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ABSTRACT

Automotive OEMs have responded to energy and environmental concerns with

mass-produced Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles

(PHEVs), and Battery Electric Vehicles (BEVs) that satisfy various customers de-

mands. While the sales volume of these vehicles continues to climb, OEMs recognize

that Fuel Cell Vehicles (FCVs) could be the ultimate solution to electrification of

personal transportation. Thus, they have forged ahead with developing commercial

FCV technologies. However, several challenges exist in bringing Fuel Cell technology

to mass production. Aside from steep costs, energy management for achieving total

optimal system efficiency in real-time and under all driving conditions is still under

development. There is room for improvement in controlling the transient power bal-

ance between the Fuel Cell System (FCS), high voltage battery, and driver demand,

calling for a systematic framework and new tools to understand and address the FCS

dynamic effects. This dissertation is devoted to providing a comprehensive framework

for analyzing the dynamic effects of FCS on optimal energy management applications,

and developing a hierarchical control framework for real-time energy management.

Dynamic characteristics of a Proton Exchange Membrane Fuel Cell (PEMFC)

system can impact fuel economy and load following performance of an FCV, especially

if these dynamics are not considered when designing the top-level energy management

strategy. To quantify the effects of FCS dynamics on optimal energy management,

Dynamic Programming (DP) is adopted in this dissertation to derive optimal power

split strategies at two levels: Level 1, where the FCS dynamics are ignored; and Level

2, where the FCS dynamics are incorporated. Analysis is performed to quantify the
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differences between these two strategies to understand the effects of FCS dynamics.

The results show that ignoring slow FCS dynamics in DP can lead to several problems,

including deteriorated power tracking, violation of charge sustaining performance, and

loss of fuel economy.

For the FCVs with fast power dynamics, an optimization-oriented supervisory con-

troller based on Pontryagin’s Minimum Principle (PMP) is proposed. The Adaptive-

PMP (A-PMP) method inherits the advantages of model-based optimization to formu-

late a Hamiltonian and convert the trajectory optimization problem into pointwise-in-

time optimization problem, where the co-state value is estimated and adapted based

on average power and total travel time. A-PMP is evaluated on a high fidelity FCV

powertrain model. Comparing to the default baseline energy management method,

A-PMP yields better performance in fuel economy. Furthermore, a preliminary vehi-

cle test shows up to 5.9% of improvement in fuel economy over an OEM’s rule-based

strategy.

For the FCVs with slow power dynamics, an online energy management algorithm

is proposed to mitigate the dynamic effects of FCS while maintaining a near-optimal

fuel economy. The A-PMP-Model Predictive Control (APMP-MPC) scheme includes

a top level power planning controller (A-PMP) and an intermediate level controller

(MPC) to handle FCS transient dynamics. The proposed APMP-MPC is tested on

an FCV powertrain model with simplified FCS dynamics. Simulation results demon-

strate improvements in fuel economy on representative driving cycles under the as-

sumption of prescient load information. Moreover, the effects of load prediction error

on the APMP-MPC fuel economy performance are evaluated. Requirements on load

prediction are identified to maintain the effectiveness of the proposed APMP-MPC

algorithm for FCVs energy management. Finally, the sensitivity of the prediction

error on fuel economy is shown to be attenuated by incorporating a rate limiter.
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CHAPTER I

Introduction

1.1 Background and Motivation

Vehicle electrification is the key element of a broad portfolio for building a com-

petitive, secure, and sustainable clean energy economy. To address the need for

sustainable energy and a healthy environment, the development and application of

electrified vehicles have been surging worldwide (Fig. 1.1). Electrified vehicles, such

as Plug-in Hybrid Electric Vehicles (PHEVs) or Hybrid Electric Vehicles (HEVs)

that use Internal Combustion Engines (ICEs) as the primary power source and high

power batteries as the supplemental power source, have demonstrated better overall

vehicle fuel economy compared to conventional vehicles [1, 2]. In addition to these

fuel efficient vehicles, pure Battery Electric Vehicles (BEVs) that use batteries as the

sole power source also play an important role in vehicle electrification [3, 4]. How-

ever, as PHEVs and HEVs still rely on traditional ICE and Electric Vehicles (EVs)

are limited by charging rates and driving range, the need for clean, sustainable, and

mass produced vehicles has never been greater. FCVs are considered as one of the

promising solutions to electrification of personal transportation [5, 6]. FCVs use hy-

drogen, which is considered as zero-carbon fuel, that can be produced from renewable

resources [7]. To reduce Greenhouse Gas (GHG) emissions by 80 percent of 2005

levels in the transportation sector, FCVs have the potential to dominate 50% of the
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Figure 1.1: Evolution of the global electric car stock, 2013-2017 [8].

automotive market by 2050, which is shown in Fig. 1.2.

FCVs use fuel cell stacks as power generation units, which convert chemical en-

ergy into electrical energy through an electrochemical process. Among all the fuel cell

types, the Proton Exchange Membrane Fuel Cell (PEMFC) is the primary candidate

(Fig. 1.3) for FCVs because of its low cost, fast dynamic response capability (com-

pared to other fuel cell technologies), and technology maturity [7, 10]. Despite these

advantages, PEMFCs have limitations compared to conventional internal combustion

engines, critical among which are slow dynamic properties [11]. These limitations

are constraining because pushing a PEMFC to meet fast load change demands could

affect the service life of an FCV. To address these limitations, most FCVs developed

by automotive manufacturers are of hybrid type, for which a battery pack or other

energy storage devices are integrated to complement the fuel cell operation, making

FCV an HEV. To meet the stringent performance and reliability requirements of

an HEV for diverse driving scenarios, a system level energy management strategy is

needed to coordinate the subsystems involved and optimize system efficiency while

maintaining safety, drivability and performance in terms of other vehicle attributes
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Figure 1.2: On road passenger car scenario required to reach 2050 goal [9].

[12]. Even though system level energy management strategy is well-explored for tra-

ditional HEVs, there are special challenges for FCVs: the slow transient response of

the Fuel Cell System (FCS) to the change in power requests imposes a major perfor-

mance limitation on drivability and fuel efficiency [14], and most likely will require

predictive functions in the control strategy to mitigate the potential delays. Thus,

the goal of this dissertation is to address the fundamentals of the energy management

and transient power controls in fuel cell electrified powertrain applications, and to

develop advanced controls that enable optimal system energy efficiency and robust

powertrain operations.

1.2 General Background on FCVs

A typical fuel cell powertrain comprises an FCS, an electric energy storage system,

such as a lithium-ion battery pack and an electric drivetrain, as shown in Fig. 1.4.

Since the fuel cell powertrain only has electric path, it can be treated as a series

HEVs. The FCS generates electricity on board for propulsion, directly impacting

energy management and power balancing between supply and demand.
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Figure 1.3: Global fuel cell power shipped growth by fuel cell types [13].

Figure 1.4: Typical fuel cell propulsion system.

An FCS for automobiles comprises a fuel cell stack and several Balance of Plant

(BOP) components. As shown in Fig. 1.5 [15], the essential components of BOP

required for an FCS are: (i) a compressor/blower to provide air to the cathode; (ii) a

high pressure hydrogen tank to feed hydrogen into the anode; (iii) a coolant system

in the stack cooling channel; (iv) a humidifier to humidify the hydrogen and the air

flow.

Fuel cells can be made up of different types, and PEMFC is the primary candidate

for FCVs. A PEMFC consists of an electrolyte sandwiched between two electrodes.

The electrolyte has a special property that allows positive ions (protons) to pass
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Figure 1.5: Complicated automotive fuel cell propulsion system [15].

through while blocking electrons. As hydrogen molecules pass over an electrode,

the anode, they are separated into electrons and hydrogen protons with the help of

a catalyst. The most commonly used catalyst employs Pt nanoparticles that are

uniformly dispersed on the carbon catalyst carrier. The reaction on the anode side

is:

H2 → 2e− + 2H+. (1.1)

The protons (H+) flow to the cathode side through the electrolyte while the electrons

flow through an external circuit, thus generating electricity. On the cathode side, the

oxygen reacts with both the hydrogen protons from the electrolyte and the electrons

from the external circuit, thus producing water:

O2 + 4e− + 4H+ → 2H2O. (1.2)

Therefore, the overall reaction of the fuel cell is:

2H2 +O2 → 2H2O. (1.3)
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The difference in potential of the anode and the cathode creates the voltage of

a single cell, which ranges between 0 to 1 volts. As shown in Fig. 1.6, typical

relationship under a given condition between the current drawn from the fuel cell

and the cell voltage is given in the form of a polarization curve. The specific voltage

depends on fuel cell operating conditions and the current drawn from the fuel cell.

For example, the Oxygen Excess Ratio (OER), defined as the fuel cell oxygen input

flow rate divided by the fuel cell oxygen output flow rate, has strong influence on

the voltage produced, as shown in Fig. 1.7. The FCS efficiency is defined by the

ratio of FCS output net power and the total consumed hydrogen heating power. The

FCS efficiency combined with other subsystem efficiency, such as battery operation

efficiency, motor efficiency is the key characteristics to be considered for vehicle level

energy management.

The main function of the vehicle level energy management strategy is to coordi-

nate the subsystems and optimize system efficiency while maintaining performance
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Figure 1.7: Fuel cell polarization curve under different operation OERs.

for safety, drivability and other vehicle attributes, such as charge sustaining perfor-

mance. For design and performance analysis, fuel cell powertrain system modeling

and optimization methodology are of great importance. This thesis will first provide

a literature review on the modeling and optimization methodologies for FCVs.

1.3 Literature Review

1.3.1 Fuel Cell Vehicle Powertrain Modeling

Three main types of FCS models are found in open literature. The first is high

fidelity models [16, 17, 18, 19, 20, 21, 22, 23]. These models are developed to demon-

strate the physical mechanisms in the FCS, and they normally have extremely high

computational costs. Weber [22] reviewed modeling of PEMFC transport, where a

single fuel cell model can have different dimensions (1-D, 2-D, 3-D) depending on the

level of complexity. The 1-D models comprise a detailed sandwich model through

the membrane [16, 17]. The 2-D models comprise the 1-D sandwich and also include
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the direction which is along the gas flow channel [20]. The 3-D models comprise

all three coordinate directions [21]. The second category of fuel cell modeling has

medium complexity but retains high fidelity [24, 25, 26, 27, 28, 29]. Siegel et al. [26]

proposed and validated a fuel cell model which verifies the evolution of liquid water

and nitrogen fronts along the length of the anode channel in a PEMFC operating

with a dead-ended anode that is fed by dry hydrogen. McCain et al. [27] analyzed

the controllability and observability of the liquid water distribution in the Gas Diffu-

sion Layer (GDL) of a PEMFC using a one-dimensional channel-to-channel unit fuel

cell model. Promislow et al. [28] developed a model of a PEMFC which includes

slow transient effects of liquid water accumulation and evaporation in Gas Diffusion

Electrodes (GDEs) and gas channels. All of the aforementioned models focus on the

single fuel cell instead of the entire FCS, while the last category of low complexity

models focuses on the FCS [15, 30, 31, 32] for control-oriented applications. For

example, Pukrushpan et al. [15] proposed an FCS model with the necessary BOP

components, including a compressor, manifolds, an air cooler, and a humidifier. Four

interacting submodels, including stack voltage, cell temperature, air pressure, oxy-

gen and hydrogen partial pressures and membrane humidity, are incorporated in the

FCS model. The entire FCS has nine dynamic states and four control inputs. Tiss

et al. [31] presents a non-linear state-space dynamic non-isothermal PEMFC model.

This model represents the fuel cell as an equivalent circuit, which incorporates GDL,

membrane and electrodes. The entire model has 18 states.

1.3.2 FCV System Level Optimization

Approaches adopted for HEV/FCV energy management in the past literature

generally fall into the following two categories: heuristic control [33, 34] and optimal

control [2, 35]. The former has the advantage of a simple design process supported by

physical insights, but lacks analytic rigor and systematic approach for guaranteeing
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optimal performance. An advantage of the latter is that it relies on an analytical or

numerical process to minimize a cost function that reflects performance requirements.

Although the topic of energy management for internal combustion engine based HEVs

has been well explored and comprehensive results are available [2, 33, 36], there have

been less studies exploring FCV energy management [11].

Dynamic Programming (DP), a numerical method for global optimization, has

been used to characterize FCV optimal performance [37, 38], also known as the per-

formance ceiling. The DP method relies on prescient knowledge of the entire driving

cycle and formulates a cost function that includes fuel consumption, penalty on bat-

tery usage, and other relevant performance metrics, such as emissions [36]. This

method facilitates the evaluation of the optimal design parameters, such as the num-

ber and types of clutches and modes, etc. for HEV [36] and PHEV [39]. Lin [36] and

Kim [40] appear to be the first to apply DP method to FCV powertrain configuration

analysis and efficiency optimization. Although the use of DP techniques have been

reported, most of the studies documented in literature have overlooked the dynamics

in their attempt to avoid the curse of dimensionality associated with DP [38, 40]. The

quasi-static hypothesis which treats an engine or a FCS as a quasi-static element is

typically used in such studies. This assumption, however, is questionable, if not in-

valid, because the FCS power delivery tests typically show 1 to 10 seconds of settling

time and an undershoot [41, 42]. To take advantages of model-based optimization, a

better understanding of the FCS dynamics effects on optimal energy management is

essential. This will help determine the best energy management scheme for FCVs.

1.3.3 Real-time Energy Management for FCV

As aforementioned, there are two main categories in energy management ap-

proaches. Heuristic control approaches can be categorized as either deterministic

rule-based methods or fuzzy rule-based methods. Deterministic rule-based meth-
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ods use look-up tables to implement deterministic rules and are widely used in cur-

rent commercialized hybrid vehicles. The advantages of the deterministic rule-based

methods are the consistency with performance and implementation simplicity. One

drawback, however, is that it is time consuming to calibrate optimal look-up tables.

Significant efforts are required to tune the parameters in the chassis dynamometer

testing process. On the other hand, the fuzzy rule-based methods have the advantage

of using real-time data to determine suboptimal power split performance [43, 44].

Although having certain advantages, the fuzzy rules do not guarantee optimal per-

formance. Most of the aforementioned heuristic control approaches are suitable for

online implementation.

The implementation of optimal control methods has to address computational is-

sues. Because of the computational complexity and the lack of full cycle information,

deterministic DP is not feasible for real-time implementation [45]. To alleviate the

burden of online computation [46, 47], post-processing steps, such as fitting DP re-

sults using nonlinear functions [36], or using Recursive Neural Network (RNN) [46]

and Reinforcement Learning (RL) [48] to learn and replace the DP approach, have

been employed to approximate the results of optimal control. Despite the advantages

of these approaches, a disadvantage remains in that the typical deterministic DP-

based strategies, even with post-processing methods, are driving cycle dependent. To

resolve this problem, Stochastic Dynamic Programming (SDP) and driving pattern

detection with multiple driving cycles have been suggested as possible solutions [49].

