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ABSTRACT

This dissertation pursues a paradigm shift from traditionally recorded censored

time-to-event and time-to-recurrent event data and corresponding analyses. Instead

these data are repurposed into censored short-term outcomes measured longitudi-

nally over potentially overlapping follow-up periods of length τ . Previous work by

Tayob and Murray (2014, 2016, 2017) exploited this framework, with univariable and

multivariable methods for estimating behavior of τ -restricted outcomes drawn from

a single time-to-event and with a two-sample test developed for comparing censored

longitudinal outcomes drawn from the recurrent events setting. This thesis consid-

ers three practical settings that can benefit statistically from repurposing traditional

data into this censored longitudinal data structure.

Chapter II addresses the first research setting. This chapter develops a two-

sample test and corresponding group sequential methodology for comparing overall

τ -restricted means between treatment groups, where each patient contributes many

overlapping τ -length follow-up windows of information during the course of the clin-

ical trial. Operating characteristics explored through simulation compare favorably

with existing nonparametric methods for group sequentially monitored test statis-

tics in this setting, including the traditional restricted mean test and the logrank

test. The proposed method performs especially well in cases where there is a delayed

treatment effect and/or a subset of cured patients. This chapter considers symmetric

and asymmetric error spending approaches and makes recommendations for how to

choose appropriate group sequential stopping boundaries in a variety of settings.
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Chapter III addresses the second research setting. Very few methods are currently

available for group sequential analysis of recurrent events data subject to a terminal

event in the clinical trial setting. Chapter 3 helps fill this gap by developing methods

for sequentially monitoring the nonparametric, two-sample Tayob and Murray (2014)

(TM) statistic. This chapter briefly reviews the TM statistic, develops and describes

how to use the proposed group sequential analysis methods, and through simulation

compares its operating characteristics with those of Cook and Lawless (1996), as well

as a time-to-first-event analysis based on the logrank test. Our advantages include

high power to detect treatment differences when there is correlation between event

times in an individual and elegantly avoiding dependent censoring bias.

One important component of using the TM statistic, as well as Chapter III

methodology for group sequential monitoring, is to wisely construct the censored

longitudinal data framework for the recurrent events. Chapter IV formalizes the cor-

responding guidance. A useful metric, the expected proportion of recurrent events

captured as the first event in at least one follow-up window, is derived, and oper-

ating characteristics of the TM statistic are summarized. For design and analysis

purposes, we formulate recommendations based on the special case with independent

exponentially distributed gap times.

Chapter V develops multivariable restricted time models appropriate for analysis

of recurrent events data, where data is repurposed into censored longitudinal outcomes

in τ -length follow-up windows. This chapter develops two approaches for addressing

the censored nature of the outcomes: a pseudo-observations (PO) approach and a

multiple imputations (MI) approach. Each of these approaches allows for complete

data methods, such as generalized estimating equations, to be used for the analysis of

the newly constructed correlated outcomes. Through simulation, this chapter assesses

the performance of the proposed PO and MI methods. Both PO and MI approaches

show attractive results with either correlated or independent gap times.
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CHAPTER I

Introduction

Restricted mean survival time methodology for censored survival data has grown

in popularity as an alternative to hazard-oriented methods. It has advantages of free

from assumption of proportionality and clinically meaningful interpretation. This dis-

sertation work evaluates the restricted time after repurposing the traditional recorded

time-to-event or recurrent event data into censored longitudinal outcomes from over-

lapping follow-up windows. Previous work by Tayob and Murray explored the use

of repeated and overlapping follow-up windows to supplement restricted mean esti-

mation (Tayob and Murray , 2016) and regression analysis (Tayob and Murray , 2017)

in single time-to-event setting, as well as two-sample testing in recurrent event set-

ting subject to terminal events and censoring (Tayob and Murray , 2014). However,

these methods are only ready for single time analysis. In this dissertation, we develop

group sequential methods for two-sample tests with a similar technique for construct-

ing follow-up windows in (Chapter II) the standard censored survival endpoint setting

as well as (Chapter III-IV) the recurrent events setting. In these chapters, group is

the only covariate. For the setting with multiple, possibly time-dependent covariates

and recurrent event outcomes, we develop multivariable restricted time regression

methodology using multiple follow-up windows (Chapter V).

Throughout this dissertation, we use repeated and overlapping follow-up windows
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to improve the restricted mean survival time estimation and to extend the restricted

time methodology to recurrent event setting. The idea is to repurpose the data into

a regularly spaced longitudinal form. The endpoints are based on τ -length follow-up

windows that start at evenly spaced times. In each of these follow-up windows, the

observed endpoint is the time from the beginning of the window to the first event

that occurs in that window, or τ if no event occurs during that window. These

endpoints are subject to the usual independent right censoring that occurs in the

clinical trial setting. The restricted time estimated from the longitudinal censored

survival endpoints can be readily interpreted as the survival time or time free from

recurrent events over the next τ -length period. The follow-up windows are constructed

upon each patient’s entry and are universal across all enrolled patients. Specification

of the follow-up windows is predetermined by investigators at the phase of study

design: the length of windows, τ , is usually decided by the clinical interest and the

spaced time between adjacent windows is determined by testing/modeling efficiency

which will be discussed more in Chapter IV.

In Chapter II, we take a fresh look at group sequential methods applied to two-

sample tests of standard censored survival data and proposes an alternative method

of defining and evaluating treatment benefit. Our method repurposes traditional

censored event time data into a sequence of short-term outcomes taken from the (po-

tentially overlapping) follow-up windows. A new two-sample restricted means test

based on this restructured follow-up data is proposed along with group sequential

methods for its use in the clinical trial setting. This method compares favorably

with existing methods for group sequential monitoring of time-to-event outcomes, in-

cluding methods for monitoring the restricted means test and the logrank test. Our

method performs particularly well in cases where there is a delayed treatment effect

and/or a subset of cured patients. As part of developing group sequential methods for

these analyses, we consider asymmetric error spending approaches that differentially

2



limit the chances of stopping incorrectly for perceived efficacy versus perceived harm

attributed to the investigational arm of the trial, to ensure an attractive safety pro-

file while allowing for additional follow-up of auxiliary data for future research use.

Recommendations for how to choose proper group sequential stopping boundaries

are given, with supporting simulations and an example from the AIDS Clinical Trial

Group.

In Chapter III, we generalize the group sequential testing procedure to recurrent

event setting. Very few methods are currently available for group sequential analy-

sis of recurrent events data subject to a terminal event in the clinical trial setting.

Our research helps fill this gap by developing methods for sequentially monitoring

the nonparametric, two-sample Tayob and Murray (2014) statistic. Advantages of

the Tayob and Murray statistic include a high power to detect treatment differences

when there is a correlation between recurrent event times or between recurrent and

terminal events in an individual. This statistic does not suffer bias from dependent

censoring potentially caused by the terminal events, regardless of the correlation be-

tween event times in an individual. Nor does the statistic assume the proportionality

between groups of the cumulative mean number of events over time. This chapter

briefly reviews the Tayob and Murray statistic, develops and describes how to use

methods for its group sequential analysis, and through simulation compares its oper-

ating characteristics with those of Cook and Lawless (1996), which is currently in use,

as well as a time-to-first-event analysis using the logrank test. We further illustrate

our method using data from the Azithromycin in COPD Trial.

As described previously, how to wisely place the τ -length follow-up windows is

predetermined by the investigators and is related to the testing efficiency. Chapter II

uses follow-up windows initiated every τ/2 suggested for the special case with a single

time-to-event. In terms of the recurrent event setting in Chapter III, we will prefer,

intuitively, smaller values of spaced time which will create more follow-up windows
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that capture more recurrent events, however, at the cost of computational efficiency.

In Chapter IV, we give improved guidance on the choice of the spaced time between

adjacent windows. Our recommendation is framed in terms of the average proportion

of recurrent events captured in at least one follow-up window for individuals. We

study how the average proportion influences our choice of spaced time and therefore

power through simulations.

Following the recurrent event setting as Chapter III, the nonparametric two-

sample test may not be adequate in the analysis of data where more than one factors

are interested and potentially associated with the recurrent event times. In Chap-

ter V, we target on predicting the time free from recurrent events over a prespeci-

fied follow-up period with multivariable regression model. We embrace the similar

philosophy of transforming the recurrent event data structure into censored longi-

tudinal time-to-first-event outcomes via repeated τ -length follow-up windows. Two

approaches are developed to account for censoring issue: pseudo-observations (PO)

and multiple imputations (MI). Generalized estimating equation can be then utilized

to illustrate the mean structure with complete data and correlated outcomes. We

assess the performances of PO and MI methods against the uncensored case by sim-

ulation under scenarios of independent gap times or correlated gap times. Both PO

and MI approaches show attractive results. We also demonstrate how to apply the

proposed methods in the data from Azithromycin in COPD Trial.

Before we start the next chapter, to make sure that all readers are on the same

page, we briefly review some concepts and related context for future use.

1.1 Restricted Mean Survival Time

The restricted mean survival time (RMST) was first proposed by Irwin (1949)

since the mean survival time is not estimable in the presence of censoring. Under

the standard survival setting where we use T as the time to an event, a τ -restricted

4



mean survival time, denoted by µ(τ), is the mean of time to events truncated by a

prespecified time τ , i.e. µ(τ) = E[min(T, τ)]. Let S(t) indicate the survival function

of T . The RMST is also the area under the survival curve of T up to time τ , thus µ(τ)

can be estimated well with the area under the corresponding Kaplan-Meier estimator

or Nelson-Aalen estimator from time zero to τ :

µ̂(τ) =

τ∫
0

Ŝ(t)dt.

Analysis based on the RMST includes two-sample tests of the difference in RMST

between two groups (Pepe and Fleming , 1989; Karrison, 1997; Zhao et al., 2016) and

modified two-sample tests to be adjusted by covariates (Karrison, 1987, 1997; Zucker ,

1998), to be applied in group sequential design (Murray and Tsiatis , 1999; Li , 1999b)

or to fulfill other particular requirements (Zhao and Tsiatis , 1997; Chen and Tsiatis ,

2001; Schaubel and Wei , 2011). Regression model based on pseudo-observations is

proposed by Andersen et al. (2004) and then generalized to be applied in more sce-

narios with special data structures (Klein and Andersen, 2005; Andersen and Klein,

2007; Andrei and Murray , 2007; Graw et al., 2009; Xiang and Murray , 2012; Nicolaie

et al., 2013; Tayob and Murray , 2017). Besides the pseudo-observations approach,

multivariable regression analysis on RMST are also developed with other strategies

accounting for censoring, for example, with multiple imputations (Liu et al., 2011; Xi-

ang et al., 2014; Tayob and Murray , 2017), with inverse probability weighting (Zhang

and Schaubel , 2011, 2012; Tian et al., 2013; Wang and Schaubel , 2018), parametric

modeling (Royston and Parmar , 2011), etc.

The RMST analysis has many attractive properties. First, the estimation and

comparison of RMST is valid under any distribution of time to event and does not

require any assumption of proportionality between treatment groups in the clinical

trial setting. It can summarize the difference in survival when the difference between
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groups is not constant over time, for example cases where there is a delayed treatment

effect or a crossing hazard. Besides, we think this measure has a relatively meaningful

interpretation for both clinicians and patients. It directly illustrates the gain or loss

of life expectancy. A certain hazard ratio reflects no information about the actual

progression status of the patient cohort, while the RMST can provide both absolute

and relative measures of risk. Therefore, more and more literature suggest moving

beyond the hazard ratio in quantifying the survival difference and recommend RMST

methodology as a default alternative option in the clinical trial design and analysis

(Royston and Parmar , 2013; Uno et al., 2014; Kim et al., 2017; Calkins et al., 2018).

In this dissertation, we take advantage of the appealing properties of RMST anal-

ysis and add to the field a new two-sample test with favored operating characteristics

and a modified version for group sequentially monitoring. We also extend the re-

stricted time analysis to the setting with recurrent events and work on the restricted

time free from recurrent events. Besides providing a group sequential test for monitor-

ing the recurrent event data subject to terminal events and censoring, we generalize

the regression with pseudo-observation and multiple imputation techniques for single

time-to-event data into the setting with recurrent events.

1.2 Group Sequential Design

Group sequential monitoring has a long and respected history in clinical trial

design. It is a study design where data are evaluated as they are collected. Further

sampling is stopped in accordance with pre-defined stopping rules. Multiple reasons

can cause an early stop: 1) significant efficacy has been detected at an interim analysis,

in which case the investigators would like to stop the current trial and move to the

next stage so that the new treatment can be put into market and help the patients

as soon as possible; 2) perceived harm of the investigational treatment goes out of

tolerance, in which case it is morally unacceptable to keep the assigned patients in
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high risk or to keep recruiting more patients to the harmful treatment group; 3)

evidence has shown that there is barely any chance of getting a significantly superior

results by the end of the study, in which case financial and human resources can be

saved by stopping the trial early.

Based on the many obvious benefits, group sequential design becomes popular in

clinical trials, which is also why we think it is worthwhile to develop methods that

can be implemented in group sequential context. However, a statistical price must be

paid for this monitoring process. By repeatedly looking at the data and conducting

significance testing, we inflate the type I error probability beyond the desired level.

As a remedy, statistical methods controlling type I error throughout a trial have

been developed by many classic group sequential researches (Pocock , 1977; Lan and

DeMets , 1983; Tsiatis , 1981, 1982). To maintain the overall type I error despite the

repeated significance tests, we have to adjust the critical values c1, . . . , cK of the K

number of planned analysis such that

Pr{|T1| < c1, . . . , |TK | < cK} = 1− α

under the null hypothesis, where Tk is the test statistic based on data cumulated up

to the kth interim analysis. Given the critical values, the exit probability is defined

as

Pr{|T1| < c1, . . . , |Tk−1| < ck−1, |Tk| > ck} = πk

with the restriction
∑K

k=1 πk = α (Harrington, 2012). Under this guidance, Lan and

DeMets (1983) proposed alpha spending function, which is one of the most commonly

used approaches, to provide options of how to spend the type I error, namely, how to

distribute α to π1, . . . , πK . Given the pre-specified π1, . . . , πK and joint distribution of

T1, . . . ,TK under the null hypothesis, we are able to determine the critical values to

maintain the type I error probability at the level of α. More application based on the
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alpha spending function to determine symmetric or asymmetric stopping boundaries

will be discussed in this dissertation.

1.3 Recurrent Event Data

In clinical trial and medical research, investigators are often interested in studying

processes which generate events repeatedly over time. Such processes are referred to

as recurrent event processes and the data they provide is called recurrent event data

(Cook and Lawless , 2007). Examples include recurrence of acute exacerbation of

patients with chronic obstructive pulmonary disease (Albert et al., 2011), recurrent

ischemic cardiovascular events after acute coronary syndrome (Schwartz et al., 2018),

recurrent clostridium difficile infection (Wilcox et al., 2017), repetitive head injuries

in high-contact sports (DeKosky et al., 2010), etc.

Poisson and negative binomial count models have been used to analyze recurrent

event data per time at risk (Frome et al., 1973; Lawless , 1987; Lambert , 1992; Greene,

1994). Besides, analysis strategies based on event times instead of event counts are

favored and developed. The most commonly used methods are those based on the

Cox proportional hazards model. Andersen and Gill (1982) proposed an extension of

the original Cox model, assuming independence between the event gap times within

the same patient. Prentice et al. (1981) proposed two stratified proportional hazard

model considering the order of event and include intensity based on either the time

from the beginning of study or gap times. Wei et al. (1989) formulated the marginal

distribution of event times by Cox model based on time from the beginning of study.

Pepe and Cai (1993) advocated the use of rate function of recurrence after the first

event and Lawless and Nadeau (1995); Lin et al. (2000) later developed models for

the cumulative mean number of events, assuming proportionality on the cumulative

means over time. In terms of more complex recurrent event setting, frailty or random

effect models were introduced to describe individual patients’ heterogeneity or the
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correlation between event times (Aalen and Husebye, 1991; Hougaard , 1995; Rondeau

et al., 2007; Mazroui et al., 2013; Rogers et al., 2016).

Another data structure of recurrent event in the presence of terminal events are

also commonly seen in clinical research. For example in pulmonary disease studies,

clinicians are interested in multiple progression endpoints including recurrent events of

acute exacerbation, 10% decline in forced vital capacity and 15% decline in diffusing

capacity of the lung for carbon monoxide; as well as terminal events of death and

lung transplant. This type of data will be more and more common in future studies

because treatments are continually improving and trials are becoming more dependent

on surrogate outcomes or combined endpoints rather than mortality alone. This

trend is likely to continue as lifetimes are successfully extended and as time pressure

for faster drug approval increases. Primary methods are based on the analysis of

marginal mean/rate function for the cumulative number of recurrent events with

non-parametric (Cook and Lawless , 1997; Ghosh and Lin, 2000) or semi-parametric

approaches (Cook and Lawless , 1997; Ghosh and Lin, 2002; Schaubel and Zhang ,

2010).

Although many advanced tools have been developed to deal with the recurrent

events in an appropriate manner, time-to-first-event analysis with traditional logrank

test or Cox model are still very popular in clinical researches as those we cite at

the beginning of the section (Albert et al., 2011; Schwartz et al., 2018; Wilcox et al.,

2017). To cater the taste of clinical researchers while making use of data more effi-

ciently, in this dissertation we borrow the philosophy of time-to-first-event analysis

but incorporate more than one event by constructing multiple follow-up windows. We

believe our work will help the design and analysis in clinical studies, as well as better

understanding the patients’ disease burden.
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CHAPTER II

Nonparametric Group Sequential Methods for

Evaluating Survival Benefit from Multiple

Short-Term Follow-up Windows

2.1 Introduction

Traditionally in the censored time-to-event setting, with or without group se-

quential monitoring, two-sample treatment comparisons are based on restricted mean

event times or integrated weighted hazard differences estimated over many follow-

up years (Mantel , 1963; Gehan, 1965; Mantel , 1966; Breslow , 1970; Peto and Peto,

1972; Prentice, 1978; Harrington and Fleming , 1982; Tsiatis , 1982; Pepe and Flem-

ing , 1989; Li , 1999b; Murray and Tsiatis , 1999). Investigators and biostatisticians

alike hope that treatment differences will emerge throughout the trial, anticipating

Kaplan-Meier curves that snake farther and farther apart as the end of follow-up

draws near.

In this chapter we embrace the philosophy that for each patient in a clinical trial,

short-term survival over repeated, overlapping intervals are observed, and that each

of these has value in assessing treatment benefit. In short, time-to-event data can be

reformulated as repeated short-term longitudinal outcomes subject to censoring, and

then analyzed using methodology that takes into account both the censored nature
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of the data as well as the correlation between short-term events measured from the

same individual.

Tayob and Murray (2016) followed this train of thought when they evaluated

the behavior of an overall τ -restricted mean estimated from multiple, overlapping τ -

length follow-up windows. Their overall estimated τ -restricted mean integrates area

under an estimated survival curve, but instead of using time-to-event data in its

original form, Tayob and Murray estimate the curve from a massive censored lon-

gitudinal repeated measures dataset with multiple overlapping short-term outcomes

taken from each individual’s observed follow-up. Corresponding confidence intervals

nonparametrically take into account the correlation between outcomes taken from

the same individual. The choice of τ is typically taken from the context in which the

method is applied. For instance, in pulmonary literature a 1-year restricted mean

is common, and fairly stable over time as seen in Tayob and Murray. In scenarios

where τ -restricted means are not stable over time, the overall τ -restricted mean is an

estimate from a mixture distribution that results from combining information from

overlapping follow-up windows.

In this chapter we propose a new two-sample test comparing τ -year restricted

means estimated in the manner proposed by Tayob and Murray. As with existing

two-sample tests, this test is valid under the null hypothesis of no treatment difference

regardless of the distributions under study. We also develop group sequential methods

for monitoring a clinical trial via the proposed statistic, along with graphics displaying

the estimated overall years of life gained per τ time units when assigned the superior

treatment.

Group sequential monitoring via nonparametric two-sample tests has a long and

respected history in clinical trial design. Classic group sequential analysis literature

gives stopping rules for statistically significant treatment benefit or harm (Pocock ,

1977; O’Brien and Fleming , 1979). The most common approach for controlling type
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I error throughout a trial is to use error spending functions proposed by Lan and

DeMets (1983), which allow for both symmetric and asymmetric stopping rules. Sym-

metric stopping rules imply that stopping early for statistically significant treatment

differences have the same cost, whether benefit or harm is attributed to the experi-

mental therapy. Asymmetric bounds are useful when consequences of stopping early

are different according to the treatment difference that is emerging (Tsiatis , 1981;

DeMets and Ware, 1982). Futility bounds have become increasingly popular as a

mechanism for stopping a trial that is unlikely to end in a new treatment recommen-

dation (Friedman et al., 2015; Harrington, 2012). These types of bounds also avoid

the ethically uncomfortable scenario of trial termination only after statistical proof

of increased mortality from the new treatment.

This chapter proceeds with a description of notation in Section 2.2. In Section

2.3 we describe the proposed test statistic in the case where a single analysis is

performed, with an extension to the group sequential setting given in Section 2.4;

Derivations behind methods in Sections 2.3 and 2.4 are relegated to Appendix A.

In Section 2.4, we also review symmetric versus asymmetric stopping boundaries,

with a modified recommendation for safety monitoring. Section 2.5 summarizes finite

sampling behavior of our group sequential monitoring procedure in a variety of clinical

trial settings. An example from the AIDS Clinical Trial Group is given in Section 2.6

and followed by discussion in Section 2.7.

2.2 Notation

Our ultimate goal is to group sequentially monitor two-sample tests that compare

estimates of τ -restricted mean lifetimes, µg(s, τ), with group subscript g = 1, 2, in-

corporating information from multiple, potentially overlapping, short-term follow-up

windows of length τ . For simplicity, we first describe notation for the one-sample

case, submerging the g subscript.
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2.2.1 Description of Random Variables

Suppose i = 1, . . . , N patients participate in a clinical trial. Patient-specific ran-

dom variables are measured against two different time scales in the group sequential

setting: calendar time, s, and study time, t. Study time, t, indexes time from a

patient’s clinical trial entry; length of life, length of follow-up and other clinical trial

endpoints are described on this time-scale. Calendar time, s, indexes time from the

initiation of the overall study; patient entry times and interim analysis times are

described on this time scale.

In particular, study time indexed random variables include failure times, Ti and

potential loss-to-follow-up times Vi, i = 1, . . . , N . On the calendar time scale, we

define random study entry times, Ei, for participant i = 1, . . . , N, as well as interim

analysis times, s = s1, s2, . . ., which are (non-random) study design parameters. At

interim analysis time s, n(s) =
∑N

i=1 I(Ei ≤ s) individuals have entered the trial

with n(s) = N for s ≥ max(E1, . . . , EN). An individual’s maximum follow-up time

at analysis time s is administratively capped at s−Ei. Hence, the censoring random

variable, Ci(s) = min(Vi, s − Ei), for individual i can potentially change at each

analysis time s, depending on the censoring mechanism. We assume that Ti is in-

dependent of Ci(s), i = 1, . . . , N . For patients who have entered the trial, observed

event times at analysis time s are Xi(s) = min {Ti, Ci(s)}, with corresponding failure

indicator variables δi(s) = I{Ti ≤ Ci(s)}, i = 1, . . . , n(s).

Notation for residual lifetime random variables are needed to define short-term

outcomes during several, potentially overlapping, τ -length follow-up windows of in-

terest. The starting times of these follow-up windows, t ∈ {t1, t2, . . . , tb}, are non-

random design parameters measured on the study time scale with t1 = 0, and b

indicating the total number of windows. We define the residual lifetime from study

time t observed at analysis time s as Xi(s, t) = (Xi(s) − t)I{Xi(s) ≥ t} with cor-

responding failure indicator δi(s, t) = δi(s)I{Xi(s) ≥ t}. A third time-scale metric,
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window time u, indexes time from the beginning of each follow-up window. We use the

window time metric as a common time-scale for residual lifetime random variables,

Xi(s, t1), Xi(s, t2), . . . Xi(s, tb).

Figure 2.1 displays data for 3 example individuals, with random variables specific

to subject A given in detail. Patient entry times EA, EB, EC and interim analysis

times s1, s2 are given on the calendar time scale. Death, loss to follow-up, adminis-

trative censoring and window start times are given on the study time scale. At the

second interim analysis conducted on January 1, 2016, n(s2) = 3 individuals have

entered the study. Subject A contributes information from three windows starting

at t1 = 0, t2 = 6 months and t3 = 12 months. Observed residual lifetime and cen-

soring indicator data pairs contributed by Subject A at the second analysis time are

(17, 1), (11, 1) and (5, 1). In terms of short-term follow-up windows of length τ = 12

months, Subject A contributes uncensored information from three windows: in the

first window, Subject A lives 12 of 12 months, in the second Subject A lives 11 of 12

months, and in the third window Subject A lives 5 of 12 months. Any test statistic

incorporating multiple short-term outcomes taken from an individual as laid out in

Figure 2.1 will need to account for potential correlation between these outcomes.

