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ABSTRACT

Cyber-physical systems are technological systems that involve physical components that are
monitored and controlled by multiple computational units that exchange information through a
communication network. Examples of cyber-physical systems arise in transportation, power, smart
manufacturing, and other classes of systems that have a large degree of automation. Analysis and
control of cyber-physical systems is an active area of research. The increasing demands for safety,
security and performance improvement of cyber-physical systems put stringent constraints on their
design and necessitate the use of formal model-based methods to synthesize control strategies
that provably enforce required properties. This dissertation focuses on the higher level control
logic in cyber-physical systems using the framework of discrete event systems. It tackles two
classes of problems for discrete event systems. The first class of problems is related to system
security. This problem is formulated in terms of the information flow property of opacity. In this
part of the dissertation, an interface-based approach called insertion/edit function is developed to
enforce opacity under the potential inference of malicious intruders that may or may not know the
implementation of the insertion/edit function. The focus is the synthesis of insertion/edit functions
that solve the opacity enforcement problem in the framework of qualitative and quantitative games
on finite graphs. The second problem treated in the dissertation is that of performance optimization
in the context of supervisory control under partial observation. This problem is transformed to a
two-player quantitative game and an information structure where the game is played is constructed.
A novel approach to synthesize supervisors by solving the game is developed.

The main contributions of this dissertation are grouped into the following five categories. (i)
The transformation of the formulated opacity enforcement and supervisory control problems to

games on finite graphs provides a systematic way of performing worst case analysis in design
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of discrete event systems. (ii) These games have state spaces that are as compact as possible
using the notion of information states in each corresponding problem. (iii) A formal model-based
approach is employed in the entire dissertation, which results in provably correct solutions. (iv)
The approaches developed in this dissertation reveal the interconnection between control theory
and formal methods. (v) The results in this dissertation are applicable to many types of cyber-

physical systems with security-critical and performance-aware requirements.



CHAPTER 1

Introduction

I.1 Background and Motivation

Security and performance optimization are two important research topics in Discrete Event Sys-
tems. In modern large-scale cyber-physical systems, many components of the system are poten-
tially vulnerable to attackers with malicious purposes to infer some confidential information about
the system and inflict damage. Therefore, it is important to develop formal tools to preserve the
security of the system. Meanwhile, it is also necessary to evaluate the performance of the system
quantitatively and optimize relevant performance measures.

In the context of discrete event systems, opacity is an information-flow based security property
that characterizes whether or not secrets of a given dynamic system can be inferred by an out-
side observer termed intruder with potentially malicious intentions. Due to its general formulation
that is applicable to many security and privacy issues arising in networked systems, opacity has
received significant attention in the literature on security and privacy since it was first introduced
in [75]. In the setting of opacity, the external intruder is often modeled as an observer that knows
the structure of the system and attempts to infer secrets of the system by passively observing the
system’s outputs. The system is called opaque if the intruder fails to determine system’s secrets
unambiguously from its observations. Opacity has been thoroughly discussed in discrete event sys-
tems, which provide a convenient and systematic way for problem modeling and analysis. Several

notions of opacity have been proposed in discrete event systems and studied ever since [19, 20].



In practice, opacity may not always hold so that the problem of opacity enforcement naturally
arises. In this dissertation, we mainly focus on the problem of enforcing opacity by insertion
functions and edit functions, which serve as an interface between the output of the system and
the intruder. The edit function may insert some strings into the output of the system or erase
some events, so what the intruder observes is different from the actual output. In that sense, the
intruder may be obfuscated and fails to infer critical information from its observations. Based on
the intruder’s knowledge about the implementation of the obfuscation methods, we consider both
strong and weak attack scenarios in this dissertation, where the intruder may or may not know
the implementation of insertion/edit functions. For both scenarios, we characterize the properties
of insertion/edit functions and propose methods to synthesize them for opacity enforcement. We
show the mechanism of insertion functions in Figure I.1, while the mechanism of edit functions is
similar, which also includes event erasure.

Intruder

|
: additionallobservable events : :/;:n
|
! | System |—Output behavior», Insertion —Modified behavior—i—»
|
! function |
|

Figure I.1: The insertion mechanism

Along with qualitative analysis of opacity enforcement, we also extend our obfuscation meth-
ods to consider opacity enforcement under quantitative constraints. We assume that the system has
several types of resources whose amounts are all fixed. The system’s resource levels may change
due to event occurrences and defense of secrets. Under this framework, our objective is to guaran-
tee that secrets are not disclosed to the intruder while each type of resource is never depleted in the
process of enforcing opacity.

Therefore, we consider opacity enforcement by leveraging the technique of insertion functions
and further investigate it under a quantitative setting. This problem is inspired by the rapidly
growing application of location-based services (LBS). Suppose there is a device providing LBS,

which sends personalized information to the user by exploiting the user’s real time location. There



may be a malicious eavesdropper which intends to infer some critical information of the user
from the queries sent by the device, through the open communication network. To prevent the
disclosure of secrets, some fictitious queries may be inserted to the ongoing queries if they are
going to reveal the user’s critical information. Then the resulting query sequences must be made
consistent with some existing queries not revealing any secret information. This mechanism is
shown in Figure 1.2. Since inserting queries may cost certain resources like electricity, bandwidth
and memory, the insertion functions may not insert arbitrary long or arbitrary many queries for
obfuscation in practice. They should be properly designed so that the resource budget requirements

are always satisfied and the resources are not consumed too sharply, i.e., the insertion functions

k. Insertion
function - Intruder
queries

work economically.

=]
= l:é Server

S =

User

Figure 1.2: Location-based service and insertion mechanism

Together with security obfuscation, this dissertation also studies another important research
topic in discrete event systems, i.e., performance optimization by some quantitative measures. In
many practical situations, the system may generate or consume some resources, €.g., energy, dur-
ing the operation and over an arbitrarily long time horizon. In this circumstance, two requirements
arise naturally. One is to ensure that the resource is never depleted as long as the system is oper-
ating, given a fixed amount of initial resource. The other requirement is to guarantee that the long
run average rate of resource generation (consumption) is above (below) a given threshold. Fur-
thermore, if the system does not terminate, it is preferable to optimize the above mentioned long
run average rate so that the system works in an economical way. Those requirements motivate the
problems discussed in this dissertation.

To achieve such objectives, proper supervisors are designed to restrict the behaviors of the sys-

tem. The classic supervisory control theory in discrete event systems was initiated in [93] where



the supervisor dynamically enables/disables events to ensure that the plant achieves certain speci-
fication. As it is not always feasible to sense every step of the operation of the plant, the supervisor
may only have partial observation of the system. Given these considerations, we investigate the
so called energy-aware supervisory control problem whose general mechanism is shown in Fig-
ure [.3. In the figure, IA stands for information acquisition which determines the supervisor’s
observation for the system. As is seen, the supervisor’s commands are subject to quantitative en-
ergy/resource constraints. Specifically, we investigate optimal mean payoff supervisory control
under partial observation in this dissertation, where our principal objective is optimize the long-
run average resource payoff by supervisory control. To be more specific, we will transform the
supervisory control problem to a two-player game and propose a novel information structure to en-
code the strategies for both players. Then we leverage results from quantitative graph game theory
to further analyze the game. Finally we develop a systematic approach to synthesize the optimal

supervisor by solving the game.

GE
A 4
| Act | Energy/ _"_Q_]_:. Obs |
- Resources
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Figure 1.3: The general mechanism of energy-aware supervisory control

1.2 Literature Review

In the context of discrete event systems, many problems related with opacity have been studied
after it was first discussed in the computer security literature [19,20]. Those problems may be
categorized into two classes: proposing new notions of opacity and enforcing opacity. We will
briefly review some representative works on both topics. Since two chapters in this dissertation are

also inspired by quantitative graph game theory in theoretical computer science, which considers
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reactive synthesis under the game framework, we also do a brief literature review here on graph
games with quantitative objectives. Finally, we list some relevant works on supervisory control

theory, which is closely related to the last technical chapter of this dissertation.

I.2.1 Opacity Notions and Enforcement Methods

Since initiated by [20], opacity has received significant attention in the context of discrete event
systems. Various representations of the system secret have been considered in the study of opacity.
These representations have led to the formalization of several notions of opacity for event-driven
models of dynamic systems. In the context of automata models, the notions of initial-state opacity,
current-state opacity, language-based opacity, K-step opacity and infinite step opacity, have been
proposed; see, e.g., [25,70,99,102,127]. Opacity has also been generalized to the settings of infinite
state systems, see.,e.g., [35], modular systems, see.,e.g., [74] and timed systems, see.,e.g., [24,
117], while opacity under so-called Orwellian observers is investigated in [79]. Another important
model in discrete event systems is Petri nets where opacity is discussed in many works such as [20,
112, 113]. In addition, system secrecy and opacity has been extend to quantitative settings [8, 36],
while specifically, several stochastic notions of opacity have been defined and investigated; see,
e.g., [6,7,61,100]. In [132], an algorithm was proposed for verification of infinite-step opacity in
stochastic discrete event system. A different framework was proposed in [131] to study opacity
in networked control systems with insecure control channels. Some recent survey papers such
as [52, 67] may be consulted for a detailed review of the literature on opacity in discrete event
systems.

To alleviate the issue of heavy computation for opacity verification, some formal methods
may be applied, like abstraction and composition. For abstraction, simulation and observation
equivalence [76] are well-known methods to abstract the state space of an automaton. In gen-
eral, bisimulation and observation equivalence do not preserve opacity properties. A variant called
opacity-preserving bisimulation was discussed in [134] to reduce the state space of the system

when verifying infinite-step opacity. A unified abstraction method called visible bisimmulation



equivalence was proposed in [68] and then extended in [81] for abstraction-based opacity verifica-
tion. Furthermore, the authors of [82] constructed observer of modular systems incrementally for
verification and enforcement of current state opacity, which avoids the explosion of state space.
When a given notion of opacity is violated, researchers have proposed various methods for
its enforcement. One popular approach is to design a minimally restrictive supervisor, which dis-
ables certain behaviors that violate opacity [38,41,101, 110]. A uniform approach was proposed
in [126] to embed in a finite structure all feasible supervisors that enforce opacity and this struc-
ture is applied to synthesize supervisors with desired properties. The work in [133] also lies in
this category but discusses the problem from the perspective of maximum information release.
While [114] also adopts supervisory control for opacity enforcement, however it assumes that the
intruder and the supervisor has incomparable observation. On the other hand, several works, such
as [25, 124,129, 130], apply another sensor activation framework to enforce opacity by building
dynamic observers or most-permissive observers. Along with the above mentioned two popular
techniques, a run-time method was discussed in [45] for enforcement of several notions of opacity.
In contrast to the above approaches, [119] introduces insertion functions as a new method,
which insert fictitious events into the system’s output to obfuscate the intruder. The insertion
functions serve as an interface between the system’s output and the intruder’s observation. After
that, [120] investigates opacity enforcement under the assumption that the intruder may or may
not know the implementation of the insertion functions. To capture this situation, two concepts of
private safety and public safety are defined and studied for evaluating the performance of insertion
functions. As a following work, [121] discussed optimal insertion function in terms of the average
insertion cost. Furthermore, the authors of [122] proceed to extend insertion functions to edit
functions, which modify the system’s output by inserting, erasing or replacing events. All these

works enforce opacity in a deterministic setting, i.e., any string is mapped to a unique string.



I.2.2 Graph Games with Quantitative Objectives

In theoretical computer science, games on graphs with a quantitative objective [4] is a thor-
oughly investigated topic. Games provide a theoretical method to deal with logical requirements
in reactive synthesis while games with quantitative objectives are natural models for design in
resource-constrained environments. The specifications for such reactive systems usually have both
a quantitative component specifying the resource constraints and a qualitative component spec-
ifying the logical goal. And some of the most intensively studied games include reachability
games [2, 16,27,39], mean payoff games [17,43, 135], energy games [12,26], mean payoff and
energy parity games [29, 32], etc.

Among all the above mentioned classes of games, we are especially interested in energy games
and mean payoff games as they inspired some of our works in this dissertation. The energy game
is a two-player quantitative game on weighted graphs, where the weights represent energy gain
or consumption. The objective of the first player is to keep the energy level not below 0 while
the other player intends to do the opposite. Depending on whether the initial-credit energy is
fixed or not, the fixed initial energy problem studies whether the objective could be achieved given
a certain amount of energy while the unknown initial energy problem asks whether there exists
certain amount of initial energy to achieve the objective. The other way of classifying energy
games is by the information available to the players. In the full observation case, both players
have complete knowledge about the strategies and positions of each other [11, 30]. And partial
information is reflected in one or both players being unable to determine the precise location of the
other player [10,31,40,51]. Considering partial observation in energy games results in enormous
increase in the complexity of the problem, in terms of strategy synthesis [87,95]. Some types of
imperfect information energy games may be reduced to and solved as a reachability game with
perfect information. Energy games with fixed initial energy is decidable with incomplete informa-
tion, while they become undecidable when the initial energy is not fixed [51]. In general, mean
payoff games with incomplete information are not decidable while some special decidable classes

of games are presented in [51].



Energy games and mean payoff games have also been extended from one dimension to mul-
tiple dimensions to characterize different resource constraints [44, 60, 116], which are generally
more complex than their single dimension counterpart. Recently, stochastic games have also been
investigated [18,28,46], where each player’s decisions are made with certain probability and their
objective is evaluated with probability. Some researchers in DES also studied supervisory control

by energy game with partial observation [90].

I.3 Qualitative and Quantitative Supervisory Control

Supervisory control under the framework of discrete event systems has been widely studied for
qualitative specifications, such as safety and liveness, since it was initiated in [93]. The DES under
control is modeled by an automaton with event set partitioned as controllable and uncontrollable
event sets. The supervisor restricts the original behavior of the system so that a given specification
is satisfied. Since then, supervisory control theory has been discussed under various settings in
DES [23, 105, 118], such as Petri nets, see, e.g., [48], timed systems, see, e.g., [14], networked
systems, see, e.g., [107], distributed systems, see, e.g., [63], decentralized systems, see, e.g., [71,
97], stochastic systems, see, e.g., [47,64], and so on.

In the context of discrete event systems, due to the limited sensing capabilities, the plant is
usually partially observed, which gives rise to supervisory control under partial observation [72].
Many works fall into this category, see, e.g., [1,21,22,37,49, 62,96, 108, 111, 115, 128, 129],
which discuss the problem from different perspectives. Recently, a novel approach was developed
in [125] and extended in [126] to synthesize maximally permissive partial-observation supervisors
for enforcement of a series of qualitative properties in discrete event systems without assumptions
on the relation between controllable events and observable events. The following work [123]
adopted this approach to investigate supervisory control for mealy automata with output functions.

Besides logical properties, supervisory control has also been investigated by introducing some

quantitative performance measures. Optimal supervisory control is one problem of particular in-



terest, starting with [86]. Since then, different frameworks of optimal supervisory control have
been developed. For example, [106] defined both event enablement and disablement costs, then
found the controller with minimum total costs by dynamic programming. This framework was
extended in [73,89] to consider partial observation of the system. Furthermore, [84] studied opti-
mal supervisory control in probabilistic discrete event systems and [109] proposed a timed optimal
supervisor. In [65], the authors viewed the weighted automaton as a flow network and solved the
optimal supervisory control problem by leveraging the max-flow min-cut theorem. Besides, [94]
defined a quantitative language measure and discussed the corresponding optimal supervisory con-
trol problem based on it. As a variant, the optimal stabilization problem under disturbances was
investigated in [88]. All the above works evaluated the performance of the supervisor by consider-
ing finite behaviors. In contrast, [91] optimized the worst case limit average weight of the infinite
sequences generated by the controlled system. The problem was formulated and solved as a mean
payoff game between the supervisor and the environment, under full observation. In practice,

optimal supervisory control has been applied to some engineering fields, see, e.g., [15, 85, 104].

I.4 Organization and Contributions of the Dissertation

I.4.1 Organization

The remaining chapters of the dissertation are organized as follows. Chapter II presents the work
on opacity enforcement by insertion functions [54]. Chapter III presents the work on opacity
enforcement by (nondeterministic) edit functions [53, 58]. Chapter IV presents the work on opac-
ity enforcement by insertion functions under (multiple) energy constraints [56,57]. Chapter V
presents the work on optimal supervisory control with quantitative objectives and under partial
observation [55,59]. Finally, Chapter VI concludes the dissertation and presents some potential

future research directions.



1.4.2 Main Contributions

This dissertation mainly concentrates on two problems: opacity enforcement by insertion/edit
functions and optimal mean payoff supervisory control under partial observation. In terms of the
methodologies, we transform both problems to the settings of qualitative or quantitative games and
solve them on the games. In this manner, we find a proper way to deal with worst-case analysis in
both problems, as we need to ensure that the synthesized insertion/edit functions and supervisors
are reactive to all potentially possible circumstances imposed by the environment.

More specifically, for the opacity enforcement problem, this dissertation has the following ma-
jor technical contributions: (i) it shows that publicly and privately safe insertion functions always
exist when privately safe insertion functions exist; (i1) it provides a way of synthesizing publicly
and privately safe insertion functions based on a two-player game structure called All Insertion
Structure; (iii) it characterizes public safety for edit functions and proposes a novel three-player
game structure called All Edit Structure to embed edit functions; (iv) it introduces nondeterminis-
tic edit functions and develops an approach to synthesize them; (v) it discusses insertion functions
under multiple energy constrains and presents a way of synthesizing insertion functions for opacity
enforcement without making the system’s energy levels below 0O; (vi) it proposes and solves the
bounded cost rate insertion problem where the rate of insertion cost associated with each type or
resource is bounded by certain threshold.

For the optimal supervisory control problem, the contributions are three-fold: (i) it discusses
mean payoff supervisory control under partial observation for the first time in discrete event sys-
tems; (i1) a systematic approach is developed to transform the supervisory control problem to a
two-player game by leveraging results from energy games and mean payoff games with incom-
plete information; (iii) an algorithm is given to synthesize the optimal supervisor on the game in a

dynamic programming manner.
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CHAPTER II

Enforcement of Opacity by Public and

Private Insertion Functions

II.1 Introduction

In [119], it is assumed that the insertion function used by the system is always kept private from the
intruder. Under this assumption, a method is presented on how to synthesize insertion functions
that only output strings consistent with the non-secret behavior of the system and thus prevent
the intruder from being certain that a secret behavior has occurred. In this chapter, we relax that
assumption. While the implementation of the insertion function may be kept private at first, a so-
phisticated intruder may learn the full set of modified behaviors output by the insertion function,
compare it with the system model, and potentially reverse engineer the insertion function. Also,
if the intruder knows the system’s optimality criteria, it may follow the optimal synthesis algo-
rithm in [121] and discover the correct insertion function. It may also be the case that the system
designers decide to make the insertion function public, as is done in public-key cryptography, for
example. Hence, there is a need to design insertion functions that enforce opacity even when their
implementation becomes known to the intruder. Under the same insertion mechanism as in Fig-
ure 1.1, to enforce opacity regardless whether or not the intruder knows the implementation of the
insertion function, we formally characterize a property called public-and-private enforceability,

or PP-enforceability for short. A PP-enforcing insertion function is guaranteed to enforce opacity

11



when the insertion function is kept private and when it becomes known to the intruder. In the
former case, the insertion function outputs only behaviors consistent with non-secret behaviors of
the system. In the latter case, the insertion function is designed such that for every secret behavior
of the system, there is a non-secret behavior of the system that has the same modified output from
the insertion function.

The main contributions of this chapter are as follows. First, we formally characterize the prop-
erties of public enforceability and of public-private (PP) enforceability, in the context of opacity
enforcement by insertion functions. We present conditions for PP-enforceability and use them
to derive an effective test under which opacity is public-private enforceable. It turns out that if
there exists an insertion function that is privately enforcing, then there also exists a (potentially
different) insertion function that is PP-enforcing. This result is established by defining a so-called
greedy criterion for selecting insertion functions in the All Insertion Structure (AIS) introduced
in [119]. These new results lead to an algorithmic procedure, called Algorithm INPRIVALIC-G,
that is guaranteed to synthesize a PP-enforcing insertion function if one exists.

The remaining sections of this chapter are organized as follows. Section II.2 introduces the
system model and the notion of opacity. Section II.3 formally introduces insertion functions and
the notion of public-and-private enforceability, along with conditions under which private enforce-
ability and public-private enforceability hold for a given insertion function. Section I1.4 starts by
reviewing the construction procedure of the All Insertion Structure (AIS) from [121] and then
identifies relevant concepts and properties. In Section I1.5, we first present a sufficient condition
for insertion functions to be PP-enforcing, then define the greedy criterion and show that a greedy
insertion function is PP-enforcing. Then, in Section I1.6, the INPRIVALIC-G Algorithm is pre-
sented, which synthesizes PP-enforcing insertion functions by using a greedy-maximal insertion

criterion within the AIS. Finally, Section II.7 concludes the chapter.
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II.2 System Model

We consider opacity in the framework of discrete event systems modeled as finite-state automata [23]:
G =(X,E, f,Xo)

where X is the finite set of states, E is the finite set of events, f : X X E — X is the partial state
transition function and Xo € X is the set of initial states. Specifically, we denote Xg C X as the
set of secret states. The transition function is extended to domain X X E* in the standard manner
and we still denote the extended function by f. We denote by s < u if s is a prefix u, and s < u if
s <u,s # u. Also, we denote by ¢ € s if string t is a substring of s. In opacity problems, the initial
state may not be known a priori by the intruder and thus we include a set of initial states X in the
definition of G. The language generated by G is defined as £(G) = {s € E* : Axg € Xp, s.t. f(xo,5)!}
where ! means “is defined”.

In system G, given a string s = ejea - ex_1, its corresponding execution is a sequence of the
form (xy,eq,...,ex—1,xk), Where x; € X, ¢; € E and x;4+1 = f(x;,e;), Vie{l,2,...,k—1}. An execution
forms a cycle if x| = x; and a cycle is an elementary cycle if Vi, j € {1,2,...,k—1}:i # j= x; # x;.
Besides, string s contains a cycle it At € s, t # €, Ax € X, s.t. f(x,1) = x. Otherwise, we call s a
cycle-free string.

We assume that the system G is partially observable and the event set E is partitioned as E =
E,UE,,, where E, is the set of observable events and E,,, is the set of unobservable events. Given
a string ¢ € E*, its natural projection P : E* — E, is recursively defined as P(t) = P(t'e) = P(¢")P(e)
where ¢’ € E* and e € E. The projection of an event is P(e) = e if e € E, and P(e) = € if e € E,,, U{€},
where € is the empty string.

Given a set of states ¢ C X and an observable event ¢, € E,, the unobservable reach, denoted as

UR(qg), is defined as: UR(q) ={xe€ X :dx' €g,As€ E},

uo’

s.t. f(x’,s) = x}. Besides, the observable
reach, denoted by Next(q,e,), is defined as: Next(q,e,) ={xe X : Ax" € q, s.t. f(x',e,) = x}. Then,

the observer of G is defined as: Obs(G) = (Xops, Eo, 0, Xobs0) Where X,ps C 2X, Xobs.0 = UR(Xp)
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and for any x,p5 € Xops, €0 € Eo, 0(Xops,€0) = UR(Next(xyps,€,)). We denote the state reached by

0(Xobs.0,5), s € PLL(G)] as the current state estimate associated with s.

I1.3 Insertion Mechanism and Opacity Notions

We first review the concept of current-state opacity.

Definition IL.3.1 (Current-State Opacity (CSO)). Given system G = (X, E, f, Xo), projection P, and
the set of secret states Xs, G is CSO if ¥Vt € Lsg := {t € L(G,Xp) : Axg € Xo, f(x0,1) N X5 # 0},

At € Lys :={t € L(G,Xop) : Axp € Xo, f(x0,1) N (X \ X5) # 0} such that P(t) = P(t).

In words, whenever the system generates a string ¢ that ends at a secret state in Xs, there must
exist a string ¢ such that ¢’ ends at a state in X \ Xg and P(f) = P(¢"). Hence, the intruder cannot
ascertain for sure that the current system state is in Xg.

An insertion function is defined as a (potentially partial) function f; : E, X E, — E, that outputs
a string with inserted events based on the past observed behavior and the current observed event.
Given observable string se, € P[L(G)], fi(s,e,) = sje, when string s; € E}, is inserted before e,,.
We also define the string-based version of f;, denoted by f;", recursively from fy: f;"(€) = €

and fls” (sey) = IS” (8)f1(s,e,). Given G, the modified language output by insertion function f7 is

denoted by f;""(P[L(G)]) = {5 € E; : s € P[L(G)], f;""(s) = 5} . When multiple events are inserted,
we assume that they are inserted, hence observed, one by one. Notice that the insertion functions
f1 (and corresponding f;™") considered in this chapter are deterministic.

We encode a given insertion function as an input/output (I/O) automaton

IA = (Xia, E(), E:)_,ﬁaa Gias xia,O)

and call it an insertion automaton. The state set X;, of IA could potentially be infinite. The input
set is E,; the output set is a set of strings in E} = E}E,; the transition function f;, defines the

dynamics of /A; the output function g, is defined such that g;,(x,e,) = sre, where fi,(xiqz0,5) = X,
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if fi(s,e,) = sre,; and finally x;, 0 is the initial state. More details on I/O automata can be found

in [23].

I1.3.1 Private Enforceability

Admissibility is an input property for insertion functions; it requires insertion functions to be

defined for all P[L(G)].

Definition I1.3.2 (Admissibility). Consider G, P, Ls and Lys. An insertion function fj is admis-

sible if: Vse, € P[L(G)], where s € E}, e, € E,, As; € E}, s.t. fi(s,e,) = s1€,.

Private safety is an output property of insertion functions. We term this property “private”
safety because it is under the assumption that the intruder has no knowledge of the insertion func-
tion at the outset. Consequently, the intruder is expecting to observe behaviors that are consistent
with the system’s transition structure. Notice that we consider insertion functions that are used
to enforce opacity online. Hence, every modified output behavior from the insertion function
should always be consistent with an original non-secret behavior from the system. Because of this
“always” requirement, every modified output behavior should be observationally equivalent to a
string in the safe language Ly, ., which is the supremal prefix-closed sublanguage of P(Lys) and

is calculated by the equation:

Lage = PLL(G)I\{PIL(G)]\ P(Lns)}IE,

This equation is an application of a result in [66] and a similar expression was also proposed
in [41]. Hereafter, we call a string s € P[L(G)] safe if it is in L, f. and unsafe otherwise, so
Lunsafe = PIL(G)]\ Lgq .. From the definition of safe language, if a string is unsafe, then all its

continuations are unsafe.

Definition I1.3.3 (Private Safety). Consider G with P, Ls and Lys. An insertion function fj is

privately safe if Vs € P[L(G)), f;"(s) € Lyayes equivalently, " (P[L(G)]) C Lyafe.
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Figure I1.1: Current-state estimator &’; states 7 and 8 contain only secret states

If we delete all states violating CSO from Obs(G) and take the accessible part, the resulting

automaton just generates Ly, r.. We define it as desired observer Obs (G) = (Xopsa» Eo,04, Xobsd,0)-

I1.3.2 Private and Public Enforceability

Privately enforcing insertion functions enforce opacity by insuring that the intruder never observes
an unsafe string. A naive intruder, with no knowledge of the insertion function at the outset, would
therefore never be certain about the secret being revealed; in fact, the intruder would have no reason
to suspect the existence of an insertion function. However, a privately enforcing insertion function

may fail if it becomes known to the intruder, as illustrated by the following example.

Example I1.3.1. Consider the current-state estimator in Figure I1.1. These estimator states repre-
sent sets of system states; they are numbered from O to 8 for simplicity. Assume that states 7 and
8 contain only secret states, i.e., these estimator states reveal the secret. Suppose that opacity is
enforced by the privately enforcing insertion function where fls’r (b) =ab, flm (a) = da and no other
insertions are made. If the intruder has no knowledge of fi, then it would never conclude that the
secret is revealed, as the output from fy is always safe; here, Ly f, = {dabc,ab). However; if the
intruder knows the implementation of fi, then it would be able to conclude that the state estimate
is state 8 when it observes ab. This is because if ab were the genuine output behavior from the
system, then it would have been modified to dab; and the intruder knows that. Hence, the only

system output that would produce ab is string b.

Example I1.3.1 shows how an intruder can infer the secret if it knows the implementation of

the insertion function. Indeed, there are ways for intruders to learn the implementation of the
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insertion function. For example, the intruder could use learning algorithms, such as in [3], to learn
the modified system G, which is the parallel composition of G with insertion automaton /A, and
then use G and G to reverse engineer IA. This type of parallel composition of a regular automaton
with an I/O one is sometimes called “input parallel composition”; we refer the reader to [119]
for its formal definition. Alternatively, if the intruder knows the optimality criteria used by the
system’s designer, it could follow certain synthesis algorithm and construct the correct insertion
function. In either case, we wish to use an insertion function that still enforces opacity when its
implementation becomes known. In this manner, the system designers may be able to eventually
reveal the structure of fj, if so desired.

PP-enforceability is a specification that we characterize under the assumptions that: (i) the
intruder does not know about the implementation of the insertion function at the outset; but (ii)
the intruder can possibly learn or be told the correct implementation. Consequently, to enforce
opacity under assumption (i), insertion functions should be privately safe. Also, under assumption
(i1), insertion functions should be defined so that the intruder is still not able to determine the
occurrence of the secret even if it knows about the insertion function’s implementation. The second

requirement is formally characterized as a property called public safety, defined as follows.

Definition I1.3.4 (Public Safety). Consider G with P, Ls and Lys. An insertion function f is pub-
licly safe if V3 € f""(PLL(G)]), At € Lyage s.t. f77(1) = §; equivalently, f""(PIL(G)]) C £} (Lsafe).

In contrast to Definition 4 in [120], we use Ly, . instead of P(Lys) in the above definition to
better capture the on-line operation of the system, where public safety must be preserved for every
prefix of a safe string. The idea behind public safety is that no matter what the insertion function
outputs, this output could have been obtained from a safe string; hence opacity holds.

When an insertion function is admissible and publicly safe, we say that it is publicly enforcing.
Moreover, we say that an insertion function satisfies the property of private-and-public enforce-

ability, or PP-enforceability, if it is admissible, privately safe, and publicly safe.

