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Abstract 
 

Dysregulation of histone methylation has emerged as a major contributor of 

neurodevelopmental disorders (NDDs) such as autism and intellectual disability. Methylation of 

histone H3 lysine 4 (H3K4me) is an extensively regulated post-translational modification with 

13 writer and eraser enzymes modulating this mark, nine of which are mutated in human NDDs 

to date. However, roles of H3K4 methylation and demethylation in the central nervous system 

are not well understood. My thesis research aims to address this gap in knowledge and gain 

insight into the interplay of H3K4me-specific chromatin regulators in normal and pathologic 

brain development. We propose that H3K4me balance is critical for proper cognitive 

development, and that H3K4me-regulators orchestrate developmental programs in the brain by 

fine-tuning methylation at key genomic loci. We also posit the opposite nature of writer-eraser 

enzymes reveals a potential for enzyme activity modulation to “neutralize” histone methylation 

and serve as a therapeutic.  

The work in this dissertation focuses on H3K4me writer and eraser duo KMT2A and 

KDM5C, responsible for human NDDs Wiedemann-Steiner Syndrome (WDSTS) and mental 

retardation, X-linked, syndromic, Claes-Jensen type (MRXSCJ), respectively. Mouse models of 

each recapitulate the cognitive and behavioral impairments characteristic of the respective 

human disorders, yet mechanistic studies of how KDM5C and KMT2A affect the brain are 

lacking. I reported a new MRXSCJ-associated human mutation in KDM5C that specifically 

compromises gene-regulatory function but not enzymatic activity or stability, suggesting non-

enzymatic roles for KDM5C and a new pathological mechanism for loss-of-function mutations. 



 xiv 

To explore the roles of KMT2A and KDM5C in the brain, I systematically characterized Kmt2a- 

and Kdm5c-deficient mice at molecular, cellular, and behavioral levels. We show similar 

phenotypes between Kmt2a- and Kdm5c-mutant male mice, including altered transcriptomes and 

impaired dendritic morphology in amygdala, and increased aggressive behaviors, revealing 

commonalities despite loss of opposite H3K4me regulators. I generated Kmt2a-Kdm5c-double-

mutant mice to determine if pairwise relationships between opposing enzymes could “neutralize” 

histone methylation and specifically combat loss of the opposite enzyme to ameliorate disease 

phenotype(s). We observed a clear reversal in double mutant male mice of neuron morphology 

and behavior deficits, and partially corrected H3K4me3 landscapes and transcriptomes. Female 

double mutant mice exhibited exacerbated fear memory deficits, and rescued social behaviors. 

Together, the studies in this dissertation reveal functional consequences of altered 

KMT2A and KDM5C function, both individually and in concert, in the central nervous system, 

and provide the field with a proof-of-principle concept of opposing enzyme dual modulation to 

combat their associated disorders. 
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Chapter 1 ¾ Introduction 
 

Overview of dissertation 

Recent large-scale exome sequencing studies led to the discovery that mutations of 

histone methyl regulators are overrepresented in neurodevelopmental disorders (NDDs) 

including autism and intellectual disability. Yet we still know very little about how histone 

methyl dysregulation leads to such cognitive and behavioral deficits. This dissertation focuses on 

regulators of histone H3 lysine 4 methylation (H3K4me) and their molecular functions in the 

brain. 

H3K4me is an intricately regulated post-translational modification of active chromatin, 

with eleven associated enzymes mutated in several neurodevelopmental disorders (NDD). 

Chapter 1 provides an introduction to H3K4me regulators in the context of NDDs and 

summarizes major progress in identification of mutations and functional investigations of these 

genes in the central nervous system. Chapter 2 characterizes a new human mutation in eraser 

gene KDM5C and discusses enzymatic activity-independent roles for such enzymes in 

transcriptional regulation. Chapter 3 investigates the effects of loss of writer-eraser duo KMT2A 

and KDM5C, both individually and together, at molecular, cellular, and behavioral levels in male 

mice, and reveals dual modulation as a proof-of-principle therapeutic strategy. Chapter 4 

explores KMT2A and KDM5C in female mouse behavior. Finally, Chapter 5 offers conclusions 

and perspectives on how this work has shaped the field, and suggestions for future experiments.  
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Introduction to H3K4me regulators in the brain 

Histone proteins are the spools to the thread of DNA, allowing our genetic code to 

become compact and organized inside the nucleus (Figure 1.1). Chromatin remodeling is a 

dynamic process that regulates gene expression via changes in DNA accessibility, where post-

translational modifications on N-terminal tails of histone proteins are an integral element 

influencing chromatin structure. Advent of next-generation sequencing led to a rapid growth of 

the list of histone modifiers that are mutated in human neurodevelopmental disorders (NDDs). 

These disorders include a plethora of intellectual disability (ID) syndromes (Najmabadi et al., 

2011) and schizophrenia (Takata et al., 2014). Additionally, recent large-scale exome sequencing 

studies highlighted dysregulation of histone methylation as a major contributing factor of autism 

spectrum disorders (ASD) (De Rubeis et al., 2014b; Iossifov et al., 2014). Therefore, regulation 

of histone modifications appears to be essential for the development and function of the central 

nervous system. However, the roles of these mutated histone modifiers in the brain are not well 

understood.  

Methylation of lysine 4 of histone H3 (H3K4me) is one such modification, which is 

associated with gene activation. Three statuses of lysine methylation, namely mono-, di-, and tri-

methyl groups (me1/2/3), confer an additional layer of complexity in chromatin remodeling 

events. Using technologies such as chromatin immunoprecipitation coupled with next-generation 

sequencing (ChIP-seq), the genomic signatures of these epigenetic marks can be uncovered for 

specific cell types and developmental stages. Early genome-wide studies using cultured cell lines 

revealed that H3K4me1 is a hallmark of enhancers (Heintzman et al., 2009; Heintzman et al., 

2007), while H3K4me2/3 mark promoters of actively transcribed genes (Barski et al., 2007; Zhu 

et al., 2013). Mono- and di-methylated H3K4 appear as broad ChIP-seq peaks, marking stretches 

of open chromatin throughout the genome (Barski et al., 2007). In the human brain, similar to the 
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observations in cell cultures, tri-methylated H3K4 is concentrated in sharp peaks 1-2 kilobases 

(kb) in length at transcription start sites of regulatory sequences such as proximal gene promoters 

(Cheung et al., 2010). These neuron-specific H3K4me3 peaks are enriched at promoters of genes 

that control synaptic function (Cheung et al., 2010). Additionally, unmethylated H3K4 (me0) 

also recruits a distinct set of proteins with transcriptional repressors (Lan et al., 2007; Ooi et al., 

2007), including DNMT3L, which tethers CpG DNA methylation enzymes (Ooi et al., 2007).  

Two families of proteins serve as primary regulators of H3K4me: histone lysine 

methyltransferases (KMTs) are the “writers” which place the methyl marks onto histones; and 

histone lysine demethylases (KDMs) are the “erasers” which remove them. An additional class 

of proteins recognizes and “reads” H3K4me status, serving as effectors to recruit chromatin 

remodeling proteins and regulate transcriptional state. Remarkably, among other methylation 

sites on histones, H3K4 appears to be the most extensively targeted position by the largest 

number of writer and eraser enzymes. To date, in higher eukaryotes, at least seven KMTs and six 

KDMs have been shown to regulate H3K4me with differential substrate preference to me0-3 

(Greer and Shi, 2012; Ruthenburg et al., 2007; Zhou et al., 2016). This intricate balancing act at 

H3K4 by opposing mechanisms might have evolved to sculpt epigenetic landscapes that achieve 

delicate developmental and cellular processes in complex organs such as brain. Indeed, 

pioneering work has shown dynamic gain and loss of H3K4me3 throughout the genome in the 

neurons of developing human prefrontal cortex (Cheung et al., 2010; Shulha et al., 2013). While 

H3K4me regulation has been unequivocally shown to be crucial for normal development in 

metazoans through HOX gene regulation (Soshnikova and Duboule, 2008), the function and 

regulation of this methylation mark in the developing nervous system is not fully understood. 

The dynamics of chromatin regulation in the brain is the focus of the emerging field of 

neuroepigenetics. 
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Among the 13 enzymes that target H3K4me in humans, mutations in five KMT and four 

KDM genes have been associated with neurodevelopmental disorders to date (Figure 1.2). An 

excellent review summarized the implications of H3K4 demethylases in neurodevelopmental 

disorders with a focus on regulatory mechanisms of the demethylases (Wynder et al., 2010). 

Shen et al. provided a comprehensive view on writer and eraser enzymes for H3K4me in brain 

disorders from a clinical perspective, including data from human samples and animal models 

(Shen et al., 2014). More recently, alterations of KMT2F in schizophrenia (Takata et al., 2014), 

KDM1A in Kabuki/KBG-syndrome (Tunovic et al., 2014), and KDM5A and KDM5B in ID 

(Athanasakis et al., 2014; Najmabadi et al., 2011) have been reported, which were not covered 

by these earlier reviews. New exome sequencing of a large cohort of individuals with ASD also 

identified KMT2C and KDM5B (De Rubeis et al., 2014b; Iossifov et al., 2014). It may only be a 

matter of time before alterations in the remaining enzymes are identified in neurological 

disorders. Furthermore, genetic mutations in two reader proteins for H3K4me status, PHF21A 

and PHF8, have been associated with ID syndromes (Kim et al., 2012; Laumonnier et al., 2005) 

(Figure 1.2). Here, we aim to summarize the recent progress in understanding the molecular and 

cellular consequences of mutations in H3K4me regulators. Although very limited reports 

described the function of H3K4me regulators at a genomic level in the brain, by reviewing the 

data obtained from non-brain tissues and cell types, we further discuss how intricate balancing 

and readout of H3K4me can be engaged in brain development genome-wide.  

 

H3K4 methyltransferases  

Methylation of H3K4 is generated primarily by the lysine (K)-specific methyltransferase 

2 (KMT2) family of enzymes (Allis et al., 2007; Shilatifard, 2012). This class of proteins is 

characterized by the presence of a catalytic Su(var), Enhancer of Zeste, Trithorax (SET) domain, 
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conferring lysine-specific methyltransferase function. While each writer enzyme has been shown 

to generate all three methylation marks on H3K4 (Greer and Shi, 2012), specific substrate 

preference is often conferred by additional cofactor proteins. For example, while KMT2A itself 

can generate mono- and di-methyl marks on H3K4, physical contact with cofactors including 

RbBP5, Ash2L, and WDR5 allows tri-methylation by KMT2A (Dou et al., 2006). Additionally, 

PRDM16, whose PR domain shares high homology to the SET domain, was recently identified 

as having H3K4 methyltransferase activity (Zhou et al., 2016). 

The six KMT2 family members can be broken into three subclasses of protein pairs that 

have evolved distinct features and functions (Rao and Dou, 2015). KMT2A and KMT2B are 

homologs of Trithorax (Trx) gene found in lower organisms such as fly, whereas KMT2C and 

KMT2D are thought to be duplicated from the common ancestor gene Trithorax-related (Trr) in 

fly (Shilatifard, 2012). KMT2F and KMT2G are structurally distinct from the KMT2A-D 

enzymes. Similar to the KMT2A/B and KMT2C/D pairs, mammalian KMT2F has a cognate 

paralog, KMT2G, and both share a common ancestor gene SET1 in budding yeast (Shilatifard, 

2012). Four of these six KMTs have been found mutated in neurodevelopmental disorders thus 

far. Remarkably, evidence suggests that within each protein pair, one enzyme cannot compensate 

for a mutation in the other, indicating that each KMT in the duo has non-redundant functions.  

 

KMT2A in a developmental disorder with neurological symptoms 

The human KMT2A gene (also known as MLL, ALL-1) was first discovered for its 

involvement in chromosomal translocations in acute leukemia (Cimino et al., 1991; 

Zieminvanderpoel et al., 1991). As discussed above, KMT2A is responsible for generating mono-

, di-, and tri-methylated H3K4 through its SET domain and by interaction with cofactors (Dou et 

al., 2006).  Recently, dominant de novo mutations in KMT2A have been identified in individuals 
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with Wiedemann-Steiner syndrome (Mendelian Inheritance in man (MIM) no. 605130), a 

developmental disorder with clinical features including intellectual disability, microcephaly, and 

short stature (Jones et al., 2012; Strom et al., 2014). The majority of identified mutations are 

heterozygous de novo mutations predicting a premature truncation of the protein product (Figure 

1.3), suggesting haploinsufficiency of KMT2A is responsible for these clinical phenotypes. Since 

the catalytic SET domain is located at the C-terminal end of the protein, the truncations most 

likely result in a loss of enzymatic activity. Given that H3K4me is a signature of actively 

transcribed chromatin, the pathogenic mechanism may be insufficient transcription of key genes 

in the central nervous system. However, several lines of evidence suggest the molecular etiology 

can be much more complex than this simplistic scenario.  

KMT2A harbors both transcriptional activator and repressor activities. These two 

opposite functions appear to be located at the SET-containing C-terminal portion and the PHD-

containing N-terminal segment, respectively (Zeleznik-Le et al., 1994). A cluster of three plant 

homeodomain (PHD) fingers, located in the middle of the KMT2A molecule (PHD1-PHD3 in 

Figure 1.3), plays an important role in demarcating the two opposite activities. PHD fingers are 

one of the major modules that can recognize specifically modified histones, and thus can act as 

“readers” of chromatin modifications (Musselman and Kutateladze, 2011; Wysocka et al., 2006). 

Interestingly, KMT2A PHD3 binds to both H3K4me3, a reaction product of KMT2A itself, as 

well as the transcriptional corepressor protein Cyp33 (Wang et al., 2010). While the role of 

PHD1 remains unknown, PHD2 appears to have ubiquitin ligase activity towards both histones 

and KMT2A itself (Wang et al., 2012), facilitating the degradation of KMT2A (Wang et al., 

2012). Thus, beyond the canonical function of PHD fingers as reader modules, the KMT2A-PHD 

cluster represents a novel regulatory hub, which defines the balance between transcriptional 

activator and repressor functions. Notably, some of the Wiedemann-Steiner syndrome mutations, 
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including a missense mutation, fall within this PHD finger cluster (Figure 1.3). Therefore, these 

mutations can potentially lead to both down- and up-regulation of KMT2A-target genes in 

Wiedemann-Steiner syndrome. Future studies can address these possibilities using cells 

harboring these mutations.  

Additionally, alternative splicing events have been reported in the PHD3-encoding area 

(Rossler and Marschalek, 2013). Yeast two-hybrid experiments revealed that these PHD3 

isoforms differ in their ability to interact with Cyp33-containing corepressor complex, suggesting 

an influence in the transcriptional regulatory activities of KMT2A (Rossler and Marschalek, 

2013). Perhaps each transcript type has a unique expression pattern in the developing nervous 

system. It is plausible that different KMT2A isoforms function as either an activator or a 

repressor in a cell-type-dependent manner in neurons and glia cells within the central nervous 

system. Functional studies in developing brains are necessary to determine to what extent this 

alternative splicing event exists and how it contributes to molecular etiology in vivo. 

Expression of KMT2A peaks in the neocortex in human fetal brains, declining slightly 

through early stages of postnatal development but then gradually increasing into adulthood 

(Johnson et al., 2009). This expression signature hints at the importance of KMT2A during 

neocortical development. Consistently, KMT2A plays an essential role in mouse postnatal 

neurogenesis (Lim et al., 2009). Lim et al. demonstrated that important neurogenesis-promoting 

genes have bivalent chromatin domains carrying both activating H3K4me3 and repressive 

H3K27me3 marks, and that presence of KMT2A at these poised loci is necessary to promote an 

active transcription state (Lim et al., 2009). Therefore, impaired neurogenesis by KMT2A 

mutations might be responsible for the cognitive deficits observed in Wiedemann-Steiner 

syndrome.  
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On a genomic scale, KMT2A has been shown to be required for generating 5 % of the 

active H3K4me3 marks on promoters in mouse embryonic fibroblasts (Wang et al., 2009b). 

Relatively weak impact on global H3K4me3 landscape upon the loss of KMT2A suggests a 

redundant, if not completely redundant, function of paralog KMT2B and the four other KMT2 

family members. Recent studies in mouse embryonic stem cells (mESCs) re-confirmed the 

functional redundancy between KMT2A and KMT2B in generating global H3K4me3, whereas 

removal of KMT2B alone lead to a 2.5-fold reduction in H3K4me levels at bivalent promoters 

(Denissov et al., 2014). Reconciling these findings with previous evidence of KMT2A at bivalent 

promoters in neural precursor cells (Lim et al., 2009), it is plausible that KMT2A and KMT2B 

are responsible for generating neural precursor- and mESC-specific bivalent promoters, 

respectively. Heterozygous de novo mutations in Wiedemann-Steiner syndrome indicate that 

alteration of H3K4me levels at only limited genomic loci is sufficient to attenuate proper brain 

development. Further studies to identify direct gene targets of KMT2A during central nervous 

system development will be imperative in elucidating a functional role for this writer enzyme in 

the brain.  

 

KMT2C: a new gene for Kleefstra syndrome and ASD 

KMT2C (also known as MLL3, HALR) contributes to the implementation of mono- and 

di- methylation marks on H3K4 in mammalian cells (Hu et al., 2013; Lee et al., 2013). KMT2C 

was originally discovered as a human homologue of Drosophila gene Trr in the chromosomal 

region lost in individuals with developmental defects of the forebrain and myeloid leukaemia 

(Ruault et al., 2002; Tan and Chow, 2001). In recent years KMT2C variants have been found in 

two neurodevelopmental disorders. Kleefstra et al. identified a KMT2C mutation in an individual 

with Kleefstra syndrome (MIM no. 610253), a neurodevelopmental spectrum disorder with 
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hallmarks including severe intellectual disability, brachy(micro)cephaly, and epileptic seizures. 

The female individual carries a heterozygous de novo nonsense mutation, p.Arg1481X (Kleefstra 

et al., 2012) (Figure 1.3), resulting in loss of more than half of the KMT2C protein. This 

truncation of the C-terminal segment includes loss of the enzymatic SET domain, which likely 

results in the loss of histone methyltransferase activity. Additionally, five mutations were 

identified in recent large-scale exome sequencing of individuals with autism spectrum disorder 

(ASD) (Figure 1.3) (De Rubeis et al., 2014b; Iossifov et al., 2014). These new variants will 

require further studies to examine their consequences on protein function and pathogenic 

contribution to neurodevelopment. Clearly, disruption of KMT2C and its contribution to a 

delicate epigenetic regulatory network may underlie broad neurodevelopmental abnormalities 

including cognitive and social anomalies.  

While neuron-specific targets of KMT2C regulation have yet to be discovered, it is 

known that this writer is highly expressed in the human brain (Nagase et al., 2000; Tan and 

Chow, 2001). KMT2C expression levels peak during human fetal development and remain steady 

into adulthood (Johnson et al., 2009). Notably, expression in the adult brain is stronger in the 

hippocampus, caudate nucleus, and substantia nigra, regions of the brain associated with 

learning, memory, and social behaviors (Nagase et al., 2000). These data implicate roles for 

KMT2C in the developing brain as well as in mature neuronal circuitries.  

Genome-wide functional studies found that KMT2C contributes to installation of mono- 

and di-methylation of H3K4 at gene enhancers (Hu et al., 2013; Lee et al., 2013). H3K4me1/2 at 

enhancers is required for full activation of genes. Interestingly, KMT2C can also be found at 

gene promoters, where promoter-bound KMT2C functions to repress gene transcription (Cheng 

et al., 2014). These studies raise a possibility that KMT2C can both activate and repress gene 

transcription depending on localization along chromatin. Studying the chromatin regulatory 
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network involving KMT2C will lead to a better understanding of the tight gene regulation in 

brain development, and can pave the way towards targeted therapeutic approaches.  

 

KMT2D mutations are a major cause of Kabuki syndrome 

The human histone lysine methyltransferase KMT2D (also known as ALR, MLL2 or 

MLL4) is partially functionally redundant to KMT2C, and the two enzymes are responsible for a 

majority of the H3K4me1/2 marks in mammalian cells (Hu et al., 2013; Lee et al., 2013). Exome 

sequencing revealed KMT2D to be a major cause of Kabuki syndrome (MIM no. 147920) (Ng et 

al., 2010), an autosomal dominant congenital intellectual disability disorder characterized by 

unique facial features. Over 100 unique mutations in KMT2D have been identified in Kabuki 

syndrome individuals, a majority of which result in premature termination of the protein product 

(Banka et al., 2013; Banka et al., 2012; Bogershausen and Wollnik, 2013; Hannibal et al., 2011; 

Li et al., 2011; Micale et al., 2011; Ng et al., 2010; Paulussen et al., 2011) (Figure 1.3). Though 

most mutations occur de novo, many are recurrent in unrelated individuals, indicating the 

importance of these repeatedly mutated amino acids in KMT2D function and/or suggesting the 

nature of the DNA is particularly mutable.  

The large number of mutations appears to cluster into three distinct locations along the 

protein (Figure 1.3). One mutation group surrounds a triple PHD finger cluster (PHD4-PHD6 in 

Figure 1.3). These three PHD fingers bind unmethylated arginine 3 on histone H4 (H4R3me0), 

thereby promoting the access of the SET domain to its substrate, namely the histone H3 N-

terminus (Dhar et al., 2012). This trans-tail crosstalk enables KMT2D to efficiently methylate 

H3K4 in a nucleosomal context (Dhar et al., 2012). Importantly, two missense mutations in 

Kabuki syndrome, p.Cys1430Arg and p.Cys1471Tyr in the PHD4-6 cluster, showed decreased 

binding affinity to H4 and reduced H3K4 methylation activity, when nucleosomes were used for 
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the methyltransferase assays (Dhar et al., 2012). Thus, Kabuki syndrome mutations in this cluster 

ultimately result in loss-of-function of KMT2D methyltransferase activity. The second mutation 

cluster occurs in an area of the protein lacking a characterized functional domain, yet this region 

may be significant for the 3-dimentional structure and function of the enzyme. The third 

mutation group occurs around the C-terminal PHD finger, whose function remains unknown. 

Similar to KMT2A and KMT2C mutations, over 30 variants in KMT2D lead to truncation of C-

terminal SET catalytic domain, likely resulting in the loss of enzymatic function. 

A role for KMT2D in neuronal differentiation has been suggested from recent in vitro 

studies. Using human pluripotent NT2/D1 carcinoma cells, which commit to a neuronal state 

upon retinoic acid treatment, Dhar et al. showed that shRNA knockdown of KMT2D results in 

attenuation of morphological changes and impaired activation of neural differentiation hallmark 

genes including HOXA1-3 and NESTIN (Dhar et al., 2012). The insufficient expression of these 

KMT2D target genes was associated with decreased H3K4me levels. Thus, loss-of-function 

mutations in KMT2D in Kabuki syndrome likely result in a decrease in these methyl marks 

necessary to promote expression of key neuronal differentiation genes, and ultimately hinder 

commitment of stem cells to a neuronal state. These data suggest a critical role for KMT2D in 

neuronal differentiation. Whether this writer enzyme also contributes to maintenance of neuronal 

function later in life remains to be seen. 

Several lines of evidence suggest a cooperation of KMT2C and KMT2D in neuronal 

differentiation. First, knockdown of KMT2C in the NT2/D1 system resulted in down-regulation 

of KMT2D-target genes, although to a lesser extent compared to KMT2D knockdown (Dhar et 

al., 2012). Second, KMT2C and KMT2D can be co-purified in the same protein complex (Cho et 

al., 2007). Third, both KMT2C and KMT2D are found at gene enhancers and are required for 

enhancer activation (Hu et al., 2013; Lee et al., 2013). These results raise a possibility that 
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deficiency in common molecular pathways, including enhancer activation of specific genes, 

impinge on Kabuki and Kleefstra syndromes, though they were originally described as distinct 

conditions.  

 

KMT2F: a new schizophrenia susceptibility gene 

KMT2F (also known as SET1, SETD1A) encodes an H3K4 writer enzyme capable of 

generating mono-, di-, and tri-methylation marks in vitro (Hu et al., 2013; Lee and Skalnik, 

2005). Notably, in cells, KMT2F/G and Set1 appear to be responsible for bulk H3K4me3 

(Ardehali et al., 2011; Hallson et al., 2012; Mohan et al., 2011; Wu et al., 2008).  

Recently, Takata et al. have identified KMT2F as a risk gene for schizophrenia (MIM no. 

181500), a common and severe psychiatric disorder characterized by delusions, hallucinations, 

and disorganized thinking (Takata et al., 2014). It is significant that two loss-of-function 

mutations (Figure 1.3) were found in two phenotypically similar but unrelated schizophrenia 

individuals with a secondary diagnosis of obsessive-compulsive disorder (OCD) (MIM no. 

164230). It is possible that individuals with KMT2F mutations define a new subset of 

schizophrenia with OCD comorbidity (Takata et al., 2014). The first mutation is a de novo 

frameshift resulting in the introduction of a premature stop codon and likely leads to the loss of 

enzymatic activity carried in the C-terminal SET domain. The second individual harbors a de 

novo indel that alters a canonical splice acceptor site. This change is expected to cause a loss of 

exon 16 and disruption of the N-SET domain, which is critical for proper H3K4 

methyltransferase function of the neighboring SET domain in vitro (Mersman et al., 2012).  

As previously discussed, KMT2F contributes to deposition of the activating H3K4me3 

mark, which shows sharp peaks near transcription start sites of active genes (Barski et al., 2007). 

While H3K4me1 is enriched at gene enhancers, H3K4me3 levels at enhancers appear to be low 
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(Heintzman and Ren, 2007; Heintzman et al., 2007). Hence, KMT2F acts as an H3K4me3 writer 

enzyme at promoters, in sharp contrast to KMT2C/D function at enhancers. Indeed, a KMT2F-

interacting protein, Cfp1, recruits H3K4me3 activity, likely mediated by KMT2F/G, at CpG 

islands which are prevalent in mammalian gene promoters (Clouaire et al., 2012). Recent studies 

found that loss of Cfp1 in mESCs lead to global loss of DNA-damage induced accumulation of 

H3K4me3 at the promoters of DNA-damage responsive genes (Clouaire et al., 2014). However, 

induction of genes was mildly affected in Cfp1-mutant mESCs except for few dramatically 

affected genes, suggesting a role for KMT2F in context-dependent transcriptional activity 

(Clouaire et al., 2014). H3K4me3 plays a crucial part in recruiting the general transcription 

machinery, TFIID, through an interaction between H3K4me3 and the PHD finger of TAF3, a 

TFIID component (Lauberth et al., 2013; Vermeulen et al., 2007). Thus, the KMT2F mutations 

may lead to insufficient gene transcription of important neural circuitry genes via impaired 

placement of H3K4me3 at their promoters.   