To represent the stochastic distribution of driver power demand [50], Markov chain

models are built on the basis of real-world driving data. These methods provide

near-optimal fuel economy, but with the drawback that they fall into an architecture-

dependent rule development process. Other model-based control designs, such as the

Pontryagin’s Minimum Principle (PMP)-based [2, 51], or the Equivalent Consump-

tion Minimization Strategy (ECMS)-based [52, 53] methods have emerged in recent
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years to overcome the limitations of DP based methods. The PMP methods real-

ize the minimization of a Hamiltonian equation, and the ECMS methods include an

equivalent fuel consumption term in its optimization process based on battery usage.

The PMP-based energy management leads to a Two-Point Boundary Value Prob-

lem (TPBVP), which can be solved with shooting methods through offline compu-

tations [54]. Previous research has shown that PMP and ECMS are equivalent if a

simplified co-state variable model is assumed in PMP and the equivalent consumption

weighting factor are selected as a function of the constant co-state value [2, 45, 55].

While offline analysis shows that PMP or ECMS offer near-optimal fuel economy and

both have low computation complexity, studies also show that the optimal co-state

variable for PMP and the equivalent consumption weighting factor for ECMS are

very sensitive to driving conditions [45, 51]. To address this issue, several adaptation

methods have been presented [52, 54, 56, 57]. Musardo [52] proposes an on-the-fly

algorithm for estimating the equivalence factor according to the driving conditions.

The main idea of this approach is to periodically refresh the control parameters based

on driving condition predictions from GPS information. Gu [58] presents an adapta-

tion method that focuses on recognizing driving patterns. The past driving conditions

within a time window are analyzed periodically, and then matched with one of the

representative driving patterns that is associated with a certain standard driving cy-

cle. Onori and Serrao [56, 57] present an adaptation of the equivalence factor based

on feedback from the State of Charge (SOC) to compensate for the SOC variations.

All of the aforementioned approaches are primarily for HEVs or PHEVs.

The difference between the FCVs and the HEVs is their primary power resource.

HEVs and PHEVs use ICE as the primary power resource and it converts the chemical

energy to mechanical energy first, and then it either directly delivers the mechani-

cal energy to the driveline, or converts them to electrical energy using a generator.

However, fuel cells and batteries are both electrochemical devices and have similar
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efficiency maps, which do not allow for much leveraging in terms of energy efficiency

optimization. The challenges of dealing with FCS slow dynamics and balancing FCS

and batteries’ operating conditions lead to substantial differences between conven-

tional HEVs and FCVs, calling for efforts in developing new control strategies.

1.4 Contributions of the Dissertation

As powertrain control strategies have became more complex and sophisticated,

energy management controller development and calibration have become more time-

consuming and costly. This thesis aims to design a hierarchical control framework for

real-time energy management to reduce the controller design and calibration efforts

for the automotive industry, using model-based optimization methods. We propose a

general control framework called Adaptive Pontryagin’s Minimum Principle - Model

Predictive Control (APMP-MPC) and evaluate the performance of this algorithm on

a high fidelity powertrain model and a testing vehicle. The contributions of this work

are three-fold.

The first contribution is the evaluation of the influence of FCS dynamic effects

on the overall optimal fuel efficiency and battery usage. To balance the trade-offs

between computational efficiency and system performance, we carried out a study,

described in Chapter III, in an attempt to answer the following questions: Can the

quasi-static hypothesis be used to guide the FCV energy management design without

substantial loss of performance? If so, how can the strategies derived from quasi-static

optimization be modified to achieve load following in the presence of FC dynamics?

To this end, this thesis presents results from the study that evaluates the effects of

FCS dynamics on a representative FCV using two levels of DP algorithms: Level

1, where the FCS dynamics are ignored, and Level 2, where the FCS dynamics are

incorporated. While Level 1 DP policies are faster to compute, the resulting strategy

leads to a load following error when applied to dynamic FCS. Two different strategies
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are used to mitigate the load following error. One uses batteries and the other uses

FCS. These two strategies are applied to compare the fuel economy with Level 2 DP

to demonstrate and quantify the effects of FCS dynamics on the system operating

strategy.

The second contribution is the development and evaluation of an optimization-

oriented supervisory controller based on PMP to obtain an on-road energy manage-

ment strategy, which is detailed in Chapter IV. This strategy uses travel time as the

only trip information to achieve charge sustaining performance. Using a simple pow-

ertrain model to design A-PMP and implementing it on a high fidelity powertrain

model, improved performance is demonstrated compared to the proprietary baseline

control strategy. Furthermore, the calibration process time is reduced. The proposed

algorithm has been validated through both Hardware in the Loop (HIL) and vehicle

tests. The application of the algorithm reveals a potential for improvements in fuel

economy using the A-PMP versus the default rule-based control method.

The last contribution is the evaluation of a novel hierarchical control structure to

mitigate the effects of FCS dynamics. The proposed control algorithm is tested on an

FCV powertrain model with simplified FCS dynamics. The effects of load prediction

error on the fuel economy performance are also evaluated. Additionally, reducing

the effects of prediction error, such as rate load limiter, should also be considered.

DP methods are extended to include rate limitation to evaluate the effects of load

changing rate on the optimal fuel economy. Moreover, the effects of load changing

rate on APMP-MPC methods are also be evaluated. All results are described in

Chapter V.

1.5 Outline

This thesis addresses the design of real-time energy management schemes to mit-

igate the dynamics effects of FCS. The thesis is organized as follows:
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Chapter I is an introduction that includes literature review on the FCV energy

management.

Chapter II presents control and optimization-oriented models for FCS dynamic

effects analysis and real-time energy management algorithm design. Level 1 and Level

2 FCS models are described and the associated powertrain models are detailed.

Chapter III describes the detailed FCV energy management problem formula-

tion. It presents and analyzes the Level 1 DP results, where the fuel cell dynamics

are ignored in the DP formulation, and the Level 2 DP results and analysis, where

the fuel cell dynamics are included. Finally, the chapter addresses the question raised

in Chapter I, namely whether the quasi-static hypothesis can be used to guide the

FCV energy management design without substantial loss of performance.

Chapter IV details the design of a novel optimization-oriented supervisory con-

troller, referred to as A-PMP for FCVs. An approach for estimating the optimal

value of the co-state variable is developed by studying the standard and synthesized

driving cycles. Minimal trip information is needed to implement the proposed algo-

rithm online. The proposed A-PMP is demonstrated on a high fidelity model and

shows near-optimal fuel economy with desired charge sustaining performance. The

proposed A-PMP algorithm is compared with the DP and PMP-based solutions in

the simulation environment. It is also compared with a rule-based method on the

high-fidelity powertrain model. Finally, this chapter describes the implementation of

A-PMP on a testing FCV and presents the preliminary results of the fuel economy

comparison with a baseline algorithm.

Chapter V presents the proposed hierarchical control scheme for handling the

FCS dynamics. Model Predictive Control (MPC) is used to solve constrained op-

timization problems. Prescient MPC results are initially presented to demonstrate

the advantage of the proposed APMP-MPC algorithm. Different load predictors for

APMP-MPC based energy management are presented and compared. The sensitivity
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analysis of the prediction error on fuel economy is performed. Additionally, a rate

limiter is incorporated into the energy management design to evaluate the effects of

load changing rate on the optimal fuel economy.

Chapter VI draws the conclusions and presents future work of the research on

real-time energy management for FCVs.
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CHAPTER II

Control and Optimization-oriented Models

Powertrain models are required for solving the energy management problem. This

chapter describes the control-oriented and optimization-oriented models that are used

in the following chapters to perform FCS dynamic effects analysis and real-time energy

management algorithm design.

2.1 FCV Powertrain System Description

Different topologies of FCVs have been described in the available literature, and

a detailed review can be found in [59, 60]. The powertrain system configuration

adopted in this study is shown in Fig. 2.1. The FCS is the primary energy source in

the vehicle that supplies electric energy to the voltage bus. A boost DC/DC converter

is included to step up the voltage from the FC. The powertrain also has high voltage

batteries, similar to HEVs. A buck-boost converter is employed to provide the bi-

directional charging/discharging of the battery. The system level power management

block manages power split across different power sources abiding by its rules. Our

current work ignores the dynamics and control of the DC/DC converters, due to their

fast dynamics compared to FCS.
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Figure 2.1: Hybrid fuel cell powertrain and its power management systems.

2.2 Fuel Cell System Model

An FCS, updated with recent experimental data, is selected as a representative

FCS model for analyzing the dynamic effects of FCS. The FCS is the primary power

source that converts chemical energy from hydrogen to electric energy for vehicle

operation. The FCS efficiency is defined as

ηfcs =
Pfc o

QH2
LHVWH2

, (2.1)

where Pfc o is the FCS output power, QH2
LHV is the lower heating value of hydrogen,

and WH2 is the hydrogen mass consumed, which can be calculated as

WH2 =
IstncellMH2

2F
, (2.2)

where Ist is the FCS stack current, which can be calculated from Pfc o, ncell is the

number of cells in the stack, MH2 is the molar mass of hydrogen, and F is the Faraday

constant [38]. An experimental FCS efficiency map is shown in Fig. 2.2. This map is

generated under the normal operation condition, where the temperature and humidity
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are set to be constant and the OER value is tuned to extract the highest efficiency of

the stack.
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Figure 2.2: Fuel cell system efficiency map.
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Figure 2.3: FCS model diagram.

It may be reasonable to hypothesize that more complex high fidelity models, which

are based on physical principles and do not contain many parameters to fit equations

from experimental data, are more suitable for design. However, they incur more

computational burden compared to the less complex models. To reduce the com-

putational complexity, a quasi-static model is adopted as Level 1 FCS model in the

energy management strategy for FCVs in [40, 51, 61]. For Level 1 FCS model, FCS

dynamics are not included in the problem formulation, and a quasi-static approxima-

tion is used to represent the fuel cell output power as a function of the net current

Ist. The fuel consumption of the system is defined by the efficiency and power output
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relation given by equations (2.1), (2.2) and Fig. 2.2. As shown in Fig. 2.3, the input

of this model is the FCS power request Pfc c, the outputs are the actual output power

Pfc o, the hydrogen consumption WH2 , and the FCS efficiency ηfcs. Since the model

is quasi-static, the power should be balanced:

Pfc o(t) = Pfc c(t), (2.3)

where Pfc c(t) is the requested power from the FCS at time t, and Pfc o(t) is the

power delivered to the powertrain at time t. To better understand and validate if

the static model is sufficient for designing an energy management algorithm, we refer

to an FCV model which uses this simple quasi-static model for an FCS as a Level 1

FCV powertrain model. For Level 2 FCV powertrain model, the fuel cell dynamics

will be represented as a non-minimum phase first order Linear Time Invariant (LTI)

system, which has the state-space representation of:

.
Pfc n(t) = APfc n(t) +BPfc c(t), (2.4)

Pfc o(t) = CPfc n(t) +DPfc c(t), (2.5)

where the requested power from FCS, Pfc c, is the input, the actual power to the

powertrain, Pfc o, is the output, Pfc n is the FCS dynamic state and A,B,C,D are

the state, input, output, and feedthrough matrix, respectively. As shown in Fig. 2.4,

a standard FCS uses a compressor to deliver air, thus the slow dynamics associated

with the compressor will result in a large time constant in power delivery [62]. In

addition, since the power used to run the compressor is taken out of the fuel cell, the

overall FCS power response can exhibit non-minimum phase behavior. To address this

issue, a more realistic FCS model should account for the dynamics of the compressor

along with the flow dynamics. Such a model, including compressor motor dynamics

and relative flow dynamics, is referred to as a Level 2 FCS model. The associated
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powertrain model is called Level 2 powertrain model in this thesis.

2.3 Battery Model

The battery system consists of many cells, with each battery cell modeled as a

voltage source in series with a resistance [40]. This one-state battery model is an

equivalent circuit model with a voltage source and an internal resistance, which is

shown in Fig. 2.5. Power provided by the battery Pbatt depends on the current Ibatt

drawn from the battery system, and can be calculated as

Pbatt = VocIbatt − I2
battRint, (2.6)

where Voc is the open circuit voltage of the battery pack and Rint is the battery’s

total internal resistance. Both of the variables are functions of the SOC. The battery
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SOC could be calculated using Coulomb counting [63] as:

˙SOC = − Ibatt
Qbatt

, (2.7)

= −
Voc −

√
V 2
oc − 4PbattRint

2RintQbatt

, (2.8)

where Qbatt is the battery total capacity, and (2.6) is used in deriving the second

equation. In this dissertation, two different battery packages are used. One is based
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Figure 2.6: Prius battery open circuit voltage and charging/discharging resistance vs.
SOC. [64]

on the third generation Prius hybrid vehicle [64], which is used for FCS dynamic effects

analysis in Chapter III. The other battery package is adopted from a proprietary high

fidelity powertrain model, which is used in Chapter IV.

The Prius battery is a nickel-metal hydride battery with a capacity of 6.5 Ah.

Fig. 2.6 illustrates the battery open circuit voltage, as well as the battery charging

and discharging resistance as functions of SOC. All of the parameters of the batteries

use room temperature and thermal dynamics are ignored in this case.
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2.4 DC/DC Converter Model

Both of the DC/DC converters are described as static devices due to their fast dy-

namic response. The efficiency is related to the requested power. The data is updated

based on the same proprietary high fidelity powertrain model, which is demonstrated

in Fig. 2.7 and Fig. 2.8.

2.5 Load Profile Model

Our case studies are performed using a 2016 Ford Fusion, equipped with FCS,

hydrogen storage and a lithium-ion battery pack. Given the vehicle speed profile

v(k), the power request, Preq, is then calculated as:

Preq(k) = v(k){mv̇(k) + (F0 + F1v(k) + F2v(k)2)}, (2.9)

where the F -terms in (2.19) are used to capture the forces affecting the vehicle motion.

Their values are listed in Table 2.1.

Table 2.1: Vehicle model parameters.

Mass (m) 1928 kg

F0 32.50

F1 0.1797

F2 0.02144

In Chapter III, regenerative braking is not addressed. The road grade is also as-

sumed to be zero to simplify the calculations. Four representative cycles—New York

City Cycle (NYCC), Highway Fuel Economy Test (HWFET), two Supplemental Fed-

eral Test Procedure (Supplemental Federal Test Procedure-1 (SC03) and Supplemen-

tal Federal Test Procedure (US06))—whose speed and acceleration characteristics are

summarized in Table 2.2, are used to perform quantitative analysis. These four cycles
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cover the range from low speed city driving (NYCC) to high speed aggressive highway

driving (US06).

Table 2.2: Four representative driving cycle characteristics.