Definition I1.3.5 (PP-Enforceability). Insertion function fr is PP-enforcing if it is admissible, pri-

vately safe, and publicly safe.
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Example 11.3.2. In Example I1.3.1, insertion function f7 is privately enforcing but not PP-enforcing.
Specifically, for § = ab, there is no t € Ly, for which f}""[P(t)] = ab. Let us define another inser-
tion function: f(€,a) =da, f](€,b) = dab, and f|(s,e,) = e,, ¥ se, € PL[L(G)]\{a,b}. One can verify
that f] is PP-enforcing. Specifically, f] is admissible because it is defined for every PLL(G)]; it is
privately safe as f{(P[L(G)]) = {dabc} C Ly, tes also, f] is publicly safe since for every § € {dabc},
there exists t € Ly, that is observationally equivalent and is unmodified by f], which is sufficient

to ensure the condition in Definition I1.3.4.

It may be tempting to think that a publicly enforcing insertion function should also be privately
enforcing, as if we deprive the intruder from the knowledge of the insertion function, it should
make its inference task harder. However, this is not true in general, as shown in the following

example.

Example 11.3.3. Consider the current-state estimator with strings {ab, b}, where string ab is se-
cret. Consider the insertion function fi: fi(e,b) = ab and fi(s,e,) = e,,Vse, € @. This insertion
function is publicly enforcing since it is admissible and the only unsafe behavior ab is now observa-
tionally equivalent to safe behavior b. However, if the intruder does not know the implementation

of f1, it would always believe that the secret has occurred. Hence, the secret will be revealed when

the system indeed outputs ab.

The issue in the preceding example is that a publicly safe insertion function is free to map
strings to anything, as long as the condition in Definition I1.3.4 holds. It is not required that the
output string be safe. This explains our choice of using PP-enforceability as our specification for
insertion functions. We do not wish to make any assumptions about the intruder’s knowledge,
either at the outset or as it keeps observing the system. Thus, insertion functions should enforce
opacity regardless what the intruder knows about the implementation of insertion function, in-
cluding nothing. Hence, by also requiring private safety, PP-enforceability ensures that only safe
strings will be output.

Our goal is to develop a synthesis algorithm for PP-enforcing insertion functions. For this

purpose, we use the discrete structure called “All Insertion Structure”.
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I1.4 All Insertion Structure and Analysis

We originally developed in [119] a procedure to synthesize privately enforcing insertion functions
based on a special discrete structure called the All Insertion Structure (AIS). In this section, we
start by reviewing the process of building the AIS, but following the procedure in [121], which is

more efficient than the one in [119, 120].

I1.4.1 Construction of the AIS

The review of the construction procedure of the AIS herein is necessary in order to explain how
we employ this structure for the purposes of this chapter and also to define relevant notations. The
AIS is a game-like bipartite structure between the system and the insertion function, with so-called
Y states and Z states. When the system plays, it outputs an observable event e that is defined at
the current Y-state y of the AIS, and it leads to a Z-state z = (y,ep) in the AIS. On the other hand,
when the insertion function plays, certain insertion decisions are made at Z-state z corresponding
to strings that can be inserted before the last observed event eg. As shown in [119], the AIS embeds
in its transition structure all privately enforcing insertion functions.

There are three steps in the construction of the AIS: (1) building the i-verifier; (2) building
the unfolded verifier; (3) obtaining the AIS. We start by describing step (1). First, we build the
desired estimator &¢ by deleting all the secret states from the original estimator & and taking the
accessible part. As was mentioned earlier, & = (M, E,,d,m,) is the standard observer automaton
of G with M C 2X. Therefore, by construction, & d generates exactly the safe language Ly, r.. We
define the resulting sub-automaton of & as &¢ = (Mg, E,, 84,m,).

Next, we build the feasible estimator &7, which includes all possible insertions: we insert a
self-loop at each state for each observable event, unless that self-loop is already defined in &. We
will use the new transition function d; to denote those inserted self-loop transitions, and only those,
in &/. Therefore, we obtain &/ = (M, E,, 5,8, m,). Hereafter, we wish to distinguish between two

sets of transitions, normal and inserted ones, in &7 this is why we use two transition functions in
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its definition.

Finally, we synchronize &¢ and &/ by a special type of parallel composition called verifier par-
allel composition, resulting in a new automaton called the verifier. All possible insertion functions
are included in this automaton. The verifier parallel composition is denoted by ||,. It is a synchro-
nization between two kinds of automata, one with only “normal” transitions and the other with
both “normal” and “inserted” self-loop transitions. Since we wish to again distinguish between
these two sets of transitions, we use two transition functions in the definition of the i-verifier V, as

was done above in &7.

Definition I1.4.1 (Verifier parallel composition ||,). The verifier parallel composition is a special
kind of parallel composition between automata &% and &f. Two kinds of transition functions, 8,

MgxMYXE, = (MgxM)and 6,5 : (MgxX M)X E, = (Mgx M), are defined for synchronization:

Vi=(M,,E,,6v4,0y5,My0) = gd”v(gaf =

AC(Md X M’ EO»5vd, 61}57 (mO’WLO))

where the transition functions are defined as

6VS((md’ mf)’ e) = (6d(md7 e)’ 6(mf’ e))

Ova((mg,my),e) := (64(mg,e),05(mys,e)) = (64(mg,e),my)

The first equation corresponds to a normal transition labeled by e in both &%and &/; the second
equation corresponds to a normal transition labeled by e in & and an inserted self-loop transition

labeled by e in &7 .

Hereafter, we assume that the two transition functions ¢, and 6,4 are extended to strings of
events in E,.
In step (2) of the AIS construction, we “unfold” all deterministic insertion decisions from the

i-verifier resulting in a game structure between the “system player” G and the “insertion function
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player”; we call this structure the unfolded verifier. This unfolding procedure is given in Algo-
rithm 1 in [121]. The essence of the construction is to: (i) include all possible system plays, i.e.,
newly-generated observable events, at a given Y-state, and (ii) include all insertions that are possi-
ble before that observable event at a given Z-state, based on existing paths of inserted transitions
in the i-verifier.

In order to synthesize admissible insertion functions, in step (3) of the AIS construction, we
follow Algorithm 2 in [121] to prune away all the inadmissible insertion decisions (i.e., those that
lead to deadlock at Z-states, since the insertion function should always play) from the unfolded i-
verifier and call the final bipartite structure the AIS. This iterative pruning and associated trimming
is described in Algorithm 2 in [121]. As explained in [121], it can be interpreted as a supremal
controllable sublanguage calculation. Notice that there may be multiple paths of inserted events
between two states m, and m/, in V and this is captured by the function Ins(m,,m}) = {s; € E}, :
Oyq(my, s7) = m;} in Section IV.A of [121]. (In contrast with [121], we do not use the notation E;
in this chapter since it is the same as E,.) Notice that /ns(m,,m}) may be an infinite set if there is
a cycle of inserted events in the path from m, to m;,. In this chapter, we make the assumption that
such cycles are redundant (from the viewpoint of event insertion) and extract only the finite set of
cycle-free paths from m, to m}, i.e., cycles of inserted events are replaced by e.

The function Ins is used in line 5 of Algorithm 2 in [121] to label transitions from Z-states
to Y-states in the AIS as sets of admissible strings that can be inserted when such transitions are
taken. For the sake of simplicity of notation, we denote hereafter these sets by L(z,y) for a given
transition between state z and state y. It can be shown from the construction of V and of the AIS
that any two L(z,y;) and L(z,y;) are disjoint for any two distinct successors y; and y; of z. Moreover,
these sets are all finite since cycles of inserted events have been removed as mentioned above. As
defined, the AIS does not pre-specify which string in an L(z,y) set is to be selected and thus all the
possible insertion choices are encoded in it. The reader is referred to [119, 121] for further details.
As shown in [119], opacity is privately enforceable if and only if the AIS is not empty.

For the sake of completeness, we formally define this bipartite transition system. Let I =

21



M ;x M denote the set of all information states.

Definition I1.4.2 (All Insertion Structure). The All Insertion Structure w.r.t. current-state estimator

& is the tuple: AIS = (Y,Z, Eo,ZEZ,fAIS’yZ,fAIS,Zy,F,yo), where
E, C E is the set of observable events.
Y C I is the set of Y-states.

Z C I X Ey is the set of Z-states. Let 1(z) denote the information state component in Z; then z =

(I(2),e) for some e € E,,.
faisyz : Y X Eg — Z is the transition function from Y-states to Z-states.
farszy 1 Z X 2Eo - Y is the transition function from Z states to Y states.

I': Z — 2Fo is the set of insertion choices at Z states defined as follows:

I'(z) = ULz, Y) : fais.zy(z, L(z,y)) is defined }
yo C Y is the initial Y state where yo = (mo,mg) and my is the initial state of &.

Example 11.4.1. Here we show an example to illustrate the whole construction process of the AlS.
The current state estimator & is the same as in Example 11.3.1 and is shown in Figure I.1. In
this example, states 7 and 8 are secret states, so we delete them as well as transitions leading to
them and then obtain the desired estimator &% in Figure I1.2. Next, we add self-loops for events
{a,b,c,d} at each state of & and obtain the feasible estimator &' in Figure I1.3. After that, we do
the verifier parallel composition between &¢ and &/ and obtain verifier V in Figure I1.4. Notice
that dashed transitions that are not followed by any solid transition are not shown in the figure.
Those transitions do not indicate valid insertions and play no role in building the unfolded verifier.
By the insertion mechanism, events are inserted before the occurrence of the next observable event,
thus every 6,4 transition should be followed by a 6,4 transition somewhere in the verifier. Then we
construct the unfolded verifier in Figure I1.5, where the rectangular states are Y states and the

oval states are Z states. As is seen in the figure, Z state ((6,6),c) is a deadlock state and should
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Figure I1.2: Desired estimator &¢

Figure I1.3: Feasible estimator &/

be pruned away in the next step of building the AIS. Following Algorithm 2 in [121], the shaded
path in V, is pruned away. Finally, we obtain the AlS in Figure I1.6. The game starts at the initial
Y-state (0,0) where the system plays; initially the system can output a, b, or d. If the system outputs
b, the game then reaches Z-state ((0,0),b), where the insertion function plays. The transition a
between states ((0,0),b) and (6,8) stands for insertion of event a and all the other transitions from
Z states to Y states can be interpreted similarly. The insertion function can choose to insert a or

da, leading the system to state (6,8) or (3,8), respectively.

Figure 11.4: Verifier V without dangling 6, transitions
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Figure I1.6: AIS in Example 11.4.1

I1.4.2 Analysis of AIS

In the AIS, the insertion function works as follows: it observes some events and then makes a
decision to insert a specific string before the observed event. This process continues as long as the
system generates new observations. In order to better characterize this fact, we define the notion

of run in the AIS:

Definition I1.4.3 (Run). A run w in the AlS is a sequence of alternating states, observable events

and insertion decisions.

€0 S0 el -1 Sn—1
=0 —20 = y1 — " Yn- 1——>Zn 11— Yn)

where n € N, yq is the initial state of the AlS, e; € E,, s; € E}, s.t., farsy:(Viei) = Zi» 8i € L(zi,Yi+1)
where fars -y(zi, L(2i,i+1)) = Yir1, Yi, 0 <i<n. The set of runs is denoted by Q.

In the definition of run, the insertion choice is determined at each Z state, so we explicitly use

an insertion string from the set of strings labeling a transition out of the Z-state. The length n of a
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run can be arbitrarily long. We require that a run of finite length could only end at Y-states, since
these are the only possible terminating states in the AIS and this structure embeds only admissible
insertion functions. A Y-state y is terminating if fass y,(y,e,) is undefined for all e, € E,,.

If we erase all the states from a run and swap every consecutive e; and s; pair, then by construc-

tion of the AIS, we get a string generated by a run.

Definition I1.4.4 (String generated by a run). The string generated by run w € Q is defined as:

. €0 S0 €l €n-1 Sp—1
S(w) = spepsie1 -+ Sp—1n—1, given w ={yo —>20 — Y1 — ***Yn-1 — Zn—1 — Yn)-

From the definition of safe language, we observe that some safe strings are prefixes of unsafe

strings while others are not. Based on this observation, the safe language is partitioned as follows:

Definition IL.4.5 (Partition of safe language). Safe language Ly, . is partitioned as:
(1) le“afe = Zsafe where isafe ={s€ Lyyfe: Aue Lunsafe, s.t., s <u}.

(2) L2 Lsafe\Ll

safe = safe’

2
safe

Clearly, it is a partition of the safe language. Also Lla fe is prefix-closed by definition but L

1

may not be prefix-closed. For strings in L, e

we can choose not to insert in the AIS since they

are already safe and we could also choose to insert as long as the insertion is feasible in the AIS.

2
safe’

1

safe’ otherwise

However, for strings in L we have to insert somewhere to obtain a string in L
the secret states would be ultimately reached and private opacity would be violated. We already
know that Ly, s, # ( if private safety is enforceable. Furthermore, the following proposition shows

the non-emptiness of L! . when private safety is enforceable.
saje

f

Proposition I11.4.1. Lla fe # 0 if private safety is enforceable.

Proof. Proof by contradiction. If Lia fe = 0, then Vs € P[L(G)], Ju € Lygqfe, s-t. s <u. Since all
the continuations of unsafe strings are also unsafe, we can never map an unsafe string to a string
in Lia fer Then there always exists a string #’ € Lysqfe, Such that no matter what the privately safe
insertion function f; is and what it inserts, f;(u") € Lyysqfe, Which violates private enforceability.

O
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II.S PP-Enforcing Insertion Functions

Our goal is to exploit the AIS to synthesize PP-enforcing insertion functions. In that regard, we
establish a necessary and sufficient condition for the existence of PP-enforcing insertion functions.
We will proceed in two steps, first establishing preliminary results in Section II.5.1 before present-

ing the main necessary and sufficient condition in Section II.5.2.

II.5.1 A Sufficient condition for PP-enforcing Insertion Functions

Based on the definitions, a privately safe f; maps all strings in P[£(G)] to a subset of Lgfe.
However, in general, f[m[P(LS )] may not be a subset of fl‘"’(Lsafe). In this case, the intruder, when
knowing the implementation of f7, could determine the occurrence of the secret when it observes
strings in f;""[P(Ls)]\ f}" (Lsafe)- If, on the other hand, f;""[P(Ls)] is contained in f;""(Lgqyfe),
then f}"(P[L(G)]) = f}" (Lsaf.) and thus fj is PP-enforcing. A special case where f;""[P(Ls)] is
guaranteed to be contained in fls” (Lgqafe) is when flm (Lsafe) is the entire set Ly, r.. Based on this
special case, Lemma I1.5.1 and Theorem II.5.1 below show sufficient conditions for a privately

enforcing f7 to be PP-enforcing.

Lemma IL.5.1. Consider privately enforcing insertion function fi. If flm (Lsafe) = Lsafe, then fi is

also publicly enforcing; that is, fiis PP-enforcing.

Proof. Because a privately enforcing insertion function f; is admissible, we can prove this Lemma
using the definition of PP-enforceability. We will show that if fIS"(Lm fe) = Lgqfe, then the def-
inition is satisfied. First, f7 is admissible and privately safe from the statement. We then show
J1 1s also publicly safe to complete the proof: if fIS”(Lsa fe) = Lygqfe, then fIS”(P[E(G)]) C Lyfe =

" (Lgafe)- So fi is PP-enforcing. =

We now replace Ly, . with a subset L C Ly, s, and follow the argument in the proof of Lemma I1.5.1
to derive a more general condition in Theorem II.5.1 (proof omitted since similar to that of Lemma

I1.5.1).
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Theorem I1.5.1. Consider privately enforcing insertion function fj, if there is L C Ly, such that

SM(PLL(G)]) = L and f}"(L) = L, then fj is also publicly enforcing; i.e., fy is PP-enforcing.

The condition in Theorem II.5.1 is sufficient and the following example shows a case when the
theorem does not hold. Thus it remains to be seen whether a PP-enforcing insertion function can

always be synthesized from the AIS.

Example IL.5.1. Consider system G with observable event set E, = {a,b,c,d} and observable

language P[L(G)] = {dabc,abc,bc,c}, where Lyt = m. Define fi so that fi(e€,a) =
da, fi(e,b) = ab, fi(e,c) = abc and fi(s,e,) = e, otherwise. Because f]S”[E(G)] = W C
Lgafe, f1 is privately enforcing. One can also check that fi is publicly enforcing. However, the
only set L C Lyqy, satisfying f""(L) = L is {dabc}, which is not equal to fLG)] = {abc,dabc).
Hence, fi is a PP-enforcing insertion function such that no L C Ly, satisfies f;""[£(G)] = L and

flstr( L) =L

I1.5.2 Greedy PP-enforcing Insertion Functions

In this section, we introduce the notion of a greedy-maximal PP-enforcing insertion function and
then leverage the results in Section I1.4.2 together with Theorem I1.5.1.

First, we partition the set of Z states in the AIS into three subsets: (i) Z;, defined as the Z
states where the only insertion defined is €; (i1) Z>, defined as the Z states where both € and non-
€ transitions are defined; (iii) Z3, defined as the remaining Z states, where no € transitions are

defined. If we track the runs generating L; all the Z states should belong to Z; or Z,, while for

afe’

2 and Ly, fe» they should contain some Z3 states.

the runs generating Lm e

Definition IL1.5.1 (Greedy-maximal criterion). (i) At any z € Z1 UZ, in the AIS, choose € insertion;
(ii) At any z € Z3 in the AlS, choose for insertion choice any string Syq, € argmax| |s;|, s; € I'(z)]

where |-| denotes the length of the string.

Any insertion function that satisfies the greedy-maximal criterion at every Z-state that it visits

in the AIS is called a greedy-maximal insertion function, denoted as fyceqy. By this criterion,

27



fgreedy(Lia fe) = Lia fe since € is chosen at every Z state. Moreover, fgreedy(Lga fe U Lynsafe) © L;a fer
a fact established below in the proof of Theorem I1.5.2. In order to prove that theorem, we fist give

definition of a particular projection P,.

Definition I1.5.2 (Projection P,). Given a run w = (yo -, 20 SN Y1 SN V-1 SN Zn SR V)

where yq is the initial state of the AlS, the edit projection P, returns the string P.(w) = s =

epél - €p—1.

Intuitively speaking, this projection just erases all the insertion choices from a run, and recovers

the original string corresponding to the run. We can now state one of the main results in this chapter.
Theorem IL.5.2. A greedy-maximal insertion function is PP-enforcing.

Proof. Consider greedy-maximal insertion function fg,ceqy. First, by Proposition 11.4.1, L;a fe £ 0.

1
safe

We also know that Vs € L;a e Sareeay(s) = s, 1.e., fgreedy(L;a fe) =L by our greedy criterion.

Next, we show that fg,eedy(Lza fe U Lunsafe) € Lia fe Vs € Lfa fe U Lunsafes 1t foreeay(s) = 7,
where we know that dw € Q s.t.,, P,(w) = s and S(w) = s’. Then we claim that dw’ € Q, s.t.,
(Pe(w") = 5") A(fgreeay(s”) = s"), which we prove by contradiction. We know that actually (fgreedy(s’) =
5') = (P.(w') = '), and we focus on showing forecay(s’) = s’. Suppose this is not the case,
then foreeay(s’) = s # 5" and S(w’) # s’. So Iz € Z3 in w’ where only non-€ insertion is feasi-
ble. However, the AIS embeds all admissible insertion choices and this implies fq/ceqy does not
choose a longest insertion choice at certain z € Z3 in w, which leaves the possibility for non-e
insertion in w’. This contradicts with the insertion mechanism of fgceqy. Therefore, Vz € o',
2€Z1 UL, foreeay(s') = 5" € Lia fer in other words, fg,eedy(Lia e Y Lunsafe) < Lia fe Overall,

Joreeay(PIL(G)]) = Ly, and this implies fereeqy and Ly, satisfy Theorem IL5.1, thus foreedy is

safe

PP-enforcing.

]

This theorem demonstrates that as long as the AIS is not empty, then there exists at least one

greedy-maximal insertion function that is also PP-enforcing. This leads to the following corollary.
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Corollary IL.5.1. Opacity is PP-enforceable if and only if it is privately enforceable.

Proof. The only if part is true since the definition of PP-enforceability implies private enforceabil-
ity.
For the if part, as long as the AIS is not empty, we could always make insertion choices by this

greedy criterion at every Z state and get a PP-enforcing insertion function. 0

This result is a direct improvement of the preliminary work [120] in the sense that PP-enforcing
insertion function always exists as long as privately safe insertion function exists. Let us revisit
Example 11.5.1: it is clear that f7 is not greedy-maximal since fj(€,c) # dabc. If we set fi(€,c) =

dabc, then we obtain a greedy-maximal insertion function that is PP-enforcing.

I1.6 The INPRIVALIC-G Algorithm

In this section, we develop a new algorithm that synthesizes a PP-enforcing insertion function by
leveraging Theorem I1.5.2. We first build the AIS, which embeds all privately enforcing insertion

functions. The strategy of the proposed algorithm is to identify Lia ., and modify all other strings

f

' by using the greedy-maximal criterion. As a result, any insertion function

to strings in L fe

synthesized in that manner is guaranteed to be PP-enforcing by Theorem I1.5.2.
Because this algorithm synthesizes INsertion functions with PRIVAte-and-pubLIC-enforceability
property using Greedy-maximal criterion, we call it the INPRIVALIC-G Algorithm. Hereafter, we

denote a greedy-maximal insertion function by fereedy-

Algorithm II.1: INPRIVALIC-G ALGORITHM
Input : G =(X,E, f,Xo), projection P, X; C X
Output: A PP-enforcing IA
1 Build &,64,87;
2 V=¢& d”vg f;
3 Construct All Insertion Structure (AIS) by algorithms in [121];
4 Synthesize a greedy insertion function from AIS;
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The INPRIVALIC-G Algorithm is not meant to synthesize all PP-enforcing insertion functions,
but it is guaranteed to find one (unless the AIS is empty).

We discuss the steps of the algorithm, as a way of summarizing the methodology developed
in this chapter. Steps 1 to 3 construct the AIS. These steps were already discussed earlier in
Section I1.4.1 and will not be repeated here. After that, step 4 synthesizes an insertion automaton
from the AIS using the greedy-maximal criterion. The main idea is that at each Z-state in the
AIS, a greedy-maximal insertion choice is selected according to Definition I1.5.1 and this process
proceeds until: (1) a terminating Y is reached; or (2) a previously visited Y state is visited again.
It is implemented in Algorithm II.2, which builds the reachable part of the AIS for the selections

made, until a complete IA is obtained.

Algorithm IL.2: Synthesize a greedy insertion function

Input : AIS = (Y,Z,Ey, 250, fars.yz 1525 T>30)
Output: 1A=(Xj4, Eo, E}, fiasGias Xia0)

1 Xig,0 := Yos Xia := {Xia 0}

2 for x;, € X;, that has not been examined do

3 for e € E, s.t. fars,y.(xia,e) is defined and where z = fs y:(Xia,€) = (Xiq,€) do
4 if € € I'(z) then

5 X! = fars.y(2, L(z, X)) where € € L(z, x] );

6 Jia(Xia,€) = X 3

7 Gia(Xia-€) = €,

8 else

9 pick one s, € argmax([|s;|, s; € ['(2)];

10 X = fars (2 L(z, X)) where Syqx € L(z,X],) ;
1 fia(Xia,€) = X, ;

12 fia(Xia,€) = X ;

13 | Xia = XiqU {x,};

14 return [IA

The following running example shows all the steps of the INPRIVALIC-G Algorithm.

Example I1.6.1. Let automaton G with observable events E, ={a,b,c,d,e} have the state estimator
shown in Figure 1.7, where estimator state 7 reveals the secret. We use this example to illustrate
all the steps of the INPRIVALIC-G Algorithm. Following the algorithm, we build the AIS and

synthesize a PP-enforcing insertion function encoded by an I/O automation.
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Figure I1.7: & with secret-revealing state 7

In step 1, we build & by removing state T and we obtain &/ by adding self-loops for a,b,c,d, e
at each state.

In step 2, we perform the verifier parallel composition of & and &' and obtain V, which is
not shown here.

In step 3, we unfold the insertions in V for every system output, and build the game structure
V. Since there is no inadmissible insertion in V,, no state will be pruned away and the AlS is
immediately obtained in Figure I1.8. There are two types of states in the AIS: square states where
the system plays and round states where the insertion function plays.

With the AIS built, we proceed to the synthesis part. By the greedy-maximal criterion, at state
((0,0),a), ed should be inserted and at state ((3,7),c), € should be inserted. Similarly for the
other Z-states: we insert € if it is defined. In Figure I1.8 we use bold red lines to indicate the
greedy-maximal criterion in the AlS. Finally, the insertion automaton in Figure I1.9 encodes the

constructed PP-enforcing insertion function.

We conclude with a brief discussion of the computational complexity of the INPRIVALIC-
G Algorithm. Consider a system with estimator &’; as shown in [119], the AIS has at most (|E,| +
1)|X¢|? states, where |X¢| is the number of states in &. The time complexity for building the AIS is
of O(|X /%) according to [121]. Finally, the greedy-maximal synthesis step is done by performing
a breadth-first search on the AIS, which requires time complexity linear in its size. In all, the
computational complexity of the INPRIVALIC-G Algorithm is therefore of O(|X2|®). In the worst

case, | X»| may be 2IXI'and the complexity is exponential in terms of |X|. We refer the reader to [119]
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Figure I1.9: A PP-enforcing insertion function encoded as an I/O automaton

for numerical tests on the construction of the AIS using an explicit representation, and to [122] for a
symbolic implementation of the AIS construction using binary decision diagrams, which achieves

greater scalability.

Remark I1.6.1. The INPRIVALIC-G Algorithm is sound and complete, unlike the INPRIVALIC

Algorithm in [?], which was provably sound only.

I1.7 Conclusion

This chapter extends prior works on opacity enforcement by insertion functions to the case where

the insertion function may become known to the intruder. To handle this situation, we defined the
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notion of public-private (PP) opacity and investigated its enforcement by so-called PP-enforcing
insertion functions. We showed that while not all insertion functions that are privately-enforcing
may be PP-enforcing, if private safety is enforceable, then so is public-private safety. In this
regard, we identified a necessary and sufficient condition for PP-enforceability and then developed
an algorithmic procedure for synthesizing insertion functions that are provably PP-enforcing. This
algorithm (INPRIVALIC-G) is based on a greedy-maximal insertion mechanism.

This chapter also opens several avenues for future investigations. First, it would be of interest
to extend the results herein to the case of edit functions, a generalized form of insertion functions.
This problem will be discussed in the next chapter. Second, it would be worthwhile to identify other
synthesis strategies than the greedy-maximal one of Algorithm INPRIVALIC-G to synthesize PP-
enforcing insertion functions. Finally, it would be of interest to study instances where the intruder
has partial knowledge of the insertion function, as opposed to the full-knowledge or no-knowledge

scenarios considered in this chapter.
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CHAPTER III

Opacity Enforcement using
Nondeterministic Publicly-Known Edit

Functions

III.1 Introduction

In last chapter, we assume that the edit function’s implementation is known to the intruder and
discuss how to defend secrets by insertion functions under such an adversary. As an extension,
we try to solve the same problem by edit functions in this chapter. We further improve the results
in [53,54, 119, 122] by considering opacity enforcement using nondeterministic edit functions,
whose outcome is randomly chosen from a pre-calculated set and the intruder does not know the
result a priori. Both private safety and public safety are defined for edit functions to characterize
their performance. Although nondeterministic edit functions seem to release more information
to the intruder by allowing more potential outcomes, they essentially provide the system more
plausible denial of secret disclosure, which contributes to opacity enforcement. It is shown that
a nondeterministic edit function may still achieve private and public safety even when its deter-
ministic counterpart fails to do so. To the best of our knowledge, this chapter for the first time
considers nondeterminism of the defender in opacity enforcement. We introduce a three-player

game structure termed All Edit Structure (AES) to embed edit functions. An algorithm is devel-
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oped to synthesize privately and publicly safe nondeterministic edit functions based on the AES.
The remaining sections are organized as follows. Section V.2 presents the system model. Sec-
tion II1.3 formally introduces the notions of nondeterministic edit functions, private safety and
public safety. Section III.4 defines the three-player observer (TPO), discusses its properties and
introduces edit constraints. Section IIL.5 defines a special TPO called All Edit Structure (AES)
and presents its construction algorithm. Section II1.6 develops an algorithm for synthesizing non-
deterministic publicly and privately safe edit functions based on the reachability tree of the AES.

Finally, Section V.7 concludes the chapter.

III.2 System Model

We consider opacity in the framework of discrete event systems modeled as deterministic finite-

state automata [23]:
G=(X,E, f,x0)

where X is the finite set of states, E is the finite set of events, f : X X E — X is the partial state
transition function and xq € X is the initial state. Specifically, we denote by Xg C X the set of secret
states. The transition function is extended to domain X X E* in the standard manner [23]. Given
two strings s, u, we denote by s < u if s is a prefix u and ¢ € s if ¢ is a substring of s. The language
generated by G is defined as £(G) ={s € E* : f(xo,s)!} where ! means “is defined”. Notice that the
system model here is very similar to that in Chapter II, except that the initial state here is unique.

For simplicity, we write x 5 X', if X' = f(x,e) for x,x” € X and e € E. Given system G, a run is
a sequence of alternating states and events x SN X2 2,000 X, where Vi<n, x;e Xande; € E.
A run contains a cycle if A1 <i< j<n,s.t. x; = x;.

The system is partially observed with the event set E partitioned as E = E, U E,,, where E,

is the set of observable events and E,, is the set of unobservable events. Given a string ¢ € E*,

its natural projection P : E* — E is recursively defined as P(t) = P(t'e) = P(t')P(e) where t’ € E*
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and e € E. The projection of an event is P(e) = e if e € E, and P(e) = € if e € E,;, U {€}, where
€ is the empty string. Then by the standard technique in [23], the observer of G is defined as:
Obs(G) = (Xobs, Eo, 0, Xops0), Where Xpp C 2X is the state space, E, is the set of observable events,
0 : Xobs X E, — Xops 18 the transition function and x,ps0 € Xops 1S the initial state. An observer state
can be viewed as an estimate of the system’s current states. Therefore, the observer is often called

“state estimator” in the literature, e.g., [119].

II1.3 Edit Functions and Opacity Notions

In this section, we formally define nondeterministic edit functions and discuss the edit mechanism.
We also define private safety and public safety to further characterize how the edit function defends

the secrets of the system against intruders with different knowledge.

II1.3.1 Edit Mechanism

We first review the concept of deterministic edit function in [53]: f, : E, X E, — EE where
ES =E,U{e}. Given s € P[.L(G)], e, € E,, fo(s,€,) = sye, if 57 is inserted before e,; fo(s,e,) = €
if e, is erased; f,.(s,e,) = sy if sy is inserted and e, is erased.

