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curves starting at high and low density, showing inverse bistability. D. Theoretical
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(red). Here both populations die. F. Experimental OD curves of a 11% starting

resistant fraction at starting OD 0.1 (blue) and OD 0.6 (red). The high density
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4.5 Removing Inverse Bistability Theoretically and Experimentally with
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ABSTRACT

Antibiotic resistance is a critical obstacle that threatens our ability to successfully

treat bacterial infections. While a great deal is known about the molecular mecha-

nisms that underlie resistance, much less is known about how these localized molecular

events contribute to dynamics and evolution at the scale of the microbial community.

In this work, I combine quantitative laboratory experiments on bacterial communi-

ties with mathematical modeling to investigate the effects of antibiotic exposure on

populations of E. faecalis, an opportunistic human pathogen, across multiple length

scales. In spatially-extended, surface associated communities (biofilms), I find that

subinhibitory concentrations of lysis-inducing antibiotics can promote biofilm forma-

tion, a counterintuitive phenomenon driven by an interplay between inhibitory effects

of antibiotics and drug-induced cell lysis, which enhances biofilm formation through

the release of extracellular DNA (eDNA). As drug concentration is increased to in-

hibitory levels, biofilms are characterized by micron-scale spatial organization, with

drug-sensitive ancestral cells surrounded by protective sub-populations of enzyme-

producing resistant cells. This cooperative resistance where genetically resistant cells

promote survival of neighboring drug-sensitive cells leads to rich dynamical behav-

ior on longer length scales. Specifically, in planktonic populations of sensitive and

resistant cells, we observe bistability between population survival and extinction,

quasi-stable co-existence at otherwise inhibitory drug concentrations, and damped

oscillations due to ecological feedback between the population and the environment.

Furthermore, I show that temporally varying dosing regimens can be used to min-

imize population size without requiring more total drug. My results highlight the

xvii



important roles of intercellular cooperation, spatial heterogeneity, and environmental

dynamics in shaping the growth and evolution of microbial communities exposed to

antibiotics.
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CHAPTER I

Introduction

With the rise of antibiotic resistant bacteria and the need to understand bacterial

behavior, the question of collective cell behavior has risen in the scientific conscious-

ness [1, 2, 3]. It is now better understood not only how a susceptible cell interacts

with an antibiotic environment [4], but further how one cell can adapt to an antibi-

otic environment with different molecular mechanisms, such as a enzyme to degrade

drug or a mutated drug binding site [5, 6, 7]. This molecular work is critical to our

understanding of antibiotic resistance, but has yet to address community level resis-

tance. Moving beyond a single cell to a community, there are questions of how one cell

with one type of resistance mechanism interacts when in a larger population. What

role does the population composition, drug concentration, or growth conditions have

on the survival of a bacterial community? How can we best study these factors to

further our understanding of infection population dynamics and hypothetical treat-

ment outcomes? When thinking of collective behavior and what tools we can use to

study them, examples and approaches spanning different disciplines help to guide our

understanding of population level dynamics, regardless of if the population is living

animals, cells, or atoms. Mathematical tools first developed for use with statistical

physics, to study phenomenon like ferromagnetisim, can have parallels to describing

the interactions seen in cell populations. The emergent, often counter intuitive prop-

1



erties present in these rich, complex systems lend themselves well to further study

with bacterial communities.

From these different mechanisms, behaviors like emergent cooperation can arise in a

population [8]. Cooperation is a not a new phenomenon to be observed in cellular

communities [9, 10], where one subset of the population does some sort of behavior

or produces a public good that will often benefit the entire population, though fur-

ther understanding beyond survival of the population remains to be studied. Some

examples of cooperation could be a subset of resistant cells in a mixed resistant and

sensitive population that break down an antibiotic, which would benefit the whole

population, or cells that commit altruistic suicide in a biofilm, releasing critical com-

ponents the remaining population can use for growth. Previous research has shown

communities can cooperate in both liquid, planktonic bacterial cultures [11, 12] and

bacterial biofilm communities [13], though in depth studies into the community spa-

tial and temporal dynamics and how perturbations to these communities effect the

cooperative outcomes remain open questions.

With these statistical physics approaches, possible behaviors like cooperation, and

open questions in mind, my research has focused on population level interactions and

dynamics of bacteria across multiple length scales, focusing on spatial and tempo-

ral dynamics in bacterial communities in different growth conditions. The molecular

mechanisms present (ex. Figure 1.1) are on a much smaller length scale than the

population behavior, and I aim to study how the presence of a specific mechanism

can drastically change the population outcome.

All experimental work in this dissertation was completed using the bacteria Ente-

rococcus faecalis, a gram-positive bacteria. E. faecalis has been implicated in many
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A. B. C. 

Figure 1.1: Cartoon representation of different resistance mechanisms. A. Enzyme de-
activates the antibiotic. B. Efflux pumps in the cell walls pump antibiotic out of the
cells. C. Antibiotic binding sites within the cells are mutated, decreasing drug binding.

different nosocomial infections such as bacteremia, native and prosthetic valve endo-

carditis, and wound infections [14]. Part of our gut microbiome [15], the species can

become pathogenic and has been seen to develop antibiotic resistance [4, 5, 14, 16].

Understanding the behavior of these complex bacterial communities is the first step

to understanding the different infections.

Wanting to study E. faecalis beyond the molecular mechanism level, planktonic cul-

tures and biofilms were studied concurrently with mathematical models. Planktonic

cultures are well stirred liquid cultures, while biofilms are dense, surface associated

communities that play an important role in infectious diseases [17, 18, 19]. Biofilms

show long range community behavior, such as electrical signaling [20, 21, 22], pheno-

typic phase variation [23], as well as multiple types of cooperative behavior, giving rise

to collective resistance to antimicrobial therapies[24, 25, 26, 27]. Biofilms introduce a

spatial component [28] into the population absent in planktonic cultures, leading to

possible different behaviors between the two types of communities. In both, we ex-

pect the population composition to matter to overall survival, though different effects,

density effects for planktonic cultures and spatial effects for biofilms, will contribute

to the population dynamics and behavior. The figure below shows a confocal image

of E. faecalis, as well as an example of a planktonic culture and a confocal fluorescent
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biofilm image.

A. B. C.

Figure 1.2: E.faecalis and different types of population experiments. A. Confocal Mi-
croscopy image of E. faecalis cells, some fluorescing GFP. B. Planktonic, well stirred
E. faecalis culture. C. Confocal Microscopy image of an E. faecalis biofilm, where the
population is labeled 50:50 with an RFP and BFP.

In what follows, we will study the cooperative, population level behavior seen in

E. faecalis as well as the different molecular mechanisms responsible for these be-

haviors. Specifically, in chapter 2, we examine sensitive E. faecalis biofilms at low,

sub-inhibitory concentrations of antibiotic, seeing a peak in biofilm mass driven by

a specific class of antibiotic responsible for increasing the extracellular DNA present.

Extending these studies to mixed populations of resistant and sensitive biofilms at

super-inhibitory drug concentrations in chapter 3, we find the population to be co-

operative and study the single cell level spatial organization that arises. Using the

same mixed populations but moving to planktonic, well stirred cultures, chapter 4

studies the different cooperative, bistable outcomes arising from feedback between

two distinct density effects and how the starting population composition and drug

concentration can drastically alter the temporal dynamics of the population. Chapter

5 is methods based, focusing on the development of a fluorescent reporter library for

E. faecalis that was a necessity for studying the spatial organization through confocal

studies and population composition with FACS experiments.
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CHAPTER II

Interplay Between Antibiotic Efficacy and

Drug-Induced Lysis Underlies Enhanced Biofilm

Formation at Subinhibitory Drug Concentrations

This chapter was amended from: Wen Yu, Kelsey M. Hallinen, and Kevin B. Wood.
‘Interplay between antibiotic efficacy and drug-induced lysis underlies enhanced biofilm
formation at subinhibitory drug concentrations.’ Antimicrobial Agents and Chemother-
apy, 62(1),Oct 2017

2.1 Introduction

Biofilms- surface associated, spatially fixed bacterial communities- are complex, med-

ically relevant, and prone to collective behavior [1]. Biofilms of a single Wild-

Type (WT) strain can provide interesting insights and understanding the molecu-

lar mechanisms still leaves open questions to the collective biofilm behaviors. The

biofilm response to antibiotics has been a topic of particular interest, with biofilms

across species showing dramatically increased resistance to antibiotics relative to

planktonic cells. On the other hand, a number of studies have shown–somewhat

counterintuitively–that exposure to sub-lethal doses of antibiotics may enhance biofilm

formation in a wide range of species [2, 3, 4]. While antibiotic-mediated biofilm

induction has been associated with modulated expression of biofilm-related genes,
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particularly those affiliated with bacterial and cell surface adhesion, cell motility, or

metabolic stress, the mechanisms vary across species and drug classes and remain a

focus of ongoing research efforts [3, 4].

In this work, we investigate the effects of sublethal antibiotic concentrations on

biofilm formation in E. faecalis. While our understanding of the molecular basis

of both biofilm development and drug resistance in E. faecalis continues to rapidly

mature [5, 6], surprisingly little attention has been paid to the impact of subinhibitory

antibiotic treatments on E. faecalis communities. However, a recent series of intrigu-

ing studies has shown that E. faecalis biofilm formation (without antibiotic) hinges

on an interplay between fratricide-associated cell lysis and the release of extracellu-

lar DNA (eDNA) [7, 8, 9, 10, 11]. More generally, eDNA is widely recognized as a

critical component of biofilm structure in many species [12, 13, 14]. Additionally, a

recent study in S. aureus showed that β-lactams administered at subinhibitory con-

centrations promoted biofilm formation and induced eDNA release in an autolysin-

dependent manner [15]. Taken together, these results suggest that, for some drugs,

biofilm induction hinges on a balance between the inhibitory effects of antibiotics–

which reduce biofilm formation at sufficiently high concentrations–and the potential of

antibiotic-induced cell lysis to promote biofilm formation, presumably through release

of eDNA. Here we investigate this trade-off in E. faecalis biofilms exposed to multiple

classes of antibiotics. We find that subinhibitory concentrations of cell wall synthesis

inhibitors, but not other classes of drug, promote biofilm formation associated with

increased cell lysis and increased eDNA and eRNA. Using a simple mathematical

model, we quantify the trade-offs between drug efficacy and “beneficial” cell lysis

and use the model to predict the effect of environmental perturbations, including

the addition of DNase or chemical inhibitors of lysis, on the location and height of

optimal biofilm production. Our results suggest that inhibitors of cell wall synthesis
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promote biofilm formation via increased cell lysis and offer a quantitative, predictive

framework for understanding the trade-offs between drug toxicity and lysis-induced

biofilm induction.

2.2 Results

2.2.1 Sub-MICs of Cell Wall Synthesis Inhibitors lead to a peak in Biofilm

Formation

To investigate antibiotic induced biofilm formation, we exposed cultures of E. fae-

calis V583, a fully sequenced clinical isolate, to ampicillin during the first 24 hours

of biofilm development. Using a bulk crystal violet staining assay (Methods), we

observed a statistically significant enhancement of biofilm formation after 24 hours

in the presence of low concentrations of ampicillin (Figure 2.1A). Ampicillin at these

concentrations has almost no effect on growth of planktonic cultures, leading only to

a slight decrease in the steady state cell density (Figure S1A). Similar enhancement

of biofilm formation was observed for cells grown in different types of media (BHI,

TSB) as well as for strain OG1RF, a common laboratory strain (Figure 2.1B), with

the magnitude of the enhancement ranging from ≈ 10− 30%.

To determine whether the biofilm enhancement was specific to ampicillin, we per-

formed similar experiments for antibiotics from multiple drug classes. Interestingly,

we observed a similar increase of biofilm mass for other drugs inhibiting cell wall

synthesis, including ceftriaxone, oxacillin, and fosfomycin (Figure 2.1C-E), whose

mechanism of action is tightly linked to cell lysis. By contrast, drugs targeting pro-

tein synthesis, DNA synthesis, RNA synthesis, and folic acid synthesis did not appear

to promote biofilm formation over the range of subinhibitory concentrations tested

(Figure 2.2).
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Figure 2.1: Inhibitors of cell wall synthesis enhance biofilm formation at low concen-
trations. A. Biofilm mass (normalized to 1 in the absence of drug) as a function
of ampicillin concentration for E. faecalis strain V583 in TSB (blue) and BHI (red).
B. Similar to panel A, with E. faecalis strain OG1RF in TSB (light blue) and BHI
(black). Similar curves are also shown for V583 in BHI exposed to three additional
cell wall synthesis inhibitors: ceftriaxone (C), oxacillin (D), and fosftomycin (E). In
all panels, biofilm mass is measured by crystal violet assay (see Methods). Error bars
are ± standard error of the mean from 6-12 replicates.
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Figure 2.2: Antibiotics that do not target the cell wall do not enhance biofilm forma-
tion at low concentrations. Biofilm mass (normalized to 1 in the absence of drug)
as a function of antibiotic for E. faecalis strain V583 in BHI exposed to protein syn-
thesis inhibitors (erythromycin, spectinomcyin, linezolid, doxycycline), DNA synthesis
inhibitors (ciprofloxacin, norfloxacin), RNA synthesis inhibitor (rifampicin), and folic
acid synthesis inhibitors (trimethoprim). In all panels, biofilm mass is measured by
crystal violet assay (see Methods). Error bars are ± standard error of the mean from
6-12 replicates.

2.2.2 Biofilm enhancement associated with increased cell lysis and extra-

cellular DNA

In ampicillin, peak biofilm formation occurs for concentrations of approximately

0.1 µg/mL, which has little effect on growth of planktonic cell cultures (Figure S1).

To determine the effect of ampicillin on planktonic cultures over a wider drug range,

we measured optical density time series of V583 cultures exposed to ampicillin con-

centrations up to 1 µg/mL (Figure 2.3A). Ampicillin has little effect (< 15%) on the

steady state density of cells up to concentrations of approximately 0.2 µg/mL, and the

dose response curve is well-approximated by a Hill-like function (commonly used in

pharmacology [16]) with a half-maximal inhibitory concentration of K50 = 0.38±0.01

µg/mL. Therefore, increased biofilm formation occurs at concentrations considerably

smaller than the half-maximal inhibitory concentration measured for planktonic cul-

tures.
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While these drug concentrations do not appreciably impact planktonic cell growth,

it’s possible that they still produce a measurable increase in cell lysis. To investigate

this issue, we measured cell lysis in 24 hour biofilms (Figure 2.3B) and planktonic

cultures (Figure S1) using an ATP-based luminescence assay [17]. Indeed, we ob-

served increased cell lysis even for low doses of ampicillin (≤ 0.2µg/mL), with lysis

increasing by nearly 5 fold in biofilms and several thousand fold in planktonic cultures

for the highest doses.

Because eDNA has been implicated in E. faecalis biofilm formation, we next asked

whether subinhibitory doses of ampicillin lead to increased quantities of extracellular

nucleic acids in biofilms. To answer this question, we grew 24-hour biofilms in 5 mL

cultures at various concentrations of ampicillin, harvested the biofilms and removed

cells by centrifugation, and then extracted nucleic acid from remaining supernatant.

We then quantified DNA (RNA) following treatment with RNase (DNase) using quan-

titative imaging of agarose gel electrophoresis (Figure 3C). Both eDNA and eRNA

increase with ampicillin treatment, with eDNA (but not eRNA) increasing even at

the lowest dose (ampicillin at 0.1 µg/mL).

2.2.3 Non-antibiotic induction of cell lysis promotes biofilm formation

Because cell lysis is observed at subinhibitory doses of ampicillin, and because lysis

has been previously implicated in E. faecalis biofilm formation [7, 8, 9, 10, 11], we next

asked whether non-antibiotic inducers of cell lysis might also increase biofilm mass

at small concentrations. To test this hypothesis, we grew biofilms in the presence

of Triton X-100, a surfactant and known inducer of cell lysis [18]. Interestingly, we

observed enhancement of biofilm formation similar in magnitude (≈ 20%) to that

observed for cell wall inhibitors over Triton X-100 concentrations that yield similar
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(approximately 1.5-2 fold) increase of cell lysis (Figure 2.3D).

2.2.4 Antibiotic-induced biofilm formation corresponds to an increase in

the density of living cells and mean cell area

While our results indicate that biofilm mass is increased at low doses of ampicillin, it

is not clear whether this enhancement is due to an increase in the number of living

cells or merely an increase in bulk biofilm mass, which may include both viable and

non-living components. To answer this question, we grew 16 replicate biofilms at 3

different antibiotic concentrations, treated them with live-dead cell stains, and quan-

tified the number of live and dead cells in two-dimensional sections (i.e. the spatial

cell density) at single-cell resolution using laser-scanning confocal microscopy (Meth-

ods). We observed an increase of approximately 25% in the number of living cells

per slice, an increase similar in magnitude to the effects observed in bulk experiments

(Figure 4). Interestingly, we also observed a slight increase in the mean size of a living

cell as drug concentration increased. These results indicate that sections of biofilms

formed under subinhibitory concentrations contain more living cells and more total

living cell area–not merely an increase in non-living mass–than those formed in the

absence of drug.

2.2.5 Mathematical model describes biofilm induction as a balance be-

tween beneficial cell lysis and costly drug efficacy

To quantify the trade-offs between antibiotic efficacy and “beneficial” cell lysis, we

developed a simple mathematical model describing the mass of living cells (N) and

the mass of lysed cells and dead cell material (D), including eDNA, in a biofilm.

