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Abstract 

 

Neuromorphic computing is a concept to use electronic analog circuits to mimic neuro-

biological architectures present in the nervous system. It is designed by following the operation 

principles of human or mammal brains and aims to use analog circuits to solve problems that are 

cumbersome to solve by digital computation. Neuromorphic computing systems can potentially offer 

orders of magnitude better power efficiency compared to conventional digital systems, and have 

attracted much interest recently. 

In particular, memristors and memristor crossbar arrays have been widely studied for 

neuromorphic and other in-memory computing applications. Memristors offer co-located memory 

and logic functions, and intrinsic analog switching behaviors that enable online learning, while 

memristor crossbars provide high density and large connectivity that can lead to high degree of 

parallelism. This thesis work explores the device characteristics and internal dynamics of different 

types of memristor devices, as well as the crossbar array structure and directly integrated hybrid 

memristor/mixed-signal CMOS circuits for neuromorphic computing applications. 

WOx-based memristors are used throughout the thesis. Bipolar resistive switching is observed 

due to oxygen vacancy redistribution within the switching layer upon the application of an applied 

electric field. In a typical WOx memristor, oxygen vacancy drift by electric field and spontaneous 

diffusion result in a gradual resistance change. Depending on the purpose of the applications, the 

oxidation condition can be varied to achieve either short-term memory or long retention properties, 

which in turn allow the devices to be used in applications such as reservoir computing or learning 

and inference. Device fabrication details and device modeling are briefly discussed.  

A network structure can be directly mapped onto a memristor crossbar array structure, with 

one device formed at each crosspoint. When an input vector is fed to the network (typically in the 

form of voltage pulses), the output vector can be obtained in a single read process, where the input-

weight vector-matrix multiplication operation is performed natively in physics through Ohm’s law 

and Kirchhoff’s current law. This elegant approach of implementing matrix operations with 

memristor network can be applied for many machine learning algorithms. Specifically, we 
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demonstrate a sparse coding algorithm implemented in a memristor crossbar-based hardware system, 

with results applied to natural image processing. We also estimated that the system can achieve ~16× 

energy efficiency than conventional CMOS system in video processing.  

We further fabricated a 54×108 passive memristor crossbar array directly integrated with all 

necessary interface circuitry, digital buses and an OpenRISC processor to form a complete hardware 

system for neuromorphic computing applications. With the fully-integrated, reprogrammable chip, 

we demonstrated multiple models such as perceptron learning, principal component analysis, and 

also sparse coding, all in one single chip, with power efficiency of 1.3TOPS/W (estimated at 40nm 

tech node).  

The internal device dynamics, including the short-term memory effect caused by spontaneous 

oxygen vacancy diffusion, additionally allows us to implement a reservoir computing system to 

process temporal information. Tasks such as handwritten digit recognition are achieved by 

converting the spatial information of a digit image into streaming inputs fed into a reservoir 

composed of memristor devices. The system is also used to experimentally solve a second-order 

nonlinear task, and can successfully predict the expected output without knowing the form of the 

original dynamic transfer function. 

Other attempts to explore the potential of using memristor networks to solve challenging 

problems more efficiently are also investigated. Two typical problems, including Hopfield network 

and self-organizing maps will be discussed.    
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Chapter 1 Introduction 

 

1.1 Major Roadblocks in Conventional Computing 

Nowadays, billions of transistors are working around us in our daily life, powering things 

from smartphones, personal laptops, automobiles to thermostats and toaster ovens. With the rapid 

growth of big data processing, Artificial Intelligence (AI) and Internet of Things (IoT), the need 

of high performance and energy-efficient computing has grown rapidly. However, conventional 

CMOS—based computing systems are now facing many roadblocks, especially the end of Moore’s 

Law and the drag on system performance due to the von Neumann Bottleneck. With the increasing 

fabrication cost and impending fundamental physical limits, device scaling becomes ever 

challenging. On top of it, the energy and speed penalties associated with data movements between 

the memory and the processor severely limit the systems’ performance gains even if device scaling 

could be continued. The semiconductor industry is forced into exploring solutions based on novel 

devices and new computing principles. Inspired by biology, neuromorphic computing has become 

a promising candidate that can provide guiding principles for device innovation and system 

optimization in the future. 

1.1.1 Dying of the Moore’s Law 

Since Dr. Gordon E. Moore first proposed the famous “Moore’s Law” in 1965 and predicted 

the number of transistors in a dense integrated circuit will double every 18 months1, it has been 

guiding the growth of semiconductor industry for many decades. As a result, we as a society have 

enjoyed the success of ever powerful computing systems which now offer billions of transistors 

on a tiny chip.  

However, Moore’s law has started to falter in the last decade and will likely end soon, due 

to unavoidable heat jammed into small areas that leads to the phenomenon of “dark silicon” where 

not large portions of devices cannot be utilized, and the upcoming scaling limit when transistor 

sizes approaches atomic level2. To find solutions after the end of Moore’s Law, the concept of 

“Beyond CMOS” was brought up in early 2000s which focuses on device technologies beyond the 
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CMOS scaling limits3 and “More-than-Moore” which focuses on novel applications with emerging 

devices and hybrid integrations4. Out of the many emerging devices, memristor, or resistive 

random-access memory (RRAM), has gained broad interest for its ability to address future storage 

and computing needs. The operations of memristors will be discussed in the next section. 

1.1.2 The Von Neumann Bottleneck 

Another major roadblock is the so-called “Von Neumann Bottleneck”. In 1945, John von 

Neumann proposed a computing architecture that proscribed separating program and data memory 

from arithmetic and logical computations5. Instructions and operands are to be fetched from 

memory, a computation performed in the arithmetic-logic unit (ALU), and the results returned to 

memory. 

The von Neumann architecture, however, suffers from a fundamental drawback: the 

separation of memory and computing elements requires a constant movement of data across a finite 

width bus (or several busses) in order to perform operations, and this movement requires 

significant energy and time expenditures. 

Recently, with the ever-growing need to handle “big data” and implementing deep neural 

networks, the von Neumann bottleneck has become a major limitation. Neural networks 

implemented with the conventional computing hardware will have the synaptic weights stored in 

(off-chip) memory so that large amount of data need to be transmitted back-and-forth constantly, 

between the memory and processing units, and requires enormous computing hardware resources 

and high power consumption during operation. 

1.2 Neuromorphic Computing  

A more efficient approach towards computing is found in biological systems which must 

operate on a highly constrained power budget. Take the human brain as an example, arguably the 

most powerful computer for many tasks. It is estimated from blood flow measurements to be able 

perform all of its functions while using approximately 20 watts6,7. The brain accomplishes this feat 

by approximating computational tasks with analog physical basis functions to achieve high 

computational efficiency rather than digital logic basis functions as in traditional computer 

systems. Additionally, the learning and feedback and adaptation features allow the system to 

improve itself from signal statistics and maintain robustness to device and signal errors and to 

ensure efficient operation in the most informative regions7. 
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Inspired by the human brain, the concept of “neuromorphic computing” was introduced by 

Carver Mead in early 1990s8. It describes a neural information processing paradigm whose 

physical architecture and design principles are based on those of biological nervous systems. Mead 

pointed out that the use of the physical basis functions of analog computation, the intimate 

integration of logic and memory through mostly local wiring, and the learning capabilities of 

neurobiological systems were key ingredients to their energy efficiency. 

To implement a neuromorphic system in computing hardware, we need to find an appropriate 

electronic device with the capability of performing analog computing, by simultaneously storing 

the synaptic weight and modulating the transmitted signal to avoid the von Neumann bottleneck. 

With representation of information by the relative values of analog signals, it can achieve orders 

of magnitude energy efficiency than conventional digital computation9. 

Remarkably, memristor can naturally play such a role in neuromorphic computing. Owing 

to their ability to co-locate memory and compute operations in the same physical device, and their 

analog switching behaviors caused by ion migration, memristors are ideally suited to realize highly 

efficient bio-inspired neural networks in hardware. 

 

1.3 Memristors 

Memristors, or memristive devices, are two-terminal electrical components whose resistance 

values depend on the history of applied stimulations. The device states are described by one or a 

few internal state variable(s) and are typically governed by dynamic ionic processes. Since the 

device retains its resistance even without power, it is suitable for applications as non-volatile 

memories. Because it uses its resistance value to represent information, it is a memory resistor, or 

for short — memristor.  

The original concept of memristor was proposed in the 1971 by Prof. Leon Chua at 

University of California, Berkeley10. The initial definition of memristor is an electrical element 

that relates electric charge and magnetic flux linkage, as shown in Figure 1-1. Due to its potential 

applications in memory and computing systems, memristors have been intensively investigated in 

the last a few years. 
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Figure 1-1: Memristor as the forth electrical element 

along with resistor, inductor and capacitor.  
Image adapted from Reference [12]. Image credit: Dr. Dmitri B. Strukov. 

 

A typical memristor has a sandwiched metal-insulator-metal (MIM) structure, in which the 

switching happens in the insulator layer, or so-called switching layer. Due to the simplicity of its 

structure, memristors can be easily fabricated by inserting the switching material between two 

crossing metal lines, forming the cell at the crosspoint, as illustrated in Figure 1-2a. This is the so-

called “crossbar” structure11, where an array of memristors can be obtained by an array of such 

devices (Figure 1-2b), offering the highest possible storage density in 2D structures. Such 

crossbars can also be stacked over each other, further improving the memory storage density. 

 

 
Figure 1-2: Crossbar structure for memristor.  

The cell is formed at the cross-point of two metal lines by inserting the switching material. Showing (a) 
a single cell and (b) a crossbar array. Image adapted from Reference [11]. Image credit Dr. S.H. Jo 
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The state of a memristor, which provides the memory effect, depends on one or more internal 

state variables and can be modulated by the history of external stimulation10,12–14. Generally 

speaking, a memristor’s resistance is determined by the internal ion (either cation or anion) 

configuration, where the re-distribution of oxygen ions or metal cations inside the device 

modulates the local resistivity and overall device resistance12,14–16.  

The key advantages of memristors include the simple structure thus low cost and high 

memory density, fast speed, low power, and compatibility with conventional complementary metal 

oxide semiconductor (CMOS) fabrication that allows for hybrid circuit and 3D integration, making 

them very attractive for a broad range of applications including memory, analog and reconfigurable 

circuits, as well as neuromorphic computing. 

1.3.1 WOx Memristor Device 

The neuromorphic computing systems discussed in this thesis work are based on WOx 

memristors. The devices have a metal-insulator-metal (MIM) structure similar to other 

memristors17,18, and is shown in Figure 1-3. The W bottom electrode (BE) was partially oxidized 

to form the nonstoichiometric WOx switching layer. Pd and Au were deposited as the top electrode 

(TE). The SiO2 spacer structure was fabricated to enable better step coverage of the top electrodes 

at the cross points and also restrict the resistive switching regions to a flat surface that is formed 

at the top of the W BE. 

 

 
Figure 1-3: Schematic of a WOx memristor.  

The device has a MIM structure, with W as the bottom electrode, WOx as the switching layer and Pd as 
the top electrode. 

 

In a typical device fabrication process, a 60 nm W film is first deposited on a Si/SiO2 

substrate by RF sputtering at room temperature. Then the bottom electrodes are patterned by 

electron-beam (e-beam) lithography, Ni deposition by evaporation and lift-off, followed by 

Ni

WW

Si Substrate

Pd/Au

WOx

SiO2W

SiO2
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reactive ion etching (RIE) using Ni as a hard mask to etch uncovered W. After removing Ni by wet 

etching, rapid thermal annealing (RTA) in pure oxygen at temperatures ranging from 375
o
C to 

450
o
C, with annealing times ranging from 30 s to 90 s, is performed to partially oxidize the W film 

and form the nonstoichiometric tungsten oxide layer as the switching layer. The thickness of the 

WOx layer ranges from 40 nm to 90 nm depending on the oxidation condition, which in turn leads 

to different switching behaviors and allows tuning of the device performance for different 

applications. Finally, the Pd/Au top electrodes, where Au acts as a protective cover layer and also 

allows better ohmic contact for probe station test and wire-bonding, are patterned by e-beam 

lithography, evaporation, and lift-off processes. Afterwards, the tungsten oxide regions outside the 

crosspoints formed between the TEs and the BEs are etched away by RIE, using the TEs as a hard 

mask. Another photography and metal deposition process, usually NiCr (5 nm) and Au (140 nm), 

may be performed to form the bonding pads for both the BEs and the TEs to allow wire-bonding 

of the chip to a chip carrier for measurements using customized testing boards of our group. A 

scanning electron microscope (SEM) image of a 32×32 memrsitor array is shown in Figure 1-4. 

 
 

Figure 1-4: SEM image of a fabricated 32×32 WOx memrsitor array.  
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1.3.2 Analog Switching  
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Figure 1-5: DC voltage sweeps on a WOx memristor, showing gradual state changes.  
The device conductance was increased during the 3 consecutive positive sweeps (red arrows), then 

decreased during the 3 subsequent negative sweeps (blue arrows). 

 

As with all memristor devices, a “pinched-hysteresis” behavior can be distinctively observed 

in the I-V characteristics in the WOx memristor devices, as shown in Figure 1-5. When a positive 

voltage is applied, the device conductance gradually increases (termed the write process) and when 

a negative voltage is applied the conductance gradually decreases (termed the erase process). 

Moreover, when multiple consecutive positive sweeps are applied, the device conductance 

continues to increase with each sweep, but also exhibits overlaps between the hysteresis loops, 

consistent with the short-term memory behavior discussed in refence17. 

The gradual conductance changes can be more clearly observed by pulse measurements, as 

shown in Figure 1-6. Here 50 write pulses (+1.4 V, 100 µs) were applied to the device, followed 

by 50 erase pulses (-1.3 V, 100 µs). The device state was monitored by a small read pulse (0.5 V, 

200 µs) after each write/erase pulse. 
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Figure 1-6: Pulse measurements of a WOx memristor, showing the gradual conductance changes.  
Positive write pulses (+1.4 V, 100 µs) gradually increase the device conductance (red squares) wile 

negative erase pulses (-1.3V, 100 µs) gradually decrease the conductance (blue squares). 

 

1.3.3 Device Modeling 

The WOx device characteristics can be explained by the redistribution of ions, here in the 

form of oxygen vacancies (Vos), as has been discussed in previous literatures12,19,20.  

Specifically, the memristor dynamics can be described by the following equations: 

𝐼 = (1 − 𝑤)𝛼[1 − 𝑒𝑥𝑝(−𝛽𝑉)] + 𝑤𝛾 sinh(𝛿𝑉)  (1 − 1) 

𝑑𝑤

𝑑𝑡
= 𝜆𝑠𝑖𝑛ℎ(𝜂𝑉) −

𝑤

𝜏
  (1 − 2) 

Equation (1-1) is the I-V equation which includes a Schottky (the 1st term) corresponding to 

conduction in the Vo-poor region and a tunneling-like term (the 2nd term) corresponding to the Vo-

rich region. The two conduction channels are in parallel and their relative weight is determined by 

the internal state variable w.  

Equation (1-2) is the dynamics equation which describes the change rate of the state variable 

w with respect to the applied voltage, including the drift effect under an applied electric field (the 

1st term) and the spontaneous diffusion (the 2nd term). 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝜂  are all positive-valued 

parameters determined by material properties. 𝜏 is the diffusion time constant, which corresponds 

to the retention or the decay speed of the memristor device. 

During the device fabrication, we can tailor the oxidation conditions to achieve different 
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device retention performance. With oxidation at a low temperature such as 375°C for 60s, we can 

achieve the so-called short-term memory effect, which refers to the fact that the device can only 

hold its conductance value for a short period of time (Figure 1-7). This type of memristor can be 

used in certain applications that takes advantage of the short-term memory dynamics to process 

temporal information, which will be discussed in Chapter 5. The time constant τ in the short-term 

memory devices is typically around 50ms. 
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Figure 1-7: Conductance decay in a WOx memristor.  

The device was first programmed by 5 write pulses (1.4 V, 1 ms) then its conductance was monitored by 
periodic read pulses (0.4 V, 500 µs). 

 

If we use stronger oxidation condition, e.g. 425°C for 60s, the device can obtain much longer 

retention. In this case, we can use the memristor devices to store synaptic weights and to perform 

matrix operation directly in the memristor arrays, as introduced in section 1.3.5. Examples of such 

devices will be mentioned in Chapter 2 to Chapter 4.  

 

1.3.4 Memristor as Synapse 

With the ion-driven analog switching behavior, memristors can be used to naturally emulate 

biological synapses. Synapses are connections between neurons, and provide critical functions to 

transfer and regulate signals between neurons that form the basis of memory and cognition in 

biological systems. There are ~1011 neurons and ~1014 synapses in a human brain7. Neurons and 

synapses together make up neural networks, which are the building blocks that empower humans 
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to learn, think and remember.  

A key attribute of the brain’s computing power is that the synapses are “plastic” – that is, 

the synaptic weight, or the connection strength between neurons, can be modulated and new weight 

can be retained. Since the synaptic weight regulates the transmission of signals between neurons, 

synaptic plasticity along with the very large synaptic connectivity empowers the efficient brain-

based parallel computing paradigm and lays the foundation of neuromorphic computing.  

The prospect of building biologically inspired neuromorphic computing systems with 

memristor networks21 
has generated significant interest since memristors can phenomenologically 

and bio-realistically emulate synaptic plasticity, and offer the desired large connectivity and low 

power budget, as illustrated in Figure 1-821 

 

Figure 1-8: Memristors as synapses in a network. 
  Schematic illustration of the concept of using memristors as synapses between neurons. The insets 

show the schematics of the two-terminal device geometry and the layered structure of the memristor.  
Image adapted from Reference [21]. Image credit: Dr. S.H. Jo 

1.3.5 Memristor Crossbar Array for Neuromorphic Applications 

A network of many memristor devices, formed in the structure of a crossbar array as shown 

in Figure 1-9, can then be used to implement synaptic weights in general Artificial Neural Network 

(ANN) applications. In particular, this type of crossbar array structure can perform many tasks that 

are based on matrix operations efficiently, due to its ability to implement vector-matrix 

multiplications in a natural and elegant fashion, using Ohm’s law and Kirchhoff’s current law.  
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Figure 1-9: Memrsitor crossbar array for neuromorphic computing 
A memristor is formed at each crosspoint of the crossbar array. In this approach, vector-matrix 

multiplication can be obtained through Ohm’s law and Kirchhoff’s law through a simple read operation.  
Image adapted from Reference [33]. Image credit: Dr. Mohammed A. Zidan 

As illustrated in Figure 1-10, if an input vector x is fed to the crossbar with each element xi 

applied on a row of the crossbar while keeping the columns grounded, the current flowing through 

each memristor at the crosspoint (i, j) will be: 

𝐼𝑖𝑗 =  𝑥𝑖𝑤𝑖𝑗 (1 − 3) 

where xi represents the vector element which for example could be a pulse with a fixed 

amplitude and width modulated according to the input, and wj represents the state of memristor, 

i.e., the conductance (often called weight in neuromorphic systems). Since all memristors on one 

column share the same bottom electrode, the current collected at column j is the sum of all the 

currents flowing through the memristors on this column 

𝐼𝑗 =  ∑ 𝑥𝑖𝑤𝑖𝑗 = 𝐱 ⋅ 𝐖𝑗

𝑛

𝑖=1
  (1 − 4) 

Therefore, the current measured at column j represents the dot product of the input vector x and 

the stored weight vector (often called the feature vector) 𝐖𝑗  in column j of the crossbar, 𝐱 ⋅ 𝐖𝑗  . By 

collecting currents in all the columns, the vector-matrix multiplication (VMM) output, 𝐱 ⋅ 𝐖, can 

then be obtained in a single “read” operation. This operation best represents the benefits of 

computing in memristor crossbars – the ability to perform computing in the weight storage devices 

directly, as well as the high-degree of parallelism where all devices in the crossbar operate in 
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parallel and perform the multiply and add functions simultaneously. 