By definition, the outcome of a deterministic edit function is unique. Then we extend it and
define a nondeterministic edit function: fn, : E;, X E, — 2E0ES that outputs a string nondetermin-
istically from a set of potential outcomes. Its output is based on the past observed string and the
current observed event. Given an observable string s € P[.Z(G)] and an observable event ¢, € E,,,
a potential outcome of a nondeterministic edit function may be sye, if s; is inserted before e, or
€ if e, 1s erased or s; if sy is inserted and e, is erased. In contrast to deterministic edit functions
in [53], the outcome is not pre-calculated and is chosen randomly when the nondeterministic edit
function is implemented. Notice that s; may be € so that nothing is inserted. The outcome of
such a function is not known by the intruder before it is observed. With a slight abuse of notation,

we also define a string based nondeterministic edit function f,, recursively as: f.(€) = {€} and

36



Jne(s€o) = {lpls € EG 2 1) € fue($),1s € fre(s,€0)}.

An edit function is an interface between the system’s output and the outside world, which
includes the intruder eavesdropping on the system. The edit function works as follows: upon
observing a string, it makes a decision to insert fictitious events before the last observed event or to
erase the last observed event; then the edited string is emitted as the actual output. We assume that
all observable events E, are allowed to be inserted or erased, and the intruder cannot distinguish
between an inserted event and its genuine counterpart. We define E) = {e, — €: ¢, € E,} to be the
set of “event erasure” events. In this chapter, if we concatenate an “event erasure” event e, — €
with the observable event e,,, the result is simply €.

Given a nondeterministic edit function f,, the intruder infers secrets from its current state
estimate £y, - P[L(G)] — 2Xobs and & e (8) = {Xobs € Xops : At € fre(s), S.t. Xops = 0(Xobs,0,1)}. Since

fne 1s nondeterministic, &, (s) is generally a set of states in X,y;.

II1.3.2 Private Safety and Public Safety

In this subsection, we first review the well-studied concept of current-state opacity (Definition 11.3.1)
and then derive two concepts from it.

A system is current-state opaque if for every string reaching a secret state, there exists another
string reaching a non-secret state and both strings share the same projection. CSO can be verified
by building the observer and checking whether any observer state contains solely secret states. If
CSO is violated, an edit function may be used to enforce opacity, which is the problem studied in
this chapter

Based on CSO, we define the safe language [119] as: Ly, . = PIL(G)I\{[PIL(G)]\ P(Lys)1E}},
which is prefix-closed. While the unsafe language is Lyysqre = PIL(G)]\ Lyafe. Intuitively, we
view all observable continuations of P[L(G)]\ P(Lys) as “unsafe”. If we delete all states vio-
lating CSO from Obs(G), i.e., all observer states that solely contain secret states, and then take
the accessible part, the resulting automaton just generates Ly, r.. We call it desired observer:

Obsy(G) = Xobsds Eos 04, Xobsd 0), se€ [54, 119] for more details.
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Inspired by private safety and public safety of insertion functions in [54], we redefine those two
concepts for nondeterministic edit functions and call them nondeterministic (ND)-private safety

and nondeterministic (ND)-public safety, respectively.

Definition IIL.3.1 (ND-Private Safety). Consider system G with P, Ly, and Obsq(G), a nonde-

terministic edit function f. is privately safe, if Vs € P[.Z(G)], fne(s) C Lgqfe-

If fy. is privately safe, we denote it by fu. & @uapri Where @,qp; stands for ND-private safety.
ND-private safety is based on the assumption that the intruder does not know about the implemen-
tation of edit functions. Thus, as long as for a given string s and an edit function f,, every element
in f,e(s) is also in Lg,y., then the intruder’s state estimate would never reveal the secrets of the

system.

Definition II1.3.2 (ND-Public Safety). Consider a system G, Ly, fe and Lyygsafe, a nondeterministic

edit function fy. is publicly safe, if Vs € Lypsafes Y5 € fre(s), At € Lyqfe, S.1. 5 € fre(D).

If f,e is publicly safe, we denote it by fue F @napur Where ¢pqpup stands for ND-public safety.
ND-public safety is based on the assumption that the implementation of edit functions is known
to the intruder. A sophisticated intruder may learn the implementation of the edit function and
potentially does some reverse engineering to infer the source of the edited string. Thus, for ND-
public safety, we require that no matter how an unsafe string is edited, it should share the same
edited behavior with some safe string. As the intruder does not know how a string is edited before it
makes an observation, ND-public safety and ND-private safety guarantee that the system’s secrets
are never disclosed. A nondeterministic edit function f,,, is ND-public-private enforcing (ND-PP-
enforcing), denoted by fue F @napp, if fue F @napri and fre F @papup. In this chapter, we require that
an edit function should be able to map every string in P[L(G)] to some strings and we term this

property as admissibility.
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II1.4 Three-Player Observer

In this section, we propose the Three-Player Observer (TPO), which is a three-player game struc-
ture that provides a systematic way of embedding edit functions and evaluating their performance.
Then we discuss some properties of the TPO and define edit constraints.

The TPO is an information-state-based structure, whose current state contains enough infor-
mation for analysis of opacity enforcement and no future information is necessary. We denote the

set of information states as I. The formal definition is as follows:

Definition II1.4.1 (Three-Player Observer). Given a system G, its observer Obs(G) and desired

observer Obsy(G), let I C Xypsa X Xops be the set of information states. A three-player observer is

the tuple T = (Qy, Qz, Qw, Eo, Eg. O, fyz, foz, [ fows Fuys fioys Yo), where

Qy C I is the set of information states.

Q7 CIXE, is the set of information states augmented with observable events. Let 1(z), E(z) denote

the information state component and observable event component of z € Qz respectively, so that

z=(2), E(2)).

Ow CIX(E,UE)) is the set of information states augmented with observable events or event
erasure events. Let I(w), A(w) denote the information state component and edit action component

of w € Qw respectively, so that w = (I(w), A(w)).

E, C E is the set of observable events.

E! is the set of “event erasure” events.

® C E,U{e}UE] is the set of edit decisions at Qz-states.

Sz Qv X E, — Qg is the transition function from Qy states to Qz states. For 'y = (xq4,x5) € Qy,

e, € E,, we have:

fz(ve0) =22 [0(xr,e0) I A[1(2) = Y] AE(2) = e,]
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* frz: QzX0 — Q7 is the transition function from Qz-states to Qz-states. For z = ((x4,xy),e,) € Oz,

0 €O, we have:

fu@28) =7 210€ B NUE) = (X xp)]

Alxy = 0a(xa, )] NEZ) = eo]

o fin .

o - Q7 X0 — Qyy is the e-insertion transition from Qz-states to Qw-states. For 7 = ((x4,xf),e,) €

07, 0 € ©® we have:

in2,0)=w=[0= €l AlI(w) = [ A[AW) = ¢,]

Alba(xa,eo)!1 A [6(xf,€0)!]

o for: QzX0 — Qyy is the event erasure transition from Qz-states to Qw-states. For z=((x4,Xf),€,) €

0z, 6 € O, we have:

(@) =w=[0=e, > ] AI(w) =1(2)]

AN[AW) = e, = €] A[6(xf,€0)!]

o fin .

wy - Qw X Eo — Qy is the transition function from Qw-states whose edit action component is in

E, to Qy-states. For w = ((x4,xy),€,) € Qw, we have:

mw,e0) =y =y = (F, XD A LX) = Salxa, €0)]

A [x} =6(xf,e0)]

. fv; : Qw X E, — Qy is the transition function from Qy-states whose edit action component is in
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E} to Qy-states. For w = ((xq4,Xf),e, — €) € Qw, we have:

yi;(wa eO) = y :>[y = (xd’x})] /\ [-x,f = (5(.Xf, eO)]

Yo € Qy is the initial Qy-state where Yo = (Xobsd,0- Xobs.0)- Xobsd,0 And Xops0 are the initial states of

Obs, (G) and Obs(G).

The three-player observer is defined to describe the game among a “dummy” player, “edit
function” and “system/environment”. All three players have complete information in the sense
that they know exactly the actions of each other at any moment of the game.

A Qy-state (Y-state) is an information state, from which the “dummy” player executes observ-
able events. A Y-state contains both the intruder’s estimate and the system’s estimate. Actually, the
events from Y-states do not really occur and they are the events to be observed by the edit function
player. fy, is defined only to help determine what edit decisions can be made by the edit function
in the next step. That is why we call this player a dummy player.

A Qz-state (Z-state) is an information state augmented with the event executed by the dummy
player, where the edit function makes decisions. If the edit function chooses to insert an event, a
succeeding Z-state will be reached under an f, transition. If another event is inserted following the
last inserted event, then another succeeding Z-state is reached until the edit function stops inserting.
This corresponds to insertion of multiple events. If the edit function keeps inserting events, we can
expect that a cycle of Z-states and f, transitions is formed in the TPO. When an event is inserted,
only the intruder’s estimate is updated while the system’s estimate remains the same, which is
reflected in defining f-,. This is consistent with the edit function’s mechanism as the edit function
serves as an interface to modify the intruder’s observation but does not interfere with the system’s
operation. When the edit function decides to stop insertion or to erase the last observed event, the
turn of the game is passed to the system/environment player by fz’fv and f7, transitions. We denote
by fow = U £¢ where f stands for e-insertion (termination of insertion) and f< stands for

w w

erasure of the observable event executed by the dummy player. We will use f;,, for simplicity in
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the following discussion if there is no confusion. There may be multiple transitions defined out of
a Z-state, i.e., multiple edit decisions, and we let ®(z) be the set of edit decisions defined at z € Q7
in a TPO.

A Qy-state (W-state) is an information state augmented with an observable event or an “event
erasure” event, from which the system plays. If a W-state contains an observable event, that means
the edit function player has inserted € from its preceding Z-state. When that event is executed, it
will be observed by the intruder. Thus, an fv’v’; transition leads to a Y-state, whose first and second
state components are both updated. If a W-state contains an “event erasure” event, that means
the edit function has decided to erase the observable event. So when the event is executed, it
will not be observed by the intruder. Hence, an fv‘j; transition leads to a Y-state, whose first state
component (intruder’s estimate) is updated while the second state component (system’s estimate)
remains unchanged. We just denote by f,,, = V’V’; U fyy and will use f,,y when there is no confusion.

Given two TPOs T and T,, T is a subsystem of T, denoted by T C T», if Q? C Q)T/z,
Q' <o, Qlt c o2 and Vy € Q' V7,7 € O, Yw € QI}, Ve, € E,, V6,0’ € ©, we have: (1)

e (0,€0) =22 fi2(0ne0) =7 () f2' @0 =7 = [2(20) =75 3) 2 (.0) =w= [3}(z6) =w;

@) frt(w,e) =y = fir2(w,e,) = y.

o @ g 6o
. . e 1 % 5 % 0 my 0 €o
A run in a three-player observer is of the form: r=yp —zy > z5— - —— 7z, — wo—

91 92 eml 91 Hm”
€l 1 1 2 1 my 1 €l én 1 Yn my, Yn en . el
VI 2 2] g OO WLV gy Wy = Yt where yq is the initial

state of T', e¢; € E,, 9{ € ®(zlj), YO<i<n 1<j<m; and n € N, m; € N*. It characterizes the
information flow in a TPO and we denote the set of runs in a TPO T by Run(T). We also write
vi€r(zierorw;er)ify; (z; or w;) is a state in r. A run corresponds to an unedited string and an

edited string, then we have the following definitions.

91 92 01710—1
oge . . €0 0 0 0
Definition II1.4.2 (String Generated by a Run). Given a run r = yy — z(l) — z(z) — s —
"0 1 2 "1
0 % €o ei 1 %, 0 e en 1 o} o e

m mp 1 n my, n n
ZO W0_>y1_)21_>Z1—>“‘Zl _)Wl_)yZ"'_>Zn_)"'Zn _)Wn_)}’n+l; the

string generated by r is defined as: ly(r) = 0363 - --96"0_106'10609% - 0Mer-en_10) -0, en, where

. /N . :
Vi<n 0'ei=€ifd" =¢; > e
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91 02 Hmo—l
Definition I11.4.3 (Edit Projection). In a TPO T, given a run r = y 2, z BN Z SR

/"0 1 2 /1
g 0] o7 el en 1 O o

mo O ] €] 1 2 mp 1 m, n €n .
Zp, TOOW0 YL T T T g T WL Yo T gy~ gy Wy — Yy, edlit

projection P, : Run(T) — P[L(G)] is defined such that P.(r) = egeq -+ - ey.

That is, the edit projection projects away the edit decisions in a run and “recovers” the unedited
string. While the generated string of a run is just the string after considering the edit decisions.
From a given TPO, we may extract an edit function from it and we define the edit function

embedded in a TPO. With a slight abuse of notation, we write f,, € T if f,, is embedded in T'.

Definition I11.4.4 (ND-Edit Function embedded in TPO). Given a TPO T, nondeterministic edit

function fy is embedded in T if Vs € P[L(G)], V3 € fne(s), Ar € Run(T), s.t. Po(r) = s and lo(r) = 3.

In a TPO, y € Qy is a terminating state if fe, € E,, s.t. fiz(y.e0)!. And w € Qw is a deadlocking
state if fe, € E,, s.t. fuy(w,e,)!. Also z € Q7 is a deadlocking state if 36 € ©, s.t. f..(z,0)! or
Sfow(z,0)!. We call a TPO complete if: (1) there are no deadlocking W or Z states; (2) Vs € P[L(G)],
dr € Run(T), s.t. P.(r) = s. In a complete TPO, all embedded edit functions are admissible and
they can always make a decision no matter what event occurs; also the events executed by the
system can not be blocked from happening. From now on, we will only consider complete TPOs.
Notice that a complete TPO only terminates at Y-states, being consistent with the definition of run.

In practice, the edit functions may be constrained by the outside environment or the preference
of the system’s designer so that certain edit decisions may not be taken and some Y-states may not
be preferred. Thus, we introduce constraints on edit decisions and constraints on Y-states, both in

a generic form.

Definition III.4.5 (Constraints on Edit Decisions). The constraint on edit decisions is a binary

function ¢g.c : @ — {0, 1} and an edit decision 6 € O satisfies the constraint if ¢..(6) = 1.

Definition IIL.4.6 (Constraints on Y-States). The constraint on Y-states is a binary function ¢, :

Qy — {0,1} and a Y-state y € Qy satisfies the constraint if ¢y(y) = 1.
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Both constraints are problem-dependent and will be specified when a problem is discussed.
They will reduce the state space of the TPO and bring in deadlocking states. In the following

section, we will define the “largest” TPO satisfying both constraints.

II1.5 All Edit Structure

In this section, we define a complete TPO such that: [Vy € Qy : ¢,(y) = 1] A[VO € O : ¢gec(0) = 1]
and T is “as large as possible”. We call this structure the All Edit Structure (AES). The property
of being as large as possible is as follows: if 77 and T are two TPOs satisfying edit constraints,
then their union, in the graph merging sense, is also a TPO satistfying edit constraints. The union
of Ty and T is defined as: (1) 0)'""> = 07 U 07>, 012 = 0l U 22, Q1Y = 0T U 02; (2)
Vye 0"V, V2,2 € 0LV vw e 011V, 6,0/ €, Ve, € E,, we have: £,V (y,e,) =z Tie
(1,2): fliven) =2, ' (2.0) =7 © Fie (1,2} : fH(2,0) =2, f2°2(2.0) =w & i€ (1,2} :

fgj(z,ﬁ) w and fW1UT2(w e)=yoe dief fzw(w ep) = V.

Definition IILS5.1 (All Edit Structure). Given system G, edit constraints ¢qec and ¢y, the All Edit

Structure (AES) is the largest complete TPO:

AES =(0%,05.01Eo0. E;.O, fi, f2., f Fiy30)

where Yy € Q‘é c¢y(y)=1and ¥0 € O : ¢p4ec(0) = 1. The largest TPO is such that: for all TPO T

satisfying the above two conditions, T € AES.

Algorithm IIL.1: Construction of the AES
Input : Obs(G), Obsy(G), Ey, aec, ¢y
Output : AES
1 0% = {y0} = {(Xobsd,0: Xobs.0)}, O =0, O =0
2 AES pre = DoDF'S (Yo, $dec, dy, Obs(G), Obsy(G), Ey);
3 AES = Prune(AES py.);
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Algorithm IIL.2: DoDFS

Input 2 Y, @dec, Py, Obs(G), Obsy(G), E,,
Output : AES ..

for e, € E,, s.t. fy,(y,e,)! by Definition I11.4.1 do

ot

2 Z = ((Xobsds xobsf)’eo) = fyz(y’ €o);
3 add transition y SR zZto yA;;
4 | ifz¢ Qf then

A .
5 05 = 05Uz
6 O(z) =0;
7 Zext(2) = {z};
8 EXTEND —Z(Zext(2), $dec);
9 for 7/ € Z,4(z) do
10 if 0 € O, s.t. 1.,(Z',60)! by Definition 111.4.1 and ¢4..(6) = 1 then
1 w = fou(d,0);
12 0(Z)=0()ui{b);
13 add transition 7’ 4 wto Z‘?V;
14 ifw¢ Q;‘V then
15 | Of = Oy Uiwh
16 for e, € E,, s.t. fi,y(w,e,)! by Definition I11.4.1 do
17 Y= fwy(W, €o);
18 if ¢,(y') = 1 then
19 add transition w ~% y' to véy ;
20 if y ¢ Q/} then
21 Q‘;} = Q‘;} uiy's;
22 L L DODFS (y,7 ¢deCa ¢y50bs(G)a ObSd(G), EZ)a

Procedure: EXTEND — Z(Zoxt(2)s Ddec)
23 while Az € Z,,,(z), A0 € O, s.t. f..(z,0)! by Definition I11.4.1 and ¢4..(6) = 1 do
14 | 7= fi(2,0);
25 O(z) =B(zx) U {};
)

26 add transition z — 7’ to f4;
27 | ifZ ¢ O then

A _ n.
28 Q7= Qg u{z'};
29 0(Z') =0;
30 Zexi(2) = Zexi(2) UL{Z'};
31 | EXTEND—Z(Zext(Z), ¢dec);

Algorithm III.1 shows a general procedure for constructing the AES and it calls Algorithms I11.2
and IIL.3 in its operation. In Algorithm II1.2, we start searching from yo = (Xops4,0, Xobs,0) and ex-

pand the state space recursively by computing all possible successors of the current state. We
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Algorithm IIL.3: Prune
Input : A three-player observer
Output: A three-player observer without deadlocking states
1 while there exist deadlocking W-states or Z-states do
2 for deadlocking W-state w do
3 | remove w from the structure
4 for deadlocking Z-state 7 do
5 if there exist Y-state y and e, € E,, s.t. 7 is reachable from y through e, then
6
7
8
9

| remove y and z from the structure;
else
| remove z from the structure;

| take the accessible part of the structure;

terminate searching on a path when a Y-state violates the edit constraint, i.e., ¢,(y) = 0 or an edit
decision is not allowed by the constraints, i.e., ¢ge-(6) = 0. This is an iterative procedure, which
allows us to build the whole reachable state space. We also add transitions in this process.

Specifically, at a newly added Z-state, we need to determine feasible edit decisions. There may
be consecutive Z-states between a Y-state and a W-state. Then we search them in the procedure
EXTEND — Z, which is also a depth-first search process. In EXTEND —Z, we add succeeding
Z-states until no more f, transitions are defined and no more insertions are made. In this process,
for each z € Q’% we define Z,,;(z) to be the set of Z-states that can be reached from z through f,
transitions. We keep growing Z,,;(z) until no more Z-states are added and no new f;, transitions are
defined at states in Z,,(z). Consecutive Z-states may form a cycle in the AES, which indicates that
a loop is inserted by the edit function. Since the information state component of a Z-state comes
from 2% x 2% and its event component comes from E,, both of which are finite sets, then only a
finite number of Z-states are added in each iterate and EXT END —Z always terminates. Similarly,
the information state components of Y-states and W-states also come from 2% x 2%, while the edit
action components of W-states come from E, or E]. All of them are finite sets. Overall, only finite
states will be added to AES ,,. until some states or transitions violate the edit constraints. Thus,
Algorithm II1.2 terminates after a finite number of steps and returns a finite structure.

We denote the output of Algorithm IIL.2 by AES ,,., which may contain deadlocking states
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since edit constraints preclude transitions out of them or their succeeding states. We prune away
deadlocking states as well as their predecessor states in Algorithm II1.3 in an iterative manner until
the structure converges. If a state is deadlocking, then the edit decisions leading to it should not
be considered for synthesizing edit functions. Thus, we also prune away its preceding states. This
process is similar to calculating the supremal controllable sublanguage in non-blocking supervisory
control under full observation [23], by viewing the deadlocking states as undesired marked states

and f/ ffv‘y transitions as uncontrollable while f4 Zév transitions as controllable. Algorithm III.3

yz° 2’
also terminates after a finite number of steps when no more states are to be removed, then it returns
the AES after it is called in Algorithm III.1. The following theorem reveals the correctness and

completeness of the AES, namely, the AES embeds all ND-privately safe edit functions satisfying

the edit constraints.

Theorem IIL.5.1. Given system G, a nondeterministic edit function f,. is ND-privately safe if and

only if fne € AES.

Proof. (=) By contradiction. Suppose fn. F @uapri but fre ¢ AES. Then there should exist a TPO
T such that f,,, € T. This means that ds € P[L(G)], dr € Run(T), s.t. P.(r) = s, lg(r) € fr.(s) but
r ¢ Run(AES). Thus, there are some states or transitions in r that are not in the AES. However, this
implies that the union of 7" and the AES is strictly larger than the AES, which contradicts with the
definition that the AES is the largest TPO satisfying the edit constraints.

(<) Suppose that f,,. € AES, then Vs € P[L(G)], V5 € fre(s), Ir € Run(T), s.t. Po(r) = s Alg(r) =
§. Since Yy = (xg4,x7) € 1, X4 € Xopsa, We know f,e(s) C L(Obsa(G)) = Lyyfe and fp, is privately
safe. [

Remark II1.5.1. We briefly analyze the complexity of constructing the AES. First, we evaluate the
complexity of Algorithm II1.2. Here we define Q5" = {z € Q’% :dye Q‘?,, de, € E, s.t. fy;(y.e,) =2} as
the Z-states which can be reached from certain Y-states by fy, transitions. Given system G with |X|
states, its observer Obs(G) has at most |Xps| = 2'X! states. Since Q‘é C Xobsa X Xobs, |Q§>| < | X, psl*

Also, each Y-state can execute at most |E,| observable events in line 1, so IQE’” | < |EolIXopsl?
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In DoDF'S, we apply procedure EXTEND — Z at each Q;’” in line 8 to determine edit choices
step by step. This procedure creates at most (|X,ps| — 1) states for each Q;’" state. Thus, IQfZXI <
\Eol|Xobs*(1Xops| — 1+ 1) = |Eo|| Xops. Furthermore, every Z-state may lead to a W-state by f,
transition, so IQ/aVI <|EolIXopsl®. Thus, the state space complexity of AES ,y. is O(Xopsl). The
complexity of Algorithm I11.3 is quadratic in the size of AES .. as one state is visited at most once
in an iteration. Overall, the space complexity of constructing the AES is polynomial in terms of

|X0bs|-

Remark II1.5.2. It can be shown by induction on the length of strings that if the AES is not empty,
then all edit functions embedded in it are admissible. This is a consequence of the pruning process
in Algorithm 3 and we omit the proof here. By the same argument, no admissible edit function

exists if the AES is empty. Hence, we will rule out this situation in the remainder of the chapter.

Example IIL.5.1. We show an All Edit Structure. The observer of system G is depicted in Fig-
ure V.2. All events {a,b,c,d} are observable and observer state 4 is solely composed of secret
states from G. The desired observer Obs,;(G) is simply without state 4 and we omit its figure here.
To begin with, we follow the first two steps of Algorithm II1.1 and build AES py. in Figure I11.2,
where squared states, oval states and diamond states stand for Y, Z and W states, respectively.

The game is initialized at yo = (0,0) where the dummy player executes b and d since both
events are defined at state 0 in Obs(G). If b is executed, Z-state ((0,0),b) is reached, where the
edit function plays and there are two edit decisions. At ((0,0),b), if the edit function chooses to
erase b, then the system plays at W-state ((0,0),b — €); if the edit function inserts d, then Z-state
((1,0),b) is reached since 64(0,d) = 1. If a is also inserted after d is inserted, then another Z-state
((2,0),b) is reached. Then at Z-state ((2,0),b), if the edit function decides to stop inserting, W-state
((2,0),b) is reached. When the system plays, say, at ((0,0),b — €), b occurs and leads to Y-state
(0,4), since b is not observed by the intruder and the first state component is not updated. When
the system plays at ((2,0),b), b occurs and leads to Y-state (3,4) since 64(2,b) =3, 6(0,b) =4. The
whole structure is interpreted in a similar way.

In this example, the edit constraints prohibit the edit function from erasing b at ((1,0),b) and
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((3,2),b), also ¢y((0,1)) = ¢y((1,2)) = ¢,((2,3)) = 0. We use dashed lines in Figure I11.2 to indicate
the transitions and states that violate edit constraints. Those transitions/states are not in AES .
In Figure I11.2, there are some deadlocking W-states such as ((0,0),d — ¢€), ((1,0),a — €) and
((2,2),b — €) and no deadlocking Z-states exist. Then we prune away those deadlocking states by

Algorithm I11.3 and finally obtain the AES in Figure II1.3.

cO L@

Figure IIL.2: AES ;. in Example II1.5.1 (without dashed states and transitions)

Then it is natural to ask when there exists an ND-PP-enforcing edit function in the given AES.
The key point is every unsafe string shares the same edited behavior with some safe string. How-
ever, the state information in the AES is insufficient to verify this condition as a Y-state may appear
in multiple runs and different strings may be edited to the same one by different edit decisions.

Therefore additional analysis is necessary, which is discussed in the next section.
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Figure II1.3: The AES in Example I11.5.1

III.6 Synthesis of Nondeterministic Privately Safe and Publicly

Safe Edit Functions

In this section, we synthesize nondeterministic PP-enforcing edit functions. From Theorem IIL.5.1,
any edit function embedded in the AES is ND-privately safe so we only need to consider ND-public
safety. Unfortunately, we cannot only consider the state information in the AES for synthesis.
Thus, we introduce the reachability tree of the AES, which is the “unfolded” AES with respect to
unedited strings and edited strings. Then we have access to strings before/after edit and develop
a synthesis algorithm based on the tree. The terminology of reachability tree is from the Petri net

literature; it is employed here as it is well-suited to the construction procedure in this chapter.

II1.6.1 Reachability Tree of the AES

The reachability tree of the AES is denoted by
AES, = (037,057, O3 (Eo E,©, £l fAT fAT £4T vo)

and constructed in Algorithm II1.4. It is built by unfolding the state space in a breadth-first search

manner in line 2. The AES; is an acyclic structure by construction, so all its runs are finite. The
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transitions in the AES; are defined in a similar way as in the AES. Within DoDFS , if an examined
state is visited again, we stop searching on the current path and know there is a cycle in the AES.
Since the number of states in the AES is finite, DoBF'S stops after a finite number of steps when
all states in the AES are examined. In line 3, we call Algorithm III.3 and achieve two goals: (1)
all leaf states in the AES; are Y-states; (2) no deadlocking states exist in the AES;. We denote by
Q‘;}Lw y the leaf states in the AES,. Since states are completely split in terms of state and string
components, there is a unique run from the root yq to every state in the AES;. Finally, we label

each Y-state in the tree with both the edited string and the original string in line 6.

Algorithm II1.4: Build labeled reachability tree of the AES
Input :AES
Output : AES;
1 037 ={yo}, 057 =03 =0;
2 AES?™ = DoBFS (yo,AES);
3 call Algorithm II1.3, Prune(AES f y:
4 for Y-state y in the remaining structure do
L specify the run r from yq to y in the remaining structure;
use (I(r), P.(r)) to label y;
return AES,;
Procedure: DoBFS (q,AES)
while there exists state q in AES that has not been examined do

5
6
7

®

9 evaluate all transitions defined at g in AES ;

10 if no transition is defined at q in AES then

1 | terminate searching on the current path from g;

12 else

13 for a transition defined at g in AES do

14 add state ¢’ reached by the transition as a new state in the tree AES f "
15 if ¢’ equals a state on the path from yg to g then

16 | |_ stop searching from on the current path ¢’;

Edit functions embedded in the AES; only make finite insertion choices. However, this does
not compromise the performance of edit functions in opacity enforcement. We use Example I11.5.1
to illustrate this point. If we build the reachability tree for this example, the cycle between Z-
states ((3,0),b) and ((2,0),b) is broken and the transition ¢ is removed. Thus, if we consider edit

functions embedded in the AES,, then string b can only be mapped to dab. However, all strings
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of the form da(bc)"b where n > 1 reach state 2. It does not really matter whether b is edited to a
string containing a loop or not.

In the following discussion, we let the edit function make the same decisions every time a Z-
state in the AES is reached. Hence, if there exists a cycle in the AES, the edit function does not
change decisions whenever the cycle is visited. Therefore no information is lost if we consider
edit functions embedded in the AES; and repeat the same edit decisions when two states share the

same state components.

Remark II1.6.1. We briefly analyze the space complexity of the AES;. First we have the notion
0= maX{lQ?,Tl, |Q§T|, IQ‘;}VTl}. The number of nodes reached by the initial state in one step transition
in the AES is at most Q. Also each node may have at most Q succeeding nodes by one step
transition in the AES. Thus, the number of states reached by yo by two transitions is at most Q2.
The same process goes on and we know that there may be at most |Q§T| + |Q‘2T| + |Q‘3VT| states
between the root yy and any leaf state in the tree. Thus, the number of states in the AES; is at most
in the order of QlQ/;TlJ“'QéTlHQeVT'“. From last section’s discussion, we know that the complexities
of Q and |Q3T|+1057 1 +1047 | are both of the order (O(|Xops|*)). Therefore, the complexity of the

AES; does not exceed O(|X0b3|3(|X0b5|3+1)).

In the AES;, some Y-states are labeled by an unsafe string and a safe string while others by two

safe strings. We partition Y-states as:

03" = (G, x), (1,5)) € O3 1 1 € Lyagers € Lunsage)

0872 = {((xasx7), (1,8)) € Q47 11,5 € Lygye)

Next we define the last preserved Q‘)“,T2 state as: Q/glzp = {yt2 € Q?,Tz : 3yt1 € Q/){,Tl, 36,,---6,, €
®,3e, € Eo, s.t. [l (AT (FAT - (fAT(f2T (3] €0).01), - Om-1),0m). €5) = y7}, which serves as the
“boundary” between Q’;}Tl and Q@Tz states.