2.2.2 Counting Process Notation and Estimation

For an individual i who has entered the trial by interim analysis time s, Ni(s, t, u) =

I{Xi(s, t) ≤ u, δi(s, t) = 1} and Yi(s, t, u) = I{Xi(s, t) ≥ u} are the counting and

at risk processes for the number of events occurring no later than window time u

within the follow-up window starting at study time t. From Figure 2.1, consider

Subject A’s data at the 2nd interim analysis time, s2, from the follow-up window

starting at t2 = 6 months. Subject A’s corresponding counting process data at win-

dow times u = 11−, 11, and 11+ months are {NA(s2, t2, 11−) = 0, YA(s2, t2, 11−) = 1},

{NA(s2, t2, 11) = 1, YA(s2, t2, 11) = 1} and {NA(s2, t2, 11+) = 1, YA(s2, t2, 11+) = 0}.
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D: Death
L: Lost to Follow-up
A: Administrative 

Censoring

Calendar time s

Study time t    Subj. A

Subj. B

Subj. C

D

D

L

s1: 1/1/2015 s2: 1/1/2016

t=0

t=0

t=0

EA: 2/1/2014 

EB: 5/1/2014 EC: 3/1/2015 

TA=17m

TB=6m

VC=9m
N=3

At Analysis Time s1 (n(s1)=2)

t

Subj. A

DSubj. B

A

6m 11m

t1=0
t2=6m

t3=12m
XA(s1)=11m        δA(s1)=0
XA(s1,t1)=11m    δA(s1,t1)=0
XA(s1,t2)=5m      δA(s1,t2)=0
XA(s1,t3)=0m      δA(s1,t3)=0  ……

At Analysis Time s2 (n(s2)=3)

t
Subj. A

DSubj. B

6m 9m

t1=0
t2=6m

t3=12m

D

LSubj. C

17m

t4=18mXA(s2)=17m        δA(s2)=1
XA(s2,t1)=17m    δA(s2,t1)=1
XA(s2,t2)=11m    δA(s2,t2)=1
XA(s2,t3)=5m      δA(s2,t3)=1
XA(s2,t4)=0m      δA(s2,t4)=0  ……

Figure 2.1: Notation for 3 Example Individuals, with Random Variables Specific to
Subject A Given in Detail.
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Let N(s, t, u) =
∑n(s)

i=1 Ni(s, t, u) and Y (s, t, u) =
∑n(s)

i=1 Yi(s, t, u) represent pro-

cesses summed across individuals entered by interim analysis time s. For individual

i at interim analysis s, let Ni(s, u) =
∑b

j=1 Ni(s, tj, u) count the observed resid-

ual lifetime events across the b follow-up windows attributed to individual i that

are seen prior to window time u; the corresponding at risk process is Yi(s, u) =∑b
j=1 Yi(s, tj, u). Ni(s, u) has the potential to count the same event more than once,

since this event may be contained in more than one follow-up window. Likewise,

Yi(s, u), includes at-risk processes from the same individual more than once from

follow-up windows that overlap. Combining all information available at interim anal-

ysis time s regarding event and at-risk information for window time u we define

N(s, u) =
∑n(s)

i=1 Ni(s, u) and Y (s, u) =
∑n(s)

i=1 Yi(s, u).

At analysis time s, let hazard function λ(s, t, u) = lim∆u→0[Pr{u ≤ Xi(s, t) ≤

u+ ∆u, δi(s, t) = 1|Xi(s, t) ≥ u}/∆u] and

λW (s, u) =

∑b
j=1 λ(s, tj, u)Pr{Xi(s, tj) ≥ u}∑b

l=1 Pr{Xi(s, tl) ≥ u}
.

As in standard group sequential methods, we assume that analysis time does not

affect the true event-time hazard, so that the superfluous s notation in λ(s, t, u) can

be dropped to become λ(t, u). However, because λW (s, u) corresponds to a mixture

distribution of residual lifetimes contributed from individuals at time s, and is a

function of Pr{Xi(s, t) ≥ u} that depends on follow-up, analysis time s can influence

this term.

2.3 Two-sample Test at a Single Analysis Time, s

In this section, we propose a two-sample test that compares average lifetime per τ

follow-up years. The test is inspired by overall τ -restricted mean estimates developed

by Tayob and Murray (2016) that incorporate information from repeated, overlapping
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follow-up windows of length τ , subject to censoring. Additional subscripts g, g = 1, 2,

indicate treatment group when used with notation from the last section; random

variables from different treatment groups are assumed independent. We assume a

single analysis at calendar time s.

For treatment g at analysis time s, following results from Tayob and Murray,

µ̂g(s, τ) =

τ∫
0

exp

−
u2∫

0

dNg(s, u1)

Yg(s, u1)

 du2

consistently estimates µg(s, τ) =
∫ τ

0
exp

{
−
∫ u2

0
λWg (s, u1)du1

}
du2, the average life-

time per τ time units as measured from the mixture distribution of short-term,

overlapping τ -length follow-up windows starting at times t1, . . . , tb. Our proposed

two-sample test becomes

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)}. (2.1)

Let π̂g(s) = ng(s)/{n1(s) + n2(s)}, g = 1, 2. As shown in Appendix A.1, under

the null hypothesis of µ1(s, τ) = µ2(s, τ), the asymptotic limiting distribution of

T (s) has a mean 0 Normal distribution with variance that can be estimated by

π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s), where σ̂2
g(s) =

∑ng(s)
i=1 [zi{µ̂g(s, τ)}− z̄{µ̂g(s, τ)}]2/[ng(s)−1],

with zi{µ̂g(s, τ)} =
∑b

j=1 zij{µ̂g(s, τ)}; z̄{µ̂g(s, τ)} =
∑ng(s)

i=1 zi{µ̂g(s, τ)}/ng(s) and

zij{µ̂g(s, τ)} =

τ∫
0

exp

−
u2∫

0

dNg(s, u1)

Yg(s, u1)




u2∫
0

dNgi(s, tj, u1)− Ygi(s, tj, u1)dNg(s,u1)

Yg(s,u1)

Yg(s, u1)/ng(s)

 du2

An approximate 1 − α level confidence interval for the average difference in life-

time per τ time units, µ1(s, τ) − µ2(s, τ), becomes {µ̂1(s, τ) − µ̂2(s, τ)} ± Z1−α/2 ×√
σ̂2

1(s)/n1(s) + σ̂2
2(s)/n2(s), where Z1−α/2 is the 100 × (1 − α/2)% quantile of the
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standard Normal distribution. A standard Normal(0,1) version of the test statistic

can be calculated using

T̃ (s) =
T (s)√

π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s)
=

√
n1(s)n2(s)

n2(s)σ̂2
1(s) + n1(s)σ̂2

2(s)
{µ̂1(s, τ)− µ̂2(s, τ)}.

In describing efficiency of their estimation procedure, Tayob and Murray (2016)

give guidance on selection of follow-up window start times t1, t2, . . . , tb based on the

special case where event-times follow an exponential distribution. In this case, an

analysis of their closed form asymptotic variance showed that, for a fixed number b of

incorporated windows, equal spacing of t1, t2, . . . , tb gave the smallest possible vari-

ability. For any fixed duration follow-up period, simulations also indicated increased

efficiency in estimation with increasing b, even though increases in b create increasing

amounts of overlap between a patient’s incorporated short-term follow-up windows.

However, Tayob and Murray (2016) found that increasing b beyond approximately

(2s−τ)/τ gave diminishing returns in efficiency; they ultimately recommended incor-

porating outcomes from follow-up windows starting after every τ
2

units of follow-up

time, i.e., t = {0, τ
2
, τ, . . . , s−τ}. For instance, with τ = 1 year and an interim analysis

3 years into the trial, we would incorporate information from 1-year duration follow-

up windows starting at t1 = 0, t2 = 0.5 years, t3 = 1 year, t4 = 1.5 years and t5 =

2 years.

2.4 More Than One Analysis at Calendar Times, s1, . . . , sK

At analysis time s, a decision to continue or end the clinical trial is based on

the standardized test statistic, T̃ (s), exceeding predetermined lower or upper critical

values (CVs), cL(s) and cU(s), respectively. When K > 1 analyses are planned, group

sequential methodology tells us that CVs, {cL(s1), cU(s1)} , . . . , {cL(sK), cU(sK)} ,

corresponding to test statistics, T̃K =
{

T̃ (s1), . . . , T̃ (sK)
}

, must be carefully chosen
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to preserve an overall type I error of α (Pocock , 1977; O’Brien and Fleming , 1979;

Demets and Lan, 1994).

CVs, {cL(sk), cU(sk)} , for the kth analysis (k = 1, . . . , K) can be calculated

from the multivariate distribution of T̃k. As shown in Appendices A.1 and A.2,

T̃k has a mean zero multivariate Normal distribution with k × k covariance ma-

trix Σ, where the diagonal elements are equal to one and the off-diagonal elements,

σk1k2 = σk2k1 , k1 < k2, can be estimated by

σ̂k1k2 ={π̂2(sk1)σ̃
2
1(sk1) + π̂1(sk1)σ̃

2
2(sk1)}−

1
2{π̂2(sk2)σ̂

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)}−

1
2

×
2∑
g=1

√
π̂3−g(sk1)π̂3−g(sk2)ψ̂g(sk1 , sk2)

( ng(sk1 )∑
i=1

{ng(sk1)− 1}−1

× [z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}] [zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
)

(2.2)

where π̂g, σ̂
2
g(sk2), zi{µ̂g(sk2 , τ)} and z̄{µ̂g(sk2 , τ)} have been defined in Section 2.3

with s = sk2 and ψ̂g(sk1 , sk2) = ng(sk1)/ng(sk2). The zij{µ̂g(sk1 , τ)} terms in σ̂2
g(sk1),

zi{µ̂g(sk1 , τ)} and z̄{µ̂g(sk1 , τ)} are replaced with

z̃ij{µ̂g(sk1 , τ)} =

τ∫
0

exp{−
u2∫

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[ u2∫
0

b∑
l=1

ng(sk2 )∑
i=1

I{Tgi ≥ u1 + tl}
ng(sk1 )∑
i′=1

I{Cgi′(sk1) ≥ u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj, u1)

{
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2

when calculating σ̃2
g(sk1), z̃i{µ̂g(sk1 , τ)} and ¯̃z{µ̂g(sk1 , τ)}.

Examples of calculating CVs based on the joint distribution of T̃k are described

further in Sections 2.4.1 and 2.4.2. Section 2.4.1 reviews how to calculate CVs based

on symmetric type I error spending functions that are in common use. In Section 2.4.2

we describe calculation of CVs based on asymmetric error spending approaches that
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differentially limit the chances of stopping incorrectly for perceived efficacy versus

harm attributed to the investigational arm.

2.4.1 Symmetric Spending Functions

Interim analysis CVs are often based on a monotonically increasing spending func-

tion, α(γ), 0 ≤ γ ≤ 1, with α(0) = 0 and α(1) = α, the desired overall type I

error. A valuable advantage of spending functions is increased flexibility in schedul-

ing interim analyses, for instance as prespecified accrual and follow-up targets are

met. Spending functions that approximate the Pocock (P) and the O’Brien-Fleming

(OF) approaches to type I error control are αOF (γ) = 2 − 2Φ(Z1−α/2/
√
γ) and

αP (γ) = α ln{1 + (e − 1)γ}, respectively. At interim analysis time s, γ is often

taken to be the proportion of available statistical information relative to the informa-

tion anticipated at the final analysis. Another common choice for γ is the proportion

of expired calendar time relative to the planned trial duration.

As a simple example of the OF spending function with α = 0.05, suppose K = 2

analyses are planned at s1 and s2. We choose to use symmetric bounds so that

cL(s1) = −cU(s1) and cL(s2) = −cU(s2). Further suppose that at s1, γ = 2
3
, giving

αOF (2
3
) = 0.016; at the final analysis time γ = 1 and αOF (1) = 0.05 by design. Since

under the null hypothesis T̃ (s1) has an approximate Normal(0,1) distribution, and

no type I error has been spent prior to s1, {cL(s1), cU(s1)} =
{
Z0.016/2,Z1−0.016/2

}
.

Calculation of {cL(s2), cU(s2)} is not as straightforward due to stochastic dependence

between T̃ (s1) and T̃ (s2). The symmetric OF spending function allows 0.05−0.016 =

0.034 type I error to be spent at the 2nd analysis, with 0.017 error allocated towards

incorrectly claiming a statistically significant treatment benefit and 0.017 error to-

wards incorrectly claiming statistically significant treatment harm.

Calculations for {cL(s2), cU(s2)} are only relevant when the trial continues beyond
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the first interim analysis (Z0.016/2 < T̃ (s1) < Z1−0.016/2) and need to satisfy:

Pr
{

T̃ (s2) /∈ (cL(s2), cU(s2)) | Z0.016/2 < T̃ (s1) < Z1−0.016/2, H0

}
=
Pr
{
Z0.016/2 < T̃ (s1) < Z1−0.016/2, T̃ (s2) /∈ (cL(s2), cU(s2))|H0

}
Pr
{
Z0.016/2 < T̃ (s1) < Z1−0.016/2|H0

}
=

0.034

1− 0.016
≈ 0.035.

Suppose the estimated correlation between T̃ (s1) and T̃ (s2), i.e. σ12, is 0.5.

Modern software packages can easily generate a large number of mean zero bivari-

ate normal iterates with correlation 0.5, {Zm(s1), Zm(s2)} ,m = 1, . . . ,M ; in sim-

ulation we used M=10 million. The desired CVs, cL(s2) = −cU(s2), satisfying

Pr{T̃ (s2) /∈ (cL(s2), cU(s2)) | Z0.016/2 < T̃ (s1) < Z1−0.016/2, H0} = 0.035 are cal-

culated by first subsetting the iterates who failed to reject at s1, i.e., the set S(s1) ={
m ∈ 1, . . . ,M : Z0.016/2 < Zm(s1) < Z1−0.016/2

}
. Then cU(s2) = −cL(s2) is the 1-

0.035=0.965 percentile of |Zm(s2)| iterates taken from S(s1).

The calculation of CVs in the general case with an arbitrary spending function

α(γ) is similar. At analysis time sk with γk, estimate Σk and generate M mean

zero multivariate normal iterates, {Zm(s1), . . . , Zm(sk)}, with correlation (covariance)

matrix Σk,m = 1, . . . ,M . Calculate the subset of iterates S(sk−1) that fail to reject

the null hypothesis at all previous interim analyses 1, . . . , k − 1. Then cU(sk) is

the 1 − α(γk)−α(γk−1)

1−α(γk−1)
percentile of |Zm(sk)| iterates taken from the set S(sk−1), and

cL(sk) = −cU(sk).

2.4.2 Asymmetric Type I Error Control and Patient Protection

Symmetric stopping boundaries make it equally difficult to reject the null hy-

pothesis due to treatment benefit or harm. These bounds are appropriate when trial

monitors are blinded to the identity of the superior treatment arm at each analysis.
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Modern Data and Safety Monitoring Committees are rarely blinded, however, and

in cases where the control is a viable therapeutic choice, there is additional motiva-

tion to end a trial where the investigational arm is trending towards harm. For the

remainder of this section we consider asymmetric stopping boundaries, classified as

efficacy, safety or futility bounds.

The priority of the efficacy stopping bound is to limit the clinical trial false positive

rate to α/2, where a false positive clinical trial is defined as a trial that incorrectly

stops in favor of the investigational arm. Typically we choose α/2 = 2.5% and

use a traditional spending function approach for this bound. This bound is tightly

linked to overall study power. When triggered, futility and safety bounds stop the

trial without favoring the investigational arm, but are motivated by different desired

operating characteristics of the trial.

The goal of a futility boundary is to terminate the trial once it seems unlikely

to end with statistical evidence favoring the investigational arm (Ware et al., 1985).

Criteria for defining a futility boundary are variable, chosen to have simulated op-

erating characteristics attractive to the trial sponsor and investigative team in the

trial’s design phase. Such boundaries are much more aggressive at ending an un-

promising trial than when compared to a symmetric stopping rule; trial sponsors

using a futility boundary avoid spending resources that prove their latest offering is

significantly worse than the current standard of care. Although this logic suggests

a cost-benefit motivation, such boundaries have the added attraction of stopping a

trial before even weak statistical evidence of harm attributed to the clinical trial has

been obtained. Further discussion of futility stopping boundaries with examples can

be found in Friedman et al. (2015); Harrington (2012). If the only goal of a clinical

trial is to move forward with a new therapeutic, the financial and ethical protection

afforded by futility boundaries are quite attractive.

The distinction we place between a safety boundary and a futility boundary is
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that safety boundaries never recommend ending a trial early if the investigational

arm is performing at the level of or superior to the control arm. Symmetric OF

and Pocock stopping rules include a boundary that can be classified as a safety

boundary, the boundary that ends the trial in favor of the control when crossed.

Hereafter, we refer to these as OF or Pocock safety boundaries. It is possible to mix

and match efficacy and safety boundaries using commercial software, for instance

an OF efficacy boundary may be paired with a Pocock safety boundary (Proschan

et al., 2006). Traditional type I error is maintained at level α, with α/2 type I error

generated from efficacy and safety boundaries, respectively. The OF efficacy bound

encourages additional follow-up time for collecting data on secondary endpoints when

the investigative arm is favored, while the Pocock safety boundary allows for an earlier

average stopping time when the treatment arm reflecting current medical practice is

favored.

In updating our own thoughts on safety boundaries, we note that (1) in the era

of big data (proteomics, genetics. microbiome, etc.), clinical trial auxiliary data is

tremendously valuable. Clean prospective longitudinal follow-up can generate pre-

liminary data on disease mechanism, therapeutics and personalized medicine, for a

start. For this reason, futility boundaries with very early termination of unpromising

therapies seem less appealing. However, (2) we feel uncomfortable with current OF

and Pocock safety boundaries that require statistically significant harm attributed to

the investigational therapy before stopping a trial.

For our own clinical trials, we have sought solutions via asymmetric boundaries in-

spired by Jennison and Turnbull with ideas incorporated from Proschan et al. as well

as DeMets and Lan (Jennison and Turnbull , 2000; Proschan et al., 2006; Demets and

Lan, 1994). In particular, we recommend a safety bound modified from a Jennison

and Turnbull (JT) spending function, αJT (γ) = γωαsafety, where γ is the propor-

tion of information at the interim analysis, ω > 0 is a user-defined shape parameter
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and αsafety > 0 is a user-specified overall error rate for exceeding the safety bound-

ary and stopping the trial under the null hypothesis. Our recommendation for ω

is log
{
α−1

safetyα/2
}
/log(γ1) with γ1 being the proportion of information at the first

analysis, which allows the trial to terminate at the first interim analysis time if the

test statistic indicates harm from the investigational therapy at the α/2 significance

level; hereafter we call this the JT safety boundary.

Figure 2.2 displays symmetric, futility and safety boundaries for a trial planning 5

interim analyses using a standardized test statistic; an OF efficacy bound with a 2.5%

false positive clinical trial rate is also shown. OF and Pocock safety boundaries are

also shown, where the overall probability of ending the trial incorrectly due to safety

is taken to be 2.5% for each of these boundaries. The displayed JT safety boundary

assumes αsafety = 0.20 and α/2 = 0.025, so that ω ≈ 1.29. The displayed Pampallona

and Tsiatis (PT) futility bound (Pampallona and Tsiatis , 1994) is the only bound

with potential to stop the trial while the investigational arm is performing at or above

the level of the control.

2.5 Simulation Study

In this section we summarize finite sample operating characteristics of our test

statistic, with τ = 1 year, against the most popular group sequentially monitored

tests: the logrank test and the restricted mean survival test (RMS). In Appendix

A.4 we summarize results for our test statistic (2.1) using alternative choices of τ =

0.25, 0.50 and 0.75 years as well as results for weighted logrank tests that use Peto

& Peto’s weight favoring early treatment differences and Fleming and Harrington’s

(0.5, 0.5) weight favoring late differences.

In each setting we use an OF efficacy bound with a 2.5% false positive clinical

trial rate. For safety, we consider (1) an OF safety boundary and (2) a Pocock safety

boundary, where each of these assume an overall 2.5% chance of ending the trial

24



●

●

●
●

●

1 2 3 4 5

−
4

−
2

0
2

4

Analysis Time, s

C
rit

ic
al

 V
al

ue

● OF Efficacy Bound
PT Futility Bound
JT Safety Bound
Pocock Safety Bound
OF Safety Bound
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incorrectly due to safety. And finally, we consider (3) a JT safety boundary assuming

αsafety = 0.20 and α/2 = 0.025.

Each scenario assumes a 5 year study with 100 participants per treatment arm; 50

participants per group are accrued at baseline with the remainder accrued uniformly

over 4 years. Interim analysis are conducted annually (K = 5). In addition to admin-

istrative censoring at each analysis time, we assume a loss-to-follow-up mechanism,

Vi = 5Bi + Ẽi × (1 − Bi), where Bi and Ẽi are distributed as Bernoulli(0.3) and

Exponential with hazard 0.3, respectively.

Event times are generated from exponential or piecewise exponential distributions.

In Scenario 1, both intervention and control arms have hazards of 0.5 throughout

follow-up (null hypothesis scenario). Scenarios 2-9, shown in Figure 2.3 with piece-

wise hazards superimposed over the various survival curves, consider proportional

hazard alternatives (Scenarios 2-3), delayed treatment effect alternatives (Scenarios

4-5), early treatment differences that attenuate over time (Scenarios 6-7) and alter-

natives subject to a cure pattern (Scenarios 8-9). Left and right panels of Figure 2.3

show scenarios where the investigational arm is beneficial or harmful, respectively;

asymmetric stopping rules have different operating characteristics depending on the

benefit/harm profile of the investigational arm.

Tables 2.1 and 2.2 summarize group sequential operating characterics in Scenarios

1 though 9. Table 2.1 shows rates of stopping for perceived efficacy, i.e. study power,

(column 3) or a perceived safety signal (columns 4-6). Table 2.2 shows the average

study time (AST), the average sample number (ASN) and the average number of

events (ANE) for each scenario. For improved precision, scenario 1 includes 10,000

iterations; scenarios 2-9 include 1,000 iterations.

Table 2.1, Scenario 1, shows that under the null hypothesis, all of the estimated

efficacy and safety stopping rates meet their corresponding design targets within our

tolerance for simulation error, where these targets were 0.025 for the OF Efficacy
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Scenario Test Statistic OF Efficacy JT Safety P Safety OF Safety
Proposed 0.022 0.198 0.026 0.025

1 RMS 0.023 0.198 0.027 0.027
Logrank 0.022 0.193 0.022 0.024
Proposed 0.807 0.002 0 0

2 RMS 0.816 0.001 0 0
Logrank 0.820 0.001 0 0
Proposed 0 0.982 0.790 0.838

3 RMS 0 0.980 0.786 0.852
Logrank 0 0.987 0.799 0.849
Proposed 0.855-0.863 † 0.021 0.007 0.001

4 RMS 0.715-0.722 † 0.034 0.010 0
Logrank 0.745-0.749 † 0.026 0.007 0
Proposed 0 0.979 0.787 0.860

5 RMS 0 0.939 0.619 0.731
Logrank 0 0.959 0.642 0.765
Proposed 0.761 0 0 0

6 RMS 0.802 0 0 0
Logrank 0.781 0 0 0
Proposed 0 0.960 0.709 0.738

7 RMS 0 0.965 0.736 0.786
Logrank 0 0.971 0.730 0.764
Proposed 0.884 0 0 0

8 RMS 0.771 0.001 0 0
Logrank 0.863 0 0 0
Proposed 0 0.989 0.847 0.885

9 RMS 0 0.955 0.727 0.770
Logrank 0 0.983 0.826 0.871

Table 2.1: Rates of Stopping for Efficacy (OF Efficacy), i.e. Study Power, or for Safety
(JT Safety, P Safety, OF Safety)

† There is potential for OF efficacy rates to be affected by the safety boundary used, for

instance when an efficacy boundary would have been crossed if not for an earlier safety

boundary being crossed. This was only observed in Scenario 4 of our simulations. In this

scenario we give a range of observed OF efficacy stopping rates for each test statistic, where

the lower OF efficacy stopping rate shown corresponds to use of the JT safety boundary

(most strict safety boundary) and the higher OF efficacy stopping rate shown corresponds

to the OF safety boundary (least strict safety boundary).
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AST ASN ANE
Scenario Test Statistic JT P OF JT P OF JT P OF

Proposed 4.7 4.9 5.0 195 199 200 156 163 164
1 RMS 4.6 4.9 5.0 195 199 200 156 163 164

Logrank 4.7 4.9 5.0 195 199 200 156 164 165
Proposed 3.7 3.7 3.7 185 185 185 143 143 143

2 RMS 3.7 3.7 3.7 184 184 184 142 142 142
Logrank 3.7 3.7 3.7 185 185 185 143 143 143
Proposed 2.1 3.0 3.6 151 169 184 93 121 142

3 RMS 2.1 3.1 3.6 151 170 183 93 123 141
Logrank 2.0 3.0 3.6 149 169 184 90 121 141
Proposed 3.7 3.8 3.8 187 188 188 132 134 134

4 RMS 4.2 4.3 4.3 193 195 196 143 146 147
Logrank 4.0 4.1 4.1 191 192 193 140 142 143
Proposed 2.8 3.8 3.9 169 185 189 108 132 137

5 RMS 3.4 4.3 4.3 180 193 195 123 146 147
Logrank 3.0 4.1 4.2 173 189 193 113 140 144
Proposed 3.7 3.7 3.7 184 184 184 143 143 143

6 RMS 3.6 3.6 3.6 183 183 183 141 141 141
Logrank 3.7 3.7 3.7 184 184 184 143 143 143
Proposed 2.2 3.2 3.8 153 171 185 96 126 145

7 RMS 2.2 3.2 3.6 153 171 183 96 126 142
Logrank 2.1 3.1 3.7 150 170 184 92 124 143
Proposed 3.4 3.4 3.4 181 181 181 128 128 128

8 RMS 3.7 3.7 3.7 183 183 183 132 132 132
Logrank 3.5 3.5 3.5 182 182 182 130 130 130
Proposed 2.1 3.0 3.5 152 169 182 92 113 130

9 RMS 2.2 3.2 3.7 154 172 184 94 118 133
Logrank 2.0 3.0 3.6 150 169 183 90 113 131

Table 2.2: Average Study Time (AST) in Years, Average Sample Number (ASN) and
Average Number of Events (ANE) in Scenarios 1 - 9
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boundary, 0.20 for the JT safety boundary and 0.025 for the OF and Pocock safety

boundaries. The JT safety boundary ends the trial more frequently (Table 2.1) and

earlier (AST in Table 2.2) than either the Pocock or OF safety boundaries in Scenario

1. Regardless of the test statistic used, the JT safety boundary tends to end the trial

0.3-0.4 years earlier with 5 fewer patients enrolled and 7-9 fewer events observed (See

AST, ASN and ANE, respectively in 2.2).

