhancement (which could be due to an incorrect

measurement of the stellar radius, as in Muirhead et al., 2012, in which the correction of such a

misconception can be found). To test the effect of such systematic radius errors, we will inflate the

masses of the constituent planets in the Kepler compact systems and examine the dynamical and

CMT-stability of the systems.

For this experiment, we make a different choice in converting radii to masses: we use conver-

sion law MP = M⊕(RP /R⊕)2.1 inferred from results of the Kepler mission (Lissauer et al., 2012a).

Using this relation removes the scatter due to composition, enabling a qualitative study of the gen-

eral stability status of the Kepler multi-planet systems, without noise from differing compositions

between trials.

Determining the effect of planetary mass enhancement with respect to roughly estimated values

would help determine if the parameter space of CMT-stable systems (which we have shown includes

all the systems in our sample) changes if the planetary masses are systematically underestimated.

To determine the extent of this parameter space, we evaluate the dynamical stability of the Kepler

systems with varying mass enhancement factors, which places constraints on the maximum ratio by

which the masses can be enhanced without losing the currently observing transiting configuration

of the systems.

To evaluate the effect of having larger planets in each system, we performed 40 numerical

simulations of each system using Mercury6 for each mass enhancement factor. The integration
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time for each system was 106 dynamical times. This full treatment accounts for effects ignored in

the secular theory such as the coupling of eccentricity and inclination, and instabilities due to orbit

crossing or other effects. A mass enhancement factor describes the factor by which we increase

all planetary masses within a single system. Although we alter the masses of the planets, we do

not alter starting semi-major axes. The systems for each enhancement factor were created using

observationally constrained orbital parameters supplemented with orbital parameters drawn from

the standard priors (see Table 2.4). When a system remains CMT-stable for the entire time, this

means that it is observable in transit and the system as a whole does not go dynamically unstable

(e.g., by ejecting a planet).

There are two potential causes of instability in these systems. First, increased inclination

oscillations can cause a some planets in a system to lie outside a mutual line of sight, even as a

system remains dynamically stable. For the purposes of our analysis, we consider this to be an

CMT-unstable system. Second, true dynamical instability (in the form of ejected/star-consumed

planets or orbit crossing) also results in an CMT-unstable system. When either of these criteria

(large inclination oscillations or true dynamical instability) is met for a certain mass enhancement

factor, we categorize that system as unstable.

We parameterize the dynamical fullness of a system in terms of the surface density of a disk

consisting of the mass of its constituent planets spread over an annulus with an inner radius equal

to the semi-major axis of the most interior planet, and an outer radius equal to the semi-major

axis of the most exterior planet:

Σ =

∑i=n
i=1 mi

π(a2
n − a2

1)
(2.19)

where n is the number of planets in a system, a is the semi-major axis, m is the planetary mass,

and i denotes the planet number.

In Figure 2.10, we plot the mass enhancement factor required to make a system CMT-unstable

against the the surface density of the planet annuli. This plot is essentially a comparison of

the dynamical fullness of the system (surface density) to the stability against excitation (mass

enhancement factor required to knock a system out of transit). The observed result appears to

intuitively support that a higher surface density of material leads to a less CMT-stable system (for
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which a lower mass enhancement factor can excited oscillations out of the plane). The large scatter

of the data could also be explained by the existence of two distinct populations (one containing the

disks where planet surface density is below 200 M⊕/ AU2, and another where the density is above

200 M⊕/ AU2, where the former are significantly less sensitive to mass enhancement).

For many systems with a surface density Σ > 200 M⊕/ AU2, hot or warm Jupiter-like planets

would be CMT-stable even in a multiple-planet system. This finding suggests that Jovian-size

planets can exist in tightly-packed multi-planet systems with semi-major axis similar to those of

the discovered Kepler systems (although this result holds only for Myr timescales, as discussed

below).

The mass enhancement factor required to render the systems CMT-unstable may seem higher

than expected. On one hand, the integrations are carried out for only 106 dynamical times, which

generally works out to be a few million years, which is short compared to the system ages. The

critical enhancement factor appropriate for the ages of the systems are thus lower, but we assume

here that the short-time values provide a good relative measure of stability. On the other hand,

these systems are in CMT-stable configurations, even though their surface densities are much

larger than that of out solar system (the analogous value for our solar system is 0.49 M⊕/ AU2).

For comparison, we note that the GJ 876 system (one of the most dynamically active systems

discovered to date) has a surface density Σ = 2750 M⊕/ AU−2, which is much larger than the

systems considered here.

2.7 Conclusions

This chapter has explored the dynamics of compact solar systems undergoing oscillations in

their orbital inclination angles. If such oscillations occur with sufficient amplitude, then not all

of the planets in a multi-planet system are expected to transit at a given epoch. By comparing

the conditions required for the excitation of inclination angles with the observed properties of

compact multi-planet systems, we can put constraints on their dynamical history. In this work, we

have provided measures of ∆b(t), the spread in impact parameters, and characterized the potential

dynamical history of compact extrasolar systems. We have also utilized our method to test the
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Figure 2.10 Mass Enhancement Factor Required to Destabilize System. The mass enhance-
ment factor required to knock a system out of a CMT-stable transiting configuration, plotted
by the surface density of the annulus containing all the planets (which is defined in Equation
2.19). The points are shaded based on the ratio of the total planet mass to stellar mass
(Mdisk/M∗). The shape of the trend can be explained two ways. It could be explained by the
existence of two distinct populations (one containing the disks where planet surface density
is below 200 M⊕/ AU2, and another where the density is above 200 M⊕/ AU2, where the
former are significantly less sensitive to mass enhancement), or it could be explained as a
monotonic (but high-scatter) decreasing trend with surface density.
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dynamical and CMT-stability of a small sample of systems with additional non-transiting planets.

From our derived ∆b(t), we have extracted subsequently the expected TDVs for observed systems

in the case that these systems have no additional non-transiting companions. Finally, we have

explored the effect of enhancing the mass of planets in these tightly packed systems, with an aim

at determining how robustly the transit stability holds as planetary masses increase.

We have done this analysis by examining the multi-planet Kepler systems with the greatest

number of transiting planets and analyzing their long-term stability, using a combination of secular

(Sections 2.4, 2.4.3, and 2.5) and numerical techniques (Sections 2.4.4 and 2.6). Using the Kepler

systems with the greatest number of transiting planets as our sample, we derived ∆b(t) for each

planet using Monte Carlo techniques to marginalize over potential values of present orbital elements.

We have determined that the compact Kepler systems are CMT-stable against being excited into

non-mutually-transiting configurations.

Compact solar systems could have configurations that allow for a significant spread in the orbital

inclinations through secular interactions between the constituent planets (Section 2.4). However,

for the types of architectures observed in the Kepler sample of multi-planet systems, the expected

range of inclination angles is almost always small. As shown in Figure 3, the typical spread in the

mean mutual impact parameter is typically less than ∼ 0.5, whereas impact parameters greater

than 2 are required for planets to move out of transit. This result can also be expressed in terms

of inclination angles: self-excitation generally produces ∆i < 0.5 deg, whereas angles of 1 – 2 deg

are required to compromise transit in these compact systems. As a result, for most of the systems

discovered by the Kepler mission, the self-excitation of inclination angle oscillations is generally not

large enough to prevent planets from being observed in transit.

We have also tested the behavior of generalized Kepler systems. For these generalizations, we

drew orbital parameters for each system from expanded but observationally inspired posteriors, then

tested the dynamical stability. For dynamically stable analogs, we proceeded with the analysis used

for the observed Kepler systems. We found that the generalized systems are experience significantly

more action in mutual impact parameter excitation, resulting in these systems being on average

less CMT-stable than the observed Kepler systems. The observed Kepler systems are remarkably

CMT-stable, even compared to their analogs.
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Our derived result that self-excitation of inclination angle oscillations is generally not large

enough to prevent planets from being observed in transit holds for the Kepler systems, but not

their analogs; even then, it has an important exception. We have also considered another type of

Kepler system that contains 2 or 3 transiting planets and an additional planet not seen in transit

(where the additional body was discovered by radial velocity follow-up). Kepler 48 and Kepler 68

are examples of this type of system. These systems are CMT-unstable to significant oscillations

in inclination angle, so that the expected spread in inclination angle is generally large enough to

move planets out of transit. We found this result by secularly evolving these systems after starting

them in a nearly coplanar configuration. Even starting roughly coplanar, the magnitude of these

systems’ self-excitation is large enough that not all planets can be seen in transit simultaneously

for most of each system’s orbital history. This finding indicates that the current Kepler systems

with non-transiting companions could have started roughly coplanar and subsequently had some of

their planets excited out of the plane via dynamical interactions between the planets that we know

about. Specifically, it is not necessary to introduce additional bodies into these systems to recreate

the currently observed architectures.

We have focused on the secular interactions of compact systems of planets, and derived ob-

servables corresponding to the current known properties of these systems. These observables, the

transit duration variations for Kepler systems with the observationally determined properties, are

given in Table 2. Implicit in the motivation behind the calculation of these TDVs is the idea that

there could be additional bodies in the systems we are considering, leading to true TDVs deviating

from those that we have found here. An additional massive companion or an exomoon, for example,

could cause transit duration variations with a larger amplitude than those derived in this work. If

future observations of TDVs in these systems are vastly different than expected, it could potentially

be evidence for either an exomoon or additional, exterior, non-transiting bodies in these compact

systems.

We have also explored the effect of planetary mass enhancement in these systems. The stability

of systems is related to how much the constituent planets’ masses must be enhanced to result in a

system that will no longer mutually transit. Generally, systems with higher effective surface density

(calculated by spreading the mass of discovered planets within an annulus with inner and outer
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radii equal to the inner and outer planet’s orbital radii) do not allow mass enhancement factors as

high as those with lower surface density. This result suggests that dynamically ‘full’ systems would

not be mutually transiting if they hosted Jovian-mass planets. However, some systems with lower

surface densities would be CMT-stable in a transiting configuration even with Jovian-mass planets

(at least over time scales of ∼ 10 Myr), indicating that it might be possible to see multi-transiting

compact systems with Jovian-mass planets if they existed. The stability boundaries – over longer

time scales – should be explored further in future work.

Spreads in the inclination angles in compact systems can be produced by a variety of astro-

nomical processes, in addition to those considered in this work. Excitation by the compact solar

system planets themselves (with semi-major axes a < 0.5 AU) is not generally a significant effect,

but we have not (yet) calculated the effect caused by possible additional bodies in the outer part of

the solar system (where a ≈ 5− 30 AU). Since planet formation is a relatively efficient process, the

additional giant planets, not seen in transit by Kepler, are not only possible but likely. The orbits

of these outer planets can be endowed with high inclination angles through a variety of dynamical

mechanisms. For example, most solar systems form within clusters, and inclinations can be ex-

cited through dynamical interactions between solar systems and other cluster members (Adams &

Laughlin, 2001; Adams, 2010; Li & Adams, 2015b). In addition, a range of inclination angles can be

realized through the formation of planets in warped disks. The observed angular momentum vectors

in star-forming cores do not point in the same direction as a function of radius (Goodman & Weare,

2010a; Caselli et al., 2002). This heterogeneity can lead to differences in angular momentum vector

of the disk plane as a function of radius (for disks produced through collapse of the cores), which

in turn will influence the inclination angles of forming planets (see also Spalding et al., 2014a).

These various mechanisms can lead to inclined, massive, outer secondaries to the compact systems

that we have considered in this work. The presence of such secondaries would alter the stability

of these systems, and this effect could be evident in the TDVs. Additionally, it is possible that a

system of planets would have only some planets mutually transiting, instead of the condition of all

planets in a system transiting that we have considered in this work. For example, although we see

four planets in a system discovered by Kepler, it is possible that another short-period companions

exists in such a system, resulting in our picture of the system being incomplete. Extensions on our
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calculation that account for this possibility could potentially be explored by using techniques such

as the semi-analytical code CORBITS (Brakensiek & Ragozzine, 2015).

In summary, we have determined that self-excitation is not usually a dominant mechanism in

exciting mutual inclination in tightly packed, multi-planet systems. Self-excitation does operate in

some solar system architectures, where Kepler-48 and Kepler-68 are prime examples. Subsequent

analysis of the effect of perturbing secondaries and stellar fly-bys in a dense cluster environment

will complete the picture of how and when mutual inclinations are excited in exoplanetary systems.
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Transit Duration Variations for Kepler Compact Systems

Planet Orbital Period, days τT,n, TDV (s yr−1) τT,t, TDV (s orbit−1)
Kepler 11 10.3039 9.322660729 0.263177435
Kepler 11 13.0241 8.478858911 0.302546593
Kepler 11 22.6845 27.49182915 1.708598352
Kepler 11 31.9996 9.333648315 0.818282226
Kepler 11 46.6888 47.07565441 6.021659764
Kepler 11 118.3807 195.5615046 63.42659673
Kepler 20 3.6961219 1.914759018 0.019389542
Kepler 20 6.098493 9.46333942 0.158115368
Kepler 20 10.854092 4.0055073 0.119112725
Kepler 20 19.57706 50.15850045 2.690290337
Kepler 20 77.61184 73.36444964 15.59986281
Kepler 24 4.244384 0.743325382 0.008643722
Kepler 24 8.1453 1.056218584 0.023570458
Kepler 24 12.3335 1.232153241 0.041634964
Kepler 24 18.998355 3.605506001 0.187667625
Kepler 26 3.543919 1.859049714 0.018050196
Kepler 26 12.2829 3.710922038 0.124879135
Kepler 26 17.2513 6.100397395 0.28832818
Kepler 26 46.827915 37.7182322 4.839085401
Kepler 32 0.74296 2.028539272 0.004129106
Kepler 32 2.896 0.980507587 0.007779589
Kepler 32 5.90124 1.7046195 0.027559914
Kepler 32 8.7522 3.609925168 0.08656106
Kepler 32 22.7802 5.932320689 0.370245073
Kepler 33 5.66793 4.848962172 0.075297474
Kepler 33 13.17562 5.861904438 0.211600617
Kepler 33 21.77596 2.870395649 0.171248276
Kepler 33 31.7844 10.62434609 0.925173879
Kepler 33 41.02902 10.88222417 1.223252036
Kepler 49 2.576549 1.222377872 0.008628812
Kepler 49 7.2037945 2.229154696 0.043995541
Kepler 49 10.9129343 3.964566165 0.118534384
Kepler 49 18.596108 16.67313555 0.84946693
Kepler 55 2.211099 0.74535018 0.004515186
Kepler 55 4.617534 2.075484138 0.026256489
Kepler 55 10.198545 7.323822446 0.204636528
Kepler 55 27.9481449 7.955549215 0.609158472
Kepler 55 42.1516418 23.59027592 2.724298248
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Transit Duration Variations for Kepler Compact Systems (continued)

Planet Orbital Period, days τT,n, TDV (s yr−1) τT,t, TDV (s orbit−1)
Kepler 62 5.714932 6.558019889 0.102681199
Kepler 62 12.4417 10.787751 0.367720443
Kepler 62 18.16406 7.847335247 0.390519091
Kepler 62 122.3874 126.4774292 42.40888689
Kepler 62 267.291 200.7871286 147.0372394
Kepler 79 13.4845 12.8033798 0.473005959
Kepler 79 27.4029 28.46032201 2.136699611
Kepler 79 52.0902 20.63076067 2.944275204
Kepler 79 81.0659 89.08814913 19.78633147
Kepler 80 3.072186 2.130009061 0.017928175
Kepler 80 4.645387 1.943170254 0.024730898
Kepler 80 7.053 1.714628021 0.03313225
Kepler 80 9.522 1.971262692 0.051425653
Kepler 82 2.382961 0.965129741 0.006301004
Kepler 82 5.902206 2.222408585 0.035937297
Kepler 82 26.444 17.76864363 1.287326061
Kepler 82 51.538 10.89753388 1.538731784
Kepler 84 4.224537 4.439153917 0.051379096
Kepler 84 8.726 2.002291695 0.047868486
Kepler 84 12.883 3.658674592 0.129136177
Kepler 84 27.434389 10.50305215 0.789437858
Kepler 84 44.552169 29.82330904 3.640255081
Kepler 85 8.306 1.592408413 0.036237108
Kepler 85 12.513 2.059758945 0.070613051
Kepler 85 17.91323 15.62065426 0.766620199
Kepler 85 25.216751 26.0037509 1.796520854
Kepler 90 7.008151 44.64259007 0.857156198
Kepler 90 8.719375 51.72347308 1.235606461
Kepler 90 59.73667 122.8193078 20.10086701
Kepler 90 91.93913 163.2018666 41.10859624
Kepler 90 124.9144 196.2255593 67.15451508
Kepler 90 210.60697 160.6239691 92.6808971
Kepler 90 331.60059 200.873026 182.492093
Kepler 102 5.28696 21.67804261 0.314002587
Kepler 102 7.07142 5.624323905 0.108964265
Kepler 102 10.3117 3.349150204 0.094617622
Kepler 102 16.1457 0.736673755 0.032586612
Kepler 102 27.4536 42.68179251 3.210325641
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Transit Duration Variations for Kepler Compact Systems (continued)

Planet Orbital Period, days τT,n, TDV (s yr−1) τT,t, TDV (s orbit−1)
Kepler 106 6.16486 3.817466082 0.064477107
Kepler 106 13.5708 7.56602341 0.281306823
Kepler 106 23.9802 35.33153826 2.321253024
Kepler 106 43.8445 18.90988445 2.271491586
Kepler 107 3.179997 0.746863983 0.006506918
Kepler 107 4.901425 0.979622681 0.013154924
Kepler 107 7.958203 4.806241849 0.104791913
Kepler 107 14.749049 1.19795885 0.048407545
Kepler 122 5.766193 3.958098992 0.062529213
Kepler 122 12.465988 0.796688261 0.027209606
Kepler 122 21.587475 24.6377173 1.457167415
Kepler 122 37.993273 64.29884982 6.692941794
Kepler 150 3.428054 1.867968128 0.017543824
Kepler 150 7.381998 1.135021003 0.022955405
Kepler 150 12.56093 4.078868983 0.140368186
Kepler 150 30.826557 18.32964457 1.548054337
Kepler 169 3.250619 2.003755495 0.017845057
Kepler 169 6.195469 3.473185364 0.058953458
Kepler 169 8.348125 4.542706201 0.103898847
Kepler 169 13.767102 4.044452569 0.152549017
Kepler 169 87.090195 21.57958002 5.148958444
Kepler 172 2.940309 0.46849388 0.003774019
Kepler 172 6.388996 0.965003916 0.016891524
Kepler 172 14.627119 3.850997739 0.154326033
Kepler 172 35.118736 8.863030127 0.852762781
Kepler 186 3.8867907 2.174369234 0.023154296
Kepler 186 7.267302 2.671048208 0.053181682
Kepler 186 13.342996 5.6398171 0.206170019
Kepler 186 22.407704 21.23861165 1.303858968
Kepler 186 129.9441 127.2638103 45.30734602
Kepler 197 5.599308 1.746693303 0.026795271
Kepler 197 10.349695 1.664512376 0.047197796
Kepler 197 15.677563 2.946426313 0.126555573
Kepler 197 25.209715 19.27829892 1.331508004
Kepler 208 4.22864 0.327987695 0.003799841
Kepler 208 7.466623 1.085357765 0.022202623
Kepler 208 11.131786 2.145926971 0.065446575
Kepler 208 16.259458 1.939023031 0.086376612
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Transit Duration Variations for Kepler Compact Systems (continued)

Planet Orbital Period, days τT,n, TDV (s yr−1) τT,t, TDV (s orbit−1)
Kepler 215 9.360672 5.214125094 0.133719767
Kepler 215 14.667108 7.140540403 0.286934458
Kepler 215 30.864423 13.54786835 1.145608602
Kepler 215 68.16101 73.36673268 13.70068658
Kepler 220 4.159807 1.08595549 0.012376343
Kepler 220 9.034199 0.726348102 0.017978009
Kepler 220 28.122397 31.65200923 2.438713341
Kepler 220 45.902733 28.54622634 3.589999468
Kepler 221 2.795906 1.622302263 0.012426862
Kepler 221 5.690586 1.258209005 0.019616292
Kepler 221 10.04156 3.116385606 0.085735269
Kepler 221 18.369917 7.160429778 0.360373975
Kepler 223 7.384108 6.794688993 0.1374595
Kepler 223 9.848183 4.741440907 0.12793035
Kepler 223 14.788759 3.494873231 0.141602296
Kepler 223 19.721734 11.9376658 0.645017725
Kepler 224 3.132924 1.856809099 0.015937649
Kepler 224 5.925003 0.971515147 0.015770494
Kepler 224 11.349393 3.646370338 0.113381068
Kepler 224 18.643577 13.12338292 0.67032
Kepler 235 3.340222 0.564712568 0.00516785
Kepler 235 7.824904 7.345399102 0.15747135
Kepler 235 20.060548 6.816955222 0.374662623
Kepler 235 46.183669 39.50423791 4.998494925
Kepler 238 2.090876 0.884749492 0.005068223
Kepler 238 6.155557 2.172310058 0.036635009
Kepler 238 13.233549 3.287882421 0.119206447
Kepler 238 23.654 1.177061595 0.076280041
Kepler 238 50.447 39.55458755 5.466877474
Kepler 251 4.790936 3.555780556 0.04667265
Kepler 251 16.514043 6.199763248 0.2805018
Kepler 251 30.133001 10.65335888 0.879500476
Kepler 251 99.640161 96.79454965 26.4236288
Kepler 256 1.620493 0.323635851 0.001436848
Kepler 256 3.38802 0.427493436 0.003968099
Kepler 256 5.839172 0.884567462 0.014151073
Kepler 256 10.681572 2.074977703 0.060723353
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Transit Duration Variations for Kepler Compact Systems (continued)

Planet Orbital Period, days τT,n, TDV (s yr−1) τT,t, TDV (s orbit−1)
Kepler 265 6.846262 3.529407786 0.066200686
Kepler 265 17.028937 6.886638378 0.32129351
Kepler 265 43.130617 31.42320459 3.713156719
Kepler 265 67.831024 60.40531736 11.22562885
Kepler 282 9.220524 15.78120361 0.398660183
Kepler 282 13.638723 20.28678008 0.758043217
Kepler 282 24.806 25.75148128 1.750112999
Kepler 282 44.347 26.5277244 3.223082175
Kepler 286 1.796302 0.713292306 0.003510379
Kepler 286 3.468095 1.26801456 0.012048205
Kepler 286 5.914323 3.526176454 0.05713684
Kepler 286 29.221289 13.69225381 1.09617892
Kepler 296 5.841648 2.228023946 0.035658443
Kepler 296 10.21457 15.68127047 0.438842287
Kepler 296 19.850242 16.85583517 0.916691527
Kepler 296 34.14204 64.98518257 6.078703295
Kepler 296 63.336 82.07825957 14.24248945
Kepler 299 2.927128 1.224694325 0.009821471
Kepler 299 6.885875 1.810056081 0.034147452
Kepler 299 15.054786 12.26546764 0.505901344
Kepler 299 38.285489 27.25944274 2.859290672
Kepler 306 4.646186 3.606915153 0.045913421
Kepler 306 7.240193 3.698312183 0.073360257
Kepler 306 17.326644 10.59158411 0.502785225
Kepler 306 44.840975 39.39149661 4.839323602
Kepler 338 9.341 3.640821013 0.093175093
Kepler 338 13.726976 3.068493345 0.115400369
Kepler 338 24.310856 7.040320215 0.468921126
Kepler 338 44.431014 13.81305425 1.681446594
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Transit Duration Variations for Kepler Compact Systems (continued)

Planet Orbital Period, days τT,n, TDV (s yr−1) τT,t, TDV (s orbit−1)
Kepler 341 5.195528 1.217989712 0.017337259
Kepler 341 8.01041 1.039299363 0.022808806
Kepler 341 27.666313 22.75719988 1.724952917
Kepler 341 42.473269 12.26030004 1.426671292
Kepler 402 4.028751 1.081566673 0.01193798
Kepler 402 6.124821 0.917643194 0.015398357
Kepler 402 8.921099 3.453650264 0.084411934
Kepler 402 11.242861 2.886419391 0.088908526
Kepler 444 3.6001053 2.256350153 0.022255063
Kepler 444 4.5458841 1.40080575 0.017446303
Kepler 444 6.189392 1.916669517 0.032501422
Kepler 444 7.743493 2.784776198 0.059079164
Kepler 444 9.740486 1.368811474 0.036528463

Table 2.2 Transit Duration Variations for Kepler Multi-Planet Systems. Predicted values of
the transit duration variations (TDVs) for the current sample of Kepler compact systems
containing only the planets that have been discovered so far. Duration variations are pre-
sented both per orbit as well as per year to machine precision. True errors are typically on
the order of 1% of reported values, but are not reported for brevity.
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CHAPTER III

Effects of Unseen Additional Planetary Perturbers on

Compact Extrasolar Planetary Systems

Results in this chapter were published in: Becker, J. C., & Adams, F. C. 2017. Effects
of Unseen Additional Planetary Perturbers on Compact Extrasolar Planetary Systems. Monthly
Notices of the Royal Astronomical Society, 468, 549 and are presented here with minor revisions.

3.1 Abstract

Motivated by the large number of compact extrasolar planetary systems discovered by the

Kepler Mission, this chapter considers perturbations due to possible additional outer planets. The

discovered compact systems sometimes contain multiple transiting planets, so that their orbital

angular momentum vectors are tightly aligned. Since planetary orbits are susceptible to forced

oscillations of their inclination angles, the highly aligned nature of these systems places constraints

on possible additional (non-transiting) planets. If planets in the outer regions of these solar systems

have sufficiently large mass or sufficiently small semi-major axis, they will induce the compact inner

orbits to oscillate in and out of a transiting configuration. This chapter considers the dynamics of

the compact systems discovered to host five or more planets. In order to not perturb these systems

out of a continually, mutually transiting state, additional planetary companions must generally

have periastron p > 10 AU. Specific constraints are found for each of the 18 planetary systems

considered, which are obtained by marginalising over other orbital parameters using three different

choices of priors for the companion properties (a uniform prior, a transit-inspired prior, and an non-
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transiting disk prior). A separate ensemble of numerical experiments shows that these compact

systems generally cannot contain Jupiter-analogs without disrupting the observed orbits. We also

consider how these constraints depend on system properties and find that the surface density of

the planetary system is one of the most important variables. Finally, we provide specific results for

two systems, WASP-47 and Kepler-20, for which this analysis provides interesting constraints.

3.2 Introduction

In this chapter, we examine the effect of outer perturbing companions on compact systems of

closely-packed planets (specifically, a subset of the multi-planet systems discovered by the Kepler

spacecraft). This chapter considers the effects of including hypothetical companions into the ob-

served systems, with a focus on whether or not the entire system of planets remains in a mutually

transiting configuration. The analysis thus considers the secular, dynamical, and transit stability

of the systems, but does not provide any constraints on the long-term dynamical fate of the system

or its formation history.

Our knowledge of high planetary multiplicity systems originates largely from the Kepler mission

(Borucki et al., 2010; Batalha et al., 2010). The Kepler mission has enabled population-level

progress such as constraining the size distribution of exoplanets (Howard et al., 2012a; Fressin

et al., 2013a), searching for and determining the abundance of rocky habitable exoplanets (Dressing

et al., 2015a; Petigura et al., 2015; Burke et al., 2015), defining a transition zone between rocky and

gaseous planets (Rogers, 2015a), and much more additional work that was impossible before the

era of large-scale transit surveys. One particularly interesting sub-population that has been found

is a collection of high-multiplicity systems. More than forty planetary systems were found by the

original Kepler mission to have four or more transiting planets, and more such systems continue to

be found by the K2 mission (Vanderburg et al., 2016b).

Although the Kepler mission found many short-period planets, long-period planets are harder

to find. Their transits are much less frequent and their radial velocity signals are smaller than

for planets closer to the star. Finding long-period companions to existing Kepler systems with

any number of known planets can be approached from two directions: observational searches and

88



theoretical constraints. Observational searches that have met with success at finding potential long-

period companions include re-analysing legacy data (Wang et al., 2015b; Foreman-Mackey et al.,

2016; Uehara et al., 2016), conducting follow-up radial velocity searches (Knutson et al., 2014b) or

searching using adaptive optics (Adams et al., 2013; Ziegler et al., 2016; Baranec et al., 2016).

Theoretical searches, in contrast, can inform on what populations of unseen planets could exist

in principle. These studies can be either analytic or numerical. The analytic approach is by

necessity limited in scope, as analytically tractable equations cannot encapsulate the full behaviour

of a complex planetary system. As an example, Lai (2016) generalised the secular approximation

for the behaviour of systems with more than two planets, and found that perturbing companions

can indeed excite the inclinations of the orbits in the inner systems.

In general, the secular approximation is an efficient, time-saving technique (see also Batygin

et al. 2011, Van Laerhoven & Greenberg 2012, Spalding & Batygin 2015, and many additional

recent papers) which is often applied to this problem. However, to evaluate the effects of massive,

outer perturbers on an inner compact system, one must use full N-body numerical simulations.

Multi-planet systems are often highly chaotic, so that many realisations of the systems must be

considered to fully evaluate their dynamics. The numerical approach can thus test specific systems

and determine probabilities of varying potential outcomes. Huang et al. (2017) used N-body ex-

periments to test the stability of super-Earth systems in the presence of a companion exterior to

1 AU, and determined that a majority of super-Earth systems are destabilised by the presence of

such a perturbing companion. Mustill et al. (2016a) performed a complementary set of numerical

experiments, but found the same destabilising effect (albeit at a lower rate).

In this work, our goal is to test not only the stability of observed Kepler multi-planet systems,

but also to map their transiting behaviour. Petrovich et al. (2014) found that for systems where

tightly packed inner planets have significant eccentricities or inclinations, the excitation of those

orbital elements must occur before the planets attain their tightly packed configurations. This

finding suggests that a tightly packed system with all of its planets observed to be transiting

would not generally be expected to attain a non-transiting configuration over secular timescales,

although this stability may not hold over the age of the system. Another previous study (Volk &

Gladman, 2015) found that currently observed multi-planet systems may be the remnants of tightly
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packed compact systems, which may have lost planets over time through dynamical instabilities and

collisions over the history of the system. On the other hand, Moriarty & Ballard (2016) found that

these systems may be dynamically stable over spans of time much longer than secular timescales.

A comprehensive numerical analysis requires an average of 5000 – 8000 CPU hours on standard

processors for each planetary system under investigation. For this reason, and others, the behaviour

of the Kepler multi-planet systems in the presence of extra companions has not yet been evaluated

numerically. For these compact planetary systems, this investigation thus provides a picture of the

transiting behaviour of the inner planets in the presence of an extra companion.

As such, this work builds upon an earlier contribution (Becker & Adams, 2016), where we exam-

ined the possible self-excitation of inclination in a collection of the multi-planet systems discovered

by the Kepler mission. These Kepler multi-planet systems are generally tightly packed, with four

or more planets orbiting within ∼ 0.5 AU. Self-excitation of inclination occurs when planets that

are a part of such a tightly packed system trade angular momentum among their orbits. The end

result is that one or more planets could have inflated inclinations at any given time. Over secular

timescales, the particular planets that are excited to higher inclinations may change, and the width

of the effective “plane” containing the planets may also vary. As a result of such interactions, a

system where all planets start in a mutually transiting configuration from our line of sight could

evolve such that one or more planets leave the transiting plane at later times (a related treatment

of this problem can be found in Brakensiek & Ragozzine, 2016a).

For completeness, we note that the system could also evolve to a configuration where all of

the planets are observed in transit from a different line of sight. The movement of planets in and

out of the transiting plane could also excite large observed obliquities, as planets move out of the

plane aligned with the stellar spin axis of the host star. Multiple authors (Li & Winn, 2016; Mazeh

et al., 2015; Morton & Winn, 2014a) have found that the systems with multiple planets have lower

obliquities.

Using a combination of secular and numerical analyses of the multi-planet systems observed

by Kepler, previous work determined that self-excitation is not generally extreme enough to cause

most of the observed systems to attain non-transiting configurations. For the sake of definiteness,

we call the state of being in a continually mutually transiting configuration “CMT-stability”. Note
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that systems that are “CMT-unstable” are usually dynamically stable, in that they retain all of

their planets (see also Brakensiek & Ragozzine 2016a for a more detailed discussion). However,

for a more general set of systems — those motivated by the observed sample, but with a wider

range of allowed properties — self-excitation can have a greater effect, leading to potentially CMT-

unstable systems. In other words, planetary systems that are nearly the same as those observed,

but with slightly different specific orbital elements, can oscillate in and out of transit. This effect

— changes in the observability of a system over time due to dynamical interactions — has received

much recent attention (see Ballard & Johnson, 2016a), including some studies of the effect of extra,

unseen, perturbing bodies (prepared simultaneously with this work; see Lai, 2016; Mustill et al.,

2016a; Hansen, 2017). This present chapter carries previous work forward by performing a more

robust ensemble of numerical simulations for the systems with the highest multiplicity (with the

caveat that numerical limitations prevent us from analysing the entire Kepler multi-planet sample

in this way). This study also examines the effects of different priors on the end results by choosing

three different versions of the priors. Finally, we provide predictions for specific systems (such as

Kepler-20 and WASP-47).

In our previous chapter, we considered the systems to contain only the bodies observed thus

far. It is unlikely that our observations are complete, and so it is useful to examine the effects

of a perturbing body (giant planet or brown dwarf) on each compact, multi-planet system, using

the same basic methodology that we did for the compact systems without perturbing bodies.

Moreover, sufficiently distant companions are likely to be found outside the orbital plane of the

inner system: the original molecular cloud cores that produce star/disk systems often have a range

of angular momentum vectors and this complication, along with dynamical evolution, can often

lead to companion orbits that are inclined (see Barclay et al. 2015b, Spalding et al. 2014a, and

references therein).

This study derives statistical limits that constrain the presence of companions in the observed

multi-planet Kepler systems, given that we see them in transit today. In this work, we place these

limits by performing a large number of computationally-intensive simulations for 18 of the observed

Kepler multi-planet systems. In Section 3.3, we discuss our numerical techniques and some typical

results that characterise the effects of perturbing bodies for individual systems. Note that it is not
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feasible to carry out a detailed numerical analysis for every compact system that will be discovered.

Section 3.4 presents limits on potential unseen companions for the sub-sample of multi-planet

systems considered in this work. These results provide a general picture of the CMT-stability for

observed systems with planets in compact orbits and suggest methods for predicting the companion

status of such systems. Section 3.5 presents specific results for the dynamically interesting systems

Kepler-20 and WASP-47. The chapter concludes in Section 3.6 with a summary of our results and

a discussion of some limitations of this analysis.

3.3 Evaluating the Effect of Unseen Companions on the Observed

Kepler Multi-Planet Systems

The compact, multi-planet systems discovered by Kepler are remarkably stable in their currently

observed transiting configurations, as long as there are no extra companions in the systems. If

an additional body (giant planet or star) is introduced, however, the behaviour of the currently

observed planets could be significantly altered over secular (and longer) timescales. Sufficiently

large and/or close perturbing bodies could lead to the inner system becoming either dynamically

unstable or CMT-unstable. Both of these scenarios would lead to a complete system with different

properties than these observed by Kepler. Note that the perturbing bodies themselves could move

in and out of transit with time, and would transit with low probability due to their large orbital

separations. Notice also that the observed systems tend to have regularly-spaced orbits (Pu & Wu,

2015) with no large gaps where non-transiting planets could reside. We thus expect any additional

planets to generally lie outside the observed compact systems.

Since the multi-planet systems were indeed discovered by Kepler, we can rule out the presence

of companions in these systems that would disrupt their CMT-stability on short timescales. In

addition, companions that disrupt CMT-stability on longer timescales are unlikely. For example,

in all of the Kepler multi-planet systems considered in this work, a brown dwarf orbiting at 0.5

AU would disrupt the orbits of the inner planets, so that the inner system would fail to transit

continually. The systems would thus be “CMT-unstable” and planetary systems of this type would

not have been discovered by Kepler in their observed configurations. However, for a diametrically
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different companion type — say, a super-Earth at a = 700 AU, analogous to the proposed Planet

9 in our own solar system (Batygin & Brown, 2016a) — none of the systems in our sample would

be disrupted from their current transiting configurations. It is clear that for every compact multi-

planet system, there is some regime of “acceptable” companions, which could very well exist in

the observed systems as they do not alter the orbits of the compact system planets, and some

other regime of “unacceptable” companions, which lead to the inner system being CMT-unstable.

The goal of work is to determine these limits using numerical N-body integrations of the observed

Kepler multi-planet systems.

3.3.1 The Necessity of N-body Integrations

In previous work, we used Laplace-Lagrange secular theory to evaluate the CMT-stability of the

observed Kepler systems with four or more planets (Becker & Adams 2016; see also Lai 2016). In

that context, secular theory is an appropriate approximation both because the planets attain fairly

low eccentricities and inclinations through the natural orbital evolution, and because the systems

are (as observed) dynamically stable. These systems do not experience orbit-crossing, scattering,

or other dynamical complications that depend on the mean motions and could cause a system to

change its orbital configuration.

When adding a perturbing companion to such a system, the opportunity arises for all of these

mean-motion-dependent events to have significant effects on the evolution of the system. To illus-

trate this behaviour, Figure 3.1 shows a selection of such effects for one particular planet (Kepler-

20c), and illustrates the (at times) significant discrepancy between numerical N-body evolution and

secular evolution. The integrations shown in Figure 3.1 are drawn from the sample constructed for

this work (which will be described in depth in Section 3.3.2). The secular analogues were generated

using the same starting parameters that were used in the N-body integrations. The plots cover

only 105 years for ease of viewing the relevant oscillations.

One major, well-known, unavoidable difference between secular theory and N-body integrations

is the timescales of periodic evolution (this effect is explained, using Jupiter and Saturn as examples,

in chapter 7 of Murray & Dermott 1999). This effect is illustrated in Case A of Figure 3.1, which

shows the evolution of Kepler-20c in the presence of a 2 Mjup companion at 8 AU. In this case,
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the evolution proceeds similarly in both secular and N-body cases, but the orbital elements evolve

on somewhat different timescales. This kind of deviation will not compromise our results to a

large degree, as it does not change the amplitude of the oscillations. Although there may be slight

deviations when simultaneous transits occur (between multiple inner planets, each evolving on

different timescales), this effect will likely be small. Moreover, these effects are unlikely to influence

CMT-stability.

Case B in Figure 3.1 shows the ideal situation in which secular theory can be used to approx-

imate the dynamics with high fidelity. In this case, a 1 Mjup companion in introduced at 20 AU.

The orbits of the perturber and of the inner system are sufficiently spatially separated that no

additional effects arise due to mean motions. In this case, all of the relevant dynamical variations

are encapsulated by the secular approximation.

In contrast, Cases C and D in Figure 3.1 demonstrate the limitations of secular theory. Case

C shows the effect of a 1 Mjup companion at 4 AU. Not only are the periods of the inclination

oscillations different, as seen in Case A, but the amplitude of the oscillation shows a significant

difference between the two calculations. This difference can be caused by a variety of factors which

are not included in the secular approximation (including resonance-driven boosting of eccentricity

or inclination, etc.). Since CMT-stability depends on the amplitude of inclination oscillations, a

deviation of this magnitude will lead to different conclusions derived from using each method.

Case D shows the effect of a 1 Mjup companion at 1 AU. Note that the outer orbital radius of

the planets in the observed Kepler-20 system is 0.35 AU, so this companion orbit is a factor of three

larger than that of the observed system. This case illustrates another major imperfection in secular

theory. Here, the inner system of planets becomes dynamically unstable due to the companion:

In this particular integration, the eccentricities are increased to such an extent that orbit crossing

occurs (but instability can occur in many other ways). This instability is plainly evident in the

numerical integrations, but the secular theory is insensitive to such effects (which depend on where

a planet is on its orbit when the orbits cross). The numerical integrations are thus necessary to

evaluate whether the planets survive or not.

One additional limitation of secular theory that is not obvious from Figure 3.1 is its treatment

of semi-major axis. In secular theory, the semi-major axes of the interacting planets are fixed and
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only the evolution of other orbital properties (such as inclination, as plotted above, or eccentricity)

is allowed to vary. On the other hand, numerical N-body simulations allow the semi-major axes to

evolve. If the semi-major axes are expected to evolve (which would occur in scattering interactions

with the perturber, for example), then it is necessary to use numerical techniques.

Although the secular approximation is a tremendously useful tool for making dynamically dif-

ficult problems tractable without significant investments of CPU time, it is insufficient for the

particular problem considered in this chapter. Moreover, the secular theory fails for the regime of

parameter space for which the planetary systems are dynamically active, i.e., the regime of interest

in this study. As a result, we must turn to numerical methods.

3.3.2 Numerical methods

To evaluate the effects of unseen companions on the Kepler multi-planet systems, we use nu-

merical N-body simulations to evaluate the dynamics and stability of the observed systems on

secular timescales. These numerical integrations are carried out using the N-body code Mercury6

(Chambers, 1999b).1 Because the systems are chaotic, and because we need to consider a range

of possible companions, many integrations of each system must be carried out. Toward this end,

we use a Monte Carlo technique to generate multiple realisations of each compact multi-planet

system discovered by Kepler, and introduce a perturbing companion with randomly chosen orbital

elements. We then evaluate the CMT and dynamical stability of the system for each such realisa-

tion. The unseen companions are assumed to have orbits exterior to the observed compact Kepler

systems. The distributions of the companion masses and other properties are described below.

3.3.2.1 Priors

Not every orbital parameter describing the planetary systems we consider can be measured.

In order to complete the specification of the initial conditions for the N-body integrations, we

have to determine the remaining parameters, both the the observed planets and for the unseen

companion. These distributions of parameters – priors – are described below. Note that the priors

for the observed planets are a means to specify unobserved properties of the system, e.g., setting

1Note that a numerical treatment is required for reasons explained in Section 3.3.1.
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Case	  A)	  Companion:	  2	  Mjup	  at	  8	  AU	  

Case	  C)	  Companion:	  1	  Mjup	  at	  4	  AU	  

Case	  B)	  Companion:	  1	  Mjup	  at	  20	  AU	  

Case	  D)	  Companion:	  1	  Mjup	  at	  1	  AU	  

Figure 3.1 Differences Between Secular and N-Body Integrations. Four different companion
types and their effects on the evolution of Kepler-20c, as computed using both secular and
numerical methods. Case A shows the well-known effect of the potential inconsistency in the
period of oscillations, which is important but unlikely to affect our results. Case B shows
a case with good agreement between the two methods, and demonstrates that for large
orbital separation companions, secular theory may be a good approximation. Case C shows
differences in both the period and amplitude of the oscillations, an effect large enough to
potentially skew results, which occurs when an additional planet in the system was ejected
early in the simulation. Case D shows an example where the numerical integration identifies
a dynamical instability that would be ignored in the secular approximation. For all cases, the
realisations plotted were chosen from more than 4000 integrations, selected for illustrative
purposes.
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the planetary mass when the radius is measured. The priors for the putative companions are less

constrained, as the additional bodies could have a wide range of orbits and other properties.

The orbital elements for the existing planets were drawn from observational priors (for the

planets in our sample, these priors are found in Borucki et al., 2010; Lissauer et al., 2011a; Borucki

et al., 2011; Fabrycky et al., 2012; Batalha et al., 2013; Borucki et al., 2013; Quintana et al.,

2014; Rowe et al., 2014; Marcy et al., 2014, we use the values available as of January 2016).

When observational priors do not exist (for example, for most planets, inclination has not yet been

observationally determined), we draw from a prior chosen to be representative of the possible values

of that parameter. We use the same methodology as in Becker & Adams (2016) to choose these

values, and a more lengthy description of the choices made can be found in that chapter, but the

most important choices will be described with brevity here.

Planetary Masses. Photometric light curves yield an excellent measure of planetary radii, but

they do not provide direct measurement of the planetary masses. For this reason, it is necessary to

use a mass-radius relation to choose starting masses for the simulations. The Wolfgang relationship

from Wolfgang et al. (2015) provides a probabilistic mass-radius conversion function for planets in

the range RP = 1.5−4R⊕. For planets smaller than this lower limit, we use the relation from Weiss

& Marcy (2014c). For planets larger than the upper limit, we use a characteristic gas giant density

generated by a Gaussian draw from the observed gas giant densities (as done in Vanderburg et al.,

2016b).

Orbital Inclinations. Mutual inclinations are generally parametrised by a Rayleigh distri-

bution with some width (Fabrycky & Winn, 2009; Lissauer et al., 2012a; Fang & Margot, 2012;

Ballard & Johnson, 2016a), which is typically taken to lie in the range 1 degree – 3 degree. For this

application, we use a simple Rayleigh distribution with width 1.5degree (Fabrycky et al., 2014b)

for planets without measured inclinations, with the constraint that all planets in the inner system

must initially be transiting.

Additional Companion Properties. Because we do not fully understand the population of

long-period planets, the priors for our injected companions can be chosen in a variety of ways. This

regime of parameter space, with semi-major axes a > 1 AU, is not fully sampled observationally,

and different techniques (RV, transit, direct imaging, micro-lensing) each have their own biases and
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limitations.

In previous work concerning the stability of the Kepler systems, a variety of priors were used.

For example, Mustill et al. (2016a) used priors representing stellar and planetary companions, and

found that not only are the dynamical instability rates are different between the two cases, but

so too is the amount of inclination excited. Hansen (2017) also performed numerical experiments

that involved adding a perturbing body while using delta function priors and multiple trials, which

provides a description of the average behaviour of the system for each companion type, but does

not explain how susceptible results are to small changes in companion type.

In this chapter, we use three sets of priors for our population of perturbing bodies. The goal is

to not only describe the behaviour of the inner systems in the presence of these extra bodies but

also to determine the differences in computed stability thresholds using the different priors. As a

result, for each observed system, we construct three samples of 2000 injected perturbing bodies by

re-sampling our 4000 integrations with the following priors:

• Transit-inspired prior. The transit-inspired prior is intended to test the behaviour of

perturbing bodies that may have formed in a plane with the inner system of planets, and

remained roughly coplanar (see Section 3.5.2 for an example of a system that may have done

this). For these companions, we choose a mass from a log-uniform distribution between 0.1

and 10 Mjup. For inclination we use a Rayleigh distribution with a width of 3 degrees (which

corresponds to the largest width given in recent papers that parametrise inclinations in this

way; see Fang & Margot 2012, Ballard & Johnson 2016a, and Fabrycky et al. 2014b). The

orbit of the perturbing planet is thus close to the plane(s) of the inner system. For this

prior, we choose eccentricity from a beta distribution with shape parameters α = 0.867 and

β = 3.03 (an observationally motivated distribution derived in Kipping, 2013b), and choose

the argument of periastron according to the asymmetric, sinusoidal distribution given in that

same paper.

• Uniform prior. The uniform prior is intended to explore the entire parameter space that

could potentially be populated by unseen companions. The semi-major axes are uniformly

distributed in the range a = 1 − 30 AU. The planetary masses are uniformly distributed

98



in the range Mp = 0 − 10 Mjup. The inclination drawn from a uniform distribution with

range i = 0 − 90 degrees. The eccentricity is drawn from a beta distribution, whereas the

argument of pericentre has a corresponding asymmetric distribution with a sinusoidal prior

(see Kipping 2014). Finally, the longitude of the ascending node Ω is taken to be uniform

over the range 0− 360 degrees.

• Non-transiting disk prior. The non-transiting disk prior is intended to mimic the popula-

tion of planets (and brown dwarfs) that could exist in these systems but be undetectable via

transit methods. A large number of such planets have been discovered in existing systems

(see, for example, Marcy et al. 2014; note that the non-transiting planets in these systems

are generally exterior to the transiting system). As in the other two populations, we draw

the eccentricity and argument of periastron from the distributions given in Kipping (2014).

We draw the companion mass from a distribution uniform in log space, ranging between

0.1 and 10 Mjup. We draw the inclination from a uniform distribution between 60 and 90

degrees, representing a 0 – 30 degree misalignment between the extra body and the plane of

transiting planets. This 30 degree width is based on the maximum misalignment expected

due to variations in the angular momentum direction between molecular cloud cores and their

forming circumstellar disks (Goodman & Weare, 2010a; ?). As discussed in Barclay et al.

(2015b), there is no expectation of correlation within this range, and thus we use a uniform

distribution in inclination (allowing up to 30 degrees of misalignment). Finally, we choose

the semi-major axis from a uniform range between 1 and 30 AU.

In all three cases, the uniform sampling over semi-major axis does not bias our conclusions

because we marginalise over semi-major axis (and later, periastron distance) in our results. We

used the uniform prior to choose the orbital elements of all planets in the 4000+ trials (per system).

To construct populations for the other two prior types, we resampled those initial 4000+ integrations

and supplemented them with additional integrations for the Transit-inspired prior so as to have

2000 integrations for each prior. The results of a comparison between the three prior types can be

seen in Figure 3.2 for a selection of example systems.

Figure 3.2 shows that the three choices of priors for the companion lead to similar results. The
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three systems plotted in this figure represent two typical systems (Kepler-296, Kepler-169) and

one system with particularly large CMT-instabilities (Kepler-20). For all three considered systems,

the fraction of realisations that remain CMT-stable are a well-defined and increasing function of

separation, measured here through the semi-major axis of the companion. The “transit prior”,

which has the lowest set of inclination angles for the companion, leads to a larger fraction of CMT-

stable systems at a ∼ 5 AU, but produces remarkably similar results at larger separations. In any

case, for all three priors used here, the overall trend and extent of the populated region is roughly

the same, even though the subtleties of the slopes may change between prior types. The differences

between the systems are greater than the differences between the prior choices for a single system,

so we are confident that the behaviour exhibited in our simulation results is attributable to the

exoplanetary systems themselves, and not to our choice in prior.

Figure 3.3 shows the CMT stability curves for the same three systems considered in Figure

3.2. Instead of evaluating the difference of each prior type, the two curves here show the difference

between the high- and low-mass (from the uniform prior, where high-mass is taken to be greater

than 2 Mjup and low-mass is taken to be masses less than or equal to that value) values for the

companion’s mass. The low-mass companions are lead to a lower amount of CMT-instability in the

inner system.

In Figure 3.2 and Figure 3.3, we plot the CMT-stability fraction against the semi-major axis

of the perturber. This choice was motivated by our choices of priors: we naively sampled uni-

formly in semi-major axis with the intention to explore perturbers at all orbital radii, with the

results marginalised over our three prior choices. Analogous plots to Figure 3.3 for eccentricity

and inclination demonstrate significantly less variation between the high and low value populations

for those quantities. As a result, we choose to plot the CMT-stability fraction against perturber

periastron distance for the remainder of this work. Periastron is a more physically illustrative value

than semi-major axis, since it describes the minimum distance attained between the perturber and

the planets of the inner system.
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Kepler-296 

Kepler-169 

Kepler-20 

Figure 3.2 Effect of Prior on System Stability. The three different priors for the unseen
companion lead to slightly different results for CMT-stability, as shown here for three rep-
resentative systems. As expected, the transit prior (which has a much narrower range of
allowed inclinations than the other two choices) tends to have a larger fraction of systems
that are CMT-stable at close distances to the star. However, the difference is not as large
as might be expected, due to the width of the Rayleigh distribution used as a prior for
inclination.
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Kepler-296 

Kepler-20 

Kepler-169 

Figure 3.3 Activity Level by Perturber Type. For the same three systems considered in
Figure 3.2, this figure shows the CMT-stability curves for systems with high-mass (green)
and low-mass (red) perturbers. The high-mass companions cause systematically more CMT-
instability of the inner system. Analogous plots for eccentricity and inclination (not shown
here) do not show an obvious difference between the high- and low-quantity populations.
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Priors for compact inner system of planets

Orbital Element Prior Reference

semi-major axis, a observational limits (various2)
planetary radius, Rp observational limits (various)
planetary mass, Mp step function, converted Weiss & Marcy (2014c)

from measured radius Wolfgang et al. (2015)
inclination, i mutual inc. from Rayleigh Fabrycky et al. (2014b)

distribution with width 1.5o

argument of pericentre, ω uniform on (0o, 360o)
longitude of ascending node, Ω uniform on (0o, 360o)

eccentricity e uniform on (0, 0.1)

Table 3.1 Priors on Planetary Properties (for Kepler Multis). Priors for the Monte Carlo
realisations of each planet in the observed Kepler multi-planet systems. Each system is com-
prised of the inner planets discovered by Kepler and a single outer, perturbing companion
(whose orbital parameters are chosen using the three priors described in Section 3.3.2.1). Al-
though mass measurements do not exist for most of these planets, the radii of the observed
planets are derived from the transit light curves and stellar radii found in the literature.
From these radii, we use the conversion procedures summarised in Becker & Adams (2016),
which use relations from Wolfgang et al. (2015) and Weiss & Marcy (2014a) to estimate
planetary mass for each realisation, which results in orbital parameters for each of the com-
pact system planets in each studied system. (2) We downloaded best-fit orbital parameters
from exoplanets.org as of January 2016, and updated when needed with parameters from
Borucki et al. 2010; Lissauer et al. 2011a; Borucki et al. 2011; Fabrycky et al. 2012; Batalha
et al. 2013; Borucki et al. 2013; Quintana et al. 2014; Rowe et al. 2014; Marcy et al. 2014.
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3.3.2.2 Simulation Parameters

Every realisation of each system requires drawing the orbital elements for each planet, a process

which has been described in Section 3.3.2.1. Once starting parameters for each planet have been

chosen, we check for the Hill stability of the inner system of planets (ignoring the outer perturber)

before beginning the computation for the realisation. If the initial conditions for the inner system

of compact planets are not Hill stable, we discard that realisation (as it does not give us useful

information about how an outer companion affects the behaviour of the inner system). We check

for Hill stability, a criterion for stability that has the form

aout − ain
RH

> ∆crit , (3.1)

where ∆crit = 2
√

3 is the critical separation for adjacent planets, and RH is the mutual Hill radius,

which is defined as

RH ≡
(
Min +Mout

3Mc

)1/3 ain + aout
2

. (3.2)

Since we are considering systems with more than three planets, we also require that ∆inner +

∆outer > 18 for each pairing of inner planets (as in Fabrycky et al., 2014b; Ballard & Johnson,

2016a). These initial conditions are intended to screen out systems where the inner system is

dynamically unstable on its own, even without the perturber, due to unlucky draws from their

observational priors. Since such unstable systems would not reflect the action of the perturber,

these realisations are removed before the numerical integrations are run. Such cases are rare:

Among the tens of thousands of realisations run, only a handful were discarded because of their

failure to meet these constraints.

After the starting parameters for all bodies in the system are chosen and the inner system is

confirmed to be Hill stable, we integrate the realisation forward for 107 years. If, during this time,

any planets are ejected from the system, collide with the central body, or undergo a close encounter

within 3 mutual Hill radii of another planet, we stop the integration and consider the system to

be disrupted, and thus dynamically unstable for our purposes (this approach is consistent with the

criteria used in other work such as Fabrycky et al., 2014b). We do not consider spin or tidal effects,

104



as additional evolution due to these effects would be inconsequential on the timescales we consider.

We use the hybrid symplectic and Bulirsch-Stoer (B-S) integrator built into Mercury6 (Chambers,

1999b), and conserve energy to 1 part in 108.

To perform these computationally intensive simulations, we make use of both the Open Science

Grid (Pordes et al., 2007; Sfiligoi, 2008) accessed through the Extreme Science and Engineering

Discovery Environment (XSEDE; Towns et al., 2014), and personal computational resources for

the simulations used in this work, with the bulk of numerical integrations being run by the former.

In all cases, each integration was run on a single core. At least 4000 realisations were run for each

system. The integrations were generally completed in less than 24 hours, with most integrations

taking less than 6 hours to run to completion. The simulations resulted in more than 3 Terabytes

of data files, and took roughly 100,000 CPU hours to generate. We integrated all of the 15 Kepler

systems with 5 or more planets. After all integrations were complete, we also ran integrations of

three representative four-planet systems, in order to verify that they exhibit similar behaviour.

Figure 3.5 and Figure 3.4 show each individual realisation of Kepler-102 and Kepler-20, respec-

tively, as circular points, where we plot the fraction of time a compact inner system is CMT-stable

in the presence of a companion with the periastron value given on the x-axis. These plots (and all

analyses presented in this chapter) are marginalised over all of the other orbital elements chosen

for the perturber. The population of points are significantly different for each system. Figures 3.5

and Figure 3.4 show two examples of systems: Kepler-20 is CMT-unstable a significant fraction of

the time, for almost the full range of companion properties, although smaller orbital radii for the

perturber do lead to an increase in CMT-instability (as expected). On the other hand, Kepler-102

has a clear threshold at roughly 10 AU where, external to this point, companions generally do not

disrupt the behaviour of the inner system.

3.4 General Results: Limits on Unseen Companions in the Kepler

Sample

In this section, we present the results of the simulations detailed in the previous section.
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Figure 3.4 Kepler-20’s Susceptibility to Destabilization. The Kepler-20 system appears to
be an outlier in our sample of multi-planet systems, and is highly susceptible to being
perturbed into a CMT-unstable configuration by a companion. For any companion with
orbital separation in the range a = 1− 30 AU, the inner system will be seen to be mutually
transiting less than half (about one third) of the time. This result strongly suggests that if
an additional close companion exists in this system, it is unlikely that we would see all of
the planets in the inner system to be transiting.
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3.4.1 General Trends

For all systems considered in this work, the general trend holds that pertubers closer to the

compact system of planets causes a greater amount of movement out of the transiting plane by

those inner planets. This mechanism can lead to the known planets in each system attaining non-

transiting configurations (CMT-instability), meaning that they would not have been discoverable

by the Kepler mission. There are two modes of motion due to an exterior companion that can lead

to the aforementioned effects: (1) the excitation of relative inclination angles between the planets

in the inner compact system, leading to an increase in the width of the inclination plane containing

the compact system planets, and (2) Kozai-esqe oscillations of the entire plane of transiting planets,

which may precess together. Both of these effects may occur, and both are encapsulated in our

numerical integrations. Mode (1) will determine whether or not a system of planets can be seen

in transit from any line of sight. In contrast, mode (2) could lead to a situation in which the

system is not seen in transit from Earth’s line of sight, but could be seen from another line of

sight. For the sake of definiteness, we define the term CMT-stability to mean that the planets are

continually mutually transiting from the original line of sight observed by Kepler (more specifically,

all of planets can be seen in transit more than 95% of the time). This definition thus implies that

both oscillation modes (1) and (2), as defined above, lead to CMT-unstable systems.

Figure 3.5 shows the Kepler-102 system, which serves as an example of the typical trend and

demonstrates the different regimes of behaviour that can be excited by the injection of a perturbing

companion into a known planetary system. In this figure (and everywhere in this chapter), the

criterion F(compact system transits) = 1 means that the inner system of planets (which includes

only those discovered to be transiting in the Kepler data) is continually mutually transiting. In

other words, all planets can be seen to be transiting from Earth’s line of sight for all time in

the presence of the any considered perturbing companion. In contrast, the criterion F(compact

system transits) = 0 means that the inner compact system that was found to be transiting by

the Kepler mission will never attain a mutually transiting configuration in the presence of that

companion. Figure 3.5 shows that for companions with orbits beyond 10 AU, the Kepler-102

system will continue to be mutually transiting. The fact that the Kepler spacecraft observed the

Kepler-102 system to be transiting thus cannot exclude any companions beyond 10 AU. However,
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for companions with periastron less than ∼ 5 AU, the Kepler-102 compact system will attain a

non-transiting configuration a large fraction of the time, making it less likely that we would have

discovered it.

CMT-‐stable	  

CMT-‐unstable	  

Will	  excite	  
large	  
obliqui6es	  

Figure 3.5 Fractional CMT-Stability by Perturber Properties: Kepler-102. The fraction of
the time that the entire compact system transits depends on the orbital elements of the
perturbing body. Here, this fraction is plotted against periastron of perturber for Kepler-
102, where the non-transiting disk prior was used to choose companion orbital elements.
If the body is far away from the inner planets, then that companion exerts only minimal
perturbations on the compact system of planets, and the system will be CMT-stable, just
as expected if no perturber is present. For an intermediate range of perturber parameters,
the system will be CMT-unstable, but no large obliquities will be excited. For a selection
of perturbing bodies, not only will the inner system be CMT-unstable, but the orbits of
the planets in the compact system will become highly misaligned relative to their initial
locations. These three regions for Kepler-102 are shown and labelled in the figure. Similar
plots can be made for all stars in our sample, and for each of the sets of priors. The location
of the different regimes depend on the properties of the planets and their orbits.

From the data used to construct Figure 3.5, and the analogous plots for the other planetary

systems, we have computed the minimum periastron distance that allows the inner systems to

remain in a CMT-stable configuration 95% of the time. This threshold at 95% ensures that the

systems are likely to remain observable by Kepler over secular timescales, but the exact value is
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arbitrary. These periastron values (computed for the 95% threshold) are useful for comparing the

relative stability of systems, and for predicting/constraining the possible locations for any additional

massive, external companions in these systems. This analysis was carried out for each system in

our sample using each of the three prior choices described in Section 3.3.2.1. The results of this

computation (for all systems and all priors) are presented in Table 3.2.

As outlined above, these limits correspond to the companion periastron required for the Kepler

compact system to remain CMT-stable 95% of the time. The limits vary slightly between the

three prior choices, demonstrating the effect of the priors of this dynamical analyses. The spread

between the three prior choices δp/p attains a median value of 11% and a mean value of 13%

over the entire population of systems considered (the higher mean is due to the Kepler-32 system,

which experienced particularly large variation between prior choices – if Kepler-32 is excluded from

the sample, then the mean and median δp/p values become equal). As a result, for the systems

considered in this work, the choice of priors affects our results for the threshold values of the

companion periastron at the level of 10-15%.

Each of these systems show the same general trend: For companions with sufficiently large

orbital separations, the inner system becomes effectively decoupled from the perturber, so that

the system is expected to stay in a CMT-stable configuration. In this context, the definition of

being “sufficiently large” is given by the periastron values listed in Table 3.2. These results also

depend on other properties of the compact systems. We provide limits in terms of periastron

rather than semi-major axis, which folds in the distribution of eccentricity for each prior type.

We also generated the limits in terms of semi-major axis, and the values were not significantly

different. Periastron is a good variable to use here for two reasons: first, the periastron describes

how close the outer planet gets to the inner system of planets, which controls the magnitude of

mean motion-based perturbations; second, the high- and low-eccentricity cases (constructed and

discussed in Section 3.3.2.1) do not exhibit significantly different behaviour, so our parametrisation

in terms of periastron will not occlude any physical effects. For each planetary system, Table 3.2

also lists the surface density of the system, the corresponding angular momentum, and the inner

system size (given by the semi-major axis of the outermost planet of the inner system). The outer

radius of the compact system is included because planets with larger semi-major axis have lower
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transit probabilities. Naively, it might seem that these systems would be easier to force into a

non-transiting configuration. However, this expectation does not hold — the systems with the

largest inner system radius are not necessarily those which are least CMT-stable in the presence

of a companion. The dynamics of the inner system, not just the value of R∗/a, determines the

CMT-stability of a system.

3.4.2 Surface Density as a predictor for susceptibility to perturbations

The results presented in Table 3.2 give the relative radii within with you expect significant

misalignment to arise. Naively, it might seem that non-transiting planets will be observed more

often in systems where the inner system has a larger outer radii (i.e., the semi-major axis of the

furthest-out planet is larger). However, this value aout does not predict the susceptibility of an inner

system to perturbations. Instead, a better tracer of how susceptible a system is to perturbations

is the surface density of the inner system of planets. In Figure 3.6, we plot the fraction of time

that a system is CMT-stable as a function of the periastron of the distant perturbing planet. The

lines are colour-coded by the surface density of the observed compact inner systems. The plotted

surface densities were calculated by computing the surface density, Σ, of each realisation of the

system according to the definition

Σ =
1

π(a2
n − a2

1)

n∑
i=1

mi , (3.3)

where n is the number of planets in the system, with planet n being the outermost planet, mi

are the planetary masses, and ai are the orbital radii. Since we draw masses and periods from

observationally-inspired priors, the exact value of the surface density varies between the different

trials of our numerical integrations. For this plot, the chosen value of surface density was taken

to be the median value of the surface density for all realisations of that system. The error on

surface density, which is given for each system in Table 3.2, is given by the 1σ spread over all of

the realisations.

If the surface density is higher, then the inner system acts more like a single ring, and perturbing

bodies need to be closer to the inner system in order to excite individual inclinations away from a
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System Np Surface density Angular momentum an (AU) puniform ptransit pdisk Fjup
(AU) (AU) (AU)

Kepler-102 5 136 ± 26 20 ± 4 0.17 8.15 7.03 6.97 2%
Kepler-11 6 113 ± 10 206 ± 18 0.47 ≥ 301 ≥ 30 ≥ 30 0%
Kepler-122 5 406 ± 51 131 ± 16 0.23 8.57 8.3 7.2 0%
Kepler-169 5 55 ± 5 54 ± 5 0.36 14.7 13.15 11.7 4%
Kepler-186 5 19 ± 1 16 ± 1 0.43 19.5 16.4 15.2 1%
Kepler-20 5 77 ± 7 65 ± 8 0.35 ≥ 30 ≥ 30 ≥ 30 2%
Kepler-292 5 534 ± 61 54 ± 7 0.14 6.9 6.9 5.4 18%
Kepler-296 5 98 ± 14 37 ± 6 0.26 11.6 10.1 10 1%
Kepler-32 5 539 ± 59 35 ± 4 0.13 8.7 11.8 7.03 0%
Kepler-33 5 473 ± 39 272 ± 23 0.25 ≥ 30 ≥ 30 ≥ 30 0%
Kepler-444 5 48 ± 3 1 ± 1 0.08 6.3 5.5 5.1 8%
Kepler-55 5 240 ± 24 49 ± 4 0.20 8.5 10.6 7.5 0%
Kepler-62 5 11 ± 2 48 ± 9 0.72 ≥ 30 ≥ 30 ≥ 30 0%
Kepler-84 5 184 ± 21 81 ± 9 0.25 7.4 9.8 7.2 2%
Kepler-90 7 48 ± 3 901 ± 53 1.01 ≥ 30 ≥ 30 ≥ 30 0%

Kepler-150 4 352 ± 29 75 ± 6 0.19 8.3 6.9 5.6 4%
Kepler-197 4 82 ± 4 13 ± 1 0.16 6.9 6.9 6.7 11%
Kepler-402 4 571 ± 73 28 ± 3 0.10 5.2 5.3 5.3 16%

Table 3.2 Orbital and Physical Properties of High-Multiplicity Systems. Physical properties
of each system considered in this chapter, along with the derived limits for the periastron
of possible perturbing companions, when Np is number of planets in each system. The
periastron limit pprior is the value of perturber periastron above which the inner system is
CMT-stable 95% of the time, also marginalised over all other properties of the perturber
(including periastron) for each selection of prior. The scale an is the outer orbital radius of
the inner, compact system. For the three different types of priors, slightly different limits are
computed, with the transit prior generally producing the more dynamically quiet systems.
See Section 3.3.2.1 for a description of each of the three priors used. A selection of four-planet
systems, which were not part of the original sample but included to check if the trends shown
in Figure 3.6 appear to persist for additional systems, are presented in the lower part of the
table. δp/p between the three priors is a median of 11% and a mean of 13% for all systems,
demonstrating that prior choice can affect dynamical stability in analysis of this nature to
the 10-15% level. The final column, Fjup, is the results of a separate experiment, where
Jupiter-type planets (1 Mjup at 5 AU, with inclination and eccentricity similar to Jupiter’s
values) were injected into the system instead of the previously discussed perturbers. Fjup
is the percentage of these realisations that were CMT-stable in the presence of this true
Jupiter-like planet. (1) 30 AU is the maximum orbital separation tested for the perturber in
our simulations, so this designation implies that the presence of any perturber within 30 AU
causes the inner system to be CMT-unstable according to our simulations. The true limit
for CMT-stability 95% of the time cannot be determined from our simulations.
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Figure 3.6 Fractional CMT-Stability by Perturber Properties: All Systems. The fraction
of time a system is CMT-stable as a function of the periastron of the injected perturbing
body, marginalised over all other properties of the perturber. Each line represents a different
system, with the colour of the line showing the surface density of the compact inner system
(computed using Equation 3.3). The colour bar on the right shows the scale. Systems with
higher surface densities tend, with good uniformity, to allow a larger array of perturbing
companions without becoming CMT-unstable.
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mutually transiting configuration. It is clear from Figure 3.6 that surface density maps (almost)

monotonically onto the periastron distance at which CMT-instability does occur. On the other

hand, the periastron of the perturbing body is not the only quantity of interest. To construct

Figure 3.6, we marginalised over the orbital parameters of the outer companion, using the non-

transiting disk prior (see Section 3.3.2.1). An analogous plot can be constructed for the other

priors types, but all three priors will produce results consistent on the 10-15% level (the value of

periastron for the companion required to render the systems CMT-unstable varies by this amount

over the different choices of priors).