Psychiatric disorders are often characterized by disorganization of neuronal networks, 

where alteration of these networks from an early time point leads to life-long disorders. The 

inability to activate the correct genes at the correct time during brain development due to a loss 

of KMT2F function could lead to improper establishment of neuronal networks and, ultimately, 

impaired brain function manifested by schizophrenia. However, brain-specific roles of KMT2F 

or specific genomic loci that are targets of KMT2F in brain cells have yet to be defined. The 

aforementioned genetic studies open an avenue for interrogating chromatin regulatory 

mechanisms that underlie pathogenesis of psychiatric disorders.  
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H3K4 demethylases 

Histone methylation was thought to be an irreversible epigenetic mark, thereby serving as 

memory of cellular identities. The identification and characterization of histone demethylases 

revealed that methylation is not a permanent event but rather a dynamic process. Four H3K4me 

eraser enzymes, KDM1A, KDM5A, KDM5B, and KDM5C, are mutated in neurodevelopmental 

disorders, evidence that the balance between methylation and demethylation is intricately 

regulated during brain development and function.  

 

KDM1A in a unique neurodevelopmental syndrome 

KDM1A (also known as LSD1, BHC110) was the first histone lysine demethylase gene to 

be identified (Shi et al., 2004). A flavin-containing amine oxidase homolog, KDM1A catalyzes 

the oxidative demethylation of H3K4me1/2. Recently, a mutation in KDM1A has been identified 

in a new neurodevelopmental disorder. Tunovic et al. describe two de novo variations in one 

male with mixed features of Kabuki syndrome and KBG syndrome (Tunovic et al., 2014). As 

discussed above, Kabuki syndrome is a developmental and cognitive disorder frequently 

associated with mutations in other histone lysine regulators, KMT2D (Ng et al., 2010) or KDM6A 

(Miyake et al., 2013). KBG syndrome (MIM no. 148050) is characterized by macrodontia, 

craniofacial dysmorphism, and delay in brain development (Sirmaci et al., 2011). One identified 

variation was p.Tyr785His in the C-terminal amine oxidase domain of KDM1A. The other 

alteration was a deletion of three nucleotides in ANKRD11, which lead to the loss of an 

evolutionally conserved lysine residue. Haploinsufficiency of the ANKRD11 gene, which 

encodes an ankyrin-repeat containing a transcription coactivator, was previously identified as a 

causative agent for KBG syndrome (Sirmaci et al., 2011). Based on the new mixed features of 

Kabuki and KBG syndromes found in the individual, the authors postulated that the KDM1A 
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mutation might be responsible for the Kabuki-related symptoms such as ptosis and downturned 

month corners.  

How could mutations in counteracting enzymes over H3K4me, namely KMT2D and 

KDM1A, both result in Kabuki-related syndromes? The majority of KMT2D mutations appear to 

result in loss of enzymatic activity by truncation of the catalytic SET domain (Ng et al., 2010). 

One possibility is that the identified p.Tyr785His variant may be a gain-of-function mutation. In 

this scenario, both loss-of-function mutations in a writer and gain-of-function mutations in an 

eraser would lead to decreased H3K4me levels. Alternatively, developmental change in 

expression of key genes might require temporal coordination of KMT2D and KDM1A at specific 

time points. Deletion of Kdm1a in mouse confers embryonic lethality (Wang et al., 2007), as 

Kdm1a is required for gastrulation and differentiation of embryonic stem cells (Wang et al., 

2009a; Whyte et al., 2012). Thus, if the KDM1A mutation is a loss-of-function one, it is likely 

hypomorphic. Further studies including identification of additional mutations in KDM1A are 

needed to understand this interesting observation from human genetics studies.  

While only one KDM1A mutation has been described in a human developmental disorder 

thus far, studies have demonstrated pivotal roles of this eraser in neurodevelopment. KDM1A 

was originally discovered as a key subunit of the CoREST complex, which is responsible for the 

repression of neuronal genes such as Synapsin I (SYN1) in non-neuronal cells (Andres et al., 

1999; Ballas et al., 2001; Hakimi et al., 2003). The CoREST complex is recruited to neuron-

specific genes via an interaction with REST, a sequence-specific DNA binding factor (Andres et 

al., 1999). Thus, it is possible that the loss of KDM1A function causes aberrant expression of 

neuron-specific genes in neural precursor and/or glia cells, thereby eventually perturbing proper 

brain development. Consistently, leaky expression of neuron-specific genes in HeLa cells was 

observed upon KDM1A-knockdown (Shi et al., 2004).  
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In addition to its involvement in neuronal gene repression, cell-autonomous functions of 

KDM1A in neurons have also been described. Neuron-specific isoforms of KDM1A have been 

shown to modulate neurite morphogenesis in zebrafish (Zibetti et al., 2010). The first functional 

study of KDM1A in the mammalian nervous system demonstrated that the presence of 

alternatively-spliced exon E8a dynamically regulates neurite maturation. Loss of KDM1A upon 

shRNA knockdown resulted in decreased dendritic arborizations, secondary branches, and 

average neurite width, while overexpression lead to an increase in these morphological features 

in mouse cortical neurons (Zibetti et al., 2010). Inclusion of exon E8a generates a small 

protruding loop near the catalytic site, which may provide a site for posttranslational 

modifications and thus confer an additional regulatory element. Taken together, current 

knowledge supports the idea of a significant role for KDM1A in neurodevelopment.  

On a genomic level, ChIP studies on individual genes show that KDM1A localizes to 

active promoters in HeLa and MCF7 cells, suggesting the enzyme is a locus-specific 

demethylase (Garcia-Bassets et al., 2007; Shi et al., 2004). Additionally, a ChIP-seq study has 

found that removal of KDM1A from enhancers of pluripotency genes influences commitment of 

ES cells to differentiate (Whyte et al., 2012). Thus, KDM1A may regulate developmental 

expression of neuronal genes by controlling methylation of promoters and enhancers. What 

factors recruit KDM1A in specific regulatory regions in neurons remains unanswered.  

 

KDM5 family: a second class of demethylases 

The finding that KDM1A is unable to demethylate tri-methylated H3K4 (Shi et al., 2004) 

raised the possibility that additional demethylases had yet to be discovered. This lead to the 

identification and characterization of a second class of H3K4 demethylases, the lysine (K)-

specific demethylase 5 (KDM5) family proteins (formerly JARID1 family), comprising 
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KDM5A, KDM5B, KDM5C, and KDM5D (Christensen et al., 2007; Hayakawa et al., 2007; 

Iwase et al., 2007; Klose et al., 2007; Xiang et al., 2007; Yamane et al., 2007). The enzymatic 

activity of these erasers lies in two Jumonji domains, JmjN and JmjC. This demethylation 

signature requires Fe(II) and a-ketoglutarate as cofactors to perform the hydroxylation reaction 

to remove methylation (Tsukada et al., 2006). Notably, to date three of the four KDM5 family 

members, KDM5A, KDM5B, and KDM5C, are reported mutated in neurodevelopmental 

disorders, revealing non-redundant functions of this class of enzymes in the brain.  

 

KDM5A: a candidate intellectual disability gene 

KDM5A (also known as RBP2, JARID1A) was first identified as a binding factor of 

retinoblastoma RB gene product (Defeojones et al., 1991). Further studies revealed it to be an 

H3K4me3-specific demethylase from the JmjC-domain-containing family (Christensen et al., 

2007; Hayakawa et al., 2007; Iwase et al., 2007; Klose et al., 2007). A mutation in KDM5A was 

recently identified in an individual with autosomal recessive intellectual disability (ARID) 

(Najmabadi et al., 2011). The homozygous de novo missense mutation causes a p.Arg719Gly 

change, substituting a nonpolar amino acid for a positively charged one. The mutation was 

predicted to be damaging to KDM5A function (Najmabadi et al., 2011), as it is located within a 

zinc-finger motif likely responsible for DNA-binding and possibly contributes to enzymatic 

activity (Chen et al., 2006) (Figure 1.3). It is unknown whether this single amino acid 

substitution would affect overall stability, DNA-binding property, and/or enzymatic activity of 

KDM5A. Functional characterization of this missense mutation is necessary to determine its 

effects on protein function and contribution to intellectual disability. 

Little work has been done experimentally to investigate the neuron-specific functions of 

KDM5A, however a role for this demethylase has been described in early embryonic 
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development (Lopez-Bigas et al., 2008), cellular differentiation (Shao et al., 2014),  senescence 

(Chicas et al., 2012), and circadian gene regulation (DiTacchio et al., 2011). Genome-wide 

analysis in mammalian cell lines revealed KDM5A is bound at proximal promoter regions, about 

half of which are H3K4me3-positive, suggesting an inhibitory role for KDM5A on many genes 

via direct action on promoters (Lopez-Bigas et al., 2008). KDM5A mRNA levels are high during 

human prenatal brain development and plateau postnatally, with cortical expression levels 

remaining slightly elevated throughout adulthood (Johnson et al., 2009). Considering the 

homozygous mutation in ARID, and the expression data showing KDM5A peaks at a very 

specific prenatal window, it is plausible that KDM5A serves as an “off” switch for a subset of 

genes at significant developmental time points.  

 

KDM5B mutations in ID and ASD 

KDM5B (also known as PLU1, JARID1B) encodes an H3K4-specific eraser enzyme that 

directly catalyzes the demethylation of mono-, di-, and tri-methylated H3K4 (Iwase et al., 2007; 

Xiang et al., 2007; Yamane et al., 2007). Until recently, all variants in KDM5B had been 

described in cancer. Next-generation sequencing has since revealed a de novo splicing mutation 

(c.283A>G) in KDM5B in an individual with nonsyndromic intellectual disability (ID) 

(Athanasakis et al., 2014) (Figure 1.3). Six additional variants were newly identified in exome 

sequencing of a large cohort of individuals with autism spectrum disorder (ASD) (De Rubeis et 

al., 2014b; Iossifov et al., 2014). These mutations include missense, nonsense, and frameshift 

variants found all along the protein, many of which lie in key functional domains (Figure 1.3). 

Further studies are necessary to assess the functional effects of these mutations and the 

pathogenicity of mutated KDM5B in ID and ASD. 
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KDM5B has been shown to regulate cell fate decisions (Dey et al., 2008) in mouse 

embryonic stem cells (mESCs) to neuronal lineage (Schmitz et al., 2011). Knockdown of 

KDM5B in mESCs resulted in failure to differentiate to neurons, whereas knockout mouse neural 

stem cells (mNSCs) revealed that loss of KDM5B at this later stage does not affect differentiation 

to mature neurons (Kidder et al., 2014; Schmitz et al., 2011). Knockout of KDM5B in mouse is 

embryonic lethal (Catchpole et al., 2011), and, remarkably, overexpression also leads to impaired 

neural differentiation (Dey et al., 2008). This suggests tight control of this demethylase is critical 

for cell fate determination. Loss of KDM5B may result in activation of genes that drive 

proliferation, while overexpression of KDM5B could lead to aberrant demethylation of 

differentiation genes in uncommitted cells to hinder neural differentiation. Therefore, either loss- 

or gain-of function mutations could lead to inefficient neuronal differentiation, which can result 

in cognitive deficiencies. Identification of additional human mutations in neurological disorders 

would advance our knowledge about the significance of precise KDM5B regulation in neural 

differentiation.  

How KDM5B regulates neuronal differentiation has become less of a mystery through 

recent genome-wide studies. ChIP-seq in mESCs show KDM5B bound to transcription start sites 

of genes encoding developmental regulators (Schmitz et al., 2011). KDM5B can be recruited to 

target genomic loci via association with transcription factors such as androgen receptor (Xiang et 

al., 2007), and act as a transcriptional repressor by stopping H3K4me spreading at gene 

promoters (Kidder et al., 2014; Scibetta et al., 2007; Yamane et al., 2007). Loss of KDM5B in 

mESCs results in a global increase in H3K4me3 levels and a failure to silence germ cell genes 

(Schmitz et al., 2011), suggesting that KDM5B is a major H3K4me3 eraser in stem cells. 

Additionally, KDM5B depletion leads to H3K4me spreading into promoters and gene bodies, 

revealing a role for KDM5B in restricting H3K4me to specific genomic areas (Kidder et al., 
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2014; Xie et al., 2011). Which specific genes’ misregulation affects neural differentiation will be 

a focus of future studies.   

Additionally, KDM5B has been suggested to regulate genomic stability by dictating the 

cell’s response to DNA damage (Li et al., 2014). This critical function in DNA repair is likely a 

fundamental aspect of the pathogenicity of KDM5B mutations in cancer, however if and how this 

function could contribute to neurological disorders remains open to investigation. 

 

KDM5C mutations are frequent in X-linked intellectual disability 

In 2005, the first mutations in KDM5C (also known as SMCX, JARID1C) were identified 

as a frequent cause of X-linked intellectual disability (XLID) (Figure 1.3) (Jensen et al., 2005b). 

Currently, mutations in KDM5C are estimated to account for roughly 0.7 to 2.8 % of all XLID 

(Goncalves et al., 2014; Jensen et al., 2005b; Ropers and Hamel, 2005). The function of this 

gene’s product remained unknown until in 2007 KDM5C was discovered as a specific 

demethylase for di- and tri-methylated H3K4 (Iwase et al., 2007; Tahiliani et al., 2007b). To 

date, 26 mutations have been reported in individuals with XLID, a majority of which are 

missense or nonsense variants (Figure 1.3). Of the mutations characterized thus far, functional 

studies indicate these human variants cause a decrease in KDM5C enzymatic activity, suggesting 

a loss-of-function pathogenic mechanism (Iwase et al., 2007; Tahiliani et al., 2007b). In addition 

to cognitive deficits, aggressive behaviors are frequently observed in affected individuals (Jensen 

et al., 2005b; Tzschach et al., 2006) and autistic features have been noted in one case(Adegbola 

et al., 2008). Along with developmental abnormalities in males, KDM5C variants have also been 

found in females with short term memory deficits (Simensen et al., 2012).  

KDM5C was originally identified as a gene that escapes X-inactivation (Agulnik et al., 

1994; Kent-First et al., 1996), and both KDM5C and Y-chromosome paralog KDM5D are 



 21 

expressed in a sex-specific manner in mouse brain (Xu et al., 2002). These findings suggest a 

non-redundant function for KDM5C and KDM5D, and that dosage differences between males 

and females may underlie differential consequence of KDM5C loss between the sexes. Thus, 

KDM5C appears to be essential for development of a broad spectrum of cognitive and adaptive 

functions both in males and females. 

KDM5C is broadly expressed, with higher levels in human brain and skeletal muscle 

(Jensen et al., 2005b). Expression levels of KDM5C remain relatively unchanged throughout 

human brain development, from prenatal to adult stages, suggesting a life-long critical role of 

this demethylase (Johnson et al., 2009).  Within the mouse brain, Kdm5c is expressed in areas 

important for cognitive and emotional behaviors such as the prefrontal cortex, hippocampus, and 

amygdala (Aguilar-Valles et al., 2014; Xu et al., 2002; Xu et al., 2008). Additionally, this eraser 

enzyme has been shown to affect dendritic outgrowth in rat cerebellar granule neurons and 

neuronal survival in developing zebrafish (Iwase et al., 2007). Together, these data may help 

reveal the pathogenic mechanism for mutations in KDM5C leading to neurodevelopmental 

defects. 

Genetic and biochemical interactions of KDM5C with other molecules have provided 

insights into molecular mechanisms of intellectual disability. KDM5C is directly regulated by 

ARX, a homeobox gene frequently mutated in XLID and epilepsy (Poeta et al., 2013). A majority 

of the ARX variants cause a hypomorphic ARX allele, leading to a decrease in KDM5C 

expression, thus possibly altering the regulation of H3K4me. KDM5C also physically interacts 

with the transcriptional repressor REST (Tahiliani et al., 2007b). As discussed above, REST 

represses neuronal genes in non-neuronal cells. Loss of KDM5C was shown to impair REST-

mediated repression of neuronal genes, such as SCN2A and SYN1 (Tahiliani et al., 2007b). 

Defective repression of REST-target genes in KDM5C may be a non-cell autonomous 
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mechanism of impaired cognitive development. XLID mutations in KDM5C may cause 

dysregulation of REST-target genes due to the impaired H3K4me demethylase activity. Further 

studies will be necessary to understand functions of KDM5C in different cell types in the brain.  

Interestingly, KDM5C appears to have dual function depending on its localization along 

chromatin in mouse embryonic stem cells, namely transcription corepressor activity at promoters 

and transcriptional coactivator activity at enhancers (Outchkourov et al., 2013). Thus, it is 

possible that KDM5C serves as not only a repressor of REST-target genes, but also a coactivator 

for yet unidentified genes in the brain. Jensen et al. recently identified a dozen genes that are 

commonly dysregulated in multiple lymphocyte lines derived from individuals with KDM5C 

mutations (Jensen et al., 2010). However, it is unclear if gene expression changes in lymphocytes 

can be translated to the cognitive deficits in individuals with KDM5C mutations. Identifying the 

KDM5C-target genes and mechanisms of their regulation in a genomic context, especially in 

relevant cell types in the brain, will greatly advance our understanding of molecular mechanisms 

underpinning this frequent form of ID and ultimately provide hope for therapeutic interventions.  

 

H3K4me reader molecules  

Histone methylation itself does not seem to have an impact on higher-order chromatin 

structure. In addition to writer and eraser enzymes, reader molecules act at H3K4 by recognizing 

specific methylation states and recruiting effector proteins to influence transcription. Here we 

discuss two H3K4me-specific reader proteins, PHF21A and PHF8, which have been found 

mutated in intellectual disabilities. Both genes encode for proteins that belong to the PHD finger 

(PHF) family.  
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PHF21A: A methyl “zero” reader in intellectual disability 

PHF21A (also known as BHC80) was the first reader molecule discovered to recognize 

unmethylated H3K4 (HeK4me0) (Lan et al., 2007), introducing unmodified H3K4 as an 

important addition to the histone code in regulating chromatin state. Recognition of unmodified 

histone H3 tail by PHF21A PHD finger is specifically inhibited by H3K4 methylations (Lan et 

al., 2007). Recently, three unrelated individuals with ID and craniofacial anomalies have been 

identified harboring de novo balanced translocations disrupting PHF21A (Kim et al., 2012). Two 

of these translocations, t(11;19)(p11.2;p13.2)dn and t(1;11)(p13;p11)dn, are predicted to lead to 

truncated protein products resulting in loss of the PHD finger (Figure 2) (Kim et al., 2012). The 

translocation breakpoint of the third, t(X;11)(p22.2;p11.2)dn, has not been characterized, yet it is 

likely that loss of protein function is also the pathogenic mechanism at play (Kim et al., 2012). 

Therefore, H3K4me0 recognition by PHF21A PHD finger appears to be essential for cognitive 

and craniofacial development. Notably, Potocki-Shaffer syndrome (MIM no. 601224) is a 

contiguous gene deletion syndrome of the chromosomal region where PHF21A is located, 

namely chromosome 11p11.2 (Potocki and Shaffer, 1996; Shaffer et al., 1993). Potocki-Shaffer 

syndrome has hallmark clinical features including multiple exostoses, parietal foamina, ID, and 

craniofacial anomalies.  While EXT2 and ALX4 have been identified to be responsible for 

multiple exostoses and parietal foamina, respectively, it remained unknown which gene(s) 

deletion leads to ID and craniofacial anomalies. The discovery of heterozygous translocations 

and resulting truncations of PHF21A strongly suggests that haploinsufficiency of PHF21A is 

responsible for ID and craniofacial deficits in Potocki-Shaffer syndrome (Kim et al., 2012). 

Transcript levels of PHF21A are high during early stages of human embryonic 

development, and remain steady throughout development into adulthood (Johnson et al., 2009). 

Accordingly, in situ hybridization and immunofluorescence experiments in mouse show Phf21a 
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is expressed highly in both the central nervous system as well as in cranial bones of embryonic 

and adult mice (Iwase et al., 2004; Kim et al., 2012), suggesting an important role for this reader 

protein in both development and function of nervous tissue and craniofacial bones. 

To test whether a loss of PHF21A results in defects in neuronal and craniofacial 

development, Kim et al. studied the effects of phf21a knockdown by morpholino injection in 

zebrafish (Kim et al., 2012). Injection of morpholino resulted in pronounced deficiencies in head 

development including facial dysmorphism. These abnormalities were rescued upon injection of 

wild-type human PHF21A mRNA, supporting the specificity of knockdown effect. Interestingly, 

Phf21a knockout mice show neonatal lethality with an insufficient ability to suckle (Iwase et al., 

2006). Phf21a-null mice were not closely examined for craniofacial defects; therefore it is also 

plausible that failure to suckle was a result of craniofacial anomalies, as suggested by the 

zebrafish studies (Kim et al., 2012). In addition, PHF21A appears to be involved in pituitary 

function through modulation of neurosecretion based on in vitro studies using mammalian cells 

(Klajn et al., 2009).  Taken together, these functional studies in model organisms and cells 

support a critical role for PHF21A in neuro- and craniofacial development and function. It would 

be informative to generate conditional knockout mice in order to assess the effects of loss of 

Phf21a specifically in neurons or cranial bones.  

PHF21A is a key subunit of the CoREST complex (Hakimi et al., 2002), as is 

demethylase KDM1A, discussed above. This protein complex functions to mediate repression of 

neuron-specific genes (Hakimi et al., 2002), and thus it may not be surprising that loss of 

PHF21A leads to neurodevelopmental phenotypes. Significantly, RNAi knockdown of PHF21A 

in HeLa cells results in a derepression of neuron-specific KDM1A-target genes including SCN1A 

and SYN1, suggesting PHF21A occupancy at unmethylated H3K4 is required for sufficient gene 

repression (Lan et al., 2007; Shi et al., 2005). A neuron-specific CoREST/KDM1A target gene, 
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SCN3A, showed increased mRNA expression in the lymphoblastoid cell lines from individuals 

with the translocations mentioned above (Kim et al., 2012). Additionally, ChIP results indicated 

decreased occupancy of KDM1A at the promoter of SCN3A in the PHF21A-translocation cell 

lines (Kim et al., 2012). Together these findings demonstrate that PHF21A is necessary for 

KDM1A recruitment and the generation of a repressive chromatin state. It remains unknown 

what aspects of neurodevelopment are perturbed by PHF21A deficiency and whether the role of 

PHF21A as a neuronal gene repressor contributes to pathogenesis of ID and craniofacial 

abnormality. 

 

PHF8, another XLID-associated demethylase, reads H3K4me3 

Mutations in X-linked gene PHF8 were thought to be responsible for Siderius X-lined 

intellectual disability (XLID) (MIM no. 300263), a syndromic form of ID often associated with 

facial anomalies such as cleft palate (Abidi et al., 2007; Koivisto et al., 2007; Laumonnier et al., 

2005; Qiao et al., 2008; Siderius et al., 1999). In 2010, PHF8 was discovered to be a histone 

demethylase that mainly targets H3K9me1/2 and H4K20me1 (Feng et al., 2010; Fortschegger et 

al., 2010; Kleine-Kohlbrecher et al., 2010; Loenarz et al., 2010; Qi et al., 2010; Qiu et al., 2010). 

Further studies identified that PHF8 contains a PHD finger that specifically recognizes 

H3K4me3 (Feng et al., 2010; Fortschegger et al., 2010; Horton et al., 2010; Kleine-Kohlbrecher 

et al., 2010). Thus, PHF8 represents an intriguing example of histone methylation crosstalk 

engaged in brain development.  

All three human PHF8 mutations in XLID are predicted to truncate the entire or large 

portion of the JmjC domain, which is responsible for demethylase activity (Figure 1.3). 

Therefore, loss of histone demethylase function likely underlies pathogenesis of Siderius XLID. 

Indeed, one missense mutation, p.Phe279Ser, which is located within the JmjC domain (Figure 
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1.3), leads to dramatic decrease in the histone demethylase activity (Fortschegger et al., 2010; 

Loenarz et al., 2010).  Although any mutation in the PHF8 PHD finger has not yet been clinically 

observed, the H3K4me3 recognition by this PHD finger appears be significant in fulfilling PHF8 

function. The presence of H3K4me3 substantially enhances enzymatic activity of PHF8 via 

increasing affinity between the histone H3 tail and PHF8 (Horton et al., 2010). Thus, this PHD 

finger domain is critical for optimal demethylase activity of PHF8.  Future human genetic studies 

may identify loss-of-function mutations in this PHD finger.  

Significantly, neuronal functions of PHF8 have been shown in model systems. Qi et al. 

demonstrated that PHF8 is essential for brain and craniofacial development, as well as neuronal 

survival in zebrafish (Qi et al., 2010). PHF8 has also been shown to regulate neuronal 

differentiation in mouse carcinoma P19 cells, which differentiate into neurons after exposure to 

retinoic acid. Additionally, knockdown of PHF8 in primary mouse cortical neurons results in 

down-regulation of cytoskeleton genes and deficient neurite outgrowth (Asensio-Juan et al., 

2012). PHF8 expression levels sharply decline during early stages of human embryonic 

development, and plateau at this reduced level throughout development into adulthood (Johnson 

et al., 2009). Together, these studies support a role for PHF8 in either proliferation of neural 

progenitor cells or gene expression changes during early differentiation stages in embryonic 

development.  

Genome-wide, PHF8 has been found at the transcription start sites of more than 7,000 

RefSeq genes, as well as in gene bodies and intergenic regions (Kleine-Kohlbrecher et al., 2010; 

Qi et al., 2010), indicating participation of PHF8 in broad epigenome regulation. PHF8-binding 

sites consist of approximately one-half of total H3K4me3 peaks across the genome. The PHF8 

PHD finger, whose reader function permits recognition of H3K4me2/3, likely contributes to 

recruitment of this reader protein to gene promoters. Additionally, PHF8 interacts with ZNF711, 
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which is also mutated in XLID, and together the two activate reporter gene expression 

synergistically (Kleine-Kohlbrecher et al., 2010). Since ZNF711 contains multiple C2H2 zinc-

finger domains, ZNF711 may also participate in recruiting PHF8 onto target loci cooperatively 

with the H3K4me3/PHD interaction. Qi et al. showed PHF8 to be a positive regulator of gene 

expression, dependent on its H3K4me3-binding PHD and catalytic domains (Qi et al., 2010). 

The function of PHF8 as a transcriptional activator is consistent with its enzymatic activity, 

which removes repressive histone methylation marks H3K9me1/2 and H4K20me1. Direct PHF8 

target genes are involved in various signaling pathways including retinoic acid and Notch, both 

of which play pivotal roles in neural and craniofacial development (Cau and Blader, 2009; Lupo 

et al., 2006; Qi et al., 2010).  

Interestingly, KDM5C, an XLID-associated H3K4 demethylase discussed above, appears 

to be a PHF8 target gene, and consequently is down-regulated upon the loss of PHF8. Moreover, 

PHF8 is localized at nucleoli and required for full activation of rRNA genes (Feng et al., 2010). 

Given the high demand of protein synthesis in rapidly dividing stem cells, it is plausible that 

insufficient ribosome biogenesis by PHF8 deficiency may underlie impaired maintenance of 

developing brain cells observed in zebrafish (Qi et al., 2010). These findings highlight a role for 

a novel network of chromatin regulators controlling expression of critical neurodevelopmental 

genes across the genome.  

 

Conclusion & future perspective 

The field of neuroepigenetics is rapidly changing as we continue to define roles for 

chromatin regulating proteins in the central nervous system. As the cost of DNA sequencing 

declines, the number of mutations discovered in neurodevelopmental disorders is dramatically 

increasing. We believe it is only a matter of time before many more chromatin regulators are 
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added to the growing list of proteins implicated in neurological disorders. Functional studies of 

the molecular consequences of mutations, alongside thorough investigations of cellular and 

behavioral abnormalities in animal models of these neurodevelopmental disorders, are essential 

to uncovering the pathophysiology of brain dysfunction.  