Regardless of test statistic used, in scenarios where the investigational drug is

harmful (Scenarios 3, 5, 7, and 9), the JT safety boundary reaches a safety signal at

a much higher rate than its competitor safety bounds (Table 2.1) and with a much

smaller AST, ASN and ANE (Table 2.2). In scenarios where the investigational drug

is beneficial (scenarios 2, 4, 6 and 8), the additional safety conferred by use of the JT

bound does not reduce study power except very modestly in scenario 4, where the

treatment benefit does not emerge until after the first interim analysis. In this one

case, less than a percentage point of simulated power is lost when using the JT safety

boundary compared to the other safety boundaries.

For proportional hazards scenarios (Table 2.1, Scenarios 2-3), all three test statis-

tics have comparable probabilities of stopping for efficacy (Scenario 2) or safety (Sce-

nario 3), with the logrank test edging out its competitors very slightly. Table 2.2,

likewise, gives very similar AST, ASN and ANE results for the three test statistics.

In Scenarios 4-5, where there is a delayed treatment effect, the proposed statistic

has at least 10% higher power (Scenario 4, Table 2.1) with a better safety profile

(Scenario 5, Table 2.1) compared with both the logrank and RMS tests. Modest

improvements in AST, ASN and ANE are also attributed to use of the proposed test

statistic (Scenarios 4-5, Table 2.2).

In Scenarios 6-7, where an early treatment difference emerges but becomes atten-

uated over time, power increases by approximately 2 percentages points when moving

from the proposed to the logrank test, and from the logrank to the RMS test (Sce-
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nario 6, Table 2.1). Safety profiles, AST, ASN and ANE likewise slightly favor the

RMS procedure over the logrank and proposed test, respectively (Scenario 7, Tables

2.1 and 2.2).

In Scenarios 8-9, where a cure pattern emerges during the trial, the proposed

test statistic has approximately 2% and 10% higher power than the logrank and

RMS tests, respectively (Scenario 8, Table 2.1). Safety profiles shown for Scenario 9

in Table 2.1 likewise reflect a slight improvement over the logrank test and a large

improvement over the RMS test. AST, ASN and ANE results, however, show only

minimal differences (Scenario 8-9, Table 2.2).

2.6 Example

Fischl et al. (1990), on behalf of the AIDS Clinical Trials Group (ACTG), ran-

domized 524 patients to high-dose (n=262) versus low-dose (n=262) azidothymidine

(AZT). The standard, higher AZT dose succeeded in reducing mortality but came

with substantial toxicity. Investigators hoped that the lower dose would reduce toxic-

ity while maintaining the survival benefit. Figure 2.4(a) displays the average number

of additional days lived per year when taking low versus high dose AZT, estimated

using our methodology with τ = 1 year, at analysis times in 1987, 1988, 1989 and

1990. Although validity of our testing procedure does not require a stable treatment

effect over time, the low-dose AZT benefit appears approximately stable at each anal-

ysis. Using our proposed group sequentially monitored test statistic, the OF efficacy

boundary is crossed at the 1990 analysis with the low dose group living an estimated

10.7 days longer per year than the high dose group. The JT safety boundary ensures

early trial termination if the experimental low-dose trends towards higher mortality,

but this boundary was not crossed. Appendix A.5 summarizes how group sequentially

monitored logrank and RMS tests performed in this case. As seen in Figure 2.4(b),

there was a delayed treatment effect that perhaps favored our methodology as com-

31



−4
0

−2
0

0
20

40

Calendar Analysis Time (Year)

Da
ys

 S
av

ed
 p

er
 Y

ea
r

1987 1988 1989 1990

● ● ● ●

● Days Saved per Year
OF Efficacy Bound
JT Safety Bound

1987 1988 1989 1990

Days Saved per Year 9.9 10.7 11.7 10.7

OF Efficacy Bound (Days) 40.3 18.4 12.3 10.1

JT Safety Bound (Days) -20.2 -11 -7.2 -5.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years

Su
rv

iva
l

Low Dose
Standard Treatment

(a)
Estimated Days Saved Per Year Using Low 

Versus High Dose AZT

(b)

Kaplan-Meier Curves of by the End of the Study

Figure 2.4: Figures in Example: (a) Estimated Days Saved Per Year Using Low Ver-
sus High Dose AZT; (b) Kaplan-Meier Curves of by the End of the Study

pared to the logrank and RMS methods. Neither of these competitors recommended

stopping before the 1990 analysis time.

2.7 Discussion

There are a good many nonparametric group sequential monitoring methods avail-

able for censored time-to-event outcomes in clinical trials, the logrank test and the

RMS test among the most popular, and so a natural question is what the proposed

test statistic offers clinical trial researchers that the others do not. We see both

philosophical and operational advantages to this statistic being used in practice. The

philosophical argument hinges on the idea that times-to-event can be repurposed into

a longitudinal data structure, with repeated measures within individual measured reg-

ularly throughout follow-up. Each τ -restricted time-to-event carved from the overall

follow-up time can be thought of as a longitudinal measure in this philosophy. Tayob

and Murray (2016) proposed an improved estimate of τ -restricted means based on this
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idea and showed that τ -length follow-up windows starting every τ/2 time units apart

give attractive efficiency in estimating restricted means without unduly increasing

computational time in creating these longitudinal measures. They extended this idea

to the parametric setting in Tayob and Murray (2017), multiply imputing censored

event times and then using standard generalized estimating equation methods for

analyzing the longitudinal restricted event times. There is great potential in shifting

our thoughts on censored times-to-event towards longitudinal data structures and the

available methodology this shift entails.

In this chapter, we develop a two-sample test statistic based on comparing τ -

restricted means as introduced in Tayob and Murray and we further develop group

sequential monitoring methodology for using the test statistic in standard clinical

trial settings where interim monitoring is common. The validity of the proposed

testing procedure does not hinge upon stability of τ -restricted means in the different

follow-up windows; the type I error is preserved regardless of the true event-time

distribution. In scenarios where τ -restricted means are not stable over time, the test

statistic compares overall τ -restricted means of mixture distributions that result from

combining information from overlapping follow-up windows.

Event rates that shift year-by-year affect the power of all two sample testing

procedures. It is well known that non-proportional hazards plague the power of

the logrank test. Restricted mean differences also change as the period of follow-up

lengthens, with differences becoming larger or smaller as event rates shift over time.

As with all two-sample tests, as data accumulates, so does our interpretation of the

data and the power of the testing procedure. The main concern in choosing any two-

sample test statistic is whether authentic treatment differences can be detected with

high power.

Our proposed method performs well not only in scenarios where short-term differ-

ences are anticipated to be stable, but also in settings that it may be hard to anticipate
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in the design stage of a clinical trial. We find it comforting that our methodology

compares favorably to its competitors in proportional hazards settings, and has a

notably improved performance in settings where treatment differences emerge only

after a certain period of time or in settings where there is potential for cure.

Simulations suggest that shifting towards a longitudinal view of censored survival

outcomes has practical advantages in group sequential monitoring of clinical trials.

The feature of overlapping follow-up windows used in creating repeated τ -restricted

event times subject to censoring is reminiscent of smoothing methods in graphical

displays of longitudinal data.

An additional contribution of this chapter is an updated look at safety boundaries

in the group sequential setting and a new recommendation for the shape parameter

ω used with the JT spending function. Our recommended shape boundary allows

the first interim analysis to reject if the standardized normal test statistic exceeds

the safety boundary of -1.96, which clinical investigators have been hard-wired to

associate with statistical significance. Data and safety monitoring committees are

likely to feel uncomfortable continuing a trial that exceeds this critical value and yet

for many years biostatisticians have taught investigators the consequences of using

traditional significance levels in the group sequential setting in terms of inflated type

I errors. This chapter emphasizes the idea that type I error inflation has different

consequences for the efficacy boundary as opposed to the safety boundary. We argue

that is is possible to maintain an overall false positive trial result to an α/2 level

using an appropriate efficacy boundary and separately strategize a stopping rule that

protects safety without unduly reducing power of the study. Our recommended vari-

ant of the JT safety bound achieves this goal with remarkable effectiveness as seen in

simulation. We ultimately recommend use of our proposed test statistic in the group

sequential setting using OF efficacy and our JT safety boundaries.
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CHAPTER III

Nonparametric Group Sequential Methods for

Recurrent and Terminal Events from Multiple

Follow-up Windows

3.1 Introduction

Consider the typical setting for a two-arm clinical trial of a chronic, slowly pro-

gressing terminal disease. Several lung diseases fall into this category including Inter-

stitial Pulmonary Fibrosis (IPF), Chronic Obstructive Pulmonary Disease (COPD)

and Cystic Fibrosis (CF), among others. Pulmonary exacerbations are a common

recurrent event subject to termination by death in these patients. The Azithromycin

in COPD Trial (NACT) is one of many clinical trials with follow-up of such events.

More generally, patients may experience a mixture distribution of important, poten-

tially recurring, signals of disease progression during follow-up. In IPF studies, for

example, patients are considered progressors if they experience an acute exacerbation,

a 10% decline in forced vital capacity (FVC), a 15% decline in diffusing capacity of

the lung for carbon monoxide (DLCO), lung transplantation or death, where these

latter two events are each considered terminal for lung outcome follow-up. Clinical

research design is often based on time to the first occurrence of a recurrent event or

the first event from a list of potentially recurring progression outcomes.
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Figure 3.1: An Example IPF Patient from COMET Study.

There are advantages and disadvantages to following only the first time-to-event.

The most obvious advantage is the existence of several methods for group sequential

clinical trial design and analysis of censored survival data that are applicable to

a single time-to-event or time-to-combined-endpoint. (Tsiatis , 1982; Murray and

Tsiatis , 1999; Li , 1999b; Logan and Mo, 2015) An obvious disadvantage, however,

is the loss of information from ignoring progression events after the first that occurs

for each patient. Consider Figure 3.1, which shows progression endpoints from an

IPF patient followed as part of the COMET study (Correlating Outcome Measures

to Estimate Time to progression in IPF) (Ashley et al., 2016). This patient’s first

observed progression endpoint involves a decline in DLCO. An analysis based only

on the first time-to-combined endpoint will ignore information on the subsequent

progression endpoints, acute exacerbation and death.

Although there are several available methods for conducting two-sample tests of

recurrent event data when a single analysis is conducted (based on, for example,

Prentice et al. (1981), Andersen and Gill (1982), Lin et al. (2000), Ghosh and Lin

(2000) or Tayob and Murray (2014)), there is little available methodology for con-

ducting group sequential analysis in this setting. Cook and Lawless (1996) developed

group sequential methods for pseudo-score statistics monitored over time, which are

framed to perform well when the cumulative mean number of events are proportional

over time. Cook et al. (2010) later extended this method to settings with multiple

treatment periods. Jiang (1999) developed group sequential analysis methods for

recurrent events assuming local Poisson processes that allow event rates to change
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over time, and incorporated a frailty parameter to address correlation between event

times rather than accounting for this correlation nonparametrically.

In this chapter, we develop group sequential methods for monitoring the Tayob

and Murray statistic (Tayob and Murray , 2014) for nonparametric analysis of recur-

rent events subject to a terminating event. In framing their statistic, recurrent event

outcomes are restructured into a series of censored longitudinal times-to-first-event in

regularly spaced short-term (length τ) follow-up windows for each patient. Their test

then compares the difference between overall τ -restricted mean event-times between

groups. In the case of a single analysis, Tayob and Murray demonstrated nice operat-

ing characteristics of their statistic in analyzing a mixture of recurrent and terminal

events, with superior performance to methods of Lin et al. (2000) and Ghosh and

Lin (2000) when recurrent and terminal events were correlated. The development of

group sequential methods for this nonparametric statistic will improve the current

arsenal of statistical methods for clinical trial monitoring.

The remainder of this chapter is organized as follows. Section 3.2 defines notation

required to repurpose traditional recurrent events data available at analysis time s

into a series of censored longitudinal times-to-first event in regularly spaced short-

term (length τ) follow-up windows for each patient. Section 3.3 briefly reviews the

Tayob and Murray two-sample testing procedure in the case of a single analysis.

Section 3.4 extends methodology to the group sequential setting. Section 3.5 describes

simulated operating characteristics of our method compared to that of Cook and

Lawless (1996). We demonstrate the method using data from the Azithromycin in

COPD Trial. Discussion follows in Section 3.7.

3.2 Notation

We borrow notation from Tayob and Murray (2014), additionally embedding a

’calendar time’ scale parameter, s, to allow for terms that change according to analysis
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time. For simplicity, we assume that s indexes time from initiation of the overall

study rather than an actual calendar date. Patient entry times and interim analysis

times are both described on this time scale. A separate ’study time’ scale, indexed

by t, denotes time from a participant’s entry to the study. Participants’ time at

risk, duration of follow-up as well as times to recurrent and terminating events are

measured on this time scale.

We temporarily submerge notation corresponding to treatment group g, initially

focusing on the one-sample case. Suppose i = 1, . . . , N patients enter a clinical trial

at calendar times E1, E2, ..., EN . Interim analyses of accumulated data are planned at

calendar times, s = s1, s2, ..., sK . Let n(s) =
∑N

i=1 I(Ei ≤ s) index the number of ac-

crued individuals at interim analysis time, s, with n(s) = N for s ≥ max(E1, . . . , EN).

Recurrent events for individual i occur at times Ti1 < Ti2 < · · · < TiJi−1 on the

study time scale, with a terminating event at time TiJi . For each individual, i, Vi is

a loss-to-follow-up time measured from study entry. The censoring random variable

that also incorporates administrative censoring, Ci(s) = min(Vi, s − Ei), updates at

each analysis time, s. Recurrent and terminal events for participant i are subject

to independent censoring by Ci(s). However, an arbitrary dependence structure is

allowed between all events Tij1 and Tij2 , j1 6= j2, taken from patient i. In particular,

the multivariate distribution of gap times for each patient i, {Ti1, Ti2−Ti1, . . . , TiJi−1−

TiJi−2}, is not constrained to an independent covariance structure.

Traditionally observed data for patients accrued prior to analysis time s is recorded

as Xij(s) = min{Tij, Ci(s)}, j = 1, . . . , J̃i(s) and δij(s) = I{Tij ≤ Ci(s)}, j =

1, . . . , J̃i(s), where J̃i(s) ≤ Ji is the number of observed event times. However,

the Tayob and Murray statistic reorganizes the observed data into τ -length, po-

tentially overlapping, follow-up windows starting at regularly-spaced study times

t ∈ {t1, t2, . . . , tb} with t1 = 0 and b chosen so that tb does not exceed the avail-

able follow-up at analysis time s. Within each τ -length follow-up window, the first
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τ -restricted time-to-event is recorded, along with the corresponding censoring indica-

tor.

For each individual i, a notational bookkeeper that updates at each analysis time

s, ηi(s, t) = min{j = 1, . . . , J̃i(s) : Xij(s) ≥ t}, indexes the time-to-first-event in a

follow-up window starting at t from the original sequence of observed events. Using

this index simplifies notation for the time-to-first event in this window at analysis time

s, Xi(s, t) = Xiηi(s,t)(s)− t and its corresponding failure indicator δi(s, t) = δiηi(s,t)(s).

Tayob and Murray discuss advantages of this data restructuring at length. In

short, a rather complex correlated gaptime data structure that is subject to dependent

censoring by Ci(s) is converted to a well-behaved longitudinal outcomes dataset that is

subject to independent censoring by Ci(s). One feature that emerges as a consequence

of this data restructuring is the possibility that a recurrent event is tagged in more

than one follow-up window for analysis. Hence careful attention to the correlation

structure that takes this additional complexity into account is implemented. There is

also the possibility of a recurrent event being excluded from the analysis, which can

be mitigated by more frequently spaced window start times, t.

In a special case with exponentially distributed gap times between events, Xia

and Murray (2018) quantified the average proportion of recurrent events captured in

at least one follow-up window when traditional recurrent event data is restructured

in the manner of Tayob and Murray. This proportion approaches one as the equal

spacing between follow-up window start times, a = tj − tj−1, j = 2, . . . , b, approaches

zero. However, the computational burden associated with very small a led to their

recommendation that a be a fraction of the anticipated mean recurrent event time

in the control group. In particular, their rule of thumb suggested a = 1/2 or 1/3 of

the control group mean recurrent event time would tend to capture 80% and 90% of

the events, respectively, in the case of exponentially distributed gap times between

events.
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Figure 3.2: An Example IPF Patient from COMET Study with Different Setups of
Follow-up Windows

To solidify some of the notation presented above, consider Figures 3.2 and 3.3. In

Figure 3.2, which is indexed by study time, different spacing of follow-up windows

(a = 50, 100 and 200 days) are shown for the example COMET patient previously

mentioned in the introduction. The choice of a = 200 days results in two observed

events being included in the analysis, the DLCO decline at 105 days and the acute

exacerbation at 298 days. However the death at 331 days is overlooked in the analysis

since it is not the first event to be observed in either of the follow-up windows starting

at zero or 200 days. Both a = 50 and a = 100 days capture all three events in the

analysis.

Moving forward with a = 100 in Figure 3.3, and superimposing calendar time s in

addition to study time t, we see the patient entering the study at Ei = 15 days from

the initiation of the study in calendar time. The first interim analysis is conducted at

s1 = 157 days in calendar time, at which time only a single event has been observed

at Ti1 = 105 days from study entry. The patient’s data is administratively censored

at Ci(157) = 142 days. The traditional version of the recurrent events data at this

analysis time is {[Xi1(157) = 105, δi1(157) = 1]; [Xi2(157) = 142, δi1(157) = 0]}, so
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Figure 3.3: Notation for an Example Individual, with Random Variables Given in
Detail.

that J̃i(157) = 2. At analysis time s1 = 157 days, the longitudinal data structure

imposed by Tayob and Murray has two data triplets from follow-up windows start-

ing at t = 0 and t = 100: {ηi(157, 0) = 1, Xi(157, 0) = 105, δi(157, 0) = 1} and

{ηi(157, 100) = 1, Xi(157, 100) = 5, δi(157, 100) = 1}, so that the Ti1 = 105 event is

captured as the first observed event in each of these two follow-up windows.

At the second analysis time at s2 = 369 days, administrative censoring for pa-

tient i is updated to Ci(369) = 354. The traditional recurrent events data be-

comes {[Xi1(369) = 105, δi1(369) = 1]; [Xi2(369) = 298, δi2(369) = 1]; [Xi3(369) =

331, δi3(369) = 1]}, so that J̃i(369) = 3. The restructured longitudinal dataset in-

cludes data from 4 follow-up windows starting at t = 0, 100, 200 and 300 yielding

the data triplets {[ηi(369, 0) = 1, Xi(369, 0) = 105, δi(369, 0) = 1]; [ηi(369, 100) = 1,

Xi(369, 100) = 5, δi(369, 100) = 1]; [ηi(369, 200) = 2, Xi(369, 200) = 98, δi(369, 200) =

1]; [ηi(369, 300) = 3, Xi(369, 300) = 31, δi(369, 300) = 1]; }.

We now define the counting and at risk processes corresponding to the restructured
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longitudinal dataset at interim analysis time, s. For a follow-up window starting at

time t, u indexes time from t in that window. For any individual i with Ei < s,

Ni(s, t, u) = I{Xi(s, t) ≤ u, δi(s, t) = 1} is the event counting process for the time

to first event in the follow-up window starting at time t. The corresponding at

risk process is Yi(s, t, u) = I{Xi(s, t) ≥ u}. Let N(s, t, u) =
∑n(s)

i=1 Ni(s, t, u) and

Y (s, t, u) =
∑n(s)

i=1 Yi(s, t, u) sum these processes across individuals entered by interim

analysis time s.

At interim analysis s, let Ni(s, u) =
∑b

j=1Ni(s, tj, u) count the observed times-to-

first-event across the b follow-up windows attributed to individual i that are seen prior

to window time u; the corresponding at risk process is Yi(s, u) =
∑b

j=1 Yi(s, tj, u).

Pooling time-to-first event data across all follow-up windows and all individuals ob-

served at interim analysis time s, we define N(s, u) =
∑n(s)

i=1 Ni(s, u) and Y (s, u) =∑n(s)
i=1 Yi(s, u).

It will be convenient to also index hazard functions according to the three time

indices {s, t, u}. At analysis time s, let hazard function

λ(s, t, u) = lim
∆u→0

[Pr{u ≤ Xi(s, t) < u+ ∆u, δi(s, t) = 1|Xi(s, t) ≥ u}/∆u].

The index, s, can be dropped as superfluous in the first term, i.e., λ(s, t, u) = λ(t, u).

This is not true for the hazard function corresponding to the mixture distribution of

times-to-first event contributed from the various follow-up windows from individuals

at analysis time s, λW (s, u).

λW (s, u) =

∑b
j=1 λ(s, tj, u)Pr{Xi(s, tj) ≥ u}∑b

l=1 Pr{Xi(s, tl) ≥ u}
.

Because λW (s, u) is a function of Pr{Xi(s, t) ≥ u}, this term can potentially change

as more follow-up information accumulates at later interim analyses.
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3.3 Nonparametric Two-sample Tests for Recurrent Events

and Terminal Events at Single Analysis Time

In this section, we review the Tayob and Murray test statistic, introducing ad-

ditional notation for when a single analysis is performed at, say, calendar time s.

Subscripts g = 1, 2, indicate treatment group when used with notation from the last

section. Throughout the following, random variables from different treatment groups

are assumed to be independent of one another. Later in section 3.4, we extend these

methods to the case where more than one analysis is performed at calendar times

s1, s2, . . . , sK in the group sequential clinical trial setting.

The estimated overall τ -restricted mean time-to-first-event for treatment group g

based on the restructured longitudinal dataset available at analysis time s is

µ̂g(s, τ) =

τ∫
0

exp

−
u2∫

0

dNg(s, u1)

Yg(s, u1)

 du2,

which consistently estimates the mean of this mixture distribution of τ -restricted

times-to-first-event, i.e., µg(s, τ) =
∫ τ

0
exp

{
−
∫ u2

0
λWg (s, u1)du1

}
du2.

Let πg(s) be the proportion of individuals in group g at analysis time s, with

consistent estimate π̂g(s) = ng(s)/{n1(s) + n2(s)}. At analysis time, s, the Tayob

and Murray statistic tests the null hypothesis, H0 : µ1(s, τ) = µ2(s, τ), using

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)},

which under H0 converges asymptotically to a mean zero Normal distribution with

variance

π2(s)σ2
1(s) + π1(s)σ2

2(s),
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where

σ̂2
g(s) =

ng(s)∑
i=1

[zi{µ̂g(s, τ)} − z̄{µ̂g(s, τ)}]2/[ng(s)− 1],

zi{µ̂g(s, τ)} =
b∑
l=1

zil{µ̂g(s, τ)},

z̄{µ̂g(s, τ)} =

ng(s)∑
i=1

zi{µ̂g(s, τ)}/ng(s)

and zil{µ̂g(s, τ)} =

τ∫
0

exp

−
u2∫

0

dNg(s, u1)

Yg(s, u1)




u2∫
0

dNgi(s, tl, u1)− Ygi(s, tl, u1)dNg(s,u1)

Yg(s,u1)

Yg(s, u1)/ng(s)

 du2. (3.1)

An approximate 1−α level confidence interval for the average treatment difference

in τ -restricted times-to-first-event, µ1(s, τ)− µ2(s, τ), becomes

{µ̂1(s, τ)− µ̂2(s, τ)} ± Z1−α/2 ×
√
σ̂2

1(s)/n1(s) + σ̂2
2(s)/n2(s),

where Z1−α/2 is the 100× (1− α/2)% quantile of the standard Normal distribution.