Define Q‘;‘E}w ;= Q’;Tlea y N Q‘;}Tl and Q‘;‘leea ;= Q‘;‘Elm 7 N Q‘;‘,Tz as leaf states that contain and
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do not contain unsafe string components. Besides, we define QAT2 Q‘;leea 7 U Q?lep Then we

define

Lt = {1 € Lunsafe : Wjoqp = (X2, Xp), (1,9)) € QYT st s = 1)
L}, = 1€ Laage s Aypy,r = (a2 xp),(1,5) € QY71 o st s = 1)
L}, ={l € Lyage : W], = (g, xp), (1,9)) € Q)7L st s = 1)

AT?2

Y-leaf and

as the set of unsafe strings appearing in QAT the set of safe strings appearing in Q

Y-leaf”

QAT2

Y—ip’ respectively. We further group some Y-states by their components of original strings (safe

or unsafe):

Oy s D = (et xp), (1,9)) € QYo s = 1€ Ly )
Oy fuap D =1 xp). (1) € QYT s = 1€ L )
QYD) = {((xa, xp), (1,5) € QY11 - s=1€ L] )

QYD) = {(Ceanxp) (1) € QYT s =1€ L] UL}, )

In this chapter, we assume that events are inserted or erased one by one, so observed one at a
time. Also both the observer’s language and the safe language are prefix-closed. Therefore, if a
string s is mapped to string /, then all the prefixes of s are mapped to some prefixes of string /. This

result is formally stated as follows:

Lemma I11.6.1. Consider a nondeterministic edit function f., if s,t € P[L(G)] satisfy f.(s) C f.(?),

then Vs’ <s, At' <t, s.t. fo(s") C fo(1).

This lemma has the implication that we can restrict attention to unsafe strings in L caf since all

the other unsafe strings in the AES,, being their prefixes, can be mapped to safe strings if strings in
Ly, o €40 be mapped to safe strings. Besides, we can focus on safe strings in Ls UL, af for opacity
enforcement as the other safe strings in the AES; are their prefixes. This result further justifies why

we build the reachability tree AES;: since the AES, explicitly contains unsafe strings in some of
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its leaf states, we can evaluate those leaf states and determine how those unsafe strings are edited.

I11.6.2 Synthesis Algorithm

We proceed to synthesize nondeterministic PP-enforcing edit functions based on the AES;. We will
give a condition for verifying the existence of nondeterministic PP-enforcing edit functions and
show that the verification problem is closely related with the synthesis problem. Then we will solve
these two problems together. To begin with, we derive the following result from Theorem IIL.5.1,

which shows that ND-private safety is always ensured by the AES.

Lemma II1.6.2. If the AES is not empty, then there exists a privately safe nondeterministic edit

function.

The ND-public safety case is more challenging and we start by evaluating the unsafe strings
in the leaf states of the AES;. For each unsafe string /; € L}, | AL define the set of PP-enforcing

candidate states as S pp(1}) = {((xa,xp), (6 1)) € QYT L (1) 2 Iy* = (6, X)), (¢, 1)) € QT st 1 <
t'}. That is, we search through AES; to find ((x/,, x}), (t',1')) where some prefix of the edited string
¢’ is just t while the unedited unsafe string is also /;. So if the edit function reaches those states, it
will be publicly safe by definition. On the other hand, if § ,,(/;) = 0 for some /;, then we know we

can not find a safe string that shares the same edited behavior with unsafe string /;, in which case

no nondeterministic PP-enforcing edit function exists.

AT'1

Besides, we call states in Q77

f(l,-) \'S pp(l;) bad candidate states since the edited behaviors of
l; indicated in those states can not be matched with edited behaviors of any other safe string. Thus,
if those states are reached by the edit function, ND-public safety can not be achieved. Those states

are expected to be avoided when synthesizing nondeterministic PP-enforcing edit functions.

Based on those concepts, we propose Algorithm II1.5 for synthesis. First we group the leaf

u

states by their unsafe string components /; € L;, 7

in line 2. Each state in Qézllea f(li) corresponds
to a potentially different edited behavior of /;. Then we search through the AES; to find bad

candidate states and remove them from the AES;. As the removal of those states may bring in
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Algorithm IIL5: Synthesize PP-enforcing edit functions
Input : AES,
Output: Nondeterministic PP-enforcing edit function

1 for /; € L’l‘eaf do

2 | collect Q37 (1), suppose ot (i) has m; elements;
3 for j=1:m;do

4 consider y}(li) = ((xg, xp), (1,1)) € 037 ) A3

5 if 2y>(l') = ()X, (1, 1)) € T2, s.t.t <1 then

6 L remove y}. (1;) from the AES;

AES] = Prune(AES);
forlieL], 7 do
9 denote by Qéfrle (Q’;‘,ffe) the Y-states in AES | with (without) unsafe string components,
then define S7,,(1) = {((xa, x5), (1,1:)) € QY A0 03T, = (%), X, (1, 1) €
Yflz N Q‘;‘Zfe, s.t.t<t'};
10 if Slr,p(li) = () then
1 | | nondeterministic PP-enforcing edit functions do not exist, terminate the algorithm;

® 3

12 return the nondeterministic edit function embedded in AES};

deadlocking states, we apply Algorithm II1.3 to resolve deadlocking states in line 7 and denote the
remaining structure by AES ;. In this process, some states in S ,,,(/;) may also be removed. We use

Q‘;‘Z} and Q‘;‘Zz to denote the Y-states with and without unsafe string components in the AES/,
e re

respectively. For unsafe string /;, we define S7,,(/;) in line 9 as the set of PP-enforcing candidate
states remaining in the AES} after pruning. We claim that if 7, ,(/;) is not empty for each /;, then
there exist nondeterministic PP-enforcing edit functions in the AES;. Finally we may extract the

edit function by following transitions in the AES}

Theorem II1.6.1. Given the AES], nondeterministic PP-enforcing edit functions exist if and only

ifVheLy, ., Sh,U)#0.

Proof. (=) By contradiction. Suppose Afy. € AES ], fue & @napp and Il; € L7eaf., s.t. S;p(li) =0.

Then we can find s € f,.(l;), s.t. ftely, fe and s € f.(t), which contradicts f,e & ¢©papp-

(<) Given the AES, and the AESY, it is sufficient to consider unsafe strings in Ly, f and safe

N

strings in L; 7

U Llsp for synthesis. Besides, we only need to check ND-public safety since the

AES is not empty. If VI; € L?eaf’ S;p(l,') # 0, we know Vy!(l;) = ((xq,x7),(t,1)) € S;p(li), Ely2 =
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() X)), (7, 1)) € O8TZN QP12 st 1 <1 Since fpe € AESY, fue € AES also holds. We let all the
players make the same decisions specified at states in the AES] whenever a state is reached again
in the AES. So we can design an edit function f,, such that f,.(/;) = {¢: Hyl(l,-) = ((xa,x7),(t,1) €
S p(l)} and " € fue(I'). Since t <1, we know fyo(l;) € Lsafe, YI; € L7eaf. Therefore, f;. is both

privately safe and publicly safe. [

Theorem II1.6.1 gives a necessary and sufficient condition for verifying the existence of non-
deterministic PP-enforcing edit functions. It also shows the completeness and soundness of Algo-
rithm II1.5, so the synthesis of nondeterministic PP-enforcing edit functions is reduced to finding

S pp(li) forevery l;e L, 7 in the AES]. When running Algorithm III.5, we collect all edited strings

u

leaf" In

appearing in states from S, ,(;) and include them as the potential edited behavior of /; € L
that way, the synthesized nondeterministic edit function is “most permissive” in the sense that it

preserves all feasible edit decisions to achieve ND-private safety and ND-public safety.

Remark I11.6.2. Compared with deterministic edit functions, nondeterministic edit functions per-
form better at enforcing public safety. The intuition is as follows. Consider the case when a
safe string is edited to multiple (safe) strings which may be the edited behaviors of several unsafe
strings. In the deterministic case, every string is mapped to a unique one so in the above case,
we are only able to guarantee that one unsafe string shares the same edited behavior with a safe
string, hence, public safety is violated. Thus, a deterministic PP-enforcing edit function may not
always exist. However, if nondeterminism is allowed, as long as we find an edited string whose
edited behaviors correspond to the edited behaviors of (potentially multiple) unsafe strings, then
nondeterministic public safety is satisfied. The above argument further justifies why we explore
nondeterministic edit functions, given that both deterministic and nondeterministic edit functions

may enforce private safety.

Example I11.6.1. Let the observer in Figure 111.4 be with E, = {a,b,c,d}, states T and 8 are com-
posed of only secret states from the system. We omit the steps of building the AES and the AES;,

instead we directly show the AES; in Figure 111.5. While we only label leaf states with strings here
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and YZ states are marked in red (those states contain an unsafe string label). Due to the edit

1
leaf
constraints (not explicitly stated here), the edit function can only make decisions and reach states
as indicated in the AES;. We can see that ((6,8),(ab,b)) shares the first string component with
((6,4),(ab,dabc)), ((4,7),(dabc,abc)) shares the first string component with ((4,4),(dabc,dabc)).
Also unsafe string b is edited to ab, unsafe string abc is edited to dabc, safe string dabc is edited
to dabc or ab.

It is interesting to notice that if we let the edit function be deterministic, i.e., every string is
mapped to a unique one, then no PP-enforcing edit functions exist here since unsafe strings b and
abc can not share the same modified behavior with safe string dabc simultaneously. However, a
nondeterministic PP-enforcing edit function exists by Algorithm II1.5. No states are removed from
the AES; and we have Sl’,p(b) ={((6,4),(ab,dabc)}, S;,p(abc) ={((4,4),(dabc,dabc)}. So the edit
function inserts a before event b occurs from state O; inserts d before event a occurs from state 0
inserts nothing before event d occurs from state 0 or just erases that d. This example reveals that

introducing nondeterminism to edit functions may contribute to opacity enforcement by allowing

more plausible denial for the intruder’s inference, compared with the deterministic counterpart.

af'\b/\c@

Figure I11.4: The observer in Example II1.6.1

II1.7 Conclusion

We discussed opacity enforcement by edit functions in nondeterministic settings. Based on the
knowledge of the adversary, we defined private safety and public safety of nondeterministic edit
functions and then investigated their enforcement. This chapter is the first to apply nondetermin-

istic edit functions to enforce opacity. The concept of edit constraint was introduced to restrict the
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Figure I11.5: The AES; in Example I11.6.1

choices of edit functions. Then we reformulated the problem as a three-player game and proposed
the All Edit Structure (AES), which embedded all privately safe edit functions satisfying edit con-
straints. Finally, an algorithm was presented for synthesizing nondeterministic PP-enforcing edit

functions based on the reachability tree of the AES.
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CHAPTER 1V

Enforcing Opacity by Insertion Functions

under Multiple Energy Constraints

IV.1 Introduction

In this chapter, we formulate the problem of opacity enforcement by insertion functions under mul-
tiple quantitative constraints. Notice that here the insertion function only has partial observation
of the system, i.e., it is only aware of the occurrence of observable events. The insertion functions
are should enforce opacity while ensure that each type of resource of the system never drops below
zero in the enforcement process, for all possible system behaviors (worst-case analysis). Then we
transfer this problem to a two-player game between the insertion function and the environment,
then solve it by constructing a discrete game structure called Energy Insertion Structure (EIS). The
insertion function plays by inserting events, which consumes resources, while the system plays by
executing events, which consumes or gains resources. Therefore,the system’s resource levels dy-
namically change. EIS includes winning strategies of the insertion function under both qualitative
and quantitative requirements.

Among the insertion strategies obtained from EIS, we are particularly interested in those that
work in an “economical” way. In other words, there exists a upper bound for the rate of insertion
cost so that only a reasonable amount of resource is consumed per step of insertion. Then we

slightly modify EIS and formulate the bounded insertion cost rate problem as a multidimensional
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mean payoff game. This problem is solved by leveraging a novel approach called hyperplane
separation technique proposed in [34].

Our work in this chapter is inspired by some recent works on quantitative two-player games
in theoretical computer science, specially, energy game and mean payoff game. Those two games
are closely related and thoroughly discussed in the literature; see, e.g., [4,43]. In some cases,
one player only has imperfect information about the game and thus is not informed of some
moves of its opponent. Under imperfect information, energy games are decidable and known
to be Ackermann-complete [87] with fixed amount of initial energy, while mean payoff games are
in general undecidable [40]. Another generalization is multidimensional game [33], where both
players have several quantitative objectives. The above works also inspired the work [90], which
studies supervisory control for DES using energy games with partial observation. We adapt some
methodology from [90] to the different problem of opacity enforcement by obfuscation. To the
best of our knowledge, this chapter is the first to investigate opacity enforcement under multiple
quantitative objectives.

This chapter is organized as follows. Section IV.2 describes our system model. Section IV.3
formulates the energy constrained opacity enforcement problem. Section IV.4 introduces the En-
ergy Insertion Structure (EIS). Section IV.5 applies EIS to solve the energy constrained opacity
enforcement problem. Section IV.6 formulates the bounded cost rate insertion strategy synthesis
problem and solves it by the hyperplane separation technique. Finally, Section IV.7 concludes the

chapter.

IV.2 System Model

We consider opacity and its enforcement in a quantitative DES modeled as a weighted finite-state

automaton:

G=WX,E,f, xo,w)

60



where X is the finite set of states, E is the finite set of events, f : X X E — X is the partial state
transition function, and xp € X is the unique initial state. We denote by Xg C X the set of secret
states that should remain opaque. The transition function is extended to domain X X E* in the
standard manner [23] and we still denote it by f. The language generated by G is defined as
L(G) ={s e E": f(xo,5)!} where ! means “is defined”. We write s < u if string s is a prefix of
string u; also s < u if s <u and s # u. We also denote by 7 € s if string 7 is a substring of s. The
multidimensional function w : E — Z¥ assigns a k-dimensional weight vector to each event in E
where k is a (fixed) positive integer and each entry reflects the gain or cost of a certain type of
resource associated with the occurrence of an event. We denote by w'”(e) the i-th component of
w(e) for e € E. In this work, we let T)) be the k-dimensional vector of all Os. The function w is
additive, whose domain is extended to E* by letting w(e) = _0), w(se) = w(s) + w(e) where s € E*,
ecE.

Given an automaton G, for x1,x> € X and e € E, we denote by x| 5 xp if f(x1,e) =x2. A runin
G is a sequence of alternating states and events: r = x; SR X2 2,00 X, and it may be infinitely
long. We denote the set of runs in G by Run(G) and x € r if x is a state in . We call a run initial if
its initial state is the initial state of the system. Besides, a run forms a cycle if x; = x;, and a cycle
is simple it Yi, j € {1,2,---n—1}, i # j = x; # x;. If r is a cyclic run, there is a corresponding loop
ejes---ey—1 starting from and ending in x1. We further call the loop simple if the cycle is simple.

We refer to the set of quantitative resources associated with the operation of the system as
energy. The system is granted with initial energy vector vy € N¥ to support its operation. Given

n—1

s = epey---ep—1 € L(G), the energy level of the system after s is V(s) = vo + Zw(ei). We also
denote by V@ (s) the i-th component of the k-dimensional vector V(s). Then we rl;gke the following

important assumption that the energy level vector should always be nonnegative in every dimension

and we will explain it in the next section.
ﬁ
Assumption IV.2.1. Vs € L(G), V(s) > 0.

System G is partially observable, i.e., E = E,UE,,, where E, is the set of observable events and

E,, is the set of unobservable events. Given ¢ = t'e € E”, its natural projection under P : E* — E,
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is recursively defined as P(f) = P(t')P(e) where t' € E* and e € E. The projection of an event is
P(e)=eifec E, and P(e) = €if e € E,, U {€}, where € is the empty string.
Given a set of states g C X, the unobservable reach, denoted by UR(q), is defined as: UR(q) =

{(xXeX:Axeq,Ase E;

" S.t. f(x,5) = x’}. Besides, the observable reach under observable event

e, denoted by Next, (g), is defined as: Next.,(q) = {x' € X : Ax € q,e, € E,, s.t. f(x,e,) = x'}.
Then the observer of G is: Obs(G) = (Xops, Eo, 0, Xobs,0, Wobs) Where Xops C 2X is the state space;
0 : Xobs X E; = Xops 1s the transition function and Vx5 € Xops, 0(Xops.€0) = UR(Next,,(Xobs));
Xobs,0 = UR(xp) is the initial state; weps : E, — 7k is the same as w over the restricted domain
E,. An observer state can be viewed as a current state estimate (or state estimate in short) of the

system, which is a subset of X.

IV.3 Problem Formulation

In this section, we first review the notion of current-state opacity (Definition 11.3.1) and the mech-
anism of insertion functions. Then we formulate the energy constrained opacity enforcement prob-
lem.

A system is current-state opaque if for every string reaching a secret state, there exists another
string reaching a non-secret state which shares the same projection, thereby providing deniability
of the secret. CSO can be verified by building the observer and checking whether an observer state
contains solely secret states. Based on CSO, we define the safe language, which is the prefix-
closure of the projected non-secret strings: Ly, r. = P[L(G)]\{[P[L(G)]\ P(Lys)]E}}. We also
define the unsafe language Lyysqfe = PIL(G)]\ Lyq e

Given system G and its observer Obs(G), the desired observer Obsy(G) = (X4, Ey,04,%40)
is obtained by removing all observer states composed of only secret states and then taking the
accessible part, see [119]. Here X; C X,ps is the state space, E, is the set observable events,
04 : Xg X E, = Xy is the same transition function as ¢ with restricted domain X; X E,, x40 is the

initial state and we omit the weight function in Obs;(G). It is easy to see that Obs,(G) generates
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exactly Ly .

Opacity may not always hold and an insertion function may be used to enforce opacity. The
insertion function is an interface between the output of the system and the external environment in-
cluding the intruder. It may insert fictitious events into the output stream of the system to obfuscate

the intruder; see [54, 119] for more details of this concept.

Definition IV.3.1 (Insertion Function). An insertion function is defined as: f; : E; X E, = E,E,

such that for l € E}, and e, € E,, fi(l,e,) = sje, where sy € E;,.

By definition, the insertion function inserts s; before the next observable event e, given that
[ has been observed, then it outputs s;e, to the outside environment. Besides, s; may be € when
nothing is inserted. We also define a string-based version of f; and with a slight abuse of notation,
denote it by f; as well (it will be clear from the argument which form of f; is being considered):
file,e) = € and fi(e,le,) = fi(e, D) fi(l,e,).

An insertion function inserts strings based on the observable behavior of the system. However,
unobservable events do occur between two observable events. As a convention, when we need to
discuss unprojected strings with insertion, we assume without loss of generality that the inserted

string is placed right before the next observable event in an unprojected string.

Convention IV.3.1. Given s = &eg---&n-1€4-1& € L(G) where ¥j<n, ¢, € E,, and e € E,, if
filege1---ej_1,ej) = 6jej where Vj<n, 0; € E,, then s is mapped to s" = &ybpeq - --Ejbie -+ - Enbney

where P(s") € P[L(G)].

It is possible that s” ¢ £(G), but what matters is that P(s") € P[L(G)], since the intruder only
observes strings in P[L(G)] for its inference of secrets.

An insertion function f; may be encoded as an input/output (I/O) automaton IA = (Xi4, Eo, E} . 8ias fia» Xia,0)-
Here Xj, is the state space; E, is the set of input events; E! = E}E, is the set of output strings;
Sia * Xia X E; — Xijq is the transition function; fi, : Xiz X E, — E is the output function such that
Sia(Xia»€0) = s1e, where 0;4(Xig, €,)! and 6iq(Xiq.0, S) = Xig, if f1(s,€0) = S1€0; Xia,0 € Xi4 1s the initial

state.
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Next, we present the notion of private safety from [119], which indicates that every string in

P[L(G)] is mapped to a safe string under certain insertion choices.

Definition IV.3.2 (Private Safety). Given system G with projection P and safe language Lyjye,

insertion function f; is privately safe if Vs € P[L(G)], fi(s) € Lyqfe-

We assume that event insertion always costs energy and define the insertion weight function
win : E, = (Z\NYX, which assigns a k-dimensional weight vector to each inserted event, where
all components are non positive. Function w;, is additive and its domain is extended to E), by
letting w;,(€) = _0) and wj,(se,) = win(s) + win(e,) for s € E}, e, € E,. Equivalently, we may use
—wjy, to stand for insertion costs. Without loss of generality, we assume that w;,(e,) # T)) for all
e, € E,, i.e., insertion of an observable event always costs energy. The i-th component of w;,(e,)
for e, € E, is denoted by u)f;) (ey).

Next, we define the system’s energy level after insertion as V,, : £L(G)x E* — ZK. Given
s = &oeoérer - -En_1en—1&n € L(G) where Vj < n, £; € E;, and ¢; € E,, suppose s is mapped to
s" = &oboepé101ey - - En—10n-1€n-1&, by Convention IV.3.1 by some insertion function; then we let

n—1
Viu(s,s") =V(s)+ Zwm(ej). We will denote s’ by sy, if s is mapped to s” by f;. Hence, V,,(s, )
is the energy leveljgg the system after string s is modified by insertion function f;.

Given a non-opaque system G with initial energy vector vg, we aim to design an insertion
function f; which enforces opacity but never forces the system’s energy level to drop below zero
in the component-wise sense. That is, the insertion function is constrained by the energy level
of the system, i.e., Vs € P[L(G)], Vu(s,sp) > _()> Since insertion always costs energy, we made

Assumption IV.2.1 earlier to ensure some energy margins for the insertion function. We now

formally formulate the energy constrained opacity enforcement problem.

Problem IV.3.1. Given system G with initial energy vector vq, the energy constrained opacity
enforcement problem is to find an insertion function f; such that: (1) f; is privately safe; (2)
Vs € L(G), Vn(s.57) 2 0.

Due to partial observation of the system, we need to estimate both current states and energy
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levels of the system so that insertion functions may make proper decisions to enforce opacity.
This issue will be discussed in the following sections. Also notice that if there exists an insertion
function solving Problem IV.3.1 with initial energy vector vg, then the same insertion function
also solves the problem with any initial energy vector v, > vo. We will see later that this simple

monotonicity property allows us to define a finite structure to embed solutions to Problem IV.3.1.

IV.4 Energy Insertion Structure

In this section we define energy information states and a bipartite game structure Energy Insertion
Structure (EIS). By introducing these concepts, we transform Problem IV.3.1 into a reachability
game with perfect information between the insertion functions and environment. Then we solve

Problem IV.3.1 on EIS.

IV4.1 Building the Verifier

We first review the concept of verifier proposed in [54]. It serves as an intermediate structure for
constructing E1S here and encodes potentially feasible insertion choices for opacity enforcement
without considering the energy constraints.

Given system G, in order to build the verifier, we first introduce the feasible observer [54].
The feasible observer is obtained by adding self-loops for all observable events at each state in
observer Obs(G). Formally, it is defined as Obs¢(G) = (X¢,E»,0,04, xg) where Xy = X, 1s the
state space; E, is the set of observable events; § is the same transition function as in the observer;
051 : Xy X E, — X7 1s the self-loop transition function such that Vxf e X Ve, €Ey, 0 sl(xf Ley)=x7:
xg = Xobs.,0 1 the initial state. Thus at a state x/, there may be two transitions labeled by e, defined:
(i) the normal transition ¢ representing the occurrence of an observable event and (ii) transition d
representing potential event insertion.

Then we synchronize desired observer Obsy(G) and feasible observer Obs¢(G) by the veri-

fier parallel composition [54] to obtain the verifier, defined as G, = (X, Ey,0yq,0v5, X,0). Here
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X, € X4 X Xy is the state space, E, is the set of observable events; 6, : X, X E, — X, is the transi-
tion function corresponding to normal transitions in both Obsy(G) and Obs (G); 6yq : Xy X E, — X,
is the transition function corresponding to normal transitions in Obs;(G) and added self-loop tran-
sitions in Obs ¢(G); x,0 = (Xobs,0, Xobs,0) 18 the Initial state. A state x, = (x4, x') € X, has two compo-
nents: the left one is the intruder’s estimate and the right one is the (true) system’s estimate. They

are usually different as insertion functions obfuscate the intruder by manipulating its observation.

Definition IV.4.1 (Verifier parallel composition). The verifier parallel composition ||, is a special
parallel composition between Obsy(G) and Obs(G): G, = Obsy(G)||,Obss(G) where transition
functions 6,5 and 6,q are defined for synchronization: 5,5((x4, x5, ) 1= (5,04, €),6(x" ,e)) and

Sva((x?, x7), €) := (6a(x?, €),6(x7 , €)) = (6a(x", €), 7).

The transition function 9,5 captures actual event occurrences, thus both the intruder’s and the
system’s estimates change with such transitions; while 6,; captures event insertions, thus only
the intruder’s estimate is updated. This is consistent with the mechanism of the insertion function,
which is an interface between the output of the system and the outside environment. It only changes
the intruder’s observations but not the system’s behavior. Here x? e X; and x? ¢ 2%Xs by definition,
so what the intruder observes does not reveal the system’s secrets. For completeness, we define

0vd(xy,€) = x, for all x, € X,,.

IV4.2 Energy Information States

We aim to synthesize an insertion function which enforces opacity and maintains nonnegative en-
ergy level in all dimensions. To achieve these goals, we integrate the information of state estimates
and energy levels into properly defined Energy Information States. Here we let |-| be the cardinality

of a set.

Definition IV.4.2 (Energy Information State). Given system G, an energy information state is:

g¢ = (x4, x7), (1), - - - v(Ix/D]) € X, x ZXI
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Let Esty(q°) and Lev.(q°) denote the state estimate and energy level components, respectively;

hence, q° = (Esty(q°), Lev.(¢°)).

We denote by QF the set of energy information states, which track the system’s estimate x¢ ,
the intruder’s estimate x/ and the energy levels of the system at each state in x/. Besides, each
¢° € OF induces a belief function hge = Esty(q°) — 7k, Specifically, for ¢¢ € QF where Esty(¢°) =
(x4, x") € X,, we have Leve(q) = {hge(x) : x € x'}. We usually put Lev,(¢°) in a column vector’s
form: [hge(x1),- - hge (xxrP]- By convention, elements in Lev,.(g®) are placed in an increasing order
w.r.t. state names in x/. Our definition is inspired by the belief function in [40] and the observation
function in [90]. In the following discussion, we use h(qie) (x) to denote the i-th element in /e (x).

To compare energy level vectors, we extend the measure < from scalars to vectors as follows:
given two vectors v = [vi(1),v{(2),---,vi(k)], v2 = [v2(1),v2(2),--- ,va(k)] € 7k, we denote by v; <
vy (respectively vy > vp) if V1 < i < k,vi(i) < v2(i) (respectively vi(i) > v2(i)). Then we further
extend it to a measure on matrices: given two matrices m| = [vi,v2, - ,V,],mp = [v’l,vé, ] e
Z*", we denote by my < my if v; <V/ forall 1 <i<n.

An energy information state ¢¢ € QF is energy safe (or simply safe) if Vx € x/ where Esty(¢¢) =
(xd, xf ), hge(x) 2_0). We define an order < over the set of energy information states: for qi, q§ € QE,
q7 = g5 1f Estes(q]) = Ests(q53) and Lev,(q7) < Leve(q;). We also say that g5 subsumes g if 7 < ¢,
i.e., ¢{ and ¢ share the same verifier state component but the energy level vector of g5 is no less
than that of ¢{ at every possible current state in Esty(g5). By Dickson’s lemma (see [69]), the
order < on N is a well-quasi-ordering for any m € N. Besides, the Cartesian product of two
well-quasi-ordered sets S € N and T € N by using < is also a well-quasi ordered set [80], i.e.,
(s, < (s, )e[s<sIA[t<t]fors,s" €8, t,t’ € T. Thus we can further argue that < on safe
energy information states is also a well-quasi ordering, i.e., for any infinite sequence of states
q1.95 - € OF 3i,jeN,st i< jand q; = qj..

We call ¢“¢ € QF x E, an augmented energy information state, i.e., ¢* is an energy information
state augmented with an observable event. Let I£(¢g“), E(q“°) denote the energy information state

and observable event components of ¢g“¢, respectively. So we have ¢%° = (Ig(¢*®), E(¢“°)). With a
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slight abuse of notation, we use A to stand for hg,e where g¢ = Ig(q“°). Besides, ¢ is (energy)
safe if Vx € x/ where Ests(Ig(g*)) = (x4, xh), hgae(x) > _O> Then we define the following two
concepts to characterize the update of energy and augmented energy information states with event
insertion and execution.

For e, € E,, we say that ¢° € QF x E, is an e,-execution successor of ¢¢ € QF if Ir(¢™) = ¢¢
and g% = (¢°,e,). In other words, we simply combine an energy information state g° with an
observable event ¢, to create an augmented energy information state g“°.

For 6 € E}, e, € E,, we say ¢° € OF is a (0,e,)-insertion successor of q°¢ = (Ig(q*),e,) €
OF X E, if: (i) Esty(q®) = W, x'7) = 6,5(8,a((x4, x7),0),e,) where Ests(Ig(q™)) = (x4, x7); (ii)
vx ext V1 <i<k h)(x) = ggén (h0e () + 0P (e0) + (@) +w})(0) : Axe X/, st f(x,e08) = X').

Intuitively, a (6, eo)—insertidn sﬁccessor indicates the update of state estimates and energy levels
after string 6 is inserted before observable event e,. Since event insertion does not change the
system’s estimate, the system’s estimate gets updated after e, occurs. While the intruder’s estimate
is updated with both 6 and e,. For a current state x” in the system’s estimate x’/, it may be
reached through strings starting from some state(s) x in x/ and those strings may have different
unobservable strings as suffixes. In this case, hg(x) indicates the minimum energy level at every
dimension at x’ with the occurrence of e, and unobservable string & from some x € x/ s.t. x’ =
f(x,e,€). We also take into account of the cost of inserted string 8 (potentially €). Intuitively, if the
worst case energy level is nonnegative, then the system’s energy level is always nonnegative.

An insertion-execution sequence is a sequence of alternating states, inserted strings and exe-

01 en—1

4] (%)
cuted observable events of the form: p =y] —z] — ), — 5 — 2

gn—l
e .
" — Yy Where Vi<n,

14

0 € E,, e € Ey, yi € OF, Z € OF X E,, Z; is an e;-execution successor of y? and y¢ , is a (0;,¢;)-

o0’
insertion successor of z;. Such a sequence may be finite or infinite.