We mainly discussed consequences of human mutations in the context of enzymatic 

activity and protein-protein interactions. It is noteworthy that both writer and eraser enzymes 

have recently been shown to physically interact with long non-coding RNAs (lncRNAs) (Tsai et 

al., 2010; Wang et al., 2011). Long ncRNAs appear to play roles in recruitment of associated 

chromatin modifiers to specific genomic loci (Tsai et al., 2010; Wang et al., 2011) and stability 

of protein complexes (Yang et al., 2014). Thus, an important direction is to test if mutations 

affect physical interaction of H3K4me modifiers to lncRNAs. At the epigenomic level, 

pioneering comparative studies of human and primate brain samples have demonstrated that 

human-specific H3K4me3 exist in the neurons of the cerebral cortex (Bell et al., 2014; Shulha et 

al., 2012b). Given that neurodevelopmental disorders affect higher-order cognitive and adaptive 

functions, it will be highly informative to test if such human-specific H3K4me landscapes are 

altered by the mutations.  

As summarized in earlier work (Shen et al., 2014), animal models for 

neurodevelopmental disorders associated with H3K4me dysregulation will be invaluable tools to 

dissect molecular and cellular mechanisms, as well as for drug development. Thus far, knockout 

mouse lines of three H3K4me enzymes, KMT2A (Gupta et al., 2010; Kerimoglu et al., 2017), 

KMT2B (Kerimoglu et al., 2013; Kerimoglu et al., 2017), and KDM5C (Iwase et al., 2016; 

Scandaglia et al., 2017; Vallianatos et al., 2019) have been reported to exhibit deficits in learning 

and memory. Harnessing the contemporary mouse genetics approach, one of the important 

questions that should be addressed is when the cognitive and adaptive deficits originate. One 
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possibility is that a given chromatin modifier may play roles both in brain development and 

plasticity of mature circuitry. In such cases, therapeutic intervention would still hold a hope to 

ameliorate cognitive deficits even after affected individuals reach adulthood.    

Great strides are being made with small-molecule inhibitors of writers and erasers in 

order to modulate H3K4me status (Cao et al., 2014; Grembecka et al., 2012; Helin and Dhanak, 

2013). While these strategies are currently being targeted for cancers, a therapeutic potential for 

these drugs in brain disorders is evident. Clearly, understanding the intricate nature of H3K4me 

dynamics, as well as other chromatin modifications, in the developing brain will form the 

groundwork necessary for targeted therapeutics and prevention for these neurodevelopmental 

disorders in the future. 

 

Notes & Acknowledgements 

This chapter was previously published in Epigenomics (Volume 7, Issue 3) (Vallianatos 

et al., 2015), with the following additions: overview section, PRDM16 as an H3K4 

methyltransferase, Figure 1.1, and updated Figures 1.2-1.3. 
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Figures 

 

Figure 1.1 Chromatin organization.  

DNA (yellow) wraps around histone proteins (blue), allowing precise and dynamic genomic organization. 
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Figure 1.2 H3K4me writer, eraser, and reader genes in neurodevelopmental disorders.  

The first seven amino acids of the N-terminal tail of histone H3 (light blue) are extending from a representative 
nucleosome. The fourth lysine (K) can be differentially methylated (orange) by the writer and eraser proteins 
shown above. Methyltransferases (green) “write” methyl marks, whereas demethylases (red) “erase” methyl 
marks. Reader enzymes (purple) recognize and “read” methylation status. Mutations in many of these enzymes 
leads to neurodevelopmental disorders, indicated in black next to each gene name. ASD, autism spectrum 
disorder; ID, intellectual disability; XLID, X-linked intellectual disability; ARID, autosomal recessive 
intellectual disability.  
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Figure 1.3 Domain organization of H3K4me regulators mutated in neurodevelopmental disorders.  

Protein schematics of H3K4me proteins mutated in human neurodevelopmental disorders. Colored blocks 
correspond to functional protein domains found within each gene. Substrate preference is indicated below each 
gene name. Mutation types and corresponding symbols are summarized in inset key. KMT2D mutations are 
limited to a subset based on Miyake et al. (Miyake et al., 2013). Scale is provided for each category of 
enzymes. ZF, zinc finger; P or PHD, plant homeodomain (PHD) finger; FN, FY-rich N-terminal domain; CS, 
cleavage site; FC, FY-rich C-terminal domain; SET, Su(var)3-9 Enhancer-of-zeste Trithorax methyltransferase 
domain; TF, precursor of transcription factor II A (TFIIA) alpha and beta subunits; H, High Mobility Group 
(HMG) box; RRM, RNA recognition motif; LZ, leucine zipper; A, AT-hook, JmjN, jumonji N-terminal; 
ARID, AT-rich interaction domain; JmjC, jumonji C-terminal; PLU-1, PLU1-like domain. 
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Chapter 2  ¾ Altered Gene-Regulatory Function of KDM5C By a Novel Mutation 
Associated With Autism and Intellectual Disability 

 

Introduction 

Intellectual disabilities (ID) affect 1.5-2% of the population world-wide (Leonard and 

Wen, 2002). Clinical features of ID include significant deficiencies in cognitive function and 

adaptive behaviors beginning before 18 years of age (American Psychiatric Association. et al., 

1994). ID syndromes are often accompanied with other comorbidities, including autism spectrum 

disorders (ASD), which are characterized by impaired speech, hindered social development, and 

repetitive behaviors. X-linked intellectual disability (XLID) is a monogenic form of cognitive 

deficits, and has been thought to account for the higher frequency of ID in males compared to 

females (Chiurazzi et al., 2008). KDM5C is one of the most frequently mutated genes in XLID 

and estimated to explain approximately 0.7-2.8% of all XLID cases. KDM5C-deficiency is 

characterized by frequent autistic and aggressive behaviors (Jensen et al., 2005b; Ropers and 

Hamel, 2005) and is currently referred to as Mental Retardation, X-linked, Syndromic, Claes-

Jensen type (MRXSCJ: OMIM#300534). The KDM5C gene, located at Xp11.22-p11.21, 

encodes a histone demethylase, which specifically targets di- and tri-methylated histone H3 

lysine 4 (H3K4me2 and H3K4me3) (Iwase et al., 2007; Tahiliani et al., 2007a).  

KDM5C is ubiquitously expressed, with the highest expression levels in human skeletal 

muscle and brain tissues (Jensen et al., 2005b). Within the brain, KDM5C is also broadly 

expressed in key areas for cognitive function, such as the hippocampus, the cortex, and the 

amygdala, and both neurons and astrocytes contain KDM5C protein (Iwase et al., 2016; Xu et 
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al., 2008). In mouse models, loss of Kdm5c led to defective development of dendrites and 

dendritic spines (Iwase et al., 2016; Iwase et al., 2007), which are often observed in human 

individuals with ID/ASD. Kdm5c-deficient mice displayed impaired fear memory, spatial 

learning, increased aggression, and reduced social preference. In sum, both human genetics and 

mouse models have highlighted important roles of KDM5C in cognitive development.  

H3K4me2/3, the substrates of KDM5C, are generally associated with promoters of 

transcriptionally active or poised genes, and play important roles in gene transcription (Barski et 

al., 2007; Kouzarides, 2007; Vallianatos and Iwase, 2015). KDM5C has been reported to repress 

transcription in post-mitotic neurons and breast cancer cells (Iwase et al., 2016; Shen et al., 

2016), whereas KDM5C can promote gene expression when it acts on specific transcriptional 

enhancers in mouse embryonic stem cells (Outchkourov et al., 2013). In the Kdm5c-deficient 

brain, H3K4me2/3 levels were increased at the promoters of genes that encode key synapse-

related genes, and some KDM5C-target genes were aberrantly expressed in the mutant mice. 

Despite this circumstantial evidence, it still remains elusive whether or not H3K4me2/3 

demethylase activity is the sole mechanism of KDM5C-mediated gene regulation.  

Both truncation and missense mutations of KDM5C have been found in MRXSCJ 

patients. The majority of missense mutations functionally tested to date result in reduced 

demethylation activity of KDM5C (Brookes et al., 2015a; Iwase et al., 2007; Rujirabanjerd et al., 

2010; Tahiliani et al., 2007a). Moreover, most mutations occur in the N-terminal to mid regions 

of the protein, an area that has been shown to be sufficient for enzymatic activity (Vinogradova 

et al., 2016). Thus, the predominant molecular mechanism underlying MRXSCJ appears to be 

loss of function of histone H3K4 demethylation. Here, we report a novel ID/ASD-associated 

KDM5C mutation, which compromises KDM5C’s gene-regulatory function but not enzymatic 

activity or stability. This new mutation lies in the C-terminal end of the protein, the most distally 
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located missense mutation identified to date. Our results suggest non-enzymatic roles of KDM5C 

and a novel pathogenic mechanism contributing to MRXSCJ.  

 

Results 

KDM5C p.Arg1115His is identified in family UM1 

The proband of family UM1 was first clinically examined at 26 months for 

developmental delay and microcephaly, after observing delays in developmental milestones from 

one year of age. He was diagnosed with an autism spectrum disorder (ASD) due to cognitive 

impairment and behavioral concerns, including severe tantrums, aggression, and anxiety (for the 

full clinical description, please visit the family profile on MyGene2 as family 1600 

https:www.mygene2.org/MyGene2). Clinical whole exome sequencing revealed a missense 

mutation in the KDM5C gene, c.3344G>A, in the proband (Figure 2.1A). This variant results in a 

histidine-arginine substitution at amino acid position 1115 (p.R1115H), and was inherited from 

the maternal grandmother. The carrier mother was phenotypically normal, and the variant was 

not present in the unaffected siblings or maternal uncle. We isolated genomic DNA from 

lymphoblastoid cell lines from father (UM1 II-1) and proband (UM1 III-3), and confirmed by 

Sanger sequencing that the variant is present specifically in the proband (Figure 2.1B).  

The R1115H variant lies in a region of high conservation and is itself highly conserved 

among vertebrates (Figure 2.1C). KDM5C belongs to a family of histone H3K4 demethylases, in 

which KDM5A, KDM5B, and KDM5D are the additional members (Iwase et al., 2007). The 

R1115 residue in KDM5C is conserved in the family members, though it is substituted with 

lysine, another basic amino acid, in KDM5A, implicating a conserved functional role (Figure 

2.1D). Consistently, multiple genetic variant assessment algorithms predict this variant to be 

pathogenic (Table 2.1). We did not find any homozygous or hemizygous substitutions of R1115 
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in the Genome Aggregation Database (gnomAD, http://gnomad.broadinstitute.org/), indicating 

that variation in this amino acid residue is intolerant in the population. To date, 25 KDM5C 

mutations have been identified in MRXSCJ patients (Abidi et al., 2008; Adegbola et al., 2008; 

Brookes et al., 2015a; Jensen et al., 2005b; Ounap et al., 2012; Rujirabanjerd et al., 2010; Santos 

et al., 2006; Santos-Reboucas et al., 2011; Tzschach et al., 2006). Most of them tend to cluster 

around the JmjC catalytic core domain (Figure 2.1E). The R1115H variant lies within the C-

terminal segment of the KDM5C protein, making it the most distal missense mutation in 

KDM5C reported to date.  

 

X-chromosome inactivation skewing predicts a pathogenicity of KDM5C R1115H 

In female mammals, one of the two X chromosomes is randomly chosen to be silenced 

during early embryogenesis; therefore, females are chimeras of cells that silenced either the 

paternally- or the maternally-inherited X (Augui et al., 2011). Female carriers of recessive X-

linked disorders often display skewed X-inactivation, i.e. a higher percentage of silencing in 

either the paternal or the maternal X chromosome over the other (Brown, 1999). Skewed X-

inactivation might be due to (dis)advantage of carrying the X-linked mutation in cell 

proliferation and/or survival. Multiple MRXSCJ cases are reported to have highly-skewed X-

inactivation in carrier mothers ((Ounap et al., 2012) and Table 2.2). When we tested the X-

inactivation status of the carrier mother (UM1 II-2), we observed highly-skewed inactivation 

(95:5, Table 1), and moderate skewing in the grandmother (UM1 I-2). In the carrier mother, the 

X-chromosome passed on to the proband is dominantly CpG-methylated at the androgen 

receptor (AR) locus. AR and KDM5C are located nearby (~14.5 Mb), flanking the centromere, 

and no meiotic recombination site is known between the two loci (Kong et al., 2002); therefore, 

KDM5C is very likely mutated on the inactive X-chromosome of the carrier mother. These 



 37 

results indicate that KDM5C-R1115H mutation might have an impact on cell 

proliferation/survival during development (also see Discussion).  

 

Enzymatic activity is largely retained in KDM5C R1115H 

A majority of KDM5C-MRXSCJ mutations that have been tested for enzymatic activity 

exhibit a decrease in histone demethylase activity, suggesting a loss-of-function pathogenic 

mechanism (Brookes et al., 2015a; Iwase et al., 2007; Rujirabanjerd et al., 2010; Tahiliani et al., 

2007a). We set out to test whether the R1115H variant affects histone demethylation capabilities 

of the KDM5C protein. WT and R1115H mutant KDM5C proteins containing an N-terminal 

Strep-tag were expressed at equal levels in insect cells and affinity purified (Figure 2.2A). We 

performed in vitro demethylation assays using purified KDM5C and two synthetic histone H3 N-

terminal tail peptides carrying the following modifications: K4me3, the direct substrate for the 

KDM5C catalytic subunit; or K4me3 and K9me3, which is recognized by the first PHD domain 

of KDM5C (Iwase et al., 2007). Our results showed that the R1115H mutation did not 

dramatically reduce H3K4me3 demethylase activity on peptides carrying either H3K4me3 alone 

or both H3K4me3 and K9me3 (Figure 2.3A-B). These data indicate intrinsic demethylation 

ability of the KDM5C R1115H protein is largely retained.  

We next tested demethylation activities in cells. We over-expressed Strep-tagged human 

KDM5C cDNA in U2OS cells and examined H3K4me3 levels using immunofluorescence 

(Figure 2.3C). Cells expressing KDM5C WT showed dramatically reduced H3K4me3 staining. 

Similar to WT, KDM5C R1115H-expressing cells exhibited a marked reduction in H3K4me3 

signal. In contrast, cells expressing the catalytically-inactive KDM5C H514A mutant (Iwase et 

al., 2007) retain high H3K4me3 levels. While we observed cytoplasmic signal more frequently in 

R1115H-expressing cells than WT, this potential mislocalization does not seem to impair 
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demethylation activity of KDM5C R1115H. We also over-expressed Strep-tagged human 

KDM5C cDNA in primary mouse neurons and examined H3K4me1/2/3 levels using 

immunofluorescence (Figure 2.2B). Cells expressing KDM5C WT often showed reduced 

H3K4me2 and H3K4me3 staining, and no effect on H3K4me1, as predicted. Similar to WT, 

KDM5C R1115H-expressing cells frequently exhibited a marked reduction in H3K4me2/3 

signal. In contrast, cells expressing the catalytically-inactive KDM5C H514A mutant (Iwase et 

al., 2007) retain high H3K4me2/3 levels. When we examined global H3K4me levels of 

lymphoblastoid cell lines from father (WT) and proband (R1115H) by quantitative Western blot 

analysis, proband-derived cells were indistinguishable from father-derived cells (Figure 2.3D). 

Taken together, these data strongly suggest that KDM5C R1115H substitution does not lead to 

substantial reduction in histone demethylation activity. 

 

Protein stability of KDM5C R1115H is largely unaffected 

Some KDM5C-MRXSCJ mutations have been shown to destabilize KDM5C protein, 

representing another potential loss-of-function effect. To test the stability of KDM5C R1115H, 

we treated the lympoblastoid cells from the father and the proband with cycloheximide, an 

inhibitor of protein synthesis, for 0-28 hours. Reduction kinetics of endogenous KDM5C levels 

were not dramatically different in proband compared to father throughout the time course, 

suggesting protein stability is largely unaffected by the R1115H mutation (Figure 2.4).   

Ubiquitination of proteins, via the post-translation addition of ubiquitin to a substrate 

protein, is a common mechanism for proteolysis. We found that the R1115H mutation lies six 

amino acids upstream of a KDM5C ubiquination site, K1121ub (Figure 2.5A). To test if R1115H 

affected mono- or poly-ubiquination of KDM5C, we performed immunoprecipitation of Strep-

tagged KDM5C and measured ubiquination via Western blot (Figure 2.6). Using full-length 



 39 

KDM5C (1560 amino acid) or PHD2 fragment (135 amino acids) (Figure 2.5B) we observed no 

detectable difference in total ubiquination between WT or R1115H mutation conditions (Figure 

2.6). These data confirm R1115H has no detectible effect on protein stability, and suggest that 

KDM5C R1115H does not alter total ubiquitination of the KDM5C protein.  

 

RNA-seq reveals impact of the R1115H variant on gene expression 

We previously reported that Kdm5c regulates neurodevelopment genes in cultured mouse 

forebrain neurons and multiple brain regions in vivo including the cortex and the amygdala 

(Iwase et al., 2016). To test consequences of the R1115H substitution on KDM5C gene 

regulatory behavior, we over-expressed KDM5C WT and KDM5C R1115H in primary mouse 

forebrain neuron culture and performed RNA-seq analysis on three biological replicates. To 

assess the impact of H3K4 demethylation activity on the transcriptome, we also overexpressed 

KDM5C H514A as a representative of other mutations that reduce enzymatic activity (Iwase et 

al., 2007). As outlined in Figure 2.7A, transduced neurons were selected by puromycin and 

subjected to RNA-seq. Expression of intended mutants was confirmed by examining the 

nucleotide sequence of reads mapped to the human KDM5C cDNA (Figure 2.8A). Mapping the 

sequencing reads to the human KDM5C cDNA also allowed us to validate similar levels of 

human KDM5C WT and R1115H mutant cDNAs, while we noted moderately higher level of 

H514A mutant expression compare to the other two KDM5C cDNAs (Figure 2.8B-C). We 

compared the sequencing reads mapped to human KDM5C cDNA and mouse Kdm5c gene 

without allowing any mismatch, and estimated that each KDM5C cDNA was expressed 

approximately 15- to 30-fold higher than endogenous Kdm5c mRNA (Figure 2.8B-C). The 

expression of endogenous Kdm5c does not appear to be largely affected by human KDM5C 

overexpression Figure 2.8C). 
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Compared to the vector control, overexpression of KDM5C-WT resulted in 42 

differentially-expressed (DE) genes (7 up-regulated, 35 down-regulated). KDM5C R1115H 

expression resulted in 64 DE genes (16 up-regulated, 48 down-regulated) compared to WT, 

while KDM5C H514A gave 99 DE genes (45 up-regulated, 54 down-regulated) (p < 0.01; Figure 

2.7B). Consistent with its role as a transcriptional repressor in primary neuron culture (Iwase et 

al., 2016), we observe a majority (83%) of these DE genes are down-regulated by KDM5C-WT 

overexpression. KDM5C R1115H expression similarly led to predominant down-regulation of 

genes (75% down, 25% up), while KDM5C H514A expression resulted in a near even split 

between up- and down-regulated genes (54% down, 46% up). To test if R1115H and/or H514A 

mutations affect gene-regulatory function of KDM5C, we plotted the fold change and P-values 

of 42 DE genes, whose expression was altered by WT overexpression, in the R1115H- or 

H514A-overexpression datasets (Figure 2.7C). Both KDM5C R1115H and H514A failed to fully 

repress this group of genes, suggesting that the two mutations interfere with KDM5C’s gene-

regulatory function (Figure 2.7C). The partial deficiency of H514A mutant despite of the higher 

level of KDM5C-H514A mRNAs implicates that demethylation activity is not the sole 

mechanism for KDM5C-mediated gene control. It is noteworthy that KDM5C R1115H mutant 

showed a similar level of deficiency compared to H514A mutant in regulating the 42 genes.  

We then compared identity of DE genes upon overexpression of KDM5C-WT, R1115H, 

and H514A. Interestingly, overlap between DE genes in each condition were limited, suggesting 

that R1115H and H514A mutants can regulate different sets of genes compared to KDM5C-WT 

and the two mutants are functionally distinct each other (Figure 2.7D). Representative genes for 

the following four expression patterns across conditions are shown in Figure 2.8D-G: (1) genes 

repressed by KDM5C WT but not by mutants include PWWP domain containing 2b (Pwwp2b) 

and Zinc finger protein 198 (Zfp189); (2) genes that show unique response to KDM5C-H514A 
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include Protein kinase C, theta (Prkcq) and Trichoplein, keratin filament binding (Tchp); (3) 

genes strongly repressed by KDM5C-R1115H include TATA-box binding protein associated 

factor 5 like (Taf5l) and coordinator of PRMT5, differentiation stimulator (Coprs); and finally 

(4) genes uniquely up-regulated by KDM5C-R1115H including Transmembrane protein 251 

(Tmem251) and Keratin associated protein 4-8 Krtap4-8). 

Having observed both common and unique impacts of R1115H and H514A substitutions, 

we sought to gain biological insights associated with the mutations by using the database for 

annotation, visualization, and integrated discovery (DAVID) (Huang da et al., 2009a, b). Given 

that KDM5C primarily acts as a transcriptional repressor, we reasoned that down-regulated 

genes reflect direct impact of KDM5C overexpression more likely than up-regulated genes; 

therefore, here we primarily analyzed down-regulated genes. Genes down-regulated by WT were 

enriched in developmental processes and cell signaling gene ontology (GO) terms (Figure 2.9A). 

These GO terms are absent from both R1115H (Figure 2.9B) and H514A (Figure 2.9C) down-

regulated genes, pointing to the inability of the mutant KDM5Cs to regulate the relevant genes as 

WT. Meanwhile, down-regulated genes by R1115H and H514A were enriched in largely distinct 

sets of GO terms compared to WT, and these GO terms are also different between the two 

mutants. For example, KDM5C-R1115H mutant down-regulated and “membrane-bound 

organelle” and “muscle structure development”, while KDM5C-H514A down-regulated 

“gliogenesis” and “protein binding”. Distinct sets of genes appear to contribute the diverse GO 

term enrichments between the conditions. Taken together, these data suggest that KDM5C 

R1115H is less potent in suppressing WT-regulated genes, yet the mutant gains unique gene 

regulatory roles, which may lead to deleterious and distinct consequences in neuronal 

development and functions. 
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R1115H lies near PHD2 domain 

The proximity of the R1115H substitution to the second PHD domain (PHD2) of 

KDM5C lead us to speculate whether this nearby mutation could affect the function of this 

domain (Figure 2.5). PHD2 has yet unreported function, despite a shared conservation across all 

four KDM5A-D family members (Klein et al., 2014). PHD domains are often found in chromatin 

regulators, and many bind histone tails with high specificity due to their zinc-finger-like structure 

(Musselman and Kutateladze, 2011). We first sought to determine whether KDM5C PHD2 binds 

to any histone tails and utilized the histone peptide microarray to allow the unbiased 

identification of interactions (Cornett et al., 2016; Rothbart et al., 2012). Using recombinant 

KDM5C PHD2 protein fragment, containing PHD2 and flanking regions (Figure 2.5) we 

performed this microarray assay. Top five candidate interacting histones were selected from the 

list, and to validate interactions, we performed a binding assay with PHD2 and each of the 

candidates (Figure 2.10). Binding assay results were inconsistent with microarray, making the 

results inconclusive. Our attempts to perform bulk histone binding assay were unsuccessful 

despite stringent conditions (see Methods), as the GST we used to tag our recombinant proteins 

was able to pull-down histones to the same detectible degree as either PHD2 WT or R1115H, or 

PHD1 (Figure 2.10).  

We next performed a histone binding assay with unmodifiend histone peptide tails 

(Figure 2.11) We observed that KDM5C PHD2 did not bind any of the six tested peptides, at 

least not to the affinity of ATRX ADD, a known H3 binidng domain (Iwase et al., 2011).  

It was previously reported that KDM5C harbors a PIP-box, a motif known for PCNA 

binding (Liang et al., 2011) (Figure 2.5). We identified that this motif occurs within PHD2 itself, 

unlike previous reporting of this motif lying upstream of PHD2 (Liang et al., 2011), and 

therefore may render PHD2 a putative PCNA binding domain. PCNA and KDM5C have been 
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shown to interact (Alabert et al., 2014; Liang et al., 2011; Rondinelli et al., 2015), though a direct 

interaction has not been shown. We performed a binding assay using recombinant His-tagged 

PCNA and our KDM5C PHD2-containing fragments (Figure 2.11B). We observed PHD2-PCNA 

interaction. When we tested PHD2 fragment containing the R1115H mutation, we found that the 

missense mutation did not hinder the ability of PHD2 to bind PCNA (Figure 2.11). We also 

tested PHD1, which does not harbor any known canonical or non-canonical PIP-box sequence. 

Surprisingly, we found that PHD1 also interacts with PCNA in our recombinant system (Figure 

2.11). This interaction was specific to the PHD fragments, as GST alone was not able to bind 

PCNA (Figure 2.11). While in vivo binding may be different, our in vitro results show that 

KDM5C PHD2 WT and R1115H, as well as PHD1, can bind PCNA in this state. Nevertheless, 

these studies laid an important foundation for future work to probe PHD2 specialization 

 

Discussion 

MRXSCJ has been primarily attributed to either reduced enzymatic activity and/or 

stability of KDM5C protein by associated mutations. In the present study, we describe a novel 

KDM5C missense mutation, R1115H, which was identified in an individual with a typical 

MRXSCJ phenotype. While R1115H substitution does not result in appreciable changes in 

enzymatic activity or protein stability, this substitution appears to alter the transcriptional 

regulatory function of KDM5C. Another KDM5C mutation, D87G, was shown to not interfere 

with the demethylation activity [7]. However, the functional consequence of the D87G 

substitution remains elusive. Thus, our study implicates a novel mechanism underlying 

MRXSCJ.  

We provide several lines of evidence that support contribution of the KDM5C-R1115H 

mutation to developmental and behavioral phenotypes of the proband. First, the clinical 
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phenotypes including short stature, aggressive behavior, and ASD associated with ID align well 

with previously-described individuals with MRXSCJ (Adegbola et al., 2008; Jensen et al., 

2005a; Ounap et al., 2012; Santos et al., 2006; Santos-Reboucas et al., 2011; Tzschach et al., 

2006). Second, the mutation clearly segregates with the cognitive impairment, as both unaffected 

brother and maternal uncle did not carry the R1115H mutation (Figure 2.1). Third, KDM5C-

R1115 is highly conserved among vertebrates and the R1115H substitution is predicted to be 

functionally damaging by multiple prediction algorithms (Figure 2.1 and Supplemental Table 1). 

Forth, the carrier mother showed highly-skewed X-inactivation (Table 1). KDM5C was 

originally discovered as an X-linked gene that escapes X-inactivation both in human and mouse 

although escaping is not complete ― KDM5C is expressed at a lower level from the inactive X 

compared to that of the active X (Wu et al., 1994a; Wu et al., 1994b). We recently reported that 

KDM5C is necessary and sufficient for initiating X-chromosome inactivation by inducing 

expression of the Xist non-coding RNA (Gayen et al., 2017). In KDM5C heterozygous knockout 

female embryos, cells that chose the KDM5C mutant-carrying X as the active X chromosome 

failed to inactivate one of the two Xs, and these cells were quickly lost during development 

(Gayen et al., 2017). We speculate that a similar cell selection process took place in the carrier 

mother, as we determined that KDM5C is very likely mutated on her inactive X-chromosome. 