Intuitively, the impact periastron distance has on the CMT-stability of the inner system makes

sense because the periastron distance controls how closely the perturbing body passes to the inner

system. In Becker & Adams (2016), we used secular theory to evaluate the long-term behaviours

of these same systems. The expanded disturbing function in secular theory depends most strongly

on semi-major axis, so the dynamics considered here must depend sensitively on a. In addition,

eccentricity allows the companions to pass closer to the inner system. Previous studies have shown

that the periastron of the perturbing companion is the most important variable for ejecting planets

(David et al., 2003) and for stifling the formation of planets in binary systems (Quintana et al.,

2007). As a result (and for brevity), we do not provide plots for CMT-stability as a function of

mass, eccentricity, inclination, and other orbital properties.

In Figure 3.7, we plot the periastron of the most distant perturbing planet that allows the

inner compact system to remain CMT-stable (mutually transiting 95% of the time) as a function

of the surface density of the observed compact inner systems. The periastron values were taken

from interpolated versions of the curves shown in Figure 3.6. For most of the transiting systems

in our sample, a perturbing companion must be roughly 10 – 20 AU away (or more) from the host

star in order for the compact inner system to have a high probability of being observed in the

configuration discovered by the Kepler mission. Note that systems with the largest orbital radius

of their respective inner systems tend to have the lowest surface densities. This trend could suggest

that they are either stalled at an earlier stage in their migratory histories (having not collapsed to

the size of the smallest, densest multi-planet systems) or that our observations are incomplete. It

remains possible that this trend reflects the diversity of possible planetary configurations.
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Figure 3.7 Allowed Perturbing Planet Locations by System Surface Density. The periastron
of the most distant perturbing planet that allows the inner compact system to remain CMT-
stable (mutually transiting 95% of the time), shown here as a function of the surface density
of the observed compact inner systems. When the perturbing body has a sufficiently large
orbit, it becomes effectively decoupled from the inner system. It is important to note that
the lower surface density systems tend to have a larger radius within which companions
would lead the inner system to be CMT-unstable. Kepler-20 appears to be a clear outlier
compared to the other systems, with a large range of potential companions leading the inner
system to be CMT-unstable. If the error bar is not visible, the error is smaller than size of
the plotting symbol. The curve shows a model fit to all points except that of Kepler-20.
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Using the limited number of systems analysed in this work, we can derive an approximate

scaling relation that delineates how far a perturber must reside from the central body in order

to excite CMT-instabilities in a transiting system with a given surface density. The model curve

plotted in Figure 3.7 is a power-law, which was fit with a simple least-squares optimisation, with

approximate best-fit functional form p = 6.60 AU (Σ/Σ0)−0.27 , where Σ is the surface density of

the inner system of planets and p is the periastron beyond which companions do not disrupt the

CMT-stability of the system 95% of the time. The constant Σ0 = 100 M⊕ AU−2 is a reference

surface density. This relation defines the region outside of which a companion could exist without

affecting the inner system, i.e., so that it would not alter the transits of the observed planets.

In contrast, any companions found within this boundary could cause significant misalignment of

the orbital inclinations, perhaps knocking some inner planets out of an observable, transiting,

configuration.

This relation is limited in two ways: First, the number of systems under consideration is small,

by necessity, so that additional systems could display more complicated behaviour. Second, the

relation is approximate, and depends on both the priors used and the relatively few low surface-

density systems. As a result, this relation does not provide a definitive statement on the companion

status of any particular system.

3.4.3 Examining the effect of Jupiter

Our own solar system has a gas giant planet with mass mP = 1Mjup with semi-major axis a ≈ 5

AU. The results of Table 3.2 indicate that 5 AU often falls within the radius at which additional

companion cause the inner system to become misaligned. As a result, a true Jupiter analogue is

unlikely to exist in any of these systems. However, the previous trials do not directly test for this

possibility because the inclination variation of all three prior choices is larger than that of a true

Jupiter analogue. For this reason, we performed an additional set of numerical simulations. In

the work described thus far, we examined the effect that a perturber of varying orbital properties

could have on compact systems of planets. However, it is also interesting to determine how the

presence of a true Jupiter analogue would affect the CMT-stability of these systems. Toward this

end, we ran another 100 realisations per system, including a Jupiter analogue as the perturber with
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the following priors on its orbital elements: The mass is taken to be 1 Mjup and the semi-major

axis a = 5 AU. The eccentricity is drawn from a uniform distribution in the range [0,0.05], and

the inclination is drawn from a uniform distribution with a full width of 6 degrees, thus allowing

the planet to attain a maximum inclination of three degrees out of the plane containing the inner

system. All of the other orbital angles were randomised. We integrated these new realisations for 10

Myr and evaluated the fraction of the realisations that remained CMT-stable (mutually transiting

95% of the time). These percentages are reported in the final column of Table 3.2. In all but two of

the systems containing more than four planets, more than 95% of trials were CMT-unstable. All of

the systems were CMT-unstable a majority of the time. This finding indicates two things: First, it

is unlikely that a Jupiter analog planet exists in any of these systems. Second, if such a system were

to host a Jovian analog planet, it would (generally) lead to oscillations of the inclination angles of

the orbits of the inner system. As a result, there could be additional unseen planets in the compact,

inner part of that system.

The discussion thus far has not taken into account the stellar-spin axis, in particular its direction

with respect to the orbital angular momentum vectors of the compact inner system. Morton &

Winn (2014a) found that the obliquities of multi-planet systems tend to be lower than those in

single-planet systems. 2 If the stellar-spin is observed to be aligned with the orbits, as seems to be

common from observational results for multi-planet systems, then the most likely scenario is that

the all of the angular momentum vectors point in their original directions. It is unlikely that both

the stellar spin and all of the planetary orbits were disrupted in such a way that they maintain

alignment. In contrast, systems with an observed misalignment between the stellar spin-axis and

the orbital angular momentum vectors could have a variety of dynamical histories. One possibility

is that the orbital inclination angles for the entire inner compact system are oscillating as a whole

in response to a perturbing companion. Huang et al. (2017) and Gratia & Fabrycky (2017) both

consider this mechanism in depth, and find that it is a feasible method of causing planet-star

misalignment. Moreover, a number of other effects could lead to the stellar spin pointing in a

different direction than the angular momentum of the planetary system. Possible processes include

2Some exceptions are expected. As one example, the Kepler-108 system, which hosts two planets, is
thought to be misaligned (Mills & Fabrycky, 2017a). Another example is the well-studied, misaligned
Kepler-56 system (Huber et al., 2013).
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natal misalignment, interactions with unbound bodies, tidal precession, and many others. All of

these effects should be explored in future work.

3.5 Results for Specific Systems

In addition to the general results presented in Section 3.4, this analysis also produces predictions

and insights for individual systems. Here we consider the cases of Kepler-20 and WASP-47.

3.5.1 Kepler-20

Kepler-20 appears to be an outlier among the systems considered in this work, as shown by its

unique placement in Figure 3.7. Kepler-20 requires an unusually large orbital separation between

the added perturber and the inner system in order for the inner system to remain CMT-stable.

Taken alone, this placement on the plot indicates that Kepler-20 is particularly susceptible to the

effect of a companion; it is quite easy for a perturbing companion to knock the inner system into

a non-transiting configuration.

This seems to be evidence of one of two things: either (1) there is no external companion in this

system, because its existence would not allow the entire inner system to transit, or (2) the entire

inner system is not transiting (the system is NOT continually, mutually transiting) and there is

another planet that we do not know about.

The Kepler-20 considered in this work only included five planets, the original five reported in

Gautier et al. (2012) and Fressin et al. (2012). After we had completed our simulations for this

work, however, this system was found to host an additional planet with minimum mass 20 Mearth in

an approximately 34-day orbit. This places the orbit of the new planet between the 20-day period

Kepler-20f and the 78-day Kepler-20d (Buchhave et al., 2016). Because this newly detected planet

lies between the orbits of the previously known planets, and because it was not observable by Kepler

but is observable in the RV, it is likely to be slightly out of the transiting plane. The Kepler-20

system thus hosts five transiting planets and one non-transiting planet, with all six planets packed

in a compact system. We now know that (2) is the correct conclusion for this particular system,

which does not exclude the possibility that there is also an exterior, perturbing companion.
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Additional work will help determine if such a companion is present, or if another explanation

exists for the unusual configuration of Kepler-20. In general, compact planetary systems tend to

have regularly spaced orbits, where all of the planets are seen in transit. If a system has a gap in

its orbital spacing, there could be an additional massive planet of the type considered here.

3.5.2 WASP-47

The WASP-47 system was known to host a hot Jupiter (Becker et al., 2015b), was later found to

contine two additional planetary companions with orbital periods less than 10 days (Hellier et al.,

2012a). A super-Earth companion was discovered just inside the orbit of the hot Jupiter and a

Neptune-sized planet was found just outside. Neveu-VanMalle et al. (2016a) reported simultane-

ously that the system also has a Jovian external perturber, a companion with m sin i = 1.24 Mjup

and a period of 572 days. The hot Jupiter in this four-planet system was also found (Sanchis-Ojeda

et al., 2015b) to have its orbital angular momentum vector aligned with the stellar spin axis of the

star (implying that the two other transiting planets are also roughly aligned).

The fact that the inner three planets in the WASP-47 system appear to remain in their birth

plane suggests that the external companion must allow for the persistent CMT-stability of the

inner three-planet system. Because the RV measurements of the outer companion only determine

the quantity m sin i, and not the true mass, we do not know whether the companion is a highly

inclined brown dwarf or a roughly co-planar Jovian planet. Using the techniques from this chapter,

however, we can place probabilistic limits on the inclination and mass of the outer body in this

system.

Toward that end, we ran 1000 integrations of the WASP-47 system for 10 Myr each. The orbital

properties of the inner three planets were drawn from the posteriors found in Hellier et al. (2012a)

from the transit and transit-timing-variation fits. For completeness we note that Dai et al. (2015)

also provides mass estimates of the three inner planets from RV measurements, but the results are

consistent with the TTV-estimated masses used here (within 1σ uncertainties). The inclination

of the outer planet was allowed to vary over the full range from 0 to 90 degrees (we expect the

90 degree to 180 degree range to be symmetric; notice also that i = 90 degrees is defined as the

midpoint of the transiting plane, i.e., where the inner three planets reside). The mass of the outer
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planet was chosen for each trial to satisfy the observed m sin i measurement within the reported

errors given the assigned inclination for that trial. The results are plotted in Figure 3.8.

In this systems, the spin-axis of the star is observed to be aligned with the orbital angular

momentum of the inner three planets, so that the system is likely to have formed with such an

alignment. The inclination of the orbit of the outer companion is unknown a priori. Our numerical

results show that in order for the inner system to remain CMT-stable most of the time, the incli-

nation of WASP-47c cannot be more than 2-3 degrees out of the transiting plane at 90 degrees (the

plane that contains the inner three planets). Since the semi-major axis of WASP-47c is large, the

inclination of its orbit can easily be large enough that the planet does not transit (as observed) but

still lies within a couple degrees of the plane (as required by CMT-stability) — the inclination only

needs to be a few tenths of a degree to keep WASP-47c from transiting. Notice also that further

refinement of the masses of the inner system of planets will allow for a more robust exploration of

this constraint.

The observed alignment between the spin-axis of the star and the angular momentum of WASP-

47b’s orbit, combined with the suggestion that WASP-47c is likely roughly coplanar with all three

planets of the inner system, indicates a dynamically quiet history for the system. Indeed, it is

easier to knock a system out of alignment than return it to alignment, so it is unlikely (although

not impossible) that the WASP-47 system is dynamically active and we see it at an opportune

moment. It is more likely that WASP-47 formed and migrated (in either order) in a dynamically

quiet manner.

3.6 Conclusions

In this work, we have considered a collection of 18 Kepler multi-planet systems and evaluated

their CMT-stability in the presence of a perturbing Jovian companion with a semi-major axis

between 1 and 30 AU. A system that we define to be Continually Mutually Transiting is expected

to remain transiting from our line of sight over many secular periods. In contrast, a system in a

CMT-unstable configuration would be not be visible in transit all the time — sometimes one subset

of planets might be visible, and another time a different subset might be visible. The sample we
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Figure 3.8 Stability of Inner Planets in WASP-47 System by Companion Properties. WASP-
47, a good example of a planetary system with both a tightly packed inner system (WASP-
47e, -47b, and -47d) and an outer perturber (WASP-47c) is a good test case for the methods
used in this chapter. The line shows the median fraction of time the inner system is CMT-
stable for a given inclination, and the color-block shows the entire parameter space populated
by the 1000 trials. The CMT-stability of the inner system decreases to a paltry 20% if the
outer companion is allowed to attain a significant inclination out of the plane containing the
other planets (which, in parameterization, is the plane centered at 90 degrees). There is a
large area in parameter space that allows the inner system to be CMT-stable and the outer
planet to be non-transiting (see lower panel).
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consider was chosen to include all observed systems with five or more planets, along with some

additional four-planet systems for comparison. The total number of systems analyzed was limited

by computational resources.

This work presents both general results and specific results for particular systems. We find

that massive, close-in companions to the observed Kepler multi-planet systems will lead to CMT-

instability. Table 3.2 gives the limits for each of the systems analyzed in this work. For most of

the systems in the sample, the fraction of time that the system remains CMT-stable approaches

unity at a well-defined value of the companion periastron (see Figure 5). Moreover, these periastron

values fall in the range p = 5− 15 AU for the majority of the systems. The specific values, for each

of the sets of priors, are given in Table 3.2.

From the population of systems explored here, we can also deduce general limits on the presence

of possible companions. These systems can remain CMT-stable provided that the companion

periastron is greater than p = 5− 30 AU, although some systems saturate this outer limit so that

any companions must reside in even wider orbits. At one extreme, systems can be rendered CMT-

unstable with a planet comparable in mass and orbital radius to Jupiter (e.g., Kepler-402). Most

systems require companions to reside beyond p ∼ 10 AU, whereas some systems are so sensitive

to inclination angle oscillations that companions must lie beyond 30 AU. We can thus draw the

following conclusion: If exterior companions (with periastron inside of 10 AU and masses of a few

Mjup) were common, we would often expect to see significant mis-alignments in at least some of

the observed multi-planet systems. Since we do not see this effect in the sample, it is unlikely that

this type of companion is common in the observed multi-planet systems.

We also find that the surface density of a compact system of planets can serve as a good

prediction for whether systems are CMT-stable. Low surface density systems tend to be more

susceptible to perturbations by additional companions (see Figure 6).

In addition to the general analysis summarized above, we considered the effects of adding

Jupiter-analog planets (with mass of 1 Mjup and a = 5 AU) into the compact systems. The CMT-

stability of the resulting systems is greatly compromised; these results are also presented in Table

3.2. This numerical experiment shows that none of the compact Kepler systems are allowed to

have a Jupiter analog. If such a planet were present, the system would (almost always) be driven
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to CMT-instability, so that the full set of planets would not be observed in transit.

This dynamical treatment also provides results for particular systems, specifically, WASP-47

and Kepler-20. The WASP-47 system is one where an analysis of this nature proves particularly

useful: In order for the inner three planets of the system to remain CMT-stable, the inclination

angle of the fourth (more distant) companion must be small, which in turn implies that it has

a planetary mass (rather than a larger mass with the orbit observed at high inclination). In

other words, CMT-stability of the WASP-47 system predicts that the fourth planet must be at

low inclination with mass m ≈ m sin i. The finding that all four planets in this system exist in

a roughly coplanar configuration has implications for the formation scenario of this system, and

suggests that the system formed and migrated dynamically quietly. More work should be done to

understand the dynamical history of this particular system, whose inclination spread is analogous

to our own solar system.

Kepler-20 is another intriguing system. Our simulation results for the five-planet Kepler-20

showed that the system was particularly susceptible to excitations from a companion at a large

range of orbital separations. Kepler-20 became CMT-unstable a large fraction of the time. A

solution was recently found for this puzzling observation: Kepler-20 was recently discovered to

have a sixth planet orbiting in a non-transiting configuration in between the orbits of the previously

discovered planets. Since not all planets in the inner system of Kepler-20 actually transit, this case

is actually a CMT-unstable system, as the inner compact system of planets does not continually,

mutually transit.

In this work, we considered three choices for the priors used to specify the orbital properties of

the companion: a uniform prior, a transit-inspired prior, and non-transiting disk prior. The results

described above are largely insensitive to the choice of priors. We can quantify this effect as follows.

The main result of this analysis is the threshold value of companion periastron, where companions

must have larger values in order to not render the inner system CMT-unstable. These values are

listed in Table 3.2. The spread between the three prior choices δp/p are on the order of 10%-15%,

so that this variation provides an estimate on the uncertainty of our quoted periastron thresholds.

For all three choices of priors, we have identified some Kepler systems as being probabilistically

CMT-unstable in the presence of any additional perturbing companion (of the type considered
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here). This result implies that if any additional, perturbing body were in the system, we would

not expect all of the inner system planets to transit (at least not most of the time). These highly

susceptible systems are Kepler-11, Kepler-20, Kepler-33, Kepler-62, and Kepler-90. If these systems

actually have the planetary properties that are currently reported, then these systems are unlikely

to host additional companions. In other words, either these planetary systems have no additional

companions (of the class considered here) or their properties are not determined correctly.

It is interesting to note that the systems least capable of hosting an additional companion (see

Table 3.2) fall into two categories. First, systems may have a large surface density (Kepler-33),

which may be too tightly packed, such that any small perturbation from a companion excites

the system into a non-CMT-stable state. Second, and more common, are systems like Kepler-90,

Kepler-62, Kepler-20, Kepler-186, and Kepler-11, which have lower surface densities. The planets

in these systems will attain higher inclinations more easily. The results of this work imply that

the second case is more common. In other words, planetary systems with surface densities low

enough to be easily perturbed are more common than the extremely dense ones. An extended

analysis of additional Kepler, K2, and TESS systems will determine if this apparent trend holds.

As more systems are discovered and characterized, the techniques of this chapter will be useful in

constraining their possible architectures.
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CHAPTER IV

Discovery of Two Additional Nearby Planetary

Companions to Hot Jupiter WASP-47 b and Precise

Density Determinations

Results in this chapter were published in: Becker, J. C., Vanderburg, A., Adams, F. C.,
Rappaport, S. A., Schwengeler, H. M. 2015. WASP-47: A Hot Jupiter System with Two Additional
Planets Discovered by K2. The Astrophysical Journal 812, L18. and Vanderburg, A., Becker,
J. C., and 33 colleagues 2017. Precise Masses in the WASP-47 System. The Astronomical Journal
154, 237. and are presented here with moderate revisions.

4.1 Abstract

Using new data from the K2 mission, we show that WASP-47, a previously known hot Jupiter

host, also hosts two additional transiting planets: a Neptune-sized outer planet and a super-Earth

inner companion. We measure planetary properties from the K2 light curve and detect transit

timing variations, confirming the planetary nature of the outer planet. We performed a large

number of numerical simulations to study the dynamical stability of the system and to find the

theoretically expected transit timing variations (TTVs). The theoretically predicted TTVs are in

good agreement with those observed, and we use the TTVs to determine the masses of two planets,

and place a limit on the third. The WASP-47 planetary system is important because companion

planets can both be inferred by TTVs and are also detected directly through transit observations.

The depth of the hot Jupiter’s transits make ground-based TTV measurements possible, and the
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brightness of the host star makes it amenable for precise radial velocity measurements. The system

serves as a Rosetta Stone for understanding TTVs as a planet detection technique.

Subsequently, we present precise radial velocity observations of WASP-47. We analyze our

observations from the HARPS-N spectrograph along with previously published data to measure

the most precise planet masses yet for this four-planet system. When combined with new stellar

parameters and reanalyzed transit photometry, our mass measurements place strong constraints on

the compositions of the two small planets. We find unlike most other ultra-short-period planets,

the inner planet, WASP-47 e, has a mass and radius inconsistent with an Earth-like composition.

Instead, WASP-47 e likely has a volatile-rich envelope surrounding an Earth-like core and mantle.

We also perform a dynamical analysis to constrain the orbital inclination of WASP-47 c, the outer

Jovian planet. This planet likely orbits close to the plane of the inner three planets, suggesting

a quiet dynamical history for the system. Our dynamical constraints also imply that WASP-47 c

is much more likely to transit than a geometric calculation would suggest. We calculate a transit

probability for WASP-47 c of about 10%, more than an order of magnitude larger than the geometric

transit probability of 0.6%.

4.2 Introduction

Due to their large sizes and short orbital periods, hot Jupiters (roughly Jupiter-mass planets

with periods between 0.8 and 6.3 days; Steffen et al., 2012a) are among the easiest exoplanets

to detect. Both the first exoplanet discovered around a main sequence star (Mayor & Queloz,

1995) and the first known transiting exoplanet (Charbonneau et al., 2000b; Henry et al., 2000)

were hot Jupiters. Until the launch of the Kepler space telescope in 2009, the majority of known

transiting exoplanets were hot Jupiters. Hot Jupiters allow for the determination of many planetary

properties, including their core masses (Batygin et al., 2009) and atmospheres (Charbonneau et al.,

2002). For these reasons, transiting hot Jupiters were and continue to be the subject of many

follow-up studies (Kreidberg et al., 2014).

One such follow-up study is the search for additional planets in the system revealed by small

departures from perfect periodicity in the hot Jupiter transit times (called transit timing variations

125



or TTVs). TTVs were predicted (Holman & Murray, 2005; Agol et al., 2005a) and searched for

(Steffen & Agol, 2005; Gibson et al., 2009), but very little evidence for TTVs was found until the

Kepler mission discovered smaller transiting planets on longer period orbits than the hot Jupiters

detected from the ground (Holman et al., 2010; Lissauer et al., 2011a).

The lack of transit timing variations for hot Jupiters implies a dearth of nearby planets in

these systems. While systems exist with a known hot Jupiter and a distant (& 200-day period)

companion (Knutson et al., 2014c; ?) or a warm Jupiter (orbital period 6.3 - 15.8 days) and a

close-in planet (for example, KOI 191: Steffen et al., 2010; Sanchis-Ojeda et al., 2014a), searches

for close-in, companions to hot Jupiters (as in Steffen et al., 2012a) have not yet been successful.

This apparent scarcity supports the idea that hot Jupiters form beyond the ice line and migrate

inwards via high eccentricity migration (HEM), a process which would destabilize the orbits of

short-period companions (Mustill et al., 2015a). Studies of the Rossiter-McLaughlin effect have also

found the fingerprints of high eccentricity migration (Albrecht et al., 2012a). However, statistical

work has shown that not all hot Jupiters can form in this way (Dawson et al., 2015), so some

hot Jupiters may have close-in planets. Additionally, HEM may not exclude nearby, small planets

(Fogg & Nelson, 2007).

In this chapter, we present an analysis of the WASP-47 system (originally announced by Hellier

et al., 2012a) that was recently observed by the Kepler Space Telescope in its new K2 operating

mode (Howell et al., 2014a). In addition to the previously known hot Jupiter in a 4.16-day orbit, the

K2 data reveal two more transiting planets: a super-Earth in a 19-hour orbit, and a Neptune-sized

planet in a 9-day orbit. We process the K2 data, determine the planetary properties, and measure

the transit times of the three planets. We find that the measured TTVs are consistent with the

theoretical TTVs expected from this system and measure or place limits on the planets’ masses.

Finally, we perform many dynamical simulations of the WASP-47 system to assess its stability.

We also analyze radial velocity data taken with the HARPS-N spectrograph to better measure

the masses and compositions of these planets, and perform a dynamical analysis of the entire four

planet system.
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Figure 4.1 A schematic of the WASP-47 system, including planets b, and d. In the innermost
part of the system, there are at least three planets. In grey, planets known previous to this
work. In red, the two new planets discovered, the outer of which takes roughly nine days to
orbit its host star.

4.3 Discovery of two nearby companions to WASP-47b

4.3.1 K2 Data

Kepler observed K2 Field 3 for 69 days between 14 November 2014 and 23 January 2015. After

the data were publicly released, one of us (HMS) identified additional transits by visual inspection

of the Pre-search Data Conditioned (PDC) light curve of WASP-47 (designated EPIC 206103150)

produced by the Kepler/K2 pipeline. We confirmed the additional transits by analyzing the K2

pixel level data following Vanderburg & Johnson (2014). A Box-Least-Squares (BLS; Kovács et al.,

2002a) periodogram search (as implemented in Muirhead et al., 2015) of the processed long cadence

light curve identified the 4.16-day period hot Jupiter (WASP-47 b), a Neptune sized planet in a

9.03-day period (WASP-47 d), and a super-Earth in a 0.79-day period (WASP-47 e).

Because of the previously known hot Jupiter, WASP-47 was observed in K2’s “short cadence”
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Figure 4.2 Phase-folded lightcurve of WASP-47 e, b, and d. Phase-folded short cadence K2
light curve overlaid with our best-fit transit model (red curves), and binned points (purple
circles). In the top panel (WASP-47 e), the grey circles are bins of roughly 30 seconds. In the
middle and bottom panels (WASP-47 b and WASP-47 d), the grey squares are the individual
K2 short cadence datapoints.

mode, which consists of 58.3 second integrations in addition to the standard 29.41 minute “long

cadence” integrations. K2 data are dominated by systematic effects caused by the spacecraft’s

unstable pointing which must be removed in order to produce high quality photometry. We began

processing the short cadence data following Vanderburg & Johnson (2014) to estimate the corre-

lation between K2’s pointing and the measured flux (which we refer to as the K2 flat field). We

used the resulting light curve and measured flat field as starting points in a simultaneous fit of the

three transit signals, the flat field, and long term photometric variations (following Vanderburg

et al., 2015b). The three planetary transits were fit with Mandel & Agol (2002a) transit models,

the flat field was modeled with a spline in Kepler’s pointing position with knots placed roughly
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every 0.25 arcseconds, and the long term variations were modeled with a spline in time with knots

placed roughly every 0.75 days. We performed the fit using the Levenberg-Marquardt least squares

minimization algorithm (Markwardt, 2009). The resulting light curve1 shows no evidence for K2

pointing systematics, and yielded a photometric precision of 350 parts per million (ppm) per 1

minute exposure. For comparison, during its original mission, Kepler also achieved 350 ppm per 1

minute exposure on the equally bright (Kp = 11.7) KOI 279.

We measured planetary and orbital properties by fitting the short cadence transit light curves

of all three planets with Mandel & Agol (2002b) transit models using Markov Chain Monte Carlo

(MCMC) algorithm with affine invariant sampling (Goodman & Weare, 2010b). We used 50 walkers

and 9000 links, and confirmed convergence with the test of Geweke (1992) and a comparison of the

Gelman-Rubin statistics for each parameter. We fit for the q1 and q2 limb darkening parameters

from Kipping (2013a), and for each planet, we fit for the orbital period, time of transit, orbital

inclination, scaled semimajor axis a/R?, and Rp/R?. Our best-fit model is shown in Figure 4.2 and

our best-fit parameters are given in Table 4.1. Our measured planetary parameters for WASP-47 b

are consistent with those reported in Hellier et al. (2012a).

We also fitted for the transit times and transit shapes of each transit event in the short cadence

light curve simultaneously (due to the relatively short orbital periods sometimes causing two transits

to overlap) using MCMC. Our measured transit times2 are shown in Figure 4.3. We find that the

TTVs of WASP-47 b and WASP-47 d are detected at high significance. The two TTV curves are

anti-correlated and show variations on a timescale of roughly 50 days. This is consistent with the

TTV super-period we expect for planets orbiting in this configuration, which we calculate to be

PTTV = 52.67 days using Equation 7 of Lithwick et al. (2012).

4.3.2 Validation of WASP-47 e and WASP-47 d

Transiting planet signals like those we find for WASP-47 e and WASP-47 d can be mimicked by a

variety of astrophysical false positive scenarios. In this section, we argue that this is unlikely in the

case of the WASP-47 system. The hot Jupiter, WASP-47 b, was discovered by Hellier et al. (2012a)

1The short cadence light curve is available for download at www.cfa.harvard.edu/ avanderb/wasp47sc.csv
2Tables available at dept.astro.lsa.umich.edu/ jcbecker/

129



Parameter Value 68.3% Confidence Comment
Interval Width

WASP-47 b
Orbital Period, P [days] 4.1591287 ± 0.0000049 B
Radius Ratio, (RP/R?) 0.10186 ± 0.00023 B

Scaled semimajor axis, a/R? 9.715 ± 0.050 B
Orbital inclination, i [deg] 89.03 ± 0.27 B

Transit impact parameter, b 0.164 ± 0.045 B
Time of Transit tt [BJD] 2457007.932131 ± 0.000023 B

TTV amplitude [min] 0.63 ± 0.10 B
MP [M⊕] 341 +73

−55 A,B,C
RP [R⊕] 12.77 ± 0.44 A,B

WASP-47 e
Orbital Period, P [days] 0.789597 ± 0.000013 B
Radius Ratio, (RP/R?) 0.01456 ± 0.00024 B

Scaled semimajor axis, a/R? 3.24 ± 0.14 B
Orbital inclination, i [deg] 87.0 ± 3.1 B

Transit impact parameter, b 0.17 ± 0.15 B
Time of Transit tt [BJD] 2457011.34849 ± 0.00038 B

TTV amplitude [min] <1.2 min for any TTV period < 80 days B
MP [M⊕] <22 95% Confidence C
RP [R⊕] 1.829 ± 0.070 A,B

WASP-47 d
Orbital Period, P [days] 9.03081 ± 0.00019 B
Radius Ratio, (RP/R?) 0.02886 ± 0.00047 B

Scaled semimajor axis, a/R? 16.33 ± 0.87 B
Orbital inclination, i [deg] 89.36 ± 0.67 B

Transit impact parameter, b 0.18 ± 0.16 B
Time of Transit tt [BJD] 2457006.36927 ± 0.00044 B

TTV amplitude [min] 7.3 ± 1.9 B
MP [M⊕] 15.2 ±7 C
RP [R⊕] 3.63 ± 0.14 A,B

Table 4.1 Planet Parameters for WASP-47 b, e, and d. A: Parameters come from Mortier
et al. (2013). B: Parameters come from analysis of the K2 light curve. C. Parameters come
from dynamical fits to the observed transit timing variations. D: We report the magnitude
of the impact parameter, whereas the true value could be positive or negative.
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WASP-47b

WASP-47d

WASP-47e

Figure 4.3 Derived TTVs for WASP-47 e, b, and d. Top: observed TTVs for WASP-47 e.
Middle: observed TTVs for WASP-47 b, overlaid (for visual clarity) with a teal sine curve
with period equal to the expected 52.67-day super-period. Bottom: Observed TTVs for
WASP-47 d, overlaid (for visual clarity) with an orange sine curve with the expected super-
period. When analyzing the transit times, we did not use the sine fits, they are simply to
guide the eye.

and confirmed with radial velocity (RV) follow-up, which showed no evidence for stellar mass

companions or spectral line shape variations, and detected the spectroscopic orbit of the planet.

In the K2 data, we detect transit timing variations of WASP-47 b, which are anti-correlated with

the transit timing variations of WASP-47 d, and which have a super-period consistent with what

we expect if both of these objects are planets. The TTVs therefore confirm that WASP-47 d is a

planet in the same system as WASP-47 b. We also fitted the transit durations with a power law and

found that they followed the expected P 1/3 relation (when P is orbital period) for planets orbiting

a single star.
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The light curve is not of sufficiently high quality to detect TTVs for the smaller WASP-47 e,

so we validate its planetary status statistically. We do this using vespa (Morton, 2015), an imple-

mentation of the procedure described in Morton (2012). Given constraints on background sources

which could be the source of the transits, a constraint on the depth of any secondary eclipse, the

host star’s parameters and location in the sky, and the shape of the transit light curve, vespa

calculates the probability of a given transit signal being an astrophysical false positive. Both visual

inspection of archival imaging and a lucky imaging search (Wöllert et al., 2015) found no close com-

panions near WASP-47, but the lucky imaging is not deep enough to rule out background objects

that could cause the shallow transits of WASP-47 e. Following Montet et al. (2015), we define a

conservative radius inside of which background sources could cause the transits. We adopt a radius

of 12 arcseconds; we detect the transits with photometric apertures as small as 6 arcseconds in

radius and allow for the possibility that stars outside of the aperture could contribute flux due to

Kepler’s 6 arcsecond point spread function. We find that WASP-47 e has a false positive probability

(FPP) of roughly 5 × 10−4. We find using the expressions from Lissauer et al. (2012a) that since

this is a three-planet system, its FPP decreases to less than 10−5. As such, we consider WASP-47 e

to be validated as a bona fide planet.

4.3.3 Dynamical Simulations

4.3.3.1 Stability Analysis

We test the dynamical stability of the WASP-47 planetary system with a large ensemble of

numerical simulations. The K2 data determine the orbital periods of the three bodies to high

precision and place constraints on the other orbital elements. We sample the allowed ranges of

the orbital elements for all three planets, randomizing the orbital phases of the three bodies. We

assigned masses by sampling the distribution of Wolfgang et al. (2015) for the measured planet

radii. We chose eccentricities from a uniform distribution that extends up to e=0.3. We discard

systems that do not satisfy the stability criteria enumerated in Fabrycky et al. (2014b).

Given a set of 1000 such initial conditions, we numerically integrate the systems using the

Mercury6 integration package (Chambers, 1999b). We use a Bulirsch-Stoer (B-S) integrator, re-
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Figure 4.4 Stability Map for the WASP-47 System. Results from an ensemble of 1000
numerical integrations testing the stability of the system. The left panel shows the fraction of
the systems that survive as a function of time. The other panels show the starting mass and
eccentricity of the three planets sampled over 1000 trials; the blue points represent systems
that are stable, whereas the red crosses depict systems that become dynamically unstable.

quiring that system energy be conserved to 1 part in 109. We integrate the system for a total

simulation length of 10 Myr, unless the system goes unstable on a shorter time scale due to ejection

of a planet, planetary collisions, or accretion of a planet by the central star. To perform these

computationally intensive simulations, we use the Open Science Grid (OSG; Pordes et al., 2007)

accessed through XSEDE (Towns et al., 2014).

The results from this numerical survey are shown in Figure 4.4. The left panel shows the

fraction of systems remaining stable as a function of time. About 30% of the systems are unstable

over short time scales, and almost 90% of the systems are unstable over long time scales. Once

the systems reach ages of ∼ 104 yr, they tend to survive over the next three orders of magnitude

in integration time. The remaining three panels show the mass and initial eccentricity of the three

planets, sampled from the distributions specified above. One clear trend is that low eccentricity

systems tend to survive, whereas systems with ep > 0.05 are generally unstable. A second trend

that emerges from this study is that stability does not depend sensitively on the planet masses

(provided that the orbits are nearly circular). Stable systems arise over a wide range of planet

masses, essentially the entire range of masses allowed given the measured planetary radii.

WASP-47 b and WASP-47 d orbit within about 20% of the 2:1 mean motion resonance (MMR).

For completeness, we carried out a series of numerical integrations where the system parameters

varied over the allowed, stable range described above. In all trials considered, the resonance angles
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were found to be circulating rather than librating, so there is no indication that the system resides

in MMR.

Each of the numerical integrations considered here spans 10 Myr, which corresponds to nearly

one billion orbits of the inner planet. Tidal interactions occur on longer timescales than this and

should be considered in future work. In particular, the survival of the inner super-Earth planet

over the estimated lifetime of the WASP-47 system could place limits on the values of the tidal

quality parameters Q for the bodies in the system.

4.3.3.2 Theoretical TTVs

We performed a second ensemble of numerical simulations to estimate the magnitude of transit

timing variations in the WASP-47 system. We used initial conditions similar to those adopted in

the previous section, but with starting eccentricities e < 0.1.

We integrated each realization of the planetary system for 10 years using the Mercury6 B-S

integrator with time-steps < 0.5 seconds. We extracted transit times from each integration for

each planet, resulting in theoretical TTV curves. The resulting distributions of predicted TTV

amplitudes are shown in Figure 4.5. The three distributions have approximately the same shape

and exhibit well defined peaks. The TTV amplitudes we measured in Section 4.3.1 are consistent

with the distributions we produced theoretically.

4.3.3.3 Mass Measurements from the Transit Timing Variations

We measure the TTVs with high enough precision that dynamical fits can give estimates of

the planetary masses. We use TTVFAST (Deck et al., 2014a) to generate model transit times for

each observed epoch for each planet, and use emcee (Foreman-Mackey et al., 2013a), an MCMC

algorithm with affine invariant sampling, to minimize residuals between the observed TTVs and

these model TTVs. In these fits, we allow each planet’s mass, eccentricity, argument of pericenter,

and time of first transit to float. We imposed a uniform prior on eccentricity between 0 and 0.06 (as

required for long-term stability). We initialized the chains with random arguments of pericenter and

masses drawn from the Hellier et al. (2012a) mass posterior for WASP-47 b, and the distribution

of Wolfgang et al. (2016) for WASP-47 e and WASP-47 d. We used 64 walkers and 20000 iterations
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Figure 4.5 Expected TDVs for WASP-47 b, e, and d. Histograms of potential transit timing
variations for each planet. For a large selection of (likely) dynamically stable initial condi-
tions, we integrated the system forward over a ten-year timescale and extracted the expected
TTV amplitude.

to explore the parameter space, and discarded the first 2500 iterations as ‘burn-in’. We confirmed

that the MCMC chains had converged using the test of Geweke (1992) and the Gelman-Rubin

statistics (which were below 1.05 for every parameter). The best-fit model points are overlaid with

the observed TTVs for the outer two planets in Figure 4.6.

We find that we are able to measure the masses of WASP-47 b and WASP-47 d, and place an

upper limit on the mass of WASP-47 e. We additionally provide limits on the quantities ec cosωc−

eb cosωb. These masses and limits are summarized in Table 4.1. We measure a mass of 3417.3 M⊕

for WASP-47 b, which is consistent with the mass measured by Hellier et al. (2012a) of 362 ± 16

M⊕ at the 1–σ level. The mass of WASP-47 d is 15.2±7 M⊕. Only an upper limit can be placed

on WASP-47 e of <22M⊕.

4.3.4 State of the field post Becker et al. 2015

WASP-47 is unusual: it is the first hot Jupiter discovered to have additional, close-in companion

planets. Using the Exoplanet Orbit Database (Han et al., 2014), we found that among the 224

systems containing a planet with mass greater than 80 M⊕ and orbital period less than 10 days,
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Observed TTVs

Dynamical �tsWASP-47d

WASP-47b

Figure 4.6 Agreement Between Observed TTVs and Theoretical TTVs. The best-fit theo-
retical points (red, with error bars) are overlaid with the observed TTVs (grey circles) for
the best fit system parameters given in Table 4.1.

only six contain additional planets, and none of them have additional planets in orbital periods

shorter than 100 days. That the additional planets in the WASP-47 system are coplanar with the

hot Jupiter and that the planets are unstable with e & 0.05 implies that the WASP-47 planets

either migrated in a disk or some damping near the end of migration took place to bring them into

their present compact architecture.

The continued existence of the companions in this system indicates that HEM cannot serve as

the sole formation mechanism for hot Jupiters. HEM would likely have disrupted the orbits of the

smaller planets. It is quite possible that there is more than one potential formation mechanism for

hot Jupiters. Additionally, observations contemporaneous with the work in this section identified

an additional Jupiter-mass planet in a estimated 571-day orbit (Neveu-VanMalle et al., 2016b,

called WASP-47c;) in this system, making this the first hot Jupiter with both close-in companions

and an external perturber.

WASP-47 is a rare system for which planet masses can be determined using TTVs measured

from the K2 data set. This is because (a) the planets are far enough away from resonance that the

super-period (52.7 days) is shorter than the K2 observing baseline (69 days), and (b) the planets

are massive enough that the TTVs are large enough to be detectable. The detection of TTVs was

also aided by the fact that WASP-47 was observed in short cadence mode, which is unusual for K2.

Finally, WASP-47 is a favorable target for future follow-up observations. The V-band magnitude
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is 11.9, bright enough for precision RV follow-up studies. The K2 light curve shows no evidence

for rotational modulation, indicating that WASP-47 is photometrically quiet and should have little

RV jitter. Measuring the mass of the two planetary companions with RVs could both improve the

precision of the inferred masses and test the consistency of TTV and RV masses, between which

there is some tension (e.g. KOI 94: Weiss et al., 2013; Masuda et al., 2013). The 1.3% depth of the

transits of WASP-47 b makes it easily detectable from the ground. Previous ground based searches

for transit timing variations of hot Jupiters have attained timing uncertainties of ∼ 20 seconds,

lower than the measured TTV amplitude for WASP-47 b (Gibson et al., 2009). Follow-up transit

observations could place additional constraints on the masses of the WASP-47 planets.

In this work we have studied the WASP-47 planetary system by using data from the Kepler/K2

mission along with supporting theoretical calculations. Our main results can be summarized as

follows:

1. In addition to the previously known hot Jupiter companion WASP-47 b, the system contains

two additional planets that are observed in transit. The inner planet has a ultra-short period

of only 0.789597 days, and radius of 1.829 R⊕. The outer planet has a period of 9.03081 days

and a radius of 3.63 R⊕, comparable to Neptune.

2. The system is dynamically stable. We have run 1000 10 Myr numerical integrations of the

system. The planetary system remains stable for the 10 percent of the simulations that start

with the lowest orbital eccentricities.

3. The particular planetary system architecture of WASP-47 results in measurable TTVs, which

are in good agreement with the TTVs we find from numerical integrations of the system. We

use the TTVs to measure the masses of WASP-47 b (consistent with RV measurements) and

WASP-47 d.

4. This compact set of planets in nearly circular, coplanar orbits demonstrates that at least a

subset of Jupiter-size planets can migrate in close to their host star in a dynamically quiet

manner, suggesting that there may be more than one migration mechanism for hot Jupiters.

The WASP-47 planetary system provides a rare opportunity where planets can be both inferred
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from TTVs and seen in transit. Future observations comparing the system parameters inferred from

TTVs with those inferred from RVs will qualitatively test TTVs as a general technique.

4.4 Improved Mass Measurements Using Radial Velocities

In Section 4.3, we described our discovery of two short-period planets in the hot-Jupiter-hosting

system WASP-47. The WASP-47 planetary system was first discovered by the ground-based Wide

Angle Search for Planets (WASP) survey (Hellier et al., 2012b). After detecting a candidate

hot Jupiter in a 4.16 day orbital period with the WASP-South instrument, Hellier et al. (2012b)

followed-up the system and confirmed the planetary nature of WASP-47 b with a transit obser-

vation with the EulerCam photometer and moderate precision radial velocity observations from

the CORALIE spectrograph, both on the 1.2m Euler telescope at La Silla Observatory in Chile.

Several years later, WASP-47 happened to lie in Field 3 of the K2 mission, and was observed by K2

between November 2014 and February 2015. In addition to the previously known hot Jupiter, the

precise K2 photometry revealed two other transiting planets, an interior super-Earth in a 19 hour

orbit, and an exterior Neptune-sized planet in a 9 day orbit, making WASP-47 the first and only hot

Jupiter system with additional short-period transiting planets (Becker et al., 2015b). Meanwhile,

long-term radial velocity monitoring of WASP-47 with CORALIE was also revealing interesting

trends. Using 48 observations obtained over the course of almost 5 years, Neveu-VanMalle et al.

(2016c) detected another giant planet orbiting WASP-47 in a nearly 600-day orbit, giving a total

of four known planets around WASP-47.

Although in 2015, when WASP-47 c, d, and e were discovered, extra transiting planets in

a hot Jupiter system seemed unusual and surprising, such planets were once believed likely to

exist, and were in fact seen as a highly promising way to find small transiting planets before the

launch of multi-million-dollar wide-field space telescopes like Kepler and CoRoT. Holman & Murray

(2005) and Agol et al. (2005a) showed that a transiting planet would undergo small deviations from

perfectly periodic transits (called transit timing variations or TTVs) in the presence of other nearby

planets in the system, and Steffen & Agol (2005) showed that this method is highly sensitive to

small planets orbiting near hot Jupiters. Frustratingly, however, after a decade of searching, the
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TTV method’s exquisite sensitivity to small planets near hot Jupiters had merely translated to

exquisite upper limits on the presence of such planets (especially in mean motion resonances with

the hot Jupiter, Steffen & Agol, 2005; Miller-Ricci et al., 2008; Collins et al., 2017).

Meanwhile, shortly after its launch, the Kepler telescope detected the first transit timing vari-

ations in systems of longer period and lower mass planets than the hot Jupiters on which previous

searches had focused (Holman et al., 2010; Lissauer et al., 2011a). Over the course of its mission,

Kepler found planets in nearly every configuration imaginable3, including tightly packed systems

of small planets with short orbital periods (Muirhead et al., 2012) and multi-planet systems with

slightly longer period warm Jupiters (Bonomo et al., 2014; Sanchis-Ojeda et al., 2014b; Huang

et al., 2016a), but Kepler found no evidence for any additional planets near a hot Jupiter. When

detailed investigations and searches for companions to hot Jupiters in Kepler data came up empty

(Steffen et al., 2012b), the scientific community largely considered the issue resolved — hot Jupiters

evidently either cannot or almost never have nearby planetary companions.

Therefore, the planets around WASP-47 must represent a rare outcome of planet formation,

and any observational or theoretical insights into their architecture and origins are important to

help illuminate this new mode. Follow-up work came quickly. Sanchis-Ojeda et al. (2015a) detected

the Rossiter McLaughlin effect for WASP-47 b, ruling out large misalignments between the inner

transiting system’s orbits and the star’s sky-projected spin axis. Radial velocity monitoring with

the Planet Finder Spectrograph (PFS) on the Magellan Clay telescope detected the reflex motion

due to WASP-47 e and found that its composition was most likely rocky (Dai et al., 2015). More

recently, a larger set of precise velocities from the HIgh Resolution Echelle Spectrometer (HIRES)

on the Keck I telescope obtained by Sinukoff et al. (2017b) improved the precision on WASP-47

e’s mass and detected WASP-47 d’s RV signature. A photodynamical analysis by Almenara et al.

(2016) and a simultaneous analysis of radial velocities and transit times by Weiss et al. (2016a)

placed even stronger constraints on the planets’ masses and eccentricities, showing that WASP-47

d had a mass close to that of Neptune, and that the eccentricities of the inner planets were small.

Becker & Adams (2017) used the fact that the three inner planets all transit to place constraints

3Some exceptions to this statement include the lack of binary planets, Trojan planets, and circumtrinary
planets among Kepler’s discoveries.
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on the inclination of WASP-47 c. They showed that WASP-47 c’s orbit is probably fairly well

aligned with the transiting planets, though certain highly misaligned orbits could still allow the

inner planets to transit.

Meanwhile, others have speculated about the origin of the WASP-47 planets. Batygin et al.

(2016a) suggested that in situ formation could be an important channel for creating hot Jupiters,

and that small planetary companions like those around WASP-47 (or in orbits misaligned with the

hot Jupiter) would be a natural consequence of this mechanism. Huang et al. (2016a) also suggested

in situ formation, noting that the planets around WASP-47 are much more reminiscent of planetary

systems hosting warm Jupiters than other hot Jupiters, and speculating that WASP-47 might be an

extreme short-period result of an in situ warm Jupiter formation mechanism. On the other hand,

Weiss et al. (2016a) suggested that WASP-47’s planets might have formed in a two-stage process,

where the two Jovian planets formed far out in the disk, WASP-47 b migrated inwards, and then

the two smaller planets formed nearby. More constraints on the planets’ masses and compositions

and the system architecture are needed to understand how these unusual planets formed and came

to be in their present configuration.

In this section, we add to the already large body of follow-up work on the WASP-47 system,

presenting 69 new precise radial velocity observations from the High Accuracy Radial velocity

Planet Searcher for the Northern hemisphere (HARPS-N). We analyze these new observations

along with previously collected data to determine the most precise values yet for the masses and

radii of the WASP-47 planets.

4.4.1 HARPS-N Spectroscopy

We observed WASP-47 with the HARPS-N spectrograph on the 3.58m Telescopio Nazionale

Galileo (TNG) on the island of La Palma, Spain (Cosentino et al., 2012). HARPS-N is a stabilized

high resolution (λ/∆λ = 115, 000) optical spectrograph designed specifically to make precise radial

velocity measurements. We began observing WASP-47 on 23 July 2015, shortly after K2 data

revealed the presence of two small transiting planets (WASP-47 e and WASP-47 d) in addition to

the previously known hot Jupiter (WASP-47 b). We obtained 78 observations of WASP-47 with

integration times of 30 minutes. We measured radial velocities for each exposure by cross-correlating
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the HARPS-N spectra with a weighted binary mask (Baranne et al., 1996; Pepe et al., 2002). The

30 minute exposures of WASP-47 yielded radial velocity measurements with typical photon-limited

uncertainties of 3 m s−1. HARPS-N is fed by two optical fibers going into the spectrograph - one

fiber feeds the target starlight into the spectrograph, while the other fiber either feeds in a precise

wavelength calibrator4, or sky background light. HARPS-N is stable to better than 1 m s−1 over

the course of a night, considerably more precise than our typical measurement uncertainties, so a

simultaneous calibrator was not necessary for our observations. Instead, we fed sky background

light into the instrument with the second fiber.

Because WASP-47 is somewhat faint for precise radial velocity measurements, and because it lies

in the ecliptic plane near bright solar system objects like the moon, contamination from scattered

sky background light can cause significant velocity errors in some conditions. We identified radial

velocity observations contaminated by scattered light from a bright sky using the method described

by Malavolta et al. (2017). In brief, we calculated radial velocities with and without sky contribution

removed (using the sky spectrum obtained simultaneously with the instrument’s second fiber), and

flagged the exposures that showed a significant (2–σ) velocity difference with and without sky

subtraction. We found that four of our 78 observations showed evidence for sky contamination and

excluded them from our analysis (which we describe in Section 4.4.2).

4.4.1.1 Updated Spectroscopic Parameters

We used our HARPS-N spectra to measure spectroscopic parameters for WASP-47. We first

used the Stellar Parameter Classification (SPC) method (Buchhave et al., 2012, 2014a). SPC

works by cross-correlating a stellar spectrum with synthetic spectra from Kurucz (1992) model

atmospheres and interpolating the resulting correlation peaks to determine stellar atmospheric

parameters like effective temperature, surface gravity, metallicity, and line broadening. We ran

SPC on 75 of the 78 HARPS-N spectra5 and calculated the averages for all of the spectroscopic

parameters. With SPC, we measure a temperature of Teff,SPC = 5571 ± 50 K, a surface gravity

4The wavelength calibrator light source can be a Thorium Argon lamp, continuum light passed through
a stabilized Fabry-Perot interferometer, or a stabilized laser frequency comb.

5We excluded several spectra due to their low signal-to-noise ratios. We did not exclude the sky-
contaminated spectra from our SPC analysis because the small amount of sky contamination necessary
to skew the radial velocity by ≈ 10 m s−1 does not significantly affect the SPC analysis.
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of log gcgs,SPC = 4.39 ± 0.1, a metallicity [M/H]SPC = 0.42 ± 0.08, and place an upper limit

on rotational velocity of vrot < 2 km s−1. The error bars reported for SPC reflect systematic

uncertainties in the stellar models used by SPC. The scatter in the parameters SPC reports for each

of the 75 individual spectra is much smaller than the systematic uncertainty in these parameters.

We also measured spectroscopic parameters using the method described by Mortier et al. (2013)

on our new HARPS-N spectra. We co-added all of the HARPS-N spectra, measured equivalent

widths of iron lines using ARES2 (Sousa, 2014; Sousa et al., 2015), and determined atmospheric

parameters using the 2014 version of MOOG6 (Sneden, 1973). We then applied the surface gravity

correction from Mortier et al. (2014) to adjust for systematic effects in the ARES/MOOG analysis

method. This analysis yielded an effective temperature Teff,MOOG= 5614 ± 67 K, surface gravity

log gcgs,MOOG = 4.45 ± 0.11, and an iron abundance [Fe/H]MOOG = 0.39 ± 0.05.

The spectroscopic parameters that we determined through our SPC and ARES/MOOG analy-

ses are consistent with one another, and are also consistent within errors with previous determina-

tions. In this chapter, we adopt weighted averages of the spectroscopic parameters from our SPC

analysis and our ARES/MOOG analysis, along with the spectroscopic analysis done by Sinukoff

et al. (2017b) on a high signal-to-noise spectrum from Keck Observatory using another independent

method, Spectroscopy Made Easy (SME, Brewer et al., 2015, 2016). Each of the three methods

we use have their own systematics, so averaging the three methods could give more accurate spec-

troscopic parameters. The weighted averages were a temperature of Teff = 5552 K, a metallicity7

of [M/H] = 0.38, and a stellar surface gravity of log gcgs = 4.32. We assigned conservative error

bars of 75 K in temperature, 0.05 dex in metallicity, and 0.1 dex in surface gravity to the weighted

averages in order to account for systematic errors in the spectroscopic analyses.

4.4.1.2 Transit Re-analysis

Since the original analysis of the WASP-47 K2 light curve by Becker et al. (2015b), there have

been new data collected (Sinukoff et al., 2017b) and additional dynamical analyses (Almenara

et al., 2016; Weiss et al., 2016a) performed, which put tighter constraints on the planets’ orbits

6http://www.as.utexas.edu/~chris/moog.html
7To calculate the weighted average metallicity, we use iron abundance as a proxy for the overall metallicity

by assuming solar abundance ratios, where [M/H] = [Fe/H].
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(in particular, their eccentricities). In this section, we re-analyze the K2 light curve using Kepler’s

third law to link together the planets’ scaled semi-major axes while taking into account new, tighter

constraints on the inner planets’ orbital eccentricities. These constraints yield better measurements

of the planets’ scaled semi-major axes, and therefore better measurements of the planets’ transit

impact parameters and planet to star radius ratios.

We performed our new transit analysis using the same K2 light curve of WASP-47 produced

and used by Becker et al. (2015b). Kepler observed WASP-47 for 69 days between 2014 November

14 and 2015 January 23 in short-cadence mode – an exposure of WASP-47 was recorded every 58.85

seconds instead of Kepler’s normal 29.4 minute “long cadence” integrations. After Becker et al.

(2015b) processed the light curve to remove systematic effects due to Kepler’s unstable pointing

(see also Vanderburg & Johnson, 2014; Vanderburg et al., 2016c), the photometric scatter in the

light curve was about 350 ppm per minute.

We perform the transit analysis on the K2 light curve using a Markov Chain Monte Carlo

(MCMC) algorithm with an affine invariant ensemble sampler (Goodman & Weare, 2010a). We

fit the three transiting planet light curves with Mandel & Agol (2002b) model light curves (with

a quadratic limb darkening law parameterized following Kipping 2013a). We fit for the planets’

orbital periods, transit ephemerides8, planet to star radius ratios (Rp/R?), orbital inclinations (i),

and in some cases, the orbital eccentricity (e) and argument of periastron (ωp). Instead of fitting

for all three planets’ scaled semi-major axis ratios (a/R?) independently, we fit for stellar density

and calculated a/R? for each planet using Kepler’s third law. We also fit for a single flux offset

parameter and the uncertainty of each K2 photometric datapoint.

We force the orbits of WASP-47 e and WASP-47 b to be circular; the tidal circularization

timescales for these two planets (105 years and 107 years respectively, using the expression from

Goldreich & Soter 1966 and reasonable values9 of Q and k2) are much shorter than the age of the

system10. For WASP-47 d, while tidal dissipation is not strong enough to necessarily circularize the

8Even though small transit timing variations have been detected in the K2 light curve, for this analysis,
we assumed the transits of the WASP-47 planets are perfectly periodic. We have also analyzed the K2
light curve while shifting the transit center times to account for the transit timing variations, and found the
difference in fitted parameters was negligible.

9In particular, we used Q/k2 = 102 for WASP-47 e and Q/k2 = 105 for WASP-47 b and WASP-47 d.
10Planet-planet interactions will drive a small forced eccentricity but our dynamical calculations show that

typical forced eccentricities for these planets are of order 10−3, too small to affect our measured parameters.
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orbit, strong dynamical constraints exist on any eccentricity. Both N-body simulations performed

by Becker et al. (2015b) and simultaneous analysis of transit times and radial velocities by Almenara

et al. (2016) and Weiss et al. (2016a) have showed that the eccentricity must be quite small. We

imposed a half-Gaussian prior on eccentricity centered at 0 with a 1-σ width of 0.014, and solutions

with eccentricity less than 0 forbidden. This prior matches the distribution of dynamically stable

simulations from Becker et al. (2015b) and gives a 2-σ upper limit on eccentricity that matches the

limit from Weiss et al. (2016a). In our MCMC fit, we explored eccentric models for WASP-47 d’s

orbit by stepping in
√
e sinωp and

√
e cosωp.

We initialized an ensemble of 100 walkers, evolved them for 20,000 steps, and removed the

first 10,000 steps, when the ensemble was “burning in” and not yet in a converged configuration.

We assessed convergence of the resulting MCMC chains by calculating the Gelman Rubin statistic,

which was less than 1.2 for all parameters, and less than 1.05 for most. The best-fit parameters and

their uncertainties are reported in Table 4.1. The results are consistent with the previous transit

analyses by Becker et al. (2015b) and Almenara et al. (2016), but in some cases are more precise

because of the additional constraints we have imposed here. Thanks to the high signal-to-noise

transits of WASP-47 b, we measure the stellar limb darkening coefficients11 and importantly, we

measure the stellar density with a precision of 1.4%, which we use in Section 4.4.1.3 to determine

a precise stellar mass and radius. We also measure the radius ratios of WASP-47 e and WASP-47

d with 0.8% and 0.5% precision, respectively.

4.4.1.3 Stellar Parameters

In this section, we take advantage of the well measured stellar density we measure from the K2

transit photometry to derive precise stellar parameters (as has been done previously for other hot

Jupiter hosts, e.g. Sozzetti et al., 2007). We base our analysis on the Yonsei-Yale (YY) isochrones

(Yi et al., 2001), exploring parameter space stepping in stellar mass, age, and metallicity us-

ing MCMC with an affine invariant ensemble sampler. We interpolated the YY isochrones using

11We measure the linear coefficient u1 = 0.533 ± 0.010 and the quadratic coefficient u2 = 0.097 ± 0.024.
These coefficients are in in reasonable agreement (within ≈ 0.1) with the theoretical predictions from Claret
& Bloemen (2011) of u1 = 0.47 and u2 = 0.22.
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code12 written by Jason Eastman for EXOFASTv2 (Eastman et al. 2013a; Rodriguez et al. 2017a;

Eastman et al. in prep). We impose Gaussian priors on WASP-47’s density, metallicity, effective

temperature, and surface gravity. The density prior’s center and width come from our analysis

of the K2 light curve. For the temperature, metallicity, and surface gravity priors, we use the

values and uncertainties from the weighted average of the three different spectroscopic analyses we

discussed in Section 4.4.1.1.

Thanks to our precise measurement of WASP-47’s density from the transit light curves, our

MCMC analysis yielded a stellar mass and radius with precisions of about 3% and 1% respectively.

Stellar evolutionary models have not yet been tested at such high precisions on stellar parameters

(Torres et al., 2010), so we performed tests to assess the scale of systematic errors in the isochrones

we used. First, we compared the results of our analysis with the YY isochrones to the similar

analysis performed by Almenara et al. (2016) using the Dartmouth isochrones (Dotter et al., 2008).

Using the same priors and input stellar parameters, our YY analysis yielded a mass about 1.5%

larger and a radius about 0.5% larger than the values Almenara et al. (2016) determined using the

Dartmouth isochrones. The differences in mass and radius between the YY analysis and Dartmouth

analysis are about half the size of the uncertainties from each analysis. We also performed an

MCMC analysis to determine WASP-47’s stellar parameters using the empirical mass and radius

relations determined by Torres et al. (2010). We stepped in surface gravity, metallicity, and effective

temperature, imposing Gaussian priors on the metallicity, temperature, and stellar density. The

Torres relations have a known offset at one solar mass, over-predicting the mass of the Sun by about

5% and the radius of the Sun by about 2% (Torres et al., 2010), so we scaled the output masses and

radii inside our model by those factors to correct for the offset – forcing the relations to correctly

predict the Sun’s density. Our analysis using the Torres relations yielded masses and radii that

were about 0.7% and 0.1% larger than our analysis using the YY isochrones. These discrepancies

again are considerably smaller than the uncertainties we determined in our stellar parameters.

Finally, we repeated the analysis with the Torres relations while applying the empirical correction

for solar-mass stars provided by Santos et al. (2013), and found that it also gave consistent values

for the stellar mass and radius, with values about 0.5–σ larger than the YY value.

12Code available at https://github.com/jdeast/EXOFASTv2/.
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Based on these tests showing different models and relations all predicting consistent stellar

parameters for WASP-47, we conclude that systematic uncertainties in the stellar masses and radii

we derive are small. This makes sense – stellar evolutionary models are calibrated off the Sun and

incorporate physics known to be important for Sun-like stars, and therefore tend to be most accurate

for stars with parameters close to those of the Sun. WASP-47 has a mass only 4% larger than the

sun, and is only slightly more evolved, with a ≈ 14% larger radius and ≈ 200 K cooler stellar

effective temperature. The biggest discrepancy between WASP-47 and the Sun is the composition

– WASP-47 has a metallicity 2.5 times higher than that of the Sun, which is possibly the cause of

the small discrepancies we do see between the different methods.

To take the 0.5–σ discrepancies we found into account, we re-determined the stellar mass and

radius using our YY MCMC analysis after inflating the uncertainty on stellar density by adding an

0.5–σ systematic uncertainty in quadrature to the uncertainty we derived from our transit analysis.

This analysis yielded a stellar mass of 1.040 ± 0.031 M� and a radius of 1.137 ± 0.013 R�. Our

constraint on stellar density is precise enough that we also measure an isochronal age of 6.7+1.5
−1.1

Gyr for WASP-47, although the precision of this age determination also pushes the level at which

isochronal ages are accurate (isochronal ages can have systematic errors of up to 25%, Torres et al.,

2010).

4.4.2 Radial Velocity Analysis

We analyzed our radial velocity observations and archival observations taken from the literature

to measure masses and orbital parameters for the WASP-47 planets. In our analysis, we combined

our HARPS-N observations with previously published radial velocities from CORALIE (Hellier

et al., 2012b; Neveu-VanMalle et al., 2016c), PFS (Dai et al., 2015), and HIRES (Sinukoff et al.,

2017b). From our HARPS-N dataset, we excluded the four points we found to be contaminated by

sky background light and one point that was taken during poor conditions and which exhibited a

photon-limited velocity uncertainty of 16 m s−1, six times greater than the typical uncertainty in

our dataset. From the HIRES dataset, we excluded the points taken on the night of their Rossiter-

McLaughlin observation (Sanchis-Ojeda et al., 2015a; Sinukoff et al., 2017b). From all four RV

datasets, we excluded points taken within two hours of the mid-transit time of WASP-47 b since
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Parameter Value Comment
Stellar Parameters

Right Ascension 22:04:48.7
Declination -12:01:08
M? [M�] 1.040 ±0.031 A,B
R? [R�] 1.137 ± 0.013 A,B

Limb darkening q1 0.396 ± 0.018 B
Limb darkening q2 0.423 ± 0.017 B

Stellar Densityρ? [g cm−3] 0.999 ± 0.014 B
log g? [cgs] 4.3437 ± 0.0063 A,B,C

M/H 0.38 ± 0.05 C
Teff [K] 5552 ± 75 C

Table 4.2 Updated Stellar Parameters for WASP-47. A: Parameters come from our stellar
parameter analysis in Section 4.4.1.3. B: Parameters come from analysis of the K2 light curve
in Section 6.4.2. C. Parameters come from weighted average of spectroscopic parameters from
three different methods described in Section 4.4.1.1.

those points are affected by the planet’s Rossiter-McLaughlin signal which we do not model13. The

Rossiter-McLaughlin effects of the two other transiting planets are negligibly small so we retained

points taken during their transits. We list our HARPS-N velocity observations in Table 4.3 and

summarize the four datasets in Table 4.4.

We modeled the radial velocity of WASP-47 as a sum of four Keplerian functions, and do not

attempt to model the gravitational interactions between the four planets. Even though mutual

gravitational interactions do perturb the planets’ orbits (Becker et al., 2015b; Almenara et al.,

2016; Weiss et al., 2016a), the effect on the radial velocity curve is undetectably small (Dai et al.,

2015; Sinukoff et al., 2017b). We confirmed this result holds over the longer time-span of our

observations by numerically integrating the system. We used the same eccentricity priors for the

RV analysis as we did for the transit analysis – specifically we forced the orbits of WASP-47 b and

WASP-47 e to be circular, and we imposed a half-Gaussian prior on the eccentricity of WASP-47 d

centered at 0 (without allowing negative eccentricity solutions) with a standard deviation of 0.014.

For WASP-47 c, we allowed eccentricity and the argument of periastron to vary freely with only

uniform priors imposed. For the three transiting planets, we imposed Gaussian priors on orbital

period and time of transit at the values and uncertainties we derived in our transit analysis. We

13This led to the exclusion of four HARPS-N data points and two HIRES datapoints.
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Radial Velocity Observations for WASP-47
BJD - 2454833 RV [m/s] σRV [m/s]

2457226.561 -27014.60 6.43
2457226.699 -26987.90 4.84
2457226.721 -26982.21 6.71
2457227.561 -26937.25 2.63
2457227.713 -26954.63 2.55
2457228.566 -27113.16 4.71
2457228.700 -27142.69 4.98
2457229.562 -27219.22 5.11
2457229.703 -27190.29 3.24
2457230.572 -27039.26 2.59
2457230.711 -27010.20 2.34
2457254.520 -27210.88 3.77
2457256.548 -26932.08 2.20
2457256.641 -26933.99 3.06
2457257.644 -27101.64 3.34
2457267.487 -27151.78 2.43
2457267.602 -27127.38 2.23
2457268.521 -26968.72 7.43
2457268.624 -26945.85 2.77
2457269.542 -26995.84 2.31
2457270.526 -27188.86 1.85
2457271.530 -27172.97 1.88
2457272.568 -26967.95 2.45
2457273.544 -26970.22 2.09
2457301.412 -27017.29 1.95
2457301.521 -26992.78 2.21
2457302.411 -26931.79 2.08
2457302.524 -26936.49 2.99
2457324.337 -27134.85 3.00
2457325.323 -27192.62 3.33
2457325.417 -27190.58 2.67
2457330.315 -27046.38 2.67
2457330.443 -27031.60 2.93
2457331.316 -26930.42 2.97
2457331.421 -26929.30 2.55
2457333.328 -27202.65 2.60
2457336.316 -27018.83 2.47
2457336.398 -27036.13 2.99
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Radial Velocity Observations for WASP-47

BJD - 2454833 RV [m/s] σRV [m/s]
2457557.701 -27149.24 2.56
2457558.695 -27093.68 2.09
2457559.702 -26902.75 2.53
2457560.684 -26931.92 3.67
2457562.695 -27116.92 3.47
2457563.687 -26918.20 4.10
2457565.691 -27101.52 3.66
2457566.698 -27143.80 2.79
2457573.722 -27054.63 3.49
2457574.613 -27167.37 2.72
2457574.701 -27157.09 2.51
2457576.584 -26880.69 3.16
2457576.685 -26886.91 2.42
2457579.695 -27041.15 7.68
2457580.680 -26877.83 7.44
2457616.560 -27138.59 6.88
2457617.581 -26939.47 1.98
2457618.579 -26882.95 2.53
2457651.460 -26875.57 2.16
2457652.459 -26982.58 2.18
2457653.463 -27155.02 2.81
2457654.464 -27057.53 2.88
2457655.492 -26870.08 5.08
2457658.510 -27083.94 4.73
2457659.516 -26895.47 2.20
2457661.490 -27123.19 2.53
2457669.458 -27063.11 2.80
2457670.456 -27140.53 3.07
2457671.451 -26981.35 1.97
2457672.454 -26870.44 1.88
2457721.368 -27000.32 2.36

Table 4.3 HARPS-N Radial Velocities of WASP-47 (continuted). The measured radial ve-
locity values for each spectra in our data set.
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Figure 4.7 Radial Velocity Observations of WASP-47. Observations come from four spectro-
graphs, and are folded on the periods of the four planets, with the best-fit model for each of
the other three planets subtracted away. Data from HARPS-N are shown as pale blue dots,
HIRES as pale orange dots, PFS as pale maroon dots, and CORALIE as pale green dots.
The CORALIE data are only shown for WASP-47 c, as they are not of high enough precision
to meaningfully constrain the orbits of WASP-47 e and WASP-47 d. The thick black lines
are the best-fit models for each of the four planets, and the dark red dots are binned points.
We note that we do not include the PFS velocities in our final analysis.

also imposed a prior that the RV semiamplitudes of all four planets be greater than zero, but the

signals of all four planets were detected strongly enough that this prior had no effect.

