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Abstract 

 Understanding the origins of the modern human life history profile, or the scheduling of 

energy tradeoffs between growth, somatic maintenance, and reproduction, is a key issue in 

biological anthropology. In order to determine when, and in what contexts, the modern human 

life history profile evolved, we must look to our hominin ancestors in the fossil record to 

reconstruct their diets and life histories, as well as to our closest living relatives, the 

chimpanzees, for clues to the links between observed life history variables, such as weaning age, 

and hard tissue evidence for changes in diet and developmental pace that may also preserve in 

the fossil record. This project investigates the relationships between the dental development, the 

weaning process, and the diets of wild Ugandan chimpanzees (Pan troglodytes schweinfurthii) 

using three different, but interrelated methods.  

 The first study uses histological analysis to compare dental formation and emergence 

variables between individuals from several chimpanzee communities, and results suggest that the 

chimpanzees from the Ngogo community have delayed dental development and life history pace 

relative to other communities of this subspecies (Pan troglodytes schweinfurthii). It is also found 

that the range of ages at first molar emergence across these wild chimpanzee communities 

overlaps with that previously documented for captive chimpanzees. A final finding is that a 

growth spurt during first molar root formation of the Ngogo chimpanzees in this study likely 

coincides with the age at which this tooth comes into functional occlusion, slightly preceding 

inferred ages at weaning completion documented by other researchers using a fecal isotope study  



 x 

of Ngogo infant chimpanzees. 

 The second study examines the relationship between trace elemental distributions in 

chimpanzee dental tissues and structural indicators of developmental pace established in the 

previous study, to assess whether the first molar root growth spurt shows evidence of aligning 

with weaning completion. This work uses laser ablation inductively coupled plasma-mass 

spectrometry (LA ICP-MS) to collect calcium-normalized barium (Ba/Ca) values from the first 

molars used in the previous study, and finds that the distribution of this apparent proxy for 

dietary change within the enamel and dentine of these chimpanzees’ teeth supports the link 

between the timing of the root growth spurt and weaning completion proposed in the first study. 

 The third study attempts to disentangle the numerous sources of variability in chimpanzee 

dietary inputs, which manifest in their bodily tissues, and which inform studies of dietary 

reconstruction, paleoecology, and life history for extinct taxa, including fossil hominins. Stable 

isotope analyses of carbon (δ13C), oxygen (δ18O), and nitrogen (δ15N) are conducted on bone, 

teeth, and hair of the chimpanzees used in the previous two studies, and the variation in these 

isotopic outputs within an individual’s tissues, between the different tissues, and between 

individuals is in some cases great enough that this could obscure sources of dietary variation in 

fossil taxa to whom these same methods are applied. Another finding is that isotopic variation in 

sources of dietary inputs, either from different dietary items themselves, or from the same items 

growing in different environments, could confound interpretations of fossil hominin diets. 

 Taken together, these three studies use structural markers of root growth rate and 

chemical markers of dietary changes to develop a proxy for weaning completion in chimpanzees, 

and present a refined diet-to-enamel δ13C offset value to be used in future primate dietary 

reconstructions.
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     Chapter 1: Introduction 

 

 Understanding the origins of the modern human life history profile, or the scheduling of 

energy tradeoffs between growth, somatic maintenance, and reproduction (Stearns, 1992), is a 

key issue in biological anthropology. In order to understand when, and in what contexts, the 

modern human life history profile evolved, we must look to our hominin ancestors in the fossil 

record to reconstruct their life histories. 

 The fossil record, however, is limited to bones and teeth, and even within those hard 

tissues, it is only the enamel that survives the millenia relatively unchanged. Investigations of 

fossil hominin life history are, therefore, constrained by what these hard tissues can tell us about 

past growth, somatic maintenance, and reproduction, and accessing evidence for energetic 

tradeoffs between key life history events or parameters, such as gestation length, age at weaning, 

age at first reproduction, and interbirth interval, presents numerous challenges.  

 Since teeth preserve a structural record of their growth processes, are less succeptible 

than bone to diagenetic alterations, and are found with relative frequency in the fossil record, 

they make an ideal avenue for investigations of diet and growth in extinct taxa. An understanding 

of the diverse ways that development, diet, and life history manifest in the hard tissues of living 

apes, including our closest living relatives, the chimpanzees, is therefore critical to 

interpretations of these factors in fossil taxa. Diet acts as an organism’s interface between its own 

development and the environment it inhabits, since the contents of its developing tissues come 
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from the food and water it ingests, and these, in turn, are products of environmental conditions 

surrounding them. This project investigates the relationships between the dental development, 

the weaning process, and the diets of wild Ugandan chimpanzees (Pan troglodytes 

schweinfurthii) using three different, but interrelated methods.  

 The first study uses histological analysis to measure and compare dental formation and 

emergence variables between individuals from several chimpanzee communities, to assess 

whether chimpanzees from Ngogo have delayed dental development relative to other 

populations, and to situate that outcome within life history theory. The second study examines 

the relationship between trace elemental distributions in chimpanzee dental tissues and structural 

indicators of developmental pace, to assess whether a peak in M1 root growth rate shows 

evidence of aligning with weaning completion. The third study attempts to disentangle the 

numerous sources of variability in chimpanzee dietary inputs, which manifest in their various 

bodily tissues, and which inform studies of dietary reconstruction, paleoecology, and life history 

for extinct taxa, including fossil hominins. 

 The first core chapter, entitled “Chapter 2: Histological reconstruction of dental 

development, stress, and life history of chimpanzees (Pan troglodytes schweinfurthii) from 

Kibale National Park, Uganda”, explores the relationship between dental development and life 

history for members of several communities of chimpanzees from Uganda, focusing on the 

Ngogo community, due to their unusually large group size, low mortality rates, and consistently 

adundant food resources (Wood et al., 2017). The Ngogo chimpanzee community has been 

continuously studied since 1993, and John Mitani, David Watts, and Kevin Langergraber have 

been involved with the Ngogo Chimpanzee Research Project since its beginning.
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Figure 1: Map of Pan subspecies distribution throughout African continent with locations of 

several long-term study sites 

 

Figure 1: The above map shows the distributions of various Pan subspecies across the African continent, with the distribution of 
Pan troglodytes schweinfurthii, the subspecies in focus in this study, shown in blue, and the sites from which the chimpanzees in 
this study originate circled in red, including the individuals from Kanyawara from Machanda et al. (2015). 
 
 
 One of the aims of this chapter is to document variability in dental developmental 

parameters between the Ngogo chimpanzees and those from several other P.t. schweinfurthii 

communities, to assess how much dental developmental variability to expect within a single 

subspecies. Another aim is to try and disentangle the complex interplay between dental 

formation rates, the dental eruption process, and the weaning process for the Ngogo 

chimpanzees, since direct biogeochemical evidence for the weaning process in this population 

has been documented (Badescu et al., 2017). To accomplish this, the work of Dean and Cole 

(2013) was expanded upon to explore the previously reported association between the age at 

which the first mandibular molar (M1) emerges through the gingiva and a growth spurt that 

occurs during the root formation process in chimpanzees. This growth spurt appears to occur 

Bwindi	
1996-2004	
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several months after initial emergence (Dean and Cole, 2013), which may place it closer to the 

isotopically inferred weaning completion age, thereby creating a precise structural proxy for this 

important life history variable. A final aim is to explore whether certain dental developmental 

parameters, such as first molar gingival emergence age, differ between captive and wild 

chimpanzees. Each of these aims is geared toward refining methods of characterizing dental 

development, and its links with the weaning process, in the closest extant relative to humans, in 

order to more accurately infer life history pace in fossil hominins and hominoids.  

 The second core chapter, entitled “Chapter 3: Calcium-normalized barium (Ba/Ca) 

distributions in enamel and dentine of wild Ugandan chimpanzees (Pan troglodytes 

schweinfurthii): Implications for weaning studies in fossil taxa” seeks to link structural markers 

of growth pace in chimpanzee first molars (M1) with trace element evidence for dietary 

transitions associated with the weaning process. Previous work has demonstrated the 

effectiveness of using changing levels of barium throughout tooth development to indicate levels 

of maternal milk intake (Austin et al., 2013; Smith et al., 2017; Smith et al., 2018).  

 This study finds that in the first molars (M1), of most of the chimpanzees in this sample, 

the calcium-normalized barium (Ba/Ca) intensity increased between birth and the first three to 

six months of life, and then gradually decreased over the next year of formation. Occasional 

spikes in M1 Ba/Ca intensity occurred after that point and may indicate increases in nursing 

frequency within the second year of life, or if these spikes are brief, they could result from 

episodes of illness or nutritional deficiency in which the infant’s own skeletal stores of calcium 

(and therefore, barium) were mobilized and incorporated into dental tissues forming at that time. 

Variation in enamel Ba/Ca levels from several later forming teeth are included to show spikes in 

Ba/Ca levels at the time of the root growth spurt, which then lower again, and stay at low levels 
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thereafter, except in cases where there was taphonomic damage to the enamel. In several cases, 

the patterns of Ba/Ca change are harder to discern, due to sampling issues, damage to enamel 

crowns, or extreme outlier values that drive the range of variation to be too wide to pick up 

subtle changes. Methods of troubleshooting these and other issues are presented.  

 The third core chapter is entitled “Chapter 4: Isotopic variability within the tissues of Pan 

troglodytes schweinfurthii informs efforts at fossil hominin dietary reconstruction and 

underscores the need for habitat-specific plant isotope studies”. This chapter attempts to address 

how the many sources of variation in diet, and the ways that dietary items are incorporated into 

the tissues of the body in living taxa, complicate attempts to use stable isotopic analysis of 

enamel apatite to interpret and characterize the diets of fossil taxa, including hominins. 

 The final chapter is entitled “Chapter 5: Conclusions, Implications, Future Directions”. In 

this chapter are summarized the main results and findings of the three core chapters, as well as 

their implications for advancing studies of life history and dietary reconstruction in extant and 

fossil taxa. The relevance of the outcomes of each study is discussed, as are common themes 

running throughout the chapters, and future projects related to these topics are also explored. 

Works Cited 

Bădescu, I., Katzenberg, M. A., Watts, D. P., and Sellen, D. W. 2017. A novel fecal stable 
 isotope approach to determine the timing of age-related feeding transitions in wild infant 
 chimpanzees.  American Journal of Physical Anthropology, 162(2), 285–299. 
 http://doi.org/10.1002/ajpa.23116 
 
Dean, M. C., and Cole, T. J. 2013. Human Life History Evolution Explains Dissociation between 
 the Timing of Tooth Eruption and Peak Rates of Root Growth. PLoS ONE, 8(1). 
 http://doi.org/10.1371/journal.pone.0054534. 
 
Stearns, S.C. 1992. The evolution of life histories. Oxford: Oxford University Press. 
 
Wood, B. M., Watts, D. P., Mitani, J. C., and Langergraber, K. E. 2017. Favorable ecological 
 circumstances promote life expectancy in chimpanzees similar to that of human hunter-
 gatherers. Journal of Human Evolution, 105, 41-56.   
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Chapter 2: Histological reconstruction of dental development, stress, and life history of 

chimpanzees (Pan troglodytes schweinfurthii) from Kibale National Park, Uganda 

 

Abstract: Understanding the dental development of our closest living relative, the chimpanzee, 

is essential for providing a clearer picture of the relationships among the dental development, 

ecology, and life histories of fossil hominins. This study presents novel and detailed dental 

developmental data from the Ngogo community of wild chimpanzees (Pan troglodytes 

schweinfurthii) from Kibale National Park, Uganda. A number of dental developmental variables 

are compared between members of this population and those of other chimpanzee populations. 

Compared with previous work, this study notes increased average enamel daily secretion rates 

(DSR) and expands the known range of Retzius line periodicity (RP) in chimpanzees. Total 

crown formation times (TFT) are determined using enamel and dentine structures, and root 

formation times and extension rates reveal ages when rooth growth spurts occurred, which are 

then used as a variable to predict life history events linked with the initial gingival emergence* 

of the lower first molar (M1). Episodes of stress are documented using the timing and frequency 

of accentuated lines in enamel and dentine, and the patterns are used to infer the timing of the  

weaning process. The Ngogo chimpanzees show overall later inferred ages of M1 emergence and 

occlusion compared with other Ugandan chimpanzees, which may be related to their lower  

 

*All further mentions of “emergence” in this text will refer to the initial gingival emergence stage of the eruption process, and not 

to alveolar emergence, nor to any time between gingival emergence and functional occlusion. 
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extrinsic mortality risk. Despite the small size of this sample, the data from these new individuals 

increase three-fold what is known about dental development in this subspecies. This expanded 

sample of wild chimpanzee dental developmental data also provides, for the first time, evidence 

that the range of variation in M1 emergence ages represented within this single subspecies is at 

least as large as the variation documented thus far for captive chimpanzees. Overall, these data 

add to the current picture of the range of variation in wild chimpanzee dental development, they 

support a link between molar root extension rates, molar emergence and occlusion timing, and 

the weaning process, and they augment the great ape data pool with which the dental 

development and life history data of fossil hominins can be compared. 

  

Introduction: A fundamental issue in biological anthropology concerns the evolution of 

hominin life history. The modern human pace of life history, or the scheduling of developmental 

milestones, is unusual, even among hominoids. We develop slowly, but wean early. We begin 

reproducing somewhat later in life compared with other apes, but have short interbirth intervals. 

In addition, we humans have a unique developmental stage called childhood, during which 

parental care allows for prolonged social and cognitive development (Schultz, 1960; Harvey and 

Clutton-Brock, 1985; Bogin, 1990). Understanding when and in what evolutionary contexts this 

pattern of growth and development emerged is critical for reconstructing hominin life histories 

(Schwartz, 2012).  

 Because the pace of dental development is closely linked with many aspects of life 

history (Smith, 1989), and because dental tissues preserve a record of their incremental growth 

(Risnes, 1998), teeth present an ideal tool for exploring hominin life history evolution and 

variation. In order to understand how dental development and life history varied among different 
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hominins, dental development and life history data from closely related extant taxa, specifically, 

humans and great apes, are used as comparative groups (reviewed in Kelley and Schwartz, 

2012). Such studies aim to determine whether a particular fossil hominin’s life history pace was 

more “ape-like” (e.g. Bromage and Dean, 1985; Anemone et al., 1996), or more “human-like” 

(Mann, 1987), with the majority of these studies assigning the hominins in question a more ape-

like pace (e.g. Beynon and Dean, 1987; 1988), and suggesting that the modern human pace of 

life history evolved relatively recently (reviewed in Schwartz, 2012). However, the types of 

comparative dental developmental data used, as well as the sources of such data, have varied 

greatly, due to the limited numbers of ape specimens available for study, the often-destructive 

nature of analytical methods (e.g. dissection of in situ teeth from the jaws, histological 

sectioning, etc.), and an underdeveloped picture of the variation in dental development within 

and between apes at the level of species, subspecies, and population. Collecting such data from 

different populations of the same subspecies may reveal more of the variability to be expected 

for Pan, overall, and this, in turn, will allow for a more thoroughly representative “ape” sample 

to be used in comparisons with fossil hominins. 

 Considerable amounts of human dental developmental data are available for study (e.g., 

Hillson, 2005; AlQahtani et al., 2010), but similar dental developmental data from wild 

chimpanzees are limited (Zihlman et al., 2004; Machanda et al., 2015). Importance has been 

placed upon using only wild chimpanzee dental development in comparison with that of modern 

humans and fossil hominins, due, in part, to the proposed developmental acceleration in captive 

versus wild chimpanzees, resulting from the artificial conditions, food provisioning, and different 

energetic outputs for chimpanzees in captivity (Zihlman et al., 2004). There is some debate, 

however, about whether this delay manifests dentally in wild chimpanzees (Zihlman et al., 2007; 
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Smith et al., 2010), so additional dental developmental data from new wild chimpanzee 

populations will add valuable data points to the currently sparse comparative sample. This will 

permit more rigorous comparisons to be made between the dental development and life histories 

of wild and captive chimpanzees, thereby furthering our understanding of the appropriateness of 

using captive chimpanzee dental developmental data in comparisons with fossil hominin dental 

development and associated life histories.  

 Given the very small sample sizes available for study, it is also unknown how variable 

wild chimpanzee dental development can be across a species, or even for different populations 

within the same subspecies living in different ecological conditions. For East African 

chimpanzees (Pan troglodytes schweinfurthii), there are confidently known M1 eruption data 

(from initial gingival emergence through occlusion) available for only three individuals from 

Kanyawara (Machanda et al., 2015). The current study produces estimated M1 emergence and 

occlusion ages for seven additional P. t. schweinfurthii individuals: four from Ngogo, two from 

neighboring communities that are just outside of Ngogo (but are not Kanyawara), and one from 

Bwindi Impenetrable Nation Park. While ten total individuals from five different communities 

cannot illustrate the overall variation in East African chimpanzee dental development, these new 

data more than triple the size of the sample available for the subspecies. 

 

Background: Teeth are a valuable medium for the analysis of developmental timing in extinct 

taxa, due to their relative abundance in the fossil record, their resistance to post-mortem 

alteration, and because they preserve an exact record of their development in their incremental 

microstructures (e.g. Risnes, 1998; Dean, 2000; Antoine et al., 2009). Such structures can be 
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periodic, forming at regular, consistent intervals (e.g. cross-striations and Retzius lines in enamel 

or von Ebner’s lines and Andresen lines in dentine), or they can be aperiodic, and exist as visible 

 

 

Table 1: Dental abbreviations and definitions used in this study  

Table 1: Detailed descriptions and methods of measurement of the above abbreviations are given in Background and Methods. 

*APV is the term used by Dean and Cole (2013) but which is referred to here as the root growth spurt age. 

 

 

structures resulting from growth processes, but not subject to any known time-dependency (e.g. 

enamel prisms, dentine tubules, and Hunter-Schreger bands) (reviewed in Smith, 2008). 

Structures can also form as a result of disturbances to normal growth, and these form at irregular 

intervals influenced by any number of external and internal factors (discussed further below and 

also see Goodman and Rose, 1990; Bowman, 1991; Macho et al., 1996; Simpson, 1999; 

Guatelli-Steinberg, 2001; Thomas, 2003; Guatelli-Steinberg, 2004; Skinner and Hopwood, 

2004). Each type of structure forms in all three dental tissues (enamel, dentine, and cementum), 

but only those in enamel will be reviewed here, with the corresponding structures in dentine 

included where relevant. 

 

Abbreviation Definition Abbreviation Definition Abbreviation Definition 
ICDSR Inner cuspal daily  

secretion rate 
RP  Retzius line 

periodicity 
EDJ  Enamel-dentine 

junction 
MCDSR Middle cuspal daily  

secretion rate 
  CFT  Cuspal formation time M1 First molar 

OCDSR Outer cuspal daily  
secretion rate 

RFT  Root formation time M2 Second molar 

IIDSR Inner imbricational daily  
secretion rate 

TFT  Total formation time M3 Third molar 

MIDSR Middle imbricational daily  
secretion rate 

R#  Retzius line number P4 Fourth premolar 

OIDSR Outer imbricational daily  
secretion rate 

  APV*  Age at peak root 
growth velocity 

IFT Imbricational formation 
time 

DDSR Dentine daily secretion 
rate 

ER Extension rate CEJ Cemento-enamel 
junction 

CI Crown initiation  
age 

CC Crown completion  
age 

IBI Inter-birth interval 
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Periodic structures: As teeth start to develop (see Figure 2a), ameloblasts (enamel-forming cells)  

secrete enamel matrix as they move away from the enamel-dentine junction (EDJ) in a 24-hour 

(short-period) interval, thereby forming enamel prisms and thickening the enamel (Boyde, 1989). 

This happens first in the formation of cuspal or appositional enamel, which increases a tooth’s 

height, and subsequently with the imbricational (lateral and cervical), enamel (Dean, 1998). 

Once the cuspal enamel reaches a predetermined thickness, new ameloblasts from along the EDJ 

are recruited to start forming additional enamel prisms, and they begin to extend the enamel-

forming front cervically (away from the cusp) (Boyde, 1989). Each new cohort of recruited cells 

begins moving away from the EDJ in a staggered pattern, and this movement is interrupted at a 

longer-period regular interval, marking the progress of all the enamel-forming cells at that 

moment in time (Antoine et al., 2009). The two main periodic structures in enamel, cross-

striations and Retzius lines (both detailed below), are left behind as evidence of the fluctuations 

in these interwoven rhythms of growth. Odontoblasts (dentine-forming cells) begin along the 

EDJ also, but they move inward toward the pulp cavity of the tooth as they secrete dentine, and 

they leave behind tubules as tracks of their movement that correspond to enamel prisms (Dean 

and Scandrett, 1996). 

 

Cross-Striations/von Ebner’s lines: As they secrete enamel, the ameloblasts leave behind 

evidence of their daily secretion rate (DSR) in the form of alternating dark and light bands called 

cross-striations (Boyde, 1989), due to the circadian rhythm of metabolic activity (Antoine et al., 

2009). Von Ebner’s lines are the daily-forming lines that appear in dentine (Dean and Scandrett, 

1996), and DSR can also be determined for dentine using these features. Numerous studies have 

demonstrated this 24-hour rhythm of growth in enamel and dentine, some of which employed 
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experiemental means to confirm this daily cycle of formation (e.g. Schour and Hoffman, 1939b; 

Okada, 1943; Okada, 1945; Bromage, 1991; Ohtsuka and Shinoda,1995; Rinaldi, 1999; Ohtsuka-

Isoya et al., 2001; Smith et al., 2007), and some have precisely measured the number of days of 

growth that could be seen in well-preserved teeth and compared this with known dates of birth 

and death (e.g. Antoine et al., 2009). 

 The exact physiological mechanisms behind the formation of alternating dark and light 

daily bands in enamel and dentine, when viewed using transmitted and polarized light, have not 

been definitively resolved, but the pattern has been thought to result from either differing pH 

levels in the blood circulating during day versus night (and consequently incorporated into 

tissues forming during those times), or from prism/tubule orientation differences, or both 

(Okada, 1943). 

 

Striae of Retzius: Cross-striations, as short-period lines, are thought to represent daily increments 

of enamel secretion, but there are also long-period lines, called striae of Retzius or Retzius lines, 

which form at longer intervals and represent the location of the forming enamel front at the time 

of that regular disruption to the mineralization process (Retzius, 1837; Smith, 2004) (See figure 

2b). In dentine, these long-period lines are known as Andresen lines, and they form with the 

same periodicity as do their enamel counterparts (Dean and Scandrett, 1996). The phenomena 

regulating the formation of these long-period structures are not clearly understood, though many 

mechanisms have been proposed for their origin, including episodes of hypomineralization, 

hypermineralization, or prism re-orientation (reviewed in Risnes, 1990). The Retzius lines in the 

imbricational enamel also manifest on the tooth surface as perikymata, or alternating ridges and 

grooves running around the outside of the crown (Boyde, 1964).                                                                                                                                                                                                                               
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 Figure 2: Cellular view of enamel formation and view of periodic structures in enamel 

Figure 2a (left): Diagram of ameloblasts secreting enamel in 24-hour increments and forming enamel prisms containing daily 
cross-striations as they move toward the crown surface. EDJ is to the right of the structures pictured and the occlusal surface 
would be toward the top of the pictured structures (From Smith, 2004/Modified from Boyde, 1989) . Figure 2b (right): 
Schematic of the location, orientation, and general appearance of enamel prisms (gray), Retzius lines (blue), and cross-striations 
(red) in the enamel of a typical molar crown. (From Smith, 2004) 
 

 

Periodic Variables: The regular nature with which these periodic structures form allows them to 

act as consistent repeating (periodic) variables that can be readily compared between areas of a 

tooth, between teeth of an individual, between individuals, etc.  

  

Daily Secretion Rate (DSR): Both types of daily forming structures, cross-striations in enamel 

and von Ebner’s lines in dentine, are visible in thin sections via polarized/transmitted light 

(Boyd, 1982; Smith, 2006), and they vary in their distance apart based upon the amount of daily 

growth taking place during the formation of a given area of the tooth. In humans, average cuspal 

enamel daily secretion rate (DSR) is ~4 µm/day, though this average is slightly lower and 

slightly higher in the innermost and outermost enamel regions, respectively (Reid and Dean, 

2006; Smith et al., 2007). In chimpanzees this average cuspal daily secretion rate (CDSR) has 

been shown elsewhere to be 3.88-4.17 µm/day (Smith et al., 2007). DSR also increases from 
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inner through outer enamel and decreases from cuspal through cervical enamel (Beynon et al., 

1991b; Macho and Wood, 1995; Reid et al., 1998). The DSR in dentine also increases from the 

earliest to latest forming areas (Dean and Scandrett, 1996).  

  

Retzius Periodicity and Number: Counting the number of daily cross-striations between adjacent 

pairs of Retzius lines reveals the periodicity of these long-period structures (Shellis, 1998), and 

this interval is consistent between all areas of a tooth and between all teeth of an individual 

(FitzGerald, 1998), but can vary between six and twelve days in humans (Risnes, 1998), and has 

been previously shown to vary from six to nine days in chimpanzees (Schwartz et al., 2001 and 

Smith et al., 2007). Retzius number (R#) is the full count of how many Retzius lines make up the 

length of the imbricational enamel, starting at the first stria to reach the crown surface as a 

perikyma and ending with the last stria formed in the cervical enamel. 

 

Cusp-Specific Total Crown Formation Time: Once the number and periodicity of the striae of 

Retzius have been obtained, the calculation of imbricational formation time (IFT) becomes 

possible (Antoine et al., 2009). To do so, cross striations are counted between adjacent Retzius 

lines to assess Retzius periodicity (RP), and Retzius lines are counted and multiplied by this 

periodicity, revealing the full number of days it took to form that area of the crown. There are 

many factors making this difficult, however, from identifying Retzius lines clearly, to being able 

to count the cross striations in a given area of a thin section. Retzius lines also sometimes 

converge at the tooth's surface (Dean and Scandrett, 1996), so RP is more accurately assessed in 

enamel that is not directly at the surface of the crown. 

         Hominoid Retzius periodicities (RP) range from 4-12 days, with modern humans 

showing a very wide range of 6-12 days, with a mean and mode of eight. Few studies have 
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assessed total crown formation time (TFT) directly for fossil hominins, and many use estimates 

obtained by counting perikymata on the crown surface and calculating formation time using the 

human modal RP (eight). This method can be misleading however (Smith, 2008), since a one-

day difference in RP could result in an over- or underestimate of formation time of more than 

four months. This means that if the modal value of eight is used to estimate molar TFT using 

perikymata counts, but the actual periodicity is 12, this would lead to an underestimation of 

crown formation time of up to 1.4 years (based on a maximum R# of 126 from a chimpanzee M3 

from this study). Directly measuring RP and R# of fossil hominin individuals is thus likely to 

yield more informative results than mean or modal estimates pooled from the data of other 

individuals or other taxa. Long-period lines in enamel and dentine are often easily measured in 

histological sections or on surface enamel, due to their distinct appearance, but other features 

may obscure them. For this reason, Dean (1987) suggests counting only those that reach the 

surface as perikymata to be true Retzius lines, though convergence at crown surfaces can 

complicate this. 

  

Irregular Structures: Alongside, and often superimposed upon regular periodic structures, 

irregular structures can also be seen within dental tissues. Accentuated lines form in enamel in 

response to growth disturbances that result from dietary change, illness, physical or 

psychological trauma, etc. and the corresponding lines in dentine are called Owen’s lines (Dean 

et al., 1993). The neonatal line is one such accentuated line that forms at birth (Rushton, 1933; 

Schour 1936), and is present in the enamel and dentine of all deciduous teeth, since they all 

begin forming in utero. The various cusps of the permanent M1 also start mineralizing 8-12 

weeks before birth in humans (Christensen and Kraus, 1965) and 4-6 weeks before birth in 
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chimpanzees (Reid et al., 1998). The neonatal line is often also visible in this tooth, since its 

appearance may result from a decreased level of calcium in the plasma during the first 48 hours 

after birth (hypocalcaemia) (Nóren, 1984) and may also result from the trauma of birth itself 

(Gustafson and Gustafson, 1967; Eli et al., 1989). It can be recognized because it divides the 

prenatal enamel, which contains no striae of Retzius, from the rest of the crown (discussed in 

Schour, 1936). Subsequent accentuated lines, visible in enamel and dentine, can also be matched 

between developmentally overlapping teeth (Dean et al., 1993; Dirks, et al., 2002), allowing an 

accurate chronology of crown and root formation to be obtained, and the degree in overlap 

between crown formation ages to be determined, since the absolute ages of these irregular 

growth disturbances can be obtained using the periodic structures that occur alongside them 

(Antoine et al., 2009). 

 Because accentuated lines often form in response to stresses occurring at transitional 

times while tradeoffs take place in the allocation of energy between growth, reproduction, and 

somatic maintenance such as birth (Gustafson and Gustafson, 1967), weaning (Rose et al., 1978; 

Dirks et al., 2010), and, in humans, parturition (Dean and Elamin, 2014), these structures become 

important indicators of the timing of life history events as recorded in dental tissues. 

  

Life History: Studies of life history theory in living mammals (reviewed in Bogin, 1990; 

Schwartz, 2012) have investigated the relationships between 1) an organism’s ecological context, 

2) its energy investment in growth, reproduction, and somatic maintenance, and 3) variables such 

as brain and body mass and dental development, which, at higher taxonomic levels, are 

correlated with life history events or milestones (e.g. Harvey and Clutton- Brock, 1985; Charnov, 

1991). Life history events themselves (e.g. gestation length, age at weaning, age at first 
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reproduction, etc.) are often referred to as life history variables, while other somatic measures, 

such as body size, brain size, and dental development, which have been shown to be broadly 

linked with the life history variables, have been called life history-related variables (Robson and 

Wood, 2008). Life history-related variables can be used to infer the timing of life history 

variables in taxa or individuals for which life history cannot be directly observed, such as for 

fossil taxa, and dental deveopment is used most often, since teeth preserve so well in the fossil 

record. 

 Dental development, specifically the age at M1 emergence, is correlated with age at 

weaning and sexual maturity in a study across 21 primates (Smith, 1989), however, within 

species, this relationship is not as clear. Gorillas, orangutans, and chimpanzees (Robson and 

Wood, 2008; Smith et al., 2013) emerge their M1s before they have been observed to complete 

weaning, and even at the species level, such as between mountain and lowland gorillas (Watts, 

1991; Robbins et al., 2006), there is a great deal of variation in this relationship. Directly 

measuring how much the weaning process itself varies within extant hominoid species, 

subspecies, and even populations, would go a long way toward understanding the links that can 

and cannot be made between dental development and the weaning process of closely related 

fossil hominins. 

 

Wild versus captive life history and dental development: There has been some debate about the 

importance of using only wild chimpanzee dental developmental data for comparisons with fossil 

hominins, however, much of this debate hinges on the the fact that there are only a few estimates 

of M1 emergence age from wild chimpanzees, and such a small sample in unlikely to show the 

true range of variation in even a subspecies, much less the species. Two studies on Kanyawara 



 18 

chimpanzees (Smith et al., 2013 and Machanda et al., 2015) contain most of the oberved wild 

chimpanzee tooth emergence data currently available. One additional study by Zihlman et al. 

(2004), calculated maxillary M1 emergence ages for several chimpanzees (Pan troglodytes 

verus) from the Taï Forest, but there has been some debate about the accuracy of these estimates, 

given the misidentification of at least one of the individuals in question, and lack of precise dates 

of death for several individuals (Smith et al., 2010). Reevaluations of those M1 emergence 

estimates that were subsequently performed by Smith and colleagues, concluded that the original 

M1 emergence ages were not actually significantly later than those of captive chimpanzees, as 

Zihlman and colleagues estimated.  

  

Weaning: Weaning is a process consisting of multiple stages that can vary in age at onset and 

duration (Lee, 1996). Such variation, especially in the age at weaning completion, may be linked 

to later life history variables for the offspring, such as age at menarche and first reproduction 

(Lee, 2010), as well as somatic growth rate and adult body size (Lee, 1996), and even mortality 

risk due to the immunological role played by nursing (McDade, 2003; Humphrey, 2010). In sum, 

the age at which a mammal is fully weaned (i.e. reaches nutritional independence) can 

potentially affect the overall pace of its life history and ultimately its evolutionary trajectory.  

 The weaning process like other life history events, invariably presents a number of 

sources of stress. This can start early on if samples of adult foods are difficult for an infant’s 

physiology to digest (Dirks, 2002); in addition, external water sources may contain novel 

pathogens; and the psychological stresses of being denied access to nursing may also take its toll 

(reviewed in Dirks, 2002). All such interruptions to consistent nutritional intake or processing 

will result in disruptions to normal growth, which are registered in all of the dental tissues 
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forming at that time (Boyde, 1963; Beynon et al., 1991, 1998b; Bowman, 1998; Dirks, 1998; 

Reid et al., 1998a).  

 Traditionally, mandibular first molar (M1) emergence age has been used as a proxy for 

weaning age, because of the correlation between these events across 21 primate species (Smith, 

1992), but recent observational studies of wild great apes have shown that nursing is far from 

over once the infant’s first molars begin to emerge into the mouth (Smith, 2013; Macho and Lee-

Thorp, 2014; Smith et al., 2017). This is the first discordance between M1 emergence and 

weaning completion that needs to be considered.  

 The second misalignment between these events is the difference between the age that 

weaning completion is registered in the tissues or excreta (e.g. feces) of chimpanzee infants, and 

how long after that point they continue to be observed on the nipple. Badescu et al. (2017) 

tracked the fecal nitrogen (δ15N) and carbon (δ13C) trophic offsets between Ngogo chimpanzee 

mothers and infants, which revealed that a number of factors can contribute to the discordance 

between observational field studies of weaning and the actual nutritive intake by the infant. One 

complicating factor is that nipple contact can occur without suckling taking place (comfort 

nursing) (Martin, 1984; Badescu et al., 2017), and there can also be suckling without milk flow 

occurring, and with no significant nutritive transfer happening (Wolff, 1968; Woolridge, 1986). 

Another issue is that the mean age at which chimpanzee infant δ15N trophic levels reach 

equilibrium with the mother (~age 4-4.5 years) – ostensibly indicating the end of the weaning 

process – is still many months after the mean age at M1 emergence of 3.2 years in wild (Smith et 

al, 2015) and 3.3 years in captive chimpanzees (Nissen and Reisen, 1964; Conroy and Mahoney, 

1991; Kuykendall et al., 1992). Due to these misalignments between the late cessation of 

suckling behaviors, the somewhat earlier point at physiological weaning completion, and the 
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much earlier age at M1 emergence, it may be that different point in the eruption process, namely 

the point at which the first molars reach functional occlusion, up to six months after emergence, 

would serve as a useful dental proxy to mark the end of the weaning process and nutritional 

independence (Dean and Kelley, 2012). 