These data, together with the observations in mouse models, support the deleterious impact of 

R1115H substitution on the function of KDM5C. The moderate bias of X-inactivation in the 

carrier grandmother may imply that additional genetic event(s) in the carrier mother might have 

contributed to the MRXSCJ-like symptoms in her son. Finally, our RNA-seq data indicate that 

R1115H alters KDM5C’s gene-regulatory function in neurons. Generation and characterization 

of knock-in mice carrying KDM5C-R1115H will allow us to understand the causal roles of this 

mutation in cognitive development in the future.  
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It is important to note that exome sequencing of the proband also revealed a missense 

mutation in the CIC (Capicua Transcriptional Repressor) gene (c.4790C>A, p.Pro1597Gln). 

Like KDM5C, CIC encodes a putative transcriptional repressor (Jiménez et al., 2012), and has 

been associated with a human intellectual disability syndrome (Lu et al., 2017; Vissers et al., 

2010). Mouse studies revealed conditional loss of Cic in forebrain neurons leads to learning and 

memory impairments, thinning of cortical layers 2-4, and decreased dendritic arborizations (Lu 

et al., 2017). As human ID-associated CIC mutations show autosomal dominant inheritance, it is 

especially important for future work to functionally investigate this mutation similar to our study 

of KDM5C R1115H.  

The previously reported missense mutations in KDM5C all fall within the N-terminal half 

of KDM5C, which harbors JmjC domain, the catalytic core for histone H3K4 demethylation 

(Figure 2.1). The N-terminal half of KDM5 family demethylases, encompassing JmjN, Bright, 

PHD1, JmjC, and zinc finger domains, was shown to be sufficient for its catalysis (Figure 2.5) 

(Johansson et al., 2016; Vinogradova et al., 2016). By contrast KDM5C-R1115 resides outside 

this catalytic segment, and indeed, the KDM5C-R1115H substitution did not interfere with 

enzymatic activity. Careful analysis of reported proband phenotype data and both mutation type 

and mutation location along KDM5C failed to reveal any obvious correlation (Figure 2.12). The 

C-terminal half of KDM5C contains a PHD finger domain (PHD2) with unknown function, and 

R1115 is located 73 amino-acid upstream of PHD2. Given that KDM5C-PHD1 recognizes 

H3K9me (Iwase et al., 2007), it is plausible that this region recognizes specific histone 

modification(s). Our investigations into PHD2 function as a histone binding domain and/or 

PCNA binding domain (Figure 2.10), provide important foundations for future work to define 

PHD2 function. Alternatively, the C-terminal segment may interact with other transcriptional 

regulators to recruit them to KDM5C-target genes. Interestingly, four truncation mutations that 



 46 

remove this C-terminal segment have been identified in MRXSCJ patients (Abidi et al., 2008) 

(Brookes et al., 2015b; Jensen et al., 2005b; Rujirabanjerd et al., 2010). These observations 

suggest the important roles of the C-terminal segment for KDM5C’s gene-regulatory roles. The 

R1115H substitution may interfere with these uncharacterized roles of the C-terminal regions of 

KDM5C. A minor population of cells show cytoplasmic signal of KDM5C-R1115H mutant in 

addition to nuclear signals (Figure 2.2C). Given the intact H3K4 demethylation activity of 

KDM5C-R1115H and low frequency of its cytoplasmic presence, the mislocalized protein may 

not have a major impact. However, we cannot rule out the possibility that KMD5C-R1115H 

could demethylate ectopic target(s) at the cytoplasm. Future studies are needed to determine the 

roles of the C-terminus in KDM5C-mediated transcriptional regulation, impact of disease 

mutations in this segment, and the roles of enzymatically-active mutants that can be present 

outside nuclei.    

Our RNA-seq data suggest that the R1115H mutation may not only lead to loss of 

function of KDM5C but also acquisition of a new gene-regulatory function.  It is tempting to 

speculate that KDM5C neofunctionalization might be involved in the pathophysiology of this 

specific MRXSCJ-like patient. However, limitations of interpreting the RNA-seq results should 

be noted. The RNA-seq was carried out upon overexpression of WT- and mutant-KDM5C, 10 

days after introducing KDM5C transgenes into neurons. Gene expression changes may therefore 

involve both direct impact of on KDM5C’s target genes as well as indirect consequences, such as 

alteration in neuronal maturation processes. In addition, gene expression changes upon KDM5C 

overexpression may not simply reflect the dysregulation of bona fide KDM5C target-genes. 

Nonetheless, KDM5C-R1115H illuminates a novel gene regulatory function of KDM5C, which 

is independent of its enzymatic activity, and potentially represents a novel molecular etiology 

contributing to MRXSCJ. 
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Materials & Methods 

Exome sequencing, validation and analysis of the variant   

Written informed consent was obtained from all study participants in accordance with 

approved protocols from the Institutional Review Board at the University of Michigan. Clinical 

trio whole exome sequencing was performed through GeneDx (XomeDx) on genomic DNA 

from the proband and both parents. The Agilent SureSelect XT2 All Exon V4 kit was used to 

target the exon regions of the genomes. The targeted regions were sequenced using the Illumina 

HiSeq 2000 sequencing system with 100 bp paired-end reads. The DNA sequence was mapped 

to and analyzed in comparison with the published human genome build UCSC hg19 reference 

sequence. The targeted coding exons and splice junctions of the known protein-coding RefSeq 

genes were assessed for the average depth of coverage of 64X and data quality threshold of 

95.9%. The XomeAnalyzer was used to evaluate sequence changes in the proband compared to 

other sequenced family members. All sequence variants in the proband and parental samples 

were confirmed by Sanger sequencing analysis.  

For Sanger sequencing validation, genomic DNA was isolated (Promega) from 3x106 

lymphoblastoid cells from proband and his father. A roughly 2kb region surrounding the residue 

was amplified using the Q5 High-Fidelity Polymerase (NEB) with the following primers: 5’-

AGAGGTTGTAGAGGAGGCCG-3’ and 5’-CTGTCATGCGAGGACTGTTGGTC-3’. The 

PCR reaction was purified (Qiagen) and exon 22 was Sanger sequenced using the following 

primers: 5’-gtgaggcctgggaccttg-3’ inside intron 21-22, and 5’-ccccatctgtgtcgaagc-3’ inside intron 

22-23. Pedigree was made using pedigreedraw.com, from Genial Genetics. Multiple species 

sequence alignments were made using Clustal Omega.  
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X-chromosome inactivation 

X-inactivation (XI) analysis using the well-characterized CpG methylation site and 

polymorphic CAG repeats within the Androgen Receptor (AR) locus was performed using 

standard protocol (Allen et al., 1992). In this assay, digestion with the methylation-sensitive 

HpaII restriction enzyme followed by PCR amplification was used to determine the ratio of 

methylation status between the maternal and paternal X chromosome.  Parental samples were 

utilized to delineate allele status. 

  

Plasmid DNA 

The R1115H substitution was introduced into pENTR-KDM5C (human) (Iwase et al., 

2007) using a PCR-based targeted mutagenesis. WT- and mutant KDM5C cDNA were then 

moved by LR recombination to a modified pHAGE, a lentivirus compatible mammalian 

expression plasmid (Murphy et al., 2006). In pHAGE plasmid, cDNA of interest is linked to 

puromycin-resistant genes via the internal ribosome entry site (IRES), thereby allowing the 

selection of transduced cells via puromycin. The modifications of pHAGE are insertion of 

Gateway cassette (Invitrogen) and Strep-tag, and replacement of the CMV promoter with the 

PGK promoter. The entire KDM5C cDNAs were Sanger-sequenced to validate the single 

targeted mutagenesis.  

KDM5C PHD domains were cloned for protein expression, with flanking regions from 

human KDM5C cDNA (NP_004178.2) using standard procedures into BamHI/XhoI sites of 

pGEX4T-1 or pFastBac (Life Technologies). For PHD1, amino acids 261-414 were isolated. For 

PHD2, amino acids 1147-1281 were isolated using the following primers: 5’-

TACTTCCAATCCAATGCAGTTCTCTGCCCATGTGCAGATG-3’ and  

5’-GCCAACGGCTACAGGCTGAATAACATTGGAAGTGGATAA-3’.  
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Protein expression and purification 

Insect cell expression. Wild-type and mutant KDM5C cDNAs were cloned into a 

baculovirus expression vector, pFastBac (Life Technologies), and expressed in Sf9 or Hi5 insect 

cells using the Bac-to-bac baculoviral expression system (Life Technologies). For full-length 

strep-tagged KDM5C recombinant proteins, cells were lysed in Buffer A (50mM Tris-HCl pH 

7.5, 150mM NaCl, 0.05% NP-40) with 0.2mM PMSF and protease inhibitor cocktail (Sigma), 

proteins were immobilized on Strep-Tactin affinity resin (Qiagen), washed with Buffer A, and 

eluted in Buffer A containing 2.5 to 25mM desthiobiotin. For GST-tagged PHD fragment 

recombinant proteins, cells were lysed in Lysis Buffer (1X PBS, 0.1% TritonX-100, 1 mM DTT, 

1 mM PMSF, 1X protease inhibitor cocktail), sonicated, cleared by centrifugation at 4°C, 

proteins were immobilized on glucathione sepharose by rotating incubation 2 hours at 4°C, beads 

were washed thoroughly with Lysis Buffer, protein was eluted four times with 100 µl GST 

elution buffer (50 mM Tris pH 8.0, 10 mM glucathione), elutions were combined, and proteins 

were aliquoted in Storage Buffer (Tris pH 8.0, 150 mM NaCl, 1 mM DTT, 20% glycerol). 

 

Histone demethylase assay 

Wild-type and mutant KDM5C recombinant proteins were used from Sf9 (for H3K4me3 

assay) or Hi5 (for H3K4me3, K9me3 assay) insect cell expression. Enzymatic activity was 

assessed using the Histone Demethylase Fluorescent Activity Kit (Arbor Assays, K010-F1). 4-5 

µM (for H3K4me3 assay) or 1 µM (for H3K4me3, K9me3 assay) purified KDM5C protein and 4 

mM peptides were incubated at 30°C with freshly-prepared 4 mM alpha ketoglutarate, 2 mM 

ascorbate, 100 µM iron ammonium sulfate. The following synthetic histone N-terminal peptides 
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were purchased from Anaspec: H3K4me3: H2N-ART(Kme3)QTARKSTGGKAPRKQL-amide, 

and H3K4me3/K9me3: H2N-ART(Kme3)QTAR(Kme3)STGGKAPRKQL-amide. Reactions 

were quenched with 4 mM deferoxamaine mesylate at 10, 20, or 30 minutes, and detected with 

formaldehyde detection reagent according to the kit instructions. Fluorescence end point 

measurement was performed using the Tecan Safire 2 plate reader and XFluro4 V4.62 software.  

 

Protein binding assays 

Histone peptide binding assay: 1 µg biotin-labeled unmodified histone tail peptides 

(Anaspec) and 1 µg GST-tagged proteins (KDM5C PHD2 WT or R1115H, ATRX ADD) were 

used. Streptavidin agarose resin (Thermo Fisher). The following synthetic histone N-terminal 

peptides were purchased from Anaspec: H2A (1-20): SGRGKQGGKARAKAKTRSSRGG-

K(biotin); H2B (1-21): PEPSKSAPAPKKGSKKAITKAGG-K(biotin); H3 (1-20): ARTKQTA 

RKSTGGKAPRKQL-GGK(biotin); H3 (21-44): ATKAARKSAPATGGVKKPHRYRPG-

GGK(biotin); H3.3(21-44): ATKAARKSAPSTGGVKKPHRYRPG-GGK(biotin); H4 (1-23): 

SGRGKGGKGLGKGGAKRHRKVLR-GGK(biotin). 

PCNA binding assay. Protocol was adapted from Iwase et al. (Iwase and Shi, 2011), with 

the following conditions. 5 µg His-tagged PCNA protein (Sigma) and 10 µg GST-tagged 

proteins (KDM5C PHD1, PHD2 WT, PHD2 R1115H) were incubated in Binding Buffer A 

(50mM Tris-HCl pH8.0, 150 mM NaCl buffer, 0.05% NP-40) rotating overnight at 4 °C. 

Glucathione sepharose beads were added and allowed to incubate for 1 hour rotating at 4 °C. 

Samples were washed thoroughly in Binding Buffer A, resuspended in SDS Sample Buffer, 

boiled and analyzed by Western blot according to standard procedures.  
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Bulk histone binding assay: Protocol was adapted from Iwase et al. (Iwase and Shi, 

2011), with the following conditions. 50 µg BSA, 25 µg calf thymus histones, and 1 or 10 µg 

GST-tagged proteins (KDM5C PHD1, PHD2 WT, PHD2 R1115H) were incubated in Binding 

Buffer B (50mM Tris-HCL pH 8.0, 500 mM NaCl, 0.05% NP-40) or Buffer B-HS (50mM Tris-

HCl pH8.0,  2 M NaCl buffer, 0.05% NP-40) rotating overnight at 4 °C. Glucathione sepharose 

beads were added incubated for 1 hour rotating at 4 °C. Samples were washed thoroughly in 

Binding Buffer B or B-HS, resuspended in SDS Sample Buffer, boiled and analyzed by Western 

blot. 

 

Cell culture, cycloheximide treatment, and transduction 

For ubiquitination immunoprecipitation (IP) in HEK 293T cells, Strep-tagged KDM5C 

full length and PHD-containing expression plasmids (pHAGE) were transfected with 

Lipofectamine 2000 (Life Technologies) according to manufacturer’s instructions.  

Lymphoblastoid cell lines from the proband and his father were isolated and cultured 

under identical conditions as described previously (Burns et al., 2014; Doyle, 1990). Briefly, 

buffy coat was isolated from citrate (yellow) blood by Ficoll density centrifugation and 

transformed with Epstein Barr Virus. Lines were maintained in RPMI-1640 media (Gibco) 

supplemented with 10% FBS, 2mM GlutaMAX, 1% penn-strep, in an incubator set at 37°C with 

5% constant CO2. U2OS cells were cultured with DMEM media (Gibco) supplemented with 5% 

FBS, 2mM GlutaMAX, 1% penn-strep, in an incubator set at 37°C with 5% constant CO2. 

Cycloheximide (Sigma) was resuspended in DMSO and used at a final concentration of 100 

µg/ml.  

For in situ demethylation assays in U2OS cells, Strep-tagged KDM5C expression 

plasmids (pHAGE) were transfected into U2OS cells with Lipofectamine 2000 (Invitrogen) 
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according to manufacturer’s instructions. For in situ demethylation assays in neurons, cells were 

transduced after one day in vitro (DIV1) cells with lentivirus of equal titer containing either 

human KDM5C cDNA (WT, R1115H, or H514A) or vector alone.  

 

Immunofluorescence microscopy 

U2OS cells were plated on PDL-coated coverslips in 24-well dishes at 1x105 cells/well 

and transfected as described above for 48 hours. Mouse forebrain tissue was dissected from 

embryonic day 16 (E16) CD1 mouse embryos. Cells were dissociated, plated, and cultured as 

described previously (Iwase et al., 2016), transduced on day in vitro 1 (DIV1) as described 

above, and harvested at DIV3. Cells were fixed with 4% paraformaldehyde, permeabilized with 

Triton X-100, and blocked with 10% fetal bovine serum. Coverslips were incubated with 

appropriate primary antibodies overnight at 4°C, washed, and incubated with the corresponding 

secondary antibodies and DAPI stain for 1 hour at room temperature. Coverslips were then 

washed, mounted with ProLong Gold Antifade Mountant (Invitrogen). U2OS cells were 

analyzed on an Olympus BX61 microscope using a 60x oil objective, and images were acquired 

with cellSens Dimension (1.14) software and processed with ImageJ (1.48) and Adobe 

Photoshop (CS6). Neurons were analyzed on a Nikon A-1 confocal microscope using a 60x oil 

objective, and images were acquired with Nikon’s Elements software. Primary antibodies were 

used at the following concentrations: 1:1,000 anti-H3K4me1 (Abcam ab8895), 1:20,000 anti-

H3K4me2 (Abcam ab7766), 1:1,000 anti-H3K4me3 (Abcam ab8580), 1:500 (for U2OS) or 

1:1,000 (for neurons) anti-Strep (Genscript A01732), 1:1,000 anti-Map2 (Millipore AB5543). 

Alexa 647-donkey-anti-mouse (for neurons), 594-donkey-anti-rabbit (for U2OS) or -anti-chicken 

(for neurons), and 488-donkey-anti-mouse (for U2OS) or -anti-rabbit (for neurons) secondary 

antibodies were all used at 1:1,000. DAPI was used to stain the nucleus at a 1:1,000 dilution. 
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Immunoprecipitation and ubiquitin assay  

48 hours after transfection, cells were washed in 1X PBS, lysed in Buffer A (describe), 

lightly sonicated, spun, and taken for immunoprecipitation. Lysates were incubated with 

streptactin resin (Qiagen) rotating overnight at 4 °C. Beads were wash thoroughly, resuspended 

in SDS Sample Buffer, boiled and analyzed by Western blot. 

 

Western blotting 

Lymphoblastoid cells. Cell were lysed in SDS-PAGE sample buffer. Infrared 

fluorescence-based Western blot was performed using the LI-COR Odyssey Western Blotting 

RD system according to standard protocol. Primary antibodies were used at the following 

dilutions: anti-KDM5C (Iwase et al., 2016) at 1:250, anti-GAPDH (G-9, Santa Cruz sc-365062) 

at 1:50,000, anti-H3K4me1 (Abcam ab8895) at 1:5,000, anti-H3K4me2 (Abcam ab7766) at 

1:20,000 or 1:40,000, anti-H3K4me3 (Abcam ab8580) at 1:1,000, anti-H3 (Santa Cruz sc-8654) 

1:1,000. Secondary antibodies donkey-anti-goat IRDye 680RD (LICOR 925-68074), donkey-

anti-mouse IRDye 680RD (LICOR 926-68072), and donkey-anti-rabbit IRDye 800CW (LICOR 

925-32213) were used at 1:10,000. Blots were imaged on the LI-COR Odyssey Clx imager, 

using Image Studio 3.1 software. Chemiluminescence detection of Western blots was performed 

as previously described (Iwase et al., 2016). 

Binding assays. Chemiluminescence detection of Western blots was performed as 

previously described (Iwase et al., 2016). The following antibodies were used for detection: anti-

GST (Milipore 05-782), in-house anti-KDM5C (Iwase et al., 2016), anti-PCNA (Santa Cruz sc-

56), anti-H3 (Santa Cruz sc-8654).  
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IP and ubiquitination assay. Chemiluminescence detection of Western blots was 

performed as previously described (Iwase et al., 2016), with the exception that anti-ubiquitin 

blots were incubated in 1% BSA in PBST. The following antibodies were used for detection: 

anti-Strep (Genscript A01732), anti-ubiquitin FK2 (Enzo Life Sciences). 

 

RNA-sequencing 

Mouse forebrain tissue was dissected from embryonic day 16 (E16) CD1 mouse 

embryos. Cells were dissociated, plated, and cultured as described previously (Iwase et al., 

2016). After one day in vitro (DIV1) cells were infected with lentivirus of equal titer containing 

either human KDM5C cDNA (WT, R1115H, or H514A) or vector alone. Puromycin selection 

occurred at DIV4 with 0.2 μg/ml puromycin (Sigma). Control puromycin selection with 

untransduced cultures eliminated nearly all cells, indicating that majority of survived cells carry 

the KDM5C transgene. Cells were harvested at DIV10 by direct addition of TRI Reagent 

(Sigma). Samples were subject to total RNA isolation using RNEasy Mini Kit (Qiagen). 

Ribosomal RNA was depleted using RiboMinus Eukaryotic Kit v2 (Life Technologies). 

Libraries were prepared using Direct Ligation of Adapters to First-strand cDNA as described 

previously (Agarwal et al., 2015). Multiplexed libraries were pooled in approximately equimolar 

ratios and purified from a 1.8% TBE-agarose gel. Libraries were sequenced on the Illumina 

HiSeq 4000 platform, with paired-end 150 base pair reads, according to standard procedures.  

Reads were trimmed to 60bp using BBDuk (35.51) and mapped to the mm9 mouse 

genome using STAR (2.5.3a) allowing zero mismatches, and only uniquely mapped reads were 

analyzed further. Due to low mapability of read2, only read1 was used for further analysis. BAM 

files were indexed and converted to BigWig files in a strand specific manner. BigWigs were 

normalized to 10 million non-rRNA and non-mitochondrial reads. DESeq2 (1.14.1) was used to 
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call differential gene expression between conditions, using a cutoff of p-value < 0.01. Cuffdiff 

(Cufflinks 2.2.1) was used to calculate FPKM. Differentially-expressed genes were examined for 

functional annotation clustering using DAVID (6.8). To validate overexpression conditions, 

reads were mapped to a custom genome using STAR, allowing no mismatches, and only 

uniquely mapped reads were analyzed further. The custom genome contained human KDM5C 

cDNA (NM_001146702.1), where bases were masked with “N” at the H514 (c.1540-

1541CA>NN) and R1115 (c.3344G>N) loci to allow for specific mapping under strict no-

mismatch conditions.  

RNA-seq files can be found at Gene Expression Omnibus GEO:GSE104319. 

 

Multi-species conservation alignment  

The following RefSeq sequences were used for alignment for KDM5C: human 

NP_001140174.1, orangutan NP_001125719.1, rhesus XP_014982969.1, mouse NP_038696.2, 

rat XP_008771368.1, dog NP_001041497.1, elephant XP_010598233.1, frog NP_001072719.1, 

fugu XP_003963594.1. The following RefSeq sequences were used for alignment: KDM5A 

NP_001036068.1, KDM5B NP_006609.3, KDM5C NP_001140174.1, KDM5D  

NP_001140177.1.  

 

Statistical Analyses 

For histone demethylase assays in Figure 2.2A-B, error bars represent standard error of 

the mean (SEM) of a technical triplicate. For analysis of H3K4me levels in Figure 2.2D, 

H3K4me signals were normalized to pan-H3 signal and error bars represent SEM of technical 

triplicate. For RNA-seq data in Figures 2.7-2.8, differentially-expressed genes were determined 

by DESeq2 using a cutoff of p < 0.01. For GO term analysis in Figure 2.9, the modified Fisher 
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Exact p-value is represented as calculated by the DAVID functional annotation tool (Huang da et 

al., 2009a, b). For gene expression bar graphs in Supplemental Figure 2.8B-G, error bars 

represent SEM of three biological replicates.  
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Figures 

 

Figure 2.1 KDM5C R1115H mutation in family UM1.  

(A) Pedigree of family UM1. (B) Sanger sequencing of genomic DNA from lymphoblastoid cell lines 
generated from proband (UM1 III-3) and father (UM1 II-1). (C) Multi-species conservation alignment of 
KDM5C homologs. Multi-species conservation alignment of KDM5C homologs. (D) Conservation alignment 
of human KDM5 family proteins, KDM5A-D. (E) Schematic of human KDM5C protein and 26 reported 
mutations associated with KDM5C-XLID. Missense mutations are depicted above the protein, while nonsense 
and frame-shift mutations are depicted below. Black bar for 100 amino acids (aa) provided as a scale. JmjN, 
jumonji N-terminal; ARID, AT-rich interaction domain; PHD, plant homeodomain finger; JmjC, jumonji C-
terminal; ZF, zinc finger; PLU-1, PLU1-like domain. 
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Figure 2.2 KDM5C R1115H has largely intact enzymatic activity.  

(A, B) In vitro demethylation assay. Full-length KDM5C wildtype (WT) or mutant (R1115H) were subjected 
to demethylation assay using synthetic histone peptide carrying (A) H3K4me3 or (B) H3K4me3 + K9me3. 
Relative fluorescence values of formaldehyde, produced by the demethylation reaction, are normalized by the 
amount of purified proteins in the reaction and plotted. Error bars represent SEM of a technical triplicate. (C) 
In situ demethylation assay. Expression constructs of strep-KDM5C WT, mutant R1115H, or catalytically-
inactive H514A were transiently transfected into U2OS cells and stained with antibodies for Strep (red) and 
H3K4me3 (green). Nuclei were stained with DAPI. (D) H3K4me levels in lymphoblastoid cell lines from 
proband (UM1-III-3, KMD5C R1115H) and father (UM1-II-1, KDM5C WT) were measured by quantitative 
Western blot analysis. H3K4me signals were normalized to pan-H3 signal (n=3, Mean ± SEM).  
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Figure 2.3 Enzymatic activity of KDM5C R1115H is largely retained.  

(A) Full-length Strep-tagged KDM5C wildtype (WT) and mutant (R1115H) proteins were expressed in Sf9 
cells and purified with Strep-tactin affinity resin. Solubility and equivalence of protein amount was confirmed 
by SDS-PAGE followed by Coomassie blue staining. (B) In situ demethylation assay using primary mouse 
cortical neuron culture. Expression constructs of strep-KDM5C WT, mutant R1115H, or catalytically-inactive 
H514A, or vector alone, were transduced into mouse primary neuron cultures and with antibodies for Strep 
(fuchsia), H3K4me1/2/3 (green), and Map2 (red). Compared to cells transduced with vector alone, significant 
decrease of K4me2/3 was found in WT- and R1115H over-expressing cells. Demethylation activity was 
completely abrogated by the H514A mutation. Nuclei were stained with DAPI (blue).  
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Figure 2.4 KDM5C R1115H protein is stable in cells.  

(A) Lymphoblastoid cell lines from father (UM1-II-1, KDM5C WT) and proband (UM1-III-3, KDM5C 
R1115H) were treated with a cycloheximide (CHX) time course from 0-28 hours. The KDM5C levels upon 
treatment of the cell lines were measured by quantitative Western blot. Relative fluorescence unit normalized 
by GAPDH signals were plotted (n=3, Mean ± SEM).  
 
 
 
 

 
Figure 2.5 KDM5C protein domains. 

(A) Location and conservation of the R1115H mutation, nearby ubiquitination site at lysine 1121 (K1121ub), 
PHD2 domain, and PCNA PIP-box binding site. (B) Protein schematic of KDM5C indicating known 
functional domains, and protein fragments used in these studies with indicated tags. Solid line indicates N-
terminal portion of protein sufficient for enzymatic activity. Dashed line indicates C-terminal portion of 
protein dispensable for enzymatic activity. JmjN, jumonji N-terminal; ARID, AT-rich interaction domain; 
PHD, plant homeodomain finger; JmjC, jumonji C-terminal; ZF, zinc finger; PLU-1, PLU1-like domain. 
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Figure 2.6 Ubiquitination is unchanged by KDM5C-R1115H.  

IP of strep-tagged full-length (FL) or PHD fragment KDM5C purified proteins show successful pull-down 
(top) and no change in ubiquitination levels across conditions (bottom). 
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Figure 2.7 RNA-sequencing of primary cultured neurons expressing WT- and mutant-KDM5C.  

