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2.1 Schematic of the confined spinner models. (a) Our active colloidal cell
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Boundary spinners are connected by a flexible bead-spring chain (gray). We
compare the behavior of a continuum model (b) to a microscopic model (c).
The compartmentalization of interior spinners is visualized by coloring the
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2.2 Cellular shape control for active boundaries with passive interior.
(a) Simulations in the microscopic model with 512 interior spinners and 80
boundary spinners reveal a symmetric buckling of the colloidal cell. The
buckling is suppressed for low driving torque τ (top row) but appears if the
driving torque is sufficiently high (bottom row). We can control the sym-
metry by changing the number of alternately-driven segments on the active
boundary, varied horizontally. (b) Simulations in the continuum model with
fixed boundaries reveal convective flows of the interior spinners, which we
visualize via the vorticity field w. (c) Simulations in the continuum model
with free boundaries confirm the shape changes observed in the microscopic
model. Again, we show results for two different levels of activity τ ′ for fric-
tional damping γ′ = 0.1 and boundary tension κ = 80 in a cell of size R = 20.
The case of n = 1 exhibits a cusp-like singularity that cannot be captured by
the perturbation analysis used to compute the cell shape (see Materials and
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2.3 Compartmentalization of a colloidal cell with active boundary and
active interior. (a) A grid of representative snapshots of active colloidal cells
with varying boundary (horizontal direction) and interior (vertical direction)
composition in the microscopic model. 128 interior spinners are enclosed by
a boundary of 40 spinners. All spinners are active. We observe the core-shell
and the inverted Janus configurations where the contact between like and
unlike spinners, respectively, is maximized. The bubble-crescent configuration
interpolates between these two extrema. (b) We confirm the steady state
behavior in the continuum model with τ ′ = 8 and γ′ = 0.1 for cell of size
R = 10 with different patterns of boundary activity. The configurations
in (b) correspond to the bottom row of (a). . . . . . . . . . . . . . . . . . . 11

2.4 Explanation for the inverted Janus configuration. We compare the
flows in the (non-observed) Janus configuration (a) to the (observed) inverted
Janus configuration (b). In the inverted Janus configuration the flow main-
tains two circular vortices, while in the non-inverted Janus configuration the
flow would converge to a singular point (⋆). . . . . . . . . . . . . . . . . . . 12

2.5 Order parameter histograms of common intracellular compartmen-
talizations. We use the cellular order parameters m0 and m1 to quantify
core-shell and Janus behavior in simulations of the microscopic model. The
order parameters are normalized such that m0 = 1 and m1 = 1 for the per-
fectly ordered configurations. (a) The interior composition and the boundary
composition are kept even. As the size of the cell grows from 32 (salmon),
64 (violet), 128 (teal), 256 (green), and 512 (brown) interior spinners, the
cell configuration transitions from inverted Janus to bubble-crescent. For
very small cells, thermal fluctuations smear out the histogram significantly.
(b) Transient behavior in cells of 32 (top row), 128 (middle row), and 512
(lower row) interior spinners. Medium-sized cells exhibit periodic migrations
where spinners of one type travel along the segment of the same type in the
boundary. For large cells, this migration becomes self-reinforcing due to the
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Abstract
Self-assembly is a ubiquitous process that holds great promise for the design and engineering
of new materials and systems. While chemistry today is largely based on combining a
few building blocks into molecules with desirable properties, recent advances in colloidal
and nanoscale self-assembly have allowed us to move beyond the periodic table of elements
to design building blocks with attributes tailored to their desired applications. With this
great flexibility, however, comes a cost: both experiments and models of these systems
are often laden with many tunable parameters, frustrating analysis and engineering efforts.
Furthermore, it is often not known whether only a subset of these parameters is important
or if observed behaviors depend on the confluence of multiple variables. In this work, we
show examples of complex design spaces for colloidal and nanoscale self-assembly—including
systems of far-from-equilibrium, anisotropic particles. We further show how machine learning
can be applied to two major problems involved in studying self-assembly in silico: analyzing
three-dimensional structure and engineering building blocks with many design variables.
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Chapter 1

Introduction to Self-Assembly Studies

1.1 Basic Self-Assembly
The world is full of self-organizing phenomena. For objects ranging in length scale from
atomic to galactic, we often base our understanding of matter on its spatial configuration.
Indeed, one of the key tenets of materials science is the idea that the structure of a material
plays an enormous role in its final properties. One alluring idea of engineering materials at
the nanoscale is through bottom-up design of self-assembling particles: by carefully crafting
the building blocks of a system, we can control how they come together to form larger-scale
structures. Creating materials at this scale holds great promise: in contrast to the building
blocks available in nature—the elements of the periodic table—we have enormous freedom
in how we design colloidal and nanoscale building blocks. However, there are also significant
challenges with engineering these systems. At these length scales, the bulk behavior of
particles often depends on a complex interplay of interactions, many of which are difficult
or impossible to measure or reliably control in experiment. Much of our understanding in
this realm is guided by thermodynamics and statistical mechanics. Computational models
of systems of these particles are vital for not only dissecting which features of building
blocks are important to obtain the observed behavior, but also to virtually screen the broad
design parameter space available to experimentalists for their particles. For these reasons,
computational experiments have become an important component of the scientific study of
colloidal- and nanoscale self-assembly.

Some of the earliest computational studies of self-assembly focused on systems of hard
spheres, where particles do not interact in any way except that they are not allowed to
overlap. These were studied both through Monte Carlo methods[1] (MC) and via molecular
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dynamics[2] (MD) in the 1950s. Briefly, Metropolis Monte Carlo methods attempt to sample
the equilibrium probability distribution of a system by iteratively proposing a change to
the microscopic state of the system—for example, moving a particle by a small amount—
and accepting or rejecting the change randomly in order to generate the correct statistical
mechanical ensemble. In contrast, molecular dynamics methods compute forces on particles
and integrate their motion over time. Each method has its own set of benefits and limitations
for solving the problems we encounter in the field. Not long after the studies of hard spheres,
square well[3] and Lennard-Jones[4] type interactions were used in MC and MD simulations,
allowing researchers to capture many of the effects of interparticle attraction.

The decades since these first studies have seen many things drastically change, while
others have remained remarkably constant. Computers have become orders of magnitude
more powerful and codes immensely more complex, but the Lennard-Jones interaction has
remained as a workhorse of coarse-grained modeling, in realms from materials science[5] to
biology[6]. Rather than performing a few simulations of a few hundred particles for a study,
researchers now routinely run hundreds of simulations, each with thousands to millions of
particles. Performing simulations on this scale brings forth a new set of challenges in terms
of data management and analysis, and dealing with these challenges is one of the key focuses
of my work.

1.2 Shapes and Other Complex Interactions
It seems logical that more complex building blocks would be able to exhibit more complex
behavior. But how can we intelligently modulate the complexity of our particles? One
strategy is to formulate more complex isotropic pair potentials. In contrast to Lennard-
Jones interactions, these may include many wells or other features[7, 8]. However, with this
complexity comes the ability to form a wide variety of simple and complex phases by tuning
relatively few parameters[9, 10, 11, 12, 13].

Another way to encode complexity in particle interactions is through anisotropy[14]: par-
ticles can be made with different interactions on each side[15] or with particular shapes, com-
monly polyhedra[16]. The results from these studies are especially interesting: although they
have no interactions except excluded volume, researchers have found that hard polyhedral-
shaped particles can form a variety of structures[17], including a quasicrystal[18]. This
research has opened an entire avenue of study into the behavior of hard polyhedral particles,
including systematically studying the effects of shape on structure[17, 19] as well as other

2



material properties, such as photonic activity[20].
Recent experimental work has found several systems where both particle shape and soft

or sticky interactions between the surfaces of particles cooperate to determine the final
assembly behavior. This could be as simple as the grafting density of molecules on the surface
of particles affecting the assembled crystal structure[21]. More elaborate methods involve
coating particles in particularly-designed double-stranded or single-stranded DNA, which
often allows researchers to dictate symmetry and specificity of the resulting local environment
of particles[22, 23]. These strategies hold great promise for the “inverse design” problem of
formulating building blocks based on desired structural properties or other attributes.

1.3 Summary: Complexity in Self-Assembly
We have seen that colloidal- and nanoscale particle design can be extremely complex, even
when systems are governed by relatively simple rules. Particles can be changed in numerous
ways, any of which could have a drastic impact on how they assemble, if they assemble at
all. The situation becomes even more complex when systems are driven away from equi-
librium, removing equilibrium statistical mechanics from the list of useful conceptual tools.
To illustrate one simple change that drastically impacts assembly behavior, I present some
of my work on two-dimensional, active systems in Chapter 2. These particles have shape
and are rotationally-driven, which makes it difficult to make detailed predictions about their
steady-state behavior based on statistical mechanics. Nevertheless, mixtures of clockwise-
and counterclockwise-spinning particles segregate into similarly-rotating phases in a process
very similar to equilibrium spinodal decomposition of a binary mixture[24]. One of the things
I studied is how these particles behave under confinement within a membrane, which turns
out to be determined by a confluence of static and dynamic factors.

The second main topic of my work focuses on applying machine learning to three-
dimensional structures that we find in self-assembling systems. While our ability to eas-
ily perform many experiments in a high-throughput manner is one of the great strengths
of modeling and computational experiments, often the difficult structural analysis step—
particularly when complex structures are involved—relies on manual effort. Defects and
occlusion can also conspire to make it especially difficult to determine how a system has
ordered in three dimensions. Ideally we would develop and use reliable characterization al-
gorithms that are powerful enough to automatically analyze these systems, but it is difficult
to create flexible and robust numerical descriptions of three-dimensional structure. I present

3



an approach using machine learning (ML) to generate algorithms that can reliably identify
complex structures in Chapter 3. At its core, ML simply consists of formulating models
that characterize our observations—in this case, linking characteristics of local particle envi-
ronments to the structures they form. The ML methods I describe here are currently being
used by my colleagues to automatically identify structures for a variety of scientific purposes.
Other applications of ML to adjacent scientific fields could include predicting material prop-
erties[25], accelerating simulations[26], or directly designing molecules[27, 28]. In Chapter 4,
I show how the previously-described ML algorithms can be extended to incrementally an-
alyze the phase behavior of a study and perform new experiments in promising regions
of parameter space, making higher-dimensional studies involving more tunable parameters
feasible.
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Chapter 2

Nonequilibrium Self-Assembly

2.1 Shape Control and Compartmentalization in Ac-
tive Colloidal Cells

Note: this section was originally published in the Proceedings of the National Academy of
Sciences in 2015[29] and is reproduced with minor modifications below.

Active matter describes particulate systems with the characteristic that each “particle”
(agent) converts energy into motion [30, 31]. Active matter covers a range of length scales
that include molecular motors in the cytoskeleton [32, 33, 34], swimming bacteria [35, 36,
37], driven colloids [38, 39], flocks of birds and fish [40, 41, 42, 43], and people and vehicles
in motion [44]. Over the last decade, studies of active matter have demonstrated behavior
not seen in equilibrium systems, including giant number fluctuations [45, 46], emergent
attraction and superdiffusion [47, 48, 49], clustering [50, 51], swarming [52, 53, 54, 55,
56], and self-assembled motifs [57, 58]. These systems provide interesting theoretical and
engineering challenges as well as opportunities to explore and target novel behaviors that
proceed outside of thermodynamic equilibrium.

Of particular interest are systems found in nature or inspired by natural phenomena.
Biological systems usually operate in confined regions of space—think of intracellular space,
interfaces and membranes, and the crowding of cells near surfaces. The role of hydrodynamics
in confinement has been studied for biological swimmers, such as bacteria and sperm, showing
accumulation at the walls [59, 60, 61] and upstream swimming along surfaces [62] or in a
spiral vortex [63, 64, 65]. Attraction to walls has also been reported in the absence of
hydrodynamics for disks [66, 67], spheres [68] and dumb-bell swimmers [69]. But while these
examples study the behavior under the influence of hard boundaries, biological swimmers
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typically interact with soft boundaries, such as membranes and biofilms. Another design
variable is the possibility that the boundary itself is active, as in the surface of a bacterium
covered with flagellae or, as demonstrated recently, active nematic vesicles [70].

In this work, we propose and investigate an active matter system under flexible, active
confinement. We call this system an active colloidal cell. Our realization of an active colloidal
cell consists of independent particles, called spinners [24], that translate and rotate in two
dimensions and are constrained within a finite area by a flexible boundary that is also built
from spinners. Each spinner has a gear-like geometry, which consists of a large central disk
and four smaller satellite disks (Fig. 2.1a). Similar gear-shaped rigid aggregates of self-
propelled particles have been formed experimentally [71]. Spinners are freely mobile in the
cell interior. On the cellular boundary, spinners are connected to one another by a flexible
chain of beads attached by finitely extensible springs. Both the interior and the boundary
spinners can be subject to a clockwise or counterclockwise driving torque, which makes them
active.

Rotationally-driven particles can synchronize and self-organize [72, 73] in the absence [24]
and in the presence [74, 75, 76] of hydrodynamic interactions. Crystallization has recently
been observed in rotating magnetic Janus colloids [77] and fast-moving bacteria [78]. Spin-
ners in the interior of the cell resemble molecular motors that push themselves forward on
their neighbors and, thus, sustain convective dynamics. The effect of the boundary spinners
is similar to that found in the cilia of living tissues, which stir nearby fluid. Our results
demonstrate that a natural consequence of the activity present in the colloidal cell is con-
trol over both its external shape and internal structure. We report compartmentalization
into regions of clockwise and counterclockwise spinners—a behavior which is affected by,
and can be controlled via, properties of the enclosing boundary configuration as previously
suggested [79]. Transitions in the internal structure of the colloidal cell occur as its radius
increases, and as the composition of the interior spinners and the patterning of the boundary
are varied.

A previous study of spinners in bulk [24] showed phase separation into clockwise- and
counterclockwise domains. Cates and collaborators [35, 80, 81] have suggested that phase
separation is a generic consequence of local energy input in an otherwise equilibrium system.
Here and in the study of bulk spinners we demonstrate phase separation due to local rota-
tional, rather than translational, energy input. We obtain our results using a particulate,
microscopic model (Fig. 2.1c) as well as a continuum model (Fig. 2.1b). This allows us to
conclude that the phenomena we observe are robust with respect to details of the model.
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Figure 2.1: Schematic of the confined spinner models. (a) Our active colloidal cell
is made up of spinners driven counterclockwise (blue) or clockwise (yellow). Boundary
spinners are connected by a flexible bead-spring chain (gray). We compare the behavior of
a continuum model (b) to a microscopic model (c). The compartmentalization of interior
spinners is visualized by coloring the Voronoi tessellation in the microscopic model.

In this study we use two models to study the behavior of an active colloidal cell, illustrated
in Figure 2.1. The microscopic model describes spinners as individual particles and simulates
their motion using Langevin dynamics. It resolves the behavior of individual spinners but
does not include hydrodynamic effects. In contrast, the continuum model describes the
spinner system as a viscous binary fluid, which is governed by an incompressible Navier-
Stokes equation coupled to a Cahn-Hilliard equation. Both models are described in detail in
the Materials and Methods section below. Note that the microscopic model was introduced
in earlier work using Brownian dynamics [24] and is extended here to include boundaries.

2.1.1 Results

Shape Control from Active Confinement

We first study the behavior of colloidal cells with passive (non-driven) spinners in the interior
and active spinners on the boundary. We use the microscopic model while varying two
parameters: the number of boundary segments n and the driving torque on the boundary
τ . As shown in Fig. 2.2a and SI Movie 1, the effect of the active boundary is a deformation
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of the cell shape. The shape deformation follows the symmetry of the boundary pattern
(horizontal axis in the figure) and becomes more prominent as the driving torque τ increases
(vertical axis). Buckling occurs at places on the boundary where the direction of the driving
torque switches. In particular, we observe inward buckling when two adjacent spinners
on the boundary push interior spinners away from the space between them. Similarly, we
find outward buckling when the boundary spinners pull interior spinners toward the space
between them. Colloidal cells with active spinners in the interior display similar, but less
well-pronounced behavior.

In order to understand the deformation of the active colloidal cell, we analyze the veloc-
ity field of the passive spinners in the interior while fixing the geometry of the boundary.
After reaching a steady-state, we observe that the flow field has developed regions of coun-
terclockwise and clockwise convection, which we visualize using the vorticity field w and the
resulting streamlines in Fig. 2.2b. We apply the same color scheme for vorticity (blue for
counterclockwise and yellow for clockwise) in the continuum model as for the rotation of
individual spinners in the microscopic model. Note that counterclockwise (clockwise) flow
is exclusively in contact with a clockwise (counterclockwise) rotating boundary.

We now use the continuum model to study the deformation of the colloidal cell. The active
boundary drives convective flow along the cell wall. Because the passive interior spinners are
transported fastest along the interface, they collect at places where they turn to flow inward
(i.e. where the boundary changes from yellow to blue traveling counterclockwise) inducing
a positive pressure on the boundary. The result is a higher pressure and outward buckling
of the boundary. In contrast, at the other junction, passive spinners are transported away
rapidly when they approach the boundary from the center of the cell. Thus, the boundary
buckles inwards at places where the boundary activity changes from blue to yellow traveling
counterclockwise. The magnitude of the driving torque τ affects the strength of the pressure
difference and thus the anisotropy of the cell shape.

