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ABSTRACT 

In this thesis, an energy-efficient CMOS (Complementary Metal–Oxide 

Semiconductor) image sensor for embedded machine-learning algorithms has been studied 

to provide low-power consumption, minimized hardware resources, and reduced data 

bandwidth in both digital and analog domains for power-limited applications. In power-

limited applications, image sensors for embedded machine learning algorithms typically 

have these challenges to address: low-power operation from limited energy sources such 

as batteries or energy harvesting units, large hardware area due to complicated machine-

learning algorithms, and high-data bandwidth due to video streaming images and large data 

movement for evaluating the machine-learning algorithms. 

This research focuses on developing the architectures, algorithm optimization, and 

associated electronic circuits for an energy-efficient CMOS image sensor with the 

embedded machine-learning algorithms. Three interdependent prototypes have been 

developed to solve major challenges: minimization of energy consumption and hardware 

resources while preserving a high degree of precision in machine-learning algorithm 

evaluation. Three prototypes have been fabricated and fully characterized to address these 

challenges. 

In the first chip, we implemented 2 bit spatial difference imaging, a customized 

look-up table (LUT) based gradient orientation assignment, and a cell-based supporting-

vector-machine (SVM) to achieve both low-data bandwidth and higher area efficiency for 
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a histogram-of-oriented-gradient (HOG)-based object detection. The proposed HOG-based 

object detection core operates with the 2D optic flow core to provide the vision-based 

navigation functionality for the nano-air-vehicle (NAV) application. The system operates 

at 244 pJ/pixel in 2D optic flow extraction mode and at 272.49 pJ/pixel in hybrid operation 

mode, respectively. The system achieved 75% reduction in memory size with proposed 

HOG feature extraction method and cell-based supporting-vector-machine (SVM). 

In the second chip, a mixed-mode approximation arithmetic multiplier-accumulator 

(MAC) is built to reduce power consumption for the most power-hungry component in a 

convolution neural network image sensor. The proposed energy-efficient convolution 

neural networks (CNN) imager operation is as follows. The pixel array gathers photons 

and converts them to electrons. The individual pixel values are transferred to a column-

parallel mixed-mode MACs in a rolling shutter fashion. The column-parallel mixed-mode 

MACs conduct the convolution operation in the analog-digital mixed-mode signal domain. 

Each convolution layer in the neural network is processed in a pipeline fashion. In the last 

stage, an analogue-to-digital converter (ADC) converts the result of the MACs operation 

to digital signals. Consequently, the column-parallel mixed-mode MACs and the pipeline 

operation allow the imaging system to achieve real-time imaging with low-power operation 

during runtime. The system operates at 5.2 nJ/pixel in normal image extraction mode and 

at 4.46 GOPS/W in a convolution neural network (CNN) operation mode, respectively. 

In the third chip, a self-sustainable CMOS image sensor with concurrent energy 

harvesting and imaging has been developed to extend the operation time of the machine-

learning imager in the energy-limited environment. The proposed CMOS image sensor 

employs a 3T pixel which deploys vertically both hole-accumulation photodiode and 



  xx 

 

energy harvesting diode in the same pixel to achieve a high fill-factor (FF) and high-energy 

harvesting efficiency. The sensor achieved -13.9 pJ/pixel at 30 Klux (normal daylight), 94% 

FF for the energy harvesting diode, and 47% FF for the imaging sensing diode. 
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Chapter 1  

Introduction 

1.1 Motivation 

In the past few decades, there has been significant progress in the development of 

digital imaging systems with a fast advance in Charge Coupled Device (CCD) and CMOS 

Image Sensor (CIS) technologies. CCD was invented by George Smith and Willard Boyle 

at Bell Telephone Laboratories (Bell Labs) in the 1970s [1]. This invention transformed 

still and video cameras from film to electronic file recording devices. CCD digital imaging 

systems rapidly replaced the previous imaging system formats and expanded their area of 

influence to digital still cameras, digital camcorders, surveillance cameras, satellite 

telescope imaging systems, and more devices. In addition, the industry invented a variety 

of new devices such as digital document scanners, bar code readers, digital copiers, and 

dozens of other business tools. In the 1990s, the CIS was explored as a competitive digital 

imaging for space applications at the National Aeronautics and Space Adminstration’s 

(NASA) Jet Propulsion Laboratory. Eric Fossum conducted the research to make CIS “for 

space applications in which it has several advantages over CCDs, including a requirement 

for less power and less susceptibility to radiation damage in space.” [2]. This earnest 

research led to the development of CMOS active-pixel sensors which included additional 

functionality, allowing for more portability, achieving lower-power dissipation, and 

reducing the imaging systems’ form factor. These key features meant the CMOS image 



  2 

 

sensor could be integrated with handheld mobile devices such as cellular phones, laptops, 

and tablet PCs in the 1990s. Moreover, this evolution was accelerated since CIS 

manufacturing used standard CMOS technology, which reduced production cost 

significantly. Furthermore, many researchers made progress to improve the key features of 

CIS: high spatial resolution [3], high dynamic range [4], high sensitivity [5], low noise [6], 

and high-speed imaging [3]. Due to these benefits, CIS replaced CCDs in most digital 

imaging systems [7]. 

Currently, the imaging systems require a paradigm shift due to the emergence of 

distributed sensor networks and Internet-of-Things (IoT). IoT devices need the sensors 

which can keep monitoring environments and support a User Interface (UI). Due to this 

demand, imaging systems are expected to not only acquire simple images or video 

streaming images but also to infer images by analyzing scenes from a collected vision 

information. Recently, machine learning has made great progress in the accuracy of object 

detection tasks and object classification tasks for the imaging processing area. Furthermore, 

deep-learning techniques show great improvement in accuracy of inferring images and 

image classification areas due to the innovation and application of deep-learning 

algorithms [8]. Furthermore, in image classification tasks, deep-learning has surpassed 

human accuracy [9-10]. 

In the rest of this chapter, opportunities for the application of embedded machine 

learning algorithms are elaborated with background knowledge of CMOS image sensor 

technology. After describing the challenges, we then present our research goals. 
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1.2 Embedded-machine learning systems in CMOS image sensor technology 

Even though the CMOS image sensor was invented before CCD technology, CMOS 

has not been more widely used than CCD image sensors due to the low signal-to-noise 

ratio (SNR) of CMOS image sensors compared to CCD image sensors. In the 1990s, the 

CMOS image sensors were rapidly expanding areas of application due to the low power 

consumption, low-cost, integration ability, and scalability [1]. The CMOS image sensor 

provides a single-chip solution since the CMOS imager, the analog-digital-converters 

(ADC), periphery circuits, and digital image processing circuit are implemented together 

with standard CMOS technology without additional silicon fabrication processes. However, 

the CCD imaging system requires a special silicon fabrication process and off-chip 

components (ADCs, the digital imaging processor, and CCD imager controller): as a result, 

the fabrication cost of digital imaging systems dependent upon CCD technology is higher 

than the fabrication cost of a single-chip solution with CMOS image sensor technology. 

Most recently-manufactured CMOS image sensors employ an active pixel sensor (APS) 

architecture. Compared to a passive pixel sensor (PPS) architecture, APS shows higher 

SNR due to less leakage current which is induced by a selection transistor at each passive 

pixel. The APSs deploy an in-pixel amplifier to overcome this problem. In addition, the in-

pixel amplifier allows an increase of higher spatial resolution, which can be helpful to 

overcome large parasitic capacitance of column lines in high spatial resolution CMOS 

image sensors. 

Traditionally, the machine-learning algorithms require large computation resources 

and movement of large data files. This means the hardware for implementing machine-

learning algorithms requires memory to store and read the weight values for evaluation and 
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partial calculation results from process elements (PE). CMOS image sensor manufacturing 

uses standard CMOS technology: this key feature of the CMOS image sensor allows 

implementation of static random access memory (SRAM), an efficient memory unit, and a 

high-speed arithmetic logic unit (ALU) which are successfully employed in state-of-art 

microprocessor technology in a single-chip solution. However, the machine-learning 

algorithm has to process a massive amount of data under a strict time. These constraints 

lead to high power consumption and large hardware areas in service of the high-speed 

imaging processing unit. To solve these problems, in-pixel imaging processing techniques 

are suggested for the imaging process and the embedded machine-learning applications, 

which are developed for optimal partitioning between an in-pixel analog process unit (APU) 

and a digital signal processor (DPS) [11-13]. In addition, by adapting an angle sensitive 

filter in front of pixels with the metal grid, researchers have tried to solve the 

aforementioned problems [14]. 

1.3 Challenges 

Recently, machine-learning algorithms are employed at the chip level, giving more 

accurate, faster and more energy-efficient computational tasks. Several papers report 

reducing power consumption for CMOS image sensors [12-14] [18] [21]. Previous works 

show meaningful achievements by adapting several techniques: voltage scaling, in-pixel 

ADCs, small-sized pixel architecture, etc. However, CMOS technology scaling has started 

to slow down. In addition, to achieve higher performance, the complexity of state-of-the-

art machine-learning algorithms is dramatically increasing [15]. Furthermore, the system 

power budget for power-limited applications such as battery capacity has not improved, 
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roughly, at the same rate. These constraints are why low-power operation for embedded 

machine-learning operation is needed. 

Most of today’s machine-learning algorithms are designed to achieve higher 

accuracy of object recognition. Typical examples for floating-point based algorithms are; 

neural networks (NN), support vector machines (SVM) [16], principal component analysis 

(PCA), the Kanade Lucas Tomasi point tracking algorithm (KLT), and histogram of 

oriented gradients (HOG). Floating-point operations require a complicated circuit and a 

large area compared to a fixed-point operation approach. In addition, a floating-point 

operation is at least 10 times slower than pure integer arithmetic. This speed penalty 

demands more system resources to achieve system requirements. Furthermore, 

aforementioned machine-learning algorithms use vector/matrix operations and multiplying 

to evaluate algorithms. These complicated operations lead towards necessity of a larger 

hardware resource relative to classical algorithm approach 

A moderate image spatial resolution of 1 megapixel at 30fps results in a bandwidth 

requirement of over 0.5 Gbps. In addition, recent machine-learning algorithms require 

large data movement to store or load the weight vector information and intermediated 

calculation results. For example, to implement AlexNet, the neural network processor 

requires 2.8Gb data transmission between PEs and memory (Registers File, SRAM, or 

DRAM). In addition, the complexity of the machine-learning algorithms increase the 

number of the weight value, which introduces higher data bandwidth demands. 
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1.4 Research Goal 

The main goal of this work is implementing an energy-efficient CMOS image sensor 

system with an embedded machine-learning algorithm. Traditionally, the imaging systems 

used separate image sensors and digital processors/controllers; this approach results in a 

large form factor and resultant power consumption due to the power demanded by 

communication between each component. This approach is not suitable for power-limited 

distributed image sensor networks and IoT applications. Recently, the integration of the 

image sensing arrays and processing units together on chip has shown promising results 

[11-13]. Figure 1-1 describes the CMOS imaging system architecture with an embedded 

machine-learning algorithm consisting of essential circuit blocks for a complete system. 

