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Abstract 

 Metastatic prostate cancer can recur months or years after clearance of the  

primary disease and is associated with poor clinical outcomes.  The bone marrow 

represents the preferred sire for metastasis, with disseminated tumor cells (DTCs) able 

to establish residency and remain dormant until some outside stimulus leads to their 

reactivation.  A number of signaling factors in the bone marrow such as growth arrest 

specific 6 (GAS6) have been identified to elicit dormancy (reviewed in Chapter 2), 

however less is known about signals that might trigger reactivation.  This dissertation 

explores the hypothesis that signaling from the sympathetic nervous system may lead 

to reactivation of dormant prostate cancer cells.  This hypothesis is motivated by 

clinical observations of a correlation between stressful life events and recurrence as 

well as mechanistic observations linking adrenergic signaling to the mobilization of 

bone marrow resident stem cells.  Chapter 3 establishes a causal link between 

norepinephrine (NE) and reactivation of dormant prostate cancer cells in a variety of 

models for prostate cancer dormancy. These experiments establish a direct effect of 

NE on prostate cancer cells that can lead to cell cycle re-entry. Chapter 4 examines the 

effects of NE on the bone marrow microenvironment and identifies downregulation of 

GAS6 as the primary indirect factor mediating re-entry.  Chapter 5 establishes a 

mechanism through which adrenergic signaling downregulates GAS6 expression in 

order to suggest clinical strategies to target this interaction.  Finally, Chapter 6 

suggests future directions for this project, focused on the role of GAS6 in long-term 
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bone homeostasis, another key factor leading to recurrence.  Overall, this dissertation 

provides a new mechanism for DTC reactivation and establishes a potential new 

direction for clinicians to treat patients at risk for recurrence.  
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Chapter 1 

Introduction 

Disseminated tumor cells (DTCs) give rise to metastatic disease, which remains 

the cause of death for the vast majority of patients.  In prostate cancer (PCa), DTCs 

primarily traffic to the bone, where they either proliferate into a secondary tumor or 

undergo cell cycle arrest.  This second fate, DTCs that have acquired a quiescent 

phenotype, is the main topic of this dissertation.  These dormant cells can become 

reactivated months or years after the patient has been cured, resulting in painful tumors 

in the bone and a poor prognosis.  Technologies to detect, or clear these cells, are actively 

sought after, however much more knowledge of the biology of these DTCs is needed 

before dormant DTC-targeted therapy becomes a reality.  Chapter 2 provides an in-depth 

review of possible signaling factors related to dormancy and how these biological 

mediators relate to the issue of reactivation. 

Systemic factors leading to reactivation of DTCs are often hypothesized, however 

few causal mechanisms have been proposed in the literature.  This dissertation 

addresses one of those hypotheses, specifically the relationship between the sympathetic 

nervous system and cell cycle re-entry for DTCs.  Several sources have suggested a 

correlative relationship between psychosocial stress and poor cancer outcomes (1,2).  

Adrenergic signaling, in particular, has been previously demonstrated to activate 

numerous pathways associated with oncogenesis, and has also been tied to stem cell 
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egress from the bone marrow (3).  This fact suggests a potential connection between 

adrenergic signaling, quiescent DTCs, and cell cycle re-entry, however no mechanisms 

connecting these processes has been proposed previously. 

 Three specific aims were established for this dissertation in order to address the 

hypothesis that adrenergic signaling may reactivate dormant PCa cells.  These aims were 

as follows: 

Aim 1: Establish a link between sympathetic signaling and cell cycle re-entry  

The first set of experiments described in Chapter 3 are designed to establish a 

causal relationship between adrenergic signaling and cell cycle re-entry in dormant PCa 

cells.  The existing literature on this topic suggested a correlative relationship when 

specifically examining cancer in the bone marrow, and as such these experiments were 

a logical place to start examining our hypothesis.  A number of different models, each 

with a different biochemical milieu and different potential routes to dormancy and 

reactivation were investigated.  The results of these studies provided a basis to continue 

probing for a mechanism that may connect dormancy to adrenergic signaling in the bone 

marrow. 

Aim 2: Determine an indirect mechanism for NE leading to cell cycle re-entry  

This aim is explored in Chapter 4 of this dissertation. These series of 

investigations sought to connect indirect changes in the microenvironment activated NE, 

and an awakening phenotype from dormant cells.  These experiments were performed 

in a non-biased manor to facilitate single or combinations of secreted factors produced 

by osteoblasts that could connect adrenergic signaling to dormancy.  Our rational for 
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choosing osteoblasts (OBs) as a niche regulating cell was derived from prior work 

demonstrating that once DTCs engage an osteoblastic-niche they become quiescent 

(4). Bioinformatic tools were used to identify a single factors, growth arrest specific 6 

(GAS6) as essential to reactivation of PCa cells by NE. 

Aim 3: Determine a mechanism for NE-mediated downregulation of GAS6 

Finally, a third set of experiments described in Chapter 5 establish a clear 

mechanistic link between adrenergic signaling and the expression of GAS6.  These 

experiments focused on the receptors and transcription factors mediating adrenergic 

signaling to GAS6.  These experiments were able to identify a mechanism and link the 

phenotypes of the PCa/OB cultures and the molecular players mediating this response. 

The work presented in this dissertation used a variety of model systems and 

techniques to establish a mechanistic relationship between GAS6, NE, and PCa 

dormancy.  These data provide evidence that this relationship can be targeted 

pharmacologically to the potential benefit of PCa patients. 
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Chapter 2 

 Background 

Introduction 

While localized prostate cancer (PCa) presents a generally positive prognosis, 

metastatic disease remains the primary cause of PCa-related death (1). Importantly, the 

incidence of metastatic prostate cancer increased 72% between 2004 and 2013, 

according to a recent study, possibly due to increased detection of metastatic 

disease(2,3).  To improve these statistics, a deeper understanding is needed as to the 

events which surround metastatic disease, the effect of the marrow microenvironment on 

metastatic cells and disease progress, and the factors instigating recurrence.  The aim of 

this work is to discuss the cues within the bone microenvironment that support metastatic 

PCa cell growth including systemic signaling molecules, local signaling molecules, local 

adhesion molecules, local extracellular matrix molecules, and current therapeutic 

targeting modalities regarding metastatic disseminated tumor cells (DTCs).  

PCa metastasizes to the bone marrow 

The development of clinical metastatic disease is described in a series of biological 

steps. Cancer cells disseminate from a primary tumor and enter the circulation (4). 

Hematogenous circulation and lymphatic routes appear to be major routes through which 

disseminating tumor cells (DTCs) navigate. In this regard, there are many challenges that 

tumor cells must overcome during the metastatic process including dissociation from 
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neighboring cells of the primary tumor, extravasation, survival, and establishment in 

distant sites.  DTCs have a number of different fates including death, dormancy, or 

proliferation (5). The role of the microenvironment in tumor cell fate regulation has been 

reported as early as Paget’s “seed and soil hypothesis” (6). This hypothesis was 

expanded upon by (5), who suggested that tumor cells (i.e. seed) extravasate into 

circulation, survive, and establish in a distant site (i.e. soil), and their fate (death, 

dormancy, or growth) is directly influenced by the microenvironment of the distant site.  

The ‘seed and soil’ hypothesis has been used to describe many different tumor-

related diseases, including prostate cancer, which has a particular predilection for 

metastasis to bone which also houses the hematopoietic stem cell (HSC). 80% of 

advanced prostate cancer cases exhibit distant site metastasis in bone accompanied by 

a median survival of approximately 40 months (7). Furthermore, many men ostensibly 

cured of their local disease may develop clinically detectable bone metastases many 

years following resection or radiation of the primary tumor, suggesting that cancer cells 

likely escape early in the disease process and are able to maintain a dormant phenotype 

within the bone marrow prior to conversion to a proliferative phenotype years later (8,9).  

Microenvironment signaling factors and ECM components play a significant role in 

the progression of PCa from a primary lesion to metastasis.  The prostate gland itself is 

comprised of many defined regions surrounded by a smooth muscular stroma that is 

perforated by the cavernous nerve and neurovascular bundles of the pelvic plexus serving 

autonomic innervation to the prostate(10). The greatest innervation has been observed 

in the prostate’s peripheral zone and perineural invasion may provide a means of cancer 

cell escape from the PCa capsule(11).  Interestingly, though normal prostate tissue 
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expresses several combinations of integrin units, PCa cells predominantly express the 

laminin binding integrins α6β1 and α3β1 (12). Further, post-translational modification of 

α6β1 increases PCa cell migration and invasion as well as metastasis to laminin-rich bone 

(11,13,14).  Many cell-cell and cell-extracellular matrix (ECM) interactions occur in the 

migration of cancer cells from the primary tumor to a metastatic site and these data 

suggest that biomechanical cues can be involved in cancer cell progression.  

Metastasis of PCa to the bone marrow microenvironment is directed through 

several known mediators, including the CXCL12/CXCR4 signaling axis. CXCL12 

(previously described as stromal-derived factor-1 (SDF-1)) is a homeostatic chemokine 

that functions in health to regulate hematopoietic stem cell (HSC) and lymphocyte 

localization to the bone marrow. Expression of CXCL12 increases with cardiac infarctions, 

peripheral ischemia, excessive blood volume loss, and tissue damage related to 

chemotherapy (15). CXCR4 is also widely expressed on CD34+ HSCs, T-lymphocytes, 

B-lymphocytes, monocytes, macrophages, neutrophils, neuronal cells, endothelial cells, 

and smooth muscle progenitors, allowing these cells to migrate along the CXCL12 

gradients(15). Expression of CXCR4 by PCa cells also provides a mechanism for their 

migration to bone marrow sites, including the HSC niche (16-19).  In addition to homing, 

CXCL12 can transiently regulate the expression of the αvβ3 integrin, which may also play 

a role in PCa metastatic localization to the bone marrow niche(20).  Further, annexin II 

receptor (ANXA2r) located on HSCs and PCa cells bind directly with annexin II (ANXA2), 

expressed by osteoblasts, and facilitates the anchorage of HSCs in health and PCa cells 

in disease conditions(21,22). Thus, many niche factors involved in PCa metastasis are 
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increasingly relevant to the support of PCa disease progression and localization to the 

bone marrow metastatic site.  

Regulation of PCa cells within the bone marrow niche 

Niche cells are known to include mesenchymal stem cells, progenitor osteoblasts, 

osteoblasts, progenitor osteoclasts, osteoclasts that are primarily involved in the 

formation and maintenance of this microenvironment as demonstrated in a recently 

published model of the niche and its microenvironment (23). Each of these cell types, and 

likely others within the bone marrow environment, actively contribute to the cytokine 

gradients which dictate quiescence, survival, and effect of proliferative status on the newly 

engaged PCa DTCs through cytokine/chemokine signaling, adhesion, and ECM 

remodeling.  

PCa DTCs can target and engage the HSC niche following dissemination to the 

bone marrow (16). Similar to HSCs, when DTCs are engaged with osteoblasts within the 

marrow niche, PCa cells can attach to the cell surface of adjacent osteoblasts via many 

cell-cell interactions that regulate cell quiescence, survival, and lower proliferative 

capacity. Specifically, it was shown that binding of PCa cells to osteoblasts in the bone 

marrow induces TANK binding kinase 1 (TBK1) expression, which subsequently inhibits 

mTOR signaling, induces cell cycle arrest, and increases chemotherapeutic resistance 

(24). 

Effects of cytokine/chemokine signaling within the bone marrow niche on pca cells 

GAS6/TAM Receptors 
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GAS6 is a growth factor expressed by osteoblasts within the bone marrow 

microenvironment that regulates the cell cycling of HSCs. GAS6 is a ligand for the TYRO3 

(Dtk/SKY/Rse/Brt/ETK2/Tif), AXL (Ufo/Ark), and MERTK (Eyk), commonly referred to as 

the TAM family of tyrosine kinase receptors. GAS6 binds to the TAM receptors via tandem 

G domains at its C terminus(25). For HSCs, GAS6 inhibits HSC proliferation (26). 

Similarly, GAS6 inhibits PCa proliferation and appears to participate in the induction of 

tumor cell dormancy, such that they can remain quiescent for prolonged periods in the 

marrow (27).  GAS6, expressed by osteoblasts regulates PCa cell cycle in the bone 

marrow, through induction of G1 cell cycle arrest and S cell cycle phase delay (28). Further 

GAS6 appears to also ensure cell survival by protecting PCa cell apoptosis signals 

through inhibition of cleavage of caspase-3 and PARP (28). Thus, PCa engagement with 

the endosteal niche exposes DTCs to osteoblast-secreted GAS6, causing PCa cell cycle 

arrest, survival, and resistance to chemotherapeutic advances. 

Interestingly, the TAM receptors may also have an effect on PCa cell phenotype 

within the bone marrow. Here, the phenotype of dormant PCa DTCs includes a decrease 

in the p-ERK/p-p38 ratio, upregulation of the transcription factors NR2F1, SOX2, SOX9, 

NANOG, and RARB (29). Recently, we reported that MERTK knockdown alone induced 

PCa cell cycle arrest via decreased p-ERK1/2 to p-p38 and increased cell cycle 

inhibitors/dormancy associated transcription factors p27, NR2F1, SOX2, and 

NANOG(30). Furthermore, GAS6 overexpression activated phosphorylation of MERTK in 

PCa cells, leading to an increase in the number of cancer stem cells (CSCs) among DTCs 

recovered from the bone marrow, suggesting that activation of Mer receptor signaling by 
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endogenous GAS6 can contribute to the establishment of PCa CSCs (CD133+/CD44+) 

in the bone marrow(31).  