WASP-47 is photometrically quiet, and we see no evidence in the radial velocities or activity

150



HARPS-N HIRES PFSa CORALIE
Number of usable observations 69 43 26 46
Standard deviation about best-fit 3.3 m s−1 3.7 m s−1 7.4 m s−1 13.5 m s−1

Mean photon-limited uncertainty 3.3 m s−1 2.0 m s−1 3.2 m s−1 12.1 m s−1

Time baseline 495 days 412 days 12 days 1622 days

Table 4.4 Summary of Radial Velocity Observations of WASP-47. a: In our final analysis,
we exclude the PFS data. The standard deviation reported in the table is about the best-fit
solution which did not include the PFS data. When the PFS data is included in the fit, its
standard deviation about the best-fit model is 7.3 m s−1.

indicators of correlations due to stellar activity, so we used a white noise model for our RV analysis,

with separate instrumental “jitter” terms for data from the four different telescopes. We also fit for

velocity zero-point offsets for the four different instruments. We did not impose any informative

priors on the jitter terms and zero-point offsets. We explored parameter space using an MCMC

algorithm with affine invariant ensemble sampling, like for our transit analysis and our stellar

parameter analysis. We used 100 walkers and evolved their positions for 150,000 steps each. To

match the size of the chains from our transit analysis (Section 6.4.2) and our stellar parameter

analysis (Section 4.4.1.3), we used the final 10,000 steps in our chains to estimate parameters. We

confirmed the MCMC chains were converged by calculating the Gelman-Rubin statistics; the values

were below 1.05 for all parameters.

We show the radial velocities from all four spectrographs and our best-fitting model in Figure

4.7. From our combined analysis with data from all four spectrographs, we measure masses that are

more precise than, but consistent with previous determinations, except for the mass of WASP-47

e, which is somewhat at odds with the masses determined by Dai et al. (2015) and Sinukoff et al.

(2017b). In particular, using data from all four spectrographs, we measure the mass of WASP-47 e

to be 7.15 ± 0.67 M⊕, about 1.5–σ lower than both the measurements by Dai et al. (2015) of 12.2

± 3.7 M⊕, and Sinukoff et al. (2017b) of 9.11 ± 1.17 M⊕.

We investigated the source of this discrepancy by repeating the RV fits with different datasets

included and removed from the analysis. We found that the HIRES and HARPS-N datasets are

quite consistent, both yielding masses for WASP-47 e between 6.5 and 7 M⊕, but that the PFS
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dataset favors a planet mass almost a factor of two larger14. There are two possible explanations

for the discrepancy betwen the PFS mass measurement and the HARPS-N/HIRES measurements.

1. The discrepancy is the result of random chance. The PFS measurement of WASP-47 e’s

semi-amplitude is only 1.5–σ away from the HARPS-N/HIRES solution, a discrepancy that

should happen in about 6.5% of all similar datasets. If this explanation is correct, then

including the PFS data in our solution is appropriate and will help the mass measurement

converge to the true mass.

2. The discrepancy is the result of some time-correlated systematic errors in the PFS velocities.

In this case including the data in our solution is not appropriate and will not help our

measurements converge to the true mass.

There are reasons to believe the PFS velocities of WASP-47 could be systematically erroneous

– the scatter of the PFS data about the solution is 7.3 m s−1, more than twice the photon-limited

uncertainties listed by Dai et al. (2015), and considerably worse than both PFS’s typical RV pre-

cision (better than 2 m s−1, Teske et al., 2016) and the radial velocity scatter from HARPS-N (3.3

m s−1) and HIRES (3.7 m s−1) in observations of WASP-47. Because the PFS observations were

all taken over the course of only 12 days, if systematics are the cause of the large scatter in the

velocities, any time correlations in the systematics would not necessarily average out.

Because of the risk of systematics contamination, and because the PFS data do not help much

to constrain our velocity solution (the dataset is both smaller and less precise than the HARPS-N

and HIRES observations, and the time baseline is not as long as the CORALIE observations),

we choose to exclude the PFS observations from our final analysis. We re-ran the same MCMC

analysis as before using only data from CORALIE, HARPS-N, and HIRES, and determined new

planet masses. The masses and uncertainties of WASP-47 b, c, and d were essentially unchanged,

but the mass of WASP-47 e decreased by about 0.5–σ while the uncertainty was unchanged. The

results of this RV analysis are reported in Table 4.1.

We measure masses of 6.83 ± 0.66 M⊕ for WASP-47 e, 363.1 ± 7.3 M⊕ for WASP-47 b, 13.1

14The discrepancy between our combined mass measurement and that of Sinukoff et al. (2017b) is mostly
due to the fact that Sinukoff et al. (2017b) included the PFS data in their analysis, which pulled their
solution to higher masses.
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± 1.5 M⊕ for WASP-47 d, and a minimum mass of Mp sin i = 398.2 ± 9.3 M⊕ for WASP-47 c.

WASP-47 c’s orbit is significantly eccentric, with ec =0.296 ± 0.017. The longer time-baseline of

the HARPS-N observations compared to the previously published HIRES dataset and the higher

precision compared to the CORALIE dataset gives a more precise measurement of the outer planet’s

orbital eccentricity and argument of periastron than before15.

4.5 Dynamical Analysis for the Complete WASP-47 System

Unlike the three inner planets, which have precisely known (relative) orbital inclinations from

their transit light curves, WASP-47 c has only been detected in radial velocity observations so

far16. In this section, we use dynamical arguments to constrain the inclination of WASP-47 c.

We perform a variation of the analysis done by Becker & Adams (2017), who constrained WASP-

47 c’s inclination by requiring that when perturbed by the outer planet, the three inner planets

in the WASP-47 system all continually co-transit in the same orbital plane (where co-transit is

defined as all of the planets crossing the star at any impact parameter, including grazing transits).

Becker & Adams (2017) found that this requirement does not rule out orbits of WASP-47 c with

high inclinations relative to the inner three planets, but that a realization of WASP-47 c with an

inclination within a degree of the central projected plane of the star will always allow the inner

three planets to transit.

Here we significantly strengthen the constraints placed by Becker & Adams (2017) by requiring

that models of the WASP-47 system with WASP-47 c orbiting at various different inclinations

reproduce other observed properties of the system. We relax the constraint that the planets all

transit the star in the original orbital plane, and instead we require:

1. The inner planets around WASP-47 remain dynamically stable over integrations of 1 Myr.

15We note that another possible explanation for WASP-47 c’s eccentricity is that it is caused by the un-
modeled RV signal from an additional planet with half the orbital period of WASP-47 c (Anglada-Escudé
et al., 2010), or the un-modeled signal from a longer-period planet (as postulated by Weiss et al., 2016a)
contributing an RV acceleration. Our observations do not yet have the precision and time-baseline to
distinguish these scenarios, so we interpret the signal as being caused by one eccentric planet.

16If WASP-47 c does happen to transit, it would not have been detected by K2 because it was at the
wrong phase of its orbit during the 60 days of observations.
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Figure 4.8 Constraints on the Orbital Inclination of WASP-47 c. This plot shows the fraction
of time the WASP-47 system can reproduce our observations as a function of the inclination
of WASP-47 c. The dark purple line is the average fraction of the time our simulations repro-
duce our observations of WASP-47, and the colored contours show the 1σ range calculated
from the individual realizations. The inset diagram provides a zoomed-in version of the main
figure to show the detail near ic = 90◦ (i.e., near the orbital plane of the inner planets).

2. The inner planets have mutual inclinations such that their transit impact parameters are as

close to zero as we measure (at 3σ confidence)17.

3. WASP-47 b has a sky-projected spin/orbit obliquity consistent with the result of Sanchis-

Ojeda et al. (2015a).

We conduct numerical N-body simulations using the Mercury6 (Chambers, 1999a) software

package to evaluate the likelihood that WASP-47 c allows these three criteria to be satisfied —

that is, the likelihood that the simulations reproduce the observations at varying values of WASP-

47 c’s orbital inclination. In our simulations, we use a hybrid symplectic and Bulirsch-Stoer (B-S)

17Here, although the fact that all three planets transit does not technically constrain their longitudes of
ascending nodes, we assume the inner three planets are indeed coplanar. If the three planets did have high
mutual inclinations, the probability that all three would transit is very small – a probability of about 1 in
1000 compared to a co-planar transit probability of roughly 1 in 15.
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integrator, requiring energy conservation to a part in 10−8 or better, and allowing each integration

to run for 1 Myr with a starting time-step of 14 minutes. We run 2000 total 1 Myr integrations,

each with randomly drawn initial conditions.

The choice of 1 Myr as an integration time was chosen for two reasons: first, the short time-

step required for these simulations is computationally demanding and integrations of 1 Myr remain

feasible; second, 1 Myr encapsulates many (> 108) dynamical times of the inner planet, and several

(3-4) secular time scales. These timescales are important because orbital instabilities will occur on

dynamical time scales, while motions in a single secular cycle will be expected to repeat in subse-

quent secular cycles. A integration time of 1 Myr allows us to effectively evaluate any dynamical

instabilities, as well as encapsulate any long-term secular variations that may occur.

The initial conditions for each planet in each integration are drawn from the observations pre-

sented in Table 4.1. For most orbital parameters of the inner three planets, we draw from a normal

distribution with mean and error as reported in the table. For orbital inclination, all measured

inclinations are reported to be below 90 degrees, as the degeneracy between planets orbiting slightly

above and slightly below the plane cannot be broken with photometric measurements. As such, we

choose an inclination from within the range of measured errors, then assign this inclination to be

above or below 90 degrees with equal probability. This process is repeated independently for each

of the inner three planets in each integration.

The orbital parameters of the outer planet, WASP-47 c, are also drawn from the observed

values presented in Table 4.2. To disentangle Mp and i, we choose a value for the inclination of

WASP-47 c for each integration, then choose a value of Mp sin i from the observed prior, and derive

the planetary mass Mp.

Each integration results in one of two outcomes: (1) dynamical instabilities, in which planets

collide with each other, collide with the central body, or are ejected from the system; or (2)

dynamical stability. In this first case of dynamical instability, we assign a probability of those

initial conditions reproducing the observations as being 0, as the system loses planets and/or

changes orbits significantly. In the second, dynamically stable case, we can perform a second

calculation using the results of the numerical simulations and determine the fraction of time that

the set of initial conditions in a given integration reproduce the observations. The definition of
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reproducing the initial conditions requires the satisfaction of three criteria: (1) all planets around

WASP-47 remain dynamically stable for 1 Myr; (2) the inner planets have mutual inclinations such

that their transit impact parameters are within the limits given in Table 4.1; (3) WASP-47 b has a

sky-projected spin/orbit obliquity consistent with the result of Sanchis-Ojeda et al. (2014a) (since

all three inner planets transit, this implies that all three inner planets share this alignment, but we

require only WASP-47 b’s alignment to match the measured value).

Each integration results in a pairing of WASP-47 c’s orbital inclination with a measure of

the probability that that particular inclination (and other initial conditions) reproduces the ob-

servations. We calculate the average fraction of time within the trials in which observations are

reproduced as a function of inclination by smoothing the measurements from individual integrations

with a Savitzky-Golay filter (a standard low-pass filter; Savitzky & Golay, 1964).

We show the results of our simulations in Figure 4.8. In particular, we show the smoothed

function and the range of the fraction of time individual realizations of the system satisfy our

observational criteria. Evidently, it is hard to reproduce the observed properties of the WASP-47

system if the outer planet is not aligned close to the inner planets’ orbital plane. Unlike the result

of Becker & Adams (2017), even a perfectly edge-on system with an inclination of 90◦ does not

guarantee that the inner three planets reproduce the observations, mainly because of the increased

precision on measured planetary impact parameters.

Our constraints on the orbital inclination of WASP-47 c also allow us to place approximate

limits on the true mass of this planet by breaking the degeneracy in the measured m sin i between

the planet’s mass and orbital inclination. We find that the 68% limit on the mass of WASP-47 c

is only 10% larger than the minimum mass, and that the true mass of WASP-47 c is smaller than

double the minimum mass with 93% confidence.

4.6 Discussion

4.6.1 Constraints on the Composition of WASP-47 e

Our new measurements and analyses have yielded the most precise planetary masses and radii

yet for the WASP-47 planets, which give us the ability to make strong inferences about the planets’
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Figure 4.9 The Mass/Radius Diagram for Small Exoplanets. Planet masses and radii are
taken from the NASA Exoplanet Archive (Akeson et al., 2013b), accessed 2017 Feb 22.
The symbol darkness is proportional to the precision with which the masses and radii are
determined. Overplotted are theoretical mass/radius relations for solid planets of different
compositions from Zeng et al. (2016a) and for cold hydrogen planets from Seager et al. (2007).
Solar system planets are shown in blue, and the WASP-47 planets are shown in purple. We
also label 55 Cnc e to show the similarity in composition between it and WASP-47 e— both
of these planets are less dense than an Earth-like composition, and likely have some volatiles
around an Earth-like core.

compositions. We downloaded mass-radius relations for planets of various compositions18 from

Zeng et al. (2016a), and compared the measured mass (6.83 ± 0.66 M⊕) and radius (1.810 ± 0.027

R⊕) of WASP-47 e with these relations. We show a mass/radius diagram including the newly

determined masses for WASP-47 e and WASP-47 d in Figure 4.9. Unlike most other small, highly

irradiated planets (Dressing et al., 2015b), the mass and radius of WASP-47 e are not consistent

with an Earth-like composition (32.5% iron core, 67.5% silicate mantle) at the p = 5 × 10−4, or

roughly 3.3–σ level19. Instead, WASP-47 e is less dense than an Earth-like rocky planet, and falls

18The mass/radius relations are available at https://www.cfa.harvard.edu/~lzeng/tables/mrtable3.
txt

19If we instead assume the slightly larger mass from our RV analysis including the PFS data, this conclusion
still holds. Assuming a two-component iron core/rocky silicate mantle model, the median iron fraction for
WASP-47 e would be 4.3% +/- 9.8%. An Earth-like 32.5% iron core fraction is excluded at the p = 1.5×10−3

or 3-σ level.
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closer to the pure rock (MgSiO3) mass/radius relation from Zeng et al. (2016a).

There are several possibilities for what the composition of WASP-47 e might be. One possibility

is that WASP-47 e is a rocky planet with a very small iron core mass fraction compared to the

Earth. Assuming a two-component iron core/rocky silicate mantle model, in this case, we would

infer an iron fraction of 1.4% +/- 8.4%. We believe this scenario is unlikely. Theoretically, given

the small scatter in chemical abundances of stars in the Solar neighborhood, rocky planet radii

should not change much more than 2% due to differences in compositions (Grasset et al., 2009),

while WASP-47 e’s radius is 7% larger than an Earth-like planet with the same mass. Moreover,

observations of small, likely rocky planets near their host stars have shown that rocky exoplanets

tend to have compositions consistent with that of the Earth (Dressing et al., 2015b; Buchhave et al.,

2016). It is unclear how a planet of this size, around a star of such high metallicity/iron content,

could avoid accumulating any substantial amount of iron.

Instead, a more likely possibility is that WASP-47 e has an Earth-like core and mantle that is

surrounded by a volatile-rich envelope. This type of interior structure is believed to be common

among super-Earths and sub-Neptunes discovered by Kepler and K2 since RV observations have

shown that most of these planets larger than about 1.6 R⊕ have densities too low to be explained

by rocky compositions (Marcy et al., 2014; Weiss & Marcy, 2014a; Rogers, 2015b; Dressing et al.,

2015b; Sinukoff et al., 2017a). Due to its short (19 hour) orbital period, WASP-47 e is so highly

irradiated that any hydrogen/helium envelope would quickly be lost via photo-evaporation (Penz

et al., 2008; Sanz-Forcada et al., 2011; Lopez et al., 2012), so any envelope around WASP-47 e must

be made of water or some other high-metallicity volatile material (Lopez, 2016). Using the model

described by Lopez (2016), we find that an Earth-like core and mantle surrounded by a water (or

in this case, steam) layer making up 17% of the WASP-47 e’s total mass is consistent with our

observations.

WASP-47 e joins 55 Cnc e as the only ultra-short period (USP, P < 1 day) planets with densities

too low to be consistent with an Earth-like composition20 (Sanchis-Ojeda et al., 2014b). Mass

measurements of other transiting USP planets from Kepler and CoRoT have all been consistent

20KOI 1843.03 must have a high density to avoid tidal disruption and therefore a larger iron core mass
fraction than Earth (Rappaport et al., 2013).
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with Earth-like compositions (Kepler-10 b, Batalha et al. 2011a; Dumusque et al. 2014; Weiss et al.

2016b; Kepler-78 b, Howard et al. 2013; Pepe et al. 2013; Grunblatt et al. 2015; CoRoT-7 b, Queloz

et al. 2009; Haywood et al. 2014; K2-106 b, Sinukoff et al. 2017a; Guenther et al. 2017; and HD

3167 b, Christiansen et al. 2017b; Gandolfi et al. 2017).

Of all the USP planets with measured masses, WASP-47 e and 55 Cnc e are the two largest

and most massive, so perhaps the largest USP planets preferentially retain some volatile materials.

However, WASP-47 e and 55 Cnc e are also the two USP planets with the most precise mass

determinations — it is possible that some of the other lower-mass USP planets also have densities

too low to be explained by Earth-like compositions, and our data are not yet constraining enough

to tell.

How might WASP-47 e and 55 Cnc e have come to possess such compositions? Previously it

has been thought that USP planets might commonly be the remains of puffy planets (but probably

not hot Jupiters, Winn et al., 2017a) after photo-evaporation stripped them of most or all of their

volatile envelopes. Evidence for this includes the fact that almost all USP planets or candidates

have radii smaller than about twice that of the Earth (Jackson et al., 2013; Sanchis-Ojeda et al.,

2014b; Lopez, 2016), in contrast to the large population of less irradiated planets with radii between

2 and 4 R⊕ at longer orbital periods (Fressin et al., 2013a; Petigura et al., 2013c). WASP-47 e

and 55 Cnc e might therefore be the remnants of larger planets that were massive enough to

accrete a significant amount of both hydrogen and denser volatile materials before the hydrogen

was subsequently lost to photoevaporation. On the other hand, WASP-47 e and 55 Cnc e may be

unusual – in addition to being the only known USPs inconsistent with Earth-like interior structures,

these planets are also the only well characterized USPs in systems with multiple Jovian planets.

If this is not a coincidence and these planets are not typical of USPs, then a more exotic origin

scenario may be required. One such possibility is that these planets are the remnant cores of hot

Jupiters stripped by Roche lobe overflow (Valsecchi et al., 2014; Jackson et al., 2017). Although

this mechanism cannot explain the general population of rocky USPs, this could explain WASP-47

e and 55 Cnc e’s unusually low densities for such highly irradiated planets, their similar orbital

periods (determined by the orbital radius at which Roche lobe overlow began), and the fact that

these two objects were found in systems with multiple giant planets.
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Finally, we note several additional similarities between the WASP-47 system and the 55 Cnc

system. Both host stars have high metallicity (Valenti & Fischer, 2005), both systems have ultra-

short-period planets which likely have a layer of dense volatile materials (WASP-47 e and 55 Cnc e),

both systems have short-period giant planets (WASP-47 b and the 15d period warm Jupiter 55 Cnc

b), and both systems have long-period giant planets (WASP-47 c and the 5000d period 55 Cnc d).

While the 55 Cnc planets may not be as closely aligned with one another as the WASP-47 planets

(only the innermost planet around 55 Cnc is known to transit, and astrometric measurements have

shown a misalignment for the giant outer planet 55 Cnc d McArthur et al., 2004), the similarities

between these two system architectures suggest similar origins.

4.6.2 Constraints on the Composition of WASP-47 d

We also determine a precise mass and radius for WASP-47 d of 13.1 ± 1.5 M⊕ and 3.576 ±

0.046 R⊕ respectively. On a mass/radius diagram (Figure 4.9), WASP-47 d is close to, but slightly

smaller and less massive than the two Solar system ice giants, Uranus and Neptune. Like Uranus

and Neptune, WASP-47 d must have a low density hydrogen/helium envelope to match our mass

and radius measurements, but most of the mass of the planet’s mass is in a dense core. Using the

models from Lopez & Fortney (2014), we find that if the interior has an Earth-like composition

with an iron core and rocky mantle, the hydrogen/helium envelope around WASP-47 d would have

a mass fraction of about 5%. If instead, the solid core is rich in water or other high metallicity

volatiles, the hydrogen/helium envelope mass fraction would be closer to 2%.

4.6.3 Orbital Inclination of WASP-47 c

Even though WASP-47 c has only been detected in radial velocities, in Section 4.5, we were

able to put strong constraints on its orbital inclination by requiring dynamical perturbations from

its orbit not disrupt the well aligned, co-transiting state of the inner three planets. We found that

WASP-47 d likely has an inclination within a few degrees of an edge-on 90◦ orbit.

The fact that WASP-47 c likely orbits in the same plane as the three transiting planets suggests

that the system formed in a dynamically quiet manner. If the hot Jupiter, WASP-47 b, formed

beyond the snow-line and migrated after being scattered by WASP-47 c, we might expect the plane
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of WASP-47 c’s orbit to be different from the plane of the inner system. Instead, we see a picture

more consistent with formation and migration that largely happened in the plane of the protoplan-

etary disk. In particular, the fact that WASP-47 e likely has a layer of dense volatile material like

water suggests that it may have formed beyond the snow-line and migrated to its current location

through the protoplanetary disk. WASP-47 c’s relatively high eccentricity is somewhat difficult

to explain in this context, because any eccentricity would have been damped by the disk. In this

scenario, the eccentricity must have been excited after the disk dissipated, possibly by another,

more distant planet, as suggested by Weiss et al. (2016a).

4.6.4 WASP-47 c’s Transit Probability

Another, more practical, implication of the likely close alignment of WASP-47 c with the inner

transiting system is that the probability of WASP-47 c transiting is greatly enhanced compared to

the naive geometric transit probability. The expression for geometric transit probability is given

by Sackett (1999):

Ptransit,geom =

∫ 90◦

it
sin i di∫ 90◦

0◦ sin i di
(4.1)

where i is the planet’s inclination, and it is the inclination above which the planet will transit,

which depends on the orbital eccentricity e, argument of periastron ωp, semi-major axis a, stellar

radius R?, and planetary radius Rp as follows:

cos it =
Rp +R?

a
× 1 + e sinωp

1− e2
(4.2)

We generalized the geometric expression by including a function P(i), the fraction of time our

simulated systems reproduced observations of WASP-47 inside the integrals, giving:

Ptransit,mod =

∫ 90◦

it
P(i) sin i di∫ 90◦

0◦ P(i) sin i di
(4.3)

Here, for P(i) we use the Savitzky-Golay filtered fraction of times that our numerical simulations

reproduced observations of WASP-47, and for it we use 89.66◦.
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Without a priori knowledge of our inclination constraints for WASP-47 c, the transit probability

is about 0.6%. When we take into account our dynamical inclination constraints, the probability

increases by more than an order of magnitude to about 10% – the same a priori transit probability

of a typical hot Jupiter.

If WASP-47 c is found to transit, it would open the door to future sophisticated investigations

into the properties and formation history of the WASP-47 planets. It would be possible to study the

atmosphere of both WASP-47 b and WASP-47 c in transit with the upcoming James Webb Space

Telescope, determine and compare atmospheric abundances, and infer these planets’ birthplaces

(Öberg et al., 2011). A detection of a transit of WASP-47 c could make the WASP-47 system a

key to unlocking the origin of hot Jupiters.

Detecting a transit of WASP-47 c should not be difficult - the transit depth would likely be about

1%, easily attainable by ground-based telescopes with moderate apertures. The transit duration

will be long - an equatorial transit of WASP-47 c would last 14 hours, so a successful detection would

likely require a coordinated ground-based campaign with several telescopes longitudally dispersed

around the globe. At present, the largest obstacle to successfully recovering a transit of WASP-47

c is the uncertainty in the transit time. The last transit window happened around 9 January 2017,

while WASP-47 was unobservable behind the Sun, with an uncertainty in transit time of 4.8 days.

The next several transit windows will be around 21 August 2018 ± 6.5 days, 31 March 2020 ±

8.6 days, and 10 November 2021 ± 10.8 days. It would take a massive ground-based campaign to

cover enough of these transit windows to ensure success. Although the uncertainties on the transit

times are large now, they will sharpen considerably once precise RV spectographs have completed

observing a full orbital period of WASP-47 c. We will continue to observe WASP-47 with HARPS-N

in the coming years to refine the orbital period and ephemeris of WASP-47 c in preparation for the

chance to detect the planet in transit.

4.7 Summary

We have investigated the WASP-47 planetary system, which is known to host a hot Jupiter,

two smaller transiting planets flanking the hot Jupiter, and a long-period Jovian companion. Using
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new data from the HARPS-N spectrograph and previously published data from the K2 mission

and other ground-based spectrographs, we have measured the masses and radii of the transiting

planets, and determined the orbit of the outer planet. Our main conclusions are summarized as

follows:

1. We have measured the most precise masses and radii for the WASP-47 planets yet. The

innermost planet, WASP-47 e, has a mass of 6.83 ± 0.66 M⊕ and a radius 1.810 ± 0.027 R⊕.

The hot Jupiter, WASP-47 b has mass 363.1 ± 7.3 M⊕ and a radius 12.63 ± 0.15 R⊕. We

find the Neptune-sized planet, WASP-47 d, has a mass 13.1 ± 1.5 M⊕ and radius 3.576 ±

0.046 R⊕. The outer Jovian planet, WASP-47 c is not known to transit, so from our radial

velocity observations, we only measure the planet’s minimum mass m sin i of 398.2 ± 9.3 M⊕.

2. WASP-47 e, unlike most other planets in ultra short period orbits, does not have an Earth-

like composition. We find that WASP-47 e is not dense enough to have an iron core with the

same mass fraction as terrestrial planets in the Solar system. Instead, WASP-47 e likely has

a volatile rich (possibly water/steam) envelope comprising 17% its total mass on top of an

Earth-like core.

3. We show using dynamical simulations that the inclination of WASP-47 c is likely well aligned

with the inner transiting system. The orbital inclination of WASP-47 c is likely within

a few degrees of edge on in order to not disrupt the inner transiting planets from their

present-day well aligned configuration. This alignment, plus the alignment between the

planets’ orbits and the stellar spin axis (Sanchis-Ojeda et al., 2015a) suggests a dynamically

quiet formation/migration scenario for the WASP-47 planets that kept all of the planets

in the plane of the protoplanetary disk. The outer planet is much more likely to transit

than the geometric transit probability, motivating campaigns to observe the transit in future

opportunities. Additionally, this limit on the inclination suggests that the true mass of the

WASP-47 c is likely close to the measured MP sin i.

Future radial velocity observations of WASP-47 will both continue to improve the precision

on the masses of the two smaller planets, and will greatly improve the precision on the predicted
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transit time of WASP-47 c. Sharpening the transit predictions will be hugely important to making

a campaign to detect or rule out transits of WASP-47 c feasible.
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Parameter Value 68.3% Confidence Comment
Interval Width

WASP=47 e
Orbital Period, P [days] 0.789592 ± 0.000012 B
Radius Ratio, (RP/R?) 0.01461 ± 0.00013 B

Scaled semi-major axis, a/R? 3.205 ± 0.014 B
Orbital inclination, i [deg] 85.98 ± 0.75 B

Transit impact parameter, b 0.224 ± 0.041 B
Time of Transit tt [BJDTDB] 2457011.34861 ± 0.00033 B
Transit Duration t14 [hours] 1.899 ± 0.013 B

RV Semiamplitude Ke [m s−1] 4.61 ± 0.44 D
MP [M⊕] 6.83 ± 0.66 A,D
RP [R⊕] 1.810 ± 0.027 A,B

Surface Gravity [cgs] 20.5 ± 2.0 A,B,D
Mean Density [g cm3] 6.35 ± 0.64 A,B,D

WASP-47 b
Orbital Period, P [days] 4.1591289 ± 0.0000042 B
Radius Ratio, (RP/R?) 0.10193 ± 0.00021 B

Scaled semi-major axis, a/R? 9.702 ± 0.044 B
Orbital inclination, i [deg] 88.98 ± 0.20 B

Transit impact parameter, b 0.173 ± 0.032 B
Time of Transit tt [BJDTDB] 2457007.932132 ± 0.000021 B
Transit Duration t14 [hours] 3.5722 ± 0.0030 B

RV Semiamplitude Kb [m s−1] 140.64 ± 0.44 D
MP [M⊕] 363.1 7.3 A,D
RP [R⊕] 12.63 ± 0.15 A,B

Surface Gravity [cgs] 22.33 ± 0.27 A,B,D
Mean Density [g cm3] 0.993 ± 0.021 A,B,D

WASP-47 d
Orbital Period, P [days] 9.03077 ± 0.00017 B
Radius Ratio, (RP/R?) 0.02886 ± 0.00016 B

Scaled semi-major axis, a/R? 16.268 ± 0.074 B
Orbital inclination, i [deg] 89.32 ± 0.23 B

Transit impact parameter, b 0.192 ± 0.065 B
Time of Transit tt [BJDTDB] 2457006.36931 ± 0.00039 B
Transit Duration t14 [hours] 4.288 ± 0.039 B

RV Semiamplitude Kd [m s−1] 3.93 ± 0.43 D
MP [M⊕] 13.1 1.5 A,D
RP [R⊕] 3.576 ± 0.046 A,B

Surface Gravity [cgs] 10.1 ± 1.1 A,B,D
Mean Density [g cm3] 1.58 ± 0.18 A,B,D

Eccentricity < 0.014 E

WASP-47 c
Orbital Period, P [days] 588.5 ± 2.4 D

Time of Inferior Conjunction tt [BJDTDB] 2457763.4 ± 4.9 D
RV Semiamplitude Kd [m s−1] 31.01 ± 0.43 D

MP sin i [M⊕] 398.2 9.3 A,D
Eccentricity 0.296 ± 0.017 D

Argument of Periastron [degrees] 112.4 ± 4.8 D
Semimajor Axis [AU] 1.393 ± 0.014 A,D

Table 4.5 Updated Planetary Parameters for WASP-47 planets. A: Parameters come from
our stellar parameter analysis in Section 4.4.1.3. B: Parameters come from analysis of the
K2 light curve in Section 6.4.2. C. Parameters come from weighted average of spectroscopic
parameters from three different methods described in Section 4.4.1.1. D: Parameters come
from our radial velocity analysis in Section 4.4.2. E: The eccentricity of HIP 41378 d was
fit with a strong Gaussian prior of 0 ± 0.014 from TTV and dynamical stability arguments.
The argument of periastron was not constrained in our fits either by the data or prior.
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CHAPTER V

Understanding Companions in Systems Around Cool

Stars Hosting Hot Jupiters

Results in this chapter were published in: Becker, J. C., Vanderburg, A., Adams, F., Khain,
T., & Bryan, M. “Exterior Companions to Hot Jupiters Orbiting Cool Stars are Coplanar.” 2017,
The Astronomical Journal, 154, 230 and are presented here with minor revisions.

5.1 Abstract

The existence of hot Jupiters has challenged theories of planetary formation since the first

extrasolar planets were detected. Giant planets are generally believed to form far from their host

stars, where volatile materials like water exist in their solid phase, making it easier for giant planet

cores to accumulate. Several mechanisms have been proposed to explain how giant planets can

migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-

Lidov migration, requires the presence of distant companions in orbits inclined by more than ∼ 40

degrees with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide

companions in hot Jupiter systems lends support to this theory for migration. However, the exact

orbital inclinations of these detected planetary and stellar companions is not known, so it is not

clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov

process to operate. This chapter shows that in systems orbiting cool stars with convective outer

layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the

orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions
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for the inclination of the companion, the width of the distribution must be less than ∼ 20 degrees

to recreate the observations with good fidelity. As a result, the companion orbits are likely well-

aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration

in these systems.

5.2 Introduction

Hot Jupiters, or Jupiter-sized planets orbiting with periods of a few days and distances of

about 2-5% of an astronomical unit, are an intriguing class of exoplanets with no analog in our

own Solar system. Although hot Jupiters are thought to account for only about 0.9 – 1.5% of the

total population of planets (Marcy et al., 2005; Cumming et al., 2008; Mayor et al., 2011; Wright

et al., 2012; Wang et al., 2015a), they are over-represented in our current population of discovered

exoplanets due to their large masses, large radii, and short orbital periods, which make them easy

to detect in both transit and radial velocity observations. More than 300 hot Jupiters have been

discovered to date1.

Since the discovery of the first hot Jupiters, understanding their origins has been a challenge for

planet formation theorists, who have proposed several different mechanisms for how these planets

form and how the systems are assembled into the architectures we see today. One traditional

model for giant planet formation, which has been highly successfully applied to the formation of

giant planets in our own solar system, is called core accretion (Stevenson, 1982). In this model, a

small core (likely composed of rocky and dense volatile materials) first forms in the proto-planetary

disk, far enough away from its host star that dense volatile materials like water and/or methane

are in solid, rather than gaseous, forms. Once a core has formed and become massive enough, it

subsequently accretes a massive hydrogen/helium dominated envelope via runaway gas accretion,

leaving planets roughly the size and mass of Jupiter in orbits similar to that of Jupiter – far away

from their host stars.

In this traditional picture, in order for the newly formed giant planet to become a hot Jupiter, it

must then migrate inwards towards its host star, halting its migration at an orbital distance of about

1As of 12 August 2017, the NASA Exoplanet Archive reports 315 known hot Jupiters. https://

exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=planets
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0.05 AU. Theorists have identified several mechanisms by which hot Jupiters might migrate from an

orbit at tens of AU into their present-day short-period orbits. One migration mechanism involves

torques arising from tidal-disk interactions (“disk torques”), which could cause the hot Jupiters to

slowly spiral inwards towards their host stars in the plane of the protoplanetary disk (see Tanaka

et al., 2002; Kley & Nelson, 2012). Another mechanism relies upon dynamical interactions between

planets to excite high eccentricities in the proto-hot Jupiters after the gas disk has dissipated,

bringing the planets into orbits whose perihelia distances are close to the surface of the host

star. Tidal interactions when the planet comes close to the host star then might dissipate orbital

energy, causing the orbit to shrink and result in the short-period orbits seen in hot Jupiter systems.

There are a couple of ways to excite these high eccentricities. Eccentricity can be excited via the

Kozai-Lidov effect, which we call Kozai-Lidov migration (and which requires an inclined exterior

companion; Lidov, 1962; Kozai, 1962). In some, more rare, cases, eccentricity can also be excited via

low-inclination secular interactions, which we call co-planar high eccentricity migration (Petrovich,

2015).

Another recently revived mechanism for hot Jupiter formation is in situ formation: instead

of runaway accretion occurring far away from the host star, where dense volatile materials are

abundant in their solid forms, the super-Earth-sized cores of the hot Jupiters form past the ice

line, and migrate in to their modern orbital radii simultaneously with other material in the disk.

At this new orbital radius, the gas surface density would then be high enough for the core to

experience runaway gas accretion at that location, forming a hot Jupiter (Batygin et al., 2016b).

This scenario builds on the idea that there exists a nearly ubiquitous population of super-Earth-

sized planets orbiting close to their host stars (e.g. ?), many of which have sufficient mass to undergo

run-away accretion.

These four distinct mechanisms for hot Jupiter system assembly (disk torques, coplanar high-

eccentricity migration, Kozai-Lidov high eccentricity migration, and in situ formation) have differ-

ent observational outcomes. High eccentricity migration destabilizes the orbits of close-in compan-

ions and requires the presence of distant massive companions in hot Jupiter systems which originally

helped excite those high eccentricities. If Kozai-Lidov migration is dominant, then these compan-

ions should have mutual inclinations with the hot Jupiters of & 40 ◦. By contrast, disk migration
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will likely result in dynamically quiet systems with low mutual inclinations. In situ formation ini-

tially produces a coplanar inner system, but subsequent secular interactions may eventually produce

systems with either aligned (Batygin et al., 2016b) or misaligned (Batygin et al., 2016b; Spalding

& Batygin, 2017) close-in exterior companions, such as those seen in the WASP-47 system (Becker

et al., 2015b). Such interactions would not change the natal stellar obliquity.

A powerful way to understand the architectures and formation histories of hot Jupiter systems

is through measurements of or constraints on the angles between the orbital angular momentum and

the stellar spin axis. The difference between these angles is commonly called the stellar obliquity.

There is a striking observed correlation between the photospheric temperature of the host star and

the stellar obliquity. Observations of hot Jupiters (Winn et al., 2010a; Albrecht et al., 2012a),

(and more tentatively, smaller planets as well, Mazeh et al., 2015) have shown that the orbits of

planetary systems around cool stars (T∗ < 6200 K) tend to be aligned with the spin of the host

star, while the orbits of planets around hot stars (T∗ > 6200 K) tend to be misaligned with the

stellar spin axis. The boundary between the populations of hot and cool stars is commonly taken

at stellar mass M∗ = 1.3 M�, or equivalently at surface temperature T∗ = 6200 K. This threshold

is often called the “Kraft break” (Kraft, 1967; van Saders & Pinsonneault, 2013). This mass limit

corresponds to stellar configurations where the convective envelope becomes thin, which provides

some clues to the physical processes involved.

Although the observed pattern of obliquities as a function of stellar surface temperature remains

under study as additional stellar obliquity measurements are performed with methods such as

Doppler tomography (recent measurements include Zhou et al., 2017; Johnson et al., 2017) or the

Rossiter-McLaughlin technique (Ohta et al., 2005), the fact that hot Jupiters around cool stars

tend to have orbits that are well-aligned with their host stars’ spins axes appears to hold. However

this alignment came about, it is difficult to produce it by random chance, and similarly difficult to

reproduce it once it has been disturbed. This alignment could be primordial (for example, magnetic

fields can realign a young star with its disk; see Spalding & Batygin, 2015), or it could come about

by re-alignment of stellar spin axes due to the planets’ tidal influence (Hut, 1980; Adams & Bloch,

2015; Albrecht et al., 2012a), a fairly slow process which takes hundreds of millions of years or more

(Albrecht et al., 2012a; Lai, 2012). Therefore, in order for hot Jupiters to maintain their spin/orbit
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alignment, their obliquities cannot be perturbed or changed on timescales significantly shorter than

this benchmark value.

In this chapter, we ask the question: “What effect do distant perturbing bodies have on the

alignment of hot Jupiter orbits and the spins of their host stars?” Many distant companions, both

planetary and stellar, to hot Jupiters have been found, and in fact are more frequent around hot

Jupiter hosts than around typical stars (Knutson et al., 2014d; Ngo et al., 2015; Bryan et al., 2016).

These companions also seem to have little effect on the hot Jupiters’ spin orbit alignments (Knutson

et al., 2014d; Ngo et al., 2015; Bryan et al., 2016). But if these distant companions have a strong

enough gravitational influence on the hot Jupiters and have large mutual inclinations, they could

in principle disturb the spin orbit alignment of the hot Jupiters away from what we observe in cool

stars. By calculating the effect of the observed distant companions to hot Jupiters, we can place

constraints on the mutual inclination between these companions and the well aligned hot Jupiters.

Here, we statistically constrain the orbital inclinations of exterior long-period companions in

hot Jupiter systems. We approach this problem by identifying a sample of hot Jupiters orbiting

cool stars with known long-period companions and measured stellar obliquity and calculating the

probability that each of these hot Jupiters will retain its low inclination as a function of the

inclination of the distant perturbing companions using secular and N-body techniques. In Section

5.3, we describe our sample selection and analysis techniques. In Section 5.4, we present the

statistical results of our analysis and show that most companions of hot Jupiters around cool stars

orbit near the plane of the hot Jupiters’ orbits. In Section 5.5, we discuss the implications of this

result on hot Jupiter formation and suggest avenues for future work.

5.3 Methods

5.3.1 Sample selection

We focus in this chapter on transiting hot Jupiters with known companions detected via radial

velocity observations. Since the hot Jupiters transit, it is often possible to measure components

of the stellar obliquity via the Rossiter McLaughlin effect, a crucial ingredient in our calculations.

Also, because the hot Jupiters transit, we know their orbital inclinations quite precisely to be nearly
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90◦. Therefore, any constraint on the orbital inclination of the distant companion constrains the

mutual orientation of the two planets’ orbits.

The systems we consider in this work are those with the following properties:

• The host star is cool (with an effective temperature below Kraft break; T∗ < 6200 K)

• The star hosts a hot Jupiter (roughly Jupiter-mass planet with an orbital period between 0.8

and 6.3 days; as defined in Steffen et al., 2012b)

• There exists in the literature a measure of either the projected or true stellar obliquity (angle

between the stellar spin axis and the planet’s orbital angular momentum vector) for the host

star. We do not require this obliquity to have any particular value or precision, but merely

for a measurement to exist.

• There is evidence in the literature that the system has an additional companion in the system;

this companion may be a Jupiter-like planet or a brown dwarf

i = 65 degrees

i = 90 degrees

T* < 6200 K

stellar 
spin axis

Figure 5.1 Schematic Diagram of Hot Jupiters Orbiting Cool Stars and their Companions.
The systems we consider are those with stellar effective temperatures below the Kraft break
(T∗ < 6200K), a measured stellar obliquity, and evidence of an exterior companion whose
residuals do not correlate with stellar activity level. The inclination of the outer companion
is not known for any of the systems in our sample (this quantity is varied in the analysis).

Figure 5.1 illustrates the geometry of the type of systems we consider in this work. A list of

all the stars that fit these criteria and their properties, as well as the measured orbital properties
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of their planets, is given in Table 5.1. Additional companions in these systems come in two forms:

First, there are systems for which the orbits of additional companions have been well-characterized,

and the period of their orbits are known (such as WASP-41, WASP-47, and HAT-P-13). Second,

there are systems in which a trend in the RV data has been identified, but the (putative) companion

does not have a precisely measured period (such as HAT-P-4, WASP-22, and WASP-53). These

latter systems only have constraints on the companion’s orbits (see, for example, Figure 10 of

Knutson et al., 2014b), which can be derived from the radial velocity curves. In this work, we use

the posteriors from Bryan et al. (2016) for HAT-P-4 and WASP-22, and generate a new posterior

for WASP-53 using the data in Triaud et al. (2017) and the method from Bryan et al. (2016),

without any adaptive optics constraints on outer companions.

We exclude from our sample stars with companions and effective temperatures measured to be

above the Kraft break. HAT-P-7, HAT-P-32, HAT-P-2 have temperatures right above Kraft break

and have high projected obliquities, which is consistent with the convective realignment argument

(the stars did not have a sufficient convective envelope to become realigned early in their lives). We

exclude warm Jupiters (defined using the definition given in Steffen et al. 2012b to be Jupiter-mass

planets with orbital periods between 6.3 days and 15.8 days) because these objects are not typically

proposed to form through a high-eccentricity pathway and therefore, unlike hot Jupiters, are not

expected to possess inclined companions (Huang et al., 2016b).

The system XO-2N contains a hot Jupiter (Burke et al., 2007), orbits a cool star, and has a

projected stellar obliquity of 7 ± 11 degrees (Damasso et al., 2015). Knutson et al. (2014b) also

presented RV evidence of a long-period signal in the system. However, Damasso et al. (2015) found

a correlation between the RV residuals and the stellar activity index RHK , indicating that the long

period signal is likely stellar activity and not a companion. For this reason, we also exclude this

system from our sample (although we note that this system and its companion would fit perfectly

into the aligned paradigm we see in our sample, were the companion to be real).

Of the systems we include, some have additional components that do not significantly affect

the evolution of the system. The WASP-47 system is unique among hot Jupiter-hosting systems

because it contains two short-period planets in addition to the hot Jupiter WASP-47b. Both of these

additional planets are roughly coplanar with the hot Jupiter orbit (as they were both discovered
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via K2 transit photometry). In this work, we consider only the precession of the hot Jupiter,

and do not impose additional constraints based on the transiting behavior or potential dynamical

instability of the other planets (unlike the analyses done in Becker & Adams, 2017; Vanderburg

et al., 2017). We choose to consider the hot Jupiter alone because it is the planet for which the

Rossiter-McLaughlin measurement was made (Sanchis-Ojeda et al., 2015a). Excluding WASP-47

from the sample due to its unusual architecture would not change the results significantly since all

hot Jupiters in our sample are aligned, so to maximize our sample size, we choose to include it.

HAT-P-13 actually has three planets, a hot Jupiter and its two companions. The first companion

has a period of 428.5 ± 3.0 days, an eccentricity of 0.691 ± 0.018, and an m sin i of 15.2 ± 0.1 MJ

(Bakos et al., 2009). The second companion does not have a measured period, but an RV trend

indicates its existence (Winn et al., 2010b). The inner of those two (the middle body in the system)

does not transit. Since the perturbations from the outermost body are expected to be adiabatic

(Becker & Batygin, 2013), we ignore the effect of the outer planet in our analysis. We do note that

the influence of the outer planet has the potential to adiabatically misalign both inner planets.

However, given that we measure a low stellar obliquity, and will show later that the middle planet

is probably also aligned, it is unlikely the outer companion is highly inclined. Future modelling

efforts may readily test this prediction.

5.3.2 The Laplace-Lagrange Secular model

Additional exterior companions can alter the orbital inclination of the inner hot Jupiter through

planet-companion interactions. As these interactions are mainly secular and non-resonant, we can

approximate the system’s orbital evolution over time using secular Laplace-Lagrange theory. This

provides an approximation for the expected effect, which can be used to guide further analysis.

Although we also use numerical N-body simulations (see below) to construct our final results in

this work, this section outlines the analytic, guiding theory for describing the inclination evolution

over time.

As we expect secular interactions to dominate, we can construct a disturbing function for the

planetary system, excluding terms that depend on the relative positions of the planets in their orbits

(Murray & Dermott, 1999). The result is an equation which treats the planets as smeared-out rings
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Figure 5.2 Secular Evolution of WASP-41b and -41c. The evolution of the inclination of
WASP-41b and WASP-41c as given by Laplace-Lagrange secular theory: the secular theory
was computed using inclinations centered around 0 degrees, and the inclination plotted is the
secular result plus 90 degrees (to signify that WASP-41b is seen in an edge-on orbit). The
companion’s observed initial inclination differs in the two panels: ic = 90◦ (top panel) and
ic = 98◦ (bottom panel). The presence of an inclined companion (-41c) results in an oscillat-
ing inclination angle for the hot Jupiter (-41b), affecting its angular momentum direction.
In particular, a higher inclination of WASP-41c decreases the amount of time WASP-41b
spends near its original orbital momentum direction, thereby increasing the likelihood of
observing obliquity misalignments.
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of mass. Including only the terms describing the inclination of each planet’s orbit to second order,

this result becomes

R(sec)
j = nja

2
j

[
1

2
BjjI

2
j +

N∑
k=1, j 6=k

(BjkIjIk cos (Ωj − Ωk))

]
, (5.1)

where j is the planet number, n the mean motion, I the inclination, ω the argument of pericenter,

and Ω is the longitude of the ascending node. In the case of a spherical central body, the quantities

Bij represent the interaction coefficients between pairs of planets and are given by

Bjj = −nj
[

1

4

N∑
k=1, j 6=k

mk

Mc +mj
αjkᾱjkb

(1)
3/2(αjk)

]
, (5.2)

and

Bjk = nj

[
1

4

mk

Mc +mj
αjkᾱjkb

(1)
3/2(αjk)

]
, (5.3)

where mk is the mass of the kth planet, Mc is the mass of the central star, the αjk are the semi-

major axis ratios aj/ak, and ᾱjk are the semi-major axis ratios for aj/ak < 1. The function b
(1)
3/2(α)

is the Laplace coefficient, which is defined by

b
(1)
3/2(α) =

1

π

2π∫
0

cosψ dψ

(1− 2α cosψ + α2)3/2
. (5.4)

Further explanation of this theory and potential expansions of the model can be found in Murray

& Dermott (1999). Using the standard transformation

pj = Ij sin Ωj and qj = Ij sin Ωj , (5.5)

the solutions of the eigenvalue problem defined by matrix B take the form:

pj(t) =

N∑
k=1

Ijk sin(fkt+ γk) (5.6)
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and

qj(t) =
N∑
k=1

Ijk cos(fkt+ γk) . (5.7)

To complete the initial condition problem, we define normalized eigenvectors Ijk and corresponding

scaling factors Tk for the eigenvectors Ijk,

Ijk = TkIjk , (5.8)

which allows us to use Equations (5.6) and (5.7) combined with the initial values of the inclination

angles Ij and the angles Ωj for each planet to solve for the scaling factors Tk, i.e.,

pj(t = 0) =

N∑
k=1

TkIjk sin γk (5.9)

and

qj(t = 0) =
N∑
k=1

TkIjk cos γk . (5.10)

The result is an expression defining the time evolution of the orbital inclination of each body in

the system,

Ij(t) =

√
[pj(t)]

2 + [qj(t)]
2 . (5.11)

This equation can be used to generate the inclination evolution for planets in a system domi-

nated by secular effects. By inspection, we see that the total angular momentum direction in the

system will be conserved, but traded between planets in amounts mediated by the magnitude of the

interaction coefficients. An example of the application of this theory is shown in Figure 5.2, which

plots the orbital inclination angles (as computed with the Laplace-Lagrange secular theory detailed

above) over time for two realizations of WASP-41b and WASP-41c. The first system is considered

to be co-planar, whereas the second case assumes that the companion WASP-41c is slightly inclined.

We note that when Equation 5.11 is used, the initial inclinations of transiting planets should be set

to 0 degrees, rather than the 90 degrees traditionally reported observationally to denote edge-on

orbits, due to the small angle approximation used in deriving the secular equations.

An inclined companion leads the orbit of hot Jupiter (-41b) to precess and allows the inclination
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angles to oscillate over time. A precessing hot Jupiter will appear aligned with its host’s spin axis

some (small) fraction of the time. This exact value depends on the observational error on the

obliquity measurement as well as the orbital elements of all bodies in the system. As a result, for a

single system, the fact that a hot Jupiter is aligned with the stellar spin axis does not completely

specify the inclination of the companion. It is possible that our observations happen to occur at a

moment in the secular cycles where the system passes through alignment. However, if we observe

the entire population of hot Jupiter hosts to have spin axes aligned with their hot Jupiter’s orbital

angular momentum, then it is unlikely that their companions are highly inclined. In other words,

the assessment of alignment in hot Jupiter systems must be done statistically.
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Figure 5.3 Probability of Reproducing Observations by Inclination for WASP-41c. Distri-
bution for the probability of recreating the observations (obs), given some companion incli-
nation for WASP-41c (ic). This plots shows the comparison between the results computed
from secular theory (solid blue curve) and the numerical N-body results (points). Here, an
inclination of 0 degrees denotes an edge-on orbit (which observers report as having i=90
degrees). Except for the method used to generate the time series of orbital elements (secular
theory versus the Mercury6 N-body integrator), the probabilities in each case were generated
the same way. The numerical simulations show good agreement with the secular calculation.
The secular theory provides a robust motivation for this problem, and can be used to predict
the interactions between planets at low mutual inclinations.
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5.3.3 Numerical computation

In addition to the secular theory described above, we ran numerical N-body integrations of

these systems, as such simulations are capable of recovering orbital behavior that is not apparent

from the secular theory alone. In Figure 5.3, we show the comparison between the results computed

using each method for one system in our sample (WASP-41, the same system visualized in Figure

5.2). The most important differences between the secular and numerical approaches are as follows:

[1] The secular approach does not detect dynamical instabilities that result in ejections or collisions

(see Figure 5.3 - the points which lie on the x-axis are points where such a dynamical instability

occurred, the inner planet was lost, and thus the system would never recreate observations). [2] The

numerical approach allows for time-dependence in semi-major axis, while the secular theory does

not. [3] The numerical approach will correctly capture the behavior of mean motion resonances

should they arise (although, we expect these to be rare for the particular geometry of this problem).

The differences between the secular and numerical results in Figure 5.3 demonstrate that the secular

theory is a good but not perfect approximation. To encompass all these behaviors, we treat the

secular theory as motivation, and examine the behavior of each of the six systems in our sample

using N-body integrations. In this numerical work, we use the system parameters and posteriors

presented in Table 5.1.

Another reason to use N-body methods rather than the secular approximation is that, although

the numerical computations are very expensive, we only have six systems in our sample, and

thus the calculation is feasible. Notice that, on average, a single trial using a Mercury6 N-body

simulation takes 103 − 104 longer than the corresponding python-generated secular evolution. For

longer integration times, this discrepancy grows larger. Future analyses with a larger sample size

might be able to use the secular approximation, which is generally accurate for sufficiently small

mutual inclinations.

The purpose of these numerical experiments is to examine the effect that varying the inclination

of the companion has on the alignment of the spin axis of the star and the orbital angular momentum

vector direction of the hot Jupiter. Recall that for a single system, we cannot draw firm conclusions

about its orbital geometry from the fact the hot Jupiter transits today because precessing orbits

allow planets to transit from a given line of sight with some duty cycle. Similarly, we must make
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an assumption about the underlying companion inclination distribution. Since we are testing the

population as a whole, and not just individual systems, we consider three possible priors for the

population of companion inclinations: a Fisher distribution, a uniform distribution, and a delta

function. For each distribution, we assign the width of the distribution to be σ, when σ2 = 〈sin2 i〉,

and the functional forms of each probability distribution dp = fdi and width are given as follows:

• Fisher distribution. The Fisher distribution is often used (Fabrycky & Winn, 2009;

Tremaine & Dong, 2012) to describe the inclinations of planetary orbits, especially rela-

tive to the spin axis of their host star (Morton & Winn, 2014b, see this paper for some

illustrative plots describing the Fisher distribution). Its functional form can be written

ff (i|κ) =
κ

2 sinhκ
eκ cos i sin i , (5.12)

when i is the orbital inclination angle. Then, we can find the width σ:

σ2 = 〈sin2 i〉 =

∫
fθ(θ|κ) sin2 idi = 2

cothκ

κ
− 2

κ2
(5.13)

or

σ =

√
2

cothκ

κ
− 2

κ2
(5.14)

This form reduces to a Rayleigh distribution for large κ. For κ→ 0, the distribution becomes

approximately isotropic.

• Uniform distribution. We assume that all companions come from a population with

uniform scatter, but some maximum allowed inclination (defined as θm). For each iteration,

we generate companions by drawing from a uniform inclination distribution between a 0

degree mutual inclination and some maximum inclination. The functional form for this

distribution can be written as:

dp

di
= fu(i|θm) =

1

2θm
(5.15)

The width σ of this distribution is again defined by the expectation value of sin2i, where i
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is the inclination drawn for each trial:

σ2 = 〈sin2 i〉 =

∫
fu sin2 idi (5.16)

For a distribution ranging between −θm and θm:

σ2 =

θm∫
−θm

1

2θm
sin2 idi =

θm − cos θm sin θm
2θm

, (5.17)

or:

σ =

√
1

2
− sin 2θm

4θm
(5.18)

• Delta function distribution. We assume that all companions have the same inclination

- so, the underlying companion distribution is a delta function at some inclination. This

distribution has the probability function:

dp

di
= fδ(i|θx) = δ(i− θx) (5.19)

and the width σ can also be found:

σ2 = 〈sin2 i〉 =

∫
fδ sin2 idi = sin2 θx (5.20)

So, the final width to the delta function companion distribution will be:

σ = sin θx (5.21)

For each of those three priors, we initialized 1000 connected realizations of each of the six

systems. (For example: a single realization includes all six planetary systems in independent

integrations, all of which have inclinations drawn from the Fisher distribution of a given width.

This process is then repeated 1000 times with different distributions widths. Then, the entire set of

1000 is repeated for each other prior type). In each realization, we sample from the known posteriors

for each orbital element for all known planets. For the orbital elements of the hot Jupiter in each
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system, we set its initial inclination to be 90 degrees, and draw its orbital period, mass, eccentricity,

and argument of periastron from observational priors (see Table 5.1). For the orbital elements of

the perturbing companions, we assign their orbital periods, masses, eccentricities, and arguments

of periastron in the same way. We also draw an inclination for the perturbing companion from the

prior being tested (either Equation [5.12], [5.15], or [5.19]). If a planet has an m sin i measurement

instead of a true mass, we combine this measurement with our drawn inclination to find the true

mass of the companion for that realization.

After the initial conditions for the systems are specified, we evolve the systems using Mercury6

(Chambers, 1999b) with time-steps set initially to be 1% the orbital period of the innermost planet,

and use the hybrid symplectic and Bulirsch-Stoer (B-S) integrator. We require energy conservation

to a part in 10−8 or better, and allow each integration to run for 10 Myr (which encompasses many

secular periods).

For each set of six systems, we then use the time-series of orbital elements computed by the

N-body simulations to compute the projected stellar obliquity at each time-step. As each star in

our sample has an observationally-measured projected obliquity, we then compute the probability

that our simulated stellar obliquity would be measured to be consistent with this value (assuming

the observational errors on our simulated measurement are equal to the error on the true measure-

ment; see the third row of Table 5.1 for the projected obliquities and errors). The result of this

computation is the probability that an observer would observe the stellar obliquity to be consistent

with the true value we measure observationally at the current epoch.

Since each realization we have simulated includes six integrations (one for each planetary sys-

tem), we then compute for each time-step the product of these six individual probabilities. This

product is the probability that a simulated telescope making an observation at that time-step would

measure a set of six projected stellar obliquities consistent with the true, current-day values. Then,

using the entire time-series of probabilities, we compute a single marginalized probability P (obs|σ),

when σ is computed directly from the functional form of each prior (the final forms of which are

given in Equation [5.14], Equation [5.13], and Equation [5.21]). This single probability describes

the chance that we would observe all the same stellar obliquities presented in the third row of Table

5.1 given the prior we chose for the underlying distribution of companion inclinations. We also plot
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in Figure 5.4 a smoothed curve representing the mean probability for each distribution width, with

contoured error bars representing the 1σ scatter at each distribution width.
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Figure 5.4 The Final Probability Distributions for Companion Inclinations. For three dif-
ferent choices for the underlying companion inclination distributions with expectation value
for orbital inclination of σ2 = 〈sin2 i〉, these curves show the probability that we would mea-
sure the observed obliquities between the stellar spin axis and hot Jupiter orbital angular
momentum for the entire population of systems in our sample (obs), given some companion
inclination distribution ic. Each panel uses a different prior on the type of distribution from
which we draw the inclination of the companion orbit: the left panel is a Fisher distribu-
tion, the middle panel a uniform distribution with varying maximum inclinations, and the
right panel is a delta function at each inclination. For all choices of the priors, the allowable
range in inclination for the underlying distribution of the companion’s orbit is less than ∼ 20
degrees out of the plane containing the hot Jupiter.

5.4 Results

5.4.1 The companion population tends to have nearly co-planar orbits

Figure 5.4 illustrates the main result of this work. We have considered systems containing hot

Jupiters orbiting cool stars for which an obliquity measurement exists and which exhibit evidence

for a companion. For three different types of distributions for the (unknown) inclination angle

of the companion orbit, the numerical N-body simulations show that a large fraction of the cases

with large mutual inclination angles result in a low probability of recreating the observations.

As a result, it is unlikely that the companions to these cool hot Jupiter hosts generally have a

high mutual inclination. Indeed, for all three prior choices (which range from the restrictive delta

function distribution to the physically motivated and commonly used Fisher distribution), the
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allowable range of orbital planes for the companions is within 20–30 degrees of the orbital plane

of the hot Jupiter: the probability curves in Figure 5.4 are plotted against σ =
√
〈sin2 i〉, and the

top axis of each panel presents for physically intuitive units for each prior (the definitions of which

can be found in Section 5.3.3). From these curves, we can compute the 95% confidence interval for

each prior, which will define an upper limit on the value we can expect
√
〈sin2 i〉 to assume, and

then convert this to an angle, ic, describing the likely maximum misalignment of exterior, coupled

companions in these systems. For the Fisher distribution, this value is ic ∼24 degrees. For the

uniform distribution, this value is ic ∼13 degrees. For the delta function distribution, this value is

ic ∼13 degrees.

Although the sample of known hot Jupiters with both stellar obliquity measurements and known

exterior companions is small (only six such systems have been discovered at the time that this

chapter was written), we can nonetheless make significant inferences on the underlying distribution

of possible orbital inclinations for the population of companions. The dynamical calculations carried

out here show that, through primarily secular evolution, the inclination angles of the orbits are

expected to evolve in the presence of an inclined companion. The fact that the stellar obliquity

with respect to the hot Jupiter tends to be low constrains the secular evolution histories in these

systems. If the underlying population of companions to systems containing hot Jupiters around

cool stars has a random distribution of uniformly distributed inclination angles, the chance that

our observations happened to catch the six known systems at times where the orbits of the hot

Jupiters are aligned with the stellar spin axis is only ∼ 10−7. As shown in Figure 5.4, the orbits

of the underlying companion population in these hot Jupiter systems are likely to be confined near

the plane of the hot Jupiter orbit.

5.4.2 Implications for Hot Jupiter Formation and Migration

Our conclusion that orbits of distant exterior companions to hot Jupiters are likely co-planar

with hot Jupiter orbits has important implications for migration scenarios. The narrow distribution

of inclination angles inferred here favors disk-driven migration mechanisms for hot Jupiters around

cool stars. In this case, the disk and planets remain in nearly the same plane, and disk is generally

aligned (within about 30 degrees) with the stellar spin axis (for additional discussion, see Lee et al.
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2014; Becker et al. 2015b; Huang et al. 2016b; Weiss et al. 2017 for discussions of alignment, and

Lai et al. 2011; Spalding et al. 2014b; Lai 2014; Fielding et al. 2015 for mechanisms to excite mis-

alignments, particularly with systems around hot stars). In situ formation of hot Jupiters would

also lead to well-aligned planetary orbits (Batygin et al., 2016b). In contrast, high-eccentricity

migration does not generally lead to low mutual inclinations. In this latter scenario, the migrating

hot Jupiter attains high eccentricity, and hence a small periastron, so that tidal dissipation can

circularize the orbit with a small semimajor axis. The mechanisms invoked to excite the high

eccentricity — including the Kozai-Lidov effect from stellar companions, planet-planet scattering,

and secular interactions between planets — generally result in high inclination configurations (Fab-

rycky & Tremaine, 2007a; Nagasawa et al., 2008a; Naoz et al., 2011a). As these high-inclination

configurations are found in hot Jupiter systems around hot stars (T∗ > 6200 K), it is possible either

that (a) hot stars, lacking a convective envelope, fail to realign the stellar spin-axis with orbital

angular momentum early in their lives, or (b) the systems orbiting hot stars assemble via a different

pathway. In either case, for cool stars, we favor a disk-driven migration scenario for dynamically

coupled companions.

On the other hand, some exceptions are possible (Petrovich, 2015), and the number of hot

Jupiter systems for which we can carry out the analysis of this chapter remains small. Fortu-

nately, future observations should find an increasing number of hot Jupiter systems with additional

companions orbiting cool stars. If these upcoming observations find a large number of misaligned

systems, then high eccentricity migration will remain a viable alternative. On the other hand, if

future observations find more systems with aligned obliquities, then it will support the paradigm

advanced in this work of a coplanar companion population for cool hot Jupiter hosts.

5.4.3 Inclination of Companions to Hot Jupiters around Hot Stars

In this chapter, we only consider the inclinations of distant companions to hot Jupiters around

cool stars because their obliquity angles are conveniently well aligned, making this type of analysis

possible. This raises the question: “Are companions to hot Jupiters around hot stars also coplanar?”

One possibility is that distant companions to hot Jupiters around hot stars are not well aligned

with the hot Jupiters’ orbits, and that their gravitational perturbations either cause or contribute
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to the the increased scatter in spin/orbit angles that are observed for these stars. This scenario

hints at the explanation for correlation between stellar obliquity and stellar effective temperature

by Batygin (2012a), who suggests that the increased prevalence of stellar companions for more

massive stars can explain the misalignment of hot Jupiter orbits with the spin axes of hot stars.

Batygin (2012a) suggests that torques from distant, misaligned companions on the proto-planetary

disks can cause the misalignments that are observed; our results demonstrate the well-known (ex:

Lai & Pu, 2017) result that closer misaligned companions can cause misalignments via secular

interactions with the planet itself.

Another possibility is that most distant companions to hot Jupiters around stars of all tem-

peratures and masses are roughly co-planar with the hot Jupiters, and the large scatter in stellar

obliquity observed in hot stars comes from some other mechanism. In this case, although the

companions do not disturb the hot Jupiters’ spin/orbit angles, we cannot tell because there is no

apparent pattern for distant companions to disrupt.

5.4.4 Caveats

The major caveats on the results quoted above can be summarized as follows. First, even

in this paradigm, individual systems containing hot Jupiters around cool stars could (rarely) be

found to have high-inclination companions due to unusual dynamical histories. For this reason, the

methods and results of this work provide a statistical statement on the population of companions

to hot Jupiters around cool stars, and cannot be used to determine true inclinations for individual

systems.

Second, the temperature cut-off that we use in this work is chosen based on effective temper-

ature. As these measurements are improved, some systems may move into or out of our sample.

The ideal way to define the sample would be to include stars with thick convective envelopes, but

currently, effective temperature is the best proxy for envelope size. As such, systems with host

stars close to the temperature cut-off may be incorrectly categorized.

Third, only dynamically coupled companions can be included in analyses of this nature. Com-

panions with sufficiently large orbital radii may become decoupled from the dynamics of the inner

system, and no longer affect the orbital precession of the hot Jupiter. Our statistical result does
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not apply to these very distant decoupled companions. Field surveys indicate that the occurrence

rate of brown dwarfs (with masses ranging from 13 - 80 MJ) around Sun-like stars is low (Ma &

Ge, 2014), with exact fractions ranging from 0.6% to 0.8% (Vogt et al., 2002; Patel et al., 2007;

Wittenmyer et al., 2009; Sahlmann et al., 2011), suggesting that the companions for which we do

not have fitted orbits (HAT-P-4, WASP-22, WASP-52) are more likely to be planetary companions

rather than distant (potentially decoupled) brown dwarfs.

5.5 Conclusion

In this work, we have shown statistically that distant exterior companions to hot Jupiters

around cool stars must typically orbit in roughly the same plane as the hot Jupiter itself. Specifi-

cally, companion orbits must generally fall within 20 – 30 degrees of the plane containing the hot

Jupiter (see Figure 5.4)2. We constructed a sample of six hot Jupiter systems around cool stars

(specifically, HAT-P-4, HAT-P-13, WASP-22, WASP-41, WASP-47, and WASP-53) and calculated

the dynamical effects of distant perturbing companions as a function of the companion’s orbital

inclination. We performed a large ensemble of numerical simulations to show that if the inclination

distribution companions to these systems extended much more than 20◦ away from coplanar, then

we would have been unlikely to observe the measured obliquities in our sample. We have also used

secular theory for comparison; this approach is in good agreement with the full N-body simulations

and can provide a time-saving alternative (see Figure 5.3).