. . . . e 6 e
Lemma IV4.1. Given an insertion-execution sequence p =y| —z{ — y5 — 25" —2

n—1
Y let Ests(y) = (xlfl,xl.f) foralll1 <i<nandletl=ejer---e,_1 and ' = O1e1---0,_1e,—1, then

54(x,1') = x4 in Obsy(G) and 5(x] 1) = x}, in Obs /(G).
6
Proof. By induction. First, consider y{ 4 7 — 5. Since z{ is an ej-execution successor of y{ and
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Y5 is an (61, e)-insertion successor of z{, then (xg,xg) = 6VS(6vd((x§l,x£),91),el). So 6d(x§’,91e1) =
x‘zi and 6(xf ., e1) = xJZC by definitions of d,; and 9, in the verifier parallel composition.
01 e e-1 , Gk

Then suppose the result holds for y{ SR oy —> % — g — y. Whenn=k+1,

by a similar argument, we can show that (5d(xz,9kek) = xf ., and 5()/ ,€k) = x

1. Combining the

inductive hypothesis, we know 6d(x‘11,0161 - Orer) = xgﬂ and 6( o€l ek) = /' so the result

k+1°

also holds at k + 1, which completes the whole proof. [

Lemma I'V.4.1 illustrates that in an insertion-execution sequence, the “original string” ej1ez - - €,,—1
before insertion is defined in the feasible observer and the string e - --0,_1e,-1 after insertion is
defined in the desired observer. This result further implies that the string after insertion is always a
safe one, so private safety is not violated following the insertion choices in any insertion-execution
sequence.

The following theorem shows that the belief function always returns the minimum energy level
at every dimension by strings that have the same observation and reach some state in the estimate,

ini i ; : el 61 e ej-1
under certain insertion choices. By convention, we denote by pj =y{ — z{ — Y, > 5 —

e

0;- :
1 AN yj. for 1 < j < n the j-th prefix of p. Also we let V,g?(s, s”) denote the i-th component of

<

the k-dimensional vector V,,(s, s”).

. . . . e 60 e en-1 On-1
Theorem IV.4.1. Given an insertion-execution sequence p =y| —z] —y5 — 25 — zZ,_ —

1
Vi let Estg(y)) = (xlfl,xl.f)for alll<i<nandletl=ey---e,_1, thenV¥x € x,’i, V1 <i<k, h;?(x) =
min{V,(,f)(s, sH:3Ax € xfl, se P, st f(X',s) = x, 6d(x‘11,P(s')) = xﬁ} where string s is mapped to
)

s’ following Convention IV.3.1 under insertions indicated by p.

Proof. Proof by induction on the length of /. Suppose s = &1e1:--&—1€p—16n, P(s) =1l=e1---¢,
and s is mapped to s = &161e;---E6,e,E001 Where 0; € E), and P(s") = O1eq---6,e, =1I'. Let
lj=ey---ej and l;. = fey---0je; be the j-th prefix of [ and ', respectively. Let Iy = € and s; =
Erer---€j1e€ 1, with 5o = e. We also suppose 5vd(5vs('"5vs(5vd((x‘11,x{),91),€1)'" ,ej-1),0)) =
4,20y and 6,((0,x)),e) = (4, 1o, ) in G,

Induction Basis: When n = 0, nothing is inserted and the result holds immediately.
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Inductive Hypothesis: Assume that the result holds when n = j—1, i.e., for p;.
Induction Step: Consider n = j.
First, 0,a((x4,x1),0) = (¢4}, ) and 8,,(6,a((¥ 1, X7 ),0)),¢)) = (¥, 1,/ }) hold by the
definition of the verifier.
Then in pjy1, zj, is an ej-execution successor of ye. and ye. is a (0}, e;)-insertion successor
of z%. So by definition, ¥x' € xf Vi<i<], h() ()= min {h()(x)+a)(’)(e D+ )+
]+1

‘fj+1 EEuo J

wl(.;)(é?j) :dx e xf , s.t. f(x,ei€j+1) = x’}. From the inductive hypothesis, we have h(’) x) =

j+1
mm‘f min. {V,g?(sj_l,s;._l)+w(i)(ej)+w(i)(§j+1)+w(.)(Hj):Elx"exf xexf st f(xX,sj-1) =x
SJ 1 ]+le uo

Sa(x, P(s/_)) = x%, f(x.e;¢ 1) = x'). Thatis, h(j)+1(x) mln{V(l)(s],s) W ex],s;e P, st

f&",sp)=x 6d(x1,P(s )) = Xy 1} Thus the result holds when n = j, completing the proof. O

Given an energy information state y° € OF, for every x € x/ where E sts(Y°) = (x4, x'), each
component of Aye(x) may be due to different strings with the same projection but different un-
observable substrings. This can be interpreted as follows: since the insertion function does not
know the occurrence of unobservable strings, it should be “conservative” and take into account the

system’s worst case energy level in every dimension.

IV.4.3 Building the Energy Insertion Structure

We now define the Energy Insertion Structure (EIS) by construction in Algorithm IV.1. EIS just
reflects the update of energy and augmented energy information states with event insertion and
execution. It is a bipartite structure of the form: (QF, 0%, E,. f,%. f5.v6.v0. OF) where O} € QF
is the set of energy information states; QZ C QF X E, is the set of augmented energy information
states; fyg : Qf, XE,— Qg is the transition function from Qf states to Qg states; fg : Qg xXE; — Qf,
is the transition function from Qg states to Q’; states; E, is the set of observable events; yj € Qg
is the initial state; vg € NF is the initial energy vector; and Qf is the set of leaf states. We call a
Qy state as Y-state and a QF state as Z-state. A Z-state z¢ is deadlocking if 36 € E},, s.t. f5(z¢,0)!.

Deadlocking Z-states are undesirable and will be pruned away in constructing EIS .
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Algorithm IV.1: Construction of EIS
Input : 0Obs(G), Gy, v
Output : EIS = (QF, 0L, E, fE, fE. Ey,y6, v, OF)
1 QI;: = {yS} where ESts(y(e)) = (xobs,O’ xobs,O)’ Vx e Xobs,0» Vi<k,

h;ig)(x) = é{ng}g{v@)(f) : f(x0,€) = x}, and QF = 0, QF = 0

2 EIS pre = DoDFS (yj), Obs(G),Gy);

EIS = Prune(EIS ,y.);

Procedure: DoDFS (y¢,0bs(G),G,)

for e, € E,, s.t. 5(x7,e,)! in Obs(G), where Est;(°) =x, = (x4, x") do

w

=

5 let z° be an e,-execution successor of y°;
6 add transition y* 2 to fy‘g,
7 | ifz¢ ¢ ZF then
8 0f = 05 Uiz’
9 for 6 € E7, s.t. A%, = 0,4(x,,0), 0,5(%,,€,)! do
10 let y'¢ be an (0, ¢, )-insertion successor of z¢;
11 add transition z° AR y'¢ to 5 ;
12 if y* ¢ OF then
13 if y'¢ is energy safe then
14 0y =0y Uiy
. €0 0o en—1 On1
15 if there exists a run from yj: re =y, — 25 — ¥{ - —— 2, — Y
and 1j <n, s.t. y; < y’¢ then
16 t let Sub(y’®) = yj., stop searching from y’¢, Qf = Qf u{y};
17 else
18 | DoDFS (y'¢,0bs(G),G,);
19 if y'¢ is not energy safe then
20 L Qf: = Q‘E Uy}, Qf = Qf U {y’¢}, stop searching from y’¢, ignore all
L g st.0<6;
Procedure: Prune(EILS )
21 for z¢ € Qg that is deadlocking do
2 | remove z¢and all y* € OF, s.t. f£(),e,) = z¢ for some e, € E,;
23 take the accessible part of the structure;

Algorithm I'V.1 builds the state space of EIS recursively by adding (6, e,)-insertion successors
and e,-execution successors into the structure. In general, EIS represents a game with full obser-
vation between the insertion function and the environment. The environment plays at Y-states and
the insertion function plays at Z-states. The procedure DoDF'S builds the state space of the EIS

in a depth-first search like process. The game is initiated from y( where the system plays first by
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executing observable events. The state estimate component of y{ contains the initial state of the
observer and the initial state of the desired observer. For the energy level matrix Lev,(y;), we track
the minimum energy level of the system by unobservable strings. In Line 4, the environment plays
by executing e, if e, is defined from the system’s estimate x/ in observer Obs(G). Then we create
an e,-execution successor z¢ and define a yg transition out of y°. Note that no string has been
inserted yet and we create z¢ simply to indicate that some string may be inserted before observable
event e,.

After that, the games goes on and it is the insertion function’s turn to play by inserting stings.
In Line 9, 6 is a logically feasible insertion choice if a d,4 transition labeled with 6 is defined
in the verifier and the 6,4 transition is followed by a ¢, transition labeled by some observable
event ¢,. That means 6 can be inserted before e, in the logical sense, without considering the
energy constraint. So we create a (6, e,)-insertion successor y’¢ and define a g transition out of z¢,
indicating that 6 has been inserted before ¢,. Since the initial energy vector is fixed and insertion
is costly, there may only be a finite set of finite-length inserted strings that lead to nonnegative
energy levels. When y’® is safe, i.e., 6 is inserted before e, without violating the energy constraint,
we proceed to check the condition in Line 16. If there exists an initial run r, ending in y’¢ and
y;f € r, for some j < n, s.t. y"¢ subsumes yj., then we know the state estimate E sts(yj) is reached
again, i.e., Ests(yj) = Esty(y'¢). Let Ests(yj,) = (x;?,x; ), then we know there exists a simple cycle
x; e—j> x;.;l N xf in the feasible observer Obsy(G) (also in the observer Obs(G)). There
also exists a cycle starting from and ending in xj’ in the desired observer, whose corresponding

loopis [ =0je;---6,_1e,-1. It is also the case that Vx € x?, Vs e P‘l(l), s.t. f(x,s) = x, we have
n—1 R
V(s)+ Z 6; > 0. In words, even after considering the cost of inserting 6;,- - - , 6,1 into the original
i=j
string, the system’s energy level vector is still nondecreasing in every dimension.
Even though the structure may be further expanded, we terminate searching from y’® and define
Sub(y’®) to store the state subsumed by y’¢. Note that y’¢ and yj. share the same state estimate while

the energy level at y’ is no less than that of yj in component-wise sense. No matter what decision is

made by the environment at y’¢, if the insertion function makes the same decision at the succeeding
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state of y’¢ as it does at the succeeding state of yj., then all the new succeeding states created in this
manner are energy safe as well. This is consistent with the monotonicity property discussed at the
end of Section V.3. Later on, we will see this observation ensures finiteness of EIS .

If no cycle is detected, we call DoDFS again in Line 18 to continue searching until no more
states are added to the structure. On the other hand, if y’¢ is not energy safe, system’s energy level
is below 0 at some dimension. Then we stop searching from y’® in Line 20 and discard longer
string &’ where 6 < 6. Since w;,(0") < w;(0) <0, insertion of & would inevitably drop the energy
level vector below 0 at certain dimension.

DoDF'S may result in some deadlocking Z-states where no insertion can be made. We denote
by EIS /. the intermediate structure obtained after DoDF'S , then remove deadlocking Z-states and
their preceding Y-states recursively in Procedure Prune since the observable events from Y-states
can not be blocked from happening. More reasoning can be found in [119], where a similar prun-

ing process is conducted. Prune works like calculating supremal controllable sublanguage [23]

E

by viewing the environment’s winning states as undesirable, yb; transitions as uncontrollable, f;

transitions as controllable, and Y-states as marked. Next, we show Algorithm IV.1 stops after a

finite number of steps and returns a finite structure, namely, E1S .
Theorem IV.4.2. The state space of EIS is finite.

Proof. By contradiction. Suppose that EIS is infinite. The number of outgoing transitions at each
state is finite since E, is finite and there are only a finite number of insertion choices defined at a
Z-state due to energy constraints. Then by Konig’s lemma (see, e.g., [69]), there exists an infinite
run y{ 4, Fat i 5 2, Z 2 y5--- in EIS. From Algorithm IV.1, every state in the run is energy

safe and it is never the case that i < j, s.t. ! < yj. However, this contradicts the well-quasi

ordering < on safe energy information states. [

The size of EIS is bounded by Ackermann function [92] following a similar augment as in [40],
which also presented a procedure of “unfolding” the game graph until some simple cycles are

formed or the energy level drops below 0. Since Ackermann functions are not primitive recur-
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sive, the complexity of EIS exceedsits counterpart without energy constraint, i.e., All Insertion
Structure in [54].

In EIS, we call a leaf state y© € Qf as a good leaf state if y°© is energy safe, otherwise, we call
it a bad leaf state. We denote the sets of good and bad leaf states by Qi and Qﬁ, respectively.
In order to win the game and solve Problem 1V.3.1, the insertion function should make decisions
such that only good leaf states are reached. The environment just does the opposite to prevent

the insertion function from winning, thus the game on EIS is a zero sum reachability game. We

elaborate the reasoning and discuss both players’ strategies in the next section.

Example IV.4.1. Let the automaton G in Figure IV.1 be with observable events E, = {a,b,c,d},
unobservable events E,, = {u,uy,us,uq,us,ug, u7}, and secret states Xs = {x7,xs,x10}. The system
is granted with initial energy vo = [9,9]7 where T stands for the transpose of a matrix. The
weight function in this example is 2-dimensional and the weight vector of each event is show
in Figure IV.1. Besides, the insertion weight function w;y, is defined as follows: w;,(a)=[-3, -6]7,
win(b) = [=1,=-3]", win(c) = [-2,-2]", win(d) = [-3,-1]".

The observer is shown in Figure IV.2 with states: A = {xg,x3,X4,X9}, B={x1}, C ={x3}, D =
{xs,x6}, E ={x7,x3} and F = {x10}. The system is not current state opaque due to states E and F,
thus we apply insertion functions to enforce opacity. The desired observer Obsy(G) is obtained
by removing E and F from Obs(G) and taking the accessible part, while the feasible observer
Obsy(G) is obtained by adding self-loops for every event in E, at every state in Obs(G); their
figures are omitted here due to space limitations. Next we build the verifier G, in Figure IV.3
following Definition IV.4.1, where dashed lines indicate 9., transitions and solid lines indicate 6,
transitions. G, contains all potentially feasible insertion choices.

Then we follow Algorithm 1V.1 to build EIS in Figure IV.4, where square states stand for Y-
states while oval states stand for Z-states. In DoDF'S, the game is initiated from yg where the envi-
ronment plays first: it can execute events a, b or c. For example, if b is executed, then b-execution

successor zg = (v, D) is reached where it is the insertion function’s turn to play; while if a is in-

serted, then a-insertion successor y{ is reached. We have Ests(y]) = (C,D) as 6,4((A,A),a) = (B,A)
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and 8,((B,A),b) = (C, D) in G, We also have h{,)(xs) = min{h,) (x3) + 0D (b) + 0}, (@), 1 (x4) +
1 0 0
WDb) + 0}, (@) = 5, b3 (xs) = min{h (x3) + WP (B) + 0 (@), 5 (x4) + WP b) + 0} (@) = 3,
1 0 0

I (x6) = min{hl, (xs) + 0D (ua), A, (x5) + 0D(us)) = 0 and b (x6) = min{hl?) (xs) + 0 (us),
1 1 1 1 1

, 0
h;%)()g) +wP(us)} = 0. Hence we have yi ={(C,D), ). The other states are calculated
: 3, 0
similarly.

The first component of h;zi)(xs) = (5,317 comes from string uuzb and insertion of a, while the
second component comes from string ujuzb and insertion of a. Since the insertion function does
not know whether uruzb or ujusb occurs when it observes b, it has to estimate the worst case
energy level, which is consistent with Theorem V.4.1. We list the energy and augmented energy
information states obtained from DoDF'S in Table IV.1.

After DoDFS, we find y5, X yq, Y5, < Y{g and Y5, < ¥{g, S0 we stop searching from yg, y5, and
Y53 Besides, yg, ¥5, Yo, Yo Yo Y11 Y1z Ve Vi Yig Yoa are not energy safe so they are the bad
leaf states. Furthermore, Z-state 75 is deadlocking since no transition is defined out of it. Then we
prune away zz and its preceding Y-state y{, in process Prune of Algorithm IV.1. The final EIS is
shown in Figure 1V.4, where the dashed lines represent deleted states in the pruning process from

EIS o 10 EIS.

Figure IV.1: System G with secret states x7, xg, X0
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Table IV.1: Energy and augmented energy information states

IV.5 Solve the Constrained Opacity Enforcement Problem

In this section, we discuss the strategies for both players to win the game on the Energy Insertion

Structure. We also show that the insertion function’s winning strategies in EIS lead to sound
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Figure IV.2: The observer Obs(G)

Figure IV.3: The verifier G, where dashed transitions are d,4 transitions and solid transitions are
0, transitions
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Figure IV.4: Energy Insertion Structure (without dashed states)
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solutions to Problem IV.3.1.

By definition and Theorem IV.4.2, the runs in EIS are finite insertion-execution sequences
discussed in last section; we denote the set of runs in EIS by Run(EILS). Given r, € Run(EIS),
we denote by y° € r, and z° € r, if y° (respectively z°) is a Y-state (respectively Z-state) in r,. Let
Lasty(r.) and Lastz(r.) be the last Y-state and Z-state of r,, respectively, and denote by Run,(EILS)

(respectively Run,(EIS)) the set of runs whose last states are Y-states (respectively Z-states).

) el

. o €0 €n—1
Given an initial run r, = yj — zj — y{ — -y .

14 —z

n—1

e

On—1 . .o
¢ | — 5, the edit projection P, :

Run(EIS) — P[L(G)] is defined such that P,(r.) = epe;---ey—1. So P, just returns the original
string before any insertion takes place. For r, € Run(ELS), we denote it by r.(l) if P.(r.) = L.
Besides, we call 6pepbie; - - 0,141 as the generated string of r, and denote it by [¢(r,). In other
words, I,(r,) is the string after insertion. By Lemma IV.4.1, we know that 64(Xops,0,l¢(rc)) 18
defined in Obsy(G), so ly(re) € L(Obsy(G)) = Lyage, i.€., | is mapped to a safe string by insertion
decisions in EIS.

Then we define strategies for both players in EIS. The insertion function’s strategy (insertion
strategy) is defined as 7, : Run,(EIS) — E, and the environment’s strategy as ., : Runy,(EIS) —
E,. When it is a player’s turn to play, it selects a transition according to its strategies. Since the
insertion function does not know the occurrence of unobservable events and makes decisions from
its observations, its strategy is called observation based. Denote the set of all insertion strategies
by Il;, and the set of all environment’s strategies by Il,,. From an insertion strategy, we know
exactly the decisions of an insertion function, so from now on, we use “insertion strategy”” and
“insertion function” interchangeably.

A strategy m; € I1; for player i € {in,en} in EIS is called information state based if the decisions
only depend on the current energy (augmented energy) information state. In other words, 7; € I1;
is information state based if 7;(rf) = ni(r}) for all ry, r} € Run(EIS) such that Last(rf) = Last(r}).
Therefore, information state based strategies for the insertion function and the environment can be
represented as 7y, : Qg — E} and 7,y : Q’; — E,, respectively. We also call such strategies as or

positional. From results in [4,43], positional strategies are sufficient to win a reachability game so
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we assume both players’ strategies are positional in the rest of this section.
If the insertion function plays 7;, while the environment plays ., from the initial state y{, then

. .. . e 0
a unique initial run, denoted by r,(7;,, ey ), is generated. We also define Run(r;;,, v¢) = {y© LN Z? 4

y5eo oty z_, ﬂ v Vi<n,0; = mp,(y° iR Fat El—) R R z7)} as the set of runs starting from
y¢ and consistent with insertion strategy m;,, i.e., insertion decisions in the run are specified by
min. The set of runs consistent with an environment’s strategy 7, are defined analogously and we
denote it by Run(y®, m.;).

In EIS, we say that the insertion function wins the game if only good leaf states are reached
while the environment wins if bad leaf states are reached. Thus they play a finite-duration zero
sum reachability game. By defining the energy information states, we have constructed a game
under full observation on EIS. Therefore, either the supervisor or the environment has a winning
strategy [4]. Formally speaking, m;, € I1;, is winning from y° if Vr, € Run(nj,,y¢), Lasty(r,) €
Qf = Lasty(r,) € Qg , 1.e., i, is a winning strategy for the insertion function if all runs consistent
with it end in a good leaf state. In other words, the insertion function wins if private safety is
satisfied and the energy level of the system is never below 0 in every dimension.

We define the insertion function’s winning region Win;, in EIS as the set of states where it
has a strategy to reach a good leaf state no matter what strategy the environment plays. This is a

commonly used concept in graph game theory, see., e.g. [4]. Then we present Algorithm IV.2 to

compute Win;,.

Algorithm IV.2: Compute the insertion function’s winning region
Input : EIS

Output: Win;,

Remove all bad leaf states from EIS;

ot

2 while 3z° € QF, s.t. ¢ is deadlocking do

3 L Remove z¢ and all y°* € QF, s.t. f,£(),¢,) = z¢ for some e, € E,;
4 Take the accessible part of the structure;

5 Denote the remaining structure by EIS ,,;

6 if EIS,, is not empty then

7 | Return all states in EIS W

8 else

9 | Return 0;
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In Algorithm IV.2, we prune away bad leaf states and calculate the winning region for the
insertion function in an iterative manner. We first remove all bad leaf states from EIS. If the
removal of bad leaf states results in some deadlocking Z-states, then we know all transitions from
such Z-states lead to bad leaf states, where the insertion function loses the game for sure. Thus
we further remove those Z-states and their preceding Y-states where the environment has a way
to reach the deadlocking Z-states. This process continues until no more states are removed and
we denote the resulting structure by EIS,,. The pruning process works in a fixed-point iteration
manner.

By definition, a privately safe insertion function (strategy) maps every string in P[L(G)] to
a safe one. However, state pruning may remove all potentially feasible insertion choices for a
particular string if they all violate energy constraints. Thus we need to guarantee that all strings in
P[L(G)] are still preserved in the E1S,, after the pruning. Before proving that assertion, we present

the following result from Algorithm 13.

Lemma IV.5.1. If Win;, # 0, then Al e PIL(G)), s.t. Ymjp € iy, V1 € Run(mn,y(e)) with P.(r,) =1,

Lasty(r,) € QF, in EIS.

Proof. By contradiction. We assume 3/ € P[L(G)], s.t. Y7;,, € 1}, V7, € Run(mjy,, yg) with P.(r,) =1

. el 61 en-1
in EIS, Lasty(r,) € Qﬁ). Suppose I = ep---e,-1 and re = y§ — 2§ — ¥5 -+ .

On-1 e
e yn €
Run(min,yg). Since Lasty(r,) € ng for all r, € Run(mn,yg) with P.(r,) = [ and for all 7, € Ip,

the last Y-state of every run in Run(m;,, yg) with P.(r,) = [ is pruned in Algorithm 13. Then we

e

know the last Z-state of each run in Run(r;,, yg) with P (r.) = [ becomes deadlocking so those z; _,

are pruned away as well. Furthermore, we also prune away all preceding Y-states y¢_, such that
ysz(yfl_ »en—1) = 2Z,_, by Algorithm 13. This process continues until the initial state y; is pruned,

so EIS,, is empty. [

Next we slightly modify EIS,,: merge y¢ with Sub(y®) by letting all transitions going to y®
reach Sub(y®) instead, if Sub(y®) is defined in Algorithm IV.1. Intuitively, we assume that the

game continues at the leaf states of EIS,,, which share the same state estimate with the state
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subsumed by them. We denote the resulting structure by EIS,, and extend concepts of runs and
both players’ strategies to EIS ,,. Besides, the energy level vector at each leaf state is no less than
that at the state subsumed by the same leaf state. Thus if every leaf state is energy safe, the system’s
energy level vector never contains a negative element when their state estimates are reached again.
In this way the game is extend to be infinite-duration without loss of generality since we assume
that the insertion functions in E1S,, always make the same decisions at each leaf state and the state
subsumed by it. Therefore, if the insertion function plays according to strategies in EIS ,, it will
always maintain the system’s energy level above 0 in each dimension. This is an implication of the
monotonicity of energy game discussed at the end of Section V.3 : if the insertion function wins
the game from some state with energy level vector v € N, it also wins the game from the same
state with any energy level vector v/ > v.
In EIS ,,, we define the unmodified language L,(EIS ) ={l € P[L(G)] : Ar, € Run(EIS ), s.t. P.(r,) =

1}, where Run(EIS ;) denotes the set of runs in EIS,,. L,(EIS ) just “retrieves” the original lan-

guage before any insertion takes place. Then we prove a property of £,(EIS ;) in Lemma IV.5.2.
Lemma IV.5.2. If Win;,, # 0, then L,(EIS ) = P[L(G)].

Proof. By the definition of L,(EIS,,), L,(ELS ) C P[L(G)] holds immediately. Thus we only
need to show P[L(G)] € L,(EIS ;) and we proceed by contradiction. Assume that £,(EIS ;) SZ
PIL(G)] and Al € P[L(G)] but [ ¢ L,(ELS ;). Then by construction of EIS and EIS ,,, there exists
a finite prefix I’ <[, s.t. Vm, € Iy, V7, € Run(miy,yg) with P(r.) = I, Lasty(r,) € ng. That is,
there exists a finite string in P[L£(G)] such that no insertion strategy in EI1S,, can map it to a safe
string without reaching a bad leaf state. However, that means Win;, = ) by Lemma IV.5.1, which

contradicts the assumption. 0

We are now ready to state one of the main results in this chapter. Given a winning insertion
strategy in E1S, we can always construct an insertion function solving Problem I'V.3.1. Conversely,
if there exists an insertion function solving Problem IV.3.1, we can always find a winning insertion

strategy in EIS.
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Theorem IV.5.1. There exists an insertion function solving Problem IV.3.1 if and only if there

exists a winning strategy for the insertion function in EIS.

Proof. The “only if” part. We show by contrapositive, i.e., if no winning insertion strategy exists
in EIS, then there does not exist an insertion function solving Problem IV.3.1. If no strategy exists
for the insertion function to reach good leaf states in E1S, then we know the winning set Win;, is
empty, i.e., Algorithm 13 returns an empty set. So by Lemma IV.5.1, ds € £(G) with P(s) =1 =
eo---en-1, s.t. for all initial () € Run(EIS), Lasty(r.()) € QF = Lasty(r.()) € Q% i.c., all runs
with original string / end in bad leaf states. Then by the pruning process in Algorithm 13, every
initial run r.(/) would be removed, thus the initial state of E1S is also removed and EIS,, becomes
empty. From the construction in Algorithm I'V.1, for all feasible insertion choices 6y, - ,0,-1 s.t. s
is mapped to s* by Convention IV.3.1 and 6peq - --6,-1€,-1 € Lgqfe, we have that V,(s,s”) < _O> In
other words, no matter what string is inserted into /, the system’s energy level would drop below 0
at some dimension. Thus no insertion function solves Problem IV.3.1.

The “if” part. Suppose that 7, is a winning insertion strategy in EIS. Since we follow
Algorithm 13 to obtain Win;, and EIS,, then m;, is also in EIS,,. Then we extend EIS, to
EIS ,, by merging states. By definition of EIS, the state estimate component of each state is in
X, € Xopsa X Xops S0 the intruder’s estimate is always in X,p5q. Since by the definition of the desired
observer, ¥ Xopsd € Xobsds Xobsd € 255, we know 7j, maps every string in P[£(G)] into a safe string.

Besides, Vs € L(G) with P(s) =1 = epeq ---e,—1, suppose that there exists a run r,(l) = Y5 £,

0 e €n— O . . .
Zg BN yf 4 e y© o zf | SUslN ¥y consistent with m;, in EIS,,, denoted by ry, (). Every

n—1 n—
¥¢ € rg, () is energy safe and the belief function in each energy information state returns the
minimum energy level of the system at every dimension under certain insertion choices. Then

from Theorem V.4.1, we know that Vs € P~ (1) N L(G), V,(s, S ) > T)) therefore r;,, solves Prob-

lem IV.3.1. O]

The above theorem shows the completeness and soundness of Algorithms IV.1 and 13. There-
fore, Problem IV.3.1 can be solved by first building E1S and then finding the insertion function’s

winning strategies if they exist. As was shown in last section, the state space of EIS is bounded by
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Ackermann function [87]. Besides, both the winning set and strategies for a reachability game can
be computed in linear time with respect to the size of EIS [4]. Therefore we have the complexity

bound for solving Problem IV.3.1. We end this section by revisiting our running example.

Example IV.5.1. We revisit Example 1V.4.1 and synthesize insertion functions to solve Prob-
lem 1V.3.1. We follow Algorithm 13 and build EIS ,, in Figure V4. In Algorithm 13, all bad
leaf states are removed and the winning region Win;, is the set of states in EIS,,. Here we use
dashed lines to connect each good leaf state with the state subsumed by it. Observe that condi-
tion L,(EIS ;) = P[L(G)] holds for EIS ,, in Figure V.4 so that every string in P[L(G)] may be
mapped to some safe strings. From EIS,, we find one winning insertion strategy, which solves
Problem IV.3.1 and is indicated by blue lines in Figure V.4. Finally, we encode this selected in-
sertion function as an I/O automaton in Figure IV.6, where the insertion decisions are explicitly

shown.

Figure IV.5: EIS,, with a winning insertion strategy indicated by blue lines
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Figure IV.6: An insertion function that solves Problem IV.3.1

IV.6 Bounded Cost Rate Insertion Strategies

In the last section, we have solved the opacity enforcement problem so that the system’s energy
level at every dimension never drops below 0. Since event insertion always costs energy, it is
beneficial to explore an economical way of insertion for practical purposes. Motivated by this
requirement, we propose the concept of bounded cost rate insertion strategies and investigate their

synthesis in this section.

IV.6.1 Motivation and Problem Formulation

The structure EIS,, obtained in the last section usually contains more that one insertion strategies
that solve Problem IV.3.1. Generally, there exist cycles in the original system thus insertion func-
tions may need to insert fictitious events infinitely often to enforce opacity, in which case event
insertion consumes an infinite amount of energy. From a practical point of view, it is desirable to
require that the insertion function’s long run rate of energy consumption be bounded so that the
designer may control the energy consumed per insertion step.

To facilitate our discussion, we proceed as before and merge each leaf state of E/S,, with the
state subsumed by it, resulting in E1S ,,,. As was discussed earlier, the same decision is made at the
leaf state and at the state subsumed by it; also, the same game starts from the leaf states as from
the subsumed states. Thus we are able to discuss infinite-duration games on EIS ,.