Cycle NYCC HWFET SC03 US06

Average Acc. power (kW) 1.97 10.41 5.27 16.73

Max Acc. power (kW) 32.2 32.4 52.9 100.23

Top speed (mph) 27.7 59.9 54.8 80.3

Average speed (mph) 7.1 48.3 21.6 48.4

Duration (s) 598 765 596 601

Distance (miles) 1.18 10.26 3.6 8.01

However, a realistic load profile should consider all the sub-components’ losses,

including those occurred in driveline, transmission, and traction motor. Furthermore,

the regenerative braking energy cannot be directly calculated from the brake energy,

as only a portion of the brake energy can be recuperated and the rest is dissipated.

The analysis of the regenerative braking efficiency, as well as the power loss of vehicle

dynamics, are beyond the scope of this study. In order to have more realistic load

profiles, the driving cycle load profiles used in Chapter IV are obtained from a high

fidelity powertrain model. The updated load profiles including realistic regenerative

braking energy of the four standard driving cycles are shown in Fig. 2.9.

2.6 Summary

In this chapter, the control- and optimization-oriented models are developed to

capture the key dynamics of an FCV vehicle in order to provide an essential tool for

the following analysis and real-time energy management algorithm design. The FCS

power dynamics model is simplified into a static model (Level 1) and a first order LTI

model with non-minimum phase (Level 2). The battery model is a 1 R model with

two types of characteristics data. The DC/DC model is a static model with a look
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Figure 2.9: Load profile of four standard driving cycles: (a) NYCC, (b) HWFET, (c)
SC03, (d) US06.
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up table as the efficiency map.
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CHAPTER III

Dynamics Effect Analysis of Fuel Cell System on

Optimal Energy Management

This chapter investigates the effects of FC dynamics on FCV performance. An

evaluation framework based on global optimization method is proposed, and the prob-

lem formulation and framework for Level 1 and Level 2 DP are summarized in Fig. 3.1

and Fig. 3.2. Two different FCS models are used as described in Section 2.2: Level 1

FCV powertrain without FCS dynamics, and Level 2 FCV powertrain with 1st order

LTI dynamics. The optimal energy management problem formulation is detailed and

Level 1 DP and Level 2 DP are used to evaluate and compare the optimal power

management strategies on the four given driving cycles with different dynamics as-

sumptions. By directly comparing the outputs of Level 1 and Level 2 DP, differences

between the control strategies can be further analyzed and understood.

3.1 Optimal Energy Management Problem

In general, the energy management problem in a hybrid vehicle can be cast as an

optimization problem over a finite time horizon [65]. The goal is to find the sequence
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Figure 3.1: Scheme of Level 1 and Level 2 DP.

Figure 3.2: Evaluation framework for Level 1 and Level 2 DP.
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of controls u(k) that minimizes the cost function J(x(k0), u(k), x(kN)), defined as:

J(x(k0), u(k), x(kN)) =
N−1∑
k=1

WH2(k) + α∆SOCN
2, (3.1)

where k represents the index of sampled data, u(k) is the control action, which is

the requested power from FCS, x(k) is the system states which differ in Level 1

and Level 2 DP formulations, [k0, kN ] is the optimization horizon, WH2(k) is the

instantaneous hydrogen consumption, ∆SOCN is the terminal cost (the difference

between the initial state value SOC0 and terminal state value SOCN) and α is the

terminal cost weighting factor. The optimization will be subject to the following

constraints: system dynamics, initial state value, instantaneous state limitations and

instantaneous control limitations [2], which are explained in detail in the following

subsections.

3.1.1 Level 1 DP

Considering SOC as the only state variable x(k), the following discrete-time non-

linear system

SOC(k + 1) = SOC(k)−
Voc(k)−

√
V 2
oc(k)− 4Pbatt(k)Rint(k)

2Rint(k)Qbatt

∆t, (3.2)

is discretized from (2.8) where ∆t is the sampling time. Pfc c(k) as the requested

power from FCS is the only control variable. Since FCS dynamics are ignored in

Level 1 DP, this approach treats the fuel cell as a static map:

Pfc o(k) = Pfc c(k), (3.3)
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To ensure the safe and smooth operation of the powertrain, the following inequality

constraints are imposed:

Pfc cmin ≤ Pfc c(k) ≤ Pfc cmax (3.4)

Pbattmin ≤ Pbatt(k) ≤ Pbattmax (3.5)

SOCmin ≤ SOC(k) ≤ SOCmax (3.6)

We also impose one equality constraint for the optimization problem so that the

power demands at each sampling time are met:

Pbatt(k) = Preq(k)− Pfc o(k), (3.7)

where Preq(k) is the requested power. By combining equations (3.2),(3.3),(3.7), the

system dynamics associated with the control variable Pfc c(k) are represented by:

SOC(k+1) = SOC(k)−
Voc(k)−

√
V 2
oc(k)− 4(Preq(k)− Pfc c(k))Rint(k)

2Rint(k)Qbatt

∆t. (3.8)

3.1.2 Level 2 DP

In Level 2 DP, a new state variable, Pfc n(k), named FCS dynamic state, is intro-

duced. The system dynamic equation 3.8 is expanded as:

SOC(k + 1) = SOC(k)−

Voc(k)−
√
V 2
oc(k)− 4(Preq(k)− Pfc c(k))Rint(k)

2Rint(k)Qbatt

∆t, (3.9)

Pfc n(k + 1) = (1 + A∆t)Pfc n(k) + ∆tBPfc c(k), (3.10)

Pfc o(k) = CPfc n(k) +DPfc c(k), (3.11)
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where (3.9) is the same as (3.8), and (3.10) and (3.11) are the discrete-time form of

(2.4) and (2.5). Pfc n(k) is the current value of FCS dynamic state, Pfc o(k) is the

current output power of FCS. The values of the parameters are identified through

experimental data. The inequality constraints (3.4)-(3.6) and the equality constraint

(3.7) are also employed in Level 2 DP optimization.

Our goal is to quantify the performance differences resulting from these two differ-

ent DP formulations. For computational efficiency, it would be desirable to use Level

1 DP. Thus, our objective also includes establishing the feasibility of using Level 1

DP in lieu of Level 2 DP, and closing the performance gap with a properly designed

load compensation strategy.

3.2 Level 1 DP Results and Evaluation

3.2.1 Level 1 DP Results (Baseline Performance)

This section presents the results from the Level 1 DP optimization to provide a

baseline for our dynamic effect analysis. The grid size of the control input (Pfc c) and

the state variable (SOC) are set to be 0.25 kW and 0.2%, respectively. The initial

and final SOC are set to be 0.5. A soft constraint is also included to prevent SOC

from over discharging. Terminal cost α is set to 50000 to assure a sufficiently small

∆SOC. Even with a large α, DP may return a non-zero ∆SOC. This deviation of

SOC can be converted to equivalent hydrogen consumption when evaluating the fuel

efficiency by using:

WBatt→H2 =
−∆SOC · Ebatt

ηfcsηBattηBDCηFCCQ
H2
HHV

, (3.12)

where Ebatt is the battery capacity (kWh), ηBatt is the battery charging efficiency,

ηBDC is the battery DC/DC efficiency, ηFCC is the FCS DC/DC efficiency, both of

the DC/DC efficiency is assumed to be 1 in the current study.
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The Level 1 DP results of all four driving cycles are shown in Table 3.1. H2e(g)

is the equivalent hydrogen consumption, which indicates the amount of hydrogen

consumed in the corresponding driving cycle. The second value Miles Per Gallon

Gasoline Equivalent (MPGe), calculated as:

MPGe = MPkgH2 ∗GGE (3.13)

where MPkgH2 is the hydrogen consumption defined as mile per kilogram hydrogen,

GGE is gasoline gallon equivalent and equals to 1.011 in our case, which means 1.011

kg of hydrogen is equivalent to one gallon of gasoline in terms of energy content.

Table 3.1: Level 1 DP results for different cycles.

Driving Cycle H2e(g) MPG1
e

NYCC 17.37 68.92

HWFET 118.43 87.61

SC03 47.35 76.96

US06 157.69 51.40
1Level 1 DP, formulated in (2.8),(2.11)-(2.15) can be solved very efficiently. The computation time

is less than 1 minute for each cycle by using an eight core Intel Xeon CPU with 3.40 GHz and 16
GB RAM.

3.2.2 Level 1 DP Evaluation

To analyze the effects of FCS dynamics on energy management performance, we

feed Level 1 DP power split results into the powertrain system with different FCS

dynamics. The goal of this evaluation is to quantify the impact of FCS dynamics

in power delivery. The FCS dynamics are represented by three non-minimum phase

first order LTI systems with different settling times. The settling time is defined as

the time required for the response to reach and stay within a range of 2% of the final

value. The values of the settling times are set to be 1s, 5s and 8s. They are based

on the observation of experimental results, which are shown in Fig 3.3. As indicated
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by Fig. 3.4, ignoring FCS dynamics in DP formulation leads to a power tracking

error when the power split strategy is applied to FCS with dynamics. The power

tracking error, which can be as large as 10 kW, depending on the driving conditions

and FCS dynamics. RMS power tracking error, Perr, using Level 1 DP power split

strategy for dynamic FCS without battery compensation, are shown in the bottom

left plot of Fig. 3.5. An RMS power tracking error as large as 8 kW power is seen

on US06 cycle. To meet the drivability requirements, power tracking error has to be

mitigated. The performance degradation is quantified by the percentage change of

the MPGe resulted from applying Level 1 DP to FCS with dynamics and with load

correction over the baseline MPGe. The fuel economy decreases with the increase of

FCS time constant as expected. Although the sensitivity of fuel economy is not very

pronounced for mild driving cycles, it could be significant for more aggressive cycles

(0.95% for HWFET; 7.48% for US06). This provides the motivation to include FCS

dynamics in designing power split strategy.
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3.2.3 Mitigating Power Tracking Error

Power tracking error can be mitigated using battery, which is the conventional

method for reducing error to maintain drivability. The performance is evaluated and

shown in four subplots of Fig. 3.5. Since battery power is used to compensate for the

power tracking error, substantial changes in the SOC will be resulted as a consequence

of applying Level 1 DP strategy to dynamic FCS, as shown in Fig. 3.5(b). As much as

16% of the SOC change is seen in the US06 test, thereby violating charge-sustaining

requirements. The Fig. 3.5(d) shows the RMS power tracking error, Perr, using Level

1 DP power split strategy for dynamics FCS with battery compensation. The power

tracking error can be fully compensated using battery on NYCC and HWFET cycle,

but not for the SC03 and US06 cycle because the maximum of battery output power

is reached, leading to loss of drivability. In summary, ignoring FCS dynamics in

DP can lead to several problems, including deteriorated power tracking (drivability),

violating charge sustaining, and loss of fuel economy.

3.3 Level 2 DP Results and Comparison

3.3.1 Level 2 DP Results

The DP problem of (3.1), using (3.9)-(3.11) as the underlying system dynamics,

is solved for the same four driving cycles and different dynamics. The results on

HWFET are shown in Fig. 3.6 for the settling time of FCS power dynamics equals 5

s. To capture the dynamics, the sampling time of Level 2 DP algorithm is set to 0.1s.

The grid size of the new FCS dynamic state is set to be 0.25 kW. The differences

between the Level 1 evaluation (using the battery as compensation) and Level 2 DP

are summarized in Table 3.2, where the performance improvement is defined as the

percentage increase of Level 2 DP MPGe over Level 1 DP MPGe. For example, if

the FCS has slow dynamics with a settling time of 8s, then the fuel economy of Level
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Figure 3.4: Power tracking result for HWFET. Directly implementing Level 1 DP
power split strategy to powertrain system with FCS dynamics, the settling time is
set to be 5 s.

2 DP for the NYCC driving cycle returns 68.37 MPGe, while the fuel economy of

Level 1 DP returns 64.64 MPGe, giving a 5.45% improvement. The effects of FCS

dynamics are less significant as FCS dynamics become faster, however. For instance,

only 0.6% improvement can be identified with FCS having settling time equal to 1

second.

To provide more insights on the performance improvement of Level 2 DP, energy

flow chart of Level 1 and Level 2 DP results for HWFET are shown in Fig. 8. Based on

the current FCV configuration, the main reason for decreased system overall efficiency

is the battery thermal loss. Level 1 DP with battery as the compensation wastes 111

kJ (while Level 2 DP only losses 30 kJ), translating to 0.84% disadvantage in overall

powertrain system efficiency, even though the FCS efficiency is slightly higher in

Level 1 DP case. The physical reason is that frequent large current charging and

discharging is required to compensate for the power tracking error caused by slow
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Figure 3.5: Level 1 DP evaluation for four different cycles: (a) Fuel economy com-
paring with Level 1 DP. (b) Charge sustaining performance. (c) RMS power tracking
error without compensation using battery. (d) RMS power tracking with compensa-
tion using battery.

Table 3.2: Performance improvement (MPGe) of Level 2 DP
over Level 1 DP using battery for compensating power tracking
error.

hhhhhhhhhhhhhhhhhhDriving Cycle
Settling Time

ST=1s ST=5s ST=8s

HWFET 0.1% 0.45% 0.85%

NYCC -0.2%1 4.12% 5.45%

SC03 0.6% 2.62% 3.38%

US06 0.6% 3.6% 3.29%

1 The performance of Level 2 DP depends on the grid size accuracy. The
discretization error may affect Level 2 DP more than Level 1 DP and
cause its fuel economy to be worse than Level 1 DP when FCS dynamics
are fast and driving cycle condition is not aggressive.

36



0 200 400 600 800

Time [s]

0

20

40

P
o

w
e

r 
[k

W
] Power Command

FCS Com

FCS Out

0 200 400 600 800

Time [s]

-5

0

5

10

P
o

w
e

r 
[k

W
] Battery

0 200 400 600 800

Time [s]

50

52

54

S
O

C
 [

%
]

(a)

(b)

(c)

Figure 3.6: Level 2 DP results for HWFET, the ST=5 s: (a) Total power demand
and FCS power command and output, (b) battery power output, (c) battery SOC.

37



fuel cell dynamics when Level 1 DP results are used.
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Figure 3.7: Energy flow of Level 1 (left) and Level 2 DP (right) results for HWFET.

It is also noted that, even though the power split strategies (i.e., the commanded

power request for fuel cell and battery) resulting from these two level DPs are quite

different, the outputs of the FCS are similar (Fig. 3.8). Fig. 3.9 provides the power

distribution of Level 1 and Level 2 FCS output power on NYCC and HWFET driving

cycles. The comparison motivates us to consider the Level 1 DP results as the desired

FC output power, and to design the load compensator to determine the optimal pre-

compensator for the FCS to deliver the desired output power.

3.3.2 FCS with a Pre-compensator

To apply Level 1 DP results and minimize the effects of FCS dynamics, we “wrap”

the FCS with a pre-compensator so that the combined system will behave “almost”

like a static block, as shown in Fig. 3.10. To design a pre-compensator q̃ to achieve

this goal for SISO systems represented by the transfer function p̃, one can optimize
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Figure 3.8: Level 2 DP FCS output power of NYCC and HWFET, (a) NYCC, (b)
HWFET.
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H2 (Euclidean norm) for a particular input v:

min
q̃
‖e‖2 = min

q̃
‖(1− p̃q̃)v‖2, (3.14)

subject to the constraint that q̃ is stable and causal. If p̃ is invertible, namely, p̃−1 is

stable and rational, q̃ = p̃−1 is the solution to (3.14). If p̃−1 is strictly rational, then q̃

can be chosen as q̃ = fp̃−1, where f is a low pass filter designed to assure causality. If p̃

is NMP, an “approximate inverse” of p̃ has to be found such that (3.14) is minimized.