The fact that companions to hot Jupiters tend to orbit in nearly the same plane as the hot

Jupiters themselves disfavors formation and migration models involving planet/planet scattering

for hot Jupiters around cool stars. In particular, Kozai-Lidov migration typically requires a per-

turbing planetary (or stellar) companion with a mutual inclination of about 40◦ or more. Mutual

inclinations this large are strongly disfavored by our statistical analysis. This finding — along

with the fact that too few highly eccentric proto-hot Jupiters have been detected in Kepler data to

explain the hot Jupiter population (Dawson et al., 2015) — suggests that Kozai-Lidov migration is

not the dominant mode for forming hot Jupiter systems. Instead, this result favors formation sce-

2Note that we expect any additional planets to also be roughly in the same plane (see, for example,
WASP-47).
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narios that take place mostly within the plane of the proto-planetary disk, such as disk migration,

in situ formation, or in some cases, coplanar high-eccentricity migration.
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Stellar Properties
M∗ (M�) R∗ (R�) λ (deg) T∗(K)

HAT-P-4 1.26 ± 0.10 (1) 1.617 +0.057
−0.05 (1) -4.9 ± 11.9 (2) 5860 ± 80 (1)

HAT-P-13 1.22 +0.05
−0.10 (5) 1.281 ±0.079 (5) 1.9 ± 8.5 (6) 5653 ± 90 (5)

WASP-22 1.249 +0.088
−0.17 (7) 1.255 +0.035

−0.034 (7) 22 ± 16 (8) 6153 ± 50 (7)
WASP-41 0.987 ± 0.047 (7) 0.886 ± 0.017 (7) 6 ± 11 (7) 5546 ± 33 (7)
WASP-47 1.00 ± 0.05 (13) 1.15 ± 0.04 (14) 0 ± 24 (15) 5400 ± 100 (16)
WASP-53 0.87 ± 0.08 (17) 0.96 ± 0.24 (17) -4 ± 12 (17) 4950 ± 60 (17)

Hot Jupiter Properties
Mass (MJ) Period (days) eb

HAT-P-4 0.68 ± (1) 3.056536 ±5.7× 10−5 (1) 0 (1,2)
HAT-P-13 0.853 +0.029

−0.046 (5) 2.916260 ±1.0× 10−5 (5) 0.0133 ± 0.0041 (5)
WASP-22 0.617 +0.033

−0.022 (7) 3.5327313 ±5.8× 10−5 (8) 0.023 ± 0.012 (9)
WASP-41 0.977 ± 0.037 (7) 3.0524 ± 10−5 (10) < 0.026 (11)
WASP-47 1.12 ± 0.04 (13) 4.15912 ± 10−5 (13) 0.0028 ± 0.0028 (13)
WASP-53 2.132 +0.09

−0.09 (17) 3.3098443 ±2× 10−6 (17) < 0.03 (17)

ib (deg.) ωb (deg.)
HAT-P-4 88.76 +0.89

−1.38 (1) -
HAT-P-13 83.4 ± 0.6 (5) 181 ± 45 (5)
WASP-22 89.2 ± 0.5 (8) 27 51

−78

WASP-41 89.4 +0.3
−0.3 (11) -

WASP-47 89.2 0.5
0.7 51 ± 82

WASP-53 87.08 +0.16
−0.15 (17) -

Companion Properties
m sin(i) (MJ) Period (days) ec ωc (deg.)

HAT-P-4 (3,4) 1 (3,4) (3,4) (3,4)
HAT-P-13 14.28±0.28 (6) 446.27±0.22 (6) 0.662±0.005 (6) 176.7±0.5 (5)
WASP-22 (3,4) 1 (3,4) (3,4) (3,4)
WASP-41 3.2±0.20 (11) 421 ± 2 (11) 0.294±0.024 (11) 353±6 (11)
WASP-47 1.24±0.22 (11) 572 ± 7 (11) 0.13±0.10 (11) 144±53 (11)
WASP-53 (17)1 (17) (17) (17)

Table 5.1 Orbital parameters used for the analysis in this work, with the literature sources for
each measured value. 1: this companion does not have a fitted orbit, but a trend indicating
the presence of a companion with an orbital period longer than our observational baseline. In
this work, we sample the orbital elements of these companions from the posteriors provided
in Bryan et al. (2016). 2: Using the method of Knutson et al. (2014b) and Bryan et al.
(2016), we create a posterior for WASP-53, using radial velocity measurements from Triaud
et al. (2017). References: (1) Kovács et al. 2007 (2) Winn et al. 2011 (3) Knutson et al.
2014b (4) Piskorz et al. 2015 (5) Bakos et al. 2009 (6) Winn et al. 2010b (7) Southworth
et al. 2016 (8) Anderson et al. 2011 (9) Maxted et al. 2010 (10) Maxted et al. 2011 (11)
Neveu-VanMalle et al. 2016a (12) Vanderburg et al. 2017 (13) Weiss et al. 2017 (14) Hellier
et al. 2012a (15) Sanchis-Ojeda et al. 2015b (16) Hellier et al. 2012b (17) Triaud et al. 2017
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CHAPTER VI

Dynamically Constraining Ambiguous Orbital Periods

from Transit Data

Results in this chapter were published in: Becker, J. C., Vanderburg, A., and 24 colleagues
2019. A Discrete Set of Possible Transit Ephemerides for Two Long-period Gas Giants Orbiting
HIP 41378. The Astronomical Journal 157, 19. and Vanderburg, A., Becker, J. C., and 16
colleagues 2016. Five Planets Transiting a Ninth Magnitude Star. The Astrophysical Journal 827,
L10. and are presented here with moderate revisions.

6.1 Abstract

The Kepler mission has revealed a great diversity of planetary systems and architectures, but

most of the planets discovered by Kepler orbit faint stars. Using new data from the K2 mission,

we present the discovery of a five planet system transiting a bright (V = 8.9, K = 7.7) star called

HIP 41378. HIP 41378 is a slightly metal-poor late F-type star with moderate rotation (v sin i '

7 km s−1) and lies at a distance of 116 ± 18 pc from Earth. We find that HIP 41378 hosts two

sub-Neptune sized planets orbiting 3.5% outside a 2:1 period commensurability in 15.6 and 31.7

day orbits. In addition, we detect three planets which each transit once during the 75 days spanned

by K2 observations. One planet is Neptune sized in a likely ∼160 day orbit, one is sub-Saturn sized

likely in a ∼ 130 day orbit, and one is a Jupiter sized planet in a likely ∼ 1 year orbit. We show that

these estimates for the orbital periods can be made more precise by taking into account dynamical

stability considerations. We also calculate the distribution of stellar reflex velocities expected for

this system, and show that it provides a good target for future radial velocity observations. If a
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precise orbital period can be determined for the outer Jovian planet through future observations,

it will be an excellent candidate for follow-up transit observations to study its atmosphere and

measure its oblateness.

We then consider the system in the updated context of new data: the 2015 K2 observations only

spanned 74.8 days, and the outer three long-period planets in the system were only detected with a

single transit, so their orbital periods and transit ephemerides could not be determined at that time.

We report on 50.8 days of new K2 observations of HIP 41378 from summer 2018. These data reveal

additional transits of the long-period planets HIP 41378 d and HIP 41378 f, yielding a set of discrete

possible orbital periods for these two planets. We identify the most probable orbital periods for these

two planets using our knowledge of the planets’ transit durations, the host star’s properties, the

system’s dynamics, and data from the ground-based HATNet, KELT, and WASP transit surveys.

Targeted photometric follow-up during the most probable future transit times will be able to

determine the planets’ orbital periods, and will enable future observations with facilities like the

James Webb Space Telescope. The methods developed herein to determine the most probable

orbital periods will be important for long-period planets detected by the Transiting Exoplanet

Survey Satellite, where similar period ambiguities will frequently arise due to the mission’s survey

strategy.

6.2 Introduction

The Kepler spacecraft (launched in 2009) has been a tremendously successful planet discovering

mission (Borucki et al., 2010, 2011; Koch et al., 2010). Over the course of its four year original

mission, Kepler discovered thousands of planetary candidates around distant stars (Coughlin et al.,

2015), demonstrating the diversity and prevalence of planetary systems (e.g. Muirhead et al., 2012;

Fabrycky et al., 2014b; Orosz et al., 2012b; Morton & Swift, 2014). Kepler’s contributions include

measuring the size distribution of exoplanets (Howard et al., 2012a; Fressin et al., 2013a; Petigura

et al., 2013c), understanding the composition of planets intermediate in size between the Earth

and Neptune (Weiss & Marcy, 2014a; Wolfgang et al., 2016), measuring the prevalence of rocky

planets in their host star’s habitable zones (Dressing & Charbonneau, 2013b, 2015; Petigura et al.,
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2013b; Foreman-Mackey et al., 2014; Burke et al., 2015), and uncovering the wide range of orbital

architectures like tightly packed planetary systems (Campante et al., 2016), and planets in and

(more commonly) near low order mean motion resonances (Carter et al., 2012a; Steffen & Hwang,

2015).

After the original Kepler mission came to an end in 2013, the K2 extended mission (Howell

et al., 2014a) has conducted a series of ∼70–80 day observations in different locations along the

ecliptic plane. Since the conception of the K2 Mission, one of its major goals has been to detect

small transiting planets orbiting nearby bright stars (Howell et al., 2014a). Due to the original

Kepler mission’s narrow and deep survey strategy, most of its discoveries orbit stars that are too

distant and faint for detailed follow-up study, so that only limited information can be gleaned about

the physical properties of the newly discovered planet population beyond those discernible from

the light curves.

Because it only observes stars for about 80 days before moving onto new fields, K2 is not as

sensitive to planetary systems with complex architectures as the original Kepler mission. While

Kepler detected systems with up to seven transiting planets (Schmitt et al., 2014; Cabrera et al.,

2014), K2 had not (as of early 2016) yet discovered any systems with more than three transiting

planet candidates1 (Sinukoff et al., 2015; Vanderburg et al., 2016c). This limitation is one of the

signatures of the survey design: the short orbital baselines change the nature of the biases in the

transit data. While transit campaigns always have a preference for discovering short period planets,

a shorter observational baseline makes this bias even more evident.

In this chapter, we first describe the discovery (first reported in Vanderburg et al. 2016b) of a

system of five transiting planets using K2 data. The host star (HIP 41378) is one of the brightest

planet host stars from either Kepler or K2, with a V magnitude of 8.9 and a K magnitude of

7.7. The planetary system displays a rich architecture, with two sub-Neptunes slightly outside of

mean motion resonance and three larger planets in longer period orbits. The subsequent focus of

this chapter is on our efforts (published in Becker et al., 2019) to recover accurate orbital period

estimates of the outer three planets, each of which transited only once during K2 Campaign 5

1The WASP-47 system hosts four planets, only three of which are known to transit (Hellier et al., 2012a;
Becker et al., 2015b; Neveu-VanMalle et al., 2016b).
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(abbreviated henceforth as C5, which was the campaign in which they were originally discovered).

These 2015 K2 observations only spanned 74.8 days, and the outer three long-period planets in the

system were only detected with a single transit, so their orbital periods and transit ephemerides

could not be determined from the C5 data alone.

Following a proposal by Vanderburg, Becker, et al. to re-observe this target, in Campaign 18

(C18), HIP 41378 was observed for another 50.8 days. The new K2 observations of HIP 41378

from summer 2018 revealed additional transits of the long-period planets HIP 41378 d and HIP

41378 f, yielding a set of discrete possible orbital periods for these two planets. In the latter half

of this chapter, I describe the dynamical and statistical methods we used in Becker et al. (2019)

to identify the most probable orbital periods for these two planets. The methods used combine

our knowledge of the planets’ transit durations, the host star’s properties, the system’s dynamics,

and data from the ground-based HATNet, KELT, and WASP transit surveys in order to provide

the best possible system characterization moving forwards. Targeted photometric follow-up during

the most probable future transit times will be able to determine the planets’ orbital periods, and

will enable future observations with facilities like the James Webb Space Telescope. The methods

developed herein to determine the most probable orbital periods will be important for long-period

planets detected by the Transiting Exoplanet Survey Satellite, where similar period ambiguities will

frequently arise due to the mission’s survey strategy.

6.3 Observations

HIP 41378 was observed by Kepler for a total of about 126 days in both Campaigns 5 (C5)

and 18 (C18) of the K2 mission. The data from K2 C5 showed evidence of the transits of five

planets, three of which transited once each during the original 74-day campaign (Vanderburg et al.

(2016b)). HIP 41378 has also been observed by several ground-based planet-hunting surveys,

including the Hungarian-made Automated Telescope (HAT), Kilodegree Extremely Little Telescope

(KELT) surveys, and the Wide Angle Search for Planets (WASP).
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6.3.1 K2 data

During C5, HIP 41378 was only observed in long-cadence mode (29.4 minute co-added ex-

posures), but it was observed in short-cadence mode (58.34 second co-added exposures) during

Campaign 18 due to the discovery of its planetary system. Analysis of the short-cadence data will

likely yield improved parameters for the planets in the system and a detection of asteroseismic

oscillations, but we defer this work until the final, pipeline-calibrated data is released by K2 team

later in 2018. In this work, we focus on analysis of the long-cadence data to determine precise

possible orbital periods for HIP 41378 d and f, with a goal of determining the orbital periods as

soon after the last transit of each planet as possible, so that the periods we identify as most likely

can be monitored and eventually the true orbital periods will be identified by follow-up work.

6.3.1.1 Campaign 5

HIP 41378 was observed along with 25,850 other targets by the Kepler space telescope during C5

(2015 April 27 - 2015 July 10) of the K2 mission. Upon downlink of the data, the K2 team processed

the data with their photometric pipeline, to produce calibrated pixel files. Vanderburg et al. (2016b)

downloaded the pixel-level data, produced a light curve using the methodology of Vanderburg &

Johnson (2014), and then rederived the K2 systematics correction by simultaneously fitting the

long-term stellar variability, pointing-related systematics, and transits of the five detected planets

following the method of Vanderburg et al. (2016c). We use the highly-precise (38 ppm scatter per

30 minute exposure) light curve produced from the simultaneous fit by Vanderburg et al. (2016b)

for our analysis. The C5 light curve is plotted in the second panel of Figure 6.1.

6.3.1.2 Campaign 18

HIP 41378 was observed along with 20,419 other targets by the Kepler space telescope during

C18 (2018 May 12 – 2018 July 02) of the K2 mission. After the data was downlinked from the

spacecraft, the raw cadence files were immediately uploaded to the Mikulski Archive for Space

Telescopes (MAST), before pixel-level calibration had been performed by the K2 team. In the

interest of time, we used the raw, un-calibrated cadence files to produce a quick-look light curve

of HIP 41378. We downloaded the cadence files from the MAST and used the kadenza software
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tool (Barentsen & Cardoso, 2018) to produce a pseudo-target pixel file containing the long-cadence

Kepler images from the postage stamp region around HIP 41378. We then used the procedure of

Vanderburg & Johnson (2014) to process the K2 pixel data into a systematics-corrected light curve.

We manually identified and excluded cadences from our systematics correction when Kepler was

undergoing a reaction wheel desaturation event. We also manually excluded a continuous stretch

of seven hours of data around time BJD - 2454833 = 3431.85 when Kepler experienced a pointing

anomaly. The systematics corrected light curve showed transits of four of the five known HIP 41378

planets: HIP 41378 b, c, d, and f. After performing a first-pass systematics correction with the

Vanderburg & Johnson (2014) method, we re-derived the systematics correction and re-processed

the light curve following the method of Vanderburg et al. (2016c) to simultaneously fit for the

long-term variability, pointing-related systematics, and the transits of the four planets seen in C18.

The photometric precision of the light curve is about 40% worse (51 ppm scatter per 30 minute

exposure) than the light curve from C5 as a result of using the un-calibrated pixel data.

Once the K2 team released their pipeline-processed target pixel files from Campaign 18, we

downloaded these newly processed data and analyzed them in an identical manner to the Campaign

5 data, following Vanderburg & Johnson (2014) and Vanderburg et al. (2016c) to extract light

curves, produce a first-pass systematics correction, and then fit simultaneously for the systematics

correction, transit model, and low-frequency variability. The resulting light curve has photometric

precision nearly identical to that of the Campaign 5 light curve (38 ppm per 30 minute exposure).

Although the kadenza light curves were used to conduct our preliminary analysis, the re-processed

light curve is plotted in the second panel of Figure 6.1, and we use this updated light curve in the

final version of our analysis included in the remainder of this chapter.

6.3.2 KELT data

The Kilodegree Extremely Little Telescope (KELT) survey (Pepper et al., 2007, 2012) is a

ground-based transit survey consisting of two 4.2cm-aperture, wide-field (26 by 26 degrees) auto-

mated telescopes (KELT-North is located in Arizona, and KELT-South is located in South Africa).

KELT’s primary goal is the detection of transiting Jupiter-sized planets, and it has had much suc-

cess finding these planets (Zhou et al., 2016; Stevens et al., 2017; Lund et al., 2017; Gaudi et al.,
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Figure 6.1 Full Light Curve Data of HIP 41378. HIP 41378 was observed in C5 and C18 of
the K2 mission, which were separated by a little over 1000 days. (top panel) The K2 data,
plotted by time of acquisition, plotted alongside the KELT, HAT, and WASP observations of
the same star. All values have been converted to relative flux. (middle two panels) The K2
campaigns, expanded. In both campaigns, many transits of HIP 41378 b and c are observed,
while single transits of HIP 41378 d and f are observed in each campaign. HIP 41378 e
transits only once in the first campaign (C5). (bottom panels) The phase-folded light curves
for planets HIP 41378 d, e and f, each of which transited only once during the K2 C5.
Although we do not know the true orbital period of any of these three planets, we plot the
results of a Levenberg-Marquardt fit of the transit model to the transit center for each event
and center the plot on each fitted center. Planets d and f have data from both C5 and C18,
while e has no data from C18 since it did not transit during this newer campaign.
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2017; Pepper et al., 2017; Siverd et al., 2018). The candidate selection process is described in

(Siverd et al., 2012) and (Kuhn et al., 2016); KELT is primarily searching for planets with V-band

magnitudes between 8 and 10, and HIP 41378 was observed by both KELT telescopes for several

years before Kepler’s K2 mission began. Roughly 4700 observations of HIP 41378 were taken by

KELT-North and KELT-South between March 2, 2010, and May 10, 2013. The reduction pipeline

and candidate selection process is described in Siverd et al. (2012) and Kuhn et al. (2016). The

full KELT data set for HIP 41378 is plotted in Figure 6.1.

6.3.3 HATNet data

HIP 41378 was a target observed by HATNet (Bakos et al., 2004) between November 2, 2010 and

June 3, 2011. HATNet is a telescope network which consists of six 11-cm, wide-field (10.6 degrees

by 10.6 degrees field of view) aperture lenses on six different fully-automated telescope mounts,

four of which are in Arizona and two of which are in Hawaii (Bakos et al., 2004). The HATNet

observations for HIP 41378 were reduced as in Bakos et al. (2010), using aperture photometry

routines from image processing software FITSH (Pál, 2012). The resultant light curves were outlier-

clipped, smoothed, and detrended using the TFA (Kovács et al., 2005). Due to the brightness of

HIP 41378 the innermost pixels containing the center of the point spread function (PSF) are

saturated in the HATNet observations of this star. Because the Apogee U16m 4K×4K CCDs used

by HATNet incorporate anti-blooming gates, electrons exceeding the full pixel well are suppressed

rather spilling over into neighboring pixels. To account for this, aperture photometry is performed

only on the unsaturated pixels and then corrected for the flux not counted in the saturated pixels

using the estimated PSF. This leads to bright/saturated stars having lower photometric precision

than somewhat fainter/unsaturated stars. For HIP 41378 the HATNet observations have a RMS

scatter of 14 mmag, compared to ∼ 4 mmag for the brightest unsaturated stars in the same images.

The full HAT data set for HIP 41378 is also plotted in Figure 6.1, and consists of 12903

observations.
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6.3.4 WASP data

HIP 41378 was also target observed by the WASP survey (Pollacco et al., 2006) between Nov

20, 2009 and March 3, 2011. WASP consists of two robotic telescope arrays with eight Canon lenses

(each with a field of view of 7.8 degrees by 7.8 degrees). The arrays are located in South Africa

and the Canary Islands. Data taken post January 2009 benefit from improved red noise reduction

(Barros et al., 2011; Faedi et al., 2011). WASP data are detrended using SysRem (Tamuz et al.,

2005) and TFA.

The WASP light curve for HIP 41378 was further processed: all points with error bars greater

than 2% were excluded, as were points with flux values smaller than 10% the median flux value.

The remaining points include are expected to be good quality, and are plotted in Figure 6.1.

6.3.5 Adaptive Optics Imaging

We observed HIP 41378 with the Robo-AO adaptive optics (AO) system on the 2.1 meter

telescope at the Kitt Peak National Observatory (Baranec et al., 2014; Law et al., 2014; Riddle

et al., 2016). Robo-AO is a robotic laser guide star adaptive optics system, which has recently

moved to the 2.1 meter telescope at Kitt Peak from the 1.5 m telescope at Palomar Observatory.

We obtained an image on 2 April 2016 with an i′-band filter. The observation consisted of a series

of exposures taken at a frequency of 8.6 Hz, which were then shifted and added using HIP 41378

as the tip–tilt guide star. The total integration time was 120 seconds.

The resulting image showed no evidence for any companions to HIP 41378 within the 36

arcsec×36 arcsec Robo-AO field of view. The AO observations allow us to exclude the presence

of companion stars two magnitudes fainter than HIP 41378 at a distance of 0.25 arcsec, and stars

four magnitudes fainter at a distance of 0.7 arcsec with 5-σ confidence.

6.3.6 High Resolution Spectroscopy

We observed HIP 41378 with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5

meter telescope at Fred L. Whipple Observatory on Mt. Hopkins, Arizona. We obtained spectra

on four different nights in January and February 2016. The spectra were obtained at a spectral
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resolving power of λ/∆λ = 44,000, and exposures of 360 - 450 seconds yielded spectra with signal-

to-noise ratios of 90 to 110 per resolution element. We see no evidence for chromospheric calcium II

emission from the H-line at 396.85 nm. We cross correlated the four spectra with a model spectrum

and inspected the resulting cross correlation functions (CCFs). There is no evidence in the CCFs

for additional second sets of stellar lines. We measure an absolute radial velocity for HIP 41378 of

50.7 km s−1, and the four individual spectra show no evidence for high-amplitude radial velocity

variations. We measured relative radial velocities by cross correlating each observation with the

strongest observation and found no evidence for RV variations greater than TRES’s intrinsic RV

precision of 15 m s−1.

6.4 Analysis

6.4.1 Updated Stellar Parameters

Our analysis to determine the most likely orbital periods of the long-period HIP 41378 planets

depends directly on the adopted stellar parameters, especially the stellar density. We used the ob-

servations described in Section 6.3.6 to derive spectroscopic properties (including stellar metallicity,

temperature, and V band magnitude) using the Stellar Parameter Classification (SPC, Buchhave

et al., 2012, 2014a) method. These values are shown in Table 6.1. To derive fundamental stellar

parameters (like the stellar mass and radius), we use a parallax from the Gaia (Gaia Collabora-

tion et al., 2016c, 2018a) Data Release 2 (reported in Table 6.1). Using an online interface2, we

interpolate onto Padova stellar evolution tracks (da Silva et al., 2006). The resulting values of

stellar mass, stellar radius, and surface gravity are presented in Table 6.1. We also obtained an

independent, empirical measure of the stellar radius via the method described by Stassun et al.

(2018). Briefly, we performed a fit to the full broadband spectral energy distribution (SED) using

a Kurucz model atmosphere with the same stellar Teff , log g, and [Fe/H], and their uncertainties,

reported in Table 6.1. The free parameters of the SED fit are then only the extinction (AV ) and an

overall flux normalization. The bolometric flux at Earth (Fbol) is then obtained simply by direct

summation of the (non-reddened) SED model. Finally, the stellar radius then follows from the Fbol

2http://stev.oapd.inaf.it/cgi-bin/param_1.3
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Parameter Value
Stellar Parameters

Right Ascension 8:26:27.85
Declination +10:04:49.35
Age [Gyr] 4.279 ± 0.931

Parallax [mas] 9.379940 ± 0.059038
V magnitude 8.93
M? [M�] 1.140 ± 0.033
R? [R�] 1.35 ± 0.03
(B-V) 0.599 ± 0.012 mag

Limb darkening q1 0.311±0.048
Limb darkening q2 0.31±0.13

log g? [cgs] 4.20 ± 0.03
Metallicity [M/H] -0.11±0.08

Teff [K] 6199±50

Table 6.1 Parameters for host star HIP 41378. Stellar properties (M?, R?, stellar age, B-
V magnitude, and log g?) have been derived using the Gaia parallax (9.37993950 mas ±
0.059037831).

and Teff via the Stefan-Boltzmann relation.

We constructed the observed stellar SED using broadband fluxes spanning 0.2–20 µm from

GALEX NUV, Tycho-2 BTVT , APASS BV gri, 2MASS JHKS , and WISE 1–4. We limited the

maximum permitted AV to be that of the full line-of-sight extinction from the Galactic dust maps

of Schlegel et al. (1998a). The resulting best fit SED model, with a reduced χ2 of 2.9, gives

AV = 0.01± 0.01 and Fbol = 6.91± 0.16× 10−9 erg s−1 cm−2. Adopting the Gaia DR2 parallax,

but adjusted by +0.08 mas to account for the systematic offset found by Stassun & Torres (2018a),

we obtain R? = 1.35 ± 0.02 R�, consistent with the radius from our analysis using the Padova

isochrones. For the rest of our analysis, we adopt the parameters from the isochrone analysis

(reported in Table 6.1).

Importantly, we note that when we first published our discovery of this system Vanderburg

et al. (2016b), the Gaia parallax was not available, and we used the Hippacos parallax instead.

This resulted a much less precise measurement of the stellar density (see Figure 6.2). The Gaia

parallax for this system was first used in Becker et al. (2019).
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Figure 6.2 Stellar Density Estimates for HIP 41378. Comparisons of the posteriors for stellar
density for the old set of stellar parameters given in Vanderburg et al. 2016b, computed using
the Hippacos parallax, and the new set used in Becker et al. 2019 and this thesis chapter,
computed using the Gaia parallax (this is the set given in Table 6.1). The increased precision
of the stellar density has a significant impact on the fidelity of the dynamical analyses.

6.4.2 Transit Analysis

We analyzed the K2 light curve by simultaneously fitting the five transiting planet candidates

and a model for low frequency variability using a Markov Chain Monte Carlo algorithm with an

affine invariant ensemble sampler (Goodman & Weare, 2010a). We fit the five transiting planet

candidates with Mandel & Agol (2002b) transit models, and we modeled the low frequency varia-

tions with a basis spline. For the two inner candidates, we fit for the orbital period, time of transit,

scaled semi-major axis (a/R?), orbital inclination, and planet to star radius ratio (RP /R?). For the

three outer candidates with only one transit, we fit for the transit time, duration (from the first to

fourth contact), transit impact parameter, and planet to star radius ratio. We fit for quadratic limb

darkening coefficients for all five transits simultaneously, using the the q1 and q2 parametrization

from Kipping (2013a). We imposed no priors on these parameters other than requiring impact

parameters be positive. We accounted for the effects of the Kepler long cadence exposure time

by oversampling each model data point by a factor of 30 and performing a trapezoidal numerical

integration. We did not account for any asymmetry in the transit light curve due to eccentricity –
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Figure 6.3 Phase-folded Light Curve for HIP 41378. Phase-folded light curve for each of the
five transiting planets in the HIP 41378 system. The individual K2 long cadence data points
are shown as grey circles, and the best-fit transit model is shown as a thick purple line. The
scaling on the x-axis is the same for each sub-panel. In each panel, we have subtracted the
best-fit transit model for the other four planets for clarity.

this effect scales with (a/R?)
−3 and is too small to detect for long period planets like these (Winn,

2010). We note that our choice to parameterize the orbits by their inclinations is an approximation

– although orbits are uniformly distributed in cos i, not i, the difference is negligible for nearly

edge on orbits like those of the planets transiting HIP 41378. We performed a Monte Carlo calcu-

lation and found that the different parameterizations only change our final measured inclinations

by roughly 10−4 degrees, much less than our measured uncertainties in inclination.

We sampled the parameter space using 150 walkers evolved through 40,000 links, and removed

the first 20,000 links during which time the chains were “burning-in” to a converged state. This

yielded a total of 3,000,000 individual samples. We tested the convergence of the MCMC chains

by calculating the Gelman-Rubin statistic (Gelman & Rubin, 1992). For each parameter, the

Gelman-Rubin statistic was below 1.04, indicating our MCMC fits were well converged.

We plot the transit light curves for each planet and the best-fitting transit model in Figure 6.3.
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6.4.3 Measured center of transit times in C18 for new transits of HIP 41378 d

and HIP 41378 f

We measured the mid-time of the two newly detected transits of HIP 41378 d and HIP 41378

f in the C18 data in order to precisely determine the time between the transit observed in C5 and

the newly detected transit from C18. We determined mid-transit times for the new transits of

HIP 41378 d and f by fitting the C18 light curve using a Mandel & Agol (2002b) transit model

using a Levenberg-Marquardt least-squares minimization algorithm. We performed the Levenberg-

Marquardt minimization over one free parameter, the mid-transit time, while fixing the transit

shape parameters (R2
p/R

2
∗, transit duration, impact parameter, and quadratic limb darkening pa-

rameters) to the values reported by Vanderburg et al. (2016b).

The resulting mid-transit times from our one-parameter optimizations of the C18 light curve

and the mid-transit times determined by Vanderburg et al. (2016b) from C5 are given in Table 6.2.

Further refinement of the system parameters, including an asteroseismic analysis, will be completed

in Chontos et al. (2019, in prep).

6.4.4 Statistical Validation

The transit signals in the K2 light curve of HIP 41378 that we attribute to transiting planets

could in principle have a non-planetary astrophysical origin. In this subsection, we argue that

astrophysical false positive scenarios are unlikely in the case of the HIP 41378 system, and a

planetary interpretation of the transit signals is well justified.

We began by calculating the false positive probability (FPP) of the inner two planet candidates,

which both have precisely measured orbital periods from multiple transits in the K2 light curve,

using the vespa software package (Morton, 2012, 2015). Vespa takes information about the transit

shape, orbital period, host star parameters, location in the sky, and observational constraints and

calculates the likelihood that a given transit signal has an astrophysical origin other than a transiting

planet. We used vespa to calculate the FPP of HIP 41378 b and HIP 41378 c given constraints on

the depth of any secondary eclipse from the K2 light curve and limits on any nearby companion stars

in the K2 aperture from Robo-AO. We also used the fact that our radial velocity measurements
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of HIP 41378 show no variations greater than about 15 m s−1 to exclude all foreground eclipsing

binary false positive scenarios. Given these constraints, we calculate that the FPP for HIP 41378 b

is very small, of order 2× 10−6, and the FPP of HIP 41378 c is 3× 10−3, somewhat larger but still

quite low. These FPPs do not take into account the fact that we detect five different candidate

transit signals towards HIP 41378 and that the vast majority of Kepler multi-transiting candidate

systems are real planetary systems (Latham et al., 2011; Lissauer et al., 2012a). Lissauer et al.

(2012a) estimate that being in a system of three or more candidates increases the likelihood of

a given transit signal being real by a factor of ∼ 50-100. Taking this multiplicity argument into

account, the FPP for HIP 41378 b decreases to roughly 10−7 and the FPP for HIP 41378 c decreases

to roughly 10−4. We therefore consider HIP 41378 b and HIP 41378 c to be validated as genuine

planets.

It is more difficult to calculate the false positive probability for the outer planet candidates.

Because the orbital period is unconstrained, a vespa-like false positive analysis loses an important

piece of information (namely, the duration of the transit compared to the orbital period). Even

though we can estimate the orbital period of the outer three planets (assuming they indeed transit

HIP 41378), we have no constraint on orbital periods for the scenario where the single transit

signals are astrophysical false positives. We do, however, know that the three single-transits are

detected in a multi-transiting planet candidate system and can use this fact to estimate the false

positive probabilities without any knowledge of the transit shapes and orbital periods. Lissauer

et al. (2012a) give expressions for estimating the likelihood of false positive signals in multiple

planet systems. Using these expressions with numbers from the recent Data Release 24 Kepler

planet candidate catalog (Coughlin et al., 2015), we find that the probability of a given target

having two planets and three false positives is roughly 10−12, the probability of the target having

three planets and two false positives is roughly 10−9, and the probability of the target having four

planets and one false positive is roughly 5× 10−7. From the observed number of systems with five

or more transiting planets discovered by Kepler, the probability of a star hosting such a system

is roughly 18/198646 or 10−4. When we compare these probabilities, we find that, a priori, it

is 108 times more likely HIP 41378 hosts five transiting planets than two planets and three false

positives, 105 times more likely HIP 41378 hosts five transiting planets than three planets and

203



two false positives, and about 200 times more likely that HIP 41378 hosts five transiting planets

than four planets and one false positive. When this information is combined with the fact that

the transits are u-shaped (consistent with small planets) rather than v-shaped (consistent with a

background false positive), the second transits in the C18 data for two of the three outer planets,

and our adaptive optics imaging which rules out many possible background contaminants, we have

high confidence that all five candidates in the HIP 41378 system are genuine planets.

6.4.5 Dynamics

The richness of the HIP 41378 planetary system gives rise to questions about its dynamics and

architecture. In this section, we aim to address and place constraints on the dynamical stability of

the system and the resonance state of the inner two planets. The dynamical stability arguments we

make in this section are useful for constraining the orbital periods of the outer two planets (which

we do in Section 6.5.1).

6.4.5.1 Inner Planets

In the original sample of planets discovered by Kepler, it appears that the observed population

of planets are preferentially close to, but not in, mean motion resonances (Veras & Ford, 2012). As

such, we first considered the two inner planets, which both show multiple transit events in the K2

light curve and therefore have precisely measured orbital periods. The ratio of the orbital periods

of the two inner planets is just 3.57% larger than 2:1, so we tested whether the two planets orbit

in a 2:1 mean motion resonance (MMR).

We assessed the resonant state of the inner two planets by conducting 10,000 numerical simula-

tions of the orbits of the inner two planets over 100,000 years using the Mercury6 N-body integrator

(Chambers, 1999a). For each trial, we drew the orbital elements of each planet from the posterior

probability distribution from the MCMC transit fit (Section 6.4.2). We assigned masses to the plan-

ets using the the methodology of Becker & Adams (2016) – to summarize, given the planet radii, we

draw masses from several published mass-radius relations: the Weiss & Marcy (2014a) relation for

planets with Rp < 1.5R⊕, the Wolfgang et al. (2016) relation for planets with 4R⊕ > Rp > 1.5R⊕,

and for planets larger than 4R⊕ we solve for mass by drawing the mean planetary density from a
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normal distribution centered at ρ = 1.3± 0.5 g / cm3, taking the hot Jupiter radius anomaly into

account using the relation from Laughlin et al. (2011).

We tested each of the 10,000 realizations of the system for resonant behavior. The condition

for resonance is more stringent than that of a period commensurability: for a pair of planets to

be resonant, they must have oscillating (rather than circulating) resonance angles, which means

that the longitude of conjunction (the location where the the planets pass closest together) has an

approximately stable location. Resonances are sometimes referred to as a “bound states” because

planets can be trapped in the energetically favorable configuration where the resonance angles

oscillate back and forth in a potential well, like a pendulum with an energy low enough to swing

back and forth rather than swing 360 degrees over the top (Ketchum et al., 2013a). At the same

time, a pair of planets can have a period ratio slightly out of an integer ratio and still be in

resonance. We examined the resonance argument of the inner two planets, ϕ, which is defined as:

ϕ = (p+ q)λinner − pλouter − q$outer, (6.1)

where p/(p + q) is the order of the resonance (which is 2:1, so p = 1 and q = 1 for these planets),

$ is longitude of pericenter, and λ is angular location in orbit.

Out of the 10,000 system realizations that we tested, none of them were in resonance (all had

circulating rather than oscillating resonant arguments). Therefore, we conclude that the inner

two planets orbiting HIP 41378 do not orbit in a mean motion resonance. This conclusion is not

surprising – the sample of multi-planet systems from Kepler shows that planets more often orbit

near, but not in, mean motion resonances (Veras & Ford, 2012). The fact that these planets orbit

slightly outside of mean motion resonance is also reminiscent of trends seen in Kepler multi-planet

systems. Fabrycky et al. (2014b) found that period ratios slightly larger than 2:1 (as is the case

for these two planets) are overrepresented in the population of observed systems, and slightly

smaller ratios are underrepresented. Thus, there is no evidence to suggest that these planets are

in resonance, but they are a part of the overabundance of planets that pile up slightly outside the

2:1 MMR.

We note that in this analysis, we have examined only the behavior of the two inner planets.
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The three outer planets in the system contribute additional terms in Equation 6.1, which we have

ignored because of their poorly constrained orbits, but which could presumably alter the resonant

behavior of the inner two planets. However, we believe it is unlikely that the outer planets would

significantly affect the inner planets’ resonant state. The periods of the outer three planets are

likely significantly longer (by an order of magnitude or so, see Section 6.5.1) than the periods of

the inner two planets, so the outer planets will act like distant static perturbers.

6.4.5.2 Outer Planets

We performed a separate dynamical analysis to study possible orbits and configurations of the

outer three planets in the HIP 41378 system. The outer three planets only transited HIP 41378 once

during the 75 days of K2 observations, so their orbital periods are not uniquely determined from

the light curve. We do, however, measure the transit duration, radius ratio, and impact parameter

of the three single-transit events, and our follow-up spectroscopy and analysis measures the mean

stellar density, which allows us to estimate the semi-major axes and orbital periods of the three

outer planets (see Table 6.2 for the best-fit values for each parameter).

We assessed the dynamical stability of the system by performing 4000 N-body simulations using

the Mercury6 hybrid integrator. We initialized the N-body simulations with orbital elements drawn

from either the posterior probability distributions of transit parameters or from reasonable priors.

We estimated the outer three planets’ orbital periods (and therefore semimajor axes) from the

transit and stellar parameters using an analytical expression (e.g., Seager & Mallén-Ornelas, 2003)

with a correction for nonzero eccentricity from Ford et al. (2008).

We solved Equation this expression numerically 4000 times for each outer planets’ orbital period

(which we then converted to semimajor axis). For each of the 4000 realizations, we drew the

quantities td,i, Pi, RP,i, and bi from the light curve posterior probability distributions from the

MCMC transit fits. We generated the planet masses mp,i from the measured planet radii using

the same piece-wise mass-radius relation as was used in 6.4.5.1. Values for M∗ and R∗ were drawn

from the posterior probability distributions generated in Section 4.4.1.3, and values for e were

drawn from a beta distribution with shape parameters α = 0.867 and β = 3.03 (derived from the

population of observed planets given in Kipping, 2013b, 2014; Kipping & Sandford, 2016). We used
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Figure 6.4 Dynamically Derived Limits on Eccentricity. Comparison of input planet ec-
centricity to dynamical simulations (red dashed lines) and the eccentricity of planets in
dynamically stable systems (black solid lines). The input to the dynamical simulations is
the distribution of eccentricities in all exoplanets detected with radial velocities (Kipping,
2013b). The difference in shape between the two curves demonstrates which eccentricities
are preferred in dynamically stable systems. Evidently planets with eccentricities larger than
e ∼ 0.37 or so will cause the system to go dynamically unstable. The maximum of each curve
is normalized to one to show the difference in shape between the two distributions.

an asymmetric prior for the argument of periastron $ to account for the fact that the planet is

observed to be transiting (the value of which is dependent on the drawn eccentricity; see Equation

19 in Kipping & Sandford, 2016).

After determining initial parameters, we integrated each of the 4000 systems forward in time

for 1 Myr, long enough to examine interactions over many secular periods, while requiring energy

be conserved to one part in 108. Of the total 4000 realizations, only a subset (roughly 10%) were

dynamically stable over 1 Myr timescales, meaning that dynamical arguments can help constrain

the system architecture, including the orbits of the three outer planets. We found that the most

important variables for determining the stability of the system are the orbital eccentricities of the

individual planets. For a given transit duration, the orbital period and eccentricity are degenerate.

As a result, the eccentricities’ constraints translate into limits on the orbital periods of the outer

planets.

Figure 6.4 shows the difference in initial eccentricity distribution (namely, the beta distribution

prior) and the eccentricity distribution of the planets in systems that remained dynamically stable.

These distributions are visibly different, and the eccentricities of stable systems are preferentially

lower. Among our 4000 realizations, all systems containing planets with eccentricities above e ∼

0.37 became dynamically unstable, suggested that the true eccentricities are less than this value.
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6.5 Towards Constraining Ambiguous Orbital Periods

6.5.1 Period constraints from the transit baseline and transit likelihood: when

only one transit is seen

In this section, we estimate the orbital period of the three outer planets transiting HIP 41378

under various assumptions and taking different information into account. We calculate orbital

periods with a similar analysis to that described in the previous section, in particular by solving

Equation 6.7 numerically after drawing parameters from the MCMC transit fit posterior probability

distributions or from priors.

We first calculated orbital periods under the assumption of strictly circular orbits. We also

required that the orbital periods be longer than the baseline of K2 observations before and after

each event – otherwise, we would have seen multiple transits. We find that when we assume

a circular orbit, we obtain relatively tight limits on the periods of the outer three planets, in

particular the two deepest transits with precisely measured durations and impact parameters. For

long period planets like these, however, the assumption of a circular orbit is in general not justified,

so we believe these orbital period estimates are artificially tight. The distributions of orbital periods

for the outer three planets assuming circular orbits are shown in Figure 6.5.

We also calculated orbital periods with the assumption of circular orbits relaxed to allow orbital

eccentricities and arguments of periastron drawn from the same beta distribution and asymmetric

prior described in the previous section (and which we used as an input to the dynamical simulations).

As noted previously, this distribution matches the observed distribution of orbital eccentricity for

exoplanets detected by radial velocities. When we do not assume circular orbits, the limits on are

much looser. Although the median orbital periods we derived under the assumption of circular

orbits and eccentric orbits are relatively similar, the width of the distribution changes drastically.

In the case of HIP 41378 f, the uncertainty on the orbital period increases by an order of magnitude

when taking into account nonzero eccentricity. The orbital period distributions given this prior on

orbital eccentricity are also shown in Figure 6.5, where they can be compared to the case of circular

orbits.

The fact that the eccentricity of exoplanets tends to follow a beta distribution is not the only
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information we have about the system architecture or orbital eccentricities of the outer three planets.

We can place additional constraints on the orbital eccentricities (and therefore orbital periods) by

requiring that the system be dynamically stable. In Section 6.4.5.2, we found that the HIP 41378

system is dynamically unstable on 1 Myr timescales when any of the planets have eccentricities

greater than 0.37, so we remove all orbital periods with eccentricities greater than 0.37. We also

remove all systems that are not Hill stable (using the criterion from Fabrycky et al., 2014b).

Enforcing these dynamical stability criteria narrow the distributions of plausible orbital periods by

about 30%. The orbital period distributions with dynamical stability enforced are also shown in

Figure 6.5, along with distributions without dynamical stability enforced for comparison.

Finally, we took into account the fact that we observed these three planets to be transiting

during the 75 days of K2 observations. Planets with shorter orbital periods are more likely to

transit during a limited baseline than planets with longer orbital periods. We take this information

into account by imposing a prior of the form:

P(Pi, td,i, B) =


1 if Pi − td,i < B

(B + td,i)/Pi else,

(6.2)

where P is the probability of observing a transit of planet i, B is the time baseline of the observa-

tions, td,i is the ith planet’s transit duration, and Pi is the orbital period of the planet i. Here, we

define the planet being ‘observed to transit’ as any part of its ingress or egress occurring during K2

observations. We imposed this prior on the orbital period distribution taking into account nonzero

orbital eccentricity and dynamical stability, and we show the result in Figure 6.6. The effect of this

prior is to narrow the period distributions by another ∼30% and to shift the period distributions

to slightly lower values. The effect is most pronounced on the period distribution of HIP 41378 d

which had a weakly constrained orbital period because of its shallow transit.

We summarize our orbital period estimates under these various assumptions in Table 6.3. We

report the median values and 1σ widths of each distribution. In this chapter, we choose to adopt

the period distributions which were calculated taking into account nonzero eccentricity, dynamical

stability, and the fact that the planets transiting during the K2 observations as our best estimate
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Figure 6.5 Probability Distributions for the Periods of HIP 41378 d, e, and f. Probability
distributions for the orbital period of each of the outer planets in the system (detected by
only a single transit in K2 data). The dashed lines used a prior of null eccentricity for all three
planets. The dotted lines used the Kipping beta distribution as the prior for eccentricity,
with the prior for $ being that from Kipping & Sandford (2016), which accounts for both
geometrical and observational biases. The solid lines use the Kipping eccentricity and $
priors, but impose two additional priors of dynamical stability and transit probability. The
area under each curve is normalized to one for ease of comparison.

for the outer planets’ orbital periods. These distributions incorporate the most information we

have about the system to give the best possible period estimates.

6.5.2 Period constraints from the transit baseline and transit likelihood: when

two transits are seen

In our work in the previous section, when we only had detected a single transit each of HIP 41378

d, e, and f, we were able to place broad constraints on their orbital periods. In the C18 data,

HIP 41378 d and f each transit one more time each, yielding a discrete spectrum of possible orbital

periods. Here, we combine broad constraints on the orbital periods and the discrete possible periods

based on the times of the two detected transits to determine the most likely orbital periods for

HIP 41378 d and f. The techniques used in this section will be more generally applicable to any

system where variable baselines (as seen in K2, TESS) result in ambiguous periods but two observed

transits.

Our analysis to place broad constraints on the orbital periods of these planets closely follows

that of Vanderburg et al. (2016b), with a handful of differences. In particular, Vanderburg et al.
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Figure 6.6 Probability of Period for Single-Transit Events. Probability distributions for the
orbital period of each of the single-transit planets in the system, incorporating dynamical
stability alone (dashed lines) and incorporating dynamical stability and the probability of
detecting a single transit with K2 (solid lines). The distribution only taking into account
dynamical stability is the same as the solid lines shown in Figure 6.5. Incorporating the
prior information that these three planets transited during K2 observations sharpens our
predictions of the orbital periods of the three outer planets.

(2016b) imposed a transit prior on the calculated orbital periods to account for the fact that planets

HIP 41378 d, e, and f transited once during the 74-day baseline of C5 (see Equation 6.2). Now

that we have re-detected planets d and f in C18, we can update our prior on the orbital periods

based on these new observations. As such, we impose a prior on both planets orbital periods which

account for the fact that both HIP 41378 d and f were detected during both C5 and C18:

Pi(Pi, Di, B5, B18) =

1 if Pi −Di < B5

(B5 +Di)/Pi if B18 < Pi −Di < B5

(B5 +Di)(B18 +Di)/P
2
i else,

(6.3)

where Pi is the chance of seeing planet i, Bk the time baseline of the observations for campaign

k, Di the planet’s transit duration, and Pi the orbital period of the planet in question. In Figure

6.7, we show the comparison between this analytic prior and a Monte Carlo simulation of transit

probabilities for 20000 randomly chosen periods on the interval (0, 1000] days, with random centers

of transit times on the same interval, and with randomly selected baseline separations (defined as
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the time between the last data point of the first campaign with baseline B1 and the first data point

of the second campaign with baseline B2) on the range [0, 3000) days. The true separation between

the end of C5 and the start of C18 was 1037.13 days, but Equation 6.3 describes the general transit

probability for a planet with a given period which transits only twice in the K2 data: once in one

campaign, and once in another. This prior (Eq. 6.3) describes generally the relative chances of

planets with various orbital periods transiting over two observing campaigns. This general result

can be applied to targets with unknown periods seen over multiple K2 campaigns, and will also

be applicable to similar planets observed in two separated baselines by TESS. In this work, we

will apply this probability as a prior in our calculation of the likelihood of each possible period for

HIP 41378 d and f, as shorter period planets are more likely to transit over the observed baselines.

As done in Vanderburg et al. (2016b), we can find lower limits on the periods of HIP 41378 d

and HIP 41378 f from then length of out-of-transit observations taken on either side of each event

(see the middle two panels of Figure 6.1 to see visually the out-of-transit baseline on each side of

each transit event). In C5, the data was acquired at times (BJD-2454833) between 2307.55 and

2381.41, for an official baseline of 73.86 days3. For C18, the data was acquired at times (BJD-

2454833) between 3418.56 and 3469.40 days, for a total baseline of 50.86 days. We assumed that

for a ‘detection’ to occur, any part of the planet’s ingress or egress must have occurred during the

K2 observations. Using these times, as well as the center of transit times and duration for each

transit event, we can compute the minimum periods which are allowed given the single detection

in each campaign as follows:

Pmin = max(tc + D/2− Bi, Bf − tc + D/2) (6.4)

where Bi denotes the beginning time of the campaign, Bf denotes the end time of the campaign,

tc denotes the measured center time of transit for the observed transit event, and D denotes the

planetary transit duration. The C5 center for HIP 41378 d (with transit duration 12.71 hours)

was 2457166.2629 BJD, and the C18 center was 2458279.709 BJD. Similarly, the C5 center for

HIP 41378 f (with transit duration 18.998 hours) was 2457186.91451 BJD, and the C18 center was

3The total time baseline of C5 was 74.8 days, but Vanderburg et al. (2016b) clipped out the first day of
data while Kepler was thermally settling into the campaign.
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Figure 6.7 Probability Density Function for Observing Two Transit Events. We show the
normalized probability density function for the chance of observing at least two transits, with
at least one in each of two K2 campaigns, for some planet. Plotted here is a comparison
of the analytically derived Equation 6.3 (solid line) with a numerically computed Monte
Carlo simulation of observability probability by orbital period (histogram). The distributions
plotted here were computed for planet HIP 41378 f, for two K2 campaigns with baselines
B1 = 74 days and B2 = 51 days, separated by some unspecified length of time. This
generalized form describes the chance that only two transits of a planet would be seen
over two K2 campaigns, and the good agreement between the simulation and analytic form
suggests that Eq. 6.3 can be adopted as the baseline prior in cases where a planet with an
unknown period is observed over multiple K2 campaigns. Also plotted in comparison is the
minimum value of eccentricity (in red) at each orbital period that allows recreation of the
observed duration, and (black dotted line) the probability distribution for each eccentricity,
as derived from the cumulative density function of the Kipping beta distribution eccentricity
prior (where all values larger than the minimum eccentricity at each period are considered
able to reproduce the true transit duration).

213



2458271.0740 BJD.

From this, we compute a minimum period of 48.1 days for HIP 41378 d and a minimum period of

46.4 for HIP 41378 f. Both of these limits come from the C5 data, which had a longer observational

baseline. From these limits, we can exclude any periods for these planets less than these values: if

the true periods were smaller than these values, we should have seen evidence of a second transit

in the C5 data.

Finally, the fact that HIP 41378 d and HIP 41378 f transit twice allows us to define their orbital

periods as

Pj =
tj,18 − tj,5

i
, (6.5)

when j denotes the planet and i is some positive integer. This equation, combined with the lower

limits previously derived, provides a discrete set of possible orbital periods for each planet. For

example, there are 23 possible orbital periods for HIP 41378 f, ranging between ∼47.1 days (the

lowest possible value that exceeds our lower limit on the period) and ∼1084 days (if no intermediate

transits occurred in between the two we observed). The possible periods for each planet are given

in the first column of Table 6.4 and Table 6.5 respectively.

6.5.3 Excluding orbital periods using all HAT/KELT/WASP data

In Equation 6.5, we gave an expression for the possible orbital periods for each planet, based

on the time at which the two observed events occur for each planet. The HAT/KELT/WASP data

subtend a significant observational baseline, and the transit event of HIP 41378 f is relatively deep

(0.5%). As such, these ground-based surveys should be able to detect the transit, if the transit

happened to occur while the surveys were observing the star. There are a large number of possible

orbital periods for HIP 41378 f, so we evaluate the KELT/HAT/WASP evidence for each possible

orbital period by computing the likelihood ratio for two models: a flat line and the transit model.

We chose our outlier rejection threshold so that on average, we reject only one ‘good’ data point

from each photometric dataset. We found the significance level that corresponds to the single most

extreme data point in each data set (where the KELT data had 4709 unique points, HAT had

12903 points, and WASP had 6732 points), and then utilized sigma-clipping to remove outliers.
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The threshold we use is 3.7/3.9/3.8σ (for KELT/HAT/WASP) away from the median flux level

of each survey, which was computed from the number of data points for each survey. Then, we

phase-folded the light curve at each possible orbital period, and computed the following likelihood

ratio:

L =
exp [−∑i=N

i=0 (0.5(f(ti)−m(ti))
2σ−2
i )]

exp [−∑i=N
i=0 (0.5(f(ti)− f̄)2σ−2

i )]
(6.6)

where f(ti) denotes the KELT, HAT, or WASP flux at each exposure time ti, m(ti) denotes the

transit model (using the best-fit parameters from Table 6.2 and the transit model from Mandel

& Agol 2002b) at some exposure time, f̄ denotes the weighted mean KELT/HAT/WASP flux (a

flat line model set to be the weighted mean of the out-of-transit baseline, which is expected to be

the best model if no transit occurs; Kovács et al., 2002b), and σi denotes the error on the flux

measurements, which is set to be σi = kσobs,i, where the measured errors σobs for all data points

of the each data set have independently been scaled by a factor of k, so that the reduced χ2 for

the flat line model for each full data-set is roughly 1. The errors on the KELT, HAT, and WASP

data-sets are derived and scaled independently.

The likelihood ratio defined in Eq. 6.6 is the ratio of the likelihood of the flat line model to

the likelihood of the transit model. In Figure 6.8, we show the phase folded HAT/KELT/WASP

light curve at each orbital period. For each orbital period, we compute the likelihood ratio using

the entire HAT/KELT/WASP combined, phase-folded data-set. The result is one likelihood ratio

L for each orbital period, describing the relative likelihood of the two models. For likelihood ratios

L greater than 104, where the flat line model is highly preferred to the transit model, we consider

the corresponding orbital period ruled out.

In each panel of Figure 6.8, we label the orbital period depicted and color the text corresponding

to the computed value of the likelihood ratio L: red text indicates that an orbital period can be

considered ruled out, and blue text indicates that a particular period cannot be ruled out. For

likelihood ratios less than 104, we consider the evidence too weak to discriminate between the

models. We note that for a single orbital period - ∼ 180 days - the likelihood ratio was roughly

3000, a marginal case which our strict criterion of rejection (L > 10000) does not reject. Our choice

of 104 as the significant likelihood ratio was purposefully conservative, decreasing the probability
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of incorrectly rejecting a particular orbital period. For the orbital periods we could rule out based

on this test, we set the probabilities to be unlikely (defined as < 0.1%) in Table 6.5. The analysis

of the combined KELT, HAT, and WASP data allowed us to eliminate 16 of the 23 possible orbital

periods for HIP 41378 f to this significance level. We note that analysis of any of the individual

data sets alone could not rule out all 16 orbital periods: the full result of this method was achieved

by combining the three ground-based data sets.

We also performed the same algorithm described above on the predicted orbital periods for

HIP 41378 d, but no periods could be excluded (as expected for a transit event of the much smaller

measured depth of HIP 41378 d). The depth of HIP 41378 d is ∼1 mmag, and its duration ∼ 12.7

hours. For the three ground-based surveys considered, typical scaled photometric uncertainties were

reported to be 0.5%, 0.3%, and 1% for KELT, WASP, and HAT, respectively, which we roughly

corresponds to a median precision of 5 mmag. For a best-case 100 points in transit at this precision,

this corresponds to a SNR of
√

100(1 mmag/5 mmag) = 2. Once the orbital period for HIP 41378d

is uniquely determined, or more ground-based data points become available, this signal may be

detectable in the HAT/KELT/WASP data.

Additionally, we conducted a pre-recovery search in the KELT data using the fixed-duration

and fixed TC BLS method, as implemented in the VARTOOLS package (Hartman & Bakos, 2016),

with an approach described in Yao et al. (2018). Using the transit time and transit duration for

HIP 41378 f as determined from Vanderburg et al. (2016b), we searched 300,000 trials evenly spaced

in frequency from 150 to 450 days. The strongest peak in the BLS output corresponds to 328.59

days, with a signal-to-pink noise statistic of 2.4, which is below the 10% confidence level for a

transit with the corresponding depth and duration, as determined in Yao et al. (2018). As such,

this is not considered a plausible detection.This period is not predicted by Eq. 6.5; as such, the

only way that the signal detected by this algorithm is real is if HIP 41378 f has significant (∼ month

amplitude) transit timing variations (TTVs). As this scenario is a posteriori unlikely and the SPN

of this peak is low, we do not consider this a plausible detection.
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Figure 6.8 The HAT/KELT/WASP Data Folded Over Each Possible Period for HIP 41378
f. For each possible orbital period of HIP 41378 f derived from Equation 6.5, we phase-fold
the KELT, HAT, and WASP data and fit two models around where the transit would be
expected to be: the transit model, plotted in blue, which we would expect to see if the tested
orbital period were the true orbital period of the planet; and the best-fit flat model with no
transit (not shown), which we expect to see if that orbital period is incorrect. In red are
orbital periods where the flat line model is heavily preferred. In blue are orbital periods for
which a determination between the two models cannot be made. Blue points are true data
points from the KELT, HAT, and WASP surveys, and red points are the weighted mean for
each bin, with errors equal to the weighted error on the mean.
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6.5.4 Dynamically Feasible Periods

From the K2 data, we have well-measured values of the transit duration, transit impact param-

eter, center time of transit, and (RP /R?) for HIP 41378 d and HIP 41378 f. These known values

are presented in Table 6.2. Using these values and priors on the unmeasured quantities (orbital

eccentricity and longitude of perihelion), we can estimate the orbital period that corresponds to a

transit duration of a given value using (e.g., Seager & Mallén-Ornelas, 2003; Ford et al., 2008):

Di =
Pi
π

arcsin

[(
G(M∗ +mp,i)P

2
i

4π2

)−1/3

×
√

(RP,i +R∗)2 − (b2i ×R2
∗)

] √
1− e2

i

1 + ei cos$i
(6.7)

where we define Di is the transit duration of the ith planet (from first to fourth contact) and RP,i

is the planetary radius, Pi its orbital period (the quantity for which we would like to solve), mp,i

the mass of the ith planet, ei the orbital eccentricity, $i the longitude of periastron, bi the impact

parameter, M∗ the stellar mass, R∗ the stellar radius, and finally G the gravitational constant.

In a method reminiscent of the analysis in Vanderburg et al. (2016b), we generated 10000

feasible orbital periods by solving the above equation with draws from the following probability

distributions: td,i, RP,i, and bi were drawn from the posteriors given in Table 6.2; M∗ and R∗ were

drawn from the Gaia posterior probability distributions (see also Table 6.1); eccentricity e was

drawn from a beta distribution with shape parameters α = 0.867 and β = 3.03 (Kipping, 2013b,

2014; Kipping & Sandford, 2016); $i was chosen using Equation 19 of Kipping & Sandford (2016);

mp,i was drawn from the Weiss & Marcy (2014a) mass-radius relation for planets with Rp < 1.5R⊕,

drawn from the Wolfgang et al. (2016) relation for planets with 4R⊕ > Rp > 1.5R⊕, and the mean

planetary density is drawn from a normal distribution centered at ρ = 1.3± 0.5 g / cm3 for planets

larger than 4R⊕. With only Pi left as a free parameter in the equation, we solve Eq. 6.7 numerically

for each set of draws. The resultant series of 10000 orbital periods all geometrically produce the

observed transit durations, and can as such be considered plausible.

The orbital periods drawn from this distribution are not necessarily equally physically likely,

however. To ensure their feasibility, we use two additional criteria based on the dynamical stability

of the planetary system as a whole. In Section 6.4.5.2, we used an extensive set of numerical

simulations to determine that eccentricities above e ∼ 0.37 lead to dynamical instability (defined as
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collisions or ejections within 1 Myr) in the five-planet HIP 41378 system. Additionally, systems are

generally expected to be dynamically unstable when their drawn initial conditions are Hill-unstable

(Fabrycky et al., 2014b). As such, we exclude from our distribution of dynamically feasible periods

any draw which either is Hill-unstable or has planetary eccentricities above 0.37. The result is

roughly 5100 orbital periods for each planet that are both consistent with the measured transit

duration and adhere to our dynamical stability criterion. A normalized histogram of these orbital

periods is shown for each planet in Figure 6.9. This histogram represents the probability distribution

for the orbital period of each planet, based on only its measured duration and the orbital elements

physically likely to cause such a duration.

We note that for future analysis for other systems, the eccentricity cut we use to exclude dy-

namically unstable systems will need to be re-derived, as it was derived from numerical simulations

for this specific system. The probabilistic exclusion used here will not apply to all systems.

6.5.5 Final period constraints for HIP 41378 d and HIP 41378 f

In this chapter, we have constructed various constraints from direct analysis of the light curve,

statistical analysis, and dynamical modeling. We list here the constraints that we have placed on

the planetary periods:

• A list of possible periods based on the measured times of transit center for each planet (Eq.

6.5)

• The statistical baseline prior (Sec. 6.5.2; also see Figure 6.7)

• Lower limits on the orbital periods from the out-of-transit C5 baseline (Section 6.5.2)

• A distribution of dynamically feasible periods, based on the measured durations and orbital

stability

• Exclusions of particular orbital periods from the combined KELT, HAT, and WASP data

(this constraint is available only for HIP 41378 f, which had the deeper transit event)

In Figure 6.9, we illustrate the final continuous probability distribution with a solid line. This

distribution is the normalized product of the baseline transit probability (Eq. 6.3) and the PDF
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Figure 6.9 Derived Probability Distributions for Orbital Period of HIP 41378 d and f. The
derived probability distributions for orbital period for HIP 41378 d (top panel) and HIP 41378
f (bottom panel). The histogram denotes the periods consistent with the measured transit
duration, and the height of each bin describes the relative likelihood of each period from
dynamical constraints alone. The solid line is the product of the histogram convolved with
a Gaussian kernel and the baseline prior (Eq. [6.3]), which assigns a higher probability to
orbital periods with a higher likelihood of transiting during the observed K2 campaigns. At
each square point (which correspond to the possible discrete orbital periods), we read off the
value of the solid line to get the relative probabilities, which must subsequently be normalized
once all possible periods are identified. The results of this analysis at each discrete period
are presented in Tables 6.4 and 6.5.

constructed by convolving a Gaussian kernel with the histogram of dynamically feasible periods

(generated from Eq. 6.7 and described in the previous section). Squares denote the possible orbital

periods based on Eq. 6.5, and some of these periods can be excluded using the KELT, HAT, and

WASP data. Notably, all of the periods below ∼ 100 days can be excluded for HIP 41378f.

Using these constraints, we construct individual probability estimates for the possible orbital

periods in the following way. First, we exclude all orbital periods generated by Eq. 6.5 that fall

below the lower limit derived by Eq. 6.4. Then, for each remaining orbital period, we extract
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the probability from the interpolated product of the baseline prior and the PDF of dynamically

feasible periods (this function is plotted as the solid line in Fig. 6.9) at exactly that orbital period.

We repeat this for each possible period, and then normalize the total probability for all discrete

periods to be equal to one. The resultant periods and their corresponding normalized probabilities

are presented in Table 6.4 and Table 6.5.

6.5.6 Final period constraints for HIP 41378 e

HIP 41378 e transited once during K2 C5, but did not transit during C18 (see Fig. 6.1). As

such, we do not have discrete guesses for its true orbital period; however, we can exclude any orbital

period that would have led to a transit being observable during C18. To construct an additional

PDF that represents this scenario, we test each possible orbital period for HIP 41378 e between

72 days (the minimum orbital period permitted by Eq. [6.4]) and 1200 days. Then, we allow te,18

to vary between the times of the first and last data points of C18. If Eq. 6.5 is satisfied for some

integer i for any value of te,18 on this range, then we consider this particular period “observable” in

C18, and set the probability that it is the true orbital period of HIP 41378 e to zero. The result of

this pruning (normalized so the maximum probability is equal to the maximum probability of the

PDF constructed from the results of the baseline PDF and dynamical analysis) is shown in grey in

Figure 6.10.

The final orbital period for HIP 41378 e cannot be directly constrained due to the lack of a

transit in the C18 data; the best that can be done without follow-up observations is the probabilistic

period estimation presented in the bottom panel of Figure 6.10.

6.6 Discussion

6.6.1 Strategies for observational follow-up in the HIP 41378 system

In this work, we have identified a discrete set of precise possible orbital periods for the long-

period transiting planets HIP 41378 d and HIP 41378 f, and have assessed the likelihood that

each of these possible orbital periods is indeed the true orbital period. While we have significantly

constrained the possible orbital periods of these two planets (we have ruled out about 25% of the
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Figure 6.10 Derived Probability Distribution for Orbital Period of HIP 41378 e. The derived
probability distributions for the orbital period of HIP 41378 e. The histogram (top panel)
denotes the periods consistent with the measured transit duration. The solid line is the
product of the histogram convolved with a Gaussian kernel and the baseline prior (Eq. [6.3]),
constructed the same way as for HIP 41378 d and f in Figure 6.9. The grey line describes
the relative probability of each orbital period, given that HIP 41378 e did not transit during
C18. This line has been normalized so that the maximum value of the Baseline + Dynamics
PDF matches its maximum value for illustrative purposes. In the bottom panel, we show
the normalized product of the Baseline + Dynamics PDF and the grey curve.
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possible periods at confidence <1.5% for planet d and 80% of possible periods for planet f), our

analysis is so far unable to uniquely determine the true orbital periods of these planets. Additional

follow-up observations will be necessary to ultimately identify the true orbital periods and enable

future studies with facilities like JWST.

To determine the true orbital periods for HIP 41378 d and f, the strategy is fairly straightfor-

ward. The additional transits during C18 and our identification of precise possible orbital periods

makes it possible to schedule targeted transit follow-up observations at these most likely periods.

The 0.5% transit depth of HIP 41378 f makes it possible to detect the transit with ground-based

telescopes, although the long (19 hour) transit duration will make it impossible to observe the

transit from a single observatory. The multi-site Las Cumbres Observatory telescopes, which have

demonstrated the ability to produce continuous precise light curves across multiple observing sites

around the globe (Boyajian et al., 2018), may be well suited to detect the long duration transit of

HIP 41378 f. The shallower (800 ppm) transits of HIP 41378 d, however, will likely require space-

based resources such as the Spitzer Space Telescope, or potentially the CHEOPS space telescope

once it launches in 2019, for confirmation.

Because of HIP 41378 d’s shorter orbital period, and the fact that our ground-based data from

HAT and KELT were unable to detect or rule out its shallow transits, there are a large number of

possible orbital periods, many of which have roughly equal probabilities of being the true orbital

period. Observing transits at all of these possible transit times would be an expensive observing

program for a precious resource like Spitzer. However, it should be possible to significantly increase

the efficiency of Spitzer follow-up observations for these possible orbital periods because of how

many of these periods are related to one another by harmonics. For example, a single Spitzer

non-detection of a transit of HIP 41378 d on the observation opportunity on 2019 June 16 (371.149

days after the C18 transit) would rule out four possible orbital periods (371.149, 185.574, 123.716,

and 61.858 days). Taking advantage of these harmonic relationships between the possible orbital

periods may significantly decrease the amount of observing time needed to identify the true period

of HIP 41378 d.

Determining the orbital period of HIP 41378 e is significantly more difficult than HIP 41378 d

and f. Since K2 reobserved HIP 41378 for 51 days and did not detect a second transit of HIP 41378
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e, it is likely the orbital period is longer than that of HIP 41378 d, despite their very similar transit

durations. The shallow transit depth of only about 0.15% will likely require long stares with highly

precise space-based photometers to redetect. The first opportunity for a re-detection will come

fairly soon with the newly commissioned TESS spacecraft. TESS will observe HIP 41378 f in early

2019 (2019 January 7 to 2019 February 2) during Sector 7 of its prime mission4 and should have

sufficient photometric precision to detect the transit of HIP 41378 e. If no transits are detected

during the Sector 7 TESS monitoring of HIP 41378, TESS may monitor HIP 41378 for a longer

period of time in an extended mission, which could provide additional opportunities to detect the

transit of this planet. If TESS is unable to re-detect HIP 41378 e, CHEOPS may be able to, if

HIP 41378 is added to its monitoring program. The long duration of the transit could make it an

efficient CHEOPS target, where only sparse observations are necessary to sample the transit shape.

6.6.2 The uniqueness of HIP 41378 f

The detection of a second transit of HIP 41378 d and f provides a path towards determining

their precise orbital periods and enabling follow-up opportunities for these two long-period gas

giant planets. While both planets present intriguing prospects for observations like transmission

spectroscopy, HIP 41378 f is a particularly unique target. Depending on its true orbital period,

the equilibrium temperature of HIP 41378 f likely ranges between 300 K and 400 K (assuming

an albedo similar to Jupiter’s), significantly cooler than all other transiting gas giant planets well

suited for transmission spectroscopy. We queried the NASA Exoplanet Archive5 Confirmed Planet

Table on 2 September 2018, and identified all transiting planets larger than 0.8 RJ and orbital

periods longer than 150 days. Among the nine stars which host planets satisfying these criteria,

HIP 41378 is the brightest by a factor of about 15 in H-band. Once a unique transit ephemeris has

been determined, the brightness of HIP 41378 should make transmission spectroscopy observations

of this long-period temperate gas giant feasible.