The imaging sensing array is crucial to converting light signals into electrical signals. In 

addition, design optimization for this image sensing array block should be made. The 

design of the embedded machine-learning block should also be carefully planned and 

constructed since it consumes most of the total energy and occupies most of the system 

area. In addition, the energy-harvesting block and power management block are required 

to extend the lifetime of the system. In this thesis, we achieve the main goals of the 

minimization of energy demand, lowered consumption of data bandwidth and efficient 

allocation of hardware resources by optimizing the machine-learning algorithm and 

architecture in both the digital domain and analog domain. In addition, a photovoltaic 

energy harvesting pixel is implemented for energy sources for the proposed system without 

additional area penalty of photodiodes and the degradation of energy-harvesting 

efficiency.  Those three inter-related projects are the main topic of this thesis. 
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Figure 1-1 Architecture of CMOS image sensor with embedded machine-learning 

algorithm. 

1.5 Thesis Outline 

Chapter 2 covers the basic operation of the CMOS image sensor including 

architecture and components to support the CMOS image sensor. Furthermore, an in-pixel 

photovoltaic energy harvesting method will be introduced for the CMOS image sensor. 

Chapter 3 covers background research of the machine-learning algorithm. Chapter 4 covers 

the architecture and circuit implementation of a histogram-of-oriented-gradient (HOG) 

based object detection to achieve both low data bandwidth and area efficiency in the digital 

domain for Nano Air vehicles (NAV). Then, measurement analysis results from the 

fabricated chip, and comparison with the other state-of-the-art object detection works will 

be shown. Chapter 5 introduces the mixed-mode approximated arithmetic MAC to reduce 

the power consumption for the most power-hungry component in the convolution neural 
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network algorithm. In chapter 6, a CMOS image sensor with concurrent energy harvesting 

and imaging is discussed to extend the operation time of the machine-learning imager in 

an energy-limited environment. This last chapter summarizes this thesis by pointing out 

important results and suggests possible future work. 
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Chapter 2 

Introduction of CMOS image sensor 

CMOS image sensor measure the number of incident photons with the photodiode. 

The CMOS image sensor provide the digital image signal from the measured number of 

incident photons. The photodiode in each pixel converts the incident light into an electrical 

signal. The electrical signal is done through correlated-double sampling (CDS) for noise 

cancelation and amplification for suppressing the input-referred noise. This noise-

suppressed analog signal is converted into the digital signal by the embedded ADCs. This 

converted digital image is then stored in a digital memory and transmitted outside of the 

sensor chip through the interfacing circuits.  

In this chapter, the CMOS image sensor background knowledge is presented. First, 

the device structure of photodiodes and various pixel structure are introduced. We also 

present the ADCs architecture for CMOS image sensor. 

2.1 Photodiode 

A p-n junction photodiode is common optical sensing device in most CMOS image 

sensor. Figure 2-1 depicts the vertical structure of a p-n photodiode. The most p-n 

photodiode is formed with n+/pwell or with nwell/p-sub in standard CMOS process. The 

p-n photodiode is usually operating in reversed-biased with grounded anode and floated 

cathode. The reverse bias is expanding a depletion region and an electric field around the 
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junction, which increase the chance for generating an electron-hole pair. When an incident 

photon is arriving the depletion region and the photon energy is higher than the bandgap 

energy of silicon, the electron-hole pair is generated. This generated electron-hole pair 

within the depletion region are separated by the electric field. Separated holes are drained 

by the ground and electrons are collected in the floating cathode. As the result, large 

photodiodes depletion region can increase the higher photocurrent. This lager depletion 

region can be achieved by adopting lower doping concentration for p-n junction and higher 

reverse bias. 

 

Figure 2-1 Vertical structure of a p-n photodiode 

2.2 CMOS pixel operation 

The photocurrent which generated by incident photon is integrated in the junction 

capacitance of PD as shown in Figure 2-1. The CMOS pixel operations are as follows: (1) 

A reset transistor (RST)  set the PD cathode (VR) to make reverse bias condition for PD 

before starting the photocurrent integration in the junction capacitance of PD (2) After the 
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reset operation, the generated electron by the incident photon are collated in the potential 

well. This photocurrent discharge the junction capacitance during the integration time. (3) 

After TINT, the difference between the VR voltage and the discharged voltage of the PD is 

read out, which represent the light intensity. (4) Reset again for next frame. 

The accumulated charge in the capacitor or the voltage difference across the diode by 

photocurrent can be read out by typically two ways: passive pixel sensor (PPS) and active 

pixel sensor (APS). In the following sections, each pixel architecture will be elaborated 

and discuss their advantages and disadvantages. 

2.2.1 Passive pixel sensor 

Figure 2-2 shows a passive pixel sensor structure. In the PPS structure, charges, which 

are accumulated in photodiode junction capacitor, are transferred to amplifier for 

measuring the total number of generated charges by incident light. In the PPS, pixel include 

a switch transistor between the photodiode and the column line, which is used for reset 

operation and multiplexing the photodiodes to the amplifier.  

The operation of PPS are as follows: (1) First, the photodiode is reset as the virtual ground 

voltage of the column amplifier (VREF). (2)  The photodiode integrate the charge during 

integration time. (3) After the integration time, the collected charges are transferred to the 

feedback capacitor CF of the amplifier and the output voltage (VOUT) is amplified. The 

VOUT is expressed as: 

𝑉𝑂𝑈𝑇 =
∆𝑄

𝐶𝐹
=
𝐶𝑃𝐷
𝐶𝐹

∆𝑉 
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, where ΔQ is the generated charges and ΔV is the voltage difference due to the discharge 

of the photocurrent. The most attractive advantage of PPS is that PPS employ only single 

transistor, which induce the high fill factor. In general, high fill factor leads higher 

sensitivity since the photodiode can collect more charges. .Even though, PPS has these 

advantage. When the number of pixel increase, the PPS has low signal noise ratio (SNR). 

First, small photocurrent is difficult to read out due to large capacitance of column line 

which connect the column amplifier. Second, a leakage current which is induce by other 

pixel in same column line corrupts the signal. As the result, scalability of a pixel array is 

limited by this low SNR. 

 

Figure 2-2 Passive pixel readout circuit 

2.2.2 3-T active pixel sensor 

Due to the limitation of PPS, the active pixel sensor is proposed by deploying the 

additional amplifier inside of pixel to drive the large column capacitance. Figure 2-3 shows 
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the structure of 3-T APS. The each pixel is consisted of three transistors: reset transistor 

(MRST), source follower transistor (MSF), and select transistor (MSEL). The load current 

source for the amplifier is shared in column-level.  

The operation of 3-T APS is as follows: (1) The PD node is reset to VDD – VTH due to 

the VT drop in the NMOS transistor (MRST). During the reset phase, kTC thermal noise is 

induced in the R-C circuit. (2) VPD is decreased by discharging of photocurrents. (3) After 

integration time (TINT), MSEL is turn on and VPD is read out through MSF. (4) After read out 

the VPD, PD is reset again with MRST for the next frame and read out PD reset level. (5) For 

the delta double sampling (DDS), PD reset level is read out, which reduce the fixed-pattern-

noise (FPN) in pixel. The reset level of each pixel significantly varies across the pixel array 

mainly due to threshold voltage mismatch of the MRST. When PD is reset, the reset level is 

given as: 

VPD0=VR+VRN1 

, where VR is the reset voltage and VRN1 is the additional reset noise. After photocurrent 

integration, the PD signal voltage is read out. This signal voltage is expressed as: 

VSIG=VR+VRN1−ΔV  

, where ΔV is the voltage difference due to discharging of the photocurrent. After read out 

PD signal voltage, the PD is reset and read out for FPN removal. The reset voltage level is 

expressed as: 

VRST=VR+VRN2 
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, where VRN2 is the additional reset noise. After the double delta sampling operation, the 

ΔVest can be estimated by subtracting VSIG from VRST. It is expressed as:  

ΔVest=VRST−VSIG=ΔV+√VRN12+VRN22  

Since these independent two reset noises are not correlated each other, this results lead a 

poor SNR for 3-T APS. 

 

Figure 2-3 3-T active pixel structure 

2.2.3 4-T active pixel sensor 

Figure 2-4 shows the 4-T APS with pinned photodiode. As shown in the Figure, 4-T APS 

has the separated charges to voltage converting node which is called floating diffusion (FD). 

The operation of the 4-T APS is as follows: (1) During the integration time, the generated 

charges are accumulated in PD. (2) At FD reset phase, the FD node is reset by reset 
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transistor.  During this reset, the kTC noise is induced (3) Reset level readout: read out the 

reset level of the FD for CDS operation. (4) The accumulated charges in PD are transferred 

into the FD. (5) Readout the FD voltage level: the charges are moved without additional 

thermal noise. (6) CDS operation: the CDS operation subtract from the signal level to FD 

reset level, which cancels both the FPN and the kTC noise. Since kTC noise is cancelled 

during CDS operation, the 4-T APS provide better SNR than the 3-T APS. Moreover, 

conversion gain of 4-T APS is higher than 3-T APS due to FD. 

 

Figure 2-4 4-T active pixel structure 

2.3 Pixel performance 

This section covers the key Figure of the pixels to evaluate the CMOS image sensor. 