To complete the comparison with the microscopic model, we release the boundary in the
continuum model, adjusting its geometry based on the stresses acting on it from the interior
fluid. We observe in Fig. 2.2c that the cell shape readily adjusts to a shape predicted by
the microscopic simulations, confirming that the observed buckling is independent of using
a microscopic (particulate) or a continuum model.
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Figure 2.2: Cellular shape control for active boundaries with passive interior.
(a) Simulations in the microscopic model with 512 interior spinners and 80 boundary spinners
reveal a symmetric buckling of the colloidal cell. The buckling is suppressed for low driving
torque τ (top row) but appears if the driving torque is sufficiently high (bottom row). We can
control the symmetry by changing the number of alternately-driven segments on the active
boundary, varied horizontally. (b) Simulations in the continuum model with fixed boundaries
reveal convective flows of the interior spinners, which we visualize via the vorticity field w.
(c) Simulations in the continuum model with free boundaries confirm the shape changes
observed in the microscopic model. Again, we show results for two different levels of activity
τ ′ for frictional damping γ′ = 0.1 and boundary tension κ = 80 in a cell of size R = 20. The
case of n = 1 exhibits a cusp-like singularity that cannot be captured by the perturbation
analysis used to compute the cell shape (see Materials and Methods).
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Compartmentalization

We next consider what happens if active spinners are confined within active boundaries. It
is known that without confinement phase separation through a spinodal decomposition-like
process eventually results in complete demixing of clockwise- and counterclockwise-driven
spinners [24]. As we will see, the presence of an active boundary still allows phase separation,
but also induces a preference of oppositely-driven interior and boundary spinners to be in
contact near the boundary. We term this behavior compartmentalization. The presence of
the active boundary can lead to more complex phase behavior than that found in the bulk
system. The size of the colloidal cell also plays an important role for compartmentalization.

We systematically vary the two composition ratios, i.e. the fraction of clockwise- to
counterclockwise-driven spinners in the interior (horizontal direction in Fig. 2.3) as well as
the fraction on the boundary (vertical direction). We find perfect agreement between the
microscopic model and the continuum model. The precise geometry of compartmentalization
changes under variation of the composition ratios. We distinguish three cases:

(1) Core-shell. All boundary spinners are driven in the same direction and the domain
interface forms a circle concentric to the boundary. We call this the core-shell configuration.
The core-shell configuration maximizes the contact between interior spinners and boundary
spinners of the same type.

(2) Inverted Janus. For equal ratios of clockwise- to counterclockwise-driven spinners
on the boundary and in the interior the domain interface is a straight line. We call this
the inverted Janus configuration. The inverted Janus configuration maximizes the contact
between unlike spinners at the cell boundary, as shown in SI Movie 2.

(3) Bubble-crescent. Intermediate to the extreme cases of core-shell and inverted Janus
is the bubble-crescent configuration. In the bubble-crescent configuration one of the spinner
species attempts to minimize its area into a circular domain while simultaneously avoiding
contact with the boundary.

Compartmentalization can be understood as the result of competition between two ef-
fects. The observation of spinodal decomposition in the bulk system [24] suggests that
like-driven spinners in the cell interior and boundary prefer to be in contact. We call
this behavior the boundary preference. In addition, at an interface between clockwise- and
counterclockwise-driven spinners, spinners develop a velocity profile flowing parallel to the
interface. We call this behavior the interface preference.

Both boundary preference and interface preference are satisfied for a single-component
active boundary, which explains the geometry of the core-shell case. In the case of a Janus
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Figure 2.3: Compartmentalization of a colloidal cell with active boundary and
active interior. (a) A grid of representative snapshots of active colloidal cells with varying
boundary (horizontal direction) and interior (vertical direction) composition in the micro-
scopic model. 128 interior spinners are enclosed by a boundary of 40 spinners. All spinners
are active. We observe the core-shell and the inverted Janus configurations where the contact
between like and unlike spinners, respectively, is maximized. The bubble-crescent configu-
ration interpolates between these two extrema. (b) We confirm the steady state behavior in
the continuum model with τ ′ = 8 and γ′ = 0.1 for cell of size R = 10 with different patterns
of boundary activity. The configurations in (b) correspond to the bottom row of (a).
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Figure 2.4: Explanation for the inverted Janus configuration. We compare the flows
in the (non-observed) Janus configuration (a) to the (observed) inverted Janus configura-
tion (b). In the inverted Janus configuration the flow maintains two circular vortices, while
in the non-inverted Janus configuration the flow would converge to a singular point (⋆).

boundary, boundary preference and interface preference work against each other and compe-
tition results. This can be understood from the schematic in Fig. 2.4. If the interior spinners
were to phase separate into a regular Janus pattern (i.e. maximizing the contact between
like spinners at the boundary) then the flows induced on the interior spinners by both the
boundary and the interface between the two interior phases would converge to a single point,
causing the entire colloidal cell to jam (Fig. 2.4a). In fact, if the boundary activity of an
inverted Janus cell is instantaneously swapped to put the cell into a Janus configuration, the
cell first jams and mixes before demixing into the inverted Janus configuration once more,
as shown in SI Movie 3. By creating an inverted Janus configuration, the domain interface
stabilizes a flow of spinners in the opposite direction of the pressure gradient imposed by
the active boundaries and the circular flow of the spinners in the interior can be maintained
(Fig. 2.4b). This behavior is similar to the cell sorting model reported in Ref. [66], where a
mixture of self-propelled soft disks in confinement move towards the walls of the container.
Finally, the bubble-crescent case is an intermediate case. Spinners are slowed down when
they enter a region of unlike boundary contact resulting in the formation of the crescent.
The boundary preference causes a layer of whichever species is dominant to form a wetting
layer in contact with the cell boundary of the same species. In the perfectly balanced in-
verted Janus case, neither species is dominant and the time-averaged width of the wetting
layer approaches zero.

Quantifying Intracellular Order and Finite-size Effects

To quantify the geometry of the domains and to distinguish the three types of colloidal
cell compartmentalization, we construct a family of cellular order parameters mn for non-
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negative integral n corresponding to observed symmetries within the cell. Each spinner is
assigned a fictitious charge cj of +1 or −1 depending on whether it is being driven clockwise
or counterclockwise. The order parameter mn is defined as

mn =
1

m0
n

∣∣∣∣∣∑
j

cjrje
inθj

∣∣∣∣∣ , (2.1)

where (rj, θj) is the position of the interior spinner j in polar coordinates with the origin at
the center of mass of the colloidal cell, and m0

n a normalization factor.
The order parameter m0 is designed to be maximal when one species moves to the outside

of the cell, i.e. for the core-shell configuration. The order parameters mn, n > 0 are maximal
for systems that phase separate into radial sectors with n-fold symmetry, which is the case
for the n-fold alternating boundary of Eq. 2.3 For example, m0 measures radial asymmetry
and m1 measures dipolar order.

We find that the type of intracellular compartmentalization not only depends on the inte-
rior and boundary spinner compositions but also on the size of the colloidal cell (SI Movie 4).
We simulate cells with an even composition of spinners at the boundary and in the interior.
It is apparent from the order parameter histograms in Fig. 2.5a that small cells do not order
well due to the stronger influence of noise. As the number of interior spinners increases to
N = 128, the effect of noise decreases and the colloidal cell approaches the inverted Janus
configuration. A further increase of N induces a transition of the Janus configuration into the
bubble-crescent configuration by a spontaneous breaking of the mirror symmetry. Interest-
ingly, the symmetry breaking is not persistent. As time progresses, the colloidal cell switches
reversibly between a clockwise bubble and a counter-clockwise bubble (Fig. 2.5b). We can
explain the symmetry breaking as a kinetic effect. A colloidal cell can gain net rotation due
to an imbalance in the number of interior spinners of each type touching the boundary of the
same type. This behavior is self-reinforcing: once more clockwise-driven interior spinners are
in contact with clockwise-driven boundary spinners, the cell boundary will begin to rotate
clockwise, which brings it into contact with more clockwise-driven interior spinners. In small
cells the boundary is able to switch rapidly between the two bubble-crescent configurations
due to their size. As the cell size increases, however, fluctuations become less capable of
inverting the bubble-crescent configuration and one species persists as the bubble. In the
limit of infinite cell size, we expect the symmetry breaking to become irreversible. When the
boundary spinners are pinned in place, the colloidal cell does not form the bubble-crescent
pattern but remains in the inverted Janus configuration, as shown in SI Movie 5.
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Figure 2.5: Order parameter histograms of common intracellular compartmental-
izations. We use the cellular order parameters m0 and m1 to quantify core-shell and Janus
behavior in simulations of the microscopic model. The order parameters are normalized
such that m0 = 1 and m1 = 1 for the perfectly ordered configurations. (a) The interior
composition and the boundary composition are kept even. As the size of the cell grows
from 32 (salmon), 64 (violet), 128 (teal), 256 (green), and 512 (brown) interior spinners, the
cell configuration transitions from inverted Janus to bubble-crescent. For very small cells,
thermal fluctuations smear out the histogram significantly. (b) Transient behavior in cells
of 32 (top row), 128 (middle row), and 512 (lower row) interior spinners. Medium-sized cells
exhibit periodic migrations where spinners of one type travel along the segment of the same
type in the boundary. For large cells, this migration becomes self-reinforcing due to the
boundary rotation it induces, causing a spontaneous symmetry-breaking.
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The continuum model also captures the qualitative dependence on the cell size observed
in the microscopic model. For a 50:50 mixture of active spinners confined within a 50:50
active boundary, we observe a destabilization of the inverted Janus configuration and the
concomitant formation of the bubble-crescent configuration upon increasing the size of the
cell from R = 10 to R = 20 (Fig. 2.6) in agreement with the result of the microscopic model.
These results can be seen in SI Movie 6 and SI Movie 7.

2.1.2 Discussion and Conclusion

We have introduced the active colloidal cell as a simple model for the study of an active
matter system under confinement. The confinement is itself active and soft, allowing cells to
be flexible in geometry. The main effect of the active boundary is the stirring of flow in the
interior of the cell, which is observed in both a microscopic model without hydrodynamics
and a continuum model. In both models, confinement results in a competition between
complete phase separation with a straight interface, favored by spinners in the bulk [24],
and deviating behavior imposed by the boundary conditions. There is an optimal size of
the colloidal cell (in our model around N = 128), which is large enough such that strong
thermal fluctuations are suppressed, but not too large for the system to still be influenced
by the activity of the boundary. A colloidal cell of this size conjures up the image of a soft,
miniature robot that can change its shape, vary its internal patterning with two species of
spinners, and even exhibit a bistable equilibrium that switches back and forth.

Although we have taken just an early first theoretical step on two simple model sys-
tems, it is tempting to consider the possibility of exploiting the novel behaviors we report
in the development of colloidal machines—integrated systems of colloids able to carry out
functions. Recent experimental reports of functional bionic nanoparticle assemblies [82] and
colloidal actuators [83] demonstrate prototypical functions of converting light into energy and
converting energy into mechanical work, respectively—both functions critical for a colloidal
machine. The behaviors of predictable compartmentalization, shape control, and switchabil-
ity demonstrated in our model system of colloidal spinners provide additional, machine-like
functionality. We expect such machines could be made from anisotropic colloids exhibiting
e.g. catalytically propelled or magnetic field induced motion [84].
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Figure 2.6: Active Interior, Active Boundary. Snapshots of the steady-state compo-
sition φ for two different cell sizes R = 10 and R = 20. The cells contain 50:50 mixtures
of clockwise- and counterclockwise-rotating spinners within an active boundary comprising
two equally sized, counter-rotating domains. Increasing the size of the cell results in the
destabilization of the inverted Janus configuration and the formation of the bubble-crescent
configuration. Here, the strength of active rotation is τ ′ = 8; the strength of frictional
damping is γ′ = 0.1.

2.1.3 Microscopic Model

In the microscopic model, spinners are rigid bodies consisting of four peripheral disks of
radius σ symmetrically arranged about a central disk of radius 3σ (Fig. 2.1a). The system
is governed by the Langevin equation for translation,

m
∂v⃗i
∂t

= F⃗i − γv⃗i + F⃗R
i , (2.2)

where m is the mass and v⃗i is the translational velocity of each of the disks that comprise
the i-th spinner. If the spinner is active then its rigid body is driven by an external driving
torque τi = ±τ of constant magnitude, with positive sign for counterclockwise rotation
(‘A’, blue) and negative sign for clockwise rotation (‘B’, yellow). In a real system, this
torque could be due to the four peripheral disks being self-propelled particles, oriented
symmetrically to impose a net torque but no net force on the spinner as a whole, much
like the particles described in [71]. The torque on the particles would then be balanced by a
torque on the stationary substrate. Spinners are hard particles that interact via a repulsive
contact potential, resulting in internal forces F⃗i. Translational and rotational kinetic energy
is dissipated through the translational drag force −γv⃗i applied to each constituent disk of
a spinner. Noise is included via Gaussian random forces F⃗R

i =
√
2γkBTR(t) that model

a heat bath at temperature T . Here R(t) are normalized zero-mean white-noise Gaussian
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processes, which ensure thermodynamic equilibrium in the absence of the externally applied
torques. Note that in contrast to earlier work [24] we apply drag and random forces to each
constituent disk of the spinner separately, which means we do not have to specify a separate
Langevin equation for rotation. Because the random forces are not applied pairwise, the
thermostat is non-momentum-conserving. Therefore, our microscopic model explicitly does
not include hydrodynamics.

The boundary is modeled in two steps. First, we connect the ends of a linear chain of
disks with radius σ/2 that interact with their adjacent neighbors via a finitely extensible
nonlinear elastic (FENE) potential U(r) = −1

2
kr20 ln (1− (r/r0)

2) with spring constant k,
divergence length r0, and separation distance r. Second, we rigidly attach a spinner to
every tenth boundary disk, so that the boundary spinners can rotate freely without colliding
if the boundary is sufficiently stretched. We can choose to make the boundary spinners
active by driving them rotationally and vary the patterning of the boundary by constructing
it from segments of equal driving torque. To describe the patterning we introduce the
boundary activity function f(θ) ∈ [−1, 1], where θ ∈ [0, 2π) is an angle that describes the
position at the boundary (if formed into a circle). f = 1 indicates a counterclockwise driving
torque while f = −1 indicates a clockwise driving torque. Simple examples are the uniform
boundary f(θ) = 1 (all boundary spinners are driven counterclockwise), the Janus boundary
f(θ) = 1− 2H(θ − π) (half counterclockwise and half clockwise), and the n-fold alternating
boundary

f(θ) = 1 + 2
2n−1∑
j=1

(−1)jH(θ − jπ/n), (2.3)

where H is the Heaviside step function.
Langevin Dynamics simulations are performed on graphic processing units (GPUs) with

HOOMD-blue [85, 86, 87] for colloidal cells with between 16 and 512 spinners in the interior.
The contact between spinners is a Weeks-Chandler-Andersen potential [88] with parameter
ϵ shifted to the surface of each disk such that its range is a small fraction of the disk
diameter, thereby approximating hard shapes. Throughout the paper we report results for
γ = 1

√
mϵ/σ, r0 = 1.5σ, k = 20ϵ/σ2, and thermal noise kBT = 1ϵ using σ as the length unit

and ϵ as the energy unit. These parameter choices correspond to the overdamped, diffusive
limit. Active systems are often described by overdamped equations of motion where inertia
is neglected[40, 46, 48]. Although inertia is incorporated in our model, we confirmed that it
is not crucial for any of the observed behavior. Additional studies of the role of convection
in bulk systems of spinners is presented in Ref. [89]
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2.1.4 Continuum Model

In the continuum model, the spinner dynamics is described by coupling the Cahn-Hilliard
phase field equation to a Navier-Stokes equation with an active term representing the ro-
tational driving torque. Previously, a continuum model was used to describe separation
of translationally-driven particles into high- and low-density phases, much like vapor-liquid
or vapor-solid coexistence in single-component equilibrium systems [49, 90, 91]. Here, in-
stead, we model separation into clockwise- and counterclockwise-driven domains, analogous
to equilibrium phase separation of a binary mixture of immiscible fluids as reported in [24]
for our microscopic model. Boundary effects are taken into account via the choice of bound-
ary conditions for the equations. Depending on the presence or absence of activity at the
boundary and in the interior we distinguish various cases. Here we present the governing
equations for the most general situation and refer to the Materials and Methods section for
details and derivations.

To describe the binary fluid of actively rotating spinners, we start with the Cahn-Hilliard
equation for the fraction of clockwise- or counterclockwise-driven spinners within a fluid
volume, φ. The Cahn-Hilliard equation can be written in non-dimensional form as

dφ

dt
= ∇2(−φ+ φ3 −∇2φ). (2.4)

The two-dimensional fluid is modeled as a generalization of an incompressible, Newtonian
fluid governed by the (non-dimensional) Navier-Stokes equations [92, 93],

Redv⃗
dt

= −∇p+∇2v⃗ − γ′v⃗ + Ca−1µ∇φ+ τ ′∇× (φe⃗z), (2.5)

0 = ∇ · v⃗, (2.6)

where v⃗ is the fluid velocity, Re is a Reynolds number, Ca is a capillary number, γ′ is a
translational drag coefficient present in the microscopic model, and τ ′ measures the strength
of the rotational driving torque. The form of the rotating driving implies that the torque
density is proportional to the local composition φ [94]. For simplicity, we neglect the effects
of fluid inertia as well as that of capillary-like forces acting normal to the fluid-fluid interface
(i.e., Re → 0 and Ca−1 → 0). These contributions are expected to be unimportant for the
relatively small fluid domains described here. With these simplifications, convective flows
are driven only by forces due to active rotation directed parallel to the interface separating
the counter-rotating domains, τ ′∇× (φe⃗z).
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To solve for the two-dimensional velocity field, it is convenient to introduce the stream
function ψ where v⃗ = ∇× (ψe⃗z). As shown in the SI, the momentum equation (Eq. 2.5) can
then be recast in terms of the stream function,

0 = ∇4ψ − γ′∇2ψ + τ ′∇2φ. (2.7)

Importantly, the dimensionless coefficients τ ′ and γ′ characterizing the strength of active
rotation and frictional drag in the continuum model are directly analogous (in an order-of-
magnitude sense) to the parameters τ and γ in the microscopic model. Together with an
impermeable boundary with spatially varying stress, Eqs. 2.4 and 2.7 govern the dynamics
of the composition φ and stream function ψ of the fluid. We integrate these continuum
equations using COMSOL Multiphysics version 4.4.