For finite sample sizes and a single planned analysis at time s, the standardized test

statistic

T̃ (s) =
T (s)√

π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s)
=

√
n1(s)n2(s)

n2(s)σ̂2
1(s) + n1(s)σ̂2

2(s)
{µ̂1(s, τ)− µ̂2(s, τ)}

follows an approximate Normal(0,1) distribution, with critical values of ± 1.96 con-

ferring an overall type I error of 5%.

3.4 More Than One Analysis at Calendar Times, s1, s2, . . . , sK

In this section, we extend methodology for the Tayob and Murray statistic to the

group sequential setting. At each analysis time s the standardized test statistic, T̃ (s),
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is evaluated and a decision to either end the trial early or continue is made based on

upper and lower critical values, cL(s) and cU(s), respectively. With K > 1 planned

analyses, critical values {cL(s1), cU(s1)} , . . . , {cL(sK), cU(sK)} corresponding to test

statistics, T̃K =
{

T̃ (s1), . . . , T̃ (sK)
}

, must be carefully chosen to preserve an overall

type I error of α (Pocock , 1977; O’Brien and Fleming , 1979). Type I error spending

functions are the most common approach for designating type I error to be used at

interim analyses so that no more than α type I error is used throughout the clinical

trial (Lan and DeMets , 1983; Demets and Lan, 1994). The O’Brien-Fleming (OF)

spending function, αOF (γ) = 2 − 2Φ(Z1−α/2/
√
γ), proposed by Lan and DeMets is

the most common spending function used in practice, although the only requirement

for a spending function, α(γ), is that it be monotonically increasing over (0, α) as γ

increases from zero to one.

Information-based type I error spending takes the spending function parameter,

γ, to be the proportion of statistical information available at interim analysis time

sk relative to the information that will be available at the final analysis at time sK ,

k = 1, . . . , K. To our knowledge, the two-sample logrank test is the only group

sequentially monitored statistic for time-to-event data where this information pro-

portion reduces to a simple calculation; in this case γ is a ratio of observed events at

sk to the number of events used in powering the study. For the Tayob and Murray

statistic, the proportion of information at analysis time sk is V arT (sK)/V arT (sk),

where V arT (sK) can be estimated via simulation using distributional and design

assumptions used in powering the trial.

A common simplistic surrogate for statistical information is to use the proportion

of calendar time that has passed at analysis time s relative to the planned duration of

the trial. The method for estimating γ at each analysis time may affect study power,

but typically to a less extent than the choice of spending function (Lan and DeMets ,

1989). For simplicity, we use the calendar time surrogate for statistical information
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in our simulation and example sections. The type I error level is maintained for any

spending function where at the final analysis, γ = 1.

Derivation of critical values for the kth interim analysis also requires knowledge

of the multivariate distribution of T̃k =
{

T̃ (s1), . . . , T̃ (sk)
}

, (k = 1, . . . , K). Let

Σk be the k × k covariance matrix for T̃k, so that the kst1 , k
nd
2 element σk1k2 of this

matrix is Cov
{

T̃ (sk1), T̃ (sk2)
}
, k1, k2 ≤ k. Because each test statistic has already

been standardized to have variance 1.0, Σk is also a correlation matrix for T̃k. In

Appendix B.1 we prove that the multivariate distribution of T̃k is a mean zero Normal

distribution with elements σk1k2 of its covariance matrix Σk that can be estimated

with

σ̂k1k2 ={π̂2(sk1)σ̃
2
1(sk1) + π̂1(sk1)σ̃

2
2(sk1)}−

1
2{π̂2(sk2)σ̂

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)}−

1
2

×
2∑
g=1

√
π̂3−g(sk1)π̂3−g(sk2)ψ̂g(sk1 , sk2)

( ng(sk1 )∑
i=1

{ng(sk1)− 1}−1

× [z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}] [zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
)

(3.2)

where π̂g, σ̂
2
g(sk2), zi{µ̂g(sk2 , τ)} and z̄{µ̂g(sk2 , τ)} have been defined in Section 3.3,

and are estimated here using data available at s = sk2 . We also define ψ̂g(sk1 , sk2) =

ng(sk1)/ng(sk2) and

z̃ij{µ̂g(sk1 , τ)} =

τ∫
0

exp{−
u2∫

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[ u2∫
0

b∑
l=1

ng(sk2 )∑
i=1

I{Tgi ≥ u1 + tl}
ng(sk1 )∑
i′=1

I{Cgi′(sk1) ≥ u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj, u1)

{
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2.
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So that we replace the zij{µ̂g(sk1 , τ)} terms in σ̂2
g(sk1), zi{µ̂g(sk1 , τ)} and z̄{µ̂g(sk1 , τ)}

with z̃ij{µ̂g(sk1 , τ)} to obtain σ̃2
g(sk1), z̃i{µ̂g(sk1 , τ)} and ¯̃z{µ̂g(sk1 , τ)}. The purpose

of these latter substitutions is to estimate quantities that are not parameterized for a

particular analysis time s with the more complete data available at the latter analysis

time, sk2 .

Estimation of null hypothesis percentiles involved in critical value calculations

can be accommodated using either numerical integration techniques applied to the

joint null hypothesis distribution or simulation techniques based on multivariate

replicates from this joint distribution. For instance, suppose an OF spending func-

tion is chosen with spending function parameters (γ1, . . . , γk−1) at analysis times

(s1, . . . , sk−1). At analysis time sk, the upper critical boundary, cU(sk), is based on

the 1 − αOF (γk)−αOF (γk−1)

1−αOF (γk−1)
percentile of the null hypothesis conditional distribution

of |T̃ (sk)| given critical boundaries were not crossed at prior interim analyses by

T̃ (s1), . . . , T̃ (sk−1). For symmetric critical boundaries we use cL(sk) = −cU(sk).

In simulation and example sections of this chapter, critical boundaries are simu-

lated. In particular, for critical values at analysis time sk, we generate H = 1 million

mean zero multivariate normal iterates, {Zh(s1), . . . , Zh(sk)} , h = 1, . . . , H, with cor-

relation (covariance) matrix Σk. Among the subset, S(sk−1), of these iterates that

fail to reject the null hypothesis at previous analyses from s1 to sk−1, we estimate

cU(sk) = −cU(sk) with the 1 − αOF (γk)−αOF (γk−1)

1−αOF (γk−1)
percentile of |Zh(sk)|. In our simu-

lations, H = 1 million successfully estimated the very small percentiles used by the

OF spending function.

3.5 Simulations

Simulations were conducted to compare operating characteristics in the group

sequential setting for (1) the Tayob and Murray (2014) (TM) test using our proposed

methodology with τ = 12 months, (2) the Cook and Lawless (1996) (CL) cumulative
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mean test and (3) a logrank (LR) analysis of the first time-to-event. Each tabulated

result is based on 1000 iterations of the simulation approaches described below.

We assume a 48-month clinical trial with annual interim analyses scheduled at

s = {12, 24, 36, 48} months from the start of the study. One hundred patients per

treatment group are enrolled, half at baseline, with the remainder accrued uniformly

over the first 24 months. Participants are administratively censored according to the

analysis time, with no additional loss-to-follow-up otherwise. An O’Brien-Fleming

(OF) type I error spending function is used to determine group sequential stopping

rules with an overall type I error of 0.05, where the spending function parameter,

γ, was taken to be the proportion of calendar time used by analysis time s of the

planned 48 months.

Within each patient, we generate a dependence structure between events using

a Gaussian copula approach. (Li , 1999a) This approach induces correlation be-

tween gap times Tij − Tij−1 for j = 2, . . . , Ji − 1 as well as correlation between each

gap time and the terminating event TiJi . We first simulate mean zero multivariate

normal random variables {Ui1, Ui2, . . . , Ui200, Vi}, with covariance matrix satisfying

V ar(Vi) = V ar(Uij) = 1 for j = 1, . . . , 200, with ρ1 parameterizing the correlation

between Uij and Uij′, for j 6= j′, and ρ2 parameterizing the correlation between Uij and

Vi for j = 1, . . . , 200. In addition to the setting with independence between all recur-

rent and terminal events (ρ1 = ρ2 = 0), low (0.3), medium (0.5) and high (0.7) values

of ρ1 and ρ2 are explored. We then use the probability integral transform method

to convert the multivariate normal random variables to correlated Uniform(0,1) ran-

dom variables and then to correlated exponential random variables. The simulated

exponentially distributed random variable originating from Vi becomes the terminal

event and the remaining exponentially distributed events become gap times between

recurrent events, with Ji − 1 counting the recurrent events prior to the terminating

event for individual i; simulated events that occur beyond the terminal event for a
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participant are discarded.

For the control group, recurrent events are simulated to occur every 3 months on

average, subject to a terminal event with a mean of 36 months. Following the rule of

thumb from Xia and Murray (2018) for this control group event rate, follow-up win-

dows for the TM method are initiated every 1.5 months so that t1 = 0, t2 = 1.5, t3 =

3, t4 = 4.5, . . . , tb = s− 12 months. The experimental group experiences a treatment

benefit in terms of both the terminal and recurrent event rates, with recurrent events

occurring every 4.3 months on average and a mean time to terminating event of 51.4

months.

Under the null hypothesis, for all group sequentially monitored test statistics and

all correlation structures, simulated overall type I error was within expected simula-

tion error of the desired 0.05 level. With independently generated event times, overall

type I errors were 0.054, 0.054 and 0.041 for the group sequentially monitored TM,

CL and LR statistics, respectively. Table 3.1 displays overall type I error simulation

results assuming different combinations of low, medium and high correlation between

an individual’s event times.

Cumulative power for detecting the alternative hypothesis at each analysis time,

in the special case of independently generated recurrent and terminal event times,

is shown in Appendix B.2. Simulated power for the group sequentially monitored

CL statistic (triangles) was highest in this case, followed closely by the TM statistic

(circles) and distantly by the LR method (+).

For correlated recurrent and terminal event settings simulated assuming the alter-

native hypothesis, Figure 3.4 displays power for group sequentially monitored TM, CL

and LR statistics. Panels moving from top to bottom in this figure correspond to in-

creasing levels of correlation between recurrent events in an individual. Panels moving

from left to right in this figure correspond to increasing levels of correlation between

recurrent and terminal events. For any particular panel, simulated power is displayed
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Correlation between
recurrent and terminal events&

Test Low Medium High
TM 0.053 0.050

Low CL 0.050 0.050 NA†

LR 0.048 0.041

Correlation TM 0.055 0.058 0.044
between Medium CL 0.039 0.045 0.038

recurrent events∗ LR 0.051 0.055 0.057

TM 0.058 0.056 0.051
High CL 0.040 0.048 0.045

LR 0.054 0.048 0.058

Table 3.1: Overall Type I Error by Varying Levels of Correlation between
Recurrent Events (Rows) and Correlation between Recurrent and
Terminal Events (Columns)

† Data is not shown for the case with low ρ1 and high ρ2 since this covariance
structure was difficult to construct. Intuitively, it is difficult to have gap times
weakly correlated with one another and at the same time all highly correlated
with the terminal event time.
∗ Low, medium to high correlations between recurrent events are generated from
ρ1=0.3, 0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are

generated from ρ2=0.3, 0.5 and 0.7, respectively.
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Figure 3.4: Cumulative Power at Each Analysis Time by Varying Levels of Correla-
tion Between Recurrent Events (Rows) and Correlation between Recur-
rent and Terminal Events (Columns)

† Data is not shown for the case with low ρ1 and high ρ2 since this covariance structure was

difficult to construct. Intuitively, it is difficult to have gap times weakly correlated with one

another and at the same time all highly correlated with the terminal event time.
∗ Low, medium to high correlations between recurrent events are generated from ρ1 =0.3,

0.5 and 0.7, respectively.
& Low, median to high correlations between recurrent and terminal events are generated

from ρ2=0.3, 0.5 and 0.7, respectively.
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on the vertical axis; the horizontal axis is interim analysis time (s = 12, 24, 36 or 48

months). For each of these correlation structures, the power of the group sequen-

tially monitored TM statistic approximates or exceeds the power of the CL and LR

methods.

The group sequentially monitored logrank test only uses the first time-to-event in

each individual, and therefore is not affected by correlation between event times as

simulated in the various panels of Figure 3.4. Because the logrank test’s simulated

power dynamic is similar from panel to panel of Figure 3.4, merely reflecting simula-

tion variability across the scenarios, it is helpful in spotting changes in the behavior of

the group sequentially monitored TM and CL methods. The power dynamics of these

latter group sequentially monitored statistics change according to the degree of sta-

tistical information gained from the additionally incorporated recurrent and terminal

events.

For the TM statistic, only modest changes in power dynamics are seen within any

row of Figure 3.4, likely because of the small relative role terminal events (4.6-8.1% of

simulated events) play in these analyses compared to the role of the recurrent events

(91.9-95.4% of simulated events). As correlation between recurrent events increases,

the statistical information in the longitudinally constructed censored event times used

by the TM method decreases. Hence the power of the TM statistic decreases when

moving from top to bottom panels in Figure 3.4.

The power dynamic of the group sequentially monitored CL statistic is strongly

impacted by the correlation structure between events. Whereas in Supplemental

Figure S1 (with all independent events), the CL test statistic has the largest power

of the methods shown, power for the CL statistic erodes substantially as correlation

between recurrent events increases. In the bottom row panels of Figure 3.4, the

LR test outperforms the CL test even though the LR test is only using the first

observed event-time per individual. Upon further exploration of the simulated CL test
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statistics, the explanation for this power dynamic rests in the variability of the number

of events per individual that the CL test statistic is built from. The patient to patient

variability in the observed number of events increases as the correlation between

recurrent events increases, causing the variance of the mean number of cumulative

events to increase, and the CL test to lose power. Intuitively, increasing correlation

drives the total number of observed events higher in patients with a tendency for short

times-to-event. Similarly, increasing correlation drives the total number of observed

events lower for individuals with a tendency towards long times-to-event. Taking both

of these patterns into account, the range of the observed number of events widens as

correlation between events increases.

Panels in the middle row of Figure 3.4 show power for the CL test improving

from the worst of the three methods (in the case with medium correlation between

recurrent events and low correlation between recurrent and terminal events) to power

nearly identical to the TM method (in the case with medium correlation between

recurrent events and high correlation between recurrent and terminal events). Mov-

ing left to right the variability in the number of observed events per individual is

stabilizing in this row of figures. Those with a tendency towards short times-to-event

are experiencing a terminal event before their total count gets very high. Similarly,

those with a tendency towards longer times-to-event are experiencing longer times to

accumulate these event counts before a terminal event. A similar pattern is observed,

to a lesser extent, in the lower right panel of Figure 3.4, where the power of the CL

method increases a bit compared to its power dynamics as shown in panels to its left.

3.6 Example

The Azithromycin in COPD Trial (Albert et al., 2011) randomized 1117 patients

with a history of acute exacerbations to 250 mg daily of azithromycin or placebo.

The original group sequential monitoring plan for this study was based on a logrank
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analysis of the time-to-first acute exacerbation or death. Interim analyses were con-

ducted every 6 months with overall type I error for the trial controlled via an O’Brien-

Fleming spending function. Conditional power analyses were additionally provided to

the Data and Safety Monitoring Committee. To make this example more interesting,

we restrict attention to 381 patients accrued during the first year of follow-up. In

constructing the TM statistic, we use τ = 6 months and, following Xia and Murray

(2018), initiate follow-up windows every 2 months (approximately one third of the

historic mean time to exacerbation in this population).

Figure 3.5 shows the estimated days free of acute exacerbation or death per

6-months of follow-up, based on the TM statistic, at each of the interim analysis

times. Group sequential boundaries based on the O’Brien-Fleming spending func-

tion are superimposed with an overall type I error of 5%. These boundaries are

presented on the scale of the observed effect size needed for the trial to stop early,

which can be calculated as cU(s)
√
σ̂2

1(s)/n1(s) + σ̂2
2(s)/n2(s) for upper bound and

for cL(s)
√
σ̂2

1(s)/n1(s) + σ̂2
2(s)/n2(s) lower bound, where cU(s) and cL(s) are critical

values for the standardized test statistics as described in Section 3.4. A recommended

stopping boundary for safety with spending function, αJT (γ) = 0.2γ1.5, is superim-

posed in Figure 3.5. This boundary is a special case of a Jennison and Turnbull

(Jennison and Turnbull , 2000) boundary that we have personalized to stop at the

first interim analysis if the standardized test statistic exceeds a 1.96 critical bound-

ary in favor of the placebo group. The overall probability of stopping for a safety

signal based on this boundary is 20% under the null hypothesis of no treatment effect.

The TM test statistic recommends stopping the trial in favor of the azithromycin

arm at the 3rd interim analysis (18 months into the study). For comparison, stan-

dardized TM, CL and logrank test statistics and corresponding stopping boundaries

are displayed in Figure 3.6. The CL stops at the 4th interim analysis (2 years into

the study) with 59 additional acute exacerbations and 4 additional deaths observed
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compared to the TM-based group sequential analysis. The logrank analysis of time-

to-first event does not detect a significant benefit of azithromycin in this subset of

patients from the original study.

3.7 Discussion

In this chapter, we develop a new nonparametric tool for group sequentially mon-

itoring clinical trials based on recurrent event outcomes subject to a terminal event.

Our method is appropriate and robust for events that are correlated within individual

or for completely independent event times. Treatment effects observed across analysis

times are simple to interpret. In addition to plots showing stopping boundaries based

on standardized test statistics, we display observed data and stopping boundaries on

the scale of the needed effect size for the trial to stop.

Statistical literature for nonparametric group sequential monitoring of clinical

trials is currently dominated by single time-to-event analyses. In the recurrent events

setting, many researchers still design their trials using only the first time-to-event

because of the availability of software, or in some cases because of concern that

strong assumptions are required for recurrent event analyses to be valid.
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This, of course, is a shame because (1) there is quite a nice existing nonparametric

method for group sequential monitoring of recurrent events data available from Cook

and Lawless (1996) that is being under-utilized in clinical trial design in our opinion.

This method is also appropriate for correlated events within an individual and per-

forms particularly well when events from the same individual are independent. (2)

Clinical trial designs that do not take advantage of events that occur after the first

observed event are statistically inefficient, which has financial implications for the

overall cost of a clinical trial.

In developing group sequential methodology relating to the Tayob and Murray

statistic, we hope to enrich needed literature in this area. Our method performs

particularly well when events times within an individual are correlated, and is com-

petitive with the Cook and Lawless method when events are independent.

With continually improving treatments for those with chronic disease, trials are

becoming more dependent on surrogate outcomes and combined endpoints rather

than mortality alone. Many of these events are recurrent in nature. This trend

is likely to continue as lifetimes are successfully extended and as time pressure for

faster drug approval increases. We strongly believe that in settings of chronic disease,

clinical trial design and analysis should move towards recurrent events methods that

incorporate a mixture of disease progression events over time; that this should be the

default design choice in understanding a patient’s disease burden.

57



CHAPTER IV

Commentary on Tayob and Murray (2014) with a

Useful Update Pertaining to Study Design

The two-sample tests described in Tayob and Murray (2014) combine information

from recurrent and terminal events in order to detect treatment differences. Instead of

following the standard recurrent events paradigm that uses information on gap times

between events, their work repurposes the data into a regularly spaced longitudinal

form that avoids the usual dependent censoring issues that often plague gap time

analyses. The endpoints are based on τ -length follow-up windows that start at evenly

spaced times {t1, . . . , tb}; b is chosen so that the final τ -length follow-up interval

starting at tb does not exceed the study period. In each of these follow-up windows the

observed endpoint is the time to first event (recurrent event or death) or τ if no event

occurs during that window. These endpoints are subject to the usual independent

right censoring that occurs in the clinical trial setting. The analysis proceeds by

comparing either the overall τ -restricted mean survival estimated from the follow-

up windows from the two treatment groups, or alternatively, the area under the

τ -restricted mean residual lifetime function.

Tayob and Murray (2014) recommended using tk = (k − 1)τ/2, for k = 1, . . . , b,

as the starting points of the incorporated follow-up windows. This recommendation

arose from closed-form variance calculations and accompanying simulations in the
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special case of a single time-to-event. For our purposes it is convenient to describe

these starting points as being initiated every a units starting at time 0 and ending at

time tb, with Tayob and Murray’s recommendation equivalent to setting a = τ/2.

In the recurrent events setting, if a is large relative to the mean of the recur-

rent event time, there is potential for a few of the recurrent events to be left out of

the analysis, potentially reducing power. Intuitively, smaller values of a will create

more follow-up windows that capture more recurrent events, but at the cost of com-

putational efficiency. Computation burden increases substantially as the number of

follow-up windows incorporated into the Tayob and Murray statistic increases. For

example, in a dataset with 100 patients per group observed over 48 months with

control versus treatment mean recurrent event times of 3 versus 4 months, compu-

tation of the Tayob and Murray statistic took an hour when incorporating follow-up

windows starting every 10 days versus 1.7 minutes when spacing follow-up windows

1.5 months apart; times based on running R version 3.4.1 on a MacBook Pro with a

macOS High Sierra operating system, a 2.9 GHz Intel Core i5 processor and 8 GB of

Memory.

In this chapter we give improved guidance on the choice of a. Our recommendation

is framed in terms of the average proportion, p, of recurrent events captured in at

least one follow-up window for individuals followed s time units. This measure, p, is

a compromise between the special case of a single time-to-event considered by Tayob

and Murray (2014) and the impractical opposite extreme where window start times

are taken along a continuum from time 0. Our calculations assume independent

exponential times between recurrent events, with rate λ.

Let pdfExp(λ)(g) be the exponential(λ) probability density function (pdf) with rate

λ and g > 0. Let pdfGamma(α,λ)(r) be the gamma pdf with shape α, rate λ and r > 0,

with corresponding cumulative distribution function (cdf) denoted as cdfGamma(α,λ)(r).

After some calculation shown in Appendix C, we obtain an expression for p that can
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be numerically evaluated in terms of a, λ, and s, or inverted to solve for a as a function

of p, λ and s. That is,

p =1−

∞∑
k=2

1

k

k∑
j=2

b∑
w=1

[ min(aw,s)∫
0

pdfGamma(j,λ)(r)

{
cdfGamma(k−j,λ)(s− r)

− cdfGamma(k−j+1,λ)(s− r)
}
dr

−
(w−1)a∫

0

min(aw,s)−r∫
0

pdfGamma(j−1,λ)(r)pdfExp(λ)(g)

{
cdfGamma(k−j,λ)(s− r − g)

− cdfGamma(k−j+1,λ)(s− r − g)

}
dgdr

]

As one might expect, larger values of p are monotonically related to smaller values of

a in this expression.

As an example of how p influences our choice of a and therefore study power,

suppose we are designing a 48-month study where n = 100 per group. Thirty percent

of these patients are recruited at the start of the study and observed for the full 48

months; the remaining 70% are uniformly accrued over the first 24 months. We wish

to base the analysis on the Tayob and Murray statistic using τ = 12. Table 4.1 below

summarizes operational study design results for 3 different values of p = 0.7, 0.8 and

0.9 and 4 different recurrent event rates in the control group. In each case, the mean

recurrent event time in the control group is 25% shorter than the mean event time in

the treatment group. Values of a in each tabulated scenario are numerically calculated

based on s = 48, λ corresponding to the control group recurrent event rate and p.

Power shown in Table 4.1 is simulated from 1000 Monte Carlo iterations for both

independent and dependent recurrent events with the correlation between recurrent

event times, ρ, equal to 0, 0.25 or 0.5. Type I error rates are 0.05 in all scenarios.

If we first focus on the recommended values of a shown in Table 4.1, we see a wide
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range of values [0.7 to 12 months] with more closely spaced follow-up window start

times recommended when the control group experiences shorter mean times-to-event,

and additionally when we wish to capture a higher proportion of these events in the

analysis plan. This is as opposed to using a = τ/2 = 6 months as recommended in the

original Tayob and Murray manuscript for all scenarios. Our simulations confirm that

there are diminishing returns in power gain as more follow-up windows are included.

The ’sweet spot’ for clinical trial design seems to be p = 0.8, or 80% of events captured

in the analysis, although for particularly expensive clinical trials even modest gains in

power may be worth the extra computational burden. The simulations also suggest

a convenient rule of thumb of choosing a equal to half of the mean recurrent event

time in the control group, which gave p between 0.8 and 0.9 in all scenarios shown.