 
 

Figure 1-10: Memristor crossbar architecture to calculate vector matrix multiplication.  
Inputs are applied on the rows as xi, while the current (charge) is collated on the columns, schematically 

shown as Aj. Memristors are formed at the crosspoints with the weight wij. 

Moreover, because the resistances of memristors can be readily modulated, neuromorphic 

systems based on memristors can achieve online learning, by updating the resistances of the 

memristors that form the feature vectors using voltage pulses with higher amplitudes that can drive 

the internal ion migrations in the devices. 

Due to the compact device structure and the ability to both store and process information at 

the same physical locations,  memristors and memristor crossbar arrays have been extensively 

studied for neuromorphic computing and machine learning application such as single laye22,23 and 

multi-layer perceptron networks24,25, image transformation26,27, sparse coding28, reservoir 

computing29 and principal component analysis30. Our approach of implementing neuromorphic 

applications will be discussed in detail in following chapters. 

1.4 Organization of the Dissertation 

In this chapter, we have introduced the memristor concept and the crossbar architecture. Our 

studies are based on WOx memristor devices, where Figure 1-11 lists the main properties of the 

device and the appropriate neuromorphic applications it is suitable for. 

Specifically, for WOx devices with long retention, we can store analog information at large 

scale. Combined with the crossbar configuration, it can be used to perform vector-matrix 

multiplications. Furthermore, with the gradual analog switching behavior, online learning 
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algorithms can be implemented in the memristor hardware system. On the other hand, for WOx 

devices short-term memory, we can use their internal dynamics for temporal information 

processing and reservoir computing applications. 

 

Figure 1-11: The WOx characteristics and the corresponding neuromorphic applications it is suitable for. 

 

The rest of the thesis will discuss a few studies based on the WOx memristor devices, and is 

organized as following: 

Chapter 2 discusses a sparse coding algorithm that has been implemented experimentally 

with a WOx memristor crossbar network. Results of simple bar patterns and complex natural 

images will be discussed. 

Chapter 3 discusses the constraints in online dictionary learning with realistic memristor 

devices and proposes a solution based on epsilon-greedy strategy to improve training performance. 

Chapter 4 discusses a hybrid integrated system with the WOx arrays directly fabricated on a 

custom-designed CMOS chip to implement multiple neuromorphic applications on-chip in a 

functional, standalone system. 

Chapter 5 discusses memristor-based reservoir computing, emphasizing the temporal 

information processing ability of WOx memristors through its internal dynamics. Examples of digit 

recognition and temporal signal processing will be presented. 

Chapter 6 discusses two other possible neuromorphic applications for further research 

directions. 
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Chapter 2 Sparse Coding with Memristor Crossbar Array 

 

From the discussion in Chapter 1, we learned that if constructed into the crossbar structure, 

memristor networks can efficiently implement matrix operations, especially vector-matrix 

multiplications (VMM) in parallel and with high energy efficiency. Neuromorphic computing 

systems can be implemented in hardware based on this approach13,31–33, for tasks such as feature 

extraction and pattern recognition22,23,27,30,34.  

In this study, we experimentally demonstrate a sparse coding algorithm implemented in a 

memristor crossbar network, and show that the memristor network can be used to perform 

applications such as natural image processing with an offline learned dictionary set. 

 

2.1 Sparse Coding 

Sparse coding aims at representing the original data with the activity of a small set of 

neurons, and can be traced to models of data representation in the visual cortex35,36. Sparse 

representation reduces the complexity of the input signals and enables more efficient processing 

and storage, as well as improved feature extraction and pattern recognition functions37,38. 

The concept of sparse coding is as follows: Given an input signal, x, and a dictionary of 

features, D, sparse coding aims to represent x as a linear combination of features from D using a 

set of sparse coefficients a, with minimum number of features. Mathematically, the objective of 

sparse coding can be summarized as minimizing an energy function containing both the 

reconstruction error term as well as a sparsity penalty term, defined as: 

min
 𝑎

( |𝑥 − 𝐷𝑎𝑇|2  + 𝜆|𝑎|0 ) (2 − 1) 

where |⋅|2 and |⋅|0 are the L2- and the L0-norm, respectively, and 𝜆 is a sparsity parameter 

that determines the relative weights of the reconstruction error (1st term) and the sparsity penalty 

(the number of neurons used, 2nd term). 

A schematic of the sparse coding concept is shown in Figure 2-1, where an input (e.g. the 
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image patch of a clock) is represented by a few features selected from a large dictionary35,38. 

 
Figure 2-1: Schematic of the sparse coding concept.  

An input (e.g., the image patch of a clock) can be decomposed into and represented with a minimal 
number of dictionary elements. The numbers in the images are just for illustration purpose and are not 

the actual sparse code. 

Sparse representation of information provides a powerful method to perform feature 

extraction on high-dimensional data, and is of broad interest for applications in signal processing, 

computer vision, object recognition and neurobiology37. Sparse coding is also believed to be a key 

mechanism by which biological neural systems can efficiently process complex, large amount of 

sensory data while consuming very little power36,38,39. 

 

2.2 Locally Competitive Algorithm 

The Locally Competitive Algorithm (LCA) is a sparse coding algorithm that uses a dictionary 

of feature vectors (represented by synaptic weights) to transform a vector of input signal into a 

relatively small number of output coefficients, which can be used for image compression or object 

recognition40.  

LCA solves the minimization problem in Equation (2-1) using a network of leaky-integrator 

neurons and connection weights. Different from commonly used feed-forward neural networks, 

LCA describes a dynamical system where neurons compete with each other in proportion to the 

similarity of their respective receptive fields (the collection of synaptic weights entering a neuron). 

In this approach, the membrane potential of an output neuron is determined by the input, a leakage 

term, and an inhibition term whose strength is proportional to the similarity of the neurons’ 

features40 (an active neuron will try to inhibit neurons with similar features with itself). After the 
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network get stabilized, an optimal sparse representation, out of many possible representations will 

be obtained. 

Mathematically, in LCA, x is an m-element column vector, with each element corresponding 

to an input element (e.g. intensity of a pixel in an image patch). D is an m×n matrix, where each 

column of D represents an m-element feature vector (i.e. a dictionary element) and connected to a 

leaky-integrator output neuron. a is a sparse row vector of neuron activity coefficients, where the 

ith element of a represents the activity of the ith neuron, whose feature vector is used in the data 

reconstruction. After feeding input x to the network and allowing the network to stabilize through 

lateral inhibition, a reconstruction of x can be obtained as 𝐷𝑎𝑇, and in a sparse representation only 

a few elements in a are nonzero while the other neurons’ activities are suppressed to be precisely 

zero40. 

The neuron dynamics during LCA analysis can be summarized by Equation (2-2) 

𝑑𝑢

𝑑𝑡
=

1

𝜏
(−𝑢 + 𝑥𝑇𝐷 − 𝑎(𝐷𝑇𝐷 − 𝐼𝑛)) (2 − 2𝑎) 

𝑎 = {
𝑢 if 𝑢 > 𝜆
0 otherwise

 (2 − 2𝑏) 

where u is called neurons’ membrane potentials, τ is a time constant, and 𝐼𝑛 is the 𝑛 × 𝑛 

identity matrix.  

During LCA analysis, each neuron i integrates its input 𝑥𝑇𝐷, leakage −𝑢, and inhibition 

𝑎(𝐷𝑇𝐷 − 𝐼𝑛) terms and updates its membrane potential 𝑢𝑖 in Equation (2-2a). If and only if 𝑢𝑖 

reaches above a threshold (set by parameter λ), neuron i will produce an output 𝑎𝑖  =  𝑢𝑖, otherwise 

the neuron’s activity 𝑎𝑖 is kept at 0 (as in Equation (2-2b)).  

Specifically, the input to neuron i results from the signal x scaled by the weights 𝐷𝑗𝑖 

connected to the neuron (second term in Equation (2-2a)). To this regard, the collection of the 

synaptic weights 𝐷𝑗𝑖 associated with neuron i, corresponding to a feature column of D, is also 

referred to as the receptive field of neuron i, analogous to the receptive fields of biological neurons 

in the visual cortex38,41. A key feature of LCA is that the neurons also receive inhibition from other 

active neurons (last term in Equation (2-2a)), an important feature in biological neural systems38. 

LCA incorporates this competitive effect with the inhibition term proportional to the similarity of 

the neurons’ receptive fields40 (measured by 𝐷𝑇𝐷 in Equation (2-2a)). By doing so, it prevents 

multiple neurons from representing the same feature and allows the network to dynamically evolve 
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to find an optimal output. Note that when a neuron becomes active, all other neurons’ membrane 

potentials will be updated through the inhibition term (to different degrees depending how similar 

the neurons’ receptive fields are). As a result, an initially active neuron may become suppressed 

and a more optimal representation that better matches the input may be found. In the end the 

network evolves to a steady state where the energy function (Equation (2-1)) is minimized and an 

optimized sparse representation (out of many possible solutions) of the input data is obtained from 

a combination of stored features based on the active neurons.  

Note however implementing the inhibition effect 𝐷𝑇𝐷 can be computationally intensive. On 

the other hand, the original Equation (2-2a) can be re-written into Equation (2-3) below 

𝑑𝑢

𝑑𝑡
=

1

𝜏
(−𝑢 + (𝑥 − 𝑥̂)𝑇𝐷 + 𝑎) (2 − 3) 

where 𝑥̂ = 𝐷𝑎𝑇 is the signal estimation (i.e. the reconstructed signal). Equation (2-3) shows 

that the inhibition term between neurons can be reinterpreted as a neuron removing its feature from 

the input when it becomes active, thus suppressing the activity of other neurons with similar 

features. By doing so, the matrix-matrix operation 𝐷𝑇𝐷  in Equation (2-2a) is reduced to two 

sequential matrix-vector dot-product operations (one used to calculate 𝑥̂ = 𝐷𝑎𝑇   and the other 

used to calculate the contribution from the updated input (𝑥 − 𝑥̂)𝑇𝐷), which we show can be 

efficiently implemented in memristor crossbars in discrete time domain without physical inhibitory 

synaptic connections between the neurons. 

2.3 Mapping Sparse Coding onto Memristor Network 

As discussed in Chapter 1, memristor crossbars are particularly suitable for implementing 

neuromorphic algorithms, because the vector-matrix multiplication operations can be performed 

through a single read operation in the memristor array32,42.  

We experimentally implemented the sparse coding algorithm in the memristor array-based 

artificial neural network, schematically shown in Figure 2-2. In this implementation, x is an m-

element column vector applied to the rows of the memristor crossbar (cyan pads on the left), with 

each element corresponding to an input element (e.g. intensity of a grayscale pixel in an image 

patch). It is implemented by read pulses with a fixed amplitude but variable width proportional to 

the pixel intensity. 
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Figure 2-2: Schematic of memristor crossbar based computing.  
A memristor is formed at each crosspoint and can be programmed to different conductance states 

(represented as grayscale color). 

In this approach, the dictionary, D, is directly mapped element-wise into the memristor 

crossbar with each memristor at row i and column j storing the corresponding synaptic weight 

element Dij. The input vector x (e.g. grayscale pixel intensities of the input image when used in 

image analysis) is implemented with read pulses with a fixed amplitude and variable width 

proportional to the pixel intensity. As a result, the total charge Qij passed by a memristor at 

crosspoint (i,j) is linearly proportional to the product of the pixel intensity xi and the conductance 

Dij of the memristor 𝑄𝑖𝑗 = 𝑥𝑖𝐷𝑖𝑗 , and the charge passed by all memristors sharing column j is 

summed via Ohm’s Law and Kirchhoff’s current law: 𝑄𝑗 = ∑ 𝑥𝑖𝐷𝑖𝑗𝑖 = 𝑥𝑇𝐷𝑗 (Figure 2-2). In other 

words, the total charge accumulated at neuron j is proportional to the dot-product of the input x 

with the neuron’s receptive field Dj.  

Since the dot-product of vectors measures how close the input vector is matched with the 

stored vector, the ability to implement this operation in a single read process allows the memristor 

network to conveniently and efficiently perform this important pattern matching task.  This term 

(𝑥𝑇𝐷 in vector form) is then added to the neuron’s membrane potential following Equation (2-3), 

a leakage term is subtracted, and the membrane potential is then compared to the threshold 

parameter, λ. If the membrane potential is above threshold , the neuron is active for the next 

phase. 

In the second phase, the input image is reconstructed using the currently active neurons and 

compared to the original input. This is accomplished by performing a “backward read”:  variable 



19
868 

 

width read pulses, proportional to the neurons’ activities 𝑎𝑗, are applied on the columns while the 

charge is collected on each row i to obtain 𝑄𝑖 = ∑ 𝐷𝑖𝑗𝑎𝑗𝑗 = 𝐷𝑖𝑎
𝑇. This backward read has the 

effect of performing a weighted sum of the receptive fields of the active neurons, and the total 

integrated charge on the rows is proportional to the intermediate reconstructed signal 𝑥̂ = 𝐷𝑎𝑇 in 

vector form. The difference of x and 𝑥̂, referred to as the residual, is used as the new input to the 

array to obtain an updated membrane potential. The forward and backward processes are repeated, 

alternately updating the neuron activities and then the residual. The updated value is calculated 

from Equation (2-2) and (2-3) by a FPGA board in the measurement setup. After the network has 

stabilized, a sparse representation of the input, represented by the final output activity vector a, is 

obtained. By performing these forward and backward passes in the same memristor network in 

discrete time domain, we can effectively achieve lateral inhibition required by the sparse coding 

algorithm, without having to implement physical inhibitory synaptic connections between neurons. 

 
 

Figure 2-3: Memristor crossbar network for sparse coding. 
Upper right inset shows a magnified scanning electron microscope (SEM) image of the crossbar. Lower 

left inset shows the memristor chip integrated on the testing board after wire-bonding. 

In this study, the hardware system used is a 32×32 memristor crossbar array, where a 

memristor formed at each intersection in the crossbar (Figure 2-3). The WOx memristor devices 

are fabricated by Dr. Chao Du following the previously developed proocess18 
discussed in Chapter 

1. When fabrication is completed, the memristor crossbar array chip is wire-bonded and integrated 

on a custom-designed testing printed circuit board (PCB), as shown in the lower inset of Figure 

2-3. Dr. Patrick M. Sheridan and Zelin Zhang also helped tremendously in building the hardware and 
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software of testing platform.  

During experimental measurements, the original input (for example an image) is fed to the 

rows (which are the top electrodes) of the memristor array and the columns (which are the bottom 

electrodes) of the array are connected to output neurons. The memristor network performs critical 

pattern matching and neuron inhibition operations to obtain a sparse, optimal representation of the 

input. After the stabilization of the memristor network, the re-constructed image can be obtained 

based on the (sparse) output neuron activities and the features stored in the crossbar array. 

2.4 Sparse Coding Results of Simple Inputs 

To experimentally demonstrate sparse coding with the memristor network, we start with 

simple inputs such as grayscale horizontal and diagonal bar patterns for image reconstruction. 

The first demonstration is encoding an image composed of diagonally oriented stripe features 

using the algorithm given above. The dictionary, shown in Figure 2-4a, contains 20 features with 

each feature consisting of 25 weights. The 20 features were written into the 20 columns (with each 

weight represented as a memristor conductance) and the inputs were fed into the 25 rows, which 

means a 25×20 sub-array was used out the 32×32 memristor array in this experiment. An input 

signal, shown in Figure 2-4b and consisting of a combination of 4 features, is used as a test input 

to the system. 

The network stabilizes after 30 forward-backward iterations, and the final signal 

reconstruction is shown in Figure 2-4b. It can be seen that the input image can be correctly 

reconstructed with neurons 2, 6, 9, and 17, corresponding to the features of the input, weighted by 

their activities. Additionally, the experimental setup allows us to study the network dynamics 

during the analysis.  
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Figure 2-4: Experimental demonstration of sparse coding using memristor network.  
a) Dictionary elements programmed into the memristor crossbar array, each dictionary element is 

stored in a single column. b) The original and the reconstructed image after the memristor network 
settles. c) Membrane potentials of the neurons as a function of iteration number during LCA analysis. 
Red horizontal line: threshold parameter. d) Additional examples of input images and reconstructed 

images.  

 

Figure 2-4c plots the membrane potential values for all 20 neurons during the iterations. It 

can be seen that for the first 2 iterations, all neurons are charging (at somewhat different rates 

depending on how well the input is matched with the stored receptive fields, which is in turn 

affected by device variabilities) and none are above threshold. After the 4th iteration, the membrane 

potentials of 11 neurons (numbers 1, 2, 4, 5, 6, 9, 10, 13, 14, 16, 17) have exceeded the threshold. 

Out of these 11 neurons, the receptive fields of neurons 2, 6, 9, and 17 match the features in the 

input, while those of neurons 1, 4, 5, 10, 13, 14, 16 are not perfect matches but still overlap enough 

with the input image to allow these neurons to be charged at reasonable rates. In the subsequent 

backward read, all the active neurons will contribute their receptive fields to the reconstruction, 

and result in a reduced residual input. As a result, there is a reduction in the charging rates and a 

decrease of the neurons’ membrane potentials at iteration 5 due to the leaky term in Equation (2-

3). Over the next a few iterations the lateral inhibition between neurons eventually drives the 

membrane potentials of neurons 1, 4, 5, 10, 13, 14, 16 below the threshold in the 10th iteration and 

keep these neurons inactive in subsequent iterations. The inactive neurons’ membrane potentials 
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continue to decay due to the leakage term, but because they are below threshold, their values have 

no impact on the final sparse code. In the end, a correct and sparse representation of the input is 

reconstructed in Figure 2-4b based on the active neurons 2, 6, 9, and 17 after the network stabilizes.  

This experiment demonstrates an important feature of the sparse coding algorithm:  lateral 

inhibition mechanisms drive the system to accurately represent the input. Non-idealities in the 

memristor network may temporarily lead to incorrect behavior (as in the case of the 4th iteration 

or the 8th iteration when neurons 4, 14, 16 exceed the threshold), but the lateral inhibition inherent 

in the neuron dynamics can effectively correct these errors. These features of the network 

dynamics have been further analyzed through simulations of the memristor crossbar-based sparse 

coding hardware. Additional examples of inputs composed of two features and the reconstructed 

images from the memristor crossbar can be found in Figure 2-4d.  

 

Figure 2-5: Sparse coding using more overcomplete dictionary. 
a) Dictionary elements based on horizontal and vertical bars programmed into the memristor 

crossbar array. b) The original image to be encoded and the reconstructed image after the 
memristor network settles. c) Membrane potentials of the neurons as a function of iteration 

number during LCA analysis. Red horizontal line: threshold parameter. 
 