(A) Schematic of experimental procedures. (B) Normalized expression values of all genes in Vector-WT, 
Vector-R1115H, and Vector-H514A comparisons. (C) Fold change of down-regulated genes by WT-, 
R1115H-, and H514A-overexpression plotted against significance. WT up (green) and down (purple) DE 
genes were plotted for each mutant condition. Horizontal line indicated significance cutoff of p < 0.01. (D) 
Overlap of significantly down- and up-regulated genes (p < 0.01). 
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Figure 2.8 RNA-seq validation.  

(A) Reads were mapped to human KDM5C cDNA the mapped reads for each condition were visualized in 
IGV. Nucleotide sequences of reads mapped to the regions corresponding H514 and R1115 confirm identity of 
KDM5C cDNAs overexpressed. (B) Comparison of human KDM5C expression levels across conditions, 
represented as mean normalized read counts. Reads were mapped to human KDM5C cDNA sequence. (C) 
Comparison of mouse Kdm5c expression levels across conditions, represented as mean normalized counts. 
Reads were mapped to mm9 mouse genome. (D-G) Expression patterns of genes that are altered by KDM5C-
WT (D), KDM5C-H514A (E), or KDM5C-R1115H (F, G). V, vector control; WT, KDM5C-WT; R1115H, 
KDM5C-R1115H; H514A, KDM5C-H514A. 
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Figure 2.9 Ontology analysis of KDM5C-regulated genes.  

Down-regulated genes by KDM5C-WT (A), KDM5C-R1115H (B), and KDM5C-H514A (C) were subjected 
to GO analysis using DAVID (Functional Annotation Bioinformatics Microarray Analysis). Representative 
two GO terms each from the top four most enriched annotation clusters were presented with p-values and 
cluster enrichment score.  
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Figure 2.10 KDM5C PHD2 histone peptide binding assays.  

(A) Top five candidate histone peptides from microarray assay, tested in in vitro binding assay with GST-
KDM5C-PHD2-WT. (B) Bulk histones tested in in vitro binding assay.  
 
 
 
 
 

 
Figure 2.11 KDM5C PHD2 binding assays.  

(A) Unmodified histone tail peptides tested in vitro binding assay with GST-KDM5C-PHD2-WT. (B) PCNA 
in vitro binding assay. 
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Figure 2.12 Location of KDM5C mutations does not predict disease severity. 

(A) Location of 26 reported mutations along the KDM5C protein, with missense mutations above and 
nonsense and frameshift mutations below. No correlation observed between mutation location and intellectual 
disability (ID) severity (B) or overall phenotype severity (C). 100 amino acids (aa) bar for scale. JmjN, jumonji 
N-terminal; ARID, AT-rich interaction domain; PHD, plant homeodomain finger; JmjC, jumonji C-terminal; 
ZF, zinc finger; PLU-1, PLU1-like domain. 
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Tables 

Table 2.1 KDM5C p.Arg1115His is predicted to be damaging. 
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Table 2.2 Status of X-chromosome inactivation in carrier females. 
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Chapter 3 ¾ Amelioration of Brain Histone Methylopathies By Balancing a Writer-Eraser 
Duo KMT2A-KDM5C 

 

Introduction 

Dysregulation of histone methylation has emerged as a major contributor of 

neurodevelopmental disorders (NDDs) such as autism spectrum disorder and intellectual 

disability (De Rubeis et al., 2014b; Faundes et al., 2018; Iossifov et al., 2014). Histone 

methylation can be placed on a subset of lysine and arginine amino acids by histone 

methyltransferases (writer enzymes) and serves as a signaling platform for a variety of nuclear 

events including transcription (Kouzarides, 2007). Reader proteins specifically recognize 

methylated histones, thereby converting methylation signals into higher-order chromatin 

structures (Taverna et al., 2007). Histone methylation can be removed by a set of histone 

demethylases (eraser enzymes) (Allis et al., 2007). All three classes of methyl-histone regulators 

are heavily mutated in NDDs, indicating critical, yet poorly-understood, roles of histone 

methylation dynamics in brain development and function (Iwase et al., 2017; Iwase and Shi, 

2011; Ronan et al., 2013).  

Histone H3 lysine 4 methylation (H3K4me) is one of the most well-characterized histone 

modifications. H3K4me is primarily found at transcriptionally active areas of the genome. The 

three states, mono-, di-, and tri-methylation (H3K4me1-3), uniquely mark gene regulatory 

elements and play pivotal roles in distinct steps of transcription. While H3K4me3/2 are enriched 

at transcriptionally-engaged promoters, H3K4me1 is a hallmark of transcriptional enhancers 

(Barski et al., 2007; Heintzman et al., 2007). At promoters, H3K4me3 contributes to recruitment 
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of general transcription machinery TFIID and RNA polymerase II (Lauberth et al., 2013; 

Vermeulen et al., 2007). H3K4me1 has been shown to tether BAF, an ATP-dependent chromatin 

remodeling complex, at enhancers (Local et al., 2018).  

H3K4me is extensively regulated by seven methyltransferases and six demethylases in 

mammals (Allis et al., 2007). Consistent with the important roles of H3K4me in transcriptional 

regulation, genomic distribution of H3K4me appears highly dynamic during brain development 

(Cheung et al., 2010), in which widespread gene expression changes take place.  Developmental 

H3K4me dynamics appears to be altered in the prefrontal cortices of individuals with autism 

(Shulha et al., 2012a; Shulha et al., 2012b). However, contributions of each of the 13 enzymes in 

the dynamic H3K4me landscapes of the developing brain remains largely unknown. Strikingly, 

genetic alterations in nine of the 13 H3K4me enzymes and at least two H3K4me readers have 

been associated with human NDDs to date, indicating critical roles of H3K4me balance 

(Vallianatos and Iwase, 2015) (Figure 3.1A). These human conditions can be collectively 

referred to as brain H3K4 methylopathies and point to non-redundant yet poorly-understood 

roles of these genes controlling this single post-translational modification for faithful brain 

development.  

As histone modifications are reversible, one can, in theory, correct an imbalance by 

modulating the writers or erasers. Chemical inhibitors of histone deacetylases (HDACs) have 

been successfully used to rescue phenotypes in mouse models of NDDs. HDAC inhibitors were 

able to ameliorate learning disabilities in mouse models of Rubinstein-Taybi and Kabuki 

syndromes, which are deficient for CREBBP or KMT2D, writer enzymes for histone acetylation 

or H3K4me, respectively (Alarcon et al., 2004; Bjornsson et al., 2014). However, none of these 

chemical compounds has yet been proven applicable to human NDDs. Moreover, the HDAC 

inhibitors such as SAHA and AR-42 used in these studies interfere with multiple HDACs (Park 
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et al., 2015), which could potentially result in widespread side effects. Given the non-redundant 

roles of the H3K4me enzymes, a more specific perturbation is desirable.  

 

In order to achieve specific modulation of H3K4me rather than inhibiting multiple 

histone modifiers in a given NDD, an important first step is to delineate functional relationships 

between the H3K4 enzymes. In the present work, we focus on a pair of NDD-associated 

writer/eraser enzymes: KMT2A and KDM5C. Haploinsufficiency of KMT2A underlies 

Weidemann-Steiner Syndrome (WDSTS), characterized by developmental delay, intellectual 

disability, characteristic facial features, short stature, and hypotonia (Jones et al., 2012; Strom et 

al., 2014). Loss of KDM5C function defines Mental Retardation, X-linked, syndromic, Claes 

Jensen type (MRXSCJ), in which individuals display an intellectual disability syndrome with 

aggression, short stature, and occasional autism comorbidity (Adegbola et al., 2008; Claes et al., 

2000; Jensen et al., 2005b; Vallianatos et al., 2018). Mouse models have provided experimental 

support for causative impacts of KMT2A and KDM5C deficiencies in impaired cognitive 

development. Heterozygous Kmt2a knockout (KO) mice show compromised fear learning 

(Gupta et al., 2010), and excitatory-neuron-specific Kmt2a deletion similarly led to impaired 

learning, memory, and anxiety behaviors, as well as altered H3K4me3 distributions and 

transcriptomes (Jakovcevski et al., 2015; Kerimoglu et al., 2017). In these studies, however, the 

social behavior and relevant cellular consequences of Kmt2a loss were not examined. Kdm5c-

knockout (KO) mice mimic many MRXSCJ features, including small body size, aggressive 

behavior, and reduced social activity and learning (Iwase et al., 2016; Scandaglia et al., 2017). 

Kdm5c-KO neurons in the basolateral amygdala exhibit malformation of dendritic arbors and 

spines along with misregulation of neurodevelopmental genes. However, the functional 

relationships between KMT2A and KDM5C, e.g. how deficiencies in opposing enzymatic 
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activities can lead to same learning deficits, remain completely unknown. Additionally, despite 

the strong association with NDDs, successful modulation of histone methylation to restore 

normal brain physiology has not been reported in these or any other animal models of histone 

methylopathies.   

In the present work, we tested whether modulating either single H3K4me writer or eraser 

can ameliorate the neurodevelopmental symptoms observed in the WDSTS and MRXSCJ mouse 

models. We generated Kmt2a-, Kdm5c-double mutant (DM) mice, and performed systematic 

comparisons between wild-type (WT), single mutants, and DM mice. The results detailed below 

revealed common yet mutually-suppressive traits in the two disease models, thereby providing a 

binary therapeutic strategy for the two conditions.  

 

Results 

KMT2A and KDM5C co-exist broadly in the brain 

We first examined expression patterns of KMT2A and KDM5C using publicly-available 

resources, and found the two genes are broadly expressed throughout brain regions of adult mice 

and humans (Figure 3.2) (Hawrylycz et al., 2012; Johnson et al., 2009; Lein et al., 2007; Pletikos 

et al., 2014; Zhang et al., 2017) (Tasic et al., 2016). Kmt2a and Kdm5c are expressed at 

comparable levels in all major excitatory and inhibitory neuron subtypes as well as glia cells in 

mouse visual cortex (Figure 3.2A), and also throughout mouse brains (Figure 3.2B). 

Consistently, developing and aging human brains express KMT2A and KDM5C at high, steady 

levels (Figure 3.2C). Thus, both writer and eraser are co-expressed across brain cell types, 

regions, and developmental stages in both human and mouse.     
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Generation of Kmt2a-Kdm5c double-mutant (DM) mice 

To test genetic interaction of Kmt2a and Kdm5c in vivo, we generated Kmt2a-Kdm5c 

double-mutant (DM) mice. Experimental mice were F1 hybrids of the two fully-congenic 

laboratory mouse strains: 129S1/SvImJ Kmt2a+/- males (Cao et al., 2014) and C57BL/6J 

Kdm5c+/- females (Iwase et al., 2016) (Figure 3.1B). This cross resulted in the following 

genotypes of male mice: wildtype (WT); Kmt2a heterozygote (Kmt2a-HET: Kmt2a+/-), Kdm5c 

hemizygous knock-out (Kdm5c-KO: Kdm5c-/y), and Kmt2a-Kdm5c double-mutant (DM: 

Kmt2a+/-, Kdm5c-/y), thereby allowing us to perform systematic comparison between the WDSTS 

model (Kmt2a-HET), the MRXSCJ model (Kdm5c-KO), and their composite (DM). We focus on 

males, because MRXSCJ predominantly affects males and Kdm5c-heterozygous female mice 

exhibit only minor cognitive deficits (Scandaglia et al., 2017).  

These mice were born at expected Mendelian ratios of 25% per genotype, demonstrating 

the DM mice were not synthetic lethal (Figure 3.1C). Genotypes were confirmed at RNA and 

DNA levels (Figure 3.3A-C), and protein level for KDM5C (Figure 3.3D). Brain anatomy 

showed no gross deformities in any of the genotypes (Figure 3.3E). Body weight, during the 

course of development and in adult, however, was reduced in the two single mutants as well as in 

DM mice (Figure 3.1D-E). The weight reduction was slightly more pronounced in DM compared 

to single mutants (F(3,82) = 11.76, p < 0.001, One-way ANOVA). Thus, loss of Kdm5c and 

Kmt2a heterozygosity both led to growth retardation, which was not corrected but rather slightly 

exacerbated in DM mice.   

 

Altered H3K4me3 landscapes in WDSTS and MRXSCJ models and rescue effects in DM 

H3K4me3 is a reaction product of KMT2A-mediated methylation (Dou et al., 2006), 

while a substrate for KDM5C-mediated demethylation (Iwase et al., 2007; Tahiliani et al., 
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2007b). We sought to determine the impact of KMT2A- and KDM5C-deficiencies and double 

mutation on the H3K4me3 landscape within the brain. We chose to examine the amygdala tissue, 

because it plays crucial roles in social behavior and fear memory, which are impaired in Kdm5c-

KO mice (Iwase et al., 2016). In Western blot analyses, global H3K4me1-3 levels were not 

altered dramatically in any mutant (Figure 3.4A). We thus performed H3K4me3 chromatin 

immunoprecipitation coupled with deep sequencing (ChIP-seq) to probe local changes genome-

wide. To assess the IP specificity, we spiked-in an array of recombinant nucleosomes carrying 15 

common methylations along with DNA barcodes appended to the Widom601 nucleosome 

positioning sequence (Shah et al., 2018) (see Methods). The two H3K4me3 nucleosomes 

dominated the Widom601-containing DNA in all IP reactions with negligible signals from other 

methylation states such as H3K4me1 or H3K4me2 (Figure 3.4B), demonstrating a superb 

specificity of the ChIP.  

To obtain a global picture of H3K4me changes, we examined the H3K4me3 signals 

between WT and the three mutants throughout the mouse genome partitioned into 1-kilobase 

(kb) bins (Figure 3.5A). We found an overall similarity in H3K4me3 coverage across Kmt2a-

HET, Kdm5c-KO, and DM on a genome-wide scale, as well as at promoter regions (Figure 3.5A, 

Figure 3.4C). We then broke down the genome into promoter (± 1 kb from transcription start 

sites [TSS]), intergenic (between genes), and intragenic (within a gene) regions, and asked if any 

areas are preferentially dysregulated in any of the mutant animals. In WT, 61% of H3K4me3 fell 

within promoters, consistent with H3K4me3 as a hallmark of promoters (Heintzman et al., 2007; 

Lauberth et al., 2013; Vermeulen et al., 2007), while smaller fractions, 18% and 21%, were 

found in intergenic or intragenic regions, respectively (Figure 3.4D). This H3K4me3 distribution 

pattern was largely consistent across the other genotypes (Figure 3.4D), except for Kdm5c-KO 
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and DM amygdala which had slightly higher proportions of intragenic (25% for both) and 

intergenic (30% and 29%, respectively) methylation (Figure 3.4D). 

Examining local differentially-methylated regions (DMRs), i.e. either hyper- or hypo-

methylated for H3K4me3 compared to WT, we found fewer DMRs in Kmt2a-HET (1,940) than 

in Kdm5c-KO (11,990) (Figure 3.5B-G, Figure 3.4E-H). This difference is likely due to the 

heterozygosity of Kmt2a which leaves one functional copy of Kmt2a, versus the complete loss of 

Kdm5c. Consistently, complete loss of Kmt2a in hippocampal neuronal nuclei was previously 

shown to reduce H3K4me3 in more than four thousand loci (Kerimoglu et al., 2017). In the 

Kmt2a-HET amygdala, hypermethylated loci were primarily found at intragenic regions (56%), 

while hypomethylated regions were found mainly at promoters (76%, Figure 3.5C). Kdm5c-KO 

DMRs were biased towards an increase in methylation signals (8,284 hypermethylated vs. 3,706 

hypomethylated), consistent with loss of a demethylase. In the Kdm5c-KO amygdala, the 

hypermethylated loci showed a roughly even split between promoters, intragenic, and intergenic 

regions, while the majority of the Kdm5c-KO hypomethylated regions were located at promoters 

(89%, Figure 3.5F). Hypermethylation in non-promoter regions was also detected as an 

appearance of additional H3K4me3 peaks in Kdm5c-KO amygdala (Figure 3.4D). When we 

overlapped single mutant DMRs (Figure 3.5H), most DMRs were unique to Kdm5c-KO 

(10,994). Interestingly, one half of the Kmt2a-HET DMRs overlapped with Kdm5c-DMRs 

(Figure 3.5H), and most of these DMRs were largely misregulated in the same direction between 

the two single mutants (Figure 3.5I), despite the opposing activity of this pair of enzymes. Motif 

analysis identified distinct as well as common transcription factor-binding motifs at Kmt2a-HET 

and Kdm5c-KO DMRs (Figure 3.4I-J). Thus, Kmt2a- and Kdm5c-deficiencies lead to both 

unique and common alterations in H3K4me3 landscapes.   



 77 

We next asked if any of these DMRs were corrected in double mutants (DM). We defined 

“rescued” regions as DMRs identified in single mutants that were no longer categorized as a 

DMR in DM (therefore, no different from WT). We observed a rescue of roughly half of single 

mutant DMRs in our DM animals: 42% (821/1,940) of Kmt2a-HET DMRs and 54% 

(6,576/11,990) of Kdm5c-KO DMRs were not called as differentially methylated in DM (Figures 

3.4D, 3.4G, Figure 3.5E-H). Representative examples of rescued and unrescued DMRs are 

shown (Figure 3.5J-M).  

Most rescued DMRs show smaller yet detectable fold changes of H3K4me3 in DM, 

indicating that the rescue effect was partial (Figure 3.5N). If KMT2A and KDM5C simply 

counteract, we should observe that hypermethylated regions in Kdm5c-KO are hypomethylated 

in Kmt2a-HET, and normalized in DM. We indeed observed such cases in a small fraction of 

rescued DMRs (solid bars in Figure 3.5N). Unexpectedly, some regions showed reciprocal 

H3K4me3 changes between the single mutants in an opposite way as expected; namely, 

hypomethylation in Kdm5c-KO and hypermethylation in Kmt2a-HET (open bars in Figure 

3.5N). The most prevalent pattern of rescued DMRs was the hypermethylated regions of Kdm5c-

KO that were still moderately hypermethylated in DMs and unexpectedly in Kmt2a-HET as well 

(striped bars in Figure 3.5N). Thus, simple counteractions between Kmt2a and Kdm5c are 

relatively rare events, and rather deficiency of the single enzyme results in a complex change of 

H3K4me3 homeostasis. Nonetheless, our analyses identified thousands of genomic loci at which 

KMT2A and KDM5C fully or partially mediate aberrant H3K4me3 levels caused by loss of the 

opposing enzyme.  
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Transcriptomic similarity between WDSTS and MRXSCJ models and rescue effects in DM 

We previously showed Kdm5c-KO mice exhibit aberrant gene expression patterns in the 

amygdala and frontal cortex (Iwase et al., 2016), and the hippocampus (Scandaglia et al., 2017). 

Excitatory-neuron specific conditional Kmt2a-KO mice were also characterized with altered 

transcriptomes in the hippocampus and cortex (Jakovcevski et al., 2015; Kerimoglu et al., 2017). 

However, the global gene expression of Kmt2a-HET, which is akin to the WDSTS syndrome 

genotypes, has not been determined. To compare the impact of Kmt2a-haploinsufficiency and 

Kdm5c-KO on the transcriptome, we performed unique molecular identifiers (UMI)-RNA-seq 

(Jaworski and Routh, 2018) using amygdala tissues of adult mice across the four genotypes. To 

minimize the impact of PCR-derived duplication on gene expression analysis, we used primers 

containing UMIs during library amplification, and deduplicated the sequencing reads prior to 

analysis (see Methods). First, we confirmed the lack or reduction of reads from Kdm5c exons 11 

and 12 and Kmt2a exons 8 and 9 in the corresponding mutants (Figure 3.3A-B). Spike-in RNA 

controls confirmed the broad dynamic range of differential gene expression analysis (Figure 

3.6A). The gene expression changes observed in the Kdm5c-KO amygdala were similar between 

the present dataset and our previous dataset obtained from a different cohort of mice (Iwase et 

al., 2016), demonstrating the reproducibility of the UMI-RNA-seq approach (Figure 3.6B).  

We identified a similar number of differentially-expressed (DE) genes (p < 0.01) in 

Kmt2a-HET (136 genes) and Kdm5c-KO (127 genes) compared to WT amygdala, while DM 

yielded 203 DE genes (Figure 3.7A). In general, KMT2A acts as a transcriptional coactivator by 

placing H3K4me (Cao et al., 2014; Dou et al., 2006; Zhang et al., 2016) and KDM5C primarily 

suppresses transcription by removing this mark (Iwase et al., 2007), yet roles for KDM5C as a 

positive regulator of transcription have also been reported (Outchkourov et al., 2013; S et al., 

2017). Reminiscent of some H3K4me changes that were similar between the single mutants 
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(Figure 3.5I and 3.5N), examination of fold changes of all DE genes pointed to similar 

transcriptome alterations in all three mutants compared to WT (Figure 3.7B). Furthermore, a 

substantial number of DE genes overlap among the three mutants and many of them showed 

changes in the same direction between single mutants (Figure 3.7C, Figure 3.6C-D), while no 

genes were reciprocally misregulated (Figure 3.7D). Consistently, the single-mutant DE genes 

were largely misregulated in the same direction as the other single mutant (Figure 3.6E-F). With 

respect to the biological implications of the gene misregulation, we did not find any conspicuous 

alterations of neuronal activity-dependent genes, cell-type specific transcripts, and 

developmentally-regulated genes in any of the mutant DE genes (Figure 3.8).   

Next, we sought to test if normal expression of any individual genes was restored in DM. 

To this end, we counted single-mutant DE genes that had higher p-values than a relaxed 

significance threshold (p > 0.1) in DM vs. WT comparison; an indicator of normal expression. 

We found that 33% (42/127) of Kdm5c-KO-DE genes and 56% (76/136) Kmt2a-HET-DE genes 

were expressed normally in DM (highlight in Figure 3.7E). The rescue effects were visible when 

we analyzed all single-mutant DE genes as a group (Figure 3.6D). To better understand how 

transcriptomic similarity and rescue effect can occur simultaneously, we plotted expression fold 

changes of the 118 rescued genes (Figure 3.7F). We observed that rescued genes were 

differentially dysregulated in single mutants, e.g. upregulated in Kdm5c-KO but unchanged in 

Kmt2a-HET (Figure 3.7F). Thus, these results indicate that the largely-separate sets of genes 

contribute to the overall transcriptome similarity and the rescue effect in DM.  

Gene-annotation enrichment analysis of these 118 rescued genes did not yield 

statistically-significant enrichment of any functional pathways, however, we were able to 

separate rescued genes into specific biological pathways that could potentially be restored in 

DM. Notably, genes that have established roles in central nervous system development and are 
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genetically associated with neurodevelopmental disorders were among these restored genes in 

DM. These genes include Gnao1 (Kulkarni et al., 2016; Nakamura et al., 2013), Bcl11b (Lessel 

et al., 2018), Arnt2 (Webb et al., 2013), Mkks (Katsanis et al., 2000; Schaefer et al., 2011; 

Slavotinek et al., 2000; Stone et al., 2000), Arid1a (Tsurusaki et al., 2012), Rora (Guissart et al., 

2018), and Sez6 (Miyazaki et al., 2006). 

We then examined the relationship between the H3K4me3 landscape and transcriptome 

alterations. If H3K4me3 changes drive the gene misregulation in mutants, we should be able to 

observe a correlation between these two datasets. However, genes with altered promoter-

proximal H3K4me3 did not show significant changes in their expression as a group (Figure 

3.9A). While H3K4me3 changes are the direct molecular consequences of KMT2A- and 

KDM5C-deficiency, the steady-state mRNAs we captured in our RNA-seq approach likely 

involve indirect and adaptive consequences of loss of these enzyme(s), which can lead to an 

underwhelming correlation between H3K4me3 and transcriptome data. Indeed, we observed a 

positive correlation between intergenic H3K4me3 levels and spurious transcripts, which are 

generated at these regions yet likely unstable, therefore, can reflect transcriptional activity more 

reliably than steady-state mRNA levels (Figure 3.9B). Such spurious intergenic transcripts were 

previously observed in the Kdm5c-KO hippocampus (Scandaglia et al., 2017). We also examined 

the H3K4me3 coverage at promoter regions of DE genes (Figure 3.9C). Across the different DE 

gene categories, H3K4me3 levels did not differ between genotypes, with two exceptions: Kmt2a-

HET down-regulated and Kdm5c-KO up-regulated genes showed the expected changes in 

median H3K4me3 levels (Figure 3.9C). The correlation was also evident between expression of 

rescued genes and H3K4me3 (Figure 3.9D). Together, these observations indicate that H3K4me3 

changes are not sufficient, yet an important contributor, for gene misregulation in single mutants 

and its correction in DM.  
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Shared dendritic phenotypes in Kmt2a-HET and Kdm5c-KO were reversed in DM 

Altered dendrite morphology is a hallmark of many human neurodevelopmental disorders 

(NDDs), as well as animal models of NDDs (Dierssen and Ramakers, 2006; Irwin et al., 2000; 

Iwase et al., 2016; Penzes et al., 2011; Xu et al., 2014). We previously found that reduced 

dendritic length and spine density in basolateral amygdala (BLA) neurons of Kdm5c-KO adult 

male mice (Iwase et al., 2016). Assessment of dendritic morphology in Kmt2a-HET has not been 

reported. We performed comparative dendrite morphometry of pyramidal neurons in the BLA 

using Golgi staining for the four genotypes (Figure 3.10). For Kdm5c-KO neurons, we 

recapitulated our previous findings of reduced dendrite lengths (Figure 3.10B) (F(3,89) = 2.776; 

p = 0.0459; WT vs. Kdm5c-KO: p = 0.0341, one-way ANOVA followed by Tukey multiple 

comparison tests) and lower spine density (Figure 3.10C) (F(3,89) = 82.25; p < 0.0001; WT vs. 

Kdm5c-KO: p = 0.0079). Kmt2a-HET neurons looked remarkably similar to Kdm5c-KO (Figure 

3.4A), exhibiting trends of reduction in dendrite length, which was not significantly different 

than WT, however, was also not different than Kdm5c-KO (Figure 3.10B) (WT vs. Kmt2a-HET: 

p = 0.1772; Kdm5c-KO vs. Kmt2a-HET p = 0.8906). Similarly, spine densities of Kmt2a-HET 

neurons were significantly lower compared to WT and not significantly different than Kdm5c-

KO (Figure 3.10C) (WT vs. Kmt2a-HET: p = 0.0053; Kdm5c-KO vs. Kmt2a-HET p = 0.9993). 

Loss of both Kmt2a and Kdm5c together had an overall positive effect on neuron morphology 

(Figure 3.10A). DM dendrite lengths showed trends of restoration (Figure 3.10B), as they were 

not significantly different than WT (WT vs. DM: p = 0.5503), however were also not different 

than Kdm5c-KO (Kdm5c-KO vs. DM: p = 0.5341). DM exhibited an increase in dendritic spine 

density that surpassed a rescue effect (Figure 3.10C) (WT vs. DM: p < 0.0001; Kdm5c-KO vs. 