In addition, the TAM receptor ratio of AXL/TYRO3 has also been associated with 

PCa cell cycling (32). Specifically, in vivo studies demonstrated that when Axl receptor 

levels were more highly expressed compared to other TAM receptors, PCa cells became 

growth-arrested compared to PCa cells that expressed lower Axl expression(33). Cells 

that had a lower Axl/Tyro3 receptor ratio were able to escape from dormancy, suggesting 

that in addition to the presence of GAS6 there may be an association of the receptor 

ratios and the ability to enter or exit dormant or proliferative states(33,34).  

TGF-β/TGFBR Family Molecules 

TGF-ß is a growth regulatory factor that is produced by most replicating cells and 

has a wide range of effects on the cells within the PCa/Bone marrow niche cells. At the 

site of the primary tumor, TGF-β promotes transition from an epithelial to mesenchymal 

phenotype and subsequent escape of the tumor cell from the primary site (35)  Similar 

morphogenetic and phenotypic changes occur in bone metastatic sites, particularly in the 

context of the native osteoblasts and osteoclasts. Osteoblasts have been shown to 

synthesize and respond to TGF-ß (36).  In general, TGF-B signaling tends to have a 

suppressive effect on the cells of the bone marrow; for example, forced overexpression 

of TGF-β 2 in osteoblasts leads to bone loss (37), which indicated the homeostasis 

between osteoblasts and osteoclasts may be at least partly regulated by TGF- β. Cancer 

cells have been found to promote metastasis in the bone through secretion of TGF-β and 

subsequent control of osteoblast/osteoclast differentiation (38). The promotion of 

osteoclast bone resorption by TGF-ß aids in the bioavailability of cell-survival markers in 
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the bone marrow, which in turn enhances proliferation and growth of DTCs.   Other 

regulatory targets can have an effect on TGF-β signaling in the osteoclasts of the 

metastatic site.  For example, posttranslational regulation of TGF-ß-induced factor 2 by 

miR-34a has been shown to suppress osteoclastogenesis and the formation of the bone 

metastatic niche (39).   

TGF-β has a wide range of effects on the cells within the PCa/marrow niche. 

Recently it was reported that GAS6 binding to the TAM receptor Axl on PCa cells induces 

TGF-β1 and TGF-β2 expression and increases expression of TGFβ R2 and TGF-β 

R3(40). Further, expression of paracrine TGF-β (from local osteoblasts) and autocrine 

TGF-β (from PCa cells) in turn can induce PCa dormancy(40). TGF-β 2 signaling initiates 

a dormant state in DTCs through up-regulation of p27, a ubiquitous cell cycle inhibitor 

through phosphorylation of p38 and downstream activation of Smad2 and Smad1/5 with 

a resultant phenotype of TGF-β2high, (ERK/p38)low, DEC2high, p53high, p27high and P-H3low 

(41).   

BMP7 is a TGF-ß family member, secreted by stromal cells within the bone 

marrow.   BMP7 signaling through BMPR2 on PCa cells induces senescence in PCa 

CSCs through activation of p38 MAPK and increasing cell cycle inhibitor p21(42). 

Moreover, continued growth of PCa cells following withdrawal of BMP7 both in vitro and 

in vivo was also observed (42).   

EGF 

 Epithelial growth factor (EGF) has a well-characterized role in primary tumor 

growth and eventual patient outcomes.  EGF signaling proceeds through a number of 
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receptors (EGFR, HER2, ErbB2) that have been linked to oncogenesis and metastasis. 

These receptors are often upregulated in the primary tumor, which can lead to 

uncontrolled proliferation and ultimately metastatic disease. 

EGF is present in the bone marrow and contributes to tumor metastasis and growth 

in the niche microenvironment, where the EGF signaling cascades are important for the 

expansion of stem cells (43).  ErbB2 overexpression of metastatic breast cancer cells in 

the bone marrow has been linked to poor clinical outcome, supporting the role of EGF 

signaling in promoting growth (44). In the case of PCa, EGF has been shown to promote 

proliferation (45). EGF and similar ligand signaling from metastatic cells have been shown 

to suppress osteoprotegerin (OPG) expression by osteoblasts, which promotes 

osteoclast differentiation and subsequent osteolytic events (46). EGF has been shown to 

significantly alter the effects of bone marrow macrophages on the bone marrow 

metastatic niche.   

Macrophages have been demonstrated to support PCa growth in bone (47), and 

milk fat globule-EGF factor 8 has been demonstrated to initiate efferocytosis (the 

clearance of dead and dying cells) by macrophages which induces the expression of a 

gene repertoire promoting the tumor-associated macrophages that promote PCa growth 

(48). EGFR inhibition has also been shown to decrease macrophage promoted invasion 

in osteosarcoma (49). 

IGF 

 Insulin-like growth factor (IGF) promotes tumor growth through signaling of the 

AKT pathway through IRS1/PI3K and activation of the RAS/RAF pathway through SHC. 
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IGF promotes osteoblastic niche expansion and HSC cell engraftment (50). IGF has been 

shown to select for metastatic clones that have a predisposition to colonize and form 

recurrent tumors in the bone marrow (51). These cells are selected for high Src activity 

(an enhancer of PI3-K-Akt activation), which confers a predisposition to colonize bone.  

Interestingly, the loss of the IGF receptor has been associated with advancement of PCa 

to bone metastasis clinically (52), however numerous others report IGF levels as an 

enhanced risk factor for PCa (53,54).  IGF1 release from resorbing bone enhances breast 

cancer metastatic growth (55). Osteoclastogenesis is partly regulated by IGF1 through 

regulation of osteoprotegerin and RANKL (56).  Additionally, IGF signaling regulates 

osteoblast differentiation as well (57), highlighting the complex role of the this signaling 

pathway in the native bone environment. The complex dynamics of IGF1 on osteoblasts, 

osteoclasts and tumor cells within the bone marrow environment remains a topic of active 

research. 

VEGF 

 Vascular endothelial growth factor (VEGF) is a mediator of angiogenesis in 

healthy and cancerous tissues. VEGF mobilizes bone-marrow derived endothelial 

progenitor cells to promote a number of repair/remodeling functions (angiogenesis(58), 

bone resorption(59)). Tumor cells likely upregulate VEGF production for this reason and 

have been shown to exploit this pathway as both a mechanism for establishing a blood 

supply at the primary site as well as creating a permissive environment for metastasis. 

VEGFR1+ bone marrow progenitor cells have been implicated in the establishment of the 

premetastatic niche in cancers(60). While not marrow specific, these findings indicate the 
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role of VEGF in establishing a permissive environment to disseminated tumor cells and 

the formation of a secondary tumor. 

IL-6 and RANK/RANK 

Interleukin 6 (IL-6) is an interleukin that binds to the IL-6R and activate three major 

signaling pathways: the Janus-tyrosine family kinase (JAK)-signal transducer and 

activator of transcription (STAT) pathway, the ERK1/2 and MAPK pathway and the PI3-

K pathway. Through these pathways, IL-6 regulates apoptosis/cell survival, and 

proliferation(61). While, IL-6 has been implicated in many stages of PCa progression and 

metastasis, it appears to play a key role in bone metastases specifically. IL-6 secreted 

from PCa cells can mediate osteoblastic differentiation and enhance osteoclastogenesis, 

thus inducing bone turnover and a key event in establishment of osteoblastic bone 

metastases(62-64). In return, osteoblastic production of IL-6 stimulates PCa cell 

proliferation, initiating a “vicious cycle” whereby PCa cells stimulate osteoblastic activity, 

which in turn stimulates tumor growth in a paracrine fashion (64-66). Analysis of human 

PCa soft tissue and bone metastatic samples indicates that IL-6 is more highly expressed 

in bone metastases compared to soft-tissue counterparts (67).  Thus, IL-6 remains a key 

signaling mediator in the growth of PCa metastases through action on both PCa cells as 

well as the bone microenvironment. 

 Receptor activator of nuclear factor kappa-B ligand (RANKL), expressed by 

osteoblasts and other cells within the bone microenvironment, is one of the primary 

factors leading to the activation of osteoclastogenesis and accelerated bone resorption. 

Proposed as a “vicious cycle,” osteoclastogenesis is necessary to create space for the 

tumor, but also releases PCa growth stimulating factors embedded in the demineralizing 
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matrix (66). More recently, the relationship of IL-6 and RANKL has been explored. 

RANKL, released from local osteoblasts, can stimulate the expression of IL-6 in PCa cells 

and also increase RANK expression, increasing PCa sensitivity to RANKL (68). 

Conversely, in a murine model, inhibition of IL-6 signaling with tocilizumab, inhibits 

skeletal tumor growth and decreased RANKL serum levels, as well as RANK expression 

in PC3-derived bone tumors (68). 

Effects of adhesion molecules/ECM components within the bone marrow niche on 

PCa cells 

Integrins/RGDs 

 Integrins are transmembrane adhesion molecules that are comprised of 

noncovalently linked α and β subunits, whereby each heterodimer binds to different ECM 

proteins, such as collagen, laminin, vitronectin, and fibronectin. In the bone the most 

abundant protein is type I collagen. Integrin binding is dependent on divalent cations and 

specific binding sequences such as Arg-Gly-Asp or Asp-Gly-Glu-Ala in the ECM protein 

(69). The β unit of the integrin binding pair can initiate a signal transduction pathway that 

is facilitated with intracellular molecules such as focal adhesion kinase (FAK), which in 

turn lead to ligand-mediated activation of ras/mitogen activated protein kinase 

(Ras/MAPK) and phosphatidylinositol 3-kinase  (PI-3kinase) signal transduction 

pathways (69). In normal prostate, FAK expression is low or non-detectable; however, in 

metastatic PCa it is significantly elevated compared to both healthy, benign PCa, or low-

grade adenocarcinoma(70). FAK association with Src is critical for prostate cell migration; 

however, FAK association with PI3K activation affects proliferation, survival, 

differentiation, and migration through the intermediator, serine/threonine protein kinase B 
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(AKT) (71). In addition, FAK can activate the Ras proteins, a large family of GTPases that 

function to stimulate many signaling cascades, such as ERK, that affect cell cycle and 

proliferation (71). In fact, these pathways are monitored continuously when evaluating 

PCa cellular dormancy in the bone marrow through evaluation of the p-ERK1/2 to p-p38 

ratio (29).  

Integrin αvβ3 is another integrin involved in PCa cellular binding to fibronectin, 

vitronectin, thrombospondin (TSP), among other ECM matrix proteins. Interestingly 

osteoblast secreted CXCL12 binds to CXCR4 on the resident PCa cells, upregulating 

αvβ3 and CD164, both adhesion molecules that bind PCa cells to osteoblasts and ECM 

components (27). Further, ANXA2r on PCa cells binds to osteoblastic ligand ANXA2, 

resulting in transcription of TAM receptor, Axl, decreasing proliferative cell cycle signaling 

and subsequent quiescent phenotypes (27).  

 Integrin pairs (α1β1, α2β1, and α6β1) for collagen appear to be important 

mediators in PCa metastasis to bone. Interestingly, it was recently reported that bone 

metastatic PCa cells bound collagen I, whereas cells that only formed visceral metastases 

failed to bind collagen (72). Since Ras mutations are uncommon in PCa, it was previously 

reported that chronic stimulation of Ras/MAPK pathway is most likely stimulated through 

alterations in upsteam regulars such as integrins, growth factors, and growth factor 

receptors during PCa progression (71). One group reported that PCa-Collagen I 

attachment was mediated by α2β1 to initiate motility programs through Rho-family of 

small GTPases, RhoC(72). 

TSP1 
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 Thrombospondin 1(TSP1) is a potent angiogenesis inhibitor and down-regulation 

TSP1 has been suggested to alter tumor growth.  In wound healing, TSP1 delays 

neoangiogenesis via activation of the caspase death pathway in endothelial cells (73). In 

tumor progression, TSP1 is upregulated by p53 and down-regulated by oncogenes, Myc 

and Ras (74). Further, TSP1 activates TGF-β1, suggesting a critical role in the regulation 

of tumor progression (74,75). Interestingly, androgen is reported to increase VEGF-A and 

decrease TSP1 expression in PCa, suggesting that androgen may play an important role 

in the angiogenic process of cancer (76). Together the pro-angiogenic factors, such as 

VEGF, and anti-angiogenic factors, such as thrombospondin 1(TSP1), remain important 

mediators of the angiogenesis balance, ECM remodeling, and cellular recruitment. TSP1 

is an ECM glycoprotein is produced by many different cell types and has important roles 

in cell attachment, angiogenesis, inflammation, and fibrosis. 

Therapeutic implications 

Therapeutics designed to target the abnormal microenvironment induced by PCa 

have been proposed.  As discussed above, the vicious cycle model proposes that PCa 

cells stimulate increased bone remodeling, which subsequently liberates IL-6, TGF-β and 

other factors that further increase proliferation of tumor cells. Thus, the use of drugs which 

inhibit osteoclast function was proposed to halt the abnormal osteoclast activation 

component of the vicious cycle and thereby slow PCa progression  (77). Both the 

bisphosphonate, zoledronate, and the anti-RANKL antibody, denosumab, are proven to 

be effective in prevention of skeletal events such as pathologic fracture, spinal cord 

compression, and bone pain  (78). The majority of positive studies have been in patients 

with bone metastases from castration resistant PCa (i.e. progressing despite medical or 
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surgical castration). Either denosumab or zoledronate is standard of care in this patient 

population (79). Furthermore, denosumab is effective and indicated for prevention of 

osteoporotic fracture in all prostate cancer patients treated with androgen deprivation 

therapy, regardless of disease stage or castration resistant status  (80). 