HIP 41378 f will likely remain a uniquely interesting target for transmission spectroscopy into

the TESS era as well. We downloaded the predicted TESS planet detection yields from Sullivan

4https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py
5http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&

config=planets
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et al. (2015) and searched again for planets larger than 0.8 RJ with orbital periods longer than

150 days. Over the course of its two year prime mission, TESS is expected to detect only about

three such planets. In the TESS realization from Sullivan et al. (2015), none of the host stars of

these planets are brighter than HIP 41378. It is also likely that any similar long-period planets

detected by TESS will have similar orbital period ambiguities to those posed by HIP 41378 (more

than 1200 single-transit planets are expected to be found in the full frame images, some of which

will have periods longer than 250 days; Villanueva et al., 2018), so it may be a long time before any

long-period TESS discoveries will have precisely determined transit ephemerides to enable follow-

up. Now that HIP 41378 f has a straightforward path towards a well determined orbital period, it

is likely this planet will be one of the best to study the atmosphere of Jovian planets in temperate,

nearly Earth-like irradiation environments.

6.6.3 Deriving planetary masses

HIP 41378 is a compelling candidate for follow-up observations due to its brightness, the ac-

cessible size of the planets, and the system’s rich architecture. HIP 41378 is the second brightest

multi-transiting system, behind Kepler-444 (Campante et al., 2016), a system of five sub-Earth

sized planets with expected RV semi-amplitudes below the noise-floor of current instrumentation.

Unlike the Kepler-444 system, the planets orbiting HIP 41378 should each have measurable RV semi-

amplitudes. We have estimated the likely range of RV semi-amplitudes for each planet assuming

planetary masses drawn from the Wolfgang et al. (2016) distribution and periods and eccentricities

drawn from our analysis in Sections 6.4.5.2 and 6.5.1. The RV semi-amplitude distributions, shown

in Figure 6.11, are all centered above 1 m s−1, and could therefore be detectable with spectrographs

like HARPS-N (Cosentino et al., 2012) and HIRES (Vogt et al., 1994) in the north, and HARPS

(Mayor et al., 2003) and PFS (Crane et al., 2010) in the south. It will be most challenging to detect

HIP 41378 d which has an unknown period (unlike the inner two planets) and most likely induces

an RV semiamplitude of only 2 m s−1, but such signals have been detected previously in intensive

observing campaigns (e.g. Lovis et al., 2011).

Radial velocity measurements will be particularly valuable for two reasons. First, precise mass

measurements of the inner two planets can probe the mass radius diagram in the regime of low
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Figure 6.11 Expected Stellar Reflex Velocity of HIP 41378. Probability density function for
the expected stellar reflex velocities caused by the motion of each planet in this system.
Planets b and c have well measured orbital periods and ephemerides which will make it
easier to measure their masses despite the low amplitudes of their RV signals.

incident flux. Most transiting planets with precise masses orbit very close to their host stars, where

any gaseous envelopes originally present might have been stripped by the intense stellar radiation.

Planet masses measured from transit timing variations have shown that some planets on longer

periods are likely less dense than most short period planets. Measuring precise masses of planets

in longer period orbits (like the inner two planets in this system) can help show whether or not a

planet’s radiation environment affects its density.

6.7 Summary

In this chapter, we have described the discovery of five planets in the HIP 41378 system. We

provide our results from an MCMC analysis of the K2 light curve to derive planetary parameters,

and use data from several additional sources to better model the stellar properties. The final result

is a detailed characterization of the system, barring a radial velocity analysis to determine system

masses.

Subsequently, once additional data was taken of HIP 41378 in C18 of the K2 mission, we

refined the estimates for the orbital periods of HIP 41378 d and HIP 41378 f to provide updated

predictions of the transit ephemerides. Although unique orbital periods cannot yet be determined,

we have constrained the possibilities and have identified the most likely candidate orbital periods.

Additional observations that probe each of the most likely orbital periods will allow a determination

of the true orbital period for each planet. The orbital periods that should be tested are presented
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in Tables 6.4 and 6.5. One of the primary motivations for this analysis is to recover the transit

of HIP 41378 f, a Jupiter-size planet which may be a particularly interesting target for additional

in-transit study (such as transit spectroscopy).

The methods developed in this work can be applied to multi-planet systems discovered in the

future (e.g., where only single transits are observed). The TESS mission is expected to discover

many such systems. In addition, some of the TESS targets are expected to have variable baselines

between continuous viewing periods, resulting in a cadence similar to the gaps between campaigns

in K2. As a result, true period and ephemeris determinations will be imperative for the subsequent

study of many planetary systems discovered by TESS.

6.8 Emergent Properties: Learning more from Transit Data

A additional motivation of the work in this chapter is to provide a blueprint for future period-

recovery efforts. In the era of TESS, many more planets for which the exact orbital period cannot

be determined will be discovered. Due to the TESS survey strategy, in some cases, stars will

be observed with significant gaps in between periods of observations. For example, according to

the Web TESS Viewing Tool6, the southern circumpolar star δ Mensae will be observed by TESS

during Sectors 1,5,8,12, and 13 for 28 days each, with gaps of 84 days, 56 days, and 84 days between

subsequent periods of observation. Any planet detected by TESS in this region of sky with a period

longer than about 28 days could have ambiguous orbital periods due to the observational strategy.

The different constraints we used to narrow down the possible orbital periods for the HIP 41378

planets provided in Section 6.5.5 can serve as a starting point for future analysis on TESS planets

with similar orbital period ambiguities.

Some results, such as the generalized transit probability by transit baseline (Eq. [6.3]), can

be derived merely by substituting in the values for campaign baseline and other easily obtained

parameters. Similarly, the expected period distribution can be derived from transit duration (Eq.

[6.7]), as long as sensible priors are applied. For example, in Vanderburg et al. (2016b), we pointed

out the importance of allowing planets to have non-zero eccentricities when computing period

6https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py
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estimates from transit durations: a null eccentricity prior artificially narrows the distribution of

possible orbital periods. It is reasonable to say that the observed multi-planetary systems such as

HIP 41378 have the emergent property of dynamical stability: in order for the system to be seen

now when the star’s age is estimated in this chapter to be around 4.2 Gyr old, the system must

reside in a dynamically stable and favorable configuration. In this chapter, we used that fact to

place limits on where in the system the planets could reside and what orbits were allowable. In

this way, emergent properties can be used to very easily yield constraints on the system.

On the other hand, some additional constraints may take significantly more work to derive for

some systems. In particular, for multi-planet systems with ambiguous orbital periods, dynamical

constraints should be derived uniquely (either using numerical simulations or other dynamical

techniques) for each system, and may place tighter limits in some systems than others.

Finally, period estimations can be improved by using additional data. The analysis in this paper

also shows the importance of legacy ground-based surveys in the TESS era. Through a combination

of existing photometric data from such as HAT and KELT and dynamical analysis, the most likely

orbital periods for individual planets can be determined, which allows for an efficient use of limited

follow-up telescope resources.

6.8.1 Implications on Future Work

The K2 mission has discovered transiting planets and candidates around bright stars (Van-

derburg et al., 2016e; Rodriguez et al., 2017b; Christiansen et al., 2017c; Niraula et al., 2017a;

Rodriguez et al., 2018a; Mayo et al., 2018a; Yu et al., 2018; Brahm et al., 2018), which are par-

ticularly amenable to follow-up studies, such as precise radial velocities and transit transmission

spectroscopy. In particular, the yield from K2 includes six of the ten small planets (with Rp < 3R⊕)

with the best prospects for transmission spectroscopy discovered to date (Rodriguez et al., 2018d).

These kinds of follow-up observations could significantly improve our understanding of these planets,

yielding information about their interior structure and bulk composition (Dressing et al., 2015b),

how they have been sculpted by processes like photoevaporation (Ehrenreich et al., 2015), how,

why and to what extent some planets form aerosols and hazes high in their atmospheres (Crossfield

& Kreidberg, 2017a; May et al., 2018), and what kind of molecules constitute their atmospheres
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(Morley et al., 2017). The HIP 41378 system (and in particular Jupiter-radius planet HIP 41378 f)

is an excellent and (so far) unique target for these efforts, which could yield important constraints

on where in the disk these planets formed. The HIP 41378 system appears to be particularly

amendable to efforts to derive its formation and migration history.
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Parameter Value
HIP 41378 b

Orbital Period, P [days] 15.5712±0.0012
Radius Ratio, (RP/R?) 0.0188±0.0011

Scaled semimajor axis, a/R? 19.5±4.5
Orbital inclination, i [deg] 88.4±1.6

Transit impact parameter, b 0.55±0.28
Time of Transit tt [BJD] 2457152.2844± 0.0021

RP [R⊕] 2.90±0.44

HIP 41378 c
Orbital Period, P [days] 31.6978± 0.0040
Radius Ratio, (RP/R?) 0.0166± 0.0012

Scaled semimajor axis, a/R? 73± 18
Orbital Inclination, i [deg] 89.58± 0.52

Transit Impact parameter, b 0.53± 0.29
Time of Transit tt [BJD] 2457163.1659± 0.0027

RP [R⊕] 2.56± 0.40

HIP 41378 d
Radius Ratio, (RP/R?) 0.0259±0.0015

Transit Impact Parameter, b 0.50±0.27
Time of Transit (C5) tt,5 [BJD] 2457166.2629± 0.0016

Time of Transit (C18) tt,18 [BJD] 2458279.709± 0.003
Transit Duration D [hours] 12.71± 0.26

HIP 41378 e
Radius Ratio, (RP/R?) 0.03613± 0.00096

Transit Impact Parameter, b 0.31± 0.17
Time of Transit tt [BJD] 2457142.01656± 0.00076

Transit Duration D [hours] 13.007± 0.088
RP [R⊕] 5.51±0.77

HIP 41378 f
Radius Ratio, (RP/R?) 0.0672±0.0013

Transit Impact Parameter, b 0.227±0.089
Time of Transit (C5) tt,5 [BJD] 2457186.91451± 0.00032

Time of Transit (C18) tt,18 [BJD] 2458271.0740± 0.0008
Transit Duration D [hours] 18.998± 0.051

Table 6.2 Parameters for the known planets in the HIP 41378 system. Planetary data in this
table comes from analysis in Vanderburg et al. (2016b) and Becker et al. (2019). The time
of transits for single-transit planets are reported for both campaign 5 (C5) and campaign 18
(C18).
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Eccentricity Prior HIP 41378 d HIP 41378 e HIP 41378 f
period period period

e = 0 157+195
−41 132+37

−14 348+37
−13

e beta distribution 188+397
−87 143+129

−52 367+311
−130

e beta distribution, stable only 174+260
−68 140+92

−43 361+182
−103

Adopted: e beta, stable + baseline 156+163
−78 131+61

−36 324+121
−127

Table 6.3 Estimated Periods for the Three Outer Planets Using Four Choices of Priors. The
e = 0 prior produces the smallest errors on period, but it is likely these are underestimated.
We adopt the results from the fourth line, which uses a the beta distribution for eccentricity
and incorporates priors accounting for dynamical stability and transit likelihood (Equation
6.3) as our best estimates of the orbital periods in this system.
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Orbital Period (days) Normalized Probability
1113.4465 ± 0.0034 < 0.1 %
556.7233 ± 0.0017 < 0.1 %
371.1488 ± 0.0011 0.1 %
278.3616 ± 0.0009 0.5 %
222.6893 ± 0.0007 1.1 %
185.5744 ± 0.0006 2.4 %
159.0638 ± 0.0005 4.1 %
139.1808 ± 0.0004 5.7 %
123.7163 ± 0.0004 6.7 %
111.3447 ± 0.0003 7.1 %
101.2224 ± 0.0003 7.1 %
92.7872 ± 0.0003 7.0 %
85.6497 ± 0.0003 6.9 %
79.5319 ± 0.0002 6.8 %
74.2298 ± 0.0002 6.8 %
69.5904 ± 0.0002 6.3 %
65.4969 ± 0.0002 5.9 %
61.8581 ± 0.0002 5.5 %
58.6024 ± 0.0002 5.1 %
55.6723 ± 0.0002 4.8 %
53.0213 ± 0.0002 4.5 %
50.6112 ± 0.0002 4.2 %
48.4107 ± 0.0001 1.4 %

Table 6.4 Possible orbitals periods and their relative likelihoods, based on the analysis de-
scribed in Section6.5.1. Values may not add up to 100% due to rounding. Errors on orbital
periods were computed with σ = (t2c,5 + t2c,18)1/2/n, when n denotes the number of full cycles
between C5 and C18, and tc denotes the uncertainty on center time of transit in each cam-
paign. Errors on the orbital period are lower when a larger number of periods have elapse
since the C5 observation.
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Orbital Period Normalized Probability Normalized Probability
(days) (w/o KELT/HAT/WASP) (w/ KELT/HAT/WASP)

1084.15946 ± 0.00086 < 0.1 % < 0.1 %
542.07973 ± 0.00043 2.2 % 3.2 %
361.38649 ± 0.00029 19.9 % 29.7 %
271.03986 ± 0.00022 15.7 % 23.6 %
216.83189 ± 0.00017 15.2 % 22.8 %
180.69324 ± 0.00014 13.4 % 20.1 %
154.87992 ± 0.00012 14.8 % < 0.1 %
135.51993 ± 0.00011 13.4 % < 0.1 %
120.46216 ± 0.00010 5.0 % < 0.1 %
108.41595 ± 0.00009 0.4 % 0.6 %
98.55995 ± 0.00008 < 0.1 % < 0.1 %
90.34662 ± 0.00007 < 0.1 % < 0.1 %
83.39688 ± 0.00007 < 0.1 % < 0.1 %
77.43996 ± 0.00006 < 0.1 % < 0.1 %
72.27730 ± 0.00006 < 0.1 % < 0.1 %
67.75997 ± 0.00005 < 0.1 % < 0.1 %
63.77409 ± 0.00005 < 0.1 % < 0.1 %
60.23108 ± 0.00005 < 0.1 % < 0.1 %
57.06102 ± 0.00005 < 0.1 % < 0.1 %
54.20797 ± 0.00004 < 0.1 % < 0.1 %
51.62664 ± 0.00004 < 0.1 % < 0.1 %
49.27998 ± 0.00004 < 0.1 % < 0.1 %
47.13737 ± 0.00004 < 0.1 % < 0.1 %

Table 6.5 Possible orbitals periods and their likelihoods. The second column comes from
only dynamical analysis, and the third column excludes periods that our analysis of the
KELT/HAT/WASP data found to be unlikely. Values may not add up to 100% due to
rounding. Errors on orbital periods were computed with σ = (t2c,5 + t2c,18)1/2/n, when n
denotes the number of full cycles between C5 and C18, and tc denotes the uncertainty on
center time of transit in each campaign.
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CHAPTER VII

A Compact Multi-Planet System With A Significantly

Misaligned Ultra Short Period Planet

Results through Section 7.7 in this chapter were published in: Rodriguez, J. E., Becker,
J. C., Eastman, J. D., et al. “A Compact Multi-Planet System With A Significantly Misaligned
Ultra Short Period Planet.” 2018, The Astronomical Journal, 156, 245.

Results in Section 7.8 onwards are as of yet unpublished work.

7.1 Abstract

We report the discovery of a compact multi-planet system orbiting the relatively nearby (78pc)

and bright (K = 8.9) K-star, K2-266 (EPIC248435473). We identify up to six possible planets

orbiting K2-266 with estimated periods of Pb = 0.66, P.02 = 6.1, Pc = 7.8, Pd = 14.7, Pe =

19.5, and P.06 = 56.7 days and radii of RP = 3.3 R⊕, 0.646 R⊕, 0.705 R⊕, 2.93 R⊕, 2.73 R⊕,

and 0.90 R⊕, respectively. We are able to confirm the planetary nature of two of these planets

(d & e) from analyzing their transit timing variations (md = 8.9+5.7
−3.8M⊕ and me = 14.3+6.4

−5.0M⊕),

confidently validate the planetary nature of two other planets (b & c), and classify the last two as

planetary candidates (K2-266.02 & .06). From a simultaneous fit of all 6 possible planets, we find

that K2-266 b’s orbit has an inclination of 75.32◦ while the other five planets have inclinations of

87–90◦. This observed mutual misalignment may indicate that K2-266 b formed differently from

the other planets in the system. The brightness of the host star and the relatively large size of the

sub-Neptune sized planets d and e make them well-suited for atmospheric characterization efforts
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with facilities like the Hubble Space Telescope and upcoming James Webb Space Telescope. We

additionally provide a dynamical mechanism that can explain the observed rare system geometry

in the K2-266 system.

7.2 Introduction

Our understanding of exoplanet demographics has rapidly expanded as a direct result of the

success of the Kepler and K2 missions. With the successful launch of the Transiting Exoplanet Sur-

vey Satellite (TESS) mission, which is expected to discover thousands of new exoplanetary systems

(Ricker et al., 2015), the community is now focused on understanding the mechanisms responsible

for the diversity of exoplanet architectures. We now know of over 700 multi-planet systems and

a total of more than 3700 confirmed or validated planets to date1. From these discoveries, we

know that the most commonly known planets with periods P<100 days are smaller than Neptune,

a large fraction of which are super-Earths and mini-Neptunes (RP = 1.5 – 4 r⊕; Fressin et al.,

2013b). With no analogues in our own Solar System, our understanding of these planets is limited.

The large number of multi-planet systems discovered may provide key information to facilitate

our understanding of the formation of our own Solar System. From studying multi-planet systems

using Kepler data, it has been determined that ∼30% of Sun-like stars have compact and closely

aligned architectures, with planetary radii RP ¿r⊕ and orbital periods less than 400 days (Zhu et al.,

2018). Planets in systems with large mutual inclinations, however, might not all transit. The mutual

inclination could be dependent on the number of planets in the system. Specifically, systems with

fewer planets have larger mutual inclinations, possibly explaining the observed excess of Kepler

single planet systems (Zhu et al., 2018). If unaccounted for, this bias can affect our understanding

of planet formation. Fortunately, typical mutual inclinations within transiting systems can be

constrained by measuring the ratio of transit durations of adjacent transiting planets. Studies that

constrain the underlying multiplicity and distribution of inclinations suggest that transiting multi-

planet systems are close to aligned, with mutual inclinations typically less than a few degrees (Fang

& Margot, 2012; Figueira et al., 2012; Swift et al., 2013; Fabrycky et al., 2014b; Ballard & Johnson,

1https://exoplanetarchive.ipac.caltech.edu/
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Figure 7.1 K2 Light Curve for K2-266. (Top) The full K2 light curve of K2-266 from
Campaign 14, corrected for systematics using the technique described in Vanderburg &
Johnson (2014) and Vanderburg et al. (2016c). The observations are plotted in open black
circles, and the best fit models are plotted in red. (Bottom) The flattened final K2 light
curve used in the EXOFASTv2 fit.

2016b). However, many studies have shown that the observed population is not well represented

by a single-component model (Lissauer et al., 2011b; Ballard & Johnson, 2016b), and this claim is

supported by simulations of late-stage planet formation (Hansen & Murray, 2013); the underlying

population may consist of some well-aligned systems and some with large mutual inclinations.

Ultra Short-period Planets (USPs), planets that orbit with periods less than a day, may provide

insight into the origin of mutually misaligned planetary systems. These are relatively rare objects

(0.5% of all stars, Sanchis-Ojeda et al., 2014c), but their close proximity to their host star allows

them to transit at a larger range of inclinations relative to our line of sight. This relatively high

transit probability makes the USP in a multi-planet system more likely to transit than the longer-

period planets in the system (e.g., 55 Cancri, Fischer et al., 2008; Batalha et al., 2011b). It also

makes it more likely that misaligned systems containing USPs will be observed to host multiple

transiting planets, which affords greater opportunities for detailed investigations of the physical
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and dynamical properties of the planets. USPs therefore have the potential to help us understand

the origin of planetary systems with high mutual inclinations.

Since young stars are larger in radius than their sizes on the main sequence, by factors of 3

– 4, it is unlikely that USPs could form in situ: the host star would have engulfed some of the

known USPs based on stellar properties derived from pre-main-sequence evolutionary tracks (Palla

& Stahler, 1991; D’Antona & Mazzitelli, 1994). As a result, one possible origin scenario is that

USP migration is influenced by gravitational interactions with other planets or stars, increasing the

planet’s orbital eccentricity. This ”High Eccentrictiy Migration” mechanism (HEM), has also been

proposed to explain the origin of hot Jupiters (Petrovich et al., 2018, see, e.g.,). These systems

initially retain their primordial eccentricities from these interactions (Rasio & Ford, 1996; Wu &

Murray, 2003; Fabrycky & Tremaine, 2007b; Nagasawa & Ida, 2011; Wu & Lithwick, 2011), but

subsequent tidal interactions should circularize the orbit (e.g., Adams et al. 2006). However, the

inclination excited by HEM may remain, resulting in highly misaligned planetary orbits.

Another possible explanation for misaligned planetary systems is that they originate from mis-

aligned disks around young stars. It is known that young stars are surrounded by circumstellar

disks of gas and dust that eventually form the planetary systems that are observed today. From

high resolution observations of these circumstellar disks, for example using the Atacama Large

Millimeter/submillimeter Array (ALMA), we know that these disks are not smooth and uniform.

Instead they contain gaps or rings (ALMA Partnership et al., 2015), and display misalignment with

their disks and even multiple disks (e.g., see Beta Pic, Heap et al., 2000). Additionally, wide binary

systems where each star has its own circumstellar disk have been shown to be mutually misaligned

(e.g., Jensen & Akeson, 2014, and references therein).

Using high precision photometric observations from Spitzer and K2 there has been a sub-class

of young stellar objects identified called “dippers” that display large amplitude (>10%) dimming

events that occur on timescales of days (Alencar et al., 2010; Morales-Calderón et al., 2011; Cody

et al., 2014; Ansdell et al., 2016b). The observed variability has been attributed to extinction by

dust in the inner disk, implying that disks would need to be relatively edge-on, as suggested for the

archetypal dipper AA Tau (Bouvier et al., 1999). However, recent high spatial resolution millimeter

mapping of AA Tau by ALMA shows a modestly inclined disk at 59.1◦ (Loomis et al., 2017). Even
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Figure 7.2 Phase-Folded K2 Light Curve for Planets Orbiting K2-266. The phase-folded
corrected K2 light curve for the four validated planets in the system K2-266 b (Left), d
(middle), e (middle), and c (right), and the two additional planet candidates .02 (right) and
.06 (right). For planets b, d, and candidate c, the full phasefolded LC is shown in light gray
and the binned points are shown in color with error bars. The red line corresponds to the
final EXOFASTv2 transit model.

more extreme examples exist, such as the dipper J1604-2130, for which ALMA observations reveal

the disk to be nearly face-on (Ansdell et al., 2016a). These observations, combined with the

photometric dimming events observed suggest that the inner disk is more aligned to our line of

sight, and therefore, misaligned relative to the outer disk. Finally, we note that molecular cloud

cores that form stars do not have perfectly well-ordered distributions of angular momentum, so

that the formation of disks, and later planets, naturally produces some mis-alignment (e.g., see

Spalding & Batygin 2014 and references therein).

Multi-planet systems also allow us to determine key physical planet parameters, such as mass

and orbital eccentricity, through the detection and analysis of transit timing and duration variations

(TTV & TDV, respectively, see Agol et al., 2005b; Holman & Murray, 2005). The slight variations

in the timing between consecutive transits are caused by another planet in the system, and result

from exchanging energy and angular momentum due to their mutual gravitational interaction.

Systems that have planets in or near mean motion resonance (MMR) can produce large amplitude

timing variations, allowing the measurement of mass and eccentricity for small planets with longer

periods. Efforts to analyze the TTVs for a large sample of planetary systems have provided mass

and eccentricity measurements for planets that would not be accessible from other techniques, such
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as radial velocities (Steffen et al., 2013b; Holczer et al., 2016; Jontof-Hutter et al., 2016; Hadden &

Lithwick, 2017).

In this paper, we present the discovery and characterization of a compact multi-planet system

orbiting the late K-star K2-266. Using observations from the K2 mission, we have identified up

to six planets orbiting K2-266, with periods of 0.66, 6.1, 7.8, 14.7, 19.5, and 56.7 days. We are

able to confidently confirm the planetary nature of two of these planets (Pd = 14.7 days & Pe =

19.5 days), validate two more as planets (Pb = 0.66 days & Pc = 7.8 days), and we classify the

other two (weaker) signals as planetary candidates. From a simultaneous global model of all six

planets and candidates, we find that the orbit of K2-266 b has an inclination of 75.32 degrees,

while the other five planets and candidates have inclinations of 87 degrees to 90 degrees. This

significant misalignment of the inner planet has interesting implications for the dynamical history

of the system, and may suggest that it had a different evolutionary path than the rest of the planets.

The chapter is organized in the following way: We first discuss our photometric and spectro-

scopic observations in Section 7.3. Our EXOFASTv2 global model methodology and results are

then presented in §7.4.

7.3 Observations, Archival Data, and Validation

7.3.1 K2 Photometry

Since the failure of the second reaction wheel, the Kepler spacecraft has been re-purposed to

observe a set of fields along the ecliptic. Each K2 campaign lasts ∼80 days (Howell et al., 2014b),

achieving similar precision to the original Kepler mission (Vanderburg et al., 2016c). K2-266 was

observed during K2 Campaign 14 from UT 2017 Jun 02 until UT 2017 Aug 19, obtaining 3504

observations on a 30 minute cadence (see Figure 7.1). Following the strategy described in Van-

derburg & Johnson (2014) and Vanderburg et al. (2016c), the light curves were extracted from

the Kepler-pipeline calibrated target pixel files from the Mikulski Archive for Space Telescopes2,

corrected for the K2 spacecraft-motion-induced systematics, and searched for transiting planet can-

didates. From our search of K2-266, we identified three super-Earth/sub-Neptune sized transiting

2MAST; https://archive.stsci.edu/
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Other identifiers
EPIC 248435473

2MASS J10314450+0056152
K2-266

Parameter Description Value Source
αJ2000 Right Ascension (RA) 10:31:44.506 1
δJ2000 Declination (Dec) +00:56:15.27 1
Bdotfill APASS Johnson B mag. 13.001 ± 0.02 2
V APASS Johnson V mag. 11.808 ± 0.02 2
G Gaia G mag. 11.3527±0.0009 7,8
g′ APASS Sloan g′ mag. 12.407 ± 0.02 2
r′ APASS Sloan r′ mag. 11.311 ± 0.02 2
i′ APASS Sloan i′ mag. 10.927 ± 0.04 2

J 2MASS J mag. 9.611 ± 0.05 3, 4
H 2MASS H mag. 9.041 ± 0.03 3, 4
KS 2MASS KS mag. 8.897 ± 0.02 3, 4

WISE1 WISE1 mag. 8.805 ± 0.022 5
WISE2 WISE2 mag. 8.897 ± 0.02 5
WISE3 WISE3 mag. 8.787 ± 0.02 5
WISE4 WISE4 mag. 8.789 ±0.437 5

µα Gaia DR2 proper motion 56.871 ± 0.151 7, 8
in RA (mas yr−1)

µδ Gaia DR2 proper motion -68.828 ± 0.242 7,8
in DEC (mas yr−1)

π Gaia Parallax (mas) 12.87 ± 0.06 7,8
RV Systemic radial 10.848± 0.066 §7.3.2

velocity (km s−1)

Table 7.1 K2-266 Magnitudes and Kinematics. The uncertainties of the photometry have
a systematic error floor applied. Even still, the global fit requires a significant scaling of
the uncertainties quoted here to be consistent with our model, suggesting they are still
significantly underestimated for one or more of the broad band magnitudes. References
are: 1Cutri et al. (2003),2Henden et al. (2016),3Cutri et al. (2003), 4Skrutskie et al. (2006),
5Cutri & et al. (2014), 6Zacharias et al. (2017),7Gaia Collaboration et al. (2016a), 8Gaia
Collaboration et al. (2018b)
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exoplanet candidates with periods of 0.66, 14.7, and 19.5 days with signal-to-noise (S/N) values

of 13.0, 114.6, and 111.5. In addition, some of us (MHK, MO, HMS, IT) performed a visual in-

spection of the light curve using the LCTOOLS3 software (Kipping et al., 2015). From this visual

inspection, we identified two additional Earth sized exoplanet candidates with periods of 6.1 and

7.8 days with S/N values of 8.3 and 10.6. An additional visual inspection of the K2 light curve led

to the identification of a sixth planet candidate at 56.7 days with a S/N value 6.6. The phase-folded

light curves for each planet candidate is shown in Figure 7.2. We note that the two transits of this

candidate overlap with other candidates in the system. The K2 light curve was reprocessed where

all six planets were simultaneously fit along with the stellar variability and known K2 systematics.

The corresponding light curve was flattened by dividing out the best-fit stellar variability using a

spline fit with breakpoints every 0.75 days. The final light curve for K2-266, shown in Figure 7.1,

has a 30 minute cadence noise level of 70 ppm, and a 6 hour photometric precision of 19 ppm.

7.3.2 TRES Spectroscopy

Using the Tillinghast Reflector Echelle Spectrograph (TRES; Fűrész, 2008)4 on the 1.5 m

Tillinghast Reflector at the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins, AZ we obtained

8 observations of K2-266 between UT 2017 Nov 23 and UT 2018 Apr 10. TRES has a resolving

power of λ/∆λ = 44000, and an instrumental radial velocity (RV) stability of 10–15 m s−1. The

spectra were optimally extracted, wavelength calibrated, and cross-correlated to derived relative

RVs following the techniques described in (Buchhave et al., 2010). We cross-correlate each spectrum,

order by order, against the strongest observed spectrum, and fit the peak of the cross-correlation

function summed across all orders to derive the relative RVs. Uncertainties are determined from

the scatter between orders for each spectrum. We use RV standard stars to track the instrumental

zero point over time, and apply these zero point shifts (typically < 15 m s−1) to the relative RVs

and propagate uncertainties in the zero point shifts to the RVs. This is why the strongest spectrum,

correlated against itself, does not have an RV of 0 m s−1. The final relative RVs are given in Table

7.2. Using the RV standards to set the absolute zero point of the TRES system, we also determine

3https://sites.google.com/a/lctools.net/lctools/home
4http://www.sao.arizona.edu/html/FLWO/60/TRES/GABORthesis.pdf
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BJDTDB RV (m s−1) σRV (m s−1) Target
2458081.028322 -30.1 17.7 K2-266
2458090.980928 -2.5 32.0 K2-266
2458106.965261 -3.2 43.6 K2-266
2458107.923621 -55.5 28.2 K2-266
2458211.644609 -26.3 21.2 K2-266
2458212.644636 -36.5 25.6 K2-266
2458213.663584 -23.9 33.3 K2-266
2458218.808648 -30.0 32.5 K2-266

Table 7.2 Relative Radial Velocities for K2-266.

the RV of K2-266 on the IAU standard system to be 10.848 ± 0.066 km s−1, where the uncertainty

is dominated by the uncertainty in the shift from relative to absolute RV.

7.3.3 Palomar TripleSpec Observations

We refined the characterization of K2-266 by acquiring near-infrared spectra using TripleSpec

on the 200” Palomar Hale telescope on 1 December 2017. TripleSpec has a fixed slit of 1” x 30”

slit, enabling simultaneous observations across J, H, and K bands (1.0 - 2.4 microns) at a spectral

resolution of 2500-2700 (Herter et al., 2008). Following Muirhead et al. (2014), we obtained our

observations using a 4-position ABCD not pattern to reduce the influence of bad pixels on our

resulting spectra. As in Dressing et al. (2017), we reduced our data using a version of the publicly

available Spextool pipeline (Cushing et al. 2004) that was modified for use with TripleSpec data

(available upon request from M. Cushing). We removed telluric contamination by observing an

A0V star at a similar airmass and processing both our observations for both the A0V star and

K2-266 with the xtellcor telluric correction package (Vacca et al., 2003).

After reducing the spectra, we estimated stellar properties by applying empirical relations

developed by Newton et al. (2014, 2015) and Mann et al. (2013b,a). Specifically, we estimated the

stellar effective temperature and radius by measuring the widths of Al and Mg features using the

publicly available, IDL-based tellrv and nirew packages (Newton et al., 2014, 2015). We then

employed the stellar effective temperature-mass relation developed by Mann et al. (2013a) to infer

the stellar mass from the resulting stellar effective temperature estimate. We also estimated the
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stellar metallicity ([M/H] and [Fe/H]) using the relations developed by Mann et al. (2013b). For

more details about our TripleSpec analysis methods, see Dressing et al. (2017), Dressing et al., (in

prep).

The resulting stellar properties were Teff = 4192± 77 K, M? = 0.67+0.08
−0.07M�, and R? = 0.63±

0.03. This values for the stellar mass is consistent with those estimated from our EXOFASTv2

analysis (see Table 3). However, the radius is ∼3σ different from the EXOFASTv2 fit using the

broadband photometry and Gaia DR2 parallax.

7.3.4 Archival “Patient” Imaging

To check for nearby stars (either physically associated companions or coincidental alignments)

that may influence our results, we examined archival observations from National Geographic Society

Palomar Observatory Sky Survey (NGS POSS) from 1952. The proper motion of K2-266 is µα =

56.9 mas and µδ = -68.8 mas, and has moved ∼6 in the 66 years since the original POSS observations

were taken. The present-day position of K2-266 is located right at the edge of the saturated point-

spread-function of K2-266 in the original POSS plates. While the present-day position of K2-266

is not completely resolved in the POSS image, if there was a bright-enough background star at the

present-day position of K2-266, we would expect to see some elongation of the POSS point spread

function at that position. We see no evidence for such an elongation in POSS plates with either a

red-sensitive or blue-sensitive emulsion. We estimate that we can rule out background stars at the

present-day position of K2-266 down to a magnitude of about 19 in blue, and a magnitude of about

18 in the red. Figure 7.3 shows our archival imaging overlaid with the K2 photometric aperture

used to extract the light curves.

We used modern imaging from the Pan-STARRS data release to search for faint companions

at distances greater than a few arcseconds from K2-266 (Flewelling et al., 2016). In the Pan-

STARRS images, we identified one star located inside our best photometric aperture about 9

magnitudes fainter than K2-266. In principle, if this star were a fully eclipsing binary (with 100%

deep eclipses5), it could contribute a transit-like signal to the light curve of K2-266 with a depth of

5While the greatest eclipse depth possible from two main-sequence eclipsing binaries is about 50% (caused
by an equal-brightness binary), we also consider the worst-case scenario of 100% deep eclipses caused by, for
example, a bright, hot white dwarf being eclipsed by a cool M-dwarf or brown dwarf (e.g. Rappaport et al.,
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at most about 250 ppm. This is shallower than the transits of the two sub-Neptunes, but could in

principle contribute the transits of the other four candidates. We therefore extracted the K2 light

curve from a smaller aperture (shown in Figure 7.3 as a navy blue outline overlaid on the Pan-

STARRS image of K2-266), which excludes the companion star detected in Pan-STARRS imaging

(see Rodriguez et al. 2018c for more discussion of this companion). We find in the noisier light

curve extracted from the smaller aperture, the transits of the ultra-short-period and 7.8d planets

are convincingly detected, but the transits of the two weaker candidates (at 6.1 and 56.7 days) do

not convincingly appear (due to the increased noise in the light curve). We therefore cannot rule

out a blended background eclipsing binary origin for at least one of those candidates.

7.3.5 Keck/NIRC2 AO Imaging

We obtained high resolution images of K2-266 using the Near Infrared Camera 2 (NIRC2) on

the W. M. Keck Observatory. Two observations of each target were taken on UT 2017 December

28, one in the Br-γ filter and the other in the J-band (see Figure 7.3). NIRC2 has 9.942 mas pix−1

pixel scale and 1024×1024 pixel array. The lower left quadrant of the array suffers from higher

noise levels. To exclude this part of the detector, a 3-point dither pattern was used. The final

image shown in Figure 7.3 is created by shifting and co-adding the observations, after flat-fielding

and sky subtraction. We see no other star in the 10 field-of-view for K2-266. Our sensitivity to

nearby companions is determined by injecting a simulated source with a S/N of 5. The final 5σ

sensitivity curves as a function of spatial separation and the corresponding images for K2-266 in

both Br-γ and J filters are shown in Figure 7.3.

7.3.6 Statistical Validation

We attempted to statistically validate each of the six candidates in K2-266, a process in which

the probability of planethood is estimated. If the probability is above some threshold value the

candidate is upgraded to validated planet. Our method of validation followed the approach taken

by Mayo et al. (2018b). In detail, we made use of vespa (Morton, 2015), a Python package based on

the work of Morton (2012). vespa calculates the false positive probability (FPP) of an exoplanet

2017).
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Figure 7.3 Archival Imaging for K2-266. Archival imaging from the National Geographic
Society Palomar Observatory Sky Survey (NGS POSS) of K2-266 taken with a (1st panel)
red and (2nd panel) blue emulsion in 1952. (3rd panel) Archival imaging from the Pan-
STARRS survey of K2-266 taken in 2011. (Right panel) Summed image of K2-266 from K2
observations. The aperture selection is described in Vanderburg et al. (2016c).

candidate by first simulating a population of synthetic stellar systems, each of which creates a

transit signal due to a planet or eclipsing binary scenario. Then, vespa calculates the FPP by

determining which synthetic systems are consistent with the input observations and calculating the

fraction of those systems that correspond to an eclipsing binary scenario.

This determination is made based on inputs such as the sky position of the target, the transit

signal, various stellar parameters, and contrast curves from any available high-resolution imaging.

(A contrast curve relates the angular separation between the target star and an undetected com-

panion to the maximum brightness for the putative companion.) In the case of K2-266, we provided

as input to vespa the RA and Dec, the phase-folded light curve of the candidate in question (with

transits from other candidates removed), J , H, and KS bandpass stellar magnitudes from 2MASS

(Cutri et al., 2003; Skrutskie et al., 2006) and the Kepler magnitude, stellar parameters (6199, 4.18,

and ) calculated in Section 7.4, and contrast curves from two AO images.

After we subjected each of our six candidates to validation, we made two additional adjustments
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Figure 7.4 The SED Fit for K2-266 from EXOFASTv2. The blue points are the predicted
integrated fluxes and the red points are the observed values at the corresponding passbands.
The width of the bandpasses are the horizontal red error bars and the vertical errors represent
the 1σ uncertainties. The final model fit is shown by the solid line.

to their FPP estimates. First, there are eight spectra and corresponding RV measurements collected

with TRES from 2017 Nov 23 to 2018 Apr 10. The RV measurements derived from the TRES

spectra did not indicate any large variations indicative of a simple eclipsing binary, so we were

able to eliminate that scenario. (Note that this is different from a background eclipsing binary or

hierarchical eclipsing binary scenario, which we also consider.) By eliminating the possibility of a

simple eclipsing binary, the probability of the planet scenario (and each false positive scenario) was

increased so that the total probability remained at unity.

Second, according to Lissauer et al. (2012b), the likelihood of one or more false positives de-

creases significantly when there is more than one candidate in a system. In the case of a system

with more than 2 candidates, they estimate that a multiplicity boost factor of 50 is appropriate.

As a result, we decreased the FPP for each candidate by a factor of 50.
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Figure 7.5 TRES Radial Velocities for K2-266. The TRES radial velocity measurements
phase-folded to the best-fit ephemeris of K2-266 b. The primary transit occurs at a phase of
0.25, where TP is the time of periastron, TC is the time of transit, and P period of planet b.

After calculating FPP values for our six candidates, reducing the eclipsing binary scenario to

0 probability, and including a multiplicity boost of 50, we found final FPP values of 3.02e − 05,

7.34e − 06, 9.40e − 06, 6.80e − 11, 1.16e − 12, and 4.90e − 06 for candidates K2-266.01, .02, .03,

.04, .05, and .06. These values would each be low enough to easily validate all six candidates (e.g.

Mayo et al. (2018b) used a FPP threshold value of 1e-4). However, given the inability to rule out

the possibility that the faint background star we identified in Section 7.3.4 is an eclipsing binary,

we were only able to conclusively validate candidates K2-266.01, .03, .04, and .05, naming them

K2-266 b, c, d, and e, respectively. We also refrain from validating candidates .02 and .06 because

they have the lowest signal-to-noise ratios that do not pass our threshold (8.3 and 6.6, respectively).

Validating such low S/N candidates is challenging because it is difficult to prove that the weakest

signals detected in Kepler or K2 data are astrophysical, and not the result of residual instrumental

systematics or artifacts (Mullally et al., 2018).
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7.4 EXOFASTv2 Global Fit for K2-266

Using the global exoplanet fitting suite, EXOFASTv2 (Eastman, 2017), we perform a simulta-

neous fit of the existing observations to determine the final system parameters for K2-266. Based

largely on the original EXOFAST (Eastman et al., 2013b), EXOFASTv2 provides the unique flexibil-

ity to simultaneously fit the spectral energy distribution (SED) and RV observations from multiple

instruments, in combination with fitting the time series photometry for every planet in the sys-

tem. Using EXOFASTv2, we simultaneously fit the flattened K2 light curve (accounting for the 30

minute cadence smearing, see Figure 7.1 and 7.2), the SED (see Table 7.1), and the radial velocity

observations from TRES (see Figure 7.5). To characterize the host star radius within the fit, we

include the the broad band photometry and Gaia DR2 parallax (See Table 7.1) (Gaia Collaboration

et al., 2016a, 2018b). We add 0.082 mas to the DR2 parallax, as determined by Stassun & Torres

(2018b) and impose a systematic error floor on the uncertainty of 0.1 mas since all systematics and

uncertainties should be below this (Gaia Collaboration et al., 2018b). To constrain the mass of the

star, we used a Gaussian prior of 0.677 ± 0.034M� from Mann et al. (2015), but with the uncer-

tainties inflated to 5%. In a separate global fit (not reported), we used the MIST stellar isochrones

(Dotter, 2016; Choi et al., 2016; Paxton et al., 2011, 2013, 2015) instead of the Gaussian prior from

Mann et al. (2015) as the primary constraint of the stellar mass and arrived at 0.748+0.047
−0.045M�, a

1.3σ difference. We favor the Mann et al. (2015) relations due to their empirical approach and the

known problems with all model isochrones at low stellar masses.

Additionally, we enforce an upper limit in the V -band extinction (AV ) from the Schlegel et al.

(1998b) dust maps of 0.0548 at the position of K2-266. The final SED fit is shown in Figure 7.4, the

phase-folded RVs from TRES to planet b’s period is shown in Figure 7.5, and the best fit transit

models are shown in Figures 7.1 and 7.2. Given the near resonance orbit of K2-266 d and e, which

would have the largest transit timing variations (TTVs), we fit for the TTVs of these two planets

while fitting a linear ephemeris for planets/candidates b, .02, c, and .06. The final determined

stellar and planetary parameters from our global fit are shown in Tables 7.3 and 7.4.

The grazing geometry of planet b means the upper limit of the planet radius is unconstrained

by the light curve. However, during the global fit, we simultaneously model the radial velocities,
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Stellar Parameters K2-266
M∗ Mass (M�) 0.686± 0.033

R∗ Radius (R�) 0.703+0.024
−0.022

L∗ Luminosity (L�) 0.1502± 0.0057

ρ∗ Density (cgs) 2.79+0.29
−0.30

log g Surface gravity (cgs) 4.581+0.032
−0.037

Teff Effective Temperature (K) 4285+49
−57

[Fe/H] Metallicity −0.12+0.40
−0.42

Av V-band extinction 0.029+0.018
−0.019

σSED SED photometry error scaling 5.0+1.6
−1.1

π† Parallax (mas) 12.960± 0.100

d Distance (pc) 77.16+0.60
−0.59

Table 7.3 Median values and 68% confidence intervals for the stellar parameters of the K2-
266 from EXOFASTv2. † The MIST Isochrones were not used in the EXOFASTv2 fit for
K2-266.

which provide a robust upper limit on its mass. This upper limit is translated to a radius upper

limit during the global fit using EXOFASTv2’s integrated Chen & Kipping (2017) exoplanet mass-

radius relation, which excludes Jupiter-radius solutions (and even higher inclinations). Because

the radial velocities are not precise enough for a measurement, the prior, which is uniform in

log(K), can have a significant impact on the posteriors for the RV-semi amplitude, mass, radius,

and inclination of planet b and tends to favor smaller planets and smaller inclinations (in line with

our prior expectation that such planets are intrinsically more numerous).

Because the Chen & Kipping (2017) relations only use a sample of planets with robustly detected

masses and radii, and we can typically measure robust radii for smaller planets than we can measure

the corresponding masses, there is likely a selection effect in the Chen & Kipping (2017) relations

that bias it toward larger masses at low signal to noise. As a consequence, for a given mass, we

expect to over-estimate the radius. Our radius upper limit would likely be somewhat smaller if we

used a relation that accounted for non-detections within our fit.

The Weiss & Marcy (2014c) exoplanet mass-radius relations are an often used alternative which

attempts to account for the bias from non-detections. However, they only apply to rocky planets

(Rp < 4r⊕), and so could not be used to exclude large planets, whereas the Chen & Kipping (2017)

relations are defined and continuous from rocky planets to stars.
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Planetary Parameters: b K2-266.02 c d e K2-266.06

P Period (days) 0.658524± 0.000017 6.1002+0.0015
−0.0017 7.8140+0.0019

−0.0016 14.69700+0.00034
−0.00035 19.4820± 0.0012 56.682+0.019

−0.018

RP Radius (R⊕) 3.3+1.8
−1.3 0.646+0.099

−0.091 0.705+0.096
−0.085 2.93+0.14

−0.12 2.73+0.14
−0.11 0.90+0.14

−0.12

TC Time of conjunction (BJDTDB) 2457945.7235+0.0032
−0.0030 2457913.413+0.013

−0.011 2457907.5812+0.0099
−0.012 2457944.8393± 0.0012 2457938.5410± 0.0013 2457913.436+0.014

−0.013

T0 Optimal conjunction Time (BJDTDB) 2457949.6747+0.0032
−0.0030 2457943.9143+0.0066

−0.0064 2457946.6510± 0.0064 2457944.8393± 0.0012 2457938.5410± 0.0013 2457913.436+0.014
−0.013

a Semi-major axis (AU) 0.01306+0.00020
−0.00021 0.05761+0.00090

−0.00093 0.0679± 0.0011 0.1035+0.0016
−0.0017 0.1249+0.0019

−0.0020 0.2546+0.0040
−0.0041

i Inclination (Degrees) 75.32+0.62
−0.70 87.84+0.84

−0.46 88.28+0.81
−0.41 89.46+0.32

−0.25 89.45+0.25
−0.18 89.40+0.26

−0.14

e Eccentricity – 0.051+0.051
−0.036 0.042+0.043

−0.030 0.047+0.043
−0.032 0.043+0.036

−0.030 0.31+0.11
−0.17

ω∗ Argument of Periastron (Degrees) – 88+60
−62 87± 61 87± 62 89+57

−58 83+57
−59

MP Mass (M⊕) 11.3+11
−6.5 0.209+0.15

−0.089 0.29+0.17
−0.11 9.4+2.9

−2.0 8.3+2.7
−1.8 0.70+0.87

−0.30

K RV semi-amplitude (m/s) 10.3+10.
−5.9 0.094+0.067

−0.040 0.119+0.073
−0.046 3.17+0.99

−0.69 2.53+0.84
−0.56 0.158+0.20

−0.068

δ Transit depth (fraction) 0.0018+0.0025
−0.0012 0.000071+0.000022

−0.000018 0.000085+0.000023
−0.000019 0.001465+0.000055

−0.000043 0.001270+0.000048
−0.000043 0.000136+0.000046

−0.000033

T14 Total transit duration (days) 0.01389+0.0012
−0.00085 0.083+0.014

−0.012 0.094+0.016
−0.014 0.1420+0.0014

−0.0015 0.1527+0.0014
−0.0015 0.143+0.024

−0.023

b Transit Impact parameter 1.011+0.027
−0.024 0.64+0.13

−0.25 0.60+0.14
−0.28 0.29+0.12

−0.17 0.36+0.10
−0.16 0.64+0.17

−0.33

ρP Density (cgs) 1.77+1.9
−0.88 4.27+0.79

−0.66 4.51+0.81
−0.67 2.03+0.64

−0.43 2.21+0.70
−0.47 5.27+1.5

−0.87

loggP Surface gravity 3.00+0.14
−0.13 2.69± 0.12 2.75± 0.11 3.026+0.12

−0.100 3.03+0.12
−0.10 2.93+0.18

−0.12

ecosω∗ – −0.000+0.044
−0.045 0.000± 0.037 −0.000± 0.043 −0.000+0.036

−0.035 0.00± 0.24

esinω∗ – 0.026+0.046
−0.022 0.022+0.038

−0.018 0.025+0.035
−0.020 0.025+0.034

−0.020 0.19+0.16
−0.15

MP sin i Minimum mass (Earth masses) 10.9+11
−6.3 0.208+0.15

−0.089 0.29+0.17
−0.11 9.4+2.9

−2.0 8.3+2.7
−1.8 0.70+0.87

−0.30

Table 7.4 Median values and 68% confidence intervals for planetary parameters of K2-266
from EXOFASTv2. Selected outputs from the EXOFASTv2 presented here; for complete
table with all parameters, see Rodriguez et al. (2018c).

Planet Period (days) RP (R⊕) S/Na Reference Discovery
GJ 1214 b 1.58 2.85 1.00 Charbonneau et al. (2009) MEarth
55 Cnc e 0.74 1.91 0.41 Dawson & Fabrycky (2010) RVs

HD 97658 b 9.49 2.35 0.27 Dragomir et al. (2013) RVs
TRAPPIST-1 f 9.21 1.04 0.24 Gillon et al. (2017) Spitzer

K2-136 c 17.31 2.91 0.19 Ciardi et al. (2018); Livingston et al. (2018); Mann et al. (2018) K2
GJ 9827 b 1.21 1.75 0.18 Niraula et al. (2017b); Rodriguez et al. (2018b) K2
K2-167 b 9.98 2.82 0.16 Mayo et al. (2018b) K2
K2-266 e 14.70 2.93 0.15 This Work K2
GJ 9827 d 6.20 2.10 0.15 Niraula et al. (2017b); Rodriguez et al. (2018b) K2

HIP 41378 b 15.57 2.90 0.14 Vanderburg et al. (2016d) K2
HD 3167 b 0.96 1.70 0.14 Vanderburg et al. (2016f); Christiansen et al. (2017a) K2
K2-233 d 24.37 2.65 0.13 David et al. (2018) K2
K2-266 f 19.48 2.73 0.12 This Work K2
K2-28 b 2.26 2.32 0.12 Hirano et al. (2016) K2
K2-199 c 7.37 2.84 0.12 Mayo et al. (2018b) K2
K2-155 c 13.85 2.60 0.11 Diez Alonso et al. (2018); Hirano et al. (2018) K2

Kepler-410 A b 17.83 2.84 0.10 Van Eylen et al. (2014) Kepler
HD 106315 b 9.55 2.40 0.10 Rodriguez et al. (2017c); Crossfield et al. (2017) K2

Table 7.5 The Best Confirmed or Validated Planets for Transmission Spectroscopy with RP

< 3 R⊕. aThe predicted signal-to-noise ratios relative to GJ 1214 b. All values used in
determining the signal-to-noise were obtained from the NASA Exoplanet Archive (Akeson
et al., 2013c). If a system did not have a reported mass on NASA Exoplanet Archive or it was
not a 2σ result, we used the Weiss & Marcy (2014c) Mass-Radius relationship to estimate
the planet’s mass. bOur calculation for the S/N of 55 Cnc e assumes a H/He envelope since
it falls just above the pure rock line determined by Zeng et al. (2016b). However, 55 Cnc
e is in a ultra short period orbit, making it unlikely that it would hold onto a thick H/He
envelope. We do not include HIP 41378 b due to its grazing configuration.
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Figure 7.6 The Probability Distribution Function for the Radius of K2-266 b. It shows the
depth of the transit sets a hard lower limit of ∼ 1r⊕. Due to the grazing geometry, the upper
envelope is not constrained by the light curve, and instead set by the upper limit on the
mass through an RV non-detection and the Chen & Kipping (2017) exoplanet mass-radius
relation.

7.5 Dynamics of K2-266

Given its multiplicity and mutually-transiting nature, the six-planet system orbiting K2-266 can

be classified as one of the Systems of Tightly Packed Inner Planets (STIPs) common in the Kepler

data (Lissauer et al., 2011b; Van Laerhoven & Greenberg, 2012; Swift et al., 2013). However, this

system is unique due to the innermost planetary orbit displaying a remarkable 75 degree inclination

and a grazing transit. Members of the Kepler multi-planet systems have smaller mutual inclinations,

typically within a few degrees of each other (Fang & Margot, 2012; Figueira et al., 2012; Fabrycky

et al., 2014b). Moreover, these systems do not tend to excite high mutual inclinations without some

external factor (Becker & Adams, 2016; Mustill et al., 2017; Hansen, 2017; Becker & Adams, 2017;

Jontof-Hutter et al., 2017a; Denham et al., 2018). In this section, we discuss the information gained

through combining the observed light curve with dynamical analysis, and attempt to constrain the

current dynamical state of the system.
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Wavelength Parameters: Kepler

u1 linear limb-darkening coeff 0.630+0.064
−0.10

u2 quadratic limb-darkening coeff 0.107+0.082
−0.054

Telescope Parameters: TRES

γrel Relative RV Offset (m/s) −29.9+7.4
−8.6

σJ RV Jitter (m/s) 0.00+19
−0.00

σ2
J RV Jitter Variance −130+480

−140
Transit Parameters:
Planet Transit Date Added Variance Transit Mid Time Baseline flux

σ2 × 10−10 BJDTDB F0

b,c,d,g Full K2 LC 7.6+2.9
−2.7 N/A 1.0000035± 0.0000030

e K2 UT 2017-06-10 19+26
−18 2457915.44761± 0.00106 0.999981± 0.000016

f K2 UT 2017-06-14 10+21
−15 2457919.05628± 0.00088 1.000012± 0.000014

e K2 UT 2017-06-25 −3+15
−11 2457930.13813± 0.00101 1.000002+0.000013

−0.000012

f K2 UT 2017-07-04 25+26
−18 2457938.54211± 0.00108 0.999986+0.000016

−0.000017

e K2 UT 2017-07-10 16+25
−17 2457944.83597± 0.00137 0.999971+0.000016

−0.000015

f K2 UT 2017-07-23 54+41
−27 2457958.03343± 0.00112 0.999986+0.000020

−0.000021

e K2 UT 2017-07-25 13+21
−14 2457959.52590± 0.00090 1.000000+0.000014

−0.000015

e K2 UT 2017-08-08 30+26
−19 2457974.23919± 0.00114 1.000009± 0.000017

f K2 UT 2017-08-12 5+23
−15 2457977.50614± 0.00120 1.000007± 0.000015

Table 7.6 Median values and 68% confidence intervals for the additional parameters of HIP
41378 from EXOFASTv2.

7.5.1 Transit Timing Variations

The transit timing measurements for planets d and e listed in Table 7.5 can be used to derive

dynamical constraints on their masses and orbits. In this section, we invert the planet pairs’ TTVs

to infer their masses and, in combination with the planet radii derive from out light-curve fitting,

their densities. We model the planets’ TTVs using the TTVFast code developed by Deck et al.

(2014b) and use the emcee package’s (Foreman-Mackey et al., 2013b) ensemble sampler, based on

the algorithm of Goodman & Weare (2010), to sample the posterior distribution of the planetary

masses and orbital elements. We model only the dynamical interactions of planets d and e, and

ignore any perturbations from the other (potential) members of the system.6 We assume planets

d and e orbit in the same plane since small mutual inclinations have negligible influence on TTVs.

We approximate the mid-transit uncertainties to be Gaussian-distributed about the median transit

time determined by EXOFASTv2, with variances set to the larger of the two asymmetric error

bars in Table 7.6. Our likelihood function is then computed based on the standard chi-squared

6The variations induced by the additional planets in the system are expected to be negligible. For example,
assuming a 1 M⊕ planet c and circular orbits, it induces variations of less than 10 seconds in planet d’s transit
times. Allowing for modest eccentricities does not significantly enhance the induced TTVs. The influence of
the other additional planets is expected to be even weaker given as they are more widely separated and do
not fall near any significant resonances with d or e.
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statistic as lnL = −1
2χ

2. We impose a Gaussian prior with 0 mean and a variance of σ = 0.05 on

the eccentricity vector components, ei cosωi and ei sinωi, typical for eccentricities of multi-planet,

sub-Neptune systems (Hadden & Lithwick, 2014, 2017; Van Eylen & Albrecht, 2015; Xie et al.,

2016) We found that the inferred planet masses are insensitive to the assumed eccentricity priors

after running additional MCMC fits with σ = 0.025 and σ = 0.1. We initialize our MCMC with

200 walkers and run for 120,000 iterations, saving all walker positions every 1000 iterations.

Figure 7.7 shows the observed timing variations of planets d and e, along with N -body solutions

drawn from our MCMC posterior. From our TTV dynamical fit, we determine planet-star mass

ratios of md/M∗ = 3.9+2.5
−1.7×10−5 for planet d and me/M∗ = 6.3+2.8

−2.2×10−5 for planet e. The TTVs

yield no strong constraint on planet eccentricities and the posterior distributions largely mirror our

assumed priors. We convert the dynamical constraints on planet-star mass ratios to constraints

on the planetary masses and densities by combining the posterior samples from our TTV fit with

posterior samples of our fit to stellar mass and planet radii computed with EXOFASTv2. The

resulting posterior distributions of the planets’ masses and densities are plotted in Figure 7.8. The

inferred median and 1σ planet mass values are md = 8.4+5.4
−3.6M⊕ and me = 13.6+6.1

−4.7M⊕ and densities

are ρd = 2.7+1.8
−1.2 g/cm3 and ρe = 5.6+2.6

−2.0 g/cm3.

Our N -body dynamical model contains 10 free parameters which are fit to only nine data points.

This means that, at face value, our model is under-constrained and we are at risk of over-fitting.

To understand the origin of our dynamical mass constraints and ensure that they are not merely

the result of over-fitting, we analyze the TTVs using the analytic model of Hadden & Lithwick

(2016). This analytic treatment reduces the dimensionality of the TTV model so that it is no

longer under-constrained. Note that we adopt the masses derived from the more complete N -body

model as our best fit values; we present the analytic model simply as a consistency check to ensure

the N -body results are not over-fitting the data because of poor MCMC convergence.

We use the formulas of Hadden & Lithwick (2016) to construct an analytic model for the TTVs

of planets d and e as a function of planet periods Pi, initial transit times Ti, planet-star mass ratios

µi, and the complex ‘combined eccentricity’

Z ≈ 1√
2

(eee
iωe − edeiωd) . (7.1)
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The analytic model reduces the total number of model parameters to 8 by combining the planets’

eccentricities and longitudes of perihelia into the single complex quantity, Z. The nth transit of

planet d and e are modeled as

ti(n) = Ti + nPi + δtC,i(n) + δtF ,i(n) (7.2)

where δtC ∝ µ′, δtF ∝ µ′Z with µ′ the perturbing planet’s planet-star mass ratio. Expressions for

δtC and δtF are given in Hadden & Lithwick (2016). We use the Levenberg-Marquardt minimization

algorithm to fit our analytic model to the observed transit times and estimate uncertainties from

the local curvature of the χ2 surface (e.g., Press et al., 1992). The analytic fit, plotted in Figure

7.7, yields masses md/M∗ = 3.0± 0.8× 10−5 for planet d and me/M∗ = 4.6± 1.0× 10−5 for planet

e, which are consistent with the N-body MCMC constraints.

The origins of the mass constraint can be qualitatively understood from the analytic model as

follows: at conjunction, planets impart impulsive kicks to one another that change their instanta-

neous orbital periods. This effect is captured by the so-called ‘chopping’ terms, δtC , in Equation

(7.2) (see also Nesvorný & Vokrouhlický, 2014; Deck & Agol, 2015). Indeed, we obtain nearly

identical mass constraints from an analytic fit that drops the δtF terms from Equation (7.2) (and

thereby further reduces the number of free parameters to 6 as the model no longer depends on the

complex number Z). Because these δtF terms vary over a timescale much longer than the baseline

of our observations, they are well-approximated by a linear trend and essentially degenerate with

small changes to the Ti + nPi terms in Equation (7.2). Thus, we have identified the the origin

of our mass constraints with the measurement of the chopping signals, δtC,i, in d and e’s TTVs.

Over the course of our observing baseline, planet d and e experience a single conjunction, at the

time marked by a dashed line in Figure 7.7. The power of the TTV signal for constraining the

planets’ masses comes mainly from the impulsive changes in the planets’ osculating orbital periods

experienced at this conjunction causing the planets to arrive early (in the case of e) or late (in the

case of d) at their next transits.
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Figure 7.7 Observed TTVs for Planets d and e. The observed transit timing variations of
planet’s d and e are shown by black squares with error bars showing the 1σ uncertainties.
A sample of 100 N -body solutions drawn from our MCMC fit posteriors are shown in gray.
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7.5.2 Dynamical Stability and Transit Likelihood

Next we consider the dynamical stability of the system, along with the probability that all of

the putative planets can be seen in transit. Although most Kepler multi-planet systems tend to

have low mutual inclinations, this system is unique to date because there is a significant mutual

inclination between the innermost planet and the other five. In the context of the known set of

multi-planet systems, this appears significant. Ballard & Johnson (2016b) found that the Kepler

planet-hosting systems around cool stars appears to be drawn from two populations: a set of multi-

transit systems and a second set of single-transit planets, which may also have statistically higher

obliquities Morton & Winn (2014c) (this concept of these two populations is commonly called

the ‘Kepler dichotomy’). One solution to the Kepler dichotomy is that the two populations are

actually all multi-planet systems, and that the ones that appear to be singly-transiting are systems

with larger mutual inclinations, which can see seen as single-transit systems from a particular line

of sight. Although most Kepler multi-planet (4 planets or more) are fairly tightly confined to

a roughly coplanar region, there is some precedent for multi-planet systems: Mills & Fabrycky

(2017b) found a two-planet system with a 24 degree mutual inclination. In cases like this, the

question of how many planets in a multi-transiting system might be seen in transit at any one time

becomes relevant (Brakensiek & Ragozzine, 2016b), as large mutual inclinations can lead to only

a subset of the planets being seen from a given line of sight. K2-266 b is currently observed to

have a grazing transit and a high mutual inclination with the remainder of the planets, the five of

which reside in a roughly coplanar configuration. With an aim towards assessing where this system

fits into the Kepler dichotomy, we in this section conduct an analysis of the transit likelihood for

various numbers of planets in this system.

To test the dynamical and transit stability of these planets, we ran 250 N-body simulations of

the system, drawing the initial orbital elements from the posteriors generated from the EXOFAST

transit fit (more specifically, we draw a single link from the MCMC posterior at random for each of

the 250 simulations, and then use all orbital elements from that link). We assigned the longitude

of ascending node to be 2π, as it cannot be measured from the transit fits. The planetary masses

are drawn from the posteriors provided by the EXOFAST fit, as are stellar mass and radius.

For all calculated values of inclination, we broke the above/below solar mid-plane degeneracy by
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randomly assigning the value to be either greater or smaller than 90 degrees. We also assume

that the stellar obliquity is aligned with the plane containing the outer five planets (but there are

no system-specific observations to support this assumption; instead, we make this assumption as

a computational necessity, although we expect the stellar obliquity to be more aligned in multi-

planet systems; Morton & Winn 2014c). These 250 simulations were carried out using the hybrid

Wisdom-Holman and Bulirsch-Stoer (B-S) integrator Mercury6 (Chambers, 1999c) for integration

times of 105 years, and with an initial time-step of 8.5 minutes. Energy was conserved to better

than one part in 108 over the course of the simulations. When physical collisions occur, particles are

removed from the simulation. The integration time was chosen to include many secular timescales

of the system (Figure 7.9 shows that many periods of secular oscillations are included in 105 years

time span).

In roughly 66% of our suite of 250 simulations, at least two planets in the system attain orbits

which cross. In 23% of the simulations, the system experiences a true dynamical instability, in

which a planet is ejected from the system or physically collides with another body. In the cases in

which orbits cross, planets 0.02 and c are the culprits of the instability roughly 80% of the time.

On the 105 year integrations considered in this work, a size-able fraction (roughly a third) remain

dynamically stable. As such, we cannot use dynamical arguments to argue against the existence of

planet candidate 0.02, whose close orbit with planet c might otherwise be suspect.

As neither of the planet candidates can clearly be ruled out based on dynamical arguments, we

next consider the dynamical evolution that leads to only a subset of the six known planets being

seen in transit. We currently observe the system to be a six-planet system, but the innermost

planet K2-266 b has a high measured impact parameter, meaning that is barely transiting. The

simulations show significant inclination evolution over time for both K2-266 b and the other planets

in the system. In Figure 7.9, we plot a representative case from our set of 250 simulations, where the

semi-major axes and eccentricities of all planets remain confined relatively close to their currently-

measured values, but the orbital inclination of all six planets evolves.

One notable feature of the numerical simulations is the inclination evolution of all six planets.

Secular evolution of the system causes the planetary orbits to evolve with time, resulting in config-

urations in which not all planets can be seen in transit simultaneously. Inspired by the present-day
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Figure 7.9 Sample N-body Integration for K2-266. A sample integration from the suite of 250
run for this work, plotted for illustrative purposes. A typical dynamically stable integration,
where planetary orbits do not wander far from their initial values of semi-major axis or
eccentricity. (top panel) The semi-major axis of each planet, with shaded regions to denote
the extent of the perihelion and aphelion distances. (middle panel) The eccentricity evolution
of each planet, which oscillate but remain confined near their initial values. (bottom panel)
Inclination values for each planet. The inclination values for all planets oscillate with varying
amplitudes, as is typical for all integrations.
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(apparently serendipitous) geometry, we extracted from the simulations the transit probability over

time for varying numbers of planets in this system. The result of this analysis is presented in Figure

7.10 for two lines of sight. The first case considers the fixed line of sight corresponding to our cur-

rent location (that of the Solar System). The second case uses an optimized variable line of sight,

which is re-computed at each time-step of each integration to determine the largest multiplicity

that can be observed from any location in the galaxy.

This analysis shows that observing six transiting planets in the system is rare given the known

components of the system. No matter which line of sight is considered, the system will appear to

contain the six ‘known’ planets a minority of the time. More commonly, the system will be seen

as a five-planet system from the most favorable line of sight, and as a one- or two-planet system

from our current line of sight. Most of the time, the inclinations of the outer five planets evolve

and cause them to reside in non-transiting configurations. On the other hand, the probabilities are

not vanishingly small. We expect to be able to re-observe a six-planet transiting system about 2.2

percent of the time in the future from our current line of sight, given the currently measured orbits

of these planets. It is also important to note that we cannot be sure that the observed six planets

are the only planets in this system: additional, non-transiting planets would alter the dynamics

described here.

7.5.3 Resonant state of the two sub-Neptunes

The sub-Neptunes K2-266 d and e, with periods of 19.482 days and 14.697 days, have a period

ratio of 1.326, which is 0.59% away from the 4 : 3 mean motion commensurability. These planets

reside in nearly the same orbital plane (with 89.73 and 89.74 degree inclinations). As such, the

orbital periods of these planets suggest that they may reside in orbital resonance. However, true

resonance is characterized by a librating resonance angle, and it is not clear from the orbital elements

alone whether the resonance angle will librate or circulate. To determine the true resonance behavior

of these two planets, we used the subset of the 250 simulations which did not experience orbit-

crossing during the 105 year integation time, and post-process the results to search for resonances.

We have performed a resonance-finding algorithm to identify the time intervals in the simula-

tions where the planets were in true resonance. We found regimes with nearly constant period ratio
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Figure 7.10 [Transit Probability by Planet Count. The future simultaneous transit fraction
by the number of planets seen in transit. These fractions were computed using the numerical
simulations for two lines of sight: a fixed line of sight (Fixed LOS), set to be the current
line of sight from the earth, and a variable line of sight (Variable LOS), computed at each
time-step to be the line of sight from which the greatest number of planets can be seen in
transit at any time. The simulations used to construct this plot are the subset of the 250
simulations run in this section. Given the measured orbital elements of the planets around
K2-266, the system is expected to be observed as a six-planet system a minority of the time
(assuming there are no extra unseen planets in the system).