Similar to all other clustered data structures, our longitudinal restricted mean

event times contain the most statistical information when event times within an in-

dividual are independent. Hence it is not surprising that power is highest in each

scenario when ρ = 0. In clustered data analyses, ρ is typically described as an intra-

class correlation coefficient, and our simulated power results reflect similar results to

those seen in these settings. Namely, higher correlation between events severely im-

pacts available power for analysis. To the extent that our updated recommendations

for a can recover some of the power lost by using the original recommendation of

Tayob and Murray, we feel this chapter may be quite helpful in conserving clinical

trial resources. It should be noted that even with the original recommendation of

a = τ/2, Tayob and Murray saw gains in power compared to methods recommended

in Ghosh and Lin (2000) and Lin et al. (2000) when times between recurrent events

were correlated.

Our closed-form calculation for p ignores the possibility of a terminal event, which

is allowed by the Tayob and Murray statistic. When terminal events are present, our

calculation provides a lower bound on the estimated proportion of observed events
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captured in at least one follow-up window. The intuitive explanation is that follow-

up windows with a terminating event have an observed follow-up duration less than

the value of s assumed in our equation for p. As can be seen in Figure 4.1, smaller

values of s trend, but not monotonically, towards larger values of p. In additional

simulations introducing terminal events, we’ve observed the proportion of captured

events increase by as much as 5% in scenarios with a high terminal event hazard

relative to the recurrent event rate. When terminal events occur much less frequently

than recurrent events, our calculations continue to give very similar results to those

seen in simulation [data not shown].

There are not straightforward extensions of the closed-form formulas to other

distributions. We’ve performed additional simulations with event rates following the

Weibull distribution that show for similar mean gap-times, our closed form formula

underestimates the proportion of captured events when the shape parameter is greater

than 1 and overestimates this proportion when the shape parameter is less than one.

Hence, as is typically the case, simulations are required when event rates are not

anticipated to follow an exponential distribution. Our work provides a framework

(proportion of captured events) for programmers to use in designing such simulations

to understand operating characteristics in non-standard settings.
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Figure 4.1: Proportion (p) of Events Captured by Follow-up Times (s) in Months.
(Curves vary across mean recurrent event times assumed in columns of Table 1. For
each curve a fixed value of a is assumed that corresponds to the recommendation given
in Table 1 for achieving p = 0.8 over an s = 48 month follow-up period. Values of
p trend higher, but not monotonically, as s decreases. The non-monotonic pattern is
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Proportion of Control Group Mean Recurrent
Events Captured Event Time in Months

(p) 3 6 9 12
a 2.4 5.3 8.8 12

Power
0.7 ρ = 0 0.969 0.842 0.690 0.548

ρ = 0.25 0.858 0.736 0.634 0.497
ρ = 0.5 0.700 0.588 0.527 0.416

a 1.5 3.2 5.2 7.7
Power

0.8 ρ = 0 0.975 0.868 0.748 0.639
ρ = 0.25 0.887 0.755 0.670 0.547
ρ = 0.5 0.703 0.602 0.544 0.449

a 0.7 1.5 2.4 3.4
Power

0.9 ρ = 0 0.975 0.881 0.767 0.670
ρ = 0.25 0.887 0.773 0.683 0.594
ρ = 0.5 0.710 0.627 0.558 0.505

Table 4.1: Calculated a Values and Estimated Power
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CHAPTER V

Regression Analysis of Recurrent-Event-Free Time

from Multiple Follow-up Windows

5.1 Introduction

Recurrent events are frequently seen in participants of clinical trials and obser-

vational studies of chronic diseases. For instance, patients in the Azithromycin in

Chronic Obstructive Pulmonary Disease (COPD) Trial (Albert et al., 2011) were

followed for recurrent acute pulmonary exacerbations. Other settings with recurrent

events include recurrent ischemic cardiovascular events after acute coronary syndrome

(Schwartz et al., 2018), recurrent clostridium difficile infection (Wilcox et al., 2017)

and even repetitive head injuries in high-contact sports (DeKosky et al., 2010). Pois-

son and negative binomial count models have been used to analyze recurrent event

data per time at risk (Frome et al., 1973; Lawless , 1987; Lambert , 1992; Greene,

1994). These approaches to not take advantage of the timing of events, however, and

may therefore not provide the most powerful analysis (Ozga et al., 2018).

The most commonly used multivariable regression analysis methods for recurrent

events data are extensions of the Cox proportional hazards model to the recurrent

event setting. The extension proposed by Andersen and Gill (1982) analyzes the time

between recurrent events, called gap times, assuming independence between these gap
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times within an individual. Prentice et al. (1981) considered an extension of the Cox

model that allowed stratification of the baseline hazard to depend on time-dependent

features including previous recurrent event time information; both gap time models

and models of time from beginning of follow-up are considered. Wei et al. (1989) pro-

posed a multivariate proportional hazards model, where the multivariate outcomes

are based on separate recurrent events modeled from the beginning of follow-up. An

arbitrary covariance structure is allowed between the different event-times, fit with a

robust sandwich variance estimate. Pepe and Cai (1993) described several manners

of modeling recurrent event rates based on the number of previous recurrent events,

advocating for a Markov approach that models each recurrent event conditional on

information from the immediately preceding event. Lawless and Nadeau (1995) and

Lin et al. (2000) developed models for the cumulative mean number of events, as-

suming proportionality on the cumulative means over time. A number of authors

introduced random effects or frailties to parameterize the dependence between recur-

rent event times (Aalen and Husebye, 1991; Hougaard , 1995; Rondeau et al., 2007;

Mazroui et al., 2013; Rogers et al., 2016).

In pursuing any new modeling framework for recurrent events, three issues are

paramount to address (1) the potential correlation between times between recurrent

events, (2) the potentially censored nature of the data and (3) the interpretability of

results. In addressing each of these issues in this chapter, we take an entirely different

approach to modeling recurrent event data that provides a natural way to handle

correlation between event times and is highly interpretable. In short, we transform

the recurrent event data structure into a very tractible censored longitudinal data

structure. The longitudinal outcomes are τ -restricted times-to-first-event as captured

in follow-up windows that are reinitiated at regularly-spaced intervals. Instead of

modeling the rate or cumulative number of recurrent events, our model estimates

time free from recurrence over a τ -length follow-up period.
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In Section 5.2, we describe notation required to repurpose traditional recurrent

events data into a series of censored longitudinal endpoints. Section 5.3 describes

differences between this data structure and that of the multivariate distribution of

gap times between recurrent events. In section 5.4, we develop a model framework

that can be fit using generalized estimating equation methods, along with two meth-

ods for handling the censored nature of the data: a pseudo-observation approach

(Section 5.4.1) and a multiple imputation approach (Section 5.4.2). Section 5.5 de-

scribes finite sample properties of our methodology in scenarios where times between

recurrent events are independent (Section 5.5.1) and correlated (Section 5.5.2). We

then reanalyze data from the Azithromycin in COPD Trial using our methodology in

Section 5.6. Discussion follows in Section 5.7.

5.2 Notation

For the most part, notation in this chapter is similar to that used in Chapter

III. Because group sequential analysis are not being performed, the parameter, s, for

analysis time is removed. We also drop use of the group subscript, g, since predictors

of this nature will be absorbed into a covariate vector in this chapter.

Suppose i = 1, . . . , N independent patients are followed for recurrent events.

Without loss of generality, we assume each patient’s follow-up period starts from a

baseline time of 0; hereafter, we refer to baseline and time 0 interchangeably. For each

individual patient, i, let Tij, j = 1, . . . , Ji be the time from baseline to the jth recurrent

event, so that 0 < Ti1 < Ti2 < · · ·TiJi . Let Ci be the censoring time from baseline for

patient i, where Ci is independent of Tij, for j = 1, . . . , Ji. Correlation between recur-

rent event times in an individual i (or lack thereof) is typically formulated in terms of

gap times between events,
{
Gi1 = Ti1, Gi2 = Ti2 − Ti1, . . . , GiJi = TiJi − TiJi−1

}
. We

allow an arbitrary dependence structure between gap time random variables for pa-

tient i, with independent gap times as a special case. Traditional observed recurrent
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event data for patient i is recorded in data pairs {Xij = min(Tij, Ci), δij = I(Tij ≤ Ci)},

j = 1, . . . , J̃i, where J̃i ≤ Ji; in most cases the J̃ thi data pair corresponds to a censored

event time.

In this chapter, we construct a streamlined censored longitudinal data structure

from the recurrent event times. That is, each longitudinally measured outcome con-

tributed by patient i is a censored time-to-first-event in a follow-up window starting

at time t, where t ∈ {t1, . . . , tb} with t1 = 0 and tk = tk−1 + a, k = 2, . . . , b. As

only one time-to-first-event in each follow-up window is measured, we incorporate

at most b outcomes from each individual, regardless of how many recurrent events

they experience. Hence, for a fixed overall study duration, the choice of spacing,

a = tk − tk−1, k = 2, . . . , b, between initiation of each subsequent follow-up window

increases the proportion of recurrent events captured by the censored longitudinal

data structure. It is theoretically possible to create a censored longitudinal dataset

with follow-up windows initiated every day (a = 1), although the computational bur-

den of working with this extended dataset becomes cumbersome. Xia and Murray

(2018) showed that in the case of exponentially distributed times between events with

common intensity λ, using a = 1/(2λ) captures approximately 80% of the recurrent

events in at least one of the constructed follow-up windows over a fixed follow-up

period.

For patient i and follow-up window starting at t, we index the first recurrent

event occurring after time t with the subscript ηi(t) = min{j = 1, . . . , Ji : Tij ≥ t} so

that Ti(t) = Tiηi(t)− t is the time-to-first-recurrent-event measured from t, sometimes

called the residual event-free time from t. We collect individual i’s newly formatted

longitudinal outcomes, {Ti(t1), Ti(t2), . . . , Ti(tb)}, into a vector, Ti, for i = 1, . . . , N .

The observed data counterpart to ηi(t) is η̃i(t) = min{j = 1, . . . , J̃i : Xij ≥ t}.

For each follow-up window starting at time t where Ci > t, patient i contributes the

observed data triplet
{
η̃i(t), Xi(t) = Xiη̃i(t) − t, δi(t) = δiη̃i(t)

}
. For follow-up windows
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starting at t where Ci ≤ t, we use the convention that η̃i(t) = Xi(t) = δi(t) = 0.

Figure 5.1 displays how censored longitudinal data is created from traditional re-

current event data using a participant from the Azithromycin in COPD Trial. During

353 days of follow-up for this patient, J̃i = 4 traditional recurrent event data pairs

emerge: (Xi1 = 53 days, δi1 = 1), (Xi2 = 111 days, δi2 = 1), (Xi3 = 170 days, δi3 = 1)

and (Xi4 = 353 days, δi4 = 0), where the first three data pairs denote acute exacer-

bation (AE) event times and the last data pair reflects a censored event.

Two examples of converting these data into a censored longitudinal data structure

are given, one based on follow-up windows starting at a = 120 day intervals and one

constructed with a = 60 day intervals. As with all longitudinal data structures, the

additional data triplets included using a = 60 day intervals as opposed to a = 120 day

intervals afford capturing more time-to-first events supplied by the recurrent event

times.

Data triplets based on follow-up windows starting at t = {0, 120, 240} days become

{η̃i(0) = 1, Xi(0) = Xi1 − 0 = 53, δi(0) = 1},

{η̃i(120) = 3, Xi(120) = Xi3 − 120 = 170− 120 = 50, δi(120) = 1}

and

{η̃i(240) = 4, Xi(240) = Xi4 − 240 = 353− 240 = 113, δi(240) = 0}.

Data triplets based on follow-up windows initiated every a = 60 days include the

above data triplets plus those starting at days t = {60, 180, 300} days:

{η̃i(60) = 2, Xi(60) = Xi2 − 60 = 111− 60 = 51, δi(60) = 1},

{η̃i(180) = 4, Xi(180) = Xi4 − 180 = 353− 180 = 173, δi(180) = 0}
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Figure 5.1: Creating Censored Longitudinal Data From Recurrent Event Data for an
Example Participant of the Azithromycin in COPD Trial.
(AE: Acute Exacerbation)

and

{η̃i(300) = 4, Xi(300) = Xi4 − 300 = 353− 300 = 53, δi(300) = 0}.

5.3 Times-to-first-event from t ∈ {t1, . . . , tb} versus Gap Times

The marginal distribution of the time-to-first recurrent event after t, Ti(t), is a

quite different creature from the marginal distribution of a gap time between recurrent

events, Gij, j = 1, . . . , Ji, . On a practical note, the random variable, Ti(t), better

reflects the recurrent event time one might seek advice about at a regularly scheduled

clinic visit at time t or at entry into a clinical trial at t. These patient interactions

rarely coincide exactly with a recurrent event, so that a gap time random variable

measured from an individual’s previous event is not the most appropriate random

variable for these settings. On a statistical note, when gap times within an individual

are correlated there is a well-known dependent censoring bias that must be addressed
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in any analysis of the gap time data (Lin et al., 1999). This dependent censoring issue

is circumvented by our censored longitudinal data structure since times-to-first-event

are measured from pre-specified times {t1, . . . , tb} rather than a correlated time-to-

event.

For these different random variables to coincide with one another, the distributions

of Ti(t) and Gij must both be entirely memoryless. This is formally demonstrated

in the following, where we show that the only case where the marginal distribution

of a gap time, Gij, coincides with that of a time-to-first-recurrent-event, Ti(t), is

the special case with independent and identically distributed exponential gap times

{Gi1, . . . , GiJi} for each patient, i = 1, . . . , N . For settings with gap times that are

not exponentially distributed, or for settings with correlated, but otherwise iden-

tically distributed, exponential gap times, the marginal distribution of Ti(t) shifts

from a memoryless distribution to a distribution very much influenced by the series

of recurrent events with positive probabilistic support for occurring in the follow-up

period after t.

Consider the event-free probability function for Ti(t) that is written in terms of

gap time random variables as follows:

Pr{Ti(t) > u} = Pr{Ti1 > t+ u}+ lim
Ji→∞

Ji∑
j=2

Pr{Tij−1 ≤ t, Tij > t+ u}

= Pr {Gi1 > t+ u}+ lim
Ji→∞

Ji∑
j=2

Pr

{
j−1∑
l=1

Gil ≤ t,

j−1∑
l=1

Gil +Gij > t+ u

}
. (5.1)

For independently and identically distributed exponential gap times with intensity λ,

Appendix D.1 shows that these terms reduce to exp(−λu), so that Ti(t) also has an

exponential distribution with intensity λ.
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However, when the gap times are correlated, the term

Pr

{
j−1∑
l=1

Gil ≤ t,

j−1∑
l=1

Gil +Gij > t+ u

}
(5.2)

from the previous equation does not reduce to a simple expression. Term (5.2) is the

probability that an individual’s jth recurrent event will be the first to occur in the

follow-up window starting at t, but that it has not yet occurred as of time t+ u.

To better appreciate the influence of (5.2) on the expression in (5.1), we consider

special cases with correlated and independent exponential(λi) distributed times be-

tween recurrent events. Figure 5.2 displays term (5.2) as a function of time, u, for

different combinations of recurrent event index, j, and follow-up window start time, t,

with λi = 1/3. The solid blue and dashed red lines show the cases with independent

and correlated event times, respectively. For the independence case, the curves have

a closed-form shown in Appendix D.1 to be (λit)
j−1e−λi(t+u)/Γ(j). For the correlated

case, we first simulated correlated exponential event times using a Gaussian copula

approach described in further detail in Section 5.5; the approximate correlation be-

tween recurrent event times was 0.8. We then empirically estimated and plotted term

(5.2) from a large number (N=10,000) of simulated individuals.

In nearly every panel of Figure 5.2, term (5.2) is smaller when times between

recurrent events are correlated. As j increases relative to t the depicted probability

curves get lower, and the curves generated from the two different correlation structures

also get closer together. Overall these curves indicate that Pr{Ti(t) > u} tends to be

much smaller than the exponential(1/3) survival curve that equation (5.1) reduces to

in the case with independent event times.

Of course, we were immediately curious to know whether the distribution of the

time-to-first-event from t, in this special case with correlated exponential(1/3) gap

times, stabilizes. The intuition behind this thought was that the mixture distribution
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Figure 5.2: Pr{Tij−1 ≤ t, Tij−1 +Gij > t+ u} over u for Specific t and j.
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of gap time histories preceding t and likely to influence the distribution of Ti(t) might

stabilize. As seen in Figure 5.3, where (again using the large simulated dataset of

10,000 individuals) Pr{Ti(t) > u} is plotted for increasing values of t, this does seem

to be the case. The distribution of Ti(t) seems to stabilize for values of t ≥ 3, or

1/λi. Stabilization of the distribution of Ti(t), for t > 1/λi was further explored for

different values of λi and found to be a reliable pattern. This feature will be utilized

later in Section 5.5.2, when we simulate a stable time-to-first-event distribution given

covariates in the setting with correlated exponential gap times.

5.4 Multivariable Regression Model of τ-Restricted Times-

to-first-recurrent-event Measured Across Multiple Over-

lapping Follow-up Periods

To study the association between patient covariates, Z, and τ -restricted times-

to-first-recurrent event across follow-up windows starting at times {t1, . . . , tb}, we

consider the following model:

E(log[min{τ, T }]|Z) = βTZ (5.3)

Two features of our data need to be addressed for successful estimation of model (5.3):

(1) the censored nature of the vector of newly formatted longitudinal outcomes, Ti,

from patient i and (2) the correlated nature of these longitudinal outcomes. We

develop two approaches that address the censoring aspect of the data, a pseudo-

observation approach in section 5.4.1 and a multiple imputation approach in section

5.4.2. Each of these approaches converts the censored longitudinal outcomes into a

format appropriate for complete data methods.

Once this feature of the data is addressed, we tackle the correlated nature of the

longitudinal outcomes Ti from each patient, i = 1, . . . , N using existing methods, such
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as generalized estimating equations (GEE). Because our recurrent events data have

been restructured into times-to-first event from regularly spaced follow-up periods and

because we consider τ−restricted times-to-first-events in these periods, the correlation

structure of the outcomes can be modeled via well organized correlation matrices.

Two underlying layers of correlation are at work: the natural correlation between

recurrent events within an individual and the possibility that the same event is cap-

tured as the first-time-to-event in more than one follow-up period. In the most general

case, we assume an b× b unstructured correlation matrix with components:



1 corr{Ti(t1), Ti(t2)} corr{Ti(t1), Ti(t3)} . . . corr{Ti(t1), Ti(tb)}

corr{Ti(t2), Ti(t1)} 1 corr{Ti(t2), Ti(t3)} . . . corr{Ti(t2), Ti(tb)}

. . . . . . . . . . . . . . .

corr{Ti(tb), Ti(t1)} corr{Ti(tb), Ti(t2)} corr{Ti(tb), Ti(t3)} . . . 1


However, for settings with fairly stable time-to-first-event distributions over time,

we consider a (banded) Toeplitz correlation structure that allows for correlation to

decrease as the degree of overlap between τ -restricted follow-up periods decreases.

The degree of overlap in τ -restricted follow-up windows can be determined from a

and τ and follows a regular pattern. For instance with a = τ/3 and b = 4 windows

starting at times t = {0, τ/3, 2τ/3, τ}, the Toeplitz correlation matrix is:



1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1


where ρ1 is the correlation between times-to-first event in adjacent τ -restricted follow-

up windows that overlap by 2τ/3 follow-up units, ρ2 is the correlation between times-

to-first event in windows that start 2a units apart from one another and overlap by
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τ/3 units. Finally, τ -restricted follow-up windows starting a = 3 units apart from

one another do not overlap and are assumed to have correlation ρ3.

The Toeplitz correlation structure requires fewer parameters than the unstruc-

tured matrix. For very large b, the Toeplitz correlation structure may be more fea-

sible to implement that an entirely unstructured variance matrix. GEE also pro-

vides model results based on robust sandwich variance estimation, which provides

protection against misspecification of the working correlation matrix. The general

recommendation when working with large datasets is to use the sandwich estimator,

regardless of the working correlation matrix assumed by the model. We follow this

recommendation throughout the remainder of the chapter.

5.4.1 Pseudo-Observation (PO) Approach For Censored Recurrent Events

For a single time-to-event, Andersen et al. (2004) introduced the idea of using

pseudo-observations (POs) in lieu of censored times-to-event when estimating regres-

sion parameters for the restricted mean model. This method has been successfully

applied in a variety of settings where a single event time is of interest (Klein and An-

dersen, 2005; Andersen and Klein, 2007; Andrei and Murray , 2007; Graw et al., 2009;

Xiang and Murray , 2012; Tayob and Murray , 2017). The appeal of this method is

its ease of use. That is, once appropriate pseudo-observations are estimated for each

patient, they can be used as if they are uncensored counterparts to the original cen-

sored data in standard regression models. In this section, we describe how to create

pseudo-observations that correspond to our censored longitudinal data structure. In

particular, for each follow-up window starting at t, we define pseudo observations for

the random variables log[min{τ, Ti(t)}], i = 1, . . . , N, using a method similar to that

described in Xiang and Murray (2012).

The general intuition behind pseudo-observation approaches for modeling censored

survival data is similar to that of the jackknife method (Quenouille, 1949, 1956; Tukey ,
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1958). One first defines a consistent nonparametric estimate, θ̂, of the marginal

quantity of interest, θ. In our setting, for each t ∈ {t1, . . . , tb}, we define θ(t) =

E[log{min(τ, T (t))}] with consistent nonparametric estimator

θ̂(t) = −
τ∫

0

log(u)dP̂ (Ti(t) > u) + log(τ)P̂ (Ti(t) > τ),

where Kaplan-Meier estimation is used for P̂ (Ti(t) > u).

The form of an appropriate PO for any setting arises from framing θ both as a

marginal mean and a weighted average of θZ , the conditional mean given covariates,

Z. Most readers will recognize this relationship when formally depicted as

θ =

∫
θZdFZ(z),

where dFZ(z) reflects Riemann-Stieltjes integration across the distribution of Z. When

the empirical (discrete) distribution of Z is used in framing the relationship above,

dFZ(z) = 1/N and the right hand side of the expression becomes

1

N

N∑
i=1

θZi
.

One can algebraically isolate θZi
(individual i’s mean given Zi) from the expression

above via

θZi
= N

{
1

N

N∑
j=1

θZj

}
− (N − 1)

{
1

N − 1

N∑
j=1,j 6=i

θZj

}
.

Marginal means corresponding to the terms in curly brackets can be consistently es-

timated using nonparametric estimates θ̂ and θ̂(−i), respectively, where θ̂(−i) is the

”leave-one-out” estimator of θ, i.e., estimated without individual i. So, taking ad-

vantage of large sample properties of θ̂ and θ̂(−i), a natural pseudo-observation for
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individual i to use in modeling θZ is

Nθ̂ − (N − 1)θ̂(−i),

a fully observed random variable that asymptotically shares a conditional mean, θZi
,

with patient i.

In our setting, θZ = E(log[min{τ, T }]|Z). For each t, we define pseudo-observations

POi(t) = Nθ̂(t)− (N − 1)θ̂(−i)(t), i = 1, . . . , N,

where

θ̂(−i)(t) = −
τ∫

0

log(u)dP̂ (−i)(Ti(t) > u) + log(τ)P̂ (−i)(Ti(t) > τ),

where leave-one-out Kaplan-Meier estimation is used for P̂ (−i)(Ti(t) > u), i.e., exclud-

ing patient i. We denote the vector of pseudo-observations contributed by individual

i as POi = {POi(t1), POi(t2), . . . , POi(tb)}. Parameter estimates for model (5.3) can

be estimated using the longitudinally created PO data via

E[PO|Z] = βTZ. (5.4)

Hereafter, we refer to estimates from equation (5.4) as estimates using the proposed

PO approach.

5.4.2 Multiple Imputation Approach for Censored Recurrent Events

Another approach for producing a complete dataset when a single time-to-event is

subject to censoring is multiple imputation (MI). This approach has been developed

by many authors (Faucett et al., 2002; Taylor et al., 2002; Hsu et al., 2006; Liu

et al., 2011; Xiang et al., 2014; Tayob and Murray , 2017). For our longitudinal
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data structure, we propose multiply imputing outcomes for observed data pairs with

{Xi(t) > 0, δi(t) = 0} , t ∈ {t1, . . . , tb}.

For our longitudinal data structure, the ith individual requires imputation for

times-to-first-event in the set, Si, of follow-up windows starting at times {t ∈ {t1, . . . , tb} :

Xi(t) > 0, δi(t) = 0}. If Si consists of more than one follow-up window, it suffices to

impute the time-to-first-event corresponding to the window starting at follow-up time

tsup(Si) = max{follow-up window start time t for windows ∈ Si}, which then deter-

mines imputes for all times-to-first-event in the set of follow-up windows, Si, that re-

quire imputation (See Appendix D.2 for further details). For better short-hand termi-

nology, we call the imputed event time corresponding to follow-up window start time

tsup(Si) the ’sup impute’, denoted as T̃i{tsup(Si)}, and the follow-up window starting

at time tsup(Si) the ’sup window’. Then imputed event times for follow-up windows

in Si with start times t∗ < tsup(Si) become T̃i{t∗} = T̃i{tsup(Si)}+ tsup(Si)− t∗.