2.3.1 Fill Factor 

A pixel is consisted of a photodiode and a peripheral transistors: reset transistor, select 

transistor, and a source follower. Fill factor is defined as the ratio of the open area of 

photodiode to the whole pixel area. Basically, larger fill factor provide higher sensitivity 
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since the pixel can have a chance to receive more photons. One way to increase the fill 

factor, the pixel share the peripheral transistors with neighboring pixels. Another way to 

increase the FF is adapting the backside illumination (BSI) technology. In this technology, 

BSI locate the PD at the bottom-side of the silicon substrate. The incident light can reach 

without shading due to the metal routing. 

2.3.2 Dark current 

A dark current is a leakage current of PD that is induced without any illumination. The 

dark current causes FPN and shot noise, which decrease the SNR especially in low 

illumination condition. The main sources of the dark current mechanisms are categorized 

into two: the reverse-bias leakage current, and the surface generation current. The reverse-

bias leakage current is basically affected by temperature. When the temperature is 

increasing, the leakage current also increase. To remedy this leakage current, the cooling 

mechanisms are sometimes deployed in imaging systems to reduce the dark current. The 

second mechanism is significantly suppressed by a pinned photodiode. 

2.3.3 Full-Well capacity 

The full well capacity is defined how many generated charges can be stored in the 

capacitance of the PD. When more charges than the full-well capacity are generated, the 

pixels are saturated and cannot store the additional generated charges. In 3-T APS, the full-

well capacity is determined by the PD capacitance and the voltage swing of PD. In 4-T 

APS, it is limited by the FD capacitance and the voltage swing of FD due to charge transfer 

operation from PD to FD. The total amount of charge which capacitor store is expressed 

as: 
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𝑁𝑆𝐴𝑇 =
𝐶𝑃𝐷𝑉𝑆𝑊𝐼𝑁𝐺

𝑞
 [electrons] 3-T APS 

𝑁𝑆𝐴𝑇 =
𝐶𝐹𝐷𝑉𝑆𝑊𝐼𝑁𝐺

𝑞
 [electrons] 4-T APS 

 

, where, q is the charge of a single electron (1.6e-19 C). Larger full-well capacity providing 

a higher dynamic range. However, full-well capacity is limited by the CMOS technology 

and the pixel size. Traditionally, when the CMOS technology and the pixel size is scale 

down, the full-well capacitor is proportionally decreasing. To overcome this problem, 

many previous works suggest multiple capturing method to increase the full-well capacitor 

[17], [18]. 

2.3.4 Sensitivity 

The sensitivity [V/lx⋅s] is defined as the ratio between output voltage swing and the 

illumination level of the incident light. In 3-T APS, the sensitivity is affected by quantum 

efficiency and amplifier gain. The quantum efficiency is the ratio of generated charges to 

the incident photons. The source follower is commonly used for amplifier for APS. 

However, the source follower cannot achieve unity gain due to the body effect of transistor, 

the channel length modulation, and the distortion of the current source. In 4-T APS, the 

sensitivity is dependent on additional factor the conversion gain. A smaller FD capacitance 

increase the conversion gain. However, this smaller FD capacitance decreases the full well 

capacity, which reduce the dynamic range and SNR.  
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2.3.5 Dynamic range 

The dynamic range (DR) is defined as the ratio between maximum affordable optical 

power and the minimum measurable optical power. High dynamic range is very important 

for in outdoor imaging since DR of natural scenes is more than 100 dB. The minimum 

detectable optical power correspond the minimum detectable level or the noise floor of the 

image sensor. In the image sensor, the dominant noise floor is contributed by the ADC 

noise and dark current noise. To reduce this noise floor, low-noise readout circuit is very 

important. To improve the noise performance, recent works reported sub-electron noise 

performance through several techniques in low-light condition [18], [19]. To extend the 

DR for outdoor imaging, nonlinear photo-response techniques is introduced [20]. Other 

strategies for high-dynamic range are suggested: dual- capture [16], multiple-capture [17], 

pixel-wise integration time control [21], [22], and time-domain measurement [23], [24]. 
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Chapter 3 

Machine-learning algorithm for computer vision 

3.1 Introduction 

Recently, a machine learning makes a great progress due to its successes in various 

areas for artificial intelligent. In addition, a machine learning is expanding their area such 

as entertainment, machine vision, medical application, the self-driving cars navigating 

application, etc. Especially, this great progress is accelerated by increasing the computing 

power and the evolution of the machine-learning algorithm. The big difference between 

the conventional computer programing and the machine-learning algorithm is the way to 

find the solution for the problem. In the conventional programing method, the human 

explicitly make the program to solve the given problem. However, the machine-learning 

approach is different: a human provides a set of rules and data, and the machine-learning 

algorithm uses them to find the solution automatically. Machine learning is useful when 

the solution is difficult to establish the model analytically. Due to this reason, the research 

and engineering can use the machine-learning algorithm to find the solution in a variety of 

problems. Figure 3.x shows the purpose of the machine-learning system and latency in 

terms of computing power. In high computing power environment, machine-learning 

system produce the learning process based on large amount data which is collected from 

mobile device or the edge machine-learning system. The mobile system conduct the 

inference with given learning model which is trained by cloud machine-learning system.   
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In this chapter, we present the application of the machine-learning and background 

knowledge. 

3.2 Application for machine-learning algorithm 

Many applications can enjoy the machine learning. In this section, we will cover a 

few examples of areas. Especially, we will focus on more computer vision task. 

Recently, the most of the devices connect to internet. Especially, the video stream 

images occupy over 70% of internet resource and cause traffic [25]. For example, the 

surveillance devices which keep monitoring environment and continuously uploading the 

video stream images regardless including meaningful information or not. Recently, to 

overcome this problem, a motion-triggered objet-of-interest (OOI) imaging is introduced 

to suppress communication bandwidth [12].  

For other power-limited applications such as micro air vehicle, robotics, and mobile 

device, deploying the embedded machine-learning algorithm is beneficial since this 

evaluated result can provide significant information to navigate or conduct more 

complicated mission without connection between host systems [13]. However, due to a 

large amount of the computation for video streaming images, evaluating the machine-

learning algorithm at power-limited device is still challenging.  

Speech recognition also provide interaction between human and IoT device. 

However, most of the commercialized devices process this voice recognition in the cloud 

system. Instead of clouding service, providing this functionality in embedded device has a 

beneficial in terms of reducing latency and increasing privacy.  Furthermore, the speech 
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recognition is used for other speech-based tasks: translation, natural language processing, 

etc. To realize speech recognition in power-limited application, low power hardware for 

speech recognition is introduced [26-27]. 

For the clinical purpose, monitoring patients is critical to detect or diagnose diseases 

of the patients without restrictions of a normal life. Due to this demand, wearable device is 

disable, which can achieve very low power dissipation. Recently, using embedded machine 

learning at ADCs level is demonstrated [28-29]. 

3.3 Machine-learning operation 

Machine learning learns from given dataset during a training process. Basically, training 

process extract weight value from given dataset which is classified. After complete training 

process, the task is conducted for new input data, which is defined as inference. Inference 

evaluate the new input data by using the trained weights. The most of training phase is 

done in a big computer cluster. Inference can also be evaluated in a big computer cluster. 

However, certain applications require to assess the inference on a device near the sensor. 

For supporting these devices, the trained weights are stored in the device memory.   

3.3.1 Feature extraction 

Feature extraction is function which extract from the input data to meaningful 

information. Especially, in the imaging processing, feature extractions are performed to 

detect and isolate desired portions or shapes from the images. For example, for object 

recognition area, to extract distinct feature, a recent feature extraction algorithm uses the 

edge of the images [13]. It is adopting the theory that human is sensitive when recognizing 
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the object. This is the reason why recent well-known computer vision algorithms use image 

gradient-based features: Histogram of Oriented Gradients (HOG) and Scale Invariant 

Feature Transform (SIFT). The main challenge for feature extraction provide more robust 

against illumination variations, various background, and low SNR. 

3.3.2 Classification 

The classifier make a decision based on the vector value which is generated by feature 

extraction. In object detection task, classifier determine an object presence or not based on 

a threshold. In object recognition task, classifier compare to the other scores for each class 

and infer the object class. The typical linear methods are Support vector machine (SVM) 

[16] and Softmax. Non-linear methods are kernel-SVM [16] and Adaboost [30]. The most 

of classifiers are computing the score through effectively a dot product of the features (�⃗�) 

and the weights (�⃗⃗⃗�) (i.e.∑ 𝑤𝑖 ∙ 𝑥𝑖𝑖 ). As a result, much of the research has been focused on 

mitigating the cost of a multiply and accumulate (MAC). 
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Chapter 4 

CMOS image sensor with embedded objection detection for a vision based 

navigation system 

4.1 Introduction 

Recently, many research laboratories have made an effort to develop small size 

micro-air-vehicle (MAV) and nano-air-vehicles (NAV) which can conduct missions in 

confined space and conduct various tasks [36]. The tasks of the NAVs can be an emergency 

communication network node, inspection of pipelines and cables inspection for 

infrastructure, and rescuing persons in a collapsed area [37]. Especially, a swarming NAV 

deployment has a great potential for these missions [38]. These mission environments lead 

the development of small-size air vehicle. However, by decreasing the size of the air-

vehicle, a lift-to-drag ratio is reduced, which requires greater relative forward velocity. As 

the result, the overall energetic efficiency will be decreasing.  Figure 4-1 shows a relation 

between scaling of the air-vehicles and the overall flight times. The flight times are 

significantly reduced from tens of minutes to tens of seconds by scaling of the air-vehicles 

due to actuation power limitations. Furthermore, Figure 4-2 shows the portion of the power 

dissipation for each component when the scale of the air-vehicle is downsizing from MAVs 

to NAVs [39]. Inevitably, the actuator is the most power-hungry component regardless of 

transition from MAVs to NAVs. When the air-vehicle is downsized, the power portion of 

the communication is escalated since the communication power is dependent on distance, 
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bit rate, data compressions, and so forth, rather than size. Considering the missions of 

NAVs, the object detection shows a promising capability for reducing the communication 

power dissipation because NAVs will only transmit the object detection result instead of 

sending a continuous video stream of images to monitor the environment.  