For NMP systems, the optimal solution depends on the v. To simplfy our case, we

treat our input, the power request, as a step signal. Thus, the minimum error norm

method [66] could be used to find the inverse of the FC dynamic system. Namely, for

a stable NMP system with only one unstable zero, we rewrite:

p̃ = pM
−s+ ξ

s+ ξ
, (3.15)

where ξ > 0 and −s + ξ is the NMP zero of the FC dynamic system and pM has

stable poles and zeros. Then:

q̃ =
1

pM
. (3.16)
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For example, if the FC dynamic system has a transfer function of:

p̃ =
−0.67s+ 1

2s+ 1
, (3.17)

then by using the proposed dynamic inversion method, p̃ can be expressed as:

p̃ =
0.67s+ 1

2s+ 1

−0.67s+ 1

0.67s+ 1
, (3.18)

with:

pM =
1

2s+ 1
, (3.19)

then, p̃ can be chosen as:

q̃ =
2s+ 1

0.67s+ 1
. (3.20)
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Figure 3.11: Level 1 DP with pre-compensator and Level 2 DP FCS output power
comparison (US06).

The performance evaluation of HWFET using the FCS pre-compensator is sum-

marized in Table 3.3. The saturation of the designed pre-compensator is the FCS
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Table 3.3: Performance evaluation of HWFET (FCS settling
time=8 s).

ST=8s H2e(g) MPGe ∆ SOC DP Cost

Level 1 with

Batt Com 119.58 87.74 -0.06% 119.59

Leve1 1 with

FCS-Pre/Batt Com 118.86 88.27 -0.09% 118.83

Level 21 118.60 88.49 -0.08% 118.61
1The computation time in Level 2 DP, formulated in (8), (11)-(13) and

(16)-(18), rises to 12-14 hours by using the same computation machine,
which is almost 1000 times more than Level 1 DP. Furthermore, the
sensitivity of zero dynamics to fuel economy is very weak, by changing
different zero locations, MPGe is only varying in 0.05% under HWFET
and less than 1% under US06.

Table 3.4: Performance evaluation of US06 (FCS settling time=8 s).

ST = 8s H2e(g) MPGe ∆SOC DP Cost

Level 1 with

Batt Com 169.50 47.81 0.03% 169.53

Leve1 1 with

FCS-Pre/Batt Com 169.07 47.93 -0.03% 169.05

Level 2 163.92 49.44 -0.09% 163.89

Table 3.5: Performance degradation (MPGe) of Level 1 DP using FCS-pre/Batt for
compensating power tracking error over Level 2 DP.

hhhhhhhhhhhhhhhhhhDriving Cycle
Settling Time

ST=1s ST=5s ST=8s

HWFET 0.03% 0.13% 0.22%

NYCC -0.5% 3.71% 5.14%

SC03 0.4% 2.49% 3.29%

US06 0.19% 3.46% 3.14%
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power limits, which is the equation (3.4). Level 1 with Batt Com refers to the re-

sult using batteries to compensate for the load following error. Level 1 with FCS-

Pre/Batt Com refers to the result where the optimal pre-compensator is first used

to compensate the FCS dynamics and then the battery is also used as the secondary

compensation to achieve power tracking. From Table 3.3, it can be seen that the

optimal pre-compensator works fairly well because MPGe only decreases by 0.22%.

However, if we look at all four driving cycles (Table 3.4 and Table 3.5), when an

aggressive load (US06 and SC03) and frequent start/stop load (NYCC) are required,

the pre-compensator does not perform as well as the Level 2 DP. A comparison of

the FCS output power of Level 2 DP and Level 1 DP with pre-compensator for US06

driving cycle is shown in Fig. 3.11. The pre-compensator is designed for scenarios

when settling time equals to 8 s.

3.4 Sensitivity Analysis to FCS Dynamics

To better understand the effects of FCS dynamics on optimal energy manage-

ment performance, extensive analysis is performed with different dynamic models to

quantify the performance sensitivity to different parameters in the model.

Figure 3.12: Block diagram of an FCS system.

As shown in Fig. 3.12, the actual FCS power response is affected by their own

subsystem controller of which the details are generally unavailable. Thus, treating
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the overall FCS as a black box, it can be represented by a 1st order LTI transfer

function. Assuming an FCS with its own subsystem controller can be simplified

as a 1st order LTI system with non-minimum phase phenomenon, the state-space

realization is shown in (2.4) and (2.5), and the associated transfer function of the

FCS can be described as:

G(s) =
Y (s)

X(s)
=
PFCS out

PFCS in

= k
−τ1s+ 1

τ2s+ 1
, (3.21)

where k is the DC gain of the transfer function and k is assumed to be 1. τ1 is the

time constant of zero dynamics and 1/τ1 is the zero location. τ2 is the time constant

of the characteristic equations and 1/τ2 is the pole location. The time constant value

τ1 represents the speed of the power response.

3.4.1 Evaluation of the Effects of Model Parameter Variation on Optimal

Energy Management

All model based control methods face the challenges of model parameter variation.

To address this issue, the robustness of the algorithms needs to be tested so that the

sensitivity of the proposed algorithm can be understood. Towards this objective, a

US06 cycle is selected as the representative driving cycle to implement three Level 2

DP strategies using different FCS dynamics with ST=1 s, 5 s, and 8 s. Each of these

three strategies is applied to three different models. Thus, nine results are generated

and shown in Fig. 3.13 and Fig. 3.14, where “Strategy Generation Model” refers to

the FCS model that is included in the DP strategy and “Strategy Implementation

Model” refers to the FCS model that is used for performance evaluation. In terms

of the fuel economy and charge sustaining performance, the strategy generated with

slower dynamics is more robust than those with fast FCS dynamics.
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3.4.2 Evaluation of the Effects of Zero-Dynamics on Optimal Energy

Management

3.4.2.1 Definition of Energy Deficiency

For a system represented by (3.21), the unit step response can be derived as:

y(t) = 1− e−
1
τ2

t − τ1

τ2

e
− 1
τ1

t
, (3.22)

where y(t) is the FCS power output. The initial condition:

y(0) = −τ1

τ2

, (3.23)

and the final value is 1 kW. Fig. 3.15 shows three different step responses for different

τ1, τ2. The energy deficiency during the transient is defined as the integration of the

power tracking error along the entire transient process until the FCS output power

reaches the steady state value, namely,

Err(t) =

t∫
0

(1− y(τ)) dτ. (3.24)

By substituting (2.28) into (2.30), the energy deficiency can be calculated explic-

itly as:

Err = −(τ2e
− t
τ2 − τ2)− (τ1e

− t
τ2 − τ1), (3.25)

where t is time. As t goes to infinity, the cumulative energy deficiency is:

Err = τ1 + τ2. (3.26)
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Thus, two evaluations can be made to further address the effects of zero-dynamics

on optimal energy management. In the first evaluation, the zero location is varied

while maintaining the same transient energy deficiency, and the poles are adjusted

accordingly. In the second evaluation, the total transient energy deficiency is varied

while maintaining the same pole, and the zeros are adjusted accordingly. The different

dynamic characteristics evaluated are shown in Table 3.6 and Table 3.7.

In all the evaluations, the Level 1 DP strategy is fed into the Level 2 powertrain,

and the fuel economy is compared with the Level 2 DP results. The comparison shows

that the fuel economy is very sensitive to the zero locations. When the zero dynamics

are aggressive, the battery has to heavily compensate for the dynamic effects, which

leads to severe battery charge sustaining issues. Furthermore, when the FCS dynamics

are included in the Level 2 DP, the fuel economy performance is not as sensitive as

the Level 1 DP evaluation results. In this context, higher fuel economy degradation
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Table 3.6: Transfer functions used in zero dynamic effects evaluation (different zero
locations with the same energy deficiency).

Zero
Location

Zero Dynamics
Time Constant

Transfer
Function

Ak Bk Ck Dk

0.45 2.22 −2.22s+1
0.45s+1

0.800 0.090 13.190 -4.933

0.60 1.67 −1.67s+1
s+1

0.905 0.095 2.670 -1.670

0.80 1.25 −1.25s+1
1.42s+1

0.932 0.097 1.324 -0.880

1.00 1.00 −s+1
1.67s+1

0.942 0.097 0.957 -0.599

1.50 0.67 −0.67s+1
2s+1

0.951 0.098 0.668 -0.335

2.00 0.50 −0.5s+1
2.17s+1

0.955 0.098 0.567 -0.230

Table 3.7: Transfer functions used in zero dynamic effects evaluation (different energy
deficiency with the same pole location).

Zero
Location

Zero Dynamics
Time Constant

Transfer
Function

Ak Bk Ck Dk

2.00 1.00 −0.5s+1
s+1

0.905 0.095 1.500 -0.500

0.60 1.00 −1.67s+1
s+1

0.905 0.095 2.670 -1.670

0.33 1.00 −3s+1
s+1

0.905 0.095 4.000 -3.000
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Figure 3.16: Sensitivity analysis of zero locations on fuel economy and charge sus-
taining performance, (a) Level 1 DP with battery compensation, (b) Level 2 DP.
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Figure 3.17: Sensitivity analysis of energy deficiency Level on fuel economy and charge
sustaining performance, (a) Level 1 DP with battery compensation, (b) Level 2 DP.
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is attributable to aggressive driving cycles, such as US06. For a city cycle like NYCC,

the fuel economy performance is also sensitive because many stop-n-gos are included

in the driving cycle.

When the evaluation is performed by varying the total energy deficiency value,

the results are shown in Fig. 3.17. The similar performance are observed. When

the FCS dynamics are included in the Level 2 DP, the fuel economy performance

is not as sensitive as the Level 1 DP evaluation results. When the FCS dynamics

are not included in the Level 1 DP, the battery has to heavily compensate for the

dynamic effects, which leads to severe battery charge sustaining issues and attenuate

the fuel economy performance. In conclusion, when the tolerance of the loss of fuel

economy is less than 3%, the FCS dynamics can be ignored at the vehicle level energy

management design if: (1) the energy deficiency due to the nonminimum phase is less

than 2.5 kJ for a 1 kW power request, (2) the FCS dynamics settling time is less than

3 s.

3.5 Conclusion

In this chapter, we propose a comprehensive and systematic framework for analyz-

ing the dynamic effects of FCS on optimal energy management applications. A Ford

Fusion equipped with FCS, hydrogen storage, and Li-ion battery pack is considered

as the representative powertrain system. Two levels of DP approach are adopted to

derive optimal power split strategies, where FCS dynamics are ignored at Level 1 but

incorporated at Level 2 DP problem formulation. While the analysis confirms that

the fuel cell dynamics can be ignored if they are fast enough (i.e., with settling time

less than 1 second), it also reveals that substantial loss of performance can occur if

the slow dynamics (i.e., with settling time equal to 8 seconds) are not included in

DP. Incorporating FCS dynamics into the DP formulation can help reduce battery

loss. To retain the computational advantage of Level 1 DP, we also exploit pre-
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compensation of FCS, so that the quasi-static assumption used in Level 1 DP can

be better satisfied, thereby justifying the DP approach that ignores the dynamics.

Given the NMP characteristics of FCS, perfect compensation is not possible, which

motivates us to develop the real-time optimal power management strategies to be

discussed in subsequent chapters.
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CHAPTER IV

An Optimization-oriented Supervisory Controller

Design for Hybrid Fuel Cell Electrified Vehicles

Computation complexity makes the DP approach unsuited for online implemen-

tation. To address this issue, the design of a novel optimization-oriented supervisory

controller for FCV, referred to as A-PMP, is proposed in this Chapter. An approach

for estimating the optimal value of the co-state variable is developed by studying the

standard and synthesized driving cycles. Minimal trip information is needed to im-

plement the proposed algorithm online. The proposed A-PMP is demonstrated on a

high fidelity model to show near-optimal fuel economy with desired charge sustaining

performance. Furthermore, this chapter also details the validation of the proposed

A-PMP method in the HIL lab and the test results on a testing FCV.

4.1 Problem Formulation

In general, the real-time power and energy management problem in a hybrid

vehicle can be cast into an optimization problem over a finite time horizon [65]. Our

goal is to find the sequence of controls u(k) that leads to the minimization of the cost
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function J(x(k0), u(k), x(kN)), defined as:

J(x(k0), u(k), x(kN)) =

N−1+k0∑
k=k0

WH2(k), (4.1)

where k represents the discretized time index, u(k) (the requested power from FCS

Pfc c(k)) is the control action, x(k) (the SOC) is the system state, [k0, kN ] is the

optimization horizon, WH2(k) is the instantaneous hydrogen consumption. The opti-

mization problem (4.1) is to be solved subject to the system dynamics and constraints

[2] while following a load profile. The detailed system dynamics and constraints in-

formation can be found in Chapter III.

4.2 Pontryagin’s Minimum Principle

The Pontryagin’s Minimum Principle(PMP) is used to find the best possible con-

trol for taking a dynamical system from one state to another, especially under the

state or input constraints [67]. The principle states that the control Hamiltonian

must take an extreme value over controls in the set of all permissible controls. The

PMP is a generalization of the Euler-Lagrange equation in the Calculus of Variation,

which provides a set of necessary conditions for global optimality of a constrained

optimization problem [45]. By translating energy management problem into an opti-

mal control problem, one can exploit PMP to derive sub-optimal solutions in lieu of

computational simplicity [68]. Considering the energy management problem in (4.1)

and all the constraints, a Hamiltonian equation H is defined as:

H(SOC(k), u(k), k, λ(k)) = λ(k)f(SOC(k), u(k)) +WH2(k)∆t, (4.2)

where λ(k) is the co-state variable associated with the optimization problem. WH2(k)

is the FCS hydrogen consumption at time k. f(SOC(k), u(k)) is the system dynamics
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defined in Chapter III. The objective now is to find an optimal control sequence u(k)

that minimizes the Hamiltonian equation at each sampled time:

u∗(k) = argmin
u(k)

H(SOC(k), u(k), k, λ(k)), (4.3)

and also satisfies all constraints. At the same time, the co-state variables should

satisfy the adjoint equation:

λ(k + 1) = −∂H(SOC(k), u(k), k, λ(k)

∂SOC(k)
∆t+ λ(k). (4.4)

4.2.1 PMP Implementation

To implement the PMP algorithm as an online energy management strategy, an

initial value of λ is needed so that λ can be calculated according to (4.4) and updated

with time. Note that PMP provides sufficient conditions for a global optimal solution

if the fuel consumption rate is a convex function of battery power and ˙SOC is a

concave function of battery power and the SOC [69]. These conditions are not satisfied

for the battery configuration under consideration. Thus, even with the optimal λ0,

PMP may not give the global optimal solution. Moreover, the partial derivative of

the Hamiltonian equation with respect to the state SOC(k) is required to implement

(4.4). Using (2.7) and (4.2), (4.4) can be expressed as:

λ(k + 1) = − 1

Qbatt

(
∂Ibatt(k)

∂Voc(k)

∂Voc(k)

∂SOC(k)
+

∂Ibatt(k)

∂Rint(k)

∂Rint(k)

∂SOC(k)
)∆t + λ(k). (4.5)

To have a closed-form expression for ∂Voc(k)
∂SOC(k)

and ∂Rint(k)
∂SOC(k)

, one can use data-fitting

methods to extract the analytical expressions and use them in (3.5) [51]. We observe

that the variation of λ(k) with respect to time is negligible [2]. Fig. 4.1 show that the

co-state variable only varies 0.5% from the initial value on the US06 driving cycle. By

implementing a constant λ(k) in US06 cycle, the SOC trajectory of the PMP results
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Figure 4.1: Optimal trajectory of the co-state variable.

are almost the same as the global optimal DP results, as shown in Fig. 4.2.