DM: p < 0.0001, Kmt2a-HET vs. DM: p < 0.0001). As morphology of dendritic spines 
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progressively changes during synaptogenesis and development (Arikkath, 2012), we also asked 

whether developmental subtypes of dendritic spines were altered in any genotype. We did not 

find dramatic changes in spine morphology among the four genotypes (Figure 3.10D), indicating 

selective requirement of Kdm5c and Kmt2a for regulation of spine numbers, but not for 

morphology. Overall, we conclude that Kmt2a-HET and Kdm5c-KO share similar dendritic 

morphology deficits, which are reversed in DM. 

 

Memory alterations in Kdm5c-KO were reversed in DM 

After observing the restorative molecular and cellular effects in DM mice, we next sought 

to determine the effect of loss of Kmt2a and/or Kdm5c on mouse behaviors through a battery of 

behavioral tests. In accordance with previous findings (Iwase et al., 2016; Scandaglia et al., 

2017), Kdm5c-KO mice showed significant deficits in associative fear memory, as measured by 

the contextual fear conditioning (CFC) tests (Figure 3.11A) (F(3,64) = 2.83, p = 0.046; WT vs. 

Kdm5c-KO: p = 0.018). In the novel object recognition tests (NOR), where WT mice showed 

preference for the new object, Kdm5c-KO mice tended to avoid the novel object (Figure 3.11B) 

(F(3,64) = 3.20, p = 0.030; WT vs. Kdm5c-KO: p = 0.007). Homozygous deletion of Kmt2a in 

excitatory hippocampal neurons leads to impaired fear memory in the CFC (Kerimoglu et al., 

2017), a hippocampal-dependent memory test (Maren, 2001). In our tests, Kmt2a-HET mice 

showed no deficits compared to WT mice (Figure 3.11A-B) (CFC: p = 0.789; NOR; p = 0.888), 

indicating stronger cognitive deficits in the MRXSCJ model compared to WDSTS model mice. 

Importantly, DM mice also showed no differences from WT mice (Figure 3.11A-B) (CFC: p = 

0.246; NOR: p = 0.756), suggesting that Kmt2a heterozygosity can rescue memory deficits of 

Kdm5c-KO mice. These differences in memory tasks were not attributable to differences in 
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locomotor activity or shock responsiveness, as none of these parameters showed significant 

differences among the genotypes (Figure 3.1C-D). 

 

Social behaviors are differently dysregulated in Kmt2a-HET, Kdm5c-KO, and DM mice 

In the marble burying test for anxiety and obsessive behaviors (Figure 3.12), we observed 

significant differences between genotypes (F(3,30) = 5.017, p < 0.0062). Kdm5c-KO mice buried 

fewer marbles than WT (p = 0.0052), yet this difference was not statistically different from 

Kmt2a-HET mice (p = 0.1716) which showed no difference from WT (p = 0.5911). DM animals 

likewise showed no difference from WT (p = 0.1318), though also were not different than 

Kdm5c-KO (p = 0. 9445). While this data may indicate a partial rescue of anxiety behaviors in 

DM, only four DM mice were tested in this paradigm, making it difficult to draw conclusions 

without more data.  

In the three-chambered social interaction test (Figure 3.13A), we observed significant 

differences between genotypes (F(3,61) = 4.314, p < 0.008). Kmt2a-HET mice showed no 

differences from WT (p = 0.082), in accordance with previous tests in conditional Kmt2a-KO 

mice (Kerimoglu et al., 2017). In contrast, Kdm5c-KO (p= 0.002), as previously shown (Iwase et 

al., 2016), as well as DM (p = 0.011) mice showed significantly less preference for the stranger 

mouse compared with WT animals. These data suggest that Kmt2a heterozygosity does not 

rescue deficits of social interaction in the Kdm5c-KO. 

In tests of social dominance (Figure 3.13B), Kmt2a-HET mice won against WTs in 

60.9% in of the matches against WT (p = 0.091), and Kdm5c-KO mice won at least 68.4% of the 

time (p = 0.008). Surprisingly, DM animals lost more than 80% of their bouts against WT (p = 

1.47 x 10-5). Although DM mice were slightly smaller compared to single mutants (Figure 3.1D), 

this is unlikely to drive submissive behaviors, as body mass has been shown to have minimal 
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impact on social hierarchy unless excess difference (> 30%) is present between animals (Kim et 

al., 2015; Varholick et al., 2018; Wang et al., 2014), which is not the case in our study (Figure 

3.1D) (11% Kmt2a-HET vs. WT, 17% Kdm5c-KO vs. WT, 25% DM vs. WT). These results 

demonstrate that a significant increase of social dominance in Kdm5c-KO and a similar trend in 

Kmt2a-HET are mediated by opposing enzymes.    

In the resident-intruder test, we observed differences in overall aggression between 

genotypes (Figure 3.13C) (F(4,61) = 3.015, p = 0.037), and differences across specific types of 

aggressive behaviors (Figure 3.13D-H, Figure 3.14A-E) (F(12,61) = 2.15, p = 0.015). 

Specifically, we found increased darting (Figure 3.13D, Figure 3.14A) in both Kdm5c-KO (p = 

0.006) and Kmt2a-HET (p = 0.032) mice together with decreased aggression in DM mice, which 

showed significantly less mounting (Figure 3.13E, Figure 3.14B) (cf WT: p =0.072; cf Kdm5c-

KO: p = 0.019; cf Kmt2a-HET: p = 0.004), and chasing (Figure 3.13F, Figure 3.14C) (cf WT: p 

=0.027; cf Kdm5c-KO: p = 0.010; cf Kmt2a-HET: p = 0.007) than all other genotypes. Moreover, 

we also observed an overall effect of genotype on submissive behaviors of resident mice (Figure 

3.13I) (F(3,61) =  4.071, p = 0.011). For the specific type of submissive behaviors, DM mice 

exhibited significantly more cowering (Figure 3.13J, Figure 3.14F) compared with all other 

genotypes (cf WT : p = 0.028; cf Kdm5c-KO: p = 0.006; cf Kmt2a-HET: p = 0.005), and 

significantly more running away (Figure 3.13K, Figure 3.14G) compared with Kdm5c-KO (p = 

0.008). Importantly, the genotype effect on submissive behaviors inversely correlated with that 

of aggressive behavior, reinforcing the difference in specific behaviors rather than changes in 

locomotor activity.  

Together, the behavioral studies revealed more pronounced deficits of Kdm5c-KO 

animals compared to Kmt2a-HET mice on memory and social interaction, while Kmt2a-HET and 

Kdm5c-KO mice shared increased social dominance and aggression. The consequences of double 
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mutations varied between the tests, with clear rescue effects on cognitive tasks, dominant 

behavior, and aggression, and no effect on social interactions. Notably, however, no behavioral 

traits were exacerbated in DM. These results support the idea that the two enzymes mediate 

some, if not all, deficiencies caused by writer-eraser imbalance at the behavioral level.  

 

Acute dual inhibition of KMT2A and KDM5C shows rescue effects on gene expression 

As the DM mice used in this study are constitutive germline mutants, we are unable to 

determine the therapeutic window of opportunity for the rescue phenotypes observed throughout 

our study. For this reason, we performed short-term modulation of both Kmt2a and Kdm5c. We 

cultured primary mouse cortical neurons, performed shRNA knock-down of Kdm5c and Kmt2a 

each individually, and also together, and measured select genes expression via qPCR. We first 

validated knock-down of each gene Kdm5c or Kmt2a (Figure 3.15). We noticed that knock-down 

of one gene does affect the expression levels of the opposing gene, suggesting coregulation. We 

next tested expression of genes we previously found to be up-regulated in our Kdm5c-KO 

cortical neuron cultures (Iwase et al., 2016). In our system, knock-down of Kdm5c alone resulted 

in increased gene expression of two representative genes, Grin2d and Prkcd, recapitulating what 

we previously showed from our Kdm5c-KO neurons. Dual inhibition of both Kdm5c and Kmt2a 

restored gene expression of each gene to WT levels (Figure 3.15). These data demonstrate that 

Kmt2a mediates some Kdm5c-responsive genes in at this early developmental time point. Taken 

together, our studies identify a functional cooperation between KMT2A and KDM5C in both 

developing and adult stages.  
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Discussion 

The present work represents the first genetic interactions between chromatin modification 

writer and eraser enzymes in vivo, to our knowledge. Discovery of chromatin-modifying 

enzymes in the past decades made it clear that virtually no DNA- or histone-modifications are 

irreversible, and instead are subjected to dynamic regulation by writer and eraser enzymes. The 

genes encoding these enzymes appear to have undergone duplication events during evolution. 

Complex organisms carry a greater number of genes that encode enzymes for single chromatin 

modification. For example, only one enzyme, Set1, is responsible for H3K4 methylation in 

fission yeast. In fly, three genes, Trx, Trr, and Set1 mediate H3K4me installation, and all three 

genes were duplicated in the mammalian genomes, which resulted in six SET-family H3K4 

writers (Eissenberg and Shilatifard, 2010; Rao and Dou, 2015). A plethora of work has 

demonstrated specialized as well as redundant roles of individual histone-modifying enzymes 

within a family, in broad biological processes such as cancer and development (Rao and Dou, 

2015; Shilatifard, 2012). A fundamental question remained — is there any specific writer-eraser 

pairing in such highly-duplicated gene families for a single chromatin modification? Mishra et 

al. showed that KDM5A antagonizes KMT2A, KMT2B, and KMT2D to modulate the transient 

site-specific DNA copy number gains in immortalized human cells (Mishra et al., 2018). Cao et 

al. found that failed differentiation of mouse embryonic stem cells due to Kmt2d deletion can be 

rescued by Kdm1a knockdown (Cao et al., 2018). These pioneering efforts identified functional 

interplay between the opposing enzymes in vitro, however, no in vivo study has been reported. 

Thus, the present study substantially advances our understanding of how methyl-histone writer 

and eraser enzymes functionally interact during brain development and function.  

Brain development is particularly relevant to the H3K4me dynamics, because a cohort of 

neurodevelopmental disorders have been genetically associated with impaired functions of these 
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enzymes, as discussed earlier. Our work illuminates the similarities between WDSTS and 

MRXSCJ model mice in gene expression and neuronal morphological levels, although the two 

conditions are associated with opposing enzymatic activities. Consistently, many symptoms are 

common between WDSTS and MRXSCJ, including intellectual disability, short stature, seizures, 

and aggressive behavior (Claes et al., 2000; Jensen et al., 2005b; Jones et al., 2012; Wiedemann, 

1989). Thus, our work underscores a shared pathophysiology of the two conditions. Unlike 

previous studies using chemical approaches that block multiple chromatin regulators (Alarcon et 

al., 2004; Bjornsson et al., 2014; Park et al., 2015), we demonstrated that manipulation of a 

single enzyme, KMT2A or KDM5C, is sufficient to reverse many neurological traits. It may not 

be surprising that not all traits were reversed in DM mice, such as H3K4me3 at specific loci 

(Figure 3.5), expression of some genes (Figure 3.7), and social preference (Figure 3.13), because 

compensatory actions by remaining H3K4me-regulators may potentially mediate these un-

rescued traits. Our work opens a new avenue for future studies to delineate the full interplay 

between the 13 H3K4me-regulatory enzymes throughout brain development and function.   

Increased social dominance is a novel behavioral trait we found in both WDSTS and 

MRXSCJ mouse models. The amygdala is well known to mediate social behaviors (Felix-Ortiz 

and Tye, 2014; McCann et al., 2018). For example, lesions of BLA result in decreased 

aggression-like behavior and increased social interactions (Levinson et al., 1980; McGregor and 

Herbert, 1992), and changes in transcriptional regulation in BLA are observed after social 

interactions (McCann et al., 2018). Decreased dendritic spine density in Kmt2a-HET and 

Kdm5c-KO mice inversely correlates with increased social dominance and aggression (Figures 

3.13-14), suggesting that decreased spine density does not represent a loss-of-function in the 

amygdala, and rather, may reflect a loss of inhibitory control over the amygdala. Thus, 

determining the connectivity of amygdala with other regions, including prelimbic, infralimbic, 
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and orbitofrontal cortices (Felix-Ortiz et al., 2016) as well as ventral hippocampus (Felix-Ortiz 

and Tye, 2014) will be critical for understanding the changes in social behaviors in both WDSTS 

and MRXSCJ models.  

With any therapeutic intervention, careful assessments of side effects will be inevitable. 

In our work, while a substantial fraction of H3K4me3 DMRs and gene misregulation in single 

mutants were corrected in DM (Figures 3.5 and 3.7), combinatorial ablation of KMT2A and 

KDM5C should reduce net regulatory action over H3K4me3, which may lead to adverse 

consequences. Indeed, our genomics approaches identified H3K4me3 DMRs that are unique to 

the DM brain, and several genes uniquely altered in DM animals (Figure 3.15). It is still 

plausible that these gene and H3K4me3 changes in DM can lead to phenotypic outcomes that 

were not examined in this study. Nevertheless, we were encouraged that none of the neurological 

traits measured in this study showed exacerbation in DM.  

It is important to note that the double mutations introduced in our mice were constitutive, 

and therefore a lifetime of adaptation to loss of these two major chromatin regulators may occur 

from early developmental stages. A more realistic therapeutic strategy may be acute inhibition of 

KDM5C and KMT2A in juvenile or mature brain. Previous work characterizing mouse models 

with excitatory-neuron specific ablation of Kdm5c or Kmt2a via CamKII-Cre found that 

conditional Kmt2a deletion led to clear learning deficits (Kerimoglu et al., 2017), while cognitive 

impairments in the conditional Kdm5c-KO mice were much milder than those of constitutive 

Kdm5c-KO mice (Scandaglia et al., 2017). These results suggest a developmental origin of 

phenotypes in Kdm5c-KO. Future investigations are needed to address whether the effects of 

acute inhibition of opposing enzymes in these mouse models can restore such 

neurodevelopmental deficits.  
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We began these studies with our initial working model, proposing a functional 

relationship between KMT2A and KDM5C by direct competition for writing and erasing 

H3K4me at the same genomic loci (Figure 3.16A). Under this model, we would expect to 

observe increased H3K4me3 and gene expression upon loss of KDM5C in the Kdm5c-KO mice, 

and decrease H3K4me3 and gene expression upon loss of KMT2A in the Kmt2a-HET mice 

(Figure 3.16B). Importantly, we would expect these opposite molecular effects to manifest at the 

same genomic loci. Instead, the data in this study suggest that KMT2A and KDM5C do 

functionally interact, but in a manner different than expected. We revised our initial model and 

now hypothesize that KMT2A and KDM5C work on separate loci, and functionally interact to 

mediate abnormality of the opposing enzyme but not by directly competing (Figure 3.17). We 

suggest loss of one enzyme then triggers the redistribution of the opposite enzyme to change 

normal occupancy of that enzyme to a location it normally does not go. Under this new model, 

losing both enzymes together results in the neutralization effect seen in the rescued phenotypes 

of DM mice. Future experiments to address this new hypothesis include ChIP-seq of KMT2A 

and KDM5C across the four genotypes, to see how genomic distribution patterns change upon 

loss of either or both enzymes. With our revised hypothesis we would not expect to see many 

overlapping peaks in WT mice, but in each Kmt2a-HET or Kdm5c-KO single mutant we would 

expect to see a redistribution of the opposing enzyme.  

 

Materials & Methods 

Mouse models 

Kdm5c-KO mice were previously described (Iwase et al., 2016). Kmt2a-HET mice were 

generated by crossing previously-described Kmt2a-flox (exons 8 and 9) mice with B6.129-
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Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J-Cre mice (McMahon et al., 2007). To backcross Kmt2a+/- mice 

onto the desired 129S1/SvImJ strain, we employed the marker assisted accelerated backcrossing 

through Charles River Labs. Kmt2a+/- mice were bred to the N4 generation at minimum, where 

mice were >90% congenic for 129S1/SvImJ. All experimental mice were generated as F1 

generation hybrids from mating between 129S1/SvImJ Kmt2a+/- males and C57Bl/6 Kdm5c+/- 

females: WT males (Kmt2a+/+, Kdm5c+/y); Kdm5c-KO males (Kmt2a+/+, Kdm5c-/y); Kmt2a-HET 

males (Kmt2a+/-, Kdm5c+/y); and Kdm5c-Kmt2a-DM males (Kmt2a+/-, Kdm5c-/y). Genotypes were 

confirmed using the following primers: for Kmt2a, 5’-GCCAGTCAGTCCGAAAGTAC, 5’-

AGGATGTTCAAAGTGCCTGC, 5’-GCTCTAGAACTAGTGGATCCC; for Kdm5c, 5’-

CAGGTGGCTTACTGTGACATTGATG, 5’-TGGGTTTGAGGGATACTTTAGG, 5’-

GGTTCTCAACACTCACATAGTG.  

 

Western blot analysis 

Total proteins from adult brain tissues were subjected to Western blot analysis using in-

house anti-KDM5C (Iwase et al., 2016), and anti-GAPDH antibodies (G-9, Santa Cruz). For 

histone proteins, nuclei were enriched from the dounce-homogenized brain tissues using Nuclei 

EZ prep Kit (Sigma, NUC-101). DNA were digested with micrococcal nuclease (MNase, NEB) 

for 10 minutes at room temperature and total nuclear proteins were extracted by boiling the 

samples with the SDS-PAGE sample buffer. The following antibodies were used for Western 

blot analyses: anti-H3K4me3 (Abcam, ab8580), anti-H3K4me2 (Thermo, #710796), anti-

H3K4me1 (Abcam, ab8895), and anti-H3 C-terminus (Millipore, CS204377).   
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Brain histology 

Mice were subjected to transcardial perfusion according to standard procedures. Fixed 

brains were sliced on a freeze microtome, yielding 30 µm sections that were then fixed, 

permeabilized, blocked, and stained with DAPI. Slides were imaged on an Olympus SZX16 

microscope, with an Olympus U-HGLGPS fluorescence source and Q Imaging Retiga 6000 

camera. Images were captured using Q-Capture Pro 7 software. Data were collected in a blind 

fashion, where samples were coded and genotypes only revealed after data collection was 

complete. 

 

ChIP-seq 

Brains from adult (6-8 months) male mice were microdissected to enrich for the 

amygdala. N=2 animals were used for WT, and N=3 animals were used for Kmt2a-HET, Kdm5c-

KO, and DM as biological replicates. Nuclei were isolated using Nuclei EZ prep Kit (Sigma, 

NUC-101), and counted after Trypan blue staining. 20,000 nuclei for each replicate were 

subjected to MNase digestion as previously described (Brind'Amour et al., 2015). We essentially 

followed the native ChIP-seq protocol (Brind'Amour et al., 2015) with two modifications. One 

was to use a kit to generate sequencing libraries in one-tube reactions (NEB, E7103S). Another 

modification was to spike-in the panel of synthetic nucleosomes carrying major histone 

methylations (EpiCypher, SKU: 19-1001) (Shah et al., 2018). For ChIP, we used the rabbit 

monoclonal H3K4me3 antibody (Thermo, clone #RM340).  

Libraries were sequenced on the Illumina NextSeq 500 platform, with single-end 75 

base-pair sequencing, according to standard procedures. We obtained 20 to 59 million reads per 

sample. Reads were aligned to the mm10 mouse genome (Gencode) and a custom genome 

containing the sequences from our standardized, synthetic nucleosomes (EpiCypher) for 
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normalization (Grzybowski et al., 2015), using Bowtie allowing up to 2 mismatches. Only 

uniquely-mapped reads were used for analysis. Range of uniquely mapped reads for input 

samples was 38-44 million reads. All IP replicates had a mean of 9.1 million uniquely mapping 

reads (range: 7.4 to 13.9 million). The enrichment of mapped synthetic spike-in nucleosomes 

compared to input was calculated and used as a normalization coefficient for read depth each 

ChIP-seq replicate (Grzybowski et al., 2015).  

Peaks were called using MACS2 software (v 2.1.0.20140616) (Zhang et al., 2008) using 

input BAM files for normalization, with filters for a q-value < 0.1 and a fold enrichment greater 

than 1. Differentially-methylated regions (DMRs) were called using the MACS2 bdgdiff 

command with default parameters and incorporating the synthetic nucleosome normalization into 

the read depth factor. Bedtools was used to calculate coverage across individual replicates. We 

also used Bedtools to intersect peaks of interest with mm10 promoters (defined here as ±1 kb 

from annotated transcription start site [TSS]), intragenic regions (as defined by annotated mm10 

gene bodies, but excluding the previously defined promoter region), and intergenic regions 

(regions that did not overlap with promoters or gene bodies). DMRs from single mutants (2a-

HET or 5c-KO) were considered “rescued” in DM animals if that single-mutant peak was not 

called as a DMR in the DM analysis. For the global H3K4me3 analysis, the Bedtools multicov 

command was used to calculate coverage over 1 kb windows throughout the genome, as well as 

at each promoter (±1 kb from annotated TSS). HOMER (v4.10) was used to carry out motif 

enrichment analysis (Heinz et al., 2010). We selected the top 5 motifs, and only motifs from 

known mammalian ChIP-seq experiments were represented in our data. Normalized bam files 

were converted to bigwigs for visualization in the UCSC genome browser. Genes near peaks 

were identified by Bedtools and RefSeq genomic accession number were converted to official 

gene symbol using bioDBnet (Mudunuri et al., 2009).  
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The ChIP-seq data have been deposited in NCBI’s Gene Expression Omnibus (Edgar et 

al., 2002). Data are accessible through GEO series accession numbers: SuperSeries GSE127818, 

SubSeries GSE127817. 

 

RNA-seq 

Brains from adult (3 to 6 months) male mice were microdissected to enrich for the 

amygdala. N=3 animals were used per genotype. Tissue was homogenized in Tri Reagent 

(Sigma). Samples were subjected to total RNA isolation, and RNA was purified using RNEasy 

Mini Kit (Qiagen). ERCC spike-in RNA was added at this stage, according to manufacturer’s 

instructions (Life Technologies). Ribosomal RNA was depleted using NEBNext rRNA 

Depletion kit (New England Biolabs). Libraries were prepared using the Click-seq method, using 

primers containing unique molecular identifiers (UMIs), as described previously (Jaworski and 

Routh, 2018). Multiplexed libraries were pooled in approximately equimolar ratios and purified 

using Agencourt RNAClean XP beads (Beckman Coulter).  

Libraries were sequenced on the Illumina HiSeq 4000 platform, with paired-end 150 base 

pair reads, according to standard procedures. Reads were mapped to the mm10 mouse genome 

(Gencode) using STAR (v2.5.3a) (Dobin et al., 2013), where only uniquely mapped reads were 

used for downstream analyses. Duplicates were removed using UMI-tools (v0.5.4) (Smith et al., 

2017), and a counts file was generated using FeatureCounts (Subread v1.5.0) (Liao et al., 2014). 

BAM files were converted to bigwigs using deeptools (v3.1.3) (Ramírez et al., 2014; Ramírez et 

al., 2016). Differentially expressed (DE) genes were called using DESeq2 (v1.14.1) (Anders and 

Huber, 2010; Love et al., 2014). According to the previous RNA-seq study of Kdm5c-KO mice 

(Iwase et al., 2016), we used p < 0.01 to identify DE genes. Data analyses were performed with 

RStudio (v1.0.136) or GraphPad Prism (v7.00 or 8.02) for Mac (GrapPad Software, La Jolla 
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California USA, www.graphpad.com). Fold change heatmaps was created using shinyheatmap 

on the web (Khomtchouk et al., 2017). Cell type expression data was downloaded from the 

Barres lab Brain RNA-seq Portal (Zhang et al., 2014). Cell type enriched genes were determined 

as having > 5 FPKM in cell type A and > 2 FPKM cell A FPKM/each other cell type FPKM. We 

identified 471 astrocyte (A), 629 neuron (N), 840 micorglia (M), 197 oligodendrocyte precursor 

(Op), 74 newly formed oligodendrocyte (On), 96 myelinating oligodendrocyte (Om), and 716 

endothelial (E) cell enriched genes. Temporal expression data from human male amygdala was 

downloaded from the BrainSpan Atlas of Developing Human Brain (Miller et al., 2014).  

The RNA-seq data have been deposited in NCBI’s Gene Expression Omnibus (Edgar et 

al., 2002). Data are accessible through GEO series accession numbers: SuperSeries GSE127818, 

SubSeries GSE127722. 

 

Neuronal Golgi staining and morphological analyses 

Brains from adult (2-8 months) mice were dissected, and brains were incubated in a 

modified Golgi-Cox solution for 2 weeks at room temperature. The remaining procedure of 

Golgi immersion, cryosectioning, staining, and coverslipping was performed as described 

previously (Shmelkov et al., 2010). 

Morphological analyses of dendrites were carried out as described previously (Shmelkov 

et al., 2010). Four animals were used for each genotype, and pyramidal neurons in the basolateral 

amygdala per animal were quantified: N=24 neurons for WT, Kmt2a-HET and Kdm5c-KO and 

N=27 neurons for DM. Quantification was done using commercially available software, 

NeuroLucida (v10, Microbrightfield, VT), installed on a Dell PC workstation that controlled 

Zeiss Axioplan microscope with a CCD camera (1600 x 1200 pixels) and with a motorized X, Y, 

and Z-focus for high-resolution image acquisition (100X oil immersion) and quantifications. The 
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morphological analyses included: dendritic lengths, spine counts, and spine subtype morphology. 

All sample genotypes were blinded to the analysts throughout the course of the analysis. 

The criteria for selecting candidate neurons for analysis were based on: (1) visualization 

of a completely filled soma with no overlap of neighboring soma and completely filled dendrites, 

(2) the tapering of most distal dendrites; and (3) the visualization of the complete 3-D profile of 

dendritic trees using the 3-D display of the imaging software.   

For quantitative analysis of spine subtypes (thin, stubby, mushroom, filopodia and 

branched spines), only spines orthogonal to the dendritic shaft were included in this analysis, 

whereas spines protruding above or beneath the dendritic shaft were not sampled. This principle 

remained consistent throughout the course of analysis.   

After completion, the digital profile of neuron morphology was extrapolated and 

transported to a multi-panel computer workstation, then quantitated using NeuroExplorer 

program (Microbrightfield, VT), followed by statistical analysis (one- and two-way ANOVAs, p 

< 0.05).  

 

Behavioral paradigms 

Prior to behavioral testing, mice were acclimated to the animal colony room for one week 

single-housing in standard cages provided with lab diet and water ad libitum. A 12-hour light-

dark cycle (7:00AM-7:00PM) was utilized with temperature and humidity maintained at 20 ±2 

ºC and >30%, respectively. The University of Michigan Committee on the Use and Care of 

Animals approved all tests performed in this research. Five tests, listed in order of testing, were 

performed: Novel Object Recognition (5 days), Context Fear Conditioning (2 days), Three-

Chambered Social Interaction (2 days), Social Dominance Tube Test (3-4 days), and Resident-

intruder (2-3 days). All testing was conducted in the morning by experimenters blind to 
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genotype. 70% ethanol was used as a cleaning agent in every test between each trial. Data were 

collected in a blind fashion, where mice were coded and genotypes only revealed after testing 

was complete. 