(constant Pe/Pd), generated arrays of resonance angles for all p : q resonances up to 29th order

(while p ≤ 30), and automatically generated plots using the simulated orbital elements of planets

K2-266 d and e for each resonance angle for each resonance order for all of the 250 simulations.

Using the resulting resonance angles, we searched for librating behavior by breaking the time series

into 5000 year intervals and searching for gaps in resonance angle space: Note that a circulating

resonance angle will populate the entire 360 degree range of possible angles, whereas a librating

angle will have gaps.

We find that in our simulations, planets K2-266 d and e exhibit orbital resonances approximately

8.1% of the time over the simulations under consideration. The resonance angles populated in these
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cases have the forms

ψ1 = 4λo − 3λi −$o , (7.3)

and

ψ2 = 4λo − 3λi −$i , (7.4)

where λ is mean longitude and $ is longitude of pericenter. The subscripts denote the inner (i)

and outer (o) planets. The four types of resonance behavior exhibited by this system, in order of

occurrence rate, include: non-resonance, continuous resonance for the entire simulation lifetime,

an initial condition close to resonance that loses the resonance as the system evolves, and very

rarely, the attainment of a resonance after an initial period of non-resonance (see Ketchum et al.

2013b for a more detailed discussion of this process). We find that for trials that start out in a

resonant configuration, the typical libration width of the resonance is generally consistently around

190 degrees. Although this width may evolve slightly as the simulation progresses, the resonances

are not typically much deeper than this initial value.

Two examples of resonant behavior exhibited in our simulations are shown in Figure 7.11. The

top panel shows results from a simulation where both planets reside in resonance for the entire 105

year integration; the bottom panel shows a simulation where K2-266 e and f start in resonance, but

leave the resonance after roughly 45,000 years.

7.5.4 Chaotic Behavior

Dynamical systems are often chaotic and we would like to quantify the chaotic behavior of

K2-266. The system, as observed, has six planets in a compact configuration with a relatively

large mutual inclination between the innermost planet and the others. Our numerical simulations,

described above, indicate that while the outer planets (K2-266 d, e, and .06) are generally dynam-

ically stable, the middle planets (K2-266.02 and d) can experience scattering or other non-periodic

time evolution, potentially leading to orbit crossing. Non-periodic behavior of this nature can be

indicative of chaos.

The evolution of a chaotic planetary system is extremely sensitive to its initial conditions.

Chaos is often parameterized by the Lyapunov exponents of the system, which determine the rate
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Figure 7.11 Resonance Angle over Time while in Resonance. The evolving resonance angles
for two sample integrations for the two super-Earths, drawn from the suite of 250 integrations
run with Mercury6. Initial orbital parameters drawn from the posteriors generated from
the transit fit, and all six planets were included in the integration. These two frames are
characteristic of two of the four types of resonant behavior exhibited by this system: in the
top panel, we plot a stable resonance for the entire 105 years of the integration, as exhibited
by its librating resonance angle; in the bottom panel, we plot a trial that begins in resonance,
and then nods out of resonance during the evolution of the system. The third case, total
non-resonance for the entire time of the integration, is not plotted (but is characterized by
circulating resonance angles). The fourth case, initial non-resonance followed by temporary
attainments of resonances, is extremely rare and also not plotted here.

of exponential divergence of orbits with similar initial conditions. In contrast, general observational

uncertainties in the orbital elements can also lead to non-chaotic divergence if initial orbital elements

are drawn from different locations of the posteriors (in cases where ensembles of simulations are

used to sample the uncertainties). Either sufficiently large observational errors or the sufficiently

rapid onset of chaos will thus make both numerical integrations and analytic explorations less
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certain.

To test the chaotic behavior of the K2-266 system, we ran 400 integrations of this system,

with the orbital parameters and masses drawn from the posteriors generated by the transit fit.

Each simulation was carried out using the Rebound N-Body integration package (Rein & Liu,

2012), where we used a total integration time of 1000 years, the IAS15 integrator (Rein & Tamayo,

2015b), and an initial time-step of 8 minutes. For each of these integrations, we evaluate the chaotic

nature of the initial conditions by employing the Mean Exponential Growth factor of Nearby Orbits

(MEGNO) indicator (Cincotta et al., 2003), implemented in the Rebound N-body code. For chaotic

trajectories, the MEGNO indicator, Y , grows linearly in time at a rate of 1/tLy where tLy is the

Lyapunov time, while for regular trajectories it asymptotically approaches Y = 2. We compute

MEGNO values for the 400 draws from the posteriors of this system at times between 1 and

1000 years. These realizations provide a good sample of the parameter space spanned by the

observational posteriors. Of the 400 realizations, only 4.5% can be categorized as unambiguously

regular at the end of the integration (where the criterion for regularity is taken to be MEGNO< 4).

Moreover, we find no strong correlations between planetary parameters and MEGNO values using

our current simulation set. We attempted to trace chaotic behavior using the period ratio of the

resonant planets d and e (as done in Figure 3 of Deck et al. 2012), the ratio perihelion/aphelion of

.02 and c, and by using the orbital elements of planet b, but no trends emerged. This finding is likely

due to the high multiplicity and tightly packed nature of the system: there are multiple equally-

important sources of dynamical chaos. In Figure 7.12, we plot the median MEGNO indicator value

for these 400 simulations considered in this section at periodic intervals in the 1000 year integrations.

A MEGNO indicator less than 4 denotes regular orbits, while a MEGNO of 4 or greater denotes

measured chaos. The median MEGNO indicator reaches 4 (denoting the measurable onset of chaos)

at roughly 100 years.

From this MEGNO analysis, we know that the majority of orbits allowed by the transit posteri-

ors are chaotic. It is important to note that, while some of these chaotic posterior points are likely

destined to experience instabilities based on our 105 year numerical simulations, a chaotic system

does not necessarily mean a dynamically unstable system, or even a particularly active system (the

planetary orbits in our solar system are known to be chaotic, as is the Kepler-36 planetary system,
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Figure 7.12 Median MEGNO Indicator. The median MEGNO indicator value as a function of
time during the thousand-year Rebound integrations (among 400 realizations). The median
value reaches Y = 4, indicating chaotic behavior, after only 100 years. The light blue shaded
region delineates the quartile values of the MEGNO indicator. For the majority of posterior
draws, this system is thus highly chaotic.

Deck et al. 2012). Chaos implies that similar initial conditions will diverge over some time scale,

so that precise future predictions of planetary orbits can no longer be made. Specifically, for two

given sets of similar initial conditions, integrations of both cases could result in systems that are

dynamically stable and continuously transit, but the values of the phase space variables (including

planet locations) can diverge over time if the system is chaotic. One implication of this analysis

is that a large amount of uncertainty in forward integrations comes from chaos, rather than only

from the uncertainty of the transit posteriors.

7.6 Discussion

The complex architecture of the planetary system surrounding K2-266 makes it an intriguing

target for further characterization. Additionally, the host star is relatively bright (V=11.8, K=8.9)

and up to 6 planets orbit the host star in a compact configuration. At the present time, we are

only able to validate planets b, c, d, and e, so that more data is needed to confirm the remaining

two candidates.
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7.6.1 Atmospheric Characterization

The origin of Neptune sized planets is not clear, yet they appear to be one of the most common

types of planets. The planets range in size from 2-6R⊕ and have been discovered orbiting>25% of all

stars (Howard et al., 2012b; Fressin et al., 2013b; Buchhave et al., 2014b; Fulton et al., 2017). Recent

statistical studies of the observed amplitude of transmission spectral features of warm Neptunes

show a correlation with equilibrium temperature or its bulk H/He mass fraction (Crossfield &

Kreidberg, 2017b). However, there are only a small number of Neptune sized planets that are

amenable to transmission spectroscopy with current facilities like the Hubble Space Telescope (HST).

To understand if the planets orbiting K2-266 would be viable targets for transmission spectro-

scopic measurements, we follow the technique described in Vanderburg et al. (2016c) to calculate

their expected atmospheric scale height and signal-to-noise (S/N) per transit. Using data from

NASA’s Exoplanet archive (Akeson et al., 2013c), we also calculate the atmospheric scale height

and S/N for all planets with Rp < 3R⊕(see Table 7.5), updating this table from Rodriguez et al.

(2018b). The calculations are done in the H-band to understand their accessibility using the Wide

Field Camera 3 instrument on HST, as well as the future feasibility to observe them with the

suite of instruments on the upcoming James Webb Space Telescope (JWST). Purely based on the

inferred sizes of the planets, it is expected that K2-266 b, d, and e might all have thick gaseous

atmospheres (Weiss & Marcy, 2014c), but the uncertainty in the size of planet b (due to the grazing

transit configuration) and its proximity to its host star makes this unclear (see Figure 7.6 for the

probability distribution of planet b’s radius from our global fit). While our transit fit indicates that

the most probable size of planet b is about three times the size of the Earth, virtually all known

ultra-short-period planets known are smaller than 2 R⊕ (Sanchis-Ojeda et al., 2014c; Winn et al.,

2017b)

K2-266 b is a particularly interesting target for atmospheric followup because of its status as an

ultra-short period (USP) exoplanet. Lopez (2017) suggests that in order for USP planets to have

radii larger than ∼ 2R⊕, they should have formed with high-metallicity, water-rich envelopes, and

are likely to remain water-rich today. In addition, the theoretical models of Owen & Wu (2013) and

Owen & Wu (2017) suggest that planets with the radial size and orbital period of K2-266 b reside

near the boundary in parameter space where photoevaporation becomes an important source of
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mass loss. In addition, if K2-266 b has a typical magnetic field strength, its close proximity allows for

interactions between the magnetospheres of the star and the planet (Adams, 2011). Combinations

of mass measurements of K2-266 b, refined radius measurements, and atmospheric constraints on

water abundance could be used together to paint a complete picture of where in the disk this planet

originated and when it reached its current-day location.

K2-266 d and e are two of the best sub-Neptune sized planets for atmospheric characterization

and their longer periods (as compared to the others in Table 7.5) provide a valuable opportunity for a

comparative atmospheric study between hot and warm sub-Neptune sized planets. Interestingly, the

Near-IR and IR brightness of K2-266 should allow for high S/N observations using short exposure

time for all four instruments on JWST: Near Infared Camera (NIRCam), Near Infrared Imager

and Slitless Spectrograph (NIRISS), Near-Infrared Spectrograph (NIRSpec), and the Mid-Infrared

Instrument (MIRI) (Beichman et al., 2014; Kalirai, 2018).

7.6.2 Dynamical Classification

The dynamics of the K2-266 system is characterized by several remarkable features: The in-

nermost planet (K2-266 b) is highly inclined relative to the rest of the planets, the orbits of planet

candidate K2-266.02 and validated planet K2-266 c are in close proximity, the two sub-Neptunes

(K2-266 d, e) are either in or extremely close to a mean-motion resonance, and the outer candi-

date K2-266.06 has a moderately eccentric orbit. Taken together, these factors place the planetary

system orbiting K2-266 in a particularly unique realm.

Among the exoplanetary systems discovered thus far, only a small number have been determined

to be in true resonance (Rivera et al., 2010; Lissauer et al., 2011b; Carter et al., 2012b; Barclay

et al., 2013; Mills et al., 2016; Luger et al., 2017; Shallue & Vanderburg, 2018; Millholland et al.,

2018). From our numerical simulations initialized with orbital elements from the transit fit, we

find in the stable simulations in which no planetary orbits cross, planets K2-266 d and K2-266

e are in true resonance for 8.1% of the time, as characterized by a librating resonance angle.

This significant fraction makes K2-266 another member of the short list of stars hosting systems

containing potentially resonant exoplanets. Additional transits, which will improve orbital period

precision, would enable future refinement of this resonance fraction.
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From the time-evolution of the MEGNO indicator, we find that the average draw from the

posterior becomes noticeably chaotic after roughly 100 years. The high mutual inclination between

validated planet K2-266 b and the rest of the planets is also intriguing. As shown in Figure 7.10,

because of the high present day inclination of K2-266 b, this system is rarely (perhaps 5 percent

of the time) in a configuration where all six planets can be seen simultaneously from our current

line of sight. A smaller number of planets are expected to be seen in transit most of the time.

Similarly, it is possible that the system hosts more than six planets, but we are seeing only six

of them in transit at the current epoch. Tighter limits on the planetary posteriors will allow for

a more precise determination of the future transit probability for each (known) planet, and will

place constraints on any additional bodies in the system. In future work, a numerical survey of the

parameter space subtended by the measured posteriors might allow for additional constraints on

planetary parameters based on dynamical stability limits.

The formation of misaligned orbits, such as that of K2-266 b, remains an open problem. Petro-

vich et al. (2018) proposes that most ultra-short period planets form through non-linear secular

interactions (“secular chaos”). In this scenario, the proto-USP starts with an orbital period of

5−10 days, is excited to high eccentricity, and is subsequently tidally captured onto a short-period

orbit. Note that the process that leads to high eccentricity (e.g., planet-planet scattering) could

also produce inclined orbits. As a result, one potential signature of this process could be a high

mutual inclination for the USP relative to the other planets, as seen in this system. However, most

companions to a USP generated in this manner would generally have orbital periods of 10 days or

larger, whereas the K2-266 system has two planets with shorter periods of only 6 and 7 days. For

this secular chaos mechanism to form this system, the 6- and 7-day planets would need to migrate

inward after the eccentricity excitement and subsequent circularization of the USP; yet, as K2-266

b may have an un-evaporated atmosphere based on current radius estimates, a dynamical history

allowing it to form further from the star (subject to less photoevaporation) seems favorable.
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7.7 Summary of Planet Discoveries

We present the discovery of up to six planets transiting the bright (K=8.9) nearby (∼78 pc)

star K2-266 (EPIC248435473). From a global model where we simultaneously fit all six planetary

signals, we find that the six planets have periods between 0.66 to 56.7 days, and radii of 0.65 to 3.3

R⊕. From analyzing transit timing variations, we are able to confirm the two warm Neptunes (d

& e), constraining their masses to be md = 8.9+5.7
−3.8M⊕ and me = 14.3+6.4

−5.0M⊕. Additionally, we are

able to validate the planetary nature of planets b and c. Future followup observations should aim

to confirm the transits of K2-266.02 and .06 through high photometric precision observations with

facilities like NASA’s Spitzer Space Telescope. Our analysis shows that the inner ultra-short period

planet, K2-266 b, has an inclination of 75.3 degrees while the other five planets are consistent with

an inclination between 87–90 degrees. This corresponds to a mutual misalignment of >12.5 degrees

which may indicate that planet b did not form in the same way as the others. The brightness of K2-

266 combined with the relatively large size of the sub-Neptune planets d and e make them great

targets for atmospheric characterization observation with current facilities like HST and future

facilities like JWST.

7.8 Explaining the Misalignment in the K2-266 Planetary System

In Chapters III and IV of this thesis, we modeled how the inclination evolution of an inner

system of multiple planets changes in the presence of an outer pertruber. In the case of WASP-47

(Chapter IV), the perturbing extra planet was real (WASP-47c), while in the case of the Kepler

compact systems (Chapter III), the perturbing planets were hypothetical. For all those systems, the

effect of the perturbers was destabilizing: the extra angular momentum provided by the companion

resulted in a greater spread in inclinations.

In particular, in Figure 2.10 of Chapter II, we showed that systems with a higher surface density

of planetary mass (defined as the mass of the planets spread out over an annulus the distance of

the inner to outer planets) are more susceptible to perturbations.

The K2-266 system of validated planets (b, c, d, and e; from this point forwards, we do not

include .02 and .06 in our analysis since they are not yet validated planets) has a surface density

269



(computed using Equation 2.19) of 2782.059 M⊕ / AU2 for its median posteriors. This is by far

the highest value of any Kepler STIP, with a large amount of the mass being contributed by the

inner ultra-short-period planet. The Kepler STIPs, in comparison, have surface densities ranging

from ∼ a few to ∼ 850 M⊕ / AU2 (again, see Figure 2.10).

This high surface density, combined with the result from Chapter II that it tends to be easier

to perturb systems with high surface densities out of mutually transiting configurations, indicates

that were the K2-266 system to be perturbed in such a way, it might lose its mutually transiting

configuration. Clearly, due to the misalignment between the K2-266 b and the other known planets,

something has excited different rates of inclination evolution for the inner planet compared to the

outer ones.

One explanation for this misalignment consistent with the spirit of Chapter III is that an addi-

tional unseen companion resides in the K2-266 system. In that case, the strength of its dynamical

coupling could vary between each of the inner planets, potentially resulting in different inclination

evolution amplitudes for the inner planets and even causing the observed misalignment.

The companion needed in the K2-266 system would need to both create a misalignment between

the inner ultra-short-period planet K2-266 b and the other planets, but also keep the other planets

(c, d, and e) confined to a plane small enough that they all transit and appear as coplanar as they

do in the transit data described in the previous section. We next turn our attention to whether

such a companion can exist.

7.8.1 Deriving Perturbing Planet Parameters: General Techniques

There are two ways to tackle this problem: secular theory and numerical N-body simulations.

In this section, we describe the ways that we will utilize both to derive the companion parameters

that would recreate the observed geometry of K2-266.

7.8.1.1 Secular Theory

The secular model we use here is similar to that of Chapter II, with one major change: where

before we neglected the oblateness of the central body, we now add quadrupole moment J2 into the

disturbing function, as follows. The general form of the disturbing function remains:
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What was once Equation 2.2 now becomes:
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j = nja

2
j

[
1

2
BjjI

2
j +

N∑
k=1

(BjkIjIk cos (Ωj − Ωk))

]
, (7.5)

where as before, j is the planet number, n is the mean anomaly, I the inclination, ω the argument

of pericenter, and Ω is the longitude of the ascending node.

The form of coefficients Bij changes, as we introduce a dependence on solar oblateness:

Bjj = −nj
[

3

2
J2

(
Rc
aj

)2

− 27

8
J2

2

(
Rc
aj

)4

− 15

4
J2

4

(
Rc
aj

)4

+
1

4

∑ mk

Mc +mj
αjkᾱjkb
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and

Bjk = nj

[
1

4

mk

Mc +mj
αjkᾱjkb

(1)
3/2(αjk)

]
, (7.7)

where J2 and J4 describe the oblateness of the central star (the quadrupole and octopole moments

respectively), Rc is the stellar radius, mk indicates the mass of the kth planet, Mc denotes the mass

of the central star, αjk denotes the semi-major axis ratio aj/ak, and ᾱjk denotes the semi-major

axis ratio aj/ak < 1. The quantities b
(1)
3/2 is the Laplace coefficient.

Otherwise, the procedure of solving these equations proceeds identically as in Chapter II. The

reason that we introduce these terms into the disturbing function is that for ultra-short-period

planets, the contribution of the stellar quadrupole field becomes significant. K2-266 b’s extremely

short orbital period (0.66 days) places it squarely in the regime where this effect is more important.

To construct the inclination time-series, we chose starting parameters for each planet equal to

the median value from the EXOFASTv2 posterior, including planets K2-266 b, c, d, and e in the

evolution. We ignore the candidate planets due to their unvalidated nature. Our choice of starting

parameters is an important distinction from previous work: for much of this thesis, we have sampled

starting parameters for simulations from the full range of the transit fit posteriors, with the goal

of better understanding the parameter space.

In an effort to reduce the number of degrees of freedom in the system and better understand the

effect of a companion, we choose to use the median posterior value for all measured planetary and

stellar parameters, meaning that the starting parameters are identical in all integrations except for
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the semi-major axis, inclination, and mass of the injected companion. Additionally, since the secular

theory presented here is to second order, inclination and eccentricity are decoupled, meaning that

the starting values of eccentricity do not affect the final result. We also draw the staring planetary

inclinations from a Rayleigh distribution with a width of 0.5 degrees (including K2-266 b), to

simulate the planets starting in a ‘normal’ STIP configuration typical to what we expect from the

Kepler data. We then allow the system to evolve forwards in the presence of the outer companion,

and measure the inclination over time.

7.8.1.2 N-body Integrations

Our second avenue of generating evolution time-series is by using numerical N-body simulations.

We use the Mercury6 N-body integration package (Chambers, 1999b), using the Bulirsch-Stoer (B-

S) integrator, requiring that system energy be conserved to 1 part in 109. For the simulations suites

presented in this work, we integrate the system for a total simulation length of 10,000 years, with

a time-step of 0.005 days (the short time step is needed since the orbital period of the inner planet

is so short). Importantly, the numerical timescale, being only 10,000 years, is not long enough to

resolve secular resonances.

In the N-body integrations, we include the validated planets (K2-266 b, c, d, e). For all star and

planet parameters, we taken the median value of the EXOFASTv2 posterior. To further simplify

the system and stay consistent with the secular integrations (in which eccentricity and inclination

are decoupled), we also set all planetary eccentricities to zero. We also draw the staring planetary

inclinations from a Rayleigh distribution with a width of 0.5 degrees as in the previous section.

To perform these computationally intensive simulations, we use the Open Science Grid (OSG;

Pordes et al., 2007) accessed through XSEDE (Towns et al., 2014).

7.8.2 Deriving Emergent Properties from Initial Parameters

The K2-266 has two apparent emergent properties:

• The plane of outer 5 candidate planets (3 of which are validated planets) is at present day

confined to a fairly narrow plane in impact parameters. The inclinations of these planets

range between 88.28 and 89.46 degrees.
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• The innermost planet, K2-266 b, has an inclination of 75.32 degrees, which is a significant

misalignment compared to the outer plane of planets.

Note that since the data on this system came from for all inclinations, the standard (above/below)

plane degeneracy applies: K2-266 b may have a true inclination of either ∼ 75 or ∼ 105 degrees.

In either case, the misalignment between the planes remains ∼ 15 degrees.

Running simulations (secular or N-body) as described above, starting the planetary inclinations

to all be drawn from a Rayleigh distribution measured the effect of the companion on the inclination

evolution of the other planets. Since we start the known planets in roughly the same plane, the

first of our two emergent properties is immediately satisfied (as it is in all the Kepler systems of

tightly packed inner planets). Over time, the presence of the companion may cause the evolution

of inclination of the inner planets. Simultaneously, the inner most planet’s oscillation mode is also

strongly affected by the stellar quadrupole moment. The potential result is that for a particular

type of companion, a strong dynamical coupling between the outer transiting planets and the

companions results in the evolution of their inclination relative to the inclination evolution of the

inner planet. When this occurs and simultaneously the outer plane of transiting planets remains

fairly tightly confined, the observed geometry of the system can be reproduced.

In the remainder of this section, we study the companion parameters that reproduce the above

geometry.

7.8.2.1 No Companion

We first check whether the two observed emergent properties can be recreated when the system

is started in a confined plane of inclinations (drawn from a Rayleigh distribution with a width of

1.4 degrees) and allowed to evolve forwards in the presence of only the known planets. We include

the stellar quadrupole moment and the effect of general relativistic precession, but do not include

a companion. The purpose of this analysis is to check whether the observed geometry is actually

as strange as it first appears, or if it is a natural consequence of the planetary parameters.

We run 100 N-body simulations using the parameters given in Section ??, and compare the

result with 1000 secular evolutions. In Figure 7.13, we plot a sample N-body integration, showing

the inclination evolution for the four validated planets as they evolve under the influence of GR
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Figure 7.13 N-body Evolution Without a Companion. The four validated planets in the
K2-266 system were evolved forwards in the known system, starting their orbits in a plane
with inclinations drawn from a Rayleigh distribution with a width of 1.4 degrees (Fabrycky
et al., 2014b).

and the stellar quadrupole moment (when J2 = 10−7). Although the secular period of the inner

planet K2-266 b is significantly different from the other planets, a misalignment as large as that

measured in the system today is not naturally produced in this trial.

The full results from the integrations are presented in Figure 7.14, and show that the maximum

plane size attained for all of these integrations is less than the 14 degree of observed misalignment

between the ultra-short-period planet and the other three planets. As such, the observed misalign-

ment cannot be reproduced in the system as observed when only the other known planets and the

effects of GR and stellar J2 are considered, and we must turn to another explanation.

7.8.2.2 Saturn-mass Companions

To begin, we assume that a Saturn-mass companion exists somewhere in this system. We

emphasize that the choice of a Saturn-mass companion does not come from any observational moti-

vation: there is no observational evidence that a companion of that size exists in the system; instead,
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Figure 7.14 Control Distributions of Orbital Inclinations. Here, we plot two normalized his-
tograms, both showing the maximum plane size for all planets (including the inner planet)
attained in each integration for test sets of 100 N-body integrations and 1000 secular solu-
tions. Even the maximum plane attained does not reproduce the observed misalignment.
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we merely test whether the presence of such a companion could create the observed misalignment

for the innermost planet.

The host star in the K2-266 system is 0.686 M�. Several stars in this mass range host planets

more massive than our tested companion (which is the mass of Saturn, or 0.3 M�): Kepler-45,

a 0.59 M� star, hosts a 0.5 Mjup hot Jupiter (Johnson et al., 2012); WASP-80, a 0.58 M� star,

hosts a 0.55 Mjup hot Jupiter (Triaud et al., 2013); HIP 57274, a 0.73 M� star, hosts a 0.4 Mjup

planet with an orbital period of 32 days, as well as two additional planets (Triaud et al., 2013).

Nature has shown that a ∼0.7 M� star can host a planet in the mass range 0.3 to 0.4 Mjup, even

in multi-planet systems.

To test the regime in which our injected Saturn-mass companion can reproduce both (1) the

coplanarity of the outer transiting planets, and (2) the misalignment of the ultra-short-period

planet, we perform a Monte Carlo study of the companion parameters space between (0, 90)

degrees mutual inclination with the starting plane of inner planets and a semi-major axis of (0.1, 2)

AU, by drawing a and i uniformly between those bounds and then evolving the system forward in

time for 10,000 years under the effect of a J2 = 10−7. In Figure 7.15 we plot two example outcomes.

We note that the 10,000 year integrations are not long enough to resolve the full secular cycle of

the system; see Section 7.8.4 for a discussion of how this might be a good extension to request in

revisions.

In Figure 7.16, we plot the possible parameter space that meets the following specific criteria:

• The plane of outer 3 validated planets (b, c, d) reside in a plane with a width of inclination

of less than two degrees for the entire integration time.

• The median of the misalignment between the innermost planet, K2-266 b, and the plane of

outer transiting planets is greater than 14 degrees.

as computed by both secular and N-body methods. The result is plotted in Figure 7.16. We note

that the secular solution spans a slightly larger parameter space, but the general area is the same for

both methods: companions with semi-major axis between 0.5 and 0.7 AU and inclinations spanning

the majority of the range of inclinations succeed in reproducing the observed geometry. This region

is defined by two boundary conditions: first, the companion must be sufficiently distant that it does
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Figure 7.15 Sample N-body Integrations with a Saturn-mass Companion. (left panels) Some
companion parameters do not recreate the observed observations due to (top left) a failure
to misalign the ultra-short period planet or (bottom left) an inability to keep the outer
transiting planets as coplanar as they are observed to be, while others (right panels) do
reproduce both the compactness of the outer transiting planets and their misalignment with
the ultra-short-period planet. The parameters of each tested companion are marked on
the plot. As evident from the plots, longer integrations are required to fully resolve the
parameters space in which companions could reside to recreate the observed system.
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Figure 7.16 Possible Parameter Space for a Saturn-Mass Companion. The measured planet
parameters of K2-266 are plotted as red points, while the companion parameters computed
as allowed by Monte Carlo N-body (blue) and secular (grey) models are plotted as points.
These solutions were generated with 10kyr integrations for both methods.

not perturb the outer transiting planets out of a narrow plane of inclination space; second, it must

be close enough that it causes those same planes to experience (coherent) inclination oscillations.

For all companions plotted here, the coupling with K2-266 b (the USP) is weak compared to K2-

266 b’s coupling with the stellar quadrupole moment, leading to its inclination evolution being

incoherent with the outer plane of transiting planets.

7.8.3 Implications

The results of Dai et al. (2018) show that planets with ultra-short orbital period populate a

larger fraction of the ‘transiting’ range of inclinations than do planets with slightly longer periods.

In inclination space, the outer system is planar, while inner systems in comparison tend to be more

puffy and fills the full allowable transiting parameter space. K2-266 fits this paradigm: K2-266
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with its grazing transit resides at the absolute maximum mutual inclination that is still observable,

while the outer system is very compact in vertical space.

Some authors have proposed dynamically hot mechanisms for generating these ultra-short-

period misaligned planets, such as secular chaos (Petrovich et al., 2018), which requires significant

eccentricities on the other nearby planets. The mechanism presented in this chapter provides the

observed misalignment, reproduces the observed compact nature of the outer transiting planets,

and does not require the excitation of eccentricity for any planets. Instead, our proposed mechanism

functions via decoupling the timescales of the inclination evolution for the outer transiting planets

(which are coupled strongly to the companion) and the ultra-short-period planet (which is coupled

strongly to the stellar quadrupole field).

This mechanism could also be at play in other systems hosting ultra-short-period misaligned

planets with multiple other transiting planets, a class of system only recently being discovered.

Rodriguez et al. (2018c) provided the first such discovery, and Quinn et al. (2019) detected a

potential second such system, with hosts five total planets / candidates with an ultra-short period

super-Earth at 0.52 days and 72.80 degrees inclination. The existence of companions could explain

the mutual inclinations in both of these systems.

7.8.4 Caveats

The majority of the integrations run in this section were only 10,000 years, which is not long

enough to resolve secular resonances or even full secular cycles for most companions. To fully

recover the long-term secular cycles, we probably need to run 100,000 year integrations at the

least, with longer integrations being preferable but computationally difficult.

In this thesis, we have only tested a 0.3Mjup companion. It would be useful to try other values

for the mass of the companion and observe how the resultant parameter space changes as a result.

We could also derive an analytic expression for the allowed companion parameter space.

We used the median values of the posteriors and fixed the eccentricities to 0 in order to save

on computation time. If the true planet parameters are slightly different from those used, the

location of the allowed parameter space for companions will vary. Similarly, if the companion

mass is different that the masses used here, the location of its (a,i) will change as well. This work
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demonstrates that a companion may cause the observed effects, but makes no guarantees about

the particular parameters of the companion.
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CHAPTER VIII

The Dynamical Evolution of the Most Extreme TNOs

in the Presence of Planet Nine

Results in this chapter were published in: Becker, J. C., Adams, F., Khain, T., Hamilton, S.,
& Gerdes, D. “Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence
of Planet Nine.” 2017, The Astronomical Journal, 154, 61 and are presented here with minor
revisions.

8.1 Introduction

In our solar system, a large population of small, rocky objects resides beyond the orbit of

Neptune, and the collective structure of this population is anomalous, exhibiting trends unexplained

by random chance. Many of these objects appear to occupy a region close to the plane containing

the eight known planets, leading to this region being called the Kuiper Belt. The existence of

these objects has implications for the formation mechanism of our solar system; however, we have

yet discovered only a small fraction of the objects orbiting beyond Neptune. Since the turn of

the century, many new objects have been discovered in the Kuiper Belt. The subset of objects

orbiting outside of Neptune’s orbit are called Trans-Neptunian objects (TNOs), and they often

have dynamically interesting orbits. In particular, some of these objects have large semi-major

axes and large perihelion distances, including, for example, Sedna (Brown et al., 2004), 2004 VN112

(Becker et al., 2008), 2010 GB174 (Chen et al., 2013), and 2012 VP113 (Trujillo & Sheppard, 2014).

When Trujillo & Sheppard (2014) reported the discovery of 2012 VP113, they also noted a

curious clustering in argument of perihelion for the population of TNOs with high-a, high-q orbits.
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The authors proposed that the high-q orbits could be generated in three ways: first, by the ejection

of a solar system body that left behind the observed clustering as a signature of its ejection;

second, through a stellar fly-by encounter that perturbed the orbits of some TNOs into their

current configurations (Morbidelli & Levison, 2004), where such interactions are relatively common

in the birth cluster (Li & Adams, 2015c); third, through the presence of an additional planet in the

solar system. Notably, this third mechanism could also explain the clustering of this population of

TNOs, as the proposed ninth planet’s repeated secular interactions with the shorter-period TNOs

could force the TNOs to keep their ω confined to be near either 0 degrees or 180 degrees (for

example, this could occur via the Kozai mechanism).

Batygin & Brown (2016a) also suggested the existence of an additional planet (Planet Nine),

which is differentiated from the potential planet discussed in Trujillo & Sheppard (2014) in the way

it interacts with the TNOs. The Batygin & Brown (2016a) version of Planet Nine functions by

explaining both the apsidal and ascending node alignment of a selection of objects in the Kuiper

Belt. The objects under consideration in Batygin & Brown (2016a) were two overlapping sets of

objects: first, those that have perihelion distance q > 30 AU and semi-major axis a > 150 AU,

while being dynamically stable in the presence of Neptune; second, any objects which have q > 30

AU and semi-major axis a > 250 AU, all of which exhibit clustering in $ (when $ is defined as

the longitude of perihelion, $ = ω + Ω). The orbit for Planet Nine presented in Batygin & Brown

(2016a) was a rough estimate, with semi-major axis a = 700 AU, eccentricity e = 0.6, inclination

i = 30 degrees, longitude of ascending node Ω = 113 degrees, and argument of perihelion ω = 150

degrees. The authors estimated the planet to have a mass of roughly 10 Earth masses, but all of

these orbit predictions were noted as approximate. This mass estimate was supported in a follow-up

effort by the predicting authors (Brown & Batygin, 2016), which placed constraints on the orbital

elements of the potential Planet Nine by using N-body simulations to determine which Planet Nine

realizations lead to clustered TNOs in simulations. In this work, the authors determined that a 10

Earth mass Planet Nine was more likely to recreate the observed clustering than a 20 Earth mass

Planet Nine.

The possibility of a new planet has led to a great deal of recent work, e.g., to evaluate the

likelihood of Planet Nine’s existence given the known properties of the Solar System. For example,
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Fienga et al. (2016) and Holman & Payne (2016b) examined the measured Earth-Saturn distance,

and determined that Planet Nine is likely to have a true anomaly near 117 degrees (based on the

upper limit to the amplitude of the residuals for that distance measurement). In complementary

work, Malhotra et al. (2016a) evaluated the potential resonant behavior that Planet Nine could

invoke in the population of long-period TNOs, and predicted that Planet Nine should have a semi-

major axis of a = 665 AU in order to support stability-boosting resonances. Other authors (Lawler

et al., 2016; de la Fuente Marcos et al., 2016) have examined the dynamical effects that Planet Nine

would have on the populations of objects that exist in the Solar System. Finally, additional work

was carried out to explain how Planet Nine would fit into our existing picture of the Solar System.

For example, multiple groups found that the existence of such a ninth planet can be invoked to

explain the six-degree obliquity of the sun (Bailey et al., 2016a; Lai, 2016; Gomes et al., 2016).

Several previous works have also suggested that the mechanism by which Planet Nine shapes the

orbits of the TNOs may be orbital resonances (Batygin & Brown, 2016a; Beust, 2016; Malhotra

et al., 2016a; Millholland & Laughlin, 2017).

The conclusion in Batygin & Brown (2016a) was based only on six of the (at the time) thirteen

discovered extreme TNOs. These six TNOs (2004 VN112, 2007 TG422, 2010 GB174, 2012 VP113,

2013 RF98, and Sedna) were chosen because they exhibit clustering in $ and have a > 250 AU,

meaning they are expected to be influenced by Planet Nine. Sheppard & Trujillo (2016) also

announced the discovery of two new objects (2014 SR349 and 2013 FT28) that also fit into the class

of objects used by Batygin & Brown (2016a) to predict the existence of Planet Nine. In order for

Planet Nine to be capable of forcing the orbits of the TNOs into aligned configurations, the TNOs

must remain dynamically stable on secular timescales, to allow apsidal alignment to occur. Objects

whose orbital elements are affected by short-period scattering events can be used to understand the

scattering event itself, but not the long-period, secular effects in the system. Numerical simulations

in Batygin & Brown (2016a) and Sheppard & Trujillo (2016) determined that some of the high

semi-major axis (a > 250) objects’ orbits change significantly over 1 Gyr timescales. They used

numerical simulations to evaluate the stability of these bodies in the presence of the four giant

planets, and found that some objects were not dynamically stable. If two of the six objects used

to infer the existence of Planet Nine are dynamically unstable (for example, being susceptible to
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scattering events) in the presence of Neptune, it is less likely that those objects could reside in their

current orbits long enough to be influenced by Planet Nine and become apsidally aligned via that

mechanism. de la Fuente Marcos et al. (2016) also found that the six aforementioned extreme TNOs

can become dynamically unstable on relatively short timescales in the presence of both Neptune

and the nominal Planet Nine, which could potentially prevent the observed apsidal alignment from

occurring on secular timescales.

Of course, dynamical stability is a function of timescale. The objects with perihelion distances

in the range 30-40 AU can be termed a part of the scattered disk (Lykawka & Mukai, 2007). The

objects in this population are characterized by repeated (potentially scattering) interactions with

Neptune (Nesvorný & Roig, 2001). An integration of the solar system run for an indefinite amount

of time (without the presence of Planet Nine) will eventually lead to all objects in the scattered disk

leaving the solar system. However, our solar system is only 4.5 Gyr old, and it does not take this

long for Planet Nine to align the TNOs into the pattern reported in Batygin & Brown (2016a). For

this reason, ‘dynamical stability’ in this work refers to objects which remain in orbits comparable

to their current orbits for 4.5 Gyr.

Sheppard & Trujillo (2016) reported two new TNOs in the regime of interest for consideration

of Planet Nine, and the population of discovered TNOs and Kuiper Belt Objects is rapidly growing.

The Canada-France Ecliptic Plane Survey (Petit et al., 2011), which ran from 2003–2007, detected

169 TNOs with a preference for larger TNOs (size R > 100 km). A 32-square-degree survey

running from 2011–2012 by Alexandersen et al. (2014) detected 77 TNOs. The Outer Solar System

Origins Survey (Bannister et al., 2016a), which is currently in progress, has thus far detected 85

TNOs. The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is intended

to discover comets and asteroids (particularly near-Earth objects), but has also found Kuiper Belt

Objects (Chen et al., 2016a) and giant planet Trojans (Horner et al., 2012; Guan et al., 2012; Lin

et al., 2016a). In addition to these dedicated Solar System searches, cosmological searches also

allow for the serendipitous discovery of foreground TNOs. For example, the Dark Energy Survey

has experienced great success in discovering TNOs and other solar system objects (Gerdes et al.,

2016a; Dark Energy Survey Collaboration et al., 2016a), including a new dwarf planet (Gerdes

et al., 2017a).
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This ever-growing population of TNOs will allow for increasingly stronger constraints on the

possible orbital elements of Planet Nine and its current location in the Solar System. These objects

will also provide a clearer picture of the dynamical regimes of bodies in the outer Solar System,

where these orbits are sculpted by Neptune on the inside and could be influenced by Planet Nine

from the outside.

In this chapter, we use as our sample the TNOs with a > 250 AU from Batygin & Brown

2016a and two newly discovered objects (announced in Sheppard & Trujillo, 2016) expected to

be dynamically stable in the presence of the solar system objects. We use N-body techniques to

simulate the behavior of these objects in the presence of Planet Nine to place limits on the possible

orbital elements (a, e) of Planet Nine. In Section 8.2, we describe the sets of simulations carried

out in this work and present some results. Our treatment uses a Monte Carlo sample of 1500

Planet Nine realizations, and thus extends most previous work, which generally considered only

a single nominal orbit or small number (generally N ≤ 3) of potential orbits. The simulations

enable us to estimate the mean lifetime of each TNO in the presence of each of the Planet Nine

realizations under consideration. In Section 8.3, we develop and provide a posterior probability

distribution for the most likely values (a, e) for the Planet Nine orbit, given that we observe the

eight TNOs in their current orbits. In Section 8.4, we discuss the different dynamical instability

mechanisms contributing to the potentially shortened lifetimes for the TNOs, and identify some

interesting differences between objects in our sample. In Section 8.5, we explore the relationship

between the period of our injected Planet Nine and the period of each TNO, and show that TNOs

living in dynamically stable configurations tend to attain integer period ratios with Planet Nine.

Remarkably, some TNOs do not remain in the same commensurability for their entire lifetimes;

instead, they transition between multiple near-resonant locations. The chapter concludes, in Section

8.6, with a summary of our main results and a discussion of avenues for future study.

8.2 Numerical Simulations of TNO orbital evolution in the pres-

ence of Planet Nine

Brown & Batygin (2016) provided a relative posterior probability distribution for the (a, e) of
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Planet Nine. This posterior was constructed using clustering arguments of the same type that were

used in Batygin & Brown (2016a) to predict the existence of Planet Nine. The logic used in both

these works can be summarized as follows: the observed TNOs’ orbits are aligned in physical space

(the longitudes of perihelion $ and longitudes of ascending node Ω are confined to a narrow range in

angles instead of uniformly populating all allowed angles), and the probability of this occurring by

chance is low, even accounting for potential bias in the observations. Numerical N-body simulations

of a selection of test-particles at varying orbital radii do not recreate the observed clustering unless

Planet Nine is included in the simulations; even then, some orbits of Planet Nine are more likely

to recreate the observed clustering than others. From a suite of numerical integrations, Brown &

Batygin (2016) predicted the combinations of (a, e) that were most likely to allow a population of

test particles that exhibited the observed clustering in longitude of perihelion.

The physical orientation of orbits is not the only observed physical property that can be mea-

sured from the known TNOs. The most basic property that the observed TNOs share is orbital

stability: although merely seeing the TNO orbits today does not ensure that they are dynamically

stable in those current orbits, the observed (Trujillo & Sheppard, 2014; Batygin & Brown, 2016a)

physical clustering of the orbit directions suggests that the orbits have been dynamically stable for

a long enough time for this alignment to develop. Whether or not the aligning agent is the theorized

Planet Nine, this alignment would have to have taken place over secular timescales, suggesting that

these TNOs must have been dynamically stable over such timescales.

The dynamical stability of these objects is thus a fundamental and necessary property. As such,

any allowable Planet Nine would have to allow the continued dynamical stability of the TNOs over

secular and solar system lifetimes. To evaluate the likelihood of any particular realization of Planet

Nine, we must evaluate the lifetimes of the TNOs in the presence of said Planet Nine.

8.2.1 Numerical Methods

To determine how the lifetimes of the TNOs vary in the presence of different combinations of

the semi-major axis and eccentricity of Planet Nine, we run a large number of numerical N-body

integrations, each including one potential realization of Planet Nine and the population of TNOs we

are testing. This population includes the six TNOs considered in Batygin & Brown (2016a) (2004
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VN112, 2007 TG422, 2010 GB174, 2012 VP113, 2013 RF98, and Sedna) and two additional objects

discovered by Sheppard & Trujillo (2016) (2014 SR349 and 2013 FT28) that appear to fit in the

same dynamical class as the previous six. The orbital elements of all eight objects in our sample are

reported in Table 8.1. The objects we consider in this work are those with semi-major axis a > 250

AU and perihelion distance q > 30 AU. This is a different sample, with a stricter semi-major axis

cut, than was originally used in Trujillo & Sheppard (2014) to identify the clustering effect (Trujillo

& Sheppard, 2014, used a > 150 AU). We limited the objects considered in this chapter to those

with a > 250 AU for three reasons: first, these are the objects which are found in Batygin &

Brown (2016a) to exhibit both confinement in the longitude of perihelion and in the longitude of

ascending node; second, these large-a objects exhibit a variability in semi-major axis (Batygin &

Brown, 2016a) that can potentially lead to dynamical instability; third, we expect the dynamics

of these long period orbits to be dominated by Planet Nine rather than by Neptune (Sheppard &

Trujillo, 2016).

We choose to explore the effect of Planet Nine’s a and e because the orbital angles of Planet

Nine are directly oppositional to those of (all but one of) the discovered ETNOs, and the current

location of Planet Nine can be estimated using other methods (for example, Fienga et al., 2016;

Holman & Payne, 2016b). For this work, the inclination and orbital angles of Planet Nine were

taken to be the nominal values presented in Batygin & Brown (2016a). The robust consideration of

a wider range of angles is beyond the scope of this work, but we report a basic reproduction of the

experiments of this work while allowing the orbital angles to vary in Appendix 9.9. We choose to fix

these angles for the remainder of the main manuscript for two reasons: first, to examine the effect

of (a, e), we take a cross section in the other angles in order to remove the degeneracies that would

be imposed by allowing these angles to vary; second, considering all orbital angles would be too

computationally intensive, so we choose the best values we can and proceed under the assumption

that altering these angles will not change the broad trends of the results.

To evaluate the dynamical stability (and thus, expected mean orbital lifetimes) of these eight

TNOs in the presence of Planet Nine, we ran 1500 numerical N-body integrations using the hy-

brid symplectic and Bulirsch-Stoer (B-S) integrator built into Mercury6 (Chambers, 1999b), and

conserved energy to 1 part in 1010. We replaced the three inner giant planets (Jupiter, Saturn
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and Uranus) with a solar J2 (as done in Batygin & Brown, 2016a). We included Neptune as an

active particle because the orbital motion of Neptune may induce scattering or resonant effects on

the TNOs, potentially leading to dynamical instabilities (rapid, drastic orbital evolution for the

TNOs). For each realization, we included each TNO with orbital elements drawn from observa-

tional constraints, sampling each orbital element from reported 1σ errors. Then, we integrated

each of the 1500 realizations forward for 4.5 Gyr using computational resources provided by Towns

et al. (2014). For data management, we used the pandas python package (McKinney, 2010).

Some of the TNOs (2013 RF98, for example) have very rough observational priors. Since we

are sampling from observational priors in the orbital elements we assign to these small bodies, the

lifetimes of these objects (compared to Sedna, whose orbital properties are much better constrained)

include the degeneracy of both Planet Nine and also of the TNO itself. This leads to smoothed

distributions, which are effectively convolutions of the true lifetimes with an uncertainty kernel

including the errors of the measured orbital properties of the object.

The final result of these simulations is 1500 measures of dynamical lifetime for each object,

which can be plotted on a (a, e) grid as shown in the top panel of Figure 8.1 (which shows the

points for 2012 VP113). We do not expect the lifetimes to form a smooth function for several

reasons: first, for each object, we draw orbital parameters from observational priors, resulting in

some expected scatter in results for even a single Planet Nine realization; second, chaotic effects will

cause scatter in outcomes between realizations. For that reason, we must run enough simulations

that we can treat the averaged value from all results near a Planet Nine (a, e) point as a good

average of the behavior that a given Planet Nine would engender.

We construct the contour plots in Figure 8.2 and Figure 8.4 by using a polyharmonic spline

(from Jones et al., 2001) to smooth and interpolate between the points generated by our Monte

Carlo simulations. We investigated the effects of different interpolation methods, and found that

for our sample size (N ∼ 1500 realizations), the interpolation scheme does not drastically affect the

final result. However, it is important to note that when we attempted to use N ∼ 100 realizations,

the results varied drastically between different interpolation schemes. Since our sample size does

not show such variations between methods, we consider the (a, e) parameter space well-sampled.

Figure 8.1 demonstrates the smoothed two-dimensional lifetime function and provides a comparison
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polyharmonic spline 

Figure 8.1 Converting Simulation Results to a Stability Heat Map. (Top panel) The points
for one object in our sample, 2012 VP113, which are color coded by the amount of time the
system remained dynamically stable. (Bottom panel) The same points, turned into a contour
plot by use of a polyharmonic spline. The contour plot allows for easier comparison of the
posterior for each object, and visualizes the interpolation up for the Monte Carlo sampling.
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Figure 8.2 Lifetimes of TNO by Planet Nine Properties. Individual contour plots of the
lifetimes of each of the eight TNOs considered. The lifetime plots do not exhibit the same
general trends, indicating that the different objects may be members of different dynamical
classes of objects. Table 8.1 presents the complete list of their orbital properties; the title of
each subplot here is the short name of the object it portrays.

to the raw points for one object (2012 VP113) in our sample. Analogous plots (not presented) can

be constructed for each of the eight objects in our sample.

8.2.2 Numerical Results

The results of the simulations are plotted in Figure 8.2, which presents contour plots for the

expected orbital lifetimes of the eight TNOs in the presence of various realizations of Planet Nine.

The main results that we get from this experiment fit into three categories: we affirm the potential

stability of all eight TNOs in the presence of Neptune and Planet Nine, we find that different TNOs

prefer different parameter spaces of Planet Nine, and we examine the fate of the TNOs that do go

dynamically unstable.

Stability of TNOs. For all objects in our sample, there are realizations of Planet Nine that

allow them to remain dynamically stable for the lifetime of the solar system. Here, dynamical

stability requires that a TNO remain within 100 AU of its starting orbit, and not experience

collisions with the planets or central body. This value of 100 AU was chosen from examination of
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Object a (AU) e i (deg) ω (deg) Ω (deg) % Stable δ̄t
1

2003 VB12 499 0.85 11.92 311.5 144.5 45.3% 300 Myr
2004 VN112 318 0.85 25.56 327.1 66.0 28.4% 625 Myr
2007 TG422 482 0.93 18.59 285.8 113 14.6% 1.24 Gyr
2010 GB174 371 0.87 21.54 347.8 130.6 17.9% 1.03 Gyr
2012 VP113 261 0.69 24.06 292.8 90.8 56.5% 9 Myr
2013 RF98 325 0.88 29.61 316.5 67.6 18.7% 1.01 Gyr
2013 FT28 310 0.86 17.3 40.2 217.8 19.9% 709 Myr
2014 SR349 288 0.84 18.0 341.3 34.8 18.1% 917 Myr

Table 8.1 Stability of ETNOs in Presence of Neptune and Planet Nine. A list of the TNOs
used for the dynamical survey. The dynamical stability of each object was evaluated using
a suite of numerical N-body simulations. The orbital elements of each object provided in
this table are the best fit observational values. In the simulations, the orbital elements were
drawn from the 1σ distribution for each realization of each object. Also provided in this table
is the percentage of realizations of each object that are dynamically stable. It is important
to note that this percentage reported (which is the percentage of realizations of each object
that are dynamically stable) is marginalized over all realizations of Planet Nine included in
the simulations, and thus the exact percentage is not meaningful. What is meaningful is
that the percentages are all non-zero, indicating that for a selection of orbital parameters
and Planet Nine realizations, each object in our sample can be dynamically stable. 1: δ̄t is
the difference in median lifetime (over all Planet Nine realizations) between two cases: case
one being when the definition of dynamical instability does not include migration, and case
two being when migration of more than 100 AU constitutes dynamical instability. Larger
values indicate that TNOs are susceptible to significant (δa > 100) migrations in semi-major
axis.

the time-evolution of the bulk set of TNOs. We find that when orbits vary by less than 100 AU,

the objects are generally confined to a network of mean motion resonances (MMRs), an outcome

that we describe in Section 8.5.

When orbits change by more than 100 AU, they potentially change dynamical class. The

criteria in Batygin & Brown (2016a) included the cut that aTNO > 250 AU, and 100 AU of

migration inwards would change this dynamical classification of 5 of the 8 TNOs considered in this

work. Since this choice of cutoff is somewhat arbitrary, we present in Table 8.2 the frequency of

final dynamical outcome for each TNO in our sample. Migration is in outcome in between 7%-

30%, depending on the TNO under consideration, so future work that uses a different criterion for

migratory instability can expect variation from our results of this magnitude.

Table 8.1 provides a ‘Percent Stable’ column, which gives for each object the percentage of our
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1500 realizations (which all have different a, e for Planet Nine) which allowed that object to remain

dynamically stable for the entire 4.5 Gyr simulation. Since our simulations also include Neptune as

an active particle, all of these objects can be dynamically stable in the presence of both Neptune

and Planet Nine. Notably, 18 of our 1500 realizations of Planet Nine allowed all eight TNOs to

remain dynamically stable for 4.5 Gyr. The 18 trials that allowed all tested TNOs to survive had

semi-major axes varying between 600 AU and 800 AU and eccentricities between 0.35 and 0.55.

The small sample (N ∼ 18) that allowed all TNOs to survive limits any further conclusions based

on their orbital parameters. Sheppard & Trujillo (2016) found that 2007 TG422 and 2013 RF98 were

both dynamically unstable in the presence of Neptune, but they did not include a potential Planet

Nine in their integrations. We find that 2007 TG422 and 2013 RF98 have stability percentages of

less than 20%, making them less stable on average than, for example, 2012 VP113. However, with

a dynamically favorable realization of Planet Nine, both of these objects can remain dynamically

stable for a solar system lifetime. This result, combined with the result from Sheppard & Trujillo

(2016) that these two objects are not dynamically stable in the presence of Neptune alone, suggests

that Planet Nine can boost the orbital stability of these objects.

Variations between behavior of different TNOs. For each object in our sample, different

realizations of Planet Nine lead to differing object lifetimes. This is shown in Figure 8.2, which

plots the lifetime of each TNO as a function of the semi-major axis and eccentricity of Planet Nine.

These stability maps look very different for different objects. For example, large-a, low-e orbits lead

to a longer lifetime for 2012 VP113. For this object, shorter object lifetimes occur if Planet Nine

has a shorter perihelion distance (lower a or higher e). This is intuitive. In contrast, 2007 TG422

is dynamically unstable in the presence of these same long perihelion-distance objects that 2012

VP113 preferred. Since different objects prefer different regions of Planet Nine’s possible parameter

space, a better understanding of the constraints they provide can be obtained by considering all

objects simultaneously. We will discuss how this can be done, as well as find constraints using our

results thus far, in Section 8.3.

Fate of the TNOs. To construct the lifetime contours in Figure 8.2, we defined the lifetime of

an object as the length of time it lived in our simulation without significant alterations in its orbit.

We defined significant alterations in orbit to be any of the following: (1) migration in semi-major
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Object Migration Close Collision w/ Ejection Survive
> 100 AU Encounter Central Body 4.5 Gyr

2003 VB12 16.0% 19.3% 0.1% 19.3% 45.3%
2004 VN112 14.9% 30.6% 0.7% 25.4% 28.4%
2007 TG422 29.3% 32.9% 0.0% 23.1% 14.6%
2010 GB174 17.8% 31.2% 0.4% 32.7% 17.9%
2012 VP113 7.1% 21.1% 0.5% 14.8% 56.5%
2013 RF98 14.0% 40.6% 0.0% 26.7% 18.7%
2013 FT28 17.2% 30.7% 0.0% 32.2% 19.9%
2014 SR349 22.0% 39.5% 0.7% 19.8% 18.1%

Table 8.2 Outcomes of ETNOs in Presence of Neptune and Planet Nine. For each TNO
used in the dynamical simulations, the percentage of integrations that ended in each major
instability outcome.

axis by more than 100 AU from the starting orbit of the object, (2) collisions or a close encounter

(defined as passing within 3 Hill radii of the larger body) with Planet Nine or Neptune, (3) collision

with the central body, and (4) ejection from the solar system. It is clear that each of these criteria

have different thresholds for importance, as well as different outcomes for the object. In particular,

while ending methods (2-4) result in a violent end for the TNO, method (1) does not necessarily

remove the TNO from the solar system: instead, the TNO’s orbit is significantly altered, but the

TNO may continue to be a part of the solar system, merely in a different location. Numerical

simulations allow these effects to be disentangled. In particular, we find that the two objects (2007

TG422 and 2013 RF98) that do not prefer the high-a, low-e realizations of Planet Nine tend to

exhibit the migratory end in those realizations, rather than experiencing a violent instability. We

will further discuss this effect in Section 8.4.

8.3 Deriving constraints on the orbital elements of Planet Nine

Given the predicted lifetime distributions constructed in the previous section, we can constrain

the orbital properties of Planet Nine by determining which (a, e) combinations allow the continued

dynamical stability of the observed clustered TNOs. We make an assumption here that in order

for the TNOs to attain their observed $ clustering, they must have remained in their currently

observed orbits for at least secular timescales. This would require those orbits being dynamically
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stable in the presence of Planet Nine. The process of constructing these constraints will be detailed

in this section.

8.3.1 Bayesian inference towards a posterior probability distribution for the

orbital elements of Planet Nine

The ultimate goal of our dynamical stability analysis is to determine the posterior probability

distribution for the orbital elements (a, e) of Planet Nine. This will serve as a check and supplement

to previous orbital posteriors in the literature, which were estimated using different techniques. We

define A to be the orbital elements of Planet Nine, Ti to be the expected dynamical lifetime of the

ith TNO, and I to be all prior information that we can incorporate into our models (for example:

the fact that Planet Nine exists is a prior we impose, as are the observational errors of the discovered

TNOs, which lead to uncertainties on their orbits). With these definitions, the property we wish to

measure is P (A|Ti, I), the probability of A (Planet Nine’s orbital elements), given the lifetimes of

the observed TNOs and our other knowledge. This posterior probability function can be represented

using Bayes’ Theorem as follows:

P (A|Ti, I) =
P (Ti, I|A)P (A)

P (Ti, I)
(8.1)

However, upon inspection of this expression, there is one clear problem: P (Ti, I|A) requires knowl-

edge of Ti, the actual lifetimes of the observed TNOs in our solar system. This is not a property

that can be measured. As an added difficulty, the prior information encapsulated in I includes

large uncertainties on the orbital elements of the observed TNOs.

To overcome this difficulty, we define a new parameter, Di. Di is defined to be the computed

lifetimes of the observed TNOs, where these lifetimes are marginalized over the observational priors

of the TNOs’ orbital elements and our other uncertainties that were before folded into I. Although

we cannot measure the true lifetimes Ti, we have constructed TNO lifetime estimates Di as they

depend on our priors by using numerical N-body simulations. These simulations are described in

the previous section, and a visualization of the derived lifetimes is presented in Figure 8.2.

294



Now, we can rewrite the Bayesian statement of our posterior in terms of this new variable:

P (A|Di) =
P (Di|A)P (A)

P (Di)
(8.2)

when P (Di|A) is the probability of getting the numerically measured lifetimes conditional on the

orbital elements of Planet Nine, P (A) is our priors on Planet Nine’s orbital elements, and P (Di)

is the occurrence probability of our computed lifetimes. Of course, we have N TNOs to consider

in this analysis, so what we really need to compute is the posterior probability distribution as it

depends on the numerically estimated lifetimes of all N objects:

P (A|D1, D2...DN ) =
P (D1, D2...DN |A)P (A)

P (D1, D2...DN )
,

which, using the definition of Bayes’ theorem, reduces into the form:

P (A|D1, D2...DN ) =
P (D1)× P (D2)× ...P (DN )

P (D1, D2...DN )
×

P (D1|A)× P (D2|A)× ...P (DN |A)

P (A)N−1

(8.3)

We can say that D1, D2...DN are conditionally independent, since we treated all TNOs as test

particles in the simulations used to generate {Di}. Since each TNO has zero mass in the simulations,

removing one will not alter the lifetime maps for the other objects. As a result, the first term of

the right-hand side of Equation 8.3 can be treated as a normalization coefficient, which is needed

only when comparing different versions of P (A|D1, D2...DN ) constructed with different numbers N

of TNOs. We need only a relative posterior probability distribution, which will identify the most

likely realization of Planet Nine and identify the parameter space in which it is likely to reside.

The final result we need to compute, then, is:

P (A|D1, D2...DN ) = a

∏n=N
n=1 P (Di|A)

P (A)N−1
(8.4)

when D denotes the lifetime of a TNO in the presence of Planet Nine as measured from simulations,

i denotes the TNO considered, A denotes the orbital elements (a, e) of Planet Nine. P (A) is
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Figure 8.3 Measured Lifetimes for 2013 RF98. A histogram of lifetimes (measured from time
t = 0 at the start of the N-body simulation) for 2013 RF98. Barring a pile-up at lifetimes of
t = 4.5 Gyr (corresponding to realizations that were stable for the duration of the simulation;
these were not included in the fit), the decay appears to have an approximately exponential
trend.

a known quantity, and P (Di|A) can be measured from the stability maps constructed using the

N-body integrations.

8.3.2 Converting TNO lifetime maps to probability distributions

Equation 8.4, which can be used to construct our goal posterior probability distribution, requires

P (Di|A) for each TNO in the sample. P (Di|A) is the probability of the TNOs’ lifetimes as they

depend on the orbital elements of Planet Nine. To compute this term, we must convert the lifetime

maps presented in Figure 8.2 into probability distributions.

Each realization of Planet Nine will lead to a different time of dynamical instability (defined

as the time at which an object experiences one of the four instability mechanisms described in

Section 8.2.2), with some objects never experiencing dynamical instability. In Figure 8.3, we plot

a histogram of the object lifetimes for 2013 RF98, as derived from the 1500 numerical integrations

run with varying realizations of Planet Nine.

Although the longer object lifetimes can intuitively be interpreted as corresponding to more

likely realizations of Planet Nine, we would like to convert these lifetimes into a relative probability

function. Since an exponential decay trend appears to be a good, empirical fit for the lifetimes of
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an object marginalized over all integrations (regardless of the fact that the realization of Planet

Nine varies between the different trials), we can fit a decay constant λ from the lifetime histogram

for all decaying realizations of a single TNO:

fdecay(t) = C0e
−λt (8.5)

when fdecay(t) is the fraction of realizations decaying at each time t, C0 a normalization constant,

and λ the decay constant to be fit. For each object in our sample, the histogram of instability

times was fit with exponential curve using a simple Levenburg-Marquardt optimization scheme,

with all objects that do not experience dynamical instability (which have lifetimes t = 4.5 Gyr)

excluded from the fit. The results of this fit for 2013 RF98 are plotted in Figure 8.3. For this

particular object, if we extend the exponential curve to infinite time, we expect only 0.4% of these

dynamically stable objects to become dynamically unstable, indicating that the majority of objects

that have not decayed after 4.5 Gyr are truly dynamically stable.

To construct a final probability distribution, we need to account for the fact that for each

object, some fraction of trials were dynamically stable for the entire 4.5 Gyr integration length.

For this reason, we construct a piecewise probability function for P (Di|A), the probability we get

these lifetimes from our simulation given a particular set of A, Planet Nine’s orbital elements:

P (Di|A) =


Ns/N if Di=4.5 Gyr

C1 × e−λDi else

(8.6)

when P (Di|A) is the probability of computing the object lifetime Di for the ith TNO in the

presence of a Planet Nine with orbital elements A, Ns the number of integrations for which the

object did not experience dynamical instability, N the total number of integrations, λ the decay

constant determined from the previous fit, and C1 is a normalization constant of the form:

C1 =
N −Ns

N
×

 4.5 Gyr∫
0

e−λtdt

−1

(8.7)

The substitution of Equation 8.6 into Equation 8.4 results in a final expression of the posterior
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Figure 8.4 Overall Stability Posterior for the Semi-Major Axis and Eccentricity of Planet
Nine. This posterior was constructed by taking a summation of the posteriors for each
individual object, including the six objects used in Batygin & Brown (2016a) and the two
new high-a, low-e objects from Sheppard & Trujillo (2016).

probability distribution P (A|D1, D2...DN ). For the eight objects considered in this work, this final

distribution is plotted in Figure 8.4. It is important to note that this process required multiple

steps of normalization, which depend on P (A), the priors, and the populations of TNOs used to

derive constraints. Since we (by necessity) treated the objects used in this analysis as conditionally

independent, the posterior presented in Figure 8.4 provides relative, rather than absolute, measures

of the likelihood of each (a, e) realization of Planet Nine. The derived decay constant must be re-

derived if different populations of TNOs or different orbits of Planet Nine are tested in the future;

the values used in this work are particular to our sample of eight TNOs in the presence of our

particular population of Planet Nines. For this reason, we do not provide the decay constants in

this work, as they cannot be used for these objects in general but only for our particular choices of

Planet Nine’s priors.

8.3.3 The posterior probability distribution for Planet Nine’s orbital elements

Figure 8.4 presents the final posterior probability distribution for Planet Nine’s orbital elements

(a, e), based on the observed dynamical stability of the eight TNOs considered in this work. This

distribution provides a relative measure of the likelihood of differing combinations of Planet Nine’s

298



semi-major axis and eccentricity. The nominal orbit of Planet Nine (700 AU, 0.6 eccentricity)

appears to lie in a less preferred region, with slightly smaller eccentricities (0.3-0.4) being preferred.

Remarkably, the large-a, low-e orbits appear to be excluded based on our dynamical stability

arguments. This is roughly consistent with the posterior generated using clustering arguments,

provided in Brown & Batygin (2016), which also preferred a middling eccentricity and excluded

large-a, low-e iterations of Planet Nine.

8.3.4 Comparing our prediction of Planet Nine’s Orbit with constraints derived

via different methods

The posterior probability distribution we present in Figure 8.4 was generated using dynamical

stability arguments. Specifically, Planet Nine realizations that allow the observed TNOs to remain

dynamically stable are considered to be more likely than those that cause dynamical instabilities.

Brown & Batygin (2016) also provided a probability map showing the most likely regions for Planet

Nine based on the observed orbital alignment of the TNOs. In Figure 8.5, we compare the two

probability distributions presented in Brown & Batygin (2016) to the distribution derived in this

work (along with additional contours described below). For these distributions, we plot a single

contour in Figure 8.5 using the value 1σ below the maximum probability of the distribution. The

level of this contour is chosen so that the single contours visually reflect the highest probability

regions for each posterior type. The choice of the (maximum - 1σ) level is representative, but by

no means the only way to visualize the comparisons between the posterior types.

The regions showing the most overlap between the 10 M⊕ alignment result from Brown &

Batygin (2016) and our dynamical stability result are those with a semi-major axis between 525–

675 AU and an eccentricity of 0.40–0.55, and the region with a semi-major axis between 700–800

AU and an eccentricity of 0.25–0.35. A recent paper by Millholland & Laughlin (2017) also used

dynamical stability arguments and resonance considerations to choose a best-fit (a, e) of (654 AU,

0.45). This point is also plotted in Figure 8.5 and appears to be consistent with the region showing

overlap between both the dynamical stability results of this work and those of (Brown & Batygin,

2016).

The posteriors plotted in Figure 8.5 include four curves based on N-body simulations and

299



one analytical curve. The analytical curve encompasses the regime where the equation of motion

dω/dt ≈ 0. It is important to note that this analytic approximation is not a true analysis of the

dynamics of the system, as the derivation (the complete form of which is presented in Appendix

8.7) assumes all bodies are coplanar, and solves for alignment rather than anti-alignment. Thus,

this analytic model is more an order-of-magnitude estimate of the effect we expect to see, rather

than a true prediction.

The functional form for dω/dt is derived from the secular Hamiltonian, and assumes the form:

dω

dt
∝ 3

4Mc

4∑
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mia
2
i (e

2 − 1)−2a−2
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(8.8)

where the subscript 9 denotes the orbital elements of Planet Nine, the subscript i within the

summation in the first term denotes the four giant planets, c denotes the central body, and a lack

of subscript denotes the TNO for which the equation of motion is written. This equation of motion

can be split into two parts: dωSS/dt, which denotes precession due to the effect of the gas giants,

and dω9/dt, which denotes the precession due to the effect of Planet Nine. The magnitudes of these

terms can be written in the form

dωSS
dt
∝ 3
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2
i (e

2 − 1)−2a−2

dω9

dt
∝15e9

16e
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)4 √1− e2

(1− e2
9)5/2

(1− 9e2

4
) cos(ω − ω9)

+
3

4

m9

Mc

(
a

a9

)3 √1− e2

(1− e2
9)3/2

(8.9)

where dωTNO/dt = dωSS/dt− dω9/dt. At the point where dωSS/dt ≈ dω9/dt, the precession rates

due to Planet Nine and the inner solar system cancel each other out, and the TNO orbit is not

expected to precess. For each TNO, we can construct a curve in the (a, e) plane for which these

precession rates cancel. The region presented in Figure 8.5 is the superposition of these curves for

all eight TNOs, and it encompasses the range of Planet Nine realizations which will allow alignment
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by preventing precession.

Figure 8.5 also presents (in green) a posterior based on alignment of the TNOs, as derived

from our set of numerical simulations. Our simulations were intended to test dynamical stability,

but one output of the N-body simulation is the orbital elements ω and Ω of the TNOs over time.

Using a similar technique to that used to construct the dynamical stability posterior in Figure

8.4, we tested how well aligned the TNOs were for each realization of Planet Nine. Alignment

was measured by looking at the fraction of time for which all eight TNOs were aligned with each

other (and thus anti-aligned with Planet Nine: we counted dispersions of less than 94 degrees in

$ = ω + Ω between all eight TNOs as aligned). We constructed a contour plot of the percentage

of the integrations during which alignment was visible for all eight TNOs, which exhibited between

near 0% alignment to a maximum of ∼10% alignment in the green regions. The alignment rate

expected for pure chance would be about 2 × 10−5 (for alignment among all eight TNOs). As a

result, the numerical simulations show an overabundance of alignment in certain, preferred regions

(denoted by the green contour of Figure 8.5).