Specifically, we have
∂N

∂t
= g

(
1− N

K

)
N − rN + cLD

∂D

∂t
= rN − γD

(2.1)
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Figure 2.3: Enhanced biofilm formation occurs at sub-inhibitory concentrations and is
associated with increased cell lysis and increased extracellular nucleic acid.
A. Relative cell density (OD) approximately 10 hours after addition of ampicillin. Solid
curve, fit to (1− (A/K50)h)−1, with A the ampicillin concentration, K50 = 0.38±0.01
µg/mL the half maximal inhibitory concentration of the drug, and h = 3 a coefficient
that describes the steepness of the dose response curve. Inset: time series of optical
density following drug exposure at time t = 0 for ampicillin concentrations of 0 (black),
0.2 µg/mL (blue), 0.4 µg/mL (red), 0.6 µg/mL (green), 0.8 µg/mL (magenta), and 1.0
µg/mL (cyan). B. Cell lysis (relative to untreated cells) as a function of ampicillin as
measured by ATP luminescence assay (see Methods). Error bars are ± standard error
of the mean from eight replicates. Dashed line, fit to 1 + a2/r00, with a the ampicillin
concentration (measured in units of the drug’s half maximal inhibitory concentration
(K50)) and r00 = 0.010 ± 0.001. C. Abundance of extracellular DNA (eDNA, blue)
or RNA (eRNA, yellow) as a function of ampicillin concentration. Abundance is
normalized relative to the eDNA (or eRNA) measured in the absence of drug. See also
Figure S1. D. Triton X-100, a known inducer of cell lysis, enhances biofilm formation
at low concentrations. Biofilm mass is measured by crystal violet assay (see Methods),
and error bars are ± standard error of the mean from eight replicates. Inset: cell lysis
(relative to untreated cells) as a function of Triton X-100 concentration. Red points
correspond to peak in biofilm formation.

15



Figure 2.4: Enhanced biofilm formation corresponds to an increase in the density of
living cells. Top panels: example sections from laser scanning confocal images of
biofilms exposed to ampicillin at different concentrations (0, left panel; 0.1 µg/mL,
middle panel; 0.2 µg/mL, right panel) and post-treated with live (green) and dead
(red) stains. Lower left panel: Relative count of live cells and dead cells (inset) as
a function of ampicillin concentration. Counts are normalized relative to the average
number of live cells per 160 µm x 160 µm slice in the absence of drug, which is set to
1; note that each slice contains on the order of 103 − 104 live cells. Lower right panel:
Mean area of living cells. Error bars are ± standard error of the mean taken over
a total of 48 two dimensional slices per condition (three z-slices–taken at identical
heights–for each biofilm and 16 independent biofilms per condition). The analysis
involves on the order of 105 total live cells per condition.
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In the first equation, the first term describes logistic growth (with per capita growth g

and carrying capacity K > 0), the second describes cell death (lysis) with rate r ≥ 0,

and the last term describes the increase in biofilm mass due to surface attachment /

adhesion of living cells in the planktonic phase (L), a process which is coupled to the

dead cell mass D and controlled by a parameter c > 0. Models without this coupling

do not exhibit a drug-induced maximum in biofilm mass (see SI). While the molec-

ular mechanism of coupling is not specified in the model, this term could describe

eDNA-mediated attachment and adhesion of planktonic cells, which is here assumed

to occur at a rate proportional to both the living cells in solution (L) and the lysed

cell material in the biofilm (D). In the second equation, the first term accounts for

cell lysis and the second term describes a decay of lysed cell material (e.g. eDNA) due

to, for example, detachment from the biofilm. The model implicitly assumes that the

effect of antibiotic on cells in the planktonic phase occurs on a fast timescale, allowing

L to reach a steady state on the timescale of biofilm formation. This assumption is

consistent with experimental measurements, where planktonic populations reach a

steady state size after approximately 10 hours (Figure 3), while biofilms are formed

over a longer 24 hour timescale. The model includes two parameters, r = r(a) and

L = L(a), that depend on drug concentration, a.

In the steady state, the living biofilm mass N is given by

N

K
≡ n∗ = 1 + r0(a) (L0(a)− 1) , (2.2)

where r0(a) = r(a)/g and L0(a) = cL(a)/γ are (rescaled) functions describing the rate

of cell lysis and the number of living cells in planktonic solution as a function of drug,

a. Equation 2.2 illustrates a simple balance between the biofilm-inducing and biofilm-

inhibiting effects antibiotics. To understand this tradeoff, we derived a phase diagram
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(Figure 5B) showing regions of enhanced biofilm formation–specifically, regions of the

(r(a), L(a)) plane where n∗ is greater in the presence of drug than in its absence (see

SI for details). Enhanced biofilm formation is favored in regions of high lysis r(a)

and large planktonic populations L(a). However, lysis r(a) is expected to increase

with drug, while the number of available cells in planktonic phase L(a) is expected

to decrease with a and eventually tend towards zero. The trade-off between these

two effects determines the path taken by the system through the (r(a), L(a)) plane as

drug is added. If increasing drug leads to increased lysis without a dramatic impact

on the planktonic cells, the system exhibits enhanced biofilm formation (Figure 5B,

path A). On the other hand, if increasing drug leads to a large decrease in planktonic

cells and a relatively small increase in lysis, biofilm formation will not be enhanced

(Figure 5B, path B).

In principle, the functional forms for r0(a) and L0(a) could be derived from micro-

scopic models that describe the molecular level dynamics of antibiotic-induced cell

lysis and cell death. Fortunately, however, the functions r0(a) and L0(a) can also each

be estimated–up to a scaling constant–by independent experimental measurements,

even in the absence of a detailed molecular model. Specifically, using the data in

Figure 2.3A-B, we take

L0(a) =
ε

1 + ah

r0(a) = r01
(
r00 + a2

) (2.3)

where h = 3 describes the steepness of the dose response curve (and is analogous

to Hill coefficients used in biochemistry to describe cooperative binding between lig-

ands), a is measured in units of the drug’s half-maximal inhibitory concentration,

estimated to be K50 = 0.38 ± 0.01 µg/mL, and r00 = 0.010 ± 0.001. It should be

noted that we assume a quadratic dependence of lysis on a to match the experimental

measurements; this should be viewed as a simple parameterization of the experimen-

tal lysis measurements and does not imply any particular mechanism. The quadratic
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dependence of lysis on a could depend on complex pharmacological and pharmaco-

dynamics of the antibiotics, and we do not attempt to model those here.

The remaining two parameters, ε and r01, are scaling parameters that can be estimated

from biofilm induction curves (e.g. Figure 1). Because the measured value of r00 <<

1, we can derive approximate solutions for the location (amax) and height (ph) of the

biofilm peak using simple perturbation theory (SI). Specifically, the peak location is

given by

amax ≈
(

2(ε− 1)

4 + ε

)1/3

(2.4)

and the peak height is given by

ph ≈ 1 +
3

5

(
2

5

)2/3

r01(ε− 1)5/3. (2.5)

These expressions indicate that an optimum in biofilm production occurs at a nonzero

concentration a when ε > 1, and the effect of further increasing ε is to shift the peak to

higher a and increase its height. We refer to ε as an effective coupling parameter, and

given the functional forms in Equation 2.3, the value of ε alone determines whether

there is a peak in biofilm formation at nonzero drug concentrations. In terms of the

original model parameters, ε is given by ε = cL(0)
γ

, where L(0) is the size of the plank-

tonic cell population at zero drug concentration, and r01 is given by r01 ≡ r(0)
gr00

, where

r(0) is the native level of lysis in the absence of drug. Antibiotic-mediated biofilm

formation occurs for ε > 1 and is therefore favored by large rates of lysis-mediated

adhesion (c), high concentrations of planktonic cells (L(0)), and slow degradation /

decay of eDNA (γ).
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2.2.6 Model predicts effects of DNase treatment, a second antibiotic, and

lysis inhibitors

While it is straightforward to estimate ε and r01 from biofilm experiments–for exam-

ple, ε = 1.09± 0.02 and r01 = 18± 6 based on the bulk experiments in Figure 2.1A–it

is more instructive to consider the qualitative predictions of the model as parame-

ters are varied. Our model predicts that perturbations that decrease ε will lower the

peak height (Figure 2.5B, left panel; Figure S2, bottom left). On the other hand,

perturbations that decrease cell lysis would shift r0(a)→ r0(a)−β, with β a positive

constant (or equivalently, decreasing lysis would shift r00 → r00 − β/r01). While the

latter effects would not be evident at the level of the approximate equations (Equa-

tions 2.4, 2.5), we can evaluate the predicted effects numerically (Figure 2.5C, left

panel, and Figure S2, bottom right panel) or by looking at higher-order terms in the

approximation (SI). Decreasing lysis is predicted to shift the peak location to higher

drug concentrations and, somewhat counterintuitively, leads to an increase in biofilm

induction (that is, an increase in the height of the peak relative to the drug-free case).

In words, a higher concentration of antibiotic is needed to achieve sufficient cell lysis

to induce increased biofilm production.

To test these predictions experimentally, we first repeated both bulk and microscopy

experiments in the presence of DNase I. Because eDNA has been implicated as the

molecular conduit linking cell lysis to biofilm formation, we expect DNase treatment

to decrease ε by effectively increasing the decay rate γ. Indeed, biofilms treated with

DNase exhibit lower peaks (Figure 2.5D). The model also predicts a slight shift in

the location of the peak, but the resolution of the experimental data is insufficient

to evaluate that prediction quantitatively. A second way of decreasing ε would be to

decrease the number of living cells in planktonic phase (α). One possibility is to treat

the cells with a second (non-lysis-inducing) antibiotic, which is expected to lower
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Figure 2.5: Mathematical model predicts effects of DNase, non lysis-inducing drugs,
and cell lysis inhibitors. A. A simple math model couples cell lysis to biofilm
formation, describes qualitative features of antibiotic mediated biofilm enhancement.
Lysis of living biofilm cells (N) depends on drug concentration a according to r(a).
Lysed cells (D) facilitate attachment of planktonic cells (L(a)). Adhesion/attachment
is presumably enhanced due to release of eDNA, which itself detaches/decays at a rate
γ, and surface attachment is proportional to L(a) and D with a rate constant c. The

model contains two free “effective” parameters (ε ≡ cL(0)
γ and r01 ≡ r(0)

gr00
), estimated

from the peak height and location in biofilm enhancement curves (e.g. Figure 2.1 or
Figure 2.4). Intuitively, ε describes the effective coupling between cell lysis and biofilm
induction; a peak in biofilm mass occurs at nonzero drug concentration when ε > 1. B.
Phase diagram shows the region of parameter space where enhanced biofilm formation
occurs in terms of model parameters. Enhanced biofilm formation is favored in regions
of high lysis (r(a)) and large planktonic populations (L(a)). Blue (red) dashed lines:
path taken by system as antibiotic concentration increased; arrows indicate direction
of increasing a. The blue curve (path A) exhibits enhanced biofilm formation, while
the red curve (path B) does not. C. Model predictions (dashed curve): decreasing ε
coupling by several percent (left panel) leads to decrease in height and location of the
peak in living biofilm mass (n∗ ≡ N/K, solid line). Parameter values ε = 1.18± 0.01
and r01 = 19±4 in the absence of perturbation are estimated from confocal microscopy
living biofilm cell counts (Figure 2.4). D. Model predictions (dashed curve): decreas-
ing cell lysis leads to increase in height and location of maximum living biofilm mass
(n∗, solid line). Parameter values ε = 1.09±0.02 and r01 = 18±6 estimated from bulk
experiments (Figure 2.1).E. Relative biofilm mass (solid curves) as a function of ampi-
cillin from confocal microscopy (left; see also Figure 2.4) and bulk experiments (right;
see also Figure 2.1). Dashed curves: identical experiments but with DNase I added at
a concentration of 0.4 mg/mL. F. Relative biofilm mass as a function of ceftriaxone
alone (solid curve, circles) or ceftriaxone in combination with a constant concentration
of rifampicin at 0.3 µg/mL (squares, dashed) or tetracycline at 0.2 µg/mL (triangles,
dashed). G. Solid curve: same as in panel E. Dashed curves: identical experiments but
with sodium polyanethole sulfonate (SPS), a known lysis inhibitor, at a concentration
of 10 µg/mL. Error bars represent ± standard error of the mean.
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the steady state density of cells in liquid phase. Consistent with this prediction, we

observed that treatments with a cell wall synthesis inhibitor (ceftriaxone) along with

a second, non-lysis inducing drug (tetracycline or rifampicin) decrease the height of

the peak to almost zero (Figure 5E).

Next, to test the prediction that decreasing lysis leads to an increase in relative peak

height and location, we repeated the biofilm experiment in the presence of sodium

polyanethole sulfonate (SPS). SPS is a common anticoagulant used in clinical blood

cultures and is known to have a positive effect on bacterial survival [19]. It has been

shown to inhibit of cell lysis in staphylococci by suppressing activity of autolytic wall

systems [20, 21, 15]. To verify that SPS inhibits cells lysis in our system, we measured

lysis as a function of SPS concentration using an ATP-based luminescence assay [17].;

our data suggests that SPS inhibits cell lysis by approximately 40% in the absence

of drug at the concentrations used (Figure S3). We found that treatment with the

lysis inhibitor appears to shift the peak to slightly higher drug concentrations and

increases the magnitude of biofilm enhancement, again consistent with predictions

from the model.

2.3 Discussion

Our work demonstrates that biofilm formation in E. faecalis is enhanced by subin-

hibitory concentrations of cell-wall synthesis inhibitors, but not by inhibitors of pro-

tein, DNA, folic acid, or RNA synthesis. Enhanced biofilm formation is associated

with increased cell lysis and an increase in eDNA and eRNA. We observed similar

enhancement effects when cultures were treated with non-antibiotic chemicals that

induce similar amounts of cell lysis. To quantify the trade-off between drug toxicity

and the beneficial effects of cell lysis, we developed a simple mathematical model

that predicts changes to drug-induced biofilm formation due to external perturba-
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tions that reduce eDNA, reduce living cells in the planktonic phase, or inhibit cell

lysis. Our model suggests that antibiotic-induced biofilm formation occurs when the

drug-induced increase in cell lysis is sufficiently large relative to the drug-induced

decrease of living cells in the planktonic phase.

Subinhibitory concentrations of antibiotics have been reported to promote biofilm

formation in multiple species via a range of different mechanisms [3, 4]. However,

relatively little is known about drug-induced biofilm formation in E. faecalis. Subin-

hibitory antibiotic concentrations have previously been shown to impact the physio-

electrical [22] and adhesion behavior [23] of E. faecalis. In addition, low concentra-

tions of tigecycline have been shown to reduce biofilm formation, even when growth

of planktonic cells is not significantly affected [24]. To our knowledge, however, this is

the first work to describe enhancement of biofilm formation due to cell wall synthesis

inhibitors in E. faecalis. On the other hand, our work suggests that inhibitors of

protein, DNA, folic acid, and RNA synthesis do not promote biofilm formation over

a wide range of subinhibitory concentrations (though we do caution that we cannot

definitively rule out biofilm promotion at higher concentrations, perhaps via different

mechanisms).

Our results are consistent with the established role of eDNA in biofilm formation and

may be applicable to drug-induced biofilm formation in other species, most notably

S. aureus [15]. However, it is possible that other mechanisms may also contribute–at

least in part–to our results. For example, recent work has shown that eDNA is preva-

lent in biofilms even at the early developmental stages when cell lysis is minimal [17],

and it is possible that subinhibitory drug concentrations increase eDNA through

similar non-lysis mechanisms. In addition, it is well-known that sub-MIC levels of

antibiotic can dramatically alter gene expression profiles in bacteria [25, 26, 27], indi-
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cating that biofilm enhancement may arise from a complex combination of multiple

factors. Finally, we note that live-dead cell staining results should be interpreted with

some caution, because uptake of various stains may be variable [28, 29, 30, 31, 32, 33].

Nevertheless, our results are promising because they suggest that, at least in the ex-

perimental regimes measured here, a simple conceptual (and mathematical) model is

sufficient to describe and predict the primary effects of drug exposure.

Despite the model’s success, it is without question a dramatic oversimplification of

the complex biofilm formation process. Computational models of biofilm formation

are a powerful tool for understanding dynamics and evolution of complex communi-

ties [34, 35, 36], and detailed models may contain dozens or even hundreds of mi-

croscopic parameters. Yet even the most elaborate mathematical models neglect

biological details at some scale. Our approach was not to develop a detailed mi-

croscopic model, but rather to develop a simple, minimal model to help intuitively

explain and predict the trade-offs between antibiotic efficacy and beneficial cell lysis

at the population level. Linking our model with more detailed agent-based sim-

ulations may help us further understand the potential role of spatial structure and

heterogeneity in drug-induced biofilm formation. For example, recent work has shown

that in the absence of drug, E. faecalis biofilm formation depends on a phenotypic

bistability in gene expression, giving rise to lysis-susceptible and lysis-inducing sub-

populations [7, 8, 9, 10, 11]. It would be interesting to further explore the interplay

between this multi-modal population structure and drug-induced lysis observed in

this work.

Our work also raises intriguing questions about how genetic resistance determinants

might spread in biofilm populations, even in the absence of the strong selection pres-

sure of high drug concentrations. A quantitative understanding of biofilm forma-
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tion may also inspire new optimized dosing protocols, similar to those in, for exam-

ple, [37, 38, 39], and the current model could be easily extended to investigate the

effects of clinically realistic antibiotic dosing regimens. In the long run, these results

may lay the groundwork for improved, systematic design of biofilm-specific thera-

pies [40, 41].