 

Seasonal and sex-based stresses: Stresses associated with habitat seasonality (e.g. seasonal food 

availability and seasonal breeding), may also manifest in growth disturbances in the form of 

accentuated lines (Dirks, 1998: Dirks et al., 2002), although this relationship is less clear. There 

can also be differences in the types and timing of stresses experienced by males and females over 

the course of their lives, beginning with differential maternal investment during the weaning 

process, such as that seen in chacma baboons (Cheney et al., 2004), anubis baboons (Dirks et al., 

2010), western lowland gorillas (Krishna et al., 2008), and lion-tailed macaques (Nowell and 

Fletcher, 2007). Disentangling the patterns of accentuated lines forming due to life history 

stresses, particularly when they differ based on sex, from those occurring due to seasonally-

induced stress, can complicate efforts to use dental tissue structures to assess the pace and pattern 

of life history events (e.g., Dirks et al. 2010). This study documents accentuated line ages and 

frequencies for seven Ugandan chimpanzee individuals and compares their stress record and 

tooth growth rates with points within the eruption process, as described in the literature, to 

determine whether tooth emergence and occlusion ages, and associated life history events, can 

potentially be predicted using these structural phenomena.  
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Study site: Kibale National Park contains moist evergreen forest, including lowland and montane 

forest. The density of old growth forest differs between the two research sites in the park, known 

as Ngogo and Kanyawara (Struhsaker, 1997; Wood et al., 2017). This is because selective 

logging occurred at Kanyawara, but not at Ngogo (Struhsaker, 1997). The elevation at Ngogo is 

between 1250 and 1470 meters, and Kanyawara is slightly higher (Struhsaker, 1997). Ngogo and 

Kanyawara experience annual rainfall of approximately 1500 millimeters (Wood et al., 2017). 

 The 35 km2 Ngogo study area does not experience high levels of variability in the food 

supply (Watts, et al., 2012) faced by other chimpanzees, e.g., Täi Forest, Côte d’Ivoire (Pan 

troglodytes verus) (Boesch and Boesch-Acherman, 2000). Even the chimpanzees at Kanyawara 

(also P. t. schweinfurthii), which are only 10 km away from Ngogo, experience longer and more 

frequent times of fruit scarcity than the chimpanzees at Ngogo (Wood et al., 2017). The 

abundance of important fruit trees relied upon by the Ngogo chimpanzees, e.g. Pterygota 

mildbraedii and Ficus mucuso (Struhsaker, 1997; Watts et al., 2006) remains fairly consistent, 

allowing the Ngogo chimpanzees to maintain a relatively uninterrupted level of nutritional input 

throughout the year (Wood et al., 2017). F. mucuso in particular, can produce a large fruit crop at  

any time of year from each stem, making periods of fruit scarcity a shorter and rarer occurrence  

than at other sites (Watts et al., 2012). This relative fruit abundance means that they are able to 

maintain a high level of net energy intake year-to-year (Potts et al., 2011). 

 There are also no large-bodied predators at Ngogo, unlike the leopards at Taï (Boesch, 

1991), and lions at Mahale (Tsukahara, 1993), and as of 2016, there had also been no major 

documented disease outbreaks in the Ngogo community (Wood et al., 2017), again setting them 

apart from populations such as Mahale (Nishida et al., 2003), Gombe (Pusey et al., 2008; 

Williams et al., 2008; Lonsdorf et al., 2011), and Taï (Boesch and Boesch-Achermann, 2000; 
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Leendertz et al., 2004; Kondgen et al., 2008). All of these conditions combine to make Ngogo a 

high quality environment that has made the community there the largest one currently known, 

with over 200 individuals who display survivorship rates comparable to human hunter-gatherer 

groups (Wood et al., 2017). 

 Eastern chimpanzees (P.t. schweinfurthii) also live in Bwindi Impenetrable National Park 

(BINP), Uganda and experience different challenges than do their conspecifics at Ngogo and 

Kanyawara, due in part to the fact that they are sympatric with mountain gorillas (Gorilla gorilla 

beringei). Bwindi lies between 2400-2600 meters above sea level (Stanford and Nkurunungi, 

2003), a much higher elevation than the chimpanzees in Kibale National Park. The area is made 

up of contiguous, moist tropical montane rainforest that receives between 1100-2400 millimeters 

of rainfall annually (Carlson and Crowley, 2016). Its two dry seasons last from May to July and 

from late December to February (Stanford and Nkurunungi, 2003). The chimpanzees and gorillas 

at Bwindi will both eat fruit when it is available to them, but they mostly avoid direct contest 

competition (but see Stanford and Nkurunungi, 2003) for the same fruit resources by responding 

to times of fruit scarcity in different ways. During periods of fruit abundance, chimpanzees  

forage in larger groups, feeding largely on specific fruits (mainly varieties of Ficus, similar to the  

preferred food at Ngogo). During times of fruit scarcity, they forage in smaller groups, which 

move far apart to minimize resource competition (Stanford and Nkurunungi, 2003).  

 

This study addresses the following three issues: 

 1) How do the dental developmental variables from these different communities of Pan 

troglodytes schweinfurthii inform the current view of dental developmental variability 

between wild and captive apes?     
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Prediction: M1 emergence ages inferred for the sample overall, including the four communities 

from this study and the Kanyawara chimpanzees, will fall within the range inferred from captive 

chimpanzees. This is to be expected because previous studies have placed the Kanyawara 

chimpanzee M1 emergences ages squarely within the mean captive values (Smith et al., 2013; 

Machanda et al., 2015), instead of several years later, as was assumed to be the norm for wild 

chimpanzees overall, based upon several individuals from the Taï Forest (Zihlman et al., 2004). 

Ages at death and M1 emergence ages were later remeasured for those Taï chimpanzees, and 

found to fall within the captive range (Smith et al., 2010; Smith and Boesch, 2011).    

Significance: This study will add several much needed data points to the debate over whether 

there is a substantive difference in dental development, particularly emergence ages, between 

wild and captive chimpanzees (See Zihlman et al., 2004; Smith et al., 2013), since the majority 

of data currently available for the dental formation and eruption processes comes from captive 

chimpanzees (Smith et al., 2007) or from musuem collections of mixed or unknown attribution 

and origin. Understanding the level of variability in dental developmental parameters to be 

expected among members of the same subspecies that developed in different ecological 

conditions is a critical factor for understanding life history variability among fossil hominins 

from their dental remains.  

 

2) Does the M1 root growth spurt in the chimpanzees in this sample appear to coincide with 

M1 emergence or occlusion?   

Prediction: If M1 root growth spurt coincides with reaching functional occlusion, and not with 

emergence, the growth spurt of the Ngogo chimpanzee M1s should fall after the known age range 

of M1 emergence for the Kanyawara individuals. If, instead, the growth spurt coincides with 
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emergence, it is likely that there would be a certain amount of overlap between the root growth 

spurt ages in the Ngogo chimpanzees and the Kanyawara range of M1 emergence. 

 A second prediction is that the Ngogo chimpanzees from this sample will show overall 

later estimated M1 emergence ages than the range for known Kanyawara chimpanzees, and the 

extra-group Kibale males will not. This is due to the low extrinsic mortality and consistent, high 

quality resource base at Ngogo (Wood et al, 2017), compared with those of the other neighboring 

communities. 

Significance: Being able to link chimpanzee M1 root growth spurt with occlusion opens up 

numerous possibilities for future studies seeking to untangle dental development and life history. 

On the one hand, if chimpanzee M1s reach occlusion just prior to weaning completion, as this 

study predicts, then being able to locate the growth spurt presents a direct structural proxy for 

chimpanzee weaning completion that can be measured simply by sectioning and imaging the M1, 

even if that tooth is not in the mandible and is the only tooth found. 

 On the other hand, even if age at M1 emergence is still found to be a better predictor of  

weaning completion age than the growth spurt turns out to be, (once we have an appropriate  

sample in which to test this), then M1 emergence age ranges can still be inferred from the root 

growth spurt in individuals for whom emergence can no longer be directly observed or measured 

(i.e. adults). Either way, it greatly increases the number of individuals for which we will be able 

to link dental emergence and the weaning process, which would be quite beneficial for studies of 

life history in living apes, and possibly even for fossil taxa.   

 

3) How do the M1 root growth spurt ages of the Ngogo chimpanzees relate to the mean age 

at weaning completion determined for current Ngogo infants using a fecal isotope study? 
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Prediction: If the M1 root growth spurt in the Ngogo chimpanzees coincides with, or slightly 

preceeds, the age at weaning completion, then we would expect their growth spurts to fall just 

before 4.0-4.5 years, since this is the age range for Ngogo chimpanzee nutritional independence 

determined by Badescu et al. (2017) using fecal δ15N and δ13C values.  

Significance: Recent studies show a discordance between observed weaning behaviors and 

records of nutritional input in various tissues of wild great apes (i.e. “weaning completion” is 

often defined as “cessation of nipple contact” or “last successful suckle” (Sellen, 2007; 2009), 

whereas stable isotope studies of hair and feces show gorillas and chimpanzees reaching 

nutritional independence long before they cease actions (e.g. latching on) that are classified as 

nursing behaviors (e.g. Reitsema, 2012; Badescu et al., 2017)). From this it follows that observed 

time spent nursing is not a reliable indicator of when the weaning process is complete, and a 

different proxy must be used for this important life history milestone. The fecal isotope study of 

the Ngogo chimpanzee mothers and infants provides a way to precisely measure the timing of 

the changes in an infant’s diet that indicate it is no longer receiving nutritional input from its  

mother, whether it appears to be nursing or not (Badescu et al., 2017).  

 If the root growth spurt data from the Ngogo chimpanzees in this study support the 

weaning completion age range estimate from the fecal isotope study, this suggests that this 

growth spurt age could potentially be used to infer weaning completion age in additional Ngogo 

individuals for whom infant fecal isotope data is unavailable, once they are adults or deceased. 

  

Materials: The dentitions of eight adult chimpanzees (Pan troglodytes schweinfurthii) were 

analyzed in this study. Seven of the chimpanzees were from Kibale National Park, Uganda, and 

one was from Bwindi Impenetrable National Park, Uganda. The remains of all individuals were 

housed at Makerere University’s Zoology Museum (MUZM) in Kampala, Uganda. In 
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chimpanzees, the first through third molar crowns (M1-M3) are known to overlap in the timing 

of their formation (Anemone et al., 1996; Kuykendall and Conroy, 1996; Reid et al., 1998). 

Those three teeth were thus extracted on site from all individuals except three, and exported to 

the U.S. for processing and analysis. For one individual (NG003) there is no M1 present, and so 

the P4, M2, and M3 were selected, however, only relative ages could be determined for this 

individual’s accentuated lines as absolute ages would require the presence of an M1. For two 

other individuals, there is no M2 present, so the P4 was used instead, since it has been shown to 

form over approximately the same period as the M2 in chimpanzees (Reid et al., 1998).  

 Identifying information exists for seven of the eight individuals in the sample (see Table 

2). Each individual’s sex is known. Approximate dates of death are known for seven of the eight 

chimpanzees. Dates of birth have been estimated for the five Ngogo chimpanzees using genetic 

data, which provides geneological information regarding individual relationships, combined with 

observations of the behavior and physical condition of animals when first observed (Wood et al., 

2017).  Six of the eight individuals are male, while one Ngogo chimpanzee and the single 

individual from Bwindi are female. All of the individuals died between 2002 and 2014. NG001 

and NG002 are unnamed extragroup males killed by the Ngogo males during episodes of 

intergroup aggression (Watts et al., 2006). Another male “Grappelli” (NG003), died as a result of 

a within-group coalitionary attack (Watts, 2004). “Stravinsky” (NG004) was an Ngogo male who 

was a victim of intergroup aggression, and he was the maternal brother of “Tatum” (NG005), 

whose cause of death is unknown (Ngogo Chimpanzee Project unpublished data). “Webster” 

(NG013) may have died from respiratory disease (Wood et al., 2017). Causes of death for the 

Bwindi female (MUZM2625) and the single Ngogo female “Carmen” (NG012) are not known.  
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Table 2: Chimpanzee individuals included in this study 

Individual Origin Sex Name Estimated 
age at death 

Date and cause of 
death 

Teeth Used 

NG001 Northeastern community, 
Kibale National Park, Uganda2 

M Unknown Adult 6-1-02/ intergroup 
aggression2 

M1, M2, M3 

NG002 Wantabu community, Kibale 
National Park, Uganda2 

M Unknown Adult 11-23-02/ intergroup 
aggression2 

M1, M2, M3 

NG003 Ngogo, Kibale National Park, 
Uganda3 

M “Grappelli” 20 10-30-02/within-
group aggression3 

P4, M2, M3 

NG004 Ngogo, Kibale National Park, 
Uganda1 

M “Stravinsky” 32 1-25-06/ intergroup 
aggression1 

M1, M2, M3 

NG005 Ngogo, Kibale National Park, 
Uganda1 

M “Tatum” 23 2009/unknown1 M1, P4, M3 

NG012 Ngogo, Kibale National Park, 
Uganda1 

F “Carmen” 51 Sept 2013/ unknown M1, M2, M3 

NG013 Ngogo, Kibale National Park, 
Uganda1 

M “Webster” 26 March 2014/ 
respiratory disease?3 

M1, M2, M3 

MUZM2625 Bwindi Impenetrable Forest, 
Uganda 

F Unknown Adult Unknown/unknown M1, P4, M3 

Table 2: Identifying information for all eight chimpanzees used in this study. In cases where dates of birth are unknown, a 
general age category is used (i.e., “Adult”). The “NG” indicates an individual from or associated with the Ngogo population, 
while “MUZM” refers to the Makarere University’s Zoology Museum. “?” indicates reported uncertainty about the cause of 
death. (1Ngogo Chimpanzee Project unpublished data (1995-2016), 2Watts et al. (2006), 3Wood et al. (2017)) 

 

 

The fact that these were all adult individuals, and many were older adults, means that 

many of their teeth were lightly to moderately worn, making them less than ideal for histological  

sectioning. However, in each individual selected, at least one cusp, usually the mesiobuccal (mb) 

or mesiopalatal (mp), is much less worn than the others. Since these mb and mp cusps have 

previously been shown to begin mineralizing earliest and complete formation latest in the 

mandibular and maxillary molars of chimpanzees, respectively (Reid et al., 1998), the presence 

of one or the other of these cusps meant that most of the early forming enamel from each tooth 

could be documented, and in the case of the M1, it meant that the neonatal line could be 

identified in most cases. Several other individuals are present in this collection but were not 
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selected for analysis due to a lack of the specific teeth needed for this study. The work of Reid et 

al. (1998) provided a framework for the amount of overlap between various simultaneously 

forming crowns that should be expected, which maximized the number of individuals from this 

collection that could be used. Their findings, that chimpanzee M1 crowns overlap in formation 

timing not just with the M2, but also with the P3 and P4 (Reid et al., 1998), meant that if the M2 

was missing, one of the other two teeth could be used as a substitute and still allow the creation 

of an overlapping crown formation timeline. The only individuals excluded were those that were 

missing those intervening teeth (or, in a few cases, those missing their M1s and/or M3s). 

 

Methods: Embedding, sectioning, and imaging: The three selected teeth of all eight 

chimpanzees were histologically sectioned through the mesial cusps, using modified established 

methods (Schwartz et al., 2006): Once the teeth were gently cleaned using dental tools and 

distilled water (dH20), and then dried and photographed, the ideal plane of section for each tooth 

was identified and marked in order to capture the earliest forming enamel at the tip of the dentine 

horn, and as much of the cuspal and cervical ends of the crown as was present. The teeth were  

then embedded in Epo-Tek epoxy and cured overnight. 

         Each tooth was sectioned as directly as possible through the ideal plane in order to create 

two thin sections – one from each sectioned half – that mirrored each other as closely as possible. 

A certain amount of section obiquity often still results from this process (Dean and Kelley, 

2012), but care was taken to avoid it as much as possible. To minimize the amount of material 

lost, a 150 micron-thick diamond embedded saw blade was used on an Isomet 1000 high-speed 

precision cutting saw. The two halves were lightly lapped to eliminate blade marks, removing as 

little material as possible, and then highly polished in a 3-micron (µm) aluminum oxide particle 
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suspension, ultrasonicated to remove aluminum particles, and dried. The half that captured the 

greatest extent of crown and root formation was chosen for imaging and the other half was kept 

for the later stage of the study. The chosen tooth half was then mounted with epoxy to a 

microscope slide under pressure, with care taken to avoid the creation of bubbles, which can 

obscure important microstructures. Thin sections were then created from each mounted tooth 

half, again using the thin saw blade. The mounted thin sections were then ground and lapped to a 

thickness of ~100±10 microns (µm) and again polished in an aluminum oxide suspension and 

ultrasonicated, however coverslips were not applied with mounting medium. Instead, a cover slip 

was temporarily applied using a drop of dH20 and removed after imaging. 

         Sections were imaged in the University of Michigan Department of Anthropology using a 

Nikon NIU polarized light microscope in conjunction with Bioquant Osteo 2016 imaging 

software. Counts and measures of microstructures were made visually using the microscope 

itself, and on photomontages created by the Bioquant software. 

 

Daily secretion rate: DSR was determined for various areas of the crown (referred to in this 

study as “zones”), since this rate differs between inner, middle and outer enamel, as well as 

between cuspal, lateral, and cervical enamel (Smith, 2008) (see Figure 2a). In each crown zone 

(e.g. inner cuspal, cuspal middle, etc.), distances between consecutive daily cross-striations were 

measured using a 40x objective, often by measuring the length of a stretch of these daily 

increments (See Figure 4a and 4b) and dividing by the number of cross-striations, minus one. 

This was done in at least three places in each zone to obtain average DSR values for each zone in 

µm. These measurements were then compared separately in order to show how these rates 

change between different zones, but were also averaged to obtain overall DSR for the cuspal and 
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imbricational enamel (CDSR and IDSR). DSR was also measured within similar zones in the 

dentine, but extended to include all areas of the root where these structures could be identified 

(See Appendix for raw data.) 

 

Retzius periodicity (RP): This value was obtained first by eye, using the 20x objective to count 

the number of daily cross-striations between adjacent Retzius lines to obtain the number of daily 

increments of growth. This process was repeated in as many areas of the imbricational enamel 

where the daily cross-striations could be clearly discerned and counted between Retzius lines 

(usually between three and five different areas). Once established by direct counts, the RP was 

confirmed by measuring the distance between adjacent pairs of Retzius lines (Figure 4c) and 

dividing this distance by the local DSR (e.g. if the lines were visible in the middle imbricational 

zone, the MIDSR was used). These values were compared with the counts taken by eye, and then 

compared between cusps of the same tooth and between different teeth from the same individual 

to ensure intra- and intertooth consistency.  

 

Retzius line number (R#): This value was determined by eye using the microscope, with both the  

4x and 10x and objectives. Starting with the first Retzius line to reach the lateral crown surface  

as a perikyma (to which line 1b extends in Figure 3b), all Retzius lines that subsequently reached 

the crown surface were counted, moving cervically (See Figure 4d). This total number was 

determined on three occasions and the results were averaged to minimize intra-observer error.  

 

Total formation time (TFT): Using the previous three enamel variables, the minimum cusp-

specific formation times were determined for each tooth. This was done by first multiplying the 
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RP by the R# to obtain the total number of days it took to form the imbricational enamel (IFT). 

This was then added to the total cuspal formation time (CFT). CFT was determined by locating 

the first Retzius line to reach the crown surface and by picking an enamel prism intersecting it 

that was clear enough that it could be traced back to the point on the EDJ where it originated 

(line 1b in Figure 3b, modified from Reid et al., 1998). This prism length was measured and then 

divided by the average CDSR to determine the number of days it took to form this prism before 

the formation of that first imbricational Retzius line. 

 

Figure 3a-b: Diagrams illustrating general periodic and accentuated variable measurement guides 

Figure 3a: The “zones” dividing up cuspal, lateral, and cervical enamel (left) and Figure 3b: method used to age accentuated 
lines (right) (Both modified from Reid et al., 1998)  

 

However, it was also necessary to include the formation time of the earliest forming 

enamel, which would not have been included by only measuring the length of a prism 

intersecting the first imbricational Retzius line. To account for this, starting at the point on the 

EDJ where the line 1b prism originated, a line was drawn up and over the dentine horn to include 

the earliest forming enamel, including any prenatal enamel in the case of the M1. The length of a 
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prism stretching between the tip of the dentine horn and the occlusal-most extent of this line was 

then measured (line 1a in Figure 3b) and divided by the ICDSR to determine the number of days 

it took that area to form, and this number was added to the remaining CFT to obtain the total 

number of days it took to form all cuspal enamel captured from that particular section. When this 

CFT was added to the IFT, the TFT could be estimated. 

To account for prism decussation, or the wavy, undulating path enamel prisms take 

within certain areas of enamel, total linear cuspal thickness is usually multiplied by 1.15, as per 

the standard method (Risnes, 1998), however the measuring tools available in Bioquant Osteo 

allowed for the entire length of the prism to be measured, and prisms showing little decussation 

were chosen wherever possible, so value transformations were not performed in such cases. It is 

also unknown how much decussation is actually present in non-human primate molar cuspal 

enamel, and the standard used by Risnes may only be useful for human cuspal enamel (Smith et 

al., 2007). 

 In several of the teeth, small portions of the cervical enamel were broken off, so the final 

forming Retzius lines could not be counted in these individuals. To offset this lack, estimates can 

be made for the number of missing Retzius lines, but the final IFTs reported here are based only 

upon what was actually present, so the final TFTs reported in Table 3 are minimum estimates. 

Variation in each of these developmental variables was compared between the eight individuals,  

but results must be interpreted with caution due to this damage and missing material.  

 

Accentuated lines: Once the periodic structures were measured and the resulting developmental 

variables were determined, they were used to age the accentuated lines. The neonatal line in the 

M1 (Figure 4e) supplied a “zero point” from which to count up and thereby assess chronological 
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age ranges in later forming areas of the tooth crown and in subsequently forming teeth. The next 

accentuated line to appear in the M1 was aged by measuring the maximum distance along a 

prism, or a tubule in dentine, between the neonatal line and that first accentuated line (Figure 4f). 

This distance was divided by the local DSR to obtain the number of days since birth that passed 

before the formation of that line, since a continuous sequence of cross striations could rarely be 

counted between these lines. The next accentuated line to form could then be aged by following 

the first accentuated line to its origin on the EDJ (line 3 in Figure 3b) and measuring the length 

of a prism (line 4 in Figure 3b) from that point to the next forming accentuated line and repeating 

the process of dividing the length by the local DSR. That number of days could then be added to 

the age of the first accentuated line to obtain the absolute age of the second line, and this process 

could then be repeated for all other accentuated lines in the enamel and the dentine. 

 

Cross-matching: All subsequent accentuated lines in the M1 were then aged (see Figure 9), and 

when a recognizable sequence of these lines could be identified in the earlier forming enamel of 

the subsequent tooth (M2 or P4), those areas of the two teeth could be cross-matched (registered) 

to one another, so that the chronology could be continued into M2 formation, and the process 

repeated between M2 and M3. In this way, a complete developmental chronology of these teeth 

was created for seven of the eight individuals, and the minimum amount of enamel 

developmental overlap was estimated. The corresponding variables in dentine were also assessed 

in several cases where the accentuated lines were more visible in dentine than in enamel (See 

Figure 4g). 
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Figure 4: Periodic and accentuated enamel variables obtained from chimpanzee molars in this study 

 
Figure 4: a-highlighted daily cross-striations, b-each red line is one border of a single enamel prism, from which enamel daily 
secretion rates (DSR) can be obtained by measuring the length of that stretch of prism and dividing the length by the number of 
daily growth increments that can be seen along it, c-measured Retzius line periodicity (RP), d- Retzius line number (R#), e-
highlighted accentuated lines in the M1 of NG001, including the neonatal line, and numerous accentuated lines, f-measured 
distance along a prism between neonatal line and first accentuated line in NG005 M1, g-corresponding accentuated lines in 
enamel (brown) and dentine (blue) in NG001 M2.  
 

Extension rate (ER): In several of the crowns, it was not possible to count all of the Retzius lines  

of the lateral enamel due to cracking or breaking away of portions of the enamel, and/or a certain 

amount of the cuspal enamel had been worn away, making full estimates of cuspal and/or 

imbricational formation time problematic. In these cases, the extension rate was determined for 

the crown and root dentine. Strictly speaking, the extension rate refers to the rate at which new 
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enamel-forming and dentine-forming cells differentiate along the EDJ, or inner root surface, and 

are activated each day (Shellis, 1998). Practically speaking, within dentine, the extension rate 

refers to the amount of formation taking place toward the the pulp cavity versus the growth 

occuring apically, or toward the root tip.  

 To measure the ER, starting at the dentine horn, a dentine tubule was measured to a 

distance of ~200 µm into the root, or to where it intersected with an Andresen line or an 

accentuated line of Owen in that area, and that line was then followed back to the EDJ, or the 

inner root surface. (The tubule length was followed along any curvature it showed, in order to 

capture the full number of days of growth along it, as opposed to a straight-line measure, which 

would have overestimated the growth distance, perhaps intersecting with a stria significantly 

more than 200 µm into dentine growth.) Measuring how much EDJ length there was between the 

tubule's and stria’s intersections with the EDJ, or the inner root surface, provided the amount of 

newly extended crown or root that had formed during however many days passed passed within 

that 200 µm interval. The measured tubule length (~200 µm) was then divided by the previously 

established local DSR to get the number of days of formation within that interval, and then the 

extension length was divided by the number of days associated with that interval to obtain the 

extension rate for that interval of crown or root dentine. This was continued all the way down the 

crown until the apical end was reached (See Figure 5). 

 By adding together the formation times for each interval all the way down the crown and  

root, the TFT could then be estimated a second time, and this TFT also included root formation 

time (RFT). These estimates were preferentially used to measure TFTs because formation times 

obtained using enamel were limited by the damage and wear to the crowns, and because this 
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alternate method has been shown to produce accurate estimates of formation time efficiently, 

especially in teeth like these that are not ideal for sectioning, (Dean and Kelley, 2012).  

 In addition to permitting more robust estimates of TFTs, the extension rate also varies 

over the course of crown and root formation (Boyde, 1963), peaking at a particular point during 

root formation (Gleiser and Hunt, 1955; Moorees et al., 1963; Dean and Kelley, 2012), that is 

thought to be associated with either M1 emergence or functional occlusion age in chimpanzees 

(Dean and Kelley, 2012; Dean and Cole, 2013). The age at which this peak ER occurs, referred 

to here as the root growth spurt age, can then be measured and compared between individuals. 

Remeasuring the root ERs, starting at a consistent point in each M1, the cemento-enamel 

junction (CEJ), allowed this changing ER to be compared between individuals. The ages of these 

new intervals had to be obtained using the ages of the original 200 µm intervals that began in the 

crown dentine, since those could be absolutely aged using the neonatal line. 

 

Analysis: Ages at which the accentuated lines formed, numbers of accentuated lines, and 

regularity of accentuated lines (i.e., do they form with regular time intervals or more randomly), 

were all documented for members of this study, and the periodic variables used to measure them 

were compared with those of chimpanzee populations from other studies. Crown and root 

extension rates were also compared for these individuals, as well as ages at which rooth growth 

spurts occurred. Crown formation times obtained using extension rates were compared between 

individuals and with other chimpanzee populations from the literature for which this has been  

documented. Analysis of these variables were assessed qualitatively and using descriptive  

statistics, since the sample sizes were small. 

 

 



 37 

Figure 5: Dentine extension rate measurement method in the M1 of male chimpanzee “NG001” 

 
Figure 5: The top panel shows the mesiobuccal cusp of “NG001”’s left M1 at low power through transmitted/polarized light. The portion 
highlighted and enlarged on the bottom is the cervical end of the enamel – dentine junction (EDJ) and the beginning of the root dentine at the 
cemento-dentine junction (CDJ). Several dentine tubules are highlighted showing their growth up to 200 µm away from the CDJ, and the 
Andresen lines with which they intersect are followed back to their origin lower down on the CDJ.The distance between the tubule start point and 
the Andresen line origin is also highlighted along the CDJ. The inset on the bottom shows a high-powered (20x) view of the daily lines in 
dentine, called von Ebner’s lines, and these were measured to obtain DSR in dentine. 

 

 Along with dental developmental variables, I collected all available life history variables  

for the Ngogo and Kanyawara chimpanzee communities from the Kibale National Park, as well  

as for chimpanzees from Bwindi Impenetrable National Park. These are compared in Table 7. 
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Results: Tables 3-6 present cusp-specific measures of all dental developmental variables being 

compared between the three teeth of each of the eight chimpanzee individuals, as well as 

descriptive statistics for the most salient variables. Additional raw values are included in the 

Appendix. Figures 5-9 contain charts of the developmental variables and their distributions, as 

well as histological images of some of the incremental and periodic structures used to construct 

the crown formation chronologies for these individuals. For some variables, means from this 

study are compared to overall means from other studies to determine how these individuals fit 

within the overall variability in Pan. (Raw values in the Appendix) 

 

Enamel DSR: Overall DSR ranged from 3.15-6.75 µm/day, (See Appendix) with a general 

increase in values from inner to outer zones. Average CDSR for all teeth in the sample was 4.64 

± 0.39 µm/day, average IDSR was 5.0 ± 0.49 µm/day with standard deviations ranging from 

0.29-0.57 µm/day (n=24). (Table 3). For M1s considered separately, the mean CDSR value was 

4.65 µm/day (±0.36, n=7) and the mean ICDSR value was 5.45 µm/day (±0.48, n=7). The mean 

CDSR and IDSR values for the three P4s that were included (4.48 µm/day ±0.39) also fell within 

the range of these values for the three molar types. 

 

RP: Retzius periodicity for all teeth in the sample ranged from 5-6 days, with a mean of 5.38 and 

a mode of 5 (n=24). Between multiple cusps of the same tooth and between multiple teeth from 

the same individual, the periodicity was consistent. The RP in both female individuals was 6  

while the male values were 5, 5, 5, 5, 6, and 6. 
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R#: Retzius number varied widely, especially since some teeth were missing some of their final 

cervical growth increments due to breakage, so these have not been directly compared. However, 

those counts varied the least in the M1 (=82 ± 11) and the most in the M2 (=101 ± 25).  

 

TFT: Average total formation time tended to increase from the M1-M3, though the lowest 

standard deviation appeared in the M2. (Separate values listed by tooth and by individual 

included in the Appendix) These TFTs were also minimum estimates, due to the enamel damage 

and wear, so these must be interpreted with caution. 

 

Table 3: Descriptive statistics for periodic variables in enamel of all teeth of this study’s chimpanzees  

    CDSR 
(µm) 

    IDSR 
(µm) 

    RP 
(days) 

    TFT 
(days) 

  

 Tooth 𝑥           range σ  𝑥         
  

range σ 𝑥          range σ 𝑥         
  

range σ 

M1  4.65  
n=7 

4.19- 
5.13 

0.36 5.45 4.60- 
6.03 

0.48 5.38 
n=8 

5-6 0.52 646 502- 
776 

85.29 

M2  4.40  
n=6 

4.06- 
4.88 

0.29 4.50 4.03- 
5.05 

0.39 “” “” “” 781 661- 
857 

72.9 

M3 
 

4.87 
n=8 

4.20- 
5.63 

0.50 5.06 4.20- 
5.81 

0.53 “” “” “” 963 885- 
1111 

82.62 
  

P4  4.48  
(n=3) 

4.17- 
4.91 

0.39 4.64 4.28- 
5.30 

0.57 “” “” “”  N/A  N/A  N/A 

Grand Mean 4.64    3.15- 
6.75  

0.39 5 (σ= 
0.43) 

N/A  0.49 5.38  N/A N/A  N/A N/A   N/A 

 
Table 3: Means (𝑥), ranges, and standard deviations (σ) for each measure are given for each tooth, and then the grand mean (χ) is 
given for all the teeth combined from all individuals. CDSR=cuspal daily secretion rate, IDSR=imbricational daily seretion rate, 
RP=Retzius line Periodicity, TFT=total cusp-specific formation time   
          
 

Accentuated Lines: The neonatal line, as the first visible accentuated line to form in the M1, 

varied greatly in appearance, but was identifiable as the first line to appear in the inner cuspal 

enamel, close to the dentine horn. Additional accentuated lines are documented throughout M1 
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formation in Figure 9, and their frequencies and distribution throughout the crown and root are 

compared with root extension rates and M1 emergence ages. The relationship between the root 

growth spurt age and accentuated line frequency can also be seen in Figure 9. 

 
Figure 6: Cross-matching of chimpanzee M1-M3 crown development using accentuated lines 

in enamel and dentine

 
Figure 6: Photomontages taken at 40x of ~100 µm-thin sections from the mesial cusps of the RM1 (left), RM2 (middle) and RM3 
(right) of individual NG001. Prominent accentuated striae are visible in the late-forming enamel and early-forming dentine of 
RM1 and RM2 (blue lines), while another set of accentuated striae can be seen in the late-forming dentine of RM2 and early-
forming enamel of RM3 and even in the very late-forming root dentine of RM1 (not pictured). These sets of striae were used to 
cross-match these teeth and determine the extent of crown formation overlap. 
 

Cross-matching: Prominent accentuated lines forming late in the M1 were cross-matched with 

their simultaneously forming counterparts in the M2 (or the P4), and repeated for later 

accentuated lines in M2 and M3 (e.g. Figure 6). Cross-matching accentuated lines enables 

charting the extent of crown formation overlap, but because the periodic structures and variables 

were more reliably seen and measured in the dentine of many of these individuals, dentine 

extension rates were used in order to obtain the remainder of the data for the chimpanzees in this 

study.  
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Table 4: Dentine extension rate variables in the M1s of all chimpanzees in this study  
 
 
 
Individual 

 
Dentine daily 
secretion rate  
(µm/day) 

 
Peak root 
ER 
(µm/day) 

 
Root growth 
spurt age 
(days) 

 
Rooth 
growth spurt 
age (years) 

 
Total dentine 
formation 
(years) 

NG001 2.50 14.07 966 2.65 7.07 
NG002 2.60 11.18 1004 2.75 6.35 
NG004 2.40 7.96 1251 3.43 4.11** 
NG005 2.10 11.97 1441 3.95 5.52 
NG012 2.50 7.36 1617 4.43 5.33 
NG013 2.20 9.52 1569 4.30 6.84 
Ngogo mean/ 
range 

2.30/  
2.10-2.50 

9.20/ 
7.36-11.97 

1470/ 
1251-1617 

4.03/ 
3.43-4.43 

5.45** 

Kibale mean/  
range 

2.40/  
2.10-2.60 

10.34/ 
7.36-14.07 

1308/ 
966-1617 

3.59/ 
2.65-4.43 

5.87**/ 
4.11-7.07 

MUZM2625 2.10 12.11 1346 3.69 4.22** 
Overall mean/ 
range 

2.30/ 
2.10-2.60 

10.60/ 
7.36-14.07 

1313/ 
966-1617 

3.60/ 
2.65-4.43 

5.63/ 
4.11-7.07** 

Other study 
mean* n=14 

2.30/ 
N/A 

8.70/ 
6.10-10.20 

1387/ 
N/A 

3.8/ 
3.0-4.7 

N/A 

Table 4: Dentine daily secretion rates (DDSR) and peak root extension rates (ER) in µm/day are used to obtainroot growth 
spurt ages in days and years, and total crown and root formation time in years. *Taken from Dean and Kelley, 2012 **full 
root ER measurements couldn’t be made due to damage at the root apex, so total formation time is incomplete and means 
are affected by this. 