The re-programmability of memristors allows the dictionary set to be readily adapted to the 

types of signals to be encoded, so the same memristor hardware system can process different types 

of inputs using a single general approach. To demonstrate this point, we re-programmed a new 

dictionary composed of horizontally and vertically oriented bars (Figure 2-5a) into the same array 

used in studies in Figure 2-4. By using this new dictionary, images consisting of bar patterns can 

be efficiently reconstructed using the same algorithm. More importantly, in order to demonstrate 

the capability of sparse coding to find the optimal solution out of several possible solutions, a 

dictionary that is larger than the input space, e.g. a so-called over-complete dictionary set40, is used 
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in the examples shown in Figure 2-5a, the dictionary is minimally over-complete (since the input 

is restricted to be the combinations of the diagonal stripe features and corresponds to an input 

dimensionality of 17, determined from the linear span of the features). By using the bar patterns 

in Figure 2-5a and restricting the input images to only combinations of horizontal and vertical bars, 

the input dimensionality is reduced to 9. With a total of 20 stored dictionary elements, the system 

now achieves greater than 2× over-completeness in such a relatively small network and should be 

better to highlight the effects of sparse coding.  

The resulting reconstructions using this overcomplete dictionary are shown in Figure 2-5b 

and Figure 2-5c. The network not only correctly reconstructed the input image, but as expected, it 

picked the more efficient solution – a solution based on neurons 8 and 16, over another solution 

based on neurons 1, 4, and 8. As can be seen from Figure 2-5c in the first 5 iterations, all neurons 

are charging and the membrane potentials of neurons 1, 4, 8 and 16 first cross the threshold at 

iteration 6. Even though the receptive fields of all the four neurons (1, 4, 8 and 16) are correct 

features in the input, neurons 8 and 16 (consisting of two bars) represent a sparser representation. 

As a result, inhibition implemented in the system eventually suppresses the membrane potentials 

of neurons 1 and 4 to be below the threshold after iteration 11 and keeps them below the threshold 

after the network stabilizes. As a result, the activities of these two neurons are set to be precisely 

0 (Equation (2-2b)), and an optimal solution based only on neurons 8 and 16 is obtained, compared 

to other possible, less-sparse solutions. 

 

 
 

Figure 2-6: Additional examples of input images and reconstructed images. 
The same threshold 𝜆 = 40 is used in all experiments. 
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To further demonstrate the performance of the robustness of the hardware system, an 

exhaustive test of all 50 patterns consisting of two horizontal bars and one vertical bar were 

performed (Figure 2-6) with a success rate of 94% (measured by the network’s ability to correctly 

identify the sparse solutions), despite variabilities inherent in the memristor devices.  

2.5 Sparse Coding Results of Natural Images 

Other than simple inputs like bar patterns, we have also demonstrated that our memristor 

network can perform sparse coding for more complex and interesting input patterns, such as 

grayscale natural images, using the sparse coding algorithm and a learned dictionary.  

In this study, a 16×32 subarray was used out of the 32×32 memristor array, corresponding 

to a 2× overcomplete dictionary with 16 inputs and 32 output neurons and dictionary elements. 

The dictionary elements were learned offline using 4×4 patches randomly sampled from a training 

set consisting of nine natural images (with sizes of 128×128 pixels), using a realistic memristor 

model and an algorithm based on the winner-take-all (WTA) approach and Oja’s learning rule43. 

More details on the training process can be found in Chapter 3. 

After training, the obtained dictionary elements were programmed into the physical 16×32 

crossbar array (more details will be discussed in Section 2.6). Using the trained dictionary, we 

successfully performed reconstruction of 120×120 pixel grayscale images experimentally using 

the 16×32 memristor crossbar. During the process, the 120×120 input image (Figure 2-7a) was 

divided into 4×4 patches and each patch was experimentally processed using the memristor 

crossbar and the Locally Competitive Algorithm (Figure 2-7b). After the memristor network 

stabilized (typically after 80 forward/backward iterations (Figure 2-7d), the patch was 

reconstructed using the neuron activities and the corresponding receptive fields stored in the 

crossbar array, as shown in Figure 2-7c. 
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Figure 2-7: Natural image reconstruction using memristor crossbar.  
a) Original 120×120 image, which is divided into 4x4 patches. b) A 4×4 patch from the original image. c) 

The experimentally reconstructed patch with memrsitor network. d) Membrane potentials of the neurons 
as a function of iteration number during LCA analysis. Red horizontal line:  threshold parameter. 

  

The complete image was then composed from the individual patches, shown in Figure 2-8. 

The reconstructed successfully captured the main features of the original Lena image.  

 

Figure 2-8: Experimental LCA image reconstruction 120×120 Lena Image 
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To further demonstrate the functionality of the hardware sparse coding system, we tested 

five other commonly studied images, with different color tones (e.g. with a black or white 

background) and different features, shown in Figure 2-9. As can be seen from the results, the 

memristor-based sparse coding system can perform satisfactory reconstruction for all cases, 

regardless of the content of the figures. 

 

Figure 2-9: More experimental LCA reconstruction results with 120×120 images. 

2.6 Nonideality Effect on Image Reconstruction with Sparse Coding 

We note the reconstructed images in Figure 2-8 and Figure 2-9 were still not perfect, both 

experimentally and in the simulation. The imperfect image reconstruction can be caused by serval 

reasons:  

First, due to the device to device variations, the dictionary programmed into the memristor 

array is not exactly the same as the ideal dictionary obtained from training, and only maintains the 

major features of the original dictionary elements.  

Moreover, due to the limited dictionary size, the small basis space limits the types of features 

in the trained dictionary to be mainly low-spatial frequency features. The system thus cannot 

reconstruct the high-spatial frequency features effectively, which leads to lack of fine-grained 

details in the final image.  

Another reason lies in the limitation of the learning algorithm itself, which will be discussed 

in detail in Chapter 3. In this section, we will focus on the first two issues. 
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2.6.1 Effect of Device-to-Device Variations 

During the natural image reconstruction with offline learned dictionary, the obtained 

dictionary elements need to be programmed into the physical 16×32 crossbar array. However, 

since the memristor crossbar array has intrinsic device-to-device variations, the stored dictionary 

will not be exactly the same as the ideal leaned dictionary. The effect of the device variations on 

the experimentally stored dictionary is shown in Figure 2-10. 

  
Figure 2-10: The trained dictionary before (a) and after (b) programmed into the crossbar array  

With the intrinsic device variations, the dictionary after programmed is slightly distorted from the ideal 
version. 

Figure 2-10b shows the dictionary elements experimentally stored in and read out from the 

memristor crossbar and used for the experimental natural image reconstructions. Due to intrinsic 

device variations, the patterns stored in the array (Figure 2-10b) are slightly distorted from ideal 

dictionary (Figure 2-10a), but generally maintain the main features of the learned dictionary 

elements. Here the dictionary set was written into the array using a single shot method, without 

repeated read verification and re-programming steps. 

This nonideal stored dictionary is one of the reasons of the imperfect image reconstruction. 

To verify the validity of our experimental approach, we performed a realistic simulation using a 
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device model that incorporates device variations during the weight changes, so that we can repeat 

effect of the nonideal device variation on the image reconstruction. 

To model the device variations during weight updates, we experimentally measured the 

incremental conductance changes in 288 devices in the memristor array using pulsed 

programming/erasing conditions. The results are shown in Figure 2-11. Here each device was 

programmed with 20 write pulses and followed by 20 erase pulses, and the device conductance 

was monitored after each write/erase pulse by a read pulse. 

We fitted the experimental data with the memristor model we discussed in Chapter 1 

𝐼 = 𝑤(𝛾 sinh(𝛿𝑉)) + (1 − 𝑤) (𝛼(1 − 𝑒−𝛽𝑉)) (2 − 4𝑎) 

𝑑𝑤

𝑑𝑡
= 𝜂1 sinh(𝜂2𝑉) 𝐹(𝑤, 𝑉)  (2 − 4𝑏) 

where Equation (2-4a) is the current-voltage equation dependent on the internal state variable 

w, and Equation (2-4b) describes the update rate of the state variable. Since we the device in the 

sparse coding applications have long retention performance, we can ignore the 𝜏 term in Equation 

(2-4b).  

F(w,V) is a window function, which is used to fit the asymmetricity in write and erase: 

𝐹(𝑤, 𝑉) = {
1 − 𝑤, 𝑖𝑓 𝑉 > 0 
𝑤,        𝑖𝑓 𝑉 < 0

 (2 − 5) 

In our device model we assumed that the initial values of the state variable (w0) from 

different devices follow the same Gaussian distribution as observed in Figure 2-11b. During 

weight updates, we further assumed that the parameters 𝜂1 and 𝜂2 in the weight update equation 

(Equation (2-4b)) are different for different devices, also following Gaussian distributions. With 

these modifications to the original ideal device model, the experimentally observed variations 

during weight updates can be realistically accounted for, as shown in Figure 2-11c, for the same 

programming/erasing conditions used in the experiments. Exact parameters used in the model are 

shown in Table 2-1. 
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Figure 2-11: Experimental pulse write and erase curves from 288 memristor devices 
(a) Pulse write/erase data measured from 288 devices in the memristor array. (b) Initial 

conductance distributions. (c) Simulation fitted 288 memristor devices using device model with 
device-to-device variations (d) Simulation fitted initial conductance distribution 

 

𝑝(𝑤𝑜 = 𝑤) =  
1

√2𝜎2𝜋
𝑒

−
(𝑤−𝜇)2

2𝜎2  

µ 0.03 𝛼 10-8 

𝜎 0.009 𝛽 0.5 

𝛾 10-5 𝜂1 9×10-8 with 3% variation 

𝛿 4 𝜂2 15.5 with 1% variation 

Table 2-1: Experimentally extracted parameters used in the device model simulation. 

 

Non-idealities during the dictionary storage were simulated based on the weight update 

equation from our device model, after considering device variation effects.  It can be observed in 
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Figure 2-12 that our device model can successfully captured the device-to-device variation effect 

on the dictionary programming.  

 

Figure 2-12: Verification of the device variation on dictionary programming 
(A) Experimentally stored dictionary elements in the memristor crossbar. (B) Simulated stored weights 

after considering device variations. 

 

Furthermore, in Figure 2-13, simulations of image reconstruction were then performed using 

the simulated stored dictionary elements, following the same procedure as the experimental 

processes. The simulation results consistently reproduced the experimental results (Figure 2-13b) 

for this image processing task.  

(A) (B) 
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Figure 2-13: Verification of the device variation effect on image reconstruction 

a) Experimentally reconstructed image based on the reconstructed patches. b) Simulated reconstructed 
image using offline trained dictionary based on WTA. 

 
 

2.6.2 Effect of Limited Dictionary Size  

Another limitation of the current experimental sparse coding setup is the limited dictionary 

size.  Although the dictionary is 2× over-complete, there are still only 32 features in total in the 

dictionary. As a result, the performance of the reconstruction of natural images, which are 

generally complex and include both low- and high-spatial frequency features, will not be perfect 

with these small dictionaries limited by the current experimental setup. 

Despite the limits of the small dictionary size, during the process of each 4×4 patch the 

system was still able to perform reconstruction following the LCA algorithm based on the features 

in the dictionary, as shown in Figure 2-7. To have a closer look at the details of the image 

reconstruction results, we show below several additional zoomed-in areas of the original Lena 

image (Figure 2-14) compared with experimental and simulation reconstruction results (Figure 

2-15). 
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Figure 2-14: Selected regions in the Lena image used for comparison. 

 

As can be seen from Figure 2-15, the experimental reconstruction based on the memristor 

array can clearly capture key features of the original image, albeit with a lower resolution due to 

the lack of high-spatial frequency features in the dictionary as discussed earlier. For instance, we 

can clearly observe the shape of the eyeballs in example Figure 2-15(a), where distinct differences 

between patch to patch can be seen. Other examples Figure 2-15(b-e) also demonstrate the 

experimental system’s ability to capture continuous edges and shades within and across multiple 

patches, without overlapping the patches during reconstruction.  
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Figure 2-15: Comparison of the highlighted regions 
 showing the original, experimental and simulated reconstruction results. 

 Original Experimental Simulation 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 
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Figure 2-16: Effect of improvement by using larger dictionary 
(a) Simulated reconstructed images with different dictionary sizes. (b) Results from the zoomed-in eye 

region (marked in the original image in (a)), showing fine features can be captured with increased 
dictionary size. 

To further verify that the apparent limited resolution of the reconstruction is due to the 

limited dictionary size in this prototype system, we performed extended simulation studies to 

analyze the effect of the dictionary size on the reconstruction results. As can be seen in Figure 

2-16, with the increase of the dictionary size, from 32 features to 64, 96, 128 and 160 features 

while keeping the input size and all other parameters fixed, the quality of the reconstruction 

improves.  This effect is also more clearly illustrated by showing results in the marked region 

(Figure 2-16b). The fine features can now be captured by simply increasing the dictionary size 

(a) 

   
Original Image Reconstructed with 32 Elements Reconstructed with 64 Elements 

   

Reconstructed with 96 Elements Reconstructed with 128 Elements Reconstructed with 160 Elements 

(b)   

     

32 elements 64 elements 96 elements 128 elements 160 elements 
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while keeping all parameters fixed. These analyses verify the potential of using memristor 

networks to perform image analysis tasks, if the network size can be increased to a more practical 

size (e.g. from 16×32 used in the prototype system to larger sizes such as 16×160 in the future). 

2.7 Benchmarking of Sparse Coding for Video Processing 

Many real-world applications such as video processing are well suited for sparse coding. We 

carried out analysis on how the memristor-based hardware will perform in video processing tasks. 

Figure 2-17 shows an example of a 256×192 grayscale image, which was down-sampled from an 

original 640×480 image. The image was then processed by the 16×32 memristor crossbar using 

4×4 patches. During the process, 3072 (64×48) 4×4 patches were processed using the LCA 

algorithm and each patch took 300 iterations to allow the network to stabilize. Due to the limited 

data transfer rate between the memristor array and the digital circuitry in the existing test board, 

the current memristor board will not be able to perform this video analysis in real time. However, 

in an integrated memristor/CMOS system with a minimum possible read pulse width of 10 ns, our 

analysis shows that it will take 0.034 second to process such an image, meeting the requirement 

of real-time streaming video analysis at a rate of 24 frames/s (<0.042 second process time per 

frame).  

 

Figure 2-17: 256×192 video frame reconstructed using 4×4 patches using the 16×32 memristor crossbar. 

To process standard 480p (640×480) videos with at least 24 frames/second frame rate 

without down-sampling, larger patches (e.g. 10×10) will be needed. A memristor array size of 

100×200 will be able to process the 480p videos in real time using 10×10 patches. Figure 2-18 

shows simulation results of image reconstruction using the larger memristor array. 
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Figure 2-18: 640×480 video frame reconstructed using 10×10 patches with a 100×200 memristor 
crossbar. 

We then compared the performance of the memristor system with efficient digital solutions. 

For a fair comparison of the crossbar-based analog solution with a digital solution, both methods 

need to be subjected to the same constraints, as tradeoffs can always be made between low energy 

consumption, fast speed and high reconstruction accuracy. In this application, we are targeting 

power and processing time as the main performance metrics for both systems.  

To achieve the benchmarking results, we designed and analyzed an efficient digital system 

using efficient multiply-accumulation (MAC) circuits. Since an a×b crossbar can perform the (1×a) 

× (a×b) vector-matrix dot-product operation in one read process in the memristor system, the 

digital CMOS system was designed to match the same performance. Specifically, for 

benchmarking purpose we assumed that in an integrated memristor chip a read speed of 10 ns can 

be achieved. To obtain similar performance in the digital system, we used 4-bit × 4-bit 

multiplications to approximately match the dynamic range of the input and the stored values in the 

memristor crossbar. In the analysis, we used 10×10 patches (aimed for real time processing of 

480p video) to sample and reconstruct the image. A 100×200 memristor crossbar was assumed for 

the memristor implementation. The equivalent digital system in 40 nm CMOS uses 1600 MAC 

circuits (8 MAC circuits per column and 200 columns operated in parallel) to accomplish one 

(1×100) × (100×200) vector-matrix dot-product operation in 10.4 ns. Schematic and parameters 

of the digital system are shown in Figure 2-19 and Table 2-2: Equivalent digital CMOS design of 

a 100×200 crossbar using 40nm CMOS Technology, respectively. This design occupies 0.306 

mm2 and it is estimated to consume 274 mW during the forward pass (reconstruction phase) stage 

and 548mW during the backward pass (residual calculation) stage.  
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Figure 2-19: Architecture of the digital CMOS system 
with 1,600 4b×4b multipliers, 8 per column; 1,600 adders, 8 per column; and 8 multiplication and 

accumulation (MAC) per clock cycle per column. Each MAC operation is pipelined to 3 stages. Latency: 16 
clock cycles to complete one (1×100) × (100×200) vector-matrix dot-product operation. 

 

 (1×100) × (100×200) 

operation 

Number of Multiply-accumulate (MAC) 1600 

Number of pipeline stages 3 

Clock period (ns) 0.65 

Latency (ns) 10.4 

Power consumption (mW) 274 

Silicon area (mm2) 0.306 

Power efficiency (TOPS/W) 7.02 

Area efficiency (TOPS/mm2) 6.28 
Table 2-2: Equivalent digital CMOS design of a 100×200 crossbar using 40nm CMOS Technology 

 

The comparison between the memristor solution and the digital solution is shown below in 

Figure 2-20 and Table 2-3: Performance comparison between the memristor solution and the 

digital solution. The test is based on reconstructing 640×480 natural images at a rate of >24 

images/second (e.g. real time processing of 480p videos).  
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Figure 2-20: Image reconstruction results based on a memristor system and an efficient digital 
approach. 

 

 MSE L0 Time energy 

Memristor 1.933×10-3 15.6% 0.03607s 719.0µJ 

Digital 2.226×10-3 11.3% 0.02636s 11.82mJ 

Table 2-3: Performance comparison between the memristor solution and the digital solution 
 

As can be observed from the simulation results, the speed, error and sparsity parameters are 

similar for the digital solution and the memristor solution, by design. The digital solution resulted 

higher mean square error but lower L0. These can be explained by the quantization effect of the 

digital approach. In the digital implementation, the synaptic weights were quantized into 4 bits (16 

levels), which leads to a quantization error and subsequently slightly higher reconstruction error. 

When it comes to power consumption, on the other hand, the memristor analog solution, 

based on parameters used in the current prototype devices, already demonstrates significant (~16×) 

improvement over the already very efficient digital solution. This is due to the fact that the vector-

matrix multiplication is obtained in a single step by a parallel read process in the memristor system. 

To achieve the similar throughput in the digital system, eight 4b×4b multipliers were needed in a 

single column, leading to higher energy consumption. We expect the advantage of the memristor 

system will be even more pronounced for more complex tasks and with further optimized devices, 

since in the digital solution analysis we neglected the time and energy costs associated with moving 

data between the memory (not considered in this simple analysis) and the MAC circuitry, which 

will not be negligible for larger input data, while in the memristor system such data movement is 

not needed since the computation is directly performed in the same physical locations as the stored 

weights. The energy cost in the memristor system can also be significantly lowered further by 

   
Original Image Memristor solution Digital solution 
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optimizing the memristor devices, i.e. by using lower current memristor devices. 

2.8 Conclusion 

Utilizing the merits of memristor crossbar network, i.e., natural implementation of vector-

matrix multiplication and weight storage/modulation, an important neuromorphic algorithm, LCA, 

is demonstrated experimentally on a fabricated WOx memristor crossbar array. The algorithm can 

be used to code and reconstruct patterns and images under desired sparsity constraints. 

Beyond encoding bar patterns, we demonstrated that the memristor array can be used to 

experimentally code and reconstruct natural images. The dictionary elements were obtained offline 

using a realistic memristor model and an approach based on winner-take-all (WTA) and Oja’s 

learning rule. The obtained dictionary elements were programmed into a physical 16×32 crossbar 

array. Using the trained dictionary, we successfully preformed reconstruction of 120×120 pixel 

grayscale images using the 16×32 memristor crossbar array. 