Yet despite their promise, it remains unclear as to whether osteoclast targeted 

drugs ultimately change outcomes in PCa. For despite, their useful benefits in prevention 

of skeletal complications, denosumab and zoldronate have not shown improvements in 

overall survival in any PCa patient population – as would be expected if the drugs were 

targeting cancer cells (77). Additionally, clinical data on osteoclast targeted drugs has not 

supported their use to prevent formation of bone metastases. Specifically, zoledronate 

did not increase the time to first skeletal related event in men with castration sensitive 

metastatic prostate cancer (81). Also, while denosumab did increase metastasis free 

survival in men with non-metastatic castration resistant PCa (PSA rising after castration, 

but no gross metastases on imaging), it did not increase overall survival and is not FDA 

approved in this setting (82). Similarly, in the adjuvant setting, zoledronate did not prevent 

PCa progression or mortality in patients with high risk localized disease (83). Therefore, 

although they have prevented much morbidity from bone complications in PCa patients, 

osteoclast targeted drugs have not yielded all the desired beneficial effects in clinical 

trials. However, because of the research avenues discussed above, we are confident that 

targeting the bone microenvironment will continue to yield effective therapeutics in the 

future.    

Summary 
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 There are many was to address the problems arising from metastatic disease. One 

approach is to target the microenvironment in which metastatic cells colonize, survive, 

and proliferate. There are many molecular signals that direct the homing of PCa cells to 

the bone marrow and regulate DTC proliferative activity, as summarized in Table 2.1 and 

Figure 2.1. Identification of these players has been increasingly a point of interest to the 

research setting, however, translation of these findings to the clinic remains limited. 

Future efforts need to be made to identify how these molecular players distinctly regulate 

PCa cell survival, dormancy, and re-activation to determine more effective clinically 

relevant therapeutic targets that can not only increase the life-span of these patients but 

also improve the quality of a cancer patient’s life.   
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Table 2.1: Description of important biochemical mediators of PCa entry and survival in the bone 

marrow. 

 

Biochemical 

Components 

Description Effect on PCa Bone Metastasis Citation 

Growth Factors  

CXCL12 Homing molecule secreted 

by osteoblasts 

Induces HSC mobilization from 

the HSC niche and recruits PCa 

cells. 

(16-19) 

 GAS6 Growth factor expressed by 

osteoblasts 

Ligand for PCa TAM receptor 

reducing cell cycling and 

induction of PCa dormancy. 

(25) 

(27) 

(33,34) 

 

TGF-β Growth regulatory factor 

expressed and produced 

by a wide-variety of cells 

including osteoblasts and 

PCa cells 

Autocrine (from PCa cells) and 

Paracrine (from osteoblasts) 

signaling reduces cell cycling, 

inducing a dormant state. 

(35) 

(36) 

(38) 

(39) 

 

BMP7 TGF-β family member, 

secreted by stromal cells in 

the bone marrow 

Induces cellular senescence in 

PCa CSCs. 

(42) 

EGF Endogenous growth factor 

that is linked with cell 

growth. 

Present in the bone marrow, 

increasing PCa cell proliferation 

and osteoclast 

differentiation/promoting 

osteolytic events.    

(43) 

(45) 

(46) 

(44) 

 

IGF Growth factor affecting the 

growth and differentiation 

of a variety of tissues. 

Promotes osteoclastogenesis 

and expansion of the osteoblastic 

niche.  May promote colonization 

of the bone marrow in PCa cells. 

(57) 

(56)   

(53,54)    

(51) 
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VEGF Mediates angiogenesis in 

various tissues both in 

homeostasis and cancer. 

Mobilizes bone-marrow derived 

endothelial precursors to 

mobilize angiogenesis and bone 

resorption creating a permissive 

environment for disseminated 

tumor cells. 

(60) 

IL-6 Interleukin that regulates 

apoptosis/cell survival and 

proliferation.  

PCa IL-6 secretion mediates 

osteoblastic differentiation and 

osteoclastogenesis. Osteoblast 

secretion of IL-6 results in PCa 

proliferation. 

(61) 

(67) 

RANKL/ 

RANK 

RANKL expressed by 

osteoblasts can bine RANK 

on osteoclast precursor 

cells and induce 

osteoclastogenesis during 

the normal bone 

remodeling process.  

RANKL released from 

osteoblasts can increase PCa IL-

6 secretion and RANK 

expression. 

(66) 

(68) 

Adhesion  and ECM Components 

ANXA2 Protein expressed by OBs ANXA2r located on PCa cells 

bind directly ANXA2 on 

osteoblasts to facilitate PCa 

anchorage within the bone 

marrow. 

(21,22) 

αVβ3 Binds fibronectin, 

vitronectin, TSP, and other 

ECM proteins 

Osteoblastic CXCL12 causes 

upregulation of PCa αVβ3 

promoting PCa adhesion to 

osteoblasts in the bone marrow. 

(27) 

α1β1,   

α2β1,  

α6β1 

Binds collagen Engages PCa cells with bone and 

may initiate bone metastatic 

motility programs.  

(71) (72) 

 

TSP1 Anti-angiogenic ECM 

glycoprotein produced by 

various cell types including  

Downregulated in progression of 

PCa to promote angiogenesis in 

the area. 

(74,75) 

Therapeutics 

Denosumab Anti-RANKL antibody Indicated for prevention of 

osteoporotic fracture in all 

prostate cancer patients treated 

with androgen deprivation 

therapy. Increased metastasis 

(82) 
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free survival in men with non-

metastatic castration resistant 

PCa. 

Zoledronate Bisphosphonate Did not prevent PCa progression 

or mortality in patients with high 

risk localized disease. 

(83) 
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Figure 2.1: Summary of the molecular interactions of PCa cells in the bone marrow 

microenvironment. IL-6 = Interleukin 6; VEGF = Vascular endothelial growth factor; CXCL12 = 

SDF-1 = Stromal derived factor 1; CXCR4= CXC chemokine receptor 4; TGF-β = Transforming 

growth factor β; RANK = Receptor activator of nuclear factor kappa-B; TAMR = TYRO3, AXL, 

MERTK receptor; GAS6 = Growth arrest specific 6; EGF = Epithelial growth factor; IGF = Insulin 

growth factor; ECM = Extracellular matrix. 
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Chapter 3 

Sympathetic Signaling Reactivates Quiescent Disseminated PCa Cells in the 
Bone Marrow 

 
Introduction 

Prostate cancer (PCa) remains the second leading cause of cancer-related deaths 

in the male population within the United States (1). Distant site bone metastasis is present  

in 80% of cases of advanced PCa with a mean survival time of 40 months (2).  

Disseminated tumor cells (DTCs) that metastasize to the bone marrow can undergo 

apoptosis, proliferate or become dormant, and their fate/mitotic rate is directly influenced 

by the surrounding metastatic microenvironment (3). Dormant DTCs cannot be targeted 

with cell-cycle dependent chemotherapies and thus can remain latent in the bone marrow 

for years following an initial course of treatment. As a result, dormant DTCs may become 

activated at a future time leading to recurrent disease with a poor prognosis (4).   

Previously, it was demonstrated that PCa DTCs home to a CXCL12-rich 

osteoblastic area (niche) of the bone marrow that is typically supportive of hematopoietic 

stem cell (HSCs) homeostasis (5,6). One mechanism suggested to be involved in PCa 

dormancy includes osteoblastic secretion of BMP7, which activates p38/MAPK signaling 

pathway signaling of PCa cells (7).  It has also been demonstrated that expression of 

paracrine TGF-β (from local osteoblasts) and autocrine expression of TGF-β (from PCa 

cells) in turn can induce PCa dormancy (8). TGF-β2 signaling initiates a dormant state in 

DTCs through up-regulation of p27, a ubiquitous cell cycle inhibitor through 
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phosphorylation of p38 and downstream activation of Smad2 and Smad 1/5 with a 

resultant phenotype of TGF-β2high, (ERK/p38)low, DEC2high, p53high, p27high and P-H3low 

(9). Another mechanism potentially regulating DTC dormancy is osteoblastic secretion of 

growth arrest specific-6 (GAS6), which increases PCa exit from the cell cycle or 

dormancy, and PCa survival in the presence of chemotherapeutics (10). These 

fundamental observations are critical to understanding how dormancy is induced or 

maintained but fail to establish how   reactivation or escape from the dormant state occurs 

which ultimately leads to recurrent disease.  

The fight-or-flight (i.e. stress) response is a major physiological reaction to potentially 

harmful events. Stress induces hypothalamic signaling which activates the sympathetic 

nervous system, ultimately resulting in the systemic release of 

norepinephrine/epinephrine.  Stress may also be an important factor that influences 

activation of dormant DTCs after long periods of time in marrow through immune system 

suppression (11), activating release of pro-inflammatory mediators (12,13), and activation 

of neurotransmitters from adrenergic neurons (14,15).  Growing evidence supports the 

observation that β-adrenergic receptor antagonists, which interfere with norepinephrine 

(NE) signaling, may reduce cancer relapse or slow disease progression (16-19).  Part of 

the mechanism by which NE blockade may interfere with disease progression is through 

the regulation of the PCa-bone homing factor, CXCL12 (20) and altering the expression 

of RANKL, which regulates bone-turnover (21). However, the effects of autonomic 

nervous system (ANS) signaling through NE on dormant tumor cell reactivation in the 

HSC niche is currently unknown. 
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In this study we demonstrate that NE induces quiescent PCa cell re-entry into the 

cell cycle both in vitro, ex vivo, and in vivo. We show that following NE stimulation,  PCa 

transition into the proliferative, G2/M cell cycle phases in multiple models of quiescence. 

This study demonstrates that PCa DTCs undergo cell cycle re-entry in the presence of 

NE, and NE may be one of the factors causing metastatic disease relapse following a 

cancer free diagnosis. 

Methods 

Cell Culture 

Human PCa cell lines (PC3, DU145) were obtained from American Type Culture 

Collection (Rockville, MD).  Murine osteoblasts were established from C57BL/6J mice as 

previously reported (5). All prostate cancer cell lines were cultured with RPMI 1640 (Life 

Technologies, Carlsbad, CA), and murine or human osteoblasts were grown in α-MEM or 

DMEM (Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum 

(FBS, GEMINI Bio-Products, Sacramento, CA, 1% penicillin-streptomycin (P/S, Life 

Technologies) and maintained at 37⁰C, 5% CO2, and 100% humidity.  

PC3-FUCCI Cells 

To monitor the cell cycle in PCa cells, PC3 cells were transduced with lentivirus 

containing fluorescent ubiquitination-based cell cycle indicator (FUCCI) vectors 

(Clontech, Mountain View, CA). Cells contain chromatin licensing and DNA replication 

factor 1 (CDT1)-Cherry reporter and Geminin-Cyan reporter. Early S phase cells are 

double-positive for CDT1 and Geminin and fluoresce yellow.  A pRetroX-G1-Red vector 

(cat. 631463, Clontech) and pRetroX-SG2M-Cyan vector (cat. 631462, Clontech) were 

packaged into lentivirus by the University of Michigan Vector Core Facility. Lentiviral 

http://www.clontech.com/
http://www.clontech.com/
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pRetroX-G1-Red vector and lentiviral pRetroX-SG2M-Cyan vector were co-infected into 

PC3 cells. Cells were selected for 7 days in media containing 1μg/ml Puromycin and 

analyzed by FACS analysis. Cell cycle monitoring was performed in PC3-FUCCI cell 

culture with direct NE (2.5µg/ml) treatment alone or in co-culture with osteoblasts (OBs) 

(MC3T3-E1, or primary murine OBs). PC3-FUCCI cells were cultured for 24 hours in 

RPMI with 10% FBS, 1% P/S, followed by culture for 48h in RPMI with no added FBS, 

1% P/S and treated with Vehicle or NE (2.5µg/ml). In PC3-FUCCI/OB co-culture 

experiments cells were cultured in OB culture conditions of α-MEM with 5% FBS and 1% 

P/S.  

Quantitative PCR 

 Total RNA was extracted from cells using the RNeasy mini kit (cat. 74104, Qiagen, 

Valencia, CA) and converted into cDNA using a First-Strand Synthesis Kit (Invitrogen). 

Quantitative PCR (real-time PCR) was performed on an ABI 7700 sequence detector 

using TaqMan Universal PCR Master Mix according to the directions of manufacturer 

(Applied Biosystems, Foster City, CA). TaqMan MGB probes (Applied Biosystems) were 

as follows: ADRα1 (Hs00169124_m1), ADRα2 (Hs01099503_s1), ADRβ1 

(Hs02330048_s1), ADRβ2 (Hs00240532_s1), ADRβ3 (Hs00609046_m1), GAS6 

(Mm00490378_m1), TGFβ2 (Mm00436955_m1), SPARC (Mm00486332_m1), BMP7 

(Mm00432102_m1), Jagged 1 (Mm00496902_m1), Annexin 2 (Mm00500307_m1), 

CXCL12 (Hs03676656_mH, Mm00445553_m1). β-Actin (Hs01060665_g1; 

Mm02619580_g1) was used as internal controls for the normalization of target gene 

expression.  

Western Blots 
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Lysates were prepared in cOmplete lysis M (Roche #04 719 956 001) 

supplemented with proteinase inhibitor Mini cOmplete Tablets (Roche #04705378) and 

phosphatase inhibitor PhosSTOP EASYpack Tablets (Roche #04 906 837 001). Protein 

concentration was calculated using the BCA protocol. 20 µg of total protein was added 

per lane of 4-20% reducing SDS polyacrylamide Tris-Glycine gels after sample 

preparation in Laemmli sample buffer. The samples were transferred to PVDF 

membranes and blocked for 1 hour in 5% dry milk in TBS with 0.1% Tween-20 (TBST). 