 

Dentine DSR: For of these chimpanzees’ M1s, the DSR in the 200 µm of root dentine closest to 

the EDJ and the root surface ranged from 2.1-2.6 µm/day, increasing from more cervical to more 

apical areas of the root. 

 

Dentine extension rate: The overall dentine extension rate in the M1s ranged from 3.08-14.32 

µm/day. This rate varied between different stages of dentine formation throughout the crown and 

the root (e.g. Figure 6). In stage one there was an initial velocity increase in the crown dentine, 

decreasing toward the region of the cemento-dentine junction (CDJ) in stage two, then increasing 

in stage three to a peak velocity around midway down the root, once again decreasing thereafter 

in stage four. Peak root extension rate/velocity averaged 10.6 µm/day, ranging from 7.36-14.07. 

This is compared with the average peak extension rates (8.70) from 14 chimpanzee M1s from 

Dean and Kelley (2012) in Table 4 below. The changing extension rate was measured in two 

different trials, and the pattern of change compared between the two trials, in order to ensure the 
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peak in root growth rates lined up, and that the pattern of change was consistent (see charts in 

Figure 7). Conducting two separate trials also minimized intra-observer error and demonstrated 

the reproducibility of the results. 

 

Root growth spurt age:  The age at which the root growth spurt occurred in the M1 root dentine 

averaged 3.60 years, with a range of 2.65 - 4.43 years in this sample overall. If the Kibale 

chimpanzees are examined separately, they still show a mean root growth spurt age of 3.59 years 

(range = 2.65 - 4.43 years) and the Ngogo chimpanzees themselves have a mean root growth 

spurt age of 4.03 (range = 3.43 - 4.43 years). Root growth spurt ages of the chimpanzees used by 

Dean and Kelley (2012) are also listed in Table 4 (3.80 years, n = 14). All three dentine variables 

were similar between studies.  

 
Figure 7: Extension rate variation over crown and root formation in seven chimpanzee M1s 
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             Figure 7: Crown and root extension rates (in µm/day) were measured on two different days in order to minimize intra-observer  

  error, and the two trials are overlaid in light and dark blue to show their similarity in pattern. The x-axis shows each successively  
  measured 200 µm interval taken from earliest forming dentine in the crown (interval 1) to the latest forming area of the root that  
  was preserved and measurable. Intervals have not been compared to absolute age in this figure, instead they have been arranged  
  to show similarity in the pattern of extension rate change between the two trials.  The y-axis shows the dentine extension rates in  
  µm/day. Crown and root dentine areseparated by the dashed line and the peak in the root dentine extension rate is highlighted by  
  a red line. The peaks in the two trialswere compared for consistency. Charts are for the M1s only. 

Varia;on	in	crown	and	root	den;ne	extension	rate	in	the	M1s	of	2	chimpanzees	(Pan	troglodytes	schweinfurthii)	
	

														 	 	 	 	 		

D
e
n
;
n
e
	E
xt
e
n
si
o
n
	R
a
te
	

	
D
e
n
;
n
e
	E
xt
e
n
si
o
n
	R
a
te
	

	

	

”NG004”	trials	1	&	2	overlaid	

	

	

																	

	

	

									Peak	root	ER	à						à	

	Crown	den;ne																																																				Root	den;ne		

	

	

	 		

0	

5	

10	

15	

20	

25	

30	

35	

0	

5	

10	

15	

20	

25	

30	

35	

1										2										3											4											5										6											7										8											9									10									11										12									13								14							15								16										17								18								19								20									21	

				1										2										3										4										5										6										7										8										9									10								11								12								13								14								15								16								17		

	 										Measurement	Interval 																				 		

																		“NG005”	trials	1	&	2	overlaid	

		Crown	den;ne																																																							Root	den;ne				

	

	

	 																																																					Peak	root	ER	à							à	

Crown	den;ne																						Root	den;ne		

	

	

	 																											ßPeak	root	ER		

									Crown	den;ne								Root	den;ne		

	

	

	 		Peak	root	ER	à							à	

	1							2								3									4										5								6								7									8							9									10							11						12						13								14						15						16							17						18					19							20						21						22							23						24	

																																																												Measurement	Interval 	 	 																		

	 	 		
									
																					“NG013” 	 	 	 							“MUZM2625”	

D
e
n
;
n
e
	E
xt
e
n
si
o
n
	R
a
te
	

	

0	

5	

10	

15	

20	

25	

30	

35	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	

0	

5	

10	

15	

20	

25	

30	

35	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Varia;on	in	crown	and	root	den;ne	extension	rate	in	the	M1s	of	3	chimpanzees	(Pan	troglodytes	schweinfurthii)	
	

	 	 								“NG012”	trials	1	&	2	overlaid	

D
e
n
;
n
e
	E
xt
e
n
si
o
n
	R
a
te
	

	

Crown	den;ne																					Root	den;ne		

	

	

	 																																																								Peak	root	ER	à	



 44 

   The root growth spurt and M1 emergence vs. occlusion: The root growth spurt in half of these  

  chimpanzees fell after or on the high end of the range of M1 emergence ages taken from captive  

  chimpanzees (2.14 - 3.99 yrs (Kuykendall, 1992)), and the growth spurt for the Bwindi   

  chimpanzee and three out of four of the Ngogo chimpanzees fell 2-12 months after the full range  

  of M1 emergence ages documented for wild Kanyawara chimpanzees (2.80 - 3.30 yrs, n=3  

  (Smith et al, 2013)). To obtain M1 emergence age estimates, a range of 2.5 – 6.0 months was  

  subtracted from the growth spurt age, since that is the estimated time between emergence and  

  attainment of full functional occlusion in the M1s of the Kanyawara chimpanzees (Smith et al.,  

  2013; Machanda et al., 2015). This resulted in M1 emergence age ranges seen in Table 5 and  

  Figure 8. 

 The M1s used in this study, however, were a mix of maxillary and mandibular teeth, and 

maxillary M1s (M1) have been shown to have delayed formation and emergence relative to their 

mandibular counterparts (Reid et al., 1998; Machanda et al., 2015). It was thus necessary to 

further infer the estimated M1 emergence age by subtracting that time delay (~six months) from 

the estimated M1 emergence age, in those three individuals whose maxillary M1s were analyzed 

here. This resulted in the “Estimated M1 emergence age” seen in Table 5. The final M1 

emergence age range for the entire sample from this study is 2.15 - 4.10 years, with a range of 

2.43 - 4.10 years for the Ngogo individuals and a 3.19 - 3.49 year age range estimated for the 

single Bwindi individual. The Kanyawara M1 emergence age range (2.50 - 3.30 years) is 

included in Figure 8 to show where this range falls within the overall P.t. schweinfurthii M1 

emergence ranges from this study, including the earlier ages for the extra-group males, the later 

ages for the Ngogo sample overall, and the single Bwindi M1 emergence age estimate falling in 

the middle of the Ngogo range.   
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   Table 5: Estimated M1 emergence ages for the seven chimpanzees in this study based on  
root growth spurt/occlusion age 

 
Individual Root growth 

spurt/Occlusion age 
(years) 

Estimated M1  
Emergence age range (years)  

Final estimated M1 emergence age  
ranges and means (years) 

NG001 2.65 2.15-2.45 2.15-2.45 (mean=2.30) 
NG002 2.75 2.25-2.55 2.25-2.55 (mean=2.40) 
NG004 3.43 2.93-3.23 2.43-2.73 (mean=2.58) (spurt=2.93) 
NG005 3.95 3.45-3.75 2.95-3.25 (mean=3.10) (spurt=3.45) 
NG012 4.43 3.93-4.23 3.43-3.73 (mean=3.58) (spurt=3.93) 
NG013 4.30 3.80-4.10 3.80-4.10 (mean=3.95) 
Ngogo mean 4.03 n/a 3.30 
Kibale mean 3.59 n/a 2.99 
MUZM2625 3.69 3.19-3.49 3.19-3.49 (mean=3.34) 
Overall mean 3.60 n/a 3.04 

   Table 5: 2.5-6.0 months was subtracted from each root growth spurt age to obtain the “Estimated M1 emergence age ranges”, and a 
  further six months was subtracted from the three M1 emergence age ranges to obtain the full ranges of possible “Estimated M1  
  emergence age”. tMaxillary M1 emergence ages are seen in italics and means are in bold. 

 
 

    Figure 8: Estimated M1 emergence age ranges by community 

 
Figure 8: Arrows point to each community’s estimated M1 emergence age range on the right  
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Kanyawara range backward to its greatest extent, since the M1 had already emerged in this 

individual before observation began, but how much before was unknown. (Figure 8). The full 

currently known range of M1 emergence ages for all wild P.t. schweinfurthii individuals is now 

2.15 – 4.10 years, which overlaps almost perfectly with the full M1 emergence age range inferred 

for captive individuals of 2.14 – 3.99 years (Kuykendall et al., 1992). 

 

Discussion: One constraint on the available chimpanzee dental developmental data is the fact 

that many collections are made up of mixed wild and captive chimpanzees, as well as individuals 

of unknown sex, provenience, or subspecies. In the absence of background information on the 

individuals being studied, it is difficult to determine the underlying causes of variability seen in 

dental development and the life history variables linked to them. The Pan sample used by Smith 

(2004) consists of five individuals of known sex but unknown subspecies or area of origin, and 

ten individuals of unknown sex, unknown subspecies, and unknown wild vs. captive origin, all 

from the London Natural History Museum collection. The study did include teeth from 47 wild 

P.t. verus individuals from Liberia (from Peabody Museum, Harvard University), but these were 

mostly of unknown sex. A subset of seven of these individuals was used by Reid et al. (1998). 

Also included were 13 additional individuals of unknown sex, unknown subspecific attribution, 

and unknown wild versus captive status from various other collections. With a total of 75 

individuals, the Smith (2004) study was the largest of its kind representing chimpanzees, 

however, while it significantly increased the amount of detailed dental developmental data 

available from chimpanzees, understanding the sources of dental developmental variability 

between individuals is made difficult when sex, status, attribution, and area of origin are 

unknown. The author notes, however, that many of the histological slides available for study and 
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reanalysis were made from teeth selected by the original researchers specifically because of their 

unknown status, allowing them to minimize damage done to specimens about which more 

information was known (Smith, 2004). As more data from wild populations are collected and 

added to this growing body of work, it will be possible to clarify the sources of variability in 

chimpanzee dental development, whether attributable to taxon, sex, ontogeny, or ecology.  

 

Ngogo Dental Developmental Variables: Previous studies of chimpanzee molar enamel have 

shown DSR increasing from the enamel-dentine junction (EDJ) to the crown surface in both the 

cuspal and the imbricational enamel and decreasing from cusp to cervix, with Smith et al. (2007) 

reporting statistically significant trends in these directions for a mixed Pan samples of 69 

individuals (mixed in terms of sex, in wild vs. captive origin, and in subspecific attribution). The 

results presented here support that trend (see Table 6). Mean overall enamel CDSR estimates for 

Pan are reported elsewhere as 4.17 µm/day (n = 69) (Smith et al., 2007), however, the mean of 

the data presented here  –  4.82 µm/day (n = 24)  –  shows an increase from the average 

described in the literature. Comparing just the M1s reveals a CDSR mean of 4.65 µm/day from 

this study (n = 7, range = 4.19 - 5.13), and 4.06 µm/day from the Smith et al. (2007) study (n = 7, 

range = 3.49 - 4.52), allowing comparisons between equal sample sizes and within the same 

tooth type. This would mean a 0.59 µm/day difference in M1 CDSR between the two studies. 

When the Ngogo M1 values are examined alone, they exhibit a mean CDSR of 4.83 µm/day, 

placing the CDSR from this population 0.77 µm/day above the M1 data from the Smith et al. 

(2007) study, which appears to be a noticable increase, but it is not known whether the difference 

is statistically or biologically significant. Data from additional individuals will allow more  

rigorous statistical testing to be performed.          
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 Mean RP of the Smith et al. (2007) sample was 6.4 with a range of 6 - 7 (n = 61), and 

Schwartz et al. (2001) reported a range of 6-9 for the periodicity of Pan teeth. This study’s RP 

range of 5-6 increases this overall species range of variation in RP to 5-9. DSR and RP from this 

study and several others are compared in Table 6. Smith (2004) notes, however, that several of 

the chimpanzees in that sample had RP values that could have been either 5 or 6, but since it was 

not able to be confirmed, the RP value of 5 was omitted from the final range in that study. 

 

Table 6: Comparisons of periodicity and DSR for the chimpanzees in this study  
along with other studies of Pan 

 RP ICDSR MCDSR OCDSR AVG CDSR Male RP Female RP 

This Study N 24 24 24 24 24 18 6 

Mean 5.38  4.15  4.62  5.07 4.62  5.17 6 

Range  5-6  3.2-5.18  4.0-6.1  4.26-6.36  4.06-5.63  5-6 6 

Smith et al., 2007 N  61  69  69  69  69  N/A  N/A 

Mean 6.4 3.62 4.28 4.61 4.17 N/A N/A 

Range  6-7  N/A  N/A  N/A  3.15-6.75 N/A N/A 

Schwartz et al., 2001 N  20  54  N/A  4 58 10  10  

 Mean 6.95  3.37  N/A  4.39  3.88  7.0 6.9  

 Range  6-9 2.69-4.34  N/A  3.75-5.29  2.69-5.29 6-9  6-8 

 
Table 6: N/A=no data were available for this value in that particular study; N varies even within each study since not all 
individuals could be used for all measures, and sex was unknown for the chimpanzees in the Smith et al., 2007 study. 
 

Dentine, root growth spurt, and life history: In addition to the variety of enamel developmental 

variables observed in these chimpanzee molars, dentine formation variables in the M1 were 

examined, to more reliably track full tooth development in samples with enamel damage or areas 

of the crown where no periodic variables could be seen. The dentine extension rates were 

particularly useful, since previous studies have shown that, in chimpanzees, the age at which the 
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M1 root dentine peaks in its extension rate, happens just after its age at emergence (Dean and 

Kelley, 2012; Dean and Cole, 2013). This is especially helpful for estimating M1 emergence in 

individuals whose teeth are fully formed or no longer in the jaw.  

 This study found that the root growth spurt in five out of seven of the chimpanzees 

occurred after the observed age ranges at M1 emergence in other wild chimpanzees. Studies of 

the chimpanzees at Kanyawara, located 10 km northwest of Ngogo, have shown a 2.5-6.0 month 

delay between emergence into the oral cavity and full functional occlusion (Smith et al., 2013; 

Machanda et al., 2015). This lends support to the idea that the root growth spurt in chimpanzee 

molars coincides with reaching functional occlusion, several months after emergence (Dean and 

Kelley, 2012; Dean and Cole, 2013). If this is the case, it could represent a more accessible life 

history-related variable than M1 emergence, since being able to use teeth in chewing could be 

considered more biologically relevant than initial emergence through the gingiva, and since the 

root growth spurt can be measured in adult and isolated teeth. Once the M1s reach functional 

occlusion, there is still a six month lag between M1 and M1 emergence (Machanda et al., 2015), 

which means that the upper molar would just be starting to emerge when the lower one reaches 

full occlusion, thus providing an opposing occlusal surface against which to chew. This would 

mean that a direct proxy for an important life history variable, attainment of nutritional 

independence (commonly known as weaning completion), can be documented in the structure of 

fully adult teeth, greatly increasing the numbers of individuals for whom this life history variable 

can be estimated.  

 The link between chimpanzee root growth spurt and the M1 eruption process, however, is 

not seen in modern humans (Dean and Cole, 2013). This dental growth spurt does occur in all 

teeth in modern humans, but it is disconnected from that tooth’s emergence age. This makes it 
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even more imperative to develop secondary indicators of the weaning process that can be used to 

show that a given fossil hominin either completed weaning at the same time as its late root 

growth spurt, as would be expected if its life history were more chimpanzee-like, or if the root 

growth spurt and other indicators of weaning completion occurred long before M1 emergence 

and occlusion, which would be more similar to the modern human pattern. One such potential 

secondary indicator of the weaning process is the distribution of stress lines. 

 

Stress frequency and weaning: To link the root growth spurt and M1 functional occlusion with 

the weaning process, ages and frequencies of stress-associated accentuated lines must also be 

considered. It is apparent from Figure 9 that the majority of accentuated lines in these 

chimpanzees’ M1s formed prior to when the growth spurt was reached, with greatest frequency 

occurring during the estimated age of M1 emergence. Thereafter, they occurred much more 

infrequently. 

 The frequency and timing of accentuated line occurrences in the M1 dentine provide a 

potential way forward for exploring the idea that peak M1 root growth occurs just prior to 

attaining functional occlusion, andjjust prior to weaning completion. Early weaning-related 

stresses that an infant would experience are likely to be related to the inability to fully digest the 

new adult foods as it tries to incorporate them into its diet. This initial adult food sampling has 

been observed in Ngogo infants starting as early as three months old, and evidence for this early 

incorporation of some adult foods has also been seen in the relatively early beginnings of 

convergence between mother and offspring δ15N and δ13C  trophic levels (Badescu et al., 2017). 

Novel pathogens from non-nursing water sources are another potential reason for stress lines to 

appear early in the weaning process (Dirks et al., 2002). Between age one and two, the relative 
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contribution of milk to the diet gradually decreases in Ngogo chimpanzees, as inferred from 

infant fecal δ15N values (Badescu et al., 2017), perhaps coinciding with initial rejection by 

mothers of infants’ attempts to nurse. This rejection may represent a psychological stress that 

would certianly create accentuated lines. The types of stress an infant would experience most 

frequently in the time just prior to attainment of M1 functional occlusion are likely to be 

nutritional stresses due to not yet having full dental capabilities for processing a largely adult 

qdiet, alongside increased nutritional demands due to a peak in somatic growth (Dirks et al., 

2010).  

 Figure 9: Kibale chimpanzee M1 dentine accentuated line frequency curves 

 
Figure 9: These graphs show the accentuated line frequency curves in the M1s of the six Kibale chimpanzees. Each accentuated 
line is listed on the x-axis, and the ages in days at which they formed are on the y-axis. Steepness of frequency curve is overlaid 
in black with red arrows to show periods of time in which more numerous stresses occurred (flatter curve) versus those in which 
fewer stresses took place (steeper curve). The root growth spurt age is also indicated on each curve by a red circle.  
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Weaning from M1 emergence, observations, and isotopes: Smith et al. (2013) describe how 

Kanyawara chimpanzees continue to suckle long after their M1s have emerged, and often beyond 

the age of functional occlusion. They note that the offspring are likely receiving little nutritional 

input from nursing at this point, as evidenced by the change in insulin rates from breastmilk 

produced by mothers after infants are around two years old, despite increased time spent on the 

nipple (Emery Thompson et al., 2012).  

 Badescu et al. (2017) found a similar discordance between the “age at weaning 

completion,” as assessed using field observations of time spent on the nipple, and the same age 

estimated using the convergence of fecal δ15N trophic offsets between Ngogo chimpanzee 

mothers and infants over time. This would mean that observed time spent nursing is not an 

accurate indicator of the true energetics of the weaning process. Instead, the nitrogen and carbon 

offset data from feces provide a framework for describing the timing of the weaning process in 

the Ngogo chimpanzees.  

 Based upon the results in the current study (see Figure 8), the Ngogo chimpanzees in this 

sample emerged their M1s between age 2.43 and 4.0 years (as inferred by backtracking 2.5-6.0 

months from the root growth spurt age), then, at age 3.03-4.60 years, they experienced peak root 

growth rates just before their M1s reached functional occlusion (according to the duration of M1 

eruption as measured in several Kanyawara chimpanzees (Machanda et al., 2015)).  The proposal 

that they reached weaning completion just after they experienced their M1 root growth spurt and 

attained functional occlusion, is consistent with the timeframe of weaning completion by age 4-

4.5 years for current Ngogo chimpanzee infants, that has been established through mother-infant 

fecal δ15N and δ13C trophic offsets (Badescu et.al, 2017).  
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 The two extragroup males in the current study appear to have gone through these same 

steps at slightly earlier ages. This is consistent with the life history theory precept that 

differential extrinsic mortality risk exerts the greatest influence over developmental pace, and 

these two males are more likely than the Ngogo males to have been subject to such risks. While 

little is known about the communities to which these males belonged, numerous instances of 

lethal intergroup aggression (many described in Watts et al., 2006) have resulted in the deaths of 

many males from groups that border Ngogo, and this alone would seem to be a form of greater 

extrinsic mortality for extra-group males compared with Ngogo males. This is in addition to the 

fact that extra-group individuals would have less access to the abundant food resources of 

Ngogo, likely subjecting them to increased levels of density-dependent mortality risk, which 

could result in an accelerated life history pace. 

 The small sample sizes being compared here, preclude saying something definitive about 

this relationship, and the lack of any observed early life history data from these individuals 

means that caution should be used in interpretations; nonetheless, the patterns, even in this small 

sample are suggestive. 

 

Table 7: Life history variables for the Pan communities compared in this study 

Community Population size Ages at dispersal/first 
birth (years) 

Weaning completion age 
Observed/measured 
(years) 

Inter-birth interval (IBI) 
Means/ranges/N (years) 

Ngogo >200 (204 as of 
May, 2016)1 

13/141 5.5-6/4.0-4.52 Mean=5.42, S.D. ±0.97, 
Range- 3.25-8.21 (N=48 
females, 85 births*) 

Kanyawara ~60 (56 as of 
2013)7 

12.95 4.3-6.16 /? Mean=5.96 Range=3.3-
10.9 (N=7 females/23 
births*6) 

Bwindi >30 as of 20034 ? ? ? 
1from Wood et al., 2017; 2from Badescu, 2017; 3from Ngogo Chimpanzee Project unpublished data; 4from Stanford and 

Nkurunungi, 2003; 5Stumpf et al., 2009; 6Machanda et al., 2015; 7Muller and Wrangham, 2014; *IBIs only included when 

successive offspring survived. 
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Ngogo chimpanzee ecology and life history: Across chimpanzee sites, it is females who disperse 

at reproductive maturity, in order to avoid inbreeding with close male kin (Mitani et al., 2002; 

Nishida and Kawanaka 1972; Pusey 1979).). At Kanyawara and Ngogo, female dispersal occurs 

around age 13 (Table 7). While still uncommon, female chimpanzees stay in their natal 

community with somewhat greater frequency at Ngogo compared with other populations (J. 

Mitani, pers. comm.), perhaps due in part to the reduced risk that they might breed with a close 

male relative in such a large community, and perhaps due also to the reduced risk of female 

feeding competition in an environment with such consistent, high-quality food availability 

(Watts et al., 2012; Badescu et al., 2017).  

 Ngogo females generally first reproduce around age 14 (Wood et al., 2017), and exibit 

inter-birth intervals that are more or less consistent with the means of those observed at other 

chimpanzee sites. The Ngogo mean is 5.42 years (S.D. ±0.97 years) for 85 successful 

consecutive births, with a range of  3.25 - 8.21 years (Ngogo Chimpanzee Project unpublished 

data).  

  

Extrinsic mortality: The chimpanzees of the Ngogo community experience very little density-

dependent mortality risk due to the abundance of consistent, high-quality food resources in their 

territory (Wood et al., 2017). Extrinsic mortality risk refers to sources of mortality such as 

predation by large predators (including human poachers), infanticide and disease outbreaks. In 

contexts where extrinsic mortality risk is high, the logical life history strategy is to accelerate 

maturation in order to reach reproductive maturity early enough to avoid dying before 

reproducing. Many cercopithecoid primates employ this life history strategy, and manage to 

remain reproductively successful, even when extrinsic mortality risk is high (Dirks and Bowman, 
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2007). The Ngogo chimpanzees, as noted above, are exposed to no large predators in their 

territory, and while there are instances of infanticide, the disease outbreaks that have sometimes 

devastated other chimpanzee populations (and appeared for the first recorded time at Ngogo 

early in January of 2017 (Negrey et al., 2019)), did not affect this community during the time 

when the chimpanzees in this sample were developing. All of these factors could result in the 

later M1 emergence and occlusion ages, and inferred weaning completion, among the Ngogo 

chimpanzees in this sample. 

 By contrast, the Kanyawara community is also relatively free of disease or predators, but 

they do experience density dependent mortality risk (Muller and Wrangham, 2014), due to the 

less abundant food supply in that area, and especially the lack of the Ficus mucuso tree, so 

widespread at Ngogo (Potts and Watts, 2011). This increased mortality risk could explain the 

somewhat earlier M1 emergence age of the Kanyawara individuals. The same sorts of risks, in 

addition to high levels of lethal intergroup aggression, could explain the even earlier estimated 

ages of M1 emergence for the two extragroup males in the sample, although the small sample 

size make such inferences provisional. 

 Comparatively less is known about the Bwindi chimpanzee life history, but the estimated 

M1 emergence age for the single individual in this sample (3.19 – 3.49 years), falls at the late end 

of the Kanyawara range and in the middle of the Ngogo range. This female chimpanzee’s M1 

root growth spurt/occlusion age is 3.69 years, which puts her inferred weaning completion age 

later than all of the Kanyawara individuals and right in the middle of the weaning age range 

inferred for the Ngogo chimpanzees in this sample. Dental developmental data from additional 

Bwindi individuals is needed to determine where the developmental pace of this population fits 

within the overall range for Pan troglodytes schweinfurthii. 
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Hominin life history evolution: The use of the root growth spurt as a life history-related variable 

provides a tantalizing way forward for assessing life history pace in more fossil hominin 

individuals, thus enabling comparisons between populations and taxa. This is due in part to the 

fact that adult M1s can be analyzed using this method, as opposed to being limited to the small 

number of fossil juvenile dental remains to reconstruct M1 gingival emergence from alveolar 

emergence (which is when the tooth first pushes through the bone of the jaw), which is only 

retrievable from teeth still in the mandible (e.g. Kelley and Smith, 2003; Schwartz et al., 2006; 

Kelley and Schwartz, 2010). Using the root growth spurt to reconstruct occlusion age, and 

perhaps weaning completion age, allows even isolated M1s to be analyzed in this way. Using 

adult teeth also limits the amount of compromised dental developmental data from individuals 

that died young, and may have experienced pathologies that would have influenced their growth 

rate (Smith et al., 2010; Smith and Boesch, 2011), thus confounding studies of “typical” 

developmental pace for that taxon. 

 The results of the current study suggest that, at least in the case of M1 root formation and 

emergence/occlusion ages, values from captive individuals could be just as appropriate as wild 

data for use in comparisons with fossil hominins. This was demonstrated by the fact that, within 

the single subspecies of Pan troglodytes schweinfurthii this study found as much variation in M1 

emergence ages as there is in the entire known captive chimpanzee data pool, which speaks to 

the possibility that we still know very little about the true extent of chimpanzee variability in 

dental developmental parameters or in certain life history parameters. It has been suggested, 

however, that this pattern is unlikely to hold for M2s and M3s, since these later-forming and 

emerging teeth seem to be more responsive to different ecological and energetic conditions, such 

as those that would differ between wild and captive individuals (Machanda et al., 2015). 



 57 

 The methods employed here could be used to measure the M1 root growth spurt age in 

any number of fossil taxa, and the limiting factor is the preservation of the dentine periodic and 

accentuated microstructures. If these structures are sufficiently preserved, it may even be 

possible to image them non-invasively using techniques such as phase contrast X-ray 

synchrotron microtomography (e.g. Tafforeau and Smith, 2008; Tafforeau et al., 2012; Le Cabec 

et al., 2015), thereby circumventing the need to destructively process extremely rare fossil teeth 

using more conventional histological methods. In cases when dentine structures cannot be 

visualized non-invasively, however, careful histological section preparation could still yield 

informative M1 root growth rate data.  

 It has been proposed elsewhere (Wood et al., 2017) that a chimpanzee-like last common 

ancestor (LCA) of humans and chimpanzees could potentially have made the transition to a life 

history pattern more like that of Homo sapiens without needing all of the socioecological 

adaptations (maternal and/or infant provisioning, social structure, cooperation, etc.), commonly 

cited as requisite conditions for the evolution of the modern human life history profile, if they 

experienced the food abundance, and lack of predation and disease seen at Ngogo. Cases like the 

Ngogo community are therefore important to consider when investigating modern human life 

history evolution, as they offer an expanded view of what “typical” chimpanzee life history is 

like, as well as how variable life history can be in closely related groups, in this case among 

different communities of the same subspecies, if even one ecological variable, such as food 

abundance, differs between them. 

 

Conclusions: Collecting weaning-related data for extant primates presents a number of 

challenges, regardless of the method, but it seems clear that using observational data alone 
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overestimates the duration of the weaning process. In order to address changes in weaning ages 

and behaviors in fossil hominoids and hominins, we need to find an accurate marker for 

whatever threshold within the weaning process must be crossed by living hominoids for them to 

be considered somatically and nutritionally weaned, even if not behaviorally weaned.  

 The estimated M1 emergence age range of 2.15-4.10 years in our chimpanzee sample, and 

the range of 2.14-3.99 years for the known captive chimpanzee sample, supports the first 

prediction that the similarity and overlap in these ranges suggests that captive chimpanzee M1 

emergence data can be used as a comparative sample in studies of fossil hominin dental 

development and life history. The second prediction was that this new sample, made up of small 

numbers of individuals from four different P.t. schweinfurthii communities, would help illustrate 

the dental developmental variability to be expected within a single Pan subspecies, and this was 

achieved by increasing the known M1 emergence age range from 9.6 months in the four 

previously documented Kanyawara chimpanzees, to an estimate of almost two years for the full 

sample that now includes all five communities. 

 For the Ngogo chimpanzees in this study, the M1 root growth spurts all fell considerably 

after the age range of Kanyawara M1 emergence, which supported the third prediction that M1 

root growth spurt is most likley to coincide with its attainment of occlusion several months after 

emergence. The fourth prediction was upheld by the result that most of the Ngogo chimpanzees 

also emerged their M1s somewhat after those at Kanyawara, or on the late end of their range. 

 The fifth prediction, that the growth spurt and M1 occlusion age slightly preceed, 

weaning completion, was supported by the root growth spurt age range = 3.03 - 4.60 years in the 

Ngogo chimpanzees in this sample, and the inferred ages at weaning completion (4.0-4.5 years) 

from fecal isotope data of Ngogo infant-mother pairs.  
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 Results overall suggest that the M1 root growth spurt, likely coinciding with the 

attainment of functional occlusion, followed by an abrupt drop in stress episode frequency, may 

represent a structural proxy for the threshold of nutritional independence/weaning completion in 

these Ugandan chimpanzees.  

  

Future Directions: In future work seeking to resolve the issue of the co-occurrence of the M1 

root growth spurt and occlusion, it would be beneficial to assess root growth spurt ages on the 

intact dental remains of as many juvenile chimpanzees as possible. This would permit the root 

growth spurts and M1 emergence ages to be measured on the same individuals, to avoid using 

pooled M1 emergence data in favor of direct comparisons, so as to verify the 2.5-6.0 month 

emergence-to-occlusion delay, instead of inferring one parameter from the other and introducing 

error at each step. 

 It has been noted that the age at first reproduction may be a highly effective indicator of 

overall life history pace as well (Dean, 2016), and so it would be useful to assess whether 

parturition lines from female chimpanzee first births can be located at the end of M3 root 

formation, since they finish forming between age 13-14 in some chimpanzees (Dean and Cole, 

2013; Machanda et al., 2015), and such lines have been observed and validated with known 

parturition dates in human M3s (Dean and Elamin, 2014). Future work should seek to assess 

whether dentally determined ages at chimpanzee nutritional independence could relate to age at 

first birth by using M3 parturition lines. This would be especially effective by looking only at 

natal Ngogo females, since they, and not immigrant females, would have had their early life 

history influenced by the conditions at Ngogo. 
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 This is the first study to document the M1 root growth spurt in a wild population of 

chimpanzees, and to use it to reconstruct estimated M1 emergence and occlusion ages in order to 

link M1 formation and eruption processes with the weaning process. Future such studies would 

benefit from incorporating additional lines of evidence for dietary changes, such as stable isotope 

and trace element analyses, into investigations of wild primate dental development and life 

history evolution. In addition, in order to more accurately compare weaning age data between 

chimpanzee populations and subspecies, further fecal isotope studies should be carried out in 

populations such as the Taï Forest chimpanzees, those at Mahale and Gombe, as well as at 

Bwindi and Kanyawara. Doing so will allow consistent measures of “weaning completion” to be 

compared to see whether the Ngogo chimpanzees do, in fact, wean later than other populations. 
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Chapter 3: Calcium-normalized Barium (Ba/Ca) Distributions in Enamel and Dentine of 

Wild Ugandan Chimpanzees (Pan troglodytes schweinfurthii): Implications for Weaning 
Studies in Fossil Taxa 

 

Abstract: Calcium-normalized barium ratios (Ba/Ca) in tooth enamel and dentine have been 

shown to be correlated with dietary transitions associated with life history events such as birth, 

and the onset and completion of weaning in numerous primates. This study uses the 

histologically assessed timing of the changes in Ba/Ca ratios in the teeth of wild chimpanzees, to 

verify whether these changes coincide with weaning completion age, as inferred from the ages at 

which the first molar (M1) root growth spurt occurred, based on a previous study of these 

individuals. Similar data from a sample of yellow baboons and red-tailed monkeys are also 

considered here to verify the method. 

 This study finds that in the first molars (M1) of most of the chimpanzees in our sample, 

the calcium-normalized barium (Ba/Ca) ratio increased between birth and the first three to six 

months of life, and then gradually decreased over the next year of formation. Occasional spikes 

in the M1 Ba/Ca ratio occurred after that point and may indicate increases in nursing frequency 

or intensity within the second year of life, or could result from episodes of illness in which the 

infant’s own skeletal stores of calcium (and therefore, barium) were mobilized and incorporated 

into dental tissues forming at that time. Patterns in enamel Ba/Ca levels from the later-forming 

teeth of several of the chimpanzees are also analyzed, and these show spikes in Ba/Ca levels at 

the same ages as when the root growth spurt occurs in the M1. This is significant because it 

suggests that a dietary transition was indeed occurring alongside this structural marker of a peak 
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in growth rate, supporting the proposition that weaning completion follows close on the heels of 

the M1 growth spurt in chimpanzees. Following the growth spurt, Ba/Ca levels decrease again, 

and stay at low levels thereafter, except in cases where there was damage to the enamel. This 

suggests that nutritive intake from nursing ceases just after this point, since breast milk is the 

only source of heightened levels of Ba/Ca in early development (Smith et al., 2017, 2018). In 

some samples, the patterns of Ba/Ca change are more difficult to discern, due to sampling issues, 

damage to enamel crowns, or extreme outlier values that drive the range of variation to be too 

wide to pick up subtle changes. Methods of troubleshooting these and other issues are presented. 