2.4 Methods

2.4.1 Bacterial strains and media

Experiments were performed with Enterococcus faecalis V583, a fully sequenced clin-

ical isolate [42], and strain OG1RF, which was derived from human oral isolate

OG1 [43]. For each experiment, starting cultures (3 mL) were inoculated from a

single colony on brain heart infusion (BHI) agar plates (1.5% (w/v) bacteriological

agar) and grown overnight in BHI or tryptic soy broth (TSB) medium at 37◦C without

shaking.

2.4.2 Drugs

Antibiotics used in this study are listed in table 2.1. Antibiotic stock solutions were

sterilized by passing through 0.22 µm filter, aliquoted into daily-use volumes, and

kept at -20 or -80◦C for no more than 3-6 months. All chemicals and media were

purchased from Sigma-Aldrich or Fisher Scientific unless stated otherwise.

2.4.3 Growth curves of Enterococcus faecalis

Overnight cultures were diluted 100X into fresh BHI medium, and then 200 µL of

diluted culture were added to each well of a 96-well clear bottom plate. Different

concentrations of antibiotics were then added to each well, and time series of optical
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Antibiotics Description Abbreviation
Ampicillin Cell wall synthesis inhibitor AMP
Ceftriaxone Cell wall synthesis inhibitor CRO
Fosfomycin Cell wall synthesis inhibitor FOF
Oxacillin Cell wall synthesis inhibitor OXA

Doxycycline Inhibit 30s subunit DOX
Spectinomycin Inhibit 30s subunit SPT
Erythromycin Inhibit 50s subunit ERM

Linezolid Inhibit 50s subunit LZD
Ciprofloxacin DNA synthesis inhibitor CIP
Norfloxacin DNA synthesis inhibitor NOR
Rifampin RNA synthesis inhibitor RIF

Trimethoprim Folic Acid synthesis inhibitor TMP

Table 2.1: Antibiotics used in this study

density (OD600) were measured at 15 minute intervals for 24 hours at 30◦C using an

EnSpire Multimode Plate Reader in a temperature controlled warm room.

2.4.4 Microtiter plate biofilm assay

We measured biofilm mass in bulk assays using a well-established crystal violet stain-

ing assay [44, 45]. Overnight cultures were diluted 100X into fresh BHI medium, and

then 100 µL of diluted culture (along with appropriate concentrations of antibiotics,

if relevant) were added to each well of a flat-bottomed polystyrene microtiter 96-well

plate (Greiner Bio-One Cellstar). The plate was incubated at 37◦C without shak-

ing for 24 hours. After incubation, supernatant from liquid cultures was removed

by gently turning over the plate, shaking, and patting on paper towels. Wells were

then gently washed with PBS. To fix the biofilm on the plate, 125 µL 96% ethanol

was added into each well and allowed to incubate for 20 minutes. Ethanol was then

removed and the plate was dried at room temperature for half an hour. Following

drying, 125 µL 0.5% crystal violet was then added to stain the biofilm mass. After 30

minutes, plates were washed multiple times with fresh PBS. Plates was then turned

upside down and dried for 1 hour. Finally, 125 µL 30% acetic acid was added to each
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well in order to dissolve biofilm. Solutions were transferred to a new 96-well plate and

absorbance readings at 590 nm were taken using Enspire multimodal plate reader.

For each treatment, we performed 6-12 replicates.

2.4.5 ATP detection assay

To measure cell lysis, we used the luminescence assay described in [17] to measure

increases in extracellular ATP using a commercial ATP Determination kit (Molecular

Probes). Prior to measuring cell lysis, biofilms were grown as previously described

with different concentrations of antibiotics in a 96-well plate for 24 hours. We then

washed the plate twice with nuclease-free water and removed excess liquid. After

washing, 10 µL nuclease-free water was added to each well and biofilms were scraped

down by using inoculation loops or pipette tips. Solutions were transferred to a new

96-well white polystyrene plate (Thermo Scientific Nunc F96 MicroWell) and 90 µL

ATP standard assay solution from ATP Determination kit (Molecular Probes) was

added to each sample. Luminescence was measured by plate reader.

2.4.6 Confocal laser scanning microscopy

Bacterial cultures (200 µL total volume, with appropriate drug treatment) were grown

in replicates of 4 in 16-well chambered coverglass vessels. After incubating for 24

hours, liquid was removed and plate was washed twice with filtered millipore wa-

ter and then stained using LIVE/DEAD BacLight Bacterial Viability kit (Molecular

Probes) for 20 minutes. After staining, liquid was removed and coverglass was afixed

to the top of the chamber.

The biofilms were imaged using a Zeiss LSM700 confocal laser scanning microscope

(40X, 1.4 N.A. objective (Zeiss)) with laser lines 488 nm and 555 nm used for exci-

tation. For each well, four image stacks (160 x 160 microns) spanning 20-30 microns
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(vertically) at 1 micron intervals were taken at four separate (x,y) locations on the

cover slip, giving a total of 16 biofilm images per condition. To analyze images, we

split them into red and green channels, set the threshold for each slice individually

using automated thresholding algorithms in ImageJ, and then used a watershed algo-

rithm to segment cells and determine location and size of each cell type (live / dead)

in each slice. Cell counts per slice were averaged over three well-separated slices (to

avoid double counting cells in adjacent slices) in the middle portion of each biofilm

and over all 16 images per condition.

2.4.7 Extracellular DNA/RNA extraction

Biofilms were grown in triplicate with ampicillin 0, 0.1 and 0.2 µg/mL in 6-well

polystyrene plates with a total volume of 5 mL for each well. After 24 hours, we

dumped out liquid and washed the plate twice with PBS before adding 1 mL 1X

Tris-EDTA (TE, 10mM Tris-Cl, 1 mM EDTA, pH=8.0) buffer and scraping biofilms

from bottom of plates.

After harvesting biofilms, cells were removed by centrifugation and supernatant was

purified by using only the binding and washing steps in QIAprep Spin Miniprep kit

according to the manufacturer’s instruction. 5 volumes of PB buffer was added to

1 volume of supernatant and mixed. 800 µL of solution was transferred to a spin

column and centrifuged at 13000 rpm for 1 minute. A volume of 0.5 mL PB buffer

was added to wash the spin column followed by centrifugation for 1 minute. Then 0.75

mL PE buffer was added to spin column, and the column was centrifuged again for

1 minute. The flow-through was discarded and residual was removed by centrifuging

spin column for an additional 1 minute. The column was then transferred to a new

1.5 mL microcentrifuge tube and 30 µL EB buffer was added to the center of the

spin column. After 1 minute, the column was centrifuged for 1 minute to elute DNA.
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DNase I or RNase was added to the same treatment samples as controls.

2.4.8 Agarose gel electrophoresis

Gel tray and all related tools were rinsed with nuclease-free water, and samples were

loaded on a 1% agarose gel with 1X Tris-acetate-EDTA (TAE, pH=8.4) buffer con-

taining an appropriate volume of SYBR safe. The gel was run at 120V for 40 mins

in 1X TAE buffer. DNA or RNA fragments were virtualized under UV light from

UV transilluminator. To analyze images, ImageJ software was used to subtract back-

ground and perform intensity analysis for different lanes. Identically sized regions

were selected for different lanes and a profile plot of each lane was drawn. A straight

line across the base of the peak was drawn to enclose the peak, and the wand tool

was used to select each peak and measure percentage of relative densities.

2.5 Appendix: Biofilms at Sub-Inhibitory Concentrations

Supplemental Information

This supporting material contains a detailed description of the mathematical model

and analysis as well as three supplemental figures, including experimental measure-

ments of growth and cell lysis in planktonic cultures and gel images of eDNA (Figure

S1), analysis of approximate solutions to the mathematical model (Figure S2), and

experimental measurements of cell lysis in biofilms exposed to a chemical lysis in-

hibitor (Figure S3). The ordering of the figures follows the order in which they are

referenced in the main text.
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2.5.1 Mathematical Model

To model lysis-induced biofilm formation, we consider a simple model given by

dN

dt
= g

(
1− N

K

)
N − rN + cLf(D)

dD

dt
= rN − γD

(2.6)

where N is the living cell mass in the biofilm, D is the mass of lysed (dead) cells and

dead cell material, and L is the number of living cells in the planktonic media. In the

first equation, the first term describes logistic growth (with per capita growth g and

carrying capacity K > 0), the second describes cell death (lysis) with rate r ≥ 0, and

the last term describes the increase in biofilm mass due to surface attachment of living

cells in the planktonic phase. When f(D) is a constant, cells attach to the biofilm at

a rate proportional to the number of cells in the planktonic phase (L > 0) times a rate

parameter c > 0; more general choices for f(D) couple biofilm induction to cell lysis,

which we show below is required to achieve a peak in N as a function of lysis. In the

second equation, the first term accounts for cell lysis and the second term describes a

decay of dead (lysed) cell material due to, for example, detachment from the biofilm.

The model includes two parameters, r and L, that depend on drug concentration,

which we call a. In what follows, we begin our analysis under mild assumptions on

r(a) and L(a). Then, for a more detailed analysis, we resort to specific functional

forms which can be estimated, up to a scaling constant, directly from experimental

data.

2.5.1.1 Biofilm formation uncoupled from lysis

We first consider a simple case where biofilm formation is uncoupled from cell lysis, i.e.

f(D) = constant (which we subsume into the constant c without loss of generality).

In this case, Equation 2.6 can be written in terms of dimensionless variables n = N/K,
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d = Dg/(Kr), and rescaled time τ = tg as

dn

dτ
= (1− n)n− r0n+ L0

dd

dτ
= n− γ0d

(2.7)

where r0 = r/g, L0 = cL/(gK), and γ0 = γ/g. In the steady state, we have

n∗ =
1

2

(
1− r0 +

√
(1− r0)2 + 4L0

)
d∗ =

1

2γ0

(
1− r0 +

√
(1− r0)2 + 4L0

) (2.8)

where we have kept only the physically meaningful (positive) root. It is straight-

forward to show that this steady state is always a stable fixed point (trJ < 0 and

detJ > 0, where J is the Jacobian of the system in Equation 2.7 evaluated at (n∗, d∗)).

It is intuitively clear that this model does not exhibit a non-zero peak in n∗ as a

function of antibiotic a. Recall that the dependence on a arises from r0(a) and L0(a),

which are functions of drug concentration. If we make the physically reasonable

assumptions that, for a > 0, r′0(a) > 0 (lysis increases with drug) and L′0(a) < 0

(planktonic cells decrease with drug) –both of which are consistent with experimental

measurements–the derivative of n∗(a) is always negative. Specifically, we have

dn∗(a)

da
=

1

2

(
r′0(a)(λ− 1) +

2L′0(a)√
4L0(a) + (r0(a)− 1)2

)
(2.9)

where primes indicate differentiation with respect to a and λ = r0(a)−1√
4L0(a)+(r0(a)−1)2

.

Because |λ| ≤ 1, both terms are negative, indicating that n∗(a) is always decreasing

and cannot exhibit a maximum for a > 0.
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2.5.1.2 Biofilm formation coupled to lysis

To capture experimental observations in a minimal model, we consider Equation 2.6

with f(D) = D, so that the mass of dead (lysed) cells is coupled to living biofilm mass.

We can write Equation 2.6 in terms of rescaled variables n = N/K, d = Dg/(Kr),

and τ = tg as
dn

dτ
= (1− n)n− r0n+ γ0L0r0d

dd

dτ
= n− γ0d

(2.10)

where r0 = r/g, L0 = cL/γ, and γ0 = γ/g. In the steady state, we have

n∗ = 1 + r0 (L0 − 1)

d∗ =
1

γ0
(1 + r0 (L0 − 1))

(2.11)

We restrict our analysis to the physically-meaningful regime r0(1 − L0) < 1, where

the steady state values n∗ and d∗ are positive definite. In this regime, the steady state

solution Equation 2.11 is always a stable fixed point (trJ < 0 and detJ > 0, where J

is the Jacobian of the system in Equation 2.10 evaluated at (n∗, d∗)).

To look for enhancement of biofilm (living) mass as a function of a, we derive a simple

phase diagram illustrating the region of parameter space where n∗(a) > n∗(0); that

is, we look for regions where living biofilm mass is higher in the presence of drug than

in its absence. To do so, we plot the curve given by

n∗(a)− n∗(0) = 0, (2.12)

which after rearrangement becomes

L0(a) =
r0(0)(L0(0)− 1)

r0(a)
+ 1. (2.13)
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Figure 2.6: Growth, Cell Lysis, and eDNA measurements A. Growth curves of planktonic
populations (V583, BHI) for ampicillin at 0 (black triangles), 0.1 µg/mL (red squares),
and 0.2 µg/mL (blue circles). OD is normalized so that OD=1 at the last time point in
the absence of drug. B. Subinhibitory concentrations of ampicillin increase cell lysis in
planktonic populations. Error bars are ± standard error of the mean over replicates.
Lysis is measured by ATP-based luminescence assay (Methods). C. Gel image following
electrophoresis of nucleic acid isolated from biofilms. eDNA and eRNA are quantified
within the red and green dashed boxed regions, respectively. For example, eDNA
was considered to be bands larger than 3.0 kilobases. Additional lanes show effects
of treatment with RNase or DNase; these treatments were used to determine the
approximate regions corresponding to eDNA and eRNA, respectively. This experiment
was performed three times on three different days; while the quantitative results (e.g.
total eDNA/eRNA intensity) vary from day-to-day, the trends are always similar to
those shown in Figure 3C. Note that eRNA bands are considerably lighter than eDNA
bands.
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In terms of the original model parameters, we have

L(a) =
γr(0)(L(0)− 1)

c

1

r(a)
+
γ

c
. (2.14)

Equation 2.14 shows that L(a) = 2γ
c

for r(a) = r(0)(L(0) − 1) and asymptotically

approaches γ
c

as r(a)→∞. The curve separates regions where drug decreases biofilm

formation from those regions with enhanced biofilm formation (Figure 5). Enhanced

biofilm formation therefore depends on the path taken through (r(a), L(a)) space as a

is increased from 0. In words, enhanced biofilm formation is favored by high lysis r(a)

and large planktonic populations L(a), and the specific dependence of these functions

on drug concentration determines whether drug will increase or decrease biofilm mass.

To find the location of the biofilm peak, we differentiate Equation 2.11 with respect

to a, leading to

dn∗(a)

da
= r0(a)L′0(a) + (L0(a)− 1) r′0(a) = 0. (2.15)

The existence and location of an optimum is determined by properly scaled functions–

and the corresponding first derivatives–describing lysis (r0(a)) and the decay of living

cells in the planktonic phase (L0(a)) as a function of drug. Both of these functions

can be independently measured–up to a scaling constant– in our experiments. In

turn, these two scaling constants become free parameters which can be estimated, for

example, from the peak height and peak location in our biofilm experiments.

To make further analytical progress, we assume that r(a) and L(a) take the following

functional forms

r0(a) = r01(r00 + a2)

L0(a) =
ε

(1 + ah)

(2.16)

where r00 and r01 describe the increase in lysis as a function of a, ε is a positive

definite parameter that captures the effective coupling between biofilm formation and
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Figure 2.7: Model predictions showing changes in ε and r00 shift peak location and
peak height. Top left: Approximate equation for peak location (Equation 2.23, red
dashed) and exact value (black). Top right: Approximate equation for peak height
(Equation 2.24, red dashed), ε ≈ 1 expansion (Equation , blue dashed) and exact value
(black). Bottom left: Peak height vs. peak location (exact) for 1 ≤ ε ≤ 1.6. Bottom
right: Peak height vs. peak location (exact) for 0 ≤ r00 ≤ 0.2. Parameters r00, r01
and ε were chosen to match the range observed in experiments. r01 = 20 for all panels.
r00 = 0.01 for top panels and bottom left panel. ε = 1.2 for bottom right panel.

cell lysis, h is a hill coefficient, and a is measured in units of the drug’s half-maximal

inhibitory concentration (IC50). Based on experimental measurements (Figure 3),

we estimate r00 = 0.010± 0.001 << 1, h = 3.2± 0.2, and the drug’s IC50 is given by

0.38 ± 0.01 µg/mL. For mathematical simplicity, we take h = 3 in what follows. As

we will see, the remaining two parameters (ε and r01) determine the location and the

height of the peak in biofilm production as a function of a.

Plugging Equations 2.16 into Equation 2.15 yields a nonlinear equation that can be

solved numerically to yield the peak location amax. Specifically, we have r′0(a) = 2r01a

and L′0(a) = − ε3a2

(1+a3)2
, which leads to

−r01(r00 + a2max)

(
ε3a2max

(1 + a3max)
2

)
+

2amaxr01

(
ε

1 + a3max
− 1

)
= 0.

(2.17)

We simplify the above equation by multiplying both sides by −(1+a3max)
2/r01, leading
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to

2a6max + (4 + ε)a3max + 3εr00amax + 2(1− ε) = 0, (2.18)

where we have factored out the amax = 0 solution. Equation 2.18 has amax > 0

solutions only when ε > 1. Because we expect this peak to occur in the subinhibitory

regime of antibiotic concentration, we assume a << 1 and ignore the sixth order term

to give

a3max + δamax + ω = 0 (2.19)

with δ ≡ 3εr00
4+ε

and ω ≡ 2(1−ε)
(4+ε)

. Since r00 is estimated to be on the order of 10−2, we

assume δ << 1 and expand amax in a power series as

amax = a0 + a1δ + ... (2.20)

Subbing this expression into Equation 2.19 and equating like powers of δ, we have

a0 = (−ω)1/3 =

(
2(ε− 1)

4 + ε

)1/3

(2.21)

and

a1 = − 1

3a0
= − 1

3
(

2(ε−1)
4+ε

)1/3 . (2.22)

To first order in δ, then, the peak location is given by

amax =

(
2(ε− 1)

4 + ε

)1/3

− εr00

(4 + ε)2/3 (2(ε− 1))1/3
(2.23)

In this limit, the peak occurs for nonzero amax when ε > 1, and increasing ε further

shifts the peak to higher antibiotic concentrations. Interestingly, Equation 2.23 also

shows that increasing the native level of cell lysis (i.e. increasing r00) is expected to

shift the peak to lower values of a.
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Figure 2.8: Sodium Polyanethole Sulfonate (SPS) reduces cell lysis in biofilms. The
figure shows cell lysis (relative to untreated cells) as a function of SDS concentration
as measured by ATP luminescence assay (see Methods). Error bars are ± standard
error of the mean from eight replicates.