Antibodies for phosphorylated proteins were applied at 4˚C overnight in 5% BSA TBST, 

washed and visualized with a horseradish peroxidase conjugated anti-rabbit IgG 

secondary antibody (Cell Signaling #7074S) and SuperSignal West Dura 

Chemiluminescent Substrate (Thermo Scientific #34075). Images were acquired with a 

ChemiDoc Touch imager (BioRad). The following antibodies were procured from cell 

signaling (catalog number, dilution) were used: Phosphorylated-Erk 1/2 (P-Erk) Y204 

(#4377S, diluted 1:500), total Erk (#4695, 1:500), Phospho-p38 (P-p38) T190/Y182 

(#4511, 1:500), total p38, (#9212, 1:500), p21 Waf1/Cip1 12D1 (#2947, 1:500), p27 Kip1 

(#2552, 1:500), β-actin (#4970, 1:1000). β2-AR (SC-81577; 1:500) antibody was procured 

from Santa Cruz Biotechnologies.  Images representative of biological replicates are 

shown and cropped for presentation. For P-Erk, P-p38, and p27 quantification, images 

from four independent experiments were quantified relative to each vehicle treated 

condition with BioRad ImageLab software and then normalized to housekeeping gene 

expression. The P-Erk to P-p38 ratio was obtained by dividing the normalized P-Erk and 

P-p38 values for each independent experiment. All data are shown as fold change from 

the corresponding vehicle control.    
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Chemotaxis Assays 

Cell invasion into a reconstituted extracellular matrix coating of Matrigel™ overlaid 

on 8μM pore-size in polyethylene terephthalate membranes was performed in a dual 

chambered 12-well plate (BD Biosciences, San Jose, CA), as previously described (22). 

Spontaneous invasion was compared to invasion supported by NE (2.5µM) and 

propranolol (10μM) conditions. 

Immunostaining 

Cells (PC3, DU145, MC3T3-E1, and primary murine OBs) were used for 

immunostaining. Cells were fixed and permeabilized with Perm/Wash Buffer (cat. 554723, 

BD Biosciences). Cells were incubated for 2 hours at room temperature with primary 

antibodies combined with reagents of Zenon Alexa Fluor 488 (green) or 555 (red) labeling 

kit (Invitrogen). HLA (BioLegend), and Ki67 (BioLegend) were used as primary antibodies. 

After washing with PBS, the slides were mounted with ProLong Gold antifade reagent 

with DAPI (Invitrogen). Images were taken with Olympus FV-500 confocal microscope. 

Results were quantified by counting the positive cells confirmed by two different 

independent investigators.  

Flow Cytometry 

OBs and PCa cells (PC3 and DU145) were removed from co-culture experiments 

with trypsin and suspended in flow buffer (1X PBS + 2%FBS). Cells were then labeled 

with a Fixable Viability Kit according to package instructions (Biolegend, Cat# 423111), 

HLA-A,B,C (Biolegend, Cat# 311426), and in the case of parental PCa cells anti-human 

Ki67 (Biolegend, Cat# 350514) for 30 min at room temperature. Cells were then washed 
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2x with flow buffer and re-suspended in flow buffer for flow analysis. Live cells were gated 

for HLA-A,B,C prior to analysis of Ki67 or FUCCI cell cycle expression.  

Ex Vivo Experiments 

Femur explants were dissected from 5-week old C57BL6/J mice. Femur dissection 

was completed as previously described (23). Sorted G0/G1 FUCCI cells were injected into 

the marrow space of the femur explants and cultured for 24 hours in α-MEM (Life 

Technologies, Carlsbad, CA) supplemented with 5% FBS. 24 hours after dissection, 

media was changed to α-MEM supplemented with 10% FBS and 2.5μM NE or vehicle 

control. After 48h of culture in experimental conditions, the bone marrows were flushed 

from the femur explants with FACS buffer (PBS +2% FBS). Mouse cells were depleted 

using a MACs Mouse Cell Depletion Kit (Miltenyl Biotec, Cat# 130-021-694) using a 

MACs automated Pro Cell Separator (Miltenyl Biotec). Remaining cells were labeled with 

a Live/Dead stain (Zombie Green, BioLegend, Cat# 423111), murine IgG2b b haplotype 

(mH-2Db) (BioLegend, Cat# 111516, PE/Cy7), mCD45 (BioLegend, Cat# 103112, APC), 

HLA-A,B,C (Biolegend, Cat# 311426, APC/Cy7). Live cells were negatively gated for mH-

2Db and mCD45, and positively gated for HLA-A,B,C prior to cell cycle analysis using the 

FUCCI spectrum.  

In Vivo Experiments 

PC3 cells were stained with DiD (ThermoFisher) and allowed to rest for 24 hours.  

DiD staining was confirmed through flow cytometry.  Following confirmation, 2e6 cells 

were introduced into the bone marrow of NSG mice through intratibial injection.  NE 

(1mg/kg) was subsequently administered through intraperitoneal (IP) injection, beginning 

24 hours after intratibial injection and continuing once per day for three days. After three 
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days, mice were euthanized and tibias extracted for analysis.  Bone marrow was flushed 

to remove prostate cancer cells and marrow stroma.  These cells were digested with 

trypsin, stained in a similar manner to the ex vivo assay, and analyzed through flow 

cytometry.  Cells were analyzed as the fraction of cells gated as human that were positive 

for DiD stain.  

Statistical Analyses 

Results are presented as mean ± standard deviation and fold change ± standard 

deviation normalized to standard vehicle control conditions. Significance of a difference 

between values was determined by use of an ANOVA with correction of multiple 

comparisons using the Sidak’s multiple comparison test through GraphPad Prism version 

7.0. If the comparison of two values were assessed, an unpaired Student’s t-test was 

used. Error bars reported in all figures represent standard deviation. 

Results 

Adrenergic signals in the bone marrow can reactivate dormant PCa cells  

To first explore the impact of neuronal regulation of PCa dormancy in the bone 

marrow, we evaluated marrow for the presence of nerve elements in the femurs of mice. 

Immunohistochemistry of C57BL/6J femur sections revealed innervation of adrenergic 

nerves at the proximal end of a longitudinal bone marrow section. We observed tyrosine 

hydroxylase (TH) expressing nerves in endosteal region in bone marrow (Figure 3.1A).  

As previous reports suggest that the β2-adrenergic receptor is present on PCa 

cells (24,25) and OB cells (26-28), we sought to verify this data and to identify the 

expression panel of adrenergic receptors on PCa and OB cell lines. Expression of the β2-

adrenergic receptor was confirmed using qPCR and by Western blot (Figure 3.1B-E).    
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Messenger RNA for β2 was expressed to a higher degree than other adrenergic 

receptors and was expressed at a protein level on both PCa and OB cell types.  Given 

the presence of adrenergic nerves in the marrow and receptors for adrenergic signaling 

on both bone marrow-resident cells and PCa cells we explored further the impact of 

sympathetic signaling on disseminated PCa cells in the bone marrow niche. 

NE induces reactivation of dormant PCa cells. 

Growing evidence supports the observation that β-adrenergic receptor 

antagonists, which interfere with norepinephrine (NE) signaling, may reduce cancer 

relapse or slow disease progression (16-19). Given the presence of sympathetic nerves 

in the marrow and β2-adrenergic receptors expressed by PCa and niche cells, we 

explored the role of NE on DTC proliferation by first evaluating the impact of NE on PCa 

cells.  Here, PCa cell lines were treated in vitro with NE and cell cycle activity was 

assessed by Ki67 expression using flow cytometry. Following culture with 2.5µM NE, PCa 

cells demonstrated a 2.6 fold increase in Ki67-positive cells, indicating cell cycle entry in 

PC3s and a 1.7 fold increase in DU145 cells compared to vehicle controls under serum 

free (SF) conditions (Figures 3.3A and 3.3B).  Treatment with NE had no effect on AR+ 

cell lines (Figure 3.2A) or invasiveness of PC3 or DU145 cells (Figure 3.2B).  

Treatment with the β-adrenergic receptor antagonist propranolol (PPL),) 

decreased the proportion of Ki67 positive cells (Figure 3.3C). Using immunocytochemistry 

to confirm the flow cytometry results, a 2.5 fold increase in Ki67 positive PC3 cells were 

observed when cultured with NE for 48 hours compared to vehicle controls (Figure 3.3D 

and 3.3E).   
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Previously we determined that when PCa cells become proliferatively quiescent 

when co-cultured with osteoblasts (8,29,30). To determine whether NE is able to alter the 

quiescence of PCa cells induced by osteoblasts, co-culture experiments were performed 

where in the human PCa cells were selectively analyzed using antibodies specific for 

human HLA.  Under the co-culture conditions, a 4.6 fold increase in Ki67 positive HLA-

expressing PC3 cells was observed in the presence of NE for 48 hours compared to 

vehicle controls (Figure 3.3D and 3.3E). 

Previous investigations have demonstrated that a PCa G1 cell cycle arrest is 

induced through PCa-OB co-culture, and serves as a model for PCa dormancy within the 

bone marrow (30). To further explore how NE impacts PCa in the bone marrow, the use 

of cell cycle specific FUCCI-vectors were employed to isolate cells at different stages of 

the cell cycle. Here, PC3-FUCCI cells were cultured under serum free conditions with 

2.5uM NE or a vehicle control to assess the effect of NE on cell cycle status. A 1.8 fold 

increase in the proportion of cells in the G2/M cell cycle phase compared to dormant cells 

in the G1 cell cycle phase was observed (Figures 3.3F and 3.3G). These data suggest 

that NE has the capacity to drive G0/G1 cell cycle arrested cells into a proliferative state.  

Western blots were employed to evaluate the impact of NE on the expression or 

phosphorylation of proteins that regulate dormancy. Culture of PCa cells with NE 

demonstrated a decrease in expression of both p27 and p21 (Figure 3.4A-C). Previous 

reports have demonstrated that an increased ratio of p-ERK 1/2 to p-p38 MAPK is 

associated with re-activation from dormancy in prostate and other cancers (7,9,31). Thus, 

we also evaluated p-ERK and p-p38 levels following exposure to NE (Figure 3.4D-E). NE 

treatment did not alter the level of phosphorylation of ERK relative to treatment control 
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groups. In contrast, NE exposure decreased the level of p-p38 under the culture 

conditions (Figure 3.4D-E).  Together these results suggest that an increase in the p-

ERK/p-p38 levels observed in PC3 cells, with a modest albeit not significant impact on 

DU145 levels.  Together these observations suggest NE is able to alter a quiescent 

phenotype of PCa cells towards a proliferative signature (Figure 3.4F). These data 

suggest that re-activation of PCa cells by NE could be mediated through the inhibition of 

cell cycle regulators.   

NE alters the dormancy – inducing signals expressed by cells of the HSC niche.   

Our evaluation of β2-adrenergic receptor expression suggested that both PCa 

cells and osteoblasts may be targets of NE signaling in the marrow (Figure 3.1E). 

Previously, we and others have demonstrated that PCa cells metastasize to the HSC 

niche and interact with osteoblasts. To determine the extent to which NE alters niche-

localization signals expressed by osteoblasts, we examined mRNA expression by PCR 

for the following adhesion molecules: Annexin II (ANXA2/Annexin IIR (ANXA2R)), 

Notch/Jagged, and homing molecule CXCL12 (5,6,32). As shown in Figure 3.4A, NE 

treatment of OBs decreased mRNA expression of Anxa2 but failed to induce significant 

changes in the expression of Jagged 1, Anxa2R or CXCL12.  

We next considered that NE may alter the expression of molecules known to be 

associated with the induction of dormancy of PCa cell. For these investigations, we 

evaluated the impact of NE on the expression of mRNA for GAS6, TGF β2, Secreted 

Protein Acidic and Rich in Cysteine (SPARC), and Bone Morphogenetic Protein 7 

(BMP7). NE increased the expression of BMP7 mRNA by osteoblasts but significantly 

decreased expression of GAS6 osteoblastic mRNA (Figure 3.5A).   
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We also assessed the effects of NE on proliferation of PCa cells in co-culture with 

primary murine OBs. NE did not have a statistically significant effect on OB proliferation 

(Figure 3.5B).  This result indicated that NE stimulation primarily affected cytokine output 

through signaling pathways and not alterations in cell proliferation. 

Adrenergic signaling reactivates PCa cells in the native marrow environment 

We next developed a novel ex vivo model system to explore the impact of NE on 

dormant PCa cells in the bone marrow without the systemic effects of altered NE signaling 

(Figure 3.6A).  For these studies explant femurs were injected with PCa cells in the 

presence or absence of NE. First, G0/G1 phase PC3-FUCCI cells were injected into ex 

vivo bone explants. After 48-hour incubation with NE in murine femurs, PCa cells were 

isolated by flow cytometry using positive selection for the Human cells and negative 

population selection for the murine cells, and subsequently the cell cycle state 

determined. A 26.6% increase in the number of cells in the G2/M phase was observed 

following NE treatment compared to controls demonstrating that addition of NE to ex vivo 

culture conditions can induce cell-cycling in PCa cells within the context of an induced 

DTC model system (Figure 3.6B,C,D).  

Endogenous NE activates adrenergic signaling in vivo, which can lead to 

reactivation of dormant PCa cells residing in the bone marrow [10]. As such, we also 

tested the effects of NE signaling in vivo, to complement the results of the ex vivo 

experiment. An intratibial injection of cycling PC3 cells followed by NE injection provided 

further evidence for this point (Figure 3.7A). Intraperitoneal injection of NE for three days 

decreased the dormant fraction of PC3 cells in the bone marrow (Figure 3.7B), indicating 
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the effects that adrenergic signaling can have an impact on the marrow 

microenvironment. 