 

Introduction: While other skeletal sources of life history information, like body size and brain 

size, can be used to infer relative measures of life history pace (Robson and Wood, 2008), dental 

developmental data are particularly relied upon when assessing the life history pace of fossil apes 

(hominoids) and human ancestors (hominins), since teeth are more abundant and more durable 

than anything else in the fossil record, and because they preserve a real-time record of their 

development within their incrementally forming tissues. The age at which the first mandibular 

molar (M1) emerges through the gingiva into the jaw has been used to infer weaning age in 

extant and fossil primates, due to the correlation between weaning age and M1 emergence across 

the order Primates (Smith, 1989; Smith, 1991; Smith and Tompkins, 1995). However, recent 

studies have found that the age at M1 emergence in wild, as well as in captive chimpanzees, is 

well before they cease nursing (Smith et al., 2013; Machanda et al., 2015), and it has been 

suggested that the end of the weaning process may align closely with the age at which the M1 

attains functional occlusion (Malone, Chapter 1), 2.5-6.0 months after emergence 

 (Machanda et al., 2015). Several studies have also found that chimpanzee M1 roots show 
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evidence of a growth spurt at a point after emergence, (Dean and Kelley, 2012; Dean and Cole, 

2013), and this root growth spurt may occur as M1s are reaching functional occlusion (Dean and 

Kelley, 2012). A previous study by the author documented enamel and dentine formation 

variation, and stress episode distribution, in the teeth of wild chimpanzees (Pan troglodytes 

schweinfurthii) from the Ngogo population in Kibale National Park, as well as one individual 

from Bwindi Impenetrable National Park, Uganda (Malone, Chapter 1). The study found that the 

M1 root growth spurt for the Ngogo chimpanzees in the sample occurred 2-12 months after the 

M1 emergence ages previously known for the chimpanzees from the neighboring community of 

Kanyawara (Machanda et al., 2015), supporting a link between the root growth spurt and the 

projected time of attainment of M1 functional occlusion, rather than one between the growth 

spurt and M1 emergence, per se. To link this structural marker of formation rate and inferred 

occlusion age to the weaning process, however, an additional source of information about Ngogo 

chimpanzee weaning ages was needed. The work of Badescu et al. (2017), tracking changes in 

fecal isotopes of Ngogo infants, provided this source. It was determined that the root growth 

spurt for the chimpanzees from Ngogo (Malone, Chapter 1) aligned closely with the mean 

inferred weaning completion age of 4.0 - 4.5 years determined for infants using the changing 

offsets between mother and infant fecal δ15N and δ13C values over time (N=52 Badescu et al., 

2017). However, since the time of weaning of the chimpanzees in the dental study is unknown, 

the application of an additional proxy for dietary input/weaning is needed to confirm the 

relationship between the root growth spurt and weaning. 

 Calcium-normalized barium (Ba/Ca) distributions have been used in several studies to 

document the transition from gestational diet to nursing to adult foods in the teeth of wild 

orangutans (Smith et al., 2017), humans and macaques with recorded weaning histories and a 
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juvenile Neanderthal (Austin et al., 2013), and a fossil human molar and several Neanderthal 

molars from the same site (Smith et al., 2018). Ba/Ca distributions are therefore used here as a 

chemical proxy for weaning-related dietary transitions, to explore how the trace element 

distributions in enamel and dentine relate to the inferred link between chimpanzee M1 root 

growth spurt and weaning completion. Comparative data from a study of yellow baboons (Papio 

cynocephalus) by the author is also used here to validate the link between structural and 

chemical indicators of the weaning process, taking into account their much more abbreviated 

weaning process compared with that of chimpanzees (Altmann et al., 1977; Altmann, 1980; 

Altmann et al., 1981). 

  

Background: Teeth are a valuable medium for the analysis of developmental timing in extinct 

taxa, due to their relative abundance in the fossil record, their resistance to post-mortem 

alteration, and because they preserve an exact record of their development in their incremental 

microstructures (e.g. Risnes, 1998; Dean, 2000; Antoine et al., 2009). Such structures can be 

periodic, forming at regular, consistent intervals, such as cross-striations and Retzius lines in 

enamel or von Ebner’s lines and Andresen lines in dentine (Antoine et al., 2009), or they can be 

aperiodic, and exist as visible structures resulting from growth processes, but not subject to any 

known time-dependency, as with enamel prisms, dentine tubules, and Hunter-Schreger bands 

(reviewed in Smith, 2004). Structures can also form as a result of disturbances to normal growth, 

and these form at irregular intervals influenced by any number of external and internal factors 

(see below). Each type of structure forms in all three dental tissues (enamel, dentine, and 

cementum), and those present in the enamel and dentine of the chimpanzees in this study have 

been used to document their periodic variables (i.e. daily secretion rate, Retzius/Andresen line 
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periodicity, Retzius line number, crown and root extension rates) and then in order to estimate 

crown formation time. Only the structures relevant to this study will be reviewed here, though all 

dental periodic, aperiodic, and irregular structures, and the variables that result from them, have 

been reviewed elsewhere (e.g. Smith, 2008).  

 
Irregular Structures: In addition to regular periodic structures, irregular structures can also been 

seen within dental tissues. Accentuated lines in enamel can form in response to growth 

disturbances resulting from dietary change, illness, physical or psychological trauma, etc. and 

these are often visible in thin sections viewed under polarized light (Boyde, 1990; Goodman and 

Rose, 1990; Molnar and Ward, 1975; Rose, 1977, 1979; Rose et al., 1978; Skinner and 

Anderson, 1991; Teivens et al., 1996).   

 The neonatal line is one such accentuated line that forms at birth (Rushton, 1933; Schour 

1936), and is present in all deciduous teeth as well as the first permanent molar (M1). Since the 

various cusps of the M1 start forming 8-12 weeks before birth in humans (Christensen & Kraus, 

1965) and 4-6 weeks in chimpanzees (Reid et al., 1998), the neonatal line appearance may result 

from a decreased level of calcium in the plasma during the first 48 hours after birth 

(hypocalcaemia) (Nóren, 1984) and may also result from the trauma of birth itself (Gustafson & 

Gustafson, 1967; Eli et al., 1989). It can be recognized because it divides the smooth prenatal 

enamel, which contains no striae of Retzius, from the rest of the crown. Because accentuated 

lines appear to form in response to stresses occurring at transitional times such as birth 

(Gustafson, 1967), weaning (Rose et al., 1978; Dirks et al., 2010), and, in humans, parturition 

(Dean and Elamin, 2014), these structures become important indicators of the timing of life 

history events as recorded in dental tissues.  
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 Stresses associated with habitat seasonality (e.g. seasonal food availability and seasonal 

breeding), may also manifest in growth disturbances in the form of accentuated lines (Dirks, 

1998: Dirks et al., 2002), although this relationship is less clear. There can also be differences in 

the types and timing of stresses experienced by males and females over the course of their lives, 

beginning with differential maternal investment during the weaning process, such as that seen in 

chacma baboons (Cheney et al., 2004), anubis baboons (Dirks et al., 2010), western lowland 

gorillas (Krishna et al., 2008), and lion-tailed macaques (Nowell and Fletcher, 2007). 

Disentangling the patterns of accentuated lines forming due to life history stresses, particularly 

when they differ based on sex, from those occurring due to seasonally-induced stress, can 

complicate efforts to use dental tissue structures to assess the pace and pattern of life history 

events (e.g., Dirks et al. 2010).  

 Accentuated lines in enamel (which correspond to Owen’s lines in dentine) occur 

alongside periodic features, which means they can be aged, but they also form at the same time 

within enamel and dentine as well as between simultaneously forming parts of different teeth. 

This synchrony in accentuated line formation allows consecutively forming teeth to be registered 

to one another by cross-matching these lines to determine how much crown and root formation 

overlap there is between consecutively forming teeth (e.g., Dean et al., 1993b; Reid et al., 

1998a). It also allows periods of time in M2 or M3 crown or root formation to be aged by using 

an absolute timeline that starts with the neonatal line in a deciduous tooth or the M1, and 

continues in the next tooth using cross-matched accentuated line as reference points (e.g., 

Beynon et al., 1998b; Dirks, 1998; Reid et al., 1998a,b; Dirks et al., 2002; Thomas, 2003; Smith, 

2004; Schwartz et al., 2006; Smith et al., 2007b; Antoine et al., 2009). 
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Extension rate: In previous work on these chimpanzee teeth (Malone, Chapter 1), it was not 

possible, in some cases, to count all of the Retzius lines in the lateral and cervical enamel due to 

cracking or breaking away of portions of the enamel. This prevented the total crown formation 

time (TFT) from being measured by using the enamel alone. To alleviate this problem, the 

extension rate (ER) was determined for the dentine within the crown and the root. The extension 

rate, in both enamel and dentine, refers to the amount of formation taking place toward the crown 

surface (or the pulp cavity, in the case of the root) versus the growth occurring cervically (or 

apically, in the root), and strictly speaking, is an expression of the rate at which new enamel- 

forming and dentine-forming cells differentiate along the EDJ or the inner root surface, and are 

activated each day (Shellis, 1998). 

 To measure the ER (Figure 10), starting at the dentine horn, a dentine tubule was 

measured to a distance of ~200 µm into the root, or to where it intersected with an Andresen line 

or an accentuated line of Owen in that area. That line was then followed back to the EDJ, or the 

inner root surface. (If the dentine horn was not present due to wear, as seen in Figure 10, the 

tubule closest to where the dentine horn would have been was used as the starting point.) The 

tubule length was followed along any curvature it showed, in order to capture the full number of 

days of growth along it, as opposed to a straight-line measure, which would have overestimated 

the growth distance, perhaps intersecting with a stria significantly more than 200 µm into dentine 

growth. Measuring how much EDJ length there was between the tubule's and stria’s intersections 

with the EDJ, or the inner root surface, provided the amount of newly extended crown or root 

that had formed during however many days passed within that 200 µm interval. The measured 

tubule length (~200 µm) was then divided by the previously established local DSR to get the 
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Figure 10: Dentine extension rate measurement method in the M1 of male chimpanzee “NG001” 

Figure 10: The top panel shows the mesiobuccal cusp of “NG001”’s left M1 at low power through transmitted light. The portion 
highlighted and enlarged on the bottom is the cervical end of the enamel–dentine junction (EDJ) and the beginning of the root 
dentine at the cemento-enamel junction (CEJ). Several dentine tubules are highlighted along the first 200 µm of growth from the 
root surface, and the Andresen lines with which they intersect are followed back to their origin lower down on the root. The 
distance between the tubule start point and the Andresen line origin is also highlighted along the root surface. The inset on the 
bottom shows a high-powered (20x) view of the daily lines in dentine, called von Ebner’s lines, and these were measured to 
obtain DSR in dentine.  

 

number of days of formation within that interval, and then the length of the newly extended 

crown or root was divided by the number of days associated with that interval to obtain the 

extension rate for that interval of crown or root dentine. This was continued all the way down the 

crown until the apical end was reached. 
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 By adding together the formation times for each interval all the way down the crown and 

root, the TFT could then be estimated a second time. This TFT also included root formation time 

(RFT). These estimates were preferentially used to measure TFTs because the formation times 

obtained using enamel were limited by the damage and wear to the crowns, and because this 

alternate method has been shown to produce accurate estimates of formation time quite 

efficiently, especially in teeth like these that are less than ideal for sectioning, (Dean and Kelley, 

2012). Results of CFT estimates using enamel compared with the CFT and TFT estimates using 

dentine are compared in Malone (Chapter 1) 

 
Root growth spurt: In addition to permitting estimates of TFTs, the extension rate varies over the 

course of crown and root formation (Boyde, 1963), peaking at a particular point during root 

formation (Gleiser & Hunt, 1955; Moorees et al., 1963; Dean & Kelley, 2012), thought to be 

associated in chimpanzees with emergence age, or possibly with attaining functional occlusion at 

the end of the eruption process (Dean & Kelley, 2012; Dean & Cole, 2013). The age at which 

this peak extension rate occurs, which represents a root growth spurt (Dean & Cole, 2013), can 

then be measured and compared between individuals.  

Life History: Studies of life history theory in living mammals (reviewed in Bogin, 1990; 

Schwartz, 2012) have investigated the relationships between 1) an organism’s ecological context, 

2) its energy investment in growth, reproduction, and somatic maintenance, and 3) variables such 

as brain and body mass and dental development, which, at higher taxonomic levels, are 

correlated with life history events or milestones (e.g. Harvey and Clutton- Brock, 1985; Charnov, 

1991). Life history parameters themselves (e.g. gestation length, age at weaning, age at first 

reproduction, etc.) are referred to by some as life history variables, while other somatic 

measures, such as body size, brain size, and dental development, which have been shown to be 
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broadly linked with the life history variables, are called life history-related variables (Robson and 

Wood, 2008). Life history-related variables are used to infer the timing of life history variables 

in taxa or individuals for which life history cannot be directly observed, such as for fossil taxa, 

and dental deveopment is the proxy most often used for such inferences, since teeth preserve so 

well in the fossil record. 

 Dental development, specifically the age at M1 emergence, is correlated with age at 

weaning and sexual maturity in a study across 21 primates (Smith, 1989), however, within and 

between species, this relationship is not as clear. Gorillas, orangutans, and chimpanzees (Robson 

and Wood, 2008; Smith et al., 2013) emerge their M1s before they have been observed to 

complete weaning, and even at the species level, such as between mountain and lowland gorillas 

(Watts, 1991; Robbins et al., 2006), there is a great deal of variation in this relationship. Directly 

measuring how much the weaning process itself varies within extant hominoid species, 

subspecies, and even populations, would go a long way toward understanding the links that can 

and cannot be made between dental development and the weaning process of closely related 

fossil hominins. It may also be that another point in the eruption process, namely the point at 

which the first molars reach functional occlusion, is an appropriate milestone to mark the end of 

the weaning process. 

 
Weaning: Weaning is a process consisting of multiple stages that can vary in duration, as well as 

age at initiation and completion (Lee, 1996). Such variation, especially in the age at weaning 

completion, may be linked to later life history variables for the offspring, such as age at 

menarche and first reproduction (Lee, 2010), as well as somatic growth rate and adult body size 

(Lee, 1996), and even mortality risk due to the immunological role played by nursing (McDade, 

2003; Humphrey, 2010). In short, the age at which a mammal is weaned can potentially affect 
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the overall pace of its life history and ultimately its evolutionary trajectory. 

 The weaning process like other life history events, invariably presents a number of 

sources of stress. This can start early on if samples of adult foods are difficult for an infant’s 

physiology to digest (Dirks, 2002); in addition, external water sources may contain novel 

pathogens; and the psychological stresses of being denied access to nursing may also take its toll 

(reviewed in Dirks, 2002). All such interruptions to consistent nutritional intake or processing 

will result in disruptions to normal growth, which are registered in all of the dental tissues 

forming at that time (Beynon et al., 1991, 1998b; Bow- man, 1991; Boyde, 1963, 1990; Dirks, 

1998; Reid et al., 1998a).   

Study site: Kibale National Park contains moist evergreen forest, including lowland and montane 

forest (Wood et al., 2017). The density of old growth forest differs between the two research 

sites in the park, known as Ngogo and Kanyawara (Struhsaker, 1997; Wood et al., 2017), 

because selective logging occurred at Kanyawara, but not at Ngogo (Struhsaker, 1997). The 

elevation at Ngogo is between 1250 and 1470 meters, while Kanyawara is slightly higher 

(Struhsaker, 1997). Ngogo and Kanyawara both experience annual rainfall of approximately 

1500 millimeters (Wood et al., 2017). 

 The 35 km2 Ngogo study area does not experience the high levels of variability in the 

food supply documented for other chimpanzee populaitons, such as those in the Täi Forest, Côte 

d’Ivoire (Pan troglodytes verus) (Boesch and Boesch-Acherman, 2000; Watts, et al., 2012). The 

abundance of important fruit trees relied upon by the Ngogo chimpanzees, e.g. Pterygota 

mildbraedii and Ficus mucuso (Struhsaker, 1997; Watts et al., 2006) remains fairly consistent, 

allowing the Ngogo chimpanzees to maintain a relatively uninterrupted level of nutritional input 

throughout the year (Wood et al., 2017). F. mucuso in particular, can produce a large fruit crop at 
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any time of year from each stem, making periods of fruit scarcity a shorter and rarer occurrence 

than at other sites (Watts et al., 2012). This relative fruit abundance means that they are able to 

maintain a high level of net energy intake year-to-year (Potts et al., 2011). In contrast, the 

chimpanzees at Kanyawara, which are only 10 km away, experience longer and more frequent 

times of fruit scarcity than the chimpanzees at Ngogo (Wood et al., 2017). 

 There are also no large-bodied predators at Ngogo, unlike the leopards at Taï (Boesch, 

1991), and lions at Mahale (Tsukahara, 1993), and up until 2016, there were no major 

documented disease outbreaks in the Ngogo community (Wood et al., 2017), setting them apart 

from populations such as Mahale (Nishida et al., 2003), Gombe (Pusey et al., 2007, 2008; 

Williams et al., 2008; Lonsdorf et al., 2011), and Taï (Boesch and Boesch-Achermann, 2000; 

Leendertz et al., 2004; Kondgen et al., 2008). (Although, this changed in January of 2017 with an 

outbreak of a two types of respiratory disease; one called human metapneumovirus and the other 

called human respirovirus 3. These outbreaks resulted in the deaths of 25 chimpanzees from 

Ngogo (Negrey et al., 2019)). All of these conditions combine to make Ngogo a high quality 

environment supporting a community of over 200 individuals, with survivorship rates 

comparable to those of human hunter-gatherer groups (Wood et al., 2017).                                            

 Eastern chimpanzees (P.t. schweinfurthii) also live in Bwindi Impenetrable National Park 

(BINP), Uganda and experience different challenges than do their conspecifics at Ngogo and 

Kanyawara, due in part to the fact that they are sympatric with mountain gorillas (Gorilla gorilla 

beringei). Bwindi lies between 2400-2600 meters above sea level (Stanford and Nkurunungi, 

2003), a much higher elevation than the chimpanzees in Kibale National Park. The area is made 

up of contiguous, moist tropical montane rainforest that receives between 1100-2400 millimeters 

of rainfall annually (Butynski, 1984; Carlson and Crowley, 2016). Its two dry seasons last from 
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May to July and from late December to February (Stanford and Nkurunungi, 2003). The 

chimpanzees and gorillas at Bwindi will both eat fruit when it is available to them, but they 

mostly avoid direct contest competition (but see Stanford and Nkurunungi, 2003) for the same 

fruit resources by responding to times of fruit scarcity in different ways. During periods of fruit 

abundance, chimpanzees forage in relatively larger groups, feeding largely on specific fruits 

(mainly varieties of Ficus, similar to the preferred food at Ngogo). During times of fruit scarcity, 

they forage in smaller groups, which move far apart to minimize resource competition (Stanford 

and Nkurunungi, 2003). 

Sampling stable isotopes in tooth enamel: Stable isotopes and their uses in paleodietary 

reconstruction, among other things, have been extensively reviewed elsewhere (Crowley, 2012; 

Malone, Chapter 3, and refs therein), so in this study, only their relevance regarding the use of 

trace elemental analysis will be discussed.  

 The three elements whose isotopes are most commonly used in studies of paleodiet and 

paleoclimate are carbon, nitrogen, and oxygen, and these can inform us about an organism’s total 

dietary content (Froehle, 2010), their protein intake (Krueger and Sullivan, 1984; Ambrose and 

Norr, 1993; Tieszen and Fagre, 1993; Froehle et al., 2012), and their sources of water (Luz et al., 

1984; Luz and Kolodny, 1989; Bryant and Froelich, 1995).  

 The challenge with using these isotope values to track changing food and water sources, 

however, is that their analysis using the standard GC-IRMS (isotope ratio mass spectrometry) 

method requires powdered enamel samples to weigh at least 500-600 micrograms (µg). In small, 

thin-enameled teeth like those of many primates, including chimpanzees, this only allows for a 

few samples per tooth. This required large sample size means that the fine scale temporal shifts 

that can be seen structurally in histological sections cannot be assessed isotopically, because the 
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amount of time covered by each sample obscured such variation. This is because the samples are 

not spatially distinct enough from one another to represent separate time periods, and they 

represent time periods too large to track changes on even a six-month scale, much less the 

month-to-month changes that might reveal a transition from prenatal diet to exclusive nursing or 

from nursing to a transitional or fully adult diet.  

 In addition to the issue of sample intermixture, and its effect upon reducing the isotopic 

variability that can be detected from drilled enamel samples, there is the problem of the two-

phase enamel formation process. In the initial phase of mineralization, the structures of the 

enamel (enamel prisms, cross striations, Retzius lines, etc.) are laid down as a sort of scaffolding 

comprised of only about 30% of its final mineral content (see Suga, 1982; Balasse, 2002; Passey 

and Cerling, 2002). During the second phase, known as maturation, nearly all of the remaining 

organic components of enamel are removed and replaced by the remaining highly mineralized 

hydroxyapatite content that makes up fully mature enamel, and ultimately ends up being ≥96% 

hydroxyapatite by weight. However, there is a delay between when the initial structures are laid 

down, and when much of the mineral content of the enamel is incorporated into the crown 

(Smith, 1998). This means that in any given area of mature enamel, the content is made up of not 

just enamel from the original mineralization phase, whose microstructures we use to age the area, 

but also the fully mature enamel that was added to that enamel area during maturation, which 

may take up to several additional months, depending upon the taxon and tooth in question 

(Traylor and Kohn, 2017). This maturation front also moves through the enamel in a somewhat 

different orientation and path than that of the initially mineralized structures (Green et al., 2018), 

however, several studies suggest that the innermost enamel just along the enamel-dentine 

junction (EDJ) may reach maturation soonest after it is initially mineralized (Passey and Cerling, 
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2008). If so, this is the area to which we should look to obtain the isotopic signal that is least 

attenuated due to the mineralization-maturation delay. However, as previously discussed, 

traditional sampling methods cannot access and isolate this area of enamel by drilling in from the 

outside of the crown, and certainly could not obtain enough enamel powder from just that area to 

separate out multiple samples of sufficient weight to identify dietary transitions during molar 

enamel formation. Trace elemental analysis using laser ablation, however, is capable of reaching 

this small and somewhat sequestered sampling area (see below). 

 

Trace elements: One way researchers have tried to overcome the limit to the isotopic variability 

that can be accessed via traditional sampling methods is by turning to laser ablation to obtain 

smaller samples of enamel apatite, whose contents can then be analyzed using either isotope 

ratio-mass spectrometry (IR-MS) to obtain δ13C values, or by using inductively coupled plasma-

mass spectrometry (ICP-MS) to detect the quantities of trace elements incorporated into the 

enamel (and dentine) along with calcium (reviewed in Tsutaya and Yoneda, 2014). 

 Strontium and barium belong to the same alkaline earth elements group as calcium 

(Humphrey, 2007), and they have each been found to differ in their concentrations, relative to 

calcium, in pre- and post-natal regions of tooth enamel and dentine (Dolphin et al., 2006). Since 

calcium values remain fairly constant throughout enamel, it can be used to normalize the amount 

of these trace elements, by using the ratio of the fluctuating trace element (Ba or Sr) to the more 

constant calcium (reviewed in Tsutaya and Yoneda, 2014). These ratios are expressed as Ba/Ca 

or Sr/Ca. Strontium and barium atoms are routed from the whole diet into the developing tissues, 

but less is known about the mechanisms for how barium is routed into tissues through the 

digestive tract (Comar et al., 1957; Sillen and Kavanagh, 1982; Burton et al., 1999).  
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 A number of processes are at work to regulate the amount of strontium or barium, relative 

to calcium, that is incorporated into forming tissues, and these processes are collectively known 

as biopurification (Elias et al., 1982). Strontium is taken into the maternal diet through food 

items that contain varying amounts of strontium. However, the levels of strontium in maternal 

tissues are lower than those in the plant food themselves, since the adult human digestive tract 

discriminates against strontium, although the plants containing them do not (Humphrey, 2014). 

In utero, the strontium level in a fetus’ developing tissues is slightly lower than its mother’s level 

(Comar, 1963; Sillen and Kavanagh, 1982), since the transfer of calcium across the placenta and 

mammary gland is a process of active transport, and strontium transfer instead follows a gradient 

(Krachler et al., 1999; Rossipal et al., 2000). The Sr/Ca ratio becomes even lower at birth and 

remains low through the period of exclusive breastfeeding (Humphrey et al., 2007; Austin et al., 

2013). When an infant first begins to incorporate non-milk foods into its diet, the strontium 

levels begin to increase in the tissues forming during that time (Tsutaya and Yoneda, 2014). 

They continue to increase as the infant’s diet becomes increasingly reliant on non-milk foods, 

and only begins falling to normal adult levels once its digestive system is fully mature and can 

filter strontium effectively (Lough et al., 1963; Humphrey et al., 2007). Calcium-normalized 

strontium ratios (Sr/Ca) have been used to demonstrate possible indicators of weaning behavior 

in baboons (Humphrey, 2008), but the distribution of strontium in enamel may be more diffuse 

than barium, making estimates of dietary transitions more difficult. Austin et al. (2013) found 

that changes in Sr were proportionately smaller across transitions than those of Ba were, making 

it harder to discern pattern of change using Sr. 

 Due to its low bioavailability in non-milk foods (and unlike strontium), barium in breast-

milk and in forming infant tissues, does not appear to be linked with the types foods being eaten, 
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as much as it does with maternal mobilization of calcium stores from within the skeleton during 

lactation (Smith et al., 2017). As calcium is released from a mother’s bones to be incorporated 

into breast-milk, the barium already present at low levels along with her calcium, is also released 

into the milk being produced. This means that all of the barium that is routed into a breastfeeding 

infant’s forming tissues comes from its mother’s milk, and does not vary based on changes in her 

diet, but varies instead with changing amounts of milk ingestion (Smith et al., 2017).  

 
Previous work using Ba/Ca to access weaning signals: Strategic sampling of certain trace 

elements found to be associated with dietary changes, such as strontium (88Sr) and barium 

(138Ba), has been quite successful at tracking the timing of dietary changes associated with the 

weaning process in the enamel and dentine of numerous primates. 

 Dietary transitions during the weaning process have been tracked in the teeth of humans, 

macaques, orangutans, and even a Neanderthal juvenile (See Austin et al., 2013; Smith et al., 

2017), using the distribution of the calcium-normalized barium (Ba/Ca) present in different parts 

of the tooth. These studies conducted LA ICP-MS across the entire surface of thin sections of 

these teeth, noting the changing absolute Ba/Ca values in enamel versus dentine, as well as in 

areas of the crown possibly subject to diagenesis. They also noted the more diffuse pattern of 

Ba/Ca variability in enamel compared with the fairly distinct banding of these changing levels 

within the dentine (Austin et al., 2013; Smith et al., 2017). Histological analysis of these teeth 

prior to ablation allowed them to map the changing Ba/Ca values onto the image of the thin-

sectioned tooth, permitting ages at dietary transitions to be estimated from the periodic and 

accentuated structures recorded within the section. Most recently, Smith and colleagues (2018) 

conducted a study that combined histological imaging of periodic tooth structures, Ba/Ca and 

Pb(lead)/Ca analysis, and δ18O analysis of enamel phosphate, using both silver phosphate micro-
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precipitation with IRMS, and secondary ion mass-spectrometry (SIMS). SIMS was able to 

analyze such small amounts of enamel that samples were taken from the innermost enamel layer, 

to demonstrate the relationships between weaning behavior, seasonal climatic fluctuations, and 

cyclical lead exposure in the teeth of two Neanderthals and a modern human from southeastern 

France (Smith et al., 2018).  

 
Previous Ngogo chimpanzee dental development results: In a prior study by the author, an M1 

emergence age range of 2.15 - 4.10 years was estimated for the wild chimpanzee (P.t. 

schweinfurthii) sample, consisting of individuals from the five communities of Ngogo, Bwindi, 

Wantabu, and an unnamed community to the northeast of Ngogo (n=7 Malone, Chapter 1), and 

Kanyawara (n=3 Machanda et al., 2015). The new P.t. schweinfurthii data helped to illustrate 

how variable dental emergence ages can be within a single Pan subspecies, by increasing the 

known M1 emergence age range from 9.6 months in the three previously documented Kanyawara 

chimpanzees, to an estimated almost two years for the sample containing all five communities. In 

addition, this range of M1 emergence ages is very close to the previously documented range of 

2.14 - 3.99 years for captive chimpanzee M1 emergence (reviewed in Smith et al., 2007).  For the 

Ngogo chimpanzees in this study, the M1 root growth spurts all fell somewhat after the age range 

of Kanyawara M1 emergence (Machanda et al., 2015), which supported the assertion that the M1 

root growth spurt was most likely to coincide with attaining functional occlusion several months 

after emergence. Most of the Ngogo chimpanzees were also eatimated to have emerged their M1s 

somewhat after those at Kanyawara, or on the late end of their range of 2.8-3.2 years (n=3 

Machanda et al., 2015), which further reinforced the connection made between the M1 root 

growth spurt and occlusion. 

 The final finding of the study was that the M1 root growth spurt and occlusion age likely 
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slightly preceded weaning completion, according to the root growth spurt age range of 3.03 - 

4.60 years in these Ngogo chimpanzees, and the inferred mean age at weaning completion (4.0-

4.5 years) from fecal isotope data of Ngogo infant-mother pairs (Badescu et al., 2017).  

 Results overall suggested that the M1 root growth spurt coincided with the attainment of 

functional occlusion, followed by an abrupt drop in stress episode frequency (Malone, chapter 1 

page 40), just prior to the attainment of nutritional independence/weaning completion in these 

chimpanzees. However, to more robustly link the root growth spurt/occlusion age to weaning 

completion, another proxy for weaning in these specific individuals was needed.  

 The current study addresses this need for a proxy of dietary change by determining the 

variation in Ba/Ca intensities within the inner M1 enamel and dentine of these Ugandan 

chimpanzees, since this variation has been linked to the transition from nursing to adult foods in 

the teeth of multiple extant and fossil hominoids. 

 
The following questions will be addressed: 

1) Do the changes in Ba/Ca intensity (that presumably reflect dietary changes) show the 

same general patterns of increase and decrease through developmental time in 

chimpanzees as in other primates for which this has been assessed? 

 
Prediction: Orangutans, humans, macaques, and Neanderthals all seem to show at least some 

evidence of a Ba/Ca signal that begins low in prenatal enamel, rises to varying degrees in enamel 

formed during exclusive nursing, begins to fall as adult foods are introduced, and only rises 

again if the individual continued through cycles of frequent nursing during times of fruit scarcity, 

or if it mobilized Ca (and also Ba) from its own skeletal stores during times of serious illness or 

starvation (Austin et al., 2013; Smith et al., 2017; Smith et al., 2018). Due to the general pattern 
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seen in all of these taxa, it would be expected that something similar will be seen in 

chimpanzees, though the ages at which these changes occur, and the duration of those stages will 

differ, while the absolute values of Ba/Ca itself will vary among individuals. 

 
2) What are the patterns of Ba/Ca changes during the ages when weaning completion has  
 
been inferred from formation and eruption data?                                               
                         
 
Prediction: It was proposed in a previous study (Malone, Chapter 1) that the consistent drop-off 

in stress episodes after the root growth spurt could indicate that the weaning process was 

completed around that time. If this is the case, then we would expect to see Ba/Ca patterns also 

become lower after that point, as demonstrated for orangutans once they were presumed to have 

finished weaning (Smith et al., 2017) and for macaques with known weaning histories (Austin et 

al., 2013).   

 
3) Do patterns of dietary change as inferred from trace elements correspond with age at 

nutritional independence as inferred from fecal isotope studies of Ngogo chimpanzees? 

 
Prediction: It has been shown (Malone, Chapter 1) that the M1 root growth spurt for the 

chimpanzees in this study slightly precedes the mean age at which Ngogo chimpanzees complete 

the weaning process (Badescu, et al., 2017). Thus, if the Ba/Ca values drop off at the same ages 

(between 3.03-4.60 years, depending upon the individual), then the trace element values can be 

seen as support for the hypothesis that the M1 root growth spurt/occlusion age slightly precedes 

weaning completion in these chimpanzees. 

 
Materials: The first molars and either the second molars (five individuals) or the fourth 

premolar (two individuals) from seven chimpanzees (Pan troglodytes schweinfurthii) were used 
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in this study. The M1s were used in a previous study by the author to collect incremental 

developmental data and measure crown and root extension rates and those individuals are listed 

in Table 8.  

 

Table 8: Chimpanzee individuals included in this study 

ID # Origin Sex Name Estimated 
Age 

Date of death/cause 
of death 

Teeth 
used 

NG001 Northeastern community, 
Kibale National Park, Uganda2 

M Unknown Adult 6-1-02/ intergroup 
aggression2 

M1, 
M2, M3 

NG002 Wantabu community, Kibale 
National Park, Uganda2 

M Unknown Adult 11-23-02/ intergroup 
aggression2 

M1, 
M2, M3 

NG003 Ngogo, Kibale National Park, 
Uganda3 

M “Grappelli” 20 10-30-02/within-
group attack3 

P4, M2, 
M3 

NG004 Ngogo, Kibale National Park, 
Uganda1 

M “Stravinsky” 32 2006/ intergroup 
aggression1 

M1, 
M2, M3 

NG005 Ngogo, Kibale National Park, 
Uganda1 

M “Tatum” 23 2008/unknown1 M1, P4, 
M3 

NG012 Ngogo, Kibale National Park, 
Uganda1 

F “Carmen” 51 Sept 2013/unknown M1, 
M2, M3 

NG013 Ngogo, Kibale National Park, 
Uganda1 

M “Webster” 26 March 2014/ 
respiratory disease?3 

M1, 
M2, M3 

MUZM
2625 

Bwindi Impenetrable National 
Park, Uganda 

F Unknown Adult Unknown/unknown M1, P4, 
M3 

Table 8: Identifying information for all eight chimpanzees used in this study. ID # refers to the individual’s accession number. In 
cases where dates of birth are unknown, a general age category is used (i.e., “Adult”). The “NG” indicates an individual from or 
associated with the Ngogo population, while “MUZM” refers to the Makarere University’s Zoology Museum.  

 
 

Previous work (Malone, unpublished data) explored dental development and diet in a sample of 

six yellow baboons (Papio cynocephalus) from Kenya and one hybrid Hamadryas baboon (Papio 

anubis-hamadryas) from Ethiopia, and data from that study was used for comparative purposes 

here, with those individuals listed in Table 9. Another comparative sample came from seven red-

tailed monkeys (Cercopithecus ascanius) that were also from Kibale National Park (Table 10). 
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Table 9: Yellow baboon individuals included in the comparative sample 
 

ID #  Species/Subspecies  Area of origin  Sex  Age category Teeth used 
UM152  Papio cynocephalus  Loboi, Kenya  F  Adult  M1, C 

UM112  Papio cynocephalus  Loboi, Kenya  M  Adult  M1, C, M2, 
M3 

UM131  Papio cynocephalus  Loboi, Kenya  M  Adult  M1 
UM169  Papio cynocephalus  Loboi, Kenya  F  Sub- adult  M1 
UM122  Papio cynocephalus  Loboi, Kenya  F  Sub- adult  M1 
UM167  Papio cynocephalus  Lobio, Kenya  M  Adult  M1 
HP1  Papio Anubis-hamadryas Awash National Park, Ethiopia  F  Adult  M1 

Table 9: Identifying information for all seven baboons used in this study. None of these were known individuals. All individuals in this 
study, except “UM169” and “UM122”, were classified as “adult” due to their M3s being fully formed. “UM” indicates an individual 
from the University of Michigan’s non-human primate Osteology Collection, while “HP” refers to the hybrid Papio individual.  