To evaluate if the dynamics of λ(k) can be omitted with λ(k) being kept as

constant, performance sensitivities on four representative cycles are generated and

shown in Table 4.1. These four cycles cover a wide vehicle speed range from low

speed city driving (NYCC) to high speed aggressive highway driving (US06). The

PMP-based TPBVP energy management problem is solved using the shooting-method

with the design model discussed in Section 2.1, but with a constant λ. DP is also used

to provide a benchmark. MPGe, defined as miles per gallon gasoline equivalent, is a

measure of the average distance traveled per unit of energy consumed. ∆SOC reflects

the charge-sustaining performance, and is defined as SOC(kN)− SOC(k0). λ0 is the

co-state value. The small deviation of SOC can be converted to equivalent hydrogen

consumption [14]. The difference between the DP and PMP results is less than 0.55%.

It proves that PMP algorithm even with constant λ can be used to develop a near-

optimal energy management strategy. Thus, constant co-state λ are used in this

study for PMP algorithm. To further evaluate the PMP-based algorithm, a simple
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Figure 4.2: SOC trajectories to different PMP implementation strategies.

load following controller, which means that the FCS follows the power demand as

much as possible, is defined as a rule-based controller. This controller can be used as

a baseline to show the advantages of using PMP-based algorithm.

Table 4.1: Comparison of performances between DP and PMP-based algorithm.

Cycle Name DP PMP MPGe Diff

MPGe ∆SOC MPGe ∆SOC λ0 PMP over DP

HWFET 87.59 0.008% 87.49 -0.22% -76.85 -0.11%

NYCC 68.94 0.01% 68.58 -0.06% -74.39 -0.52%

SC03 76.98 -0.071% 76.95 -0.02% -74.92 -0.04%

US06 50.69 0.003% 50.55 0.03% -80.83 -0.28%

4.2.2 Co-state Estimation

While the PMP-based methods using constant co-state λ provide near-optimal

solutions compared with DP, its performance depends on a good estimation of the

co-state value. Simulation results have shown that the optimal value of λ0 is strongly

dependent on the driving cycles. Kim [70] claims that the co-state λ0 can be estimated

from an approximation model with two representative parameters, the effective SOC
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Table 4.2: Comparison of performances between rule-based and PMP-based algo-
rithm.

Cycle Name Rule-based PMP MPGe Diff

MPGe ∆SOC MPGe ∆SOC λ0 PMP over Rule-based

HWFET 87.15 0% 87.49 -0.22% -76.85 +0.39%

NYCC 67.49 0% 68.58 -0.06% -74.39 +1.62%

SC03 75.93 0% 76.95 -0.02% -74.92 +1.34%

US06 49.40 -3% 50.55 0.03% -80.83 +2.33%

drop rate ˙SOCeff and the effective mean power Pmean. In this section, three test

scenarios are analyzed to understand the relationship between the co-state value and

the power distribution. The framework is shown in Fig. 4.3 and the details are

described in the following subsection.

4.2.3 Designed Test Scenarios

Table 4.3: Co-state value of different driving cycles.

Cycle HWFET UDDS SC03 Artemis Urban JC08 US06

λ0 -78.75 -73.45 -73.70 -73.52 -73.45 -80.10

Six standard driving cycles are used and the corresponding PMP-based problems

are solved for each cycle. Fig. 4.4 shows the Cumulative Distribution Function (CDF)

of 6 representative driving cycles. UDDS and SC03 have similar load distribution,

while others, such as US06, have different CDFs. Table 4.3 shows that the co-state

values are very close for those driving cycles with similar power CDF (e.g. UDDS

and SC03) even though their power profiles are different (see Fig. 4.5). Based on this

observation, we hypothesize that load distribution provides the most important infor-

mation to estimate the co-state value. To validate the hypothesis on the relationship

between power distribution and λ0, three other scenarios are evaluated:

1. The UDDS driving cycle is segmented into small windows where the total
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Figure 4.3: Three test scenarios used to estimate the constant co-state value.
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travel time is used to define the segmented UDDS cycle (UDDS340, UDDS685,

UDDS1030). The times of the segmented cycles are picked to ensure the initial

and final speed are zero.

2. The speed and acceleration profiles of UDDS are used to generate the prob-

ability transition matrix for a Markov chain model to create 5 synthetic load

profiles with the same trip time (3000s) and the same power distribution, but

distinctively different time traces.

3. The same Markov chain model is used to generate five different load profiles

with different trip time (500s, 1000s, 2000s, 3000s, 5000s) and the same power

distribution.

The PMP-based algorithm is then used on all thirteen cycles. The optimal λ0

values are shown in Table 4.4, Table 4.5, and Table 4.6, respectively. All thirteen

synthetic cycles return similar optimal λ0 as a result. Therefore, if the load dis-

tribution of two driving cycles are similar, the corresponding optimal λ0 are close.
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Furthermore, it also proves that the total travel time is relatively unimportant com-

pared with load distribution.

Table 4.4: Co-state value of different segmented UDDS driving cycles.

Cycle UDDS1 UDDS2 UDDS3

λ0 -74.52 -74.27 -74.41

Table 4.5: Co-state value of different synthetic UDDS driving cycles (same travel
time).

Cycle UDDS4 UDDS5 UDDS6 UDDS7 UDDS8

λ0 -74.56 -74.16 -74.61 -74.62 -74.74

Table 4.6: Co-state value of different synthetic UDDS driving cycles (different travel
time).

Cycle UDDS9 UDDS10 UDDS11 UDDS12 UDDS13

λ0 -74.70 -74.74 -73.80 -74.56 -74.64

4.3 Adaptive-PMP Based Supervisory Controller

The previous section shows that the optimal co-state value is closely related to

the patterns of a driving cycle. Average power is adopted here as a key parameter to

represent load distribution. Fig. 4.6 plots the optimal λ0 against the average power

for the 19 standard cycles. A data fitting method is used to fit the data with a 3rd

order polynomial:

λ = p1P
3
avg + p2P

2
avg + p3Pavg + p4, (4.6)

where Pavg is the average power over the entire driving cycle, p1 to p4 are the

coefficients of the polynomial equation. Fig. 4.6 shows satisfactory fitting results.
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The R-square and RMSE values are shown in Table 4.7.

Table 4.7: Fitting results of initial co-state estimation.

R-square RMSE

Fitting Data (19 Driving Cycles) 0.92 0.27

Validation Data (13 Driving Cycles) 0.94 0.20

With the insights learned from the analysis above, two special features are pro-

posed to update the co-state value online. First, a recursive average power is updated

online as:

Pavg(k) =
Preq(k) + (k − 1)Pavg(k − 1)

k
. (4.7)

The recursive average power and the total average power of HWFET driving cycle
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are shown in Fig.4.7.

Second, to ensure that the charge sustaining performance is met, an additive

penalty function, given by:

γ(SOC, k) = 100(SOC(k)− SOC(0))e−(
Ttotal−Tk

µ
), (4.8)

is incorporated in the cost function, where Ttotal is the total travel time, Tk is the

current travel time, and µ, which is set to be 100 for the case study, is a parameter

introduced to scale the effects of the additive penalty function. This penalty function

is added as the second part of co-state value to be interpreted as a weighting factor to

the battery SOC dynamics to ensure the SOC trajectory goes back to the initial value

at the end of driving cycle. It will not affect the hydrogen consumption in the cost

function which is the second part of the Hamiltonian equation. Thus, the updated

Hamiltonian is:

H(SOC(k), u(k), k, λ(k)) =

(λ(k) + γ(SOC, k))f(SOC(k), u(k)) +WH2(k)∆t, (4.9)

where λ(k) is calculated online without any prediction of the driving information,

γ(SOC, k) serves as an SOC governor to ensure a charge sustaining performance.

4.4 A-PMP Algorithm Discussion and Evaluation

Table 4.8: Comparison of performances on IM240, EUDC, and IHWY driving cycles.

Cycle Name DP A-PMP Rule-based MPGe Diff MPGe Diff

MPGe ∆SOC MPGe ∆SOC MPGe ∆SOC
A-PMP
over DP

A-PMP
over Rule-based

IM240 68.59 -0.08% 68.48 -0.71% 67.85 0% -0.16% +0.93%
EUDC 75.47 -0.08% 75.46 -2.17% 74.68 0% -0.01% +1.04%
IHWY 91.21 -0.06% 90.96 0.27% 90.48 0% -0.27% +0.53%
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Table 4.9: Comparison of performances on UDDS+MNHA and UDDS5000 driving
cycles.

Cycle Name DP A-PMP Rule-based MPGe Diff MPGe Diff

MPGe ∆SOC MPGe ∆SOC MPGe ∆SOC
A-PMP
over DP

A-PMP
over Rule-based

UDDS+MNHA 82.22 -0.05% 81.50 1.60% 81.11 0% -0.88% +0.93%
UDDS5000 85.92 -0.06% 84.62 -0.66% 83.33 0% -1.62% +1.43%
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The proposed A-PMP algorithm with the parameter chosen as: µ = 100 is first

implemented on the Level 1 powertrain to evaluate the performance. Three randomly

picked driving cycles, Inspection and Maintenance Driving Cycle (IM240), Extra-

Urban Driving Cycle (EUDC) and India Highway Driving Cycle (IHWY) are used.

The results are shown in Table 4.8, the MPGe performance degradation is less than

0.3% compared with optimal performance (obtained by DP) in standard cycles and

the ∆SOC is less than 2.2%. To evaluate the robustness of the A-PMP, UDDS

driving cycle is combined with the Manhattan Bus Cycle (MNHA), which provides

some unknown load variation in between of the driving cycles. A new generated

synthetic driving cycles, UDDS 5000, is also used to evaluate the robustness of the

proposed A-PMP. As seen in Table. 4.9, MPGe performance degradation is less than

1.7% compared with optimal performance for a 1.4 hrs drive.

More sensitivity analysis are performed to evaluate the effectiveness of the pro-

posed A-PMP algorithm. Fig. 4.8 shows the fuel economy and charge sustaining

performance evaluation with/without the additional penalty function. As can be

seen, the charge sustaining performance is improved over the selected four represen-

tative driving cycles without loss of fuel economy. Fig. 4.9 provides the effects of the

estimation error on the total travel time for US06 driving cycle. The performance

indicates up to 20% estimation error can be accepted if the fuel economy degradation

is less than 0.5%. The sensitivity analysis of weighting factor on fuel economy for

US06 is shown in Fig. 4.10. The fuel economy is compared with the one with zero

penalty (µ = 0). It shows that the fuel economy can be improved by using larger

weighting factor.
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Figure 4.8: Effects of SOC governor on A-PMP algorithm: (a) fuel economy (MPGe)
performance comparison, (b) charge sustaining performance (∆SOC) comparison.
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performance (∆ SOC) comparing with perfect time estimation.
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Figure 4.10: Sensitivity analysis of weighting factor on MPGe for US06 driving cycle
(comparing with µ = 0).

4.5 Validation of the A-PMP on a Proprietary High Fidelity

FCV Powertrain Model

In this section, the proposed A-PMP algorithm is implemented on a proprietary

high fidelity powertrain model. The proprietary high fidelity model consists of sev-

eral subsystems: a driver model, an FCS, a battery system and auxiliary systems

such as low voltage electronic devices, transmission, driveline, chassis, brakes and

steering. It also includes the vehicle system control (VSC) with the proprietary en-

ergy management module. The current energy management uses a baseline strategy

based on power demand and the actual battery SOC. This method works well on

the dynamometers, but its calibration follows a trial and error method and is time

consuming. Referring to the discussions in previous sections, the proposed A-PMP

accomplishes the following objectives:

1. Achieving near-optimal fuel economy on every driving conditions.

2. Requiring minimal a priori knowledge about the driving cycle.
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Figure 4.11: SOC trajectory for HWFET.

3. Maintaining charge-sustaining performance.

4. Assuring real-time implementable.

Results of A-PMP algorithm with SOC governor on three standard cycles (HWFET,

UDDS and Federal Test Procedure 75 (FTP-75)) are summarized here. Table 4.8

compares the performance of three strategies on a proprietary high fidelity power-

train model: the global optimal strategy obtained through DP, a rule-based control

strategy used as a baseline, and the proposed A-PMP strategy. As stated previously,

the PMP with an optimal estimation of the co-state variable provides a sub-optimal

solution. The performance degradation compared with DP is within 0.55%, and the

performance improvement compared with the baseline strategy is as high as 1.4%.

Note that the proposed A-PMP only uses the total travel time as a priori information.

Fig. 4.11 and Fig. 4.12 shows the SOC trajectories of three algorithms. The

SOC trajectories of A-PMP and DP on HWFET are nearly identical. The battery

system is charged in the first half of the driving cycles and then discharged afterwards.

69



0 500 1000 1500 2000

Time [s]

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

S
O

C

FTP-75(State of Charge)

DP

A-PMP

Rule-based

Figure 4.12: SOC trajectory for FTP-75.

FCS Power Distribution of HWFET

P
min

P
max

Power Request (kW)

0

10

20

30

40

50

P
e

rc
e

n
ta

g
e

 D
is

tr
ib

u
ti
o

n
 (

%
)

0

10

20

30

40

50
F

C
S

 O
v
e

ra
ll 

E
ff

 (
%

)

DP

A-PMP

Rule-based

FCS EFF

Figure 4.13: FCS net power distribution and the FCS efficiency of HWFET.
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Figure 4.14: Energy flow of baseline strategy (red color) and A-PMP strategy (blue
color) on HWFET cycle.

The baseline algorithm, however, has drastically different charging/discharging profile

as it uses the battery very conservatively. On the other hand, there are noticeable

differences in SOC trajectories between DP and A-PMP on the FTP-75, especially

around 400 sec. This is due to the drastic change in driving conditions where the

load profile changed quickly.