Discussion 

Bone marrow relapse remains a central problem in the care and maintenance of 

men with PCa disease.  Despite the importance of this issue, little is known about how 

dormant tumor cells become reactivated.  Contributory factors are still under investigation, 

however one suggestion is that stress may influence relapse (34). In this study, we 

demonstrated that NE can induce re-entry of dormant tumor cells into the cell cycle in 

three separate models of dormancy; serum starvation, co-culture with OBs, and in a novel 

ex vivo culture.  NE can exert a direct effect on PCa cells to cause them to re-enter the 

cell cycle and can also have an effect on the microenvironment by affecting secretion of 

GAS6.  The sum of these activities suggests that NE can induce quiescent PCa cells to 

reenter proliferative phases of the cell cycle. 

The experiments in this manuscript specifically examined the effects of NE on 

dormant, androgen receptor (AR) negative PCa cell lines.  AR+ lines were found to be 

less responsive to NE stimulation (Figure 3.2A), possibly due to their reliance on 

androgen signaling for growth.  Further, the effect of NE was strongest on proliferation in 

the serum starvation, co-culture and ex vivo models we used in this study. Examination 

of invasiveness in serum starved PCa cells showed a decrease in invasiveness when 

treated with NE (Figure 3.2B).  These data suggest that other confounding factors may 

be necessary to induce EMT or migration of previously dormant cells in the bone marrow, 

beyond proliferation.   
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Adrenergic signaling has recently gained prominence as a factor leading to 

progression in cancer.  Adrenergic signaling and chronic stress have been shown to 

accelerate metastasis in breast, prostate, leukemia and pancreatic cancers (35-38). 

Innervation of the primary tumor has been shown to promote invasiveness, and 

examination of adrenergic signaling on primary tumor cells and cell lines has 

demonstrated increased invasiveness and metastatic potential of these cells (39,40).  

Further, therapy which suppresses beta-adrenergic receptor signaling has been shown 

to improve relapse free survival, supporting the role of adrenergic signaling in reactivation 

of dormant tumor cells (41,42). Moreover, Magnon and co-authors (40) completed a 

series of studies using mice bearing PC3 prostate tumor xenografts that developed 

tumors and were monitored for metastases. The authors also determined adrenergic and 

cholinergic nerve densities in radical prostatectomies from 43 patients with prostate 

cancer. The authors reported that nerve fibers at the primary tumor site can alter tumor 

behavior and that the autonomic nervous system can 1) promote early stages of 

tumorigenesis (sympathetic) and 2) cancer dissemination (parasympathetic).  These data 

together suggest that NE increases the metastatic potential of primary tumor cells and 

could potentially lead to reactivation of dormant cells through direct action on the cells. 

In this study, we demonstrated that NE can exert a direct effect on prostate cancer 

cells, and this direct effect can overcome stimuli leading to dormancy. The prostate gland 

itself is comprised of many defined regions surrounded by a smooth muscular stroma that 

is perforated by the cavernous nerve and neurovascular bundles of the pelvic plexus, 

serving autonomic innervation to the prostate (43). Interestingly the greatest innervation 

has been observed in the prostate’s peripheral zone and perineural invasion may provide 
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a means of cancer cell escape from the PCa capsule (44).  Our study suggests a similar 

mechanism may apply to micrometastases in the bone marrow. 

PCa most often disseminates to the bone marrow where PCa cells are able to 

engage the HSC niche and dormancy is induced (6).  Adrenergic signaling from stress in 

a healthy HSC niche microenvironment can promote HSC mobilization into the blood 

stream (20). Recently, our group demonstrated that DTCs assume a stem cell-like 

phenotype in the bone marrow, which suggests that signals involved in HSC retention 

and mobilization may play a role in reactivation of these dormant cells (45).  The effect of 

stress-mediated cytokines, and NE in particular, on the niche environment is an active 

area of investigation; however, other studies support the conclusion that adrenergic 

signaling within the niche environment could lead to mobilization of cancer cells from that 

environment (20,21).  

A number of other dormancy and adhesion associated genes were profiled through 

qPCR (Figure 3.5A).  Annexin2, an adhesion molecule, and BMP7, a member of the 

TGFβ family, were both changed significantly in response to NE, increasing 0.75 fold and 

decreasing 1.4 fold, respectively.  Annexin2 promotes cell localization to the HSC niche 

(5,32).  The decrease in Annexin 2 expression aligns with the other data presented here 

in which NE promoted activation from dormancy in PCa cells.  BMP7 has been previously 

shown to promote dormancy in cancer cells by predominantly direct actions on tumor 

cells. (7).  Yet BMP7 promotes differentiation of osteoblast precursors into osteoblasts 

(47).  It is possible that maturity of osteoblasts is related to their secretion of dormancy 

inducing molecules and expression of adhesion proteins, and that the effect of BMP7 on 

differentiation of osteoblasts and related gene expression is stronger than its direct effects 
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on the PCa cells in the co-cultures used in this study.  Further investigation on the specific 

cytokines involved in NE-mediated reactivation of quiescent PCa cells was performed in 

Chapter 4. 

In conclusion, we employed in vitro assays to demonstrate reactivation of dormant 

PCa cells with direct application of NE to culture conditions. Together, these data 

demonstrate that NE may be one of the critical factors causing metastatic disease relapse 

following a cancer free diagnosis. These experiments additionally form the foundation for 

further studies to isolate indirect mechanisms through which NE may reactivate 

disseminated PCa cells. 
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Figure 3.1. Adrenergic neurons in the bone marrow.  
(A) C57BL/6J mouse femur sections were stained with tyrosine hydroxylase 
(TH) to identify adrenergic nerves or non-specific IgG control. qPCR was 
completed to identify adrenergic receptor isotypes on  (B) PCa cells (PC3, 
DU145), (C-D) Human osteoblasts (HOB, MG63, SAOS2) (N=3). (E) 
Western blots depict protein expression of adrenergic receptor isotype β2 
(ADRβ2) in PCa and OB cell types. 
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Figure 3.2: AR+ cell line proliferation and migration assays. A) NE does not have an effect 
on Ki67 expression in AR+ C42B and LNCAP PCa Cells. B) NE-induced migration 
suppression of PCa cells is negated in the presence of PPL 
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Figure 3.3. NE induces reactivation of dormant PCa cells.  
(A-C) PCa cells (PC3 and DU145) cultured with NE, Propranolol, or vehicle control 
and evaluated for Ki67 expression using flow cytometry (N=3; Student’s t-test). (D-
E) Immunocytochemistry for Ki67 expression by PCa cells following in vitro culture 
of PC3 cells and GAS6+/+ OB co-culture in the presence of NE or vehicle control 
(N=3; Student’s t-test). (F-G) PC3-FUCCI cells cultured in vitro with NE or vehicle 
control and evaluated for cell cycle phase using flow cytometry (N=3; Student’s t-
test). 
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Figure 3.4. NE induces reactivation of dormant PCa cells.  
(A-C) PCa (PC3 and DU145) expression of cell cycle inhibitors p21 and p27 was determined in 
the presence of NE or vehicle control by Western blot and quantified using Image J. Band 
values were normalized to β-Actin (N=4; Student’s t-test). (D-E) PCa (PC3 and DU145) 
expression of the cell cycle inhibitor p-p38 and growth promoting factor p-ERK were determined 
in the presence of NE or vehicle control by Western blot. (F) The ratio of p-p38 to p-ERK was 
quantified (N=4; Student’s t-test).  
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Figure 3.5. NE disturbs niche microenvironment signaling.   
(A) Expression of mRNA dormancy-associated genes and adhesion/homing-
associated genes expressed by OBs were determined in MC3T3-E1 OB cultures 
treated with NE or vehicle control using qPCR (N=2; Student’s t-test). Values were 
normalized to GAPDH levels. (B) Ki67 expression of OBs (MG63, MC3T3-E1, and wild 
type (WT) OBs) cultured with NE or vehicle control was determined by flow cytometry 
(N=3; Student’s t-test).  
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Figure 3.6. NE induces cell cycle entry by PC3 in the bone marrow.  
(A) Pictorial diagram demonstrating the experimental protocol for the ex vivo culture model. 
(B,C) Representative sample of the flow plot gates found from PC3-FUCCI cells injected 
into ex vivo femurs treated with vehicle (B) or NE (C) added to the culture conditions. Live 
cells were negatively gated for murine IgG2b b haplotype (mH-2Db) (BioLegend, Cat# 
111516, PE/Cy7) and mCD45 (BioLegend, Cat# 103112, APC), which were then positively 
gated for HLA-A,B,C (Biolegend, Cat# 311426, APC/Cy7). After these gates were applied, 
cells were plotted on the FUCCI spectrum. (D) PC3-FUCCI cells were isolated following 
injection into ex vivo femur explants and cell cycle was determined using flow cytometry 
(N=3; Student’s t-test).  
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Figure 3.7: NE significantly decreases the proportion of DID positive cells in marrow after IP 

injection.  A) Schematic of experimental protocol.  B) Percent cells isolated on Day 5 that were 

positive for DiD in both conditions. Error bars are standard deviation of multiple explanted tibias. 
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Chapter 4 

GAS6 Mediates Indirect Effects of Adrenergic Signaling on Dormant Pca Cells 

Introduction 

Prostate cancer (PCa) remains one of the most common cancers in men, with high 

mortality related to metastasis and the formation of secondary tumors. PCa has been 

previously shown to metastasize to bone, resulting in painful secondary tumors and 

eventually mortality.  Upon dissemination, PCa cells can undergo one of three fates: 1) 

the cells can die due to incompatibility with the microenvironment, 2) cells may colonize 

and proliferate, resulting in secondary tumors, or 3) the cells may undergo cell-cycle 

arrest and remain dormant for months or years before reentering the cell cycle (1).  The 

mechanisms regulating dormancy of disseminated tumor cells (DTCs), and when DTCs 

enter the marrow has been a considerable source of scientific debate (2). Late recurrence 

(more than five years after curative therapy) has been shown to account for 20% of all 

recurrences in PCa, which strongly suggests that the presence of DTCs in marrow is a 

predictor of poor clinical outcome (3).  However, the signaling mechanisms within the 

bone marrow controlling proliferation of these cells is poorly understood. 

We have previously demonstrated that PCa DTCs replace resident stem cells in 

marrow (4), and are subject to similar signaling within the bone marrow 

microenvironment.  Extracellular signaling from soluble factors such as GAS6 (5),TGFβ 

(6), or BMP7 (7) have all been shown to induce DTC dormancy through a variety of 
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intracellular signaling mechanisms.  Internal factors, such as signaling from ERK or 

NR2F1 (8) also play an essential role in regulating dormancy.  Other intrinsic factors, such 

as VEGF, may affect the initial entry into dormancy and could potentially lead to egress 

of DTCs (9).  However, despite the body of work on what signaling factors can lead to 

cell-cycle arrest, less is known regarding how these signals are reversed resulting in cell-

cycle reentry.   

Our recent work has shown that adrenergic signaling through norepinephrine (NE) 

may drive dormant DTCs to reenter the cell cycle (10).  Adrenergic signaling can act 

directly on a primary tumor to promote proliferation and metastasis (11), and circadian 

fluctuations in NE within the bone marrow have been shown to mediate hematopoietic 

stem cell activation and entry into circulation (12).  For dormant PCa cells, several intrinsic 

and extrinsic models for dormancy all suggested adrenergic signaling both directly on 

dormant cells and indirectly on the microenvironment can alter the proliferative phenotype 

of these cells.  NE was found to directly influence expression of key cell-cycle regulators 

p21, p27, p38 and ERK, further supporting the connection between adrenergic signaling 

and cell-cycle reentry. However, the indirect mechanisms through which adrenergic 

signaling influences the dormant microenvironment are largely unknown.  

The goals of this study were to identify the indirect mechanisms through which 

adrenergic signaling leads to proliferation in quiescent tumor cells in marrow.  Our hope 

is that by identifying how NE alters the production of niche-derived factors which regulate 

DTC dormancy, we will gain a greater understanding of how dormancy is induced and 

maintained as well as be in a far better position to target the process for therapeutic gain.  

Methods 



62 

 

Cell Culture 

Human PCa cell lines (PC3) were obtained from American Type Culture Collection 

(Rockville, MD). Primary murine osteoblasts were established from C57BL/6J (WT or 

GAS6+/+) and GAS6 knockout mice (GKO-C57BL/6J (GAS6-/-)) mice as previously 

reported. The murine osteoblastic cell line MC3T3-E1 Subclone 4, was obtained from 

ATCC (CRL-2593). All prostate cancer cell lines were cultured with RPMI 1640 (Life 

Technologies, Carlsbad, CA), and murine or human osteoblasts were grown in αMEM or 

DMEM (Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum 

(FBS, GEMINI Bio-Products, Sacramento, CA, 1% penicillin-streptomycin (P/S, Life 

Technologies) and maintained at 37⁰C, 5% CO2, and 100% humidity.  

Lentivirus 

Lentivirus was produced by co-transfecting lentiviral packaging vectors (pMDL-

GagPol, pRSV-Rev, pIVS-VSV-G) and lentiviral vectors using JetPrime (Polyplus) into 

HEK-293T cells, as previously described(13). Viral supernatant was collected after 48 

hours in culture and concentrated using PEG-it (Systems Biosciences).  Virus was re-

suspended in phosphate buffered saline (PBS) and stored at -80oC until use.  

Reporter arrays 

 Transcriptional activity cell arrays (TRACER) were used to identify transcription 

factors (TFs) leading to adrenergic signaling-mediated reentry into the cell cycle(14-16). 

PC3 cells were infected with a library of reporter viruses, cultured for at least two days, 

and subsequently plated at a low density onto a confluent monolayer of MC3T3 cells in a 

black 384 well plate.  Three days later, 2.5μM NE was added to the culture and 

transcription factor activity measured after 2, 4, 6, 8, 24, 48, and 72 hours using an IVIS 
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Spectrum (Perkin Elmer). TRACER data were processed as previously described (16).  