 

Figure 4-1 The Flight time against mass of MAV [36]. 
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Figure 4-2 Operation of vision based navigation system   

 

A vision-based low-power navigation system can be a promising approach to 

provide both object detection and 2D optic flows to minimize payload and power 

dissipation, which will allow more complicated missions and extend the operation time for 

NAV applications. Traditionally, the air-vehicle systems used separate image sensors and 

digital processors/controllers. However, this approach results in high payload and huge 

power consumption. Recently, integration of image sensing arrays and processing units 

together on the chip has shown promising results in low-power imager [11-12].  

Recently, the vision-based low-power navigation systems are demonstrated by 

utilizing wide-field integration (WFI) navigation method, which applies matched filters on 

the wide-field optic flow information [40-43]. This is inspired by the navigation 

mechanism of the flying insect which utilizes the optic flow from wide field-of-view (FoV) 

surroundings. To realize the wide-field optic flow sensor, researchers have made an effort 
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to establish bio-inspired artificial compound eyes to directly mimic the insect’s visual 

organ structure [44-45]. However, these approaches require a complicated hemispherical 

lens configuration and require an independent face of each photoreceptor. Instead of 

directly imitating the shape of insect eyes, a pseudo-hemispherical configuration module 

has shown promising result to realize wide-field optic flow sensing [12]. To extract the 

optic flow information, conventional optic flow algorithms, Lucas-and-Kanade, require 

high computing power with digital processor [46]. Another approach, bio-inspired 

elementary motion detector (EMD), has been investigated with analog VLSI circuit fashion 

[47-51]. However, this analog signal processing is easily affected by the process, voltage 

and temperature (PVT). Recently, the time-stamp-based optic flow algorithm has been 

introduced, which is modified from the conventional EMD algorithm to mixed mode 

processing [11], [52]. 

The object detection can be realized by matching the features of a scene with the 

features of the target. Recently, several object detection algorithms have been reported, 

such as scale-invariant feature transform (SIFT), Haar-wavelet, and histogram-of-oriented-

gradients (HOG). Among many object detection algorithm, a HOG provides robust 

operation for object detection against illumination variation and various backgrounds, 

which are suitable for NAVs considering the mission environment since the NAVs have to 

operate in complicated and confined environments under varying illumination condition. 

In addition, HOG can provide a high detection rate for humans [52-53]. The human 

detection is most difficult due to the variability in pose, clothes, and appearance. Recently, 

several chips have been reported for navigating MAVs by adapting several object detection 

algorithm [54-56]. However, these systems still need additional sensors to provide crucial 
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information for navigation such as obstacle avoidance and self-status, which can be directly 

acquired from the optic flow sensor. 

We proposed a single-chip vision-based navigation chip for NAVs, which is the 

first attempt to provide both object detection and 2D optic flows to minimize payload and 

power dissipation, allowing more complicated missions in an integrated way. We 

implemented the HOG to support these missions. Typically, the HOG feature and support 

vector machine (SVM) require a complicated calculation, huge memory and high-

resolution images. In this work, we implemented the LUT based gradient orientation from 

2-b spatial difference images and cell-based classification to save both memory area and 

power.  

This chapter is organized as follows. Our proposed a single-chip vision-based 

navigation chip operations covered in Chapter 4.2 explains the overall sensor architecture 

including the reconfigurable pixel scheme for optic flow estimation and object detection. 

Chapter 4.3 describes the object detection core include 2-b spatial difference imaging, 

LUT-based gradient orientation generation, histogram generation, and cell-based 

classification. The experimental results of fabricated sensors are presented in Chapter 4.4. 

Finally, the Chapter 4.5 states the conclusion of this Chapter. 

4.2 Sensor Architecture 

The proposed sensor has three different modes of operation: optic flow extraction 

mode, object detection mode, and normal imaging mode. Figure 4-3 shows a simplified 

block diagram of three different modes of operation in the proposed system. In next the 
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section, details of the sensor architecture will be explained. Most of the time, the sensor 

operates in the optic flow extraction mode with low power consumption (30 µW). In this 

mode, the sensor generates 64×64 optic flow information to navigate NAVs and check the 

self-status of NAVs.  Every once in a while (every 30th frame or ever on second). The 

sensor switches to the object detection mode. In this mode, the sensor reconfigures the 

pixel array from 64x64 to 256×256 and extracts the feature and classify the object from 

the scene, which are conducted from 2-b spatial difference images. When the target object 

is detected, the sensor turn into imaging mode and starts capturing actual images to verify 

the object detection result at host system. In this imaging mode, the sensor generates and 

transmits 8-b high-resolution images to the host system with embedded single-slop ADC 

and ramp signal generator. After transmitting actual image, the sensor switches again to 

optic flow extraction mode to keep navigating NAVs. From the proposed scheme, we can 

provide optic flow information, object detection result, and normal imaging, which can be 

utilized for navigating the NAVs, conducting complicated missions of NAVs, which can 

reduce the communication power dissipation between NAVs and host system. 
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Figure 4-3 Operation of vision based navigation system 

The overall architecture of the sensor is shown in Figure 4-4. In optic flow 

extraction mode, the pixels generate 64×64 the temporal contrast image. The column-

parallel 8-b single slope ADCs operate as a 1-b moving feature detector in the OF 

extraction mode. After extracting the 1-b moving feature detection in the column circuits, 

the digital 1-b moving feature data transfers the integrated 2D time-stamp-based optic flow 

estimation core. At the optic flow estimation core, the 1-b feature updates the 8-b time-

stamp information of the corresponding pixel location. Based on the updated time-stamp 

information, the OF estimation core extract time-of-travel values for the horizontal, vertical, 

and two diagonal axes direction. The measured time-of-travel values are converted to 16-

b 2D optic flow which is corresponding to each pixel location. The generated OF data is 

serialized, compressed and sent to the host. In the object detection mode, the pixel array is 
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reconfigured from 64×64 to 256×256 to increase spatial resolution to acquire the more 

distinct image.  

 

Figure 4-4 Architecture of proposed vision based navigation image sensor with embedded 

machine learning.  

The 2-b spatial difference comparator extract column-parallel 2-b spatial difference images. 

After extraction the 2-b spatial difference images, LUT-based gradient orientation calculate 

the magnitude and the angle of each gradient. Based on updated gradient orientation 

information, Cell histogram generator assembles the magnitude of gradients corresponding 

to its 9 bins in an 8×8 pixel sub-array. After extracting the cell histogram, histogram 
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normalizer accumulate and normalize the histogram of 4 neighbor cells. In the cell-based 

SVM, the normalized histograms are accumulated in an 8×16 sub-array. This accumulated 

histogram is classified by a linear SVM. This classified object detection result and location 

in the image plane are sent to the host system.  

4.2.1 Pixel architecture 

The pixel architecture for the optic flow mode, the object detection mode, and normal 

image modes are shown in Figure 4-5. The photodiode is consisted with 4×4 pixel sub-

array which is reconfigurable based on the operation mode. In the OF mode, the 4×4 pixel 

sub-array operate as single photodiode by merging to increase the dynamic range. The pixel 

includes a sampling capacitor (C1) and the gain capacitor (C2) for setting a programmable 

gain amplifier (PGA) gain. The PGA supports x1, x2, and x4 gains by connecting more 

unit capacitors of C2 in parallel. The previous and current frames are compared using C1 

and temporal difference are amplified by PGA. In the object detection mode, the 4×4 pixel 

sub-array operates separately to acquire a more distinct image to increase the detection rate. 

Each pixel delivers the photodiode signal through the source follower (SFOD) to each 

column. In the normal imaging mode, the photodiode signal is buffed by the source 

follower (SFOF) and is converted by column parallel 8-b single slop ADCs. To reduce the 

power dissipation for pixel, we adapted the multiple supply voltage for each component. 

The photodiodes and source followers is 3.3V to maintain higher dynamic range. The PGA 

operates at 1.8V to reduce the dynamic power consumption. In addition, the current sink 

for PGA assign only signal transferring period to reduce static power consumption.  
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Figure 4-5 Reconfigurable pixel architecture 

4.3 HOG based object detection core operation 

The block diagram of the implemented chip-level object detection core is shown in 

Figure 4-6. The embedded object detection circuits mainly consist of two parts: HOG-

based object detector, which extracts the HOG feature and classify the object based-on 2-

b spatial difference images, and the memory controller manages the SRAM memory for 

storing the weight vector, temporal result for cell histogram, and SVM classification result, 
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which optimize the memory size and data bandwidth between HOG-based object detector 

and embedded buffer memory. 

 

Figure 4-6 Block diagram of object detection core 

The processing of the object detection is as follows: (1) 2-b spatial difference comparators 

generate the 2-b spatial difference imaging by comparing the neighboring pixel value; (2) 

a LUT-based gradient orientation generator assign the magnitude and bin value based-on 

2-b spatial difference image; (3) a cell histogram generator assembles the magnitude of 

gradients corresponding to its 9 bins in an 8×8 pixel sub-array; (4) the accumulated 

histograms are normalized with 4 neighbor cells; and (5) a linear SVM classifies the object 

by 9-b normalized HOG features using cell-based pipeline operation. 
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4.3.1 2-b spatial difference image and LUT-based orientation assignment 

operation 

In this sensor, we employed the 2-b spatial difference image to reduce the ADCs power 

dissipation and to decrease the hardware complexity and resource for followed signal 

processing for HOG feature extraction. The HOG-based object detection shows the 

consistent accuracy performance even if the image resolution is decreased from 8 bit to 5 

bit in Figure 4-7. However, the accuracy is dramatically starting to reduce when the image 

resolution is under 5 bit. To overcome this accuracy degradation and reduce the ADC 

power dissipation, we proposed the 2-b spatial difference images. The 2-b spatial 

difference comparators extract column-parallel 2-b spatial difference image in the object 

detection core block. By comparing between neighboring the pixel output values, 2-b 

spatial difference image generates the positive edge and negative edge from input image. 

The HOG feature is a function of edge orientations. As the result, the meaningful HOG 

features are located at the edge of the object. The encoded image preserves the edge 

information, which can help provide robust performance without high resolution ADCs. 

Table 4-1 shows the pixel codes encoded from 2-b spatial difference conditions. In this 

work, we used LUT-based orientation assignment to avoid complicated digital 

implementation to extract the bin and magnitude of the gradient, which would consume 

huge area and power.  