We can also plug Equation 2.23 into the expression for n∗ (Equation 2.11) to get an

expression for the peak height, ph. The full expression is cumbersome, even to first

order in δ, but the 0th order approximation (δ = 0) is given by

ph = 1 +
22/3(ε2 + ε− 2)r01

2 + 3ε

(
ε− 1

4 + ε

)2/3

(2.24)

For ε just above 1, the expression can be expanded to yield

ph ≈ 1 +
3

5

(
2

5

)2/3

r01(ε− 1)5/3 (2.25)

which makes it clear that increasing ε increases the peak height.

Figure 2.7 shows that the approximate solutions derived above capture the ε depen-

dence of relative peak height and peak location well (top panels). The model predicts

that increasing ε leads to an increase in both peak height and peak location (bottom

left panel). On the other hand, increasing r00 leads to a decrease in both relative

peak height and peak location (bottom right panel). It’s instructive to consider these

trends in terms of the original model parameters. Rewriting the second equation in
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Equation 2.16 in terms of the original model parameters, we have

cL(a)

γ
=

ε

(1 + ah)
. (2.26)

Hence ε = cL(0)
γ

. Increasing ε therefore corresponds to 1) increasing the coupling

between biomass material and lysis (c), 2) decreasing the decay rate of lysed cell

material (γ), and/or 3) increasing the number of living cells in solution (L(0)). In

terms of experimental perturbations, ε could be decreased by treating biofilms with

DNase, which underlies the hypothesized biological coupling between lysis and biofilm

formation. This treatment would therefore be expected to increase γ, the decay rate of

lysed cell material (i.e. eDNA). A second way of decreasing ε would be to decrease the

number of living cells in planktonic phase (L(0)). One possibility is to treat the cells

with a second (non-lysis-inducing) antibiotic; indeed, treatments with tetracycline

and rifampicin decrease the height of the peak to almost zero (Figure 5). Decreasing

r00 corresponds to decreasing the basal level of cell lysis (for example, by adding a

cell lysis inhibitor, Figure 5).
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Cerca. Evidence for inter-and intraspecies biofilm formation variability among
a small group of coagulase-negative staphylococci. FEMS microbiology letters,
362(20), 2015.

[31] Mareike Klinger-Strobel, Herbert Suesse, Dagmar Fischer, Mathias W Pletz,
and Oliwia Makarewicz. A novel computerized cell count algorithm for biofilm
analysis. PloS one, 11(5):e0154937, 2016.

[32] Michael Berney, Frederik Hammes, Franziska Bosshard, Hans-Ulrich Weilen-
mann, and Thomas Egli. Assessment and interpretation of bacterial viability
by using the live/dead baclight kit in combination with flow cytometry. Applied
and environmental microbiology, 73(10):3283–3290, 2007.

[33] T Zotta, A Guidone, P Tremonte, E Parente, and A Ricciardi. A comparison of
fluorescent stains for the assessment of viability and metabolic activity of lactic
acid bacteria. World Journal of Microbiology and Biotechnology, 28(3):919–927,
2012.

[34] Carey D Nadell, Joao B Xavier, Simon A Levin, and Kevin R Foster. The
evolution of quorum sensing in bacterial biofilms. PLoS biology, 6(1):e14, 2008.

[35] Harald Horn, Helmut Reiff, and Eberhard Morgenroth. Simulation of growth and
detachment in biofilm systems under defined hydrodynamic conditions. Biotech-
nology and Bioengineering, 81(5):607–617, 2003.

[36] Laurent A Lardon, Brian V Merkey, Sónia Martins, Andreas Dötsch, Cristian
Picioreanu, Jan-Ulrich Kreft, and Barth F Smets. idynomics: next-generation
individual-based modelling of biofilms. Environmental Microbiology, 13(9):2416–
2434, 2011.

[37] Hannah R Meredith, Allison J Lopatkin, Deverick J Anderson, and Lingchong
You. Bacterial temporal dynamics enable optimal design of antibiotic treatment.
PLoS Comput Biol, 11(4):e1004201, 2015.

41



[38] Cheemeng Tan, Robert Phillip Smith, Jaydeep K Srimani, Katherine A Riccione,
Sameer Prasada, Meta Kuehn, and Lingchong You. The inoculum effect and
band-pass bacterial response to periodic antibiotic treatment. Molecular Systems
Biology, 8(1), 2012.

[39] Jason Karslake, Jeff Maltas, Peter Brumm, and Kevin B Wood. Population den-
sity modulates drug inhibition and gives rise to potential bistability of treatment
outcomes for bacterial infections. PLoS Comput Biol, 12(10):e1005098, 2016.

[40] Fernanda L Paganelli, Rob J Willems, and Helen L Leavis. Optimizing future
treatment of enterococcal infections: attacking the biofilm? Trends in microbi-
ology, 20(1):40–49, 2012.

[41] Mira Okshevsky, Viduthalai R Regina, and Rikke Louise Meyer. Extracellular
dna as a target for biofilm control. Current opinion in biotechnology, 33:73–80,
2015.

[42] Daniel F. Sahm, Jessica Kissinger, Michael S. Gilmore, Patrick R. Murray,
Ross Mulder, Joanne Solliday, and Barbara Clarke. In vitro susceptibility
studies of vancomycin-resistant enterococcus faecalis. Antimicrobial Agents and
Chemotherapy, 33(9):1588–1591, Sept. 1989.

[43] Olga G. Gold, H.V. Jordan, and J. van Houte. The prevalence of enterococci in
the human mouth and their pathogenicity in animal models. Archs oral Biol.,
20:473–477, 1975.

[44] Elke Peeters, Hans J. Nelis, and Tom Coenye. Comparison of multiple methods
for quantification of microbial biofilms grown in microtiter plates. Journal of
Microbiological Methods, 72:157–165, 2008.

[45] George A. O’Toole. Microtiter dish biofilm formation assay. Journal of Visualized
Experiments, 2011.

42



CHAPTER III

Cooperation and Spatial Architecture of E.

faecalis Biofilms at Superinhibitory Drug

Concentrations

3.1 Introduction

After the previous set of experiments of all drug sensitive E. faecalis biofilms having

counter intuitive peak behavior at sub-inhibitory cell wall synthesis drug concentrations[1],

we wanted to further study biofilms at higher drug concentrations to see what types

of collective behaviors arise with the increased drug concentrations. With super-

inhibitory drug concentrations we would expect all sensitive populations to die, as

our experiments study biofilms grown for the whole experiment time in the presence of

drug. Using instead a mixed population of resistant and sensitive cells, new questions

to address arise, such as what sort of cooperation might occur in the population and

how does this depend on population composition? As cells in biofilms are spatially

fixed, is there a specific spatial organization to this cooperation?

To study these questions, we used a mixed population that included resistant cells

that produced the enzyme Beta-lactamase, either a clinical outbreak strain, HH22

(preliminary results) [2, 3] or the strain OG1RF, a laboratory strain transformed
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with a plasmid which also fluorescently labeled the resistant cells. By producing

Beta-lactamse, the resistant cells are able to deactivate drugs of the beta-lactam

class, such as ampicillin. While this specific molecular mechanism is ideal for the

resistant cells, in the mixed population the sensitive cells can feel the benefits of re-

sistant cells to degrade the drug in the environment as the beta lactamse acts as a

public good [4, 5, 6]. Previous work has found public good cooperation occurs both

planktonically and in biofilms [7, 8, 9, 10] and we aim to further examine the spatial

organization and local neighborhoods of cooperation. Studies looking at different

species have indicated some species, such as Pseudomonas, releases beta-lactamase

into the extracellular environment [11, 12], whereas others, like E. faecalis, hold the

enzyme within individual cells [13]. Because the public good is now less ‘public’, this

exaggerates the need for spatial organization in the biofilm: the organization of the

sensitive cells in relation to the resistant cells- acting as sinks- can alter the survival

of a sensitive cell. Beyond the spatial component, the starting population composi-

tion can also drastically affect the composition of the final biofilm, another factor we

examine using confocal fluorescence microscopy to study each sub population.

With these spatial and composition factors in mind, we wanted to further our un-

derstanding of the interplay between cooperation and composition by creating a 2D

model to describe the spatial organization. While biofilms are complex communi-

ties with many nutrients and growth factors adding to the environment, we aimed

to create a simple model with rules for cooperation to explain the organizations we

see. These mixed populations biofilms lead to interesting spatial organization both

experimentally and computationally, showing the population level effects that can

occur from a small molecular enzyme resistance mechanism.
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3.2 Results

3.2.1 Biofilm Total Populations: Mixed Populations at High Drug Con-

centrations

Wanting to study the cooperation between the two populations on a global scale,

we first measured the total population with and without drug present. We used

confocal microscopy and automated cell segmentation algorithms (see Methods) to

image mixed population biofilms at single cell resolution. Resistant and sensitive cells

were engineered to contain a plasmid constitutively expressing the fluorescent protein

Rudolph RFP (sensitive) or BFP (resistant) (see Chapter 5). The two strains were

identical except for 1. the fluorescent marker used and 2. the resistant strain was

engineered to constitutively express beta lactamase. We grew the mixed biofilms of

resistant and sensitive cells for 24 hours on coverslips (see Methods) in concentra-

tions of Ampicillin 0.0 µg/ml and Ampicllin 1.0 µg/ml, with Ampicillin 1.0 µg/ml

chosen as sensitive cells cannot survive at this drug concentration. Following imaging

of z-stacks of the biofilms, we counted the number of individual cells of each type

(sens/res) from hundreds of individual slices in replicate biofilms grown under iden-

tical conditions.

Comparing biofilms of all sensitive cells (Figure 3.1A-C) to mixed sensitive and resis-

tant biofilms (Figure 3.1D-F), we found that not only did the mixed biofilms survive

at drug concentrations where the all sensitive biofilm died (Figure 3.1B,E), but con-

focal images showed a mixed biofilm population of resistant and sensitive cells at

high drug. From image analysis and single cell segmentation, the total mass of each

biofilm was measured as well and plotted, normalized to the no drug case for each

population condition (Figure 3.1C,F). The total mass of the mixed population does

decrease in the presence of drug, but the final population is still contains sensitive
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cells surviving at clinically relevant antibiotic concentrations.

A
ll 

S
e
n
s

M
ix

e
d
 R

e
s:

S
e
n

s

A. B. C.

D. E. F.

Ampicillin Concentration µg/ml

Ampicillin Concentration µg/ml 

Figure 3.1: Total Cell Populations, all sensitive and mixed population biofilms A. Con-
focal image of an all sensitive biofilm at Ampicillin 0.0 µg/ml. B. Confocal image of
an all sensitive biofilm at Ampicillin 1.0 µg/ml. C. Total cell counts of the sensitive
biofilms at both antibiotic concentrations. D. Confocal image of a mixed biofilm at
Ampicillin 0.0 µg/ml. E. Confocal image of a mixed biofilm at Ampicillin 1.0 µg/ml.
F. Total cell counts of the mixed biofilms at both antibiotic concentrations. Counts are
normalized to the Ampicillin 0.0 µg/ml case. Sensitive cells are fluorescently labeled
with an RFP, resistant cells are fluorescently labeled with a BFP. Biofilms were grown
for 24 hours in 6 well plates (see methods) before imaging. 2D slices were merged to
create the 3D images shown here.

The total cell measurements from the preliminary biofilms showed sensitive cells sur-

viving at otherwise lethal drug concentrations, raising the question of what sort of

cooperation and composition is present in our biofilms. We repeated the total popula-

tion measurements with experimental biofilms where the mixed resistant and sensitive

cells were now the same strain, following successful cloning of a plasmid containing

beta lactamase into the E. faecalis strain OG1RF. We also performed analysis to

determine the final population composition, using cell segmentation and counting

to find the population fraction of each resistant and sensitive cells as they are flu-

orescently labeled different colors. Figure 3.2 shows the total biofilm mass (A,B,C)

and sensitive fraction (D,E,F) at Ampicillin 0.0 µg/ml and Ampicillin 1.0 µg/ml of
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biofilms starting at 75%, 50% and 25% sensitive. From these experiments, the total

biofilm mass generally decreases at the high drug case, but for Figure 3.2C, the biofilm

mass is actually larger for the biofilm grown at higher drug, perhaps due to the fact

that those populations started as 75% resistant and could easily degrade the drug.

From Figure 3.2D-F, there is not a drastic decrease in the final fraction of sensitive

cells when compared to their initial compositions, though it is worth noting the final

fraction of sensitive cells in Figure 3.2F. As that population is 75% resistant, with

no drug present, the sensitive cells have a slight growth advantage and increase their

population. With drug, the resistant fraction is large and can likely quickly degrade

the drug, leading to a relatively detoxified environment for the sensitive cells to thrive

and again allowing the initial sensitive fraction to increase.

3.2.2 Local Interactions Account for Spatial Organization

To establish the different rules responsible for the biofilm spatial organization, a 2D

agent based model was developed. As a biofilm develops, planktonic cells either de-

posit onto the surface or a cell already attached to the biofilm grows. The stochastic

model depends on the ratio of cell deposition (from the planktonic population) and

cell growth from previously seeded cells: comparing our experimental correlations to

the model correlations allowed us to find what ratio to use in our model. To mimic

spatially dependent cooperation, sensitive cells were given a death rate that decreased

depending on the number of resistant neighbors it had. This decrease was a linear

function: with no resistant neighbors, the sensitive cell had the max death rate, with

all resistant neighbors, the sensitive cell had the resistant death rate (0). With each

additional resistant neighbor added, there was a decrease in the death rate. Our

final model has no free parameters, as the growth and deposition rates are set from

two-color, all sensitive experimental biofilms and the cooperation is a known function

of resistant neighbors. Two different examples of different deposition/growth ratios
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A. B. C.

D. E. F.

Figure 3.2: Total Cell Populations and sensitive fractions, mixed population biofilms
A. Total biofilm mass of starting biofilms that initial compositions were 75% sensitive.
B. Total biofilm mass of starting biofilms that initial compositions were 50% sensi-
tive. C. Total biofilm mass of starting biofilms that initial compositions were 25%
sensitive. For each composition, biofilms were grown at either Ampicillin 0.0 µg/ml
or Ampicillin 1.0 µg/ml. Two biofilms were grown per composition and per drug con-
centration. Five confocal stacks were taken per biofilm, giving a total of ten biofilm
stacks averaged together to find the mean and standard error of the mean. For each
initial composition, the total biofilm mass was normalized to the biofilm mass of the
Ampicillin 0.0 µg/ml biofilms. D. Final Sensitive fractions of starting biofilms that
initial compositions were 75% sensitive. E. Final Sensitive fractions of starting biofilms
that initial compositions were 50% sensitive. F. Final Sensitive fractions of starting
biofilms that initial compositions were 25% sensitive. The mean and standard error
were once again found from compiling the data from the 10 different biofilm stacks
together.

as well as an example mean field approximation of the model are shown below in

Figure 3.3. With the addition of cooperation, the local coupling between resistant

and sensitive cells, in the model, our simulations produce similar spatially organized

biofilms when compared to our experimental results, suggesting cooperation not only

leads to a mixed population, but that population has a specific, set organization.

This new prediction, of spatial organization was something we wanted to test exper-

imentally as well.

48



Experimental
Biofilm

Agent Based
Model

A. B.

Sensitive Fraction

R
e
si

st
a
n

t 
Fr

a
ct

io
n
 

Cooperation 

No Cooperation 

Figure 3.3: Model fitting and Model cooperation A. Model fitting of the ratio of cell deposi-
tion/growth. Red and blue solid lines show two different ratios from model fitting,blue
circles show experimental correlation. Simulations were completed using the fit from
the blue line that closely matched the experimental result. B. Comparison of the
model, with the addition of a cooperative death rate for sensitive cells (more resistant
neighbors, less sensitive death) to a mean field approximation. This allows charac-
terization of the model without just comparing to simulations. For simulations, blue
labeled squares (’cells’) are resistant and red labeled squares (’cells’) are sensitive.

3.2.3 Preliminary Spatial Organization: Local Neighborhoods

Following confirmation that the final biofilm composition is a mixture of resistant

and sensitive cells and model predictions of a specific spatial organization, we wanted

to investigate how that mixed composition was spatially organized in the presence

of antibiotics. Using automated cell segmentation to get the position of single cells

in our confocal images and knowing the cell type based on the different fluorescent

markers, the local fraction of resistant cells in the neighborhood surrounding each

sensitive cell (within some set radius) was determined and averaged together, with

the many 2D biofilms stacks then averaged together. We see drastic differences in

spatial organization between mixed biofilms grown without any drug and those grown

at Ampicllin 1.0 µg/ml, with the sensitive neighborhoods being enriched for resistant

cells in biofilms grown in antibiotics.
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In Figure 3.4, we see without any drug present (3.4A), the fraction of resistant neigh-

bors at small radii right around the sensitive cells are negative, indicating the local

neighborhood is enriched for sensitive cells and the neighborhoods are dominated by

small clonal populations. Conversely, for biofilms grown in Ampicillin (3.4B), the

local neighborhoods around sensitive cells are dominated by resistant cells, with the

average sensitive cell being found within one cell diameter of a resistant cell. Intro-

ducing the death rate rule in our model to mimic cooperation in a biofilm grown

in the presence of drug, our agent based model shows similar spatial organization

(Figure 3.4C).
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Figure 3.4: Spatial Organization of Mixed Biofilms with and without drug present A.
Sensitive cell fraction of resistant neighbors in a mixed biofilm at Ampicllin 0.0 µg/ml.
B. Sensitive cell fraction of resistant neighbors in a mixed biofilm at Ampicllin 1.0
µg/ml. C. Sensitive cell fractions both with and without drug with the agent based
model results overlaid (red). For all graphs, the dashed line represents the global
fraction of resistant cells in the whole biofilm. Experimental cell positions were found
using imageJ and the fraction of resistant neighbors was calculated from each sensitive
cell using these positions.