The gestalt of the imputation strategy is to base the sup impute in the sup window

on model (5.4) using individual i’s covariates, Zi. Random error for the sup impute

is sampled nonparametrically from a set of residuals contributed by individuals in a

risk set, Ri, similar to individual i. Further details are described below.

The first step of the imputation procedure is to obtain parameter estimates, β̂PO,

from model (5.4). For individual i requiring a sup impute, T̃i{tsup(Si)}, in the sup

window, we then define a risk set, Ri, of candidate individuals l = 1, . . . , Ni satisfying

two constraints: (1) Xl{tsup(Si)} > Xi{tsup(Si)}, that is, candidate l is still at risk for

their first event time in the sup window as of the time individual i is censored and (2)

|β̂POT
Zi− β̂PO

T
Zl| ≤ ε, where ε is a user-defined parameter that controls how similar

individual l’s linear predictor is to individual i’s linear predictor. Our algorithm used

ε = 0.01. In cases where ε resulted in a risk set with Ni < 5, our algorithm added

0.001 to ε until Ni ≥ 5.

The next step of the imputation procedure is use candidate individuals, l =
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1, . . . , Ni,∈ Ri to estimate the survival function for T{tsup(Si)} given membership

in Ri. Nonparametric Kaplan-Meier estimation is used for this purpose, resulting in

estimate, ŜT{tsup(Si)}(v|Ri). Then an inverse transform imputation algorithm (Taylor

et al., 2002; Hsu et al., 2006; Liu et al., 2011; Xiang et al., 2014; Tayob and Murray ,

2017) is used to select an impute following the distribution of T{tsup(Si)} given mem-

bership in Ri based on ŜT{tsup(Si)}(v|Ri). In particular, the inverse transform imputa-

tion method first generates a uniform(0,1) random variable, u. If ŜT{tsup(Si)}(v|Ri) > u

for all observed event times v, we impute T̃i{tsup(Si)} = τ . Otherwise, we find the

smallest value v where ŜT{tsup(Si)}(v|Ri) ≤ u and identify the observed event time,

Tl{tsup(Si)}, that corresponds to v.

The inverse transform impute for patient i’s time-to-first-event in the sup window

would be Tl{tsup(Si)}. However, our proposed imputation algorithm goes one step

further, by defining residual εl = log(min[τ, Tl{tsup(Si)}])− β̂PO
T
Zl and then defining

our final impute T̃i{tsup(Si)} = exp[β̂PO
T
Zi+εl]. This extra step allows for variability

of the impute to be contributed by individial l, while further targeting the impute

using individual i’s covariate structure. If T̃i{tsup(Si)} < Xi{tsup(Si)}, we sample

another uniform(0,1), u, and repeat the process. This ensures that the impute occurs

beyond the last observed time participant i was at risk for a recurrent event in the

sup window.

We repeat the imputation procedure until we obtain M completed datasets and

then analyze the M imputed datasets with methods guided by Little and Rubin

(1986). For dataset m, we fit model (5.3) using GEE as described at the beginning

of this section and obtain parameter estimates, β̂MI
m , and standard error estiamtes,

ŜE(β̂MI
m ), for m = 1, . . . ,M . Then the final estimate of β from the multiple impu-

tation procedure becomes β̂MI =
∑M

m=1 β̂
MI
m /M with corresponding standard error
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estimate,

ŜE(β̂MI) =

√√√√ M∑
m=1

ŜE(β̂MI
m )2/M + (1 +M−1)×

M∑
m=1

(β̂MI
m − β̂MI)2/(M − 1).

5.5 Simulation

We now evaluate the finite sample performance of the proposed PO and MI meth-

ods for fitting equation (5.3) with simulated recurrent event data from N = 500

individuals over 5 years of follow-up. All simulation results are based on 10,000 iter-

ations. Details of how recurrent events times are simulated are described in sections

5.5.1 and 5.5.2, where independent and dependent recurrent event distributions are

considered, respectively.

In scenarios where censoring is present, the independent censoring random variable

is Ci = 5×I{Vi > 5}+Vi×I{Vi ≤ 5}, i = 1, . . . , 500, where Vi has an exponential dis-

tribution with hazard 1/14. This censoring mechanism corresponds to approximately

70% of participants having 5 years of follow-up, and 30% of participants being subject

to censoring prior to 5 years. In addition to summarizing Model (5.3) results where

censoring is handled via our customized PO and MI approaches, we report results in

the case where outcomes are fully observed through 5 years for comparison.

In each simulation scenario, we build our longitudinal data structure with follow-

up windows starting every a = 1 years apart at times t = 0, 1, 2 and 3 years with

τ = 2 years. These choices coincide with recommendations from Xia and Murray

(2018) based on the recurrent event distributions used in simulation.

With four follow-up windows generating four longitudinal outcomes, we require a

4× 4 working correlation structure to use with GEE software. We consider both (1)

unstructured and (2) Toeplitz structures, with robust sandwich estimates ultimately
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used in all inference. The Toeplitz structure takes the form



1 ρ1 ρ2 ρ2

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ2 ρ2 ρ1 1


Since only adjacent τ -restricted follow-up windows have overlap in our setting with

t = 0, 1, 2, 3 and τ = 2, this structure requires only two parameters, as opposed to

six parameters used with the unstructured working correlation matrix.

5.5.1 Independent Times Between Recurrent Events

We first describe the scenario where times between recurrent events are indepen-

dent. Recall from Section 5.3 and Appendix D.1, that when gap times between events

for individual, i, are independent and identically distributed (i.i.d.) exponential(λi)

random variables, then Ti(t) is also marginally distributed as an exponential(λi) ran-

dom variable for each t ∈ {t1, . . . , tb}. Hence, if we generate times-to-first-event from

i.i.d exponential gap times, the mean structure for Ti(t), t ∈ {t1, . . . , tb}, will follow

the same mean structure as the simulated gap times. This offers some computational

convenience for generating outcomes that follow Model (5.3).

For the ith individual, we allow λi to depend on two covariates, i.e., Zi = {Bi, Ui},

where Bi a Bernoulli(0.5) random variable and Ui is a uniform(0,1) random variable.

We generate mild correlation between Bi and Ui using a Gaussian copula approach

(Li , 1999a). That is, we first generate bivariate normal(0, 1) pairs (Q1i = q1i, Q2i =

q2i) with correlation 0.3. We then define Bi = I(Q1i ≥ 0) and Ui = P (Q2i ≤ q2i); the

uniform(0, 1) distribution of Ui follows from the inverse transform theorem. Finally,
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we generate times-to-first-event for patient i, Ti, that satisfy model

E(log[min{τ, T }]|Z) = −0.7 + 0.5Bi + 0.5Ui.

This is accomplished by first simulating i.i.d. exponential(λi) gap times with λi taken

as the numerical solution to

logτ−∫
−∞

yλie
ye−λie

y

dy + e−λiτ × logτ = β0 + β1Bi + β2Ui

and then converting the resulting recurrent event times into times-to-first event as

described in Section 5.2.

Simulation results for the case with independent times between recurrent events

are shown in Table 5.1. For each method and each coefficient, we present simulation

averages for (1) β̂, (2) bias β̂−β and estimated robust standard errors (SEs) assuming

(3) unstructured or (4) Toeplitz working correlation matrices. We also report (5) the

empirical standard deviation (ESD) of β̂ across the 10,000 iterations and empirical

coverage probabilities (CP) for the true coefficient using robust standard errors and

either (6) unstructured or (7) Toeplitz working covariance matrices.

Both PO and MI approaches yield approximately unbiased estimates, with abso-

lute bias <0.003. SE results are suitably close to ESD results to ensure that variability

is being estimated well across all methods. As expected, standard errors are slightly

smaller when GEE is fit in the uncensored case compared to censored cases, since

more statistical information is available in the uncensored setting. However, there

is not a clear winner between the PO and MI methods for handling the censored

longitudinal data analysis. SEs attributed to the MI method are negligibly smaller

than those using the PO method; all coverage probabilities are suitably close to 0.95.

Both proposed PO and MI analysis methods perform well in our setting with 30%
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Coef. Method β̂ Bias ESD SE SE CP CP
Unstr. Toepl. Unstr. Toepl.

Uncen. -0.700 <0.001 0.057 0.057 0.057 0.945 0.944
β0 = −0.7 PO -0.702 -0.002 0.061 0.061 0.061 0.948 0.948

MI -0.698 0.002 0.060 0.060 0.060 0.947 0.948
Uncen. 0.503 0.003 0.054 0.054 0.054 0.945 0.946

β1 = 0.5 PO 0.503 0.003 0.058 0.057 0.057 0.942 0.946
MI 0.502 0.002 0.058 0.057 0.057 0.942 0.944

Uncen. 0.497 -0.003 0.089 0.092 0.092 0.958 0.959
β2 = 0.5 PO 0.498 -0.002 0.096 0.098 0.099 0.951 0.951

MI 0.497 -0.003 0.095 0.098 0.098 0.948 0.948

Table 5.1: Simulated Finite Sample Performance for N = 500 Individuals with Inde-
pendently Generated Times Between Recurrent Events. Results Are Based
on 10,000 Iterates.

(Coef.: True value of the coefficient;

For Methods, Uncen.: standard GEE approach applied to uncensored version of the data,

PO: pseudo observation approach, MI: multiple imputation approach;

For remaining column headings, β̂: average coefficient estimate; Bias: average β̂ − β; ESD:

empirical standard deviation of β̂; SE Unstr.: the average estimated robust standard error

using an unstructured working correlation matrix; SE Toepl.: the average estimated

robust standard error using a Toeplitz working correlation matrix; CP Unstr.: empirical

coverage probability for true coefficient based on 95% confidence interval using robust

standard error with an unstructured working correlation matrix; CP Toepl.: empirical

coverage probability for true coefficient based on 95% confidence interval using robust

standard error with an Toeplitz working correlation matrix.)

of patients censored. In practice, the PO method is particularly easy to program

compared to the MI method and runs a bit more quickly, since the PO method is

nested within the MI method. We suspect the PO method will be implemented more

in practice as a result.
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5.5.2 Simulating Distribution of Times-to-First-Event Based on Corre-

lated Times Between Recurrent Events and Comparison of Pro-

posed Methods

Simulating a multivariate time-to-first-event distribution is more complex when

times between events are correlated random variables. Recall from Section 5.3 that

positive correlation between exponential(λi) gap times causes the corresponding dis-

tribution for T to change; that P{Ti(t) > u} tends to be smaller than an exponential(λi)

survival function and stabilizes after approximately t > 1/λi follow-up units of gap-

time history has passed. The intuition behind this phenomenon, described in Section

5.3, also suggests the approach for successfully simulating the desired stable multivari-

able distribution for T to be used in this section. That is, upon simulating correlated

exponential(λi) gap times for individual i, we discard at least the first 1/λi follow-up

units of generated information, starting t1 = 0 for individual i after this ’burn-in’

period has passed.

To verify that our model works correctly for finite sample sizes when exponen-

tially distributed times between event are correlated, we need (1) to generate data

that follows model (5.3) for this setting and (2) have a way to verify that estimated

parameters appropriately represent the data. To address (2), we assume a categorical

predictor, Z = {0, 1, 2}, so that E(log[min{τ, Ti(t)}]|Z) can be consistently estimated

from a large dataset (N=10,000) within each level of Z via an empirical mean. From

this model-free process, we can determine values, β̃, of regression parameters that

should be estimated if model (5.3) is working correctly. In particular, we assume

that individuals with Zi = 0, 1 or 2 have a history of exponential gap times with

λi = 1/2, 1/3 or 1/5, respectively, where correlation between any two gap times from

individual i is approximately 0.8. Stabilization of the resulting multivariate time-to-

first-event process is done by defining t1 = 0 after a burn-in period of 5 follow-up

units has passed for each individual.
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A Gaussian copula approach (Li , 1999a) is used to generate correlated exponen-

tial gap times in this section and section 5.3. This approach first simulates mean zero

multivariate normal random variables {Qi1, Qi2, . . . , Qi500} with variance one and 0.8

correlation between Qij and Qij′, for j 6= j′; 500 was chosen to ensure that individuals

would have at least 10 years of gap time history (5 year burn-in period, followed by

5 years of potential follow-up, subject to the previously described censoring mecha-

nism). We then transform the multivariate normal random variables to multivariate

uniform(0,1) and then multivariate exponential random variables via repeated ap-

plications of the inverse transform theorem. The exponential random variables that

result from this process become the correlated gap times {Gi1, Gi2, . . . , Gi500}, which

are then converted into times-to-first event as described in Section 5.2.

Figure 5.4 shows the empirical average of log[min{2, Ti(t)}] for each value of

Z = {0, 1, 2} based on N = 10, 000 individuals with correlated exponential gap time

histories as generated using the copula approach described above. As expected based

on the stabilization of the survival curves seen in Figure 5.3, the empirical average

of log[min{τ, Ti(t)}] seems to stabilize successfully after the 5 year burn-in period.

Results from t = 5 to t = 8 in this figure are averaged to provide nonparametric large

sample estimates, β̃, of parameters in model 5.3:

E(log[min{τ, T }]|Z) = −0.677 + 0.306I(Z = 1) + 0.637I(Z = 2).

Finite sample properties of our PO and MI methods shown in Table 5.2 are based

on N=500 individuals simulated to have an equal chance of following the simulated

time-to-first-event longitudinal data structure governed by covariate values, Z = 0, 1

or 2. The case where these subjects are not subject to censoring is also presented for

comparison. Results are laid out in a similar manner to that seen in Table 5.1, except

that bias is defined in relation to the nonparametric large sample estimate, β̃ rather
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Figure 5.4: Empirical Average of log[min{2, Ti(t)}], Based on N=10,000 Individuals
with Correlated Exponential Gap Time Histories per Curve; Correlation
is Approximately 0.8; t ∈ {0, . . . , 8}; a= 0.1 Units Apart. Curves Seem
to Stabilize after Shaded Burn-in Period of 5 Years.
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Coef. Method β̂ Bias ESD SE SE CP CP
Unstr. Toepl. Unstr. Toepl.

Uncen. -0.671 0.006 0.076 0.075 0.075 0.940 0.940

β̃0=-0.677 PO -0.669 0.008 0.078 0.078 0.078 0.943 0.944
MI -0.670 0.007 0.078 0.077 0.077 0.943 0.945

Uncen. 0.302 -0.004 0.102 0.102 0.103 0.948 0.950

β̃1=0.306 PO 0.300 -0.006 0.105 0.106 0.106 0.952 0.953
MI 0.302 -0.004 0.105 0.106 0.106 0.951 0.950

Uncen. 0.622 -0.015 0.099 0.097 0.097 0.945 0.946

β̃2=0.637 PO 0.617 -0.020 0.101 0.100 0.101 0.944 0.946
MI 0.621 -0.016 0.101 0.100 0.100 0.944 0.946

Table 5.2: Simulated Finite Sample Performance for N = 500 Individuals with Cor-
related Times Between Recurrent Events. Results Are Based on 10,000
Iterates.

(Coef.: True value of the coefficient;
For Methods, Uncen.: standard GEE approach applied to uncensored version of the data,
PO: pseudo observation approach, MI: multiple imputation approach;
For remaining column headings, β̂: average coefficient estimate; Bias: average β̂ − β̃; ESD:
empirical standard deviation of β̂; SE Unstr.: the average estimated robust standard error
using an unstructured working correlation matrix; SE Toepl.: the average estimated
robust standard error using a Toeplitz working correlation matrix; CP Unstr.: empirical
coverage probability for true coefficient based on 95% confidence interval using robust
standard error with an unstructured working correlation matrix; CP Toepl.: empirical
coverage probability for true coefficient based on 95% confidence interval using robust
standard error with an Toeplitz working correlation matrix.)

than a true β, since a closed form value for the true β is unavailable.

Results are generally comforting. Again the MI method has very slightly smaller

SE estimates when compared to the PO method. All coverage probabilities are close

to the desired 95%. Interesting, parameter estimate bias is smallest for the groups

where the burn-in period of 5 years was longer than their respective 1/λi values would

have suggested (β̂0 and β̂1). These results verify that both the PO and MI methods

estimate parameters with good finite sample properties in this case, but also verify

that we have successfully simulated this complex data structure.
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5.6 Example

In this section, we use the proposed methods to analyze results from the Azithromycin

in COPD Trial. This study followed 1112 patients with a history of acute exacer-

bations (AEs) for recurrent AEs after randomization to either placebo or 250mg

azithromycin daily. This trial ended with favorable results for the azithromycin arm

(Albert et al., 2011), based on an analysis of the time to first acute exacerbation

using the logrank test. Multivariable Cox proportional hazard analysis modeling

time-to-first-exacerbation confirmed azithromycin benefit after adjustment for forced

expiratory volume in one second (FEV1), age, gender, smoking status and study sites.

In our analysis, we estimate parameters in Model (5.3) for τ = 6 months and a

longitudinal data structure, T , measuring times-to-first-recurrent-event in follow-up

windows starting at times t = 0, 2, 4, 6 months. Our selections of τ=6 and a = 2

months are based on the 6-month historic mean time-to-exacerbation in this patient

population and recommendations from Xia and Murray (2018) that approximately

90% of recurrent events should be captured when spacing windows apart by one-third

of a historic mean.

We present results from a univariate analysis that evaluates azithromycin versus

placebo, a forest plot analysis of treatment effect in subgroups of interest, and a mul-

tivariable analysis of treatment effect that adjusts for age, gender, FEV1, smoking

status and study site. We tested for and found no statistically significant interactions

between follow-up window start times and treatment, indicating relatively stable pat-

terns of treatment effect over time (p > 0.41). The Toeplitz working correlation struc-

ture gave a slightly lower QIC value compared to the unstructured working correlation

structure in our multivariable model and was used in all models of the azithromycin

data. All confidence intervals and p-values are based on robust sandwich estimation

of variability.

Forest plots of univariate treatment effects, overall and by subgroup, are shown in
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Figure 5.5 for the PO (left panel) and MI (right panel) methods. Tabulated versions

of these results are located in Supplemental Table D.1 in Appendix D.3. Treatment ef-

fects are displayed on the scale of eβ̂ and can be interpreted as multiplicative increases

(or decreases) on the time to first exacerbation over the next 6 months of follow-up.

Overall, azithromycin is estimated to extend the time to the first exacerbation over a

6 month period by approximately 14% using either the PO or the MI method (95% CI

approximately 5%-24% longer, p=0.002 for PO method and p=0.001 for MI method).

Stated as an absolute difference, there was an estimated 0.43 month increase in time-

to-first-exacerbation for the azithromycin group compared to the placebo group over

a 6-month period (I.e., eβ̂0+β̂1 − eβ̂0 ≈ 0.43 using either the PO or MI method).

Across the various subgroup analyses shown in Figure 5.5 and Table D.1, the

treatment benefit was most pronounced in COPD patients with better preserved

lung function, that is, FEV1 % of predicted > 50 % (approximately 29% longer time

to first exacerbation in the next 6 months, 95% CI 10%-51% longer using PO method

and 11%-50% longer using MI method). In general, point estimates shown for the

PO and MI methods in Table D.1 are very close to one another and 95% CI results

for the methods are also close, but with slightly narrower CI widths using the MI

approach. P-values for the MI method are also slightly smaller using the MI versus

the PO method.

As seen in Table 5.3, the azythromycin group maintains its estimated treatment

benefit when adjusted for confounders in a multivariable model using either the PO

or MI method (approximately 15% longer time to first exacerbation in the next 6

months, 95% CI 6%-25% longer, p=0.001, using PO method and 6%-24% longer, p

< 0.001, using MI method. Interactions between treatment and FEV1, age, gender,

smoking status other than study sites were tested and no significant interactions were

found.
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Figure 5.5: Forest Plot of Univariate Treatment Effects, Overall and by Subgroups of
Interest.

PO MI

eβ̂ 95% CI P eβ̂ 95% CI P

Intercept 60.34 41.17 88.43 <0.001 61.28 42.33 88.72 <0.001
Azithromycin (vs. Placebo) 1.153 1.063 1.250 0.001 1.150 1.063 1.244 <0.001
FEV1 (per 10% Predicted) 1.041 1.013 1.068 0.003 1.039 1.013 1.066 0.003
Age (per 10 Years) 1.052 0.999 1.108 0.055 1.052 1.001 1.107 0.046
Male (vs. Female) 1.181 1.084 1.287 <0.001 1.171 1.078 1.272 <0.001
Current Smoker (vs. Ex) 1.074 0.967 1.193 0.184 1.071 0.967 1.186 0.188

Table 5.3: Multivariable Results Using PO and MI Methods. Displayed Estimates
Are Additionally Adjusted for Center [Data Not Shown].

(CI: confidence interval; PO: pseudo-observation; MI: multiple imputation.)
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5.7 Discussion

In this chapter, we take a fresh look at the manner in which recurrent event

data is analyzed. By first restructuring the data into a censored longitudinal form,

and then transforming the data via PO or MI models into a complete data format,

we are able to take advantage of existing software from longitudinal data analysis

literature. Our model estimates time free from recurrence over a τ -length follow-

up period. In our opinion, this model gives a clear manner of assessing clinical and

statistical significance of associations simultaneously. As with most longitudinal data,

our method allows for either time-independent or dependent predictors.

We develop two methods for handling censoring that allow standard GEE methods

to be applied to our censored longitudinal data structure: a PO approach and an MI

approach. Both the methods have attractive performance in simulation, even with

high correlation underlying the multivariate gap time distribution.

Experts in multiple imputation theory often prefer these methods to include a

draw from the parameter space, going as far as to say that imputation must include

this step to be proper. The argument is bolstered by noticeably improved coverage

probabilities when this step is included in some cases. In our own work with in-

verse probability transform imputation methods, we have not observed a sufficient

improvement in coverage probabilities to justify the extra computing time needed to

perform this extra step. Although purists will likely agree to disagree, we feel com-

fortable recommending our imputation algorithm, as is, given the very solid coverage

probability results seen in simulation.

An additional contribution of our research is a better understanding of how times-

to-first-event fit within the context of recurrent events data. In most practical clinical

settings, follow-up begins at a clinic visit that does not coincide with a recurrent

event. When patients are scheduled for their next visit, likewise, this is unlikely to

occur at a recurrent event time. Hence in practice, the information most relevant to a
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patient is what to expect between clinic visits, and this is closer to a time-to-first-event

analysis than a gap time analysis. By constructing a longitudinal data structure built

from times-to-first-event, and evaluating this analysis in the presence of dependent

gap times, we have introduced some needed intuition about how these distributions

behave. The notion that the mixture of gap time histories prior to the moment a

patient walks into a clinic for advice influences the time-to-first-event with correlated

gap times, but not independent gap times, seems obvious in hindsight. However,

simulating a stable time-to-first-event distribution required a better understanding of

this process, and led to our suggestion of a burn-in period for simulating this data.

We are hopeful that other researchers will benefit from this simulation framework

alone.
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CHAPTER VI

Conclusion

The objective of this dissertation is to develop study design and analysis methods

for testing or predicting the τ -restricted survival/event-free time from a repurposed

censored longitudinal data framework. We emphasize the advantage of using the

restricted time as a more interpretable outcome, with less assumptions, and hope to

contribute to methods for analyzing restricted survival/event-free times as alternative

tools to hazard-oriented methods. To this end, we estimate the restricted time-to-first-

event based on a paradigm shift from traditionally recorded censored time-to-event

and recurrent events data. The philosophy hinges on the idea that traditional time

data can be transformed into censored short-term outcomes measured longitudinally

over potentially overlapping follow-up periods of length τ . Further tests and analysis

of the τ -restricted survival/event-free time can benefit from shifting our thoughts on

traditional time data structure towards the longitudinal outcomes.

In Chapter II-V, we consider three practical settings that can benefit statistically

from repurposing traditional data into this censored longitudinal data structure. The

first setting is clinical trial design and analysis where the outcome of interest is a

single time-to-event compared between treatments. Chapter II develops a new two-

sample test based on the restructured censored longitudinal data paradigm along

with corresponding methods for group sequentially monitoring across several planned
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interim analyses. Simulations suggest that shifting towards a longitudinal view of

censored survival outcomes has practical advantages. Our proposed test procedure

performs well not only in scenarios where short-term differences are anticipated to

be stable, but also in settings that it may be hard to anticipate in the design stage

of a clinical trial. When treatment differences emerge only after a certain period of

time or in settings where there is potential for cure, we find our test has a notably

improved performance over its competitors.

The second setting is also based on group sequential monitoring of clinical trial

data, where instead of a single time-to-event endpoint the primary endpoints are re-

current in nature and can be subject to a terminating event. Chapter III develops

group sequential methods for monitoring the Tayob and Murray (2014) statistic in

this case. Our method is appropriate and robust for events that are correlated within

an individual or for completely independent event times. Treatment effects observed

across analysis times are simple to interpret. Besides, the assumption of propor-

tionality between groups of the cumulative mean number of events over time is not

required. Focusing on the time from the pre-specified windows’ start instead of the

previous event avoids dependent censoring issues. Chapter IV also provides a useful

guide to help construct the data frame with more intelligence for the second setting.