Briefly, activity measurements were background subtracted, normalized to the empty 

control reporter and log2 transformed prior to analysis(17). Only reporters measured 

above background were included in the final analysis. Data were taken from a minimum 

of six replicates and presented as the mean ± standard error. Statistical analysis was 

performed using the limma R package(18). P values were adjusted using the false-

discovery rate correction(19). 

Network analysis 

NTRACER (networks for TRACER) was used to analyze connections between 

dynamic TF activity measurements, as previously described (16,20). Briefly, this method 

uses a combination of inference methods (PLSR(21), similarity index(22), linear ordinary 

differential equations based on TIGRESS(23), random forest(24), ARACNE(25), 

CLR(26), MRNET(27)) to infer high-confidence connections (inferred by >1 inference 

method) between factors based on their dynamic activity.  Eigenvector centrality is then 

used to identify nodes that are central to the network. Networks were visualized and 

analyzed using the R package iGraph(28).  

Dot Blot 

Lysates were prepared in cOmplete lysis M (Roche #04 719 956 001) 

supplemented with proteinase inhibitor Mini cOmplete Tablets (Roche #04705378) and 

phosphatase inhibitor PhosSTOP EASYpack Tablets (Roche #04 906 837 001). Protein 

concentration was calculated using the BCA protocol (Sigma). 20 μg of total protein was 

added to dot blot nitrocellulose sheets and subsequent incubation and wash steps were 

followed according to manufacture guidelines (R&D Systems). SuperSignal West Dura 
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Chemiluminescent Substrate (Thermo Scientific #34075) was added for 1 minute on 

shaker in the dark and images were acquired with a ChemiDoc Touch imager (BioRad). 

Expression of protein was analyzed relative to the control spot on the blot and reported 

as the per-blot average. 

ELISA 

An ELISA assay was performed following the manufacturer’s instructions (R&D 

Systems, Dy986) to evaluate GAS6 expression in OBs (MC3T3-E1s and primary murine 

OBs) in the presence of vehicle or NE.  

Ex Vivo Experiments 

Ex vivo experiments were performed as described in Chapter 3. Femur explants 

were dissected from 5-week old GAS6+/+ or GAS6-/- mice. Briefly, sorted G0/G1 FUCCI 

cells were injected into the marrow space of the femur explants and cultured for 24 hours 

in α-MEM (Life Technologies, Carlsbad, CA) supplemented with 5% FBS. 24 hours after 

dissection, media was changed to α-MEM supplemented with 10% FBS and 2.5μM NE 

or vehicle control. After 48h of culture in experimental conditions, the bone marrows were 

flushed from the femur explants with FACS buffer (PBS +2% FBS).  

Statistical Analyses 

Results are presented as mean ± standard deviation and fold change ± standard 

deviation normalized to standard vehicle control conditions. Significance of a difference 

between values was determined by use of an ANOVA with correction of multiple 

comparisons using the Sidak’s multiple comparison test through GraphPad Prism version 

7.0. If the comparison of two values were assessed, an unpaired Student’s t-test was 

used. Error bars reported in all figures represent standard deviation. 
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Results 

Adrenergic signaling can reactivate dormant cells through RAR and ATF1 signaling 

We used a transcriptional activity cell array (TRACER) to investigate the 

mechanisms through which adrenergic signaling reactivates dormant PCa cells.  We used 

a previously defined co-culture system in which a monolayer of osteoblasts (MC3T3-E1 

cells) act as a surrogate for the osteoblasts in the bone marrow, while sparsely plated 

PC3 cells are used as a model of PCA dormancy (Figure 4.1A).  TRACER can be easily 

used to separate signal from one cell type in co-culture and provide intracellular activity 

information in living cells, making it an ideal tool for this type of co-culture assay. Activity 

was monitored for three days after administration of NE, during which significant 

alterations in TF activity were observed.  Specifically, 16/66 TFs had their activity altered 

over three days of NE stimulation leading to cell-cycle reentry (Figure 4.1B).  In order to 

determine which of these factors were most essential to reactivation, we used a network 

analysis to determine controlling factors.  This network analysis identified five factors as 

central to reactivation: E2F, RAR, ATF1, CMYC and STAT4 (Figure 4.1C).  Of these 

factors, only ATF1, RAR, and E2F were significantly altered during the experiment, 

leading to the conclusion that these three factors were primarily responsible for the 

observed effects. 

NE causes downregulation of dormancy-inducing cytokine GAS6 

Adrenergic signaling may reactivate dormant PCa cells through both direct effects 

on the cells themselves or indirectly on the osteoblasts that reside in the bone marrow. 

Direct effects of NE on the PC3 cells used for the co-culture are mediated through ATF1 

activity (Figure 4.1D).  However, despite ATF1 being central to reactivation (Figure 4.1C), 
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co-culture was found to significantly limit the immediate effects of NE stimulation (Figure 

4.1D).   

Therefore, we focused on identifying an indirect mechanism for reactivation of 

these cells in co-culture. We explored the impact of adrenergic signaling on cytokine 

secretion and the expression of membrane bound factors by osteoblasts using a dot blot 

comprised of 111 different mouse cytokines.  This panel showed significant alterations in 

MC3T3 cytokine expression in response to adrenergic signaling (Figure 4.2A and 2B).  A 

total of 12 cytokines were differentially expressed in the NE treated group compared with 

vehicle control (p<0.05), with one upregulated cytokine (CCL5) and 11 downregulated 

cytokines. Downregulated cytokines included GAS6, M-CSF, and osteopontin (Figure 

4.2B).   

We next employed TRACER to identify transcriptional regulators of NE signaling 

in MC3T3 cells.  We screened activity of 50 different TFs over 24 hours of stimulation with 

NE.  A total of 26 different factors (52%) were found to have their activity significantly 

altered during the first 24 hours of stimulation with NE.  Of these, YY1, EGR1, MEF2 and 

ATF4 were the most significantly altered.  A network analysis was subsequently employed 

to discover connections between dynamic TF activity during adrenergic stimulation in an 

effort to identify the predominant factors regulating the impact of NE treatments on 

osteoblasts.  This analysis identified the CRE binding protein family as mediating the 

response to NE in MC3T3-E1 cells (Figure 4.2C). We connected the TRACER results to 

the dot blot measurements through searching the ENCODE database for experimental 

binding of CREB1 to the promoter regions of the 12 significantly altered cytokines.  The 

ENCODE project database had experimental evidence of binding of CREB1 to 5 of the 
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12 factors (GAS6, FLT3L, IGFBP6, PTX3 and VCAM1) identified in the dot blot.  Of these 

5 factors, only 2 (GAS6 and FLT3L) had binding at a canonical CREB binding site, which 

was used as the criteria for regulatory binding of the CREB1 factor to the promoter (Figure 

4.2D and 2E).   

We next sought to confirm a connection between GAS6, FLT3L, and reentry into 

the cell cycle in the co-culture model.  We screened the transcription factor reporter library 

against signaling from soluble GAS6 or FLT3L and compared these results to significantly 

altered factors from the reactivation experiment (Figure 4.3A).  GAS6 signaling 

significantly altered activity of reporters in the CRE binding protein family (CREB, ATF1, 

ATF4), along with others, for a total of 12 factors of the total 43 screened.  FLT3L signaling 

significantly altered 8 of 43 factors.  Of these factors, GAS6 and FLT3L had two in 

common (NANOG and SRF) (Figure 4.3B). FLT3L had 0 of a possible 16 factors in 

common with the reactivation experiment, while GAS6 had 25% overlap (4/16) with the 

reactivation experiment.  Importantly, all three factors identified as both significant and 

central to reactivation (ATF1, E2F, and RAR) from the co-culture experiment were 

significantly altered by soluble GAS6 signaling, indicating GAS6 was mediating the 

indirect effects of NE on dormant PCa cells in co-culture (Figure 4.3B).  

In order to confirm the connection between adrenergic signaling and GAS6, 

several cell lines were screened for expression following NE stimulation (Figure 4.3A).  

These cells showed consistent, adrenergic mediated downregulation of GAS6 protein, as 

measured by ELISA (Figure 4.4A). Additionally, qPCR of bone marrow extracted from 

C57BL6/J mice treated with norepinephrine confirmed downregulation of GAS6 by 
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adrenergic signaling in vivo (Figure 4.4B), confirming the connection between adrenergic 

signaling and GAS6 regulation in the native bone marrow environment. 

Further confirmation of these data was sought using immunohistochemistry.   NE 

stimulation reduced the expression of GAS6 by wild-type (GAS6+/+) osteoblasts, but as 

expected had no impact on expression of GAS6 by osteoblasts isolated from GAS6 

deficient mice (GAS6-/- OBs) (Figures 4.5A and 4.5B).   

To directly test whether alterations in GAS6 signaling by osteoblasts in response 

to NE is responsible for the alteration of proliferation of PCa cells in co-culture, 

experiments were performed in which PCa cells were cultured on GAS6+/+ or GAS6-/- 

OBs.  Co-culture of PCa cells with GAS6+/+ OBs reduced the proportion of proliferating 

PCa cells compared to PCa co-cultured with GAS6-/- OBs (Figure 4.5C), which is 

consistent with previous reports and induction of PCa dormant states (29).  Co-culture of 

PCa cells with GAS6+/+ OBs also revealed a 1.9 fold increase in Ki67 positive PCa cells 

when cultured with NE compared to vehicle controls as determined by flow cytometry 

(Figure 4.5D). Critically, when co-cultured with GAS6-/- OBs, there were no statistical 

differences in the number of Ki67 expressing PCa cells suggesting that GAS6 expression 

is a critical parameter regulating PCa proliferation on OBs (Figure 4.5C). These data 

suggest that PCa cell re-activation may be the result of diminished osteoblast-mediated 

GAS6 signaling. 

These experiments were repeated using a second human PCa line, DU145 cells 

(Figure 4.5D). Increased Ki67 expression was observed under conditions where NE was 

added to DU145 and GAS6+/+ OB co-cultures compared to vehicle controls. However, no 

differences were observed between NE and vehicle control conditions, when DU145 cells 
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were co-cultured with GAS6-/- OBs, suggesting that culture with NE induced DU145 cell 

cycle re-activation. Interestingly, Ki67 expression in DU145 cells did not change 

significantly when cultured with GAS6+/+ or GAS6-/- OBs in the presence of vehicle 

controls, as previously reported (29). Thus, the effects of NE on DU145 PCa cell cycling 

may instead be mediated more directly through NE signaling than indirectly via GAS6 

suppression, while PC3 PCa cells appear to be influenced through both direct NE 

application and the presence of dormancy molecule, GAS6.   

Next, PC3 cells expressing the FUCCI vectors were co-cultured with osteoblasts 

to observe the effects of NE on cell-cycle induction. PC3 cells exhibited a 7.2 fold increase 

in the proportion of cells in G2/M phase when cultured on GAS6-/- OBs compared to 

GAS6+/+ OBs suggesting that GAS6 is responsible for the maintenance of PCa cells in a 

dormant state in co-culture (Figure 4.5E). Moreover, co-culture of PC3-FUCCI cells with 

GAS6+/+ OBs in the presence of NE doubled the proportion of G2/M phase PCa cells 

compared to vehicle controls (Figure 4.5E). Co-culture of PC3-FUCCI cells with GAS6-/- 

OBs in the presence of NE did not alter the proportion of cells in the G2/M cell cycle 

phases. These data suggest that NE changes the proportion of cells in an active cell 

cycling phases compared to vehicle controls in a GAS6 competent system.  The 

proportional increase in cycling cells was negated upon deletion of GAS6, suggesting that 

NE may target the GAS6-dormancy inducing axis, resulting in the observed results of 

PCa cell re-activation.  

Finally, we applied the ex vivo model system to explore the impact of NE on 

dormant PCa cells in the bone marrow without the systemic effects of altered NE signaling 

(Figure 4.6).  G0/G1 phase PC3-FUCCI cells were injected into ex vivo bone GAS6+/+ or 
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GAS6-/- explants. After 48-hour incubation with NE in GAS6+/+ femurs, PCa cells isolated 

from the GAS6-/- femur did not have the proportion of cells in G2/M phase significantly 

altered, which differed significantly from the GAS6+/+ cultures.  

Discussion 

Transcription factor analysis of quiescent PCa cells reactivated through adrenergic 

signaling suggested three factors (ATF1, RAR, and E2F) were primarily responsible for 

the change in phenotype.  The E2F family of transcription factors are responsible for cell 

cycle regulate on and DNA synthesis (30).  We observed an increase in activity of this 

reporter during reactivation, which is consistent with reentry into the cell cycle. RAR was 

previously shown to interact with SOX9 and NR2F1 to cause dormancy in a model of 

head and neck squamous cell carcinoma (8).  Further, RAR has been demonstrated to 

be involved in dormancy of hematopoietic stem cells (31), and the Taichman Lab has 

previously demonstrated that PCa DTCs mimic HSC biology in the bone marrow (4).  

ATF1 is a canonical regulator of cAMP signaling, which is the primary means of signal 

activation following adrenergic stimulation.  Together, literature supports these three 

factors as central to quiescence, and, in the case of this study, reactivation of PCa cells.  