3.3 Discussion

From the molecular mechanism of an enzyme that breaks down the drug, these ex-

periments demonstrate the collective cooperation that arises between resistant and

sensitive populations. At super-inhibitory drug concentrations, where sensitive only
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biofilms cannot form, the mixed biofilms show a coexistence of the two different pop-

ulations, suggesting that not only do the resistant cells benefit from having beta

lactamase to break down drug, but the enzyme acts as a public good and leads to

cooperation between the resistant and sensitive cells.The benefit from a public good

is not a new phenomenon in collective communities, but the presence of beta lacta-

mase in the biofilms introduces a structural, spatial component to the cooperation

as well. From our preliminary experiments studying the local neighborhoods around

sensitive cells, there was a clear enrichment of the neighborhoods for resistant cells

when biofilms are grown in the presence of drug, a trend that does not appear in

the mixed biofilms grown without drug. Further experiments and single cell analy-

sis done in the same strain show once again cooperation and a final biofilm that is

still a mixed population, and the fraction of sensitive cells in the final population is

similar between the drug and no drug case. As the enzyme beta-lactamase breaks

down the drug, it detoxifies the environment enough for the sensitive cells to survive

and possibly even thrive, as seen in the case where the starting population was 75%

resistant. We wanted to understand the rules behind the cooperation and developed

a 2D agent based model to determine what sort of cooperation could lead to the spa-

tial organization observed. On a square 2D grid, the ‘biofilm’ formed either from cell

deposition or growth at a specific ratio fit from experimental results and cooperation

was implemented as a decrease in the death rate of sensitive cells depending on the

number of resistant neighbors the cell had. Studying the spatial organization of these

simulated biofilms, the model predicted similar sensitive neighborhoods enriched for

sensitive cells (no drug case) or resistant cells (drug case) as seen experimentally.

After seeing the interesting spatial organization, we wanted to study the z-dependence

of the composition and spatial organization, but we were limited by our confocal im-

ages: in order to avoid double counting cells, our z slices were 5 microns apart and
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during automated imaging we often missed the lowest z-position. In future work,

smaller z-intervals will be used and composition analysis based on z-position will

be completed. We also acknowledge the simplicity of our model and recognize that

biofilm communities include many more growth factors and components that we are

accounting for. While this model could be expanded to either a 3D model or even

a 2D hexagonal grid and more components could be added as agents, the rules to

mimic cooperation- a decrease in the sensitive cell death rate depending on the num-

ber of neighboring resistant cells- leads to 2D simulated biofilms that closely mimic

the experimental spatial organizations.

The spatial organization that arises in the mixed population biofilms grown at high

drug concentration indicates the challenges to dosing and treating a biofilm. While

biofilms of just one population have been seen to split into heterogeneous, phenotypic

areas, having a mixed population extends this heterogeneity and organization, and

can lead to challenges in effectively treating a biofilm. With this understanding of the

organization, both experimentally and with the ABM, questions regarding how the

organization effects further drug dosing and the difference the spatial organization

plays in future survival- if a biofilm grown without drug is later dosed, how does it

survival and population composition compare to that of a biofilm grown in drug the

entire time?- remain to be answered. Our work shows how the population composition

and antibiotic environment are crucial to the single cell level spatial organization of

the biofilms, and this knowledge could lead to better understanding how a biofilm

will behave in a new antibiotic environment.

52



3.4 Methods

3.4.1 Bacterial Strains, Media, and Growth Conditions

Preliminary experiments were performed with sensitive OG1RF, a fully sequenced

E. faecalis oral isolate and resistant strain HH22 [2, 3], a clinical outbreak strain

of E. faecalis that produces beta lactamase from a plasmid. Due to differences in

growth rates, gibson assembly and cloning was performed to take the sequence of beta-

lactamase and clone it onto a plasmid for use in OG1RF. Colony Polymerase Chain

Reaction (PCR) of the sequence of beta lactamse was done with strain CH19 [14],

another clinical outbreak strain that has beta lactamase, but it is incorporated onto

the chromosome instead of in a plasmid like HH22. Following cloning, experiments

were performed with only OG1RF. Cells were fluorescently labeled with the plasmid

pBSU101 Rudolph RFP or BFP, and the plasmid for the resistant cells additionally

contained the sequence for the enzyme Beta Lactamase. Cultures for experiments

were made taking single colonies from BHI agar plates with selection antibiotics and

incubated in sterile BHI (Remel) with appropriate selection antibiotic overnight at

37◦C.

3.4.2 Antibiotics

Two antibiotics were used in this study: Spectinomycin Sulfate (MP Biomedicals)

and Ampicillin Sodium Salt (Fisher). Spectinomyicn 120 µg/ml was necessary for

plasmid upkeep and thus was present in all cultures and biofilms. Experiments were

interested in studying the effects of Ampicillin.

3.4.3 Biofilms

Biofilms were grown on coverslips (Fisher) in 6 well plates overnight at 37◦C. Overnights

were diluted 1:100 into fresh BHI and Spectinomycin. For experimental biofilms, mix-
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tures of 25%, 50%, and 75% resistant were grown in media at either 0 µg/ml or 1.0

µg/ml Ampicillin. A cartoon schematic of the six well plates and wells, as well as a

example plate is shown below in Figure 3.5.

A. B. C.

Figure 3.5: Schematic of Biofilm Wells A. Cartoon of a six well plate. Biofilms were grown in
each well at specific starting compositions and drug concnetrations. B. Cartoon cross
section of a well with a coverslip at the bottom. Following 24 hours of growth the
coverslip was removed and imaged. C. Picture of a six well plate with coverslips and
biofilms after 24 hours of growth.

Control biofilms were also grown of 100% resistant (either blue or red) or sensitive

(either blue or red) at each antibiotic concentrations. Mixtures of the same 3 frac-

tions of different colors, but all sensitive or all resistant cells were also grown at each

antibiotic concentration. Two biofilms were grown for each fraction/Ampicillin con-

centration.

Following 24 hours of growth, coverslips were removed from wells and affixed to slides

using 25L GeneFrames (Fisher). The adhesive frames allowed the biofilm coverslip

to be affixed for imaging without needing to seal the biofilm and possibly disrupt the

spatial structure.

3.4.4 Confocal Microscopy

Confocal images were taken using a Zeiss LSM700 confocal laser scanning microscope

(40X, 1.4 N.A. objective (Zeiss)) with laser lines 405 nm (BFP) and 555 nm (RFP)
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used for excitation. Laser power was a 5.0 for each laser and the pinhole was a 1.4

Airy Units. For each coverslip, image stacks (80x80 microns) spanning 20-30 microns

(vertically) at 5 micron intervals were taken at five separate (x,y) locations on the

cover slip, giving a total of 5 biofilm stacks per slip. Two coverslips were imaged for

each condition, giving a total of 10 biofilm stacks per condition.

3.4.5 Image Analysis

Images were analyzed using imageJ and Matlab. LSM images were split into the

blue and red channels and thresholds for each channel were set indiviually using au-

tomated thresholding alogrithims in ImageJ. Cells were segmented using a watershed

algorithim to both determine the size and position of each cell. As slices were 5µm

apart, each 2D slice was analyzed. The segmentation allowed us to get a total cell

count for each cell type per slice, and the positions were used for correlation and

nearest neighbor analysis in Matlab.

3.4.6 Agent Based Model

A 2D Agent Based Model was created to mimic biofilm formation and growth. The

model is initiated on a square grid and based on the ratio of cell deposition to growth,

at each time step a random point on the grid is chosen. If the square is empty, a cell

has some chance of deposition and the color it will be depends on a preset parameter

of starting cell type fractions. If the square already has a cell, the cell will grow with

some probability to one of its four nearest neighbors, assuming there is an empty spot

in the neighborhood.

To mimic cooperation and drug effects, the sensitive cells have a death rate. For

simulations of a no drug case, the death rate is set to 0. For simulations with drug, the

sensitive cell death rate depends on the local neighborhood: the death rate decreases

55



linearly with more resistant neighbors, thus increasing the chances the sensitive cell

will survive and possibly grow.
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CHAPTER IV

Cooperative Dynamics Via β Lactamase in

Planktonic Populations

4.1 Introduction

While E. faecalis biofilms show interesting collective, cooperative behaviors, both at

sub and super inhibitory concentrations of antibiotics, bacteria also live plankton-

ically, leading to the question of what sort of collective behavior might be seen in

a well-stirred, mixed resistant and sensitive planktonic culture and what role does

antibiotic dosing, population composition, or population density play? Though pop-

ulation composition still plays a critical role in survival of the community- without

enough resistant cells, a mixed population will not be able to degrade the drug- the

fraction of resistant cells needed to ensure survival may differ from spatial biofilms. As

these cultures no longer have the fixed spatial organization seen in biofilms, coopera-

tion and collective behavior may be influenced by other factors. Planktonic cultures

introduce density effects, where the behavior of a population in a specific environ-

ment can vary based on the density of that population. A classic density dependent

effect is the inoculum effect. With a set dose of antibiotic, a low density starting

population can easily be totally killed. However, with that same dose of antibiotic,

but a higher density starting population, the bacteria can overcome the antibiotic
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and the population can ultimately thrive [1]. This effect can be seen in experiments

with all sensitive cells, but our experiments expanded this idea to a mixed population

of resistant and sensitive cells.

In our mixed populations of resistant and sensitive cells, there were two different rel-

evant density effects: the resistant and reverse inoculum effect. Following the more

classical inoculum effect, the resistant sub population in our culture creates a resistant

inoculum effect [2]. With more resistant cells present, the total population feels the

benefit from the public good effect of the enzyme, similar to the detoxifying effects of

the local neighborhoods in spatially fixed biofilms. When populations of all resistant

cells are at two different densities, the resistant inoculum effect leads to a difference

in their growth rates; the low density resistant population cannot overcome the drug

concentration, whereas the high density resistant population overcomes the drug and

lives to stationary phase. (Figure 4.1A)

Conversely, because we are using the ampicillin- the same antibiotic used for the pre-

vious biofilm experiments- there is also a reverse inoculum effect. From previous work

in our lab, we have seen an increase in efficacy of ampicllin as cell density increases-

regardless of population composition- due to a decrease in the pH of the sample [3].

With this reverse inoculum, we now see higher density populations of all sensitive cells

experiencing worse growth when compare with lower density populations exposed to

the same drug concentration. (Figure 4.1B)

Considering the inoculum effects and starting densities, the cell populations will be

feeling the two different effects to differing degrees. Figure 4.1C shows a schematic of

the different feedback from the effects.
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Figure 4.1: Resistant and Reverse Inoculum effects and feedback. A. Resistant Inoculum
Effect: Resistant population started at a higher density has a higher growth rate
(red line) than while the lower density resistant population growth rate (blue line).
Experiments were run in a chemostat with the high density population reaching an
OD of 0.6 before dosing began and the low density population reaching an OD of 0.1
before dosing began. B. Reverse Inoculum Effect: Growth rate over time of different
sensitive populations held at constant densities. The higher the OD, the slower the
growth. The curves, from top to bottom, are for populations held at an OD of 0.2
(red), 0.4 (blue), 0.6 (green) and 0.8 (black). C. Density Effects cartoon showing
feedback from the two different inoculum effects.

To study how the planktonic community copes with antibiotic dosing, once again

mixed populations of resistant and sensitive E. faecalis were used (similar to the

populations used in chapter 3), still fluorescently labeled to distinguish between the

cell types for use with FACS and measuring the population composition. The resistant

cells again produce β lactamase to degrade the antibiotic [4, 5] and lead to the resistant

inoculum effect, and the entire population causes a pH decrease as the population
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grows leading to the reverse inoculum effect and increased drug effectiveness [6, 7].

We ran experiments in a chemostat bioreactor, a device where each culture is hooked

up to a pump system [8]. The chemostat monitors the density of the samples as well

as periodically dosing the samples, based on some predetermined dosing shceme, with

the pump system. Mixing resistant and sensitive cells at known fractions, dosing the

samples over the experimental time while monitoring their density, and measuring

the final population composition, allowed us to study of the population dynamics

and collective behavior of the community. Previous work has shown the ability of

planktonic populations both theoretically [9, 10, 11] and experimentally to cooperative

and thrive [12, 13, 14, 15, 16], but the temporal dynamics and in depth studies

observing density dependence have yet to be addressed. These experiments aim to

study the cooperation in planktonic E.faecalis populations through these two different

mechanisms- enzymatic drug degradation and density pH increase in drug efficacy.

4.2 Results

4.2.1 Chemostat Density Effects

To investigate the two different proposed density effects, we first studied each effect

individually. To study the reverse inoculum effect, we ran chemostat experiments at

two different staring densities with our set drug dosing scheme (see Methods) using

all sensitive cells. Following overnight scans, we found that as we increased the drug

concentration in the drug inflow reservoir, the samples went to an intermediate fixed

point between stationary phase and dying, suggesting an optimal density between

death and carrying capacity that balances the increase in drug effectiveness from the

pH change and the cell growth. With enough drug in the reservoir, we could ulti-

mately kill the two samples. Due to the increased drug efficacy as density increases,

our final stable samples were at lower density than stationary phase. (Figure 4.2A)
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The resistant inoculum effect was studied again in our chemostat set up with the

same drug dosing protocol as before, now using an all resistant population growing in

buffered media. As we wanted to focus on just the resistant inoculum effect, we used

buffered media to stop the environmental pH change seen from populations of cells

growing, ultimately stopping the reverse inoculum effect. As our experiment should

only be influenced by the resistant inoculum effect, we ran samples at low and high

starting optical density with a drug reservoir for flow at an ampicillin concentration

of 10 mg/ml. Following an overnight experiment, we are able to see clear bistability

between the two samples, suggesting the sample with the larger starting density takes

advantage of the resistant inoculum effect and is able to overcome the drug flowed into

the vial. The smaller starting density sample does not have a large enough population

to effectively detoxify the environment and dies. (Figure 4.2B)

A B

Figure 4.2: Individual examples of the Reverse Inoculum Effect and the Resistant In-
oculum Effect. A. Final density over low ampicillin concentrations of samples of
100% sensitive cells. Samples were run at both high OD (0.6, red) and low OD (0.1,
blue) overnight. Inset figures show the growth curves of the high and low density
samples at four different drug resivoir concentrations. Due to the reverse inoculum
effect, samples ended at an intermediate fixed point. B. Density of 100% resistant cells
over time at high ampicillin concentrations in buffered media. Here again experiments
are started at OD 0.6 (red) and OD 0.1 (blue). Due to the resistant inoculum effect,
bistability arises as the high OD is able to degrade drug and survive.
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4.2.2 Modeling Density Effects

In the interest of studying the two different inoculum effects and their feedback, a

simple mathematical model was developed. Modeling the change in the number of

sensitive cells (NS), number of resistant cells (NR), and effective drug concentration

(D) as ODEs, we examined how the different density effects can change the total

population outcome. With a very large experimental phase space covering numerous

drug concentrations and every fraction of resistant:sensitive cells from 0% to 100%,

studying the model predicted areas of interesting dynamics, and we used these pre-

dictions to drive experimental studies.

For each the sensitive and resistant cells, their growth was modeled logistically as

dNi

dt
= gi(D)

(
1− ΣNi

C

)
Ni (4.1)

where Ni is the cell type being modeled- either NS or NR, gi(D) is a linear growth term

depending on the cell type and drug, and C is the carrying capacity. The effective

drug concentration takes into account the different density effects and contains the

feedback of the two different inoculum effects and is modeled as

dD

dt
= −ε1D(ΣNi) + ε2D(NR)−Dγ + F0 (4.2)

where the ε1 term represents the reverse inoculum effect (dependent on the whole pop-

ulation density, NS+NR) and ε1 is the strength of that effect, the ε2 term represents

the resistant inoculum effect (dependent only on the resistant population density, NR)

and ε2 is the strength of that effect, γ is the rate of drug decay, and F0 is the periodic

drug dosing from the chemostat set up. From stability analysis and studying the fixed

points of the model, we were able to develop a phase diagram of the phase space of the
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initial resistant cells and the reservoir drug concentration. With the phase diagram

to guide the experiments, we aimed to study the phase space experimentally.

4.2.3 Mixed Population Dynamics: Bistability

To understand the interplay between the two density effects, we studied popula-

tion survival and composition at different starting resistant fractions- to observe the

influence of the resistant inoculum effect- and different densities- to observe the in-

fluence of the reverse inoculum effect. Our experimental set up also allows us to run

our experiments at different drug reservoir concentrations. As this is a very large

experimental area- different densities, different initial population compositions, and

different drug concentrations- to explore, we used the model to guide which areas

would be most interesting. From a theoretical phase diagram (Figure 4.3A) gen-

erated from the model (Eqs 4.1 and 4.2), we are able to see four different regions:

extinction (black), survival (white), inverse bistable (dark gray), and bistable (light

gray). Using our model, we can zoom in on a cross section of the phase diagram and

observe simulations of different population fractions (Figure 4.3B, C, D). Wanting

to study the bistable region and compare the experimental data to the cross section

we can observe in the model, overnight chemostat experiments were run at one drug

concentration over a range of starting fractions and the Optical Density (OD) of the

samples were measured throughout the experiment time. Representative fractions

showing the three different phases (Figure 4.3E, F, G) give examples of extinction,

bistability, and survival depending on the starting population composition.