The fluid is confined within an impermeable passive or active boundary, entering as
boundary conditions for the continuum equations. The driving torques applied to the bound-
ary spinners are equal to those driving the rotation of the interior spinners. This scenario
can be approximated by the two boundary conditions ψ = 0 and ∇ × v⃗ = −τ ′(f(θ) − φ),
where f(θ) ∈ [−1, 1] is the boundary activity. Furthermore, in the microscopic model, the
active boundary is not fixed in place but is free to rotate relative to the stationary surround-
ings (e.g., an underlying substrate) To describe this effect in the continuum model, we fix
the shape of the boundary to a circle of radius R but allow for its rotational motion with
an angular velocity Ω. In the low Reynolds number limit, the use of a rotating reference
frame does not affect the equations of motion with the exception of the frictional damping
term in the Navier-Stokes equation. Finally, the activity-induced flows create non-uniform
stresses normal to the boundary that result in its deformation. To model shape changes of
the active colloidal cell, we assume that the normal component of the stress at the boundary
is balanced by a surface tension-like force, which is proportional to the local curvature of the
interface.

Governing Equations

To describe the binary fluid of actively rotating spinners, we start with the convective Cahn-
Hilliard equation for the compositional order parameter φ,

∂φ

∂t
+ v⃗ · ∇φ =M∇2µ, (2.8)
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where v⃗ is the fluid velocity, M is a mobility coefficient, and µ is the chemical potential. For
simplicity, we assume the chemical potential is of the form

µ = −rφ+ λφ3 −K∇2φ, (2.9)

where r, λ, and K are positive coefficients. Physically, these coefficients determine the
thickness, (K/r)1/2, of the interface separating two equilibrium phases with composition
φeq = ±(r/λ)1/2.

We further assume that the fluid is incompressible, Newtonian, and symmetric such that
the bulk properties of the two phases are equal—in particular, the density ρ and viscosity η.
The two components of the fluid are driven to rotate in opposite directions by a torque density
aφe⃗z, which is proportional to the order parameter φ and to a constant a that describes the
magnitude of rotation. Under these conditions, conservation of mass and momentum imply
that

0 = ∇ · v⃗, (2.10)

ρ
dv⃗

dt
= −∇p+ η∇2v⃗ − bv⃗ + µ∇φ+ a∇× (φe⃗z), (2.11)

where the additional terms in Eq. 2.11 describe (i) frictional drag against the stationary
surroundings, −bv⃗, (ii) capillary-like forces acting normal to the fluid-fluid interface, µ∇φ,
and (iii) forces due to active rotation directed parallel to the interface, a∇× (φe⃗z).

Non-Dimensionalization

At this point, it is convenient to non-dimensionalize the governing equations using charac-
teristic scales for the interfacial thickness (K/r)1/2, the time of demixing K/Mr2, and the
equilibrium composition (r/λ)1/2. In these dimensionless units, Eqs. 2.8 and 2.11 become

dφ

dt
= ∇2

(
−φ+ φ3 −∇2φ

)
, (2.12)

Redv⃗
dt

= −∇p+∇2v⃗ − γ′v⃗ + Ca−1µ∇φ+ τ ′∇× (φe⃗z), (2.13)

where Re = ρMr/η is a Reynolds number, Ca = Mλη/K is a capillary number, and the
dimensionless coefficients τ ′ and γ′ characterize the strength of active rotation and frictional
drag, respectively. Here, we focus exclusively on the low Reynolds number limit (Re → 0)
and neglect capillary forces (Ca−1 → 0) such that fluid flow is driven solely by the active
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rotation of the particles. Systems with passive fluid interiors are described by setting τ ′ = 0.
To solve for the two-dimensional velocity field, it is convenient to introduce the stream

function ψ where v⃗ = ∇× (ψe⃗z) such that Eq. 2.13 becomes

0 = ∇4ψ − γ′∇2ψ + τ ′∇2φ. (2.14)

For such two-dimensional flows, the fluid vorticity (in the z-direction), w = ∇ × v⃗, can
be related to the stream function as w = −∇2ψ. Together, Eqs. 2.12 and 2.14 govern the
dynamics of the composition φ and the flow field.

Passive Boundary

In the microscopic model, a passive boundary refers to that formed by passive spinners that
are otherwise free to rotate and translate subject to the constraints of their connectivity. In
the continuum model, the passive boundary is described by a circle of radius R with no flow
normal to the boundary and no stress tangent to the boundary

n⃗ · v⃗ = 0, (2.15)
n⃗ · τ⃗ · t⃗ = 0. (2.16)

Here, n⃗ and t⃗ are the unit vectors normal and tangent to the boundary (with the convention
n⃗× t⃗ = e⃗z), and τ⃗ = ∇v⃗+(∇v⃗)T is the viscous stress tensor. In terms of the stream function
and the vorticity, these conditions imply

ψ = 0, (2.17)
w = 0, (2.18)

everywhere along the circular boundary.
Similarly, for systems with active interiors, we require two boundary conditions to fully

specify the composition field φ. First, there is no flux normal to the boundary

n⃗ · ∇µ = 0. (2.19)

We also require a “wetting” condition that determines the effective contact angle between the
counter rotating fluid phases and the bounding surface. For the symmetric fluids described
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here, this effective contact angle should be π/2 such that

n⃗ · ∇φ = 0. (2.20)

Subject to these boundary conditions, Eqs. 2.12 and 2.14 are solved numerically using
the commercial finite element solver COMSOL.

Active Boundary

In the microscopic model, an active boundary refers to that formed by active spinners which
are driven to rotate in either direction with a constant torque. These boundary spinners can
induce stresses tangent to the boundary that drive flows of the interior fluid, which may be
active or passive. In the continuum model, the active boundary is described by a circle of
radius R with no flow normal to the boundary and a tangential stress related to the local
composition φ and the boundary activity f(θ) as

ψ = 0, (2.21)
w = −τ ′(f(θ)− φ), (2.22)

where f(θ) ∈ [−1, 1] with f = 1 for counterclockwise-rotating boundary spinners and f = −1

for clockwise boundary spinners. Here, the driving torques applied to the boundary spinners
are assumed equal to those driving the rotation of the interior spinners. Note that the
vorticity w at the boundary (here equal to the tangent stress) depends on the difference
between the spinner composition in the fluid interior and that at the boundary. An interface
between like rotating particles results in no net stress (i.e., when f = φ); the largest stresses
occur at interfaces between counter-rotating particles (i.e., when f = −φ). Systems with
passive fluid interiors can be described by setting φ = 0 in Eq. 2.22.

To model the boundary activity used in the microscopic model, the function f(θ) was
chosen as

f(θ) = tanh

(
cos(nθ)

nδ

)
, (2.23)

where n determines the number of domains on the boundary, and δ is a length characterizing
the width of the transition from one domain to the next (here, δ = 0.01). The resulting flows
for passive interiors with n = 1 to n = 5 are shown in Fig. 2.2b.

Finally, it is important to note that the active boundary is not fixed in place but is
free to rotate relative to the stationary surroundings (e.g., an underlying substrate). To
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describe this effect in the continuum model, we fix the shape of the boundary to a circle
of radius R but allow for its rotational motion with an angular velocity Ω. We adopt a
rotating frame of reference which is fixed to the boundary and participates in its motion.
In the low Reynolds number limit, the use of a rotating reference frame does not affect the
equations of motion with the exception of the frictional damping term in the Navier-Stokes
equation, which describes the resistance to motion relative to the stationary surroundings.
In the rotating reference frame, the stream function Eq. 2.14 becomes

0 = ∇4ψ − γ′(∇2ψ + 2Ω) + τ ′∇2φ. (2.24)

It is further assumed that the net torque T acting on the surroundings is identically zero at
all times (otherwise, the system would accelerate or decelerate its rotational motion). This
condition implies that

T⃗ = γ′
∫
S

r⃗ × (v⃗ − Ω⃗× r⃗)dS = 0, (2.25)

where the integral is carried out over the entire fluid domain S. For a circular domain of
radius R, the angular velocity Ω is therefore

Ω =
2

πR4

∫
S

(r⃗ × v⃗)dS. (2.26)

This integral constraint must be solved at each time step to describe the rotation of the
cell. Note that such complications are necessary only in describing the most general case of
actively rotating fluids confined by an active boundary.

Shape Change

The activity-induced flows create non-uniform stresses normal to the flexible boundary that
can result in its deformation. To describe these deformations, we assume that the normal
component of the stress at the boundary is balanced by a surface tension-like force, which
is proportional to the local curvature H of the interface

− p+ τnn = κH, (2.27)

where τnn = n⃗ · τ⃗ · n⃗ is the normal component of the viscous stress at the boundary, and κ

is the surface tension of the boundary (in units of ηMr3/2/K1/2). Provided that forces due
to surface tension are large compared to those due to boundary activity (i.e., κ ≫ Rτ ′),

23



deformations in the shape of the boundary will be small. Under these conditions, we can use
the stress computed for the circular boundary to approximate changes in cell shape, r(θ),
which is computed as

H(θ) =
r2 + 2r2θ − rrθθ
(r2 + r2θ)

3/2
, (2.28)

where H(θ) is the local curvature specified by Eq. 2.27, and the subscripts denote differen-
tiation with respect to θ.

2.1.5 Connecting the Continuum and Microscopic Models

In the microscopic model, the key parameters such as the driving torque τ , the frictional drag
γ, and the elasticity of the boundary κ are expressed using natural microscopic scales for
length σ, time σ(m/ϵ)1/2, and energy ϵ = kBT . Here, we connect these characteristic scales
to those used in non-dimensionalizing the continuum model. The characteristic length in the
continuum model is taken to be the thickness of the interface separating the two counter-
rotating phases, (K/r)1/2; this length should be comparable to the size of the particles such
that (K/r)1/2 ∼ σ. The characteristic time used in the continuum model is that of unmixing,
K/Mr2, which should be comparable to the time required for a particle to diffuse one particle
diameter—that is, K/Mr2 ∼ σ(m/ϵ)1/2. Finally, the characteristic energy scale used in the
continuum model is taken to be ηMr. Approximating the fluid viscosity as η ∼ (mϵ/σ2)1/2

[95] and applying the two relations above, this energy scale becomes, ηMr ∼ ϵ.
To summarize, the characteristic scales used in the continuum model are—to within an

order of magnitude—the same as those used in the microscopic model. Consequently, the
parameter values used in each of the models—though not exactly equivalent—should be
directly comparable to one another.This is reflected by the use of common notation, i.e. τ
and τ ′ for the driving torque in the microscopic model and the continuum model, respectively,
as well as γ and γ′ for the frictional drag.

We summarize the characteristic scales used in the respective models:

Microscopic Continuum
length σ (K/r)1/2

time σ(m/ϵ)1/2 K/Mr2

energy ϵ ηMr

Table 2.1: Characteristic unit scales for the two types of models employed to study active
coarsening behavior.
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2.2 Coarsening Dynamics of Binary Liquids with Ac-
tive Rotation

Note: this section was originally published in Soft Matter in 2015[89] and is reproduced
with minor modifications below. M. S. and Sharon C Glotzer designed and implemented the
microscopic model, while Syeda Sabrina and Kyle J Bishop designed and implemented the
continuum model.

The distributed conversion of energy into motion within ensembles of many self-propelled
units can lead to complex collective behaviors operating outside the constraints of thermo-
dynamic equilibrium [31]. Well-studied examples of such active matter include migrating
organisms[30], the cell cytoskeleton[96, 97], driven granular materials [98, 99], and self-
phoretic colloids[38, 100, 101, 102, 39, 51]. In many of these systems, the activity of the
individual units can lead to phase separation and coexistence even in the absence of attrac-
tive interactions. This behavior is clearly illustrated by simple physical models such as that
of active Brownian particles (ABPs), in which hard spheres move at a constant speed in a
direction subject to rotational Brownian motion [38]. ABPs are known to phase separate
in 2D [46, 48, 49] and 3D [91, 103] due to a kinetic trapping mechanism, whereby particles
incident on the surface of a condensed phase are “trapped” by other incoming particles[48].
More generally, activity-induced phase separation of self-propelled “particles” is expected
whenever the average particle velocity decreases sufficiently rapidly with particle density[35,
55]. This basic mechanism is believed to underlie phase separation in such disparate systems
as mussel beds [104], bacterial colonies [80], and active colloids [51].

Activity-induced phase separation has also been observed in systems of rotating particles,
in which otherwise identical, gear-like disks are driven to rotate in opposite directions[24].
Active rotation induces effective interactions between the particles that can cause their seg-
regation into counter-rotating, fluid and crystalline domains [24]. Similar behaviors have
been observed in simulations of spherical particles rotating within a fluid, where viscous
shear forces couple the rotational motions of neighboring particles [105, 76, 106]. Experi-
mentally, there exists several promising mechanisms by which to rotate colloidal components
using magnetic fields [72, 107], electrokinetic flows [108], self-phoretic motions [109, 110, 71],
or circularly polarized light [111]. Recent studies have shown that single component sys-
tems of magnetically rotated colloids[77] or self-rotating bacteria[78] can segregate into high
and low density phases driven primarily by attractive dipolar or hydrodynamic interactions,
respectively.
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Importantly, the unmixing of actively rotating particles is accompanied by steady con-
vective flows that originate along the interface separating the counter-rotating domains [24].
Under appropriate conditions, these activity-driven flows are expected to influence the coars-
ening of actively rotating fluids and may lead to new types of dynamically-organized struc-
tures. By contrast, the coarsening of linearly self-propelled particles such as ABPs exhibit
strong similarities to that of passive liquids[91], in which self-similar domains of size R grow
in time as R ∝ t1/3. Thus, while different forms of microscopic activity can lead to similar
mesoscale behaviors (e.g., phase separation), these differences may contribute to qualitatively
different dynamical behaviors at the macroscale (e.g., coarsening dynamics).

Figure 2.7: Phase diagram in the αβ-plane illustrating the different dynamical regimes (top
right). Here, α measures the strength of active rotation, while β measures that of frictional
damping against the stationary surroundings (see text for details). One representative snap-
shot of the compositional order parameter φ is shown for each regime.

Here, we investigate the dynamics of liquid-liquid unmixing in a binary fluid subject to
active rotation using a phenomenological, phase-field model based on the convective Cahn-
Hilliard equation[92, 93]. In this description, the rotational actuation of the two components
in opposite directions introduces additional forces within the Navier-Stokes equations gov-
erning fluid motion. Depending on the strength of active rotation and that of frictional
interactions with the stationary surroundings, we observe three distinct dynamical regimes
as summarized in Figure 2.7. For strong frictional damping, coarsening of the counter-
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rotating domains is identical to that of a passive fluid without active rotation (in agreement
with previous particle-based simulations[24]). By contrast, when frictional forces are relaxed,
the system exhibits new dynamical behaviors such as “active coarsening” driven by convec-
tive flows induced by the rotation of the particles as well as the emergence of self-propelled
“vortex doublets”. We use numerical simulation along with scaling arguments to charac-
terize the system’s dynamics within each flow regime. Additionally, we show that many of
the qualitative behaviors identified by the continuum model can also be found in discrete,
particle-based simulations of actively rotating liquids. These results highlight opportunities
for achieving complex dissipative structures by directing collective excitations within active
matter.

2.2.1 Model Dynamics

The coarsening dynamics of binary liquids with active rotation is studied using two models: a
continuum, hydrodynamic model and a microscopic, particle-based model. The former is an
extension of previous phase field models[92, 93] for two phase flow that accounts for the active
rotation of the fluid components. The microscopic model[24, 29] describes the Langevin
dynamics of hard, gear-like particles, which are driven to rotate in opposite directions. Here,
we limit our investigation to two-dimensional systems; however, both models can be readily
extended to three-dimensions.

Continuum Model

In the continuum approach, we consider a binary fluid in which the local composition is
characterized by an order parameter φ governed by the convective Cahn-Hilliard equation[92,
93],

∂φ

∂t
+∇ · (φv) =M∇2µ, (2.29)

where v is the fluid velocity, M is a mobility coefficient, and µ is the chemical potential.
Physically, the composition φ(x, y, t) describes the relative amount of counter-clockwise-
rotating components (φ > 0) and clockwise-rotating components (φ < 0) at a given point in
space and time. For simplicity, we assume the chemical potential is of the form

µ = −rφ+ λφ3 −K∇2φ, (2.30)
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where r, λ, and K are positive coefficients. These coefficients determine the thickness
(K/r)1/2 of the interface separating two phases of composition φ = ±(r/λ)1/2. We em-
phasize that this simple model does not attempt to explain the origins of phase separation
driven by active rotation. Instead, we assume phase separation a priori and focus on the
role of activity on the dynamics with which these rotating phases coarsen in time.

To describe the activity-driven flows, we further assume that the fluid is incompressible,
Newtonian, and “symmetric” such that the bulk properties of the two phases are equal—in
particular, the density ρ and viscosity η. Under these conditions, conservation of mass and
momentum imply that

∇ · v = 0, (2.31)

ρ
dv

dt
= −∇p+ η∇2v + µ∇φ+∇× (φτ )− bv. (2.32)

In addition to the usual pressure and viscous forces present in the Navier-Stokes equation,
equation (2.32) incorporates forces due to (i) capillarity[92], (ii) active rotation, and (iii)
frictional drag, respectively. In particular, we consider that the two components of the fluid
are driven to rotate in opposite directions by a torque density φτ , which is proportional to
the order parameter φ and to a constant vector τ that describes the magnitude and direction
of rotation. These local torques combined with spatial variations in the composition give
rise to forces that act parallel to the interface separating the counter-rotating phases [94]. In
our 2D simulations, the fluid moves in the xy-plane with active rotation in the z-direction
(τ = τez). Physically, the system can be thought to represent an ensemble of active particles
moving and rotating above a planar substrate as is often the case in experimental realizations
of active matter in 2D. To account for interactions between the particles and the underlying
substrate, we include a frictional force in equation (2.32) characterized by a constant friction
coefficient b .