The constraints provided by the three methods in this work and the two literature results show

rough agreement: the region of Planet Nine parameter space looking most attractive extends over

the range 500–700 AU in semi-major axis, and 0.3-0.6 in eccentricity. Notably, low eccentricities are

disfavored. Notice also that the contours preferred for TNO stability are somewhat parallel to those

for orbital alignment. In order for Planet Nine to be close enough to the TNOs to enforce alignment,

it must be close enough that the TNO orbit is close to instability. As a result, the preferred region

is given by the boundary between the stablity contours and the alignment contours in Figure 8.5.

8.4 End States for Trans-Neptunian objects under the influence

of Planet Nine

The numerical simulations that we use to create distributions of TNO lifetime in the presence

of Planet Nine evaluate the long-term evolution of these TNOs. As discussed in Section 8.2,

there are five main outcomes for these TNOs: (1) migration in semi-major axis, which is defined

in the simulations as the orbit’s semi-major axis attaining a value more than 100 AU from the
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Figure 8.5 Phase Space Representation of the Most Favorable Orbits for Planet Nine. A
comparison between the preferred regions for Planet Nine’s orbit, as computed using a vari-
ety of different methods. Bold labels indicate that the posterior was derived in this work. In
red, we plot the region that maximizes the survival probability for the TNOs in our N-body
simulations (based on their dynamical stability; see Figure 8.4). In green, we plot the real-
izations of Planet Nine orbital parameters in our N-body simulations that allowed the TNOs
to be aligned as observed in nature. In black, we plot the analytic approximation for the
region where we expect the observed alignment to occur (see Equation 8.8 and its derivation
in the Appendix 9.9). In blue, we plot the region reported in Brown & Batygin (2016) that
allows the alignment of TNOs in a suite of numerical N-body simulations (unlike the green
curve, these simulations used randomized test particles). The purple point denotes the best-
fit orbit as reported by Millholland & Laughlin (2017), which was found by optimizing the
resonant behavior of the TNOs in the presence of Planet Nine. Each method prefers some-
what different regimes of parameter space, with the dynamical stability argument allowing
the largest region. There is significant overlap between the results derived from the different
methods. The optimal orbital elements for Planet Nine exist in the overlap region, which
corresponds to eccentricity in the range e9 = 0.4 – 0.6 and semimajor axis in the range a9

= 500 –700 AU.
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starting orbit; (2) a close encounter (defined as passing within 3 Hill radii of the larger body)

with Planet Nine or Neptune, which would result in the TNO being captured by or colliding with

the large planet; (3) collision with the central body; (4) ejection from the solar system, where

the ejection radius is taken to be 10,000 AU1; and finally, (5) dynamical stability, where none of

the aforementioned effects occur over the 4.5 Gyr timescale of the simulation. This final result

(5) corresponds to scenarios that are consistent with observations, where the TNO can remain

in its orbit over solar system lifetimes. This scenario allows the secular alignment of the TNOs’

longitude of perihelion by Planet Nine. However, if this last result does not occur, then the TNO

will experience one of the first four (1-4) outcomes.

Within these four dynamical instability outcomes, there is further stratification in the effects of

each mechanism. The violent ends (collision with a planet, the star, or ejection from the system)

generally remove the TNO from the solar system entirely, while the migratory outcome is more

nuanced. TNOs that are in the process of migrating cannot necessarily be used as evidence of the

Planet Nine hypothesis, since their orbital elements are in flux and may not have had sufficient time

in their current orbits to attain the alignment that serves as a hallmark of Planet Nine’s influence.

2007 TG422 was one of the more interesting objects in the sample of TNOs considered in this

work. Although found in Sheppard & Trujillo (2016) to be dynamically unstable in the presence

of Neptune, we reevaluated the stability of 2007 TG422 in the presence of Planet Nine in Section

8.2, and found that adding Planet Nine to the solar system can actually stabilize the orbit of this

object. 2007 TG422 has a particularly high semi-major axis and eccentricity, suggesting that its

dynamical instability might be due to orbit crossing with other planets. However, this is not the

case. The most common dynamical instability mechanism for 2007 TG422 is actually migration,

leading this object to remain present in the solar system but wander from its starting orbit. This

migratory outcome is likely what Sheppard & Trujillo (2016) found in their work, and we reproduce

this instability in the case of large-a, low-e realizations of Planet Nine (which is dynamically very

similar to the case of no Planet Nine, as considered in Sheppard & Trujillo (2016)).

1This choice in ejection radius will remove objects which become unbound; it is important to note that
there may be second order effects due to stellar encounters (see, for example, Li & Adams, 2016a). The
effect on TNO motion due to these external perturbations is expected to be small, and is neglected in this
work.
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The top panels of Figure 8.6 show the instability lifetime map for 2007 TG422 when only

violent instability methods are considered (top panel) and when migratory instabilities are also

considered (middle panel). The significantly shortened lifetimes present in this middle panel show

that migration is the main explanation for 2007 TG422’s dynamical instability in the presence of

Planet Nine. The bottom panel of Figure 8.6 shows the difference in expected dynamical stability

lifetime for this object between the cases depicted in the top two panels: when this difference is low,

migration does not have a large effect in ending the integrations, and when it is high, migration is

a very common outcome for 2007 TG422 in the presence of that particular Planet Nine realization.

This difference plot highlights the regions where migration acts as the main cause of dynamical

instability. The large-a, low-e realizations of Planet Nine tend to cause migration of 2007 TG422,

but not violent dynamical instabilities.

The susceptibility of an object to migration in the presence of Planet Nine can also be sum-

marized as δ̄t, the difference in median lifetime (over all Planet Nine realizations) for an object

between the case when migration is considered to be a dynamically unstable outcome and when it

is ignored. Larger values of δ̄t indicate that the TNO is more susceptible to significant migration

in semi-major axis (δa > 100 AU), and that such migrations significantly change the dynamical

stability map of that object. The choice of δa > 100 AU as the threshold criterion for migration is

somewhat arbitrary. It is chosen to represent the condition for which an object has drifted signifi-

cantly from its observed orbit. Migration in semi-major axis with deviations greater than 100 AU

generally results in an orbit with significantly different orbital elements, rather than oscillation of

the orbital elements around well-defined central values. As a result, objects that migrate by more

than 100 AU are unlikely to remain part of the same dynamical class of object.

For 2007 TG422 , δ̄t = 1.07 Gyr, meaning that Planet Nine incites migration in this object often

enough to decrease its dynamically stable lifetime by more than one billion years. In contrast, 2012

VP112 has a δ̄t = 32 Myr, indicating that migration does not play a large role in its outcomes.

The values of δ̄t for each object in our sample are reported in Table 8.1, which presents in its last

two columns both δ̄t and the percentage of trials out of all our simulations that are dynamically

stable. As the percentage increases (or, as an object is more stable in the presence of any considered

Planet Nine realization), the value of δ̄t tends to decrease (or, the TNO experiences migration as
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an instability outcome with a lower frequency). This suggests that susceptibility to migration is

a major factor leading to differences in orbit lifetimes between different TNOs in the presence of

Planet Nine.

In this work, we have made the assumption that since the eight TNOs in our sample exhibit

alignment in longitude of perihelion attributable to Planet Nine, these objects by necessity have

lived in their current orbits for a significant length of time. In constructing the stability poste-

rior presented in Figure 8.4, we assumed that since significant, unbounded migration alters orbits

and potentially disrupts this alignment, a migratory instability provides equal information against

Planet Nine’s orbital elements as does a violent dynamical instability. In this way, we used migra-

tory instabilities (such as those caused by large-a, low-e realizations of Planet Nine for 2007 TG422)

as evidence against the iterations of Planet Nine that excited the migration.

The TNOs affected by Planet Nine appear to fall into two categories: some of them (Sedna,

2012 VP113) are generally stable against this migratory process, while others (2007 TG422, 2013

RF98) can be easily caused to migrate in semi-major axis with an improperly chosen realization

of Planet Nine. The best orbit of Planet Nine can be determined not only from the orbit-crossing

constraint that rules out small-a, large-e orbits for all TNOs, but also by the constraint from this

second population of objects, which are unstable in the presence of large-a, low-e Planet Nine orbits

(and are additionally unstable in the presence of no Planet Nine at all). These two populations

explain the unintuitive structure of the posterior probability distribution given in Figure 8.4.

Even though we require a Planet Nine iteration that does not cause the aligned TNOs to migrate

significantly (more than 100 AU) over secular timescales, we expect there is a further population of

objects that do migrate in the presence of Planet Nine. Indeed, some populations of objects in our

solar system can be explained by this process. Batygin & Brown (2016b) uses the nominal Planet

Nine orbit from Batygin & Brown (2016a) to explain the existence of a population of highly inclined

KBOs with a ≤100: these objects can be explained as a migratory end-state of objects that started

as members of the extreme TNO populations. The fact that some TNOs appear to experience

migratory instabilities under the influence of Planet Nine is not inconsistent with our assumptions,

but it does engender further questions. Clearly, some degree of migration is acceptable and will not

alter the orbital alignment of the TNOs - the 100 AU threshold we use allows significant movement
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in semi-major axis without declaring objects dynamically unstable. However, the fact that objects

can migrate in semi-major axis but remain confined to a comparably narrow range (disallowing

above 100 AU of migration does not allow objects to move into entirely different object populations

as seen in Batygin & Brown 2016b) begs the question: how are objects moving when they migrate

in what we have defined as a dynamically stable way? The answer to this question will be addressed

in the following section.

8.5 Proximity of the Trans-Neptunian Objects’ Orbits to Reso-

nances with Planet Nine

In the previous section, we identified that for some TNOs, migration in semi-major axis is an

outcome for a significant fraction of integrations. In this section, we delve deeper into the nature

of that migration and consider the question of resonance between the TNOs and Planet Nine.

Specifically, if the TNOs migrate in semi-major axis, they are likely to pass through the locations

of mean-motion commensurabilities with Planet Nine, and one might expect the TNOs to fall into

the stable configurations afforded by resonances, and stop migrating.

The fact that proximity to resonance boosts dynamical stability can be directly applied to

the Planet Nine - TNO system. In particular, Malhotra et al. (2016a) considered the possibility

that Planet Nine should be at an orbital radius that would allow it to be closest to low-order

resonances for several TNOs, based on the currently measured orbits of those TNOs. The benefit

to this configuration is that Planet Nine could stabilize the orbits of TNOs such as 2007 TG422,

which might otherwise migrate in semi-major axis. Similarly, Millholland & Laughlin (2017) used

numerical N-body simulations to determine the best orbit of Planet Nine by testing which locations

close to resonances allow the observed alignment of the TNOs. Millholland & Laughlin (2017) found

the best semi-major axis of Planet Nine to be a9 ∼ 654 AU (with a e9 ∼ 0.45), and Malhotra et al.

(2016a) found the best-fit orbit to have a semi-major axis of a9 ∼ 665 AU.

Clearly, resonance is an important aspect of the Planet Nine problem, as suggested by Batygin

& Brown (2016a), Beust (2016), Malhotra et al. (2016a), and Millholland & Laughlin (2017). In

Figure 8.7, we plot two histograms of the orbital period ratio (P9/PTNO) for each of the eight
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2007 TG422 

Figure 8.6 2007 TG422’s Orbital Evolution in the Presence of Planet Nine. The lifetime of
2007 TG422 in the presence of realizations of Planet Nine with semi major axis between
450 and 1200 AU, and eccentricities between 0 and 1. (top panel) Stability lifetimes when
dynamical instability is only caused by violent ends for 2007 TG422, including collision with
a solar system planet, collision with the sun, or ejection from the solar system (the outer
boundary of which is defined to be 10000 AU). (middle panel) Stability lifetimes, when
dynamical instability is caused by the violent end depicted in the top panel and also migration
in semi-major axis by more than 100 AU. (bottom panel) The difference δt in stability
lifetimes between the two cases, demonstrating which realizations of Planet Nine are most
likely to cause 2007 TG422 to change its orbit significantly. Planet Nine realizations with low
eccentricity and large semi-major axis cause 2007 TG422’s orbit to migrate, but not meet
with a violent end.
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Figure 8.7 Comparison of TNO Period Ratios at Simulation Initialization Versus at Com-
pletion. (top panel) A sample of period ratios P9/PTNO, drawn from the initial conditions of
the N-body simulations. This histogram shows the period ratio distribution that we would
expect to see from the simulations if no period ratio were more dynamically stable than
any other period ratio. This set serves as the control, and does not have the condition of
dynamical stability imposed. (bottom panel) Period ratios P9/PTNO for the dynamically
stable integrations at time-steps of one million years, demonstrating a peaked distribution,
as some period ratios are preferred to others. In both panels, colors correspond to the values
for each TNO, and the area of histograms was normalized.
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TNOs in our sample. In the top panel, we plot random draws from our initial conditions that

were used to initialize the N-body simulations described in Section 8.2. The total number of draws

in the top histogram was chosen to match the number of dynamically stable time-steps for each

individual TNO, but the draws are from a raw distribution of the ratio P9/PTNO for all numerical

trials, including those that are not dynamically stable. This top panel does not include the effect of

certain ratios becoming more common due to gravitational interactions. In the bottom panel, we

plot the dynamically stable trials for each TNO, with the period ratio sampled every million years.

The sharp peaks in this second histogram demonstrate clear overabundances of particular period

ratios P9/PTNO. These values occur near resonances — in the trials where dynamical stability is

found — and is markedly different from the continuum of period ratios shown in the upper panel.

Keep in mind that the initial conditions of our simulations were chosen independently of resonance

locations, unlike the set of simulations in Millholland & Laughlin (2017). As a result, the behavior

shown in the figure indicates that systems found to be dynamically stable in the simulations also

show a clear preference for near-resonant locations.

The results of this work show an important departure from the assumptions used previously

(Malhotra et al., 2016a; Millholland & Laughlin, 2017). This earlier work assumes that the TNOs

remain in a single resonant configuration over the lifetime of the Solar System. For example, Sedna

might live in either the 9:8 or 6:5 mean motion commensurability, depending on the semi-major

axis of Planet Nine, but it is considered to remain in a single resonance. In this approximation,

the orbits of the extreme TNOs that we observe today are consistent with their past orbits. This

assumption allows for the estimate found in Malhotra et al. (2016a) to be carried out: if the TNOs

reside in the same orbits over their entire lifetimes, and if they must be near resonance, then their

current orbital properties can be used to compute the expected orbital elements of Planet Nine.

However, our simulations show that TNOs do not always remain in the same orbits: Although they

often remain near some resonance with Planet Nine, the TNOs change orbits and hence change

resonances.

In Figure 8.8, we plot time series for 2004 VN112 (top), 2007 TG422 (middle), and Sedna

(bottom) to demonstrate the potential resonant outcomes. The behavior of 2004 VN112 is consistent

with the assumption made by Malhotra et al. (2016a) and Millholland & Laughlin (2017): that
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Figure 8.8 Period Ratio Over Time for Three TNOs. For three integrations (top curve:
2004 VN112; middle curve: 2007 TG422; bottom curve: Sedna), we plot the period ratio
P9/PTNO as function of simulation time. The numbers denote resonances within ∆ares of
the semi-major axis of each TNO, at each time-step. The top time series, showing the
evolution of 2004 VN112 during a typical integration, demonstrates how an object might
remain in a single mean-motion commensurability for the entire lifetime of the solar system.
The middle series, for 2007 TG422, shows the behavior we call ‘resonance hopping,’ where
a TNO attains multiple mean-motion commensurabilities over the course of the simulation.
The bottom series shows a less extreme version of this ‘resonance hopping,’ where Sedna
switches between two commensurabilities during the solar system lifetime. In all cases, the
period of Planet Nine does not change over the course of the simulation: it is the motion of
the TNO that leads to changing values of P9/PTNO.
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TNOs would live in a single resonance for the age of the solar system. The other two TNOs

plotted in Figure 8.8 show behavior we call ‘resonance hopping,’ where a TNO attains multiple

mean-motion commensurabilities over the course of the simulation. When liberated from one

mean-motion commensurability, both TNOs are captured into another resonance instead of being

ejected from the system entirely. Planet Nine’s semi-major axis did not change over the course of

a single simulation, so all the change in P9/PTNO within a single integration is due to migration

by the TNO.

As illustrated in Figure 8.2, each TNO has a different dynamically stability map, preferring

different regions of Planet Nine’s potential parameter space. Similarly, when we take the subset

of dynamically stable integrations for each TNO, each TNO has a different behavior relating to

resonance. In this work, we take the definition of being ‘in’ resonance to be living close to a resonant

period ratio; as with the exoplanetary systems near resonance, the boost in dynamically stability

provided by proximity to resonance applies even when systems are not in a perfect resonance.

Malhotra et al. (2016a) and Millholland & Laughlin (2017) use a criterion for the proximity to

resonance that is close enough to afford such benefits:

∆ares ≈ 0.007aTNO |
m9aTNOA

3M�a9
|1/2 (8.10)

when ∆ares is the width, in AU, of the band of space close enough to a resonance to count as being

‘near’ said resonance, subscript TNO denotes the TNO’s semi-major axis a and the subscript 9

denotes Planet Nine’s semi-major axis a9 and mass m9. A is a unitless coefficient. We choose to use

A = 3 as done in Malhotra et al. (2016a) and Millholland & Laughlin (2017). The numerical value of

∆ares tends to be close to 5-10 AU for the TNOs in our sample, meaning that the simulation results

allow us to determine the nearest resonance and identify TNOs that ‘hop’ between resonances.

Figure 8.8 shows three examples from our set of simulations: 2004 VN112 does not change resonances

during the integration, 2007 TG422 changes resonances three times, and Sedna changes resonance

once. For two objects in our sample (2004 VN112 and 2012 VP113), we see no hopping behavior.

However, it is important to note that the simulations used to construct Figure 8.7 and the curves

in Figure 8.8 are the set run for this chapter, which uses the quadrupole moment of the central
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part of the system (J2) to replace the active motions of Jupiter, Saturn and Uranus (JSU). This

approximation allows the simulations in this work to be completed in a total of roughly 100,000

total CPU hours, rather than the nearly 2 million CPU hours that would be required to run the

full integrations with all active giant planets. This approximation is appropriate for the tests

of dynamical stability and alignment considered thus far in this work, but when considering the

question of resonance, some discrepancies arise. In Figure 8.9, we present a comparison between a

few test simulations run with the J2 approximation and the JSU case of active particles for Jupiter,

Saturn, and Uranus. The test simulations were run for 1 Gyr each, with a single realization of

Planet Nine (a = 700 AU, e = 0.5) and otherwise identical to the cases run in the previous set of

simulations. For the JSU set of simulations, we lowered the time-step to 20 days.

When active JSU particles are included in the integrations, two major differences occur as

compared to the J2 approximation: (1) the period ratios are not as tightly confined, experiencing

a larger degree of scatter even while living in a single apparent resonance; (2) the number of times

objects hop between resonances can be both increased (due to repeated accelerations from Uranus)

and decreased (as shown in the top panel of Figure 8.9, hops we resolve in the J2 case are un-physical

in the JSU case).

Regarding point (1), the second panel of Figure 8.9 illustrates a case where in both the J2 and

JSU cases, a TNO lives close to the 8/5 mean motion resonance. In the J2 case, the TNO stays

within 0.3% of its average period ratio. In the JSU case, the TNO stays within 5% of its averege

period ratio (this value is larger than in the J2 case due to the inclusion of accelerations from the

inner three giant planets). Due to this complication, we have chosen the bin size in Figure 8.7 to

be commensurate with the period ratio confinement experienced by TNOs in the JSU case, which

is typically around 8%.

Regarding point (2), it is unclear without running a large suite of JSU integrations how the

hopping frequency changes with the inclusion of the giant planets. For this reason, we do not

present in this work detailed results of the resonance hopping in our simulations. In order to

accurately assess this behavior, a complete set of simulations with active giants planets (JSU)

should be carried out.

Our simulations show that dynamically stable integrations of the TNOs tend to attain mean-
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motion commensurabilities. Depending on the TNO, it may attain a single resonant location and

stay there, or it may hop between resonant locations. This ‘resonance hopping’ is an important

effect, and for TNOs that exhibit this behavior, their past semi-major axis may be different than

the current values. The numerical computation of the specifics of this behavior should be a fruitful

avenue for future work.

8.6 Conclusions

In this work, we have evaluated the dynamical stability and orbital alignment of eight TNOs

(Sedna, 2004 VN112, 2007 TG422, 2010 GB174, 2012 VP113, 2013 RF98, 2013 FT28, and 2014 SR349)

in the presence of a Monte Carlo assortment of Planet Nine realizations with varying semi-major

axis and eccentricity. We used the results to predict the most probable (a, e) of Planet Nine

by deriving the posterior probability distributions for Planet Nine’s orbital elements (a, e). The

distribution based on dynamical stability considerations for the TNOs is presented in Figure 8.4.

We have also constructed an analogous probability distribution based on the requirement that

the orbits of the TNOs remain aligned. Both of these posterior distributions demonstrate that

the preferred orbits for Planet Nine have intermediate values of eccentricity (0.3 < e < 0.5) and

semi-major axis (650 < a < 900 AU), as shown in Figure 8.5. Moreover, these values are roughly

consistent with the regime suggested in Brown & Batygin (2016), which constructed its probability

map using clustering arguments only. Our stability posterior and that from Brown & Batygin

(2016) were constructed based on different fundamental orbital properties (dynamical stability and

secular evolution patterns, respectively). Despite this significant difference in construction, the two

results are consistent, in that they both prefer non-zero eccentricities and a similar range in semi-

major axis for Planet Nine. The comparison between our results and those of Brown & Batygin

(2016) is shown in Figure 8.5. Notably, similar dynamical stability arguments in Millholland &

Laughlin (2017) produce a best-fit Planet Nine of 654 AU and 0.45 eccentricity, which is consistent

with the overlap region between the results of this work and of Brown & Batygin (2016).

Using numerical N-body simulations, we also demonstrated that 2007 TG422 and 2013 RF98,

while found in the past to be dynamically unstable in the presence of Neptune alone, can attain
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Figure 8.9 Numerical Comparison of Full Model to J2 Approximation. A check of our
integrations (which used solar J2 in place of the inner three giant planets) and integrations
run with active Jupiter, Saturn, and Uranus (JSU) show that although both sets exhibit the
same hopping behavior, the J2 approximation underestimates the noise in period ratio and
overestimates the degree to which the resonances can be differentiated.
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dynamically stable states in the presence of Planet Nine. Our simulation results support the

prediction of Sheppard & Trujillo (2016) that since 2007 TG422 and 2013 RF98 exhibit the same

orbital clustering as the dynamically stable TNOs, Planet Nine likely dominates over Neptune

interactions. In addition, we find that different TNOs exhibit very different stability maps, with

some objects (such as Sedna and 2012 VP113) contributing relatively little unique information

to the stability posterior and others (such as 2007 TG422 and 2013 RF98) exhibiting unintuitive

preference against large-a, low-e orbits of Planet Nine. These two categories suggest that there

may be two dynamical classes of objects in this TNO sample, which interact differently with Planet

Nine. However, we have considered in this work only a small (N = 8) number of objects that

fit into the desired high-a, trans-Neptunian-q, apsidally aligned category identified in Batygin &

Brown (2016a). The discovery of additional objects in this population (expected in the near future)

will allow for a more robust test of this two-population hypothesis.

We have also evaluated the different dynamical outcomes for these extreme TNOs in the presence

of Planet Nine. The objects that are dynamically unstable in the presence of large-a, low-e orbits

of Planet Nine (2007 TG422 and 2013 RF98) tend to experience migration rather than violent

collisions or ejections as their main outcome in dynamically unstable cases. These objects are

also dynamically unstable in the presence of only Neptune and the other giant planets, i.e., in the

absence of Planet Nine. In Table 8.1, we present the difference δ̄t in average dynamical lifetime

between the case where migration is considered to be a dynamical instability mechanism and when

it is not. Table 8.2 presents the relative occurrence rates for each type of outcome. For cases where

the TNOs are not stable over the lifetime of the Solar System, the fraction of trials that lose objects

to migration (with a > 100 AU), close encounters with giant planets, and ejection from the system

are roughly comparable. A small minority of the simulations end with accretion onto the Sun (less

than 1%).

Next, we suggest a generalized description for the interactions between the TNOs and Planet

Nine. We propose that the paradigm is neither that (1) mean motion resonance is unimportant,

nor (2) TNOs reside in a single resonance with Planet Nine for the age of the solar system. Instead,

while some TNOs (such as 2004 VN112 and 2012 VP113) can sometimes live in a single resonance

for solar system lifetimes, others exhibit a behavior that we call ‘resonance hopping.’ This term
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means that the TNO is near-continually in close proximity to a mean motion resonance (Figure

8.7), but it is not necessarily near the same resonance for the age of the Solar System (Figure

8.8). Instead, the TNOs can transition between closely-spaced resonances, often those described by

relatively large integer ratios. The long-term effect of this process is that the orbital anti-alignment

caused by Planet Nine is able to persist, but the TNO is protected against small kicks in energy

provided by interactions with Neptune. In this paradigm, an interaction with Neptune might lead

to the movement of a TNO into a new resonance, but not to its ejection from the solar system

(see also Malhotra et al. 2016a; Millholland & Laughlin 2017). A useful avenue for future work

would be the full numerical computation of this effect, as the J2 approximation used in this work

precludes an accurate calculation of the true frequency of resonance hopping.

Another important avenue for future work exists in our prediction that the eight TNOs con-

sidered in this work populate two distinct dynamical classes: first, a class of objects such as 2012

VP113 or Sedna, which are more dynamically stable in the presence of large a, low e realizations of

Planet Nine (which reduce closely to the case of having no ninth planet); second, a class of objects

that are dynamically unstable in the presence of only Neptune and no Planet Nine (and also in

the case of a high-a, low-e Planet Nine). This second class of objects may have higher e and a

than the first, and require a stabilizing influence in the form of an eccentric Planet Nine to prevent

destabilizing interactions with Neptune. To truly understand if this is a valid division, it is hoped

that a large number of high-a, trans-Neptunian-q, apsidally aligned TNOs will be discovered in

the next few years. The classification of these objects, and exploration of the mechanism by which

Planet Nine may stabilize their orbits, should be explored in the future.

8.7 Appendix: Precession Equations of Motion for TNOs

To consider the secular motion of the TNOs in the presence of Planet Nine, we can treat the

problem with a coplanar approximation, as done in Batygin & Brown (2016a). It is important to

note that this is a very rough approximation, as the TNOs and Planet Nine are expected to be

inclined relative to the inner solar system and each other.
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The Hamiltonian for this system, as used in Batygin & Brown (2016a), is:

H =− 1
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when M is the mass of the central body, the subscript 9 denotes the properties of Planet Nine, the

subscript i within the summation in the first term denotes the four giant planets, and a lack of

subscript denotes the TNO for which the Hamiltonian is being written.

Using canonical variable ε =
√

1− e2, we can find the equation of motion for the argument of

perihelion ω by taking the derivative of Equation 8.11, such that dω/dt ∝ dH/dε. The result of

this yields
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(8.12)

when leading constants have been dropped, since in this work we care only about the relative

contributions of the terms of the equation of motion. The first term of Equation 8.12 represents

the apsidal precession of a TNO with orbital elements (a, e, ω) that is caused by the inner solar

system (where the outer four giant planets are treated as a solar oblateness and the terrestrial

planets ignored). The latter two terms of Equation 8.12 include dependences on the mass of Planet

Nine (m9), eccentricity of Planet Nine (e9), semi-major axis of Planet Nine (a9), and argument of

perihelion of Planet Nine (e9). These two terms represent the apsidal precession of the TNO due

to Planet Nine’s influence.

Alone, the influence of Planet Nine or of the inner solar system would lead to precession of each

TNO’s ω. Taken together, the two precession terms can either boost precession rates or slow them.

With the proper choice of orbital elements for Planet Nine, dω/dt can be set to be zero, leading

to no net precession relative to the Katti-Range vector of Planet Nine’s orbit. Such a situation

could result in a selection of TNOs exhibiting orbits that remain in roughly the same regime of

parameter space over time, potentially leading to alignment like that observed in the TNOs in our
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solar system.

For completeness, we note that Equation 8.12 can also be derived from the disturbing function

using Lagrange’s planetary equations. We use the disturbing function as formulated in Mardling

(2013), which is written to work in the dimensions of energy. The disturbing function can be

written as

R = −1
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(8.13)

This equation has been simplified under the assumption m << mp << M . We can use Lagrange’s

planetary equations to find the equation of motion analogous to that in Equation 8.12. Specifically:

dω

dt
=

ε

mνa2e

dR
de

(8.14)

when ν is the orbital frequency of the TNO. Substituting Equation 8.13 into the relevant Lagrange

equation (Equation 8.14) yields the full equation of motion:
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(8.15)

which is equivalent to the result presented in Equation 8.12.

It is very important to note that the preceding derivation makes several major approximations:

• We assume a coplanar system and neglect orbital inclination of all bodies,

• In the construction of the Hamiltonian and the disturbing function, we ignore all short-order,

resonant terms2

For all of these reasons, this analytic result should be treated as approximate. To do the problem

properly, it is important to use numerical N-body simulations.

2and as shown in Section 8.5, this is probably dangerous to do
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8.8 Appendix: Effects of allowing orbital elements to vary in N-

body simulations

In the set of N-body simulations that we describe in Section 8.2 and use to construct the pos-

terior probability distribution given in Section 8.3, we use a population of Planet Nine realizations

with fixed inclination i = 30 degrees, argument of perihelion ω = 150 degrees, and longitude of the

ascending node Ω = 113 degrees. This was done because the amount of uncertainty in each of these

measurements would require a computationally unfeasible number of integrations to well-sample

the parameter space. Instead, we chose the approximate best values for each angle, as reported

and used in prior literature.

However, we can recreate the probability posterior presented in Figure 8.4 for an additional set

of 1500 N-body integrations, while allowing these orbital angles to vary, and examine the amount

of difference between this new posterior and the old one as a first test. To do this, we ran 1500

more numerical N-body integrations with the same numerical properties as our other set (hybrid

symplectic and Bulirsch-Stoer (B-S) integrator in Mercury6 (Chambers, 1999b), conserving energy

to 1 part in 1010, replacing the three inner giant planets with a solar J2, including each TNO with

orbital elements drawn from observational constraints). In this set of integrations, we sampled a9

from a uniform range between (400, 1200) AU, and e9 between (0,1). However, instead of fixing

the orbital angles, we sampled from normal distributions centered on the Batygin & Brown (2016a)

estimates (i9 = 30 degrees, ω9 = 150 degrees, Ω9 = 113 degrees) with widths of 30 degrees in each

case. Then, we integrated each of the 1500 realizations forward for 4.5 Gyr.

The results of this new, second suite of integrations is presented in Figure 8.10, which can

be directly compared to Figure 8.4 (which was constructed with our original set of simulations).

Comparing the two figures presents three major conclusions: [1] The main parameter space preferred

in each set is similar, with high eccentricities being less preferred and the range from 0.3-0.5

eccentricity, 600-1000 AU being good in both sets. [2] The overall survival probabilities are lower

for the case where Planet Nine’s orbital angles are allowed to vary, which indicates that altering

these values too much decreases dynamical stability of the TNOs overall. [3] The posterior presented

in Figure 8.10, with varying orbital angles, has less variation between peaks and valleys, which is
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Figure 8.10 Full Stability Contour for Planet Nine Parameters. The overall stability posterior
for the semi-major axis and eccentricity of Planet Nine, when Planet Nine’s orbital angles
were allowed to vary over a normal distribution centered on the best-guess values. This
posterior was constructed by taking a summation of the posteriors for each individual object,
including the six objects used in Batygin & Brown (2016a) and the two new high-a, low-e
objects from Sheppard & Trujillo (2016). As compared to Figure 8.4, which did not allow
the orbital angles to vary, the survival probability is lower when orbital angles are allowed
to vary, suggesting that the best-guess values leading to more probable alignment also lead
to more dynamically stable configurations.
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the danger of adding additional layers of variation (which we did by allowing three orbital angles

to vary).

The reason that we do not use this set of simulations that allow initial orbital angles of Planet

Nine to vary as the main set in this chapter is that the parameter space is not well-sampled.

Additionally, the three additional free parameters bring with them three additional sources of

variations. The robust exploration of this parameter space is outside the scope of this work.
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CHAPTER IX

Discovery and Dynamical Analysis of an Extreme

Trans-Neptunian Object with a High Orbital

Inclination

Results in this chapter were published in: Becker, J. C., Khain, T., Hamilton, S. J., Adams,
F., et al. “Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High
Orbital Inclination.” 2018, The Astronomical Journal, 156, 81 and are presented here with minor
additions.

9.1 Abstract

We report the discovery and dynamical analysis of 2015 BP519, an extreme Trans-Neptunian

Object detected by the Dark Energy Survey at a heliocentric distance of 55 AU, perihelion of

∼36 AU, and absolute magnitude Hr = 4.3. The current orbit, determined from an 1110-day

observational arc, has semi-major axis a ≈ 450 AU, eccentricity e ≈ 0.92, and inclination i ≈ 54

degrees. With these orbital elements, 2015 BP519 is the most extreme TNO discovered to date,

as quantified by the reduced Kozai action, η0 = (1 − e2)1/2 cos i, which is a conserved quantity

at fixed semi-major axis a for axisymmetric perturbations. We discuss the orbital stability and

evolution of this object, and find that under the influence of the four known giant planets 2015 BP519

displays rich dynamical behavior, including rapid diffusion in semi-major axis and more constrained

variations in eccentricity and inclination. We also consider the long term orbital stability and

evolutionary behavior within the context of the Planet Nine hypothesis, and find that 2015 BP519
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adds to the circumstantial evidence for the existence of this proposed new member of the solar

system, as it would represent the first member of the population of high-i, $-shepherded TNOs.

9.2 Introduction

The most extreme members of any dynamical class of solar system objects serve as particularly

acute test cases for theories of our solar system’s formation and evolution. In particular, Trans-

Neptunian Objects (TNOs) with very large semi-major axes probe the most distant observable

regions of the solar system, aiding to reveal the migration histories of the giant planets. Very

high inclination TNOs and centaurs mostly remain puzzling. Both classes of objects may also

be dynamically influenced by distant, yet-unseen perturbers. Indeed, the apparent clustering in

orbital and physical space of the so-called “extreme TNOs” with a > 250 AU and perihelion

distances q > 30 AU was used by Batygin & Brown (2016a) to argue for the existence of a distant

super-Earth known as Planet Nine.

The 13 currently known extreme TNOs have an average orbital inclination of 17.3◦. The most

highly-inclined of these objects, 2013 RF98, was discovered in our earlier work (Dark Energy Survey

Collaboration et al., 2016b) and has an inclination of 29.6◦, consistent with other members of the

scattered disk population. In this work, we report the discovery by the Dark Energy Survey of

2015 BP519, a TNO with a semi-major axis of 450 AU (the sixth-largest among known TNOs),

an eccentricity of 0.92, and a remarkable inclination of 54 degrees. The orbital elements of this

object make it the “most extreme” of the extreme TNOs, in a sense that we make precise in

Section 9.4.2. With a perihelion distance of q = 35.249± 0.078 AU, it may also be the first purely

trans-Neptunian member of the Planet-Nine-induced high-inclination population first predicted in

Batygin & Morbidelli (2017).

Objects in the outer solar system populate several distinct dynamical categories (Gladman

et al., 2008). Cold classical Kuiper Belt Objects (CKBOs) are dynamically cool, with perihelion

distances greater than 40 AU, low orbital eccentricities, and low orbital inclinations (Tegler &

Romanishin, 2000; Elliot et al., 2005). The orbits of these objects are not controlled by dynamical

interactions with Neptune, and they may originate from material left over from the formation of
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the solar system. On the contrary, hot classical KBOs as well as resonant KBOs are believed

to have been placed in the trans-Neptunian region from smaller original heliocentric distances.

Another class of objects have orbits that are perturbed significantly through scattering interactions

with Neptune (Duncan & Levison, 1997; Gladman et al., 2002). Yet another set of objects have

high eccentricities, but also have sufficiently large perihelia that they are not influenced by either

scattering or resonant interactions with Neptune. A summary of the types of objects present in

the Kuiper Belt is given in Figure 9.1.
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Figure 9.1 Dynamical Classes of Kuiper Belt Objects. The different classes of objects present
in the outer solar system. Objects can be approximately delineated into dynamical classes
according to their orbital elements, but exact classification require numerical simulations.
The discovered objects (as of December 2018) are plotted as grey points. 2015 BP519 resides
in the scattered disk. This figure was also published in Batygin et al. (2019).

Recently, a new subset of objects has attracted considerable attention. The TNOs with semi-

major axes a > 150 AU and perihelia distances beyond 30 AU were found in Trujillo & Sheppard

(2014) to exhibit a clustering in their argument of perihelion, ω. Batygin & Brown (2016a) sub-

sequently noted that this clustering persists in physical space (as measured by the longitude of

perihelion $, where $ = ω+ Ω, where Ω is the longitude of ascending node). Trujillo & Sheppard

(2014) noted that one explanation for the clustering might be a ninth planet, and Batygin & Brown

(2016a) suggested that the existence of a ninth planet of about 10 Earth masses in the outer solar

system could explain the apparent alignment of large-semi-major axis objects (Batygin & Brown,
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2016a). The motions of objects with a > 250 AU would in this case be dominated by Planet Nine,

while TNOs falling in the intermediate regime, with a = 150 − 250 AU, may experience differing

degrees of influence from Planet Nine. The TNOs with a > 250 AU constitute the “extreme” TNOs,

or ETNOs. The evidence and consequences of the Planet Nine hypothesis have been explored in

previous literature from both dynamical and observational perspectives (Batygin & Brown, 2016b;

Li & Adams, 2016b; Malhotra et al., 2016b; Mustill et al., 2016b; Kenyon & Bromley, 2016; Brom-

ley & Kenyon, 2016; Chen et al., 2016b; Holman & Payne, 2016a,c; de la Fuente Marcos & de la

Fuente Marcos, 2016; Sheppard & Trujillo, 2016; Shankman et al., 2017a; Millholland & Laughlin,

2017; Saillenfest et al., 2017a; Becker et al., 2017; Batygin & Morbidelli, 2017; Hadden et al., 2017;

Parker et al., 2017; Eriksson et al., 2018; Khain et al., 2018a). The Planet Nine hypothesis has

been invoked to explain the detachment of perihelia distance for the most distant class of TNOs

(Khain et al., 2018a), the 6 degree solar obliquity (Bailey et al., 2016b; Gomes et al., 2017), and the

existence of highly inclined objects in the outer solar system (Batygin & Brown, 2016b). The subset

of objects discovered so far to have semi-major axis greater than 250 AU and perihelion distances

greater than 30 AU (the extreme TNOs) includes 2003 VB12 (known as Sedna, Brown et al., 2004),

2004 VN112 (MPC), 2007 TG422 (MPC), 2010 GB174 (Chen et al., 2013), 2012 VP113 (Trujillo &

Sheppard, 2014), 2013 FT28 (Sheppard & Trujillo, 2016), 2013 RF98 (MPC), 2013 SY99 (Bannister

et al., 2017), 2014 FE72 (Sheppard & Trujillo, 2016), 2014 SR349 (Sheppard & Trujillo, 2016), 2015

GT50 (Shankman et al., 2017b), 2015 KG163 (Shankman et al., 2017b), and 2015 RX245 (Shankman

et al., 2017b). The orbital elements of these objects are listed in the Appendix for reference. These

objects have inclinations ranging from nearly zero up to a maximum of about 30 degrees.

The orbital inclinations of these high-a objects are of particular interest dynamically. Gladman

et al. (2009) discovered 2008 KV42 (Drac), the first retrograde Centaur (where a Centaur is an

object with a semi-major axis between 5 AU and 30 AU, placing its orbit in the region of the solar

system containing the gas giants). This object does not appear to be primordial and could imply

the existence of a reservoir of high inclination TNOs. The discovery of the retrograde centaur

2011 KT19 (Niku) (Chen et al., 2016) added to the small collection of such objects, and suggested

that they may cluster in a common orbital plane.

Batygin & Brown (2016a) predicted that Planet Nine could create such a supply of objects by
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sourcing them from a more distant population of high-inclination orbits, which are in turn generated

by Planet Nine. Batygin & Morbidelli (2017) presented a dynamical model for the orbital evolution

of high-inclination, long period (a > 250 AU) objects and compared the model to the existing high-

a, high-i objects. However, the objects then known to reside in that population have perihelia

q < 30 AU, and thus experience orbit crossing with the giant planets, complicating their ability to

test the Planet Nine hypothesis. To better test this particular prediction of the Planet Nine model,

high-a, high-i objects with perihelion q > 30 AU are needed.

Apart from the Planet Nine debate, the continued discovery of new objects in the outer solar

system enables a better understanding of how the solar system arrived at its present state. For this

reason, many groups have conducted surveys to increase the census of objects known in the outer

solar system and better understand their properties (including Millis et al., 2002; Elliot et al., 2005;

Müller et al., 2010; Lellouch et al., 2010; Lim et al., 2010; Fornasier et al., 2013; Bannister et al.,

2016b; Lin et al., 2016b). Data from other surveys or archival data sets have also been utilized

to enable solar system science (Fuentes & Holman, 2008; Solontoi et al., 2012; Ahn et al., 2014).

The Dark Energy Survey (DES, Dark Energy Survey Collaboration et al. 2016a) follows in these

footsteps, enabling study of new populations including high-inclination objects like 2015 BP519.

This chapter is organized as follows. We start with a description of the discovery of 2015 BP519

by DES in Section 9.3. Given the extreme status of this object, Section 9.4 considers its dynamical

status using a secular approach, starting with an analytic treatment of the problem. The dynamics

of this object are rich and complicated, so that a complete characterization requires full N-body

numerical simulations to include interactions with Neptune and the other giant planets, as well

as other complexities. These numerical simulations are presented in Section 9.5 for the dynamics

of 2015 BP519 in the context of the currently known solar system. Section 9.6 then considers the

dynamics of this new object in the presence of the proposed Planet Nine. The chapter concludes

with a discussion of the implications (Section 9.7) and a summary of the results (Section 9.8).
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9.3 Discovery of 2015 BP519

DES Dark Energy Survey Collaboration et al. 2016a is an optical survey targeting nearly 5000

square degrees of sky. It uses the Dark Energy Camera (DECam, Flaugher et al., 2015) on the

4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. DECam is a

prime-focus imager on Blanco with a 3 square degree field of view and a focal plane consisting of 62

2K × 4K red-sensitive science CCDs. DES saw first light in 2012, and the nominal survey period

of 520 nights over five years ran from August 2013 through February 2018. During this time, DES

has operated in two survey modes. The Wide Survey observes the full of the survey area roughly

twice per year in each of the grizY bands. The Supernova Survey (Bernstein et al., 2012) consists

of ten 3 square degree regions that are observed roughly every 6 days in the griz bands. Due

to the large survey area, high repetition, and deep limiting magnitude for single-epoch exposures

(r ∼23.8 magnitude), DES has many applications in addition to its main cosmological objectives

(Dark Energy Survey Collaboration et al., 2016b). It is well-suited for solar-system science, and in

particular to the study of high-inclination populations.

In this chapter, we report the discovery of 2015 BP519, which has the largest semi-major axis of

any object yet found by DES, and the highest inclination of any known extreme TNO. 2015 BP519

was first detected at a heliocentric distance of 55 AU in the same set of observations from 2013-16

that were used to discover the dwarf planet candidate 2014 UZ224 (Gerdes et al., 2017b). The origi-

nal detection of 2015 BP519 came from a difference-imaging analysis of the wide field images (using

software from Kessler et al., 2015). Transient objects are found by image subtraction. Artifacts

and low-quality detections are rejected using the techniques described in Goldstein et al. (2015).

The surviving sources are compiled into a catalog of measurements, each of which corresponds to a

transient at one epoch. From those, TNOs are extracted by identifying pairs of detections within

60 nights of each other whose angular separation is consistent with what would be expected for

an object with perihelion q > 30 AU given Earth’s motion. These pairs are linked into chains of

observations that correspond to the same object by testing the goodness of fit of the best-fit orbit

for each chain. A reduced chi-squared χ2/N < 2 (Bernstein & Khushalani, 2000) is considered a

detection of a TNO.
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Figure 9.2 Trajectory of 2015 BP519. Trajectory of 2015 BP519 over its measured four-
opposition arc. Larger, red dots along the trajectory indicate points at which it was observed
by DES.

Although 2015 BP519 was originally identified using data from observing campaigns 2-4, we

have obtained additional observations in two ways: first, some of the subsequent planned DES

exposures provided additional serendipitous observations of this object. Second, we performed

three targeted observations on 2 Feb. 2017 and 6-7 August 2017. The result is a series of 30

observations over four oppositions between 27 Nov. 2014 and 15 Feb. 2018, shown in Figure 9.2.

We computed astrometric positions using the WCSfit software described in Bernstein et al. (2017),

which provides astrometric solutions referenced to the Gaia DR1 catalog (Gaia Collaboration et al.,

2016b). This includes corrections for the effects of tree-ring and edge distortions on the DECam

CCDs, as well as for chromatic terms from lateral color and differential atmospheric refraction. We

obtain barycentric osculating orbital elements using the method of Bernstein & Khushalani (2000).

For consistency with the orbital elements and uncertainties used in the simulation results presented

below, our fit uses the 27 observations available through 11 Dec. 2017. The resulting fit has a χ2

of 48.2 for 48 degrees of freedom, and a mean residual of 29 mas. These orbital elements are shown

in Table 9.1. 2015 BP519’s inclination and orbital orientation relative to the other extreme TNOs

is also visualized in Fig. 9.3 (where the orbital elements used for the other plotted extreme TNOs

are given in the Appendix, Table 9.3).
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2015%BP519

Figure 9.3 Three Dimensional Orbit Diagram. A visual representation of the orbit of 2015
BP519, plotted with the other ETNOs as comparisons. For each orbit, the darker regions
on the curve denote where an object falls below the plane of the solar system. 2015 BP519

has the highest inclination of any extreme TNO discovered to date. The full, interactive 3D
orbit visualization can be found at https://smillholland.github.io/BP519/.

These 27 observations of 2015 BP519 include 8 measurements in the g-band, 9 in r -band, 6 in

i -band, and 4 in z -band. Few of these observations were taken in close temporal proximity. To

compute the colors of this object, we therefore compute the corresponding absolute magnitude H

of each measurement to correct for the varying object-sun and object-earth distances as well as

differences in observational phase. The g-r color, for example, is then computed as < Hg > − <

Hr >, and its uncertainty is (< H2
g > + < H2

r >)1/2. The moderately red g-r and r-z colors

are consistent with the values measured in (Pike et al., 2017) for objects identified as dynamically

excited.

For TNOs with magnitudes in the range H ∼ 2−4, measured visual albedos have been found to

range between 0.07 and 0.21 (Brucker et al., 2009; Lellouch et al., 2013; Fraser et al., 2014; Gerdes

et al., 2016b; Holman et al., 2018). With Hr = 4.3, the diameter of 2015 BP519 could range from
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400-700 km, depending on whether the albedo falls near the high or low end of this range.

Because the DES survey area lies predominantly out of the ecliptic, the status of 2015 BP519 as

the highest inclination TNO of those with semi-major axis a > 250 AU and perihelion q > 30 AU

must be considered in the context of possible bias of the DES selection function. To explore this

issue, we simulate an ensemble of clones of 2015 BP519 and test their recoverability in the DES

TNO search pipeline. The orbital elements of these clones are drawn from the observed posteriors

provided in Table 9.1, but with the inclination angle i drawn from a uniform distribution between

0 and 180 degrees. We then compute the orbits of these objects and where the clones would fall on

the nights DES observed.

Using these synthetic orbital elements, we first remove any object that is not detectable by

DES because it is either too faint or outside the survey area. We then compute the position of each

remaining clone at the time of every DES exposure belonging to the data set in which 2015 BP519

was discovered, and determine which clones could be linked together into an orbit. The clones that

could be identified as candidates are those with at least three observations on three different nights

separated by less than 60 nights, and with observations on at least five different nights in total.

The distribution of clones that survives this process, and hence is potentially detectable, is

presented in Fig. 9.4. This plot thus shows the sensitivity function for objects with the orbital pa-

rameters (a, e, ω,Ω) of 2015 BP519, but with varying orbital inclinations and mean anomalies. The

resulting sensitivity function shows some structure, but is not heavily biased toward the observed

inclination angle of 2015 BP519.

2015 BP519 has the highest inclination of any known TNO (defined as objects with q > 30

AU). 2015 BP519 also has an extreme eccentricity (0.92). Figure 9.5 compares the inclination

and eccentricity occurrences by semi-major axis of the regular and extreme (a > 250 AU) TNO

populations. Compared to the other known TNOs, 2015 BP519 has the largest orbital inclination.

Since the number of known ETNOs is small, however, is it unclear where 2015 BP519’s inclination

places it in the true distribution of ETNO inclinations. For regular TNOs (objects with perihelion

distance q > 30 AU but any semi-major axis), for which nearly 1500 have been discovered, 2015

BP519 is the most extreme and seems to lie at the upper tail of the inclination distribution of known

objects; among TNOs, 2015 BP519 has the highest currently measured value, but this population
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Figure 9.4 DES Selection Function. The DES selection function for the discovery of objects
with the orbital elements of 2015 BP519, but with varying inclination angles. The value for
2015 BP519 is shown as the red triangle. The probability distribution is normalized so that
the area under the curve is unity.

is by no means complete.

In Fig. 9.6, we plot a sensitivity histogram computed in the method described above, but for

objects with the orbital parameters (a, e, i) of 2015 BP519, and varying ω and Ω. As was true

for the previous sensitivity function, the final sensitivity histogram shows some structure in each

orbital angle of interest, but is not heavily biased towards the measured angles of 2015 BP519 (which

happen to be consistent with the region of clustering that was used to predict Planet Nine, as will

be discussed further in later sections of this chapter. See also Figure 9.7; Trujillo & Sheppard 2014;

Batygin & Brown 2016a).

9.4 Characterization of 2015 BP519

As a starting point, we consider the dynamical behavior of 2015 BP519 using a secular treatment.

The basic approach is outlined and compared with numerical N-body experiments in subsection

9.4.1, and this formalism is used to elucidate the extreme nature of this object in subsection 9.4.2.
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Figure 9.5 Distribution of Orbital Elements for all TNOs. The distributions of inclinations
(top panel) and eccentricities (bottom panel) for the two populations of TNOs considered
in this work: all objects with perihelia distances greater than 30 AU, and then the subset
of those with semi-major axes greater than 250 AU. Orbits of known objects are fit from
observations posted to the Minor Planet Center database. 2015 BP519 represents the tail of
the inclination distribution of the known TNOs, as well as the upper limit of eccentricities
populated by TNOs.
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Figure 9.6 DES Angular Selection Function. The DES selection function for the discovery of
objects with the orbital elements (a, e, i) of 2015 BP519, but with varying angles ω, Ω. The
observed values for 2015 BP519 are shown as red triangles on each panel. For objects with
the orbital elements (a, e, i) of 2015 BP519, the DES observation bias allows discovery of ω
and Ω subtending most of the allowable ranges.

9.4.1 Secular Dynamics

A secular approach averages over the mean motion of solar system objects and thus allows for

a simplified treatment of the long-term dynamics. Kozai (1962) provided secular equations for the

orbital evolution of small bodies with high inclinations and eccentricities in the presence of an inner

perturber. Here we want to describe the behavior of 2015 BP519, which orbits outside a system of

four interior perturbers (namely, the known giant planets). The contribution from the terrestrial

planets is negligible in this context. We can write the mean perturbing function Rm for a test

particle evolving in the presence of a set of inner planets in the form

Rm =
G

16a3 (1− e2)3/2

[
N∑
j

(mja
2
j )(1 + 3 cos 2i) +

9
∑N

j (mja
4
j )
(
2 + 3e2

)
(9 + 20 cos 2i+ 35 cos 4i)

512a2 (1− e2)2

+
9
∑N

j (mja
4
j ) 40e2(5 + 7 cos 2i) cos 2ω sin2 i

512a2 (1− e2)2

]
,

(9.1)
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Figure 9.7 Circular Signal Analysis. An adapted circular signal analysis (CSA) (similar to
that done in ?; for original technique see Lutz 1985). To account for the alignment and anti-
alignment predictions, we fold the unit circle on the predicted $ of Planet Nine. The points
on the circumference of the circle are the known extreme TNOs (a > 250 AU, q > 30 AU),
including 2003 VB12 (Sedna), 2004 VN112, 2007 TG422, 2010 GB174, 2012 VP113, 2013 FT28,
2013 RF98, 2013 SY99, 2014 FE72, 2014 SR349, 2015 GT50, 2015 KG163, and 2015 RX245

as well as our new object, 2015 BP519. The length of vector r̂ =
√
〈x〉2 + 〈y〉2 increases

with increasing strength of clustering to a maximum at r̂ = 1, with r̂ = 0 being totally
uncorrelated. This clustering visualization does not account for the bias of the surveys
that discovered the TNOs in this population. Grey arrows are simulated observations from a
uniform angular distribution, and the right panel orders by r̂ the simulated draws (grey) and
true observed clustering (black). Note: this analysis does not account for the observational
biases inherent in the surveys that discovered each known TNO. Future work (Hamilton et
al., in prep) will attempt to quantify the biases inherent in the DES detection.
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Parameter Value
a 448.99 ± 0.49 AU
e 0.92149 ± 0.00009
i 54.1107 ± 0.00001 deg
ω 348.058 ± 0.00136 deg
Ω 135.2131 ± 0.00010 deg
Time of Perihelion (JD) 2473015.55 ± 0.56
Perihelion 35.249 ± 0.078 AU
Aphelion 862.733 ± 0.972 AU
Orbital Period 9513.84 ± 15.42 years
Absolute magnitude Hr = 4.3
g-r (mag) 0.79 ± 0.17
r-i (mag) 0.19 ± 0.12
r-z (mag) 0.42 ± 0.15
i-z (mag) 0.23 ± 0.15

Table 9.1 Orbital Elements of 2015 BP519. 2015 BP519 barycentric osculating elements at
epoch 2456988.83, based on 27 observations over a 1110-day arc from 27 Nov. 2014 to 12
Dec. 2017. 2015 BP519 has a mean anomaly 358.34 degrees and will reach perihelion on 14
Oct. 2058.

where the effects of the inner planets are included here as a mean moment of inertia (Gallardo

et al., 2012). In this expression, G is the gravitational constant (G = 4π2; we work in units of

solar mass, AU, and year), (a, e, i) are the orbital elements of the test particle,
∑N

j (mja
2
j ) is the

moment of inertia in the direction out of the plane containing the giant planets, and the label j

denotes each giant planet under consideration.

From this secular Hamiltonian, we can derive an expression for the time evolution of the incli-

nation angle using Lagrange’s planetary equations, which takes the form

di

dt
= − tan (i/2)(na2

√
1− e2 )−1

(
dRm
dε

+
dRm
d$

)
− (na2

√
1− e2 sin i)−1dRm

dΩ
. (9.2)

where n = (GM/a3)1/2 is the mean motion, M is the mass of the central body, and ε is the mean

longitude at epoch. Combining the previous two expressions yields the equation of motion for i:

di

dt
=

45e2G1/2
∑N

j (mja
4
j )

1024 M1/2 a11/2(1− e2)4
(5 + 7 cos 2i) sin 2i sin 2ω . (9.3)
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Analogous equations can also be constructed using the other Lagrange planetary equations, result-

ing in equations of motion for de/dt, dω/dt, dΩ/dt (see Equations 7-11 of Gallardo et al. 2012), and

da/dt = 0. Using the known (estimated) orbital elements for 2015 BP519 (see Table 9.1) as initial

conditions, we simultaneously solved these five equations of motion, resulting in predicted secular

evolution for 2015 BP519’s orbital evolution. This result is shown in Fig. 9.8 as the solid curve. The

figure shows additional curves in thinner grey lines corresponding to the orbital evolution computed

for the same initial conditions, but using full N-body integrations instead of secular theory. These

simulations are described in full in the following section, and their parameters are also summarized

as Set 1 in Table 9.2. As a quick summary, these integrations are computed using the Mercury6

integration package (Chambers, 1999b), using the hybrid symplectic and Bulirsch-Stoer (B-S) in-

tegrator and a time-step of 20 days. In these simulations, all four of the known giant planets are

treated as active bodies (rather than being modeled using the J2 approximation that is often used).
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Figure 9.8 Evolution of 2015BP519 in Known Solar System: Secular vs. Numerical. The
future evolution of 2015 BP519 (using its current day best-fit orbital parameters as initial
conditions) in the presence of the known solar system. The secular curve plotted as a solid
dark line was solved from the disturbing function (Equation 9.1) and the best-fit orbital ele-
ments of 2015 BP519. The numerical results, plotted as grey lines, are drawn from simulation
Set 1, where the orbit of 2015 BP519 is evolved in the presence of the known solar system for
4.5 Gyr. See Table 9.2 for more details on the simulation parameters.

Figure 9.8 shows that the secular approximation provides a good order of magnitude description

of the time evolution of the inclination angle, even through the secular approximation does not

include the scattering interactions that lead to slight divergence in the N-body simulations. Both
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the secular and N-body treatments predict that, in the known solar system, the inclination of 2015

BP519 will remain fairly well constrained around its presently observed value.

9.4.2 The Extreme Nature of 2015 BP519

Although the orbit of 2015 BP519 is highly unusual among known TNOs, we need a quantitative

assessment of its properties relative to other TNOs of its dynamical class. Toward that end, we

consider the Kozai Hamiltonian written in Delaunay coordinates (Thomas & Morbidelli, 1996), for

which the action H is defined as:

H =
√
a(1− e2) cos i . (9.4)

Note that this action is equivalent to the standard ‘H’ variable in Delaunay coordinates (?) and

is a constant of the motion in the quadrupolar approximation. The action L =
√
a will also be

constant, as the Kozai Hamiltonian averaged over the mean anomaly and thus rotationally invariant

and thus depends only on action G =
√
a(1− e2) and coordinate g = ω, with actions L and H

being conserved. Next, we define a reduced Kozai action η0, which has the form

η0 =
√

(1− e2) cos i . (9.5)

As action L is conserved for the Kozai Hamiltonian, this reduced form of action H should also be

conserved. Note that η0 is the specific angular momentum vector in the direction out of the plane

of the solar system (Kinoshita & Nakai 1999; we follow the notation in Saillenfest et al. 2016). For

sufficiently distant TNOs, the potential of the solar system is effectively axially symmetric (but

not spherically symmetric), so that the z-component of angular momentum (but not total angular

momentum) is conserved. In the known solar system, TNOs with constant semi-major axis are

thus expected to evolve in (i, e) space along contours of constant η0. In Fig. 9.9, we overlay curves

of constant η0 on a plot comparing the i, e of all TNOs and ETNOs discovered so far. Compared

to previously discovered objects, 2015 BP519 has the lowest η0 value which signifies its relative

extremeness.
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Figure 9.9 Comparison of the Kozai Action for all Discovered TNOs. We plot curves of
constant η0 in (i, e) space (see Equation 9.5). Also plotted are (in grey) the orbital elements
of all objects with perihelion distances outside of Neptune and data quality flags of 6 or
better, as reported to the Minor Planet Center database (files downloaded 10/25/2017) and
(in red) the subset of those objects that also have a semi-major axis measured to be a > 250
AU. With η0 = 0.2274, 2015 BP519 has the lowest value of η0 out of any TNO with q > 30
AU that has been discovered thus far. This metric, which measures the extremeness of the
(i, e) of each object, characterizes 2015 BP519 as the most extreme of the extreme TNOs.

9.5 Full Dynamics of 2015 BP519 in the Known Solar System

The analytic formulation presented in Section 9.4 classifies 2015 BP519 as the most extreme

TNO discovered in the outer solar system to date, due to its high inclination, high eccentricity, and

large semi-major axis. However, the secular approximation used in the previous section neglects the

importance of interactions with Neptune, which will occur when 2015 BP519 reaches its perihelion.

2015 BP519’s relatively small perihelion distance (≈ 35 AU) suggests that it will be subject to

repeated strong interactions with Neptune, which will change the energy of 2015 BP519’s orbit by a

factor of roughly 6× 10−6 per perihelion crossing (when this process can be modeled as a random

walk; see Fig. 1 of Duncan et al., 1987). The change in orbital energy will also lead to change

in the semi-major axis of the orbit, and as a result, the level curves presented in Fig. 9.9 may

not truly represent the evolution of 2015 BP519 over extended spans of time. Instead, quantities

which appear as constants of motion in the previous section (η0) will no longer be conserved as

2015 BP519 changes its orbital elements, in particular its semi major axis, due to interactions with
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Neptune. The true orbital evolution, being the result of a chaotic process, will also vary widely

between trials in numerical integrations. As shown in Fig. 9.8, the numerically computed orbital

evolution does not perfectly match the secular expectation, and multiple integrations of the same

object will give slightly different periods and amplitudes of evolution.

To fully test the effect of additional dynamics not encapsulated by the secular analysis of the

previous section, we perform a suite of numerical N-body simulations using computing resources

provided by Open Science Grid (Pordes et al., 2007; Sfiligoi, 2008; Sfiligoi et al., 2009) through the

Extreme Science and Engineering Discovery Environment (XSEDE) portal (Towns et al., 2014).

These simulations include the new body 2015 BP519 and all of the relevant known solar system

objects (the case of Planet Nine is considered in the following section, but is excluded from this

initial set of simulations).

9.5.1 Numerical Evolution of 2015 BP519 in the Known Solar System

The precession time scales and orbital evolution of 2015 BP519 can be tested more directly with

numerical N-body simulations. To examine the complete evolution of 2015 BP519 in the known

solar system, we perform a suite of numerical integrations using the Mercury6 integration package

(Chambers, 1999b). We exclude the terrestrial planets from the simulations, but include the gas

giants (Jupiter, Saturn, Uranus, and Neptune) as active, massive particles with their currently

measured masses and orbital elements. We start with a time-step of 20 days, which is roughly

0.5% of Jupiter’s orbital period. We use the hybrid symplectic and Bulirsch-Stoer (B-S) integrator

built into Mercury6 and conserve energy to better than 1 part in 109 over the course of the 4.5 Gyr

integrations. The orbital elements for 2015 BP519 are drawn from the covariance matrix derived

from the fit to the DES data. Fifty-two simulations are run of the solar system, each with five

clones of 2015 BP519. Half of these simulations are integrated forward in time from the current

day, and the other half evolve back in time for 4.5 Gyr. Other parameters used for this set of

simulations (which we call Set 1 in this work) are given in Table 9.2.

The results of these integrations are presented in Fig. 9.10, and demonstrate that the semi-

major axis of 2015 BP519 diffuses widely in the presence of the known giant planets. The perihelion

distance tends to remain fairly well-confined near the initial value of even as the orbital energy
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Set Initial Active J2 Abs. Radius Backwards Forward Details
Timestep Planets Clones Clones

Set 1 20 days 4 (JSUN) 2×10−7 4.65×10−3 AU 130 130 No P9
Set 2 3000 days 1 (P9) 0.00015244 20 AU 0 1000 low i1, P92

Set 3 3000 days 1 (P9) 0.00015244 20 AU 0 1000 P92

Set 4 200 days 2 (N,P9) 0.00036247 9.8 AU 0 600 P92

Set 5 20 days 5 (JSUN, P9) 2×10−7 4.65×10−3 AU 0 130 P92

Table 9.2 Simulation Sets Used in This Work. A list of the sets of simulations used in
this work, with their relevant parameters listed. When included as active particles in a
simulation, gas giant planets are denoted by their first initials (J for Jupiter, S for Saturn,
U for Uranus, N for Neptune) and when Planet Nine is included, it is denoted by P9. The
absorbing radius is the radius of the central body in the simulations. The ejection radius
is set to 10000 AU for all simulation sets, and all integrations are run for 4.5 Gyr. Except
when denoted otherwise, the orbital elements of 2015 BP519 are drawn from the covariance
matrix describing the best-fit values and errors in Table 9.1. Simulations were run in batches;
for simulation Sets 1 and 5, 5 clones of 2015 BP519 were included as test particles in each
individual integration. For simulation Sets 2, 3, and 4, 10 clones were included in each
integration. 1 Inclination of 2015 BP519 was drawn from a half-normal distribution around
0 degrees with a width of 5 degrees. 2 The best-fit version of Planet Nine from Batygin
& Morbidelli (2017) was used (700 AU, 0.6 eccentricity, 20 degrees inclination). The solar
quadrupole moment J2 is defined by Eq. 9.6 when any giant planets are absorbed, and set
to the solar value otherwise (Pireaux & Rozelot, 2003).
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Figure 9.10 Evolution of 2015BP519 in Known Solar System. The results of numerical simu-
lations where 2015 BP519 is evolved forward and backward in time in the presence of the four
giant planets (Set 1; see Table 9.2). All trials are plotted here; curves that end prematurely
before 4.5 Gyr correspond to the integrations where a clone becomes dynamically unstable
(collision into the central body, ejection from the system, physical collision with a planet,
or a scattering event resulting in an unbound orbit). For trials that remain dynamically
stable, the inclination and eccentricity are relatively well constrained to values near their
initial conditions. The semi-major axis of 2015 BP519 diffuses rapidly.
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changes due to repeated kicks from Neptune.

The Hamiltonian used in Section 9.4.2 requires that the semi-major axis of the particle remain

roughly constant. From these simulations, it is clear that the semi-major axis of 2015 BP519 tends

to change significantly over relatively rapid (∼ 106 − 107 year) timescales. As such, Equation 9.5

is a good model for 2015 BP519’s short-term dynamical behavior, but not its long-term orbital

evolution.

9.5.2 Generating Highly Inclined Objects in the Known Solar System

In the previous section, we used numerical simulations to determine the expected evolution of

2015 BP519 in the presence of the four known gas giants. The results show that the inclination of

2015 BP519 tends to be confined to within a range of roughly 5 degrees. Although the semi-major

axis diffuses over a wide range of values, the corresponding evolution in eccentricity is constrained

by the behavior of the perihelion: to leading order, the perihelion distance of 2015 BP519 remains

well confined. Specifically, q is constant to within ∼5 AU over the entire envelope of all dynamically

stable clones. The eccentricity evolution of 2015 BP519 is thus explained by the requirement that

the perihelion remains nearly constant as the semi-major axis varies. Moreover, this behavior is

mediated by Neptune. The orbital evolution is consistent with that expected for a member of the

scattered disk.

The high present-day inclination of 2015 BP519 is more difficult to explain. In the numerical

simulations shown in Figure 9.10 in the context of the currently-observed solar system, the orbital

inclination of 2015 BP519 is found to remain roughly constant. This trend holds for simulations

running both backwards and forwards in time. Since the solar system formed from a disk, we

expect the orbital inclination of 2015 BP519 to be low at birth. The transition from an initially

low inclination orbit to the present-day (high) value must be explained by some mechanism that

is not included in our simulations. Some possible explanations include the following: a passing

star could excite objects to highly inclined and eccentric orbits; a particularly favorable impact

parameter during a close encounter with Neptune could excite an object out of the plane of the

solar system; the high inclination could be a fossil from violent migration processes in the early

solar system; the self-gravity of a large disk of planetesimals in the scattered disk; and finally, the
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existence of proposed solar system member Planet Nine, which could lead to secular evolution in

eccentricity and inclination for long-period TNOs, thereby producing the current-day orbit of 2015

BP519. In this section, we briefly consider the first three possibilities, and then examine the Planet

Nine hypothesis in detail in Section 9.6.

Scattering interactions with other stars As most planetary systems form in clusters (Lada

& Lada, 2003; Porras et al., 2003), the solar system is likely to have formed in such an environment

(Adams, 2010). Dynamical interactions between cluster members can shape the dynamics of the

constituent planetary systems (Brasser et al., 2012a). The interactions tend to have a moderate

effect (Adams et al., 2006), but can nonetheless sculpt the outer portions of the planetary system

or the original disk, which are of interest here. Interactions in the birth cluster are expected to

dominate over those that occur later on in the field, but the latter can still be significant. If the

trajectory of a binary or single star brings it sufficiently close to a star hosting a planetary system,

the geometry of the planetary system can be altered (Jiménez-Torres et al., 2011). For example,

Kenyon & Bromley (2004) discuss the possibility that Sedna’s orbit is the result of a passing star

perturbing the orbit of objects in the Kuiper Belt. They find that if such a star had its own disk

of planets and planetesimals, then some objects could be captured into our solar system onto high-

inclination orbits. It is thus possible that 2015 BP519 is the result of interactions between our solar

system and another external, perturbing body. The interaction cross sections for such events are

much larger at the low fly-by speed realized in young embedded clusters (Li & Adams, 2015d), so

that the required event is more likely to occur in the birth cluster (compared to the field).