The experiments of this study found that downregulation of GAS6 expression by 

norepinephrine results in significant changes in the bone microenvironment that are 

conducive towards reactivation of dormant PCa cells.  The dot blot data specifically 

identified 12 cytokines that were altered by NE stimulation, of which GAS6 was ultimately 

selected through analyses of transcription factors demonstrating significant changes in 

E2F, ATF1, and RAR activity after stimulation with soluble GAS6.  GAS6 has been 

previously shown to induce dormancy through signaling through its receptors Axl and Mer 
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(5).  The fact that GAS6 was selected through an unbiased bioinformatic analysis 

strengthens these results.  The results of these studies agree with previous reports 

demonstrating that GAS6 can activate tumor cell dormancy both in vitro and ex vivo 

(4,5,32,33).  While GAS6 has been established to regulate immune homeostasis (34), its 

role within the complex signaling environment of the healthy HSC niche is currently 

unknown.  Cackowski and coworkers have suggested that GAS6 can act on PCa cells 

through MERTK to induce dormancy (35). The current study provides evidence of down-

regulation of GAS6 expression by NE in osteoblasts, and that the effect on GAS6 is 

necessary for NE to reactivate dormant tumor cells that are in co-culture with OBs.  

Our analysis also suggested Flt3 ligand as a potential mediator of NE signaling.  

FLT3L has been previously shown to promote egress of stem cells from the bone marrow 

(36), and therefore may be related to quiescence in DTCs.  Investigation of the effects of 

FLT3L on dormant tumor cells did not suggest that signaling through FLT3 would result 

in dormancy in tumor cells alone.  It is possible that FLT3 signaling in combination with 

other factors not measured in the dot blot, for example TGFβ, may yield differing results.  

We note that GAS6 has been shown to act in a similar manner, however signaling through 

soluble GAS6 is sufficient for cell cycle arrest in PCa cells (5).  Other altered factors, such 

as upregulated CCL5 or downregulated GM-CSF, may also play a role, however the 

results of this study suggest that these may not be directly tied to adrenergic signaling. 

In summary, the experiments in this chapter identified GAS6 as an indirect 

mediator of adrenergic signaling leading to reactivation of dormant PCa cells.  GAS6 was 

consistently downregulated by adrenergic signaling, which was shown to be necessary 
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for reactivation of dormant PCa cells.  The next steps are to identify a mechanism through 

which GAS6 is downregulated by NE signaling, which is the focus of Chapter 5. 
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Figure 4.1: Co-Culture dampens NE effects on ATF signaling A) Schematic of TRACER 
experiment. B) Hierarchical clustering of time course TF activity data. C) Results from network 
analysis of TF activity data.  Yellow nodes are in the top 10% by eigenvector centrality. D) ATF1 
activity in PC3 cells cultured alone (blue) or in co-culture with MC3T3 cells (OB.NE, green). 
Shading indicates standard error. 
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Figure 4.2: GAS6 and FLT3L expression in OBs is directly targeted by NE. A) Heatmap of 
protein expression values for 111 different cytokines from the dot blot. B)Difference in protein 
expression between NE and vehicle treated MC3T3 cells.  Labeled points are statistically 
significant. C) CREB was identified as a central to network (yellow) mediating NE signaling in 
OBs. D,E) GAS6 and FLT3L were found in the ENCODE database to have experimentally 
verified binding of CREB1 to their promoter regions.. 
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Figure 4.3: GAS6 drives indirect responses of NE in PCa cells A) Heatmaps for dynamic TF 
activity after stimulation with FLT3L (top) or GAS6 (bottom). B) Venn diagram of significantly 
altered TF activity for reactivation (bottom), GAS6 stimulation (left) or FLT3L stimulation 
(right). Bolded factors were central to reactivation of PCa cells in co-culture. 
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Figure 4.4: NE reliably downregulated GAS6 in a variety of PCa and OB cell lines. A) 

ELISA of stimulated cell lines in culture showed significant downregulation of 

secreted GAS6 protein after NE stimulation. B) mRNA isolated from the bone 

marrow NE-treated mice showed significantly downregulated GAS6 expression 

compared with vehicle treated animals 
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Figure 4.5: NE effects cellular proliferation in GAS6 competent co-cultures (A-B) GAS6 
expression in GAS6+/+ OBs cultured under conditions with NE or vehicle control was 
determined by immunocytochemistry and quantified  (N=3; student’s t-test). GAS6-/- OBs were 
cultured under the same conditions, serving as a negative control. (C) PC3 cells and (D) 
DU145 cells were co-cultured with GAS6+/+ and GAS6-/- OBs in the presence of NE or vehicle 
control. Ki67 expression was determined by FACS (N=3; ANOVA). (E) PC3-FUCCI cells were 
co-cultured with GAS6+/+ and GAS6-/- OBs in the presence of NE or vehicle control. Cell cycle 
phase was determined by FUCCI vector expression using flow cytometry (N=3; ANOVA).  
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Figure 4.6: NE effects cellular proliferation in GAS6 competent ex vivo cultures. PC3-FUCCI 

cells were isolated following injection into ex vivo GAS6+/+ or GAS6 -/- femur explants and cell 

cycle was determined using flow cytometry (N=3; Student’s t-test). 
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Chapter 5 

Norepinephrine downregulates GAS6 through β-adrenergic signaling and ATF4 

 

Introduction 

Bone plays an important endocrine role within the body’s general homeostasis. 

Part of this endocrine function is elucidated in the regulation of resorption (hemopoietic-

lineage derived, osteoclasts) and replacement (mesenchymal-lineage derived, 

osteoblasts) of a rich mineralized bony matrix. Much research has previously established 

this regulation can occur via endocrine, paracrine, and mechanical factors; however, in 

the early 2000s a new line of investigation into obesity, leptin signaling, and bone density 

provided insight into a new bone-modulatory method: hypothalamic neurons and 

sympathetic signaling (1,2).  

Innervation of the skeleton is a complex map with both evolutionary function and 

homeostatic feedback. The nervous system is present to collect information from the 

environment and interior compartment organs and coordinates response through both 

efferent pathways and somatic motor synapses. One specialized unit of the nervous 

system is the autonomic nervous system, which functions to ensure homeostasis and 

provide adaptive response to various stressors by interfacing between the external and 

internal sections. The autonomic peripheral nervous system can be further divided into 

sympathetic and parasympathetic branches. The sympathetic branch is mediated by the 

neurotransmitter, Norepinephrine (NE), which is the molecular agonist of α- and β- 
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adrenergic receptors on target cells. The parasympathetic branch is mediated by the 

neurotransmitter, Acetylcholine (ACh), which is the molecular agonist of muscarinic and 

nicotinic receptors on target cells.  

  The sympathetic mediator, NE, is synthesized from amino acid, tyrosine, through 

a number of coordinated steps (3). First, tyrosine is converted to L-DOPA by enzyme 

tyrosine hydroxylase, which is also the rate limiting step in catecholamine synthesis. L-

DOPA is then converted to dopamine by L-aromic amino acid decarboxylase. Dopamine 

is transferred to an intracellular vesicle and converted to the final product of NE by 

dopamine beta-hydroxylase. NE can then be released onto target cells from the 

intracellular synaptic vesicles by fusion of the vesicles to the neuronal membrane. Not 

only is the release of NE tightly regulated through enzymatic steps and fusion of the 

carrier vesicles, but the process following release of NE is also well-regulated. NE is often 

co-released with neuropeptide Y, a potent inhibitor of NE, and released into a synaptic 

space with metabolizing enzymes, monoamine oxidase and catechol-O-

methyltransferase. In addition, pre-synaptic nerve terminals have NE transport proteins 

that reuptake NE from the area of stimulus.  

The primary bone metastatic sites of interest in this thesis are the femur and tibiae. 

The femoral and sciatic nerves are the primary nerve conduits to the lower extremity 

skeletal space, and carry motor fibers, sensory fibers, and autonomic fibers. Most 

sympathetic fibers travel along the main arteries feeding these skeletal bones through 

nutrient foramina (4-6). Though much of the sympathetic nerve distribution map within the 

lower extremity skeleton is unestablished, recent immunofluorescence approaches have 

been used in combination with tyrosine-hydroxylase antibodies to identify sympathetic 
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networks that wrap around blood vessels in the femoral bone marrow with a spiral-like 

morphology (7,8). Interestingly, the highest density of sympathetic and sensory fibers 

were associated with areas that felt the largest quantities of mechanical stress and have 

the highest metabolic rate/bone turnover.  

The targets of sympathetic synapses remains an area of ongoing study. One group 

has investigated mechanical stress related-osteocytes, describing tyrosine hydroxylase-

immunoreactive fibers associated with osteocytes and their surrounding Volkmann’s 

canals (9). Because the field has had difficulty identifying single synaptic targets within 

the bone, one growing consensus suggests that diffusion mechanisms may provide 

activation of multiple target cells away from the immediate nerve terminal. This theory 

suggests that sympathetic nerve activity and released NE can act on multiple bone 

marrow niche cell types and have a more coordinated response either due to broad 

expression of adrenergic receptors or intercellular junction-based communication (10).  

The connection between the nervous system and the multifaceted functions of 

healthy bone are clear, however less is known regarding the specific regulatory events 

that connect sympathetic nervous system signaling to bone endocrine function.  In 

Chapter 5, GAS6 was identified as a secreted factor within osteoblasts (OBs) that 

mediated reactivation of quiescent PCa cells within the bone marrow.  GAS6 has 

numerous functions in the body, and the specific function of interest for this work is its 

connection to PCa dormancy within the bone.  The goal of this chapter is to identify a 

mechanism through which NE signaling leads to downregulation of GAS6 in osteoblasts, 

which was previously shown to mediate escape from dormancy.  We focused on the use 

of pharmacological blockade to identify families of receptors and transcription factors that 
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may be targeted clinically, with the hopes of finding a path towards targeting these 

sympathetic interactions within prostate cancer patients. 

Methods 

Cell Culture 

Human PCa cell lines (PC3) were obtained from American Type Culture Collection 

(Rockville, MD). Primary murine osteoblasts were established from C57BL/6J (WT) and 

GAS6 knockout mice (GKO-C57BL/6J (GAS6-/-)) mice as previously reported. The murine 

osteoblastic cell line  MC3T3-E1 Subclone 4, was obtained from ATCC (CRL-2593). All 

prostate cancer cell lines were cultured with RPMI 1640 (Life Technologies, Carlsbad, 

CA), and murine or human osteoblasts were grown in αMEM or DMEM (Life 

Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, GEMINI 

Bio-Products, Sacramento, CA, 1% penicillin-streptomycin (P/S, Life Technologies) and 

maintained at 37⁰C, 5% CO2, and 100% humidity.  

CREB and receptor inhibition 

MC3T3 OBs were cultured under standard conditions with a general CREB 

inhibitor (Millipore Sigma, CAT#538341), or with the α-adrenergic receptor antagonist 

phentolamine, or with the β-adrenergic receptor antagonist propranolol. 

Immunoprecipitation 

MC3T3 OBs were cultured under standard conditions with 2.5uM NE for 2 Days. 

All manufacture instructions were subsequently followed for ChIP sequencing assay 

(Qiagen, Cat# 334471). Antibodies were used for ATF4 (Cell Signaling, Cat#D4B8) and 

CREB (Cell Signaling, Cat#9197T). Primers used for ATF4 (ThermoFisher, 

Cat#Mm00515325) and CREB1 (ThermoFisher Cat#Mm00501607). 
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In vivo regulation of GAS6 

C57BL6/J mice were treated with either 1 mg/kg NE, 3 mg/kg propranolol, or 

combination for three days.  Femurs and tibias bilaterally isolated at the end point of the 

study. Marrow from these bones were flushed with 1X PBS three times, sequentially until 

the bone was lucent and white, and no marrow color remnants remained. Then stromal 

layer was flushed with RLT+Bmerc into a cell shredder column. RNA was processed as 

described previously. 

Results 

NE signaling to GAS6 occurs through ATF4 binding 

Since TRACER identified the CREB family of factors as mediating the response to 

NE in osteoblasts, we next searched for the specific TFs that mediated this response. 

Use of a general CREB inhibitor (666-15) at increasing doses abrogated  the effects of 

NE (Figure 5.1A). Interestingly, use of CREB inhibitor increased expression of GAS6 

compared to vehicle control conditions, suggesting that these mechanisms were 

interconnected (Figure 5.1B). PCR of members of the CREB family found three factors 

(ATF4, ATF5 and CREB1) as significantly expressed in MC3T3 cells (Figure 5.1C). We 

selected two of these factors, ATF4 and CREB1, to evaluate using chromatin 

immunoprecipitation (CHiP) (11).  These factors were selected based on a literature 

search, which is summarized in Table 5.1. This assay demonstrated that in fact NE 

signaling in osteoblastic cells decreased the binding activity for ATF4 and CREB1, 

however ATF4 more significantly altered compared with CREB1 (Figure 5.1D). 

 Adrenergic signaling is connected to GAS6 through β-adrenegic signaling 



87 

 

We next sought to identify which receptors significantly relayed NE signaling to the 

GAS6 promoter. PCR for adrenergic receptors in MC3T3 cells and bone marrow cells 

isolated from a C57Bl6/J mouse show expression of the α1, α2 and β2 adrenergic 

receptors, with the β2 receptor most strongly expressed and the only receptor whose 

expression was significantly altered by adrenergic stimulation (Figure 5.2A).  

Pharmacological targeting of the β family of adrenergic receptors significantly altered the 

effects of NE on GAS6 mRNA expression  in a dose dependent manner (Figure 5.2B).  

Conversely, inhibition of the α family of receptors had varied results (Figure 5.2C). 

Interestingly, propranolol alone was sufficient to increase GAS6 mRNA expression in 

MC3T3 cells in a dose dependent manner (Figure 5.2D). These results suggest that the 

β receptors, specifically β2, were responsible for transmitting adrenergic signaling in 

response to NE altering GAS6 expression.  These results extended in vivo, in which OBs 

isolated from the bone marrow had NE-mediated downregulation of GAS6 that could be 

abrogated by administering propranolol (5.2E). 