Novel Object Recognition: Mice were first habituated to testing arenas (40 x 30 x 32.5 

cm3) in three, 10 minute sessions over six consecutive days (Tchessalova and Tronson, 2019; 

Vogel-Ciernia and Wood, 2014). 24 hours later, mice were allowed to explore on two identical 

objects (jar or egg, counterbalanced across animals) for two, 10-minute trials spaced three hours 

apart. All animals were returned to the arena tested 24 hours after the first training session and 

presented with one training object (“familiar” object: jar or egg) and one “novel” object (egg or 

jar). Exploration of the objects was defined as nose-point (sniffing) within 2 cm of the object. 

Behavior was automatically measured by Ethovision XT9 software using a Euresys Picolo 

U4H.264No/0 camera (Noldus, Cincinnati, OH). Preference was calculated as the time spent 

exploring novel object/total time exploring both objects. One-sample t-tests against 50% (no 

preference) were used to establish whether animals remembered the original objects.  

Contextual Fear Conditioning: Context fear conditioning was assessed as previously 

described (Keiser et al., 2017). Mice were placed into a distinct context with white walls (9 ¾ × 

12 ¾ × 9 ¾ in)  and a 36 steel rod grid floor (1/8 in diameter; ¼ spaced apart) (Med-Associates, 

St. Albans, VT) and allowed to explore for 3 minutes, followed by a 2-second 0.8 mA shock, 

after which mice were immediately returned to their home cages in the colony room. 24 hours 

later, mice were returned to the context and freezing behavior was assessed with NIR camera 

(VID-CAM-MONO-2A) and VideoFreeze (Med Associates, St Albans, VT). Freezing levels 

were compared between genotypes using a between-groups analysis (one-way ANOVA) with 

genotype as the between-subjects factor.  
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Three-Chambered Social Interaction: Mice were placed into a three-chambered 

apparatus consisting of one central chamber (24 x 20 x 30 cm3) and two identical side chambers 

(24.5 x 20 x 30 cm3) each with a containment enclosure (8 cm diameter; 18 cm height; grey 

stainless steel grid 3 mm diameter spaced 7.4 mm apart) and allowed to habituate for 10 minutes. 

24 hours later, mice were returned to the apparatus that now included a 2-3 month old stranger 

male mouse (C57BL/6N) on one side of the box (“stranger”), and a toy mouse approximately 

same size and color as stranger mouse on other (“toy”). Exploration of either the stranger or toy 

was defined as nose-point (sniffing) within 2 cm of the enclosure and used as a measure of social 

interaction (Crawley, 2007). Behavior was automatically scored by Ethovision XT9 software as 

described above, and social preference was defined as time exploring stranger/total exploration 

time. Social preference was analyzed using one-sample t-tests for each genotype. A repeated 

measures analysis was used for each aggression (genotype x aggression measures ANOVA) and 

submissive behaviors (genotype x submissive) to analyze aggressive behaviors. 

Social Dominance Tube Test: 24 hours prior to testing, mice were habituated to the 

plastic clear cylindrical tube (1.5 in diameter; 50 cm length) for 10 minutes. During test, two 

mice of different genotypes were placed at opposite ends of the tube and allowed to walk to the 

middle. The match concluded when the one mouse (the dominant mouse) forced the other mouse 

(the submissive mouse) to retreat with all four paws outside of the tube (a “win” for the 

dominant mouse) (Larrieu et al., 2017; Moretti et al., 2005; Zhou et al., 2017). Each mouse 

underwent a total of three matches against three different opponents for counterbalancing. 

Videos were recorded by Ethovision XT9 software as described above, and videos were 

manually scored by trained experimenters blind to genotype. The number of “wins” was reported 

as a percentage of total number of matches. Data were analyzed using an Exact Binomial Test 

with 0.5 as the probability of success (win or loss).  
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Resident-intruder aggression: Resident-intruder tests were used to assess aggression. 

Tests performed on consecutive days, where the resident mouse was exposed to an unfamiliar 

intruder mouse for 15 minutes (Guzmán et al., 2013; Miczek et al., 2001). A trial was terminated 

prematurely if blood was drawn, if an attack lasted continuously for 30 seconds, or if an intruder 

showed visible signs of injury after an attack. Resident mice were assessed for active aggression 

(darting, mounting, chasing/following, tail rattling, and boxing/parrying), as well as submissive 

behaviors (cowering, upright, running away). Intruder mice were assessed for passive defense 

(freezing, cowering, and digging). Behavior was recorded and videos scored manually by 

experimenters blind to genotype. Data were analyzed using a between groups analysis (one-way 

ANOVA) with genotype as the between-subjects factor.  
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Figures 

 

Figure 3.1 The H3K4 methylopathies and generation of the Kmt2a-Kdm5c double-mutant (DM) mouse.  

(A) H3K4me writers and erasers, depicted by their ability to place or remove H3K4me. Reader proteins 
recognizing specific H3K4me substrates (arrows) are depicted below. Genes are listed next to their associated 
neurodevelopmental disorder. WDSTS: Weideman-Steiner Syndrome; ID: intellectual disability; ASD: autism 
spectrum disorder, CPRF: cleft palate, psychomotor retardation, and distinctive facial features; ARID: 
autosomal recessive ID; MRXSCJ: mental retardation, X-linked, syndromic, Claes-Jensen type. (B) Mouse 
breeding scheme crossing congenic 129S1/SvlmJ Kmt2a-heterozygous males with congenic C57/Bl6 Kdm5c-
heterozygous females, resulting in F1 generation mice. Only males were used in this study. (C) Numbers of 
male offspring across 30 litters, showing Mendelian ratios of expected genotypes. (D) Left panel: Body weight 
of adult mice > 2 months of age (mean ± SEM, ****p < 0.0001 in One-way ANOVA). Right panel: Difference 
between group means of weight (mean ± 95% confidence intervals, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001 in Tukey multiple comparison test). (E) Body weight tracked from birth, postnatal day 1 (P1). 
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Figure 3.2 Expression of KMT2A and KDM5C.  

(A) Expression of Kmt2a and Kdm5c, from FACS-sorted single cells of mouse visual cortex, shown in reads 
per kilobase of transcript per million mapped reads (RPKM). Neuronal cells: GABAergic (GABA), 
Glutamatergic (Glu). Non-neuronal cells: astrocytes (A); endothelial cells (E); microglia (M), oligodendrocyte 
precursor cells (OPC); oligodendrocytes (O); smooth muscle cells (SMC). Image credit: Broad Institute 
“Single Cell Portal” transcriptome of adult mouse visual cortex (Tasic et al., 2016). (B) Expression of Kmt2a 
and Kdm5c mRNA from adult mouse brain, shown in log2 of raw expression value from in situ hybridization. 
Brain regions: Isocortex, olfactory areas (OLF), hippocampal formation (HPF), cortical subplate (CTXsp), 
striatum (STR), pallidum (PAL), thalamus (TH), hypothalamus (HY), midbrain (MB), pons (P), medulla 
(MY), cerebellum (CB). Image credit: Allen Institute, Allen Mouse Brain Atlas (2004) (Lein et al., 2007). (C) 
Expression of KMT2A and KDM5C transcripts, from developing and adult human brains, shown in RPKM 
over time (age in days). Human development and adulthood were split into the following Periods: 1-7 fetal 
development; 8-9 birth and infancy; 10-11 childhood; 12 adolescence; and 13-15 adulthood. Image credit: 
Human Brain Transcriptome Atlas (Kang et al., 2011; Pletikos et al., 2014). 
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Figure 3.3 Genotype confirmation and gross brain morphology of mutant mice.  

(A-B) RNA-seq read coverage of Kmt2a (A) and Kdm5c (B) genes, and targeted exons (highlight). (C) 
Genotyping using genomic DNA, confirming presence of Kmt2a and/or Kdm5c deleted alleles (“del”) only in 
appropriate genotypes. (D) Western blot for KDM5C protein. Stars indicate non-specific bands present in all 
samples. GAPDH shown for equal loading. (E) Serial brain sections 30 µm thick stained with DAPI to mark 
nuclei. Sections shown at Bregma regions 1.41, 0.49, -2.15, and -2.91 mm (top to bottom). Regions 
highlighted: anterior forceps of the corpus callosum (fmi), caudate putamen (CPu), corpus callosum (cc), 
lateral ventricle (LV), piriform cortex (Pir), olfactory tubercle (Tu), hippocampal fields CA1 and CA2, dentate 
gyrus (DG), anteromedial nucleus (AM), third ventricle (3V), substantia nigra pars reticularis (SNR). Scale 
bar: 1mm. 
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Figure 3.4 H3K4me3 in the amygdala.  

(A) Western blot of whole brain lysates. Total histone H3 was detected using an antibody recognizing the C-
terminus of H3 and used as a control for equal loading. (B) Validation of H3K4me3 ChIP-seq specificity. 
Barcode reads originating from spike-in nucleosomes were counted. (C) H3K4me3 coverage in Kmt2a-HET, 
Kdm5c-KO, or DM compared to WT at promoters (± 1 kb of transcription start sites). (D) Distribution of all 
H3K4me3 peaks across the genome, in all genotypes. (E-F) Log2 fold change of H3K4me3 coverage across 
genotypes relative to WT, at Kmt2a-HET DMRs (E) or Kdm5c-KO DMRs (F). Scale indicates log2 fold 
change of depleted (blue) to enriched (yellow) H3K4me3. (G-H) H3K4me3 coverage of individual replicates 
at Kmt2a-HET DMRs (G) or Kdm5c-KO DMRs (H) in all genotypes. Scale indicates low (light) to high (dark) 
H3K4me3 coverage. (I-J) Top five mammalian transcription factor motifs identified in Kmt2a-HET (I) and 
Kdm5c-KO (J) DMRs.   
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Figure 3.5 Altered H3K4me3 landscapes in the amygdala and rescue effect in DM.  

(A) H3K4me3 coverage in 2a-HET, 5c-KO, or DM compared to WT across the genome, that was partitioned 
into 1 kilobase (kb) bins. (B-D) Kmt2a-HET differentially-methylated regions (DMRs), identified as peaks 
hypermethylated or hypomethylated compared to WT using MACS2 (Zhang et al., 2008) (q < 0.1) (B), their 
location at promoters, within genes (intragenic), or between genes (intergenic) (C), and how many were 
rescued in DM (D). (E-G) Kdm5c-KO DMRs, identified as peaks hypermethylated or depleted compared to 
WT (E), their location at promoters, within genes (intragenic), or between genes (intergenic) (F), and how 
many were rescued in DM (G). (H) Overlap between all Kdm5c-KO and Kmt2a-HET DMRs. (I) Heatmap of 
H3K4me3 fold change relative to WT, of 996 shared DMRs between Kmt2a-HET and Kdm5c-KO. Scale 
indicates log2 fold change of depleted (blue) to enriched (yellow) H3K4me3. (J-M) Peak track view of two 
representative loci for each of the major genome areas: promoter (J), intragenic (K), and intergenic (L) DMRs 
rescued in DM, or un-rescued in DM (M). (N) Heatmap of H3K4me3 fold change relative to WT, of 7,397 
rescued DMRs. Side bars indicate patterns of rescued regions: solid bars = hypermethylated in 5c-KO, 
hypomethylated in Kmt2a-HET; open bars = hypermethylated in both Kdm5c-KO, and Kmt2a-HET; dashed 
bars = hypermethylated in all Kdm5c-KO, Kmt2a-HET, and DM. Scale indicates log2 fold change of depleted 
(blue) to enriched (yellow) H3K4me3. We analyzed amygdala tissue from 2 or 3 animals for each genotype. 
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Figure 3.6 Additional analyses of the RNA-seq dataset.  

(A) External RNA Controls Consortium (ERCC) spike-in dose-response curves in each genotype, plotting 
expected vs. observed transcript counts. Each dot represents a spike-in RNA molecule. (B) Comparison of 
mean normalized counts of Kdm5c-KO from present study (grey dots) with our previous RNA-seq approach 
(Iwase et al., 2016). Previously identified up- (yellow) and down- (blue) regulated genes show consistent 
patterns in the present study. (C) Intersection of up- and down-regulated DE genes across genotypes. (D) Fold 
change of DE genes across genotypes. Boxplot features depict: box, interquartile range (IQR); line, median; 
whiskers, proportion of IQR past low and high quartiles. (E-F) Volcano plots depicting similarity of gene 
expression patterns in Kdm5c-KO and Kmt2a-HET DE genes. Genes identified as DE in either single mutant 
shown as open circles. By and large, genes identified as up (yellow) or down (blue) in one category are 
expressed in the same direction in the reciprocal genotype. Dashed line depicts p = 0.01 threshold for 
determining DE genes.  
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Figure 3.7 Similar transcriptomes between the Kdm5c-KO and Kmt2a-HET and rescue effect in DM.  

(A) Transcriptome comparison across three mutant genotypes relative to WT, represented as log2 mean 
normalized counts from DESeq2 (Love et al., 2014). Differentially-expressed (DE) genes were determined 
using a threshold of p-value < 0.01 as previously described (Iwase et al., 2016). (B) Log2 fold change relative 
to WT, of expression of all 466 DE genes identified (136 Kmt2a-HET + 127 Kdm5c-KO + 203 DM). Scale 
indicates log2 fold change of down- (blue) to up- (yellow) regulated expression. Histogram on scale indicates 
count of genes in each color category. (C) Overlap between DE genes across genotypes. (D) Intersection of DE 
genes from reciprocal categories in single mutants. (C) Volcano plots depicting rescue effect in DM on 
Kdm5c-KO and Kmt2a-HET DE genes. DM gene expression plotted in grey, as log2 fold change and p-value 
in DM compared to WT. Genes identified as DE in either single mutant shown as open circles. Any of these 
genes that fell within the p > 0.1 cutoff (red shaded box) were considered rescued in DM. Dashed line depicts 
p = 0.01 threshold for determining DE genes. (F) Log2 fold change relative to WT, of expression of all 118 
rescued genes. Scale indicates log2 fold change of down- (blue) to up- (yellow) regulated expression. 
Histogram on scale indicates count of genes in each color category. We analyzed amygdala tissue from 3 
animals for each genotype. 
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Figure 3.8 Expression of genes that are activity-dependent, cell-type specific, or developmentally 
regulated, in mutant amygdala.  

(A-B) Expression of activity-dependent genes, which we previously identified by nascent RNA sequencing 
using cortical neurons in response to bicuculine (3,785 genes) (A), or TTX (2,416 genes) (B) (Garay et al., 
2019). Spearman Rank-order correlation test for all comparisons showed no linear relationship between fold 
changes of either set of activity-dependent genes and DE genes in the mutant transcriptomes, indicating normal 
expression of activity-dependent genes in all three genotypes. (C) DE gene expression across cell types. Genes 
enriched in seven cell types: astrocytes (A), neurons (N), microglia/macrophages (M), oligodendrocyte 
precursor cells (Op), newly formed oligodendrocytes (On), myelinating oligodendrocytes (Om), endothelial 
cells (E). Data were obtained from Zhang et al. (Zhang et al., 2014). None of the DE genes in the mutant 
amygdala show strong bias to a particular cell type. Boxplot features depict: box, interquartile range (IQR); 
line, median; whiskers, proportion of IQR past low and high quartiles. (D-E) We examined human adult male 
amygdala gene expression over time, from embryonic to adult ages. Preconception weeks (PCW), months 
(mo), years (yr). We examined trajectory of neurogeneisis (GO:0050769) or synaptic (GO:0007268) genes 
throughout normal development (D). As expected, synaptic genes showed upward shift, while neurogenesis 
genes exhibited downward shift in their expression during the development. When we plotted the expression of 
our DE genes across genotypes throughout normal development, we did not find noticeable trends, except that 
DM down-regulated genes were more highly expressed compared to DE genes in other genotypes (E). Data 
credit: Allen Institute, BrainSpan Atlas of the Developing Human Brain (2010) (Miller et al., 2014). 
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Figure 3.9 Integrative analysis of ChIP-seq and RNA-seq. 

(A) Expression of genes associated with promoter- or intragenic-DMRs. (B) RNA-seq read depth and 
H3K4me3 ChIP-seq read depth at 5c-KO intergenic DMRs, across genotypes. (C) H3K4me3 coverage at 
promoter regions of differentially expressed (DE) genes. (D) H3K4me3 coverage at promoter regions of 
rescued genes. Boxplot features depict: box, interquartile range (IQR); line, median; notch, confidence interval 
for median; whiskers, proportion of IQR past low and high quartiles. 
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Figure 3. 3.10 Altered dendrite morphology of Kdm5c-KO and Kmt2a-HET was reversed in DM 
animals.  

(A) Representative images of basolateral amygdala (BLA) pyramidal neurons across all genotypes, depicting 
overall neuron morphology including dendrite lengths and dendritic spines. Scale bars represent: 100 µm 
(above, whole neuron image), 10µm (below, spine image). (B and C) Left panel: Total dendrite lengths (B) or 
spine density (C) Right panel: Difference between group means (mean ± 95% confidence intervals, *p < 0.05, 
**p < 0.01, ****p < 0.0001 in Tukey multiple comparison test). (D) Quantification of spine morphology 
subtypes represented as percent of total spines counted. Example of dendrite spine subtypes provided. At least 
20 neurons from 4 animals per genotype were quantified.  
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Figure 3.11 Marble burying test. 

Marble burying test. Left panel: Number of marbles buried (mean ± SEM, **p < 0.01 in One-way ANOVA). 
Right panel: Difference between group means of number buried (mean ± 95% confidence intervals, **p < 0.01 
in Tukey’s multiple comparison test). 
 
 
 
 

 
Figure 3.12 Deficit of memory-related behavior in Kdm5c-KO and its rescue in DM.  

(A) Contextual fear conditioning test. Left panel: Freezing levels after shock on test day (mean ± SEM, *p < 
0.05 in One-way ANOVA). Right panel: Difference between group means of freezing (mean ± 95% 
confidence intervals, *p < 0.05 in Least Significant Difference (LSD) test). (B) Novel object recognition test. 
Left panel: Preference for novel versus familiar object (mean ± SEM, *p < 0.05 in One-way ANOVA). Right 
panel: Difference between group means of freeze response (mean ± 95% confidence intervals, *p < 0.05 in 
Least Significant Difference (LSD) test). (C) Response to mild foot-shock (mean ± 95% confidence intervals, 
no statistical significance [n.s.], One-way ANOVA). (D) Locomotor activity (mean ± 95% confidence 
intervals, no statistical significance [n.s.], One-way ANOVA). N=21 WT, N=16 Kmt2a-HET, N=16 Kdm5c-
KO, and N=12 DM animals were used for all studies.  
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Figure 3.13 Differential impacts of double mutation in social behavior. 

(A) Three chamber test for social interaction. Left panel: preference for stranger versus toy mouse (mean ± 
SEM, **p < 0.01 in One-way ANOVA). Right panel: Difference between group means of preference (mean ± 
95% confidence intervals, *p < 0.05, **p < 0.01 in Least Significant Difference (LSD) test). (B) Tube test for 
social dominance. Proportion of wins in matches of each mutant versus WT. Numbers on colored bars 
represent total number of wins for WT (grey, above) or each mutant (below) in every matchup. **p < 0.01, 
***p < 0.001, Exact binomial test. (C-L) Resident intruder test. (C) Left panel: average number of all 
aggressive behaviors (mean ± SEM, *p < 0.05 in One-way ANOVA). Right panel: Difference between group 
means of aggressive behaviors (mean ± 95% confidence intervals, *p < 0.05 in Least Significant Difference 
(LSD) test). (D-H) Individual aggressive behaviors (mean ± SEM, **p < 0.01 in One-way ANOVA). N.s. 
depicts no statistical difference. (I) Left panel: average number of all submissive behaviors (mean ± SEM, *p < 
0.05 in One-way ANOVA). Right panel: Difference between group means of submissive behaviors (mean ± 
95% confidence intervals, **p < 0.01, ***p < 0.001 in Least Significant Difference (LSD) test). (J-L) 
Individual submissive behaviors (mean ± SEM, **p < 0.01 in One-way ANOVA). N.s. depicts no statistical 
difference. N=21 WT, N=16 Kmt2a-HET, N=16 Kdm5c-KO, and N=12 DM animals were used for all studies. 
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Figure 3.14 Individual behaviors during resident-intruder test.  

Differences between group means all aggressive (A-E) and submissive (F-H) behaviors (mean ± 95% 
confidence intervals, *p < 0.05, **p < 0.01 in Least Significant Difference (LSD) test). 
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Figure 3.15 Molecular alterations unique to DM mice.  

(A) Representative genome browser view of extended H3K4me3 boundary observed at some DM DMRs. (B) 
Volcano plots depicting larger gene misregulation effects in the DM transcriptome. Transcriptome of Kmt2a-
HET or Kdm5c-KO plotted as grey dots. Genes identified as DE in DM shown as colored open circles. A 
majority of these genes fell below the line of significance in either single mutant, indicating DM leads to the 
misregulation of genes that were previously not DE in either Kmt2a-HET or Kdm5c-KO. Dashed line depicts p 
= 0.01 threshold for determining DE genes. (C) Fold change of DM DE genes across genotypes. DM up- and 
down-regulated genes were expressed in the same direction in each single mutant, though DM leads to a more 
pronounced up- or down-regulation effect. Boxplot features depict: box, interquartile range (IQR); line, 
median; whiskers, proportion of IQR past low and high quartiles. 
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Figure 3.16 Initial working model hypothesizing KMT2A and KDM5C compete at same loci. 

At the onset of our studies, we hypothesized that KMT2A and KDM5C functionally interact. (A) Our first 
working model hypothesizes that writer KMT2A and eraser KDM5C functionally compete at the same 
genomic loci to balance H3K4me. (B) This model suggests loss KDM5C would result in increased H3K4me3 
and gene expression, and loss of KMT2A would result in decreased H3K4me3 and gene expression, at these 
shared loci. 
 

 
Figure 3.17 Revised working model posits KMT2A and KDM5C work on separate loci. 

At the conclusion of our studies, we reveal KMT2A and KDM5C indeed functionally ineract, but in a manner 
different than our initial model. We now hypothesize that under wildtype (WT) conditions (A), KMT2A and 
KDM5C act at largely separate genomic loci. Loss of KMT2A (B) or KDM5C (C) triggers the genomic 
redistribution of the opposite enzyme, changing normal genomic occupancy. It is only by losing both enzymes 
together (D) that the neutralization effect is achieved, observed in the rescued phenotypes.   



 115 

Chapter 4 ¾ Sex-Specific Effects of Loss of H3K4me Writer-Eraser Duo KMT2A-KDM5C 
in Memory and Social Behavior 

 

Introduction 

Recent large-scale exome sequencing studies have revealed that mutations in chromatin 

regulators, including histone methyl proteins, are overrepresented in neurodevelopmental 

disorders (NDDs) (De Rubeis et al., 2014a; Faundes et al., 2018; Iossifov et al., 2014; Najmabadi 

et al., 2011; Network and Pathway Analysis Subgroup of Psychiatric Genomics, 2015). Notably, 

males display four-times higher frequencies of autism spectrum disorder (ASD) than females, yet 

it is unclear if the source of this difference lies in biological differences and/or our lack of 

understanding ASD phenotype manifestation in females (Loke et al., 2015; van Bokhoven, 

2011). A limited number of animal models for NDDs associated with histone methylation 

dysregulation are currently available. Moreover, of the models that do exist, few studies look at 

male and females separately. As a result, we still lack answers to major questions regarding 

etiology, pathogenesis, and manifestations of NDDs in both sexes.  

Histone methylation is one of numerous post-translational modifications of the histone 

code (Strahl and Allis, 2000), responsible for orchestrating downstream processes including 

transcriptional regulation (Allis et al., 2007; Kouzarides, 2007). Methylation of the fourth lysine 

of histone H3 (H3K4me) is a hallmark of actively transcribed genomic loci, where mono-

methylation (H3K4me1) marks enhancers, and di- and tri-methylation (H3K4me2/3) mark 

promoters (Barski et al., 2007; Heintzman et al., 2007). Seven methyltransferase “writers” and 

six demethylase “erasers” place and remove H3K4me, respectively (Allis et al., 2007), and eight 
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of these 13 enzymes are mutated in NDDs to date (Vallianatos and Iwase, 2015). We still know 

very little about how dysregulation of histone methylation leads to deficits in the central nervous 

system.  

The work that follows centers on an H3K4me writer-eraser duo, each mutated in a human 

NDD: KMT2A and KDM5C. KMT2A haploinsufficiency is associated with Weidemann-Steiner 

Syndrome (WDSTS) in both males and females, characterized by intellectual disability, 

developmental delay, hairy elbows, and, short stature (Jones et al., 2012; Strom et al., 2014). 

Mutations in H3K4me3 demethylase gene KDM5C are responsible for the NDD mental 

retardation, X-linked, syndromic, Claes-Jensen type (MRXSCJ). KDM5C-MRXSCJ was initially 

exclusively reported in males, in whom KDM5C mutations are transmitted from one of the X 

chromosomes of carrier mothers. However, recent clinical reports have described at least seven 

females with cognitive deficits associated with heterozygous KDM5C mutations (Ounap et al., 

2012; Santos-Reboucas et al., 2011; Simensen et al., 2012). Thus, KDM5C mutations may affect 

not only males but also females. Our lab previously generated Kdm5c-knockout (KO) mice, 

where we showed that male Kdm5c-KO animals recapitulate social and cognitive behavioral 

impairments observed in males with MRXSCJ. We also demonstrated that female Kdm5c-

heterozugous (HET) mice also display memory deficits (Scandaglia et al., 2017). However, these 

mice only underwent two memory tests, and were not examined in social contexts at all, which 

are often perturbed in ASD and we found altered in Kdm5c-KO male mice (Iwase et al., 2016; 

Vallianatos et al., 2019). 

The reversible nature of histone modifications suggests that correcting methylation 

imbalance could be achieved by targeting writers and erasers to fine-tune levels. We previously 

examined the genetic interactions of an H3K4me writer-eraser duo KMT2A and KDM5C by 

generating Kmt2a-Kdm5c double-mutant (DM) mice, and uncovered new roles for these 
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chromatin regulators both individually and together in the brain (Vallianatos et al., 2019). We 

revealed that Kmt2a-Kdm5c-DM male mice corrected many of the behavioral deficits of single-

mutant male mice. As these first studies only examined male mice, the studies that follow are a 

continuation of that work examining the genetic interaction of Kmt2a and Kdm5c in female mice 

in vivo. We reveal functional interactions of KMT2A and KDM5C in females at the behavioral 

level. 

 

Results 

Generation of Kmt2a-Kdm5c double-mutant (DM) mice 

We crossed 129S1/SvImJ Kmt2a+/- males (Cao et al., 2014) and C57BL/6J Kdm5c+/- 

females (Iwase et al., 2016) as previously reported (Vallianatos et al., 2019), resulting in the 

following F1 hybrid female mice: wildtype (WT); Kmt2a heterozygote (Kmt2a-HET: Kmt2a+/-), 

Kdm5c heterozygote (Kdm5c-HET: Kdm5c+/-), and Kmt2a-Kdm5c dual heterozygotes, or double-

mutant (DM: Kmt2a+/-, Kdm5c+/-) (Figure 4.1A). We examined offspring across 30 litters and 

found that mice were born close to expected Mendelian ratios of 25% (Figure 4.1B), indicating 

no lethality from loss of either or both alleles. 