4.2.4 Inverse Bistability

While studying the theoretical phases, we noticed a peculiar phase of inverse bista-

bility, where the starting low density samples survived while the high density samples

die. We wanted to study the inverse bistable phase experimentally, using the same
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A. 

B. C. D.

E. F. G.

Figure 4.3: Model and Experimental Bistability. A. Theoretical Phase Diagram showing the
different behaviors labeled by their different colors. Red dashed line shows theoretical
cross section in phase space. B. Theoretical OD curves starting at high and low
density, showing extinction. C. Theoretical OD curves starting at high and low density,
showing bistability. D. Theoretical OD curves starting at high and low density, showing
survival. E. Experimental OD curves of a 20% starting resistant fraction at starting
OD 0.1 (blue) and OD 0.6 (red). Here both populations die. F. Experimental OD
curves of a 50% starting resistant fraction at starting OD 0.1 (blue) and OD 0.6 (red).
Here we see normal bistability between the two starting densities. G. Experimental
OD curves of a 80% starting resistant fraction at starting OD 0.1 (blue) and OD 0.6
(red). Both populations survive.
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mixed populations run in our chemostat at a specific drug concentration. We see

below in Figure 4.4A the theoretical phase diagram as above, but now our focus is

on the cross section and fractions with inverse bistability. Again we see theoretical

representations of the different phases in Figure 4.4B,C,D from a cross section of the

phase diagram. In Figure 4.4E,F,G, the different phases are experimentally shown,

with extinction, inverse bistabilty, and survival all represented. These experiments

were run overnight to determine the long scale dynamics.

4.2.5 Removing Inverse Bistability

After studying the inverse bistability, we wanted to observe the dynamics and col-

lective behavior if the reverse inoculum effect was removed, ultimately removing the

inverse bistabilty. As was found in the previous work in our lab, not only do the grow-

ing cells change the pH leading to an increase in drug efficacy, but this change can be

negated by growing the cells in buffered media [3]. By removing this pH change, the

system of two feedback loops should instead just become a single feedback from the

resistant cells, leading to the loss of the inverse bistable phase. This was tested both

theoretically by setting ε1 in Equation 4.2 to 0 and experimentally by running the

same experimental set up as before at the same initial population compositions, but

now in buffered media. From simulations removing the inverse inoculum effect term,

the phase diagram is altered as seen below in Figure 4.5A. Looking at a cross section

in phase space with simulations, at the same drug influx as Figure 4.4, the cross

section no longer has inverse bistability (Figure 4.5B,C,D). Experimental compar-

isons at the same drug concentration and same initial resistant fraction show inverse

bistability in unbuffered media (Figure 4.5E) and normal bistability in buffered me-

dia (Figure 4.5F), indicating the absence of the reverse inoculum effect in buffered

experiments.
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E. F. G.
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Figure 4.4: Model and Experimental Inverse Bistability. A. Theoretical Phase Diagram
showing the different behaviors labeled by their different colors. Purple dashed line
shows theoretical cross section in phase space. B. Theoretical OD curves starting at
high and low density, showing extinction. C. Theoretical OD curves starting at high
and low density, showing inverse bistability. D. Theoretical OD curves starting at
high and low density, showing survival. E. Experimental OD curves of a 2% starting
resistant fraction at starting OD 0.1 (blue) and OD 0.6 (red). Here both populations
die. F. Experimental OD curves of a 11% starting resistant fraction at starting OD
0.1 (blue) and OD 0.6 (red). The high density population dies, while the low density
survives, indicating inverse bistability. G. Experimental OD curves of a 35% starting
resistant fraction at starting OD 0.1 (blue) and OD 0.6 (red). Both populations survive
and go to an intermediate fixed point.
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B. C. D.

E. F.

Figure 4.5: Removing Inverse Bistability Theoretically and Experimentally with
Buffered Media A. Theoretical Phase Diagram showing the different behaviors la-
beled by their different colors. Blue dashed line shows theoretical cross section in phase
space. This phase diagram no longer has inverse bistability due to the removal of the
inverse inoculum effect. B. Theoretical OD curves starting at high and low density,
showing extinction. C. Theoretical OD curves starting at high and low density, show-
ing normal bistability, at a drug influx that previously showed inverse bistability in
the unbuffered case (Figure 4.4C.). D. Theoretical OD curves starting at high and low
density, showing survival. E. Experimental OD curves of a 15% starting resistant frac-
tion at starting OD 0.1 (blue) and OD 0.6 (red), in unbuffered media, showing inverse
bistability. F. Experimental OD curves of a 15% starting resistant fraction at starting
OD 0.1 (blue) and OD 0.6 (red), in buffered media, showing normal bistability.
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4.2.6 Selection for Resistant Cells Before Population Collapse

While we observe final populations surviving at high drug, we wanted to confirm these

final populations are still a mixed population, see what effect the starting population

composition has on the final population composition, and see what changes occur be-

tween experiments started at high and low densities. To study the composition, the

resistant and sensitive cells were fluorescently labeled, similarly to the biofilms, with

a plasmid containing BFP(res) and GFP(sens). Samples from each experimental vial

were analyzed both before and after the experiment with FACS to analyze the popu-

lation composition. Comparing the initial to final population composition allowed us

to calculate the selection coefficient for each sample. Here we analyzed what the se-

lection coefficient- a measure of how much faster one sub-population grows compared

to the other sub-population- for resistant cells. To find the selection coefficient, we

used both the change in the ratios of the population as well as the measurements of

their ODs, shown below For each the sensitive and resistant cells, their growth was

modeled logistically as

SC =
lnRF/RI

log( ODF

1+RF
)− log( ODI

1+RI
)

(4.3)

where SC is the selection coefficient, RF and RI are the final and initial population

ratios from FACS measurements, and ODF and ODI are the final and initial OD

measurements from the chemostat. Using this equation, we calculated the selection

coefficient for each fraction at each drug concentration as well as at high and low

starting densities. A representative graph of selection coefficients is shown below in

Figure 4.6 for the different population compositions at one drug concentration. For

samples were the final population died, there is no selection coefficient, but in both

the high and low OD cases it is clear the highest selection for resistant cells occurs at

the interface between survival and extinction, showing a classic frequency dependent

selection.
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Figure 4.6: Representative Selection Coefficient Selection coefficients over the range of initial
starting fractions for high density (red) and low density (blue) samples. If the final
sample was dead, selection coefficient was set to 0. These samples are a representative
graph for experiments run at a drug reservoir concentration of Ampicillin 100µg/ml.
Selection coefficients were calculated using data from flow cytometry to determine final
population composition as well as density data from the chemostat experiments (see
Eq. 4.3) .

Not only do we see the interesting peak in selection coefficient, but the FACS data

also allowed us to see the final total population. While we expected cooperation to

occur, it was always possible that our resistant cells were able to survive in the drug

while the sensitive cells died, leaving us with a final population of just resistant cells.

From FACS, there was clear final mixed populations. Though the change in the initial

to final fraction did vary widely, particularly increasing the resistant fraction at the

lowest initial resistant fraction samples that lived, the final populations were still a

mixture suggesting global cooperation between the resistant and sensitive cells.

4.2.7 Front Loaded Drug Dosing and Population Composition Effects

In addition to understanding how starting fraction could effect the phase of the sam-

ples, we were also interested in understanding the effects of drug dosing in samples
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starting at the low density (high density samples were too close to stationary phase

and did not show the drastic differences). Motivated by clinical treatments, where

often an antibiotic is administered followed by a recovery time before the next dose,

we wanted to mimic this type of front loaded dosing in our experimental set up.

We continued to run experiments in our chemostat over a range of initial population

compositions with the same drug dosing timing, but the antibiotic concentration of

the reservoirs was increased for the front loaded dose for a set amount of time before

being switched to reservoirs with no antibiotic. While the total drug administered

stays constant over the experiment time, when the drug is administered is changed.

In Figure 4.7 below, the final OD of two experiments is shown, one where each sam-

ple had a constant drug dose and another where the samples had a front loaded drug

dose. In addition to comparing their final ODs (Figure 4.7A), we also show the OD

curves over time overlaid for 3 different fractions (Figure 4.7B, C, D).
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Figure 4.7: Front loaded drug dosing final densities and growth show the interplay
between the two density effects. A. Final OD curves over a range of starting
initial resistant fractions for standard dosing (blue curve) and front loaded drug dosing
(red curve). B-D. Optical Density curves over experiment time for individual fractions.
Blue curves are for the constant dosing experiments, red curves are for the front loaded
dosing experiments. The density curves for the starting resistant fractions that appear
in B-D are marked on figure A.

From the comparisons between the front loaded and constant doses we can see the

interplay between the two different inoculum effects. For Figure 4.7B, the sample

starts with only 2.5% resistant cells and this is a case where a very high front loaded

dose ultimately is less effective at killing the population. Considering our two density

effects and the population composition, Figure 4.7B shows a case where the reverse

inoculum effect dominates as there are so few resistant cells present to contribute to

a resistant inoculum effect. The reverse inoculum effect states that drug becomes

more effective at higher densities, but here we dosed the samples up front, when they

were still at a low density. Thus, the drug was not as effective as it had been in the

sample that was constantly dosed at a lower concentration for the whole experiment

time: a cartoon representation of this can be seen in Figure 4.8A. Conversely, Fig-

ure 4.7C shows a case where the resistant inoculum effect dominates. Here we have
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a larger starting resistant population (10%), so the resistant effect dominates. But

the resistant cells are more effective at a higher density, leading to a lower drug con-

centration. With front loaded dosing, the resistant cells are at a low starting density

and are not as effective at breaking down drug as the constant drug dosing case: a

cartoon of this can be seen in Figure 4.8B. At a high enough resistant fraction, there

are enough resistant cells to overcome the drug and the two samples go to the same

density regardless of dosing strategy (Figure 4.7D).

A. B. 

Figure 4.8: Front Loaded Dosing: Different dominating effects cartoon A. Explanation of
the reverse inoculm effect dominating, the results of which are seen in Figure 4.7B. B.
Explanation of the resistant inoculm effect dominating, the results of which are seen
in Figure 4.7C

Different dosing strategies led to different final densities and we were further inter-

ested in determining the final population composition of the different experiments.

Samples from the front loaded dosing experiments were taken to flow cytometry and

the selection coefficient was measured and compared to that of the constant dosing

experiments. While more of the front loaded dosing samples ultimately lived, Fig-

ure 4.9 shows this does not necessarily correspond to a higher selection coefficient for

resistant cells. With constant dosing there is a clear peak with the highest selection

occurring at the lowest resistant fraction that lives, whereas the front loaded dosing

samples all select for more resistant cells but no one initial fraction stands out as
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drastically as the constant dosing case.

Figure 4.9: Front Loaded and Constant Density Selection Coefficient Selection coefficients
for front loaded dosing samples (red) and constant dosing samples (blue). If the
final sample was dead, selection coefficient was set to 0. While more fractions live
in the front loading case, the selection coefficient does not vary widely across the
different initial fractions, especially when compared to the constant dosing samples.
The selection coefficient was calculated as mentioned above with Eq. 4.3

4.3 Discussion

Using the chemostat and mathematical modeling, we have shown how the different

individual molecular mechanisms- drug degradation via β lactamase and pH changes

from cell growth- can lead to interesting, sometimes counter intuitive, collective be-

havior. More than just seeing the different resistant inoculum effect and reverse

inoculum effect in populations of either all resistant or all sensitive cells respectively,

the experiments showed cooperation between the resistant and sensitive cells as well

as interesting dynamics over time. The model phase diagram showing not only bista-

bilty but the region of inverse bistability indicates the complex interactions happening

between the different inoculum effects and how those effects depend on the popula-

74



tion composition and drug dosing. To study predicted phases, we used chemostat

experiments run over a range of starting population compositions and different drug

concentrations to see experimental regions of bistability and inverse bistability. Using

flow cytometry to measure population composition, we saw evidence for cooperation,

as final populations were still mixed resistant and sensitive cells, and further analysis

of the population change showed the trend of the selection coefficient and the tie

between evolution and ecology. With the highest selection for resistant cells right at

the boarder between population extinction and survival, this shows how ecology- the

interactions between cells, like bistability and dynamics happening before mutations-

has some effect on the selection coefficient which tells us about the evolution of the

population composition and how strongly a particular phenotype is selected in a par-

ticular environment. Beyond studying the effects in a constant drug dosing regime,

the front loaded drug dosing analysis allowed us to observe differences in final pop-

ulations depending on the population composition and the dosing time. With larger

resistant fractions, the populations counter intuitively grew less than populations with

low resistant fractions when treated with a front loaded dose, due to the dominating

resistant inoculum effect that is less effective at low densities. Similarly, populations

with less resistant cells did better with a front loaded dose, due to the dominating

reverse inoculum effect. Selection coefficient analysis of the final populations show a

different trend of selection as well, as the front loaded doses do select for resistant

cells, but there is no peak in the selection coefficient as seen in the constant dosing

experiments.

Our experiments and model aim to study the two different density effects: the re-

verse inoculum effect and the resistant inoculum effect. As with our biofilm work,

we acknowledge the complexity of the system and note we are using a simple math

model specifically to explain these effects we can observe in our experimental work.
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Experiments were also limited to 20-24 hour scans, as the reservoir bottles would need

to be changed for continuing experiments, introducing possible contaminants. When

observing our front loaded dosing experiments, we note we are motivated by clinical

treatments, but we understand that clinical setting often have different dosing regimes

and may utilize multiple different antibiotics or have more complex dosing regimes.

We aimed to elucidate differences that can arise with different dosing strategies and

demonstrate how a specific treatment may take advantage of one strategy of dosing

over the other, depending on the initial population composition.

Our experimental studies have shown the dramatic temporal dynamics of mixed pop-

ulations and the importance of the different density effects. These results suggest

not only the importance of the specific molecular mechanisms, but the complex col-

lective behavior that can arise from the interplay of different molecular mechanisms

and density effects. With different dosing strategies, we can further elucidate how

starting population composition can drastically alter population outcomes. These re-

sults have implications for clinical infections: if high doses are given initially instead

of a constant, lower dose, the infectious population could actually thrive depending

on the population composition. From our findings, further questions regarding other

possible dosing strategies- which can be currently studied with our model- remain

to be studied. With the rise of antibiotic resistant bacteria and the understanding

the resistant and sensitive cells can coexist in planktonic populations, it is critical to

understand how these populations may react to different treatments.
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4.4 Methods

4.4.1 Bacterial Strains, Media, and Growth Conditions

Experiments were performed with OG1RF, a fully sequenced E. faecalis oral isolate.

Resistant and sensitive cells were fluorescently labeled with the plasmid pBSU101.

Resistant cells were labeled with BFP and additionally the plasmid carried the gene

for the enzyme β Lactamase. Sensitive cells were labeled with the fluorescent color

Dasher GFP. Cultures for experiments were made taking single colonies from BHI

agar plates with selection antibiotics and incubated in sterile BHI (Remel) with ap-

propriate selection antibiotic overnight at 37C. For any experiments requiring buffered

media, standard BHI was prepared with the addition of Dibasic Sodium Phosphate

(Fisher) to a concentration of 50 µM.

Continuous culture device experiments were run in our warm room at 30 C. Overnight

cultures were seeded into experiment vials and once cells reached the desired initial

density, experiments were run for 5 hours or overnight (20 hours).

4.4.2 Antibiotics

Antibiotics used in this study included Spectinomycin Sulfate (MP Biomedicals) and

Ampicillin Sodium Salt (Fisher). Spectinomyicn was used in all media to ensure

plasmid upkeep of the fluorescently labeled cells, while Ampicillin was the drug of

interest in our experiments.

4.4.3 Continuous Culture Device

Experiments were performed in a custom built and computer controlled continuous

culture device (CCD) as described in [3]. Briefly, bacterial populations are grown

and monitored in glass vials. Voltage readings are taken every 1.5 seconds in each
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vial using offset pairs of infrared emitter/detector LEDs, which the computer then

converts into an optical density of the population in the vial. Additionally, each vial

is attached to a system of peristaltic pumps that add drug and/or media and remove

excess liquid on a schedule determined by the Drug Dosing Protocol for each specific

experiment. Vials always contain 17 mls of sample (pump system holds volume

constant).

4.4.4 Drug Dosing Protocols

In order to mimic “constant flow” of drug in our experiments, and based on the

speed limitations of our pumping system, we elected to inject drug every 3.75 min-

utes for 7.5 seconds. Increasing or decreasing the “drug flow” then corresponds to

an increase or decrease of the drug concentration that is injected, while holding the

7.5 seconds/3.75 minutes rate steady. Drugs are suspended in BHI media at specific

concentrations, and held in reservoirs connected to the vials by the peristaltic pump

system and tubing.

For experiments where the drug flow is not constant, we employ the above strat-

egy for when drug is required. After the portion of the experiment when drug is

used is over, we then disconnect the pumps from the vials and for 5 minutes flow

through the tubing system fresh media without ampicillin (but still with spectino-

mycin for plasmid retention). This clears the pump system of ampicillin that had not

yet reached the vials. We then reconnect the pumps to the vials and continue with

the 7.5 seconds per 3.75 minutes flow schedule with the non-ampicillin media.