Table 4-2 shows a table for bin and magnitude assignment. We assign positive and 

negative edges to separate bins even though they may have the same gradient angles to 

overcome the constraints from low-resolution spatial difference images. Figure 4-7 shows 

the detection accuracy and normalized ADCs power dissipation. Instead of the 8-b 
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resolutions images, 2-b resolution image can reduce the ADCs power by 50× due to less 

switching of single-slope ADCs operation. However, the accuracy is decreased to 75%. 

Converting the input image to 2-b spatial difference image and using the customized LUT-

based orientation assignment achieves a 15% accuracy improvement in Figure 4-7. In 

addition, 2-b spatial difference image technique can reduce 75% SRAM memory size for 

the input buffer memory of the object detection core. 

 

Table 4-1 Spatial difference encoding table 

Encoded 

pixel code
Spatial difference condition

01

00

10
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Table 4-2 LUT-based Orientation assignment

Encoded 

Bin Number

Encoded 

Magnitude

0 0 0 0

1 0 1 1

1 1 3 5

0 1 5 1

-1 1 7 5

2 0 0 3

2 2 2 7

0 2 4 3

-2 2 6 7

-1 0 8 1

-2 0 8 3
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(a) Pixel resolution (bit) versus detection precision (%) 

 

(b) Normalized ADCs power versus detection rate precision (%) 

Figure 4-7 Detection rate precision versus pixel resolution and normalized ADCs power 
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4.3.2 Cell-based SVM classification operation 

Figure 4-8 depicts the SVM classification architecture. It consists of 128 processing 

elements (PE) to support cell-based pipeline operation. In this work, linear SVM classifiers 

are used for object detection with HOG features. The bit-width of the SVM weights is 4-b 

singed fixed-point to reduce both the memory size and bandwidth instead of high resolution 

floating point value [24]. The normalized HOG feature bit-width is 9-b signed fixed-point 

to preserve the detection accuracy. The extracted normalized HOG feature of each cell is 

once used to acquire the classification result, which is never stored or reused. Each PE is 

consisted with one multiplier and one adder to compute and accumulate the partial dot 

product of two values of HOG feature and the SVM weights. Figure 4-9 shows the cell-

based pipeline operation for the SVM classifier. The cell-based pipeline operation is 

conducted as follows. 

1) A cell histogram (9 bins) is generated from LUT-based gradient orientation 

generator in a raster scan order. 

2) When cell histogram generation reaches to a block level, block-level histogram 

is normalized with 4-neighbor cell histograms (9-bins×4-cells×9-b). 

3) The normalized HOG features (36 × 9-bit) and SVM weights (4-bit) 

corresponding to each window are multiplied and accumulated at each PE. 

4) The 29-bit temporal accumulated results are stored for each corresponding 

window. 

By storing the temporal accumulation results (29-b), instead of final normalized HOG 

features (36×9-b) for a predefined window (128×36×9-b). Instead of storing whole 9-bit 

normalized HOG feature for computing window classification, this cell-based pipeline 

operation reduces the overall memory size by 75%.  



  39 

 

 

Figure 4-8 SVM classification architecture 
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Figure 4-9 Cell-based pipeline operation for SMV classifier 
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4.3.3 Object Searching Scheme 

Figure 4-10 shows the object search scheme. The false positive value is higher than 

using high-resolution images due to the proposed 2-b spatial difference imaging. The object 

is usually detected in multiple neighbor windows thanks to the resilience of the detection 

algorithm. When an object is detected in the window, more searches are conducted for 

neighboring windows. The system looks at the number of positive results among 4 

windows. If the number of positive results is bigger than threshold, the system provides a 

positive result. Using this search scheme, the false positive values can be decreased to < 

6%. 

 

Figure 4-10 Object search scheme to reduce the false positive 
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4.4 Implementation and Experimental Result 

A prototype chip was fabricated using 0.18μm 1P4M process and has been fully 

characterized. A chip micrograph is shown in Figure 4-11. The total chip size 

6.20mm×4.00mm including I/O pads. The chip contains the reconfigurable pixel array, 2D 

optic flow core, object detection core, a bias generator, a timing generator, and 8-b single-

slope ADCs for the normal image mode. Four embedded SRAMs are integrated to store 

the 2D time-stamp array, buffer memory for the object detection core, and HOG weight 

coefficients.  

6.20 mm

4
.0

0
 m

m

 

Figure 4-11 Chip micrograph 

 

 



  43 

 

4.4.1 2D optic flow estimation and object detection result from real moving object 

The captured 2D optic flows and object detection result from the fabricated device are 

shown in Figure 4-12. To demonstrate the performance and feasibility in an actual NAV, 

we tested 3 cases: an object in spiral-up motion, a rotating fan, and a walking person. The 

rotating fan was located in front of the resolution chart to confirm that proposed sensor 

extract the optic flow under the complicated background patterns. The fan was rotating 

with the speed of 65rpm; the sensor was capturing the flow at the frame rate of 60fps. The 

result shown in Figure 4-12 (a) is the accumulated optic flow for 2 seconds. We tested the 

spiral-moving object in order to verify the sensor, which can capture 3D moving object to 

confirm the feasibility in the real situation for the actual NAVs operation. Red arrows 

indicate the actual trajectory and black arrow represent the estimated optic flow from the 

sensor in Figure 4-12(b). The sensor was capturing the optic flow at the frame rate of 30fps. 

To demonstrate the proposed hybrid operation mode, which provide both the optic flow 

estimation for navigating and object detection to classify the interesting object, the walking 

person test pattern is measured. The sensor generates optic flow during the navigation 

period. When the person is identified at object detection mode, the location of the object is 

also reported. In Figure 4-12(c), the green arrow indicated the estimated optic flow form 

walking person and yellow dot rectangle represent the location of the object where the 

sensor classify as the person. The sensor was capturing the optic flow at the frame rate of 

29 fps and classify the object at the 1 fps in the image. 
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(a) Spiral moving up object: captured @ 30fps 

 

(b) Rotating fan: 65rpm @ 60fps      (c) Walking person and object detection @ 30fps 

Figure 4-12 Measured 2D optic flows of moving objects and object detection for a 

walking pedestrian 
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4.4.2 Object detection accuracy test 

In order to verify the performance of the integrated object detection in a real situation 

with a variety of scenes, we used test image sets from the INRIA data base [25]. The 

embedded SVM identifies the object and generates an 1-b output of the detection result 

and location of the classified object. In order to classify the object, pre-trained weight 

models have to be loaded in the object detection core SRAM. To extract weight models, a 

large number of images are required as a training image set, which include both positive 

and negative images. In this work, we used a linear SVM for training and employed 

MATLAB for the classifier. However, the proposed object detection used 2-b spatial 

difference image and customized gradient orientation assignment. We encoded 1000 

images (500 positive, 500 negative) to 2-b spatial difference images and trained based on 

proposed customized gradient orientation assignment. We tested 200 test images (100 

positive, 100 negative) for evaluating detection. Experiments have shown 84% detection 

rate.  

4.4.3 Performance summary and comparison 

The performance of the sensor is summarized in Table 4-3. We achieved a 29.94 µW in 

the optic flow extraction mode at 30 fps and 2.18 mW in object detection mode at 30 fps, 

respectively. In the hybrid operation mode (optic flow @ 29 fps and object detection mode 

@ 1 fps), we achieved 101.61 µW. This result indicates proposed vision based navigating 

operation can conduct more complicated mission with very low power overhead budget. 

In order to verify the performance of embedded object detection, we tested 200 pedestrian 

images from the INRA dataset [25]. The test result shows 84% detection rate. The relative 
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low object detection rate can be increased up to 96% by swarming NAVs in collaborative 

action [3]. For the comparison of the power consumption, power Figure of merit (FOM) is 

used [6], [27]. The power FOM is defined as the power normalized to the number of pixels 

and the frame rate. Table 4-3 shows the power FOM and the key parameters comparison 

with previous works. The proposed sensor achieved the low power FOM to estimate 2D 

optic flow comparing pure analog or pure digital approaches. Comparing the previous 

HOG object detection processor, proposed object detection core shows similar FOM even 

if we integrate together image sensor and object detection core. In addition, the single chip 

vision-based navigation sensor, which provide both object detection and 2D optic flow, is 

the first attempt to minimize payload and power dissipation for NAVs. 

Table 4-3 Chip characteristics 
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Table 4-4 Performance comparison with previous works 

  [46] [51] [63] [64] This work 

Optic 

Flow 

Estimation 

Technology N/A 0.5 µm 65nm 65nm 0.18µm 

Processor 
Vertex 

Pro2 
N/A N/A N/A N/A 

Pixel array N/A 19 x 1 N/A N/A 64 x 64 

Pixel 

size[um] 
N/A 112x257.3 N/A N/A 31 x 31 

Optic Flow 
2D 

digital 

1D WFI 

Analog 
N/A N/A 

2D Mixed 

Mode 

Total 

Power 

>50 mW 

@30fps 

42.6 µW 

@1kHz 
N/A N/A 

30 µW 

@30Hz 

FOM 

[nJ/Pixel] 
73 2.2 N/A N/A 0.244 

Object 

Detection 

Core 

Spatial 

Resolution 
N/A N/A 

1920 x 

1080 

1920 x 

1080 
256 x 256 

Voltage N/A N/A 0.7 V 0.77V 1.2V 

Frame rate N/A N/A 30 fps 30 fps 30 fps 

Detection 

algorithm 
N/A N/A 

HOG + 

SVM 

HOG + 

SVM 

Customized 

HOG + SVM 

FOM 

[nJ/pixel] 
N/A N/A 1.35 0.94 1.11 

4.5 Summary and chapter conclusion 

In this chapter, a vision based navigation sensor with embedded object detection and 

2D optic flow extraction for NAVs has been introduced. Instead of transmitting a video 

stream of images to host system to navigate the NAVs, the sensor provides the optic flow 

information to support autonomous operation of NAVs by detecting the obstacle and 

estimating the self-status of NAVs. The sensor switches the mode to find the target object, 

which can provide crucial information to conduct missions of NAVs, and transfers the 

object detection results. By providing optic flow estimation and object detection result, 

NAVs can significantly reduce the power dissipation to transmit data to the host system. 