Examining body weight in adult mice, we found significant differences across genotypes 

(F(3,116) = 4.033, p = 0.009) (Figure 4.1C). Kdm5c-HET mice were smaller than WT (p = 

0.0115), consistent with what we have previously reported (Scandaglia et al., 2017). Double-

mutant mice were not statistically different than WT (p =0.0934), and yet were also not different 

from Kdm5c-HET (p = 0.7454), suggesting a partial rescue effect on weight in DM females. 

Body weight throughout postnatal development showed a similar intermediate effect of DM 

compared to WT and Kdm5c-HET (Figure 4.1D). Thus, heterozygosity of Kmt2a and Kdm5c 

together partially corrected growth retardation in Kdm5c-HET females.  
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KMT2A and KMD5C differentially affect memory types 

We performed a battery of mouse behavioral tests in order to determine the effects of loss 

of Kmt2a and Kdm5c, individually and in concert, on memory. In the contextual fear 

conditioning test (CFC) for associative fear memory, we observed a statistical difference 

between genotypes (Figure 4.2A) (F(3,77) = 5.082, p = 0.0029, One Way ANOVA). We 

previously observed impaired freezing in Kdm5c-HET mice (Scandaglia et al., 2017), but in this 

study, the Kdm5c-HET mice freeze response was not statistically different from WT (p = 

0.6002). Kmt2a-Kdm5c-DM mice, however, exhibited a clear deficit in freezing compared to WT 

(p = 0.0123), indicating dual modulation of both writer and eraser lead to more severe memory 

deficits compared to either single mutant. Interestingly, we observed differences in shock 

reactivity across genotypes (F(3,77) = 7.455, p = 0.0002, One Way ANOVA), with Kdm5c-HET 

mice exhibiting increased reactivity to the foot shock compared to WT (p = 0.0014) (Figure 

4.2B). These results suggest that sensitivity to shock selectively in our Kdm5c-HET female 

animals could contribute to the greater shock response in these animals (Figure 4.2A). Overall 

locomotor activity was unchanged in any of the genotypes (F(3,77) = 0.6686, p = 0.5739, One 

Way ANOVA) (Figure 4.2C). In contrast to the CFC test, novel object recognition tests (NOR) 

revealed no statistical difference across the genotypes (F(3,77) = 1.381, p = 0.2548, One Way 

ANOVA) (Figure 4.2D). Taken together, these results suggest differential effects for Kmt2a and 

Kdm5c interaction in associative memory test CFC compared to recognition memory test NOR.  

 

Social behavior in DM mice 

To examine the effect of double mutation on anxiety and obsessive behaviors, we 

performed the marble burying test and observed no statistical difference between genotypes 
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(F(3,41) = 0.3982, p = 0.7550) (Figure 4.3A). While this data may indicate a lack of anxiety and 

obsessive behaviors, it’s important to note that only four Kdm5c-HET and eight DM mice were 

tested in this paradigm, making it difficult to draw conclusions without more data. 

In the three-chamber social interaction test (Figure 4.3B), we observed significant 

differences between genotypes (F(3,77) = 5.802, p = 0.0013, One Way ANOVA). Kmt2a-HET 

mice showed no differences from WT (p = 0.9956), aligning with previous tests in conditional 

Kmt2a-KO mice (Kerimoglu et al., 2017). Kdm5c-HET mice displayed significantly reduced 

preference for the stranger mouse compared to WT (p = 0.0068) (Figure 4.3B). In sharp contrast, 

DM mice exhibited a clear reversal of this phenotype, behaving similarly to WT (p = 0.2653) 

(Figure 4.3B). These data suggest that Kmt2a heterozygosity can rescue deficits of social 

interaction in Kdm5c-HET female mice. 

In tests of social dominance (Figure 4.3C), both Kmt2a-HET and Kdm5c-KO mice 

displayed a 50% win/loss rate (p = 0.6278, p = 1, respectively), indicative of no aggressive or 

dominant phenotypes. DM females lost 80% of their bouts against WT (p = 3.377 x 10-5). These 

results demonstrate that KMT2A and KDM5C cooperate to mediate social dominance behaviors 

in females.  

In sum, our behavioral studies revealed no effects of Kmt2a-HET on any memory or 

social test, yet more pronounced deficits in Kdm5c-HET females in some but not all tests. The 

consequences of double mutations varied between the tests, with no effect on memory, a clear 

rescue effect on social interaction, and a new effect in social dominance in DM mice. These 

results support the idea that the two enzymes specifically mediate some deficiencies caused by 

writer-eraser imbalance in social circuitries.  
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Discussion 

The lack of female animal models for neurodevelopmental disorders has severely 

hindered our understanding of how NDDs manifest in male versus female brains. Our work 

demonstrates that separate male and female studies in models of histone methylopathies or other 

NDDs are needed to fully understand the underlying phenotypes which may differ between the 

sexes, which may in turn guide diagnoses and treatment of these potentially different NDD 

manifestations.  

Generation of Kmt2a-Kdm5c-double mutant animals allowed us to perform systematic 

comparison between the WDSTS model (Kmt2a-HET), female Kdm5c-MRXSCJ (Kdm5c-HET), 

as well as their composite (DM). We previously showed that effects of memory impairment are 

Kdm5c dose-dependent, noting that female phenotypes were more mild than male phenotypes, 

suggesting behavioral impairments in female Kdm5c-heterozygous (HET) mice were corrected 

by presence of wildtype (WT) allele (Scandaglia et al., 2017). 

The increased response of Kdm5c-HET females to shock reveals a potential explanation 

for the discordance between our previous and current data for the CFC test in female mice. 

Increase shock sensitivity may elicit quicker shock response, inflating the measured fear 

response in the CFC test. The marble burying test also showed no difference between genotypes, 

yet with the low number of animals for Kdm5c-HET and DM females (N=4 and 8, respectively) 

these results need to be repeated before making any conclusions about effects on female anxiety 

and obsessive behaviors. Although Kdm5c-HET mice were slightly smaller compared to single 

mutants (Figure 4.1C), this was not sufficient to drive submissive behavior in the social 

dominance tube test (Figure 4.3C). This is in accordance with previous literature, showing as 

body mass has minimal impact on social hierarchy unless excess difference (> 30%) is present 

between animals (Kim et al., 2015; Varholick et al., 2018; Wang et al., 2014). 
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Materials & Methods 

Mouse models 

Kdm5c-KO mice were previously described (Iwase et al., 2016). Kmt2a-HET mice were 

generated by crossing previously-described Kmt2a-flox (exons 8 and 9) mice with B6.129-

Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J-Cre mice (McMahon et al., 2007). To backcross Kmt2a+/- mice 

onto the desired 129S1/SvImJ strain, we employed the marker assisted accelerated backcrossing 

through Charles River Labs. Kmt2a+/- mice were bred to the N4 generation at minimum, where 

mice were >90% congenic for 129S1/SvImJ. All experimental mice were generated as F1 

generation hybrids from mating between 129S1/SvImJ Kmt2a+/- males and C57Bl/6 Kdm5c+/- 

females: WT females (Kmt2a+/+, Kdm5c+/+); Kdm5c-HET females (Kmt2a+/+, Kdm5c+/-); Kmt2a-

HET females (Kmt2a+/-, Kdm5c+/+); and Kdm5c-Kmt2a-DM females (Kmt2a+/-, Kdm5c+/-). 

Genotypes were confirmed using the following primers: for Kmt2a, 5’-

GCCAGTCAGTCCGAAAGTAC, 5’-AGGATGTTCAAAGTGCCTGC, 5’-

GCTCTAGAACTAGTGGATCCC; for Kdm5c, 5’-CAGGTGGCTTACTGTGACATTGATG, 

5’-TGGGTTTGAGGGATACTTTAGG, 5’-GGTTCTCAACACTCACATAGTG.  

Behavioral paradigms 

Prior to behavioral testing, mice were acclimated to the animal colony room for one week 

single-housing in standard cages provided with lab diet and water ad libitum. A 12-hour light-

dark cycle (7:00AM-7:00PM) was utilized with temperature and humidity maintained at 20 ±2 

ºC and >30%, respectively. The University of Michigan Committee on the Use and Care of 

Animals approved all tests performed in this research. Four tests, listed in order of testing, were 

performed: Novel Object Recognition (5 days), Context Fear Conditioning (2 days), Three-
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Chambered Social Interaction (2 days), and Social Dominance Tube Test (3-4 days). All testing 

was conducted in the morning by experimenters blind to genotype. 70% ethanol was used as a 

cleaning agent in every test between each trial. Data were collected in a blind fashion, where 

mice were coded and genotypes only revealed after testing was complete. 

Novel Object Recognition: Mice were first habituated to testing arenas (40 x 30 x 32.5 

cm3) in three, 10 minute sessions over six consecutive days (Tchessalova and Tronson, 2019; 

Vogel-Ciernia and Wood, 2014). 24 hours later, mice were allowed to explore on two identical 

objects (jar or egg, counterbalanced across animals) for two, 10-minute trials spaced three hours 

apart. All animals were returned to the arena tested 24 hours after the first training session and 

presented with one training object (“familiar” object: jar or egg) and one “novel” object (egg or 

jar). Exploration of the objects was defined as nose-point (sniffing) within 2 cm of the object. 

Behavior was automatically measured by Ethovision XT9 software using a Euresys Picolo 

U4H.264No/0 camera (Noldus, Cincinnati, OH). Preference was calculated as the time spent 

exploring novel object/total time exploring both objects. One-sample t-tests against 50% (no 

preference) were used to establish whether animals remembered the original objects.  

Contextual Fear Conditioning: Context fear conditioning was assessed as previously 

described (Keiser et al., 2017). Mice were placed into a distinct context with white walls (9 ¾ × 

12 ¾ × 9 ¾ in)  and a 36 steel rod grid floor (1/8 in diameter; ¼ spaced apart) (Med-Associates, 

St. Albans, VT) and allowed to explore for 3 minutes, followed by a 2-second 0.8 mA shock, 

after which mice were immediately returned to their home cages in the colony room. 24 hours 

later, mice were returned to the context and freezing behavior was assessed with NIR camera 

(VID-CAM-MONO-2A) and VideoFreeze (MedAssociates, St Albans, VT). Freezing levels 

were compared between genotypes using a between-groups analysis (one-way ANOVA) with 

genotype as the between-subjects factor.  



 123 

Three-Chambered Social Interaction: Mice were placed into a three-chambered 

apparatus consisting of one central chamber (24 x 20 x 30 cm3) and two identical side chambers 

(24.5 x 20 x 30 cm3) each with a containment enclosure (8 cm diameter; 18 cm height; grey 

stainless steel grid 3 mm diameter spaced 7.4 mm apart) and allowed to habituate for 10 minutes. 

24 hours later, mice were returned to the apparatus that now included a 2-3 month old stranger 

male mouse (C57BL/6N) on one side of the box (“stranger”), and a toy mouse approximately 

same size and color as stranger mouse on other (“toy”). Exploration of either the stranger or toy 

was defined as nose-point (sniffing) within 2 cm of the enclosure and used as a measure of social 

interaction (Crawley, 2007). Behavior was automatically scored by Ethovision XT9 software as 

described above, and social preference was defined as time exploring stranger/total exploration 

time. Social preference was analyzed using one-sample t-tests for each genotype. A repeated 

measures analysis was used for each aggression (genotype x aggression measures ANOVA) and 

submissive behaviors (genotype x submissive) to analyze aggressive behaviors. 

Social Dominance Tube Test: 24 hours prior to testing, mice were habituated to the 

plastic clear cylindrical tube (1.5 in diameter; 50 cm length) for 10 minutes. During test, two 

mice of different genotypes were placed at opposite ends of the tube and allowed to walk to the 

middle. The match concluded when the one mouse (the dominant mouse) forced the other mouse 

(the submissive mouse) to retreat with all four paws outside of the tube (a “win” for the 

dominant mouse) (Larrieu et al., 2017; Moretti et al., 2005; Zhou et al., 2017). Each mouse 

underwent a total of three matches against three different opponents for counterbalancing. 

Videos were recorded by Ethovision XT9 software as described above, and videos were 

manually scored by trained experimenters blind to genotype. The number of “wins” was reported 

as a percentage of total number of matches. Data were analyzed using an Exact Binomial Test 

with 0.5 as the probability of success (win or loss).  
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Figures 

 

Figure 4.1 Generation of Kmt2a-Kdm5c double-mutant (DM) female mice.  

(A) Mouse breeding scheme crossing congenic 129S1/SvlmJ Kmt2a-heterozygous males with congenic 
C57/BL6 Kdm5c-heterozygous females, resulting in F1 generation mice. Only females were used in this study. 
(B) Numbers of female offspring across 30 litters, showing Mendelian ratios of expected genotypes. (C) Left 
panel: Body weight of adult mice > 2 months of age (mean ± SEM, **p < 0.01 in One-way ANOVA). Right 
panel: Difference between group means of weight (mean ± 95% confidence intervals, *p < 0.05, in Tukey 
multiple comparison test). (D) Body weight tracked from birth, postnatal day 1 (P1). 
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Figure 4.2 Differential impacts of double mutation on memory.  

(A) Contextual fear conditioning test. Left panel: Freezing levels after shock on test day (mean ± SEM, **p < 
0.01 in One-way ANOVA). Right panel: Difference between group means of freezing (mean ± 95% 
confidence intervals, *p < 0.05, **p < 0.01 in Tukey multiple comparison test). (B) Left panel: Response to 
mild foot shock (mean ± SEM, ***p < 0.001 in One-way ANOVA). Right panel: Difference between group 
means of response to foot shock (mean ± 95% confidence intervals, *p < 0.05, **p < 0.01 in Tukey multiple 
comparison test). (C) Left panel: Locomotor activity (mean ± SEM, no statistical significance [n.s], in One-
way ANOVA). Right panel: Difference between group means of locomotor activity (mean ± 95% confidence 
intervals, Tukey multiple comparison test). (D) Novel object recognition test. Left panel: Preference for novel 
versus familiar object (mean ± SEM, no statistical significance [n.s.] in One-way ANOVA). Right panel: 
Difference between group means of freeze response (mean ± 95% confidence intervals, Tukey multiple 
comparison test). N=21 WT, N=29 Kmt2a-HET, N=13 Kdm5c-HET, and N=18 DM animals were used for all 
studies.  
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Figure 4.3 Deficit of anxiety and social behaviors in Kdm5c-HET and its rescue in DM.  

(A) Marble burying test. Left panel: number of marbles buried (mean ± SEM, no significant difference [n.s] in 
One-way ANOVA). Right panel: Difference between group means of preference (mean ± 95% confidence 
intervals). N=21 WT, N=12 Kmt2a-HET, N=4 Kdm5c-HET, and N=8 DM animals were used. (B) Three 
chamber test for social interaction. Left panel: preference for stranger versus toy mouse (mean ± SEM, **p < 
0.01 in One-way ANOVA). Right panel: Difference between group means of preference (mean ± 95% 
confidence intervals, *p < 0.05, **p < 0.01 in Tukey multiple comparison) test). N=21 WT, N=29 Kmt2a-
HET, N=13 Kdm5c-HET, and N=18 DM animals were used. (C) Tube test for social dominance. Proportion of 
wins in matches of each mutant versus WT. Numbers on colored bars represent total number of wins for WT 
(grey, above) or each mutant (below) in every matchup. N.s., not significant; ****p < 0.0001; Exact binomial 
test. N=21 WT, N=29 Kmt2a-HET, N=13 Kdm5c-HET, and N=18 DM animals were used.  
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Chapter 5 ¾ Conclusions and Future Directions 
 

Chromatin remodeling is an essential process that requires the precise coordination of 

chromatin-regulating proteins to ensure proper gene expression in a temporal and cell-specific 

manner. Human genetics studies continue to identify chromatin regulators, including histone 

methyl regulators, as major contributors to neurodevelopmental disorders (NDDs), highlighting 

key roles for these proteins in the central nervous system. Understanding the etiology of NDDs, 

including the molecular consequences of new mutations, will provide an important foundation 

for developing therapeutics for individuals with these lifelong disorders.  

Methylation of histone H3 at the fourth lysine (H3K4me) is a marker of promoters and 

enhancers of actively transcribed genomic loci. Two families of proteins regulate H3K4me and 

therefore influence gene expression: methyltransferases are the “writers” that place methyl marks 

and promote gene expression, and demethylases are the “erasers” that take them off and repress 

genes. Mutations in nine of the 13 H3K4me regulators have been identified in NDDs to date, 

including intellectual disability, autism, and schizophrenia. These disorders lead to lifelong 

cognitive, emotional, and social disability, which entail a significant personal and health care 

burden worldwide. 

 Single gene mutations are sufficient to manifest in disease states despite extensive 

enzymatic redundancy for H3K4me, suggesting specialized genomic roles for each enzyme. 

Indeed, the common neurological phenotypes from loss-of-function mutations in H3K4me 

regulators suggests acquisition of roles critical to central nervous system development, and/or a 

sensitivity of the brain to perturbations in H3K4me regulation. What is the plasticity of 
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chromatin in fate-determined cells in the brain? How do these 13 H3K4me enzymes work 

individually and together to balance methylation states? What is the relationship between 

opposing writers and erasers? Can we exploit the opposing actions of writer-eraser pairs to 

ameliorate NDD phenotypes?  

My thesis research investigated H3K4me balance in neurodevelopment at molecular, 

cellular, and behavioral levels, in normal and pathologic brain development. The goal of this 

work was to probe the contributions of H3K4me-regulating enzymes in the brain, both 

individually and in concert. The nature of this work united the fields of genetics, neuroscience, 

and medicine, and as such I utilized multidisciplinary approaches. Combining techniques in 

biochemistry, computational genomics, molecular genetics, mouse genetics and behavior, 

neurobiology, and pharmacogenetics allowed me to gain a fuller picture of the actions of these 

enzymes in the central nervous system.  

The work in this dissertation centered around H3K4me writer KMT2A and eraser 

KDM5C and uncovered new molecular roles for this pair in the mammalian brain.  

Chapter 2 introduced a novel human mutation in KDM5C in a young male with 

intellectual disability, autism, short stature, and impairments in adaptive behaviors. His was the 

most distally-located missense mutation reported in the literature to date, residing in the C-

terminal end of the protein which has been shown to be dispensable for demethylase function 

(Vinogradova et al., 2016). Indeed, we showed that the R1115H mutation does not dramatically 

alter demethylase activity of the protein, unlike a majority of loss-of-function KDM5C mutations 

characterized (Brookes et al., 2015a; Iwase et al., 2007; Rujirabanjerd et al., 2010; Tahiliani et 

al., 2007a). Instead, we observed differences in transcriptional regulation of KDM5C-R1115H 

compared to KDM5C-WT when both were overexpressed in cortical neuron cultures. The 

deficiency of R1115H in repressing genes down-regulated in KDM5C-WT indicated a loss-of-
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function effect. The distinct patterns of up- and down-regulated genes from R1115H over-

expression revealed possible neofunctionalization of the mutant protein. 

One limitation from the RNA-seq study was the overexpression system used in this 

experiment. We detected human KDM5C cDNAs at more than 17 times the levels of endogenous 

Kdm5c. KDM5C is known to bind to chromatin and function as a transcriptional repressor 

(Iwase et al., 2007; Tahiliani et al., 2007a). Therefore, it is not difficult to imagine that such 

massive overexpression could reduce global transcription. Another important consideration is 

that none of the differentially expressed (DE) genes identified in this assay fell below any 

standard false discovery rate threshold (FDR < 0.01-0.1) for multiple comparisons. This opens 

the possibility of more type I “false positive” errors, or in this case more genes identified as DE 

than is the case. This could be addressed through repeat studies to increase the sample number in 

each condition, and/or validating called DE genes in an identical replicate experiment via qPCR 

or RNA-seq. Nevertheless, the focus of the work was not on the individual DE genes themselves, 

but rather the overall transcriptome upon KDM5C-WT or mutant overexpression. 

The work in Chapter 2 provides evidence supporting pathogenicity of KDM5C R1115H 

for the proband’s phenotypes. However, exome sequencing revealed an additional patient variant 

in the CIC (Capicua Transcriptional Repressor) gene, which was not characterized in this study 

but cannot be ruled out as a candidate contributor to the phenotype. Human mutations in CIC 

have recently been reported in an intellectual disability syndrome (Lu et al., 2017), and CIC has 

been shown to play important roles in learning, memory, as well as neuron maturation (Lu et al., 

2017). This does not discount any of the data functionally characterizing the R1115H mutation. 

Rather, it reveals that the patient phenotype may be complicated by effects from the CIC 

mutation.  
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Data from Chapters 3 and 4 provide molecular, cellular, and/or behavioral 

characterizations of two mouse models of H3K4me NDDs: the Kmt2a-HET and Kdm5c-

KO/HET mice, each models of KMT2A-associated Weidemann Steiner Syndrome (WDSTS) 

and KDM5C-associated mental retardation, X-linked, syndromic, Claes Jensen type (MRXSCJ), 

respectively. We also explored the potential for writer-eraser interaction, by generating Kmt2a-

Kdm5c-double-mutant animals. We profiled H3K4me3 global landscapes, transcriptomes, 

neuron morphology in male mice, and behavior in both males and females. In males, single-

mutant animals were surprisingly more similar to each other than they were different in nearly all 

assays, indicating that despite opposite enzymatic activities there is a common phenotypic 

outcome. Indeed, many symptoms are common between KMT2A-WDSTS and KDM5C-

MRXSCJ, including intellectual disability, short stature, seizures, and aggressive behaviors 

(Claes et al., 2000; Jensen et al., 2005b; Jones et al., 2012; Wiedemann, 1989). Double-mutant 

male animals showed clear reversal of dendritic phenotypes and several behaviors, showing 

manipulation of a single enzyme is sufficient to rescue many neurological traits.  

A technical limitation to Chapter 3 and 4 studies lies in our approach using these 

germline-mutant mice, namely that examining phenotypes in adult animals with constitutive 

deletions guarantees the observation of direct, indirect, and adaptive effects. We performed 

small-scale acute inhibition in cortical neuron culture, and future studies can expand upon this 

shortened time scale to better inform chromatin plasticity and writer-eraser dynamics. One 

limitation particular to Chapter 4 female-centered studies was lack of screening for estrus cycle 

prior to behavioral tests (Caligioni, 2009). This is particularly key for behavioral work, as estrus 

cycle has been shown to have an effect on WT mice in fear extinction (Milad et al., 2009).  

This work has expanded our understanding of the molecular mechanisms of KMT2A and 

KDM5C in the brain, and provides many avenues for future research. 
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Chapter 2 details a patient-associated mutation in KDM5C with intact enzymatic activity, 

yet altered gene-regulatory function, suggesting the mutation may interfere with KDM5C 

function in an activity-independent manner. Many chromatin regulators are known to work in 

complex with several other proteins (Hsu et al., 2018; Lee et al., 2005; Qu et al., 2018). Future 

work is needed to characterize potential KDM5C binding partners. One study identified RACK7 

(Receptor for Activated C Kinase, also known as Zinc Finger NYMD-Type Containing 8 

ZMYMD8) as an interacting partner with KDM5C working to suppress enhancer activity (Shen et 

al., 2016). It is unknown whether this complex functions in the brain, or throughout 

development, or whether any MRXSCJ mutations could ablate this interaction. The C-terminal 

end of KDM5C has been shown to be dispensable for enzymatic activity. It harbors a PHD 

domain with unclear function, and potentially hosts sites of other protein-protein interactions. 

Repressive  but non-enzymatic roles for a histone demethylase were recently characterized for 

yeast eraser Epe1 (Raiymbek et al., 2019). It would be interesting to test whether KDM5C and 

other demethylases function similarly. Could chromatin states themselves function as signaling 

complexes? Do enzymes only function in eu- or heterochromatic contexts?  

I revealed that the correct location of the PCNA PIP-box consensus sequence lies within 

the PHD2 domain of KDM5C. My binding assays revealed that, at least in vitro, KDM5C PHD2 

as well as PHD1, despite lack of PIP-box, could both bind PCNA. Future studies are needed to 

confirm this interaction in vivo and with the full-length proteins, as well as to map the binding 

sites on each protein. This association of KDM5C with replication machinery suggests KDM5C 

may work to demethylate chromatin on parental and/or daughter strands during DNA replication. 

Perhaps this coupling of a demethylase to replication forks is critical to maintaining epigenetic 

memory of histone modifications on daughter DNA strands. If this is the case, perhaps 

perturbation would affect dividing cells in the early developing brain, rendering them incapable 
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of maintaining proper methylation patters before fate commitment, at which point the chromatin 

landscape is less plastic. It is unclear how the PCNA-KDM5C interaction would be a 

biologically meaningful interaction in post-mitotic neurons. 

While few KDM5C female mutations have been reported in the literature, I have 

anecdotal evidence that the number of females affected may be higher than we believe. I’ve been 

involved in a newly-formed Facebook group for KDM5C families, where 21 families have 

joined to share the information about their affected children. Seven, or one third, of these 

children are females, and the severity of their phenotypes tend to be more mild learning 

difficulties and behavioral abnormalities compared to the males. What mechanisms underlie 

susceptibilities of females? How does histone methylation regulation contribute to sex 

differences? My initial work characterizing behaviors of Kdm5c-HET mice revealed that 

impairment in social interaction can be reversed when Kmt2a is haploinsufficient. Future 

molecular and cellular characterizations are needed to better understand these female NDDs, and 

the cooperation effect of KMT2A and KDM5C in female central nervous system.  

Several studies support the amygdala as the seat of fear conditioning, important for 

acquisition, storage, and expression of conditioned fear memory (Jimenez and Maren, 2009; 

Maren, 2001) . Comprised of several nuclei substructures, the basolateral amygdala (BLA) is 

thought to integrate sensory information for fear memory tracing. Interestingly, we observed 

similar dendritic length and spine deficits in the BLA of male Kmt2a-HET and Kdm5c-KO mice, 

but different phenotypes on fear memory in the CFC test between these two genotypes. BLA 

neuron morphology may contribute to Kdm5c-KO male fear memory response, but other factors 

may underlie the intact fear memory in Kmt2a-HET animals. BLA neurons project to other 

amygdalar nuclei such as the central nucleus (CeA), which in turn projects to other brain regions 

to ultimately mediate fear response (Paré et al., 2004). It is possible that in Kmt2a-HET animals 
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there are compensatory effects within this circuit that negate the BLA morphology deficits and 

support normal function in the CFC test. Future studies could look at connectivity to prelimbic, 

infralimbic, and orbitofrontal cortices (Felix-Ortiz et al., 2016) as well as ventral hippocampus 

(Felix-Ortiz and Tye, 2014). Similarly, studies of network activation by immediate early gene c-

Fos could delineate effects on brain circuits. Future studies can examine the prefrontal cortex-

amygdalar axis. The frontal cortex has recently been implicated to interact with the amygdala in 

extinction of fear memory. I also observed differential sensitivity to loss of Kdm5c in frontal 

cortex versus amygdala (Iwase et al., 2016).  

Our findings with the Kmt2a-Kdm5c double-mutant mice are the first in vivo studies, 

along with a few recent in vitro studies, to indicate that pairwise relationships between histone 

methyl writers and erasers may exist. We lay the groundwork for future studies to similarly test 

interactions between the full range of H3K4me enzymes to determine writer-eraser cooperation 

at the molecular, cellular, or behavioral level. 
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