To explore the rate of insertion cost, we first define V. : Run(EILS ;) — (Z\ N)¥ as the accu-
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mulative insertion cost function for runs in EIS,,. Given ry =yj — 2{ — Y5 — 2

n—1

n
vo, Ve(rm) = Zwm(ei). We also define Vy,e : Runj,f(ELS ) — RF as the limit mean insertion

i=1
. . . . . . c €1 L, ,e 0
weight function for infinite runs in EIS ;. Given ry, =y{ — 27 — y5 — 25 — -+, Vipe(rm) =

1 n
liminf — Z win(0;). Then we propose the bounded cost rate insertion strategy synthesis problem.
n—oo n
i=1

Problem IV.6.1. Synthesize a bounded cost rate insertion strategy m;, such that for any infinite

initial run ry, € Runi, ¢(mp, yf)), —Vine(rm) < vp for some threshold vector vy, € N,

Intuitively, we require the long run average of insertion cost be below a threshold under bounded
rate cost insertion strategies, so that the rate of insertion cost does not blow up. This problem is
discussed on EIS,, and is meaningful when the original system G is cyclic, i.e., there are infi-
nite runs in G and the EIS,,. Problem IV.6.1 can be viewed as a multidimensional mean payoff
game [33] between the insertion function and the environment. Specifically, the insertion function
tries to maintain multidimensional mean payoff vectors bounded by a given threshold v;, while the
antagonistic environment tires to spoil the goal. Furthermore, this game is with complete infor-
mation as inserted events and insertion cost are known to both players. Due to this fact, we may
ignore the state information but only focus on weights associated with f;, transitions in EIS ,,.

1 n
We add a minus sign on both sides of the inequality in Problem I'V.6.1 and obtain liminf — Z win(6;) >
n—oo n
i=1

—vp. Equivalently, we may show whether linrr_1>ior01f % Zn:(w,-n(ﬁi) +vp) > T)) holds. Hence, we can
add vj, to each insertion weight vector in EIS,, andi:clliscuss the equivalent mean payoff objec-
tive. For simplicity, we still denote the structure by EIS,, and will determine whether the limit
mean insertion cost is above 0 in the game graph. We further let W = max{—a)l(.il)(e) :3 e QIZE ,0¢€
E;, s.t. lef (z%,0)!,1 <i <k} be the maximal absolute value of elements in insertion weight functions

defined in EIS,,. Obviously, W is a positive integer.
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IV.6.2 Hyperplane Separation Technique

A multidimensional mean payoff game is more challenging to solve than a one-dimensional game
since the objectives in different dimensions may be in conflict. In this section, we apply a recently-
proposed method called hyperplane separation technique from [34] to solve Problem IV.6.1. Orig-
inally, this technique was developed for general multidimensional mean payoff games. The main
idea is to reduce the multidimensional mean payoff game in Problem IV.6.1 to a one-dimensional
mean payoff game on the same graph and then solve it. It can be further shown that there is close
relation between winning regions of both players in the original game and the induced game.

Since the algebraic mean of a set of vectors can always be expressed as a convex combination of
those vectors, we have the following observation: if there exists a convex combination of the cost
vectors such that some dimensions remain negative, then there exists a strategy for the environment
to spoil the goal of the insertion function in Problem IV.6.1. Intuitively, we are going to “separate”
the convex combinations leading to each player to win the game. From results in geometry, a
hyperplane may also be used to separate vectors in a linear space.

In a linear space, a vector v lies above a hyperplane H with normal vector A if v/ - 1 > 0; other-
wise, it lies below H; see, e.g., [13]. Furthermore, if the mean payoff vector resulted from a game
lies below a hyperplane containing the origin, then it has at least one negative element. Therefore,
if such a hyperplane exists, then the insertion function fails to enforce its multidimensional mean
payoff objective and loses the game. On the other hand, if the insertion function is able to achieve
mean payoff vectors that lie above all possible hyperplanes, then it can ensure its objective and win
the game.

Given a k-dimensional insertion weight vector w;,(6) for some insertion decision # and a vector
1 € R¥, we denote by win(®T - A the inner product between w;,(0) and A. With a slight abuse of
notation, we also use wiTn - A when there is no need to specify the insertion decision 6.

Then we assign wl.Tn - A to the edge labeled with insertion weight function w;, in EIS,, and
transfer a game with multidimensional objective to one with one-dimensional objective. From the

above discussion, the insertion function achieves a mean payoff vector that lies above H or a mean
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payoff vector with all nonnegative elements if and only if it ensures that the one-dimensional mean
payoff objective remains nonnegative, with weight function cul.Tn -Ain EIS ,,. Therefore, our goal is
to search for such hyperplanes, which transfers the problem of solving a multidimensional mean

payoff game to one of finding a proper normal vector in the k-dimensional integer space.

IV.6.3 Synthesize Bounded Cost Rate Insertion Strategies

In this section, we present several results to establish the relation between the original multidimen-
sional mean payoff game and the induced one-dimensional mean payoff game after applying the
hyperplane separation technique. Based on them, we then derive solutions to Problem IV.6.1.

Denote by Win,,, (respectively Win;,,) the winning region of the environment (respectively the
insertion function) in the multidimensional mean payoff game with weight function w;,; further
denote by Winl, (respectively Winfm) the winning region of the environment (respectively the
insertion function) in the one-dimensional mean payoff game with weight function a)l.Tn - A. From
now on, we focus on the environment’s winning strategies. Since a mean payoff game under
complete information is determined [43], i.e., from any vertex in the game graph, exactly one
player has a winning strategy, we may directly obtain the insertion function’s winning strategies
afterwards.

Given a vector A € R¥, we do the inner product between 1 and each insertion weight vector
in EIS,, to obtain a game with scalar insertion weights, while we do not consider the weights
associated with event occurrence anymore. In the new game, we hope to achieve a nonnegative
mean payoff objective. We repeat Lemma 1 and Lemma 2 in work [34] here, which establish the

relation between the winning regions for both players in the original game and the new game.

» Forevery A € R¥, we have that Win! C Wingy; also if Winél # 0, then Win,,, # 0.

e If for all 1 € R* we have that Winﬁm =0, then Win,,, =0

These results illustrate a potential way to determine whether the environment player has a non-

empty winning region in the multidimensional mean payoff game: we just need to check all A € R*
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to determine whether the environment wins the one-dimensional mean payoff game with weight
function w; - A. The readers are referred to [34] for detailed proofs.

Therefore, the key point is to search for a hyperplane and then determine the winner of the
induced one-dimensional mean payoff game. However, it seems that we need to check infinitely
many vectors in R¥, which is not feasible in practice. Fortunately, by Lemma 3 in [34], we only
need to check a finite number of vectors in a k-dimensional space. Let M = (k-n- W)**!, where
W is the maximal absolute value in insertion weight functions defined in EIS,,, n is the number
of states in EIS,,, and k is the number of dimensions. For a positive integer i, we denote by
ZF={jeZ:~i< j<i}(resp. ZF ={j€N:1< j<i}) the set of integers (positive integers) from
—ito i (resp. from 1 to 7). The lemma is stated here while its proof is omitted, which can be found

in [34].

o There exists A € R¥ such that Win?

em

# (0 if and only if there exists A’ € (Zfd)k such that Winj,’n #0.

To summarize and strengthen the above results, we repeat Lemma 4 in [34] as a theorem here

to show the key argument for solving Problem IV.6.1.

Theorem 1V.6.1. Given the multidimensional mean-payoff game on EIS ,,, we have that: (1)

Unezt f Wittgy € Wittem; (2) if Uezt, e Wingy, = 0, then Winey, = 0.

em —

This theorem illustrates that if the environment wins the one-dimensional mean payoff game
with weight vector w; - A at a certain state in EIS,, for some A € (Z;‘})k, then it also has a way to
beat the insertion function and win the multidimensional mean payoff game from the same state;
conversely, if the insertion function wins any one-dimensional mean payoff game with weight
vector wl.Tn -A where A € (Z;[,[)k at a state in E1S ,,, then the insertion function also wins the original
multidimensional game from that state. This theorem suggests that we can restrict attention to
vectors in (Z;[,[)k and determine which player wins the transformed one-dimensional game. More
details concerning the proof of the theorem can be found in [34].

Based on the above results, we present Algorithm IV.3 to solve Problem IV.6.1. In the algo-

rithm, we assume that each state in EIS,, is numbered from 1 to n. At each state in EIS,,, we
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sequentially iterate over vector A € (Z;‘L/,)k to see if there exists a winning strategy for the environ-
ment with weight function w; - A by the pseudo-polynomial algorithm proposed in [17] for mean
payoff games. Then we define the attractor for each player in EIS,,. Let Q be a set of states
in EIS,,, then for the environment (“em” for short), Attr,,,(Q) is defined recursively as follows:
Q0=0, Qjs1 = QU € 08 : 3 € Qj,e, € E, sit. fE(GS,e,) =22} Ul € QE 1 ¥y € QF : [F9 €
E}, s.t. fg(z",e) =y1= [y* € Q;1} and Attrem(Q) = Ujso Q. Similarly, we define the attractor
for the insertion function. Intuitively, the environment ensures to reach Q; from Q;; within one
transition regardless of the insertion function’s strategies. Therefore, the environment may reach
states in Q from states in Aftr,,,(Q) within a finite number of transitions regardless of the insertion
function’s strategies. On the other hand, the environment may avoid reaching Q if it is at states

outside of Attr.,(Q).

Algorithm IV.3: Find solutions to Problem IV.6.1

Input : EIS,,
Output: Insertion strategies solving Problem 1V.6.1
1 for j=1:ndo
2 if g ; is still in the remaining structure then
3 Consider g; € Q?UQ? in EIS ,,;;
4 for 1 ¢ (Z[]})k do
5 if there exists an environment’s winning strategy from q; to achieve a negative

mean payoff in the transformed one-dimensional game with weight function
w; - A by the method in Section 5 of [17] then
6 L Remove Attrop({g;}) from EIS ,,;

|

if the remaining structure is not empty then

| Return insertion strategies in the structure;
else
10 | No solution exists for Problem IV.6.1.

e e

In Algorithm IV.3, we apply the method in [17] to solve the induced one-dimensional mean
payoff game and this method outperforms any other known method in terms of complexity. If at the
current state in E1S ,,, there exists a winning strategy for the environment for the one-dimensional
mean-payoff objective with weight function a)l.Tn -4, then we remove the attractor of the current state

and proceed to the next iteration. The reason is that if the environment wins the mean payoff game
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from a vertex in the game graph, it also wins the game from the attractor of the current vertex.'
Thus the game graph may be shrinking when the algorithm is running. However, if the environment
is unable to win the one-dimensional game for any A € (Z;,I)k at the current state, i.e., the insertion
function has a winning strategy to enforce a nonnegative mean payoff from the current state for
all 1€ (Z]T/I)k, then the insertion function may enforce a mean payoff vector with all nonnegative
elements. Thus this state should be included in the winning region of the insertion function for
the multidimensional mean payoff game. Therefore, after all states in EIS,, are checked, the
insertion function has winning strategies for Problem IV.6.1 against all environment’s strategies if
the remaining structure is not empty. Otherwise, no solution exists for Problem IV.6.1 if all states
of EIS,, are removed. Besides, as positional strategies suffice to win a mean payoff game with
perfect information [43], we simply let strategies returned by Algorithm I'V.3 be positional so that a
finite number of strategies are returned. The correctness of Algorithm IV.3 is from Theorem IV.6.1
and more details concerning solving a one-dimensional mean payoff game are available in [17].
Finally, we briefly discuss the complexity of Algorithm IV.3 following a similar argument as
in [34]. When running the algorithm, we need 7 iterations under the worst case and in each iteration
we solve at most M¥ one-dimensional mean payoff games. Thus the iterative algorithm needs to
solve O(n - M¥) one-dimensional mean payoff games with m edges, n vertexes, and the maximal
weight being at most k- W- M (as the maximum elementin all 1 € (Z;{/I)k is M, the maximum weight
in every dimension of w;, is W, and we sum k dimensions). Since one-dimensional mean payoff
games with n vertexes, m edges and maximal weight W can be solved in time O(n-m- W) by the
method proposed in [17], the overall complexity of the algorithm is O(n?-m-k-W-(k-n- W)k2+2k+1),

which is polynomial in terms of the number of vertexes when & is fixed.

Example IV.6.1. We revisit Example IV.5.1 and further discuss Problem IV.6.1 based on the so-
lutions of Problem 1V.3.1. We show EIS ,, in Figure IV.7 after merging the leaf states with states

subsumed by them in EIS ,,. Then we investigate the bound of insertion cost rate by starting with

I'The pruning here is similar to calculating the supremal controllable sublanguage [23] by viewing the environ-
ment’s winning states as undesirable, fyg transitions as uncontrollable, 5 transitions as controllable, and Y-states as
marked.
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threshold vy, = [3,3]" and see if Problem 1V.6.1 has a solution. It is seen that EIS ,,, contains cyclic
runs and this problem is discussed on them. We add vy, to each each insertion cost vector in EIS ,
to obtain the new weight vectors wi,(b) + vy, = [2,017, win(d) + vy =[0,217, win(e) + vy = [3,3]7
and those events are inserted in cyclic runs. After running Algorithm IV.3, we find that there exist
insertion strategies solving Problem IV.6.1. The detailed process is tedious and is omitted here.
For example, one feasible insertion strategy is to choose to insert b at Z-state z5,. Then it is easy to
see that this strategy achieves a positive mean payoff value.

However, if we change the threshold vector to v, = [1, 117, then Problem I1V.6.1 has no solution.
From Figure V.7, we see that two simple cycles y, 5 z ﬂ) ¥4 5 z5 ﬂ) y5 and y5, 5 z5 ﬂ) Ve 5
Zi ﬂ) yg both have weight vector wi,(b) + wi,(d) = [-4, —47T. Since M =12,21" > v, no

insertion strategy is able to enforce the mean payoff threshold [1,1]7.

Figure IV.7: EIS ,, after merging states

IV.7 Conclusion

This chapter investigated opacity enforcement by insertion functions under multiple energy con-

straints. To the best of our knowledge, it is the first to investigate opacity enforcement under such
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quantitative constraints. The system is initialized with certain types of energy and the energy lev-
els change dynamically with event insertion and execution. Our goal is to synthesize an insertion
function that enforces opacity as well as ensures that the system’s energy level in every dimension
is never below zero. A bipartite information structure called Energy Insertion Structure (EIS) was
defined to characterize the game between the insertion function and the environment. The inser-
tion function’s winning strategies in E1S provably solve the opacity enforcement problem while
if no winning insertion strategy exists in E1S, no solution to the problem exists. Thus EIS pro-
vides a sound and complete characterization of the solution space. Based on these solutions, we
subsequently consider the rate of insertion cost and proposed the bounded cost rate insertion strat-
egy synthesis problem, which is formulated as a multidimensional mean payoff game. A method
called hyperplane separation technique was applied to reduce the multidimensional game to a one-
dimensional game on the same graph. Additional analysis showed that by solving the induced

games, we obtain valid solutions for the original problem.
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CHAPTER V

Optimal Mean Payoff Supervisory Control

under Partial Observation

V.1 Introduction

In this chapter, we formulate two types of optimal mean payoff supervisory control problems
under partial observation and solve them in sequence. The first goal for the supervisor under both
scenarios is to ensure that the energy level of the system is never below O or that the limit rate of
energy level change is above a certain threshold. Then the concept of energy information states is
proposed, which incorporate necessary information about the current states and the energy level of
the system. After that we transfer each of the above problems into a two-player safety game [4]
between the supervisor and the “environment” (aka system) on a finite information structure. The
structure is called First Cycle Energy Inclusive Controller (FCEIC). By construction, we show
that the winning strategies of the supervisor in the FCEIC correspond to potential solutions of the
proposed problems: they ensure that the nonnegative energy level or the mean payoff threshold
condition is satisfied. It turns out that the corresponding FCEICs only bear slight differences under
the two problems, which is why we treat them concurrently. In the second phase, starting from the
preceding respective solutions, we find optimal control strategies for the long run operation of the
system, by searching over the winning regions in the FCEICs.

Our solution methodology is also inspired by graph games in quantitative reactive synthesis,
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especially mean payoff games [43]. A mean payoff game is an infinite-duration turn based two-
player game on a weighted graph. The two players take turns to play by selecting an outgoing
edge at their positions, resulting in an infinite path. The goal of the first player is to maximize the
average payoffs (weights) of traversed edges while the goal of the second player is to minimize
them, thus the game is zero sum. Well structured solutions were proposed for mean payoff games
with perfect information [43,135], where both players know the complete history of the game up to
their current positions. What is more challenging is the case of mean payoff game with imperfect
information where one player is absent from the complete history of its opponent. Such games are
in general undecidable [40] while some decidable classes were presented in [50], which motivated
our assumptions on the system in this chapter. From the results in [2], the winning strategies
for both players in mean payoff games may be derived by focusing on the first simple cycle that
appears infinitely often. This inspired us to propose the concept of FCEIC.

In contrast with reactive synthesis, there is usually a plant, i.e., a system to be controlled, in
supervisory control theory. Besides, the supervised system is closed-loop in the sense that the
“input” to the supervisor is the set of strings generated by the system so far and the “output” of
the supervisor is a control decision to inform the system what events are allowed to occur. Fur-
thermore, the supervisor may allow multiple events to occur simultaneously, in which case it is
the system that decides what event to execute next. This mechanism is similar to the so-called
multi-strategy in game theory [4], under which one player may choose more than one outgoing
edges at a position. In general, the supervisor may only have limited control and observation ca-
pabilities, i.e., some events of the system can never be disabled and some events are not observed
by the supervisor. Those limitations are usually not characterized in games for reactive synthesis.
Besides, the designed supervisor in this chapter should satisfy logical and quantitative require-
ments simultaneously. The above mentioned differences impose additional difficulties on directly
applying existing results of quantitative graph games to solve a supervisory control problem. Thus
special analysis is necessary to “bridge the gap” [42] and the established methods in two-player

games may also need to be adjusted for our specific problem.
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The structure FCEIC is proposed so that the analysis of two-player quantitative games may be
performed in the presence of a plant to fit in the framework of supervisory control. The FCEIC is
similar to the concept of Kripke structure in [5]. Notice that our work is not the first one to solve
supervisory control problems by leveraging results from graph games in reactive synthesis, see,
e.g., [90,91,125,126]. However, both [125] and [126] focused on qualitative synthesis problems
by control while [91] solved a mean payoft optimization problem with full observation supervisors.
In contrast to the problem studied in this chapter as well, [90] discussed supervisory control under
another game framework, namely fixed-initial-credit energy games under partial observation. Our
work is also inspired by the work in Chapter IV which solved opacity enforcement by insertion
functions under quantitative constraints and transformed the problem to a game with some different
quantitative objective.

The following sections are organized as follows. Section V.2 describes the system model. In
Section V.3, we formulate two types of optimal mean payoff supervisory control problems under
partial observation. Section V.4 introduces energy information states and the First Cycle Energy
Inclusive Controller (FCEIC) for each problem. Section V.5 analyzes relevant properties of the
FCEIC, then partially solves the two proposed problems. Winning control strategies in the FCEIC
ensure that the energy level of the system is always nonnegative or that the mean payoff is always
above some threshold, corresponding to the two formulated problems. Section V.6 completely
solves the two problems by finding the optimal solution from the partial solutions obtained in

Section V.5. Finally, Section V.7 concludes the chapter and raises directions for future work.

V.2 System model

We consider supervisory control in the same system model by weighted finite-state automata as in

Chapter I'V:

G=WX,E,f, xo,w)
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where X is the finite state space, E is the finite set of events, f : X X E — X is the partial transition
function, xp € X is the initial state, w : E — Z is the weight function that assigns an integer to
each event. We view the event’s weight as its energy payoff in this chapter. A positive number
stands for energy gain while a negative number stands for energy cost. The transition function is
extended to X X E* in the standard manner and we still denote the extended function by f. The
language generated by G is defined as £L(G) = {s € E* : f(xp, s)!} where ! means “is defined”. We
denote by s < u if string s is a prefix of u, and s < u if s <u, s # u. The function w is additive and
its domain can be extended to E* by letting w(e) = 0, w(se,) = w(s)+ w(e,) for s € E* and e € E.
Given s € L(G), the (accumulative) payoff of s is the sum of each event’s weight in s, i.e. w(s).
The system also has vy € N as its initial energy.

In this chapter, we assume that the safety property is already satisfied and we do not consider
the non-blockingness property either, thus no marked states are included in the system model.
Instead, we discuss the (weak) liveness property: a system G is live if its generated language £(G)
is live, i.e., Vs € L(G), Ju € E, s.t. su € L(G). That is, there is a transition defined at each state
in G, which thus never terminates. The liveness requirement on G is without loss of generality
since it can be relaxed by adding observable self-loops at terminal states where no active events
are defined, as was done in [103]. Overall, we can think of the given G as a controlled system that
satisfies the original safety and non-blockingness requirements.

Given an automaton G, for x1,x; € X and e € E, we denote by x; 5 xp if f(x1,e) = x2. A run
in G is a sequence of states and events: r = x| SR X2 2,00 X, and it may be infinitely long.
We denote the set of runs in G by Run(G). A run is initial if its initial state is the initial state of
the system. We say that a run forms a cycle if x| = x,, and a cycle is simple if Vi, j € {1,2,---n—1},
i # j= x; # x;. If r is a cycle, there is a corresponding (string) loop eje; ¢, starting from and
ending in x;. The loop is called simple if the cycle is simple.

n

For a run r = x; SEN X2 2, .05 Xn+1, 1ts (accumulative) payoff is Zw(ei) and its mean

i=1

1 n
payoff is — Z w(e;). We also define the system’s energy level for a run as V : Run(G) — Z where
n
i=1
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n
V(r)=vo+ Z w(e;). So the energy level changes dynamically with the occurrence of events.

i=1
Furthermore, we let Run;,s(G) be the set of infinite runs in automaton G. Then we define

.. . . (] €
Viim : Runi, (G) — R as the limit mean payoff of an infinite run. Forarunr = x; — x; — -+,

-
Viin(r) = liminf Z} w(e;)

1 n
Here we take the infimum of the sequence {— Za)(ei)} so that its limit always exists. Notice
n
i=1
that the limit mean payoff of a run only depends on the mean payoff of cycles that are traversed

. . . . ei ei €j .
infinitely often in the run. For example, if x; — x;41 Ly j+1 18 the only cycle that appears

infinitely often in the run r, then

1 J
Viim(r) =
lim(r) J._Hllzz;w(ez)

In other words, the limit mean payoff is independent of finite prefixes of a run.

The system is controlled by a supervisor [23] that dynamically enables/disables events of the
system so that some specification is achieved. The event set E is partitioned as E = E.U E,,., where
E. is the set of controllable events and E,. is the set of uncontrollable events. A control decision
v E 2E by the supervisor is admissible if E,. C v, i.e., the supervisor never disables uncontrollable
events. We define I' = {y € 2B E,. C v} as the set of admissible control decisions. The system is
also partially observable and E is partitioned as E = E, U E,,,, where E, is the set of observable
events and E,, is the set of unobservable events. Given a string ¢t = e € E”, its natural projection
P : E* — E} is recursively defined as P(t) = P(t'e) = P(¢')P(e) where ' € E* and e € E. The
projection of an event is P(e) = eif e € E, and P(e) = € if e € E,,, U {€}, where € is the empty string.

A supervisor is a function S : P[£(G)] — I' and we denote by S the set of supervisors. A
partial observation supervisor makes decisions only based on the projected behavior of the system.
We use S/G to represent the controlled system under S. Accordingly, we denote by £(S/G) the

language generated in S /G and Run(S /G) the set of runs in S /G, respectively.
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Next, we define some operators in G. Given a set of states g C X, the unobservable reach,
denoted by UR(q), is defined as: UR(q) ={x" € X :Axeq,s € E}, s.t. f(x,s) = x"}. Specifically,
the unobservable reach under a set of events y C E, denoted by UR,(q), is defined as: UR,(q) =
{(xXeX:Axeq,se(E,Ny)", st f(x,s)=x"}. Besides, the observable reach under event e, € E,,
denoted by Next,, (g), is defined as: Next,,(q) ={x' € X : Ax e g s.t. f(x,e,) = x'}.

The observer of G is defined as: Obs(G) = (Xops, Eo,0, Xobs,0) Where Xps C 2X is the state space;
Xobs.0 = UR({x0}) is the initial state and ¢ is the transition function where Vx5 € Xops, Ve, € E,:
0(Xobs,€0) = UR(Next,, (xops)). The weight function is omitted here in the definition. An observer

state is termed a (current) state estimate of the system.

V.3 Problem Formulations

In this section, we formulate two optimal mean payoff supervisory control problems, i.e., with and
without the constraint of nonnegative energy level. Before stating them, we first assume that there

are no unobservable loops in £(G) and we keep this assumption in the following discussion.
Assumption V.3.1. Given an automaton G, Vx € X, Vs € E*\ {€}, [f(x,s) = x] = [P(s) # €].

We first formulate the constrained optimal mean payoff supervisory control problem by consid-
ering both qualitative and quantitative objectives. The supervised system should be live, thus never
terminates. Besides, the limit rate of energy generation is optimized even if the system operates in

the most adversarial condition, provided that the energy level of the system never drops below 0.

Problem V.3.1 (Constrained Optimal Mean Payoff Supervisory Control Problem). Given system
G with initial energy vo € N, design a supervisor S* € S such that: (i) L(S*/G) is live; (ii) Vr €

Run(S*/G): V(r) > 0; (iii inf Vii = inf V(7).
un(S*/G): V(r) 2 0; (iii) RS /) 1im (1) SUP ks /6 lim(T)

The problem statement says that the supervised system satisfies the following conditions: (i)
it is live; (ii) its energy level for any run is nonnegative; (iii) its worst case limit mean payoff is

maximized.
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As a slight variant of the above problem, we also formulate the unconstrained optimal mean
payoff supervisory control problem, which ignores the nonnegative energy level constraint in Prob-
lem V.3.1. We make an extra assumption to restrict the system in the unconstrained optimal control
problem.

In the observer of the system, given a state x,ps € Xops, let Loop(xops) = {1 € E\{€} : 6(Xpps, 1) =
Xops and YI' <Is.t. " # €,0(xops,1") # xops} be the set of simple loops starting from x,,s. Also, given
string [ € Loop(xeps), we let SimLp(xops,[) = {t € E*\{€} : Ax € Xpps s.t. f(x,1) =x, P(t)=1and V¢’ <
t, f(x,t") # x} be the set of non-¢ simple loops with the same projection / and starting from some

state in X,ps.

Assumption V.3.2. Given automaton G and its observer Obs(G), ¥ x,ps € Xops, Y1 € Loop(xops),

and Vs, s’ € SimLp(xops,1), we have either w(s) <0 = w(s") <0 or w(s) >0 = w(s") > 0.

That is to say, for two simple loops with the same projection, their payoffs should have the
same sign. This assumption is inspired by the decidable classes of mean payoff games with partial
observation in [50]. Later on, we will see how this assumption helps us solve the unconstrained
optimal mean payoff supervisory control problem. We say that a system is with unambiguous cycle
payoffs if it satisfies Assumption V.3.2.

Example V.3.1. Let the system G in Figure V.1 be with E,, = {u1,uy} and E, = {01,02,03}. The

. . . . ui 01 (%)
weight of each event is shown in the figure. There are 4 simple cycles: xy — x| — X3 — X

. 1753 01 07 . ui 01 o3 .
with payoff 2, xo — xa — x4 — Xxo with payoff 1, xo — x1 — x3 — xo with payoff —1 and

X0 N X2 N X4 2, xo with payoff —2. So G is with unambiguous cycle payoffs.

Problem V.3.2 (Unconstrained Optimal Mean Payoff Supervisory Control Problem).  Given
system G with unambiguous cycle payoffs, initial energy vo € N and threshold v € N, design
a supervisor S* € S such that: (i) L(S*/G) is live; (ii) Vr € Runi,s(S*/G): Viim(r) 2 v; (iii)

inf Viim(r) = su inf Viim(r).
reRun;, ;(S*/G) llm( ) SegFERunmf(S/G) ltm( )

Compared with Problem V.3.1, we also require that the supervised system be live and the worst

case limit mean payoff be optimized. However, we omit the requirement of nonnegative energy
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Figure V.1: An automaton with unambiguous cycle payoffs

level, instead, we are to achieve that the limit mean payoff (rate of energy gain) of any infinite run
is above a given threshold v. Actually, given v, we may subtract v from the weight of each event
and equivalently evaluate whether the limit mean payoff is above 0. Hence we will assume v =0
in the following discussion without loss of generality.

Specifically, we call the first two conditions in Problem V.3.1 (respectively Problem V.3.2) as
its mean payoff decision problem. In both Problem V.3.1 and Problem V.3.2, the optimal supervisor
should maximize the worst case limit mean payoff. We may imagine that the supervisor is “playing
a game” against an antagonistic opponent, where the supervisor is to maximize its mean payoff
while its opponent is to prevent the supervisor. However, the two sides may have asymmetric
information since the supervisor only has partial observation of the system. Thus it is essential to
construct proper estimates for current states and the energy level of the system so that the supervisor
may make decisions. In the following discussion, we solve Problem V.3.1 and Problem V.3.2
sequentially: we first find solutions to their corresponding mean payoff decision problems, then

completely solve them by resolving the optimization issues.

V.4 First Cycle Energy Inclusive Controller

In this section, we define Energy Information States and then transfer both Problem V.3.1 and
Problem V.3.2 to two-player games between the supervisor and the environment. We further pro-

pose the First Cycle Energy Inclusive Controller (FCEIC) as the game structure, which records the
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update of both current state estimates and the energy level of the system under control. The FCEIC
is inspired by the Bipartite Transition System and All Enforcement Structure in [126] and [125],

which include supervisors enforcing several logical properties.

V4.1 Energy Information States

We define some orders for vectors. Given two vectors vi = [vi(1),v1(2),--,vi(n)], va = [v2(1),v2(2),
7', we denote by v| < vy (respectively vy > vo) if V1 <i < n,vi(i) < v2(i) (respectively vy (i) > v (i)).
We also denote by vy < vy if V1 <i <n,vi(i) < (i) and 31 < j < n, vi(j) < va(j) (respectively
V1 <i<n,vi(i) 2 v2(@) and 31 < j < n, vi(j) > v2())), 1.e., at least one element in v; is strictly

smaller (larger) than the element at the same position in v;.

()] e

The partial observation of supervisors adds special difficulty to Problem V.3.1 and Problem V.3.2.