Furthermore, with a benchmark of video processing simulation, we have demonstrated that 

with comparable image processing throughput, the memristor sparse coding system can achieve 

around 16× energy efficiency than a classic CMOS digital implementation using the current 

devices, with higher efficiency expected with future device and architecture optimizations. 
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Chapter 3 Online Dictionary Learning with Nonideal Memristor 

Network 

 

The Locally Competitive Algorithm (LCA), as described in Chapter 2, is mainly focused on 

inference, which is to represent an input with a given dictionary. The dictionary used in LCA 

implementation is learned offline in software. However, since the conductance state of memristor 

devices can be dynamically fine-tuned, memrsitor crossbar arrays have the potential to perform 

online learning in hardware, including feature vector learning for feedforward networks (which 

will be further discussed in Chapter 4) as well as dictionary learning for sparse coding.  

A conventional approach for online dictionary learning is to learn through sparse coding, 

with the learning rule of stochastic gradient descent (SDG). It usually requires some image 

preprocessing, say whitening and mean removal, to improve training efficiency, which increases 

the complexity of hardware implementation. Even without image preprocessing, dictionary 

learning through sparse coding can be time consuming and computationally expensive and is not 

a very hardware-friendly approach taking into consideration the model complexity and device 

limitations. These limitations lead us to explore a more suitable algorithm. 

Instead, in our experimental LCA implementation we proposed an alternative learning 

algorithm based on Oja’s learning rule in conjunction with winner-take-all (WTA), which enabled 

fast training of the network to achieve excellent reconstruction performance43. However, when 

considering experimental constraint of relatively large learning rate and lack of normalization, the 

dictionary elements can be unevenly trained, leading to badly-learned dictionary.  

In this section, we discuss our approach to learn the dictionary of feature primitives using 

memristor crossbar array, in the presence of device nonideality and realistic experimental 

constraints. Specifically, an epsilon-greedy strategy is applied to winner-take-all algorithm to 

avoid uneven training through dictionary elements due to large device to device variations.   

Ideally, one would also like to perform online learning experimentally using the same 

memristor crossbar system. However, the slow speed of the board combined with the large training 
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set prevented us from experimentally implementing online learning in the memristor crossbar. To 

test the feasibility of online learning we instead performed a detailed, realistic simulation using a 

device model that incorporates device variations during the incremental weight updates (see 

Section 2.6.1). 

3.1 Dictionary Learning through Sparse Coding 

Online dictionary learning can be achieved by using sparse coding algorithm combined with 

gradient descent, in which sufficient number of training patches are fed into the network and sparse 

coefficients are obtained by using the sparse coding algorithm, followed by weight updates to 

reduce the reconstruction error. Stochastic gradient descent is often used instead of batch gradient 

descent to speed up the learning approach due to the large number of training samples used in the 

process. 

In our SDG implementation, we first initialized the memristor dictionary to random values, 

and then for each training sample, we obtained the residual error (𝑥 − 𝐷𝑇𝑎) following the sparse 

coding algorithm (which in our case is LCA), and updated the memristor weights directly by 

increasing or decreasing their values according to the stochastic gradient descent rule, which is 

described as: 

ΔΦT = 𝛽(𝑥 − 𝐷𝑇𝑎)⨂𝑎 (3 − 1) 

where 𝐷 is the matrix of dictionary elements (receptive fields), ⨂ is the outer product,  𝑥 −

𝐷𝑇𝑎 represents the reconstruction error with 𝐷𝑇𝑎 being the reconstructed input based on LCA, 

and 𝛽 is the learning rate factor. Note that the dimension of (𝑥 − 𝐷𝑇𝑎)⨂𝑎 is the same as the 

weight matrix. 

This learning approach usually includes a mechanism to control and rescale the ℓ2-norm of 

the dictionary elements. Without such a mechanism, the norm of D would arbitrarily go to infinity, 

leading to small values for the coefficients ai
44

. 

In Chapter 2, the dictionary is trained offline in software and then programmed into the 

physical array. To train the network, 4×4 patches are randomly sampled from a training set of nine 

natural images (128×128 pixels) as the training input, shown in Figure 3-1. 
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Figure 3-1: Training set used to obtain the dictionary 

 

3.1.1 Dictionary Learning with Whitening 

Some preprocessing methods are usually taken before online dictionary learning, such as 

whitening and mean removal, to improve the learning efficiency in many algorithms. As discussed 

in Olshausen & Field35, high spatial features in the dictionary may be more effectively trained 

using a whitening technique that filters out the low spatial frequency components. Specifically, a 

combined whitening/low-pass filter with a frequency response shown in Equation (3-2) has been 

shown to lead to desired performance: 

𝑅(𝑓) =  𝑓𝑒
−(

𝑓
𝑓0

)
𝑛

 (3 − 2) 

The same combined whitening/low-pass filter was used to pre-process the image patches 

before training, where 𝑓0 was chosen to be 200 cycles/picture and n was set to be 4. 

The training data were sampled from ten 512×512 natural images with 12×12 patches. 

Before the training, all patches were pre-processed using the combined whitening/low-pass filter 

shown in Equation (3-2). Figure 3-2 shows the original image before and after whitening, as well 

as the profile of the combined whitening/low-pass filter in frequency domain. 
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Figure 3-2: The original image before and after whitening 

along with the profile of the whitening/low-pass filter plotted in frequency domain. 

12×12 whitened image patches, randomly sampled from the image set, were used as input 

patches for dictionary training, following previous mentioned gradient descent training algorithm.  

Figure 3-3 shows the 576 dictionary elements after training (using 12×12 image patches and 

a 4× overcomplete dictionary). Similar to results obtained in Zylberberg et al., which used a 

comparable sparse-coding algorithm39, small unoriented features, oriented Gabor-like wavelets, 

and elongated edge-detectors can be learned in the dictionary. 

 
Figure 3-3: Receptive fields obtained from gradient descent training using pre-preprocessed images.  

The resulting fields were sorted using the ratio of the variance over the mean. The gray tone represents 
zero in all fields, with lighter/darker pixels corresponding to positive/negative values.  

Original image Whitening filter Filtered image 
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An example of image reconstruction using the whitened images and the trained dictionary 

in Figure 3-3 is shown in Figure 3-4, demonstrating high quality reconstruction using dictionary 

learned with whitened inputs.  

 
Figure 3-4: Reconstructed image with LCA and online learned dictionary  

 a Original whitened image. b Reconstructed image using the dictionary in Figure 3-3 

It worth mentioning that in this simulation, neither the device model nor the non-ideality is 

used. The simulation is just aimed to verify the quality of the algorithm. We will discuss the effect 

of device model in the following section 3.1.2. 

3.1.2 Dictionary Learning with SGD and Device Variations 

Although the classic sparse coding approach can lead to excellent reconstruction results as 

shown in Figure 3-4, the whitening preprocessing can lead to a reduced input dynamic range and 

create negative input values, which increase the complexity of hardware implementation.  

Therefore, we consider a simpler approach without the preprocessing of whitening. We 

directly mapped the original grayscale image value to pulsewidth and performed the online 

learning with SGD, without mean removal. We use 8×8 patches in this study instead of previously 

used 4×4 patches, since larger patches can capture higher spatial frequency features more easily 

during the stochastic gradient descent approach45. The dictionary after learning is shown in Figure 

3-5. 

a 

 

b 

 

 

(a) (b)(a) (b)
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Figure 3-5: The 8×8 dictionary learned from stochastic gradient descent training.  

The device variations with experimentally extracted parameters are incorporated in the online learning 
process. 

During the simulation of training, we also included realistic memristor device nonidealities 

such as device variations, as has been discussed in section 2.6.1, to observe the effect of device 

model and variations on the result of online learning.  Further simulation of the sparse coding with 

online learned dictionary with this approach shows that high quality image reconstruction can still 

be obtained even in the presence of realistic device variations (Figure 3-6) if the dictionary is 

learned online using the memristor crossbar (which was not implemented experimentally in this 

study due to the limited throughput of the present testing system), where device variations were 

carefully considered both in terms of conductance variations and weight update rate variations 

during the learning stage.  

This effect can be explained from the fact that the learning algorithm is self-adaptive and 

adjusts to the device variabilities during the training stage. As a result, online learning can more 

effectively handle device variations and is particularly suitable for emerging devices such as 

memristor-based systems where large device variations are expected. 
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Figure 3-6: Sparse coding with stochastic gradient descent (SGD) 
a) Reconstruction obtained using ideal dictionary learned via sparse coding and gradient descent.  

b) Reconstruction obtained using dictionary learned using the memristor device model by considering 
realistic device variabilities during online learning. 8×8 patches were used during training and image 

reconstructions in a-b 
 

3.2 Learning with Winner-take-all and Oja’s Rule 

Although online dictionary learning with stochastic gradient descent and sparse coding can 

achieve excellent performance, the approach has several major issues when being implemented in 

hardware: 

1. The training requires a significant amount of time and resources. For each training 

sample, the LCA algorithm must run until steady state to obtain the representation 

coefficients, and then training pulses must be applied for each active neuron. A typical 

training may take thousands of training samples, which takes significant resources and 

time to train effectively. 

2. The learning process requires normalization of the weight vectors, and also leads to 

negative as well as positive weights. Normalization is a non-trivial process since it 

requires complex mathematic calculation and modification of all conductances in each 

column. Moreover, negative weights require differential implementation or other 

mapping functions involving multiple devices or steps.  

Considering these issues with the conventional online learning approach, we proposed an 

alternative learning algorithm based on Oja’s rule with a winner-take-all (WTA) strategy43 for easy 
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implementation in the hardware for image processing and other tasks. 

Oja’s rule is a modification of Hebbian learning rule and converges to the principal 

component with unit Euclidian norm46. In our approach, the WTA algorithm will choose the 

dictionary element that mostly matches the input training patch by finding the largest value of the 

dot product between the input and the dictionary elements. After identifying the winner neuron, 

the dictionary Φ𝑤 is updated with Oja’s rule, where 𝛽 is the learning rate.  

𝑦 = 𝑋𝑇 Φ𝑤 (3 − 3a) 

ΔΦ𝑤 = 𝛽(𝑋 − 𝑦Φ𝑤)𝑦 (3 − 3b) 

After repeating Equations (3-3a) and (3-3b), the weight matrix will eventually converge to 

the final dictionary with learned features. 

 

Figure 3-7: Device weights (dictionary elements) before (a) and after (b) training  
using WTA and the natural images shown in Figure 3-1.  Each dictionary element is represented by the 

conductance values of the 16 memristors associated with the given neuron. 

 

Figure 3-7 shows the offline training results using the memristor model on a 16×32 crossbar 

array, corresponding to a 2× overcomplete dictionary with 16 inputs and 32 output neurons 

(dictionary elements). Before training, the weights are randomly initialized, as shown in Figure 

(a) (b) 

 
Initial weights 

 
Dictionary after training 
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3-7a. The network is trained with 150k samples. After training is completed, receptive fields 

resembling Gabor filters, represented by the conductances of memristors associated with each 

output neuron, can be clearly observed, as shown in Figure 3-7b. No device variation effect is 

considered in this example. 

We have also analyzed how the memristor network can implement online learning with this 

approach. The largest difference between the online learning case and the offline learning case is 

that in the offline case the receptive fields (dictionary elements) were obtained using an ideal 

device model and variations were only considered when the receptive fields were stored in the 

memristor array; while in the online learning case device variations were carefully considered 

during the learning stage that required large numbers of incremental weight updates.  

Additionally, in the online case the same array that was trained was used for reconstructions 

of test images, thus dictionary storage is no longer needed. Simple single shot programming 

schemes (i.e. without a verify stage to check if the updated weight matches the target weight) were 

also used for the weight updates during the online training case. 

 

Figure 3-8: Device weights before and after online dictionary learning 
A) Initial weights. B) Simulated learned weights considering device variabilities during online learning. 

(A) (B) 
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The model incorporating device variations during weight updates was then used to simulate 

online learning in the memristor crossbar. WTA based learning was first analyzed. The dictionary 

after learning based on WTA is shown in Figure 3-8b. As can be observed from Figure 3-8, the 

online learned dictioanry is very similar to the ideal case in Figure 3-7. 

After learning, the same crossbar was used to process test images using the learned 

dictionary. Image reconstruction results using the online learned dictionary are shown in Figure 

3-9. For comparison, simulation results of reconstructed images using an ideal dictionary without 

device variations are also included (Figure 3-7b). 

 

Figure 3-9: Comparison of Image reconstruction with ideal dictionary and online learned dictionary 
 (a) Reconstructed image with ideal dictionary without device variations. (b) Reconstructed image with 

online learned dictionary and device variations.  

An interesting observation is that better results, closer to the ideal dictionary case, are 

obtained with the online learning process compared with results obtained from the stored, offline-

learned weights, as shown in Table 3-1. This effect can be explained from the fact that the learning 

algorithm is self-adaptive and adjusts to the device variabilities during the training stage. As a 

result, online learning can more effectively handle device variations compared to the offline 

training and weight storage method, where the differences of specific devices was not factored into 

the learned dictionary and can lead to larger errors during image reconstruction, as shown in Table 

3-1. 
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 MSE L0 norm MSE L0 norm MSE L0 norm 

Offline learning 3.579×10-3 11.61 1.615×10-2 9.14 7.235×10-3 5.21 

Online learning 2.779×10-3 10.2 1.385×10-2 8.28 6.184×10-3 4.94 

Ideal dictionary 2.224×10-3 10.68 1.065×10-2 7.88 4.866×10-3 4.83 

Table 3-1: Comparison of the online and offline learning results vs. results obtained from an ideal case 
MSE: mean square error of the reconstructed image. L0 norm: average number of neurons used in the 

reconstruction, which measures the sparsity of the image reconstruction. 

3.3 Other Nonideal Effects of Experimental Constraints 

In section 3.2 we demonstrated that online learning with memristor crossbar array can be 

successfully achieved even with device variations. To correctly train the dictionary weights, we 

usually use very small learning rate 𝛽(~10-5) in Equation (3-3) during simulation to guarantee 

gradual training during thousands of training.   

 
Figure 3-10: Uneven training with winner-take-all in real device experiments 

The training tends to get stuck at certain columns 

However, when implementing this approach in experiments, we found out that training tends 

to be uneven and concentrated at few neurons (columns) in the crossbar. Even after we remove the 

over-trained column, the training will keep stuck at only a few columns (Figure 3-10). To figure 

out the cause of this issue, we revisited our online learning strategy of winner-take-all (WTA).  
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3.3.1 Influence of Realistic Memristor Behaviors 

We first revisit the device model in Equations (2-4), where 𝑤 is the device state variable, 

𝛾, 𝜎 and 𝛼, 𝜆 are the tunneling and Schottky current parameters, and 𝜂1, 𝜂2 describe weight update 

dynamics. 

A main reason that causes the non-uniform training is that in realistic experiments, the 

programing pulse width has to be sufficiently large to initiate device weight changes (which cannot 

be made arbitrarily small), suggesting the actual learning rate  𝛽  in Equation (3-3) will not be very 

small. In fact, the effective ΔΦ𝑤 = 𝛽(𝑋 − 𝑦Φ𝑤)𝑦 , which will be converted to programming 

pulsewidth during the experiments, should be around µs to initiate ion migration. This 

experimental limit is equivalent to set  ΔΦ𝑤 to be at least 10-4, corresponding to a relatively large 

𝛽. 

Moreover, the relatively large 𝛽  will in turn amplify the device variation effects during 

training, especially from the following two factors: 

1. Initial weight state 𝑤 distribution: In realistic memristor devices, most devices have low 

initial state 𝑤 in (2-4a), except some outliers with relatively larger conductance due to device 

variation, which makes those devices outweigh others and dominate during WTA analysis. 

2. Variations during weight update: Another major factor that contributes uneven training is 

device-to-device variation during weight update. Devices with large 𝜂1, 𝜂2 will have their weights 

grow at much faster rates than other devices. 

These three factors can lead to the continued increase of conductances in a few dominant 

columns, resulting in the training stuck at those columns and eventually training failure47,48. In 

practice, this problem is reflected in the networks’ inability to normalize the weights to correctly 

produce the winning neurons, as discussed below. 

3.3.2 Lack of Normalization in Winner-Take-All 

In winner-take-all, we simply use the vector-matrix multiplication result to find the closest 

matching dictionary element, based on the distance between input 𝑋 and dictionary element Φj. 

|𝑋 − Φ𝑗| = √|𝑋|2 − 2𝑋𝑇Φ𝑗 + |Φ𝑗|
2

 (3 − 4) 

As can be seen from Equation (3-4), finding the minimum distance can be substituted with 

locating the maximum 𝑋𝑇Φ𝑗, on the condition that all dictionary elements |Φ𝑗| are normalized.  
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However, in realistic memristor array, normalization of the entire matrix weight is nontrivial, 

since it requires calculation of the norms and update the entire array, which is computational 

expensive and also time consuming. 

Due to the lack of normalization in the array, the dot-product results cannot accurately 

represent the resemblance of the input feature and the dictionary element. As a result, the columns 

that by chance have high conductance values will likely to win, and with the large learning rate 

these neurons will also receive large weight updates, causing the training to be stuck at these 

columns, as shown in Figure 3-11. 

 

Figure 3-11: 50 randomly selected 7×7 dictionary elements out of 98 elements.  
The array is unevenly trained due to the constraints of realistic experimental conditions 

3.4 Epsilon-greedy Strategy 

To solve this uneven training issue, we need to take strategies to improve the uniformity of 

the training process, meanwhile still maintaining the simplicity of the winner-take-all learning rule 

of. 

WTA is a so-called “greedy” algorithm, which always pick the winner of all elements. This 

strategy has a downside since the training can easily get stuck at some dominating elements, and 

end up with uneven training which only concentrated on few columns. To improve the uniformity 

of distribution of the outcome, we chose the epsilon-greedy strategy in this study.  

Epsilon-greedy strategy is essentially a modified greedy strategy, as its name suggested. 𝜖 is 

a probability variable that indicate the proportion of randomness in the greedy approach. During 

the proportion 1- 𝜖 (i.e. the most time of the training), the greedy strategy is applied; and during 

the proportion 𝜖, a random outcome (with uniform probability) is selected.  

This epsilon-greedy strategy applies the “exploration and exploitation” concept in 

reinforcement learning49. It does that by not only utilizing the maximum dot-product 
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(exploitation), but also by exploring all neurons to improve the overall decision by randomly 

training a column (exploration), which guarantees all the devices are trained in some degree. By 

combining both approaches, an improved learning can be achieved. 

We simulated the online dictionary learning using our realistic device model with device 

parameters extracted from actual devices. Training results with epsilon-greedy strategy were 

compared in Figure 3-12, showing similar results with an ideal dictionary learning from the same 

training set, and much improved compared with the WTA results in Figure 3-12. In the example 

given in this paper, a 49×98, 2× over-complete memristor array was initialized with a Gaussian 

distribution of 0.1 mean and 0.13 standard deviation. 𝛽 was chosen so that the pulse widths are in 

several µs. 𝜂1 and 𝜂2  were set with 3% and 1% variations respectively. 𝜖 was set to be 0.1 in 

learning. 

 

Figure 3-12: Comparison of 49 randomly chosen 
 (a) ideal dictionary elements and (b) dictionary elements trained with ϵ-greedy strategy 

3.5 Conclusion 

In this chapter, we discussed the consequences of realistic device nonidealities on online 

dictionary learning.  We investigated the conventional dictionary learning approach via sparse 

coding and stochastic gradient descent, which produced good performance but is not very 

hardware friendly. Instead, we developed a simpler learning approach with Oja’s rule and winner-

take-all. To address the nonuniform training distribution under realistic experimental constraints, 

an epsilon-greedy strategy was proposed. Our simulation results verified the effectiveness of the 

learning algorithm, which can produce desired dictionary training using simple WTA without 

weight normalization. 