Table 4.10: Comparison of performances.

Cycle Name Baseline DP A-PMP

MPGe MPGe Improv. MPGe Improv.

HWFET 76.20 77.08 1.15(%) 77.04 1.10(%)

UDDS 65.80 71.11 8.07(%) 67.20 2.13(%)

FTP-75 64.90 69.51 7.10(%) 69.45 7.01(%)

To understand why A-PMP improves the fuel economy, the FCS net power dis-

tributions of these three strategies on HWFET cycle are plotted in Fig. 4.13. Fur-

thermore, the energy flow chart of the baseline strategy and the A-PMP strategy are
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compared in Fig. 4.14. From Fig. 4.13, the distribution of A-PMP is very similar

to DP, where both strategies operate FCS near the optimal efficiency point. How-

ever, the baseline strategy does not account for FCS efficiency in the tuning process.

Results in Fig. 4.14 show that the total traction power requested by the motor are

almost the same (8088.59kJ vs. 8113.75kJ) in both strategies, which makes the effi-

ciency and energy flows comparable. The A-PMP algorithm improves FCS efficiency

from 59.97% to 60.55%. However, given the characteristic of the FCS, where the

FCS efficiency curve is very flat over 80% of its operation range, the leverage is small.

Additionally, a cost of improving the FCS efficiency is to operate the battery more ag-

gressively. This can be observed from the battery loss, which increased from 44.09kJ

to 72.75kJ , and the total energy flow into the HvBat DC/DC, which increased from

2295.70kJ to 2811.85kJ , and finally the total energy flow out of the HvBat DC/DC,

which increased from 828.85kJ to 1175.20kJ . Therefore, we can conclude that the

energy management improves the FCS efficiency with a model-based optimization

method.

4.6 Validation of the A-PMP Algorithm on HIL Lab and

Testing Vehicle

4.6.1 Testing FCV

An FCV workhorse based on a Fusion Energi Plug-in Hybrid is selected as the

testing vehicle to validate the proposed A-PMP algorithm. The system configuration

is shown in Fig. 1.4. The FCS is the primary energy source. The power split between

the FCS and the battery is attained by the power converters, as depicted in Fig. 1.4.

A boost DC/DC converter is included to step up the voltage of the FCS. The testing

vehicle has a Li-ion battery pack as the secondary power resource. A buck-boost

converter is employed because of the bidirectional charging/discharging features of
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Figure 4.15: Testing FCV energy management scheme.

the battery. The chosen topology with 2 DC/DC converters for boosting the FCS

stack voltage and the battery voltage provides the most flexibility for splitting power

and isolating the source/load interactions. The testing FCV powertrain consists of

a 125kW peak traction system, a 60kW Li-ion battery pack and a 65kW fuel cell

engine.

A default energy management scheme is shown in Fig. 4.15. It relies on the rule-

based control strategy and includes multiple temperature and operation dependent

energy management look-up tables to decide the optimal battery power request. The

rule-based energy management also includes the FCS start-stop mode and the ECU

pull-up pull-down strategy which is detailed in Fig. 4.17. The inputs of those look-

up tables are estimated drive power demand and the normalized battery SOC. The

output is the optimal battery power. The FCS power request is then calculated by

subtracting the driver power demand by battery power request. To compare the

proposed A-PMP algorithm with a default rule-based control, the look-up tables are

replaced by A-PMP algorithm, which is shown in Fig. 4.16.
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Figure 4.16: Real-time energy management using A-PMP on the testing vehicle.

4.6.2 HIL Test Results

HIL, is a technique that is used in the development and testing of complex real-

time embedded systems. HIL simulation provides an effective platform to evaluate the

control performance for the plant under control without involving real hardware. The

proposed A-PMP is implemented in a Micro Auto Box (MABx), which is a compact,

stand-alone prototyping unit with real-time hardware, I/O, and signal conditioning.

This MABx also serves at the interface between all of the subsystem controllers and

the vehicle control modules. The detailed setup of the HIL test is shown in Fig.

4.18. The signal interface was done using Controller Area Network (CAN) commu-

nication. The functionality of the proposed A-PMP algorithm was tested in the HIL

lab. This test validated the communication established between the vehicle ECU and

the MABx. The total power request signal and the high voltage battery SOC signal

was sent from ECU to MABx. The A-PMP used those signals as input to calculate

and provide the battery power request back to ECU to replace the default rule-based

control command.
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Figure 4.17: Testing FCV energy management main structure.

Figure 4.18: HIL test setup.
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4.6.3 Vehicle Test Results

Vehicle tests are performed to validate that the proposed A-PMP algorithm can

be implemented in real-time and the performance is compared with the default rule-

based controller. UDDS driving cycle is a typical cycle which is used by the OEMs

calibration team to generate the rule-based energy management controller. Thus, it is

selected to validate the algorithm. Federal Test Procedure 4 (FTP-4) (each includes 2

UDDS with 10mins as the rest time in the middle for data saving and configuration)

test, which is shown in Fig. 4.19, is chosen to validate the A-PMP algorithm on a

Dyno Lab. The speed profile of the experiment tests are shown in Fig. 4.19(b). The

speed difference between the two testing algorithm is very small, which makes the

performance comparable. The FCS power demand and output are shown in Fig. 4.20

and 4.21. The hydrogen measurement device is not available on the vehicle, thus

hydrogen consumption is calculated using the theoretical equation (2.2) in Chapter

II, which is restated here:

WH2 =
IstncellMH2

2F
, (4.10)

where Ist is the FCS stack current, ncell is the number of cells in the stack, MH2 is the

molar mass of hydrogen, and F is the Faraday constant [38]. The equivalent hydrogen

consumption is also calculated using the conversion equation (2.20) in Chapter II:

WBatt→H2 =
−∆SOC · Ebatt

ηfcsηBattηBDCηFCCQ
H2
HHV

, (4.11)

where Ebatt is the battery capacity (kWh), ηBatt is the battery charging efficiency,

ηBDC is the battery DC/DC efficiency, ηFCC is the FCS DC/DC efficiency, both of

the DC/DC efficiency is calculated from the experiment data. The battery charging

rate is assumed to be 2C, which is used to converted the ∆SOC to equivalent hydro-
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Figure 4.19: Speed profile of the vehicle tests: (a) FTP-4 driving cycle scheduled, (b)
experiment data from the vehicle tests.

gen consumption. The system efficiency is calculated using the total electric energy

divided by the total equivalent hydrogen energy consumption. The vehicle test results

are shown in Table 4.11. Comparing the A-PMP method with the default rule-based

method, the proposed A-PMP shows 7.2% reduction on equivalent hydrogen con-

sumption, 6.8% improvement on electric system efficiency and 5.9% improvement on

overall system efficiency.

The energy losses are compared for both strategies, and the energy flow chart is

shown in Fig. 4.22. The FCS systems losses are compared in Table. 4.12, and the

power distribution data are shown in Fig. 4.23 and 4.24. It could be easily observed

that the A-PMP algorithm operates the FCS at a higher efficiency. All the other

energy losses are shown in Table. 4.13.

However, charge sustaining performance failed during the vehicle tests. There are

two reasons that cause this issue: FCS power command was not followed, thus the
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Figure 4.20: FCS power time trace data of A-PMP.
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Figure 4.21: FCS power time trace data of a rule-based control.
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Table 4.11: Performance evaluation on dyno tests.

Ini
SOC
[%]

End
SOC
[%]

∆SOC
[%]

H2

[g]
(Calculated)

FCS
EFF
[%]

H2E
[g]

Total Elec
Energy

[kJ]

Elec
SYS
EFF
[%]

Total
Motor
Energy

[kJ]

Total
Eff
[%]

Rule-based 39.7 40.9 1.2 159.6 51.1 158.1 9500 50.1 5126 27.0
A-PMP 49.4 37.7 -11.7 99.9 55.5 146.7 9400 53.5 5036 28.6

Figure 4.22: Comparison of energy flow chart of A-PMP and rule-based method.

Table 4.12: FCS energy efficiency comparison.

Hydrogen Consumed Energy
FCS Eff

(without ETC)
FCS Eff

(with ETC)

Rule-based 19130.9kJ 56.83% 51.10%
A-PMP 11977kJ 59.43% 55.55%

Table 4.13: Energy consumption comparison.

HV Battery
Charging Energy

HV Battery
Discharging Energy

Battery Energy
Loss

Aux Loss
Energy Delivered

to eDrive
Motor Output

Energy

Rule-based 4272.3kJ 3837.9kJ 150kJ 1372.7kJ 7048.6kJ 5126.1kJ
A-PMP 3548.2kJ 6108.6kJ 198kJ 1379.7kJ 6949.8kJ 5036.0kJ
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Figure 4.23: FCS output power distribution (Rule-based).
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Figure 4.24: FCS output power distribution (A-PMP).
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Figure 4.25: Comparison of battery SOC on rule-based control and A-PMP control
on UDDS.

battery had to compensate the tracking error and battery SOC dropped faster; the

penalty weighting factor of SOC governor was not large enough to compensate the

effects of FCS dynamics. It should be noted that the Level 1 powertrain model does

not consider FCS dynamics. Thus, ignoring FCS dynamics in energy management

may lead to violation of charge sustaining.

In conclusion, the proposed A-PMP was successfully implemented on a FCV test-

ing vehicle. The vehicle tests showed a potential improvement of using model-based

real-time optimization on energy management. Future vehicle tests will focus on im-

proving the charge sustaining performance by tuning of the parameters, while demon-

strating appreciable fuel economy benefits.

4.7 Conclusion

In this chapter, we proposed an optimization-oriented supervisory controller based

on PMP to obtain an on-road energy management strategy. This strategy uses travel
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time as the only trip information to achieve charge sustaining performance. An FCV

workhorse based on a Fusion Energi Plug-in Hybrid equipped with FCS, hydrogen

storage, and Li-ion battery pack is considered as the representative powertrain system

to validate the algorithm. Using a simple powertrain model to design A-PMP and

implementing it on a proprietary high fidelity powertrain model without calibration,

we have demonstrated improved performance compared to the proprietary baseline

control strategy. Numerical simulation shows improvements ranging from 1.1% to

7.0% with regen braking on representative driving cycles. The proposed A-PMP

algorithm has been validated through both the HIL test and vehicle test. The HIL

test validates that the proposed algorithm is functionally implementable in real time.

From the vehicle test results on UDDS, the A-PMP shows a potential improvement

of 5.9% on overall system efficiency.
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CHAPTER V

Hierarchical Controller Design for Real-Time

Energy Management

As discussed in Chapter III and Chapter IV, one of the greatest challenges in

achieving real-time energy management of FCVs is to mitigate the effects of FCS

dynamics. The A-PMP algorithm proposed in Chapter IV does not consider the FCS

transient dynamics. To address the aforementioned challenges imposed by the nature

of the FCV real-time energy management problem, we propose a hierarchical optimal

control strategy, which solves optimization problems associated with both long term

optimal power split ratio and short term FCS transient power dynamics to achieve

better fuel economy. The chapter is organized as follows: Section 5.1 details the

problem formulation and the suggested control architecture; Section 5.2 evaluates the

prescient APMP-MPC fuel economy performance on selected driving cycles; Section

5.3 performs the sensitivity analysis to load prediction error, and also analyzes the

effect of load governor on reducing the sensitivity to the load prediction error; Section

5.4 provides the conclusion.

83



5.1 Problem Formulation and Proposed Control Architec-

ture

Not considering FCS dynamics in energy management algorithm design may cre-

ate problems, such as deteriorated power tracking (drivability), violations in charge

sustaining, and a loss of fuel economy. Thus, the performance gap is identified to un-

derstand the motivation of introducing APMP-MPC control scheme. We apply the

A-PMP algorithm to the Level 2 FCV powertrain model, where the FCS is modeled

as a 1st order LTI system and settling time equals to 5 s. The transfer function is:

Pfc o =
−0.33s+ 0.67

s+ 0.67
. (5.1)

Fuel economy and charge sustaining performance (i.e. dSOC) are used as the main

performance evaluation metrics in this section. From the simulation on the selected 12

driving cycles, the A-PMP can maintain a very good charge sustaining performance

(Fig. 5.2). However, the fuel economy improvement is limited due to the effects of

FCS transient power dynamics (Fig. 5.1). Potential improvements as large as 8% are

identified on the US06 cycle.

Using a classical dynamic inversion based pre-compensator to mitigate the effects

of FCS transient power is a possible solution. Four driving cycles, NYCC, US06,

UDDS, and a California Unified Cycle (LA92) are selected to evaluate the perfor-

mance of pre-compesator. The algorithm is similar to the pre-compensator proposed

in Chapter II, however, the DP FCS power command is replaced by the A-PMP power

command. The schematic of APMP with a Pre-compensator (APMP-Pre) controller

is shown in Fig. 5.3. As shown in Fig. 5.4, given the non-minimum phase charac-

teristics and the constraints on power command, the performance of the APMP-Pre

algorithm is not very effective, even comparing with the A-PMP only algorithm. The

reason is due to the high frequency of violations on FCS power command, which is
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Figure 5.1: MPGe performance evaluation on selected driving cycles. Blue color
shows the performance improvement of A-PMP over the baseline load following algo-
rithm. The combination of blue and red color shows the performance improvement
of Level 2 DP over the baseline algorithm.
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algorithm.
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Figure 5.3: Schematic of APMP-Pre controller.

Performance Evaluation (MPGe)

NYCC US06 LA92 UDDS

Driving Cycle Name

0

2

4

6

8

10

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n
t 
[%

]

L2DP

APMP-Pre

A-PMP only

Figure 5.4: Fuel economy performance evaluation on four selected driving cycles.
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demonstrated in Fig. 5.5. This deviated the optimal FCS power trajectory and cause

performance degradation. A better control structure to handle the FCS dynamics

under constraints is necessary.

The ultimate real-time energy management should include the following function-

alities:

• Satisfy the on-demand nature of the problem, which means the power request

profile from the driver is not known a priori and the sub-optimal solutions need

to be calculated in real-time.

• Achieve the charge sustaining performance over global time horizon.

• Handle presence of disturbance, such as sudden change of auxiliary power.

• Mitigate the effect of FCS power dynamics, which is modeled as an NMP system.

These characteristics make the control algorithm development quite challenging.

Research on real-time energy management considering transient system response is

very active and is motivated by the lack of tools to balance the time scale of the tran-

sient system behavior and the long prediction horizon. A multi-scale MPC framework

has been proposed to address this problem [71]. The high level MPC operating at a

slower rate acts as a long-term fuel and battery SOC optimization controller, while

the low level MPC works at a higher sampling rate and calculates the control in-

puts so that a smooth supply of the driver torque demand is achieved. However, to

satisfy charge sustaining performance over the global time horizon via MPC, either

approximating the cost-to-go function, or regulating the terminal SOC reference in

each control horizon has to be employed [72]. The first method is too complicated

to generalize and it requires information of the driving cycles, the second method

is very conservative. From another point of view, PMP based methods have been

identified as potential candidates to handle FCS dynamics, however, to include the
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FCS dynamics into PMP problem formulation means to introduce another co-state

variable. Introducing additional co-state variables will make it more challenging to

solve the optimal co-state values offline, not to mention online implementation.