The recommendation is framed to seek a balance between the average proportion of

recurrent events captured in at least one window and computational efficiency. We

suggest a convenient rule of thumb of choosing spaced time that ensures at least 80%

events are captured to achieve a decent power.

In our third and final setting, we develop multivariable models of recurrent events

based on the censored longitudinal data framework in Chapter V. Instead of analyzing

recurrent events based on intensity function or gap times, we propose to focus on the

time free from recurrence over a prespecified follow-up period whenever an individual

is at risk. Approaches of pseudo-observations and multiple imputations are utilized
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to account for censoring and result a complete data set for further analysis with GEE

model. We generalize and integrate the existing methods in a new way to analyze

the censored longitudinal data transformed from recurrent events. Thus we provide a

fresh perspective of assessing patients’ progression status based on recurrent events.

We also give a guide on how to implement and present our methods by the example

data from the Azithromycin in COPD Trial.

This dissertation plus the researches from Tayob and Murray (2014, 2016, 2017)

give a road map of the paradigm shifting from the traditionally recorded time data

into a censored longitudinal data framework. To sum up, methods benefit from

the data reconstruction include: (1) the improved estimation of τ -restricted mean

survival time; (2) nonparametric two-sample tests of single time analysis and group

sequentially monitoring for two types of data: the standard censored time-to-event

data and recurrent events data subject to terminal events and censoring; and (3)

multivariable methods for τ -restricted outcomes drawn from single time-to-event data

as well as recurrent events data.
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APPENDIX A

Supplementary Materials for Chapter II

A.1 Derivation of the Asymptotic Joint Distribution of the

Proposed Test Statistic at Interim Analysis Times

In this section, we derive the asymptotic joint distribution of the proposed test

statistics, T (s1), . . . ,T (sK) at interim analysis times, s1, . . . , sK . The overall strat-

egy is to first show that the vector of test statistics, {T (s1), . . . ,T (sK)} , is asymp-

totically equivalent in distribution to the more tractable vector of random variables,

{T ∗(s1), . . . ,T ∗(sK)}, where elements of this latter vector are based on sums of in-

dependent and identically distributed quantities. From there, a standard application

of the multivariate central limit theorem gives the desired result.

Our test statistic at analysis time s,

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)},

can be rewritten as

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ), (A.1)
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where ng(s)/{n1(s) + n2(s)} p→ πg(s). Suppose at analysis time s, combining infor-

mation across b follow-up windows of length τ , we record M events {0 ≡ T0 < T1 <

... < TM < TM+1 ≡ τ}. Then, by Taylor series expansion,

√
ng(s)µ̂g(s, τ) =

√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

{
−

m∑
j=0

dNg(s, Tj)

Yg(s, Tj)

}

is asymptotically equivalent in distribution to the following terms:

√
ng(s)

M∑
m=0

(Tm+1 − Tm) exp

{
−

m∑
j=0

λWg (s, Tj)dTj

}
(A.2)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[ m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
dNg(s, Tj)

Yg(s, Tj)

]
(A.3)

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[ m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
λWg (s, Tj)dTj

]
(A.4)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)
1

2!
exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
[ m∑
j=0

{
dNg(s, Tj)

Yg(s, Tj)
− λWg (s, Tj)dTj

}]2
(A.5)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)[higher order terms] (A.6)

Using arguments similar to those in Tayob and Murray (2016) Appendix B, terms

(A.5) and (A.6) converge to zero in probability. When there is no treatment effect

(i.e., the null hypothesis is true), terms (A.2) and (A.4) for group g = 1 will cancel the

corresponding terms for group g = 2 in the test statistic T (s). Hence, the asymptotic

distribution of T (s) is based on the behavior of term (A.3) for groups g = 1, 2. Term
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(A.3) can be further rewritten as

√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[ m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
dNg(s, Tj)

Yg(s, Tj)

]

= −
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp{−
m∑
j′=0

λWg (s, Tj′)dTj′}
m∑
j=0

dNg(s, Tj)

Yg(s, Tj)
,

which is asymptotically equivalent in distribution (via Taylor series) to

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
×

{
m∑
j=0

EdNg(s, Tj)

EYg(s, Tj)
(A.7)

+
m∑
j=0

[
1

EYg(s, Tj)
[dNg(s, Tj)− EdNg(s, Tj)]−

EdNg(s, Tj)

EYg(s, Tj)2
[Yg(s, Tj)− EYg(s, Tj)]

]
(A.8)

+[higher order terms]} . (A.9)

Using arguments similar to those in Tayob and Murray (2016) Appendix B once

again, the higher order terms in (A.9) converge to zero in probability. In addition

when the null hypothesis is true, term (A.7) for group g = 1 will cancel with its coun-

terpart term for g = 2 in the test statistic T (s). Hence, the asymptotic distribution

of T (s) is based on the behavior of term (A.8) for groups g = 1, 2 which upon noting

that EdNg(s, Tj)/EYg(s, Tj) = λWg (s, Tj) and EYg(s, Tj) =
∑b

l=1 Pr(Xgi(s, tl) ≥ Tj)

can be algebraically rearranged as:

−
√
ng(s)

M∑
m=0

(Tm+1−Tm)exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
m∑
j=0

dNg(s, Tj)− Yg(s, Tj)λWg (s, Tj)∑b
l=1 Pr(Xgi(s, tl) ≥ Tj)
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or returning to more standard stochastic integral notation as:

−
√
ng(s)

τ∫
0

exp

−
u2∫

0

λWg (s, u1)du1


u2∫

0

dNg(s, u1)− Yg(s, u1)λWg (s, u1)∑b
l=1 Pr(Xgi(s, tl) ≥ u1)

du2.

(A.10)

Summarizing calculations from equation (A.1) to equation (A.10),

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ)

is asymptotically equivalent in distribution to

√
π1(s)

√
n2(s)

τ∫
0

exp

−
u2∫

0

λW2 (s, u1)du1


u2∫

0

dN2(s, u1)− Y2(s, u1)λW2 (s, u1)∑b
l=1 Pr(X2i(s, tl) ≥ u1)

du2

−
√
π2(s)

√
n1(s)

τ∫
0

exp

−
u2∫

0

λW1 (s, u1)du1


u2∫

0

dN1(s, u1)− Y1(s, u1)λW1 (s, u1)∑b
l=1 Pr(X1i(s, tl) ≥ u1)

du2.

From here, we note that the remaining terms above can be written in terms

of independent and identically distributed random variables that lend themselves

to standard limiting distribution results via the multivariate central limit theorem.

Recall that

Ng(s, u) =

ng(s)∑
i=1

Ngi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ngi(s, tj, u)

and

Yg(s, u) =

ng(s)∑
i=1

Ygi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ygi(s, tj, u).

Define:

Zij{µ̂g(s, τ)} =

τ∫
0

exp

−
u2∫

0

λWg (s, u1)du1


u2∫

0

dNgi(s, tj , u1)− Ygi(s, tj , u1)λWg (s, u1)du1∑b
l=1 Pr(Xgi(s, tl) ≥ u1)

du2
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and

Zi{µ̂g(s, τ)} =
b∑

j=1

Zij{µ̂g(s, τ)}.

Note that Zi{µ̂g(s, τ)} only depends on patient i and is independent and identically

distributed for i = 1, . . . , ng(s). Using this notation, the above asymptotically equiv-

alent representation of the distribution of T (s) becomes

T ∗(s) =
√
π1(s)

√
n2(s)

∑n2(s)
i=1 Zi{µ̂2(s, τ)}

n2(s)
−
√
π2(s)

√
n1(s)

∑n1(s)
i=1 Zi{µ̂1(s, τ)}

n1(s)
.

(A.11)

Application of the multivariate central limit theorem to the vector of test statistics

{T ∗(s1), . . . ,T ∗(sK)} calculated at calendar times, s1, s2, . . . , sK (K finite), gives a

limiting multivariate normal distribution as ng(s1) → ∞, g = 1, 2, with asymptotic

covariance matrix estimated empirically as described in Appendix A.2. A closed-form

version of the asymptotic covariance is described in Appendix A.3.

For convenience, we explicitly describe the special case where only a single analysis

is performed. When the null hypothesis is true, the asymptotic limiting distribution

of T (s) is Normal with mean 0 and variance π2(s)σ2
1(s)+π1(s)σ2

2(s), where σ2
g(s), g =

1, 2 is the variance of Zi(µ̂g(s, τ)) and can be estimated using the sampling variability

of Zi{µ̂g(s, τ)}, that is, σ̂2
g(s) =

∑ng(s)
i=1 [zi{µ̂g(s, τ)}− z̄{µ̂g(s, τ)}]2/[ng(s)− 1], where

zi{µ̂g(s, τ)} =
b∑

j=1

zij{µ̂g(s, τ)}; z̄{µ̂g(s, τ)} =

ng(s)∑
i=1

zi{µ̂g(s, τ)}/ng(s)

and zij{µ̂g(s, τ)} =

τ∫
0

exp

−
u2∫

0

dNg(s, u1)

Yg(s, u1)




u2∫
0

dNgi(s, tj, u1)− Ygi(s, tj, u1)dNg(s,u1)

Yg(s,u1)

Yg(s, u1)/ng(s)

 du2. (A.12)
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For finite sample sizes, we use a standardized version of the test statistic,

T̃ (s) =
T (s)√

π̂2(s)σ̂2
1(s) + π̂1(s)σ̂2

2(s)
,

which has an approximate Normal(0,1) distribution, with critical values of ± 1.96

conferring an overall type I error of 5% when a single analysis is performed.

A.2 Empirical Covariance Matrix for
{

T̃ (s1), . . . , T̃ (sK)
}

In this appendix, we describe how to estimate the empirical version of the K ×

K asymptotic covariance matrix, Σ, corresponding to standardized test statistics,{
T̃ (s1), . . . , T̃ (sK)

}
. By design, diagonal elements of this matrix are equal to one,

so that this covariance matrix is also a correlation matrix. Off-diagonal elements,

σk1k2 = σk2k1 , k1 < k2, can be estimated based on the more updated dataset at

analysis sk2 .

In Appendix A.1, we show that {T (s1), . . . ,T (sK)} is asymptotically equivalent

in distribution to {T ∗(s1), . . . ,T ∗(sK)}. Similarly, for the standardized version of

each test statistic, T̃ (sk), sk = s1, . . . , sK , we work with the corresponding asymptoti-

cally equivalent in distribution standardized form, T ∗(sk)/
√
π2(sk)σ2

1(sk) + π1(sk)σ2
2(sk).

Hence, off-diagonal elements σk1k2 = σk2k1 , k1 < k2, of the covariance matrix, Σ, can

be estimated by

σ̂k1k2 =
ˆCov {T ∗(sk1),T

∗(sk2)}√
π̂2(sk1)σ̃

2
1(sk1) + π̂1(sk1)σ̃

2
2(sk1)

√
π̂2(sk2)σ̂

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)

(A.13)

We define each component of σ̂k1k2 in more detail below.

Estimated terms that use the most up-to-date information at analysis time sk2

have already been described for σ̂2
g(sk2), g = 1, 2, in Appendix A.1, captured by terms

in equation (A.12). Appendix A.1 also defines π̂g(sk) = ng(sk)/{n1(sk) + n2(sk)},
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for g = 1, 2 and sk = sk1 , sk2 . Estimates of σ2
g(sk1), g = 1, 2 used in the covari-

ance estimate are modified to take advantage of additional information available

at sk2 for estimating terms that do not depend on analysis time. In particular,

since both dNgi(sk1 , tj, u1)/Ygi(sk1 , tj, u1) and dNgi(sk2 , tj, u1)/Ygi(sk2 , tj, u1) estimate

λgi(tj, u1)du1, and the latter term uses more data, we replace dNgi(sk1 , tj, u1) in equa-

tion (1) with Ygi(sk1 , tj, u1)× dNgi(sk2 , tj, u1)/Ygi(sk2 , tj, u1). Similarly in equation

(A.12), we replace Yg(sk1 , u1)/ng(sk1), which is an estimate of∑b
l=1 Pr(Tgi(sk1 , tl) ≥ u1)Pr(Cgi(sk1 , tl) ≥ u1), with

[∑ng(sk2 )

i=1 I{Tgi ≥ u1 + tl}/ng(sk2)
]

×
[∑ng(sk1 )

i=1 I{Cgi(sk1) ≥ u1 + tl}/ng(sk1)
]
. Here, terms involving the event time are

estimated using updated data, while terms involving the censoring distribution remain

relevant to analysis time sk1 . Putting these modifications together gives us

z̃ij{µ̂g(sk1 , τ)} =

τ∫
0

exp{−
u2∫

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[ u2∫
0

b∑
l=1

ng(sk2 )∑
i=1

I{Tgi ≥ u1 + tl}
ng(sk1 )∑
i′=1

I{Cgi′(sk1) ≥ u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj, u1)

{
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2

as an updated version of zij{µ̂g(sk1 , τ)} for use in covariance terms. And mimicking

Appendix A.1 notation, σ̃2
g(sk1) used in equation (A.13) is calculated by replacing

zij{µ̂g(sk1 , τ)} with z̃ij{µ̂g(sk1 , τ)} terms in corresponding formulas for σ̂2
g(sk1) from

Appendix A.1.

The only remaining undefined term from equation (A.13) is ˆCov {T ∗(sk1),T
∗(sk2)} ,

which is described in the following. From equation (A.11),

Cov {T ∗(sk1),T ∗(sk2)}

=

2∑
g=1

Cov

[√
π3−g(sk1)

√
ng(sk1)

∑ng(sk1 )

i=1 Zi{µ̂g(sk1 , τ)}
ng(sk1)

,
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√
π3−g(sk2)

√
ng(sk2)

∑ng(sk2 )

i=1 Zi{µ̂g(sk2 , τ)}
ng(sk2)

]
.

Without loss of generality, assume k1 ≤ k2 so that ng(sk1) ≤ ng(sk2) and there are

ng(sk1) patients contributing (correlated) data from both analysis times. Then the

previous expression reduces to

=
2∑
g=1

√
π3−g(sk1)

√
π3−g(sk2)

ng(sk1)√
ng(sk1)ng(sk2)

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] ,

which is asymptotically equivalent to

=
2∑
g=1

√
π3−g(sk1)π3−g(sk2)ψg(sk1 , sk2)Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}]

where ψg(sk1 , sk2) is the limiting proportion of patients entered at sk1 of those even-

tually entered by sk2 of group g, that is estimated by ng(sk1)/ng(sk2).

In practice, Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] can be estimated based on the em-

pirical covariance of sample realizations of Zi{µ̂g(sk1 , τ)} and Zi{µ̂g(sk2 , τ)}, that is,

ˆCov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =

ng(sk1 )∑
i=1

[z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}][zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
ng(sk1)− 1

, where

z̃i{µ̂g(sk1 , τ)} =
∑b

j=1 z̃ij{µ̂g(sk1 , τ)}, ¯̃z{µ̂g(sk1 , τ)} =
∑ng(sk1 )

i=1 z̃i{µ̂g(sk1 , τ)}/ng(sk1).

Putting each described component into equation (A.13), we have the version of σ̂k1k2

listed in Chapter 2.4.

A.3 Closed Form Covariance Matrix for
{

T̃ (s1), . . . , T̃ (sK)
}

At times it is convenient to have an asymptotic closed form version of the co-

variance matrix for
{

T̃ (s1), . . . , T̃ (sK)
}

, for instance in assessing whether an inde-
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pendent increments variability structure is present. Working from results in the last

paragraph of Appendix A.2, instead of estimating Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}]

with the empirical covariance, in this section we derive its asymptotic closed-form

formula. Consider Zi{µ̂g(sk, τ)} =
∑b

j=1 Zij{µ̂g(sk, τ)} at analysis times sk = sk1

and sk2 and recall that group g patients are independent and identically distributed.

Then

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =
b∑

j=1

b∑
j′=1

Cov [Zij{µ̂g(sk1 , τ)}, Zij′{µ̂g(sk2 , τ)}] .

For notational simplicity, we submerge the group indicator g as we work with the

summand term above. That is,

Cov [Zij{µ̂g(sk1 , τ)}, Zij′{µ̂g(sk2 , τ)}]

=
b∑

j=1

b∑
j′=1

τ∫
0

τ∫
0

exp{−
u2∫

0

λW (sk1 , u1)du1}exp{−
v2∫

0

λW (sk2 , v1)dv1}

×
u2∫

0

v2∫
0

1∑
l Pr(Xi(sk1 , tl) ≥ u1)

∑
l′ Pr(Xi(sk2 , tl′) ≥ v1)

× Cov
{
dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1, dNi(sk2 , tj′, v1)

− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1

}
du2dv2.

Focusing on this last term:

Cov

{
dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1,

dNi(sk2 , tj′, v1)− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1

}
= E[dNi(sk1 , tj, u1)dNi(sk2 , tj′, v1)] (A.14)

−λW (sk1 , u1)E[Yi(sk1 , tj, u1)dNi(sk2 , tj′, v1)]du1 (A.15)
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−λW (sk2 , v1)E[Yi(sk2 , tj′, v1)dNi(sk1 , tj, u1)]dv1 (A.16)

+λW (sk1 , u1)λW (sk2 , v1)E[Yi(sk1 , tj, u1)Yi(sk2 , tj′, v1)]du1dv1 (A.17)

−E[dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1] (A.18)

×E[dNi(sk2 , tj′, v1)− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1]. (A.19)

Term (A.14) becomes:

E[dNi(sk1 , tj, u1)dNi(sk2 , tj′, v1)] = lim
∆u1,∆v1→0

Pr{u1 ≤ Xi(sk1 , tj) < u1 + ∆u1,

δi(sk1 , tj) = 1,

v1 ≤ Xi(sk2 , tj′) < v1 + ∆v1,

δi(sk2 , tj′) = 1}

= lim
∆u1→0

Pr{u1 ≤ Xi(sk1 , tj) < u1 + ∆u1, δi(sk1 , tj) = 1}

× I{u1 + tj = v1 + tj′}

= λ(sk1 , tj, u1)Pr{Xi(sk1 , tj) ≥ u1}

× I{u1 + tj = v1 + tj′}du1.

Term (A.15) becomes

E[Yi(sk1 , tj, u1)dNi(sk2 , tj′, v1)] = lim
∆v1→0

Pr{Xi(sk1 , tj) ≥ u1, v1 ≤ Xi(sk2 , tj′) < v1 + ∆v1,

δi(sk2 , tj′) = 1}

= λ(sk2 , tj′, v1)Pr{Xi(sk1 , tj) ≥ u1, Xi(sk2 , tj′) ≥ v1}

[I{u1 + tj ≤ v1 + tj′}+ I{u1 = 0, tj > v1 + tj′}]dv1,

where the expectation is only none-zero when u1 + tj ≤ v1 + tj′. The term I{u1 =

0, tj > v1 + tj′} comes from the case when the failure occurs before calendar time tj,
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namely tj > v1 + tj′, by definition Xi(sk1 , tj) = 0. Therefore the expectation is also

non-zero when u1 = 0.

Term (A.16) becomes

E[Yi(sk2 , tj′, v1)dNi(sk1 , tj, u1)] = lim
∆u1→0

Pr{Xi(sk2 , tj′) ≥ v1, u1 ≤ Xi(sk1 , tj) < u1 + ∆u1,

δi(sk1 , tj) = 1}

= λ(sk1 , tj, u1)Pr{Xi(sk1 , tj) ≥ u1, Xi(sk2 , tj′) ≥ v1}

[I{u1 + tj ≥ v1 + tj′}+ I{v1 = 0, u1 + tj < tj′}]du1,

where the expectation is only none-zero when u1 + tj ≥ v1 + tj′. The term I{v1 =

0, u1 + tj < tj′} comes from the case when the failure occurs before calendar time tj′,

namely u1 + tj < tj′, by definition Xi(sk2 , tj′) = 0. Therefore the expectation is also

non-zero when v1 = 0.

Term (A.17) becomes

E[Yi(sk1 , tj, u1)Yi(sk2 , tj′, v1)] = Pr{Xi(sk1 , tj) ≥ u1, Xi(sk2 , tj′) ≥ v1}.

Term (A.18) becomes

E[dNi(sk1 , tj, u1)− Yi(sk1 , tj, u1)λW (sk1 , u1)du1] =[λ(sk1 , tj, u1)− λW (sk1 , u1)]

× Pr{Xi(sk1 , tj) ≥ u1}du1.

And term (A.19) becomes

E[dNi(sk2 , tj′, v1)− Yi(sk2 , tj′, v1)λW (sk2 , v1)dv1] =[λ(sk2 , tj′, v1)− λW (sk2 , v1)]

× Pr{Xi(sk2 , tj′) ≥ v1}dv1.
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Substituting appropriate terms we now have

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}]

=
b∑

j=1

b∑
j′=1

τ∫
0

τ∫
0

exp{−
u2∫

0

λWg (sk1 , u1)du1}exp{−
v2∫

0

λWg (sk2 , v1)dv1}

×
u2∫

0

v2∫
0

1∑
l Pr(Xgi(sk1 , tl) ≥ u1)

∑
l′ Pr(Xgi(sk2 , tl′) ≥ v1)

×
{
λg(tj, u1)Pr{Xgi(sk1 , tj) ≥ u1}I{u1 + tj = v1 + tj′}du1

−
[
λWg (sk1 , u1)λ(tj′, v1)[I{u1 + tj ≤ v1 + tj′}+ I{u1 = 0, tj > v1 + tj′}]

+ λWg (sk2 , v1)λ(tj, u1)[I{u1 + tj ≥ v1 + tj′}+ I{v1 = 0, u1 + tj < tj′}]

− λWg (sk1 , u1)λW (sk2 , v1)

]
Pr{Xgi(sk1 , tj) ≥ u1, Xgi(sk2 , tj′) ≥ v1}du1dv1

− {λg(tj, u1)− λWg (sk1 , u1)}{λg(tj′, v1)− λWg (sk2 , v1)}

× Pr{Xgi(sk1 , tj) ≥ u1}Pr{Xgi(sk2 , tj′) ≥ v1}du1dv1

}
du2dv2

Unfortunately, this covariance does not simplify to an independent increments struc-

ture except in special cases such as an exponentially distributed event time. The inde-

pendent increments structure emerges in this special case upon noting that λWg (s, u) =

λ(t, u) = λ for all s, t and u. However, given the advantages of avoiding paramet-

ric assumptions, there is no practical computation savings that can be made from

knowledge of this special case.

We’ve also used this asymptotic closed form variance as a method to double-check

that R code for our empirically calculated covariance is on target. For example, a

covariance matrix estimated from 500 individuals’ data should be relatively close to

the asymptotic closed form. Assuming an Exp(0.5) event time with 2 years of uniform

accrual, and analyses using τ = 1 conducted at 1, 2, 3, 4 and 5 years in calendar time,
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the closed form covariance matrix calculation gives:



0.175 0.085 0.042 0.039 0.035

0.085 0.091 0.052 0.041 0.036

0.042 0.052 0.054 0.042 0.038

0.039 0.041 0.042 0.043 0.038

0.035 0.036 0.038 0.038 0.039


,

whereas the corresponding empirical covariance estimate from the 500 individuals was



0.149 0.082 0.050 0.040 0.034

0.082 0.104 0.056 0.044 0.039

0.050 0.056 0.059 0.045 0.041

0.040 0.044 0.045 0.046 0.042

0.034 0.039 0.041 0.042 0.043


with difference matrix



−0.026 −0.003 0.008 0.001 −0.001

−0.003 0.013 0.004 0.003 0.003

0.008 0.004 0.005 0.003 0.003

0.001 0.003 0.003 0.003 0.004

−0.001 0.003 0.003 0.004 0.004


.

Repeating this exercise for different simulated datasets and sample sizes is a comfort-

ing coding check.
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A.4 Supplementary Simulation Results of Section 2.5

In this section we show supplemental simulation results for our proposed method

using the same simulation scenarios 1-9 described in the Chapter 2.5. In Tables A.1

and A.2, we (1) examine the performance of our method for alternative choices of

τ = 0.25, 0.50 and 0.75 years, (2) show results for the Peto and Peto (WLR-PP)

test that places more weight on hazards at the beginning of the study and (3) show

results for the Fleming-Harrington (WLR-FH) (0.5, 0.5) test that places more weight

on hazards at the end of the study. Table A.1 shows stopping rates based on OF

efficacy, JT safety, Pocock safety and OF safety bounds. Table A.2 shows the average

study time (AST) in years, the average sample number (ASN) and the average number

of events (ANE).

All test statistic boundaries meet their targets within simulation error under Sce-

nario 1, the null hypothesis (Table A.1, Scenario 1).

For the most part, stopping rates do not seem to vary much based on the selection

for τ . The only possible exception is in Scenario 4, the delayed treatment effect

scenario, where power is slightly smaller for smaller values of τ . The WLR-FH test

does well in this setting, with slightly less power than the proposed test using τ = 1

year and slightly more power than the proposed test with smaller values of τ . The

WLR-PP test has much lower power than all other methods in this setting. The WLR-

PP test also performs poorly in Scenario 8, the Scenario with mixed cure distribution

alternatives under consideration.