 
  

(a) 

 

(b) 
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Chapter 4 Integrated Memristor-CMOS System for Neuromorphic 

Computing Applications 

 

In Chapter 2, we successfully demonstrated a sparse coding hardware system in a memristor 

crossbar architecture. This approach, based on pattern matching and neuron lateral inhibition, is 

an important milestone in the development of large-scale, low power neuromorphic computing 

systems. The use of a crossbar architecture allows matrix operations, including matrix-vector dot-

product operation and matrix transpose operations, to be performed directly and efficiently in the 

analog domain without the need to read each stored weight. Image reconstruction was also 

demonstrated using the memristor system, and online dictionary learning was shown to be feasible 

even in the presence of realistic device variations.  

Although the key matrix operations can be performed efficiently with memristor crossbar 

arrays26,27,42, previous implementations have largely relied on external printed-circuit boards to 

provide the required interface and control circuitry23,26,28, or used discrete parameter analyzers to 

generate and collect signals22,24,27. In the cases where memristor arrays are integrated with 

periphery circuitry, the circuit’s function has been limited to providing access devices (e.g. in the 

form of 1T1R arrays23,25,26,42) or address decoding purposes50,51. To demonstrate the potential of 

memristor-based computing hardware would require the development of fully functional systems, 

where the memristor crossbars are integrated with necessary analog interface circuitry (including 

analog-digital converters (ADCs) and digital-analog converters (DACs)), digital buses, and ideally 

a programmable processor to control the digital and analog components. Integrating all necessary 

functions on-chip will be key to enable practical implementation of memristor-based computing 

systems and allow the prototypes to be scaled to larger systems.   

In this chapter, we discuss our effort in building a complete neuromorphic computing system, 

with memristor crossbar array directly integrated on custom-designed CMOS circuitry that 

performs all necessary periphery, neuronal and control functions. The flexibility of the hardware 

system in turn allows different algorithms to be implemented on the integrated chip through simple 

re-programming. 
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4.1 CMOS Chip Overview 

The integrated memristor/CMOS chip aims to demonstrate all functions, including inference 

and online learning, on chip, with the memristor crossbar performing weight storage and vector-

matrix multiplication functions while the CMOS circuitry performing the necessary periphery 

functions and signal control.   

The CMOS circuitry was designed by collaborators (Justin M. Correll, Dr. Yong Lim, 

Vishishtha Bothra and Chester Liu) from Prof. Michael Flynn and Prof. Zhengya Zhang groups. 

The CMOS circuitry is essentially an upgraded version of the PCB board setup used in Chapter 2. 

The CMOS system are capable of storing and executing C programming independently with the 

on chip OpenRISC core, and can apply voltage and read current at each row and column of the 

crossbar. This setup allows us to perform all functions of the network on chip, through the hybrid 

integrated memristor crossbar and the underlying CMOS circuitry.  

4.1.1 System Architecture 

The CMOS circuitry mainly consists of three sections (Figure 4-1):  

1. 54 + 108 DACs and ADCs, in both row and column directions, which facilitate write and 

read operations in both forward and backward directions. 

2. On-chip OpenRISC core, which is based on the version used in our previous PCB 

measurement setup. 

3. Memory blocks, which include a 32k SRAM main memory for instructions and data, and 

two 16k ping-pong memory for large data storage. 

All three major blocks are connected to a shared system bus, which can transmit data 

through an on-chip UART interface to external equipment such as a computer.  
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Figure 4-1: Layout of the CMOS chip 

Blocks showing 54+108 DACs and ADCs, 64k SRAM and an OpenRISC core 

 
 

 
Figure 4-2: Chip System Architecture  

The integrated memristor/CMOS chip is comprised of the digital controller and bus shown in green, the 
mixed-signal interface shown in red, and the memristor crossbar shown in blue.  

Image credit Justin M. Correll 
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The CMOS circuitry is schematically shown in Figure 4-2 and Figure 4-3. The on-chip 

processor configures the mixed-signal interface through a set of global configuration registers and 

performs write and read operations through digital to analog converters (DAC) and analog to 

digital converters (ADC).  

Since the processor is mainly used for register manipulations, the reduced instruction set 

Alternate Lightweight OpenRISC processor (AltOR32) is used in the design to minimize area and 

power consumption. The SRAM is divided into 3 parts. The processor instruction and data memory 

are mapped to 32k of SRAM and the remaining 32k are multiplexed between two “ping-pong” 

memory banks (16k each) for training data buffering. The ping-pong memory banks are dual port 

SRAM and can be loaded externally during processing.   

The custom mixed-signal interface is shown in Figure 4-3 and includes global timing 

generation and configuration registers, and 162 configurable channels – all can write/read to/from 

the Wishbone bus (the shared digital bus in OpenRISC architecture) and mapped to the OpenRISC 

memory space. Each channel is set to either have an ADC, or 1 of 3 DACs connected to a row or 

column of the crossbar.  The ADC or DAC connection is set in the mode register and the type of 

DAC connections is set in the DAC register along with the 6b DAC pulse input. The timing 

generator handles both the ADC start signal and creates the duty-cycled pulse-train for the DACs. 

During operation, the processor is first used to configure the mixed-signal interface by 

setting the configuration registers. The processor is then paused, and the control is handed off to 

the timing generator of the mixed-signal interface. The timing generator operates for 64 cycles 

during which VMM operations and memristor weight updates are performed. The control then 

goes back to the processor.  
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Figure 4-3: Mixed Signal Interface design  

The mixed-signal interface is comprised of global configuration registers and timing generation shown 
in brown, and 162 configurable channels (shown in green) to provide input and measure output to and 

from each row and column of the memristor crossbar.   
Image credit Justin M. Correll 

4.1.2 Mixed Signal Interface for Crossbar Array 

The mixed signal interface is clocked at a slower speed that the OpenRISC core clock.  

During the Learning and Inference modes, the OpenRISC controller asserts a GLOBAL_START 

signal that starts the mixed signal interface.  During this time, the OpenRISC processor is delayed 

using NOP commands, and the clocking circuit in the mixed signal interface generates the timing 

to control the DACs, ADCs, and crossbar connection configuration.    

There are two important registers in the mixed signal interface that provide most of the 

critical functions on the chip: configuration register and DAC register. 

A global configuration register on the chip controls the write/read mode of all the rows and 

columns: 

MS_GBL_CFG[2] MS_GBL_CFG[1] MS_GBL_CFG[0] 

GBL_START ROW_MODE COL_MODE 

Table 4-1: Configuration of the global configuration register  
 

For example, at forward pass mode, all rows are configured as DACs and all columns are 

configured as ADCs, so the ROW_MODE is 1 and COL_MODE is 0. At write mode, all rows and 
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columns are configured as DACs, so the ROW_MODE and COL_MODE are both 1.  

DAC register is mainly used to configure the pulse generator (for write or read pulses) with 

tunable pulse widths. Each pulse generator has the ability to generate a 63-length pulse, with pulse 

unit width inversely proportional to the clock speed. 

 
Figure 4-4: Global pulse generator schematic 

 

DAC register is a 9-bit register that holds the voltage selection data and the read/write pulse 

durations. The lower 6 bits (DAC_REG [5-0]) specifies the pulse durations and the higher 3 bits 

(DAC_REG [8-6]) selects which voltage reference the DAC connects, as shown in Table 4-2. The 

register is loaded by the OpenRISC controller via the Wishbone bus.  The DAC registers are loaded 

serially from their associated (addressed) memory locations. 

DAC_REG 
[8] 

DAC_REG 
[7] 

DAC_REG 
[6] 

DAC_REG [5-0] 

VWR_H VWR_L VR PULSE_DUR 

Table 4-2: Configuration of the DAC register 
  

When all the 9 bits of the DAC register are set to 0, the corresponding row/col is configured 

as an ADC (with ROW_MODE or COL_MODE set to 0). In this configuration, when a 

GLOBAL_START signal initiates, the pulse generator unit automatically enables the ADC and 

perform charge accumulation, controlled by the designed internal logic on the chip.   
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4.1.3 Four Mode Configurations on the Integrated Chip 

The COMS circuit design is flexible and allows the different blocks to be configured into 

different modes to facilitate mapping of a complete computing model. Since there are 2 write 

DACs, 1 read DAC and a 13-bit ADC at each row or column, the chip can be configured in four 

major modes: forward pass mode, backward pass mode, forward write mode (write) and backward 

write mode (erase). 

When performing VMM, the chip is configured at read mode (forward or backward depends 

on the eqaution of the multiplication). During the VMM operation, we apply a discrete-time pulse-

train input and measure the accumulated charge from each column (row). The column (row) ADCs 

present a 1.2V virtual ground while the row (column) DACs apply 6-bit programmable train of 

fixed-amplitude 0.6V “read” pulses (1.8V-1.2V). The integrating ADCs measure the collected 

charge over the input period. 

When performing weight update, the chip is configured at write/erase mode (depending on 

the need of increase/decrease the weight). During the write operation, we apply discrete-time 

pulse-train at both rows and columns. When writing (erasing), the row (column) DACs apply 6-

bit programmable train of fixed-amplitude “write” pulses (1.9V-1V) and the column (row) DACs 

apply 6-bit programmable train of fixed-amplitude “erase” pulses (0.1V-1V) with the same 

duration, which effectively generate 1.8V (-1.8V) voltage drop across the device. The idle level of 

both “write” and “erase” are chosen at 1V, which is the halfway of the voltage drop to provide 

write protection for unselected devices in the array. 

The configuration of the DAC registers at four different modes and the corresponding pulse 

signals are shown in the tables in Figure 4-5 to Figure 4-8. The four different colors of the DAC 

registers (red, gray, green and yellow) reprent the corresponding 3 DACs and 1 ADC the register 

is used to configure. 
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Figure 4-5: Forward pass mode on the integrated board 

The forward pass mode is used to perform VMM to update the output neurons. In this configuration, all 
rows are connected to the ‘Read’ DACs, which pulses between 1.2V(VVG) -1.8V(Vread) with the input data 
represented by different pulse widths, and all columns are connected to 1.2V ADC virtual ground (VVG). 

The color table lists the DAC register configuration used to control the “Read” DACs and ADCs. 
 

 
Figure 4-6: Backward pass mode on the integrated board 

 The backward pass mode is used for calculating the vector-transposed matrix multiplication. In this 
configuration, all columns are connected to the ‘Read’ DACs, which pulses between 1.2V(VVG) -1.8V(Vread) 
with the input data represented by different pulse widths, and all rows are connected to 1.2V ADC virtual 

ground (VVG). The color table lists the DAC register configuration used to control the “Read” DACs and 
ADCs. 
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Figure 4-7: Write mode on the integrated board 

The write mode is used for programming the memristor devices to higher conductance states. In this 
configuration, all rows are connected to the “Write High” DACs (with range 1V(VHalf)-1.9V(VHigh)) and all 
columns are connected to the “Write Low” DACs (with range 1V(VHalf)-0.1V(VLow)). The voltage difference 

1.8V of the two DACs cross the selected device is used to program the device. The color table lists the 
DAC register configuration used to control the “Write High” DACs and “Write Low” DACs. 

 

 
Figure 4-8: Erase mode on the integrated board 

The erase mode is used for programming the memristor devices to lower conductance states. In this 
configuration, all columns are connected to the “Write High” DACs (with range 1V(VHalf)-1.9V(VHigh)) and 
all rows are connected to the “Write Low” DACs (with range 1V(VHalf)-0.1V(VLow)). The voltage difference 
-1.8V of the two DACs cross the selected device is used to erase the device. The color table lists the DAC 

register configuration used to control the “Write High” DACs and “Write Low” DACs. 
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4.2 Test Results from the CMOS Circuitry 

After the tape-out of the multi-functional CMOS circuitry, we ran serval tests to verify the 

basic functions of the circuits. The tests are done in two steps: 

1. First, we use a breadboard and some known value resistors to test the basic read functions 

of the circuitry, to check the linearity and performance of the on-chip ADCs. We also 

probe the voltage waveforms at the terminals that will be connected to the memristors 

with an oscilloscope, to verify the operations of read and write mode. 

2. After that, an extension board is designed to lead out all the memristor pad signals to a 

chip carrier, which is compatible with the previous 32×32 WOx memristor array. More 

high-level complex functions like array readout and pattern writing is tested in this 

approach.   

4.2.1 Verifications of Basic Functions 

We first tested the ADC functions by leading the signals from the PCB to a 10k resistor on 

the breadboard with jumper wires. By loading a testing C program onto the chip, we can plot the 

ADC number (corresponding to the charge collected passing through the resistor) when varying 

the applied pulse width from 0 to 63, and obtained a perfect linear curve as shown in Figure 4-9, 

which suggests the ADC has excellent linearity vs charge.  
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Figure 4-9: Forward and backward read test with a 10k resistor 
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We also tested the configuration of the forward pass and backward pass modes. The same 

10k resistor is read twice in both forward and backward directions, and the two charge-time curves 

are overlapped in Figure 4-9. As can be observed from the plot, both forward and backward 

direction ADCs function correctly and generate almost identical results.  

To verify the write operations, since a fixed value resistor cannot demonstrate the 

programming effect, we use the oscilloscope to monitor the waveform at two terminals of the 

resistor.  

 

Figure 4-10: Waveform of two set of write-read pulses pairs. 
Both write and read pulses have the maximum 63 pulse width. 

With the oscilloscope probe on both terminals of the test resistor, we verify the function of 

a 63 step-long write pulse followed by a 63 step-long read pulse. While the system is set at the 

forward read mode, the yellow waveform probes the selected row and the green waveform probes 

the selected column. As shown in Figure 4-10, at the write pulses, the row voltage goes up to Vhigh 

(around 1.8V) and the column voltage falls down to around Vlow, (around 0.2V) which creates a 

voltage drop of Vhigh - Vlow (around 1.6V) across the device under test (DUT). Note that the actual 

Vhigh and Vlow used in the memristor experiment is 1.9V and 0.1V, to create the programming 

voltage required by the devices.  
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Figure 4-11: Zoomed-in waveform of the write pulses 
Both write and read pulses have the maximum 63 pulse width 

Figure 4-11 shows a zoomed-in waveform of the 63-step long writing pulses.  As can be 

observed from the waveform, instead of directly modulating the pulse width, we use the number 

of pulses to represent the input amplitude (effectively modulating the pulse width in discrete time 

domain) to eliminate errors due to pulse rise and fall time. 

4.2.2 Results with Extension Board and Stand-alone Memristor Array 

Although we can verify some basic functions by observing the waveform output, a better 

approach is to connect the circuit output to real memristor devices and verify the read/write 

operations. An ideal approach is direct integration of the memristor onto the CMOS circuit, which 

will be discussed in section 4.3.  

In particular, since the direct integration of memrsitor arrays on the CMOS chip is a 

challenging process, to separate potential issues from the fabrication process or the CMOS design 

it will be very useful to perform some preliminary test with a stand-alone memristor array which 

we already know functions properly.   

Based on this idea, we designed an extension board which can interface a standalone 

memristor crossbar array with the CMOS chip (Figure 4-12). We lead out all output control signals 

generated by the CMOS chip and feed them to the extension board, which serves as a routing board 
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to send the control voltages to the memristor array on the chip carrier. This approach is compatible 

with the previous testing setup discussed in Chapter 2 and we can reuse our 32×32 memristor 

arrays.   

 

 

Figure 4-12: Main testing board (blue) and extension board (green).  

With the extension board plugged in, we can verify the programming and erasing function 

with a previous working memristor array. We applied 200 writing and erasing pulse to a single 

device on the corner of a stand-alone memristor array. Figure 4-13 shows successful gradual 

conductance increase and decrease obtained through signals generated and collected from the 

CMOS circuitry using this setup.   
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Figure 4-13: Pulse program and ease curve of a single memristor device on a stand-alone chip. 

Moreover, since the extension board lead out 32 row and 32 column signals from the CMOS 

chip and connected to the socket on the extension board, we are able to verify array operations 

with the extension board for the 32×32 array. We verified fundamental array operations such as 

pattern programming and array read-out, which enabled us to write grayscale images into the array, 

with a couple of examples shown in Figure 4-14. 

 
Figure 4-14: Patterns written with extension board. 

A 4×4 checkerboard pattern and an “M” pattern written and read out from the memristor array using 
the CMOS chip.   
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Other than simple binary patterns, with the ability of 6-bit pulse modulation that can produce 

pulse width from 0 to 63, we can write more complex gray-scale image correctly, using a write-

verify approach. Figure 4-15 shows an example of a 40×40 grayscale Mona Lisa image written in 

the array. The whole image is divided into 20×20 sections and programmed sequentially in the 

same array. After all four sections are stored, the complete image is stitched together.  

 

Figure 4-15: A 40×40 grayscale Mona Lisa pattern programed onto the memristor array. 
The original 40×40 is dissected into four sections and programmed onto the same subarray. The 

previous pattern is erased each time before wiring the next section.  

4.3 Integrated Memristor-CMOS Chip 

Our goal of this project is to directly fabricate the memristors on top of the CMOS circuitry, 

which allows tight integration of the VMM operations through the memristors with the neuron and 

control circuitry in the CMOS layer. With such a fully integrated chip, we aim to demonstrate 

multiple functions. 

A 54×108 WOx-based memristor crossbar was successfully fabricated on top of the CMOS 

circuits, performed by my collaborator Seung Hwan Lee. Figure 4-16 and Figure 4-17 are the top-

view images of the chip, showing the memristor array integrated on top of the chip surface, at 

different zoom-levels. Each row and column of the crossbar array is connected to a specific landing 

pad left open during the CMOS fabrication process, and then connected to the interface circuitry 

through internal CMOS wiring. 
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Figure 4-16: Microscopic image of the integrated chip.  
Some testing structure were made for testing.  

 

Figure 4-17: Zoomed-in microscopic image of the integrated chip.  
Inset: SEM image of the crossbar array.  

The memristor crossbar array used in this work is directly fabricated on top of the CMOS 

circuits. First, the bottom electrode (BE) patterns with 500 nm width are defined by e-beam 

lithography, the 80nm think Au BEs are then deposited (with Ni/Cr adhesion layer underneath) by 
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e-beam evaporation and lift-off processes. Next, 300 nm of SiO2 is deposited by plasma-enhanced 

chemical vapor deposition (PECVD), followed by RIE etch back to form a spacer structure along 

the sidewalls of the BEs. The spacer structure allows better step coverage for the WOx switching 

layer and the top electrodes (TEs) at the crosspoints, and also restricts the active device regions to 

the flat exposed top surface of the BEs, as shown in Figure 4-18. To prevent leakage through the 

switching layer among adjacent devices, the switching layer is only deposited at the crosspoint 

regions through patterns defined by e-beam lithography. The switching layer is formed by first 

depositing 20nm think W through DC sputtering and lift-off processes in the e-beam patterned 

regions, then through rapid thermal annealing of the patterned W islands with oxygen gas at 400°C 

for 60s to form the WOx switching material. Afterwards, the TEs (Pd (40 nm)/Au (90 nm)) with 

500nm width are patterned and deposited by e-beam lithography, e-beam evaporation, and liftoff 

processes. Finally, metallization processes are performed by photolithography (GCA AS200 

AutoStep) to connect the crossbar electrodes with the CMOS landing pads that are left open during 

the CMOS circuit fabrication process. An in-situ etch process is performed to remove the native 

aluminum oxide on the CMOS landing pads, followed by deposition of 800nm thick Al with DC 

sputtering and lift-off processes to ensure step coverage of the deeply recessed landing pads. 