The hierarchical control schematic is then shown in Fig. 5.6, which includes three

key components of the proposed APMP-MPC controller. The three components are

load prediction, high level A-PMP algorithm, and low level MPC controller, whose

functions will be discussed in detail in the following subsections.
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SOC*(k+1)

PFCS_Req*(k)

SOC(k)Pavg(k)

Figure 5.6: Schematic of proposed hierarchical controller.

5.1.1 Load Prediction

One of the essential elements in implementing MPC is the future driving infor-

mation. Current solutions to load prediction fall into two main categories: one is

GPS/ITS based prediction [73], the other is statistics and cluster analysis based

method [74]. A detailed review on driving condition prediction can be found in [75].

To implement a close-to-perfect load prediction is beyond the scope of our study, thus,

only simple prediction methods are used to evaluate the performance of the proposed

APMP-MPC. In this proposal, we first used presient MPC, and this type of MPC

assumes all short term future load information are known. In other words, the pre-

dicted power demand sequence is assumed to be perfect. The proposed hierarchical
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controller will be referred to as a Prescient APMP-MPC. This type of MPC cannot

be applied in real time because of the unrealistic assumption of known load profile,

but it provides an assessment of the best achievable performance.

5.1.2 High Level A-PMP Algorithm

The high level A-PMP algorithm uses the predicted power demand sequence

Preq[k:k+Np] as the input to predict FCS power demand sequence P ∗FCS Req[k:k+Np]

for the low level MPC controller. In this chapter, we use x[k1 : k2](k2 > k1) to denote

the sequence of x(k1), x(k1 + 1), ..., x(k2). Thus, at each time k, the A-PMP needs to

solve the Hamiltonian equation Np times, where Np is the prediction horizon:

u∗[k : k +Np] = argmin
u[k:k+Np]

H(SOC[k : k +Np], u[k : k +Np], [k : k +Np], λ[k : k +Np]),

(5.2)

which is updated using (4.5). The Hamiltonian which needs to be minimized at each

time k is given by (4.11). The detailed high level algorithm is summarized below:

Algorithm 5.1:

1. Step 1: At travel time k, generate the predicted power demand sequence:

Preq[k:k+Np].

2. Step 2: Define a new variable, th, with the initial value of 0, which is the time

stamp along the prediction horizon Np. Request the following input information

from ECU: Pavg(k), SOC(k), Preq(k).

3. Step 3: Use Pavg(k + th), Preq(k + th) and SOC(k + th) as inputs to determine

the FCS power request P ∗FCS Req(k + th) by solving (3.5), with the updated

Hamiltonian equation (3.11).

4. Step 4: If th < Np, the following actions are performed:
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(a) Feed the FCS power request P ∗FCS Req(k+th) to the Level 1 FCV powertrain

system model and compute the SOC∗(k+ th + 1), and update the average

power using:

Pavg(k + th + 1) =
Preq(k + th + 1)∆t+ (k + th)∆tPavg(k + th)

(k + th + 1)∆t
. (5.3)

(b) Update λ(k + th + 1) and γ(SOC, k + th + 1) using Pavg(k + th + 1) and

SOC(k + th + 1).

(c) Set th = th + 1.

(d) Repeat steps 3, 4(a), 4(b), 4(c) until th = Np.

5. Step 5: When th > Np, assemble the predicted FCS power demand sequence

P ∗FCS Req[k:k+Np] and send to low level MPC controller.

Remark 5.1.1 It needs to be re-emphasized that the A-PMP algorithm is utilized

for primarily two reasons:

• Directly using MPC could potentially pose an issue with approximating the long

term cost-to-go function. This approximation is used to convert the terminal

constraints to the constraints under each prediction horizon. This approxima-

tion approach is either a case-by-case estimation based on the driving condition,

or too conservative that it is unable to produce optimal solution [72, 74]. The

A-PMP method, proposed in Chapter IV, demonstrates capability to overcome

this issue.

• Another advantage of using A-PMP is to solve energy management problem of

not requiring the driving cycle information a priori.
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5.1.3 Low Level MPC Controller Design

The low level MPC controller aims at tracking the FCS power request sequence

generated by the high level A-PMP. To ensure that output command is tracked, we

define an augmented system with the extended state zk = [xTk u
T
k−1 r

T
k ]T , where zk is

the augmented state, xk is the FCS dynamic state, uk−1 is the FCS power command

at the time instant k-1, which is used to update the power command uk, and rk is the

specified tracking command. For the augmented system, the tracking error can be

defined as the output explicitly. In our study, we modified the conventional tracking

Linear Quadratic-Model Predictive Controller (LQ-MPC) problem to suit our case.

The objective of the conventional tracking LQ-MPC is to follow a specified command

(set-point) r. Specifically, if r ≡ const, the control design objective is to achieve

convergence of the output to the command:

yk → r as k →∞. (5.4)

Equation (5.4) is known as the offset free tracking property. It is used even when

command r is slowly varying. However, the power command varies quickly, which

violates the constant set-point tracking assumption. To avoid violation of assumption,

we set rk as zero, which is used as a constant tracking command. The FCS power

request P ∗FCS Req(k) is defined as wk which is treated as a disturbance in the output

dynamics. Thus, the augmented system dynamics are:

xk+1 = Axk +Buk (5.5)

uk = uk−1 + ∆uk (5.6)

rk+1 = rk (5.7)
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where ∆uk is the difference between uk and uk−1. The output, which is the tracking

error, equals to:

ek =

[
Ck Dk −1

]
zk +Dk∆uk − wk, (5.8)

where wk is a power disturbance, which equals the FCS power reference. The cost

function that captures the tracking performance is given by:

J =

k+Np∑
i=k

eTi Qeei + ∆uTi R∆ui, (5.9)

where ek is the FCS power tracking error at time k, Qe is the error state cost, and R is

the control input cost. Then the tracking problem can be formulated as an LQ-MPC

problem with a prediction horizon Np, given as:

∆u[k : k +Np]
? = argmin

∆u[k:k+Np]

J, (5.10)

This optimization is subject to three constraints:

1. System dynamics:

zk+1 =


Ak Bk 0

0 I 0

0 0 I

 zk +


Bk

I

0

∆uk, (5.11)

ek =

[
Ck Dk −I

]
zk +Dk∆uk − Iwk. (5.12)
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2. Power limits:

zk(2) + ∆uk ≤ umax (5.13)

−zk(2)−∆uk ≤ umin (5.14)

−(ek + wk) ≤ 0 (5.15)

ek + wk ≤ ymax (5.16)

where ek + wk is the actual FCS power output Pfc o(k), and zk(2) is uk−1.

3. FCS power slew rate:

|∆uk| ≤ S (5.17)

where S is the maximum slew rate of the FCS power.

We can now summarize the proposed control algorithm.

Algorithm 5.2: Given the predicted power request Preq[k : k+N ], the APMP-MPC

is proposed to solve the optimization problem:

1. Step 1 to Step 5 are the same as the Algorithm 5.1.

2. Step 6: Solve the MPC tracking problem using CVXgen, retrieve the optimal

control command ∆uk, update the FCS power request command as:

u(k) = u(k − 1) + ∆uk. (5.18)

3. Step 7: Update the current travel time k = k + 1, until it reaches k0 +N − 1.

The flow chart in Fig. 5.7 illustrates the main steps of APMP-MPC algorithm.
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Figure 5.7: Flowchart of APMP-MPC algorithm.
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5.2 Performance Evaluation of Prescient APMP-MPC

The US06 cycle is used at the beginning of the evaluation to prove the effectiveness

of the proposed APMP-MPC controller. Fig. 5.8 compares the performance of five

strategies on the Level 2 powertrain model: (1) the global optimal strategy obtained

through Level 2 DP, (2) the A-PMP strategy, (3) the proposed APMP-MPC strategy,

the prediction horizon is 5s, which is the settling time of the FCS power dynamics,

(4) the PMP+MPC strategy that uses the offline calculated optimal lambda for the

high level A-PMP algorithm, and (5) the baseline strategy which uses a simple FCS

load following controller. The first four algorithms are compared with the baseline

controller and the percentage improvements are shown in Fig. 5.8. As stated previ-

ously, the A-PMP controller has as large as 8% of MPGe degradation compared to the

Level 2 DP controller. This degradation can be mitigated by using APMP-MPC, and

the resulting improvement of MPGe is 5.95%. Fig. 5.9 shows the SOC trajectories of

four algorithms. The SOC trajectories of APMP-MPC and DP on US06 are nearly

identical. The baseline algorithm, however, has very different charging/discharging

performance as the battery only works passively to compensate for the power defi-

ciency generated by the FCS transient dynamics. MPC tracking performance is also

shown in Fig. 5.10, and a large error in the estimation of co-state value is found when

the load changes rapidly.

Followed by the US06 cycle, four additional representative cycles, NYCC, UDDS,

US06 and LA92, are selected to evaluate the performance of the proposed controller.

These driving cycles cover both the city cycles and the high load aggressive cycles.

Fig. 5.11 shows MPGe improvements of APMP-MPC over APMP are ranging be-

tween 0.23% to 5.95%, depending on the driving cycle. The city cycles, NYCC and

UDDS may not have a promising fuel economy improvement because they comprise

of frequent start-stops. This feature makes the MPC controller work around the low

power request and activate the constraints more frequently, which deviates the op-
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US06 Fuel Economy Improvement (Compared with Rule-based)
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Figure 5.8: US06 fuel economy improvement.
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Figure 5.9: Battery SOC trajectory comparison on US06.
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Figure 5.10: MPC tracking performance evaluation.

timal trajectory higher. On the other hand, there are noticeable differences in SOC

trajectories between Level 2 DP and APMP-MPC on the UDDS and LA92 cycles

(Fig. 5.12 and Fig. 5.13). Difference between the former is due to the drastic change

in driving conditions, where the load profile changes quickly. Difference in the latter

is due to inaccuracy of initial estimation for the co-state value on LA92.

Simulation time is dependent on hardware used. In our case, the algorithm is

simulated using an eight core Intel Xeon CPU with 3.40 GHz and 16 GB RAM.

The simulation time and the travel time information is shown in Table 5.1. The

simulation time is one third of the real time, which implies a good opportunity to

apply APMP-MPC in real-time. Moreover, the MPC solver adopted here, CVXGEN,

is claimed as the fastest linear MPC solver in the world that provides the interface

c-code and simplifies implementation in vehicles. Comparing with the computation

time of APMP-Pre, which is shown in Table 5.2, the computation complexity is higher

since the pre-compensator is a simple feed-forward controller and it can be computed

quickly.
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Fuel Economy Improvement (Compared with Rule-based)
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Figure 5.11: Fuel economy improvement on selected driving cycles.
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Figure 5.12: Battery SOC trajectory comparison on UDDS.
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Figure 5.13: Battery SOC trajectory comparison on LA92.

Table 5.1: Computation time of the proposed APMP-
MPC algorithm.

Driving Cycle Travel Time (s) Simulation Time (s)
NYCC 598 202
US06 600 207
LA92 1435 498
UDDS 1368 469

The simulation results are generated using an eight core Intel
Xeon CPU with 3.40 GHz and 16 GB RAM.

Table 5.2: Computation time of the APMP-Pre algo-
rithm.

Driving Cycle Travel Time (s) Simulation Time (s)
NYCC 598 28.8
US06 600 29.6
LA92 1435 60.9
UDDS 1368 58.9

The simulation results are generated using an eight core Intel
Xeon CPU with 3.40 GHz and 16 GB RAM.
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5.3 Effects of Load Prediction Error on the APMP-MPC

Performance

As demonstrated in Section 5.2, the benefits of the Prescient APMP-MPC algo-

rithm are based on the assumption of perfect load prediction. The Prescient APMP-

MPC cannot be applied in real time because of the unrealistic assumption, but can

be used to evaluate and compare with other APMP-MPC-based power management

strategies. To achieve this goal, this section discusses the effects of load prediction

error on the fuel economy performance. Different load prediction methods, referred

to as Frozen Time (FT) APMP-MPC, Exponential Varying (Exp) APMP-MPC, Pre-

view APMP-MPC are proposed and their performance are evaluated. Additionally,

a rate load limiter that can reduce the effects of prediction error is imposed and

sensitivity analysis is conducted.

5.3.1 Horizon Load Predictors

Horizon load predictors can be divided into two main categories. The first one is

model-based, and the other is GPS and Intelligent Transportation System (ITS) based

[75]. It needs to be emphasized here that most of the up-to-date load predictors are

velocity predictors [74]. The load profiles are then calculated using the power demand

generation equations. In the model-based methods, a good understanding of the

combined system of drivers and vehicle dynamics is required to extract a parametric

model to predict the load requirements. This means that a better prediction on

driver behavior also needs to be considered during the load predictions. In our study,

the prediction horizon needs to be up to 5 s. In reality, the relationship between

predicted future velocities and total fuel consumption is very complicated. Without

any load condition preview, it is almost impossible to extract a perfect prediction

longer than 5 s. Simpler model-based predictors can also be found in literature [49,
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72, 76, 77, 78]. Di Cairano et al. introduces the FT MPC [76] where the same amount

of power demand as that of the current step over the entire prediction horizon. Its

performance heavily depends on the load fluctuation rate. Bohan et al. [78] and Sun

et al. [72] present the exponential varying based load predictor, where the unknown

driver demand torque is assumed to be exponentially decreasing and the velocity is

also varying exponentially. This prediction method relies on the exponential-varying

assumption of the future driving information, which impedes its extensive application

if the assumption is violated. Another highly adopted prediction method is solving

dynamic decision-making problems by using Markov chain. This stochastic method

is used by [49, 76, 77] to design stochastic MPC. The driver behavior is modeled as

a Markov chain based on standard cycles.

The second category, which includes data driven methods, can be further divided

into two classes. The first one uses using artificial intelligence methods, such as neu-

ral network [79], fuzzy logic pattern recognition [80] or support vector machine [81].

The prediction accuracy of these approaches highly depends on the chosen standard

driving cycles. One may end up with under-fitting or over-fitting the data and get-

ting unrealistic results. The challenges of aforementioned prediction problem can be

alleviated by involving more advanced techniques in ITS [73, 82, 83, 84]. Fig. 5.14

demonstrates a recent idea proposed by Sun et al. [73]: through using onboard GPS,

those vehicular telemetry technologies have enabled vehicles to access information of

the traffic and road conditions. These information can be extracted from vehicle-

to-vehicle or vehicle-to-infrastructure communications using onboard sensors. These

advanced technologies motivate us to consider load preview information while evalu-

ating load prediction errors. In our study, due to the limitations of the ITS data and

the lack of driver data to implement artificial intelligence methods, three horizon load

predictors are selected and investigated to understand the effects of load prediction

error on APMP-MPC algorithm:
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Figure 5.14: Traffic flow provided by Google maps [5].