At this point, it is convenient to non-dimensionalize the governing equations using char-
acteristic scales for the interfacial thickness (K/r)1/2, the time of unmixing K/Mr2, the
equilibrium composition (r/λ)1/2, and the chemical potential (r3/λ)1/2. In dimensionless
units, equations (2.29) and (2.32) reduce to

∂φ

∂t
+ v · ∇φ = ∇2

(
−φ+ φ3 −∇2φ

)
, (2.33)

Re
dv

dt
= −∇p+∇2v + Ca−1µ∇φ+ α∇× (φez)− βv, (2.34)

28



where Re = ρMr/η is a is a Reynolds number, Ca =Mλη/K is a capillary number, and the
dimensionless coefficients α and β characterize the strength of active rotation and frictional
drag, respectively. In this paper, we focus exclusively on the low Reynolds number limit
(Re→ 0) and neglect capillary forces (Ca−1 → 0) such that fluid flow is driven solely by the
active rotation of the fluid components.

The governing equations (2.33) and (2.34) are solved numerically on a square domain (L×
L) with periodic boundaries using a semi-implicit Fourier spectral method[112] for different
values of the parameters α and β (see ESI for details).† Initially, the system is prepared
in a homogeneous state, in which the composition at each point is assigned a random value
drawn uniformly from the interval [−0.1, 0.1]. Depending on the strength of active rotation
α and frictional drag β, this model exhibits a variety of different coarsening mechanisms
ranging from passive, diffusive coarsening to active coarsening and the emergence of “vortex
doublets” (Fig. 2.7).

Microscopic Model

To confirm the generality of active coarsening in rotating fluids, we study an analogous
particle-based system whereby collections of hard, gear-shaped “spinners” are driven to rotate
in opposite directions by an applied torque [24, 29]. Each spinner contains five circular disks
of radius σ fixed symmetrically about a central disk of radius 3σ. The dynamics of these
composite particles is governed by the following Langevin equation for the velocity of the
ith disk

m
dvi

dt
= Fi − γvi + FR

i , (2.35)

where m is the mass of each disk, Fi and FR
i represent deterministic and stochastic forces,

and γ is a frictional drag coefficient. The deterministic forces Fi contain both active and
passive contributions. First, all spinners are driven to rotate by a constant torque τi = ±τ
with equal numbers rotating in each direction. Additionally, spinners interact both through
a repulsive contact potential and through a short ranged attraction between like-rotating
spinners. The latter is included to ensure phase separation even in the absence of active
rotation by analogy to the continuum model, although it was not considered in previous
works[24]. The stochastic force, FR

i =
√
2γkBTX(t), ensures that the system approaches

thermal equilibrium at temperature T in the absence of active rotation. Langevin dynamics
simulations were performed on graphic processing units (GPUs) with the HOOMD-blue[85,
86] software package for 16, 384 spinners in the system (see ESI for details).†

29



Although a rigorous connection between the microscopic and continuum models is lacking
and outside the scope of this paper, we use order-of-magnitude reasoning to identify dimen-
sionless parameters α′ and β′ in the microscopic model that are analogous to α and β in
the continuum model (see ESI for details).† Specifically, α′ = τ/kBT measures the strength
of active rotation relative to the thermal energy, whereas β′ = γσ/

√
mkBT measures the

strength of frictional damping. The connection between these parameters and those of the
continuum model are discussed further in the Supporting Information.† Below, all results
from the microscopic model are presented in dimensionless form using characteristic scales
σ, σ(m/kBT )1/2, and kBT for length, time, and energy, respectively.

2.2.2 Results and Discussion

We first use the continuum model to map out three qualitatively distinct parameter regimes
as summarized in Figure 2.7. We discuss each regime in turn and provide detailed scaling
arguments to explain the behaviors observed in the simulations. Building on insights from
the continuum model, we reproduce many—though not all—of the qualitative coarsening
behaviors using the microscopic model.

Strong Damping (β ≫ 1)

In the presence of strong frictional damping (β ≫ 1), the coarsening dynamics of the active
fluid is independent of the strength of active rotation (i.e., of α) and identical to that of
a passive fluid, for which α = 0 (Fig. 2.8). This “passive coarsening” regime has been
studied extensively using the Cahn-Hilliard equation in the absence of fluid flow [113]. At
short times (t ≪ 1), the initially homogeneous fluid undergoes an instability characterized
by a wavenumber k = 2−1/2, which grows in time at a rate 1/4 until the formation of bulk
domains with composition φ ≈ ±1 separated by an interfacial region of unit thickness. At
longer times (t ≫ 1), these domains grow in size as R ∼ t1/3 due to small composition
gradients (∆φ ∼ R−1) which drive diffusive fluxes (j ∼ ∆φ/R) that act to grow the domains
(dR/dt ∼ j) and reduce the curvature of the interface (Fig. 2.8a). Here, the domain size R
is defined as the first root of the radial pair correlation function[112] unless otherwise stated
(see ESI for details).†

In this regime, the active rotation of the fluid drives convective flows along the the inter-
face separating the counter-rotating domains (Fig. 2.8b). The dominant terms of equation
(2.34) are α∇× (φez) ≈ βv, such that forces due to active rotation are everywhere balanced
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Figure 2.8: Passive coarsening, β ≫ 1. (a) Compositional order parameter φ(x, y) at
times t = 104 and 105 for parameters α = 10 and β = 102; the size of simulation cell is
L = 1024. (b) Velocity field v(x, y) corresponding to the insets in (a). Arrows show the
direction of fluid flow. (c) Domain size R as a function of time for β = 102 and α = 0, 10,
and 103; here, R is defined as the first zero of the radial pair correlation function, g(R) = 0
[112]. See ESI for the corresponding movie.†

by frictional drag. As a result, all flows are directed perpendicular to gradients in the order
parameter, and the effects of convective transport are negligible (i.e., v ·∇φ ≈ 0 in equation
(2.33)). Consequently, the domain size R increases as R ∼ t1/3 independent of both α and
β in quantitative agreement with passive diffusive coarsening (Fig. 2.8c).

Weak Damping & Weak Rotation (β ≪ 1, α ≪ 1)

For weak frictional damping (β ≪ 1), flows due to active rotation are no longer confined to
the interface but rather extend into the bulk domains to influence the dynamics of unmixing
(Fig. 2.9). The morphology of the growing domains (Fig. 2.9a) is visibly different from
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that due to passive coarsening: arrays of counter-rotating vortices (Fig. 2.9b) create thin
filaments that break-up and merge with the larger domains. The characteristic domain size
R increases faster with time than expected by diffusive coarsening alone (Fig. 2.9c).

Figure 2.9: Active coarsening, β ≪ 1 and α ≪ 1. (a) Order parameter φ(x, y) at
times t = 104 and 105 for parameters α = 10−2 and β = 10−3; the size of simulation cell is
L = 2048. (b) Velocity field v(x, y) corresponding to the insets in (a). Arrowheads show the
direction of fluid flow. (c) Domain size R as a function of time for α = 10−2 and different
amounts of frictional damping β. See ESI for the corresponding movie.†

To understand these qualitative observations in more detail, consider that rotation within
the bulk creates an interfacial stress of order α in a direction tangent to the interface. This
active stress is balanced by the viscous stress U/ℓ, where U is a characteristic velocity, and ℓ
is a length scale over which the velocity falls to zero. For small domains (R ≪ β−1/2), velocity
gradients extend throughout the bulk such that ℓ ∼ R and U ∼ αR. As the domains grow
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larger (R ≫ β−1/2), the velocity decays exponentially with distance from the interface over
a length β−1/2 due to frictional drag; the velocity approaches a constant value U ∼ αβ−1/2

(Fig. 2.9b).
Using these estimates for the fluid velocity, we introduce a Péclet number, Pe = ℓU ,

which characterizes the relative importance of convective and diffusive transport on the
coarsening of the domains.3 For small Péclet number (Pe ≪ 1), activity-driven flows do
not affect the coarsening dynamics, which is analogous to that of a passive fluid. Using the
above estimates for the fluid velocity, this condition implies that small domains, R ≪ α−1/2,
are unaffected by active rotation. By contrast, domains that grow larger than a critical size,
R∗ ∼ α−1/2, induce flow velocities capable of influencing the coarsening dynamics. This
effect is illustrated in Fig. 2.9c which shows that the domain size R(t) follows that of the
passive fluid for R < 10 when α = 10−2. Beyond the critical size R∗, coarsening accelerates
due to convection driven by the rotating fluid. In this regime, domain growth is expected
to scale as dR/dt ∼ U∆φ ∼ α, where ∆φ ∼ R−1 is the magnitude of curvature-induced
variations in composition.

Eventually, however, the rate of coarsening slows as the domain size R grows larger
than the length ℓ ∼ β−1/2, which characterizes the decay of velocity with distance from the
interface. Under these conditions (R ≫ β−1/2), flows are increasingly confined within a thin
interfacial region and no longer influence the rate-limiting process of diffusion throughout
the bulk domain. As a result, the domain growth returns to the diffusive scaling, R ∝ t1/3,
at long times (Fig. 2.9c).

To summarize, “active coarsening” occurs when (i) the Péclet number is large, and (ii)
activity-driven flows extend throughout the bulk domains. These conditions are satisfied
provided that the domain size is in the range α−1/2 ≪ R ≪ β−1/2. This dynamical regime
is denoted by region II of the phase diagram in Fig. 2.7.

Zero Damping & Weak Rotation (β → 0, α ≪ 1)

To better understand the “active coarsening” regime, we examine the limit of zero frictional
damping, β → 0, such that interfacial stresses due to active rotation are propagated by
viscosity throughout the bulk domains—regardless of their size (Fig. 2.10). The domain
structure is no longer characterized by a single length scale in contrast to the self-similar
structures formed by “passive coarsening”. Instead, we observe a spectrum of different length

3In dimensional units, the Péclet number takes the more familiar form of Pe = ℓU/Mr where Mr is
identified as the diffusivity.
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scales spanning a finite range from Rmin to Rmax.

Figure 2.10: Active coarsening, β → 0 and α ≪ 1. (a) Order parameter φ(x, y) at
time t = 2 × 104 for α = 10−2 and no frictional damping, β = 0; the size of simulation cell
is L = 2048. The right image shows a magnified view highlighting the two characteristic
lengths, Rmin and Rmax, described in the text. (b) Length scales, Rmin and Rmax, as a
function of time for α = 10−2 and α = 10−3 in the absence of frictional damping, β = 0.
The dashed black curve corresponds to 0.15L beyond which the finite size of the simulation
domain becomes important; the solid black curve shows the domain size evolution for a
passive fluid. See ESI for the corresponding movie.†

The lower bound can be estimated as Rmin ∼ A/C, where A is the total area, and
C is the length of interface separating the bulk domains. Physically, Rmin describes the
width of the filamentous structures that are repeatedly drawn from the edges of the larger
rotating domains. Because these structures are shaped by convective flows, their size must
be sufficiently large to achieve Péclet numbers of order unity—that is, Pe = αR2

min ∼ 1 such
that Rmin ∼ α−1/2. This scaling result is supported by numerical simulations (Fig. 2.10b),
which reveal that Rmin remains roughly constant throughout the coarsening process.

The larger length scale Rmax is evaluated like R above as the first root of the pair corre-
lation function. Physically, the composition at two points separated by distances less than
Rmax are positively correlated; however, the strength of these correlations is considerably
less than those observed for passive coarsening owning to heterogeneity within these larger
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domains.† Rmax grows roughly linearly in time until ca. 0.1L, beyond which the finite size
of the simulation cell begins to significantly influence the systems’ dynamics.†

In contrast to systems with frictional damping, which ultimately phase separate into bulk
domains of arbitrary size, the multi-scale structures that arise in the zero-friction limit appear
to avoid macroscopic phase separation indefinitely. Instead, active rotation continuously
stretches and folds the growing domains in an effort to “mix” the fluid while it stubbornly
attempts to “unmix”. Competition between these two processes cause the formation of the
smaller structures of order Rmin, which appear to persist indefinitely (barring finite size
effects).

Zero Damping & Strong Rotation (β → 0, α ≫ 1)

As the magnitude of active rotation is increased such that α ≫ 1, the system transitions
to a new dynamical regime characterized by the nucleation of localized vortices that move,
interact, and combine within an otherwise homogeneous fluid (Fig. 2.11). Ultimately, a
single pair of counter-rotating vortices—a “vortex doublet”—emerges and propels itself au-
tonomously throughout the domain, thereby mixing the fluid and preventing further phase
separation.

In this regime, activity-driven flows begin to shape the dynamics of the composition
prior to the formation of the bulk phases. At these early times, the characteristic fluid
velocity scales as U ∼ α∆φ, where ∆φ characterizes the magnitude of composition variations
over a unit length (corresponding to the size k−1 of the fastest growing mode). As above,
convection begins to compete with diffusive transport when the Péclet number is of order
unity, Pe ∼ α∆φ ∼ 1. For strong rotation, activity-driven flows become significant even for
partial phase separation—that is, when ∆φ ∼ α−1 ≪ 1.

Importantly, these convective flows have the potential to inhibit the further unmixing
of the two fluid components. In the absence of active rotation, fluid unmixing proceeds
exponentially as ∆φ ∝ exp(t/4). To inhibit phase separation, the shear rate in the fluid
must exceed the rate of unmixing. Partial phase separation results in activity-driven flows
with shear rates of order α∆φ. Thus, when the extent of unmixing reaches a critical value—
namely, ∆φ > α−1—the resulting flows will act to oppose further unmixing.

Nevertheless, the spatial heterogeneity of the shear field allows for the nucleation of small
vortices in locations with lower shear rates. As vortices form, they create regions of low shear
(but high vorticity) in their interior that allow for further phase separation. At the same
time, these vortices induce high shear rates in the surrounding fluid, which inhibits unmixing
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Figure 2.11: Vortex doublet, β → 0 and α ≫ 1. (a) Order parameter φ(x, y) at times
t = 20, 48, 150, and 300 for parameters α = 50 and β = 0; the size of simulation cell is
L = 256. See ESI for the corresponding movie.† (b) Number of vortices as a function of time
for β = 0 and α = 25 and 50. Here, a vortex is identified as a localized region in which the
composition is |φ| ≥ 0.3 (see ESI for details).†

therein. As a vortex strengthens, the composition in its interior approaches φ ∼ ±1, while
that of the exterior remains largely homogeneous with |φ| ≪ 1.

Following the initial nucleation phase, vortices move and deform in the swirling flows
induced by their neighbors. Some are destroyed by strong shear due to larger neighbors;
others grow and merge to form larger and more powerful vortices. In this way, the number
of vortices decreases in time until only two large, counter-rotating vortices remain (Fig.
2.11). Together, these vortices form a stable, self-propelled vortex doublet of size R that
swims about the domain with velocity U ∼ αR. The doublet creates a velocity disturbance
that decays as αR3/r2 with distance r from its center.† Consequently, a single vortex doublet
can create shear rates of order unity (that necessary for mixing) at distances of Rα1/3. This
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result is consistent with the simulation results shown in Figure 2.11, in which a single vortex
doublet effectively “mixes” a region ca. four times as large as itself with α = 50.

Results of the Microscopic Model

The key insight suggested by the continuum model is that phase separation in actively
rotating liquids can drive convective flows that feedback into the system and direct the
dynamic evolution of the growing phases. This result is further supported by microscopic
simulations of actively rotating particles (Fig. 2.12). In particular, we studied the collective
dynamics of 16, 384 spinners subject to moderate driving torques (α′ = 0.25) and different
levels of frictional damping. Under these conditions, spinners unmix to form domains of
like-rotating particles (Fig. 2.12a,b) that grow steadily in time. Here, the size R′ of the
growing domains is quantified as the first root of the integral of the pair correlation function.
Note that this measure is different from that used in the continuum model and is chosen for
its decreased sensitivity to statistical fluctuations.

For relatively strong damping (β′ = 1), the domain size increases as R′ ∝ t′1/3 (Fig.
2.12a,c) in agreement with the continuum model (Fig. 2.8) and with previous microscopic
results [24]. By contrast, as the damping parameter is decreased, convective flows emerge
and accelerate the rate of coarsening (Fig. 2.12b). Consistent with the continuum model,
the growth exponent increases from 1/3 toward 1 as the damping parameter β′ is reduced.
The exploration of smaller damping parameters and/or longer simulations times in the mi-
croscopic model was found to be computationally prohibitive. Therefore, it is unclear if the
microscopic model will approach a scaling exponent of ca. 1 in the limit as β′ → 0 or if it
will return to a scaling exponent of 1/3 in the limit of long times.

To explore the possibility of “vortex doublets” in the microscopic model, we increased
the driving torque to α′ = 2.5 under conditions of weak damping (β′ = 0.01). Consistent
with the continuum model, the increased rotational activity of the particles was sufficient to
inhibit the unmixing of the spinners; however, we did not observe the nucleation of localized
vortices from homogeneous initial conditions. Furthermore, we applied the same driving
torque to an initially phase-separated system under conditions of weak damping (α′ = 10

and β′ = 0.01). The active rotation of the particles resulted in their complete mixing, which
suggests that the absence of vortex doublets in the microscopic model is not the result of a
nucleation barrier.