 

 

Table 10: Red-tailed monkey individuals in the comparative sample 

ID # Sex Age category Tooth used 
ASC 9 F Adult M1 
ASC 22 F Adult M1 
ASC 45 M Adult M1 
ASC 73 F Adult M1 
ASC 78 M Adult M1 
ASC 112 F Adult M1 
ASC 207 M Adult M1 
ASC 446 M Adult M1 

Table 10: “ASC” stands for ascanius. “Adult” indicates that all teeth are fully formed and in occlusion.  
  

Methods:  Unanalyzed halves of previously sectioned teeth (Malone, Chapter 1) were used to 

create thin histological sections. These sections mirrored the structure and layout of a slide from 

the other half as closely as possible, by only lightly lapping and polishing the sectioned tooth 

surface before mounting it to the microscope slide. Once new thin sections were made and 

images taken to confirm periodic and accentuated variables from original sections from the other 

half of the tooth, the slides (left uncovered by coverslips) were then laser ablated.  

 Laser ablation inductively-coupled plasma mass spectrometry (LA ICP-MS) was used to 

obtain calcium- normalized barium ratios (Ba/Ca) and their distributions within the first molar 

thin sections, in order to detect and track the timing of dietary changes early in chimpanzee 

development. Laser ablation was conducted at Michigan State University’s ICP-MS laboratory in 
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the Department of Earth and Environmental Sciences using a Photon-Machines Analyte G2 

193nm excimer laser coupled with a Thermo Scientific ICAP Q quadrupole ICP-MS. Qtegra 

software was used to analyze Ba/Ca levels from 30-micron wide ablated tracks of enamel close 

to the enamel-dentine junction (EDJ). Standards used were NIST612 as well as an internal 

standard for enamel apatite calculated using the stoichiometric composition of a pure apatite. 

Once the Ba and Ca values were continuously collected and recorded as parts per million (ppm), 

those counts values were converted to concentrations, allowing a ratio to be created between the 

two elements. Ba/Ca values were charted using Excel (as in Figure 14), with the resulting values 

then being mapped onto the histological images of each tooth (as described below), which 

showed how the Ba/Ca ratios changed over developmental time within the ablated tracks in the 

enamel and dentine. Before each track was ablated, a round of pre-ablation took place, which 

removed ~1-2 microns (µm) of material from the section’s surface along the planned track, 

cleaning it of contaminants within the area to be ablated.  

 
Ba/Ca distribution mapping: For each individual track within each tooth a separate range of 

values was determined, with any obvious outliers removed from that range, since these can 

obscure true, often subtle, variation by creating a range in which the signal is lost within the 

noise (pers obsv). Since as many as 5000 values were collected from along a single ablated track, 

averages of every ten values were taken, and these averages (~200-500 colored points) were 

what made up the final range of values for each track. 

 Each final range of values was divided equally into ten parts, with each part being 

represented by a color from lowest (dark blue) to highest (deep red). Locations of the individual 

values were determined using the length of the track and the number of values collected from 

start to finish. Outlier values were determined by looking at their location within the track on the 
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thin section, and if there was damage or epoxy infill in that area, it could be confirmed that the 

variation was not biological but merely an artifact, and so it could be removed and a blank value 

(black for extremely low or white for extremely high) substituted in that space so that the value 

placement did not get thrown off. Once the individual values were laid down in the image of the 

ablated track on the tooth, the patterns of accentuated lines, already recorded in previous work, 

were overlain onto these maps to see how they corresponded with changing trace element values.  

 
Method verification: In a prior project, (Malone, unpublished data), the M1s from a sample of 

yellow baboons (Papio cynocephalus) and red-tailed monkeys (Cercopithecus ascanius), were 

histologically prepared and analyzed, and then subjected to the trace element analysis described 

above. The sampling strategy was thus refined using the teeth of these two other taxa before 

analysis was conducted on the chimpanzee molars, since these two species, like other 

cercopithecoids, have been observed to complete their weaning process during M1 enamel 

formation, and were therefore likely to show trace elemental evidence of a completed weaning 

process that could be tracked within a single tooth crown.   

 
Several questions guided the sampling design, based upon predictions from a previous study by 

the author and studies from the literature: 

1) What factors will influence the distribution of Ba/Ca values in the enamel and dentine of 

these chimpanzees? 

2) What factors will influence how these data appear in the output values resulting from 

the laser ablation process? 

Prediction 1: Each chimpanzee individual will have a unique pattern of change in Ba/Ca 

intensity across developmental time, due to different levels in its mother’s breast-milk (Austin et 
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al., 2013), first and foremost, but also due to different durations of exclusive breast-feeding, and 

sporadic bouts of increased nursing intensity (Smith et al., 2017).  

Prediction 2: The values produced from the dentine will necessarily be higher than those in 

enamel, due to the greater amount of dentine material that will be ablated during each pass, since 

enamel is a much harder tissue. The patterns of change, however, should match up between areas 

of enamel and dentine that form simultaneously.  

Prediction 3: It is likely that there will be areas of demineralization right along the EDJ that may 

affect the accuracy of values coming from that area, as this has been seen in other studies (Smith 

et al., 2018), and this can be expected in the teeth of these chimpanzees as well. 

 To determine whether this sampling procedure could produce consistent results, a number 

of tests were devised. First, elemental isotopes are present in different amounts in various tissues, 

and other studies that have used similar methods to obtain Ba/Ca values have done so using 138Ba 

(e.g. Austin et al., 2013). Although it was found that the abundance of that particular isotope was 

quite low in some of these samples, the 137Ba isotope was found to be present in similarly small 

amounts (see Figure 11). Consequently, despite these low levels, 138Ba was used in this study in 

order to ensure comparability with the results from other studies. 

 

          Figure 11: 137Ba/Ca (red) and 138Ba/Ca (black) overlaid to show consistent values 

               
   Figure 11: The x-axis shows how far along the yellow baboon’s M1 enamel track the values are, and the y-axis shows 137Ba/Ca    
   and 138Ba/Ca values.  
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 As a further test of consistency, in one red-tailed monkey and two yellow baboons, two 

trials were conducted in the same tooth using different track widths, one at 65µm and one at 

30µm, in order to test whether the same pattern of change could be seen in the smaller track and 

the wider track (Figure 12). This test provided insight into whether there was signal attenuation 

in the trace element values when moving further away from the enamel-dentine junction (EDJ). 

   

 Figure 12: M1 Ba/Ca patterns of change within 30 µm and 65 µm tracks of the same teeth of a  

    red-tailed monkey and two yellow baboons 

   
Figure 12: ASC207 is a red-tailed monkey, and UM152 and UM169 are female baboons in which 30µm and 65µm tracks were 
compared. The y-axis shows the Ba/Ca values and on the x-axis, from left to right, are the sampling points moving from the 
occlusal to cervical ends of the ablated tracks. Where the numbers on the x-axis start over, it indicates that one line ended and 
another picked up where it left off. The red lines highlight the increase in Ba/Ca intensity at the transition from pre- to postnatal 
regions of the enamel. Additional red-tailed monkey M1 Ba/Ca charts can be found in the Appendix.                                                                                                                                                                     
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The results of this test showed that the 65µm and the 30µm tracks revealed the same pattern of 

an increase in Ba/Ca followed by a decline soon after. The time periods over which this change 

occurred were different in each individual, but patterns of change between the 30µm and 65µm 

trials for the same individual were consistent. This meant that there was no significant decrease 

in the fidelity of the signal being obtained by ablating a narrower track. 

 As a final test, developmentally overlapping teeth of the same baboon were ablated along 

the inner enamel, permitting the sampling of areas of enamel forming simultaneously between  

these teeth. The ablated values from these overlapping teeth would be expected to show similar 

changes in Ba/Ca intensity if the path of the sampling track from one section was mirrored in the 

other.  

 

Figure 13: Ba/Ca overlap between the M1, C, M2, and M3 in male baboon UM112 

 

Figure 13: Enamel Ba/Ca values in the top part of the chart are from the male baboon UM 112 M1 (orange), C (red), M2 
(yellow), and M3 (pink). On the y-axis are Ba/Ca values and on the x-axis, from left to right, are the sampling points moving 
from the occlusal to cervical ends of the ablated track. Below that is a chart of the amount of crown formation overlap (and the 
actual ages of that overlap) between the four teeth as indicated by the overlap in Ba/Ca values. Actual overlap is slightly greater, 
since the ablated tracks did not run all the way to utmost cervical end of the crowns. 
 

The resulting chart of overlapping Ba/C values is seen in Figure 13, and the overlap in actual 

values between these simultaneously forming teeth shows the M1 (orange values) overlapping 

with the canine (red) but not with the M2 (yellow), which only overlapped with the canine. This 

 In addition to these data collected from the chimpanzee population, the amount of overlap in 

Ba/Ca values in the teeth of several yellow baboons (Papio cynocephalus) is also given (Figure 6). The 

amount of baboon Ba/Ca overlap is even more striking than within the chimpanzees, and can be 

compared with histologically based overlap charts such as that from Dirks & Bowman (2007) seen in 

Figure 7. The surprising amount of absolute value and pattern overlap between these teeth also supports 

the idea that sampling along this innermost area of enamel and dentine, close to the EDJ, is indeed 

capturing the same amount of signal variation, and is clearly the area to sample in order to obtain the least 

attenuated signal, especially in the enamel. 

 
Figure 6: Ba/Ca overlap between M1, C, M2, & M3 in a male baboon “UM112” 

 

 
Figure 6: A timeline of just before birth to age 5 years is given at the top, with the duration of crown formation of the M1, 
C, M2, & M3 charted again the timeline. Ba/Ca values taken from the inner enamel track from the M1 (orange) the canine 
(red), the M2 (yellow), & and the M3 (pink) are lined up to show how the Ba/Ca values overlap to the same extent that the 
crown formation ages do. The missing portion of the M2 (yellow values) is due to damage to that crown and extreme outlier 
values as a result. 
 
 Figure 7: Average crown formation ages in the teeth of Papio hamadryas 
 

 

 
Figure 7: Tooth types are listed on the y-axis with average ages for cuspal enamel (black) and imbricational enamel (grey) 
formation in years on the x-axis. Ages of weaning (W), first molar emergence (1E), menarche (M), and third molar 
emergence (3E) taken from other studies are overlaid onto the M1-M3 formation times. (Dirks & Bowman, 2007) 
 
In the yellow baboon study multiple tracks were ablated beginning with one close to the EDJ and 

subsequent ones ran parallel to that first track but closer to the crown surface as seen in Figure 8 
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is followed by the canine’s overlap with the M3 (pink). The timeline below the chart shows the 

ages of overlapping crown formation, inferred from the overlap in Ba/Ca values, and this begins 

before birth and goes up til slightly after age five. This test demonstrated the consistency of the 

values themselves between overlapping crowns, supporting the use of this method in the 

chimpanzee sample, while also confirming the amount of crown formation overlap between the 

teeth (Figure 13). 

 

Results/Discussion: These results consist of numerous types of data. Charts of the general 

patterns of change in Ba/Ca values across M1 development are shown for all seven chimpanzees 

(Figure 14) . Ba/Ca intensity distribution maps for tracks in the enamel and dentine are given for 

five of the seven individuals, with accentuated lines overlaid (Figures 16-19) . For the seven 

individuals (Figure 21), charts of the overlap in the Ba/Ca values between consecutively forming 

teeth are shown (M1 and either M2 or P4), and for one of these individuals (NG012), a Ba/Ca 

intensity map for both teeth shows the location of the M1 root growth spurt in the second tooth’s 

enamel (Figure 20). Ba/Ca distribution charts, from the M1s of the baboons used in the previous 

study, are also included here for comparison (Figure 15), along with Ba/Ca intensity maps 

obtained from these baboons (Figure 23). Because many of these types of results are interrelated, 

discussions of the relevance of the data, will be included in the results sections along the way.  

 

Overall Ba/Ca variation: The changing Ba/Ca intensities from along the inner enamel tracks of 

six of the chimpanzee M1s are shown in Figure 14. The Ba/Ca concentrations varied 

considerably, ranging from 0.35 in parts of the Bwindi chimpanzee’s M1 enamel to as high as 

5.3 in the M1 of one of the Ngogo chimpanzee males (NG004).  
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  Figure 14: Ba/Ca distributions in the M1s of four male and two female chimpanzees  

 
     Developmental Time 
Figure 14: Individual IDs are listed next to each chart, along with the number of tracks ablated for that tooth. Ba/Ca values are 
on the y-axis. The x-axis, from left to right, depicts the sampling points moving from occlusal to cervical ends of the ablated 
tracks, representing Ba/Ca change over developmental time. Red brackets highlight increases in Ba/Ca values between birth and 
the inferred point when non-milk foods are introduced. Vertical lines within charts indicate the end of one track and the start of 
the next. Gaps indicate discontinuity in the track. 
 

 One of the M1s in the sample (NG002) did not contain any prenatal enamel, nor could 

the neonatal line be identified in the dentine due to cuspal wear, so it was not included here, 

since the aim was to identify this first signal of dietary transition from gestational diet to 

exclusive nursing. In NG005, no significant increase, like that seen in the others, could be 

detected in the earliest forming enamel. The implications of this are discussed below with the 

individual intensity maps. A prenatal-to-postnatal shift, presumed to reflect a dietary transition 

was detected in the other five chimpanzees in this sample. 
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Figure 15: Ba/Ca distribution in the M1s of seven baboons (6 Papio cynocephalus &1  Papio 

hamadryas-anubis hybrid) 

 
         Developmental Time 
    Figure 15: Parameters are the same as in Figure 6, but the top three are male and the next three are female yellow baboons 

and the final one (HP) is the female hybrid hamadryas baboon. (from Malone, unpublished data) 
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Case 1: NG001- Three sections were made from the M1 of individual NG001 (Figure 16), 

each one capturing the mesiobuccal cusp in a slightly different plane of section, and including 

the tip of the dentine horn with varying degrees of completeness. Section LM1-1 is not in the 

ideal plane of section, as is slightly too thick for the optimal polarized microscopy view, but it 

was chosen for laser ablation.  

 
Figure 16: Ba/Ca chart from M1 enamel (orange) and dentine (red) and a Ba/Ca intensity map from 

extra-group male chimpanzee “NG001” 

Figure 16: From left to right-LM1.1, LM1.3, LM1.2 mb cusp, LM1.2 ml cusp. Accentuated lines can be seen overlain in white. 
Ba/Ca from within the enamel and dentine tracks is visible in LM1.1 In the third image, the missing area of the crown has been 
reconstructed to dhow the correspondence between the accentuated lines still visible and those complete ones in the other 
sections. The fourth image is the mesio-lingual cusp of the third section. 
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   The chart above the histological images shows the changing Ba/Ca values from within the 

enamel (orange) and dentine (red) tracks. These values were mapped onto the tracks in LM1.1 

(left image) and the accentuated lines from the other three images were placed over the Ba/Ca 

values in order to age the changes along the tracks. In NG001, an extra-group male, the 

measured M1 root growth spurt from the previous study was 2.65 years, making his estimated 

M1 emergence age 2.15-2.45 years. This is the earliest estimated M1 emergence age and root 

growth spurt from the sample. 

 

Figure 17: Ba/Ca from the M1 enamel and dentine ablated tracks of male Ngogo chimpanzee “NG013” 
 

 
Figure 17: In the chart on top, are the changing Ba/Ca intensities from within the dentine (red) and enamel (orange). 
In the image on the bottom, the occlusal end is to the left and the cervical end is to the right. The tooth has been outlined in white, 
along with the dentine horn and the EDJ, and the histological image has been removed from beneath in order to better see the 
patterns of accentuated lines (red lines, some of which are arranged in “v”s showing the same lines in enamel (below) and dentine 
(above)). The Ba/Ca color intensity scale includes the enamel and dentine values. The gaps in the enamel track chart (orange) 
indicate that the track was discontinuous. 
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   Case 2: NG013- The M1 of this individual (“Webster”) suffered some major cracks running 

through the crown, and this restricted the areas of the enamel and dentine that could be 

sampled (Figure 17). Instead of running the ablation track over the cracked area, the track was 

stopped at the border of the crack, and picked back up on the other side, where possible. In the 

case of the final line of the three in the enamel, the line had to begin further away from the EDJ 

than is ideal, so the values from the early part of that line are not taken as a signal with the 

same fidelity as the rest of the line that is close to the EDJ. The enamel (orange) and dentine 

(red) tracks in the chart at the top are aligned spatially to show where they correspond to the 

Ba/Ca map below, as well as where they correspond temporally to each other. Even with the 

gaps in the enamel values (and a few divergent areas where the track veers into later forming  

   enamel) the patterns of change between the enamel and dentine are very similar. 

 Also included in this image are the ages of some of the major accentuated lines in enamel    

   and Owen’s lines in dentine. The prenatal-to-postnatal increase in Ba/Ca levels is visible in the   

   enamel track but the dentine track did not begin in the earliest forming area of the crown.  

   Webster’s estimated M1 emergence age was the latest in the entire chimpanzee sample, at 3.80- 

   4.10 years. It should also be noted that NG013 shows the latest root growth spurt of any of the  

individuals in this study, yet the peak in line formation and Ba/Ca value fluctuations still 

occurs in tandem with the growth spurt, supporting the assertion that it is a true measure of this 

biological relationship, and not merely an artifact. 
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Figure 18: Ba/Ca from the M1 ablated dentine track of female Bwindi chimpanzee “MUZM2625” 

 
Figure 18: Parameters are the same as in Figure 17. The one-year mark is indicated by a red and yellow circle and in the charts 
above the map, white dotted lines indicate damage in prenatal enamel followed by major accentuated lines and their timing. 

 

     

    Case 3: MUZM2625- This individual is a female chimpanzee from the Bwindi Impenetrable     

    National Park. Her M1 emergence age was estimated to be between 3.19-3.49 years, which is   

    in the middle of the Ngogo age range and on the very end of the Kanyawara range. This is also  

    nearly a year later than the two extra-group Kibale males.  

 The Ba/Ca levels from within her dentine (Figure 18) conformed well with the predicted  

    pattern of Ba/Ca change representing the amount and duration of variability surrounding  

    dietary transitions. With the exception of several outlier values in the earliest prenatal dentine  

    (indicated as white blanks on the map and a spike in the red dentine chart values), the Ba/Ca      

    values rise at birth, remain high until about 82 days into growth, at which point the beginnings   

    of mid-range values may be associated with reduction of milk in the diet due to an unknown   
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    portion of nutrition coming from the incorporation of some adult foods. The Ba/Ca intensity   

    stays at this level for about two months and then dips into the mid-low range for about 4.5   

   months only to rise again after she was one year old, suggesting another increase in nursing  

   intensity lasting at least until the track ended, which was when she was about 1.42 years old.   

    

Case 4: NG005- For this Ngogo male (“Tatum”) (see Figure 19-top) an M1 emergence age 

range of 2.95-3.25 years was previously estimated, which is on the early end of the Ngogo 

chimpanzee range. The charts of Ba/Ca variation in the dentine show a marked increase at the 

end of the enamel track (and this is even more pronounced in the dentine track), which 

resulted from the track running through an area of damaged enamel full of cracks. Those 

increased values are therefore very likely not the true biogenic signal from that developmental 

area, and may have increased the range of variability within those tracks too much to be able 

to pick up on the early life variation that we would expect to see in the area of enamel forming 

after the neonatal line, and during the period of exclusive nursing. In this individual, prenatal 

enamel was not captured, so the signal begins within the enamel and dentine formed just after 

birth. The dentine appears to pick up a bit of that higher Ba/Ca intensity, which then falls to 

much lower levels at 3-5 months. Ba/Ca intensities increase slightly several times in the 

enamel and dentine after that point (rising to light greens, yellows, and oranges in places), 

which may indicate periods of more intensive nursing In several areas, the track ventures too 

near to the EDJ, and runs into areas of demineralized enamel, causing the much lower values 

around the middle of that track. 
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Figure 19: Ba/Ca from the M1 enamel (orange) and dentine (red) of “NG005” (top) and “NG012” (bottom) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Figure 19: The two maps here include the histological section in the background for some context for the changing Ba/Ca values 
within the ablated tracks in enamel and dentine. The occlusal end is to the left and the cervical end is to the right.           
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   Case 5: NG012- This individual, “Carmen”, was the only female chimpanzee from the Ngogo 

sample. Her M1 emergence age was estimated to be 3.43-3.73 years, with a root growth spurt 

age of 3.93 years, and this is on the late end of Ngogo range.  

  Her patterns of Ba/Ca variation (Figure 19-bottom) in the enamel have been affected by 

the track veering slightly into the more demineralized enamel next to the EDJ, but the track 

through her dentine tells a different story. Ba/Ca values (in red) and the values within the 

early part of the track (on the left of the image), show the tell-tale increase after the neonatal 

line, indicating the switch from a prenatal diet to one of exclusive nursing, and after this 

increase, and a short-lived decrease where the track runs over a crack, these values stay in the 

mid- to mid-high range (greens, light greens, and yellows) until around nine months, at which 

point there is a spike in in the Ba/Ca values (all oranges, reds, and dark reds). This spike 

coincides with the occurrence of two major accentuated lines about 20 days apart, and these 

may indicate an episode of increased suckling, or could suggest a short period of intensive 

illness or starvation, during which her skeletal calcium and barium stores would have been 

mobilized and incorporated into her forming teeth. After this point, there is another increase 

between ages 12-14 months, followed by a decrease as the track runs back into the 

demineralized dentine. Once the track remerges, the values stay within the mid-range (aqua, 

green, light green) with occasional spikes of yellow and orange, until the end of the track. 

This suggests that the relative contribution of milk has decreased, but that she was still 

nursing at a steady level through age 1.68 years (a minimum estimate from the enamel-based 

cusp-specific formation time (CFT)). This Ba/Ca information is continued in the M2 of 

NG012, seen in the overlap map in Figure 20. 
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Figure 20: Ba/Ca overlap between ablated tracks in M1-M2 in NG012 with the root growth spurt overlaid 
   

 Figure 20: Accentuated lines used to cross match the M1 and M2 can be seen in white, and the root growth spurt age for the M1 
(top tooth) is indicated by a red line in the M1 and in the M2 (bottom tooth). A chart of the distribution of accentuated lines (red 
circles) and their frequency before and after the M1 root growth spurt is included on the top. The root growth spurt is where the 
peak extension rate occurs in the M1. 

 

In the NG012 M1-M2 overlap map (Figure 20), the M1 root growth spurt age noted for this 

individual in a previous study (Malone, Chapter 1), is highlighted on the M1 root with the 

same point registered within the crown of the M2. This is in order to look for correlations 

between the accentuated lines, (indicating stress episodes) and the Ba/Ca values. In the 

example in Figure 11 (NG012 M1-M2), the root growth spurt age of 3.93 years is marked 

within the M1 and M2, and the pattern of accentuated lines in the M1 crown and root dentine is 

shown at the top of the image (with red circles indicating accentuated line occurrences), in 

order to illustrate the surge and cluster of these lines leading up to the root growth spurt. That 

surge in structural markers of stress coincides with an area of heightened Ba/Ca intensity in 
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the enamel of M2, which overlaps in time with the growth spurt in the root of M1 (That area of 

the M1 root was not ablated, so the simultaneously forming portion of M2 crown was used as a 

substitute.) Similar, though less extreme, patterns of accentuated line frequency in the time 

just prior to the root growth spurt are recorded in the other M1s (Malone, Chapter 1).  

 

Summary of Ba/Ca intensity maps: When the individual intensity maps of Ba/Ca distribution 

are considered for all five chimpanzee M1s, a subtle pattern begins to emerge. There is first a 

slight increase in the earliest forming enamel and dentine, coinciding with an inferred 

transition from prenatal enamel (before the neonatal line) to enamel formed while exclusively 

nursing. The Ba/Ca ratio then drops significantly with only occasional forays from low 

intensity (blues) to medium intensity (greens) until a major transition appears to occur around 

two-thirds of the way through M1 crown formation. At this point, often fluctuating greatly, 

the much higher values begin to appear (yellow-orange-red), coinciding with the occurrence 

of some of the most significant accentuated lines. This variation is more pronounced and 

visible within the dentine, but appears to occur at almost exactly the same time as the slightly 

more diffuse signal in the enamel, which supports the fidelity of the signal. From looking at 

the enamel and dentine values together (in the charts at the top of each map), it also becomes 

clear that the values produced by ablating the dentine are substantially higher in absolute 

terms than those created by ablating the enamel. However, these tracks do not extend into the 

M1 root dentine, and so any correspondence between Ba/Ca values and the root growth spurt 

must be sought in the next tooth to form, either the M2 or the P4 (see Figure 21). 
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    Figure 21: Ba/Ca enamel overlap between M1&M2 (or P4) of the seven chimpanzees with M1s present 

 

 

Fig  
     Figure 21. Developmental time is on the x-axis and Ba/Ca values are on the y-axis. In six out of seven of the individuals, there is 
 one red line for the M1 and one yellow line for the M2 or P4. In NG005 (bottom) the M1 line is divided into three parts (red, 
 yellow, & orange) due to the ablation line being interrupted, and part three (orange) overlaps with the P4 values (second red line). 
 These sets of consecutively forming teeth overlap for between two and eleven months (higher amounts are between M1s and P4s, 
 lower amounts are between M1s and M2s). Root growth spurts are overlaid as dashed white lines. 

 

Table 11: M1 root growth spurt ages for the seven chimpanzees in Figure 13 
NG001 NG002 NG004 NG013 MUZM NG012 NG005 
2.65 years 2.75 years 2.93 years 4.30 years 3.69 years 3.93 years 3.45 years 
Table 11: Root growth spurts are measured in M1s or inferred in M1s. (Modified from Malone, Chapter 1) 
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al., 1998). Even with this caveat, the fidelity of the overlap in values themselves, not just the patterns of 

change, lends credence to the proposition that the trace element values being sampled are capturing true 

biological variation across developmental time. The amount of overlap varied between 3 and 6 months in 

each pair of teeth. 

  

Figure 4: Ba/Ca enamel overlap between M1&P4 of “NG005” (top) and M1&M2 in “NG012” (bottom) 
 

  

 
 Figure 4: Enamel ablation line in NG005 is divided into 3 parts (red, yellow, & orange) and part 3 overlaps with 
 P4 values for approximately 4 months of development. In NG012 there is only 1 ablation line for M1 (red) and 
 M2 (yellow) and these overlap in values for approximately 5 months. 

 
Figure 5: Chimpanzee crown formation and emergence ages for all teeth 

 

 
Figure 5: Tooth types are listed on the y-axis with average ages for crown initiation and completion for maxillary (upper 
dashed line) and mandibular teeth (lower solid line), with formation age in years on the x-axis. Ages of emergence (E) are 
estimated from during the unknown root formation time. (Taken from Reid et al., 1998)  
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Figure 4: Ba/Ca enamel overlap between M1&P4 of “NG005” (top) and M1&M2 in “NG012” (bottom) 
 

  

 
 Figure 4: Enamel ablation line in NG005 is divided into 3 parts (red, yellow, & orange) and part 3 overlaps with 
 P4 values for approximately 4 months of development. In NG012 there is only 1 ablation line for M1 (red) and 
 M2 (yellow) and these overlap in values for approximately 5 months. 

 
Figure 5: Chimpanzee crown formation and emergence ages for all teeth 

 

 
Figure 5: Tooth types are listed on the y-axis with average ages for crown initiation and completion for maxillary (upper 
dashed line) and mandibular teeth (lower solid line), with formation age in years on the x-axis. Ages of emergence (E) are 
estimated from during the unknown root formation time. (Taken from Reid et al., 1998)  
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Multi-tooth Ba/Ca overlap charts: The charts in Figure 21 line up the areas of Ba/Ca pattern 

overlap for the laser ablation tracks in concurrently forming teeth for the seven chimpanzees. 

This was done using either the M1 and M2, or the M1 and P4, since both combinations show 

overlap in formation time for these individuals (Malone, Chapter 1) and the overlap in these 

teeth has been documented in other chimpanzee populations (e.g. Reid et al., 1998). Most 

significantly, the root growth spurts of the lower M1s in these individuals, are indicated in the 

M2 or P4 charts (Figure 21), and in each one, a spike in Ba/Ca values occurs in tandem with 

the root growth spurt, followed by a decrease in Ba/Ca throughout the rest of that track. This 

suggests that the pattern seen in the Ba/Ca overlap map (Figure 20) consistently occurs in 

each of the chimpanzee M1-M2 combinations, and demonstrates how this alignment between 

the structural and chemical indicators of the weaning process can be visualized. 

 

Comparative yellow baboon Ba/Ca results: In addition to the data collected from the 

chimpanzee population, the amount of overlap in Ba/Ca values in the teeth of several yellow 

baboons (Papio cynocephalus) is also given (Figure 22). The amount of baboon Ba/Ca 

overlap is even more striking than that within the chimpanzees, and can be compared with 

histologically based overlap charts such as that from Dirks & Bowman (2007).  
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Figure 22: Ba/Ca enamel overlap between the M1, C, & M2 in a female baboon (top) and between the 

M1, C, M2 & M3 in a male baboon (bottom) 

 

Figure 22: In both the female (top) and male (bottom) Ba/Ca overlap charts, the values from the M1s are in orange, those from 

the canines are in red, those from the M2s are in yellow, and in the male only, those from the M3 are in pink. Gray vertical lines 

indicate overlap between the tracks, and the spikes seen in the male canine values (red) are outliers. 

 

 In the yellow baboon study multiple tracks were ablated beginning with one close to the 

EDJ and subsequent ones ran parallel to that first track, but closer to the crown surface as seen 

in Figure 23 (Malone, unpublished data). In these teeth, the pattern of Ba/Ca change in the 

inner track changed fairly abruptly before and after the occurrence of particularly significant 

accentuated lines (red lines in Figure 23), while more diffuse changes were seen in tracks 

closer to the surface. It was determined, therefore, that the best way to obtain signal fidelity, if 

it were to be found anywhere in the tooth, would be right against the EDJ in the innermost 

enamel. Previous studies have explored the use of this inner layer (at least the first 10 µm or 

so) to obtain δ18O values that most closely resemble the original water input values compared 

with any other area of the tooth, indicating that this area may mature soonest after it is formed, 

resulting in the least signal attenuation from sampling in that area (Passey & Cerling, 2013).  

 In addition to these data collected from the chimpanzee population, the amount of overlap in 

Ba/Ca values in the teeth of several yellow baboons (Papio cynocephalus) is also given (Figure 6). The 

amount of baboon Ba/Ca overlap is even more striking than within the chimpanzees, and can be 

compared with histologically based overlap charts such as that from Dirks & Bowman (2007) seen in 

Figure 7. The surprising amount of absolute value and pattern overlap between these teeth also supports 

the idea that sampling along this innermost area of enamel and dentine, close to the EDJ, is indeed 

capturing the same amount of signal variation, and is clearly the area to sample in order to obtain the least 

attenuated signal, especially in the enamel. 

 
Figure 6: Ba/Ca overlap between M1, C, M2, & M3 in a male baboon “UM112” 

 

 
Figure 6: A timeline of just before birth to age 5 years is given at the top, with the duration of crown formation of the M1, 
C, M2, & M3 charted again the timeline. Ba/Ca values taken from the inner enamel track from the M1 (orange) the canine 
(red), the M2 (yellow), & and the M3 (pink) are lined up to show how the Ba/Ca values overlap to the same extent that the 
crown formation ages do. The missing portion of the M2 (yellow values) is due to damage to that crown and extreme outlier 
values as a result. 
 
 Figure 7: Average crown formation ages in the teeth of Papio hamadryas 
 

 

 
Figure 7: Tooth types are listed on the y-axis with average ages for cuspal enamel (black) and imbricational enamel (grey) 
formation in years on the x-axis. Ages of weaning (W), first molar emergence (1E), menarche (M), and third molar 
emergence (3E) taken from other studies are overlaid onto the M1-M3 formation times. (Dirks & Bowman, 2007) 
 
In the yellow baboon study multiple tracks were ablated beginning with one close to the EDJ and 

subsequent ones ran parallel to that first track but closer to the crown surface as seen in Figure 8 

(Malone, in prep). In these teeth, the pattern of Ba/Ca change in the inner track changed fairly 
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 In the chimpanzee study, a 30-µm track was the narrowest that could be obtained using 

the equipment available for this study, but by keeping it close to the EDJ as much as possible, 

when there was not damage to the area, the signal obtained was at least able to be linked more 

closely with the original input signal than the wider tracks ablated closer to the crown surface 

in the previous study carried out using the baboons.  

                                                   
 Figure 23: Ba/Ca distribution in the M1s of a male (left) and female (right) yellow baboon 

 

 

 
 

Figure 23: Images from left t right-Reflected light 4x microscope image of 110-um thin section from the UM112 M1 
mesiobuccal cusp with two 65-um tracks ablated into the enamel adjacent to the EDJ. Ba/Ca intensities are overlaid on the inner 
track running form the occlusal edge (top) to the cervical margin (bottom). Early accentuated lines, including the neonatal line, 
are overlaid in red. Image 2 is of the same section of the same tooth before ablation, seen through polarized transmitted light to 
visualize internal structures. Image 3 is the M1 of a female baboon, and it is taken on a thicker section, so the reflected light 
doesn’t pass through it as well. An 80 um-track was used in this tooth, and image 4, while of the same tooth, is of the opposing 
face of that section. Values from the lowest part of the Ba/Ca intensity range are dark blue and medium blue, moderately low are 
light blue and aqua, neutral/mid-range intensities are green and light green, medium high intensities are seen in yellow and 
orange, and the highest intensities are bright red and dark red. The area in black at the end of the track in UM152 contained 
damaged, cracked enamel, making the values from that region and the rest of the way down the track extreme outliers.            
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Conclusions: This study found that the changes in Ba/Ca intensity (that presumably reflect 

dietary changes) do show the same general patterns of increase and decrease through 

developmental time in chimpanzees as in other primates for which this has been assessed. It was 

also found that the Ba/Ca values increase at the time of the M1 age at peak root growth velocity, 

followed by a decrease that continues thereafter, (except in cases of enamel damage), which 

supports the hypothesis that weaning completion occurs just after the M1 root growth spurt in 

chimpanzees. Since the M1 root growth spurts of these individuals were found to align well with 

the inferred ages at nutritional independence in Ngogo chimpanzees as assessed in a fecal isotope 

study, this lends further support to this study’s proposed connection between M1 root growth 

spurt and weaning completion. 

 One of the implications of these findings is that age at weaning completion, an important 

life history variable, can potentially be directly measured in isolated M1s, no longer in the 

mandible, since the root growth spurt can be measured in the M1 root and changing Ba/Ca 

values can be obtained from the root dentine. (We used the M1s and M2s or P4s, but it may be 

possible, and much simpler, to do this with only the M1s.) These structural and chemical 

correspondences should be confirmed in other chimpanzee populations, as well as in other 

primate taxa to assess whether this association holds true.  