• Frozen-time load predictors [74]:

Preq(k + i) = Preq(k), i = 1, ..., Np. (5.19)

This predictor assumes the power demand to be constant in the entire prediction

horizon. It is simple and can be used as a baseline to evaluate fuel economy

performance, but it does not incorporate any preview information and can not

predict well for fast load changes.

• Exponentially varying load predictors:

Preq(k + i) = Preq(k) ∗ (1 + ε)i, for i = 1, 2, ..., Np, (5.20)

where i is the time step and ε is the parameter. Instead of using both the

exponentially varying torque and velocity equations as shown in [74], our study
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directly predicts the load since both the FCS and battery are electric power

resources.

• Load predictors with preview information:

Preq pred(k + i) = Preq(k + i) + β ∗ i ∗ Preq(k + i), for i = 1, 2, ..., Np, (5.21)

where β is the weighting factor of the prediction error. The first part, Preq(k+

i), represents the perfect load at time k+ i which is available from the advanced

ITS technology. The second part, β ∗ i ∗ Preq(k + i) represents a percentage

relative error which can be treated as a signal disturbance, and it is a time

varying load prediction error. The maximum percentage variation over the

entire prediction horizon is 100 ∗ β ∗N . The reasons of using this method are:

– With the preview information, the vehicle load profile trajectory over a

short horizon (less than 10s) is available.

– The estimation errors increase as the prediction time horizon becomes

longer.

Thus, a time-varying prediction error which is dependent on the preview infor-

mation of the load is proposed.

5.3.2 Simulation Results and Comparison

In this section, a more comprehensive comparative analysis of the aforementioned

load prediction methods is presented. The objective is to understand the effects of

load prediction error on the APMP-MPC fuel economy performance. For real-time

energy management, the A-PMP algorithm developed in Chapter IV can be directly

implemented. Based on our analysis in the previous Chapters, the performance of

A-PMP is acceptable if the FCS dynamics is fast. If the FCS dynamics is slow, one
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drawback, however, is that the A-PMP can only extract a sub-optimal solution since

FCS dynamics is not included in the algorithm design process. A possible option to

address the slow FCS dynamics is to implement the APMP-MPC algorithm. Though

the improvement of using prescient APMP-MPC is as high as 5.95%, it cannot be used

in real-time. Thus, we will implement the FT APMP-MPC, Exp APMP-MPC and the

Preview APMP-MPC on the selected driving cycles and compare their performance

with the prescient APMP-MPC to quantify the effects of the load prediction error.
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Figure 5.15: Performance evaluation on US06 driving cycle; (a) fuel economy per-
formance (MPGe) of different algorithms comparing with rule-based algorithm (b)
charge sustaining performance (∆SOC) of different algorithms.

Fig. 5.15 and Fig. 5.16 provide the performance evaluation on US06 and UDDS

driving cycles, respectively. For the US06 cycle shown in Fig. 5.15, the improvement

is observed on almost all the prediction methods, even without any load preview.

The FT APMP-MPC shows a 2.90% improvement over the rule-based algorithm.

The Exp APMP-MPC shows a 2.92% improvement when ε equals −0.002 and the

preview APMP-MPC shows a 8.76% improvement when the maximum percentage

105



-4

-2

0

2

4

6

M
P

G
e

 P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t 

[%
]

Fuel Economy Performance Evaluation on UDDS
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Figure 5.16: Performance evaluation on UDDS driving cycle; (a) fuel economy per-
formance (MPGe) of different algorithms comparing with rule-based algorithm (b)
charge sustaining performance (∆SOC) of different algorithms.
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error is −20%. However, the improvement for a city cycle like UDDS was decreased

to less than 2% (Fig. 5.16). To better understand the simulation results, two metrics

are used to assess the effects of load prediction error:

• Average root mean squared error (RMS error, m/s) of the predicted load over

all of the control horizons.

• RMS error of the FCS output over the driving cycle comparing with Level 2

DP results.

The results are shown in Fig. 5.17(b) and (c), respectively. The MPGe percentage

improvement of different APMP-MPC algorithms are shown in Fig. 5.17(a). The

average RMS error of the predicted load provides a direct insights on how accurate

the load predictor should be to have an affordable APMP-MPC algorithm. The

results show that the magnitude of the RMS error is related to the performance

degradation of fuel economy. The preview APMP-MPC results are a good reference.

For city cycle like NYCC and UDDS, the RMS error needs to be less than 0.5kW

in order to guarantee a good FE performance by using APMP-MPC algorithm. For

more aggressive driving cycles like US06, the tolerance can be up to 1.1kW . Further

comparison is to view the RMS error of the FCS output trajectory. In the proposed

APMP-MPC algorithm, three errors are combined to cause the FCS output trajectory

error: the error of load predictor; the deviation of the A-PMP algorithm due to

the estimation error of the co-state; the tracking error of the MPC because of the

activation of constraints. Since all the errors are tangled together, the RMS error of

the FCS output trajectory provides an baseline of a good APMP-MPC algorithm.

For city cycle like NYCC and UDDS, the RMS error needs to be less than 1.2kW

in order to guarantee a good FE performance by using APMP-MPC algorithm. For

more aggressive driving cycles like US06, the tolerance can be up to 2.5kW .

107



0

5

10

M
P

G
e

  
  

  
  

  
  

  
  

  
  

  

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t 

[%
]

Fuel Economy Performance Compared with Rule-based Algorithm

NYCC

US06

LA92

UDDS

0

5

10

R
M

S
 E

rr
o

r 
[k

W
]

Average Load Prediction RMS Error

NYCC

US06

LA92

UDDS

0

2

4

6

R
M

S
 E

rr
o

r 
[k

W
]

FCS Power Tracking RMS Error

NYCC

US06

LA92

UDDS

Prescient

APMP-MPC

Prescient

APMP-MPC

FT

APMP-MPC

Exp

APMP-MPC

(  = 0.001)

Preview

APMP-MPC

(10% Error)
(a)

Prescient

APMP-MPC

FT

APMP-MPC

Exp

APMP-MPC

(  = 0.001)

Preview

APMP-MPC

(10% Error)
(b)

FT

APMP-MPC
(c)

Preview

APMP-MPC

(10% Error)

Exp

APMP-MPC

(  = 0.001)

Figure 5.17: Effects of the load prediction error on fuel economy performance: (a)Fuel
economy performance compared with rule-based algorithm, (b)average load prediction
RMS error, (c) FCS power tracking RMS error. For Exp APMP-MPC, ε = 0.001, for
Preview APMP-MPC, maximum percentage error is 10%.
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5.3.3 Effects of Implementing a Load Governor

One solution to improve the proposed APMP-MPC algorithm is to improve the

performance of the load predictor by reducing the RMS prediction error. Addition-

ally, one should also consider mechanisms that could reduce the effects of prediction

error. In this subsection, such mechanisms are discussed. A load governor, which is

simplified to a rate limiter is considered. To better understand the effects of imposing

a load governor, the Level 1 DP is extended. There are two reasons to use DP in

this study instead of A-PMP as the high level energy management algorithm. First,

the proposed APMP-MPC estimates the co-state value online and includes an SOC

governor to ensure charge sustaining performance. These two features are entangled

with MPC algorithm as a feedback controller, where the co-state estimation error also

affects the fuel economy, making it hard to separate from the load prediction error.

Furthermore, designing an optimal A-PMP algorithm with load governor means to

extend the system dynamics by adding another co-state value and is hard to guaran-

tee the global optimal solutions. Thus, an extended Level 1 DP strategy is used as the

reference trajectory for MPC, along with adding the same time varying percentage

error to keep the evaluation consistent.

To impose a rate limiter into the Level 1 DP, the control input is modified. Instead

of using the requested FCS power Pfc c(k), as described in (2.3), the power command

difference, which is defined as the changing rate of the power command, ∆Pfc c(k) is

adopted. The state variable is further extended to two states, battery SOC and the

FCS power command Pfc c(k). Furthermore, one more equation needs to be added

into the system dynamics:

Pfc c(k) = Pfc c(k − 1) + ∆Pfc c(k). (5.22)

By modifying the minimum and maximum value of the new control input ∆Pfc c(k),
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a rate limiter is imposed in the Level 1 DP formulation. The results are shown in Fig.

5.18 and Fig. 5.19. The fuel economy performance for UDDS driving cycle compared

with Level 1 DP is presented in Fig. 5.20. When the rate limiter is set to 5kW/s,

the optimal fuel economy is very similar to that with no rate limiter. When the FE

degradation tolerance is extended to 1.5%, the rate limiter can then be set to 1kW/s.
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Figure 5.18: FCS output power trajectory comparison on different rate limitors for
UDDS.

The effects of imposing a load governor are evaluated in the following process. The

optimal Level 1 DP strategy with different rate limiter is implemented in the DP-MPC

algorithm. The UDDS driving cycle is selected and the fuel economy performance is

analyzed and shown in Fig. 5.21. Furthermore, the fuel economy results are compared

with the optimal Level 1 DP results for each rate limiter. The sensitivity analysis

is shown in Fig. 5.22. As can be seen, the drawbacks of having the load prediction

errors can be mitigated by imposing a rate limiter. The MPGe degradation changes

from 9% to 7% after implementing a rate limiter with the value set to be 1kW/s.
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5.4 Conclusion

A real-time energy management algorithm, APMP-MPC, is proposed in this chap-

ter to address the energy management problem while mitigating the effects of FCS

transient power dynamics. The proposed algorithm shows potential improvements

ranging from 0.23% to 5.95% on representative driving cycles with the assumption of

prescient load information. Furthermore, a comparative study of four different load

predictors for APMP-MPC based energy management in a FCV is presented. Results

demonstrate that the simple FT-APMP-MPC can extract a better fuel economy on

aggressive driving cycles, such as US06. To maintain the effectiveness of using the

proposed APMP-MPC algorithm for FCVs energy management, the RMS prediction

error has to be lower than 1.1kW throughout the entire driving cycle. The data-

driven prediction methods need to by further developed to meet the criteria. From

another point of view, the sensitivity of the prediction error on fuel economy can be

attenuated by using a rate-limiter. This method can be considered as the second

choice if a good prediction method is not available.
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CHAPTER VI

Conclusions

6.1 Conclusions

In this thesis, a hierarchical control framework was presented for real-time energy

management aiming at reducing the controller design and calibration effort for the

FCVs powertrain controls. At the beginning, a systematic analysis framework was

proposed to understand the dynamic effects of FCS on optimal energy management.

Dynamic programming methods were used and two levels of DP approaches were

adopted to derive optimal power split strategies. Level 1 DP ignored the FCS dy-

namics while Level 2 DP incorporated the FCS dynamics. Different evaluations were

performed, such as evaluation of the linear filter time constant, zero-dynamics and

model parameter variations. The results showed that substantial loss of performance

could occur if the slow dynamics were not included in DP. The loss of fuel economy

could be higher than 3% if the settling time of FCS power dynamics was more than

3s, and the energy deficiency due to the nonminimum phase dynamics was higher

than 2.5kJ for a unit step reference command.

Based on the analysis of the effects of FCS dynamics on optimal energy man-

agement, two real-time energy management strategies were developed and evaluated:

A-PMP for fast FCS dynamics and APMP-MPC for slow FCS dynamics. By adopt-

ing the techniques from the optimal control, a modified Hamiltonian equation was
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proposed and a novel adaption method was implemented to update the co-state in

real-time, which brought the PMP method online. The A-PMP strategy only relied

on the travel time as the trip information and can guarantee the charge sustaining

performance. A representative powertrain model was built by adopting the config-

uration based on a Fusion Energi Hybrid Vehicle. The proposed A-PMP algorithm

was implemented on both the simulation environment and the real workhorse vehicle.

The numerical simulation on the simplified powertrain model successfully proved the

effectiveness of the A-PMP strategy. The MPGe performance degradation was less

than 1.7% compared with the optimal DP strategy for a 1.4hrs drive. The robust-

ness of the strategy was also validated. The proposed algorithm was then further

validated in a high fidelity powertrain. Numerical simulation showed improvements

ranging from 1.1% to 7.0% with regen braking on representative driving cycles. Ini-

tial evaluations of the A-PMP on a testing vehicle was done. The HIL test and the

vehicle test successfully proved the A-PMP could be implemented in real time. The

validation results showed potential benefits of using the model-based optimization

method on real-time energy management for FCVs.

To deal with the slow FCS dynamics, the hierarchical control framework, APMP-

MPC strategies, was detailed and validated. The simulation results showed potential

improvements ranging from 0.23% to 5.95% on representative driving cycles with

assumption of prescient load information. The effects of load prediction error on the

performance of APMP-MPC strategy were evaluated and analyzed. The conclusions

showed that the leverage of FCV energy management was not as high as the other

hybrid vehicles, such as HEVs and PHEVs. The prediction errors were critical to

any predicted based energy management methods. For the proposed APMP-MPC

structure, the RMS prediction error had to be less than 1.1kW over the entire driving

cycle to render a better fuel economy.
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6.2 Future Research Directions

The research presented in this thesis established potential work focusing on the

collaborations of the vehicle level energy management design and the sub system

controller design. It also leads to several proposed future research efforts:

6.2.1 Better Online Adaptation Methods for Co-state Variables

Although the proposed A-PMP showed the robustness on different driving cycles,

the performance can be further improved if more advanced multi-parametric models

will be explored to extract better co-state estimation. Furthermore, the online esti-

mation of the optimal power split strategy should also have the ability to adapt to

sudden change of the driving conditions to make the A-PMP more robust.

6.2.2 Robustness Validations on the Testing Vehicles

Further vehicle tests are required to evaluate the performance. The hierarchical

APMP-MPC controller should also be tested in the HIL environment and imple-

mented in the testing vehicle. Validation of the FCS dynamics models are important.

Real-time system identification methods should be developed to assist the APMP-

MPC in establishing robustness against the load prediction error and the model pre-

diction error. The focus should be on maintaining the overall load prediction error

at less than 1.1kW/s for the current powertrain, but all the analysis framework can

be extended and adopted to different types of hybrid vehicles.

6.2.3 Advanced Load Prediction Methods Development

Data driven methods are not the focuses in our current research. However, com-

bining the advanced data driven methods with the advantages of model-driven opti-

mization may lead to the ultimate solution of the real-time energy management for

HEVs. Model-based optimization will provide the structure and the essence of the
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energy management, and more advanced load prediction methods will improve the

robustness of the strategy.

6.2.4 Derivation of an Unified A-PMP Algorithm for HEV

A-PMP algorithm has already been proved to be effective in real-time energy

management for FCVs. The methodology should also be implementable in traditional

HEVs. An unified A-PMP algorithm suitable for different kinds of HEVs should be

explored and validated.
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