The discrepancies between the two models under conditions of high torque likely arise
from a failure of the continuum model to account for the microscopic effects of active rotation
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Figure 2.12: Microscopic model. (a,b) Representative snapshots of a 50:50 mixture of
16, 384 spinners driven to rotate in clockwise (orange) and counterclockwise (purple) direc-
tions at time t′ = 105. The visualization of the particles by their Voronoi tessellation is shown
in the right images along with the fluid flows. The image in (a) show “passive coarsening”
for parameters α′ = 0.25 and β′ = 1 corresponding to strong frictional damping. Image in
(b) show “active coarsening” for parameters α′ = 0.25 and β′ = 0.01 corresponding to weak
damping. White arrows show the direction of fluid flows. (c) Domain size R′ as a function
of time for α′ = 0.25 and different amounts of frictional damping β′ = 1, 0.05, and 0.01; this
plot is analogous to that in Fig. 2.9c. Here, R′ is defined as the first zero of the integral of
the pair correlation function; see ESI for the corresponding movie.†

on fluid-fluid phase separation. In the microscopic model, the driving torque α′ sets an
energy scale, which must be significantly less than that of attractive interparticle interactions
to achieve microscopic phase separation. In the high-torque simulations, these two energy
scales are comparable such that active rotation prohibits any and all phase separation. In
such systems, the strong torques required for the formation of vortex structures lead instead
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to the complete mixing of the binary fluid. Additional theoretical work is required to account
for the microscopic details of the particle-based simulations (e.g., particle shape) within an
accurate hydrodynamic description. Nevertheless, it remains likely that the vortex structures
observed in the hydrodynamic model could also be realized in analogous microscopic models
provided the driving force for phase separation is sufficiently strong.

2.2.3 Conclusions

To summarize, we presented a phenomenological, continuum model for studying the dynam-
ics of phase separation in binary liquids with active rotation. Convective flows induced by
the fluid activity result in accelerated coarsening as compared to spinodal decomposition
in passive liquids. The transition from passive to active coarsening is determined primar-
ily by the strength of active rotation and that of frictional interactions with the stationary
surroundings. In addition to active coarsening, the continuum model also predicts the forma-
tion of self-propelled vortex doublets under conditions of strong rotation and weak frictional
damping. These dissipative structures emerge spontaneously from the competition between
fluid mixing via active rotation and fluid unmixing due to interparticle interactions. Many
of the trends observed in the continuum model such as accelerated coarsening are also re-
produced by microscopic kinetic simulations of counter-rotating particle mixtures. Further
work is needed to develop a more rigorous connection between such microscopic models
and the continuum hydrodynamics of actively rotating fluids. We are currently developing
experimental models of counter-rotating particle mixtures to explore and elucidate the col-
lective dynamics that emerge from active rotation. Such nonequilibrium materials have the
potential to achieve life-like properties such the abilities to adapt, reconfigure, and repair
dynamically in response to environmental stimuli.
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Chapter 3

Machine Learning for Crystal
Structure

Note: much of this chapter was originally published in AIChE Journal in 2018[114] and is
reproduced with modifications below.

Machine learning (ML) is a rapidly growing field of study that uses data-driven ap-
proaches to perform a wide variety of tasks that are often difficult to design algorithms for
by hand. Within the last few years, there has been an explosion of interest in ML as great
progress has been made in image classification[115], object detection[116, 117], image en-
hancement[118, 119, 120, 121] and modification[122, 123, 124], and even playing games[125,
126, 127, 128]. Advancements in the field have been driven not only by novel algorithms
and software, but also by parallel and specialized hardware development. In this chapter,
I discuss strategies I have developed to apply these exciting new tools and methods to the
problem of three-dimensional structure analysis.

3.1 Representations in Machine Learning
One of the key components of applying machine learning to new problems lies in finding an
appropriate representation of the data. Typically these involve computing numerical “fin-
gerprints” of each observation which can then be fed into one of many machine learning
methods. The best sorts of representations are highly sensitive to the phenomena we are
interested in studying (like microscopic structure), insensitive to phenomena that we are not
interested in (such as thermal noise), efficient to compute, low in number of external parame-
ters, and dense in information. For example, the current workhorse representation for image
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tasks involves utilizing the Fourier-domain representation of images through convolutional
neural networks[115], which enables learning of translation-invariant features directly within
a neural network. This representation is particularly useful because it can be inverted, al-
lowing neural networks that have been trained for a task to be run “in reverse,” to generate
characteristic samples for an output they have learned[129].

There are a few broad classes of representations in common use, depending on the choice
of problem and, especially, the ML algorithm to be applied. One of the most prevalent early
approaches was the “bag of features:” for the application of interest, create a list of all the
things we know how to compute that may have some correlation—however weak—to the
attributes we would like to model. This list of descriptors would often be pared down based
on validation data through feature selection algorithms before creating a model via linear
regression, simple neural networks, or similar methods. The “bag of features” method can
be powerful if we already know much about how the underlying system works, but it can
be difficult to apply to very generic problems. This is because the features we use encode
our own biases and knowledge of how the system behaves into the representation, and if we
truly knew everything about the behavior of the system we would be less likely to use ML
to model it.

Another broad approach to representation is through kernel methods. Kernel-based meth-
ods operate on similarities or distances defined between pairs of observations, rather than a
fixed, high-dimensional “feature space” as in the “bag of features” approach. These can be
useful in the many cases when it is difficult to construct fixed representations for observa-
tions, as in many types of data that are structured like graphs. However, it can sometimes
be difficult to transfer the learned information about a dataset to new observations, or to
incrementally add new observations to the model. For example, dimensionality reduction
problems are often constructed in terms of minimizing some function of the coordinate as-
signments of each vertex in a weighted graph. The coordinates for a set of points can be
computed simultaneously, but it is difficult with many methods to efficiently compute the
coordinates of a new observation. This makes it necessary to keep a library of “anchor”
observations—which could be the entire dataset, or some subset of the original data—as a
reference to apply the method to new data.

A third approach to representation involves learning a useful numerical description from
the data at training time. For example, the layers in convolutional neural networks (CNNs)
commonly used for image tasks learn a localized “filter” function that is applied to a neigh-
borhood of a few pixels and produces a new image. As CNNs are trained, lower layers in

41



the network typically learn to identify edges and corners, while higher levels could be tuned
to identify higher-level concepts, like faces or other objects[130, 131]. In a similar manner,
ML models related to language problems often use word embeddings, that map words to
vectors in some continuous “embedding space.” These vectors can reveal intuitive analogies;
for example, if E(w) is the embedding of a word, it is possible for a network to learn that
E(king)− E(man) + E(woman) ≈ E(queen)[132, 133].

3.2 Representing Crystal Structures
Many representations have previously been proposed or used to apply machine learning
or automatic analysis to problems involving crystal structures. For decades, people have
used the Steinhardt order parameters[134] to describe the ordering of various structures,
from crystalline solids[135] to liquid water[136]. These scalar quantities measure the devel-
opment of bond order—the arrangement of nearest-neighbor bonds between particles in a
symmetrical fashion—by essentially computing the power spectrum of the spherical harmonic
decomposition at a particular spherical harmonic degree ℓ:

Qℓ(i) =

√√√√√ 4π

2ℓ+ 1

m=ℓ∑
m=−ℓ

∣∣∣∣∣∣ 1

Nn,i

Nn,i∑
j=1

Y m
ℓ (r⃗ij)

∣∣∣∣∣∣
2

(3.1)

Looking at the power spectrum rather than particular spherical harmonic Y m
ℓ values is

required in this case to make the representation invariant with respect to rigid rotations
of the local environment. While the Steinhardt order parameters have been successfully
used for many applications, they are not an ideal representation. For example, the standard
version presented in Equation 3.1 often has difficulty between distinguishing the two common
close-packed sphere packings, cF4-Cu1 (commonly known as FCC) and hP2-Mg (commonly
known as HCP)[137]. Furthermore, two different sets of particle interactions that yield the
same assembled structure can exhibit substantial differences in the distribution of Steinhardt
order parameters[137], limiting the transferability of any machine learning model or other
algorithm based on these values.

More recent work has revealed a plethora of potential data representations for self-
assembling systems, each with its own strengths and weaknesses[138, 139]. In the study

1Here we identify structure types by a two-part description: the Pearson symbol—identifying the Bravais
lattice and number of particles in the unit cell—and a compound that is known to commonly form that
structure.
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of glassy dynamics, representations based on near-neighbor distances and angles have been
successfully applied to formulate a structural basis for the glass transition[140, 141, 142,
143]. For crystal structures, methods have been devised to utilize the radial distribution
function[11], kernel methods based on graph representations of particle neighborhoods[144,
145, 146], and particular sets of highly symmetric environments[147]. Even more recently,
specialized neural network architectures and encoding schemes have been proposed for point
clouds[148, 149, 150] and graphs[151], both of which can be mapped to the local environment
of self-assembling particles in a straightforward manner.

A visual representation of crystal structure that has often been used to identify complex
structures is the bond-orientational order diagram, or BOOD[152, 153, 9, 17, 12]. In a
BOOD, the nearest-neighbor bonds of all particles are translated to the origin and projected
onto the surface of a sphere, as shown in Figure 3.1.

Geometry BOODStructure
a

Simple cubic
(SC)
cP1-Po

Body-centered
cubic (BCC)
cI2-W

Face-centered
cubic (FCC)
cF4-Cu

Diamond
cF8-C

Hexagonally
close-packed

(HCP)
hP2-Mg

b
Geometry BOODStructure

Figure 3.1: Generation of Bond-Orientational Order Diagrams (BOODs) from crystal struc-
tures. Nearest-neighbor bonds for all particles are projected onto the surface of a sphere.
Bonds on the reader-facing half of the sphere have a blue corona, while back-facing bonds
have a yellow corona. (a) Structures with only one local environment have BOODs that are
easy to identify directly from the configuration of a single particle’s neighbors. (b) BOODs
of structures with multiple orientations of local environments are the superposition of all
orientations and environment types.

While the BOOD is a useful way to quickly identify many structures at a glance, it
is accompanied by limitations that make it difficult to apply as an order parameter for
simulation data. The primary limitation is that the BOOD is a simple global projection
of all of the bonds in the system. This means that, if multiple structures or grains are
present in the same system, the resulting BOOD is the superposition of more than one ideal
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BOOD. Often, crystals with grain boundaries will orient themselves in a particular way,
which can lead to BOODs that are still highly symmetric, but ultimately misleading without
deeper investigation. Two examples of these types of structures are in Figure 3.2, which
shows configurations of self-assembled particles mostly arranged in the cF4-Cu structure,
but with various commonly-occurring defects. Another problem is that, when attempting
to use BOOD fingerprints for structure identification in an automated manner, the points
would first have to be brought into a common orientation with reference BOODs. This
process, known in the computer vision community as the “registration” problem, can be
computationally costly and requires a prebuilt library of reference structures for comparison.

a b

Figure 3.2: Self-assembled structures of close-packed spheres and their BOODs. Particles are
colored by local density. (a) Hard spheres commonly form a face-centered cubic close packed
structure, cF4-Cu, with stacking faults. This causes the BOOD to have a similar pattern
to hP2-Mg, a structural competitor found under similar circumstances. (b) Here, attractive
particles have assembled a structure that is predominantly cF4-Cu, but with defects that
cause the BOOD to exhibit approximate 5-fold symmetry.

3.3 Local Bond-Orientational Order Diagrams
In this work we use descriptors based on spherical harmonics of nearest-neighbor bonds[114],
much like the Steinhardt order parameters. However, instead of creating a rotationally-
invariant combination of spherical harmonics, we first orient the environment of each parti-
cle according to a local measure: the inertia tensor of the environment. This method gives
meaning to the position of neighboring particles in this reference frame while simultaneously
making the description rotationally invariant2. In this manner, we can directly utilize indi-

2Instead of building rotational invariance into the descriptors, it is possible to replicate training data
many times, each with a different rotations applied to them; this process, called data augmentation in the
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vidual spherical harmonics Y m
ℓ instead of only rotationally invariant combinations of them,

yielding a much richer description of particle neighborhoods.
In greater detail, we pick some number of nearest neighbors, Nn. For every reference

particle i in the system, we compute its Nn spatially nearest neighbors and compute the
vector r⃗ij from the reference particle to its neighbor j. We calculate the inertia tensor of
this set of points, defined as

Ī(i, Nn) =
Nn∑
j=1

(r⃗ij · r⃗ij)1̄− r⃗ij ⊗ r⃗ij. (3.2)

We then find an orientation that diagonalizes the inertia tensor by computing its eigen-
values and eigenvectors, which correspond to moments of inertia and principal axes of inertia,
respectively. We assign the eigenvector with the largest eigenvalue to the z direction, the
second-largest to the y direction, and the smallest to the x direction. After repeating this
diagonalization procedure for each particle in the system, we are left with a set of bonds
for every particle, oriented in a common way regardless of the orientation of the crystal the
particles are forming. If multiple crystalline grains are present in the system, the signal of
defects is proportional to the number of particles participating in the defect, rather than the
volume of the crystal in each grain as in a standard, global BOOD. Because these descriptions
create point clouds much like standard BOODS, but are based on purely local information,
we call them local BOODs. We show several local BOODs for different neighborhood sizes
in Figure 3.3.

As with any representation, local BOODs have their own set of caveats related to their
usage. First, the appearance of the local BOOD is strongly related not only to the crystal
structure, but also the neighborhood size Nn we choose. In particular, if the structure
happens to be nearly cubically symmetric for the number of neighbors we pick, then the
moments of inertia will be approximately equal and the orientation vectors we find will be
random, making us unable to even distinguish between a fluid and the crystal. To solve this
problem, we compute the local BOODs for a range of neighborhood sizes. While fluids will
exhibit noise for all neighborhood sizes, crystals with cubic symmetry will be noisy only for
particular neighborhood sizes and will have well-behaved local BOODs for others. A second
issue in the use of local BOODs lies in choosing a particular number of nearest neighbors.
Because crystals usually have particles arranged in concentric shells of equal distances, for

ML community, depends on the ML model to learn rotational invariance from the data and likely requires
larger amounts of training data and more complicated models.
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Figure 3.3: Global and local BOODs for various structures (rows) and neighborhood sizes
(columns).

real crystals with thermal noise our algorithm essentially randomly picks neighbors from
these shells in most cases. For example, the nearest 8 neighbors in a cI2-W (BCC) structure
are arranged like the vertices of a cube. If we attempt to find the nearest 2 neighbors of
the reference particle in the center of the cube, we may find those two neighbors along a
cube edge, on a diagonal across a face of the cube, or a diagonal across the body of the
cube. This problem can be solved by sufficient averaging to sample the distribution of these
configurations. Alternatively, supervised learning algorithms would be able to naturally learn
that the three distinct appearances in the above example correspond to the same structure.

To convert local BOODs—which are essentially a density map on the surface of the
sphere—into a numerical representation, we utilize the spherical harmonic transformation.
By summing the spherical harmonics for a given particle’s local BOOD over its neighbors,
we can find particular Y m

ℓ configurations that constructively interfere in a way corresponding
to a given symmetric arrangement.
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3.3.1 Comparison to Steinhardt Order Parameters for Two Simple
Structures

A natural first question is how well local environment spherical harmonics perform compared
to the Steinhardt order parameters. We compare the performance of these two methods on a
problem that is notoriously difficult for the Steinhardt order parameters: distinguishing two
close-packed arrangements of spheres, cF4-Cu and hP2-Mg. We create thermalized config-
urations by replicating each unit cell to at least 4,000 particles and applying Gaussian noise
(with the ratio of noise to nearest-neighbor distance σ

|rNN | = 0.05). We compute the Stein-
hardt order parameter Q6 using the 12 nearest neighbors for each particle with freud[154].
We define the neighbor-averaged local environment spherical harmonics as Ȳ m

ℓ (i, Nn):

Ȳ m
ℓ (i, Nn) =

1

Nn

∣∣∣∣∣
Nn∑
j=1

Y m
ℓ (θij, ϕij)

∣∣∣∣∣ . (3.3)

We formulate a logistic regression model to map sets of Ȳ m
ℓ (i, Nn) (for 4 to 12 neighbors and

spherical harmonic degree from 1 to 6) onto a predicted probability of being one structure
or the other using scikit-learn[155]. Half the data were reserved for evaluation of the logistic
regression model. As can be seen in histograms of the identification results shown in Fig-
ure 3.4, the local environment spherical harmonics are significantly better at distinguishing
between the two structures than the Steinhardt Q6. This is because the local environment
spherical harmonics are a much higher-dimensional, richer description of the neighborhood
around each particle.

3.4 Structure Identification using Local Environment
Spherical Harmonics

We next analyze structures in a phase diagram that was identified by hand in 2015[12], using
machine learning[114]. That paper studied the self-assembly behavior of particles interacting
via an isotropic pair potential with two parameters, k and ϕ, defined as

V (r)/ϵ0 =
1

r15
+

1

r3
cos (k(r − 1.25)− ϕ) . (3.4)

This interaction was truncated at the third maximum, with a shift to zero and smoothing ap-
plied to the force at the cutoff distance to create a short-range, attractive potential. Systems
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Figure 3.4: Probability distributions of (a) the Steinhardt order parameter Q6 and (b) the
probability under a logistic regression model for particles to be in the cF4-Cu structure
using local environment spherical harmonics as in Equation 3.3. While the Steinhardt order
parameters have difficulty distinguishing between the two structures for some observations,
the local environment spherical harmonics are much richer in information, enabling easy
classification.

of particles were cooled from a high temperature slowly, causing a liquid droplet to form
and usually crystallize into an ordered structure. The phase diagram and unit cells of many
structures, as identified by manual inspection, are shown in Figure 3.5. Within the clathrate
region of the phase diagram, three different structures are found: clathrates I (cP54-K4Si23),
II (cF160-Na24Si136), and IV (hP47-Li14.7Mg36.8Cu21.5Ga66). The clathrate structures often
occur in mixed configurations within the same sample, but there is a bias toward cP54-
K4Si23 at low k, cF160-Na24Si136 at high k, and hP47-Li14.7Mg36.8Cu21.5Ga66 in between.
The quasicrystal region contains two types of icosahedral quasicrystal—distinguished by
their density as a low-density and intermediate-density—as well as a high-density, periodic
icosahedral quasicrystal approximant that exhibits similar structural motifs to the true qua-
sicrystal structures.