 Another potential outcome of this study is that this method of determining the age of the 

M1 root growth spurt could be applied to dental remains in the fossil record, including those of 

fossil hominins, though further study into the integrity of the trace elemental signals in fossil 

enamel is a necessary precursor to such studies. Since this study successfully tracked this 

structural and chemical proxy for weaning completion in the teeth of adult individuals, it may be 

possible to significantly increase the sample size for which we can infer weaning completion age 
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in fossil taxa, if we do not have to rely upon using juvenile remains to infer M1 emergence age. 

This also eliminates the potential complication of using dental remains from deceased juveniles 

whose early deaths may not indicate “typical” developmental patterns, compared with 

individuals that survived through adulthood (see Smith and Boesch, 2011). 
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Chapter 4: Isotopic Variability Within the Tissues of Pan troglodytes schweinfurthii 

Informs Efforts at Fossil Hominin Dietary Reconstruction and Underscores the Need for 

Habitat-specific Plant Isotope Studies  

 

Abstract: The importance of the role of diet, and changes in diet, in hominin evolution, cannot 

be overemphasized. One of the main sources of information about diet in the fossil record is the 

biogenic isotopic signal in the bioapatite of tooth enamel, preserved in specimens millions of 

years old due to the resistance of enamel to diagenetic alteration. The stable carbon and oxygen 

isotope (δ13C and δ18O) values of the enamel of extant taxa, and knowledge of their diets, are 

used as a comparative guide for interpreting the isotopic signature and diet of a fossil organism. 

 This study attempts to address how sources of variation in diet, and the complex ways 

that dietary items are incorporated into the tissues of the body in living taxa, complicate direct 

attempts to use stable isotopic analysis of enamel apatite to characterize the diets of fossil taxa, 

including hominins. Isotopic analyses of various tissues from a sample of Ugandan chimpanzees 

(Pan troglodytes schweinfurthii), from several Pan communities within Kibale National Park as 

well as one from Bwindi Impenetrable National Park. Tissue included in this study are: (1) bone 

collagen, (2) bone apatite, (3) hair keratin, (4) enamel apatite, and (5) dentine. Baseline levels of 

isotopic variation are established for each tissue type, and bulk isotopic offsets between tissues 

of the same individual, and among all individuals from the sample, are determined and compared 

with the δ13C, δ18O, and δ15N values of chimpanzee tissues from previous studies. Serial 

sampling of enamel apatite reveals intra-tooth δ13C and δ18O variability, potentially reflecting 

sub-annual dietary and environmental variation. Dentine inter-tooth sampling reveals δ13C and 
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δ15N differences of up to 4‰, possibly related to changes in diet or climate during dentine 

development. “Total dietary” δ13C and δ15N input values are proposed based on published plant 

isotopic data, and novel Pan-specific diet-to-tissue offsets are calculated, resulting in a proposed 

diet-to-enamel δ13Capatite value of 12.3‰ for the Ngogo chimpanzees. Implications for the 

application of these data to studies of fossil hominin dietary reconstruction are considered, as 

well as their relevance to studies of weaning and overall life history evolution. Diet-to-tissue 

offset values are calculated for the other available tissues, as well, and while these cannot be 

used directly in studies of fossil dietary reconstruction, their relevance for increasing sample 

sizes of comparative isotopic data from extant taxa, is discussed. 

 

Introduction: The diet of a primate has important implications for nearly all aspects of its life. 

The items in an organism’s diet are products of the local habitat and ecological conditions, and it 

is to these conditions that the organism must adapt in terms of its locomotion, its reproductive 

behavior, its territory use, its social structure, its life history, its relationships with sympatric 

taxa, and its place within an ever-changing environment. Such considerations are central to 

studies of hominin evolution, and while changing and variable environments may be drivers of 

evolution, it is the studies of diet, dietary changes, and the diverse ways that dietary components 

are incorporated into tissues of the body, that provide a window onto the many selective 

pressures that have shaped our lineage and that ultimately shape all life. 

 Before interpreting the diets of fossil taxa, it is necessary to develop an understanding of  

how the isotopic signatures of dietary items are altered by the processes of ingestion, digestion, 

metabolism, and eventual routing to, and incorporation into, different body tissues. 

Unfortunately these processes are not uniform or universal across organisms, resulting in biased 
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uptake of different isotopes (fractionation), which complicate reconstructions of dietary inputs 

based on the isotopic signature of specific tissues. This study attempts to quantify the nature of 

these fractionation processes so we can reconstruct the dietary patterns and environments for 

fossil taxa using isotopic analyses.   

 

Background: The three elements for which isotopes are most commonly used in studies of 

paleodiet and paleoclimate are carbon, nitrogen, and oxygen. Relative isotopic abundances of 

these elements can inform us about an organism’s total dietary content (Kellner and Schoeninger, 

2010), their protein intake (Krueger and Sullivan, 1984; Ambrose and Norr, 1993; Tieszen and 

Fagre, 1993; Froehle et al., 2012), and their sources of water, respectively (Luz et al., 1984; Luz 

and Kolodny, 1989; Bryant and Froelich, 1995). The relationship between the amount of the 

heavier isotope to the amount of the lighter one is expressed as δ13C, δ15N, and δ18O. While δ15N 

can be obtained from sources like bone collagen, dentine, and hair (Crowley, 2008), these 

substrates do not preserve well in the fossil record. We must look to the enamel apatite of fossil 

teeth for isotopic signatures that do not significantly alter once they have been incorporated into 

the tissue, and can thus be retrieved even millions of years after an organism’s death. From 

enamel apatite we can obtain δ13C and δ18O signatures, and these isotopes have been sampled 

from numerous fossil taxa in attempts to reconstruct paleodiets and paleoclimates. The enamel of 

extant taxa has also been extensively sampled, and given what we know and can observe about a 

living organism’s diet and local habitat, this allows for the development of a modern template for 

interpreting the fossil record. 

 
Carbon: Carbon isotopes used in dietary reconstruction are 12C and 13C and are found in  
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different proportions in the plants that incorporate them into their tissues during photosynthesis. 

12C makes up the bulk of the carbon found in all plants, since they preferentially incorporate this 

lighter and more abundant isotope from atmospheric CO2 (O’Leary, 1988). Almost all dicots 

(which include most fruits, trees, shrubs, and temperate grasses) use the Calvin-Benson (C3) 

photosynthetic pathway, a process which discriminates against the heavy isotope 13C, resulting 

plant tissue enriched in 12C. C4 plants (many monocots, like tropical grasses and sedges), 

however, use the Hatch-Slack photosynthetic pathway (Ehleringer & Monson, 1993), which 

discriminates less against the heavier isotope during photosynthesis, resulting in a significantly 

higher amount of 13C in their tissues relative to C3 plants. There are also succulents that use the 

CAM photosynthetic pathway, or Crassulacean Acid Metabolism, and the δ13C of these plants 

tends to fall in between those of C3 and C4 plants. The δ13C of C3 plants ranges from -22‰ to -

35‰, C4 pants range from -9‰ to -14‰, and CAM plant δ13C values falling in the intermediate 

range, or slightly closer to the C4 range. Most primates live in tropical forests where C3 

vegetation predominates (Carlson and Kingston, 2014), and so it is important to characterize 

variation in the δ13C values of C3 plants in these biomes.   

  
Nitrogen: The nitrogen values in plants reflect plant physiology, nutrient availability, and also 

interactions with specific bacteria (Handley et al. 1999; Marshall et al. 2007; Werner and 

Schmidt 2002). Plants generally obtain their nitrogen directly from soil nitrate, and in these 

cases, the δ15N values are greater than 0‰, although some plant δ15N values can be <0‰ if they 

grow in particularly moist forests (Handley et al. 1999). Certain legumes also contain N-fixing 

bacteria that fix nitrogen directly from the atmosphere, making the δ15N of such plants close to 

0‰, though not all plants that have these bacteria fix nitrogen in such a way (Codron et al. 2005; 

Muzuka 1999). CAM plants can be higher in δ15N values than sympatric C3 and C4 plants 
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(Codron et al. 2006; Crowley et al. 2011), but also different plant parts can vary in their δ15N 

values (Werner and Schmidt, 2002). As an example, δ15N values of a preferred chimpanzee 

dietary item at Ngogo, Pterygota mildbraedii, range from 1.8 ± 0.9‰ in the flowers and 

cambium to 3.6 ± 1.1‰ in the seeds. There is an even greater difference of 2.1‰ between the 

δ15N values of the fruit and the flowers of the Cordia millenii plant from Ngogo (Carlson, 2011). 

  
Oxygen: A plant’s water sources is mirrored in its δ18O values, and such sources can be 

groudwater or a mix of surface water and the precipitation available in the area. Most parts of a 

plant tend not to be enriched in δ18O relative to the water they take in, but evapotranspiration can 

result in the leaf δ18O values being somewhat more enriched in 18O in more arid climates 

(Barbour, 2007). δ18O values of an animal’s tissues reflect the water that it drinks and the water 

in the foods it eats, as well as the oxygen released metabolically (Bryant and Frölich 1995; 

Fricke and O’Neil 1996; Luz and Kolodny 1985).  

 

Dietary information accessible through different tissues:  

Enamel: Hydroxyapatite, [Ca10(PO4, CO3)6)(OH, CO3)2] is the main component of tooth enamel, 

and its highly inorganic, non-porous composition is what allows it to retain an accurate signal of 

dietary (δ13C) and water source (δ18O) inputs once it is formed (Kohn and Cerling 2002; Lee-

Thorp and van der Merwe 1991). Carbon isotope values of enamel carbonate reflects that of 

blood biocarbonate, which is an integrated signal of the total dietary carbon (Passey et al. 2005). 

It is possible to obtain information about gestational diet and in-vitro water sources from the 

δ18O signature of enamel that forms in deciduous teeth, or during the earliest part of permanent 

M1 formation (Fricke and O’Neil 1996) Signals from enamel forming during the exclusive 

nursing period or through the weaning process can also be detected using enamel apatite. 
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Dentine: Dentine is also made up of hydroxyapatite within a collagen fiber matrix, but it is much 

less mineralized than enamel. Once primary dentine is formed, it does not remodel during life, 

and so retains a fairly reliable record of early diet (Beaumont et al., 2013). Secondary dentine 

does form on the inner wall of the dentine that surrounds the pulp cavity, and tertiary dentine 

forms in areas of damage to the crown, or in response to caries (Nanci, 2003). However, 

sampling of both of these areas of dentine can be avoided or removed before a tooth is sampled, 

allowing the early dietary information from the primary dentine to be accessed.  

 Dentine sampling has been used to access a number of types of information. Seasonal 

dietary variations have been accessed in a several taxa through incremental sampling of dentine 

that follows the pattern of formation, and this type of sampling can produce fairly high-

resolution records of changes in diet and metabolism (Balasse et al. 2001; Kirsanow et al. 2008; 

Wiedemann-Bidlack et al. 2008). Dentine is also often used to investigate dietary changes related 

to the weaning process, due to trophic level differences detectible in the δ15N values between 

dentine formed while an infant is breastfeeding and that formed later in life (Fahy, et al., 2014). 

Trophic level differences between infants’ forming tissues and mothers’ breastmilk can also be 

noted in the δ13C from dentine, although this isotopic difference is smaller than that of δ15N  

(Wright and Schwarcz, 1999).  

 
Bone collagen: As in dentine and hair keratin, the carbon isotope values (δ13C) in bone collagen  

are related to many parts of the diet, though they do reflect the protein component more heavily 

than carbon isotopes from other sources. (Froehle et al. 2010; Hedges and van Klinken 2000; Jim 

et al. 2004). The nitrogen values δ15N also reflect protein in the diet primarily. Collagen 

experiences turnover during an organism’s life (Gannes et al. 1998), so at any given time, the 

bone collagen content is likely to reflect many years of dietary signal.   
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Bone apatite: The carbon isotopic values from bone apatite reflect the isotopic signatures of 

lipids, carbohydrates, and proteins in the diet (Jim et al. 2004), while the oxygen isotopes reflect 

more of the signal of the imbibed water (Koch, 2007). Bone apatite also experiences turnover 

throughout life, so it will reflect a version of the adult dietary signal, unlike the early signal 

reflected in tooth enamel and dentine. 

  
Hair keratin: Much like bone collagen, keratin δ13C values reflect the whole diet, while keratin 

δ15N values predominantly reflect protein (Gannes et al. 1998; Hedges and van Klinken 2000; 

Martínez del Rio et al. 2009). Keratin is like enamel in that once it is formed, the isotopic values 

are maintained, and it doesn’t reform or turnover within the strand (Martínez del Rio et al. 2009). 

Also like enamel, keratin exibits a time-delay in terms of the dietary shifts it records, due to 

isotopic inertia, which may mask short-term shifts in diet (Sponheimer et al. 2003). Seasonal 

dietary shifts should be discernible, nevertheless (Dammhahn and Kappeler 2010; O’Brien and 

Wooller 2007). In addition, the collection and analyses of hair is non-invasive relative to teeth 

and bone. 

 

 

Stable isotope use in extant ape dietary reconstruction                                                                 

Studies that have analyzed various isotopes from different tissues in chimpanzees, are listed 

below. The isotope values are included also, and entries have been grouped by tissue type so that 

values may be more easily compared. 
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Table 12: Isotopic values for Pan troglodytes tissues compared between this study and other studies 

Taxo/ site 
collected 

Tissue δ13C 
‰ (average) 

δ15N 
‰ (average) 

δ18O 
‰ (average) 

Study 

Pan troglodytes 
schweinfurthii/ 
Bwindi 

Hair keratin -24.8 
(n = 10) 

5.8  
 

N/A Oelze et al., 
2016 

Pan troglodytes 
schweinfurthii/ 
Ngogo/Wantabu 

Hair keratin -23.4 
(n = 2) 

7.67 
 

N/A This study 

Pan troglodytes 
verus/ Taï 

Hair keratin -24.3  
(n = 30) 

7.4  
 

N/A Oelze et al., 
2016 

Pan troglodytes 
schweinfurthii/ 
Bwindi 

Bone apatite -17.31 
(n = 1) 

N/A 0.28  
 

This study 

Pan troglodytes 
schweinfurthii/ 
Kibale 

Bone apatite -14.5 
(n = 7) 

N/A -1.1 
 

This study 

Pan troglodytes 
verus/ Taï 

Bone apatite -16.9 ± 0.4 
(corrected*) 
(n = 18) 

N/A -6.5  
 

Fahy et al., 
2015 

Pan troglodytes 
schweinfurthii/ 
Bwindi 

Enamel 
apatite 

-15.49 
(n = 1) 

N/A 0.37 
 

This study 

Pan troglodytes 
verus/ Ganta 

Enamel 
apatite M1, 
M3 

-17.8 ± 0.4 (n 
= 33), -17.3 ± 
0.9 (n = 30) 
(corrected‡) 

N/A -2.4 ± 0.6 (n 
= 33), -2.6 
±0.4  

Smith et al., 
2010 

Pan troglodytes 
verus/ Taï 

Enamel 
apatite 

-16.1 ± 0.4 
(corrected*) 
(n = 14)  

N/A -3.2 ± 1.4  
 

Fahy et al., 
2015 

Pan troglodytes 
schweinfurthii/ 
Kibale 

Enamel 
apatite 

-14.5  
(n = 13) 

N/A 0.7 ± 0.4  
 

Nelson, 2013 

Pan 
troglodytes/ 
Ituri 

Enamel 
apatite 

-14.5 
 (n = 1) 

N/A -1.1  
 

Cerling at al., 
2004 

Pan 
troglodytes/ 
Itombwe 

Enamel 
apatite 

-13.5  
(n = 1) 

N/A -3.1  
 

Cerling et al., 
2013 

Pan troglodytes 
verus/ Taï 

Bone 
collagen 

-21.6 
(corrected*) 
(n = 22) 

8.0  
(n = 22) 

N/A Fahy et al., 
2015 

Pan troglodytes 
verus/ Ganta 

Bone 
collagen 

-22.6 ± 0.5 
(corrected‡) 
(n = 36) 

7.1 ± 0.7  
(n = 21) 

N/A Smith et al., 
2010 

Table 12: (*corrected for modern atmospheric CO2 using +1.5‰ after Trudinger et al., 1999) (‡corrected for modern atmospheric 

CO2 using -1.1‰ after Hoppe et al., 2006)  

 

 

 



 132 

Stable isotope use in fossil taxa dietary reconstruction  

The enamel apatite of numerous fossil hominins has been sampled and subjected to isotopic 

analysis, with some of their δ13C values listed in Table 13. 

 
Table 13: δ13Cenamel apatite values determined by other studies for 12 hominin taxa 

Taxon δ13C Study 
Paranthropus boisei -1.2 ± 1.1‰ Cerling et al., 2011b; Cerling et al., 

2013; van der Merwe et al., 2008 
Australopithecus bahrelghazali -2.6 ± 1.8‰ Lee-Thorp et al., 2012 
Paranthropus aethiopicus -3.7 ± 2.2‰ Cerling et al., 2013 
Homo sapiens -4.8 ± 2.3‰ Cerling et al., 2013 
Kenyanthropus platyops -6.2 ± 2.7‰ Cerling et al., 2013 
Homo spp -6.3 ± 1.9‰ Cerling et al., 2013; Lee-Thorp et 

al., 2000; van der Merwe et al., 2008 
Australopithecus africanus -7.1 ± 1.8‰ Lee-Thorp et al., 2010; Sponheimer 

and Lee-Thorp, 1999; Sponheimer et 
al., 2005; Sponheimer et al., 2013; 
van der Merwe et al., 2003 

Paranthropus robustus -7.5 ± 1.2‰ Lee-Thorp et al., 1994; Lee-Thorp et 
al., 2000; Sponheimer et al., 2005; 
Sponheimer et al., 2006a 

Australopithecus afarensis -7.5 ± 2.6‰ Wynn et al., 2013 
Ardipithecus ramidus -10.3 ± 0.9‰ White et al., 2009 
Australopithecus anamensis -10.9 ±0.8‰ Cerling et al., 2013 
Australopithecus sediba -11.7 ± 0.1‰ Henry et al., 2012 
 

These enamel δ13C values have led researchers to reconstruct the isotopic paleodiets of these 

hominin taxa as ranging from about -26‰ for Au. sediba to -15‰ in P. boisei. These 

interpretations have traditionally used a diet-to-apatite enrichment factor of 14‰, and dietary 

values are calculated by adding  -14‰ to the δ13Cenamel values, which represent the ratio of 

possible C3/C4 resources in their diets (Cerling and Harris, 1999). A potential problem with this 

approach is that the 14‰ enrichment factor derives from controlled studies of large-bodied 

ruminating herbivores (Passey et al., 2005). This enamel-to-diet offset is, to a large extent, a 

function of gut fermentation and it has been suggested that primates with generally higher quality 

diets may have diet-enamel offsets as low as 10‰ (Smith et al., 2010). Controlled feeding 
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experiments to obtain such an enrichment factor in primates, however, are not feasible given the 

time frame required. Studies of detailed chimpanzee plant food composition and isotopic values 

(e.g. Carlson and Kingston, 2014; Crowley and Carlson, 2016) have attempted to establish 

isotopic baseline values for a potential chimpanzee dietary input, and these studies set the stage 

for determining a true diet-to-enamel apatite enrichment factor for chimpanzees (which also is 

likely to vary by the types of dietary plants, elevation, canopy architecture, and climatic patterns 

at the sites (Carlson and Kingston, 2014)). 

 
Sources of variability 

Interpreting intra-tissue variability: In order to know the period of time in an organism’s life that 

is being sampled and analyzed, it is imperative to know about the age, timing, and duration of 

tissue formation, as well as turnover rates, where applicable. It is useful to consider how variable 

δ13C and δ18O values may be from serial enamel samples of the same chimpanzee tooth. Once 

this is assessed it can address whether such variability is conflated when just analyzing bulk 

samples that average the isotopic composition of the whole tooth. 

 
Intra-individual variability: Variation between similar tissues of different teeth of the same 

individual (i.e. the enamel of one individual’s M2 and M3) will be obscured if only one tooth 

type is sampled, or if multiple teeth forming at the same time are sampled (i.e. a deciduous tooth 

and the M1, or the P4 and the M2 in some taxa). If this source of variability isn’t taken into 

account, the overall inferred isotopic signal for that individual, or population, or taxon based on a 

single tooth may not be representative of the average adult diet.  

 
Inter-individual variability: It is important to consider how variable the isotopic signature of a  

given tissue is between as many members of a population as possible. If we can establish ranges  
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of intra-population variability in δ13C and δ18O in a specific chimpanzee tissue (i.e. an M3), we  

can better develop inferences about the paleodiets of fossil hominin based upon a single tooth or 

a single tooth type.  

 
Inter-tissue isotopic routing: There are numerous tissue sources for the each of the isotopes (i.e. 

δ15N in hair, dentine, bone collagen, and feces, δ13C in bone collagen, bone apatite, enamel 

apatite, dentine, and hair, and δ18O in bone apatite and enamel apatite) and they usually cannot 

all be obtained from study subjects at different sites. Therefore, it is useful to be able to compare 

the general patterns of isotopic enrichment or depletions of one element between the tissues to 

assess variation in offsets.  The consistency with which isotopes are routed to different tissues, 

however, is not well established, and may vary extensively between sites. 

 
Diet-to-tissue fractionation variability: Instead of assuming a 14‰ δ13C fractionation factor 

between diet and enamel apatite, as has been determined for ungulates (Cerling and Harris, 1999; 

Passey and Cerling, 2002), it is necessary to assess how the isotopic variability in different plant 

parts of different dietary items (at different elevations, from different levels in the canopy, in 

different proportions), affect a “total dietary input” isotopic measure and how this manifests in 

different tissues. Based on the variability of these factors in the chimpanzees in this sample, and 

output values in the different tissues of these individuals, we need to explore ways to estimate a 

reasonable diet-to-enamel apatite fractionation factor for Pan. Once this is accomplished, it is 

worth noting how this empirically determined fractionation factor may affect interpretations of 

fossil hominin diets based on δ13Cenamel values that assume a 14‰ fractionation factor.   

 
Inter-population dietary variability: This can be fully assessed only if the isotopic contents of the  

various plant food items (and ideally, the non-plant items, too) and their % feeding time can be  
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recorded for other populations. Without the diet information, comparisons can still be made 

between tissue outputs for members of different populations. However, as Carlson and Crowley 

(2016) demonstrated, some of the same plant types that grow within the chimpanzee site of 

Ngogo also grow at Bwindi, but their isotopic compositions are different due to the different 

environmental contexts represented by the two sites. Feeding time spent on each plant item is 

likely to be different too, so it becomes increasingly difficult to identify fractionation levels 

between diets and tissues of chimpanzees from different populations without a comprehensive 

characterization of the local isotopic baseline(s). 

 

Materials: Samples of several body tissues of one infant and eight adult chimpanzees (Pan 

troglodytes schweinfurthii) were analyzed in this study (Table 14). Eight of the chimpanzees 

(seven adults and one infant) were from Kibale National Park, Uganda, and one adult was from 

Bwindi Impenetrable National Park, Uganda. The remains of all individuals are housed at 

Makerere University’s Zoology Museum (MUZM) in Kampala, Uganda, with the exception of 

the infant chimpanzee (NG0-57), which is housed in the University of Michigan’s Department of 

Anthropology in Ann Arbor, Michigan.  

 Identifying data for the chimpanzees in this study are as follows: Approximate dates of 

death are known for seven of the nine chimpanzees. Dates of birth have been estimated for the 

five Ngogo chimpanzees using genetic data, which provides geneological information regarding 

individual relationships, combined with observations of the behavior and physical condition of 

animals when first observed (Wood et al., 2017).  Six of the eight adult individuals are male, 

while one Ngogo chimpanzee and the single individual from Bwindi are female. The sex of the 

infant is unkown. All of the individuals died between 2002 and 2014. NG001 and NG002 are 
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unnamed extragroup males killed by the Ngogo males during episodes of intergroup aggression 

(Watts et al., 2006). Another male “Grappelli” (NG003), died as a result of a within-group 

coalitionary attack (Watts, 2004). “Stravinsky” (NG004) was an Ngogo male who was a victim 

of intergroup aggression, and he was the maternal brother of “Tatum” (NG005), whose cause of 

death is unknown (Ngogo Chimpanzee Project unpublished data). “Webster” (NG013) may have 

died from respiratory disease (Wood et al., 2017). Causes of death for the Bwindi female 

(MUZM2625) and the single Ngogo female “Carmen” (NG012) are not known.  

 Rib bone samples approximately two centimeters in length were obtained from five of the 

adult individuals. For those chimpanzees for which ribs were unavailable, samples were taken 

from available bone sources. For the Bwindi specimen (MUZM) the bone came from the 

mandibular ramus, for NG004 it came from an unidentified bone fragment, and for NG057, it 

came from the occipital bone. For the NG004 sample, the bone had been too degraded and 

diagenetically altered to produce results (NG004). Finally, for individual NG003, no bone was 

available and only teeth were sampled. Bone samples were processed and partitioned for apatite 

and collagen isotopic analysis protocols. 

 In a previous study (Malone, Chapter 2) the extraction of three teeth from each of the 

eight adult chimpanzees was described. In this study, the M2s and M3s (and in a few cases the 

P4s) were selected for bulk enamel and dentine sampling as well as for serial enamel sampling. 

(In two cases of dentine sampling, the M1 was used intead of the M2 or P4 if it was all that was 

available.) Enamel and dentine preparation and sampling are described below. Hair samples were 

also obtained for two of the adult chimpanzees in our sample (NG002 and NG012) and these  

represent an extra-group male and an Ngogo female. 

 
 



 137 

 
  Table 14: Chimpanzees included and tissues sampled in this study 

 
 
 
ID # 

 
 
Bone 
collagen 

 
 
Bone 
apatite 

 
 
Enamel 
apatite 

 
 
 
Dentine 

 
Hair 
keratin 
(bulk) 

 
Enamel 
serial 
samples 

Dentine 
multi-
tooth 
samples 

 
Hair 
serial 
samples 

NG001 X X X X — X — — 
NG002 X X X X X X X — 
NG003 — — X X — X X — 
NG004 — — X X — X X — 
NG005 X X X X — X X — 
NG012 X X X X X X X X 
NG013 X X X X — X — — 
NG057* X X X — — — — — 
MUZM X X X X — X X — 
Table 14: ID # is the Accession number of the individual chimpanzees (“NG” refers to an Ngogo community member or an 

extra-group male killed by Ngogo chimpanzees, MUZM refers to Makerere University Zoology Museum) X refers to a tissue 

being present and — refers to absent tissues. * infant Ngogo chimpanzee 

 

Methods  

Bone sample preparation: The ~ 2cm bone samples were all ultrasonicated in distilled H20 for 

10 minutes, removed and gently cleaned with a soft brush to get rid of surface debris. Samples 

were then ultrasonicated a second time to remove any additional contaminating surface particles, 

and then allowed to air dry in a covered container overnight. They were then placed in an oven at 

50°C for eight hours. They were weighed and they were then divided into four subsamples in 

order to have enough mass to run bone collagen analysis, bone apatite analysis, and to have 

sufficient sample to archive. Final dried weights of the bone apatite samples varied from 6-15mg, 

and each of the bone collagen samples weighed at least 30mg, in order to ensure sufficient 

collagen could be extracted from each sample.  

 
Bone apatite extraction: The bone apatite samples were carefully crushed with a mortar and  

pestle, and samples were reweighed to assess any loss due to the powdering process. Each 

sample still weighted at least 5mg. Bone carbonate powdered samples were treated with 50% 

NaOCl (bleach) for 16 hours. Samples were rinsed to neutral with dH2O four times, and fresh 
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NaOCl added each each rinse to neutral. Then 0.2 M Ca-buffered acetic acid was added to the 

samples and let sit for six hours. Samples were rinsed to neutral again, and the final round of 

dH2O was pipetted out and the samples were placed into a freeze-dryer for two days, after which 

time they were removed and shipped to the University of Florida’s Stable Isotope Laboratory, as 

were all other samples described below. 

  

Bone collagen extraction: Approximately 15-18 ml of 1.0 M HCl was added to the intact 

(unpowdered) bone sample in a 20ml vial and agitated thoroughly. The lid was left slightly open 

to let out the gas produced by the demineralization reaction. After 18 hours, the acid was pipetted 

out and replaced with fresh HCl. These steps were repeated until the bone fraction within the vial 

was spongy. Spongy samples were then transferred into 2 mL tubes and rinsed to neutral with 

dH2O. Tubes were then centrifuged for 10 minutes, the dH2O was pipetted out, and fresh dH2O 

was added to the tubes. This step was repeated 3~ 4 times, checking with pH strips to make sure 

neutral was achieved.  

 Approximately 2 ml 0.125 NaOH was added to the tube with the neutralized collagen 

solution and agitated thoroughly. The samples were let sit for 16 hours. The solution was then 

rinsed to neutral with dH2O as described above. Samples were then transferred to glass vials and 

put in the oven on 95°C for 4~5 hours. Several more drops of 1M HCl were added to the vial to 

completely dissolve the collagen and the samples were returned to the oven for another 4~5 

hours. Contents were transferred back to the clean tubes, which were centrifuged for ~15-20 

minutes with the caps loosened as the pressure build-up from the warm solution may cause the 

tube to explode. 
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 For each sample, only the solution was then transferred from the tube back to its vial 

using a pipette. Vials, without lids on, were then placed in the drying oven on 65°C. After 

samples had condensed to ~2ml, the vials were removed from the oven, let cool, and lids put 

back on. They were then placed into the freezer. After samples were completely frozen, lids were 

loosened slightly and vials were placed in a freeze dryer for ~ 2 days until the contents of the vial 

appeared as dried bubbles. Vials were removed from the freeze dryer, and shipped for analysis.  

  

Enamel sample preparation: As described in a previous study (Malone, Chapter 1), the M2s (or 

P4s) and M3s of the eight adult chimpanzees were embedded in epoxy, sectioned through the 

mesial cusps, and then a thin section was made from one half of the sectioned block. The 

preparation of these thin sections has been described elsewhere, but they were ultimately imaged 

and measured to create grids dividing up the cut surface into temporally distinct regions that 

were also aged within each tooth. A second slightly thicker section was made from the opposing 

face of the block, using minimal lapping and polishing before creating the slide, so as to lose as 

little additional surface as possible. This was so that the image created form the thinner section 

would reflect the same time period as that of the thicker section, as much as possible. The dicing 

grid was then superimposed onto a reflected light image of the thicker section (transmitted light 

would not pass through the section thickness), and measurements were made of the angles of the 

grind and the dimensions of the individual diced units to be extracted. The periodic and 

accentuated structures were used as a guide to divide the crown into temporally distinct units, 

and the grid was used to program an ADT 7100 dicing saw to mechanically separate these 

individual blocks of enamel and permit them to be individually extracted and aged. Individual 

units were far smaller than the minimum weight threshold for conducting GC-IRMS, so several 
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adjacent units were combined to form this minimum weight, while making sure the temporal 

distinction between samples was maintained. Diced units from each of the two samples from 

each of the two teeth from each of the eight chimpanzees) were crushed into powder using a 

marble rolling pin with the diced enamel units placed between two sheets of sampling paper, in 

order to minimize loss of powder. Weights of the diced units before crushing and weights of the 

powdered samples after they were crushed, resulted in very little loss.  

 Powdered samples were then subjected to 30% hydrogen peroxide pretreatment. The 

hydrogen peroxide was decanted and the powder was rinsed twice with deionized water. After 

rinsing, the powders were treated with a 1.0 M Ca-acetate – acetic acid buffer overnight to 

remove labile carbonates. After pretreatment the powders were rinsed three times with deionized 

water, centrifuging and decanting between rinses, and dried in an oven at 40 °C. Samples were 

then removed and shipped for analysis. 

  

Dentine sample preparation: The protocol for extracting the collagen portion of the dentine was 

modified from that of Beaumont et al. (2013). The powdered dentine samples were 

demineralized in 0.5M hydrochloric acid at about 4°C. The samples demineralized quickly, 

within ~5 days. The demineralized samples were then rinsed with deionized water and placed in 

sealed microtubes with a pH 3 hydrochloric acid solution at 70°C for 24 h to denature the 

collagen. The samples were frozen and then freeze-dried for 2 days before the samples were 

removed and shipped for analysis. 

Hair sample preparation: The two bulk hair samples were rinsed with dH2O and then treated 

with chloroform to remove lipids and any external contaminants before being placed in vials to 

be sampled. The hair used for serial sampling was treated in the same way, but then also 
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carefully cut up into five approximately equal pieces (~1.5 cm each) and put into labeled vials 

according to their order of growth (sample 1 was the oldest, from the hair tip, and sample 5 was 

the newest, from the bulb end.) 

 

Instrumentation: The organics were analyzed using a Thermo Electron DeltaV Advantage 

isotope ratio mass spectrometer, coupled with a ConFlo II interface, linked to a Carlo Erba NA 

1500 CNHS Elemental Analyzer at the University of Florida Geosciences Stable Isotopic 

Lab. 600-800 micrograms of sample were loaded into tin capsules and placed in a 50-position 

automated Zero Blank sample carousel on a Carlo Erba NA1500 CNS elemental 

analyzer. After combustion in a quartz column at 1020 C in an oxygen-rich atmosphere, 

the sample gas was transported in a He carrier stream and passed through a hot reduction column 

(650 oC) consisting of elemental copper to remove oxygen. The effluent stream then passed 

through a chemical (magnesium perchlorate) trap to remove water followed by a 0.7 meter GC 

column at 120 C to separate N2 from CO2. The sample gas next passed into a ConFlo II 

interface and into the inlet of a Thermo Electron Delta V Advantage isotope ratio mass 

spectrometer running in continuous flow mode where the sample gas was measured relative to 

laboratory reference N2 and CO2 gases. All carbon isotopic results are expressed in standard 

delta notation relative to VPDB. All nitrogen isotopic results are expressed in standard delta 

notation relative to AIR.  

 The carbonates were processed using a Finnigan-MAT 252 isotope ratio mass  

spectrometer coupled with a Kiel III carbonate preparation device. (Protocol from Jason Curtis, 

pers. comm.) 
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Results 

 

The isotopic results are grouped here in the discussion to highlight the numerous sources of 

potential variability based on tissues type in the same chimpanzee individuals, variation within 

the tissue itself, the isotope in question, the sampling methods used, and the unknown actual 

dietary contributions. The results for the chimpanzee samples are divided into subsamples, since 

Kibale Forest is where the Ngogo chimpanzees and the extragroup males derive, and the Bwindi 

individual is from a different forest located nearby. One subsample is therefore called “Kibale + 

Bwindi”, and the Kibale chimpanzees are further divided into “Ngogo chimpanzees”, and 

“Ngogo adult chimpanzees”.  