 Finally, we sought to connect CREB activity to β-adrenergic signaling.  This was 

accomplished through measuring changes in CREB activity through luciferase assay 

following adrenergic stimulation in the presence of propranolol (Figure 5.3).  The 

concentration of cAMP following adrenergic signaling was significantly decreased through 

addition of propranolol in a dose dependent manner (Figure 5.3A), to a low of 34% of the 

vehicle control.  CREB activity was also decreased significantly, from a high of a 7-fold 

increase to a low of a 1.7 fold increase relative to untreated cells (Figure 5.3B).  Together, 

these results indicated that treatment with propranolol can successfully block the major 

activator of adrenergic signaling, cAMP, and its downstream effects on transcription. 



88 

 

 Discussion 

These studies suggested that beta adrenergic signaling was primarily responsible for 

connecting NE to GAS6 downregulation. Previously, the Taichman lab has shown 

metastasis, lodging, and dormancy of prostate cancer within the confines of the 

hematopoietic stem cell niche. Normal binding partners to the bone-metastatic prostate 

cancer cells occurred through binding of Annexin-2 receptors on adjacent osteoblasts 

within the hematopoietic stem cell niche. Interestingly, circulating HSCs and their 

progenitors enter and exit from bone marrow into circulation with expression of the 

chemokine CXCL12 regulated by circadian NE secretion by the sympathetic nervous 

system.  Through a series of chemical inhibitory experiments, Mendez-Ferrer (2008) 

identified that sympathetic nerve fibers delivered NE locally to adrenergic β3 receptors on 

stromal cells, leading to downregulation of CXCL12 and subsequent release of 

hematopoietic stem cells into circulation.  These experiments suggested that the β2 

receptor was more important than other adrenergic receptors in osteoblasts.  The 

Mendez-Ferrer study focused exclusively on stromal cells, which included cell types other 

than osteoblasts, while the studies in this chapter focused exclusively on osteoblasts, 

which are the major source of dormancy-inducing GAS6 in the bone marrow.  No β3-

adrenergic receptor mRNA was detected through qPCR, indicating that this receptor is 

not strongly expressed in osteoblasts (not shown).  It is possible other sources of GAS6 

in the bone marrow may exist, however the strategy of targeting signaling through 

propranolol blockade would be valid in these cases as well.   

In the context of activated sympathetic stimulus, secreted NE signaled through the 

osteoblastic adrenergic β2 receptors and increased ATF4 transactivation function by 
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phosphorylation via protein kinase A. ATF4 transactivation function induces RANKL 

expression in osteoblasts, resulting in osteoclastic differentiation and increased bone 

remodeling. Towards this point, adrenergic beta-2 receptor knockout mice have a bone 

phenotype present of increased bone formation and decreased bone remodeling 

compared to the wild type counterparts.  This study found decreased ATF4 binding at the 

GAS6 promoter through CHiP following adrenergic stimulation.  This is somewhat 

counterintuitive, as NE is expected to increase ATF4 phosphorylation, and an increase in 

ATF4 activity was observed in Chapter 4.  Of note, the results of these studies suggested 

that, while ATF4 activity was altered, abundance was similar after stimulation with NE.  

ATF4 is likely bound to the GAS6 promoter at baseline and helps drive expression in OBs 

prior to NE stimulation.  Adrenergic signaling could potentially lead to ATF4 (along with 

other CREB proteins) being recruited to other sites within the DNA that are direct targets 

of adrenergic signaling (for example, IL6 or VEGF), which would decrease the available 

transcription factor molecules to activate GAS6.  The studies of this chapter did not 

examine other DNA binding sites, however future experiments in which protein-DNA 

interactions were directly imaged during NE stimulation may yield an answer to this 

question. 

Pharmacological methods for targeting adrenergic signaling in patients with 

hypertension have garnered attention as potential correlative factors for long term 

success of PCa therapies (12).  Several potential mechanisms for this correlation exist, 

such as limiting invasion and metastasis from the  primary tumor (13) or sensitizing the 

cells to other therapies (14).  Less is known about the effects of propranolol on the fate 

of DTCs. The studies presented here suggested adrenergic signaling affects GAS6 
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expression through β-adrenergic receptors, most likely the β2 receptor. Of note, β-

adrenergic receptor blockade in vitro not only abrogated the effects of NE on GAS6 

expression but were sufficient to increase GAS6 mRNA in cultured osteoblasts.  These 

results suggest that therapeutic manipulation of β-adrenergic may be an effective method 

to increase GAS6 signaling within the bone marrow, and therefore may have benefit to 

control recurrence in high-risk patient.  Clearly more investigation is required to link 

prolonged exposure to beta-blockers in vivo to GAS6 signaling and the potential as a 

therapy in prostate cancer. 

In conclusion, adrenergic signaling downregulates GAS6 expression through 

signaling form the β-adrenergic receptors and activation of ATF4, leading to decreased 

residency at the GAS6 promoter region.  This effect could be abrogated through blockade 

of either CREB phosphorylation of β-adrenergic signaling using the beta-blocker 

propranolol.  Given the correlation between beta-blocker use and improved survival in 

prostate cancer, these studies suggest a potential mechanism for limiting recurrence in 

these patients through increased GAS6 expression and provide preliminary data for 

propranolol as a potential adjuvant to traditional therapies upon chemical recurrence of 

PCa. 
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Table 5.1: CRE binding proteins associated with NE signaling mechanisms 
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Figure 5.1: NE decreases CREB binding protein ATF4 in osteoblasts. A)Dose dependent 
CREB inhibition of NE-stimulated GAS6 downregulation. B) High dose of CREB inhibition 
increases GAS6 mRNA expression. C) PCR panel of CRE binding proteins.  Boxes indicate 
factors expressed above 1% of GAPDH level. D) CHiP showed decreased binding of ATF4 
and CREB1 to the GAS6 promoter after GAS6 stimulation 
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Figure 5.2: Signaling of NE occurs through beta adrenergic receptors in osteoblasts A)The β2 
adrenergic receptor was most strongly associated with NE stimulation B) Dose dependent 
inhibition of GAS6 downregulation by propranolol. C) Increasing doses of phentolamine 
caused mixed changes in NE-mediated downregulation of GAS6. D) Increasing doses of 
propranolol increased GAS6 mRNA expression in MC3T3 cells. E) The effect of propranolol 
on GAS6 expression extended to OBs isolated from the marrow space of a Balb/c mouse. 
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Figure 5.3:  Propranolol decreases intracellular cAMP concentration. A)  Propranolol 

decreased relative changes in cAMP concentration after NE stimulation in a dose 

dependent manner. B) Propranolol blocked the effects of NE on CREB activation by 

luciferase assay. * p<0.05, ****p<0.001. 
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Chapter 6 

Future Work and Conclusions 

Future Work 

This dissertation established a link between adrenergic signaling, PCa reactivation 

and GAS6 was established for DTCs in the bone.  One of the most intriguing questions 

raised by these experiments is the role of GAS6 in normal bone homeostasis, and how 

this signaling pathway may be responsible for aberrant signaling other diseases that 

affect the bone marrow.  In order to begin a preliminary investigation into this topic, some 

brief characterization of the long bones of GAS6-/- mice. 

Hematoxylin and eosin staining of femur sections from GAS6-/- mice showed 

increased adiposity compared to age-matched wild-type (WT) mice (Figure 2A).  

Immunohistochemistry confirmed increased localization of adipose markers (Perilipin-1) 

in the femur sections of GAS6-/- mice (Figure 1B).  Osmium staining of these bones further 

demonstrated increased adiposity to be observed and quantified through μCT scan 

(Figure 6.1A).  The percent of bone volume attributed to adipose significantly increased 

in the samples isolated from the GAS6-/- animals compared to WT, from 4% to 22% in the 

proximal region and from 1% to 9% in the growth plate region of the tibia (Figure 6.1B).  

Further studies using μCT bone scans demonstrated decreased trabeculation of 

the long bones in GAS6-\- mice (Figure 6.2A), and decrease in the bone volume/total 

volume ration (Figure 2B), potentially indicating an increase in osteoclastic activity in 
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these bones.  TRAP staining of sections of WT and GAS6-\- mice femurs (Figure 6.2C, 

6.2D) indicated an increase in osteoclast number at these sites in the GAS6 deficient 

bone.  The number of osteoclasts per field nearly doubled (from 6 in the WT to 11 in the 

GAS6-\- mice, (Figure 6.2C). 

Together, these experiments suggest a second mechanism where by GAS6 levels 

may have an indirect impact on DTC fate.  This conclusion is derived from the 

observations of altered bone homeostasis, encompassing the increased adiposity in the 

GAS6-\- bones along with increased osteoclast number.  Increased osteoclast activity has 

long been associated with bone metastasis (1). The relationship between bone marrow 

adiposity and PCa dormancy is less well understood, however some recent works 

suggests these cells promote a pro-metastasis microenvironment (2). Increased bone 

adiposity is a hallmark of several metabolic diseases, including diabetes (3,4) and 

osteoporosis (5), both of which are also associated with decreased bone strength and 

volume.  Interestingly, diabetic patients have been found to have decreased serum GAS6 

(6), suggesting a potential link between these phenotypes.  Treatments for diabetes such 

as metformin have been found to improve cancer outcomes in patients with prostate 

cancer (7,8), and further evidence exists relating untreated diabetes to increased mortality 

(9). Clearly further study into the mechanism is needed, but one potential link could be 

related to changes in GAS6 within the bone leading to decrease proliferative potential of 

DTCs and relatively fewer metastases in these patients.  These results represent a 

promising future direction for this project that would yield important insights into the 

connections between bone homeostasis and quiescent stability in prostate cancer 

disseminated tumor cells.  



99 

 

Conclusions 

The work in this dissertation focused on the connection between sympathetic 

signaling and reactivation of PCa DTCs in the bone marrow.  Specifically, this work 

focused on the action of norepinephrine, which had been previously shown to mobilize 

hematopoietic stem cells in a similar microenvironment (10).  The first aim of these studies 

was to establish if adrenergic signaling could in fact stimulate cell cycle re-entry of 

quiescent PCa cells.  Two in vitro models, serum starvation and OB coculture, both 

supported the hypothesis that adrenergic signaling promoted proliferation in quiescent 

PCa cells.  These results were measured through traditional proliferation assays (e.g. 

Ki67 stain) along with cell cycle reporters (FUCCI vectors) and western blots for cell cycle 

mediators, all of which supported the conclusion that NE stimulation can cause cell cycle 

re-entry. Additionally, we examined two different “native” bone marrow environments, one 

consisting of an ex vivo culture of a murine femur and a second using an intratibial 

injection in a living mouse.  Both of these models also supported the hypothesis, leading 

to the conclusion that adrenergic signaling can lead to cell cycle re-entry. 

 The focus of the next aim was to identify indirect factors that influenced cell cycle 

re-entry.  The previous experiments had demonstrated direct effects of adrenergic 

signaling on cell cycle mediators p21, p27 and ERK.  Additionally, qPCR had suggested 

adrenergic signaling affected dormancy-involved cytokines in OBs, however a  thorough 

characterization was lacking.  Transcription factor analysis identified three factors (ATF1, 

E2F, and RAR) involved in reactivation; all of these factors had been previously implicated 

in NE signaling and cell cycle arrest.  A subsequent dot blot and bioinformatic analysis 

identified GAS6 as a likely mediator of the indirect action of NE on osteoblasts.  GAS6 
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was found to alter all three of the essential transcription factors and also be 

downregulated consistently across several models of OB and bone marrow 

environments.  Testing the effects of NE on the cell cycle state of PCa cells cultured with 

either OBs lacking GAS6 expression or in a GAS6-/- ex vivo model found no effects of 

adrenergic signaling on the cell cycle.  Thus, the conclusion was made that GAS6 

mediated the indirect of effects of NE on the cell cycle of PCa cells in marrow. 

 Finally, a mechanism through which NE regulated GAS6 was sought, as this would 

provide a potential clinical route to targeting these interactions (Figure 6.3). ATF4 and 

CREB1 were both found to bind to the GAS6 promoter.  NE stimulation significantly 

decreased their residency at this site, with ATF4 more strongly downregulated compared 

with CREB1.  This led to the conclusion that ATF4 was the primary transcriptional 

mediator of the NE-GAS6 pathway.  Testing of pharmacological blockades of the 

adrenergic receptors found that propranolol, a β-adrenergic receptor antagonist, could 

successful block the downregulation of GAS6 by NE in a dose dependent manner.  These 

results agree with some clinical observations suggesting propranolol may be an effective 

drug to treat some cancer patients.   These studies potentially suggest a patient cohort 

that may benefit from targeted therapy that aims to limit the downregulation of GAS6 by 

adrenergic signaling, specifically PCa patients with chemical recurrence but no 

measurable metastatic disease. 
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Figure 6.1: GAS6 knockout mice exhibit abnormal bone phenotype A: Representative 
histology, immunostaining and osmium-staining μCT for WT and KO bones shows increased 
adiposity B: Quantification of osmium staining shows statistically significant increases in 

adiposity after GAS6 knockout. GKO = GAS6
-\-

 mouse. WT = wild type mouse.  
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Figure 6.2: GAS6 knockout mice exhibit low bone volume and increased bone turnover A: 

μCT cross section of WT and GAS6KO femurs B: Bone volume/total volume (BV/TV) of 

femurs and tibias of WT and KO animals C: Osteoclasts per image from TRAP staining of 

WT and KO animals D: Representative TRAP staining of bone sections for WT and KO 

animals 
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Figure 6.3 Model of the relationship between adrenergic signaling and PCa cell-cycle re-

entry.  NE can cause reactivation of dormant PCa cells through downregulation of GAS6, 

which proceeds through β-adrenergic and ATF4 signaling. 
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