 

Figure 4-18: A cross-section schematic of the integrated chip 
Showing connections of the memristor array with the CMOS circuitry through extension lines and 

internal CMOS wiring. Inset: cross-section of the WOx device 

The integrated memristor/CMOS chip is wire-bonded onto a pin-grid-array (PGA) package 

(Figure 4-19) and mounted on a PCB (Figure 4-20). The PCB provides essential power signals and 
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the global system clock to the integrated chip. No active circuitry (DACs, ADCs, matrix switch 

etc.) are implemented on the PCB, as these functions are all provided on-chip directly. A UART-

to-serial (UART: universal asynchronous receiver-transmitter) board converts the IO data from the 

chip into serial data and communicate a desktop computer through a USB cable. 

 

Figure 4-19: Integrated chip after wire bonding and packaging. 
The chip is wire-bonded on a pin-grid-array (PGA) package, which can be plugged into a socket on the 

PCB board.  

 

Figure 4-20: Testing set-up used to power and test the integrated memristor/CMOS chip. 
The left green board is used to filter the power signal for ADC input. The wire bonded chip is plugged 

into a socket on the blue PCB board on the right. The top small board is a UART-to-serial board. 
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The integrated WOx devices show similar I-V characteristics as standalone WOx arrays such 

as those shown in Figure 1-6. It can demonstrate typical potentiation and depression curves with 

consecutive programming and erasing pulses, such as those in Figure 4-21 for four different 

devices from the integrated memristor array. 
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Figure 4-21: Programming and erasing memristors on chip  

Weight update curves from four memristor devices measured from the crossbar array in the integrated 
chip. The devices were programmed by 50 write pulse at 1.8V and 50 erase pulses at -1.8V, with 82µs 

pulse width, using the on-chip processor and the integrated DAC/ADC circuitry.  

4.4 Single Layer Perceptron for Greek Letters Classification 

To verify the operation of the integrated memristor/CMOS chip, we first implemented a 

feed-forward single-layer perceptron (SLP) network. 5×5 binary patterns are used in the SLP 

training and testing.  

The SLP has 26 inputs (corresponding to the 25 pixels in the image and a bias term) and 5 

outputs, with the input and output neurons fully connected with 26×5 = 130 synaptic weights. The 

weighted sums are then calculated with a nonlinear activation function --- the classical “Softmax” 

function (will be discussed later). The final output values of the neurons are in the range 0~1, 
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where the neuron with the highest output is identified as the winner and used to classify the 

corresponding class, as schematically shown in Figure 4-22. 

 

Figure 4-22: Implementation of the SLP using a 26×10 memristor array through the integrated chip. 
a. Schematic of the single-layer perceptron for classification of 5×5 images. b. The input data (e.g. Greek 
Letter ‘Ω’) are converted to voltage pulses of Vread or 0 through circuitry, depending on the pixel value. 

 

In this experiment, the original binary input patterns are converted into input voltage pulses 

through the integrated processor and DAC circuitry and are fed to the rows of the memristor array. 

Specifically, when a white pixel is present, a pulse is applied to the corresponding row; while black 

pixels correspond to no pulse. The bias term is fixed at a constant value of 1 (treated as a white 

pixel) and is applied as an extra input. All the input pulses have the same duration and amplitude 

in this test, as illustrated in Figure 4-22. 

Each synaptic weight 𝑤𝑖𝑗 is implemented with two memristors representing a positive and a 

negative weight, 𝐺𝑖𝑗
+ and 𝐺𝑖𝑗

−, respectively, using the positive memristor conductance values. The 

charge collected at an output neuron j is determined as: 

𝑄𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖

𝑖

= 𝑉 ∑ 𝐺𝑖𝑗𝑡𝑖

𝑖

= 𝑉 ∑(𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

−)𝑡𝑖

𝑖

= 𝑄𝑗
+ − 𝑄𝑗

− (4 − 1) 

Where 𝑥𝑖 is the input at row i and represented by a voltage pulse with amplitude V and width 

𝑡𝑖. The charges are measured at the output columns and digitized by the ADCs, then converted to 

the neuron output 𝑦𝑗 through the Softmax function: 
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𝑦𝑗(𝑄𝑗) =
exp(𝛽𝑄𝑗)

∑ exp(𝛽𝑄𝑘)𝑘
 (4 − 2) 

where 𝛽 is a scaling number of the ADC output and 𝑘 represents the output neuron index 

The integrated chip allows us to perform online learning. Specifically, the synaptic weights 

are updated during the training state using the batch gradient descent rule: 

Δ𝑤𝑖𝑗 = 𝜂 ∑(𝑡𝑗
(𝑛)

− 𝑦𝑗
(𝑛)

)𝑥(𝑛)

𝑁

𝑛=1

 (4 − 3) 

where 𝑥(𝑛) is the nth training sample of the input dataset, 𝑦(𝑛) is the network output and 𝑡(𝑛) 

is the corresponding label, 𝜂 is the learning rate. The update value Δ𝑤𝑖𝑗 for the ith element in the 

jth class is then implemented in the memristors by applying programming pulses through the write 

DACs with a pulse width proportional to the desired weight change (quantized within the range of 

0~63 timesteps, i.e. corresponding to 6-bit precision).  

The SLP is mapped on the integrated chip using a 26×10 subarray.  We trained and tested 

the SLP with noisy 5×5 Greek Letter patterns, for 5 distinct classes: ‘Ω’, ‘Μ’, ‘Π’, ‘Σ’, ‘Φ’. For 

each Greek letter, we flip one of the 25 pixels of the original image and generate 25 noisy images. 

Together with the original image they form a set of 26 images for each letter. We randomly select 

16 images from the set for each class for training and use the other 10 images for testing. An 

example of the training set and testing set is shown in Figure 4-23 and Figure 4-24. This approach 

guarantees that the training set and the testing set do not overlap, and therefore improves the 

robustness of our testing results, since the noisy test images are not used to train the network. 

 
Figure 4-23: Noisy training data set for the SLP.  

The training data set for each class includes the original image and 15 out of the 25 noisy images 
created by flipping 1 pixel in the original image. 
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Figure 4-24: Noisy testing data set for the SLP.  

The testing data set includes the 10 noisy images not in the training set, created by flipping 1 pixel in 
the original image for each class. 

Training and testing results from the experimentally implemented SLP are shown in Figure 

4-25 and Figure 4-26. After 5 online training epochs the SLP can already achieve 100% 

classification accuracy for both the training and testing sets. The average activation of the correct 

neuron during training is also clearly separated from the others, and the difference in neuron 

outputs between the winning neuron and the other neurons improves during training, as shown in 

Figure 4-25, verifying online learning has been reliably implemented in the experimental setup. 

Compared with earlier SLP implementations22 that used the Manhattan rule and required on 

average 23 epochs to achieve perfect classification for a similar database, batch gradient descent 

used here not only considers the direction of the weight update (which is the case with the 

Manhattan rule), but also the value of weight update, so that much faster training convergence can 

be obtained, as shown in Figure 4-26.  
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Figure 4-25: Evolution of the output neuron signals during training, averaged over all training patterns 
for a specific class 
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Figure 4-26: Misclassification of the training and testing data set vs training epochs.  
The network can achieve 100% classification for both the training set and the testing set after 5 training 

epochs. 

4.5 Sparse Coding Implementation 

The same hardware system was then used to implement a sparse coding algorithm. Following 

our previous work implemented at the board level28, we mapped the Locally Competitive 

Algorithm (LCA)40 on our integrated memristor/CMOS chip.  

With this approach, the LCA algorithm can be implemented in an iterative process through 

two vector-matrix multiplication operations; in forward direction to obtain the neuron activations, 

and in backward direction to obtain the reconstructed input. The residue term is then obtained by 

removing the reconstructed input from the original input, and is then fed to the network, and the 

process is repeated until the network stabilizes. Figure 4-27 illustrates the iterative forward and 

backward processes employed in the LCA implementation. 
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Figure 4-27: Schematic of the LCA algorithm using integrated chip.  
In each iteration a forward pass is performed to update the membrane potential u of the output 

neurons based on the inputs, followed by a backward pass to update the residual r based on the neuron 
activities a. The residual r term forms the input for the next iteration. 

 

The bi-directional operation of the memristor array in the integrated memristor/CMOS chip 

allowed us to experimentally implement the sparse coding algorithm on chip. Similar to the SLP 

case, we use the crossbar array to perform VMM operations, here in both forward and backward 

directions. Since the chip offers full flexibility to implement different algorithms by re-

programming the integrated processor, the LCA algorithm was implemented in the same chip used 

in the SLP study, through simple software changes.  

4×4 inputs were used to test the experimental implementation of the LCA algorithm. By 

using linear combinations of horizontal and vertical bar patterns, the input dimension is reduced 

to 7. To satisfy the over-completeness requirement of the LCA algorithm, a dictionary containing 

14 features of horizontal and vertical bar patterns are used, as shown in Figure 4-28a. This setup 

produces a 2× over-complete dictionary40 that enables the network to find a sparse, optimal 

solution out of several possible solutions. 
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Figure 4-28: Experimental demonstration of sparse coding using the integrated memristor chip 
 a) Dictionary elements based on horizontal and vertical bars. b) The original test image. c) The 
experimentally reconstructed image based on the neuron activities from the memristor chip. d) 

Experimentally obtained neuron membrane potentials as a function of iteration number during LCA 

analysis. The red horizontal line marks the threshold parameter . 

The LCA algorithm was mapped to a 16×14 subarray in the memristor/CMOS chip, using 

the integrated corresponding interface circuitry and the processor that provide the neuron 

functions. An example of the LCA network operation is shown in Figure 4-28 (b-d). The 

experimentally implemented network correctly reconstructs the input image while minimizing the 

number of activated neurons. For example, it identifies the optimized solution with two neurons 6 

and 13, instead of using three neurons 2,4 and 6. Examining the dynamics of the network operation 

also verified the successful LCA implementation. As shown in Figure 4-28d, all neurons are 

charging up in the first 4 iterations. At the 5th iteration, neuron 13 first crosses the threshold, since 

it consists of two horizontal bars and results in a larger output value in the membrane potential 

update. As a result, the lateral inhibition effect in the system suppresses the membrane potentials 

of other neurons (2 and 4) sharing part of the patterns with neuron 13, even though they also 

represent features of the input. Meanwhile neuron 6 which represents the vertical bar feature 

continues to charge up. At iteration 11, neuron 6’s membrane potential crosses the threshold and 

all other neurons’ membrane potentials are suppressed below the threshold, leading to the finding 

of the optimal solution. The neurons’ membrane potentials continue to evolve but those of neuron 

6 and 13 remain above the threshold and those of other neurons continue to decrease due to the 

inhibition term and the leaky term in the membrane potential equation, and the solution from the 

network was read out after 30 iterations.  
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To verify the system’s performance for other input patterns, an exhaustive test of all 24 

possible patterns consisting of two horizontal bars and 1 vertical bar was performed using the on-

chip memristor network, resulting in 100% success rate (Figure 4-29) measured by the network’s 

ability to correctly identify the sparse solutions. 

 

Figure 4-29: Additional examples of input images and reconstructed images.  

The same threshold  = 18 is used in all images.   

4.6 Principal Component Analysis with Bilayer Networks 

Finally, we demonstrate a bilayer neural network using two subarrays in the same memristor 

crossbar, implementing unsupervised and supervised online learning to achieve feature extraction 

and classification functions, respectively. The bilayer network is used to analyze and classify data 

obtained from breast cancer screening based on principal component analysis (PCA). Specifically, 

the first layer of the system is a 9×2 network that performs PCA of the original data, which reduces 

the 9-dimensional raw input data to a 2-dimensional space based on the learned principal 

components (PCs). The second layer is a 3×1 SLP layer (with differential weights and a bias term) 

which performs classification using the reduced data in the 2-dimensional space for the two classes 

(benign or malignant). The schematic and crossbar implementation of the bilayer network is shown 

in Figure 4-30.  
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Figure 4-30: Implementation of the bilayer network on the integrated chip  
a) Schematic of the bilayer neural network for PCA analysis and classification. b) The bilayer network is 

mapped onto the integrated memristor chip, using a 9×2 subarray for the PCA layer and a 3×2 subarray 
for the classification layer 

PCA reduces data by projecting them onto lower dimensions along principal components, 

with the goal of finding the best summary of the data using a limited number of PCs52. The 

conventional approach to PCA is to solve the eigenvectors of the covariance matrix of the input 

data, which can be computationally expensive in hardware. A more hardware-friendly approach is 

to find the PCs through unsupervised, online learning. 

Specifically, following our previous study30, Sanger’s rule, also known as the generalized 

Hebbian algorithm, is implemented in the integrated chip to obtain the PCs. The desired weight 

change for the jth
 principal component is determined by:  

𝛿𝑔𝑖𝑗 = 𝜂𝑦𝑗 (𝑥𝑖 − ∑ 𝑔𝑖𝑗𝑦𝑗

𝑗

𝑘=1

) (4 − 4) 

4.6.1 Mapping memristor conductance to synaptic weight in PCA 

In the experiment, the weights of the 1st and 2nd PCs, 𝑔𝑖𝑗, are mapped onto the memristor 

conductances through a linear transformation with range ([-1 1]), by using the relationship: 

𝑔 =
𝐴𝐷𝐶 − 𝑎

𝑏
 (4 − 5) 

where ADC is the unconverted ADC output from the circuit, which is converted to the 

current/conductance value through factors a (ADC shift factor, which is about 1900) and 𝑏 (ADC 

scaling factor, which is about 1500) in Equation (4-5). The conversion based on Equation (4-5) 
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maps the maximum average current to weight 1 and minimum average current to weight -1. 

For each input data, the dot-product of the input data and the jth feature, 𝑦𝑗  is directly 

obtained from the ADC output of the jth column of the 9×2 weight matrix. The column’s weights 

are then updated from the Sanger’s rule in Equation (4-4)  

During training, the desired weight updates are linearly converted into write pulse widths 

and applied to the memristor devices, without using nonlinear compensation schemes such as the 

one discussed. Device nonidealities including the nonlinear weight updates (as shown in Figure 

4-21) caused the experimentally obtained training results to differ from the software results. 

4.6.2 Training the 1st Layer for Principal Component Analysis 

The network is trained online, using a subset of the original database consisting of 100 data 

points. During the training process, the 9-dimensional breast cancer data is converted into input 

voltage pulses with pulse widths proportional to the data values, within the range of 0~63 time 

units. The output charge collected at column j then corresponds to the dot-product of the input 

vector and the conductance vector stored in column j, projecting data from the original 9-

dimensional space to a 2-dimensional output space (when only two principal components are 

used). During training, the weights are then updated following Equation (4-4), using programming 

voltage pulses generated through the write DACs with pulse widths proportional to 𝛿𝑔𝑖𝑗.  

Initially, the weights of the 1st and 2nd components are randomized in the memristor array 

(Figure 4-31a). Projection of the input along these vectors leads to severe overlapping of the benign 

and malignant cases in the 2-dimensional space, as shown in Figure 4-31b and Figure 4-31c. After 

30 training epochs (an epoch is defined as a training cycle through the 100 training data), the PCs 

are correctly learned (Figure 4-32a), and the 2-dimensional projected data can be clearly separated 

into two clusters, as shown in Figure 4-32b and Figure 4-32c. Note the ground truth (benign or 

malignant) is not used in the PCA training or clustering process. They are included in the plots 

(represented as blue and red colors) only to highlight the effectiveness of the clustering before and 

after learning the PCs.  
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Figure 4-31: Weight and data distribution before PCA.  
a) Initial weights for the two PCs in the network. Before training, linear separation is not possible in the 

projected 2-dimenstional space, for both training (b) and testing data (c). 

 

Figure 4-32: Weight and data distribution after PCA. 
a) Weights for the two PCs after unsupervised, online training obtained from the memristor network, 

using Sanger’s learning rule for 30 cycles of training.  Clear separation can be observed in the 2-
dimenstional space for both training (b) and testing (c) data after projection along the trained PCs.  

The PCA layer separate the original data into clusters, but does not classify them. To achieve 

classification, we implemented a second layer, a SLP, in the same hardware system. The on-chip 

DACs offer 6-bit resolution and can generate pulses of range 0~63. However, after the PCA 

process, the 2-D projected data have analog and negative values. To use the PCA output data as 

input to the second, perceptron layer, we need to rescale the data to the range of 0~63 and quantize 

them into pulse numbers. 

4.6.3 Scaling of the PCA layer output as perceptron layer input 

As can be observed from Figure 4-32, most of the PCA output data are located in the range 

of 3~25 in the x axis and -15~3 in the y axis. To quantize and scale the data to the range of 0~63 

for the perceptron layer, the following formulas are used: 
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𝑥̂ = 𝑟𝑜𝑢𝑛𝑑[2𝑥] (4 − 6𝑎) 

𝑦̂ = 𝑟𝑜𝑢𝑛𝑑[−3(𝑦 − 3)] (4 − 6𝑏)

Notice that some outlier data points would produce values larger than 63. These few points were 

mapped to 0 pulses so that all other points can make use of as much dynamic range of 0~63 as 

possible.  

After quantization and scaling, the data are classified using the perception layer, and the 

results are shown in Figure 4-33. The labels are directly obtained from the neuron outputs in the 

perceptron layer, without reading the weight values. Finally, data were replotted in the original 

PCA output space, using the obtained corresponding label for each data point, as shown in Figure 

4-34. 
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Figure 4-33: Classification of the quantized data.  

Outputs from the PCA layer were quantized and scaled to the range of 0~63, and used as input to the 
second perceptron layer. The quantized data were then classified by the perception layer, with blue 

points representing the network classified benign data and red points representing the network classified 
malignant data. 
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Figure 4-34: Replotted classification results in the original space.  

The classified results in Figure 14 were then replotted in the original output space from the PCA layer, 
with blue points representing the network classified benign data and red points representing the 

network classified malignant data. 

 

4.6.4 Training of the 2nd perceptron layer for classification 

The SLP processes outputs from the PCA layer and generates a label (benign or malignant). 

Since there are only two classes to distinguish, the SLP is trained online using logistic regression. 

A 3×2 subarray is used in the second layer, to account for the 2 inputs, the bias term, and the 

differential weights. 

The training rule based on logistic regression using batch gradient descent has a similar 

format as the Softmax regression used in Equation (4-7): 

Δ𝑤𝑖 =  𝜂 ∑(𝑡(𝑛) − 𝑦(𝑛))𝑥𝑖
(𝑛)

𝑁

𝑛=1

 (4 − 7) 

where 𝜂 is the learning rate, 𝑦(𝑛), 𝑡(𝑛), 𝑥(𝑛) are the neuron outputs, ground truth label and 

input data for the nth input sample.    