 The small number of individuals being sampled here allows only for general trends to be 

observed along with some measures of central tendency and dispersion (i.e., means, ranges, and 

standard deviations). Results are divided into: (1) intra-tissue isotopic variation, in which serial 

sampling methods for several tissue types reveal subtle variation within the same tissue, either 

tooth enamel or hair; (2) intra-individual isotopic variation, in which dentine samples from two 

teeth of the same individuals are compared; 3) inter-tissue isotopic variation in which bulk 

isotopic offset values between different tissues are presented; 4) variation due to unknown diet-

to-tissue isotopic fractionation factors, in which this issue is explored using known isotopic 

values from 35 of the most commonly-eaten Ngogo chimpanzee food items and observed times 

spent feeding on each, to attempt to model “total diet”  δ13C and δ15N input values; and (5) inter-

individual differences in bulk tissue values. 
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Intra-tissue (serial) isotopic variation 

 

Hair: The individual that was serially sampled (NG002) was divided into five samples of 

approximately 1.5 cm each, and each weighing between 200 and 280 micrograms. These samples 

revealed a difference of 0.46‰ between the highest and lowest δ15N values, though the 

calculated bulk value for the serially sampled hair (8.31‰) differed from the bulk value from 

another hair from that same individual (7.46‰) by 0.85‰ (Table 17).  For these same hair 

samples the δ13C values differed by 0.91‰, and the serial samples of NG002 differed by 0.45‰, 

while the calculated bulk value for the serial samples, and that for the bulk sample for a different 

hair from the same individual, differed by 0.41‰ (Table 17). 

 

Enamel variation: The enamel of nine chimpanzees were sampled (Table 15/Figure 24). For 

individual “NG005”, six enamel apatite samples were obtained, three each from the P4 and M3, 

but for most of the other chimpanzees only four samples couple be taken, and these were either 

from the M2 and M3 or from the P4 and the M3. For three of the individuals, “NG012”, 

“NG013”, and “MUZM”, only three samples could be obtained, two from one tooth and one 

from the other, and in the infant chimpanzee, only one sample could be obtained, and it was from 

the deciduous first molar (dm1) (Table 15).  

 The enamel apatite δ13C values range throughout this sample from -14.3‰ to -17.0‰, a 

difference of 2.7‰. The δ18O values ranged from -2.0 to 1.2‰, a difference of 3.1‰. However, 

this range is primarily a result of the different values for the infant chimpanzee (see Discussion). 

For the adults only, the overall δ13C range in slightly less, at -14.3 to -16.0‰, a difference of 

1.7‰, and the adult δ18O range is 1.2 to -1.4‰, a range of 2.5‰. The greatest difference in δ13C 
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Table 15: Serial δ13C and δ18O values from enamel apatite of nine chimpanzees 

Individual/tooth.sample# Enamel apatite δ13C (‰) Enamel apatite δ18O (‰) 
NG001 M2.1 -15.8 -0.2 
NG001 M2.2 -15.8 0.3 
NG001 M3.1 -15.5 -0.3 
NG001 M3.2 -15.7 0.1 
NG002 M2.1 -14.3 -1.1 
NG002 M2.2 -14.4 -1.4 
NG002 M3.1 -14.5 -1.3 
NG002 M3.2 -14.9 0.4 
NG003 M2.1 -14.6 -0.3 
NG003 M2.2 -15.1 -0.6 
NG003 M3.1 -14.7 0.1 
NG003 M3.2 -15.9 -1.1 
NG004 M2.1 -15.6 -1.2 
NG004 M2.2 -14.9 0.1 
NG004 M3.1 -15.2 -0.9 
NG004 M3.2 -14.7 -0.1 
NG005 P4.1 -16.0 0.9 
NG005 P4.2 -15.3 0.5 
NG005 P4.3 -15.3 0.9 
NG005 M3.1 -15.4 1.2 
NG005 M3.2 -15.7 0.9 
NG005 M3.3 -15.2 0.7 
NG012 M2.1 -15.0 0.5 
NG012 M3.1 -15.3 1.0 
NG012 M3.2 -15.7 0.7 
NG013 M2.1 -15.6 -0.1 
NG013 M3.1 -15.0 -0.9 
NG013 M3.2 -14.8 -0.1 
MUZM P4.2 -16.0 0.0 
MUZM M3.1 -15.3 0.3 
MUZM M3.2 -15.1 0.8 
NG0-57 dm1.1 -17.0 -2.0 
The first sample from each new individual is listed in bold 

  
values in an individual tooth is seen in NG003’s M3 and these were -14.7 and -15.9, a difference 

of 1.1‰. For the δ18O values, the greatest intra-tooth difference was in NG002’s M3 values of -

1.3 and 0.4‰, a difference of 1.7‰. Between two teeth of the same individual, the greatest δ13C 

difference was between the M2 and M3 of NG012, with values of -15.0 and -15.7‰, a difference 

of 0.7‰. With respect to δ18O, the greatest difference between two teeth of the same individual 

was in the M2 and M3 of NG002, with values of -1.4 and 0.4‰, a 1.8‰ difference. 
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Intra-individual variation 

 

Table 16: Intra-individual and inter-individual δ13C dentine and δ15N dentine variation of eight chimpanzees 

Individual/tooth δ15Ndentine (‰) δ13Cdentine (‰) 
NG001 M2 8.0 -23.1 
NG002 M1 9.4 -21.9 
NG002 M3 6.0 -26.0 
NG003 M2 7.6 -25.0 
NG003 M3 7.7 -23.2 
NG004 M1 7.6 -24.1 
NG004 M2 8.8 -22.5 
NG005 P4 7.9 -22.2 
NG005 M3 5.2 -26.2 
NG012 M2 8.5 -23.5 
NG012 M3 7.8 -25.3 
NG013 M2 8.7 -24.7 
MUZM P4 7.9 -24.5 
MUZM M3 8.9 -24.2 

 

Dentine variation: For the eight chimpanzees from which dentine could be sampled (Table 16), 

different combinations of teeth were sampled for each individual, depending upon availability. In 

the two M1s from which dentine was sampled, the δ15N ranged from 7.6‰ to 9.4‰, a 1.8‰ 

difference. The δ15N in the five M2s that were sampled ranged from 7.6‰ to 8.8‰, a 1.3‰ 

difference. The five M3s ranged in their dentine δ15N values from 5.2‰ to 8.9‰, which is a 

3.7‰ difference. The two P4s that were sampled were identical in their dentine δ15N values of 

7.9‰ and 7.9‰. It is also worth noting that, in chimpanzees, the formation ages of the P4 and 

M2 crowns overlap almost entirely, which means that the isotopic values for crown dentine from 

these teeth should overlap within the same individual. They did not come from the same 

individuals in this case, however, which is why we have not directly compared them. The overall 

range of dentine δ15N values in all the teeth sampled was from 5.2‰ to 9.4‰, which is a 

difference of 4.2‰.  
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Figure 24 : Inter-tooth δ13C and δ15N variation from the dentine of eight chimpanzees (top) 

and δ13C and δ18O intra-tooth variation from the enamel of nine chimpanzees (bottom) 

 
 

 For those same teeth of the eight chimpanzees, the overall dentine (Table 16) δ13C values 

ranged from -21.9‰ to -26.2‰, a difference of 4.3‰. The difference between the two M1 

values was 2.2‰, while the M2 values ranged from -22.5‰ to -25.0‰, a difference of 2.5‰. 

The P4s ranged from -22.2 to -24.5‰, a difference of 2.3‰. The M3s ranged from -23.2‰ to -

26.2‰, a difference of 3.0‰. The range of differences between the same teeth of different 

individuals was again highest in the M3s. (Figure 24-top) It is also worth noting that the 

individual with the lowest (most depleted) values in both δ13C and δ15N was the M3 of NG005 

and that with the most enriched values in both isotopes was the M1 of NG002. 

 
Inter-tissue isotopic variation 

Bone collagen: For all the chimpanzees in this study (Table 17), the mean bone collagen δ13C  
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value was -22.6‰  (S.D. ±0.8). When the Ngogo chimpanzees were considered without the 

Bwindi chimpanzee or the extra-group males, that mean was nearly identical, with a value of -

22.7‰ (S.D. ±0.9). When the infant chimpanzee was removed from that sample, however, the 

adult Ngogo chimpanzee mean was -23.0‰ (S.D. ±0.7). When all subsamples were considered, 

the means varied by 0.4‰, and most of that difference came from the inclusion of the infant 

chimpanzee. The highest and lowest Ngogo adult values were NG002 at -21.8 and NG013 at 

22.9‰, respectively, a range of 1.0‰. 

 The mean bone collagen δ15N value for the whole sample was 7.3‰ (S.D. ±1.6), with 

that value changing to 7.2‰ (S.D. ±2.0) when only the Ngogo chimpanzees were included, and 

becoming even less enriched with a value of 6.6‰ (S.D. ±1.9) when the infant chimpanzee was 

removed. The means for these subsamples varied by as much as 0.7‰, and again, most of this 

difference was driven by the inclusion of the infant chimpanzee, and not the individual from 

Bwindi. The individuals with the highest and lowest Ngogo adult δ15N values were not the same 

as those with the highest and lowest δ13C values. Instead these chimpanzees, NG002 at 8.1 and 

NG012 at 7.2‰, had a range of 0.9‰. 

 
Bone apatite: The mean bone apatite δ13C value for all the chimpanzee samples (Table 17) was 

15.4‰ (S.D. ±1.7) with that value becoming the slightly more negative -15.5‰ (S.D. ±1.7) 

when only the Ngogo chimpanzees were included, and becoming less negative -14.7‰ (S.D. 

±0.8) when the infant chimpanzee was removed. The highest and lowest adult Ngogo δ13C 

values were -13.2 and -15.3‰ from NG001 and NG012, which is a difference of 2.1‰. 

 The mean δ18O value in the bone apatite for the full chimpanzee sample (Table 17) was  

-0.7‰ (±0.7), and when the Ngogo chimpanzees were considered without the Bwindi individual 

or the extra-group males, that values changed to -0.8‰ (±0.7). That value changes to  -1.1‰ 
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(±0.5) when the infant chimpanzee is excluded, making the final difference in means between the 

various subsamples 0.3‰, with three times as much of that difference coming from the inclusion 

of the Ngogo infant as the inclusion of the Bwindi individual. The lowest and highest adult 

Ngogo values were -1.4 and -0.6‰ from NG012 and NG013, respectively, a range of 2.0‰. 

 
Hair: There were only hairs available for two of the chimpanzees in this sample (Table 17), and  

the hair δ15N values were 7.9‰ and 7.5‰ differing by 0.4‰, and the δ13C values were -22.9‰  

and -23.8‰, with a difference of 0.9‰.  

 
Enamel apatite: The mean of the bulk enamel δ13C values for these chimpanzees (Table 18) was 

-15.3‰ (S.D. ±0.8), while the mean for the Ngogo samples only was essentially the same at -

15.3‰ (S.D. ±1.0), rising to -15.0‰ (S.D. ±0.5) when the infant value was excluded. The means 

of these subsamples differed by up to 0.4‰. The highest (most δ13C enriched) value was -

14.1‰, and the lowest (most depleted) value was -17.0‰, but if only the adults are considered, 

the lowest was -15.7‰, giving the overall adult bulk enamel samples a range 1.6‰. For the δ18O 

values, the mean bulk value for the whole chimpanzee sample was -0.3‰ (S.D. ±0.8), while that 

for the Ngogo individuals was -0.4‰ (S.D. ±1.0), which became the much less negative 0.0‰ 

(S.D. ±0.6) without the Ngogo infant. These subsample means differed by 0.3‰. The highest 

overall value was 0.8‰ and the lowest was -2.0‰, though only -0.9‰ when adults only were 

considered, making the adult range 1.7‰. 

 
Dentine: The mean bulk δ13C for the dentine from the chimpanzees in this sample (Table 18)  

was -24.0‰ (S.D. ±0.5), and when only the Ngogo individuals were considered, that mean 

became -24.1‰ (S.D. ±0.5). There was no dentine sample from the infant chimpanzee, so only  

adults were included. The lowest and highest values were -24.7‰ and -23.1‰, a range of 1.6‰. 
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Table 17: Bulk δ13C, δ18O, and δ15N values for bone apatite and bone collagen of seven chimpanzees 

and bulk and serial δ13C and δ15N hair samples from two chimpanzees 

 
 
ID # 

Bone 
collagen 
δ15N ‰ 

 
 
ID # 

Bone 
collagen 
δ13C ‰ 

 
 
ID # 

Bone 
apatite 
δ18O‰ 

 
 
ID # 

Bone 
apatite 
δ13C‰ 

 
 
ID # 

Hair 
δ15N 
‰ 

 
 
ID # 

Hair 
δ13C 
‰ 

NG001 7.6 NG001 -22.5 NG001 -1.1 NG001 -13.2 NG002 7.9 NG002 -22.9 
NG002 8.1 NG002 -21.8 NG002 -1.0 NG002 -15.3 NG012 7.5 NG012 -23.8 
NG005 7.7 NG005 -22.3 NG005 -1.4 NG005 -13.8 NG002 

1.1 8.4 
NG002 
1.1 -23.6 

NG012 7.2 NG012 -22.8 NG012 -1.5 NG012 -15.3 NG002 
1.2 8.3 

NG002 
1.2 -23.3 

NG013 7.8 NG013 -22.9 NG013 -0.6 NG013 -14.9 NG002 
1.3 8.3 

NG002 
1.3 -23.2 

NG057 9.3 0-57 -21.6 NG057 0.0 0-57 -17.8 NG002 
1.4 8.0 

NG002 
1.4 -23.3 

MUZM 6.9 MUZM -23.0 MUZM 0.3 MUZM -17.3 NG002 
1.5 8.5 

NG002 
1.5 -23.2 

Mean 
(SD) 

7.3 
(±1.6) 

Mean 
(SD) 

-22.6  
(±0.8) 

Mean 
(SD) 

-0.7 
(±0.7) 

Mean 
(SD) 

-15.4 
(±1.7) 

 Mean  
7.7 

 Mean 
-23.4 

Ngogo 
mean 
(SD) 

 
7.2 
(±2.0) 

Ngogo 
mean 
(SD) 

 
-22.7 
(±0.9) 

Ngogo 
mean 
(SD) 

 
-0.8 
(±0.7) 

Ngogo 
mean 
(SD) 

 
-15.5 
(±1.7) 

Serial 
“bulk” 
mean 

8.3 Serial 
“bulk” 
mean 

-23.3 

Ngogo 
adult 
mean 
(SD) 

 
 
6.6 
(±1.9) 

Ngogo 
adult 
mean 
(SD) 

 
 
-23.0 
(±0.7) 

Ngogo 
adult 
mean 
(SD) 

 
 
-1.1 
(±0.5) 

Ngogo 
adult 
mean 
(SD) 

 
 
-14.7 
(±0.8) 

NG002 
mean 

8.1 NG002 
mean 

-23.1 

 

 

Table 18: Averaged δ13C, δ18O, and δ15N values for enamel apatite and dentine of nine chimpanzees 

 
 
ID # 

Enamel 
apatite δ13C 
‰ 

 
 
ID # 

Enamel 
apatite δ18O 
‰ 

 
 
ID # 

 
Dentine 
δ13C ‰ 

 
 
ID # 

 
Dentine 
δ15N ‰ 

NG001 -15.7 NG001 -0.0 NG001 -23.1 NG001 8.0 
NG002 -14.5 NG002 -0.9 NG002 -23.9 NG002 7.7 
NG003 -15.1 NG003 -0.5 NG003 -24.1 NG003 7.7 
NG004 -15.1 NG004 -0.5 NG004 -23.3 NG004 8.2 
NG005 -15.5 NG005 0.8 NG005 -24.2 NG005 6.5 
NG012 -14.1 NG012 0.4 NG012 -24.4 NG012 8.1 
NG013 -15.1 NG013 -0.4 NG013 -24.7 NG013 8.7 
NG057 -17.0 NG057 -2.0 NG057 N/A NG057 N/A 
MUZM -15.5 MUZM 0.4 MUZM -24.3 MUZM 8.4 
Mean (SD) -15.3  

(±0.8) 
Mean (SD)  -0.3    

(±0.8) 
Mean (SD) -24.0  

(±0.5) 
Mean (SD) 7.9     

(±0.7) 
Ngogo 
mean (SD) 

-15.3  
(±1.0) 

Ngogo 
mean (SD) 

-0.4    
(±1.0) 

Ngogo 
mean (SD) 

 
            N/A 

Ngogo 
mean (SD) 

 
            N/A             

Ngogo 
adult mean 
(SD) 

-15.0  
(±0.5) 

Ngogo 
adult mean 
(SD) 

-0.0    
(±0.6) 

Ngogo 
adult mean 
(SD) 

                      
        -24.1     
       (±0.5)  

Ngogo 
adult mean 
(SD) 

  
           7.8  
       (±0.8) 

 N/A indicates no value for this parameter  
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 For the dentine δ15N values, the total sample mean was 7.9‰ (S.D. ±0.7), changing only 

slightly to 7.8‰ (S.D. ±0.8) when the Ngogo individuals were considered alone. The lowest 

value was 6.5‰ and the highest was 8.7‰, a range of 2.2‰. 

 

Variation from unknown diet-tissue fractionation factors 

 Research by Carlson (2011), Carlson et al. (2013), Carlson and Kingston (2014), and 

Carlson and Crowley (2016), provided a framework for the next phase of this analysis. These 

studies meticulously documented the δ13C and δ15N contents of 60 of the most commonly eaten 

chimpanzee food items from Ngogo, as well as δ13C values from 51 chimpanzee foods from 

Bwindi. Isotopic values of 35 plants that Ngogo chimpanzees spent the most time feeding on are 

listed in Table 19, along with the percentages of total feeding time they spend eating each one 

(Watts, 2014). Isotopic values are reported for each plant type, as well as for their leaves, fruit, 

and seeds, since each plant part yields different isotopic values, and contributes differentially to 

the overall diets of these chimpanzees. Added together, these 35 items comprise 89.29% of the 

total Ngogo chimpanzee feeding time. The percentages were normalized to 100% to provide a 

rough estimate of the overall contribution of each item to the total diet (Table 20). Using the δ13C 

and δ15N contents of each plant, and the converted percentage of total time spent feeding on each 

plant, the proportional amount of each isotope from that plant relative to the total dietary input 

was calculated, creating a “total dietary input” value for both δ13C and δ15N. For δ13C the total 

dietary isotopic input is -27.4‰ and for δ15N this is 4.2‰. This same calculation was not 

possible for the single Bwindi chimpanzee as there is no information on percentages of time  

spent feeding on each of the known dietary items. 
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Table 19: δ13C and δ15N proportional input values, per plant part, from observed % feeding time, 

and feeding time converted to 100% for chimpanzees at Ngogo 

  
Species/food type 
(top 35 w/δ13C and 
δ15N values) 

% of 
feeding 
time 

89.29% 
converted 

Plant part-
specific 
mean δ13C 
(±S.D.) 

Plant part-
specific 
mean δ15N 
(±S.D.) 

 
Proportional   
-δ13C 
contribution  

 
Proportional   
-δ15N 
contribution 

      1 Ficus mucuso fruit 18.0 20.1 -26.9 ± 0.3 4.1 ± 0.3 5.4 0.8 
2 Uvariopsis 

congensis fruit 10.0 11.2 -27.4 ± 0.6 4.3 ± 1.3 3.1 0.5 
3 Pterygota 

mildbraedii leaves 8.5 9.5 -30.9 ± 1.0 3.0 ± 0.9 2.9 0.3 
4 Pseudospondias 

microcarpa fruit 4.9 5.5 -27.3 ± 0.6 3.0 ± 1.2 1.5 0.2 
5 Cordia millenii 

fruit 4.8 5.4 -26.4 ± 1.5 4.9 ± 1.0 1.4 0.3 
6 Monodora 

myristica fruit 4.6 5.2 -28.4 ± 2.5 5.7 ± 1.5 1.5 0.3 
7 Pterygota 

mildbraedii seeds 3.6 4.0 -27.5 ±1.3 3.6 ± 1.1 1.1 0.1 
8 Morus lactea fruit 3.3 3.7 -25.4 ± 0.5 4.3 ± 0.8 0.9 0.2 
9 Ficus exasperata 

leaves 3.2 3.6 -28.0 ± 1.7 5.9 ± 1.8 1.0 0.2 
10 Celtis africana 

leaves 3.1 3.6 -29.1 ± 1.6 3.8 ± 1.1 1.0 0.1 
11 Aningeria 

altissima fruit 3.0 3.3 -25.7 ± 1.5 4.8 ± 0.3 0.9 0.2 
12 Mimusops 

bagshawei fruit 2.8 3.1 -26.7 ± 0.9 3.7 ± 0.9 0.8 0.1 
13 Treculia africana 

fruit 2.6 2.9 -26.0 ± 1.4 3.8 ± 1.0 0.8 0.1 
14 Ficus dawei fruit 2.5 2.7 -26.0 ± 0.9 4.0 ± 0.8 0.8 0.1 
15 Chrysophyllum 

albidum fruit 2.3 2.6 -27.3 ± 1.0 4.7 ± 1.7 0.7 0.1 
16 Ficus natalensis 

fruit 2.3 2.5 -26.9 ± 0.8 3.8 ± 0.7 0.7 0.1 
17 Celtis durandii 

fruit 1.6 1.8 -26.2 ± 0.8 6.9 ± 0.8 0.5 0.1 
18 Ficus brachylepis 

fruit 1.6 1.7 -28.3 ± 1.6 4.3 ± 1.4 0.5 0.1 
19 Morus lactea 

flowers 0.9 1.0 -24.5 ± 0.8 5.9 ± 0.9 0.3 0.1 
20 Celtis mildbraedii 

leaves 0.8 0.8 -30.2 ± 0.7 6.1 ± 1.2 0.3 0.1 
21 Afromomum 

mildbraedii pith 0.7 0.8 -29.5 ± 1.8 3.9 ± 1.7 0.2 0.03 
22 Acanthus 

pubescens pith 0.6 0.7 -29.4 ± 2.3 1.4 ± 2.3 0.2 0.01 
23 Morus lactea 

leaves 0.6 0.6 -25.0 ± 0.7 5.0 ± 0.4 0.2 0.03 
24 Chaetacme 

aristata leaves 0.5 0.6 -28.9 ± 1.8 6.1 ± 2.0 0.2 0.03 
25 Warburgia 0.5 0.5 -24.6 ± 2.2 4.0 ± 1.0 0.1 0.02 
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ugandensis fruit 
26 Cyperus papyrus  0.4 0.5 -10.6 ± 0.5 1.5 ± 0.4 0.05 0.01 
27 Ficus exasperata 

figs 0.4 0.4 -26.3 ± 1.4 4.9 ± 1.0 0.1 0.02 
28 Pterygota 

mildbraedii 
flowers 0.4 0.4 -24.4 ± 1.0 1.8 ± 0.9 0.1 0.01 

29 Neoboutonia 
macrocalyx roots 0.4 0.4 -26.3 ± 1.3 3.0 ± 1.0 0.1 0.01 

30 Piper capense pith 0.2 0.3 -31.3 ± 1.4 4.5 ± 1.3 0.1 0.01 
31 Pterygota 

mildbraedii 
cambium 0.2 0.3 -25.8 ± 1.0 1.8 ± 0.9 0.1 0.005 

32 Cordia millenii 
flowers 0.2 0.2 -25.8 ± 1.1 2.8 ±0.5 0.04 0.005 

33 Marantachloa sp. 0.1 0.1 -32.3 ± 1.7 5.5 ± 1.6 0.04 0.006 
34 Monodora 

myristica sapling 
leaves 0.02 0.02 -32.1 ± 1.4 4.0 ±1.3 0.01 0.001 

35 Chaetacme 
aristata cambium 0.003 0.0003 -27.1 ± 0.7 6.7 ± 1.5 0.0001 0.00002 

 
Total 

  
89.293 100.0003 

  
-27.4 4.2 

δ13C and δ15N data from Carlson, (2011), % feeding time from Watts et al. (2012) 

 

 The most 13C depleted plant item was Marantachloa sp.with a  δ13C  value of -32.3 ± 

1.7‰ and the most 13C enriched plant item was Cyperus papyrus, the only C4 plant found at 

Ngogo, with a value of -10.6 ± 0.5‰. The most 15N depleted plant item was the Acanthus 

pubescens pith at δ15N  value of 1.4 ± 2.3‰, and the most enriched was the fruit of the Celtis 

durandii at 6.9 ± 0.8‰. (Table 19) 

 As noted earlier, different plant parts from the same taxon revealed as much as a 2.1‰ 

difference in δ15N values, and a difference of as much as 6.5‰ in their δ13C values. 
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Table 20: Diet-tissue fractionation levels for all tissues from the Kibale chimpanzees in this sample, 
given δ13C and δ15N “total dietary input” values adjusted from 89.29% of total diet 

Individual Tissue type Tissue 
value -
δ13C 

89.29% of 
total dietary 
input -δ13C 

Diet-tissue δ13C  
fractionation 
(input value) 

Tissue 
value  
δ15N 

89.29% of 
total dietary 
input δ15N 

Diet-tissue  δ15N 
fractionation 
(input value)  

NG001 Bone 
collagen 

      
22.5 

                
27.4 

 
4.8 

 
7.6 

 
4.2 

 
3.4 

NG001 Bone apatite 13.3 27.4 14.1 N/A 4.2 N/A 

NG001 Enamel 
apatite 

15.7 27.4 11.7 N/A 4.2 N/A 

NG001 Dentine 23.1 27.4 4.2 8 4.2 3.8 

NG002 Bone 
collagen 

21.8 27.4 5.6 8.1 4.2 3.9 

NG002 Bone apatite 15.3 27.4 12.1 N/A 4.2 N/A 

NG002 Enamel 
apatite 

14.5 27.4 12.8 N/A 4.2 N/A 

NG002 Hair 22.9 27.4 4.5 7.9 4.2 3.7 

NG002 Dentine 23.9 27.4 3.4 7.7 4.2 3.5 

NG003 Enamel 
apatite 

15.1 27.4 12.3 N/A 4.2 N/A 

NG003 Dentine 24.1 27.4 3.3 7.7 4.2 3.5 

NG004 Bone 
collagen 

24.0 27.4 3.4 3.8 4.2 -0.4 

NG004 Enamel 
apatite 

15.1 27.4 12.3 N/A 4.2 N/A 

NG004 Dentine 23.3 27.4 4.1 8.2 4.2 4.0 

NG005 Bone 
collagen 

22.3 27.4 5.1 7.7 4.2 3.5 

NG005 Bone apatite 13.8 27.4 13.6 N/A 4.2 N/A 

NG005 Enamel 
apatite 

15.5 27.4 11.9 N/A 4.2 N/A 

NG005 Dentine 24.2 27.4 3.2 6.5 4.2 2.3 

NG012 Bone 
collagen 

22.8 27.4 4.6 7.2 4.2 3.0 

NG012 Bone apatite 15.3 27.4 12.1 N/A 4.2 N/A 

NG012 Enamel 
apatite 

14.1 27.4 13.3 N/A 4.2 N/A 

NG012 Hair 23.8 27.4 3.5 7.5 4.2 3.3 

NG012 Dentine 24.4 27.4 3.0 8.1 4.2 3.9 

NG013 Bone 
collagen 

22.9 27.4 4.5 7.8 4.2 3.6 

NG013 Bone apatite 14.9 27.4 12.5 N/A 4.2 N/A 

NG013 Enamel 
apatite 

15.1 27.4 12.2 N/A 4.2 N/A 

NG013 Dentine 24.7 27.4 2.7 8.7 4.2 4.5 

NG0-57 Bone 
collagen 

21.6 27.4 5.8 9.3 4.2 5.1 

NG0-57 Bone apatite 17.3 27.4 10.1 N/A 4.2 N/A 

NG0-57 Enamel 
apatite 

15.5 27.4 11.9 N/A 4.2 N/A 
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     Table 21: Provisional diet-to-tissue fractionation factors by subsample 

Input of -27.4 for total diet δ13C and 4.2 for total diet δ15N  

Mean Ngogo Bone collagen-diet C fractionation 4.7 

Mean Ngogo Bone apatite-diet C fractionation 12.0 

Mean Ngogo Enamel apatite-diet C fractionation 12.3 

Mean Ngogo Hair-diet C fractionation 4.0 

Mean Ngogo Dentine-diet C fractionation 3.3 

Mean Ngogo Bone collagen-diet N fractionation 3.8 

Mean Ngogo Hair-diet N fractionation 3.5 

Mean Ngogo Bone Dentine-diet N fractionation 3.7 

 

Mean Kibale Bone collagen-diet C fractionation 4.8 

Mean Kibale Bone apatite-diet C fractionation 12.4 

Mean Kibale Enamel apatite-diet C fractionation 12.3 

Mean Kibale Hair-diet C fractionation 4.0 

Mean Kibale Dentine-diet C fractionation 3.4 

Mean Kibale Bone collagen-diet N fractionation 3.7 

Mean Kibale Hair-diet N fractionation 3.5 

Mean Kibale Bone Dentine-diet N fractionation 3.7 

 

Kibale + Bwindi Bone collagen-diet C fractionation 4.8 

Kibale + Bwindi Bone apatite-diet C fractionation 12.1 

Kibale + Bwindi Enamel apatite-diet C fractionation 12.3 

Kibale + Bwindi Hair-diet C fractionation No change 

Kibale + Bwindi Dentine-diet C fractionation 3.4 

Kibale + Bwindi Bone collagen-diet N fractionation 3.6 

Kibale + Bwindi Hair-diet N fractionation No change 

Kibale + Bwindi Dentine-diet N fractionation 3.7 

 

  

The modeled “total dietary input” values for δ13C and δ15N were then compared with the 

resulting isotope values from each tissue from each chimpanzee to determine the diet-to-tissue 

fractionation factor assuming the input value was truly representative of the whole diet (Table 

20). The resulting fractionation factors are listed in Table 21, where they are grouped according 
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to tissue type, but also within separate subsamples. (In the case of the sample that includes the 

Bwindi individual, the δ13C and δ15N values do not actually apply, as they spend different 

amounts of time feeding on a few of the same foods as the chipanzees from Kibale, but mostly 

different ones.) In all three subsamples, this fractionation factor is 12.3‰. Figure 25 depicts the 

relationship between these tissue-specific fractionation factors in different subsamples of 

chimpanzees from this study.  

 

 

Figure 25: Fractionation values by tissue and isotope for three subsamples in this chimpanzee sample 

 

 

 

Discussion 

 

Intra-tissue variability: Variability of δ13C, δ18O, and δ15N values within tissues that could be 

serially sampled (enamel and hair) was documented (Figure 24/Tables 15 and 16), based on the 

ages and rates at which the tissue(s) formed as well as their rates or lack of turnover. Tooth 
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enamel and dentine begin forming in-utero in all deciduous teeth and the first permanent molar 

(M1) and culminates with the mineralization of the M3 at around age 13 for chimpanzees. This 

means that these teeth record the diet from the earliest part of life through to subadult/adulthood. 

Sampling different areas of enamel within a single tooth can can document short term variation 

in diet and environment, producing variable δ13C and δ18O values. Documenting this variation is 

contingent on: (1) the length and thickness of the crown, (2) the area of the crown the sample is 

taken from, (3) the internal geometry of the tooth, and (4) the sampling orientation. As depicted 

in Figure 26, traditional drilled sampling methods might permit four time-transgressive drilled 

samples to be taken from the length of a molar crown of a baboon (pictured) or a chimpanzee, 

but the initial mineralization age of the enamel. 

  

Figure 26:  Illustration of temporal overlap between adjacent drilled enamel samples 

in a baboon M1 cusp 

 

Figure 26: This is the mesiobuccal cusp of an M1 from female yellow baboon “UM 152”. Zone 1 is all prenatal enamel, Zone 2 

is between the neonatal line (first highlighted in red) and 3 months, Zone 3 is from the accentuated line that formed at 3 months 

(second line highlighted in red) through the end of M1 formation at ~14months. The blue areas represent areas that were drilled 

into the side of the enamel crown to each produce ≥600 µg of enamel powder. 

 

 

areas that would be intermixed in each sample would obscure the potential higher resolution 

variation within that tooth. To minimize the intermixture seen in Figure 26 only two samples 

were taken from each molar crown, and these were from an area equivalent spatially to what is 
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seen in “sample 1” and a second consisting of enamel from an area equivalent to “sample 4” 

below.This sampling strategy, while it cannot separate a prenatal diet from an exclusive nursing 

diet from fully adult diet, it can separate the samples by the ages during which the enamel 

initially mineralized. Drilling, per sé, was not used, but instead a modified method of thin section 

micro-dicing (Daniel Green, pers com) was employed to mechanically isolate enamel from these 

temporally distinct areas, using the accentuated and periodic structures as guides (Malone, 

unpublished data). While this only allowed two minimum sized samples for isotopic analyses (≥ 

600 µg) to be obtained from each tooth, the time periods during which they each initially 

mineralized were known, which is a distinct advantage. These samples were taken from M2s and 

M3s, so the actual ages of the zones in Figure 26 (from an M1) do not apply directly to the diced 

samples. It must be noted that the second stage of enamel formation, known as maturation, also 

attenuates the dietary signal, since a large proportion of the final inorganic makeup of enamel 

enters into the already mineralized tissue matrix somewhat later than the periodic structures are 

laid down. This means that the final mineral content of a given area of the crown may contain 

dietary signals from a point in time up to several months or even a year later than the 

microstructures indicate, causing inferences of earlier dietary change than what actually 

occurred. This complicates sampling strategies that try to obtain temporally distinct signal of diet 

from within a single tooth. In a previous study we developed sampling methods using laser 

ablation inductively coupled plasma-mass spectrometry (LA ICP-MS) to samples trace elements 

from along the inner enamel, which is the area thought to mature soonest after initial 

mineralization, and if so, it contains the least attenuated signal of diet of any area of enamel. 

 The results of the serial enamel sampling of the two teeth from each of the eight adult 

chimpanzees (and one from the infant chimpanzee) indicate that there is some variation in δ13C 
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and δ18O values between the two teeth of many of these individuals (Figure 24), as well as a 

great amount of variation among samples taken from the same teeth (Table 15). Within the M3 

of one individual (NG003) δ13C values varied by 1.1‰, and the δ18O values by 1.7‰. With the 

most depleted δ13C value of -15.9‰ and the corresponding δ18O value of -1.1, the NG003 M3 

isotopic values place that individual outside the range of chimpanzee enamel apatite values from 

Kibale (Nelson, 2013 p.2). Instead, the NG003 M3 value situates this individual in the reported 

range for olive baboons in Kibale (Nelson, 2013). A number of the additional serial sample 

isotopic signatures from enamel of chimpanzees in this study are situated within the red-tailed 

monkey range (Nelson, 2013) and again, outside the chimpanzee range for both isotopes. This 

suggests that, if the tooth being sampled or even the area of the tooth being sampled, is not 

specified, interpretations of dietary ecology have the potential to be variable and inconsistent. 