We have employed 2-b spatial difference image, LUT-based orientation assignment, and 
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cell-based SVM to reduce the power dissipation, hardware resource, and memory size. To 

support object detection and optic flow extraction, the pixel array is reconfigured for optic 

flow estimation (64×64) and object detection (256×256). The sensor integrates the 2D 

time-stamp-based optic flow estimation core, which is developed for efficient 

implementation of bio-inspired time-of-travel measurement in the mixed-mode circuits [5]. 

We accomplished 272.49 pJ/pixel, the smallest power reported up to date, in hybrid 

operation of optic flow extraction and object detection. 
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Chapter 5 

CMOS image sensor with embedded mixed-mode convolution neural network for 

object recognition 

5.1 Introduction 

Recently a neural network has made a significant progress with the deep learning 

algorithms in the field of machine learning. Especially, convolutional neural networks 

(CNNs) are consistently expanding their applications in computer vision, self-driving cars, 

entertainment and speech processing [65]-[67]. One of the reasons for this recent attention 

has been indebted to the ever-more increased computing power through the development 

of multicore CPU's, GPU's, and even clusters of GPU's. These multicore processors allow 

for training and evaluating larger networks. In addition, deep learning algorithms and the 

new architectures of neural network contribute to pushing the state-of-the-art performance 

[67]-[69]. Figure 5-1 shows the recent convolution neural networks (CNN) complexity and 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) top 5 object recognition 

error rate. The ResNet achieve 3.6% error rate which is lower than the error rate of the 

human availability (5%). To achieve this performance, ResNet requires 20 times floating-

point operations and depth of networks. In addition, the number of weight also increased 

2.5 time comparing with AlexNet. This complexity of the recent CNN lead higher 

computing power. The increase in computing power inevitably leads to high power 

dissipation. The high power consumption may not be a big concern for training because it 
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can be done in a big computer cluster. But it becomes problematic when the neural network 

is used to evaluate the contents in an energy-limited mobile hardware, for example, 

smartphones, smart glasses and other wearable devices. Huge power dissipation will 

shorten the operation time of mobile and wearable devices.  

Figure 5-1 CNN complexity and ILSVRC top 5 object recognition error rate 

Recently, multicore GPU approaches have achieved a significantly enhanced 

accuracy in computer vision. However, this conventional multicore GPU approach suffers 

from high power dissipation (100W) [70]. To overcome this, several low-power CNN 

ASICs have been developed by exploiting data reuse techniques, data-and-filter sparsity, 

and dynamic-voltage-accuracy scaling [71-72]. However, these ASICs require external 

high-bandwidth memory where the input images and intermediate results from image 

processing should be stored, as shown in Figure 5-2 (a). These extra components result in 

high power dissipation especially from the hi-bandwidth data transfer between the memory 
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and the processor. Recently, the integration of image sensing arrays and processing units 

together on chip has shown promising result in low-power algorithmic imagers [11-13]. 

In this chapter, we propose a high energy-efficient CNN imager, in which the initial 

convolution layers are effectively implemented in a mixed-mode signal domain by directly 

processing analog image signals from the image pixel array and converting the result to 

digital signals for the late-stage convolution layers, as shown in Figure 5-2(b). The 

proposed CNN imager can effectively reduce the memory and computing power for the 

early convolution layers, which require highest computing power among the entire neural 

network layers [77]. 

 

(a) Conventional CNN imaging system 

 

(b) Proposed low-power CNN real-time imager 

Figure 5-2 (a) Conventional CNN imaging system, (b) Proposed low-power CNN real-time 

imager with the mixed-mode MACs 

 

This chapter is organized as follow. The CMOS image sensor embedded mixed-mode 

neural network architecture is covered in the chapter 5.2. In the chapter 5.3, the main circuit 

blocks and the adopted (used) circuit design techniques for realizing the architecture are 
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described in details. The chapter 5.4 presents the measurement results. Finally, the chapter 

5.5 states the conclusions of this chapter. 

5.2 Circuit architecture 

Figure 5-3 shows the top level architecture of the high energy-efficient CNN imager. 

The proposed system is consisted of a pixel array, mixed-mode MACs, rectified linear unit 

(ReLU), analog memory, maximum pooling layer, and ADCs for converting mixed-signal 

result of MACs to digital format. First, the 4T pixel array integrates photocurrent in each 

pixel during given exposal time. The individual pixel values are transferred to a column-

parallel correlated double sampling (CDS) to suppress the reset and fixed pattern noise, 

which is induced by each pixel. The analog image signals which is suppressed the noise by 

CDS are then transferred to a column-parallel mixed-signal MACs in a rolling shutter 

fashion. The column-parallel mixed-mode MACs process the convolution operation in the 

analog-digital mixed-mode signal domain. After conducting the MACs operation, the 

results are stored in analog and digital memory. The ReLU is located in front of the MACs. 

Typically, the ReLU is placed after the MACs in the conventional neural network systems. 

When the input value of MACs is negative, MACs process is skipped to save power 

dissipation.  Each convolution layer in the neural network is processed in a pipeline mode. 

In the last stage, a column-parallel ADC converts the convoluted results to digital signals. 

Consequently, the column-parallel mixed-mode MACs and the pipeline operation allow to 

achieve real-time imaging at low-power operation. 
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Figure 5-3 CMOS image sensor architecture with embedded convolution neural network 

algorithm 

5.3 Circuit implementation 

5.3.1 Mixed-mode MAC architecture 

Figure 5-4 shows the proposed mixed-mode MAC architecture. The proposed 

MACs consist of a multiplier, an accumulator, and an MAC controller. This mixed-mode 

MACs employs a floating-point arithmetic. The significand and exponent are provided 
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from the analog and digital memory which stores the intermediate results calculated from 

the previous layer. The analog value is multiplied with a weight (7b) for convolution 

operation by the multiplier. The multiplied value is accumulated in the integrator. When 

the exponents between the input value and MACs are different, the MAC controller 

matches the exponent value by adjusting the gain of the integrator. Figure 5-4 shows the 

example of operation, For example, if the input exponent is 1 and the MAC’s exponent is 

1, the accumulator integrated the multiplied value from multiplier. When input exponent 

value is smaller than stored accumulator exponent value, accumulator gain controller 

adjusts the overall gain of the integrator to 0.5 to match the exponent value. In addition, 

when the VOUT level is higher than the threshold level with the comparator (COMP1), the 

integrator samples VOUT and divide it by 2 to prevent the overflow of the analog value. 

Simultaneously, the MAC’s exponent value is increased. This mixed-mode folding process 

can increase the dynamic range without sacrificing the resolution. 

 

Figure 5-4 Proposed mixed-mode MAC architecture 
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Figure 5-5 Proposed mixed-signal accumulator operation 

5.3.2 Passive charging sharing based multiplier 

Figure 5-5 shows the proposed passive charge redistribution multiplier. In the 

previous literature, a switched-capacitor multiplier was introduced [74]. However, this 

implementation requires the amplifiers which consume significant static current. To 

overcome this problem, we adapt the passive charge-redistribution multiplier for mixed-

mode computing. However, a switched-capacitor multiplier require the wide bandwidth 

buffer due to the large capacitor bank. To overcome this problem, this switched-capacitor 

multiplier enjoy the split capacitive DAC array architecture. By deploying split capacitive 

DAC array architecture, effective input capacitance of the switched-capacitor multiplier is 

reduced by 5.5 times. The operation of multiplier is divided into two steps: sampling phase 

and charge-redistribution phase. First, the VSIG is sampled only at the bottom of capacitors 

where the binary weight (W) bits are 1. The charge stored on a capacitor bank is given by: 
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𝑄𝑏 = 𝑊 × 𝐶 × 𝑉𝑆𝐼𝐺. 

Next, the bottom of capacitors are connected to VCM. As a result, the stored charges during 

sampling phase are redistributed. After charge redistribution, the VOUT is given by: 

𝑉𝑂𝑈𝑇 = −
𝑊

(2𝐵)
𝑉𝑆𝐼𝐺 

, where B is the number of magnitude bits. Figure 5-5 shows the operation of the passive 

charge-redistribution multiplier for example when W and B are 64 (1000100b) and 7, 

respectively. 

 

Figure 5-6 Operation of the passive charge-redistribution multiplier. In this example, 

W=7(1000100b), and B=7 
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5.3.3  Energy-efficient algorithm optimization for CNN 

During the CNN operation, to improve training and evaluation efficient, ReLUs are 

deployed between each neural network layer. Figure 5-6(a) shows conventional CNN 

operation. First, MAC conduct convolution operation between input image values and 

weight values. After convolution operation, ReLU activate output value of the MAC. After 

activating through ReLU, the negative value assign as 0 value and positive values are 

preserved. The memory unit store the result of ReLU. Followed MAC layer process the 

convolution operation by loading the stored value in memory. Figure 5-6(b) shows the 

proposed energy efficient CNN operation. At the first MAC operation, MAC process 

convolution between input image values and weight value. Comparing with conventional 

CNN operation, proposed energy efficient processing store the result of MAC without 

filtering ReLU functionality. The around half of the distribution of MAC output value is 

negative due to the nature of weight value distribution. At 2nd neural network layer, MAC 

and ReLU functionality easily can be merged together by skipping convolution operation 

when the negative layer 1 neural network value arrive as input of MAC operation. During 

this MAC operation, the around half of MAC operation could be skipped thanks for nature 

of weight values distribution.  
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(a) Conventional CNN operation 

 

(b) Proposed energy efficient CNN operation  

 

Figure 5-7 Proposed hardware and energy efficient CNN operation 
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Figure 5-8 shows the 2nd mixed-signal MAC architecture to support the proposed 

energy efficient CNN operation. First, Comp1 compare between VCM (zero value) and 

loaded value from previous layer output memory. If loaded value is bigger than VCM, 

EN signal is enable and batch the weight value and process 2nd MAC operation. When 

the loaded value from previous layer memory is smaller than VCM (zero value), EN signal 

is disabled, which mean the MAC block will not process the coevolution operation. 

Obviously, we can turn off the 2nd MAC block and do not need to load weight value 

form external memory unit during around the half of MAC operation time, thanks to the 

nature of CNN weight value distribution. This approach can reduce the half of power 

dissipation of 2nd layer MAC operation and IO power dissipation to load weight value. 