Scattering interactions with Neptune As discussed in Duncan et al. (1987), TNOs will

experience a perturbation in orbital energy at each periapsis, when the TNO passes closest to the

orbit of Neptune. Although Fig. 9.10 demonstrates that in our set of backwards integrations 2015

BP519 has retained roughly the same inclination for the past 4.5 Gyr, there is some variation among

the individual trials. More specifically, one particular integration in the backwards time direction

attained (at one point) an orbital inclination of 60 degrees, although such a large value was not

attained in any of the other integrations in either direction. With a large enough set of simulations,

one could find the probability that 2015 BP519 could originate in an orbit closer to the plane of

the solar system, and subsequently evolve into its present orbit. In this scenario, 2015 BP519 could
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have reached its high inclination from a series of extreme scattering events with Neptune. Our

current set of numerical simulations shows that this scenario is possible, but unlikely.

Remnant of planetary migration

The Nice model (Tsiganis et al., 2005; Morbidelli et al., 2005; Gomes et al., 2005) suggests

that even if the solar system starts as a roughly co-planar disk, the planets attain their small

eccentricities and inclinations through scattering events with the large reservoir of planetesimals in

the outer solar system. Some of these bodies will be forced to high eccentricities and inclinations,

while others will be able to maintain their lower (e, i) distributions (Levison et al., 2008). This

scenario is characterized by a short period of extreme instability, which corresponds to the Late

Heavy Bombardment inferred in the history of our solar system (at an age of ∼600 Myr). As a

result of this violent period, high-inclination objects can be created from objects originating at the

outer edge of the planetesimal disk. Although it is unclear how an object with a semi-major axis

as high as that of 2015 BP519 would be generated in this process, we cannot exclude the idea that

2015 BP519’s currently observed orbital inclination may come from a period of violent instability

in the early history of the solar system.

Another explanation for high semi-major axis, high eccentricity orbits could be the diffusion

hypothesis proposed in Bannister et al. (2017) for the generation of 2013 SY99’s orbit. Objects with

the longest orbital periods may sequentially scatter outwards, detach their perihelia through galactic

tides, and then diffuse inwards into orbits with long periods and detached perihelia. Galactic tides

start to dominate once an object attains a semi-major axis of roughly 3000 AU or more (Duncan

et al., 1987), meaning that the currently-observed TNOs are not generally susceptible to these

effects. This mechanism does appear to describe 2013 SY99, an object with a semi-major axis

a ≈ 730 AU and an eccentricity of 0.93, which fits into the dynamical class of objects that would

be produced by this mechanism. However, 2015 BP519’s perihelion is not sufficiently detached (35

AU vs. 50 AU for 2013 SY99) for this mechanism to operate.

Another explanation for this object’s extreme orbit could be galactic tides acting on remnants

of the inner Oort cloud. It has been suggested (Brasser et al., 2012b) that centaurs may come from

the inner Oort cloud rather than the scattered disk. Brasser et al. (2012a) shows that the median

inclination of the inner Oort cloud should be around 50 degrees. As mentioned in Brasser et al.
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(2012a), the number and orbital parameters of objects with large semi-major axis can be used to

constrain birth cluster properties. An object at 450 AU would be near the inner 2-5% of the cloud,

depending on the density profile used. However, objects formed via this mechanism (such as SY99,

Bannister et al. 2017) would be expected to have detached perihelia distances, which 2015 BP519

does not.

Silsbee & Tremaine (2018) discuss the possibility that a potentially planetary-mass object (sub-

earth mass) could have formed among the giant planets, and its influence during Neptune’s mi-

gration could have excited TNOs to present-day high inclinations. This object is distinct from the

Planet Nine discussed in the next section.

Self-gravity of the scattered disk A sufficiently large (1-10 Earth masses in total mass),

eccentric disk would experience an instability due to the self-gravity of the disk (Madigan & Mc-

Court, 2016). This proposed instability could cause clustering in ω (as observed) for the objects

experiencing the instability, and a subsequent pumping of inclination for objects that find their

apocenter above the orbital plane (Madigan et al., 2018). This would result in the population of

high inclinations for eccentric objects. 2015 BP519 could undergo this mechanism if the scattered

disk contains enough mass to cause the instability: for this explanation to be feasible, a large

number of additional objects in the scattered disk will need to be found, as the early mass of the

scattered disk must have been high for this instability to occur.

9.6 Dynamics in the Presence of Planet Nine

Many recent papers have considered the existence of a possible ninth planet. In this section, we

consider how the existence of Planet Nine would alter the orbital behavior and evolution of 2015

BP519. In considering possible dynamical interactions between 2015 BP519 and Planet Nine, there

are two main classes of effects that may be relevant:

• Constant-a evolution (while in or near resonance with another body). Due to 2015 BP519’s

large semi-major axis, we do not expect Neptune resonances to be relevant. The longest

period objects known to be in resonance with Neptune have semi-major axis of ∼130 AU

(Volk et al., 2018). 2015 BP519’s semi-major axis of ∼450 AU is likely too large for these
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processes to be relevant. However, resonances with Planet Nine may be important.

• Diffusion and scattering in a due to close encounters with Neptune or Planet Nine. These

encounters may be very close (<3 AU) and lead to significant changes in the orbit of 2015

BP519, or may be more distant (5-15 AU) and act more as a series of perturbations than an

abrupt change.

Both of these modes of evolution can occur over the entire history of the solar system. For example,

Fig. 9.11 shows one sample numerical realization of the orbital evolution of 2015 BP519, which

demonstrates these two evolutionary modes within a single 4.5 Gyr integration.
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Figure 9.11 Illustrative Resonance Hopping Diagram. A single clone of 2015 BP519 in the
presence of Planet Nine drawn from Set 3 of our simulations. There are two modes of
evolution, both shown and labeled in this panel. The first (1) occurs when 2015 BP519

passes physically close to Planet Nine (a close encounter), and the orbit of the TNO may
be slightly jostled. Times when 2015 BP519 passes within 3 AU of Planet Nine are denoted
with red vertical lines. When close encounters occur, the orbit of 2015 BP519 is altered
and appears to migrate for some time before settling into a new equilibrium semi-major
axis. These jumps are the same ‘resonance hopping’ discussed in previous work (Becker
et al., 2017). The second mode of evolution shown here (2) occurs when the semi-major
axis remains constant, but the inclination and eccentricity of 2015 BP519 may still evolve.
The work in Batygin & Morbidelli (2017) describes what happens during these (2) regions
of constant semi-major axis.
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9.6.1 Evolution with Constant Semi-major Axis

The existence of Planet Nine can lead to a behavior in which TNOs “hop” between resonances

(Becker et al., 2017). This is differentiated from ‘resonance sticking’ (Duncan & Levison, 1997;

Robutel & Laskar, 2001; Lykawka & Mukai, 2006), where scattered disk objects are temporarily

captured into resonances with Neptune. In the Planet Nine paradigm, TNOs generally spend

more time living in resonances than not, with relatively short periods between the attainment of

resonances.

An example of what resonance hopping looks like is given in Fig. 9.11, where the semi-major

axis makes sudden transitions between relatively long periods at nearly constant values (note that

further examples can be found in Figures 8 and 9 of Becker et al. 2017). The transitions in the

resonance hopping paradigm are generally caused by close encounters with either Neptune or Planet

Nine.

Batygin & Morbidelli (2017) conducted a thorough analytic and numerical exploration of the

evolution of TNOs in the case where the TNOs remain at a nearly constant semi-major axis.

Fig. 9.11 demonstrates the typical behavior of 2015 BP519 in the presence of Planet Nine – for

extended periods of time, it orbits with a roughly constant semi-major axis, until a close encounter

(denoted by red vertical bars in the figure) perturbs the semi-major axis into a different value.

A new equilibrium is quickly attained, and the object returns to evolution with nearly constant

semi-major axis a. During the long periods of constant-a orbital motion, the dynamics described

in Batygin & Morbidelli (2017) will apply, as described below.

To study the evolution of 2015 BP519 under the same conditions starting in the early solar

system and integrating to the current day, we conduct another set of simulations (Set 2; see Table

9.2). In contrast to the earlier Set 1 integrations, where the giant planets were considered as active

bodies, these simulations absorb all four gas giants into the quadrupole moment of the central body.

The corresponding contribution of the planets to the value of J2 is given by

J2 =
1

2

4∑
j=1

mja
2
j

MR2
abs

, (9.6)

where is Rabs is the absorbing radius, within which objects are removed from the simulation, the
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index j counts through the four gas giants, mj and aj denote planetary masses and semi-major

axes, and M denotes the mass of the central body. This approximation minimizes perturbations

in a-space, allowing for an easier study of the orbital evolution at constant-a. As was done in

Batygin & Morbidelli (2017), we initialize the inclination of 2015 BP519 to be drawn from a half-

normal distribution with mean 0 degrees and width 5 degrees, which simulates the expected initial

conditions in the early solar system. We also include Planet Nine, using the best-fit values of its

orbital elements (a = 700 AU, e = 0.6, i = 20, ω = 150, Ω = 90), which come from Millholland

& Laughlin (2017) and Batygin & Morbidelli (2017). We also run an additional set of simulations

(Set 3) with identical parameters, but using the observed inclination of 2015 BP519 as drawn from

the observationally-derived covariance matrix. Simulation Set 2 is intended to study the behavior

of an object like 2015 BP519, but starting from early in solar system history, before the inclination

of 2015 BP519 is perturbed to its current-day value. Simulation Set 2 is intended to answer the

following question: assuming that 2015 BP519 started in the same plane as the outer solar system

objects that were present in the early solar system, can secular interactions with Planet Nine excite

2015 BP519’s inclination to its current day value? For comparison, simulation Set 3 studies the

behavior of 2015 BP519 from the current day forwards (but using the same approximations that

are used in Set 2; namely, neglecting perturbations caused by scattering interactions with the giant

planets and treating evolution as occurring at constant-a).

In Fig. 9.12, we plot the action-angle evolution of the results of Set 2, using angle

θ = ∆$ = 2Ω−$ −$9 (9.7)

and coordinate action

Θ =

√
1− e2

2
(1− cos i) (9.8)

as done in Batygin & Morbidelli (2017).

The resulting evolution of 2015 BP519 in this action-angle phase space is plotted in Fig. 9.12.

The lines trace the 4.5 Gyr evolution of the realizations of 2015 BP519 from simulation Set 2. The

star symbol marks the present-day location of 2015 BP519 in this parameter space, using its observed

inclination, eccentricity, and (expected) ∆$. It is important to note that the remarkably high
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observed inclination of 2015 BP519 is not a guaranteed outcome of these simulations. Nonetheless,

the star symbol lies along the teal contours, which describe regions of the phase space to which an

initially-coplanar 2015 BP519 could evolve. These simulations demonstrate that in the case where

2015 BP519 starts its life close to the plane containing the solar system planets, 2015 BP519 is able to

attain its current day inclination, eccentricity, and orbital orientation through secular interactions

with Planet Nine alone.

As a result, Set 2 of our simulations shows that orbital evolution with constant semi-major axis

(a) evolution can explain how 2015 BP519 achieves its observed inclination in the presence of Planet

Nine. In other words, the existence of Planet Nine is sufficient to explain the currently observed

orbit of 2015 BP519.

9.6.2 Orbital Evolution with Planet Nine and Neptune

The constant-a evolution is relevant for the majority of the lifetimes of the TNOs in the presence

of Planet Nine, and the behavior of the TNOs will generally behave as described in the previous

section during those times. Close encounters with Planet Nine do occur even in the idealized

simulation Set 2, but they are rare and tend to lead to only small hops between nearby resonances

with Planet Nine. However, as the current perihelion distance of 2015 BP519 brings it fairly close

to the orbit of Neptune during each perihelion passage, the true evolution of 2015 BP519 will be

affected heavily by those Neptune-2015 BP519 interactions. In Fig. 9.11, we show a sample orbital

evolution of 2015 BP519 without Neptune. During a close encounter with Planet Nine, 2015 BP519’s

orbit is rapidly altered, where the average distance of its orbit diffuses until it is trapped into or

near a new resonance. The inclusion of Neptune as an active body increases the number of close

encounters experienced by 2015 BP519, as it will interact with both Planet Nine and Neptune.

This increase in interactions, in turn, allows for the orbit of 2015 BP519 to become more heavily

perturbed over time.

To test the effect of these kicks from Neptune, we set up another set of simulations (Set 4;

see Table 9.2). In this case, we replace Jupiter, Saturn, and Uranus with an effective J2 term to

represent the potential of those three planets. However, this time we include Neptune as an active

body, which allows Neptune scattering events to be resolved. As before, the energy is conserved to
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Figure 9.12 Action-Angle Evolution of 2015BP519 in Presence of Planet Nine. Orbital
evolution of 2015 BP519 in action-angle space. This figure shows results from simulations
where the initial inclination of 2015 BP519 was drawn from a half-normal distribution centered
at 0 degrees, with a width of 5 degrees (Set 2; see Table 9.2). This plot should be compared
to the bottom panel of Fig. 11 in Batygin & Morbidelli (2017). The currently observed
action-angle coordinates θ and Θ (computed using the simulated version of Planet Nine)
is marked by the star symbol. The current-day orbital elements of 2015 BP519 are easily
reproduced in the scenario with Planet Nine and with 2015 BP519 starting in the plane with
the other solar system objects.
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one part in 109 and the hybrid symplectic-Bulirsch-Stoer integrator is used. The other parameters

of this set of simulations are summarized in in Table 9.2, and the results are plotted in Fig.

9.13. As expected, in this new set of simulations, 2015 BP519 appears to be significantly less

Figure 9.13 Orbital Evolution of 2015BP519 in Presence of Planet Nine with J2. The orbital
evolution of 2015 BP519 as computed using N-body simulations for Simulation Set 4, which
includes Neptune as an active particle, replaces the other three gas giants with an effective
J2, and includes Planet Nine. These integrations do describe well the secular dynamics of
surviving particles. The evolution of semi-major axis also shows the horizontal banding
structure in semi-major axis, which is characteristic of resonance hopping.

dynamically stable than in the previous sets (which do not include an active Neptune). However,

part of this apparent dynamical instability is due to the nonphysical absorbing radius used in the

simulations: specifically, we remove particles from the simulation when they reach orbital radii

within the absorbing radius. This inner boundary is set to be 9.8 AU in this case, since we are

replacing the Sun and inner three giant planets with an oblate central body with a larger radius,

to represent the effective quadrupole term of the entire system.
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As a result of the complication outlined above, ensembles of simulations that use effective J2

terms (like Set 4) to represent time-averaged planetary orbits cannot be used to study the final

outcomes of these objects. For example, if the orbit of a realization of 2015 BP519 was to evolve

to the point where the clone becomes a Jupiter-family comet, simulation Set 4 would not resolve

this end state, and would instead classify the clone as dynamically unstable. On the other hand,

this approximation can be used to describe the expected secular evolution for objects that remain

a part of the same dynamical population.

9.6.3 Orbital Evolution with Planet Nine and the Four Giant Planets

Both of the previous sections discussing the orbital evolution of 2015 BP519 in the presence of

Planet Nine replaced some (or all) of the gas giants with an effective J2 term. This time-saving

integration strategy has been used extensively in the Planet Nine literature (Batygin & Brown,

2016a; Brown & Batygin, 2016; Millholland & Laughlin, 2017; Hadden et al., 2017). In Section

9.6.2, we showed that the physical presence of Neptune leads to a greater number of transitions

(‘hops’) between Planet Nine (true or near) resonances. Next, our final set of simulations (Set 5)

investigates the effect of including all four gas giants as active bodies. The details of Set 5 are given

in Table 9.2. One important detail about this set of simulations is that since all the gas giants

are included as active particles (and terrestrial planets ignored), no planets need be modeled as

perturbations on the solar J2. As such, the absorbing radius of the central body is set equal to

the Solar radius. This aspect of the simulations allows for the resolution of outcomes where 2015

BP519 settles into a stable orbit with a perihelion distance that passes into the inner solar system;

the results of this set of simulations is shown in Fig. 9.14. This figure appears very similar to 9.13,

but describes the full motion of 2015 BP519. The striking similarity between the two figures can be

used as justification for using the J2 approximation when secular evolution is being studied.

9.7 Discussion

In this work, we present the discovery and dynamical analysis of a new extreme TNO, a popula-

tion defined as those objects with a > 250 AU and q > 30 AU. Because 2015 BP519 has the largest
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Figure 9.14 Orbital Evolution of 2015BP519 in Presence of Planet Nine. The orbital evolution
of 2015 BP519 as computed using N-body simulations for Simulation Set 5, which includes all
four gas giants as active particles and also includes Planet Nine. The integrations show the
same horizontal banding structure in semi-major axis characteristic of resonance hopping.
The evolution computed here is very similar in secular trajectory to that of Set 4 (Fig. 9.13).
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Figure 9.15 Orbital Angles and Clustering. A visualization of the two orbital angles Ω
(longitude of ascending node, top panel) and ω (argument of perihelion, middle panel),
along with their sum longitude of perihelion $ = ω + Ω (top panel). The points are color
coded by the specific angular momentum of the orbit η0 =

√
1− e2 cos i. The plot includes

all objects with q > 30 AU and data quality U < 6 from the MPC database (Marsden et al.,
1978), with 2015 BP519 denoted as a star. Horizontal bars denote the approximate regions
of clustering in each angle, as identified in Batygin & Brown (2016a).
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Figure 9.16 Retrograde TNOs. A measure of the fraction of 2015 BP519 clones that attain
retrograde orbits as a function of time in the numerical simulations that include Planet
Nine. The coherence between all sets of simulations is due to a single realization of Planet
Nine’s orbital elements being used for all simulations. The good agreement between the
simulations that used a J2 approximation (Set 4) and those that included all gas giants as
active particles (Set 5) suggests that the J2 approximation (while keeping Neptune an active
particle) is appropriate for studying the orbital evolution of surviving particles, even if it
does not work well on its own for studying the dynamical stability. The integrations in
Set 1 (which included the known solar system and no Planet Nine) never attain retrograde
geometries.
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eccentricity and inclination of any of the extreme TNOs, it allows us to probe the behavior of a new

regime in the solar system. Ideally, DES and other surveys will find more of these high-inclination,

large semi-major axis objects. Once such a population is found and grows to a sufficient size, it

will inform a variety of hypotheses about the structure of the outer solar system and the migration

of the giant planets. For now, while the number of such known objects is small, we have performed

an in-depth study of the dynamical evolution of 2015 BP519 in various scenarios with two goals:

first, we would like to make whatever insights are possible with a single object to improve our

understanding of the outer solar system; second, we would like to determine which hypotheses and

analyses will be most fruitful for future study once more of these objects are found.

Our analysis of the orbital evolution of 2015 BP519 using forward and backwards integrations has

revealed that it is difficult to reproduce 2015 BP519’s high current-day inclination in the known solar

system without considering some other mechanism. In Simulation Set 1, which studied the evolution

of this object in the known solar system, 0 out of the 260 simulated clones of 2015 BP519 attained

inclinations less than 48 degrees or greater than 60 degrees, when integrations were initialized with

2015 BP519’s measured inclination of ∼54 degrees. This strong confinement in inclination space

that is evident in the numerical simulations requires us to consider other mechanisms to excite

the inclination of this object. Some potential explanations (discussed in Section 9.5.2) include a

stellar fly-by, a remnant excitation from the early migration of the giant planets, a particularly

serendipitous outcome not captured by our 260 N-body simulations, or an inclination instability

caused by the self-gravity of a massive scattered disk.

One additional explanation to those listed above is the existence of a ninth planet in our solar

system, as proposed by Trujillo & Sheppard (2014) and Batygin & Brown (2016a). As shown in

Fig. 9.12, in the presence of Planet Nine 2015 BP519 can start out with a relatively low inclination

and easily attain its current-day inclination. Additionally, as shown in Fig. 9.15, 2015 BP519’s

orbital angles ω, Ω, and $ appear to be consistent with the clustering first noted in Trujillo &

Sheppard (2014). This clustering in physical space has been proposed to be caused by the ∼10

Earth-mass Planet Nine at 700 AU (Batygin & Brown, 2016a) and is the line of evidence most

commonly used to support the existence of Planet Nine. Although 2015 BP519 does appear to fit

into this paradigm, the physicality of the clustering remains a contentious piece of evidence for
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Planet Nine (Shankman et al., 2017b; Brown, 2017). In Fig. 9.6, we showed the bias in DES

detections of objects with varying orbital angles ω,Ω, but the same (a, e, i) as 2015 BP519 has. For

2015 BP519, at least, the biases are sufficiently mild that it seems that 2015 BP519 can be used as

evidence towards the existence of the clustering. However, the observational biases we determine

for 2015 BP519 do not tell us anything about other objects that may be found by DES or other

surveys: without fully accounting for the observational biases for each individual survey that has

discovered these ETNOs, it cannot fully be determined how much of the clustering is physical and

how much is due to observational bias. Past surveys have been able to quantify this: the Deep

Ecliptic Survey had well-documented pointings, and as a result was able to construct a model of

its detection biases (Adams et al., 2014). Similarly, the Outer Solar Systems Origin Survey has

quantified its own biases (Lawler et al., 2018). Future work (Hamilton et al., in prep) will do the

same for the Dark Energy Survey, and enable a better understanding of whether the clustering

suggesting Planet Nine’s existence is real or a sampling bias.

However, 2015 BP519 does provide additional diagnostics unrelated to angular clustering which

inform the Planet Nine debate. Batygin & Brown (2016a) predicted that high inclination KBOs

would serve as an important constraint on Planet Nine’s properties. Subsequently, dynamical

analysis presented in Batygin & Morbidelli (2017) suggests that the population of highly inclined

centaurs can be explained by the presence of Planet Nine. Shankman et al. (2017a) predicted that

if there is a ninth planet in the solar system, there should also be a reservoir of high-i TNOs that

exhibit clustering of their orbits with the existing population. Finally, Batygin & Morbidelli (2017)

provided a model of the secular evolution expected for high-i, high-a objects, but was only able

to test it on objects with q < 30 AU. 2015 BP519 is the first known high-a (a > 250 AU), high-i

(i > 40 degrees), high-q (q > 30 AU) object, a class of objects whose existence is predicted by

Batygin & Morbidelli (2017). 2015 BP519 is the first discovered high-i object, and it fits into the

Planet Nine paradigm as predicted by this previous work.

In Fig. 9.16, we show the fraction of surviving objects that have retrograde orbits for three

of the different simulations sets used in this work. A sizable fraction of 2015 BP519’s potential

future orbits attain retrograde orientations, an outcome predicted in Batygin & Brown (2016b) and

Batygin & Morbidelli (2017). A subset of these also evolve to lower semi-major axes, potentially
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resulting in 2015 BP519 eventually becoming a retrograde centaur; however, our simulations show

that it is more likely that 2015 BP519 retains a large semi-major axis and retrograde configuration

than that it migrates inwards and becomes a centaur. In the presence of Planet Nine, TNOs with

orbits as extreme as 2015 BP519 would appear to cycle though populations, changing their orbital

inclinations and perihelion distances rather than living at roughly constant perihelion distances (as

they would in the known solar system without Planet Nine; see Fig. 9.10). Finally, the presence

of Planet Nine in the solar system naturally produces objects with orbits like that of 2015 BP519,

a feature which cannot be reproduced in the solar system without Planet Nine without invoking

some other mechanism (such as interaction with a passing star, or a 1-10 Earth mass scattered disk

that can cause an inclination instability, Madigan & McCourt 2016; Madigan et al. 2018).

Although 2015 BP519 appears to fit well into the Planet Nine paradigm and aid in a better

differentiation between these two potential scenarios – a solar system with or without Planet Nine

– more objects of this type need to be found. Future work using the Dark Energy Survey will

both identify additional high-semi-major axis, high-inclination objects which will help us better

understand the high-inclination structure of the outermost regions of the solar system, and make

a more definitive statement on the existence of Planet Nine.

9.8 Conclusion

This chapter reports the detection and initial dynamical analysis of the extreme Trans-Neptunian

Object 2015 BP519. This object was discovered as part of the Dark Energy Survey and adds to the

growing inventory of unusual bodies in the outer solar system. Our main results can be summarized

as follows:

[1] The estimated orbital elements for this new (minor) member of the solar system include

semi-major axis a ≈ 450 AU, eccentricity e ≈ 0.92, and inclination i ≈ 54 degrees. With these

orbital properties, j resides well outside the classical Kuiper Belt. On the other hand, the perihelion

distance is only q ∼ 36 AU, close enough to be influenced by Neptune.

[2] The newly discovered body 2015 BP519 is the most extreme TNO found to date. This claim

can be quantified using the reduced Kozai action η0 (see Equation 9.5), which is equivalent to the
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Object a (AU) e i (deg) ω (deg) Ω (deg) H
2003 VB12 507 ± 10 0.8496 ± 0.003 11.9 ± 0.1 311.3 ± 0.1 144.4 ± 0.1 1.5
2007 TG422 503 ± 0.35 0.93 ± 0.001 18.6 ± 0.1 285.7 ± 0.1 112.9 ± 0.1 6.2
2010 GB174 351 ± 9 0.862 ± 0.004 21.6 ± 0.1 347.2 ± 0.1 130.7 ± 0.1 6.6
2012 VP113 266 +26

−17 0.69 ± 0.03 24.1 ± 0.1 292.7 ± 0.1 90.8 ± 0.1 4
2013 FT28 295 ± 7 0.853 ± 0.004 17.4 ± 0.1 40.7 ± 0.1 217.7 ± 0.1 6.7
2013 RF98 363 ± 5 0.9 ± 0.001 29.6 ± 0.1 311.8 ± 0.1 67.6 ± 0.1 8.7
2013 SY99 735 ± 15 0.932 ± 0.007 4.2 ± 0.1 32.2 ± 0.1 29.5 ± 0.1 6.8
2014 SR349 299 ± 12 0.841 ± 0.007 18 ± 0.1 341.2 ± 0.1 34.9 ± 0.1 6.6
2015 GT50 312 ± 2 0.877 ± 0.001 8.8 ± 0.1 129 ± 0.1 46.1 ± 0.1 8.3
2015 KG163 680 ± 2 0.94 ± 0.001 14 ± 0.1 32.1 ± 0.1 219.1 ± 0.1 8.1
2015 RX245 430 ± 20 0.894 ± 0.001 12.1 ± 0.1 65.2 ± 0.1 8.6 ± 0.1 6.1
2004 VN112 316 ± 1 0.8505 ± 0.0005 25.6 ± 0.1 327.1 ± 0.1 66 ± 0.1 6.5
2014 FE72 1655 ± 336 0.98 ± 0.02 20.64 ± 0.1 133.89 ± 0.04 336.84 ± 0.1 6.1

Table 9.3 Orbital Elements of Extreme TNOs. Barycentric osculating elements for the
currently known set of TNOs with a > 250 AU and q > 30 AU. H is absolute magnitude.
Excluding our new object 2015 BP519, solutions were drawn from Shankman et al. (2017b)
and Bannister et al. (2017) for all objects except 2013 RF98, 2007 TG422, and 2014 FE72.
The barycentric orbital solutions for these three objects were fit using the OSSOS (Bannister
et al., 2016b) implementationa of the Bernstein & Khushalani (2000) orbit fitter, using the
observations of each object availableb at the Minor Planet Center.

aAvailable at https://github.com/OSSOS/liborbfit, and from the Python Package Index via pip

install mp ephem
bhttps://www.minorplanetcenter.net/dbsearch/asof2/1/2018

z-component of the specific orbital angular momentum. Among all known solar system objects,

2015 BP519 has the most extreme value of this parameter, as shown in Fig. 9.9.

[3] 2015 BP519 provides support for the Planet Nine hypothesis. If the object is formed in the

plane of the solar system, as expected, then there is a low probability that its orbit can attain

the observed high inclination through dynamical processes involving only the known planets. In

contrast, the observed orbital elements of 2015 BP519 are readily produced through dynamical

interactions if the solar system also contains Planet Nine (see Fig. 9.12).

9.9 Appendix: The relevance of Neptune resonances

2015 BP519’s large semi-major axis (450 AU) places it in an regime where mean motion reso-

nances with Neptune are very unlikely. Were 2015 BP519 to be trapped in a resonance with Neptune,

359



the period ratio of that resonance would be around 58:1. However, even if 2015 BP519 were to be

subject to such a resonance, it would not be affected strongly by Neptune-induced equilibrium

points. For this long-period object, despite its short perihelion distance, Neptune resonances will

not be relevant.

Figure 9.17 plots the regions in which the TNO’s orbits are susceptible to influence by Neptune.

These regions were derived in Saillenfest et al. (2017b) through a numerical exploration of which

values of η0 create libration islands in (q, ω) space. TNOs with a value of η0 that lies within a

colored contour will interact strongly with Neptune if in that resonance; the range in η0 colored on

the plot is the range of η0 that allows libration centers for each resonance. Objects in the outside

this range will have more peaceful evolution when in resonance with Neptune; instead of living in

libration islands, these objects will live in a constant q but circulate through values of ω.

2015 BP519, with its unusually low value of η0, will not become trapped in a libration center

even were it in resonance with Neptune (an already unlikely event due to its large orbital period).
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Figure 9.17 Proximity to Neptune Resonance. A reproduction of Fig. 10 from Saillenfest
et al. (2017b), with the newly discovered object from this work and the most extreme (a>250
AU) TNOs included as red points. The contours signify which values of η0 allow the long-term
dynamics of each TNO to be influenced by mean-motion resonance with Neptune. Having
a value of H that lies within a contour means that a TNO in that particular resonance with
Neptune will be influenced by nearby equilibrium points.
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CHAPTER X

Current State of the Field and Future Directions

10.1 General Contributions of This Work

As Kepler (Borucki et al., 2010), K2 (Howell et al., 2014a), and now TESS (Ricker et al.,

2015) have discovered planets and collected data on an increasing number of systems, we have

begun to understand better the diversity of planetary systems in the galaxy. As the number of

known planets has increased, some logical assumptions of planet formation have been confirmed.

For example, the data has supported the idea that ultra-short-period planets, being so close to

their host stars, have evaporated atmospheres (Lopez, 2016). White dwarfs, previously known

to at times have photospheric metal enrichments (Zuckerman et al., 2003), are now confirmed

to sometimes have transiting, disintegrating planets (Vanderburg et al., 2015a). However, many

of the assumptions about the underlying distributions of planets in the galaxy have been turned

on their heads as unexpected observational correlations have been found: for example, instead

of a uniform or monotonic distribution of planetary radii, there appears to be a valley in planet

occurrence around 1.5 to 2 R⊕ (Fulton et al., 2017), which may in fact depend on the mass of the

planet-hosting star (Fulton & Petigura, 2018). The discovery of more planets has both increased

our understanding of the underlying distribution of exoplanets in the galaxy and engendered new

questions about how and why exoplanets form and migrate.

This thesis has endeavored to move towards a more coherent understanding of planet formation

by studying the emergent properties of exoplanetary systems; that is, the properties which can

only be understood when a system is considered in its entirety. Conclusions cannot be drawn
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about planet formation from the existence of an exoplanet system unless all factors affecting its

long-term evolution and dynamics are understood. Although observational biases conspire to make

such complete analysis difficult, we show in this thesis that using theoretical techniques combined

with observational data can help fill in the gaps.

We do not yet know all of the factors which may affect the dynamics of exoplanet systems,

although we can use numerical simulations and analytic methods to model factors of which we are

aware. To use a system’s geometry to make meaningful insights about planet formation, we must

be confident that we understand the dominant factors affecting the evolution of the system, which

most simply include the masses and locations of planets, and any planet-planet interactions that

significantly affect their orbits. Although it would be nice to have all data possible about every

system, the exact dynamics of (for example) the exo-Kuiper belt in an exoplanet system to draw

the most important conclusions. It is often not immediately clear how important some factors -

say, for example, the possible presence of distant companions to tightly packed systems - might

be in modeling the long-term evolution of these systems, but by studying and modeling emergent

properties, the relative importance of various factors can be determined.

In this thesis, I have presented a series of analyses that demonstrate multiple ways in which

emergent properties can be used to better understand the components and dynamics of exoplanetary

systems. If the complete system is known, its emergent properties can be derived, and subsequently

used to predict the origin of other properties of the system. This was done in Chapter II and VI.

There is one caveat to deriving and using emergent properties in this way: if not all components

are known, the conclusions can be wrong, which requires a complete understanding of the relevant

parameter space. Commonly, this is the case and the complete system is not known. In this case,

some emergent properties can be observed and used to reverse engineer the components that must

or cannot be present in the system. We attempted to do this in Chapter III (using the emergent

property of system stability), Chapter IV (using the emergent property of TTVs), Chapter VI

(using again the emergent property of system stability), Chapter VII (using the dual emergent

properties of dynamical stability and secular evolution of inclination), and in Chapters VIII and

IX, in both of which we considered how the dynamics of the outer solar system could be explained by

an additional solar system planet or other theories. Furthermore, the interplay between emergent
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and independent properties can be exploited to construct a feedback loop, where independent and

emergent properties can be used to inform each other and provide a more accurate final picture

of the system, as was done in Chapter VI (the measured transit durations were used to predict

the possible orbits for the planets, then system stability was checked on that subset to further

constrain the orbital periods, and then those predictions were compared again with observational

data to determine which theoretically derived values best fit the data).

The methods laid out in this thesis will enable a deeper understanding of the dynamics in

the possibly under-studied systems that will be discovered with TESS. Such understandings of

the dynamics will in turn immediately enable more efficient utilization of follow-up resources, in a

manner as was done with Chapter VI.

10.2 Specific Contributions of This Work

In addition to the general development of techniques that allow the coherent unification of

dynamics and observations, this thesis has also presented several significant scientific results.

Figure 10.1 is a re-imagining of Figure 1.1, except that in this iteration the planets studied

or discovered as part of this thesis are highlighted. Although my thesis is primarily theoretical in

nature, through the work described in this thesis I have led and contributed to the discovery of

11 validated planets (marked on Figure 10.1), 2 (unplotted) planet candidates, and 4 (unplotted)

Kuiper Belt Objects (see Chapter IX, as well as Gerdes et al. 2017a, Khain et al. 2018b) in our

own solar system.

Beyond the discovery of new objects, the theoretical analyses presented in this thesis have

made progress towards answering many significant science questions, as well as answering one open

question and opening several new lines of inquiry.

10.2.1 Understanding the dynamics of multi-planet systems

The Kepler mission’s initial goal was to target sun-like stars, with the goal of finding Earth-

analogues orbiting Sun-analogues in habitable orbits. One surprising result of the Kepler mission

was that M-dwarfs, the most common and coolest type of star, seem to host large numbers of
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Figure 10.1 Exoplanets Considered and/or Discovered in This Work. A recreation of the
diagram given in Figure 1.1 of the orbital periods and masses all planets discovered so far.
This time, we mark the exoplanets explicitly studied in this work as red circles and exoplanets
discovered as part of this work as blue stars.

tightly packed multi-planet systems. These systems are much more tightly packed than our own

solar system, and teeter near the edge of dynamical stability. Indeed, at first glance, it was surprising

that such tightly packed systems would remain dynamically stable over the long life spans of these

cool stars. Chapter II evaluates the dynamical stability of the observed orbital configurations for

Kepler systems with high multiplicities, and finds that they are actually very dynamically stable

(see also Becker & Adams, 2016).

The follow-up work to Chapter II, given in Chapter III (and published in Becker & Adams

2017), asked the question ‘What if these systems have companions?’. This timely question was

also addressed in several other works in the literature (Hansen, 2017; Mustill et al., 2017; Lai &

Pu, 2017; Jontof-Hutter et al., 2017b, 2018; Granados Contreras & Boley, 2018; Denham et al.,

2019). The conclusion from Chapter III and these other works was that although vastly exterior

364



companions can exist in the Kepler systems of tightly packed inner planets, nearby or particularly

massive companions destabilize the system. Given the abundance of such tightly packed systems,

there are a few possible explanations.

First, it is possible that planet formation is even more relentlessly efficient than is thought,

that these companions do (or did) exist, and a large number of systems that started out with

high-multiplicity have since been destabilized. In this case, dynamical violence could lead systems

to end up being seen as single-transiting systems, even if they did not start that way. This first

explanation could also serve as an answer to the Kepler Dichotomy, the idea that the single- and

multi-planet systems appear to be drawn from different distributions (Ballard & Johnson, 2016a;

Morton & Winn, 2014b): the destabilized systems are just the fraction where a large perturber did

form.

Second, it is possible that these massive exteriors companions do not tend to form around the

same stars that the multi-planet systems do. Since many of the highest multiplicity systems orbit

the smallest type of star (M-dwarfs), which should have started with smaller disks masses, it is

possible that large planets do not form efficiently in these disks (Johnson et al., 2010). In this

case, the correlation coefficient between tightly packed systems of planets and large, longer period

companions would be lower. This explanation is a good example of why the emergent properties

of systems must be considered; if the correlation coefficient between multi-planet systems and

giant planet-hosting systems is damped, then extrapolating system contents from uniformly derived

exoplanet abundance rates will miss this important behavior.

10.2.2 Hot Jupiter formation and migration

In 2012, analysis of the Kepler data indicated that hot Jupiters were generally lonely, meaning

that they did not tend to have nearby companions. The only examples of companions to hot Jupiters

were similarly sized or much larger vastly external companions, with periods upwards of hundreds

of days (Knutson et al., 2014a). Nearby (with orbital periods within an order of magnitude of the

hot Jupiter’s orbital period) companions to hot Jupiters should have been detectable in TTVs in

the Kepler sample (Steffen & Hwang, 2015), but none had been found. That no such companions

were found in the Kepler data set was taken as evidence that these companions did not exist,
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necessitating an explanation for the universal loneliness of hot Jupiters. One explanation for their

loneliness was that their system geometries were enforced by their migratory pathways (Mustill

et al., 2015b): if hot Jupiters never have nearby planetary companions, that means that whatever

process by which they form and migrate destabilized potential companions, since we have begun

to understand that planet formation is generally efficient. This was commonly taken as evidence

that tidal migration (i.e., Fabrycky & Tremaine, 2007b) was the correct mechanism by which hot

Jupiters formed.

However, in 2015, we announced the discovery of two nearby planetary companions to the

hot Jupiter WASP-47 (Becker et al. 2015b, see also Chapter IV). This discovery reinvigorated

the debate regarding how hot Jupiters form: clearly the existence of nearby companions to hot

Jupiters is possible, though perhaps not common, meaning that the mechanisms by which hot

Jupiter systems are assembled include as one possible outcome tightly packed systems of planets

(including the Jupiter).

The three main possible mechanisms by which hot Jupiter-hosting systems can form are shown

in Figure 10.2: (1) disk migration, whereby a super-Earth seed (which will become the core of the

Jupiter) forms in the outer disk, undergoes runaway accretion in the outer disk where the surface

density is favorable, then migrates inwards to its final orbital position via disk torques; (2) in situ

formation, whereby a super-Earth-sized seed forms in the outer disk, quickly migrates inwards via

disk torques, then accretes its envelope in its final orbital position, requiring a steady inflow of gas

to create the environment needed for runaway accretion; or (3) tidal migration, a violent class of

mechanisms in which the Jupiter forms in the outskirts of the disk and resides there until after the

disk dissipates, before having its eccentricity excited by some force (be it secular interactions, a

violent scattering event, or some other mechanism) and subsequently experiencing tidal decay of

its orbit until it reaches its final orbital position (Fabrycky & Tremaine, 2007b; Nagasawa et al.,

2008b; Wu & Lithwick, 2011; Beaugé & Nesvorný, 2012).

Tidal migration explains a lot of the observational correlations of hot Jupiters, including the

observed high obliquities of many hot Jupiters (Albrecht et al., 2012b; Teyssandier et al., 2013),

the apparent lack of nearby planets (Steffen et al., 2012a), the existence of retrograde hot Jupiters

(Naoz et al., 2011b), the existence of eccentric hot Jupiters (Bakos et al., 2007), and the existence
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of the so-called ‘sub-Jovian desert’ (Owen & Lai, 2018).

Subsequent to the discovery of WASP-47’s companions, however, in situ formation has been

considered in depth and has seemed to become a more plausible explanation for the origin of at least

some hot Jupiters (Batygin et al., 2016a; Boley et al., 2016). In situ formation can also explain the

particular parameter-space shape of the sub-Jovian desert (Bailey & Batygin, 2018). A disk driven

mechanism would also explain the fact that hot Jupiters appear no more likely than warm ones to

have exterior companions (Schlaufman & Winn, 2016), a fact which seems inconsistent with many

tidal mechanisms, which require exterior companions.

Disk migration, in which planets form and migrate while the protoplanetary disk is still present,

generally produces dynamically quiet systems with low mutual inclinations. However, particular

starting conditions could explain the misalignments in some hot-Jupiter systems even with a disk-

driven migratory pathway (Batygin, 2012b).

These three mechanisms, also summarized in Figure 10.2, will each produce different distribu-

tions of hot Jupiter envelope abundances (Ali-Dib, 2017) and orbital architectures (Batygin et al.,

2016a; Bailey & Batygin, 2018). Future work will need to both (a) determine the general branching

ratios of the formation pathways, and (b) determine how those ratios depend on other factors such

as spectral type of the host star and its metallicity. WASP-47’s two inner companions to the hot

Jupiter remain a solid boundary condition on our understanding of these pathways.

After we announced the discovery of WASP-47’s companions, many other groups have searched

other hot Jupiters for similar companions, with the goal of better constraining the particular

properties such systems contain as a population. The first candidate has come only recently in the

Kepler-730 system (Thompson et al., 2018; Zhu et al., 2018; Cañas et al., 2019). In the Kepler-730

system, the hot Jupiter has an orbital period of 6.49 days, and the companion is an inner Earth-

sized planet with an orbital period of 2.85 days. This architecture is consistent with WASP-47,

which also has an inner companion, but not the prediction of the types of companions generated

by in situ formation by Batygin et al. (2016a), which predicted companions exterior to the hot

Jupiter.

Our understanding of hot Jupiter migration and formation was fundamentally changed by

WASP-47, and will be improved further by the discovery of additional systems with such compan-
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ions.

Hot Jupiter system

Cold Jupiter 
system

Super-Earth seed 
forms in outer disk Seed accretes mass where it is, 

becomes Jupiter mass

Seed migrates inwards

Seed accretes envelope in situ

Tidal 
migration

Disk 
migration
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Figure 10.2 Formation Pathways for Hot Jupiters. A schematic of the three main mechanisms
by which hot Jupiters could form. In (1) in situ formation, a super-Earth-sized seed (which
becomes the core of the Jupiter) forms in the outer disk, migrates inwards via disk torques,
then accretes its envelope in its final orbital position. In (2) disk migration, the super-Earth
seed forms in the outer disk, but undergoes runaway accretion to assemble its envelope
before it migrates inwards to its final orbital position. In (3) tidal migration, a category
which encompasses many specific mechanisms, the Jupiter forms its core and undergoes
runaway accretion in the outer disk, the disk dissipates, and the Jupiter-size planet has its
eccentricity pumped by some external force, resulting in a slow decay of its orbital radius as
it dissipates energy each perihelion crossing.

10.2.3 Informing Observations of High-Interest Systems

In Chapters III, IV, VI, and VII, we provided predictions and guidance for future observations

in an attempt to allow more efficient utilization of follow-up telescope resources.
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Observations can be avoided of systems where such observations would be unlikely to glean any

new useful information about the system. In Chapter III, we tested whether the Kepler compact

systems could host additional planets without destabilizing the continually mutually transiting state

of the inner system. We found rough limits for where such companions could reside, including that

system Kepler-20 could not host companions without causing its inner systems to excite at least

one planets into a non-transiting state. Contemporaneous radial velocity observations of Kepler-20

found that in fact, the system did have a non-transiting planet in that inner system. Some systems,

in contrast, were completely unsuscecptible to excitation from any reasonably placed companions:

in these systems, where the inner system is decoupled from the outer perturbing system, such

coupled analyses present less useful information.

In the era of TESS, many more planets for which the exact orbital period cannot be determined

will be discovered. Due to the TESS survey strategy, in some cases, stars will be observed with

significant gaps in between periods of observations. For example, according to the Web TESS

Viewing Tool1, the southern circumpolar star δ Mensae will be observed by TESS during Sectors

1,5,8,12, and 13 for 28 days each, with gaps of 84 days, 56 days, and 84 days between subsequent

periods of observation. Any planet detected by TESS in this region of sky with a period longer

than about 28 days could have ambiguous orbital periods due to the observational strategy. In

Chapter VI, we showed how to combine multiple types of constraints in order to narrow down the

possible orbital periods for the HIP 41378 planets. This analysis will serve as a starting point for

future analysis on TESS planets with similar orbital period ambiguities. The HIP 41378 system is

currently being studied via follow-up Spitzer observations, the timing of which was optimized to

observe the highest probability events based on the predictions of Chapter VI, cutting down on the

total follow-up time needed to inform the dynamics of the system

Similarly, in Chapter IV, we estimate the transit probability for the outermost planet WASP-

47c, which was discovered via radial velocities, using a suite of numerical simulations combined with

all known observations of the system (including stellar obliquity, the stability of the system and the

transiting nature of the planets, and their physical and orbital parameters). Although only 10%,

its transit probability is much higher than would normally be expected for a planet of its orbital

1https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py
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period (∼ 590 days). If a transit could be observed of this planet, it would provide significant

constraints on the dynamical history and evolution of the system (see Chapter V). Observations

are underway to determine whether this planet transits or not.

In the latter half of Chapter VII, we show that the existence of an additional unseen companion

in the system could explain the observed emergent property of the observed evolution of planetary

inclinations. We also provide guidance for where in the system such a companion might reside.

Such a companion might be detectable with radial velocity data. The methods developed in these

works can be used in the analysis of future systems in order to increase the information gained

from observations.

10.2.4 Providing a Mechanism for the Misalignment of Ultra-Short Period Ex-

oplanets

The discovery detailed in the first half of Chapter VII revealed an intriguing system geometry:

a outer plane of coplanar planets with an inner ultra-short period misaligned companion. A similar

geometry has also been revealed in the TOI-125 system (Quinn et al., 2019). Due to these new

detections, which seem to go against the previously accepted dogma of “tighly packed, very coplanar

multiplanet systems” considered in, for example, Chapter II, the question of how a geometry of

this nature can be generated has just begun to be pondered in the literature. (Petrovich et al.,

2018) suggests a secular chaos model whereby planet-planet interactions excite the eccentricity of

the inner ultra-short-period planet and its nearest companions, which are subsequently damped

as the orbit circularizes. This mechanism requires nearby companions, but not too nearby - the

closest companions to the ultra-short-period planet are predicted to have orbital periods outside of

10 days, which is not true in the K2-266 system.

In the second half of Chapter VII, we show that an additional undiscovered planet in the system

could explain the observed system geometry. Such companions must reside in very particular

regimes of parameter space in order to maintain both the ultra-short-period planet’s misalignment

and the observed coplanarity of the outer transiting planets. Further studies will determine whether

the occurrence rates of such companions are consistent with the occurrence rates of systems like K2-

266 and TOI-125. The mechanism proposed in this work may solve or partially solve the mystery

370



of K2-266 and TOI-125.

10.3 Future Directions

The mapping of the universe beyond our solar system began long ago with naked-eye obser-

vations of the brightest stars. However, a statistical understanding of their orbiting planets did

not emerge until the Kepler spacecrafts discovery of thousands of transiting planets. Initial studies

from Kepler’s data (Borucki et al., 2010; Batalha et al., 2013; Petigura et al., 2013c; Dressing et al.,

2015a), which focus on statistics and planet cataloging, have not only shown that planet formation

is relentlessly efficient within the Galaxy, but that the dominant mode of planet formation appears

to be one that produces planets with typical masses a few times that of Earth (termed super-

Earths), and orbital periods less than ∼100 days, rather than solar system analogues. However,

Kepler targets are usually too faint for detailed follow-up observations, limiting the degree to which

the discovered systems can be fully characterized.

TESS, a planet-hunting mission launched earlier this year, was carefully designed to answer

scientific questions that Kepler did not by focusing on brighter stars, for which detailed follow-up

observations will be more feasible. While Kepler was a statistical survey, TESS will enable detailed

planet profiles. However, while TESS will discover transiting planets and enable detailed studies of

those individual planets, by design a large parameter space in each system will remain unstudied.

Many transiting systems are accompanied by giant companions which are unseen in transit (Bryan

et al., 2019). An intriguing aspect of such paired orbital configurations is that theoretical studies

(e.g. Batygin et al. 2016a, Izidoro et al. 2015) suggest that the mere existence of low-mass, close-

in exoplanets is incompatible with long-range migration of giant planets, evoking an intriguing

observational constraint on the physics of orbital transport. And yet, TESS is already discovering

short-period planets with long- period companions (Huang et al., 2018; Gandolfi et al., 2018).

Without knowing the full census of planets present in each system, it is impossible to determine

their formation histories.

The field of exoplanets has reached a crossroads between being a counting game, where we

accumulate individual discoveries of systems, to a statistical game, in which we start to make
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larger insights about the underlying planet populations in the galaxy. Through the assembly

of this larger statistical sample, some of our early misconceptions about the properties of these

distributions have been corrected. However, despite our progress thus far, many misconceptions

assuredly persist. Each of the exoplanet discovery methods used thus far have their own individual

biases, as discussed in Chapter I. The results of this is that our exoplanet discoveries are biased,

and although many efforts have been made to correct for the biases and derive the true underlying

abundances of exoplanets, there are still a large degree of uncertainty on these estimates. Further,

the most important factor for making insights towards planet formation is understanding not just

the bulk abundances of various types of planets, but the correlations inherent in planet occurrence.

The correlations in planet occurrence can also be described as what types of planets are likely

to occur together, and what system geometries are common versus which geometries do not occur

in nature. For example: do hot Jupiters have companions in only the rarest of cases? Do mis-

aligned ultra-short period planets occurring in multi-planet systems usually have exterior massive

companions? These correlations which have only recently begun to be studied in the literature,

with Bryan et al. (2019) being an excellent examaple. To continue to construct these occurrences,

it is necessary to combine data on the same systems that come from different sources. The most

successful detection methods thus far have been transits and radial velocities, but both of these

methods are biased to find larger planets at shorter orbital radii. Future missions will allow an in-

creased number of discoveries using other methods such as direct imaging. Although direct imaging

has its own set of biases, the biases are different than those of transits and radial velocities, and

allow the study of a new regime in parameter space: the outermost parts of systems which may

host large planets or brown dwarfs. Moving forward, the increased precision of newly developed

instrumentation will allow the detection of transit and radio velocity discoveries to smaller signal

amplitudes. The combination of all these techniques, together with the supplemental dynamical

analyses like those done in this thesis, will allow more complete mappings of the components of

exoplanetary systems.

The difficulty with completing the aforementioned cohesive analysis on Kepler targets is that

the Kepler targets skew faint, meaning that follow-up efforts are often not possible. The value

of Kepler is not in the follow-up, but in its uniform statistical survey, which is the most robust
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exoplanet survey that exists to date. Indeed, it is unlikely that Kepler’s statistical completeness

and the uniformity of its sample will be surpassed for many decades to come. The specific planet

characterization mission TESS, which launched last year in 2018, is built to survey the brightest

stars in the sky, the purpose of its mission being to find exoplanet-hosting stars that are ripe for

observational follow-up with other missions in the style described above. TESS will enable detailed

characterization of a large number of systems orbiting very bright stars.

The importance of emergent properties in the TESS systems is immediately quite evident:

TESS systems, being bright, are very conducive to follow-up, meaning that there will soon be a

large quantity of data for various sources available on a large number of TESS systems. If this

data is combined effectively, we will be able to glean more information out of the coherent analysis

of all data than any one individual group would with a single channel of data. Additionally,

supplementing these data-focused analysis with dynamical efforts (such as the secular theory and

numerical simulations used in this work) will improve our understandings of the systems even

further. Chapter VI is a good example of what exactly this will look like: as described in that

chapter, an analysis of the K2 data alone provided only a limited amount of information on the

five exoplanets in the HIP 41378 system. In particular, the orbital periods of the outer three

planets could not even be measured precisely due to the limited and non-continuous observational

baseline. Separately, ground-based missions WASP, KELT, and HAtNet all had observed HIP

41378 in the past (unrelated to the K2 observations) since it was a bright star. None of those

missions had done anything with their data on this star because they all had non-detections at the

ground-based photometric precision. However, when we combined all of these data sources (K2,

HAT, KELT, WASP) together with additional numerical simulations to constrain the dynamically

allowable orbits for the entire system, we were able to get tighter constraints on the unknown orbital

parameters than was possible with any set of data or simulations alone. This is a good example of

the way forward in exoplanet studies: many analyses from the Kepler mission used only Kepler data

to get strong constraints on systems, since the Kepler sample was uniform and well characterized.

Going forward, using data from only the space space transit mission TESS will (by design) not be

enough. The observational baseline limitation suffered by the HIP 41378 data will be extremely

common with TESS systems, since TESS’ pointings tile the entire sky, 27 days per pointing, in
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sequence. Only the poles will be viewed continuously, with all other regions exhibiting varying (but

all non-continuous) baseline. As such, the TESS data must be combined with additional data from

other sources as well as dynamical analyses. The important question, then, is how to best choose

what data to acquire and combine it effectively.

We advocate in this thesis for the importance of supplemental applications of dynamical theory

in this process. Secular theory and numerical simulations can enable better results from a set of

observational data.

The focus on emergent properties has two aspects: first, to understand the true evolution of

a planetary system one needs to know enough parameters about the planets and the dominant

mode of oscillation in order to model the system; second, if one has a measure of some emergent

property of the system (for example, a measure of the transit timing variations), one can use it

to determine what additional components of the system are missing from the current model. An

example of this would be an apparently single-planet system having evidence of sinusoidal TTVs.

These TTVs could be evidence of an additional planet in the system, and even if the signal is not

due to a planet, there must be something else causing the TTV signal (be it stellar activity or

instrumental systematics or something else; Barros et al. 2013). Combining the amplitude of the

signal with mathematical models of the possible causes of the effect can result in a measure of the

parameter space in which the companion causing the effect must reside.

The Kepler data set has not yet be exhausted - Dotson et al. (2019) estimates that on 30% of

the planets in the K2 data have been found so far, leaving a large number of new planets hiding in

the K2 data. Even as the K2 data set is underutilized, TESS is already starting to discover planets

(Huang et al., 2018; Gandolfi et al., 2018; Vanderspek et al., 2019; Wang et al., 2019). The TESS

discoveries will allow the beginning of in-depth characterization of individual systems. One of the

major difficulties of the Kepler/K2 sample was that many of the stars were too faint to construct

radial velocity time series. This resulted in observational determinations of their masses often

being impossible. Surveys such as Marcy et al. (2014); Weiss & Marcy (2014a) did measure masses

for the planets orbiting the brightest stars, but a large number of Kepler planets have masses that

remain unmeasured. Although efforts such as Wolfgang et al. (2016); Ning et al. (2018) constructed

(non-parametric) models to convert between radius and mass, TESS will provide a new population
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of exoplanets for which such extrapolations will not be necessary. The stars will be bright enough

that in most cases the masses will be directly determined or hard limits will be found. One major

uncertainty in much of the work in this thesis (Chapters II, III, VI, V) was the masses that should

be used as inputs into the dynamical models. Since the masses of planets matter a lot for their

subsequent evolution, this was a major source of potential error. The TESS systems will eventually

have more accurate mass determinations, enabling better dynamical constraints in turn. By nature

of their favorability to follow-up observations, the TESS targets will be heavily studied by many

groups using many facilities. This also means that these are the systems we will be able to study

the best of any systems that will be found in the future. We want to get the most that we can out

of this data, and we also want to know how to efficiently utilize telescope resources going forward.

There remains a limited amount of telescope observing time available, particularly on high-profile

instruments such as those on JWST, and the number of TESS systems of interest will be much

higher than the capacity of these observatories to make the needed observations.

To plan efficient follow-up observations, numerical simulations and other dynamical techniques

should be used to predict which systems have easily detectable companions, do not have such

companions, or are the most ripe for the breaking of existing degeneracies. As shown in Chapter

VI, efficient utilization of existing data can often cut down the amount telescope time needed in

the future. Without the most likely orbital periods that we derived in that chapter, it would have

been unclear which of the epochs were most important for follow-up observing. Eliminating some

of the orbital periods that were unlikely cut down on the amount of follow-up observation time

that must be devoted to the system in order to recover the true orbital period of planet f.

One major current goal in the field of exoplanets is to understand how planets and systems

of planets form. We remain now at a relatively early stage in this process. Even the formation

mechanism of our own solar system, for which we have the additional information encoded in

the orbits of asteroids, comets, and Kuiper Belt objects, is not yet understood. Although our

solar system is likely the most detailed study we will ever be able to do of the components of a

planetary system, there are some additional benefits afforded by using a population-wide analysis

of all discovered exoplanets.

Studies towards understanding properties of exoplanets will focus on their physical properties
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(interior structures and bulk compositions; Batygin et al. 2009; Dressing et al. 2015b; Fortney &

Nettelmann 2010), chemical properties (how they have been sculpted by processes like photoevap-

oration and form aerosols and hazes high in their atmospheres, Ehrenreich et al. 2015; Crossfield &

Kreidberg 2017a; May et al. 2018, what molecules constitute their atmospheres Morley et al. 2017),

and what orbital and system properties correlate with these factors. With additional information

afforded by these studies of physical parameters combined with dynamical insights gleaned via the

methods described in this thesis, we will take a step closer to making broader statements about

the ways by which planets form.

10.4 Emergence Moving Forwards

The reductionist days of studying exoplanets are coming to a close, as we move from merely

hunting for individual exoplanets to trying to understand exactly how planets form and what factors

mediate the development of particular system geometries.

The reductionist trap mentioned in the introduction to this thesis acts directly in opposition

to our desire to understand the deeper principles underlying planet formation. When we construct

theories assuming that the discovered exoplanets in each system are the only ones that affect the

evolution of the system, we inadvertently condense a complex interacting system to a much more

simple but incomplete subset of its true dynamics.

The clear way forward is to directly and explicitly consider additional (perhaps unseen) com-

ponents in the systems we study. This thesis has argued that moving forward, the study of planet

formation requires explicit consideration of the emergent properties in exoplanetary systems, and

the additional constraints which can be derived through their use. To understand planet forma-

tion, we must derive population-level constraints and correlations by using the known relationship

between the independent properties of the system and its resultant emergent properties. By using

this knowledge in a cohesive model, it can be leveraged to provide a better understanding of the

system as a whole, which is necessary for our eventual development of a coherent understanding of

planet formation.
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Bakos, G. Á., Torres, G., Pál, A., et al. 2010, ApJ, 710, 1724

Ballard, S., & Johnson, J. A. 2016a, ApJ, 816, 66

—. 2016b, ApJ, 816, 66

Ballard, S., Fabrycky, D., Fressin, F., et al. 2011, ApJ, 743, 200

Bannister, M. T., Kavelaars, J. J., Petit, J.-M., et al. 2016a, AJ, 152, 70

—. 2016b, AJ, 152, 70

Bannister, M. T., Shankman, C., Volk, K., et al. 2017, AJ, 153, 262

Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42

Baran, A. S., Zola, S., Blokesz, A., Østensen, R. H., & Silvotti, R. 2015, A&A, 577, A146

Baranec, C., Ziegler, C., Law, N. M., et al. 2016, AJ, 152, 18

Baranec, C., Riddle, R., Law, N. M., et al. 2014, ApJ, 790, L8

Baranne, A., Queloz, D., Mayor, M., et al. 1996, A&AS, 119, 373

Barclay, T., Quintana, E. V., Adams, F. C., et al. 2015a, ApJ, 809, 7

—. 2015b, ApJ, 809, 7

387



Barclay, T., Rowe, J. F., Lissauer, J. J., et al. 2013, Nature, 494, 452

Barentsen, G., & Cardoso, J. V. d. M. 2018, Kadenza: Kepler/K2 Raw Cadence Data Reader,
Astrophysics Source Code Library, ascl:1803.005
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Becker, A. C., Arraki, K., Kaib, N. A., et al. 2008, ApJ, 682, L53

Becker, J. C., & Adams, F. C. 2016, MNRAS, 455, 2980

—. 2017, MNRAS, 468, 549

Becker, J. C., Adams, F. C., Khain, T., Hamilton, S. J., & Gerdes, D. 2017, AJ, 154, 61

Becker, J. C., & Batygin, K. 2013, ApJ, 778, 100

388



Becker, J. C., Johnson, J. A., Vand erburg, A., & Morton, T. D. 2015a, The Astrophysical Journal
Supplement Series, 217, 29

Becker, J. C., Vanderburg, A., Adams, F. C., Rappaport, S. A., & Schwengeler, H. M. 2015b, ApJ,
812, L18

Becker, J. C., Vanderburg, A., Rodriguez, J. E., et al. 2019, AJ, 157, 19

Beichman, C., Benneke, B., Knutson, H., et al. 2014, PASP, 126, 1134

Bennett, D. P., Bhattacharya, A., Anderson, J., et al. 2015, ApJ, 808, 169

Bernhardt, J., Borschmann, K., Boyd, L., et al. 2016, International Journal of Stroke, 11, 454,
pMID: 27073187

Bernstein, G., & Khushalani, B. 2000, AJ, 120, 3323

Bernstein, G. M., Armstrong, R., Plazas, A. A., et al. 2017, PASP, 129, 074503

Bernstein, J. P., Kessler, R., Kuhlmann, S., et al. 2012, ApJ, 753, 152

Beust, H. 2016, A&A, 590, L2

Bodman, E. H. L., Quillen, A. C., Ansdell, M., et al. 2017, MNRAS, 470, 202

Boley, A. C., & Ford, E. B. 2013, arXiv e-prints, arXiv:1306.0566

Boley, A. C., Granados Contreras, A. P., & Gladman, B. 2016, ApJ, 817, L17

Boley, A. C., Payne, M. J., & Ford, E. B. 2012, ApJ, 754, 57

Bonomo, A. S., Sozzetti, A., Lovis, C., et al. 2014, A&A, 572, A2

Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977

Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 736, 19

Borucki, W. J., Agol, E., Fressin, F., et al. 2013, Science, 340, 587

Bouvier, J., Chelli, A., Allain, S., et al. 1999, A&A, 349, 619

Boyajian, T. S., Alonso, R., Ammerman, A., et al. 2018, ApJ, 853, L8

Brahm, R., Espinoza, N., Jordán, A., et al. 2018, MNRAS, 477, 2572

Brakensiek, J., & Ragozzine, D. 2016a, ApJ, 821, 47

—. 2016b, ApJ, 821, 47

Brasser, R., Duncan, M. J., Levison, H. F., Schwamb, M. E., & Brown, M. E. 2012a, Icarus, 217, 1

Brasser, R., Schwamb, M. E., Lykawka, P. S., & Gomes, R. S. 2012b, MNRAS, 420, 3396

Brewer, J. M., Fischer, D. A., Basu, S., Valenti, J. A., & Piskunov, N. 2015, ApJ, 805, 126

389



Brewer, J. M., Fischer, D. A., Valenti, J. A., & Piskunov, N. 2016, ApJS, 225, 32

Bromley, B. C., & Kenyon, S. J. 2016, ApJ, 826, 64

Brown, M. E. 2017, AJ, 154, 65

Brown, M. E., & Batygin, K. 2016, ApJ, 824, L23

Brown, M. E., Trujillo, C., & Rabinowitz, D. 2004, ApJ, 617, 645

Brucker, M. J., Grundy, W. M., Stansberry, J. A., et al. 2009, Icarus, 201, 284

Bryan, M. L., Knutson, H. A., Lee, E. J., et al. 2019, AJ, 157, 52

Bryan, M. L., Knutson, H. A., Howard, A. W., et al. 2016, ApJ, 821, 89
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Kovács, G., Bakos, G. Á., Torres, G., et al. 2007, ApJ, 670, L41

Kozai, Y. 1962, AJ, 67, 591

Kraft, R. P. 1967, ApJ, 150, 551

Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2006, Science, 314, 97

Kratina, P., LeCraw, R. M., Ingram, T., & Anholt, B. R. 2012, Ecosphere, 3, art50

399



Kreidberg, L., Bean, J. L., Désert, J.-M., et al. 2014, ApJ, 793, L27

Krzesinski, J. 2015, A&A, 581, A7

Kuhn, R. B., Rodriguez, J. E., Collins, K. A., et al. 2016, MNRAS, 459, 4281

Kurucz, R. L. 1992, in IAU Symposium, Vol. 149, The Stellar Populations of Galaxies, ed. B. Barbuy
& A. Renzini, 225

Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57

Lai, D. 2012, MNRAS, 423, 486

—. 2014, MNRAS, 440, 3532

—. 2016, ArXiv e-prints, arXiv:1608.01421

Lai, D., Foucart, F., & Lin, D. N. C. 2011, MNRAS, 412, 2790

Lai, D., & Pu, B. 2017, AJ, 153, 42

Latham, D. W., Rowe, J. F., Quinn, S. N., et al. 2011, ApJ, 732, L24

Laughlin, G., & Adams, F. C. 2000, Icarus, 145, 614

Laughlin, G., Crismani, M., & Adams, F. C. 2011, ApJ, 729, L7

Law, N. M., Morton, T., Baranec, C., et al. 2014, ApJ, 791, 35

Lawler, S. M., Kavelaars, J., Alexandersen, M., et al. 2018, ArXiv e-prints, arXiv:1802.00460

Lawler, S. M., Shankman, C., Kaib, N., et al. 2016, ArXiv e-prints, arXiv:1605.06575

Lee, E. J., Chiang, E., & Ormel, C. W. 2014, ApJ, 797, 95

Lees, A. C., & Bell, D. J. 2008, Mammal Review, 38, 304

Lellouch, E., Kiss, C., Santos-Sanz, P., et al. 2010, A&A, 518, L147

Lellouch, E., Santos-Sanz, P., Lacerda, P., et al. 2013, A&A, 557, A60

Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R., & Tsiganis, K. 2008, Icarus, 196,
258

Li, G., & Adams, F. C. 2015a, MNRAS, 448, 344

—. 2015b, MNRAS, 448, 344

—. 2015c, MNRAS, 448, 344

—. 2015d, MNRAS, 448, 344

—. 2016a, ApJ, 823, L3

—. 2016b, ApJ, 823, L3

400



Li, G., Hadden, S., Payne, M., & Holman, M. J. 2018, AJ, 156, 263

Li, G., & Winn, J. N. 2016, ApJ, 818, 5

Li, X.-G., Gao, Z.-Y., Li, K.-P., & Zhao, X.-M. 2007, Physical review. E, Statistical, nonlinear, and
soft matter physics, 76, 016110

Lidov, M. L. 1962, Planet. Space Sci., 9, 719

Lim, T. L., Stansberry, J., Müller, T. G., et al. 2010, A&A, 518, L148

Lin, H. W., Chen, Y.-T., Holman, M. J., et al. 2016a, AJ, 152, 147

—. 2016b, AJ, 152, 147

Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. 2011a, Nature, 470, 53

Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., et al. 2011b, ApJS, 197, 8

Lissauer, J. J., Marcy, G. W., Rowe, J. F., et al. 2012a, ApJ, 750, 112

—. 2012b, ApJ, 750, 112

Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122

Livingston, J. H., Dai, F., Hirano, T., et al. 2018, AJ, 155, 115

Loeb, A., & Gaudi, B. S. 2003, ApJ, 588, L117

Londono, C., Loureiro, M. J., Slater, B., et al. 2014, Proceedings of the National Academy of
Sciences, 111, 1807
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Slawson, R. W., Prša, A., Welsh, W. F., et al. 2011, AJ, 142, 160

Slettebak, A., Collins, G. W., I., Boyce, P. B., White, N. M., & Parkinson, T. D. 1975, The
Astrophysical Journal Supplement Series, 29, 137

Sneden, C. 1973, ApJ, 184, 839

Snellen, I. A. G., & Brown, A. G. A. 2018, Nature Astronomy, 2, 883
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