4.4.5 Experimental Mixtures and Set up

Given that we wanted to study the population dynamics of mixed resistant and

sensitive populations, we started each of the vials of the CCD with different resis-
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tant:sensitive fractions. Experimental mixtures were started at 0.1%, 0.5%, 1%, 2.5%,

5%, 7.5%, 10%, 15%, 20%, and 25% resistant population fraction. This was done by

removing a portion of a Dasher GFP tagged sensitive population, and replacing the

same amount from a resistant BFP-β Lacactamase population at the same optical

density. For example, for the 25% resistant vials, 4.25 mLs of the population of sen-

sitive cells was removed once the population reached the appropriate optical density.

4.25 mLs was then taken from a resistant population at the same optical density and

put in the vial that the had the portion removed. Flow cytometry of populations

at the beginning of experiments provides exact percentages for the resistant:sensitive

fractions.

We were also interested in the effect of starting density on the survival of the dif-

ferent mixtures; experiments were started when initial populations had grown from

inoculation to either an optical density of 0.1 or 0.6.

Once cells were mixed at the appropriate density, flow was started using reservoirs

with BHI media at a given ampicillin concentration. For the constant flow dosing,

experiments were run at ampicillin concentrations of 10, 25, 50, 100, 150 µg/ml. The

front loaded drug dosing experiment used reservoirs at an ampicillin concentration of

400 µg/ml for 38 minutes followed by reservoirs with no ampicillin for 4 hours and

22 minutes.

4.4.6 Flow Cytometry

CCD samples were taken to the University of Michigan Flow Core and analyzed

for composition based on fluorescent markers. Samples were taken from the mixed

populations in the vials following the initial mixing as well as 5 hours later at the

end of the experiment. Samples were run through a LSR Fortessa cell analyzer (BD
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Biosciences). Control samples of single colors were also analyzed over time to verify

plasmid retention as samples grew over experiment time. (Figure 4.10)

A. B. 

Figure 4.10: Plasmid Retention from FACS experimentsA. Plasmid retention of Dasher
GFP labeled cells. B. Plasmid retention of BFP labeled cells. Both samples were
measured once every hour starting at time 0 until the experiment finished 5 hours
later. Fluorescence was measured via FACS and compared to the negative control,
showing not only the fluorescent labeling, but the retention of each color. The graph
shows six fluorescent time points (purple-orange), with the last time point on top.
The pink histogram is the negative control for comparison.
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CHAPTER V

Fluorescent Reporter Library for Quantitative

Population Dynamics in Enterococci

5.1 Introduction

To study the collective behavior of a mixed population, it is best to be able to dis-

tinguish between different sub populations. As such, it became apparent early in my

work with E. faecalis the necessity of having a fluorescent library to use in label-

ing my strain. From single cell segmentation and population analysis with confocal

microscopy (chapter 3) to cell counting with FACS and calculations of selection co-

efficients (chapter 4), all of these experiments needed fluorescently labeled cells. As

noted in chapter 1, E. faecalis is a gram-positive pathogenic bacteria, commonly

found in the gut microbiome[1], that has been implicated in a range of infections[2].

With interest in studying these infection bacteria, multiple different plasmids with

different fluorescent markers have been developed and used with E. faecalis [3, 4, 5],

but these all have a different vector backbone and thus a different selection antibi-

otic. In studies requiring multiple, differently labeled cell populations, selecting for

the vector of one color could lead to killing of the population with another vector due

to differing selection antibiotics.
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With the multitude of different fluorescent proteins and expression vectors that exist

for E. faecalis, there were many options to develop the fluorescent library. As such,

multiple options of each blue, red, green, and yellow fluorescent sequences (at least

two) were cloned into the vector backbone pBSU101, replacing the constituent eGFP

with the fluorescent sequence of interest. The multiple options were necessary as E.

faecalis has a low GC content[6, 7]; sequences high in GC, which often work well in

common gram-negative bacteria, like E. coli, may have low expression in E. faecalis.

In addition the sequence limitations, factors such as low oxygen levels and low pH [8]

levels that may be necessary for the cells to grow can decrease the expression in the

bacteria. As E. faecalis is a facultative anaerobe, the bacteria can grow in conditions

not always conducive to high fluorescence. Furthermore, oligomerization of the pro-

teins may lead to their inability to be transported in the cell and photobleaching from

the imaging techniques greatly decrease the intensity of a fluorescent protein[9, 10],

especially if the cell does not make many copies of the fluorescent protein. There

have been efforts to address some of these problems, like oligimerization, and increase

the number of fluorescent protein sequences available [11], but which sequences would

produce the best fluorescence for specific experimental studies of E. faecalis remains

unclear. In order to get the best possible expression both on the microscope and from

the plate reader, multiple sequences coding for similar fluorescent colors were utilized.

Following cloning, extensive testing was done to determine which colors expressed

the best in our strain. In addition to visualizing each color individually on a confocal

microscope, mixtures of two or more colors were grown and imaged to verify the

possibility of experiments involving multiple differently labeled strains or mutants.

Further analysis observed the emission spectra of each color using a multimodal plate

reader and mixtures of 2 colors were unmixed as a proof of concept to show the

possibility of quantifying the sub-populations in multi-labeled populations.
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5.2 Results

5.2.1 Creating the Fluorescent Library

Wanting to create a multitude of fluorescent plasmids that would express well in

E. faecalis as well as all need the same selection antibiotic, I created a library con-

jugating the same plasmid backbone with multiple different fluorescent protein se-

quences. For the development of the library, 11 different plasmids were synthesized

using pBSU101[4] as the plasmid backbone. The plasmid pBSU101 has the fluores-

cent protein eGFP originally as well as a spectinomycin resistance cassette, originally

derived from the plasmid pAT28[12]. eGFP was replaced with 8 other fluorescent

proteins, 2 optimized fluorescent proteins, and also recircularized without any color.

The no color plasmid was used as a control to determine the intensity of the labeled

cells. A schematic of the plasmid is shown below (Figure 5.1).

5.2.2 Color Spectra

To determine the fluorescent spectra of each color, as well as compare protein se-

quences coding for similar colors (ie Rudolph RFP and Fresno RFP, etc.), each indi-

vidual color was scanned using a multimodal plate reader to obtain the spectra for

that color. Overnight cultures of E. faecalis, each labeled with a different fluorescent

plasmid, were diluted and plated in 96 well plates. The OD and fluorescence were

measured as they grew in the plate reader (for excitation and emission wavelengths,

see Methods). The graph for each color shows the spectra for that color, normalized

to the cells with the no color plasmid.

During initial creation of the plasmids, it was unclear which fluorescent sequences

would work best in E. faecalis : as such, multiple plasmids that should fluoresce the

same color were created. From these spectra below in Figure 5.2, it is clear to see
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Figure 5.1: Cartoon representation of the plasmid library created. The library was created
with the vector backbone of pBSU101, a plasmid with spectinomycin resistance and
constitutively expressed eGFP behind a CAMP-factor gene (CFB) promoter. Using
Gibson Assembly, the fluorescent eGFP sequence was replaced with 10 other color
sequences. The plasmid was also recircularized with no color.

that some colors are more intense (ie Dasher GFP when compared to Comet GFP

or eGFP) than others. In addition to seeing which colors were brightest and best,

we also wanted to see which spectra overlapped, indicating mixtures of those colors

would be harder to separate.

5.2.3 Optimized Colors

While having differently labeled fluorescent colors had succeeded, we wanted to opti-

mized some of the colors to see if we could increase the intensity of the fluorescence.
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A. 

B. 

Figure 5.2: Representative OD curve and the Fluorescent spectra of cells labeled with
each color. A. OD curve with markers showing the OD of each spectra. B. Color
spectra. The color represented is shown in the title of the graph. The lines of each
spectra show the fluorescence over OD: based on the corresponding time marked by
that color on the OD curve as measured by a multimodal plate reader. The excitation
and emission wavelengths used can be found in the Methods. The relative intensity is
calculated by subtracting the WT intensity measurement at each color from that color
intensity measurement, then dividing this subtracted intensity by the WT intensity.

We wanted to study mixtures of multiple colors and wanted the intensity of the differ-

ent colors to be comparable. Using the spectra from each color (Figure 5.2), Dasher
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GFP was found to be a very intense green, while none of the blue or re sequences

appeared to give a intense color above background. With that in mind, BFP and

Rudolph RFP were selected for optimization, and the sequence of each protein was

altered to increase the GC content of the sequence with the goal of better expression

after optimization: the sequence still coded for the same amino acids, but the codons

used were ones more commonly seen in E. faecalis. Following cloning of the optimized

sequences onto the pBSU101 backbone, the optimized plasmids transformed into our

strain of interest, OG1RF. Using the plate reader, we again diluted overnight samples

of the cells and tracked both the OD over time as well as the fluorescence spectra

over time. Figure 5.3 below shows a comparison over time of BFP and Optimized

BFP, as well as Rudolph RFP and Optimized Rudolph RFP. While the intensity at

stationary phase (purple) does not seem largely different between the normal and

optimized colors, it is clear, especially with the optimized BFP, that the optimized

strain is more intense at lower ODs.

A. B. 

C. D. 

Figure 5.3: Fluorescence spectra for non-optimized and optimized labeled strains The
fluorescent spectra of BFP (A), Optimized BFP (B), Rudolph RFP (C), and Optimized
Rudolph RFP (D) measured on a multimodal platereader (for excitation and emission,
see methods). The lines of each spectra show the fluorescence over OD: based on the
corresponding time marked by that color on the OD curve as seen in fig 5.2A.
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5.2.4 Unmixing Two Color Mixes

Wanting to test if we were able to unmix different 2 color mixes, representative

mixtures of 2 colors were chosen by studying their color spectra in Figure 5.2. Looking

at the spectra it was clear some colors, like the YFPs and GFPs, had very similar

emission wavelengths and would not be easy to unmix, while other spectra were far

enough apart to try unmixing. For the mixes chosen, triplicate mixes of 25:75, 50:50

and 75:25 were scanned at stationary phase using the multimodal plate reader (see

Methods for excitation and emission). Controls of single colors were used to unmix the

population and the triplicate unmixing results were averaged together. The results of

a unmixing is shown below. While some mixes are clearly better suited for unmixing

than others, most sets are within a reasonable range.

D. E. F.

B.A. C.

BFP

GFP

BFP

YFP

CFP

GFP

CFP

RFP

GFP

RFP

RFP

YFP

Figure 5.4: Results from unmixing 2 color mixes at 25:75, 50:50, and 75:25. The black
dashed lines shows 1:1. A. BFP and Dasher GFP, B. BFP and Cratchit YFP, C.
Cindy Lou CFP and Dasher GFP, D. Cindy Lou CPF and Rudolph RFP, E. Dasher
GFP and Rudolph RFP, F. Rudolph RFP and Cratchit YFP. To create each mix,
the appropriate amount of each indiviudal color was added in an eppendorf tube,
vortexed, and then alliquoted into the 96 well plate. For each unmixing, three wells
were unmixed as noted in the methods and averaged together, along with finding the
SEM. Which two colors were unmixed are represented by the colored circles on the
bottom right of each graph.
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5.2.5 Microscopy

With many of our experiments looking to utilize confocal microscopy, we wanted

to visualize the colors using our confocal microscope. Each sample contained cells

labeled only one fluorescent color to verify the colors. Cells were grown overnight,

diluted, and then plated on glass coverslips to image the fluorescence on a single cell

level, Figure 5.5.

With the success of single cell images, we wanted to test the capabilities to image

multiple colors at the same time as we are ultimately interested in imaging a mixed

population. To test this, biofilms of either 50:50 mixes of two colors, or 33:33:33 mixes

of three colors were grown overnight on a coverslip and imaged the next day using

the same confocal microscopy protocols that were used to take the individual color

images. Representative 2D slices from these biofilms are shown below in Figure 5.6.

While these are not every color mixture possible, these were run as a proof of principle

that we could distinguish between multiple colors at the same time.

Similarly to our plate reader experiments studying the differences between the opti-

mized and non-optimized colors, we also wanted to observe and compare the optimized

strains on the confocal to their non-optimized counterparts. Initial comparisons were

made using diluted overnight samples: confocal images of each strain were taken us-

ing the exact same protocol and laser power and can be seen in Figure 5.7A-B (BFP)

and D-E (Rudolph RFP). To study the intensity of the samples over time, images

were also taken as the samples grew from an OD of about 0.05 to > 1.0. Overnight

samples were diluted and imaged during growth to see if the intensity changes that

can be seen during growth on the plate reader (Figure 5.3) could also be seen on the

confocal. The intensity of each of these images were determined and comparisons

between the intensity optimized and non-optimized were made at each time point.
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A. B. C. 

D. E. F. 

H. I. G. 

1 μm

1 μm 1 μm

1 μm 1 μm

1 μm

1 μm 

1 μm1 μm

Figure 5.5: Single cell images of cells labeled with each different fluorescent plasmid. A.
BFP, B. CindyLou CFP, C. Cratchit YFP, D. Yeti YFP, E. eGFP, F. Comet GFP, G.
Dasher GFP, H. Rudolph RFP, I. Frenso RFP. Cells were grown overnight and diluted
to allow clear imaging of single cells. Images were taken with our Zeiss confocal
microscope with the excitation laser and emission spectra noted in the methods.

10 μm10 μm 10 μm

A. B. C. 

Figure 5.6: Representative 3D Confocal Images of Mixed Biofilms A. BFP/Rudolph RFP,
B. Dasher GFP/Rudolph RFP, C. BFP/DasherGFP/Rudolph RFP. Mixed Biofilms
were grown on coverslips overnight ( 24 hours) in a 6 well plate and then 2D stacks of
images were taken and complied to give 3D final images.
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From these intensity measurements, we can see a shift to the right in the peak of the

intensity of cells at an intermediate time point in both the BFP to Optimized BFP

case and the Rudolph RFP to Optimized Rudolph RFP case. The results are shown

below in Figure 5.7.

1 μm

1 μm

A. B.

D. E. F.

C.

1 μm

1 μm

1 μm

1 μm

Figure 5.7: Comparisons of cells labeled with Non-optimized and optimized strains
A. BFP B. Optimized BFP C. Frequency versus normalized intensity measurement
of BFP (dark blue) and Optimized BFP (cyan) at an intermediate time point. D.
Rudolph E. Optimized Rudolph F. Frequency versus normalized intensity measure-
ment of Rudolph RFP (red) and Optimized Rudolph RFP (gray) at an intermediate
time point. For both of the intensity graphs, the solid line shows the mean intensity of
all pixels for the non-optimized color and the dashed line is the mean intensity of all
pixels for the optimized color. Intensity measurements were calculated from confocal
images of the cells during exponential growth.

5.3 Discussion

Fluorescence reporting to visualize cell populations has been a staple in the microbial

experimental community for many years. However, some species have much more

developed libraries than others, and we set out to create a library specifically for use

with the low GC content, gram positive E. faecalis. We were not only able to develop

a fluorescent reporter library, but were further able to show possible uses for the li-
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brary, such as analyzing mixtures of cells with a multimodal plate reader or studying

multi-labeled biofilms. With our optimized labeled strains, we were able to not only

see the fluorescent spectra sooner during exponential growth in the plate reader but

we also saw the intensity peak of the optimized strains shift to the right compared

to the non-optimized strains during exponential growth on the confocal microscope.

Using the backbone pBSU101 and replacing the eGFP with 8 other fluorescent se-

quences, 2 optimized fluorescent sequences, or recircularizing the plasmid without any

fluorescent sequence, the library expresses well in E. faecalis and is intense enough

to see both on a plate reader or with a confocal microscope.

Through optimizing two sequences of our library we observed an increase in the inten-

sity of the fluorescence earlier in the growth of each optimized color when compared

to the non-optimized one. We were still limited by the maximum intensity at sta-

tionary phase though, leading to complications in unmixing multiple colors. We were

also limited as many of the colors have similar emissions, particularly the YFPs and

GFPs, leading to our inability to unmix samples of just YFP and GFP.

Further experiments need to be done to determine if 3 color mixtures can be analyzed,

but if the colors are chosen based on their spectra 3 color unmixing from a plate

reader experiment may be possible. Future unmixing of multiple strains may also

be possible using FACS, though those experiments were not done in this analysis.

Depending on the requirements of the population to analyze or if the analysis needs

to be done during stationary or exponential growth, the optimized sequences provide

a more intense spectra sooner during growth and future unmixing could focus on

exponentially growing samples of either two or three colors using the optimized colors

instead of the non-optimized colors. With the development of both the 8 additional

fluorescent colors to the library, the two optimized colors, and a recircularized no
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color plasmid for controls, we have not only created a fluorescent library for use in

E. faecalis, but further showed the capabilities and possible uses to study population

compositions.

5.4 Methods

5.4.1 Bacterial Strains, Media, and Growth Conditions

Experiments and fluorescent characterization were performed in OG1RF, a fully se-

quenced E. faecalis oral isolate. Cultures for experiments were made taking single

colonies from BHI (Remel) agar plates with selection antibiotics and incubated in

sterile BHI with appropriate selection antibiotics overnight at 37◦C.

5.4.2 Antibiotics

Spectinomycin Sulfate (MP Biomedicals) was the selection antibiotic used during all

OG1RF fluorescent characterization and experiments. Kanamycin Sulfate (Fisher)

was used to select prior to minipreps for plasmids which were used for their fluorescent

sequences.