 

Figure 5-8 2nd layer MAC operation to support proposed CNN scheme 
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5.4 Evaluation results of proposed CNN  

To verify the feasibility of the proposed mixed-mode convolution neural network. We 

have used the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [75] for test 

images and employed Squeezenet for neural network algorithm [76]. Figure 5-9(a) and 5-

9(b) shows the test images among the ILSVRC validation images. Figure 5-9(c) and 5-9(e) 

shows the result of the 1st-convolution layer calculated using the Squeezenet base algorithm. 

Figure 5-9(d) and 5-9(f) shows the result of 1st-convolution layer simulated using the 

proposed mixed-mode MACs. Finally, Figure 5-9(g) and 5-9(h) shows the object 

recognition results, when followed convolution layers are processed by a Keras neural 

network system [78] for the base algorithm and the proposed mixed-mode MACs, 

respectively. The result of the image recognition successfully identifies the ground truth 

result for the test images. In addition, we conducted the total 800 ILSVRC images to 

evaluate image recognition. The proposed mixed-mode MACs showed a negligible 

accuracy drop of less than 0.75%, when compared with the base algorithm by using the 

Keras neural network system. 

 

(a) Test image 1   (b) Test image 2 

(Ground truth: Blenheim-spaniel)       (Ground truth: Shih-Tzu) 



  61 

 

 

(c)  Squeezenet base software result for test image 1 (1st convolution) 

 

(d)  Proposed mixed-mode MACs result for test image 1 (1st convolution) 
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(e)  Squeezenet base software result for test image 2 (1st convolution) 

 

(f)  Proposed mixed-mode MACs result for test image 2 (1st convolution) 
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(g) Test image1 recognition result                   (h) Test image 2 recognition result 

Figure 5-9 Object recognition simulation result 

5.5 Implementation and Experimental result 

A prototype chip was fabricated using 90nm 1P4M back-side illumination (BSI) 

CMOS image sensor process and has been fully characterized. A chip micrograph is shown 

in Figure 5-10. The total chip size 3.70mm×4.50mm including I/O pads. The chip contains 

the 452 x 304 pixel array, row scanner, CDS, column parallel mixed-mode MAC for layer 

1 and 2, mixed-signal memory array, and 8-b single-slope ADCs for the normal image 

mode and CNN result. Between each layer, there is maximum pooling layer to decrease 

the dimension of the output MAC layer.  
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Figure 5-10 Die microphotograph of CMOS image sensor with embedded mixed-mode 

convolution neural network 

 

5.5.1 Experimental result 

To verify the proposed mixed-mode MAC operation, we measure the relative 

accuracy for each output quantization bit. Figure 5-11 shows the relative accuracy of 

simulation and experimental result as a function of the number. Simulation result shows 1% 

relative accuracy drop when we assign 6 bits for significand and 2 bits for exponent.  In 

experimental result, we used 2 bits exponent and measure relative accuracy varying number 

of bit for significand. At experimental result, it shows the similar result comparing with 

simulation result. At 6 bits for significand and 2 bits for exponent, relative accuracy only 

shows the 1% relative accuracy drop. In addition, to verify the proposed mixed-mode 

floating point arithmetic, we measured the relative accuracy without evaluating the 
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exponent value. The result shows the dramatically drop of relative accuracy even if the 

output quantization bits is 8 bits. This is because intermediate output value of MAC during 

convolution operation is saturated. 

 

Figure 5-11 Relative accuracy of simulation and experimental result as a function of the 

number or output quantization bits. 

Figure 5-12 shows the measured result of CNN evaluation result. We can 

successfully capture the image from normal image mode from test image. Even if the 

captured image has a column fixed noise due to the mismatch of source follower which 

followed pixel. After evaluating 2 layers from manufactured chip, Figure 6-11(c) shows 

the evaluation result with predicted bounding boxes. Figure 6-11(d) and (e) shows the 

intermediated first and second layer result (16 out of 64 layers). Still some of layer is 

suffered from CFPN which is induced by pixel readout block mismatch. The activated 

result reflect relevant activation result from each weight layer. The detection Figure of 

merit, intersection over union (IOU), which measures the overlap ratio between the ground 
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truths and predicted bounding boxes, is shown in each image. If IOU is greater than 50 %, 

the detection is regarded as successful [83].  

 

(a) Test image                  (b) Captured  image mode         (c) CNN evaluation result 

 

(c) The first layer output (shown only 16 out of 64 channels) from test image with 

SqueezeDet  
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(d) The second layer output (shown only 16 out of 64 channels) from test image with 

SqueezeDet  

Figure 5-12 Extracted the intermediate result of CNN layers with proposed relative 

accuracy of simulation and experimental result as a function of the number or output 

quantization bits. 

 

The evaluation images from the customized dataset are used to test the proposed 

mixed-signal MAC architecture.  Figure 5-13(a) shows the example of evaluation images 

with the predicted bounding boxes, using fully digital processing of SqueezeDet through 

software. Figure 5-13(b) shows the evaluation result using the mixed-signal MAC test 

module with gray images. In this test, we directly provide the gray image data to MAC 

module and could verify that the eye-nose regions were successfully detected with the 
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proposed mixed-signal MAC with IOU higher than 60%. The evaluation result with 

fabricated chip is demonstrated in Figure 5-13(c). Even though the captured image 

through pixel arrays have CFPN due to column readout mismatch, the IOU result could 

achieve higher than 60%. 

 

(a) IOU evaluation result with color image through software(bounding box prediction 

result) 

 

(b) IOU evaluation result with gray image through test module(MAC) 

 

(c) IOU evaluation result with fabricated chip(bounding box prediction result) 

Figure 5-13 Chip evaluation result and comparison of the IOU evaluation  
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5.5.2 Performance summary and comparison 

The performance of the sensor is summarized in  

5-1. We achieved a 7.15 mW in the normal image mode at 10 fps and 9.89 mW in CNN 

object recognition mode at 10 fps, respectively. We achieved 5.2 nJ/pixel in the normal 

image mode and 4.46 GOPS/W in CNN object recognition mode, respectively. This result 

indicates proposed image sensor with embedded mixed-signal convolution neural network 

can conduct more power limited environment. In order to verify the performance of 

embedded neural network, we tested 100 images and evaluated IOU [83]. The test result 

shows 1% relative accuracy drop (IOU>60%). Even though the relative accuracy shows 

relevant result, the difference between IOU result from software and fabricated chip is not 

negligible. This result might be come from the pixel array readout mismatch and reference 

voltage buffer. We could overcome this problem by deploying larger dimension transistors 

for these blocks. For the comparison of the power consumption, power Figure of merit 

(FOM) is used [6], [27]. The power FOM is defined as the power normalized to the number 

of pixels and the frame rate. In addition, to compare of the power efficiency, GOPS/W is 

used. That FOM is defined as the GOPS normalized to the power.  
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Table 5-1 Performance summary of this works 

 

5.6 Summary 

In this chapter, the new CMOS image architecture embedded with convolutional 

neural network which is implemented by mixed-mode MACs. The proposed scheme 

supports the pipeline operation to achieve real time operation of the modified floating-point 

arithmetic at low power. Power dissipation was significantly reduced by adapting a passive 

charge redistribution scheme in the multiplier implementation. We have extensively 

conducted simulations to verify the feasibility of the proposed architecture. The simulation 

results shows that proposed mixed-mode MACs can evaluate the object recognition task 

without significant accuracy drop (<0.75%). We measured relative accuracy with IOU 

evaluation and achieved only 1% relative accuracy drop for IOU evaluation. Consequently, 
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the column-parallel mixed-mode MACs and the pipeline operation allow to achieve real-

time imaging at low-power operation. The system operates at 5.2 nJ/pixel in normal image 

extraction mode and at 4.46 GOPS/W in CNN operation mode, respectively. 
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Chapter 6 

Concurrent energy Harvesting and imaging sensor system for distributed IoT 

sensor with embedded-learning algorithm 

6.1 Introduction 

In this chapter, we introduce the energy harvesting approach for CMOS image 

sensor system with embedded machine-learning algorithm. CMOS image sensors have 

been widely used for distributed IoT sensor nodes for continuous monitoring of 

environments due to their small form factor and low power consumption [12]. These 

distributed IoT sensor nodes should be able to operate and cover comprehensive, 

unreachable areas under a limited energy source. Especially, CMOS image sensor has 

embedded machine-learning algorithm shows additional power dissipation due to 

evaluated algorithm. To further extend the lifetime of the distributed sensor nodes, several 

potential energy harvesting methods has been explored, including vibration, radiation, 

solar energy, etc. Among these, photovoltaic energy harvesting showed a high potential to 

support remotely-distributed IoT image sensors due to its high energy harvesting efficiency 

and compatibility with conventional CMOS processes [79-82]. The pixels in [80-81] 

adopted a reconfigurable PN-junction diode that switches between photodiode 

(photocurrent generation) and the photovoltaic (solar cell) operations, and showed a 

promising result. However, this pixel could not provide continuous video images due to 

mode switching. To overcome this limitation, the two separate photodiodes were 
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implemented side-by-side for imaging and photovoltaic operations simultaneously [81-82]. 

However, this approach inevitably leads to a low fill factor and a large pixel size. 

In this chapter, we propose a self-sustainable CMOS image sensor with concurrent 

energy harvesting and imaging without additional area penalty of photodiodes and the 

degradation of energy-harvesting efficiency. 

6.2 Circuit architecture 

The proposed CMOS image pixel utilized two vertically-stacked diodes realized in 

the same pixel: one for hole-accumulation photodiode (P+/NWELL) inside the N-well and 

the other for photovoltaic energy harvesting diode (NWELL/PSUB) below the N-well. In 

addition, a delta-reset sampling scheme is employed to suppress the fixed pattern noise 

(FPN) using a bi-directional ramp generator. 