We hope to transfer each problem into another problem, which is under full observation. Then our
goal is to solve the transformed problems and show that by solving the new problems, we obtain
solutions to the original problems. In order to track the unobservable reaches between states and
the their payoffs, we define energy information states as follows. Here we let |-| be the cardinality

of a set.

Definition V.4.1 (Energy Information States). Given system G, an energy information state is:
q° = (g,[v(1),---v(lgD]) € 2X x (U|I<X:|IZk)' Let Est(q°) and Lev(q®) denote the state estimate and

energy level components of ¢°, respectively, hence, ¢¢ = (Est(¢°), Lev(¢®)).

Denote by QF the set of energy information states. Each ¢¢ € QF induces a belief function
hge : Est(q®) — Z. Specifically, for g° € QF where Est(¢°) = q € 2%, Lev(¢®) = {hye(x) : x € g}. We
usually put Lev(g®) in a vector form: [hge(x1),- - - hge(x)4)] and by convention in this work, elements
in Lev(g®) are placed in an increasing order w.r.t. state names in Est(¢°). An energy information
state g¢ is energy safe if Vx € Est(q°®), hge(x) > 0.

We define an order < over QF: for 97,495 € 0F, q] < g5 if Est(q}) = Esi(q;) and Lev(q]) <

Lev(q5). We also say that g5 subsumes ¢ if ] < ¢5. In other words, g5 shares the same state
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estimate with g{ and the energy level vector of g5 is no less than that of ¢{ in a point-wise sense.
We define another order < over QF: for ¢¢,¢5 € OF, ¢ < ¢ if Est(¢%) = Est(q5), Lev(¢%) < Lev(g5).
That is to say, ¢{ and g5 have the same state estimate and there exists Lev(g{)(i) < Lev(g5)(i) at
some state Est(q{)(i) for some i > 1.

By Dickson’s lemma (see, e.g., [69]), “<” on k-dimensional nonnegative integer space N¥ is a
well-quasi ordering for any k € N*. We further argue that < on energy safe energy information
states is also a well-quasi ordering, i.e., for any infinite sequence of energy safe energy information
states ¢7,q5 - € QF, there exist two indexes i < j, such that q; < q‘;..

We call g% € QF xT an augmented energy information state, which augments an energy in-
formation state with a control decision. Let Ig(g“), I'(¢“°) denote the energy information state
component and control decision component of g*¢, respectively, so g% = (Ig(¢*),T'(¢%°)). With a
slight abuse of notation, we also use hie to stand for hge where ¢° = Ig(¢*¢). An augmented energy
information state ¢“¢ is also called energy safe if ¥x € Est(Ig(q“)), hgee(x) > 0. Then we give the
following two concepts.

For y €T, ¢% € QF xT is a y-successor of ¢¢ € QF if: (i) Est(Ig(q™)) = UR,(Est(¢°)); (ii)
Vx' € Est(q*), hge(x") = mgin{hqe(x) +w(é) : Ax € Est(¢®),& € (EuoNy)” s.t. f(x,€) = x'}. Overall,
q* = (Ig(g*),y). Its state éstimate component is the unobservable reach of Est(¢¢) under y. We
also use the belief function to track the minimum energy level by some unobservable string &
reaching a possible state in Est(Ig(g“°)).

For e, € E,, ¢° € OF is an e,-successor of q“ € OFE xT if: (i) e, € I'(¢*) =y and Est(¢°) =
Next,,(Est(Ig(q*))); (ii) Yx € Est(q°), hye(x) = rr;i,n{hqae(x') +w(ey): Ax’ € Est(Ig(g™)) s.t. f(x',e,)
= x}. So the state estimate component of ¢° is the observable reach of Est(Ig(¢*¢)) under e,. Mean-
while, we use the belief function to track the minimum energy level by observable event ¢, reaching
a possible state in Est(g®).

A control-observation sequence is a sequence of states, events and control decisions in the form

Y2 Yn-1

en-1_ ’ e V. o € o e en—1
—> Yy, orp =y1—>z1—>y2—>z2---—>z

€] Y2 Yn—-1 e
—

Y1
of p=y] = z{ =y, =5 —— 27, 1

Yn . .
e e : e E _e E e e e
Yo — 2, Where Vi<n, y; €T, e; € E,, y; € 0%, zj € Q7 XTI, z{ 1s a y;-successor of y; and y; | is
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an e;-successor of z{. Such a sequence characterizes the update of state estimate and energy level

. . . Y1 €l Y2 Yik-1 €k-1
under control decisions. By convention, we let oy = y{ — z{ — y§ — 25— z;_| — y; and

Y1 el Y2 Yk-1 €k-1 Yk . . .
pPL=Y =z =Y, — 5 —— | — Y, — i, for 1 <k <n. With the supervisor making

decisions, strings are generated in the supervised system.

Definition V.4.2 (Strings generated by Control-Observation Sequence). Given a control-observation
sequence p or p’, the set of strings generated by p is defined recursively as: Y1 < k < n, let
Str(p1) = {€}, Str(p})) ={&1 € E,, : Ax € Est(y]), X" € Est(Ig(z])),&1 € (Y1 NEywo)” s.t. f(x,€1) = X'},
then Str(pi+1) = {s,ex : Ax € Est(y),x" € Est(Ig(z})), X" € Est(y;, ), s; € Str(p;), s.t. f(x,s5,) =
X f(xX er) = x"}and Str(p;, ) = {sk+1€k+1 - Ax € Est(y]), X' € Est(y;, ), x" € Est(Ig(Z, (), Sk+1 €

Str(or+1):Ek+1 € Vi1 NE L)Y, 8.t fOx, sk41) = X, f (X, k1) = X7}

Then we show that in an energy or augmented energy information state, belief functions always

return the minimum payoft of strings reaching a state in the state estimate.

Theorem V.4.1. For a control-observation sequence p or p’, we have that ¥ x € Est(yy,), hye(x) =
sergtirr(lp){w(s) : Ax € Est(y), s.t. f(X,5) = x} and Vx' € Est(Ig(z;,)), he(x') = Segsr}irr(llo/){w(s) cdx e
Est(y)), s.t. f(X,5)=x"}.

Proof. Prove by induction on the length of observable stringt=e; ---e,—1 (n € N*) where |t| =n—1.
The length of ¢ reflects the length of the sequence. We also use the notations p; and p; in the
following discussion.

Induction Basis: n = 1 and consider y{ or y{ LR z{- The result obviously holds for single state
¥, and also holds for y{ TR z{ by Definition V.4.2 and the definition of y-successor.

Inductive Hypothesis: we assume the lemma holds when n =k, i.e., for p and p;.

Induction Step: when n = k+ 1, consider py+1 and p; . First, y7 | is an eg-successor or z;.
Let Est(Ig(z;)) = ¢, and Est(y{, ) = q+1, then Vx € giy1, hye (x) = rr)lci,n{hzi(x’) +wl(ey) : Ax' €
q;» s-t. f(x',ex) = x}. By the inductive hypothesis and Definition V.4.2, hyi+l (x) = n}}n n:in{a)(s,'() +
w(ey) : AX € Est(y)), s, € Str(p) s.t. f(X,5,) =x"} = rsr:irll{w(skﬂ) : A% € Est(y)), sk+1 € Str(pg+1) s.t.

Sk+1 = Spek, f (X, k1) = x}.
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Then z7 | is a yk+1-successor of y¢ . Let Est(yy, ) = qr+1 and Est(Ig(z;, ) = q,,> S0 VX' €
Tiyr> Mg, (X)) = rgzi?{hyiu(x) + (k1) 1 X € a1, €int € (Buo NYi1)” 8.t f(x,€ke1) = X'}, From

what we just proved, hzi” (x") = minmin{w(sgs1) + W(Exyp) - AX € Est(yf), Sk+1 € Str(or+1) s.t.

Ek+l Sk+1

f(jz, Sk+]) = x’f(x’§k+1) = x,} = l}nn{w(sl,c_i_l) : 3'% € ESt(yi)’ S;(+1 € Str(p],<+l) s.t. S]/H_] = Sk+1§k+1’
k+1

f(%,s;,,) = x’}. Thus the result holds at k + 1, completing the proof. N

Since we always count the minimum string payoff when creating a new e,-successor or y-
successor, Theorem V.4.1 establishes that the belief function returns the minimum payoff among
strings reaching the current state. Since all strings generated by a control-observation sequence
have the same observation with the same payoffs, the minimum payoff is due to the unobservable

substrings.

V4.2 Build the First Cycle Energy Inclusive Controller

We consider both energy flow and information flow under control and define a discrete structure
called the first cycle energy inclusive controller (FCEIC) for Problem V.3.1 and Problem V.3.2. The
two variants of FCEICs are formally defined by construction, i.e., by adding feasible e,-successors
and y-successors to the state space recursively in Algorithm 11 and Algorithm 12, respectively.
The FCEICs with respect to system G for both problems are constructed in a similar way and of

the same generic form (QF , Qg JE, fyi fg I, yg, Qf ,Vo) Where:
. QI; C QF is the set of energy information states;
. Qg C QF xTis the set of augmented energy information states and for z¢ € Qg , 28 =(g(z%),1(z%);

* fE: QY xT — QF is the transition function from QY states to Q% states, where for all y* € 0%,

vel and z° € Qg, [fyi(ye,y) = z°]= [z° is a y-successor of y°];

 f5 0L xE, — QY is the transition function from Q states to QY states, where for all z° € 0,

e, € E,and y© € of. [ Zl;(ze,eo) =y’ )¢ is an e,-successor of z°];

e I is the set of admissible control decisions;
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. y(e) € QI; is the initial energy information state where E st(yg) = xo and Lev(yf)) =v0;
F F .
* Q, is the set of leaf O, states;

* vo € N is the initial energy of the system.

Algorithm V.1: Construction of the FCEIC for Problem V.3.1
Input : G, v
Output : FCPEC = (Q},0%.E. /. f.T.y5. 0 . vo)

1 0F =) 05 =0,07 =0;

2 FirstCycle,(y§, FCPEC);

3 Return FCEIC;
Procedure: FirstCycle;(y*, FCPEC)

4 foryel' do
5 Let z° be a y-successor of y¢;
6 if z¢ is deadlock free and energy safe then
7 Add transition y* 2 z¢ to yI; ;
8 if z° ¢ Qg then
9 0F = 05 U{z);
10 fore, e yNnE, do
1 Let y¢ be an e,-successor of z%;
12 Add transition z¢ % 3¢ to ZI;;
. A
13 if y¢ ¢FQY tl;en )
14 QY = QY U {ye};
15 if ¢ is energy safe then
16 if there exists a run from yj: y; 2, z -, ¥y ZAEN z_ 5 5 and
dj<n, s.t yj. < 7 then
17 L Stop searching from 3¢, S ub(¥¢) = yj., Qf = Qf U {y°},
F _ oF (| (ze1-
18 else
19 | L FirstCycle; (¢, FCPEC);
20 else
21 L L L L B Stop searching from j¢, Qf = Qf U {7}, Q;}; = Qg) U{y‘};

We call a QI; state as Y-state and a Q’; state as Z-state. A Z-state z° is deadlock free if
Vx € Est(Ig(z°)), de € I'(z°), s.t. f(x,e)!, i.e., there is an enabled event at every state in the state
estimate of z¢. Otherwise, z° is a deadlocking state. Since there are no unobservable loops in G by

Assumption V.3.1, a deadlock free Z-state always has fg transitions defined out of it.
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Algorithm V.2: Construction of the FCEIC for Problem V.3.2

Input : G, v

Output : FCEIC =(Q%.0%.E. 5. f£.T.55.0F ,vo)
10 =1k 05 =0, 0 =0;
2 FirstCyclex(y;, FCEIC);
3 Return FCEIC;,

Procedure: FirstCycle;(y¢, FCEIC)

4 foryel do
5 Let z¢° be a y-successor of y¢;
6 if z¢ is deadlock free then
7 Add transition y*® KR Zf to yz,
8 if ¢ ¢ QZ then
. 0 = of vz
10 fore, e yNE, do
11 Let y° be an e,-successor of ze;
12 Add transition z¢ L, ¥ to Zy,
13 if 7 ¢ 07 then
14 oy = QF Uy}
15 if there exists a run from yg: y; e 20, e z; 9, ye ¥ AN z_ 5 ¢ and
dj<n, st y 7¢ then
16 L Stop searchmg from 3¢, Sub(5°) = y Ql QF U {54},
0f = 0F LIF*k;
€0 Y1 Yn—-1 e _
17 if There exists a run from y§: ¥ 2, =Y — g oY
and dj <n, s.t. ¥° <yethen
18 | Stop searching fromy Of =07 Ui}, 0, = 01, U}
19 else
20 . | L L FirstCycle,(3¢, FCEIC);

106



The FCEIC in general describes a game between the supervisor and the environment. A Y-
state is an energy information state where the supervisor issues control decisions. If the supervisor
issues an admissible control decision 7y, a ff; transition is defined out of a Y-state, which follows
the definition of y-successor. While a Z-state is an augmented energy information state, where

the environment plays by selecting observable events to occur from the events enabled by the

F

supervisor. When a particular observable event ¢, is selected to occur by the environment, a f;;

transition is defined out of a Z-state, which follows the definition of e,-successor. Then it is again
the supervisor’s turn to make the next control decision. This is in consistent with the mechanism
of supervisory control under partial observation where the supervisor’s decision gets updated with
occurrence of observable events. In this manner, the two players take turns to play and a game is
formed.

The procedure FirstCycle; where i € {1,2} in either algorithm builds the state space of the
FCEIC by a depth-first search like process. We first discuss FirstCycle; in Algorithm 11. In
this process, we only add deadlock free Z-states to the structure and ensure that there are events
enabled at every state in the state estimate of any Z-state. In lines 15, 16 and 17 of Algorithm 11,
if the newly added energy safe state y° subsumes a non-leaf state yj. on the run starting from the
initial state, then we know that the two energy information states share the same state estimate but
the new state 7° has a nondecreasing energy level vector compared with yj.. We also know that
some simple cycles with nonnegative payoffs are formed in the system for the first time. Then we
terminate searching and add the new state as a leaf state of the FCEIC. That is why we call this
structure first cycle energy inclusive controller. In the following sections, we will explain in more
detail why it is sufficient to consider simple cycles to solve Problem V.3.1. On the other hand, if a
new Z-state or Y-state is not energy safe, we stop searching since the system’s energy level drops
below 0 at some state, thus the second requirement in Problem V.3.1 is violated.

Similarly for FirstCycle; of Algorithm 12, in lines 15 and 17, if the newly added state y°
subsumes or is subsumed by an existing state on the run from initial state yj, we know that the

two energy information states share the same state estimate but y° may have a nondecreasing or
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decreasing energy level vector compared with the existing state. We also know that some simple
cycles with nonnegative or negative payoffs are formed in the system for the first time. Then we
terminate searching and add the new state as a leaf state. Since Problem V.3.2 does not require
nonnegative energy level, the states created by FirstCycle, are not necessarily energy safe.

Next, we partition leaf Y-states as: Q] = Qg U Qf, where QZ, represents good leaf states and
Q;}; represents bad leaf states. In the FCEIC for Problem V.3.1, a good leaf state is energy safe and
subsumes a non-leaf state, while a bad leaf state is energy unsafe. If a good leaf state is reached,
there are simple cycles with nonnegative payoffs in the system and the system’s energy level would
be nonnegative forever if those cycles are traversed indefinitely. However, if a bad leaf state is
reached, the energy level of the system drops below 0 by some strings. Similarly, in the FCEIC for
Problem V.3.2, a good leaf state subsumes a non-leaf state while a bad leaf state is subsumed by a
non-leaf state. If a good leaf state is reached, we know there exist simple cycles with nonnegative
payoffs in the system; while if a bad leaf state is reached, there exist simple cycles with negative
payoffs. In both algorithms, we use Sub(y°) to store the preceding state subsumed by good leaf
state y°. Actually, the goal of the supervisors in both Problem V.3.1 and Problem V.3.2 is to reach
good leaf states but to avoid bad ones, which is explained in more detail later on. Finally, if no
state subsumes another, we call FirstCycle recursively in both algorithms until no more new states
are added to the structure.

We now show that Algorithm 11 and Algorithm 12 converge in finite steps and return a finite

and acyclic structure.
Theorem V.4.2. Algorithm 11 returns a finite structure.

Proof. By contradiction, assume that the FCEIC is infinite. Since E, I' C 2E and E, are finite, the
number of transitions defined at each state in the structure is finite. Then by Konig’s lemma (see,
e.g., [69]) and Algorithm 11, there exists an infinite run yj 2, z; 2, ¥ ZAN z{-+- in the FCEIC

such that it is never the case that 3y?, yj., [<J, sty < yj.. However, this contradicts with the fact

that < is a well-quasi ordering on energy safe energy information sates. [
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Theorem V.4.3. Algorithm 12 returns a finite structure.

Proof. Prove by contradiction. Assume that the FCEIC is infinite. Since E, I’ C 2F and E, are
finite, the number of transitions defined at each state in the structure is finite. Then by Konig’s
lemma (see, e.g., [69]), there exists an infinite run yg RLR zg £, yi LAN zi -+« in the FCEIC such that
it is neither the case that 3y, y?, i< j,st ¥ < y; nor the case that y? <y¢. That means there
exist y?, yj (i <j) and integers k # [ s.t. Est(y7) = E st(yj.), Lev(y?)(k) < Lev(yj.)(k) and Lev(y?)(]) >
Lev(yj.)(l) for elements in Lev(y{) and Lev(yj.). Hence there exist two simple cycles in G: x| 4,
Xy N x1 and x; —/l> X i x| st x1,x] € Est(y?), Pley--en) = P(e]--ey), wleg--en) 20

and w(e] ---e;,) < 0. However, this contradicts with Assumption V.3.2 that G is with unambiguous

cycle payoffs. [

As for the space complexity of the FCEIC, the size of its state space is bounded by Ackermann
function [92] following a similar argument as in [87], which solved energy games by “unfolding”

the game graph until a simple cycle is formed.

Example V.4.1. In this example, we construct a first cycle energy inclusive controller following Al-
gorithm 11. Let the system G in Figure V.2 be with E, ={01,02,03,04}, E,, ={a1,a3,a3,a4,b1,b2,c1,c2,c3,c4.C5},
E. ={c1,c2,c3,c4,c5}, Eye ={ay,az,az,a4,b1,b2,01,07,03,04}. The weight of each event is shown
in the figure and the system has initial energy vo = 3. Then all admissible control decisions are:
Y0 = Eue, y1 ={c1,c2}UEye, y2 ={c3} U Eyc, v5 = {c3,¢5} U Eue, v3 = {cal U Eye, y4 = {c1} U Eye,
Y5 = {2} U Eye.

Then we follow Algorithm 11 to build the FCEIC in Figure V.3. For simplicity of the graph, we
do not put the energy level vectors in the figure but show them in Table V.4.1. The elements in each
energy level vector are placed in the same order as the order of states in the state estimate.

In the FCEIC, the game is initiated from y;; where the only feasible control decision is yo. If
the supervisor plays yo, a Z-state z, is reached where the environment selects observable event 0,
1o occur. Then the supervisor takes the turn to play at y{ and the rest of the structure is interpreted

in a similar way. Notice that at y5, the supervisor should not issue control decision vy, to enable
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state name state components
Yo {{x0},3}
4 {{xo, x1,x2},[3, 1,01, 70}
A4 {x3, x4}, [2, 11}
z] {{x3, x4, x5, X6, X7, X8, X9, Xx10},12,1,5,2,7,2,6,5],71}
Y5 {x12},4}
5 {{x12},4,70}
Y5, {{x12},6}
2§ {{x9, x12,x14},[0,4,31, 75}
Y53 {x12}, -2}
Y54 {{x12},6}
3 {{x13},2)
z5 {x135,.2, 70}
Y3 {x13},4)
Zg {{x10, x13, %15}, [1,2, 1], 3}
Y33 {{x13}, -2}
Y34 {{x13},4}
Z {x3, x4, x5, x7},12,1,5, 7], y4}
Yi, {{x3,x4},[3,2]}
z {3, x4, X6, X8}, (2, 1,2,2], 5}
Yz {x3, x4}, [3,2]}
z¢ {{x3, x4}, [2, 11, y0}
Vi 4 ¥y, = {3, x4}, (3,21}
Yios ¥i_s = {{x3, x4}, (3,21}

Table V.1: Energy and augmented energy information states in Figure V.3

Figure V.2: The automaton G in Example V.4.1

c3 but to disable cs. Otherwise, a deadlocking Z-state zs is reached since no event can occur

at x14 if ¢s is disabled. Here z5 is not included in the FCEIC by Algorithm 11. Meanwhile, we
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Figure V.3: The First Cycle Positive Energy Controller in Example V.4.1(without z7)

calculate the energy level vector of each state. For example, Est(y)) = {xo}, Lev(yy) =vo =3;
since z;, is the yo-successor of y;, we have that Est(1g(z())) = URy(Est(yy)) = {xo, X1, x2}, hzg (xp)=
min{w(a1),w(a3)} = 1, hze(x2) = minfw(az), w(as)} = 0 and zj = {{x0,x1,x2},[3,1,0],y0}; since y{
is the oy-successor of 7§, we have that Est(y]) = Next,, ({{x0, x1,x2}) = {x3, x4}, hyi (x3) = hzg(xl) +
w(01) =2, hye(x4) = hze(x2) + w(o1) = 1 and y{ = {{x3, x4}, [2,1]}.

From the table, we find that y{ < ¥{_5 Y] S ¥{_3 Y] S Vg Y] SV s V5 V50 Y5 S V50
Y5 < V5, and ¥ X ¥5_, by evaluating their energy level vectors. We also find two energy unsafe
states y5,_, and y5_, since Lev(y5_5) = =2 and Lev(y5_;) = =2. We stop searching from the leaf
states in Figure V.3, then have good leaf states Q;; = V] Y Y Y] 50 Y500 Y545 Y5- 25 Y5-4)
and bad leaf states Qlﬁl; ={y5_3,Y5_3} For example, when y{_, is reached, we locate three simple

b
cycles with nonnegative payoffs in automaton G: x3 SR X5 SEN X7 N x3 with payoff 6, x3 N X3 with
payoff 1 and x4 2, x4 with payoff 1. The bad leaf states actually come from the two simple cycles
02 c3 cs cq by

. . . . 03
with negative payoffs in G: x9 — x12 — X14 — X9 with payoff —6 and x10 — x13 — X15 — X190

with payoff —4. Those two cycles should be avoided if we want to solve Problem V.3.1.

Example V.4.2. The system G is the same as the one in Example V.4.1 and we construct a first
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cycle energy inclusive controller following Algorithm 12. It happens that the FCEIC is the same
as the one in Figure V.3. Specifically, y5_, <y5 and y§_5 <5, so y5_5 and y§_ are also bad leaf
states in this example. They are due to the two simple cycles with negative payoffs mentioned at the

end of Example V.4.1. Again, those two cycles should be avoided if we want to solve Problem V.3.2.

V.5 Mean Payoff Decision Problems

In this section, we first discuss some properties of the first cycle energy inclusive controller
(FCEIC), then partially solve Problem V.3.1 and Problem V.3.2 by synthesizing a supervisor that
satisfies the first two requirements in each problem. As was mentioned earlier, the first two con-
ditions in both problems constitute the so-called mean payoff decision problems. The last require-
ment in both problems, i.e., the optimization issue, will be discussed and addressed in the next
section. Since the following analysis apply to both FCEICs returned by Algorithm 11 and Algo-
rithm 12, we will not distinguish them but just use the term “FCEIC” when there is no confusion.

By definition, the runs in the FCEIC (defined by both Algorithms 11 and 12 are the finite
control-observation sequences discussed in the last section. We denote by Run(F’) the set of runs
in the FCEIC. Given r¢ € Run(F'), we denote by y¢ € r and z° € ry if y¢ (respectively z¢) is a Y-state
(respectively Z-state) in ry. We also let Lasty(ry) and Lastz(ry) be the last Y-state and Z-state of
ry, respectively. Besides, we denote by Runy(F) (respectively Run,(F)) the set of runs whose last
states are Y-states (respectively Z-states).

Then we discuss strategies of both players in the FCEIC. Define the supervisor’s strategy (con-
trol strategy) as ng : Runy(F) — I' and environment’s strategy as m, : Run,(F) — E,. Both players
select a transition according to their strategies when it is their turn to play. Since the supervisor only
has partial observation of the system and makes decisions from state estimates, we call its strategy
observation based. Denote the set of all supervisor’s strategies by Il and the set of all environ-
ment’s strategies by Il,. If the supervisor plays 7y while the environment plays 7, from the initial

state yg, then a unique initial run, denoted by r¢(ms,m,), is generated. We also let Run(y®,my) =
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{y* ZAR 7 e—l>y§ RN z_4 ﬂyf, Yi<n,y =n()° RAN 7 e—]>y§ RN ol ei;l>yf)} be the
set of runs starting from y° and consistent with control strategy s, i.e., the control decisions in the
run are specified by .

In the FCEIC, we say the supervisor wins the game if only good leaf states are reached, other-
wise, the environment wins the game if bad leaf states are reached. So the game on the FCEIC is a
zero sum safety game. The game on the FCEIC is of full observation after introducing the energy
information states and either the supervisor or the environment has a winning strategy from any
state in the FCEIC, since safety games are determined [4].

A strategy m; € I; for player i € {s, e} in the FCEIC is information state based if the decisions
only depend on the current energy or augmented energy information state. In other words, n; € I1;
is information state based if 7;(ry) = Jr,-(r}) for all rf,r} € Run(F) such that Last(ry) = Last(r}).
Therefore, information state based strategies for the supervisor and the environment can be rep-
resented by 7 : QI; —T'and 7, : Qg — E,, respectively. We also call an information state based
strategy positional. From existing results, see, e.g. [4,43], positional strategies are sufficient to
win a finite safety game so in the following discussion, we assume that both players’ strategies are
positional.

Following the transitions in the FCEIC, we can specify control decisions from Y-states and
the control decisions are updated after observable events occur from Z-states. Thus the control
strategies in the FCEIC work in the same way as standard partial observation supervisors. In
the following discussion, we will use the words “supervisor” and “supervisor’s strategy (control
strategy)” interchangeably.

We define the supervisor’s winning region Wing as the set of states from which the supervisor
has a strategy to reach good leaf states for sure regardless of the environment’s strategies. To solve
Problem V.3.1 or Problem V.3.2, the supervisor should only reach good leaf states. Actually, the
procedures to obtain Wing for both problems are the same after the FCEIC is given. Hence we

present one unified algorithm, i.e., Algorithm 13, to compute Wing for Problem V.3.1 or Prob-

lem V.3.2.
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Algorithm V.3: Compute the winning region of the FCEIC
Input : FCEIC returned by Algorithm 11 or Algorithm 12
Output : Wing for Problem V.3.1 or Problem V.3.2

1 while 3y° € Q; \ Ql’; , 8.t. ¥¢ has no successor do

2 L Remove y° and all z¢ € QIZ:, s.t. fg(ze,eo) = y¢ for some ¢, € E,;

3 Take the accessible part of the structure;

4 Denote the remaining structure by FCEIC,, and return the states in it;

In Algorithm 13, all bad leaf states are removed first as well as their preceding Z-states. Then
we further prune away Y-states that have no successor states and their preceding Z-states in an
iterative manner until no more states are removed. Notice that when we prune away a Y-state, we
also need to remove all its preceding Z-states, otherwise the already enabled observable events are
blocked from happening. However, when a Z-state is removed, we only remove its preceding Y-
state if the Y-state has no successors, since the supervisor is still able to avoid the removed Z-state
when it has other successors.

Algorithm 13 is similar to the standard procedure of calculating attractors and winning regions
of graph games in a fixed point calculation manner [4]. Besides, it is also similar to calculating
the supremal controllable sublanguage in nonblocking supervisory control problem under full ob-

servation [23]: the bad leaf states are viewed as undesirable marked states while the good leaf

F

states are viewed as desirable ones; besides, y]; transitions are viewed as controllable while 2y

transitions are viewed as uncontrollable. In this way, we make sure that only good leaf states are
reached under certain control strategies. In other words, any control strategy in the FCEIC,, is a
winning control strategy in the FCEIC, and vice versa. It is possible that Algorithm 13 returns an
empty set thus the environment always wins the game regardless of the supervisor’s strategies.
Then we argue that if there exists a winning control strategy in the FCEIC, i.e., Winy is not
empty, then there always exists a supervisor solving the mean payoff decision problem of Prob-
lem V.3.1 or Problem V.3.2. The idea is straightforward. If only good leaf states are reached under
a wining control strategy g in the FCEIC, then only simple cycles with nonnegative payoff are

formed in the supervised system. Since a belief function in an energy information state returns the
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minimum string payoff by Theorem V.4.1, the payoffs of all strings with the same observation and
reaching the same state are nonnegative if the minimum string payoff is nonnegative.

We let the supervisor make the same decision whenever the state estimate of a good leaf state is
reached again. Intuitively speaking, the supervisor “ignores” the actual energy level of the system
and just views the game starting from a good leaf state y° as the same game that starts from the
state subsumed by y°. We can imagine that y¢ is “merged” with Sub(y®) by letting all transitions
going to y¢ lead to Sub(y°) instead. In this way, the supervisor perpetually completes cycles with
nonnegative payoffs since every simple cycle has a nonnegative payoff. So the limit mean payoff
of every infinite run in the supervised system is also nonnegative.

Since there are no deadlocking Z-states and every Y-state has successors in the FCEIC,,, we
may show that the supervised system by any control strategy in the FCEIC,, is live, following a
similar argument as in Section V of [126]. Overall, any control strategy in the FCEIC,, solves the
mean payoff decision problem of Problem V.3.1 or Problem V.3.2. Conversely, we claim that if
the mean payoff decision problem has solutions, then we can find winning control strategies in
the FCEIC returned by either Algorithm 11 or 12. Formally speaking, the following two theorems

hold.

Theorem V.5.1. There exists a supervisor solving the mean payoff decision problem of Prob-

lem V.3.1 if and only if the supervisor has a winning strategy in the FCEIC defined by Algorithm 1 1.

Proof. The “only if” part. We show by contrapositive, i.e., if there does not exist a winning control
strategy in the FCEIC, then there does not exist a supervisor solving the mean payoff decision
problem. If no winning control strategy exists, then Wing is empty by Algorithm 11. So Vrs € I;,
dn, €1l,, s.t. Lasty(ry(ng,m,)) € Qf = Lasty(ry(ms,me)) € Q;;, 1.e, no matter what decisions made
by the supervisor, there always exist runs ending in bad leaf states. Therefore for xg, there always
exists a run r consistent with 7 in the supervised system such that V(r) <0, i.e., the supervised
system’s energy level becomes negative under mg for some string. That is to say, no supervisor
solves the mean payoff decision problem.