After learning the PCs in the PCA layer, the original 9-dimensional data are fed through the 

PCA layer, and the clustered 2-dimensional data are used as inputs for the SLP layer. The same 

100 training data used for the PCA layer training are used for the SLP layer training (Figure 4-35), 

in a supervised fashion using the ground truth (the label associated with the original data). Training 

is completed after 30 epochs. 
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Figure 4-35: Evolution of the number of misclassifications during the online training process  

 

Afterwards, the 500 test data not included in the training set are applied to the network, 

passing first through the PCA layer then as 2-dimentional data into the 2nd SLP layer. After online 

training of the PCA and the SLP layers, the experimentally implemented 2-layer network can 

achieve 94% and 94.6% classification accuracy during training and testing (Figure 4-36). The 

values are slightly lower than the ones obtained from software implementation (95% during 

training and 96.8% during testing, Figure 4-37), due to the nonideality in the memristor weight 

update that results in a decision boundary that differs from that obtained from software (which 

assumes ideal linear weight updates) after the online training process. We expect future device 

optimizations that can improve device weight update linearity25,53 will further improve the network 

performance and enable large scale practical hardware implementations.   
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Figure 4-36: Classification results experimentally obtained from the memristor chip.  
The blue and red colors represent the predicted benign and malignant data, respectively. The incorrectly 

classified results are marked as hollow circles. Classification rates of 94% and 94.6% are obtained for the 
training (a) and testing (b) data, respectively 

 

Figure 4-37: Classification results of the bilayer network implemented in software.  
The blue and red colors represent the predicted benign and malignant data, respectively. The incorrectly 
classified results are marked as hollow circle. Classification rates of 95% and 96.8% are obtained for the 

training (a) and testing (b) data in software, respectively.  
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4.7 Power Analysis and Estimation 

The power consumption of the integrated memristor/CMOS system consists of three parts: 

the digital OpenRISC core, the mixed signal interface, and the power consumed by the passive 

crossbar array. 

Both the digital processor power and mixed signal interface power are directly measured 

experimentally, by measuring the root mean square (RMS) current with a Fluke meter while 

running the chip, with the help of Justin M. Correll from Prof. Michael P. Flynn’s group. At the 

maximum frequency of 148MHz, the digital power reads 235.3mW and the total analog power 

reads around 64.4mW. The crossbar array power is obtained from the average device current at 

the read voltage, which yields ~7mW for the 54×108 array. The total power at 148MHz clock is 

thus 306.7mW for the current chip based on 180nm CMOS technology. 

The energy efficiency is estimated using the 148MHz clock speed and an average 4-bit input 

during inference, which gives around 9.4M VMM operations per second. Multiplying this number 

by 54×108 lead to 5.48×1010 operations per second. Therefore, the energy efficiency can be 

derived by dividing the number of ops/second with the total power, which results in 178.68 

GOPS/W for the current memristor/CMOS chip. 

The custom circuitry was designed in 180nm CMOS and features a generic digital processor 

along with a full set of mixed signal analog to digital converters (ADC) and digital to analog 

converters (DAC). Two different approaches were used to estimate the power dissipation at the 

40nm technology node. The digital power was estimated using generalized scaling54 and the 

mixed-signal power was estimated using a figure of merit (FOM) approach. 

In digital circuits, the length scaling factor S, and the supply voltage scaling factor U are 

different during scaling. We chose the generalized scaling approach for digital power.  

Specifically, from 180nm to 40nm, S = 180nm/40nm = 4.5, U = 1.8V/1.0V = 1.8. As a result, 

the digital power is reduced by a factor of 1/U2 = 0.32, while the circuit speed is improved by a 

factor of S = 4.5. Note the faster processor allows the same process to control more channels, so 

normalizing to the same number of 162 channels, the digital power at 40nm is estimated to be  

𝑃40𝑛𝑚 =
𝑃180𝑛𝑚

𝑈2𝑆
 (4 − 8) 

Using the measured digital power at 180nm, the estimated digital power at 40nm is then 
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235.3mW/((1.8)2×4.5), which is about 16.1mW. 

 

Figure 4-38: Schreier FOM for 180nm and 40nm ADCs published in ISSCC and VLSI conferences from 
1997-2018.  

The Schreier FOM is used for comparing high-resolution ADC performance across architectures.  
Image credit: Justin M. Correll 

 

The analog to digital converter performance is evaluated using various figures of merit 

(FOM). An ADC FOM combines several converter performance metrics into one number for 

comparison across ADC architectures. The Schreier FOM is typically used for high-resolution 

converters and is given by the following equation: 

𝐹𝑂𝑀𝑠 = 𝑆𝑁𝐷𝑅 + 10 log (
𝐵𝑊

𝑃
) (4 − 9) 

where SNDR is the signal to noise ratio and distortion, BW is one-half of the sampling 

frequency, and P is the power dissipation. To estimate the power scaling from 180nm to 40nm, 

the ADC Performance Survey55 was used which aggregates all ADCs published in the ISSCC and 

VLSI circuits conferences from 1997 - 2018. A subset of data for 180nm and 40nm ADCs is shown 

in Figure 4-38. The mean FOM between sampling frequencies from 100kHz to 10MHz for each 

technology was determined and compared. The mean FOM for 40nm was determined at 172dB 

and a conservative estimate of 165dB was used for power estimation. Using an estimated 165 dB, 
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which corresponds to 176W per ADC, we can get the new total analog power at 40nm is 19mW, 

leading to a total system power of 42.1mW, assuming the 54×108 crossbar power remains at 7mW. 

Therefore, by simply scaling the system to 40nm technology node, the estimated OPS/W at 

148MHz is 1.3TOPS/W. The power efficiency can be further improved by further scaling the 

CMOS circuit to more advanced technology nodes. Additionally, the digital power can be further 

improved by using a more custom controller design instead of using a generic processor, while the 

analog power can be improved by further optimizations of the ADC circuitry (e.g. replacing the 

fast and high-precision 13-bit ADC with simpler interface circuits), along with memristor device 

optimizations to reduce the crossbar power. 

 

4.8 Conclusion 

In this chapter, we successfully designed and fabricated a fully-functional, programmable 

neuromorphic computing chip with a passive memristor crossbar array directly integrated with a 

complete set of analog and digital components and an on-chip processor. The integrated chip 

allows mapping of different neuromorphic and machine learning algorithms on chip through 

simple software changes. Three different and commonly-used models, perceptron, sparse coding 

and principal component analysis with an integrated classification layer, were demonstrated. 100% 

classification accuracy was achieved for 5×5 noisy Greek Letters in the SLP implementation, 

reliable sparse coding analysis was obtained from an exhaustive test set using 4×4 bar patterns, 

and 94.6% classification rate was experimentally obtained from the breast cancer screening dataset 

using the same integrated chip.  

The integrated chip suggests different computing tasks can be efficiently mapped on the 

memristor-based computing platform, by taking advantage of the bidirectional VMM operations 

in the memristor crossbars and the flexibility in the CMOS interface and control circuitry. In our 

prototype, the supporting analog interfaces, as well as digital control and the OpenRISC processor 

are implemented in 180nm CMOS technology.  

The entire mixed-signal interface with independent ADCs and DACs supporting the 54×108 

crossbar and operating at the maximum frequency of 148 MHz consumes 64.4 mW from the 

experimental measurements. This corresponds to energy consumption of 27.4 nJ/inner product or 

4.7 pJ/op for the mixed-signal interface, where an operation is defined as the multiplication and 
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accumulate (MAC) process of a 4-bit input with a stored analog weight in the memristor array. At 

the maximum operating frequency of 148 MHz, the total system power of 306.7 mW and a power 

efficiency of 178.68 GOPS/W for the experimentally demonstrated memristor/CMOS chip based 

on 180 nm CMOS technology. Simply scaling the design to a more advanced process node such 

as 40 nm CMOS technology the power efficiency 1.3 TOPS/W can be achieved. We believe further 

optimizations of the system design, e.g. by replacing the generic processor with a custom-designed 

controller, and by replacing the fast and high-precision 13-bit ADC with simpler interface circuits, 

along with memristor device optimizations that reduce power consumption in the memristor 

crossbar, can further improve the system’s performance and power efficiency. 
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Chapter 5 Reservoir Computing with Memristor Devices 

 

The previous studies from Chapter 2 to Chapter 4 mainly focus on using memristor crossbar 

structures to act as a matrix operation accelerator to implement neural network applications such 

as sparse coding or feedforward networks. However, dynamic memristor behaviors discussed in 

Chapter 1 can also be used to natively perform other computing tasks. One interesting and important 

application is reservoir computing (RC), where the short-term memory effect of memristors can be 

utilized for efficient temporal information processing. 

In this study, we experimentally demonstrate a memristor-based RC system using dynamic 

memristor devices that offer internal, short-term memory effects17,56,57. These dynamic effects 

allow the devices to map temporal input patterns into different reservoir states, represented by the 

collective memristor resistance states, which can then be further processed through a simple 

readout function. The memristor-based RC hardware system is then used to experimentally 

perform hand digit recognition tasks and solve a 2nd-order nonlinear task. 

 

5.1 Reservoir Computing 

Reservoir Computing (RC) is a novel neural network-based computing paradigm that allows 

effective processing of time varying inputs58–60. An RC system is conceptually illustrated in Figure 

5-1, and can be divided into two parts: the first part, connected to the input, is called the reservoir. 

The connectivity structure of the reservoir will remain fixed at all times (thus requiring no 

training), however, the neurons (network nodes) in the reservoir will evolve dynamically with the 

temporal input signals. The collective states of all neurons in the reservoir at time t form the 

reservoir state x(t). Through the dynamic evolutions of the neurons, the reservoir essentially maps 

the input u(t) to a new space represented by x(t) and performs a nonlinear transformation of the 

input. The different reservoir states obtained are then analyzed by the second part of the system, 

termed the readout function, which can be trained and is used to generate the final desired output 

y(t). Since training a RC system only involves training the connection weights (red arrows in the 
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figure) in the readout function between the reservoir and the output61, training cost can be 

significantly reduced compared with a conventional recurrent neural network (RNN) approaches61 

 

 
 

Figure 5-1: Schematic of an RC system, showing the reservoir with internal dynamics and a readout 
function 

 

The readout function in an RC system is typically simple (thus easy to train) and is normally 

based on a linearly weighted combination of the reservoir neuron node values.  As a result, it is 

memory-less. To process temporal information, the reservoir state needs to be determined not only 

by the present input but also by inputs within a certain period in the past. Therefore, the reservoir 

itself must have short-term memory. In fact, it has been mathematically shown60 that a RC system 

only needs to possess two very unrestrictive properties to achieve universal computation power 

for time-varying inputs: point-wise separation property for the reservoir, which means that all 

output-relevant differences in the input series u1() and u2() before time t are reflected in the 

corresponding reservoir internal states x1() and x2() that are separable; and approximation property 

for the readout function, which means that the readout function can map the current reservoir state 

to the desired current output with required accuracy. 

 

5.2 Short-term Memory WOx Memristor as Reservoir 

In this study, memristor devices with short-term memory effects17,56,57 were used to act as 

the reservoir in an RC system. During device fabrication, the switching layer of the WOx based 

device was specifically designed to exhibit short-term memory (i.e. volatile) behavior17,56,57 

To demonstrate the temporal dynamics of the device, a pulse stream composed of write 

pulses having the same amplitude (1.4 V, 500 µs) but at different timeframes are applied to the 
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device and the response of the memristor, which is represented by the read current through a small 

read pulse (0.6 V, 500 µs) following each write pulse, is recorded. The results are shown in Figure 

5-2. 

 

 
 

Figure 5-2: Memristor's temporal response to a pulse train.  
Write pulses (1.4 V, 500 µs) with different timing (blue lines) were applied and the response, 

represented by current measured by a small read pulse (0.6 V, 500 s) after each write pulse is recorded. 
A temporal response is observed. 

 

Two properties, similar to results obtained in dynamic synapses, can be observed:  

(1) If multiple pulses are applied with short intervals, the response will gradually increase 

(as indicated by the red arrow in the figure), showing an accumulation effect 

(2) If there is a long enough period without any stimulation, then the device state will decay 

towards the original resting state, as indicated by the green arrow in the figure. This temporal 

response is attributed to the internal ionic processes of the WOx memristor, including the drift 

under electric field during the spike and the spontaneous diffusion of oxygen vacancies after the 

spike, and can be well modeled within the memristor theoretical framework17,56,57,62.  

The memristor’s short-term memory effect can be described by a time constant τ, and for 

devices used in this study is ~ 50ms. As a result, when programming the device, the device state 

depends not only on the programming pulse itself, but also depends on whether other programming 

pulses have been applied in the immediate past within a period of ~50ms. Prior programming 
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pulses applied within this range will affect the device state, with pulses applied closer to present 

time having a stronger effect, while events happened much earlier will not affect the present device 

state since the device would have decayed to the initial state already. 

The short-term memory effect of the memristors allow the device to natively implement the 

“fading memory” property of the reservoir, without having to constructing loops in the network. 

Based on this concept, we performed experimental studies on RC using memristors in a crossbar 

array. 

The 32×32 WOx memristor array was fabricated with 500nm line width by Dr. Chao Du, as 

shown in Figure 5-3, and wire-bonded to a chip carrier and mounted on a customized board for 

testing. We selectd the 90 devices from the array for the RC studies in a way to avoid having 

adjacent devices in both row and column direction to minimize the write disturbance. 

 

Figure 5-3: Experimental setup for RC.  
32x32 WOx memristor array fabricated. 5 cells from the array are used as the reservoir.  

To verify the operation of the devices in the array, we send the same pulse streams to all the 

90 devices individually and measure the device response. We found out that besides expected 

device to device variations, all devices can response to the input pulse sequence correctly and 

demonstrate similar current dynamics. The response to 4 different pulse squences from all 90 

devices are shown in Figure 5-4. 
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Figure 5-4: Response from the 90 devices to four different input pulse sequences.  
All devices demonstrate similar response to the input pulse streams.  

 

To verify that a unique input sequence will always lead to the same output, we performed a 

test where one memristor device in the reservoir is repeatedly tested, while the other devices 

remain unperturbed. In this case, since all other devices remain unchanged, the reservoir state can 

be represented by the resistance value of the device that is being stimulated. As seen in Figure 5-5, 

the same input sequence always leads to the same unique device response (and thus the overall 

reservoir state). 
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Figure 5-5: Response from a single device to the same input pulse streams, repeated 30 times in each 

test.  
The device shows similar response to each input pulse stream.  

 

To further verify the separation property of the memristor-based reservoir for unique input 

signals, we tested the memristor’s response to all possible combinations of length-4 pulse streams, 

shown in Figure 5-6. A different memristor state (as reflected by the read current after the pulse 

stream) was obtained for each pulse stream input, indicating that the memristor can separate those 

ten different pulse stream patterns.  
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Figure 5-6: Memristor’s response to ten pulse trains.  
Ten pulse trains corresponding to ten different row pixel arrangements for the ten digit images were 
input to a memristor and the read currents after the forth pulse show ten different levels that can be 

well-separated. 

5.3 Reservoirs Computing for Digit Recognition 

5.3.1 Training and Classification of 4×5 Digit Images 

To test the functionality of our memristor reservoir, we start with a simple task by processing 

computer generated images. The task is to recognize the digit from a 4×5 input image, which has 

20 pixels, either black (“0”) or white (“1”).  For the 10 digits represented by the 4×5 images shown 

in Figure 5-7. 

 
Figure 5-7: Simple digit images. Each digit image contains twenty pixels, either black or white. 

 

Take digit “2” as an example. It is then divided into 5 rows, each row containing 4 
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consecutive pixels and is fed into a memristor in the reservoir as a 4-timeframe input stream. A 

timeframe (3 ms in width) will contain a write pulse (1.5 V, 1 ms) if the corresponding pixel is a 

white pixel, or no pulse (equivalently a pulse with amplitude of 0 V) if the corresponding pixel is 

a black pixel63. Therefore, information of the image for digit “2”, which is represented by the 

spatial locations of the white pixels in each row, is represented by temporal features streamed into 

the reservoir, i.e., a pulse stream with pulses applied at different timeframes. The goal is to extract 

information of the image, i.e. the digit number 2 here, by collectively processing the temporal 

features in the 5 input pulse streams. Here only 5 memristors were used to process the image, with 

each memristor processing the input pulse stream from a specific row in the image. The reservoir 

state is represented by the collective resistance states of the 5 memristors. After the application of 

the input streams, the reservoir state is thus dependent on the input temporal patterns and can be 

used to analyze the input (Figure 5-8).  

 
 

Figure 5-8: Reservoir for simple digit recognition.  
Left: digit “2” as an example. Right: the reservoir containing the inputs (pulse transformed from the 
image), the liquid (consisting of 5 memristors) and the readout function (a network with 10 output 

neurons). 

Specifically, when a pulse is applied, the state of the memristor will be changed (reflected 

as a conductance increase) and if multiple pulses are applied with short interval a larger increase 

in conductance will be achieved, while long intervals without stimulation will result in the 

memristor state (conductance) decaying towards its resting state, i.e., the initial state before any 

pulse is applied. Therefore, different temporal inputs will lead to different states of the device and 

consequently the overall reservoir state. In this specific setup, each memristor’s state after 

stimulation will thus represent a specific feature for the given row in the original image, and the 

collective device states, representing the reservoir state, can be used to perform pattern recognition 
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through the (trained) readout function, i.e. identifying the digit as “2” of the original input (Figure 

5-8).  

The readout function here is a 5×10 network, with the reservoir state, measured by the read 

currents from the 5 memristors in the reservoir, as the input, and 10 output neurons (labeled 0-9) 

representing the predicted digit value of the input image, schematically illustrated in Figure 5-9. 

During classification, the output from the 10 output neurons are calculated from the dot product 

of the 5 inputs and the weights associated with each output neuron, and the output with the 

maximum dot product is selected and its label number is used as the predicted digit value. The 

readout function is trained in a supervised fashion based on Softmax regression (explained with 

details in Chapter 4) where the weights are adjusted to minimize output error during training.  

Figure 5-9 shows the reservoir state, represented by the combination of the 5 memristors’ 

resistance values, after feeding the reservoir with the 10 images shown in Figure 5-7. The reservoir 

states are significantly different, verifying the reservoir’s ability to clearly separate these 10 cases. 

 

 
Figure 5-9: Liquid's internal states after subjected to the ten digit inputs.  

The read currents of the 5 memristors were recorded as the internal state of the liquid and significant 
differences can be observed. 

The reservoir state was then used as input to the readout network for training and 

classification. After 200 training iterations, the RC system can correctly recognize all inputs from 

the 10 original images. To test the effects of cycle-to-cycle variations of the device, the 10 images 

were repeatedly tested ten times without retraining the readout function, and 100% accuracy was 

verified experimentally in the memristor-based RC system for this simple task.  
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5.3.2 Training and Classification of Hand Written Images 

Following these demonstrations, the memristor-based RC system was then tested with a 

more complex, real-world task, that is, recognition of handwritten digits. We train and test the 

system with the commonly used Mixed National Institute of Standards and Technology database 

(MNIST)64.  A preprocessing was performed before the images were fed into the reservoir, as 

shown in Figure 5-10. Take the image of digit “8” as an example, the original grayscale image was 

first converted into a binary-pixel image. The unused boarder area was also removed to reduce the 

original 28×28 image into a 22×20 image with 22 rows and 20 pixels per row. Some of the 

preprocessed samples from MNIST are shown in Figure 5-10.  

 

 
Figure 5-10: Samples from the MNIST database. 

 

Since the original images of the MNIST is 28x28 grayscale images, optimization methods 

were introduced to improve the ability of the reservoir to separate the inputs.  

1. The original grayscale image was first transformed into a binary-pixel image. The 

unused boarder area was removed by reducing the original 28×28-pixel image into 

22×20. For each row, there are now 20 pixels. 

2. Each row is divided into smaller sections (e.g. 4 sections with each section now 

containing 5 pixels) to allow better separation of the inputs. 

3. The same input as pulse streams is applied at different rates (by using different 

timeframe widths). The rational is as follows. If the timeframe is short and thus the 

interval between pulses is small (compared to the decay time constant of the 

memristor), the increased conductance caused by each pulse will not decay much 

before the next pulse arrives. As a result, the final memristor conductance is largely 



101
868 

 

determined by the number of pulses in the input due to the cumulative effects of the 

conductance increases. 