To study these data with ML, we use two main approaches: unsupervised learning and
supervised learning. Unsupervised learning is so-called because, for each piece of training
data, the algorithm is not given the desired model output. These models are often used for
clustering (placing points into distinct, similar “buckets”) or projection (placing points on a
continuous space such that nearby points are similar to each other). In contrast, supervised
learning models are trained with both the model input and the desired model output for each
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Figure 3.5: Parameter space and assembled structures for a two-well oscillatory pair poten-
tial[12]. Unit cells and Voronoi polyhedra corresponding to each type of local environment
are displayed. The regions that form clathrates form one of three clathrate structures, which
are often mixed within the same simulation box; in this figure we only show the unit cell for
clathrate I, cP54-K4Si23.

point. These are often used for classification (assigning points to a category) and regression
(associating points with one or more continuous values).

3.4.1 Unsupervised Learning

We first analyze these simulation results with ML via Gaussian mixture models (GMMs)—a
form of unsupervised learning—available in the scikit-learn python package[155]. GMMs
create a probability distribution function for a set of observations using one or more mul-
tivariate Gaussian distributions. Unsupervised learning methods—like GMMs—are a good
choice for simulation data that have not yet been analyzed, for at that point we do not
know which structures will be formed. The expectation-maximization (EM) algorithm used

49



to train GMMs here finds local, not global, optima as a function of the model parameters.
A common trick in training these models is to perform multiple rounds of training with
random initializations of the model parameters before performing EM, but regardless the
method benefits from having compact, well-averaged data. We make the data from this
dataset—which could be expressed as approximately 1,000 simulations of 4,000 particles
each with spherical harmonic vector dimension of 1,000—more manageable for the model in
a few ways. First, we use the globally-averaged local environment spherical harmonics for
each system, calculated as

¯̄Y m
ℓ =

1

NpNn

∣∣∣∣∣
Np∑
i=1

Nn∑
j=1

Y m
ℓ (θij, ϕij)

∣∣∣∣∣ (3.5)

where θij and ϕij correspond to the spherical coordinates of particle i’s neighbor j using the
principal axes of inertia as described in Section 3.3, Np is the number of particles in the
system, and Nn the number of neighbors chosen (here, ranging from 4 to 7). We then apply
principal component analysis (PCA)[156] to further reduce the dimensionality of the data.
PCA should ideally capture our intuition that there would be a greater distance in descriptor
space between different structures than between two examples of the same structure under
thermal noise.

We then train GMMs on the PCA projection of the data. To choose the optimal number
of components, we use the Bayesian information criterion[157], which measures the quality
of the GMM fit while penalizing GMMs with many free parameters to avoid formulating
overly complex models. It is possible that clusters—which would ideally correspond to
distinct structures—are not perfect Gaussians in the descriptor space. In that case, multiple
Gaussian components may be used to fit the data from a single structure. To fix this, we
perform a step of greedily merging GMM components into clusters according to the likelihood
of observations being confused between two clusters[158]. This yields an entropy curve
that typically has a sharp, upward-facing elbow; the appropriate cluster merging map lies
somewhere around the curved region of the elbow. The results of this merging procedure—as
well as three phase diagrams during the cluster merging process—are shown in Figure 3.6.

The unsupervised learning process yields a cluster identity (or a distribution of cluster
likelihoods) for each simulation snapshot, but not a direct structure assignment. A charac-
teristic example from each cluster can be used to identify the cluster in its entirety, reducing
the number of systems to manually identify from over 1,000 to 15 or fewer in this case. For
this phase diagram, the GMMs agree remarkably well with the manually-identified results,
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Figure 3.6: Results of training Gaussian Mixture Models (GMMs)[114] on a dataset forming
several structures, including an icosahedral quasicrystal[12]. Phase boundaries found by hand
in the original study are indicated by black lines. Gray regions indicate ambiguous points
with multiple cluster assignments among the independent replicas. (a) Shannon entropy of
the observations as GMM components are merged from 15 distinct clusters to 1. (b-d) Phase
diagrams, colored by the clustering scheme, as GMM components are merged into clusters
for 10, 13, and 15 clusters.

even down to the presence of multiple distinct types of clathrate and quasicrystal structures.

3.4.2 Supervised Learning

If the structural behavior of a system is already known, then supervised learning can be
utilized. Supervised classification algorithms are generally easier to apply than unsupervised
clustering algorithms because there are multiple conflicting ideas of what may constitute
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a “cluster”[159]. For the quasicrystal phase diagram dataset, we can train a simple feed-
forward artificial neural network (ANN)3 to classify per-particle neighbor-averaged spherical
harmonics, Ȳ m

ℓ , as in Equation 3.3. We use one simulation frame of data for each of the
crystal structures we are interested in as training data, including the various distinct types of
clathrate and icosahedral quasicrystal structures found by hand. We also select four systems
from the disordered region of the phase diagram to be able to identify when particles do not
form any globally-ordered structure. We then generate a phase diagram by identifying the
most prevalent structure prediction for all particles in each simulated system, as shown in
Figure 3.7.

cP54-K4Si23
cF160-Na24Si136
hP47-Li14.7Mg36.8Cu21.5Ga66
cI16-Si
cP4-Li
cP8-Cr3Si
hP10-X
hP2-X
iQCLD

iQCMD

iQCapprox

k

ϕ

Figure 3.7: Phase diagram of the icosahedral quasicrystal dataset, generated via supervised
learning. Black lines indicate phase boundaries as identified by hand[12]. Coordinates in
parameter space are colored by the most prevalent structure identified among its independent
statistical replicas. Dark gray regions did not have a clear majority among the replicas. The
four stars in the disordered region indicate parameters which were used as training data
to formulate the “disordered” structure class. The “iQC” regions indicate the icosahedral
quasicrystals or their high-density, periodic approximant.

While applying supervised learning algorithms for structure identification seems straight-
forward, there are several details above and beyond the typical overfitting concerns of ML
that require careful attention. The first concern lies in crystalline data generation. While

3Artificial neural network models were produced with the python library Keras [160].
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it should be possible to use any structure, as long as it is at least slightly thermalized in
order to sample the distribution of neighbor shell placements as described in Section 3.3,
trained models may yield poor results when thermal noise is increased or the models are used
to identify real thermalized systems. As an example, consider the schematic in Figure 3.8.
Suppose that Figure 3.8(a) illustrates the distribution of two structures in structure space,
trained with small Gaussian noise applied to particle positions for unit cells replicated a few
thousand times. The ML models we train will formulate some sort of decision surface, like
one of the dashed lines present in the diagram. Many types of ML model care primarily
about classification rate and would rank each of these surfaces similarly. Now suppose that
increasing the noise (or performing a simulation using interactions that may change the
structure of the noise entirely) yields a different distribution in descriptor space, as shown
in 3.8(b). For this reason, it may be desirable to use less well-ordered structures as training
data. This may be as simple as applying sufficiently large random noise to a perfectly well-
ordered structure, but any workflows using this method instead of real structural examples
should carefully validate classification results by hand.

a b

Figure 3.8: Schematic illustrating the possible impact of structural order on ML models. ML
models trained on high-quality crystals (a) may perform poorly on less well-ordered variants
of the same structure (b)

A related question concerns how to best deal with disordered structures. While some
ML methods—like Bayesian neural networks[161]—can give an estimate of the uncertainty
of their predictions and could thereby be able to distinguish disordered structures given only
ordered structures as training data, most methods are not so equipped and would need to
also be given training data if disordered systems are to be classified. Another important
consideration is the distinction between local and global ordering: it is possible for a system
to exhibit some sort of ordered signal locally without that order propagating through the
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whole sample. We have some evidence that this can be the case for the local environment
spherical harmonics: consider the GMM results of Figure 3.6(d). On the border between
the disordered phase and the icosahedral region, a distinct GMM component is found that
lies within the globally ordered icosahedral region as well as the globally disordered part of
the phase diagram. We may expect this to be due to the particles forming locally organized
motifs that are unable to fully propagate through the system under the given assembly
conditions.

3.5 Other Applications

3.5.1 Dimensionality Reduction

Dimensionality reduction techniques, broadly speaking, are methods to transform observa-
tions in some input space into a lower dimensional space. This transformation could be a
linear, simple projection—as is the case with PCA, for example—or nonlinear. Nonlinear
dimensionality reduction techniques often work on a graph of nearest-neighbor distances[162,
163, 164], which allow them to work even when we only want to use a distance kernel instead
of a fixed observational space. These nonlinear dimensionality reduction techniques try to
cause neighbors that are similar to each other in observational space to be near each other
in the projected space. That said, the results of nonlinear dimensionality reduction are typ-
ically quite sensitive to hyperparameters[165] and the quantity of input data, making them
often more useful for qualitative, rather than quantitative, comparisons.

Understanding Observation Configurations in Descriptor Space

Dimensionality reduction can be used to give an idea of the topology of observations in
descriptor space. While the details of shapes of individual clusters may vary depending
on the details of the methods and hyperparameters used, key signatures like number of
individual clusters are often robust. For example, we show the projection of the globally-
averaged local environment spherical harmonics for the icosahedral quasicrystal dataset using
two methods, t-SNE[162] and UMAP[164], in Figure 3.9.

We color each observation by the most common structure as found by an ANN over all
particles in the system, as shown in Figure 3.7. Both dimensionality reduction methods very
clearly show that there are distinct sets of observations for the simple periodic structures.
However, the more complex structures—the clathrates and quasicrystals—are joined to the
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Figure 3.9: Nonlinear dimensionality reduction of globally-averaged local environment spher-
ical harmonics using two methods, t-SNE (a) and UMAP (b). Observations are colored
according to ANN analysis as in Section 3.4.2.

globally disordered systems via the high-density quasicrystal approximant. From this obser-
vation, we may expect common structural signatures to be found in the approximant, the
cF160-Na24Si136 structure, and at least some of the disordered systems.

Studying Phase Transitions

Dimensionality reduction can also provide insight into dynamical processes, like crystalliza-
tion. We perform simple simulations of Weeks-Chandler-Andersen[88] spheres in MD as
we compress them from a thermalized fluid. Above a certain packing fraction, the spheres
spontaneously crystallize into the cF4-Cu structure. We perform UMAP dimensionality
reduction[164] on a 16-dimensional PCA projection of the neighbor-averaged local spheri-
cal harmonics of each particle (Equation 3.3) for 4 to 12 neighbors and spherical harmonic
degree ℓ from 1 to 12 and map the UMAP value to a color for each particle. To account
for the neighbor-shell placement problem described in Section3.3, we average each parti-
cle’s spherical harmonics over 64 noisy versions of the positions, with normal-distributed
noise (σnoise = 5 · 10−2σWCA). We show snapshots of the system as crystallization occurs in
Figure 3.10.
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a b c

Figure 3.10: WCA spheres crystallizing into a cF4-Cu structure as they are compressed.
Particles are colored by an order parameter derived via UMAP dimensionality reduction.
The system is at a lower density in (a), intermediate density in (b), and higher density in
(c).

3.5.2 Nucleation and Growth

One exciting direction of study enabled by this work is the characterization of structures
and phenomena that were previously considered too complex to be tractable. For example,
studying nucleation and growth of complex crystal structures with multiple local environ-
ments using the Steinhardt order parameters may involve difficult guesswork, but we can
derive order parameters from observations using ML and local environment spherical har-
monics. We observe the nucleation and growth of the tP30-CrFe structure, simulated using
an oscillatory pair potential similar to the one in Equation 3.4, as the system is cooled below
its crystallization temperature. We train an ANN to distinguish between the pre-nucleation
fluid and a fully crystallized system of 16,384 particles and then apply the ANN to identify
solid regions within a much larger simulation of 100,000 particles. As shown in Figure 3.11,
the ANN is able to identify the regions that form crystals. It would be straightforward to use
methods like these to study the nucleation behavior of this crystal via umbrella sampling[166,
167] or transition path sampling[168], for example.

3.6 Other Structural Representations
To aid in reproducibility of analysis methods, we created the pythia library, which contains
many methods to generate static representations of structure. Providing a common interface
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a b c

Figure 3.11: Projected density map of particles interacting via an oscillatory pair potential
to form tP30-CrFe. Solid-like particles are blue and fluid-like particles are yellow. Parts
(a)–(c) mark the forward progression of time.

for the various types of numerical fingerprints makes it easier to compare representations and
choose the most suitable representation for the task at hand.

3.6.1 Nearest-Neighbor Distance

One of the simplest rotationally-invariant representations one could imagine is a set of
nearest-neighbor distances; that is, for particle i,

[|r⃗i,1|, |r⃗i,2|, ..., |r⃗i,j|]. (3.6)

One way to fix permutation invariance in this description is to sort neighbors according
to their distance from particle i. To create a scale-invariant description of structure, the
distances can be expressed as ratios relative to the shortest distance |r⃗i,1|. This type of
description is appealing for its simplicity and a similar form has been used to study crys-
tallization[169, 170]. Of course, this representation can be too simplistic for many tasks:
for example, the twelve nearest neighbors of cF4-Cu and hP2-Mg are all at exactly the
same distance from a central particle, yielding identical representations in this scheme. To
get an idea of how these descriptors perform for various structures, we utilize UMAP di-
mensionality reduction on an 8-dimensional PCA projection, as in Section 3.5.1. We create
spatially-averaged descriptors by computing the minimal spanning tree of the weighted graph
of neighbors, where the edge between particles i and j is the distance between them. We
then randomly select some number of bonds in this graph to clip and average the descrip-
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tors over each connected component of the graph. The resulting UMAP projection of the
observations is shown in Figure 3.12(a). As expected, some pairs of structures—like cF4-Cu
and hP2-Mg—are placed in the same cluster because they have similar or identical repre-
sentations.

3.6.2 Bispectrum Coefficients

Another likely useful type of description for crystal structures is the bispectrum[171, 172].
The bispectrum can be thought of as the two-dimensional correlation function of spherical
harmonic degree—in contrast to the Steinhardt order parameters, which are like a power
spectrum for a given spherical harmonic degree. We again perform UMAP dimensionality
reduction as in Section 3.5.1 and show the results in Figure 3.12(b). In contrast with the
neighbor distance vectors, the bispectrum descriptors are able to distinguish between cF4-
Cu and hP2-Mg due to the information encoded about angles between bonds of neighboring
particles.
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Figure 3.12: UMAP embeddings of five crystal structures. (a) Embedding of structures using
normalized nearest-neighbor distance vectors. (b) Embedding of structures using bispectrum
spherical harmonic fingerprints.
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Chapter 4

Intelligently Designing Experiments
using Machine Learning

As we have seen, colloidal and nanoscale particles have a wide variety of tunable properties,
each of which may influence their assembly[14]. This abundance of tunable parameters often
leads to simulation studies that probe the effects not only of external thermodynamic degrees
of freedom such as temperature and pressure, but also internal aspects of the particles them-
selves like shape and stickiness. Increased dimensionality of studies plagues self-assembly
simulations in at least two ways. First, as the dimensionality increases we expect the num-
ber of simulations that must be analyzed to increase significantly, generating large amounts
of data and practically requiring automated analysis to be able to sort through, as in Chap-
ter 3. Second, the typically-employed strategy of sampling points in a regular grid scales
poorly as dimensionality increases. Often, the interesting regions of self-assembly phase
diagrams occur in a few restricted spaces which punctuate larger swathes of more boring be-
havior. Placing points on a grid may cause a large fraction of the points to fall within these
“boring” regions—a problem that only becomes worse as dimensionality increases further.
Finally, it is difficult to extend a grid-based sampling strategy in a systematic way to account
for the information learned in successive rounds of simulation—that is, there is no immedi-
ately clear best way to determine what the extents and number of points in each dimension
should be. Methods for overcoming this problem have been suggested in the past[173], but
have not reached widespread adoption. Intuitively, this problem is related to the idea in
the machine learning literature of active learning[174, 175, 176, 177, 178]: given some set of
choices and knowledge about previous choices and outcomes, active learning seeks to find the
overall optimal strategy with the fewest number of choices. In this work, we formulate tools
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to intelligently explore the structural landscape of a high-dimensional simulation parameter
space. This consists of two key parts: automatically characterizing structural observations
and autonomously sampling parameter space in a systematic manner.

4.1 Characterizing Structural Observations
We use GMMs to estimate the probability density function (PDF) of our simulation results
in the structure space formed by the local neighborhood spherical harmonic descriptors,
much like in previous work[114]. To reduce the data to a more manageable dimensionality,
we first project the observed spherical harmonic descriptors from 819 to 64 dimensions using
Principal Component Analysis (PCA) [156]. We optimize the number of components of the
GMM using the Bayesian Information Criterion [157], which measures the fit of the GMM
to the observed data while penalizing GMMs with large numbers of free parameters. In this
way, we create the best estimate of the PDF in structure space with few tunable parameters.