 

Intra-individual isotopic variation: Between two teeth of the same individual (Table 15), enamel 

δ13C values varied by as much as 0.7‰, and the δ18O values varied by as much as 1.8‰. This 

indicates that the amount of the δ18O variation between two samples from the same tooth can be 

as great as the variation between bulk values from two consecutively forming teeth, even if the 

δ13C values aren’t as variable in the two teeth. All of this should be considered when designing 

enamel-sampling strategies, as well as when interpreting isotopic values that result from the 

chosen sampling strategy.  
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  Figure 27: M2 and M3 serial enamel apatite δ13C and δ18O values separated by chimpanzee community 

 
 

Between two teeth of the same chimpanzee, the dentine δ13C values varied as much as 4.1‰ and 

the δ15N values varied as much as 3.4‰ (Table 16). These differences were between the M1 and 

the M3 of individual NG002. The amount of variation in dentine δ15N and δ13C values between 

these teeth may reflect the fact that the dentine in these teeth comes from areas that start forming 

before birth in the M1 up to age 12-13 in the M3 root dentine. (Although, samples were not taken 

from dentine located more than ~2mm apical to the CEJ, so the latest forming samples came 

from dentine forming up until age eight in these chimpanzees.) Samples containing dentine that 

formed prenatally, and those that formed long after the age when weaning is thought to be 

complete in these chimps, should therefore contain quite isotopically distinct signals. Careful 

sampling of primary dentine only, either by abrading away areas of tertiary dentine, or by 

stopping short of sampling secondary dentine from the pulp cavity wall, can avoid mixing later 

forming dentine into samples that aim to assess early life diets. 
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Inter-individual isotopic variation: The range of 3.7‰ for the δ15N values from the dentine of 

the same tooth type (M3) of different individuals, was considerable, as was the 3.0‰ difference 

between the corresponding δ13C values. This indicates that studies that use bulk dentine sampling 

within the same tooth type need to anticipate this level of possible variability among individuals, 

or risk interpreting such disparate values as indicators of a trophic-level difference between 

members of population. This difference could also be linked with differences in baseline levels 

of local plant isotopic ecology at different sites, and not necessarily differences in the types of 

food items being eaten (Oelze et al., 2016). In fact, the mean δ13C value from the same plant part 

(fruit) of the same plant type (Ficus natalensis) growing at Ngogo and growing at Bwindi can 

vary as much as 1.3‰ and (Chrysophyllum albidum) can vary as much as 2.0‰ between these 

two sites. (Carlson and Crowley, 2016 pp. 1036-1037). Chimpanzees from the two sites eating 

the same fruit from the same type of tree could, therefore, easily be interpreted as having very 

different diets based upon this amount of difference                                            

 

Inter-tissue isotopic routing: This section explores how variable the δ13C, δ18O, and δ15N values 

are between the different tissues into which they are metabolically routed. Bulk sampling of bone 

collagen, bone apatite, enamel apatite, dentine, and hair produces δ13C which presumable reflect 

different metabolic pathways that differentially biopurify the carbon input from dietary items. 

Mean values for each isotope within each tissue are given in Tables 17-18.  

 In order to ultimately be able to compare/contrast the diet and/or environmental 

conditions based on the  δ13C, δ18O, and δ15N values from different tissues between primate 

populations, it is imperative to know how variable these values are within the population (Tables 

17-18/Figures 28-29). For example, in our population, the intra-individual differences between 
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δ13C values in bone collagen and bone apatite are quite variable - the lowest offset is 3.7‰ and 

the highest is 9.3‰. To compare populations in which different tissues were analyzed – i.e 

δ13Cbone collagen values in one population and δ13Cbone apatite values in another, it is critical to 

‘convert’ δ13Cbone collagen values to δ13Cbone apatite values using the offset values in Table 21. Having 

such a large range of these offset values in our population, however, makes this conversion 

problematic, and imprecise at best. Minimal differences in the  δ15N offsets between any of the 

tissue combinations (δ15Nbone collagen-hair=0.2‰, δ15Nbone collagen-dentine =0.5-1.5‰, δ15Nhair-dentine =0.2-

0.7‰) suggest a more consistent conversion value to extrapolate the δ15N of one unknown tissue 

in another population from a known one (e.g. we could infer the δ15Nhair values for another 

population by adding 0.2-0.7‰ to their known δ15Ndentine values). There is a slightly larger range 

of offset values between the δ13C from bone apatite and that from enamel apatite, and the same is 

true of δ18O offsets. (δ13Cbone apatite-enamel apatite = 0.2-2.5‰ and δ18O bone apatite-enamel apatite = 0.1-

2.2‰). This suggests that it may be easier and more feasible to infer some unknown tissue-

specific isotope values from known ones, by using the offset values from other populations, than 

it may be for others. Studies that use such offsets from other populations to make inferences 

about unknown isotopes values from known ones should use caution in the application of 

conversion factors to compare diets and environmental conditions based on different tissues from 

different populations. 

 

   Table 22: Tissue-specific isotope offset ranges 

δ15Ncollagen-hair 
= 0.23 
 

δ15Nhair-dentine = 
0.19-0.67 
 

δ15Ncollagen-

dentine = 0.45-
1.52 

δ18Obone apatite-

enamel apatite = 0.09-
2.21 

δ13Cbone apatite-

enamel apatite = 
0.23-2.45 

δ13Cbone apatite-

bone collagen = 
3.71-9.29 

δ13Cbone apatite-

hair = 7.66-
8.51 

δ13Cbone apatite-

dentine = 
7.03-10.39 

δ13Cenamel 

apatite-collagen = 
 4.51-8.89 

δ13Cenamel 

apatite-hair = 
8.39-9.73 

δ13Cenamel 

apatite/dentine = 
 7.44-10.26 

δ13Cbone collagen-

hair = 
1.08 -1.1 

δ13Cbone collagen-

dentine = 0.6-
2.12 

δ13Chair-dentine 
= 0.53-1.02 
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Figure 28: δ15N (top) and δ13C (bottom) bulk value offsets between bone collagen, hair, and dentine of 
chimpanzees from four Ugandan communities

 
 

Figure 29: Offsets in δ18O (top) and δ13C (bottom) from bone apatite and enamel apatite of chimpanzees 
from four Ugandan communities 

 
  

-24.50	

-23.50	

-22.50	

-21.50	

-24.50	

-23.50	

-22.50	

-21.50	

								NG001													NG002												NG003														NG004														NG005														NG012																NG013											MUZM											NG0-57	

	
	
			=δ15N		
Bone	collagen	‰		
	
				=δ15N	
Hair	‰		
	
				=δ15N																											5.50	
Den>ne	‰		
	
			 										4.50	
	

										3.50	
	
	
	
	
				=δ13C	
Bone	collagen	‰		
	
				=δ13C	
Hair	‰		
	
				=δ13C	
Den>ne	‰		
	

6.50	

7.50	

8.50	

9.50	

6.50	

7.50	

8.50	

9.50	

								NG001													NG002												NG003														NG004														NG005														NG012																NG013											MUZM											NG0-57	

	
		

	
																																												Offset	Ranges	‰		

			
															δ15N 	 																				δ13C	

		
	 		-bone	collagen/hair	=	0.23 						-bone	collagen/hair	=	1.08	-1.1	
			 		-hair/den>ne	=	0.19-0.67	 						-bone	collagen/den>ne	=	0.6-2.12	
		 		-bone	collagen/den>ne	=	0.45-1.52					-hair/den>ne	=	0.53-1.02	
	
	 	 	 	 	 		 	

	 	 	 							 	 	
	 	 		

Offsets	in	δ15N	(top)	and		δ13C	(boOom)	bulk	values	between	bone	collagen,	hair,	and	den>ne		
		
		

-2.00	

-1.00	

0.00	

1.00	

-2.00	

-1.00	

0.00	

1.00	

-18.00	

-17.00	

-16.00	

-15.00	

-14.00	

-13.00	

-18.00	

-17.00	

-16.00	

-15.00	

-14.00	

-13.00	

					=	δ18O	
						Bone	apa5te	‰		
	
						=δ18O	
						Enamel	apa5te	‰		
	
	
	
	
	
	
	
	
					=δ13C	
						Bone	apa5te	‰		
	
					=δ13C	
					Enamel	apa5te	‰	

								NG001													NG002												NG003														NG004														NG005														NG012																NG013											MUZM											NG0-57	

								NG001													NG002												NG003														NG004														NG005														NG012																NG013											MUZM											NG0-57	

	 																																						Offset	ranges	‰	
	
	-bone	apa5te/enamel	apa5te	=	0.09-2.21											-bone	apa5te/enamel	apa5te	=	0.23-2.45	
	

Offsets	in	δ18O	(top)	and	δ13C	(boLom)	from	bone	apa5te	and	enamel	apa5te	
	



 163 

Hair: There were only two individuals with hair that could be sampled (NG002 and NG012), and 

one of them NG012 had hairs too short for serial sampling. The bulk δ13Chair value from NG002 

is -22.9‰ and but the calculated “bulk” value using the combined serial sample values (N=5) 

from another hair was -23.3‰ (The average of these two values, 23.1‰, is used below.) In a 

studiy on rodents (DeNiro and Epstein (1981) determined that hair keratin is consistently +2.0‰ 

higher (more enriched) than that of bone collagen, and this offset has been utilized in numerous 

studies requiring conversions (Fahy et al., 2013; Fahy et al., 2014). Our results, however, support 

a more modest offset between δ13Chair and δ13Ccollagen. The bone collagen δ13C from these same 

two individuals were -21.8‰ (NG002) and -22.8‰ (NG012), while their respective hair keratin 

δ13C values were -23.1‰ and -23.8‰, an enrichment from the bone collagen values of only +1.3 

and +1.1‰ relative to hair keratin. With more numerous hair samples, it will be possible to 

better establish the pattern offset values in our chimpanzee sample, but these two offset values 

are incongruent with reported values. 

 In one study (Fahy et al., 2013) hair keratin δ13C values are converted to bone collagen 

values, using this +2‰ enrichment factor, and they point out that there is no difference in δ15Nhair 

and δ15Nbone collagen, which is supported by the data from this study’s chimpanzees, as well (offset 

by only 0.2 and 0.0‰ in our two samples). However, in a subsequent study (Fahy et al., 2014), 

the δ15Nbone collagen  values from the 2013 study were utilized as though they were equivalent to 

δ15Ndentine values, a conversion which is not supported by the data in the current study (Figure 

28/Table 22. Our δ15Ndentine-bone collagen offsets range from 0.5 to 1.5‰, and in this parameter 

our sample size is a bit larger (n=6) than the bone collagen-hair comparison (n=2). 

 On the other hand, if such an offset could be established for δ13Cenamel apatite-hair, and it was 

one that was consistent between different taxa at different sites, it would allow direct 
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comparisons to be made between δ13C values of fossil taxa from their teeth, and living apes for 

whom we can collect hair samples. This is would be extremely useful, given the fact that hair 

samples are readily available for collection from museum specimens and from living primates 

while teeth and bone can only be sampled from deceased individuals  

 

Inter-population variability: Some comparisons can be made here between the δ13Cenamel apatite 

and δ18Oenamel apatite values from the chimpanzees of this study and those of several other studies. 

The greatest difference in δ13C values within any single adult tooth from the current study was 

1.13‰, and this was within the M3 of “NG003”. It is worth noting that M1s were not sampled as 

they would almost certainly have increased this level of overall variation greatly, given that M1s 

contain both prenatal enamel and enamel that formed during the period of exclusive nursing.  

 Another study (Fahy et al., 2015) looked at enamel apatite variation using samples from 

15 M1s, and one premolar, from adult chimpanzees from the Taï Forest, Cote d’Ivoire. Their 

results yielded an overall δ13C range of -17.0 to -18.3‰, compared with the range of -14.3 to -

17.0‰ for the chimpanzees in our study, and a much larger δ18O range of 0.3 to -5.8‰, 

compared with the 1.2 to -2.0‰ range seen here. They also point out the differences between 

their mean δ13Cenamel apatite values (-17.0‰ ± 0.4) and those from Ituri (-14.5‰) and Itombwe (-

13.5‰), two sites in the DRC (Cerling et al., 2004, 2013), as well as those from Kibale (-14.5 ± 

1.0‰) (Nelson, 2013). They note that their δ13C values are significantly more depleted than 

those from all the other sites, but the fact that they used only M1s may have a great deal to do 

with that. Had they included M2s and M3s as well, their overall values might not have been so 

depleted, since, as we have seen, M1s and other teeth that contain prenatal and nursing enamel 

will skew the overall δ13C values to more negative. It is telling that the only δ13C value from our 
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data set that falls into the range from the study of the Taï chimpanzee M1s is the one deciduous 

tooth. Unfortunately, we can’t directly compare the values from their teeth to those used in the 

study of the Kibale chimpanzees (Nelson, 2013), since the tooth types were not listed in that 

study, apart from describing them as “premolars and molars” (Nelson, 2013-p.3). There is no 

indication, however, of how many of which teeth they are, or even how many chimpanzee 

individuals are represented. Detailed information on specific teth sampled would aid in 

identifying the sources of such variation between studies and inform interpretations of isotopic 

differences as dietary content-driven or site-specific ecology-driven (Oelze et al., 2016).  

 Smith et al. (2010) also present δ13Cenamel apatite and δ18Oenamel apatite values for the Ganta 

chimpanzees from Liberia (Pan troglodytes verus), and their comparison of values from M1s and 

M3s shows consistent enrichment from the earlier to later forming tooth (bulk M1 δ13Cenamel apatite 

= -16.7 ±0.6‰, range = 2.6‰ and bulk M3 δ13Cenamel apatite  = -16.2 ± 0.9‰, range = 4.2‰). This 

further supports the current study’s assertion that, in order to access the adult diet, sampling 

should not be limited to the M1s, since samples from that tooth will reflect dietary isotopic 

signal(s) from before weaning was complete. 

   

Conclusions: This study’s results suggest that there may be a habitat-specific difference in 

δ13Cbone collagen-hair keratin offsets, since these values, limited though they are, show a lower offset 

than has been recorded for other sites (DeNiro and Epstein, 1981). The overall adult δ13Cenamel 

apatite range for the chimpanzees in this sample is -14.3 to -16.0‰ and the δ18Oenamel apatite range is 

1.2 to -1.4‰. Based upon the tissue-specific isotope values of all of these chimpanzees, and the 

isotopic contents of their food items and percent of time spent feeding on each, we have 

calculated “total dietary input” values of δ13C -27.4‰ and δ15N 4.2‰. These values are used to 
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generate numerous diet-to-tissue fractionation factors, but the most relevant one for fossil 

hominin dietary reconstructions is the δ13Cdiet-enamel apatite fractionation factor for the Ngogo 

chimpanzees, which is estimated as +12.3‰.  

 

Study limitations/Future directions: This study’s “total dietary input” values do not include 

δ15N from meat eating. For males, hunting would especially influence this in the bone collagen, 

and hair keratin values, though not as much in the dentine since it forms early in life, before 

hunting would begin. Juveniles may eat small amounts of meat, but observations at Taï show that 

meat consumption is heavily biased toward adult males (Fahy et al., 2013). Meat consumption is 

based upon merit (hunt participation) and not nepotism, with adult males consuming 7x more 

meat than females. At Ngogo, the risk-taking involved with hunting may play in important role 

in male-male bonds in allowing them to assess one another’s reliability, providing a foundation 

for cooperation (Mitani and Watts, 2001). Also excluded from the calculated δ13C and δ15N total 

dietary input values are contributions from other non-plant foods like termites. The δ15N values, 

especially, are likely to be affected by this omission from our dataset. Honey also accounts for 

0.15% of the feeding time of Ngogo chimpanzees (Potts et al., 2011), and this has also not been 

included in this study’s calculation of a “total dietary input” value. Such matters ought to be 

considered in future studies of this kind. 

 Additionally, similar tissues are available for study from the red-tailed monkeys whose 

teeth were used in a previous study (Malone, Chapter 3), and since these monkeys inhabited the 

same area as the chimpanzees in this study (Kibale National Park), and much is known about 

their preferred dietary items (Lambert, 1997; Bryer et al., 2013), a similar set of diet-to-tissue 

fractionation factors could potentially be constructed for these sympatric primates. Doing so 
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would augment the previously published enamel δ18O and δ13C data from these same red-tailed 

monkey individuals (Nelson, 2013), and demonstrate how sympatric taxa ingesting many of the 

same plant items from the same forest might differentially incorporate those dietary contents into 

their tissues. 
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Chapter 5: Conclusions, Implications and Future Directions 

 
 
 This project investigated the relationships between the dental development, the weaning 

process, and the diets of wild Ugandan chimpanzees (Pan troglodytes schweinfurthii) using three 

different, but interrelated methods. The first study used histological analysis to measure and 

compare dental formation and emergence variables from several chimpanzee communities, to 

assess whether chimpanzees from Ngogo have delayed dental development relative to other 

populations, and to situate that outcome within life history theory. The second study examined 

the relationship between trace elemental distributions in chimpanzee dental tissues and structural 

indicators of developmental pace, to assess whether a peak in M1 root growth rate showed 

evidence of aligning with weaning completion. The third study attempted to disentangle the 

numerous sources of variability in chimpanzee dietary inputs, which manifest in various bodily 

tissues, and which inform studies of dietary reconstruction, paleoecology, and life history for 

extinct taxa, including fossil hominins. 

 
 
Chapter 2 Conclusions: The estimated M1 emergence age range of 2.15-4.10 years in this 

study’s chimpanzee sample, and the similar range of 2.14-3.99 years for the known captive 

chimpanzee sample, suggests that, instead of being dentally delayed relative to captive 

chimpanzees (Zihlman et al., 2004; 2007), the range in M1 emergence ages in wild chimpanzees 

is at least as wide as that for captive ones (Smith et al., 2007). These new data can inform the 

discussion of the appropriateness of using dental devlopment data from captive chimpanzees in 

comparative studies of fossil hominins (Smith et al., 2010). Additionally, by using adult 
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individuals, this study circumvents the issue of using deceased juveniles, whose development 

may have been atypical, to infer developmental pace for that population (Smith and Boesch, 

2011).  

 It was also predicted that this new sample, made up of small numbers of individuals from 

four different Ugandan chimpanzee communities would help illustrate the dental developmental 

variability to be expected within a single Pan subspecies, and this was achieved by increasing the 

previously known P.t. schweinfurthii M1 emergence age range from 9.6 months in three 

Kanyawara chimpanzees (Machanda et al., 2015), to almost two years when data from this study 

were included.  

 For the Ngogo chimpanzees in this study, the M1 root growth spurts all fell considerably 

after the age range of Kanyawara M1 emergence (Machanda et al., 2015), which suggests that the 

chimpanzee M1 root growth spurt is more likley to coincide with its attainment of occlusion than 

with its emergence. Further support of this is that the estimated M1 emergence ages for most of 

the Ngogo chimpanzees were also somewhat after those at Kanyawara, or on the late end of their 

range (Malone, Chapter 2 p.35). 

 The fifth prediction, that the root growth spurt and M1 occlusion age slightly precede 

weaning completion, was supported by the growth spurt age range of  3.03 - 4.60 years in the 

Ngogo chimpanzees in this sample, and the inferred mean age at weaning completion (4.0-4.5 

years) from fecal isotope data of Ngogo infant-mother pairs (Badescu et al., 2017).  

 Results overall suggest that an M1 root growth spurt, likely coinciding with the 

attainment of functional occlusion, followed by an abrupt drop in stress episode frequency, may 

represent a structural proxy for the threshold of nutritional independence/weaning completion in 
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these Ugandan chimpanzees. However, to more robustly link the root growth spurt/occlusion age 

to weaning completion, another proxy for weaning in these specific individuals was needed. 

 
 
Chapter 3 Conclusions: This chapter addressed the need for a proxy of dietary changes during 

the weaning process by determining the variation in Calcium-normalized barium (Ba/Ca) 

intensities within the M1 enamel and dentine of these Ugandan chimpanzees, since this variation 

has been linked to the transition from nursing to adult foods in the teeth of multiple extant and 

fossil hominoids. 

 This study found that the changes in Ba/Ca intensity (that presumably reflect dietary 

changes) do show the same general patterns of increase and decrease through developmental 

time in chimpanzees as in other primates for which this has been assessed. It was also found that 

the Ba/Ca values increased at the time of the M1 root growth spurt, followed by a decrease that 

continued thereafter, (except in cases of enamel damage), which supported the hypothesis that 

weaning completion occurred just after the M1 root growth spurt in these chimpanzees. Since the 

growth spurts of these individuals were found to align well with the inferred ages at nutritional 

independence in Ngogo chimpanzees as assessed in a fecal isotope study (Badescu et al., 2017), 

this lends further support to this study’s proposed connection between the M1 root growth spurt 

and weaning completion. 

 One of the implications of these findings is that age at weaning completion, an important 

life history variable, can potentially be directly measured in isolated M1s that are no longer in 

the mandible, since the growth spurt can be measured in the M1 root and changing Ba/Ca values 

can be obtained from the root dentine. (We used the M1s and M2s or P4s, but it may be possible, 

and much simpler, to do this with only the M1s.) These structural and chemical correspondences 
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should be confirmed in other chimpanzee populations, as well as in other primate taxa to assess 

whether this association holds true. 

 Another potential outcome of this study is that this method of determining the M1 root 

growth spurt age could be applied to dental remains in the fossil record, including those of fossil 

hominins, though further study into the integrity of the trace elemental signals in fossil enamel is 

a necessary precursor to such studies. Since this study successfully tracked this structural and 

chemical proxy for weaning completion in the teeth of adult individuals, it may be possible to 

significantly increase the sample size for which we can infer weaning completion age in fossil 

taxa, if we do not have to rely upon using only juvenile remains to infer M1 emergence age. This 

also eliminates the potential complication of using dental remains from deceased juveniles whose 

early deaths may not indicate “typical” developmental patterns, compared with individuals that 

survived through adulthood (see Smith and Boesch, 2011). 

 
Chapter 4 Conclusions: Our data suggest that there may be a habitat-specific difference in 

δ13Cbone collagen-hair keratin offsets, since the values from this study, limited though they are, show a 

lower offset value than has been recorded for other sites (DeNiro and Epstein, 1981). An overall 

adult δ13Cenamel apatite range of -14.3 to -16.0‰ and an δ18Oenamel apatite range of 1.2 to -1.4‰ was 

determined for the chimpanzees in this study. Based upon the tissue-specific isotope values of all 

of these chimpanzees, and the isotopic contents of their food items and percent of time spent 

feeding on each, we have calculated provisional “total dietary input” values of δ13C -27.4‰ and 

δ15N 4.2‰. This creates numerous diet-to-tissue fractionation factors for these individuals, but 

the most relevant one for fossil hominin dietary reconstructions is the δ13Cdiet-enamel apatite 

fractionation factor for the Ngogo chimpanzees, which we estimate as +12.3‰.  
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Future Directions 

 

 In future work seeking to resolve the issue of the co-occurrence of the M1 root growth 

spurt and occlusion, it would be beneficial to measure the growth spurt on the intact dental 

remains of as many juvenile chimpanzees as possible. This would permit the root growth spurt 

and M1 emergence age to be measured on the same individual, thereby avoiding the use of 

pooled M1 emergence data in favor of direct comparisons. Doing so will allow the verification 

the 2.5-6.0 month emergence-to-occlusion delay, instead of inferring one parameter from the 

other and introducing error at each step. 

 In order to more accurately compare weaning age data between chimpanzee populations 

and subspecies, further fecal isotope studies should be carried out in populations such as the Taï 

Forest chimpanzees, those at Mahale and Gombe, as well as at Bwindi and Kanyawara. Doing so 

will allow consistent measures of “weaning completion” to be compared to see whether the 

Ngogo chimpanzees do, in fact, wean later than other populations. 

 Along with such fecal isotope studies for extant primates, it would be worthwhile to 

characterize the variability in the isotopic offsets between tissues such as hair, which can be 

collected frequently and non-invasively, and enamel apatite, the critical tool for investigating the 

diets and environments of fossil taxa.  

 The use of histological, stable isotopic, and trace elemental analyses, when utilized 

together, show great promise for future efforts to characterize the variability in diets, dental 

development, and weaning behavior in wild primates. Such endeavors will, in turn, open new 

channels of inquiry concerning fossil hominin life history evolution. 
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Appendix 
 
 

Appendix Table 23: M1 and M2 Periodic Variable Measurements for the Chimpanzees in theis Study 
 

 M1 
mb 
icdsr 

M1 
mb 
mcdsr 

M1 
mb 
ocdsr 

M1 
mb 
iidsr 

M1 
mb 
midsr 

M1 
mb 
oidsr 

M1 
avg mb 
cdsr 

M1 
avg mb 
idsr 

M2 
mb 
icdsr 

M2 
mb 
mcdsr 

M2 
mb 
ocdsr 

M2  
mb 
iidsr 

M2 
mb 
midsr 

M2 
mb 
idsr 

M2 
avg mb 
cdsr 

M2 
avg mb 
idsr 

NG001 4.264 4.346 4.551 5.320 5.352 5.518 4.387 5.397 4.240 4.290 4.340 4.013 4.113 4.213 4.290 4.113 

NG002 4.432 4.684 4.887 5.747 5.891 6.747 4.668 6.033 3.449 4.200 5.141 4.462 4.917 4.981 4.263 4.786 

NG004 4.796 5.814 5.914 5.864 5.914 5.964 4.796 5.914 4.642 4.679 5.307 4.574 5.093 5.478 4.876 5.048 

NG005 4.240 4.922 5.967 4.402 5.860 6.642 5.043 5.635 N/A N/A N/A N/A N/A N/A N/A N/A 

NG012 3.452 5.580 6.358 4.666 4.994 5.887 5.130 5.182 3.601 4.196 5.263 3.341 4.431 5.522 4.353 4.431 

NG013 3.652 4.180 5.236 4.176 4.622 5.013 4.356 4.604 3.201 4.003 4.963 3.147 4.031 4.904 4.056 4.027 

MUZM 4.002 4.187 4.371 5.244 5.397 5.549 4.187 5.397 N/A N/A N/A N/A N/A N/A N/A N/A 

NG003 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 4.563 4.586 

N N=7 N=7 N=7 N=7 N=7 N=7 N=7 N=7 N=5 N=5 N=5 N=5 N=5 N=5 N=6 N=6 

Mean   4.120 4.816 5.326 5.060 5.433 5.903 4.652 5.452 3.826 4.273 5.003 3.907 4.517 5.020 4.400 4.499 

min 3.452 4.180 4.371 4.176 4.622 5.013 4.187 4.604 3.201 4.003 4.340 3.147 4.031 4.213 4.056 4.027 

max 4.796 5.814 6.358 5.864 5.914 6.747 5.130 6.033 4.642 4.679 5.307 4.574 5.093 5.522 4.875 5.048 

Sd  σ 0.460 0.662 0.768 0.657 0.497 0.623 0.360 0.480 0.596 0.250 0.394 0.645 0.474 0.531 0.285 0.392 
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Appendix Table 24: M3 and P4 Periodic Variable Measurements 

  M3 
mb 
icdsr 

M3 
mb 
mcdsr 

M3 
mb 
ocdsr 

M3 
mb 
iidsr 

M3 
mb 
midsr 

M3 
mb 
oidsr 

M3 
av 
cdsr 

M3 
av 
idsr 

P4 
mb 
icdsr 

P4  
mb 
mcdsr 

P4 
mb 
ocdsr 

P4 
mb 
iidsr 

P4 
mb 
midsr 

P4 
mb 
oidsr 

P4 
av 
cdsr 

P4 
av 
idsr 

NG001 4.086 4.577 5.068 5.580 5.602 6.234 4.577 5.805 N/A N/A N/A N/A N/A N/A N/A N/A 

NG002 4.684 6.104 6.113 4.580 5.099 5.643 5.634 5.107 N/A N/A N/A N/A N/A N/A N/A N/A 

NG004 4.655 4.894 4.463 4.017 4.953 5.007 4.670 4.659 N/A N/A N/A N/A N/A N/A N/A N/A 

NG005 4.114 5.194 5.914 4.395 5.205 5.653 5.074 5.084 4.638 4.791 5.314 4.444 5.687 5.763 4.914 5.298 

NG012 5.134 5.234 5.334 5.605 5.705 5.805 5.236 5.705 N/A N/A N/A N/A N/A N/A N/A N/A 

NG013 3.729 4.200 4.668 3.394 4.058 5.139 4.199 4.197 N/A N/A N/A N/A N/A N/A N/A N/A 

MUZM 3.993 4.307 4.649 4.321 4.938 4.963 4.316 4.740 3.948 4.370 4.729 4.196 4.279 4.362 4.349 4.279 

NG003 5.179 5.234 5.289 5.064 5.187 5.311 5.234 5.187 4.078 4.168 4.258 4.239 4.338 4.436 4.168 4.338 

N N=8 N=8 N=8 N=8 N=8 N=8 N=8 N=8 N=3 N=3 N=3 N=3 N=3 N=3 N=3 N=3 

Mean    4.447 4.968 5.187 4.619 5.093 5.469 4.867 5.061 4.221 4.442 4.767 4.293 4.768 4.853 4.477 4.638 

min 3.729 4.201 4.463 3.394 4.058 4.963 4.199 4.197 3.948 4.168 4.258 4.196 4.279 4.362 4.168 4.279 

max 5.179 6.104 6.113 5.605 5.705 6.234 5.634 5.805 4.077 4.791 5.314 4.444 5.687 5.763 4.168 5.298 

Sd  σ 0.544 0.617 0.600 0.765 0.503 0.442 0.503 0.534 0.367 0.318 0.529 0.133 0.797 0.788 0.389 0.572 

Tables 24 (top) and 2 (bottom): Inner, middle, and outer cuspal and imbricational enamel daily secretion rates (DSR in µm) of M1-M3. Average 
values are given by region of each tooth for each individual and overall descriptive statitics by tooth type are given for the whole population. 

 
 

Appendix Table 25: Descriptive Statistics for periodic variables of all teeth 

    CDSR     IDSR     RP     TFT   

 mean range σ mean range σ mean  range σ mean range σ 

M1 
mb 

4.65 
n=7 

4.19- 
5.13 

0.36 5.45 4.60- 
6.03 

0.48 5.38 n=8 5-6 0.52 646 502- 776 85.29 

M2 
mb 

4.40 
n=6 

4.06- 
4.88 

0.29 4.50 4.03- 
5.05 

0.39 “” “” “” 781 661- 857 72.9 

M3 
mb 

4.87 
n=8 

4.20- 
5.63 

0.50 5.06 4.20- 
5.81 

0.53 “” “” “” 963 885- 1111 82.62 
  

P4 
mb 

4.48 
n=3 

4.17- 
4.91 

0.39 4.64 4.28- 
5.30 

0.57 “” “” “” N/A   N/A   N/A  

χ 4.64 3.15- 
6.75 

 N/A 5   N/A   
N/A 

5.38  N/A  N/A N/A  N/A   N/A  

Means, ranges and standard deviations of M1-M3 periodic variables (CDSR= cuspal daily secretion rate, IDSR= imbricational daily secretion 
rate, RP= Retzius Periodicity, TFT= total formation time) 
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Appendix Table 26: Measures of M1 periodic variables 

  Tooth/ 
  

Cusp AVG 
CDSR 
(µm) 

CFT 
(min 
days) 

CFT 
(min 
yrs) 

AVG 
IDSR 
(µm) 

RP 
(days) 

R# 
(min) 

IFT 
(min 
days) 

IFT 
(min 
yrs) 

TFT 
(min 
days) 

TFT 
(min 
yrs) 

NG001 RM1 mb 4.39 177 0.48 5.40 5 65 325 0.89 502 1.38 

NG002 RM1 mb 4.67 226 0.62 6.03 5 72 360 0.99 586 1.61 

NG003 LP4 mb 4.17 N/A N/A 4.34 6 N/A N/A N/A N/A N/A 

NG004 RM1 mb 4.80 224 0.62 5.92 5 98 490 1.34 714 1.96 

NG005 RM1 mb 4.36 187 0.51 5.26 5 80 400 1.10 587 1.61 

NG012 LM1 mb 5.13 193 0.53 5.18 6 70 420 1.15 613 1.68 

NG013 RM1 mb 4.90 268 0.73 4.34 5 78 390 1.07 658 1.80 

MUZM  RM1 mb 4.19 225 0.6 5.40 6 92 552 1.51 777 2.13 

Measures and counts of periodic structures, in #s or µm, of the M1 for all eight chimpanzees (except for the P3 in NG003) in both days and years. 
(CDSR= cuspal daily secretion, CFT= cuspal formation time, IDSR= imbricational daily secretion rate, RP= Retzius Periodicity, R#= Retzius #, 
IFT= imbricational formation time, TFT= total formation time) 

 
 
 
 
 

Appendix Table 27: Measures of M2/P4 periodic variables 

  Tooth/ 
  

Cusp AVG 
CDSR 
(µm) 

CFT 
(min 
days) 

CFT 
(min 
yrs) 

AVG 
IDSR 
(µm) 

RP 
(days) 

R# 
(min) 

IFT 
(min 
days) 

IFT 
(min 
yrs) 

TFT 
(min 
days) 

TFT 
(min 
yrs) 

NG001 RM2 mb 4.29 231 0.63 4.11 5 86 430 1.18 661 1.81 

NG002 LM2 mb 4.26 278 0.76 4.79 5 61 305 0.84 583 1.60 

NG003 LM2 mb 4.56 N/A N/A 4.586 6 133 798 2.19 N/A N/A 

NG004 LM2 mb 4.88 171 0.47 5.05 5 113 565 1.55 736 2.02 

NG005 RP4 mb 4.91 234 0.64 5.30 5 103 515 1.41 749 2.05 

NG012 LM2 mb 4.35 246 0.67 4.43 6 118 708 1.94 954 2.61 

NG013 RM2 mb 4.68 199 0.55 4.59 5 94 470 1.29 669 1.83 

MUZM RP4 mb 4.35 202 0.55 4.28 6 120 720 1.97 922 2.53 

Measures and counts of periodic structures, in #s or µm, of the M2 for all eight chimpanzees (except for P4 in NG005 and MUZM2625) in days 
and years. 
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Appendix Table 28: Measures of M3 periodic variables 

  Tooth/ 
  

Cusp AVG 
CDSR 
(µm) 

CFT 
(min 
days) 

CFT 
(min 
yrs) 

AVG 
IDSR 
(µm) 

RP 
(days) 

R# 
(min) 

IFT 
(min 
days) 

IFT 
(min 
yrs) 

TFT 
(min 
days) 

TFT 
(min 
yrs) 

NG001 RM3 mb 4.58 322 0.88 5.81 5 120 600 1.64 922 2.53 

NG002 RM3 mb 5.63 208 0.57 5.11 5 68 340 0.93 548 1.50 

NG003 LM3 mb 5.23 N/A N/A 5.19 6 N/A N/A N/A N/A N/A 

NG004 LM3 mb 4.67 140 0.38 4.66 5 91 455 1.25 595 1.63 

NG005 RM3 mb 5.07 204 0.56 5.08 5 106 530 1.45 734 2.01 

NG012 LM3 mb 5.23 261 0.71 5.71 6 93 558 1.53 819 2.24 

NG013 RM3 mb 4.20 330 0.90 4.20 5 126 630 1.73 960 2.63 

MUZM RM3 mb 4.32 199 0.55 4.74 6 85 510 1.40 709 1.94 

Measures and counts of periodic structures, in #s or µm, of the M3 for all eight chimpanzees in both days and years. 
 

 
  Appendix Figure 30: Supplemental Ba/Ca values from all eight red-tailed monkey M1s 
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