The “if” part. Suppose that 7y is a winning control strategy in the FCEIC. We follow Algo-
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rithm 13 and obtain Wing; and FCEIC,,, so 7 is also in the FCEIC,,. In the following discussion,
we imagine that all transitions leading to a leaf state y° in the FCEIC,, lead to S ub(y°) so that the

. . . . Yo 4 Yn-1 €p—
game on the FCEIC,, becomes infinite-duration. That is, Vry = yg — ZS = Vo — 2z -5

n—1

Yy € Run(yg, ) where yj is the initial state of the FCEIC, if y; € QZ , then we extend the domain
of my by letting 7s(r) = m,(yg ZAN 5 2, AEEE SN y¢,) for some m < n and y5, < y9. Whenever
Est(yy) is reached again, the control strategy (supervisor) makes the same decision as if Est(y{) is
reached for the first time. By perpetually making the same decision whenever a state estimate is
reached, the supervisor guarantees that the energy level in the supervised system never becomes
negative since all states in the FCEIC,, are energy safe and only cycles with nonnegative payoffs
are formed and traversed infinitely often.

Finally, the system under the constructed supervisor is live following a similar argument as in

Section V of [126]. Thus m, solves the decision problem of Problem V.3.1. O

Theorem V.5.2. There exists a supervisor solving the mean payoff decision problem of Prob-

lem V.3.2 if and only if the supervisor has a winning strategy in the FCEIC defined by Algorithm 12.

Proof. The proof is similar to that of Theorem V.5.1. We just substitute the argument of limit mean

payoff for the argument of the total payoff to show this result. [

Therefore, we have shown that we can transform the mean payoff decision problem for Prob-
lem V.3.1 (Problem V.3.2) into a safety game under perfect information on the FCEIC and solve
it by finding winning control strategies. We have also shown the soundness and completeness of

Algorithms 11 and 12.

Example V.5.1. We revisit Example V.4.1 (Example V.4.2) to find the winning regions of the FCEIC
following Algorithm 13. Since the good (bad) leaf states in both examples coincide, the winning
regions for both examples remain the same. The FCEIC,, is shown in Figure V.4, where green
dashed lines connect each good leaf state with the state subsumed by it, indicating that the super-
visor always makes the same decision from the two connected states. So the game is extended to

be infinite-duration. In building the FCEIC,, red states y5_, and y5_, in Figure V.3 are bad leaf
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states, thus are pruned by Algorithm 13. Meanwhile, good leaf states y5, , and y5_, are also re-
moved as they become no longer accessible from the initial state y( after their preceding Z-states
zg and 7§ are removed. That means that the supervisor should not choose ) at y§ or y3 at 5,
otherwise, the environment can choose oy at zg or 03 at zS to reach some bad leaf states and win
the game.

Then we locate a winning control strategy, which is indicated by blue lines in Figure V.4. As is
seen, the supervisor S issues yo at y, y1 at y{, yo at y5 and yo at y5. If the supervisor makes those
decisions infinitely often, then only cycles with nonnegative payoffs are formed in the supervised
system. Finally we show the supervised system under this strategy in Figure V.5. Compared with
the original system in Figure V.2, the cycles with a negative payoff have been broken. Then it is
easy to verify that the supervised system is live and all infinite runs have a positive limit mean

payoff. So S solves the mean payoff decision problem of Problem V.3.1 (Problem V.3.2).
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Figure V.4: The FCEIC,, with dashed green lines connecting good leaf states with their subsumed
states; Wing is the set of all states
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Figure V.5: A supervisor solving the mean payoff decision problem

V.6 Mean Payoff Optimization Problems

In the preceding section, we investigated the mean payoff decision problems of both Problem V.3.1
and Problem 12. Among the potentially multiple control strategies in the FCEIC,,, we find an opti-
mal one and completely solve both problems in this section. As there is no difference between the
procedures of obtaining the optimal control strategies for the two problems, we present a uniform
optimization approach in this section.

In the FCEIC,,, we denote by Run(F),) the set of runs and Runj..¢(F),) the set of runs ending

Yn-1 e

. . . Y0 e en—
in a good leaf state, respectively. Given a run ry = yg — z = Y —2 hislN vy € Run(F,,)

n—1
with yj. < yy for some j < n where y¢ is a leaf state, we know that simple loops with nonnegative
payoffs are generated from each state in state estimate / (yj’.).

In order to determine the mean payoffs of strings generated by runs in the FCEIC,,, we need
to know exactly what observable and unobservable events are in the string. However, we only
know the occurrence of observable events from transitions in the FCEIC,, since the unobservable
transitions are within each state. In order to explicitly show the inner connections between states by
unobservable strings inside each Y-state or Z-state in the FCEIC,,, we introduce a new automaton

called the Energy Inter Connected System (EICS), which is inspired by the Inter Connected System

proposed in [125].

Definition V.6.1 (Energy Inter Connected System (EICS)). Given the FCEIC,, w.r.t. system G, its
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corresponding Energy Inter Connected System (EICS) is defined as:
EICS = (QEICS EEICS fEICS qEICS QEICS)
- s ’ 10 ’ 1

where:
o QFICS ¢ (QI; xX)U (QIZ: X X) is the state space such that:

- 04,0 € QM if y* € O and x € 1(y°);

- ()€ QEICS ifzf € Qg and x € I(Ig((2°));

o EFICS = EUT is the set of events in the EICS;

o fEICS . QFICS y FEICS s QFICS s the partial transition function defined as: Vy € T, Ve € E:

- FEICS (04, x0).y) = @€ x0) if x1 = x2 in G and fE(°,y) = 2¢ in the FCEIC,,;
- fEICS (28, x1),e) = (26, x0) if f(x1,€) = x2 in G and e € T(2°) N E o5

- fEICS (@4 x1)e) = 0%.x2) Uf f(x1.€) = x2 in G, e € TE) NE, and f5(z¢,e) = y* in the

FCEIC,,;

. qglcs = {yg,xo} is the initial state;

. QfICS ={(y%,x) € QFICS 1 y¢ ¢ Qg in the FCEIC,,} is the set of leaf states.

Intuitively, the EICS is similar to the structure obtained from parallel composition between the
FCEIC,, and the system G. It explicitly shows both observable and unobservable reaches between
and within states of the FCEIC,,. The state components in the EICS are from the FCEIC,, and
G. There are three types of fE/CS transitions defined in the EICS. The first type indicates the
supervisor’s decisions from certain states of the system, so the first component of an EICS state
changes from a Y-state to its succeeding Z-state in the FCEIC,, while the second component stays
the same. The second type indicates the unobservable reaches within Z-states in the FCEIC,,, so the

first state component of (z°, x1) stays the same while the second component becomes x; = f(x1,e)
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under e € ['(z°) N E,,. The third type indicates observable reaches between Y-states and Z-states
in the FCEIC,,, so the first component gets updated from a Z-state to its succeeding Y-state in the
FCEIC,, and the second component also gets updated by the enabled observable event. With the
EICS built, we are able to explicitly see how simple cycles are formed under control decisions in
the FCEIC,,.

By definition, the EICS is an acyclic structure whose leaf states contain leaf states of the
FCEIC,,. Those states also indicate simple cycles in the FCEIC,,. For a leaf state (y°,x) € Qfl cs.
we are able to track simple loops starting from x € Est(y®) by following transitions between (¥4, x)

€o Yn-l ,  en-l

and (y°, x), where 3¢ < y*. We define Lpsim(y®,x) ={t € E* : dry = yj 2, =Y 2

n—1

¥ € Run(Fy),s.. Aj <n,y8 <y¢,t € Str(y§ = 25— - T 2o 27 39), £(x,1) = x) as the set of

such simple loops. For a simple loop 7 € Lpgim(y°, x), we denote by V(t) = % its mean payoff.

Furthermore, we define Vieqr : Runjeqr(F\y) — R to characterize the (limit) mean payoff of runs
ending in a leaf state of the FCEIC,,. For a run r; ending in a leaf state y°, we have Vi, z(ry) =
xerlgil?y el Ig};r(ly - Vi(1), 1.e., the minimum possible mean payoff of all simple loops formed from
states in Est(y®). We take the minimum mean payoff among simple loops to characterize the (limit)
mean payoff of the run, since only the cyclic part of a run contributes to the limit mean payoff and
the supervisor needs to maximize the worst case limit mean payoff. With a slight abuse of notation,
we also use Vieqr(Last(ry)) to stand for Vie,r(ry).

Given a pair of strategies m; € Il and m, € Il in the FCEIC,,, we let r¢(mg,7.) be the unique

initial run generated under (ry,7.) and its last state Last(rp(mg,m.)) € Qg . Then we define the

optimal control strategy in the FCEIC,,,.

Definition V.6.2 (Optimal Control Strategy in the FCEIC,,). Suppose that s is a winning control

strategy in the FCEIC,,, it is optimal if miﬁl Vieaf(rp(my,me)) = max miﬁl Vieaf(rp(mg,me)).
m.€ll,

nsellgmeo€ll,
Since both Il and I1, are finite sets in the FCEIC,,, an optimal control strategy always exists
by enumeration. We may compute the mean payoffs of strings from the leaf states in the EICS and
those strings are generated under certain control strategies. Since we assume that the supervisor

always plays positional strategies, whenever a simple cycle with positive payoff is formed, the
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supervisor would perpetually form the same cycle in the rest of the game. Furthermore, since the
limit mean payoff of a run only depends on the mean payoff of the simple cycle traversed infinitely
often, it is possible to calculate Ve, (7 ¢(mg,m.)) from the FCEIC,,.

From Definition V.6.2, the optimal supervisor is to maximize its mean payoff against the en-
vironment’s strategies, which are to minimize the supervisor’s mean payoff. So the optimization
problem can be viewed as a min-max game [83] on the FCEIC,,. Next, we leverage the standard
technique of backward induction [83] to determine the optimal control strategy in the FCEIC,,. In
this iterative procedure, the supervisor and the environment make decisions by maximization or
minimization. Here we present Algorithm 14 to find the information state based optimal control
strategy from the FCEIC,, to completely solve Problem V.3.1 or Problem V.3.2.

As was mentioned before, the supervisor and the environment are playing a min-max game
on the FCEIC,,. Algorithm 14 returns an optimal control strategy that maximizes the minimum
mean payoff against the antagonistic environment’s strategies. In Algorithm 14, the EICS is used
to determine the mean payoffs of simple loops from the leaf states of the FCEIC,, in line 5. For
a leaf state (y*,x) € QF/S, we can always find another state (5,x) € Q¥/S such that 3¢ < y* in
the FCIEC,,. Then we track f£/CS transitions to find both observable and unobservable events
between (7¢,x) and (y°,x) € Qf’ CS . Afterwards, we determine Lp;,(y°, x) and calculate V(z) for
each 1 € Lpgin(y¢, x). There may be multiple simple loops formed from x € Est(y®), with different
mean payoffs. Then we calculate Vi, (y¢), the minimum mean payoff of all possible simple loops
formed from all states in Est(y°). Vieqr(y©) is also the minimum possible mean payoff the supervi-
sor may achieve when state estimate Es#(y°) is reached. Since the FCEIC,, is finite, Algorithm 14
always terminates.

Then we run Procedure Optimal to assign a value Vg(g) to each state ¢° in the FCEIC,,. In
this procedure, we first assign values to each leaf state, then propagate the values backwards to
determine the values of other states until the root state is assigned a value. Specifically, if the
current state is a leaf state, we just assign Vi to it in line 13. If the current state is a Z-state,

we assign the minimum value of its successor states to it in line 17. This corresponds to the fact
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Algorithm V.4: Find an optimal control strategy in FCEIC,,

Input : FCEIC,, and EICS for Problem V.3.1 or V.3.2
Output : An optimal strategy 5 for Problem V.3.1 or V.3.2
1 for leaf state y¢ in FCEIC,, do

2 for leaf state (y°,x) in EICS do

3 Get Lpsin(y¢, x) following transitions in EICS;

4 for t € Lpi (¢, x) do

5 | Calculate V(t);

6

Get V, €)= min min  Vy(?);
L leaf (y ) xeEst(y®) teLp gim(y¢,x) SZ( )

7 for ¢° € Q5 U QF do
8 L Vr(¢®) = Optimal(q®);
9 for y* € 0%\ OF do
10 L Find one y €T, s.t. 3z° € 05, ££04y) =z and Vp()©) = Vr(z9);
Return 75 (y%) = y;
Procedure: Optimal(q®)
12 for ¢° € Of do

11

13 V() = Vleaf(CIe);

14 | Return Vg(¢°);

15 for g, € (O, UQH)\ O] do

16 if ¢¢ € Q; then

17 Vr(g®) = min {Optimal(§°) : Je, € Eq, st. FE(Gere0) = G°);
4°cQy

18 L Return V¢ (g%);

v | ifg° € QF then

0 Vr(ge) = max {Optimal(§°) : Iy €T, s.t. f2(q,y) = 4°);
4°€Qy

21 | [ Return Vr(g¢%);
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that the environment is to minimize the mean payoff of the supervisor. If the current state is a
Y-state (not a leaf state), we assign the maximum value of its successor states to it in line 20. This
comes from the fact that the supervisor is to maximize its mean payoff. This procedure goes on
until a value is assigned to the initial state y of the FCEIC,,. When Optimal is implemented,
we can assign orders to states in the FCEIC,, so that a state is evaluated after all its successors
are evaluated. This is similar to the standard process of backward induction in solving min-max
games [83]. After obtaining Vr values, we specify the optimal control decisions at Y-states of the
FCEIC,,, which constitute the optimal control strategy. When there are multiple optimal control
decisions at the current Y-state, which occurs if some of its successors have the same Vg value, we
randomly choose a control decision.

After obtaining an optimal energy information state based control strategy in the FCEIC,,, we
can follow a similar procedure as in the last section by letting the supervisor make the same deci-
sion at the current Y-state as from the state subsumed by it. In this way, the game is extended to
infinite-duration and we obtain a supervisor that issues control decisions perpetually and generates
a live system. Besides, an energy information state based strategy is sufficient to be an optimal so-
lution to Problem V.3.1 (Problem V.3.2). Intuitively, the supervisor should always traverse a simple
cycle with highest mean payoff, while alternating between cycles with different mean payoffs does

not contribute to a higher mean payoff. We formally present this result as follows.

Theorem V.6.1. If n5 is an energy information state based control strategy returned by Algo-

rithm 14, then we can extend 1 to a supervisor S* that solves Problem V.3.1 (Problem V.3.2).

Proof. By Algorithm 14, for every leaf state y¢ € Qg s Vieaf %) = XEIEIlSitI(ly et ;f,lnllr(ly . Va(t). Let

string #*(y°) be such that Vy(*(y¢)) = min min  Vg(t) = Viear(y°). Suppose that a Z-state
xeEst(y®) teLp gim(y¢,x)

z¢ can reach k leaf states yi,yi, e ,y,i € Qg, ie,VYi<k de;eE,, s.t. fg(ze,e,-) = yf. Thus we know

that Vp(z%) = min{Vp(y{), - Vr(yD} = min{Vy(t(y])), -+ , Va((y;))}. Let string t*(z%) be such that

V(@ (z)) = min{Vy(1(y{)), - ,Vsl(t(y,i))} thus 7*(z°) is the string with the minimum loop mean

payoff. Therefore, the environment still locates the string minimum mean whose simple loop has

the minimum mean payoff, by evaluating Vj.,#(y°). Also with the EICS built, we can explicitly see
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which cyclic string has the minimum loop mean payoff.

Suppose that one preceding Y-state of z° is ¥ and y° has succeeding Z-states z{,--,z;, (z° is
one of them). Then the supervisor chooses to maximize, i.e., Vp(§°) = mzeelx VE(z7) where i < m.
Since Vr(z?) is the minimum mean payoff of some simple loop, then VF(lye) still maximizes the
minimum mean payoffs of simple loops obtained from some leaf states in the FCEIC,,. Thus the
supervisor loses no information when making decisions by evaluating Vr(z°). By Algorithm 14,
the supervisor just chooses the control decision that maximizes Vr(z7). Then we can repeat the
same argument and work backwards to the root state to show that by evaluating the Vr values
for Y-states or Z-states, the supervisor correctly performs maximization among Vg values from its
successors while the environment correctly performs minimization.

Finally, we are able to conclude that Vp(yg) = 7213{ 7521[[16 Vieaf(r¢(ms,me)). Then we can transfer
7 to a supervisor S * by the same argument as in the proof of Theorem V.5.1, i.e., imagine that each

leaf state in the FCEIC,, is “merged” with the state subsumed by it and let the supervisor make the

same decision whenever a state estimate is reached. By checking the transitions in the EICS, we

are also able to find a run in the supervised system S /G leading to Vr(y() = inf Viim(r) =
r€Run;, ;(S*/G)

sup inf Viim(r) Therefore, S * solves Problem V.3.1 (Problem V.3.2). ]

S eS r€Run;, (S /G)

From results in [98], the time complexity of the minimax search is O(b") and the space com-
plexity is O(bn), where b 1s the maximum number of choices at each point in the search tree and n
is the depth of the tree. For Algorithm 14, b = max{2/F<l,|E,|} and n = 2-2XI + 1 in the worst case,
where 2/F¢l is the maximum number of control decisions at a state and 22X + 1 is the maximum
number of states on a brunch in the FCEIC,,. Thus we get the complexity bound for Algorithm 14.

Given a pair of strategies (g, m,) € Il X I, and an initial run r} € Run(F,,), let ry(r’;;mg,m,)

be the run whose “prefix” is r} and continues under 7y and 7., until it ends in a leaf state of

the FCEIC,.. Formally, r(r/; 7y, ) = I Dye B 2 ye where )¢ € OF y1 =n(r)),

Y1 Y1 el Y2 € Y1 el Y2 Yi
ey = me(ry — z7) and y; = 15(ry, — 2§ =¥y = - 2y, e = ry — 2f =Yy = 7))
for all 2 <i < n. We also write rp(r',;ms,m,) as rf(Last(r});Jrs,ne) since both players’ decisions

only depend on their current positions. Since the FCEIC,, is finite, r¢(r’,; 5, 7,) is also finite. The
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following proposition shows that the optimal control strategy returned by Algorithm 14 also enjoys
a structural property similar to subgame perfect equilibrium in game theory [83] and Bellman’s

optimality principle in dynamic programming [9].

Proposition V.6.1. Let n be an energy information state based control strategy returned by
Algorithm 14, then for any initial run r} € Run(F\,,), we have that mirrll Vieaf(rp(r; wh,me)) =
me€ll,

max min Vi, r(re(r'e;mg, mo)).
n,ell, moell, leaf( f( s, TTe))

Proof. By definition, the FCEIC,, is an acyclic structure and the depth of its runs is thus bounded.
So there exists a positive integer m such that from its initial state, every leaf state can be reached
within m steps. Then we prove this proposition by induction on the number of steps for an initial
run to reach a leaf state of the FCPEC,,, i.e., we show that VF(Last(r})) = ﬂreneilrlle Vieaf(rf(r'y; oy, me)) =

max min Vie,r(re(r's;ms, m0)).
ryelL meell, leaf( f( > s e))

Induction Basis: Consider the case when the last state of r} is a leaf states in the FCPEC,,.

Then this proposition becomes Theorem V.6.1, thus it holds naturally.

Inductive Hypothesis: Suppose that the result holds for any r} that reaches leaf states within

at most k steps, where k < m—2 for some integer m > 2. In addition, the function Optimal in the

algorithm assigns VF(Last(r})) = min Viear(re(r'y; w5, me)) = max min Vi p(re(r'y;mg,me)) to the
nme€ll, ; nyell meell, :

last state of r}.

Induction Step: Consider r} that reaches leaf states within at most k+ 2 steps. Suppose that
Last(r}) = Lasty(r} =y"¢. We know that there exists z° = fyI; (y'¢,y) for some y € I and specifically,
Z¢= fyi ', y") fory* =m5(y'¢,¥*). Thus succeeding Z-state z¢ = fyi ’¢,y) of y’¢ reaches a leaf state
within at most k + 1 steps. By Algorithm 14, Vp(y¢) = Vp(Z°) = rrézglx VE(Z%). Also some ff; transi-

tions are defined from z¢ and lead to succeeding Y-state y* which reaches the leaf states within at

most k steps. By the inductive hypothesis, mirrll Viear(ry(y; my, m.)) = max mirrll Viear(rp(y®;ms, me))
me€ll, €l mo€ll,

for any r} with Last(r}) =y¢. Again from Algorithm 14, we know that Vg(z¢) = min Vp(y©) =
ye
min min Vieq r(rp(y; 75, 710)) = min Vie p(rp(z°; 7, me)) = max min Vi, r(rp(z%; 75, 7)), thus the re-
y¢ meell, me€ll, ns€llg mo€ll,

sult holds for runs whose last states reach the leaf states of the FCEIC,, within k + 1 steps. Further-
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more, Vr(y*) = max Vr(z°) =max min Vieqr(rp(2; 7%, 7)) = min Vi, r(rp(y'*;n*, 1)) = max min
bl ¢ me€ell, n.€ll, g€l meell,

Viea f(rf(y’e;ns,zre). Therefore the result holds for k + 2, completing the proof. O

This proposition further illustrates the structure of the optimal control strategy obtained from
Algorithm 14. If the supervisor follows the strategy indicated by Algorithm 14 from its current
position, then its onward decisions still constitute an optimal strategy in the remaining game, which
can be viewed as a “subgame”. In other words, the supervisor has no incentive to deviate from its
optimal strategy given that the environment does its best to minimize the supervisor’s mean payoff.
As is seen from the proof, this result is due to the backward induction process of maximization and

minimization in Algorithm 14. Finally, we end this section with an example.

Example V.6.1. We revisit Example V.5.1 and find an optimal control strategy to solve Prob-
lem V.3.1 and Problem V.3.2 completely. First we obtain the EICS w.r.t. the FCEIC,, in Figure V.6.
For simplicity of the graph, we still preserve the state names from G and use dashed rectangles to
indicate the Y-states or Z-states of the FCEIC,,. For example, the top green dashed rectangle cor-
responds to three states in the EICS, i.e. (z(), X0), (zg,x1) and (zy, x2) where Est(Ig(z()) = {xo, X1, x2}.
Specifically, blue and green dashed rectangles correspond to the Y-states and Z-states of the
FCEIC,, respectively. As is seen, the EICS is a tree-like structure whose leaf states (y]_,,x3),
O] _pXa), O] _35%3), (V] _35%4), (V]_y> X3), (Vg X4), (V]_55X3), OV _s> X4), (55, X12) and (¥5_,, X13)
are marked in double dark blue lines.

With the EICS built, we proceed to find the optimal control strategy by Algorithm 14. We
start by calculating the values of Vie.r for each leaf state of the FCEIC,,. For example, in the
EICS, there are two simple cycles between Y-states y{ and y{_,, i.e., x3 iR x3 and x3 iR X5 b—l>
X7 2, x3. Then we obtain Vg(o1) =1 (for x3), Vy(ci1bro1) =2, Vg(o1) =1 (for x4). Therefore,
Vr(y{_,) = min{1,2} = 1. Similarly, we obtain the V1 values for other leaf states in the FCEIC,,
which are shown in Figure V.7. Next, we apply backward induction from the leaf states until the
root state to determine an optimal control strategy. In this process, we always choose to minimize

2y _ 2

at Z-states and maximize at Y-states. By Algorithm 14, we know VF(zi) =min{2,5} = § and

VF(zZ) = VF(zg) = 1. Thus we have the supervisor’s decisions at each Y-state, which are indicated
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by solid red lines in Figure V.7. An optimal supervisor enables c| upon observing o1, as shown
in Figure V.8. Actually, it is also optimal to disable both c\ and ¢y at y{, which yields the same
maximum worst case mean payoff.

Notice that choosing y4 or ye at y{ is optimal in the sense that the environment also follows its
“optimal strategy” to minimize the supervisor’s limit mean payoff. If the supervisor deviates from

Y4 or yo and chooses vy at y{, then the environment may choose oy at z{, which leads to leaf state

4

¥]_s and a potentially lower limit mean payoff % Interestingly, if the environment also deviates
Jrom choosing oy from z{, i.e., if it chooses 03 or 03, then the supervisor should choose g at y;, and
5, which yields a better limit mean payoff for the supervisor compared with the case of choosing

Y4 at y{. Those two decisions are optimal in the following “subgame” given that y5, or y5, is reached

and viewed as starting points of the “subgame”. This result is consistent with Proposition V.6.1.

V.7 Conclusion

We presented an approach for synthesizing partial observation supervisors that optimize the limit
mean payoff of the system. The system is initialized with a certain amount of energy and its
energy level dynamically changes with the occurrence of events. We considered two scenarios, i.e.,
optimization of the worst case mean payoff with and without the constraint of nonnegative energy
level, then formulated two problems correspondingly. This chapter is the first to investigate such
problems. To this end, we defined energy information states and a novel bipartite structure called
First Cycle Energy Inclusive Controller (FCEIC) for each problem. Based on the FCEIC, each
problem was transformed into a finite safety game with perfect information. Then both problems
were solved sequentially. We first showed that winning strategies for the supervisor in the FCEIC
lead to partial solutions to both problems, i.e., solutions to the so-called mean payoff decision
problems. Finally we completely solved both problems by finding the optimal control strategy
among partial solutions, by leveraging results from min-max games. In the future, it would be of

interest to leverage the notion of the FCEIC and the solution methodology in this chapter to other
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Figure V.6: The energy inter-connected system w.r.t. the FCEIC,, in Example V.5.1. The blue and
green dashed rectangles correspond to the Y-states and Z-states in the FCEIC,,, respectively. The
leaf states are marked in dark blue.

quantitative performance objectives. It would also be of interest to consider other assumptions that

retain decidability of the quantitative games under partial information.
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for each state of the FCEIC,,

Figure V.8: An optimal supervisor solving Problem V.3.1 and Problem V.3.2
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CHAPTER VI

Conclusion and Future Work

V1.1 Conclusion

In this dissertation, we solved two important problems in discrete event systems: opacity enforce-
ment and optimal supervisory control under partial observation.

For the opacity enforcement problem, we inherited and further extended the method of in-
sertion/edit functions originally proposed in [119, 122]. For both insertion functions and edit
functions, we considered two enforcement scenarios where the intruder may or may not know
the implementation of insertion/edit functions. Correspondingly, we discussed private safety and
public safety for insertion/edit functions. By transforming the opacity enforcement problem to a
two-player game between the insertion function and the environment, we showed that privately
and publicly safe insertion functions always exist if privately safe insertion functions exist. Then
we proposed the greedy-maximal criterion and developed an algorithm for synthesizing privately
safe insertion functions based on the game structure called All Insertion Structure, following this
criterion. As an extension, the problem of opacity enforcement by edit functions under constraints
was also discussed. We defined a three-player game structure called All Edit Structure to em-
bed all privately safe edit functions satisfying the generic edit constraints. It was also shown that
nondeterministic edit functions may outperform deterministic ones in enforcing public safety.

On the other hand, we also extended the method of insertion functions to quantitative settings

and discussed opacity enforcement under multiple constraints termed as energy constraints. We
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leveraged some results from energy games and transformed the problem into a two-player game
between the supervisor and the environment. The game structure Energy Insertion Structure was
defined and we synthesized insertion functions based on it. We also investigated the problem of
synthesizing bounded cost rate insertion strategies. A special geometric technique called hyper-
plane separation was applied to solve this problem.

For optimal supervisory control, we designed supervisors to optimize the limit mean payoff
of weighted discrete event systems under partial observation. These weights capture variations of
a given resource, i.e., energy, consumed or replenished during the operation of the system. Two
cases were considered under this framework. In the first scenario, we assumed that the system
has a fixed amount of initial energy to support its operation. The goal was to design a supervisor
such that the energy never gets depleted while the worst-case limit average weight of infinite event
sequences is optimized. In the second scenario, we synthesized a supervisor to ensure that all
limit average weights are above a certain threshold, with the worst-case value optimized. The two
cases are closely related and both may be viewed as a two-player quantitative game between the
supervisor and the environment, with asymmetric information and quantitative objectives. To cope
with partial observation of the system, we introduced energy information states which incorporate
both state information and energy information for the decision making of the supervisor. Based on
this concept, we transformed the two supervisory control problems into two-player safety games
with complete information and proposed a finite bipartite structure called the First Cycle Energy
Inclusive Controller (FCEIC) for each problem. The supervisor synthesis algorithms in both cases

were performed in a backward induction manner on the corresponding FCEIC.

V1.2 Future Work

There are several potential directions for the future work. First, we only consider enforcement of
current-state opacity in Chapter II and Chapter III. It would be interesting to consider enforcement

of other types of opacity, like initial-state opacity, K-step opacity and infinite-step opacity by inser-
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tion and edit functions. From the results in Chapter III, synthesizing privately and publicly safe edit
functions requires building the reachability tree of the All Edit Structure, which is computationally
intensive . Therefore, it would be meaningful to study alternative formulations of this problem
that mitigate this issue by, e.g., relaxing the notion of public safety or by solving the problem on a
reduced solution space. Also, we may extend the methodology developed in Chapters II and III to
the setting of timed opacity.

Second, we may extend the secrecy obfuscation problems discussed from Chapters II to Chap-
ter IV to the setting of active intruders. The intruder in those chapters is passive as it only observes
the system’s output while does not interfere with the system’s operation. Suppose the system’s
operation is governed by some supervisor while the intruder has certain capacity to override the
decisions made by the supervisor, then the obfuscation problem would become even more compli-
cated. How to properly model such a problem and find appropriate solutions, maybe by exploring
other frameworks of games, would be challenging and interesting.

Third, regarding the materials in Chapter V, investigating optimal non-blocking supervisory
control under the framework of mean payoff parity games is an interesting avenue for future re-
search. The marked states and unmarked states would be assigned with different priorities and the
quantitative objective may be in terms of the mean payoff function or the total sum function. In this
context, there would be a priority-based liveness criterion on the marked states together with the
quantitative objective. Extending our results to stochastic settings to study the supervisory control
problem under the framework of stochastic games is also of considerable interest.

Finally, it would be worthwhile to develop abstraction and compositional methods for opacity
verification and enforcement, as a way to achieve more scalability in the context of modular models
of discrete event systems. Some preliminary results on this problem have been reported in [77,78];

this area has great potential for future development.
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