Figure 6-1 depicts the overall pixel architecture and a system block diagram. Each 

pixel consists of a photodiode (DP1) for imaging and a photovoltaic diode (DP2) for energy 

harvesting. Contrary to typical CMOS image sensors, these two diodes, DP1 and DP2, 

accumulate holes, not electrons. Holes generated by incident light are drifted to and 

collected in the anode of each diode. DP1 forms a 3T pixel with MP1, MP2 and reset transistor 

(MP3), accumulating photocurrent in VPD during integration time. DP2 continuously 

harvests energy from illuminated light without any interruption, producing the 

photovoltage at VEH. Column-parallel 8-b single-slope (SS) ADCs operate in the delta-

reset sampling mode with a bi-directional ramp signal generator and an 8-b counter for 

image capturing at low power. 
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Figure 6-1 Energy harvesting image (EHI) sensor architecture 

6.3 Pixel architecture 

Figure 6-2 (bottom) shows the proposed pixel architecture. The stacked vertical 

junction structure of P+/NWELL/PSUB forms the two diodes: DP1 (P+/NWELL) and DP2 

(NWELL/PSUB). The P+ diffusion layer (anode of DP1) is connected to the drain of reset 

transistor (MP3) and the gate of input transistor (MP1), which is a part of the comparator 

circuit for SS ADCs. Peripheral transistors for pixel operation (MP1, MP2 and MP3) are 

designed by PMOS transistors inside the N-well. This results in a high fill factor of 47% 

for DP1. Moreover, the energy harvesting efficiency can be greatly enhanced by using the 

entire N-well area realized by the NWELL/PSUB diode (DP2). DP2 can achieve a near perfect 

fill factor (>94%) in a small pixel of 5um x 5um. In addition, it should be noted that the 
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amount of photo-generated charges are not only determined by the area of the diode but 

also the depletion width.  The PSUB and NWELL areas are lightly doped as compared to P+ 

or N+ regions. Therefore, a larger depletion width can be formed in DP2, resulting in a 

higher energy harvesting efficiency. Figure 6-2 (top) shows the pixel cross-section and 

readout circuit diagram. When the incident light reaches the depletion regions of DP1 and 

DP2, the holes are generated and drifted to the anode of each diode. The accumulated holes 

in DP2 are used for energy harvesting, supplying the photovoltage at VEH. The accumulated 

holes in DP1 during the integration time will be read out for image captures, using the two 

transistors in the pixel (MP1, MP2) with other two transistors in the column (MC1, MC2) as 

a differential pair in the comparator for SS ADCs and sharing the COM node and SIG1 

node in the same column. 
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Figure 6-2 Circuit diagram of the energy harvesting image sensor and the proposed pixel 

structure 
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6.4 CMOS imager operation for energy harvesting and imaging modes 

Timing diagram for imaging and energy harvesting is shown in Figure 6-3. When 

the incident light starts generating holes, the voltage of energy harvesting node (VEH) 

increases during the start-up phase. When VEH reaches to a trigger voltage, the external 

energy harvest (EH) power management unit starts supplying power to the sensor circuits 

and the image capture starts [6]. The image capture operation is conducted as follows: (1) 

CNTRST signal resets the code of the counter to 256; (2) VRAMP starts decreasing to capture 

the DP1 signal level (VPD); (3) when VRAMP reaches the DP1 signal level, the counter latched 

the code corresponding to VPD; (4) after resetting the photodiode (DP1), VRAMP starts 

increasing to detect the reset signal level of DP1; (5) when VRAMP reach the DP1 reset signal 

level, the counter latch the code equivalent to (VSIG – VRST). By employing the bi-

directional ramp signal for delta-reset sampling operation, we can suppress the FPN, which 

was mainly induced by variations and mismatches of MP3 and MP1. 
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Figure 6-3 Timing diagram of the image readout and energy harvesting circuits 

 

 

6.5 Experiment results 

Figure 6-4 shows the measured results: harvested open circuit voltage (VEH – VDC), 

harvested power, and power dissipation of the sensor as a function of illumination levels. 

When the illumination is higher than 1 klux, the harvested supply voltage can reach higher 

than 0.33V, which is sufficient to start up and operate the external EH power management 
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unit [6]. The power management unit can generate 0.6V supply for the image sensor array 

by boosting up from the harvested open circuit voltage of 0.45V. The harvested energy is 

sufficient to continuously supply the required power of 3.9uW at 7.5fps of image capture 

under 20 klux (normal daylight) and 10.08uW at 15fps under 50 klux(sunny daylight), 

respectively. 

 

Figure 6-4 Measured harvesting voltage, power, chip power consumption as a function of 

illumination levels 

Figure 6-5 shows the captured images from the fabricated prototype device in a 100 

x 90 spatial resolution at 7.5fps and 15fps, respectively. In these images, the FPN (rms) is 

suppressed from 9.2% to 3.8% under dark conditions by delta-reset sampling operation. 

Nevertheless, column fixed-pattern noise (CFPN) is evident in the captured images. This 

CFPN may result from Vth variations of MC1 in the comparator during SS ADCs operation. 
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The CFPN can be suppressed by adopting a larger transistor size of MC1 and/or by 

employing a column gain controller for each column without significant increase of power 

dissipation. Furthermore, the spatial resolution of the proposed imager is easily expandable 

for self-sustainable imaging operation because the harvested power increases 

proportionally to the area of the entire pixel array. 

 

Figure 6-5 Test images of a U.S. hundred dollar bill at VDD = 0.6V 

6.6 Summary and comparison 

The performance comparison of the fabricated imager is summarized in Table 6-1. 

We accomplished the Figure of merit (FOM) of 57.78pJ/pixel and 74.67pJ/pixel at 7.5fps 

and 15fps in the image capturing circuits. We can harvest the power of 998pW/klux/mm2 

from photovoltaic diodes. This gives the total FOM of -4.71pJ/pixel and -10.05pJ/pixel at 

20 klux and 50 klux, respectively, demonstrating the self-sustainable image-capture 

operation without battery. A prototype chip is fabricated using a 0.18µm CMOS process. 
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A chip micrograph is shown in Figure 6-6. In this chapter, we introduce a self-sustainable 

CMOS image sensor with concurrent energy harvesting and imaging for CMOS image 

sensor with embedded machine-learning algorithm at distributed sensor nodes environment. 

The proposed CMOS image sensor utilized two vertically-stacked diodes realized in same 

pixel: one for hole-accumulation photodiode and the other for photovoltaic energy-

harvesting diode. We demonstrated image capturing from batteryless self-sustained 

operation. The sensor achieved a negative Figure of merit (FOM) of -13.9 pJ/pixel at 30 

Klux (normal daylight) thanks to a high fill factor of 94% in the energy harvesting diode. 

The proposed energy harvesting pixel structure can extend the lifetime for distributed 

CMOS image sensor with embedded machine-learning algorithm and provide video stream 

images without area penalty.  

 

Figure 6-6 Energy harvesting CMOS image sensor chip photograph 
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Table 6-1 Performance summary and comparison table
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Chapter 7 Summary and future work 

7.1 Summary 

The goal of this research is to provide the architecture, algorithm optimization, and 

associated circuit for energy-efficient CMOS image sensor with embedded machine-

learning algorithms. In order to achieve this goal, it is important to address specific circuit 

and architecture design challenges; minimizing hardware resource, reducing the data 

bandwidth, and energy consumption while not compromising machine learning algorithm 

performance. The three interdependent projects; embedded object detection sensor for a 

vision based navigation system, CMOS image sensor with embedded mixed-mode CNN 

for object recognition, and concurrent energy harvesting and imaging sensor system have 

been carefully designed to accomplish this goal.   

The embedded object detection sensor for a vision based navigation system was 

designed using a 2-b spatial difference imaging, the customized LUT-based gradient 

orientation assignment to reduce the data bandwidth and hardware resource and fabricated 

in 0.18 µm CMOS process. The proposed system accomplished 272.49 pJ/pixel, the 

smallest power reported up to date, in hybrid operation of optic flow extraction and object 

detection. 

Then, the CMOS image sensor with embedded mixed-mode CNN for object 

recognition was built in the 90 nm CMOS Image sensor process to minimize the energy 

consumption overhead for MAC operation, especially, in due to high speed clock. We 
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measured relative accuracy with IOU evaluation and achieved only 1% relative accuracy 

drop for IOU evaluation. Consequently, the column-parallel mixed-mode MACs and the 

pipeline operation allow to achieve real-time imaging at low-power operation. The system 

operates at 5.2 nJ/pixel in normal image extraction mode and at 4.46 GOPS/W in CNN 

operation mode, respectively. 

For the sake of the overall system, not only for the energy usage efficiency, but the 

additional energy source for the system is also considered. The pixel level concurrent 

energy harvesting and imaging sensor system was developed to extend the lifetime for the 

CMOS image sensor with embedded machine-learning algorithm. The sensor achieved -

13.9 pJ/pixel at 30 Klux (normal daylight), 94% FF for energy harvesting diode, and 47% 

FF for imaging sensing diode. The proposed energy harvesting pixel structure can extend 

the lifetime for distributed CMOS image sensor with embedded machine-learning 

algorithm and provide video stream images without area penalty.  

7.2 Future work 

Although several contributions have been made in this research to realize the CMOS 

images sensor with embedded machine-learning algorithm, there are still some areas of 

improvements in the design. For further improvements and future work the followings are 

suggested. 

 An I/O data compression circuits for weight values are necessary. Even though the 

fabricated sensor evaluated machine-learning algorithm in chip level, the power 

consumption for loading the weight values, which is required to evaluate machine-
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learning algorithm, was not negligible due to the large weight values data movement. 

The data compression for weight value can reduce I/O power consumption significantly. 

 An integration of the proposed energy harvesting pixel structure with the CMOS image 

sensor for the embedded machine-learning algorithm is necessary. The energy 

harvesting CMOS image sensor was designed and fabricated independently and its 

performance was measured separately. To realize the complete system, the proposed 

pixel structure should be on a single die with the embedded machine-learning algorithm. 

In addition, the power convertor to provide imager system is required. 

 To evaluate fully neural network algorithm in CMOS image sensor system, FCC and 

followed functionality block for CNN should be developed. Currently, early 

convolution layer is developed with embedded convolution circuit. Followed 

convolution layer require higher resolution comparing of early convolution layer. This 

lead the energy efficient digital approach for followed convolution layer and FCC layer. 

 To further verify vision based navigation system, we require integrating fabricated 

system to NAV. In addition, to navigate the NAV system, digital signal processing 

(DSP) units have to be integrated together to provide information to control the NAV 

system. 
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