 
 

Figure 5-11: LSM for handwritten digit recognition.  
Image of the digit was preprocessed and transformed into pulse trains. Then pulse trains with different 
temporal patterns were input to the liquid with different rates. With a trained readout, the recognition 

results will be obtained. 
 

With these considerations, the image is fed into the reservoir in 5 pixel sections as input 

pulse streams and applied with two different rates, as shown in Figure 5-11. The readout network 

is trained using Softmax regression as discussed earlier. 14000 images from the MNIST data set 

were used for the readout function training. After training, another set of samples consisting of 

2000 images not in the training set, are used to test the recognition accuracy. The reservoir state 

was then fed to the readout function to perform classification. In the experimental study, 88 

memristors were used as the reservoir (22 rows, 4 sections and 2 rates), and a 176×10 readout 

network was used for classification. From the 2000 test images, an 88.1% accuracy was obtained 

from the RC system.  

The memristor-based RC system was further analyzed through simulation using a physics-

based memristor model. From simulations based on the dynamic WOx memristor model17, an RC 

system with a reservoir consisted of 88 memristor devices (22 rows, each row has 4 sections and 

each section is input at 2 rates) can potentially achieve 91.1% recognition accuracy. Increasing the 

reservoir to 112 memristors (28 rows, 4 sections, 3 rates) improves the performance slightly to 

91.5% accuracy (More results are shown in Table 5-1). The lower accuracy obtained in the 

experimental network can be attributed to the cycle-to-cycle variations of the device response, 

during training and image analysis stages. We note that even with these non-idealities, the 

experimental results, with a much smaller network and dealing with a simplified, truncated input, 
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are already better than the 88% accuracy achieved previously by simulation based on a one-layer 

neural network with 7850 free parameters, using pixel values of the entire digit image as the 

input65. 

 

Table 5-1: Experimental and simulation results of handwritten digit recognition. 

5.4 Mapping a Second Order Nonlinear System 

In the two tasks discussed above, we partitioned the two-dimensional images row-wise and 

converted spatial patterns into temporal inputs to the reservoir. More native applications of the 

reservoir system may be to perform temporal data directly, i.e. analyzing time series data and 

solving dynamic non-linear problems.  Figure 5-12 illustrates another experiment where the 

memristor-based reservoir hardware system is used to solve a second-order dynamic nonlinear 

task. 

Nonlinear dynamical systems are commonly used in electrical, mechanical, control and other 

engineering fields66. Among which, second order nonlinear dynamic systems are widely studied 

as a model system because of their close relations to electrical systems (i.e. RLC circuits). Figure 

5-12 shows the schematic of using an RC system to solve a second order dynamic nonlinear 

system. For a given input u(k) at timeframe k, the system generates an output y(k) following a 

nonlinear transfer function that may have a time lag. In our experiment, we choose a 2nd-order 
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dynamic nonlinear transfer function following a prior study67, described as: 

𝑦(𝑘) = 0.4𝑦(𝑘 − 1) + 0.4𝑦(𝑘 − 1)𝑦(𝑘 − 2) + 0.6𝑢3(𝑘) + 0.1 (5 − 1) 

As can be observed from Equation (5-1), the output y(k) at timeframe k not only depends on 

the current input u(k), but is also related to the cross term of past two outputs, y(k-1) and y(k-2) at 

timeframes k-1 and k-2, which makes it a 2nd order nonlinear system with a time-lag of two time-

steps. In typical applications, the relationship between y(k) and u(k) is implicit and hidden, which 

makes the problem difficult to solve.  

 

Figure 5-12: Schematic showing the memristor reservoir mapping an unknown nonlinear dynamic 
system.  

The original input signals u() are fed into the original 2nd-order nonlinear system and the output signals 
y() are generated (upper branch). The same inputs when fed into a memristor reservoir can generate 

different reservoir states, which are in turn used by the readout function to produce the predicted output 
p(). 

The goal is to train the memristor-based RC system to map the hidden nonlinear transfer 

function, so the correct output y(k) can be obtained from the input u(k) after training, without 

knowing the original expression between u(k) and y(k).   

We note this type of nonlinear problems are well suited for reservoir systems such as the one 

presented here, since each output y(k) is dependent on the recent past results but not on the far past, 

matching well with systems having short-term memory effects. We use a 300 timeframe-long 

random sequence based on uniform random distribution as inputs to train and test the memristor-

based RC system for the 2nd order dynamic task implementation, which are shown in Figure 5-13a 

and b. 

𝑢(𝑘) = 𝑟𝑎𝑛𝑑[0,0.5] (5 − 2) 

The amplitude of the input signal u(k) is linearly converted into a voltage pulse with 

amplitude V(k) that is then applied to the memristor reservoir: 

𝑉(𝑘) = 2 ∗ 𝑢(𝑘) + 0.8 (5 − 3) 
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This linear conversion allows the input voltage pulses to fall in the range of 0.8V-1.8V for 

memristor stimulation. After collecting the reservoir output, the data is fed into the readout 

function. Following a similar approach in a prior study68, we ignore the first 50 initial data points 

in the transient period and train the readout function weights 𝑤𝑖  (i=1,…90) using the last 250 

points in the training sequence using simple linear regression. The same training procedure is also 

applied for the linear network case used for comparison analysis. 

The reservoir consists of 90 physical memristor devices chosen from the memristor crossbar 

array, and is divided into 10 groups with 9 devices in each group. Input voltage pulse streams with 

10 different timeframe widths (1ms, 2ms, 3ms, 4ms, 5ms, 6ms, 8ms, 10ms, 15ms, 20ms) are then 

respectively applied to the 10 groups through the test board. We found having 9 devices in each 

group improves the reservoir performance due to inherent device variations that help make the 

reservoir output more separable, as well as having inputs with different timeframe widths as has 

already been discussed in the MNIST case. The readout layer in this case is a 90×1 feedforward 

layer, and is used to convert the reservoir output to a single output y(k). A simple linear regression 

training algorithm based on batch gradient descent is used to train the readout function. 

Suppose the reservoir state is x, which is represented by a vector containing n elements (the 

conductance values of the n memristors forming the reservoir). The vector representing the 

reservoir state is applied to the readout network.  

The cost function is defined as: 

𝐽(𝛉) =
1

2𝑚
∑(𝛉T𝐱(𝑖) − 𝐲(𝑖))

2
𝑚

𝑖=1

 (5 − 4) 

where m is the number of samples, 𝐲(𝑖) is the desired output for input 𝐱(𝑖). 

To minimize the cost function, the network is trained using the gradient descent defined as 

𝜕𝐽(𝛉)

𝜕𝛉𝑗
=

1

𝑚
∑(𝛉T𝐱(𝑖) − 𝐲(𝑖))

𝑚

𝑖=1

𝐱𝑗
(𝑖)

 (5 − 5) 

Figure 5-13c shows the experimentally-obtained reconstructed (i.e. predicted) outputs from 

the physical memristor RC system after training (red cycles and dashed line), and the theoretical 

output (i.e. ground truth) y(k) (blue solid line) from the training sequence, showing the memristor 

RC system can correctly solve the dynamic nonlinear problem, with a normalized mean squared 
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error (NMSE) of 3.61×10-3. More importantly, to verify the memristor RC system has indeed 

solved the dynamic transfer function, we tested the system using a new, independently generated 

random sequence (Figure 5-13b) other than the training sequence. Figure 5-13d shows that the 

system is still able to successfully predict the expected dynamic output for the random, untrained 

sequence using the same readout function, with a similar NMSE of 3.13×10-3. 

 

Figure 5-13: Second order nonlinear system results with memristor reservoir 
a) Uniform random signals utrain() are used as the training input. b) Theoretical output y() (blue solid 

line) vs. experimentally reconstructed output p() from the memristor reservoir computing system (red 
circles and dashed line), for 100 timeframes from the random training set. c) Another set of uniform 

random signals utest() are used to test the RC performance. d) Theoretical output y() (blue solid line) vs. 
experimentally reconstructed output p() from the memristor RC system (red circles and dashed line), for 
100 timeframes from the random untrained test set. The readout function was not re-trained in the test 

It is worth mentioning that all the preprocessing and training operations used in the 2nd-order 

nonlinear dynamic task are based on linear transformation. As a result, the nonlinear 

transformation required by the task has to originate from the intrinsic nonlinear physics of the 

memristor device.  

To highlight the computing capacity provided by the memristor reservoir, we compared the 

RC system performance against a linear network of the same size. We replaced the memristor 

reservoir layer with a linear hidden layer, which generates 90 randomly linearly scaled signals of 

the original input u(k), with scaling factors: 

𝑥(𝑘) = 2 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑢(𝑘) (5 − 6) 

where the x(k) is scaled and from the original input signal u(k), similar to a current value 

through a linear resistor. In this case, there is no longer any nonlinear transform provided by the 

reservoir. 
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We then repeated the signal reconstruction experiments in Figure 5-13c and Figure 5-13d 

using the linear network with the same training and testing data sets and the same training 

procedure. The results (Figure 5-14) show that the linear network is not able to solve the dynamic 

nonlinear problem, and exhibits large errors of 2.23×10-1 for the training set and 1.67×10-1 for the 

testing set. 

 

Figure 5-14: Signal reconstruction with a linear system 
100 points of the theoretical (blue solid line) and experimental reconstructed outputs (red circle line) of 
the training data (upper plot) and testing data (lower plot) are shown for the conventional network. 

 

We also calculated the output NMSE for the linear network and the memristor RC system 

vs. the readout network size (which equals the number of devices n in the reservoir layer since the 

readout layer is an n×1 network). Here results from the memristor-based RC system were obtained 

experimentally using the test board, while results from the linear network were obtained from 

software. As can be observed from Figure 5-15, the memristor RC system significantly 

outperforms the linear network having the same size, when solving this dynamic nonlinear task. 

Additionally, the performance of the memristor RC system is generally improved when using 

multiple memristor devices in each group, since the inherent device variations increases the 

reservoir output dimension and thus help improve reservoir state separation. 
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Figure 5-15: Comparison of the NMSE between the memristor RC system and a linear network.  
The number of devices in each group in the reservoir layer is increased from 1 to 9 in these tests. The 

reservoir consists of 10 such groups 

5.5 Conclusion 

To reduce the training cost needed for temporal data processing, Reservoir Computing is 

proposed as a variant of recurrent neural network structure. In an RC system only the readout 

function, i.e. the connections from the reservoir to the output, needs to be trained. In this study, we 

showed WOx memristors with short-term memory properties can be used to effectively implement 

RC systems. We demonstrate experimentally that even a small reservoir consisting of 88 memristor 

devices can be used to process real-world problems such as handwritten digit recognition with 

performance comparable to those achieved in much larger networks. A similar-sized network is 

also used to solve a 2nd-order nonlinear dynamic problem and is able to successfully predict the 

expected dynamic output without knowing the form of the transfer function. 
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Chapter 6 Current and Future Works 

 

In the previous chapters, we discussed examples of implementing neuromorphic computing 

systems with WOx memristors, from different device behaviors to fully functional integrated 

circuits. We have successfully demonstrated WOx memristor crossbar array-based vector-matrix 

multiplication accelerators for conventional machine learning tasks such as perceptron learning 

and sparse coding. By using the intrinsic short-term memory dynamics of the device, we can also 

implement reservoir computing systems that are efficient at processing temporal information.   

In this chapter, we discuss a few current and future studies that aim at solving other tasks 

efficiently with the memristor crossbar structures, namely, Hopfield Networks and self-organizing 

maps. 

6.1 Hopfield Network 

A Hopfield Neural Network (HNN) is a form of recurrent artificial neural network 

popularized by John Hopfield in 198269. The most important property of a Hopfield network is 

that when updated asynchronously, it guarantees to converge to a stable state in a finite number of 

steps, which corresponds to an energy local minimum of the network. Since the energy equation 

is isomorphic to the Hamiltonian of an Ising model, HNNs can be used to solve NP-hard 

problems70.   

6.1.1 Properties and Structure 

Hopfield network is a type of recurrent neural network that does not contain self-connection 

(or have a self-feedback weight of 0)71. Typically, in a Hopfield network, a neuron receives the 

outputs of all other neurons as its input, as shown in Figure 6-1. 
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Figure 6-1: An illustration of a 4-node Hopfield Neural Network 

By simply reorganizing the plot, Figure 6-1 can be converted to a graph shown in Figure 6-2. 

 
Figure 6-2: Reorganized Hopfield Neural Network schematic 

The weight between neuron i and j (wij) is symmetric.  

By using a symmetric matrix with a zero diagonal, we can implement the weights of a 

Hopfield network as a n×n matrix. 

𝑊 = (

0 𝑤12

𝑤21 0
⋯

𝑤1𝑛

𝑤2𝑛

⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 0

) (6 − 1) 

 

The Hopfield network is a dynamical system that can be described as: 
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𝑢𝑖 = ∑ 𝑤𝑖𝑗𝑣𝑗

𝑛

𝑗

 (6 − 2𝑎) 

𝑣𝑖 = {
+1, 𝑖𝑓 𝑢𝑖 ≥ 𝜃𝑖

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6 − 2𝑏) 

where is the 𝑢𝑖 weighted sum of neuron i, 𝑣𝑖 is the state of neuron i, and 𝜃𝑖 is the threshold 

of neuron i. 

By asynchronously update the Hopfield network, the network can eventually converge to a 

fixed point, which corresponding to the local minima of the following energy function:  

𝐸 = −
1

2
∑ 𝑤𝑖𝑗𝑣𝑖𝑣𝑗

𝑁

𝑖,𝑗

+ ∑ 𝜃𝑖𝑣𝑖

𝑁

𝑖

 (6 − 3) 

This beneficial property of Hopfield network facilitate to solve large optimization problems. 

 

6.1.2 Memristor Implementation 

From Equation (6-2a), we can notice that the key operation of a Hopfield network is also 

vector-matrix multiplication. It is thus naturally suitable to be implemented with a memristor 

crossbar array, with the weight matrix W programmed into the memristor crossbar. With the high 

density and analog switching behavior of memristor array, one should be able to implement large 

scale Hopfield network72. 
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Figure 6-3: Schematic of the Hopfield network implemented by a memristor crossbar array. 
Image adapted from Reference [72]. Image credit: Dr. Suhas Kumar 

 

In this implementation, the weight of the Hopfield network can be binary or analog 

depending on the specific problem to be solved. For example, in the case of solving a unweighted 

Max-cut problem73, the weight matrix W is either 0 or -1, which can easily map to low conductance 

and high conductance of the memrsitor devices in the array. By iteratively calculating the VMMs 

using parallel read and updating the neuron states, the Hopfield network can converge to a fixed 

point solution to the NP hard problem. 

One advantage of implementing Hopfield network with memristors is that the weight matrix 

only need to be programmed once, and most of the operations are performing inference, i.e. 

calculating vector-matrix multiplication, which can be done parallelly with very low energy cost. 

Compared with other approaches such as quantum annealing (e.g. D-wave), the memristor crossbar 

implementation should be able to achieve better efficiency in energy and area.   

The major challenge of this approach is the fact that Hopfield network can easily stuck at 

local minimums and does not guarantee to find best solution. To solve this issue, an approach of 

introducing stochastic noise to improve Hopfield network performance will be studied in future 

works. 
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6.2 Self-Organizing Map 

A Self-organizing Map (SOM) is a data visualization technique developed by Professor 

Teuvo Kohonen in the early 1980's74. It is an unsupervised learning algorithm that transforms high-

dimensional data onto lower dimensional subspaces where geometric relationships between points 

indicate their similarity. The reduction in dimensionality that SOMs provide allows people to 

visualize and interpret what would otherwise be, for all intents and purposes, indecipherable data.  

 

Figure 6-4: Illustration of a self-organizing map 

6.2.1 Training Algorithm 

SOMs generate subspaces with unsupervised learning through a competitive learning 

algorithm. Neuron weights are adjusted based on their proximity to "winning" neurons (i.e. 

neurons that most closely resemble a sample input). Training over several iterations of input data 

sets results in similar neurons grouping together and vice versa.  

There are two major steps in the SOM training algorithm 

1. Given an input sample from the data set, it will select the best matching unit (BMU), 

which is the so-called winning neuron from all the neurons. The besting matching unit 

is determined by the Euclidean distance from the neuron and the input 

𝑑𝑖𝑠𝑡 = √∑(𝑉𝑖 − 𝑊𝑖)2

𝑑

𝑖=0

 (6 − 4) 
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where V is the input sample and W is the neuron to compare. d is the dimension of the 

data. 

2. After finding the winning neuron, it will not only update itself, but also adjust the weights 

of some nearby neurons within the topological neighborhood. During the training 

process, the size 𝜎  of the neighborhood needs to decrease with time and eventually 

shrink to 1. Usually the time dependence is an exponential decay:  

𝜎(𝑡) = 𝜎0 exp (−
𝑡

𝜆
) (6 − 5) 

The topological neighborhood is then defined with a Gaussian function as: 

ℎ(𝑡) = exp (−
𝑑𝑖𝑠𝑡2

2𝜎2(𝑡)
) (6 − 6) 

The weights of the neuron are adjusted as: 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝜂ℎ(𝑡)(𝑉(𝑡) − 𝑊(𝑡)) (6 − 7) 

6.2.2 Memristor Implementation 

Unlike the previously discussed Hopfield network implementation that only perform 

inference, Self-organizing Map is an online learning algorithm which requires adaptively tuning 

the network weights, and can thus be more challenging. However, by taking advantages of the 

intrinsic nonlinear characteristics of the memristor devices, the learning processing can potentially 

be simplified. 

First of all, in SOM, the weight of a neuron usually has multiple dimensions. For example, 

if the training data are RGB colors, then we can use three devices at the same column as the weight 

of a neuron, namely: 

𝑊 = [𝑤𝑅 , 𝑤𝐺 , 𝑤𝐵]𝑇 (6 − 8) 

In this case, each neuron requires three rows to implement. To implement an 8×8 SOM, we 

need a memristor array of 3×64, which is a fairly asymmetric size to fit in a square array. By 

folding the memristor array into multiple rows and use time multiplexing, we can instead use a 

12×16 subarray from a 16×16 array. 
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Figure 6-5: Folding the memristor array to fit in a square array.  
By storing the weight in a folded matrix and read each three-row batch with time multiplexing, we can 

transform a 3×64 weight matrix into a 12×16 one. 
 

The key steps in the training algorithm are to find the best matching unit (i.e. the winning 

neuron) and to perform nonlinear weight update at different distances. 

Finding the BMU is essentially calculating the minimum of the Euclidean distance, which is 

very similar to the winner-take-all approach discussed in Chapter 3. By using memristor crossbar 

structure, we can easily convert the calculation of the Euclidean distance to the comparison of the 

dot-product value, reducing the computation complexity. To avoid the lack of normalization issue 

discussed in section 3.3.2, we can use some correction method introduced in the reference75 to 

improve the accuracy in calculating Euclidean distance.  

Another challenge is the implementation of the gaussian function to calculate the topological 

neighborhood, which requires significant pre-processing in the training process. However, since 

the memristor device exhibits an exponentially nonlinear weight update function vs the applied 

voltage18, we can obtain the desired exponentially varying weight changes in Equation (6-7) by 

simply using a linear decaying programming voltage, with further distance from the winning 

neuron in the 2-D map corresponding to lower programming voltage. With this approach, the most 

computational expensive part in training can be simplified by device intrinsic physics. 

Further works will focus on the experimental implementation of the SOM on a 12×16 

memristor that aims at clustering different RGB colors. 
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