5.4.3 Cloning and Gibson Assembly

Starting with the plasmid pBSU101, a fluorescent plasmid designed for enterococci

that uses the promoter cfb to drive fluorescence[4], Gibson Assembly was done to

replace the existing color (eGFP) with eight other fluorescent proteins[13]. Fluo-

rescent proteins were taken from existing plasmids that were miniprepped (Qiagen),

linearized with enzymes (NEB), and underwent PCR to amplify the fluorescent se-

quence. Primers used for PCR and Gibson Assembly for the 8 standard fluorescent

plasmids, as well as those for the pBSU101 backbone:these are the same for all op-

timized and non-optimized colors, are shown below in table 1 and 2. Table 3 shows
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the primers used for PCR and GA of the optimized plasmids. Table 3 also has the

primers for the recircularized, no color plasmid.

Name Sequence Target

pBSU 101-
For

5’-AGC GGC CGC GAC TCT
AGA G-3’

pBSU 101 back-
bone forward

pBSU 101-
Rev

5’-GGT GGC GAC CGG TAC
CCG-3’

pBSU 101 back-
bone reverse

BFP-pBSU
101 For

5’-CCC GGG TAC CGG TCG
CCA CCA TGG TGT CTA AGG
GCG AAG-3’

BFP and pBSU
101 overlap for-
ward

BFP-pBSU
101 Rev

5’-ACT CTA GAG TCG CGG
CCG CTA TTA AGC TTG TGC
CCC AG-3’

BFP and pBSU
101 overlap re-
verse

CL CFP-
pBSU 101
For

5’-CCC GGG TAC CGG TCG
CCA CCA TGT CGT CTG GTG
CCA AAT TG-3’

CFP and pBSU
101 overlap for-
ward

CL CFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAC TGA TAC GTG
TCC AGA TCA AC-3’

CFP and pBSU
101 overlap re-
verse

Cratchit
YFP-pBSU
101 For

5’-CCC GGG TAC CGG TCG
CCA CCA TGA CGG CAT TGA
CGG AAG-3’

YFP and pBSU
101 overlap for-
ward

Cratchit
YFP-pBSU
101 Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAG CGA TAC GTC
TCC AGG-3’

YFP and pBSU
101 overlap re-
verse

Yeti YFP-
pBSU 101
For

5’-CCC GGG TAC CGG TCG
CCA CCA TGA CGG CAT TGA
CGG AAG-3’

YFP and pBSU
101 overlap for-
ward

Yeti YFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAG CGA TAC GTC
TCC AGG-3’

YFP and pBSU
101 overlap re-
verse

Table 5.1: Primers used for PCR and Gibson Assembly of the 8 different fluorescent
library plasmids. Cindy Lou CFP: CL CFP. Backbone primers for used for all the
colors are listed here.

Colors used were Cindy Lou CFP, Yeti YFP, Cratchit YFP, Dasher GFP, Comet GFP,
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Name Sequence Target

Comet GFP-
pBSU 101 For

5’-CCC GGG TAC CGG TCG
CCA CCA TGA CGG CAT TGA
CGG AAG-3’

GFP and pBSU
101 overlap for-
ward

Comet GFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAA CGG TAA GTT
TCC AGG TC-3’

GFP and pBSU
101 overlap re-
verse

Dasher GFP-
pBSU 101 For

5’-CCC GGG TAC CGG TCG
CCA CCA TGA CGG CAT TGA
CGG AAG-3’

GFP and
pBSU101 over-
lap forward

Dasher GFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAC TGA TAC GTG
TCC AGA TC-3’

GFP and pBSU
101 overlap re-
verse

Rud RFP-
pBSU 101
For

5’-CCC GGG TAC CGG TCG
CCA CCA TGT CCC TGT CGA
AAC AAG-3’

RFP and pBSU
101 overlap for-
ward

Rud RFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAC GTT TCT TTA
ACG TCG AC-3’

RFP and pBSU
101 overlap re-
verse

Fresno RFP-
pBSU 101
Rev

5’-CCC GGG TAC CGG TCG
CCA CCA TGA ATA GCC TGA
TTA AAG AGA ATA TG-3’

RFP and pBSU
101 overlap for-
ward

Fresno RFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TTG TAC AGT TCG
TCC ATA C-3’

RFP and pBSU
101 overlap re-
verse

Table 5.2: Primers used for PCR and Gibson Assembly of the 8 different fluorescent
library plasmids, continued. Rudolph RFP: Rud RFP.
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Rudolph RFP, and Fresno RFP taken from the Protein Paintbox plasmids (ATUM,

[14, 15]). BFP was taken from the plasmid mTag-BFP2 (Addgene, [16]). BFP and

Rudolph RFP were codon optimized for expression in E. faecalis. Optimization of

BFP was done with Geneart (Fisher) and optimization of Rudolph RFP was done

with AUTM. In addition to replacing the color, pBSU101 was also recircularized

without any color but the same spectinomycin resistance marker.

Following Gibson Assembly of the different plasmids, the plasmids were originally

transformed into the high efficiency E. coli cloning strain C2987 (NEB) via heat shock

transformations[17]. Following successful transformations, plasmids were miniprepped

from the C2987, sequence verified, and transformed into the E. faecalis strain OG1RF,

with electorporation before characterization[18].

5.4.4 Plate Reader Experiments

Color spectra were measured using an Enspire multimodal plate reader. Overnights

of cells with each color, as well as cells with the no color plasmid, were diluted to

an optical density (OD) of 0.01. Each color was run in triplicate with the emission

spectrum and OD measured every 45 minutes until the cells reached stationary state.

The excitation and emission used for each color are shown below in the table. Fol-

lowing the scan, results were normalized to the no-color cells and the spectra were

plotted.

5.4.5 Mixture Analysis and Unmixing

Mixtures of 2 color stationary state fluorescently labeled cells were scanned on the

plate reader using the same excitation as table 1. For emission, 6 wavelengths captur-

ing the peak of each color (found using the entire spectra data) were used to unmix.

The exact wavelengths used are shown in table 4. The samples were created after
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Name Sequence Target

Opt BFP-
pBSU 101
For

5’-CCC GGG TAC CGG TCG
CCA CCA TGG TTT CAA AAG
GTG AAG-3’

Opt BFP and
pBSU 101 over-
lap forward

Opt BFP-
pBSU 101
Rev

5’-ACT CTA GAG TCG CGG
CCG CTG TTT AAT TTG TGA
CCT AAT TTT G-3’

Opt BFP and
pBSU 101 over-
lap reverse

Opt Rudolph
RFP-pBSU
101 For

5’-CCC GGG TAC CGG TCG
CCA CCA TGT CAT TAT CAA
AAC AAG TTT TAC-3’

RFP and pBSU
101 overlap for-
ward

Opt Rudolph
RFP-pBSU
101 Rev

5’-ACT CTA GAG TCG CGG
CCG CTT TAT GTT TCT TTA
ACA TCA ACT G-3’

RFP and pBSU
101 overlap re-
verse

pBSU 101-
Section1
For

5’-CGG AGC CTA TGG AAA
AAC GCC AGC AAC GCG GCC
TTT TTA CG-3’

Overlap: section
1 and section 2
forward

pBSU 101-
Section1
Rev

5’-ACT CTA GAG TCG CGG
CCG CTG GTG GCG ACC GGT
GGT ACC CG-3’

Overlap: section
1 and section 2
reverse

pBSU 101-
Section2
For

5’-AGC GGC CGC GAC TCT
AGA-3’

pBSU 101 sec-
tion 2 forward

pBSU 101-
Section2
Rev

5’-GCG TTT TTC CAT AGG
CTC-3’

pBSU 101 sec-
tion 2 reverse

Table 5.3: Primers used for PCR and Gibson Assembly of the optimized and no color
plasmids. For the no color plasmid, the backbone was PCR in two separate pieces
and Gibson Assembled back together.
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Color Excitation (nm) Emission (nm)
BFP 401 440-530

CindyLou CFP 400 450-580
Yeti YFP 500 520-580

Cratchit YFP 500 520-580
Comet GFP 480 500-570
Dasher GFP 480 500-570

eGFP 470 490-560
Rudolph RFP 545 565-625
Fresno RFP 545 565-625

Table 5.4: Excitation and Emissions used for the plate reader full spectra. Due to limi-
tations of the plate reader, excitation and emission wavelengths must be at least 20 nm
apart. We found these protocols to capture the peak of most spectra.

diluting the stationary state cells to the same OD and mixed at known ratios.

Using Matlab, intensity of each fluorescent channel was used to fit the equation, using

a least-squares fitting approach[19]:

M =
N∑
i=1

ci ∗mi (5.1)

where M is the measured intensity matrix from the mixtures, there are N total colors

in the mixture, mi is the intensity matrix for color i and ci is the constant representing

how much of color i is in the total mixture. The ci’s add to 1.

Color Excitation (nm) Emission (nm)
BFP 401 440-595

CindyLou CFP 400 495-520
Cratchit YFP 500 525-550
Dasher GFP 480 510-535

Rudolph RFP 545 585-610

Table 5.5: Excitation and Emissions used for the plate reader unmixing experiments.
Due to limitations of the plate reader, excitation and emission wavelengths must be at
least 20 nm apart. Emissions wavelengths were scanned every 5 nm, giving us a total
of 6 wavelengths around the peak of each color.
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5.4.6 Confocal Microscopy

Samples for confocal imaging were grown overnight, diluted 1:5 in fresh BHI me-

dia with spectinomycin, and grown for 30 minutes before imaging with a LSM 700

confocal microscope (Zeiss), 40x oil objective. The confocal setup has four different

excitation lasers. Table 2 below shows the different excitation laser used as well as

the color spectra protocol used for emission.

Color Excitation Laser Laser Power Emission Spectra
BFP 405 nm 5.0 mBFP

CindyLou CFP 405 nm 5.0 mBFP
Yeti YFP 488 nm 1.0 Lucifer Yellow

Cratchit YFP 488 nm 1.0 Lucifer Yellow
Comet GFP 405 nm 5.0 eGFP
Dasher GFP 488 nm 0.5 eGFP

eGFP 488 nm 0.5 eGFP
Rudolph RFP 555 nm 5.0 mStrawberry
Fresno RFP 555 nm 5.0 mStrawberry

Table 5.6: Excitation laser and emission spectra used for the confocal experiments. The
Zeiss software comes loaded with preset emission spectra and the closest ones to the
estimated emission spectra for each fluorescent plasmid were used.

Mixed biofilms of 2 or 3 colors were also grown to show the possibility of imag-

ing multiple colors at the same time. Overnights of each color were diluted 1:100

then mixed in ratios of 50:50 (for 2 color biofilms) or 33:33:33 (for 3 color biofilms).

The mixtures were grown in 6 well plates overnight, removed after 24 hours, and the

biofilm imaged using z-stack protocol of the confocal microscope.

To compare optimized color fluorescent intensity to the standard color fluorescent

intensity, we measured fluorescence throughout the growth process. Overnight cul-

tures were diluted 1:100 in fresh BHI with spectinomycin, grown for 1.5 hours, and

then samples imaged every hour for 15 hours. Boundaries of each cell were selected

from each image using imageJ. The pixel intensity within each cell boundary was
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measured in Matlab to determine intensity per cell at the different growth stages.

Pixel intensities are represented as 16-bit integers. We normalize their intensities to

a maximum value of 50,000. Frequencies are normalized to the highest frequency of

pixel intensity values within the range of 0 to 50,000. Normalization of the frequencies

was done for optimized and non-optimized distributions independently. In addition

to generating histograms for the range of intensities, we also averaged each set of

pixel intensities to obtain the mean intensity for each optimized and non-optimized

distributions.
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CHAPTER VI

Conclusions

My research has shown the interesting, emergent properties that can arise in bacterial

communities. Drawing on understanding of the specific molecular mechanisms that

are important to an individual cell’s response to an environment- like an antibiotic

present- my work has focused on studying the effects of these small mechanisms on

a larger length scale, in communities of cells either in surface attached biofilms or

planktonic cultures. I have worked to bring together models and simulations with

experimental wet lab studies to not only observe the interesting behaviors, but also

try to develop a set of rules and parameters that describe the behavior.

To begin studying these types of emergent behaviors, all sensitive biofilms at sub-

inhibitory concentrations of antibiotics were studied. While biofilms could be more

complex- like many species biofilms or biofilms dosed with many drugs- studying

these simple biofilms at low antibiotic concentrations led to interesting peak behavior

in biofilm mass, but this behavior only occurred when cell wall synthesis inhibitors

were used. Further study tied this peak behavior to an increase in cell lysis and

extracellular DNA (eDNA). From previous work studying E. faecalis biofilms grown

without any antibiotic present, eDNA was noted to be a critical component of biofilm

formation and growth. Using antibiotics that were known to disrupt the cell wall,
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the eDNA present in the biofilm increased and planktonic cells were able to take ad-

vantage of this eDNA and attach to the biofilm, driving up the total cell mass of the

biofilms. However, this behavior was seen as a peak, indicating the trade off between

cells lysis and releasing eDNA while also killing the planktonic cells that need to be

present to take advantage of the eDNA. These molecular effects were not only seen

experimentally but modeled as well. The model created testable predictions that ex-

periments were able to verify, studying the effect of different lysis inhibitors to shift

the peak to higher drug concentrations or DNAse to break down the beneficial eDNA

and decrease the peak. The trade offs between beneficial lysis and cell death lead to

interesting counter intuitive behaviors that I wanted to continue studying in biofilm

systems.

Moving beyond the sub-inhibitory antibiotic regime, the biofilm composition becomes

more important to the final outcome. Using mixed populations of fluorescently la-

beled sensitive and resistant cells, where resistant cells produce an enzyme that breaks

down the antibiotic, I grew biofilms of varying compositions both with and without

antibiotic present. Using confocal microscopy, I analyzed both the total biofilm mass

as well as the final compositions of the biofilms and the spatial arrangement of the

cells. The presence of the molecular resistance mechanism leads to cooperation on a

single cell level. Not only does the final composition still contain sensitive cells, but

spatial analysis shows the organization of sensitive cells close to resistant cells in the

presence of drug. Similar to the previous biofilm work, I also developed a stochastic

agent based model to mimic biofilm growth and spatial organization. The sensitive

cells in the model experienced a cooperative effect when their local neighborhoods

were enriched for sensitive cells, and introducing this coupling into the model led to

very similar organizations between the model and experimental results.
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Using the same bacterial mixtures but studying the population planktonically instead

of in biofilms, the spatial component is no longer relevant, now replaced by density

effects. In this mixed population, there were two different density effects of interest,

the reverse and resistant inoculum effect. The reverse inoculum effect is caused by

the pH change cell populations undergo as they grow. This decrease in the pH ul-

timately increases the effectiveness of the drug ampicillin, the antibiotic of interest

in this study. For the resistant inoculum effect, the presence of resistant cells in the

population introduce the enzyme beta lactamase into the system, an enzyme that

can degrade ampicillin and decrease the drug effectiveness. With these two mecha-

nisms at play, our system is defined by the feedback between the two effects; feedback

that is dependent on the composition and density of the system. Again, I created a

model accounting for these two different effects and studied the different phases in

the simulation to help guide the experimental studies. Using a chemostat bioreac-

tor to monitor the population growth as well as specifically administer antibiotics to

the populations, we measured regions of both bistability and inverse bistability and

showed them to be dependent not only on the initial population composition and

density but also the antibiotic concentration. Flow cytometry analysis showed the

cooperation in the population, as the final compositions still contained sensitive cells,

though often changed from their initial compositions- and the change was quantified

by a selection coefficient. Front-loaded dosing experiments further explore this com-

plex phase space, showing the effects of both population density and composition.

The two different density effects caused by the molecular mechanisms leads to com-

plex, collective behavior.

To study these different collective behaviors, I also developed and optimized a flu-

orescent reporter library for E. faecalis. As a necessity to distinguish between the

resistant and sensitive cells in analysis of biofilms and planktonic cultures, I used
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Gibson Assembly to develop the different fluorescent plasmids on the same vector,

ensuring that the selection antibiotic for the fluorescence was constant between the

different colors and allowing the growth of multi-color cultures. Further analysis led

to optimizing two of the colors as well as testing mixtures of multiple colors to un-

mix the population composition. The creation of the library provided the ability to

analyze mixed biofilms and planktonic cultures and evaluate their collective behaviors.

While our experimental work allows us to quantify the different behaviors we observe,

there are limitations due to being in a controlled lab environment. E. faecalis may

appear in complex communities in nature that have other outstanding factors that

effect their final outcome. In clinical settings, the treatments often must be done

quickly and finding the optimal dosing strategy may not be practical on the time

scale. But future work extending on the findings here can begin to address those

concerns. Complex communities of multiple species can be studied in the lab envi-

ronment, and in vivo model systems such as mice or rats could be used to gain more

clinical focused insight. By taking the same quantitative approach we currently use

in the lab and expanding the systems we use, we can begin to answer some of the big

questions facing antibiotic resistance and bacterial populations.

Collective behavior emerges from smaller scale interactions and often leads to inter-

esting, unexpected population level outcomes. Looking into evolution, we find many

cases where a microscopic effect can have macroscopic consequences, and this trend

continues in the previous studies. In the work presented, not only is a community,

collective behavior seen- a peak in biofilm mass at low drug, spatially organized mixed

biofilms at high drug, or inverse and normal bistability in planktonic cultures- but

all of the behaviors can be tied to specific molecular mechanisms- presence of eDNA,

spatial cooperation from enzymatic drug degradation, or competing inoculum effects.
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Motivated by previous works suggesting cooperation occurs in bacterial systems, my

work has extended the understanding of cooperation and how it appears- either in the

eDNA present due to other cells dying and local neighborhoods on a single cell level in

spatially fixed biofilms or globally as part of density effects in well-stirred planktonic

cultures. Collective behavior can drastically alter bacteria population outcomes and

learning and understanding these effects, as well as the smaller scale mechanisms that

cause them, is an important next step in advancing our understanding of bacterial

community dynamics.
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