After we fit a GMM to our structural observations, we use it to compute how interesting
simulation results are. For a set of structural descriptors x, we use − log(< pGMM(x) >)—
where the average is taken over all observed descriptors for a given set of parameters—as
an estimate of the novelty of a given structure. In this way, structures that are uncommon
in the input data set will be assigned high novelty, while structures that are prevalent in a
phase diagram will have low novelty. We note that the meaning of the individual Gaussian
components does not matter, since we are only using the GMMs to compute a probability
density function in the high-dimensional structure space; in other words, as long as we find
a good fit for the density function, we do not care which observations are assigned to which
Gaussian components. This is in contrast to a common use case of GMMs wherein distinct
components are expected to correspond to different classes of observations.

We formulate an experiment emulating the results of a very simple phase diagram study.
We generate a series of GMMs trained on two structures (cI2-W and cF4-Cu) and then
gradually add examples of a third structure (the simple cubic structure type cP1-Po) to the
set of training observations. We plot the interest of the newly introduced structure, as well as
that of simple and more complex reference structures (here: the simple hexagonal structure
type hP1-Ca0.15Sn0.85 and the clathrate-I structure type cP54-K4Si23, respectively) that are
never given as training data. Figure 4.1 shows that, as more examples of cP1-Po are included
in the training set, the interest of that structure rapidly decreases, while the two structures
that are not given as observations remain interesting. Using the methods described in the
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next section, we would selectively bias new simulations toward regions forming these more
interesting structures.
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Figure 4.1: Interest of structures after training a GMM on many samples of cF4-Cu and
cI2-W and varying numbers of samples of cP1-Po.

4.2 Optimization of Structural Interest for Phase Dia-
grams

Before applying parameter exploration to an unknown system, we apply it to easier-to-
understand test systems of randomly-generated phase diagrams. We randomly select struc-
tures from the Crystallography Open Database [179, 180, 181, 182] (after filtering out organic
compounds and duplicates) and assign each structure to one of 16–64 reference points inside
an artificial parameter space to produce simpler and more complex phase diagrams. Refer-
ence points are generated in a parameter space of dimensionality D by iteratively randomly
placing points within a randomly selected simplex (D + 1 points) from an initial set of size
2 · D + 1 to a final size of 16–64 points. This yields a clustered distribution of reference
points and a broad distribution of volumes over phases in parameter space. We assign the
structure of any given point in parameter space to be that of the reference point closest
to it, corresponding to the Voronoi tessellation of parameter space given the set of random
reference points.

We compare four different exploration algorithms to optimize the interest of the found
structure. The first performs Gaussian Process (GP) optimization of expected improvement
through the Python package GPyOpt [183]. Second, we use a stochastic method inspired by
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the LIPO algorithm [184], which we call Lipschitz optimism-pessimism (LOP). This samples
an interpolated estimate for test points randomly between two extrema: an “optimistic”
extreme that prioritizes exploration of unknown parameter space based on an estimate of
the Lipschitz constant (the maximum rate of change of the structure interest with respect
to the parameter values) and a “pessimistic” extreme that prioritizes exploitation of points
in parameter space known to be good (using a constant, nearest-neighbor estimate). Third,
maximum distance (MD) places new points as far as possible from any previous observations.
The MD strategy can be thought of as a purely exploration-based approach. Fourth, random
search (rand) explores new points uniformly and randomly throughout parameter space.

In Figure 4.2, we plot the standard deviation of the observed probabilities of each struc-
ture, as well as the number of structures found, as a function of the number of “simulations”
that have been performed for each method. An ideal algorithm would perfectly distribute
simulations among the structures found, causing the standard deviation value to rapidly
approach 0. The ideal algorithm would also quickly find all structures, causing the number
of structures found to immediately approach its final value. We find that GP optimization
works well after exploring many points—at least for the structure type variance metric—but
it remains stuck for a rather long initialization time sampling closely around a few points
rather than exploring the whole input space available to it. This could be due to the objective
function changing at every iteration as new GMMs are fit to the data and more information
about the structures present in the phase diagram is uncovered. The LOP algorithm nar-
rowly outperforms the pure exploration (MD and rand) algorithms, with an advantage that
narrows as the dimensionality increases.

4.3 Model System: the Binary Oscillatory Pair Poten-
tial (OPP)

For this work we study self-assembly results from the binary Oscillatory Pair Potential
(OPP), where the pairwise interaction energy between particles of type α and β is given as

Uαβ/ϵ0 =
1

r15
+

1

r3
cos (kαβ(r − 1) + ϕαβ) . (4.1)

The potential is truncated after the second attractive well, i.e., at the second maximum if the
value at the first local minimum is lower than the second local maximum, and otherwise at
the third local maximum. Systems are slowly cooled from a thermalized initial configuration
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Figure 4.2: Parameter exploration results for randomly-generated phase diagrams with four
different optimization methods: Gaussian process, Lipschitz optimism/pessimism, maximum
distance, and random. All error bars indicate one standard error of the mean over three
replicas. (a-b) Example exploration progress after 64 exploration steps for (a) GP and (b)
LOP algorithms. Phase boundaries are indicated by lines and explored points by dots. (c-
f) Structure fraction variance and number of structures found for each algorithm in (c-d)
two-dimensional and (e-f) six-dimensional phase diagrams.

at kBT = 2ϵ0 to kBT = 0.05ϵ0 over 50, 000τ0, where τ0 =
√

m0σ2
0

ϵ0
is the basic time scale

derived from the basic mass, distance, and energy scales.
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For interactions between particles of type A and B, our parameter space consists of
seven variables: (kαβ, ϕαβ) for the functional forms of the OPPs representing A–A, A–B,
and B–B interactions, as well as another parameter controlling the stoichiometry of A and
B. To be able to distinguish structures that differ only in the assignment of particle types,
we use as descriptors for a particle of type α the concatenation of the neighbor-averaged
spherical harmonics ignoring types and the neighbor-averaged spherical harmonics ignoring
all particles of type β ̸= α.

4.3.1 Optimization Results

We use three of the optimization algorithms discussed above (GP, LOP, and rand) to simulate
over 3,000 parameter points each and plot the number of unique multicomponent structures
found. Structures were identified by an artificial neural network. The neural network was
primarily trained on trained on replicated unit cells of ideal structures with varying Gaussian
noise (from 0.05σ0 to 0.125σ0, where σ0 is the unit length scale of the simulations). Single-
component and binary structure types were included, as well as single-component structures
with random binary assignment of types by setting a random selection of 25% and 50%
of the particles to be of type B. For structures without a well-defined three-dimensional
unit cell, the network was trained on selected examples from the simulation data. This
procedure yielded approximately 1 million particle spherical harmonic vectors as training
data. The simple feedforward neural network was trained to associate each particle to the
crystal structure it came from, as in previous work[114]. The number of distinct structures
found by each optimization algorithm is plotted in Figure 4.3. While random exploration
still performs quite well compared to Gaussian process optimization, our LOP algorithm
outperforms both methods by a narrow margin after an initialization period.

We identify the structures found during simulation for the development and tuning of
these algorithms—over 35,000 simulations—using supervised and unsupervised learning [114]
to find distinct structures. The actual structure identification—i.e., their association with
known atomic compounds—was conducted manually.

4.3.2 Previously Known Structures

Many crystal structures found via the binary OPP are known from materials on the atomic
scale. This is not surprising, as the functional form of the potential is inspired by Friedel os-
cillations and was originally chosen to model the interactions in intermetallic compounds[185,
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Figure 4.3: Exploration results for the binary system of OPPs, using three different opti-
mization methods: Gaussian process, Lipschitz optimism-pessimism, and random.

186, 12]. The two-component structures that were found are listed in Tab. 4.1.
The structure types found range in complexity from the simplest binary crystals to those

with dozens of particles in the unit cell. Snapshots of the unit cells are shown in Figure 4.4.

4.3.3 New Structures

We present four new periodic structure types—i.e., ones that do not have atomic-scale
equivalents—found by parameter exploration here. Some are variations or distortions of
well-known structures. For example, the oC8-A4B4 structure has space group Cmcm and is
a simple orthorhombic, distorted version of the well-known cF8-NaCl (rock salt) structure.
Similarly, the tI4-A2B2 structure has space group I 4̄m2 and is a distorted version of tI4-
(Ag,Ga)Te. It can also be thought of as a two-component coloring of cI16-Si.

The tP5-AB4 structure has a space group of P4/mmm and can be seen as an AB stacking
of layers of individual A particles on a square lattice with square motifs of four B particles.
This structure and its BOOD are shown in Figure 4.5(a)–(b). The cP40-A20B20 structure
has a significantly more complicated unit cell and has space group P4132. All particles have
tetrahedral coordination. A snapshot of the structure, as well as a BOOD, are shown in
Figure 4.5(c)–(d).

We also find a two-component icosahedral quasicrystal in the binary OPP—to our knowl-
edge, the first example in the literature of a self-assembled binary icosahedral quasicrystal
structure. The quasicrystal has an average coordination of over 12 after removing particles
on the surface of the crystallized droplet. This is distinct from the icosahedral quasicrystals
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Table 4.1: List of binary OPP structures also found on the atomistic scale.

Structure name Common name/details
cF8-NaCl rock salt
cF8-ZnS zinc blende / sphalerite
cF12-CaF2 fluorite
cF16-AlCu2Mn Heusler phase
cF16-NaTl
cF24-MgCu2 (Laves phase)
cF56-Al2MgO4 spinel
cI4-AgI-like (Ag sites at ≈ 1/8 occupancy)
cI28-Th3P4

cP4-AuCu3 auricupride
cP12-FeS2 pyrite
cP16-CuCl
cP2-CsCl
cP8-FeSi naquite
hP4-AuCuSn2

hP6-InNi2
oS104-Rb12Na4Ge88
tI4-GeAs

found previously using a similar but single-component interaction potential[12], which had
average coordination numbers of roughly 4 and 7. An example assembled binary quasicrystal
structure, BOOD, and coordination number histogram are shown in Figure 4.6.

4.4 Conclusion
High-dimensional models are ubiquitous in science and engineering; often one of the most
alluring aspects of computational modeling is the ability to screen combinations of parame-
ters much more quickly than would be feasible in physical experiments. Here we have shown
that virtual experiments with many parameters can be improved further by intelligently
incorporating optimization methods into the experimental design. We have coupled these
optimization methods to GMMs, which model our observations in a high-dimensional struc-
ture space. Even though we ran only a few thousand simulations in this seven-dimensional
parameter space—leaving a more exhaustive exploration of the system for a later study—we
were able to find several structures that have not been reported before.

Moving human analysis out of the tight inner loop of the scientific process lets us perform
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Figure 4.4: Unit cells of structures found in the binary OPP system that are equivalent to
structures found in nature, found via parameter exploration.
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Figure 4.5: Above: snapshot (a) and bond-orientational order diagram (b) of the tP5-AB4

structure. Below: snapshot (c) and bond-orientational order diagram (d) of the cP40-A20B20

structure.

simulations on much larger spaces and feasibly begin to explore systems with many param-
eters. As parallel processing power improves, we anticipate that fully automated workflows
like the one presented here will become more prevalent, enabling more nuanced studies of
more powerful models. In summary, we hope that methods like these will help make high-
dimensional studies like this one become tractable for the scientific community at large.
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Figure 4.6: Dense icosahedral quasicrystal found using the binary oscillatory pair potential.
(a) Histogram of coordination number of particles internal to the crystallized droplet. The
mean coordination number of approximately 12.2 is indicated by a vertical dashed line. (b)
Snapshot of a droplet, with particles colored by their type. (c) Bond-orientational order
diagram (BOOD) displaying the icosahedral arrangement of local environments within the
crystal.
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Chapter 5

Outlook

Overall, I believe that this is an extremely exciting time to be involved in the field of molecular
modeling. Within the last few decades, developments in algorithms, scientific methods, and
high-performance hardware have driven great improvements in the quality of models we
can reasonably simulate and the quantity of data we can generate. These developments,
paired with the rise of data science as a paradigm, hold enormous potential for our field and
practical applications in the areas of physics, chemistry, materials science, and biology. I
believe that machine learning techniques will play a key role in allowing us to formulate and
analyze higher-dimensional, more accurate models and I hope that my contributions have
helped the field make some of the first of many steps toward this future.

In summary, we have seen several examples of complex structures and behavior originat-
ing from simple interactions. In some cases—either due to model complexity or simply the
sheer number of simulations performed—it is easy for our experimental analysis and plan-
ning capacity to become overwhelmed. However, by utilizing machine learning methods—as
shown in Chapter 3—we can create powerful and flexible automated analysis methods that
can scale our analytical ability to be on par with our simulation capability. In Chapter 4, we
show that we can integrate this type of analysis directly into the experimental design loop
in order to autonomously study the structures possible in a parameter space.

In the future, I expect machine learning-based methods to become a staple in our field. As
we have seen in the literature, various types of building blocks—be they hard particles with
shape, particles interacting with isotropic pair potentials, or polymers—can self-assemble
into the same set of structures. I think that machine learning could play a crucial role in
identifying the similarities and differences in the assembly behavior of these systems via the
insight it awards us on a microscopic, stochastic level. Using ML, I think we can begin to
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pick away at the problem of determining which attributes cause disparate building blocks
to assemble into the same structure. ML has already exhibited great power in finding a
structural basis for the glass transition[142, 141, 143], a problem that many expected to be
difficult or impossible. Similarly, ML may be able to help us discern useful rules govern-
ing nonequilibrium self-assembly in other contexts, as in the case of the rotationally-driven
particles presented in Chapter 2. In the longer term, I expect integrated analysis and expe-
dited simulation—to intelligently record interesting behavior only when it is occurring and
to dynamically guide simulations toward configurations of interest—to become a dominant
paradigm in simulation. I think this evolution will be driven by more flexible programming
languages and simulation frameworks that could support these types of workflows. I expect
that ML-based models will play an ever-increasing role in these types of algorithms and look
forward to the advancements in the field over the next several years.

71



Appendices

72



Appendix A

Discrete Element Method

Note: this chapter was originally published in the Journal of Computational Physics in
2017[187] and is reproduced with minor modifications below.

A.1 Introduction
The impact of particle shape on the self-assembly of systems of colloidal- and nanoscale
particles is receiving ever-increasing attention.[16] Hard particle simulations are the most
straightforward way to determine the impact of particle shape on assembly and have been
highly successful in elucidating the phase behavior of anisotropic particles.[17, 188] Monte
Carlo (MC) methods are ideal for probing the equilibrium behavior of such systems and
can be implemented efficiently on modern highly parallel architectures.[189, 190] However,
studying nonequilibrium behavior often requires dynamical, rather than stochastic, simu-
lation methods. While hard-particle Monte Carlo methods like those used in the previous
studies can accurately predict the equilibrium behavior of shapes, it is more difficult to
directly study nonequilibrium behaviors like crystal nucleation[191] and active matter.[58,
29] Event-driven molecular dynamics[192, 193, 194, 195] (EDMD) is one such dynamical
method, but it can be difficult to parallelize or to extend for arbitrary shapes and can slow
down at the moderate to high densities of interest in many self-assembly studies. As such,
there are currently no EDMD codes publicly available for performing dynamical simulations
of particles with arbitrary shape.

Treating the issue of shape in MD is hardly a new concept; beyond the previously men-
tioned techniques, it is also common to see coarse-grained models of shapes constructed from
stacked spheres. Such stacked sphere models consist rigid bodies of spheres in a more- or
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less-principled way to create particles with shape.[196, 197] However, this leaves particles
with a rough surface which could introduce artifacts in assembly behavior when compared
to the faceted particles often created in experiments. Particles simulated via the method
described in this manuscript have smooth faces, yielding a higher-fidelity model of particle
shape.

The Discrete Element Method (DEM) has been used extensively by the granular ma-
terials community to study dynamics of anisotropic, frictional particle systems.[198, 199,
200, 201, 202, 203, 204] This method models interactions between particles as interactions
between the minimal set of lower-dimensional geometric features needed to capture the ef-
fects of particles’ shapes. DEM is also a natural method to implement as a force field in a
classical molecular dynamics (MD) framework, which lends itself to hardware acceleration.
Programs using graphics processing units (GPUs) can achieve order-of-magnitude speedups
over single-CPU programs, but only if they are made to take full advantage of the parallel
nature of the GPU. Here we present an adaptation of DEM to run on GPUs within the
HOOMD-Blue[85] MD framework. This sets our DEM implementation in a different class of
algorithms than existing codes such as LIGGGHTS, where particle shape is constructed by
stacking spheres. Furthermore, our implementation lacks the frictional contact force present
in traditional DEM implementations by design - we have redesigned the algorithm to be
appropriate for the kinds of forces present in colloidal and nanoscale materials, rather than
those typical in granular matter. To our knowledge, our implementation is the first to bring
DEM into the domain of classical MD. The method is intended purely for capturing steric
repulsive forces between particles - such as those that have been ligated, charge-screened, or
otherwise functionalized to only interact via short-ranged forces. Our method can be sup-
plemented with additional colloidal or nanoscale forces typically used in coarse-grained MD
particle simulations to account for intermediate or long-range forces like dipoles or charged
surfaces.[205] This method is most directly applicable for people who would like to study
the behavior of coarse-grained faceted colloidal- and nanoscale particles with higher shape
fidelity than can be achieved with rigid bodies of spheres.

Finally, while it is tempting to draw comparisons between this and existing methodologies
such as MC and EDMD, we have made no attempts at rigorous thermodynamic comparisons
between various methods due to the inherent complexity of such comparisons. Here we
have simply set forth the methodology, and leave it to the user to decide if DEM is the
appropriate choice for their coarse-grained models. The implementation has been freely-
available beginning with HOOMD-Blue v2.0, allowing them to easily and efficiently study
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Figure A.1: The DEM model. (a) Shapes are represented by a polygon or polyhedron (inner
shape), rounded out by a disk or sphere (dotted circles) to give the outer shape. The inner
shape can be concave or convex. (b) In two dimensions, a repulsive contact force is evaluated
between the nearest point on all pairs of vertices and edges. (c) In three dimensions, the
contact force is evaluated between all pairs of vertices and faces and all pairs of edges and
edges. (d) Because interactions are always evaluated between some features, some can be
overcounted: when two aligned cubes come together, eight vertices will interact with three
faces each, while four edges will interact with five neighboring edges and four other edges
will interact with three neighboring edges each.

the equilibrium and non-equilibrium behavior of faceted particles.

A.2 Model
Some assumptions must be made about the simulated particles for the method described
here to be useful in classical molecular dynamics. First, we assume that the polytopal
shapes have been rounded by a sphere or disk of a given radius, as shown in Figure A.1(a).
Rounding arises from the isotropic, conservative interaction we compute between interacting
points and prevents discontinuities in the force arising from corners of shapes. The optimal
rounding radius to use depends strongly on the geometry of the particles—like the presence
of a shell of surface ligands around otherwise sharply faceted shapes—and the quantities
that are being studied. For studies of nanoparticle and colloidal assembly, we later show
that the small amount of rounding required by our DEM algorithm has no discernible effect
on self-assembly behavior for rounding radii of more than 10% of the edge length, depending
on the shapes involved and the phenomena under investigation. Second, we assume that
particles interact only through short-range, repulsive forces. These assumptions allow us to
approximate interactions between the volumes of particles i and j as interactions between

75



the nearest points of lower-dimensional features (faces, edges, or vertices) of the particles
using simple point-point interactions, without integrating over the surface or volume of the
particles. In general, we consider a minimal set of interactions between features that will
prevent two polyhedral shapes from overlapping as they collide. To prevent particle overlap
in 2D, it is sufficient to consider interactions between all pairs of vertices and edges between
the two particles, as shown in Figure A.1(b). In 3D, simulating polyhedral volumes requires
calculating interactions between vertex-face pairs, and all edge-edge pairs as in Figure A.1(c).

Often in MD and MC simulations of anisotropic particles, a single “particle” is built from
several spheres, joined together rigidly[196, 206]; interactions are calculated between all pairs
of spheres, but translations and rotations are applied to the body as a whole[207]. Ideally,
to create an anisotropic potential from a shape, we would integrate an isotropic potential
over the surface or volume of a pair of shapes. Within DEM, particles are instead built up
out of the geometric features of a two- or three-dimensional polytope: vertices (V ), edges
(E), and faces (F ). The functions V (·), F (·), and E(·) yield the coordinates of the vertices,
faces, and edges of their argument, respectively, and r∗ab returns the distance between the
nearest points of two features with types a and b. We then define the potential energy Uij

between particles i and j in three dimensions using a point particle potential U as

U3D
ij =

∑
Ei∈E(i)
Ej∈E(j)

U(r∗EE(Ei, Ej)) +
∑

Vi∈V (i)
Fj∈F (j)

U(r∗V F (Vi, Fj)) +
∑

Vj∈V (j)
Fi∈F (i)

U(r∗V F (Vj, Fi)) (A.1)

By considering vertex-face and edge-edge interactions, one or more potential interactions
U3D
ij will become nonzero as two polyhedra come into contact, as illustrated in Figure A.1.

In two dimensions these features are reduced to checks between vertices and edges only:

U2D
ij =

∑
Vi∈V (i)
Ej∈E(j)

U(r∗V E(Vi, Ej)) +
∑

Vj∈V (j)
Ei∈E(i)

U(r∗V E(Vj, Ei)) (A.2)

Similarly to three dimensions, in two dimensions vertex-edge computations are sufficient
to make one or more terms in U2D

ij become positive as two polygons contact each other. The
nearest points given by r∗ab can be found using standard point-line, line-line, and point-plane
formulae. Forces are computed using the derivative of this potential and torques are based
on the interaction point on each particle.
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Because we are simulating nanoscale and colloidal systems, we choose a conservative pair
potential U that is representative of the interactions of such materials and well vetted within
the community. A truncated and shifted version of the Lennard-Jones (LJ) potential, the
Weeks-Chandler-Andersen (WCA) potential,[208] creates a steep, purely repulsive force from
the particle surface with a rounding radius of 1

2
σij:

ULJ
ij (r) = 4ϵij

[(σij
r

)12

−
(σij
r

)6
]

(A.3)

UWCA
ij (r) =

{
ULJ
ij (r)− ULJ

ij (rWCA
cut ) r < rWCA

cut

0 r ⩾ rWCA
cut

(A.4)

where rWCA
cut = 2

1
6σij.

When initializing particles on a lattice, e.g. prior to thermalization, one may encounter
collisions of perfectly parallel edges when the lattice spacing is small. These collisions intro-
duce a numerical instability for the molecular dynamics integrator: the points of interaction
fluctuate at every timestep between the endpoints of each edge, yielding an unstable torque
that changes sign at every timestep. To alleviate this issue while still only using point inter-
actions, when two edges are sufficiently close to parallel the interaction point is taken to be
the midpoint of overlap between the two edges.

Another common occurrence during simulation is for features to be “overcounted”; fea-
tures that are shared among two separate faces (edges and/or vertices) are counted individu-
ally for polygonal face. This results from the fact that each polyhedron is decomposed into a
set of polygonal faces (containing vertices and edges), and that the components of each face
are subsequently checked against all other faces. A concrete example of this overcounting
is shown in Figure A.1(d). If two cubes are touching perfectly face to face, they will have
an interaction strength 66 times as large as a single vertex-face interaction: eight vertices
are interacting with three faces each, four edges are interacting with five edges each, and
four edges are interacting with three edges each. If the single vertex-vertex interaction had a
strength of 1kBT , then the 1kBT isosurface for the now 66kBT interaction would have moved
out by 10% of the rounding radius of the shape. This could lead to energetic “bumps” in the
interaction: while the cutoff radius is not affected, the interaction is increased by a multi-
plicative factor according to the geometry of the two interacting sites, causing equipotential
lines to expand slightly around vertices and edges. This effect should not matter to the
extent that the potential used is a good approximation of a “hard” force field. Regardless of
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the geometry, we note that due to the cutoff in the WCA potential, it is impossible for the
rounding radius to be increased by more than a factor of 21/6 ≈ 1.12 with this overcounting
effect.

A.3 Algorithm
The total force, torque, and potential energy for a given particle is the sum of the force,
torque, and potential energy contributions between it and its neighbors. We evaluate these
contributions from each particle’s features independently by splitting the features among
different GPU threads, then summing them efficiently in shared memory. In simulations
constrained to only move in two dimensions (2D), two CUDA threads are assigned to each
vertex of particle i, as shown in Figure A.2. The first thread assigned to a given vertex
calculates and sums the force, torque, and potential energy contributions between that vertex
and the nearest point to that vertex on each edge of each neighboring particle j. The second
thread assigned to a given vertex calculates and sums the force, torque, and potential energy
contributions between the nearest point on the edge beginning at that vertex (travelling
counterclockwise) in particle i to each vertex in each neighboring particle j.

In fully three-dimensional (3D) simulations, two CUDA threads are assigned to each ver-
tex of particle i and one thread is assigned to each edge of particle i, as shown in Figure A.2.
The first vertex thread calculates the interaction between that vertex and the nearest point
to each face in each neighboring particle j. The second vertex thread calculates the interac-
tion between that vertex in each neighboring particle j and the nearest point of each face of
particle i. The edge thread calculates the interaction between the nearest point on its edge
of particle i to each edge of each neighboring particle j.

A.4 Results

A.4.1 Energy Conservation

To perform rigorous thermodynamic calculations using this method, we must first ensure
that the NVE integrator conserves energy when combined with our force algorithm. We
analyze both the short-term and long-term energy conservation of our model.[209] We use
reduced units ε0 for energy, σ0 for length, m0 for mass, and τ0 =

√
m0σ2

0

ε0
for time. We run

NVE simulations of a fluid of squares (with edge length 4.24σ0) in 2D and tetrahedra (with
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Thread 0 Thread 4 Thread 8

Figure A.2: Thread decomposition for the GPU. In 2D (left), each vertex is assigned a thread
and each edge is assigned a thread; in 3D (center, right), each vertex is assigned two threads
and each edge is assigned one thread.

edge length 8.49σ0) in 3D which have been thermalized at temperature T ∗ = 1 in reduced
units.

To measure the short-term energy conservation, we compute the standard deviation of the
total energy per particle σ(E/N), recorded at a high frequency over a short NVE simulation
of duration 10τ0. We measure σ(E/N) for systems using both single and double precision
floating point arithmetic with a varying integration timestep size δt and present the results
in Figure A.3.

For small δt, rounding errors saturate the accuracy of the method, causing the energy
conservation to plateau. These rounding errors appear at a much smaller value of δt when
using double- rather than single-precision floating point arithmetic. At large δt, error is
introduced through the coarse time step as ∆E

<E>
∼ ∆t2 for the second-order integrator

we use (a standard Velocity-Verlet algorithm with extensions for anisotropic particles[210],
implemented as md.integrate.nve in HOOMD-Blue), increasing the energy deviation. For
the remaining tests, which are performed in single precision only, we choose δt = 0.01τ0 as
the timestep size to balance energy conservation and simulation speed.

To study the long-term energy conservation, we calculate the drift of the total energy
per particle, 1

N
(E(t)− E(0)), over long simulations. For squares, we achieve an energy drift

of 1.36(6) · 10−5 ∆E/(N/ε0/τ0) and for tetrahedra we obtain 6.33(2) · 10−4 ∆E/(N/ε0/τ0).
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Figure A.3: Magnitude of total energy fluctuations for squares (2D) and tetrahedra (3D)
in constant energy simulations for short times as a function of timestep size δt. Error bars
indicate two standard errors of the mean for the energy fluctuations.

The energy drifts are significantly higher than those reported for isotropic particles[211],
1.3(1) · 10−7 ∆E/(N/ε0/τ0) over the same period of 10τ0, likely due to the new rotational
degrees of freedom and the approximation of expressing the energy between features as the
potential evaluated between their closest points. In practice, we find these energy drifts to
be acceptable for the coarse-grained simulations at which this method is targeted.

A.4.2 Performance

We evaluate the speed benefit of our GPU parallelization scheme using an NVIDIA Quadro
M6000 relative to both 18 cores and a single core of an Intel E5-2680V2 CPU for dense
fluids of several systems with shapes of varying complexity in three dimensions: spheres,
triangular plates, cubes, and icosahedra. The anisotropic shapes are modeled with the DEM
potential, and spheres are modeled with a central WCA interaction, as in Equation A.4.
As shown in Figure A.4, we achieve speedups of 15-75 times on the GPU and 10-27 times
using domain decomposition, depending on the particle shape and system size. For many
shapes the relative speed saturates at system sizes of a few thousand particles. Importantly,
Figure A.4 also shows little to no speed up at small particle numbers on the GPU over
the CPU for isotropic particles. This is due to the fact that threads are being under-
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utilized on the GPU for the isotropic particles; however, as can be seen in Figure A.4,
the DEM algorithm saturates the GPU even for relatively modest numbers of particles.
We note that the apparent jump in icosahedron performance for both GPU and parallel
CPU implementations is due to a decrease of speed on the single-core CPU, likely due to
memory locality effects, rather than an increase in GPU speed. Typical absolute performance
numbers, in intensive units of particle-timesteps per second (PTPS)—that is, the number of
MD timesteps completed per second multiplied by the number of particles in the system—
are reported in Table A.1. In contrast, spheres are only just beginning to saturate the GPU
at 65,000 particles. This finding demonstrates that the feature-based DEM parallelization
scheme allows users to take advantage of GPU performance even for relatively small systems.
Put another way, this method allows one to simulate the dynamics of a few thousand micron-
sized particles for seconds of simulated time in a day on the GPU, rather than a week or
more on a single CPU core.

Shape N PTPSCPU PTPSGPU PTPSCPU,parallel

Sphere 256 3.25(2) · 106 3.3(3) · 106 N/A
Sphere 4096 3.137(1) · 106 4.64(7) · 107 2.932(1) · 107
Sphere 65536 3.07(2) · 106 1.586(8) · 108 3.901(5) · 107
Cube 256 6.50(5) · 103 1.85(4) · 105 N/A
Cube 4096 6.49(7) · 103 3.85(5) · 105 7.81(8) · 104
Cube 65536 5.48(9) · 103 3.49(5) · 105 9.04(1) · 104
Icosahedron 256 1.83(2) · 103 5.9(1) · 104 N/A
Icosahedron 4096 1.76(1) · 103 8.1(2) · 104 2.21(3) · 104
Icosahedron 65536 9.23(6) · 102 6.88(9) · 104 2.452(9) · 104

Table A.1: Absolute performance of CPU, GPU, and domain-decomposition parallel CPU
MPI implementations, in particle-timesteps per second (PTPS). Numbers in parentheses
show two standard errors of the mean in the least significant digit. Parallel CPU results are
not available for small systems due to the domain decomposition scheme used[212].

A.4.3 Assembly

We simulate the self-assembly of shapes into crystals to compare our results to those of
hard particle colloidal crystals obtained via MC simulations[17]. We simulate 1,728 square
bipyramids, cubes, and icosahedra in the NPT ensemble after thermalization at a dilute gas
over a range of pressures, as shown in Figure A.5. Mass and moments of inertia are calculated
based on the volume of the Minkowski sum of the polyhedron and a sphere of rounding radius
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Figure A.4: Simulation speedup for different three-dimensional shapes by using a GPU (solid
lines) and 18 CPU cores in parallel (dashed lines) relative to a single CPU core. Error bars
indicate two standard errors of the mean.

0.5σ0 and the inertia tensor of the inner polyhedron without rounding, respectively, using
a density of 1m0

σ3
0

. We use a standard Martyna-Tobias-Klein NPT thermostat (available as
md.integrate.npt in HOOMD-Blue) applied to both translational and rotational degrees of
freedom[213, 214, 210] and the barostat computes the pressure from the virial tensor, just as
in standard MD[215]. The time constants τT for the thermostat and τP for the barostat are
each 1 τ0 and the thermal energy for the thermostat is set to 1 kBT

ε0
. We generate systems with

a range of pressures and select the samples with the cleanest assembly behavior to show here.
Numerical details of the simulations are presented in Table A.2. Similarly to MC results from
hard particles with perfectly sharp corners, we find that the wide, flat bipyramids with a
height of 1√

2
relative to their equatorial edge length form a nematic phase, cubes form a simple

cubic crystal, and icosahedra form a face-centered cubic crystal. Additionally, Figure A.5
contains particle bond-orientational order diagrams (BOODs) inset at right. The BOODs
show a histogram of particle positions, at a fixed distance, averaged over every particle in the
system and projected onto the surface of a sphere; the sphere is then “unrolled” into a map
projection to show the entire diagram. The BOOD gives a quantitative image of the local
orientation and environment of each particle relative to its neighbors. Additional information
on BOODs, and their role in structure classification, can be found in the references.[9, 17]
At the lower right, a cone represents preferred nearest-neighbor positions for surrounding
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Figure A.5: Self-assembled crystal structures in systems of square bipyramids, cubes, and
icosahedra. Bond-orientational order diagrams depicting a global histogram of neighboring
particle positions are in the upper-right of each snapshot. Particles with cones indicating
preferred nearest-neighbor positions are located to the lower-right of each snapshot.

particles, which was extracted from the BOOD.

Shape rround/redge m/m0 Ixx/m0σ
2
0 Iyy/m0σ

2
0 Izz/m0σ

2
0 P/kBT

σ3
0

t/tau0

Bipyramid 1
6
√
2
≈ 0.118 14.3 18.6 18.6 35.0 0.375 3.6 · 104

Cube 1
6
√
2
≈ 0.118 339 1296 1296 1296 0.1 4.0 · 104

Icosahedron 1
12

≈ 0.0833 644 4441 4441 4441 0.05 6.3 · 104

Table A.2: Table of simulation parameters used to produce the hard particle assemblies
shown in Figure A.5. Parameters include number of particles N , rounding radius compared
to edge length rround/redge, particle mass m, components of inertia tensor Iαβ, simulation
pressure P , thermostat and barostat time constants τT and τP , and simulated time t in the
NPT ensemble before creating the snapshots shown in the figure. The edge length used for
the bipyramid is that of each of the four edges on its equator.

A.5 Summary
Here we have described a method to simulate conservative interactions of purely repulsive,
rounded polytopes in molecular dynamics simulations. Because evaluation of this potential
is more intensive than that of a point particle, we are able to more efficiently utilize graphics
processing units for smaller system sizes with this potential than with isotropic potentials.
Although the simulated shapes are still rounded, this method affords less opportunity for
unphysical interdigitation than when rigid bodies of tangent or overlapping disks or spheres
are used because the particle surface is smooth rather than rough.

In the future, there are many potentially useful optimizations that could be applied to
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this method. Currently, the contact point search and pair potential evaluation happen within
the same GPU kernel; in three dimensions in particular, this leads to large register usage and
low GPU occupancy. By splitting the contact search and force evaluation into two separate
steps, some of this inefficiency could be avoided. In general, the search for contact points
could also be improved through the use of shape-local cell lists[4], octrees[216], or other
spatial data structures.

In summary, the DEM-MD method presented here enables dynamical simulations of
faceted particles. With the particular integrators used, the method as implemented is most
relevant to the simulation of nanoparticles and colloids in solvents where particle motion is
dominated by inertia. Our implementation is available as of version 2.0 of HOOMD-Blue1,
along with Brownian and Langevin thermostats for modeling non-inertial regimes. Because
the interactions are conservative, this method is useful for computation of thermodynamic
quantities. Having real dynamical information enables a more direct mapping to studies of
nonequilibrium processes such as crystallization, vitrification, jamming, and self-assembly of
active matter than Monte Carlo simulations.

1HOOMD-blue web page: http://codeblue.umich.edu/hoomd-blue
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