Note that these extra simulations for τ = 0.25, 0.5 and 0.75 are not intended to

be an exhaustive look at how to choose τ since we believe most applications will have

a natural choice. But these additional simulations verify that the method performs

well for a broader selection of short-term window lengths.
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Scenario Test Statistic OF Efficacy JT Safety P Safety OF Safety
Proposed τ = 0.75 0.024 0.192 0.025 0.024
Proposed τ = 0.5 0.023 0.197 0.024 0.023

1 Proposed τ = 0.25 0.024 0.193 0.024 0.024
WLR-PP 0.023 0.195 0.025 0.026

WLR-FH (0.5, 0.5) 0.023 0.196 0.026 0.026
Proposed τ = 0.75 0.813 0 0 0
Proposed τ = 0.5 0.803-0.804 0.002 0 0

2 Proposed τ = 0.25 0.806-0.807 0.002 0 0
WLR-PP 0.75 0 0 0

WLR-FH (0.5, 0.5) 0.807 0 0 0
Proposed τ = 0.75 0 0.977 0.79 0.847
Proposed τ = 0.5 0 0.979 0.773 0.829

3 Proposed τ = 0.25 0 0.973 0.778 0.839
WLR-PP 0 0.967 0.724 0.76

WLR-FH (0.5, 0.5) 0 0.971 0.773 0.815
Proposed τ = 0.75 0.813-0.825 0.024 0.007 0
Proposed τ = 0.5 0.817-0.824 0.019 0.005 0

4 Proposed τ = 0.25 0.803-0.811 0.025 0.007 0
WLR-PP 0.367 0.029 0.008 0

WLR-FH (0.5, 0.5) 0.823-0.834 0.031 0.008 0
Proposed τ = 0.75 0 0.970 0.742 0.817
Proposed τ = 0.5 0 0.967 0.730 0.819

5 Proposed τ = 0.25 0 0.965 0.718 0.809
WLR-PP 0 0.743 0.325 0.381

WLR-FH (0.5, 0.5) 0 0.970 0.778 0.848
Proposed τ = 0.75 0.764 0 0 0
Proposed τ = 0.5 0.767 0.001 0 0

6 Proposed τ = 0.25 0.761 0 0 0
WLR-PP 0.753 0.001 0 0

WLR-FH (0.5, 0.5) 0.784 0 0 0
Proposed τ = 0.75 0 0.960 0.707 0.744
Proposed τ = 0.5 0 0.961 0.701 0.748

7 Proposed τ = 0.25 0 0.959 0.696 0.743
WLR-PP 0 0.956 0.696 0.736

WLR-FH (0.5, 0.5) 0 0.963 0.725 0.768
Proposed τ = 0.75 0.883 0 0 0
Proposed τ = 0.5 0.876 0 0 0

8 Proposed τ = 0.25 0.879 0 0 0
WLR-PP 0.777 0 0 0

WLR-FH (0.5, 0.5) 0.854 0 0 0
Proposed τ = 0.75 0 0.991 0.849 0.890
Proposed τ = 0.5 0 0.989 0.840 0.881

9 Proposed τ = 0.25 0 0.988 0.843 0.884
WLR-PP 0 0.959 0.735 0.774

WLR-FH (0.5, 0.5) 0 0.982 0.807 0.852

Table A.1: Rates of Stopping for Efficacy or for Safety
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AST ASN ANE
Scenario Test Statistic JT P OF JT P OF JT P OF

Proposed τ = 0.75 4.7 4.9 5.0 195 199 200 156 163 164
Proposed τ = 0.5 4.7 4.9 5.0 195 199 200 156 163 165

1 Proposed τ = 0.25 4.7 4.9 5.0 195 199 200 156 164 165
WLR-PP 4.7 4.9 5.0 195 199 200 156 163 165

WLR-FH (0.5, 0.5) 4.7 4.9 5.0 195 199 200 156 163 164
Proposed τ = 0.75 3.8 3.8 3.8 186 186 186 144 144 144
Proposed τ = 0.5 3.8 3.8 3.8 185 185 185 144 144 144

2 Proposed τ = 0.25 3.8 3.8 3.8 186 186 186 145 145 145
WLR-PP 3.8 3.8 3.8 186 186 186 145 145 145

WLR-FH (0.5, 0.5) 3.7 3.7 3.7 184 184 184 142 142 142
Proposed τ = 0.75 2.1 3.0 3.7 151 169 185 93 120 142
Proposed τ = 0.5 2.1 3.1 3.7 151 170 185 93 123 143

3 Proposed τ = 0.25 2.1 3.1 3.7 152 170 185 94 123 144
WLR-PP 2.1 3.1 3.8 152 170 185 94 123 144

WLR-FH (0.5, 0.5) 2.1 3.0 3.6 152 169 184 94 121 141
Proposed τ = 0.75 3.9 3.9 4.0 189 190 190 135 137 138
Proposed τ = 0.5 3.9 3.9 4.0 189 190 190 136 137 138

4 Proposed τ = 0.25 3.9 4.0 4.0 190 191 191 137 139 140
WLR-PP 4.5 4.6 4.7 195 196 197 152 154 155

WLR-FH (0.5, 0.5) 3.7 3.8 3.8 186 188 188 132 134 135
Proposed τ = 0.75 2.9 3.9 4.0 171 186 191 110 135 140
Proposed τ = 0.5 3.0 3.9 4.0 171 187 191 111 135 140

5 Proposed τ = 0.25 3.0 3.9 4.1 172 187 192 112 136 141
WLR-PP 3.7 4.5 4.6 182 194 197 129 151 154

WLR-FH (0.5, 0.5) 2.8 3.7 3.9 168 184 189 107 132 137
Proposed τ = 0.75 3.7 3.7 3.7 184 184 184 143 143 143
Proposed τ = 0.5 3.7 3.7 3.7 184 184 184 144 144 144

6 Proposed τ = 0.25 3.7 3.7 3.7 185 185 185 145 145 145
WLR-PP 3.7 3.7 3.7 184 184 184 145 145 145

WLR-FH (0.5, 0.5) 3.6 3.6 3.6 183 183 183 142 142 142
Proposed τ = 0.75 2.2 3.1 3.7 152 170 184 95 124 144
Proposed τ = 0.5 2.2 3.2 3.8 153 170 185 96 125 145

7 Proposed τ = 0.25 2.2 3.2 3.8 152 171 185 95 126 146
WLR-PP 2.2 3.2 3.8 152 171 185 95 126 145

WLR-FH (0.5, 0.5) 2.1 3.1 3.7 152 170 184 94 124 144
Proposed τ = 0.75 3.5 3.5 3.5 181 181 181 129 129 129
Proposed τ = 0.5 3.5 3.5 3.5 181 181 181 129 129 129

8 Proposed τ = 0.25 3.5 3.5 3.5 182 182 182 130 130 130
WLR-PP 3.7 3.7 3.7 184 184 184 133 133 133

WLR-FH (0.5, 0.5) 3.5 3.5 3.5 181 181 181 129 129 129
Proposed τ = 0.75 2.1 3.0 3.5 151 169 183 91 114 131
Proposed τ = 0.5 2.1 3.0 3.6 152 170 183 91 114 131

9 Proposed τ = 0.25 2.1 3.0 3.5 151 170 183 91 115 131
WLR-PP 2.2 3.2 3.8 153 171 185 92 116 134

WLR-FH (0.5, 0.5) 2.1 3.0 3.6 152 170 183 91 115 131

Table A.2: AST in Years, ASN and ANE in Scenarios 1 - 9
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Figure A.1: Standardized Test Statistics and Stopping Boundaries
(RMS: Restricted Mean Survival; OF:O’Brien and Fleming; JT: Jennison and

Turnbull)

A.5 Supplementary Example Results of Section 2.6

Figure A.1 shows group sequential OF efficacy boundaries as well as OF, Pocock

and JT safety boundaries for the proposed test statistic (left panel), the RMS statistic

(middle panel) and the logrank statistic (right panel). All test statistics are standard-

ized to ease comparisons between panels of the figure. Boundaries and test statistics

shown in Figure A.1 are enumerated for clarity in Table A.3. Although historically

during that period of clinical trial design symmetric stopping boundaries were typi-

cally used, a more modern safety boundary would make sense in this setting, partic-

ularly since it was not known for certain that the low-dose was sufficient to protect

against mortality in the same way the high dose had up to that time. Observed

values of the test statistics in each panel of Figure A.1 are superimposed as dots with

bold connecting lines. None of the test statistics approached the safety boundaries at

any of the interim analyses. As shown in Table A.3, the standardized proposed test

statistics and the standardized RMS test statistics crossed the OF efficacy boundary

at year 1990. The logrank test did not cross the OF efficacy boundary at any interim

analysis time.
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APPENDIX B

Supplementary Materials for Chapter III

B.1 Asymptotic Multivariate Distribution of T̃k

In this section, we prove that the multivariate distribution of

T̃k =
{

T̃1(s1), . . . , T̃k(sk)
}

is a mean zero Normal distribution with covariance matrix Σk for k = 1, . . . , K as

described in Chapter 3.4.

We start from our unstandardized test statistic at analysis time s:

T (s) =

√
n1(s)n2(s)

n1(s) + n2(s)
{µ̂1(s, τ)− µ̂2(s, τ)},

which can be written as

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ), (B.1)

where ng(s)/{n1(s) + n2(s)} p→ πg(s). Suppose at analysis time s, combining infor-

mation of the time to first event captured in all b follow-up windows of length τ , we
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record M unique event times {0 ≡ T0 < T1 < ... < TM < TM+1 ≡ τ}. Then, by

Taylor series expansion,

√
ng(s)µ̂g(s, τ) =

√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

{
−

m∑
j=0

dNg(s, Tj)

Yg(s, Tj)

}

is asymptotically equivalent in distribution to:

√
ng(s)

M∑
m=0

(Tm+1 − Tm) exp

{
−

m∑
j=0

λWg (s, Tj)dTj

}
(B.2)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[
m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
dNg(s, Tj)

Yg(s, Tj)

]
(B.3)

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[
m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
λWg (s, Tj)dTj

]
(B.4)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)
1

2!
exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}

×

[
m∑
j=0

{
dNg(s, Tj)

Yg(s, Tj)
− λWg (s, Tj)dTj

}]2 (B.5)

+
√
ng(s)

M∑
m=0

(Tm+1 − Tm)[higher order terms] (B.6)

Terms (B.5) and (B.6) converge to zero in probability using similar arguments to

those shown in Tayob and Murray (2014) Appendix A. When terms (B.2) and (B.4)

are combined into the test statistic, T (s), under the null hypothesis, they cancel with

terms from the other treatment group. Hence, the asymptotic behavior of T (s) is

based on term (B.3) for groups g = 1, 2, which can be further rewritten as

√
ng(s)

M∑
m=0

(Tm+1 − Tm)

[
m∑
j=0

−exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
dNg(s, Tj)

Yg(s, Tj)

]
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= −
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp{−
m∑
j′=0

λWg (s, Tj′)dTj′}
m∑
j=0

dNg(s, Tj)

Yg(s, Tj)
,

By Taylor series expansion, this term is asymptotically equivalent in distribution to

−
√
ng(s)

M∑
m=0

(Tm+1 − Tm)exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
×

{
m∑
j=0

EdNg(s, Tj)

EYg(s, Tj)
(B.7)

+
m∑
j=0

[
1

EYg(s, Tj)
[dNg(s, Tj)− EdNg(s, Tj)]−

EdNg(s, Tj)

EYg(s, Tj)2
[Yg(s, Tj)− EYg(s, Tj)]

]
(B.8)

+[higher order terms]} . (B.9)

Using arguments similar to those given in Tayob and Murray (2014), the higher or-

der terms in (B.9) converge to zero in probability. When term (B.7) appears in

T (s), it cancels with its corresponding term from the other treatment group un-

der the null hypothesis. Hence, the asymptotic behavior of T (s) is based on term

(B.8) which upon noting that EdNg(s, Tj)/EYg(s, Tj) = λWg (s, Tj) and EYg(s, Tj) =∑b
l=1 Pr(Xgi(s, tl) ≥ Tj) can be algebraically rearranged as:

−
√
ng(s)

M∑
m=0

(Tm+1−Tm)exp

{
−

m∑
j′=0

λWg (s, Tj′)dTj′

}
m∑
j=0

dNg(s, Tj)− Yg(s, Tj)λWg (s, Tj)∑b
l=1 Pr(Xgi(s, tl) ≥ Tj)

or in more standard stochastic integral notation as:

−
√
ng(s)

τ∫
0

exp

−
u2∫

0

λWg (s, u1)du1


u2∫

0

dNg(s, u1)− Yg(s, u1)λWg (s, u1)∑b
l=1 Pr(Xgi(s, tl) ≥ u1)

du2.

(B.10)
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Summarizing the above remarks,

T (s) =

√
n2(s)

n1(s) + n2(s)

√
n1(s)µ̂1(s, τ)−

√
n1(s)

n1(s) + n2(s)

√
n2(s)µ̂2(s, τ)

is asymptotically equivalent in distribution to

√
π1(s)

√
n2(s)

τ∫
0

exp

−
u2∫

0

λW2 (s, u1)du1


u2∫

0

dN2(s, u1)− Y2(s, u1)λW2 (s, u1)∑b
l=1 Pr(X2i(s, tl) ≥ u1)

du2

−
√
π2(s)

√
n1(s)

τ∫
0

exp

−
u2∫

0

λW1 (s, u1)du1


u2∫

0

dN1(s, u1)− Y1(s, u1)λW1 (s, u1)∑b
l=1 Pr(X1i(s, tl) ≥ u1)

du2.

(B.11)

Recall that

Ng(s, u) =

ng(s)∑
i=1

Ngi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ngi(s, tj, u)

and

Yg(s, u) =

ng(s)∑
i=1

Ygi(s, u) =

ng(s)∑
i=1

b∑
j=1

Ygi(s, tj, u).

We define:

Zij{µ̂g(s, τ)} =

τ∫
0

exp

−
u2∫

0

λWg (s, u1)du1


u2∫

0

dNgi(s, tj, u1)− Ygi(s, tj, u1)λWg (s, u1)du1∑b
l=1 Pr{Xgi(s, tl) ≥ u1}

du2

and

Zi{µ̂g(s, τ)} =
b∑

j=1

Zij{µ̂g(s, τ)}.

We can write equation (B.11) as

T ∗(s) =
√
π1(s)

√
n2(s)

∑n2(s)
i=1 Zi{µ̂2(s, τ)}

n2(s)
−
√
π2(s)

√
n1(s)

∑n1(s)
i=1 Zi{µ̂1(s, τ)}

n1(s)
.

(B.12)

Note that Zi{µ̂g(s, τ)} only depends on patient i and is independent and iden-
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tically distributed for i = 1, . . . , ng(s). As a result, the multivariate central limit theo-

rem can be used to determine the asymptotic joint distribution of {T ∗(s1), . . . ,T ∗(sk)},

k = 1, . . . , K, when each statistic is formulated as in equation (B.12). As a result, the

covariance matrix of {T ∗(s1), . . . ,T ∗(sk)} with component Cov {T ∗(sk1),T
∗(sk2)},

can be estimated using empirical covariances of Zi{µ̂g(sk1 , τ)} and Zi{µ̂g(sk2 , τ)}, for

g = 1, 2, where appropriate, as follows.

First, without loss of generality, assume sk1 ≤ sk2 so that ng(sk1) ≤ ng(sk2) with

ng(sk1) patients contributing (correlated) data from both analysis times. Then

Cov {T ∗(sk1),T
∗(sk2)}

=
2∑
g=1

Cov

[√
π3−g(sk1)

√
ng(sk1)

∑ng(sk1 )

i=1 Zi{µ̂g(sk1 , τ)}
ng(sk1)

,

√
π3−g(sk2)

√
ng(sk2)

∑ng(sk2 )

i=1 Zi{µ̂g(sk2 , τ)}
ng(sk2)

]
=

2∑
g=1

√
π3−g(sk1)

√
π3−g(sk2)

ng(sk1)√
ng(sk1)ng(sk2)

Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] ,

which is asymptotically equivalent to

=
2∑
g=1

√
π3−g(sk1)π3−g(sk2)ψg(sk1 , sk2)Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] ,

where for group g = 1, 2, ψg(sk1 , sk2) is the limiting proportion of patients entered at

sk1 of those eventually entered by sk2 , that is estimated by ng(sk1)/ng(sk2). Therefore,

we can estimate Cov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] with the empirical covariance of

sample realizations of Zi{µ̂g(sk1 , τ)} and Zi{µ̂g(sk2 , τ)}, that is,

Ĉov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =

ng(sk1 )∑
i=1

[zi{µ̂g(sk1 , τ)} − z̄{µ̂g(sk1 , τ)}][zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
ng(sk1)− 1

.
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where zi{µ̂g(s, τ)} and z̄{µ̂g(s, τ)} are defined in terms of zij{µ̂g(s, τ)} in Chapter

3.3. However, this estimation can be improved upon by updating zij{µ̂g(sk1 , τ)}

with quantities that that do not depend on analysis time and thus can be estimated

better using the full data at the later analysis time sk2 . In particular, since both

dNgi(sk1 , tj, u1)/Ygi(sk1 , tj, u1) and dNgi(sk2 , tj, u1)/Ygi(sk2 , tj, u1) estimate λgi(tj, u1)du1,

and the latter term uses more data, we replace dNgi(sk1 , tj, u1) with

Ygi(sk1 , tj, u1)
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
.

Similarly, we replace Yg(sk1 , u1)/ng(sk1), which is an estimate of
∑b

l=1 Pr{Tgi(sk1 , tl) ≥

u1}Pr{Cgi(sk1 , tl) ≥ u1}, with

ng(sk2 )∑
i=1

I{Tgi ≥ u1 + tl}
ng(sk2)

ng(sk1 )∑
i=1

I{Cgi(sk1) ≥ u1 + tl}
ng(sk1)

 .
Here, terms involving the event time are estimated using updated data, while terms

involving the censoring distribution remain relevant to analysis time sk1 . Putting these

modifications together gives us

z̃ij{µ̂g(sk1 , τ)} =

τ∫
0

exp{−
u2∫

0

dNg(sk1 , u1)

Yg(sk1 , u1)
}

[ u2∫
0

b∑
l=1

ng(sk2 )∑
i=1

I{Tgi ≥ u1 + tl}
ng(sk1 )∑
i′=1

I{Cgi′(sk1) ≥ u1 + tl}


−1

× ng(sk1)ng(sk2)Ygi(sk1 , tj, u1)

{
dNgi(sk2 , tj, u1)

Ygi(sk2 , tj, u1)
− dNg(sk1 , u1)

Yg(sk1 , u1)

}]
du2.

as an updated version of zij{µ̂g(sk1 , τ)} for use in covariance terms. So that we replace

the zij{µ̂g(sk1 , τ)} terms in zi{µ̂g(sk1 , τ)} and z̄{µ̂g(sk1 , τ)} with z̃ij{µ̂g(sk1 , τ)} to
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obtain z̃i{µ̂g(sk1 , τ)} and ¯̃z{µ̂g(sk1 , τ)}. And we update the empirical covariance as

Ĉov [Zi{µ̂g(sk1 , τ)}, Zi{µ̂g(sk2 , τ)}] =

ng(sk1 )∑
i=1

[z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}][zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
ng(sk1)− 1

.

For the standardized version of test statistic, T̃ (sk), sk = s1, . . . , sK , we work with

the corresponding standardized form of the more tractible random variable that is

asymptotically equivalent in distribution, namely,

T ∗(sk)√
π2(sk)σ2

1(sk) + π1(sk)σ2
2(sk)

.

which also gives T̃k an asymptotic mean zero multivariate Normal distribution with

covariance matrix Σk. Because the test statistic is standardized to have variance 1.0.

We only need to estimate the off-diagonal elements σk1k2 via

σ̂k1k2 =
Ĉov {T ∗(sk1),T

∗(sk2)}√
π̂2(sk1)σ̃

2
1(sk1) + π̂1(sk1)σ̂

2
2(sk1)

√
π̂2(sk2)σ̃

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)

. (B.13)

Chapter 3.3 gives estimates π̂g(sk) for sk = sk1 , sk2 and σ̂2
g(sk2) using the most up-

to-date information. Estimate σ̃2
g(sk1) in equation (B.13) for g = 1, 2 is modified by

replacing zij{µ̂g(sk1 , τ)} with z̃ij{µ̂g(sk1 , τ)}. Therefore, we have

σ̂k1k2 ={π̂2(sk1)σ̃
2
1(sk1) + π̂1(sk1)σ̃

2
2(sk1)}−

1
2{π̂2(sk2)σ̂

2
1(sk2) + π̂1(sk2)σ̂

2
2(sk2)}−

1
2

×
2∑
g=1

√
π̂3−g(sk1)π̂3−g(sk2)ψ̂g(sk1 , sk2)

( ng(sk1 )∑
i=1

{ng(sk1)− 1}−1

× [z̃i{µ̂g(sk1 , τ)} − ¯̃z{µ̂g(sk1 , τ)}] [zi{µ̂g(sk2 , τ)} − z̄{µ̂g(sk2 , τ)}]
)
.

(B.14)
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B.2 Simulated Cumulative Power in the Special Case with

Independent Recurrent and Terminal Event Distribu-

tions

Figure B.1 shows simulated power for the group sequentially monitored CL, TM

and LR statistics when all events within each individual are statistically independent,

but otherwise have marginal distributions as given in Chapter 3.5. The CL statistic

(triangles) had the highest in this special case, followed closely by the TM statistic

(circles) and distantly by the LR method(+).
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Figure B.1: Simulated Cumulative Power in the Special Case with Independent Re-
current and Terminal Event Distributions
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APPENDIX C

Supplementary Materials for Chapter IV

Derivations are conducted for a typical individual in the study with submerged

subscripts for this individual. Let gap times, Gj, between the j − 1st and the jth

recurrent events independently follow an exponential distribution with rate λ. Then

the total number of observed recurrent events K, occurring during s follow-up units,

follows a Poisson(λs) distribution. Define Rj =
∑j

i=1Gi as the time from the initi-

ation of follow-up to the jth recurrent event; Rj follows a Gamma(j, λ) distribution

with shape j and rate λ. Recall that the Tayob and Murray statistic only includes the

first event in each τ -length follow-up window in the analysis, with follow-up windows

k = 1, . . . , b starting at follow-up times tk = (k− 1)a ≤ s− τ . A recurrent event may

be included in more than follow-up window, particularly if a is small relative to the

mean time between events, 1
λ
.

Conditional on K, it will be convenient to define a random variable, Wj, that

denotes the last follow-up window to overlap the jth observed recurrent event, j =

1, . . . , K. Inclusion of this jth recurrent event in the analysis (at least once), is

satisfied if it is the first such event to occur in window Wj, or equivalently Wj > Wj−1.

Otherwise, if Wj = Wj−1, the j − 1st event precedes the jth event in any follow-up

windows these two events have in common and the jth recurrent event is left out of
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the analysis. By definition, since the follow-up windows are spaced a units apart,

Wj = ceiling
[
Rj

a

]
, so that probability calculations for Wj can be framed in terms of

functions of well understood random variables.

Let Mj be an indicator variable denoting that an individual’s jth observed event

is left out of the analysis, with Pr{Mj = 1} = Pr{Wj = Wj−1} for j ≥ 2. Then

conditional on the K observed events for the individual, M =
∑K

j=2 Mj is the number

of observed events left out of the analysis, with M = 0 when K ≤ 1. Hence an

expression for p, the average proportion of recurrent events captured in at least one

follow-up window for an individual followed s time units, can be framed as

p = E

(
K −M
K

)
= E

[
E

(
K −M
K

∣∣∣∣K)] = 1− E
[
E(M |K)

K

]
.

For K ≤ 1, E(M |K) = 0. For K ≥ 2,

E(M |K) =
K∑
j=2

E (Mj|K) =
K∑
j=2

b∑
w=1

Pr{Wj = Wj−1 = w|K}.

Let pmfPoisson(λs)(k) be the Poisson(λs) probability mass function (pmf) for k =

0, 1, · · · ,∞. Since K has a Poisson(λs) distribution, the previous expression for p

becomes

p = 1−
∞∑
k=0

[∑k
j=2

∑b
w=1 Pr{Wj = Wj−1 = w|K = k}

k
I{k ≥ 2}

]
pmfPoisson(λs)(k)

The remainder of the appendix details calculations of Pr{Wj = Wj−1 = w|K = k}

for k ≥ 2 in the expression for p. That is,

Pr{Wj = Wj−1 = w|K = k} = Pr{(w−1)a < Rj−1 < Rj ≤ min(aw, s)|Rk ≤ s, Rk+1 > s}

=
Pr {(w − 1)a < Rj−1 < Rj ≤ min(aw, s), Rk ≤ s, Rk+1 > s}

Pr{K = k}
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Random variables in the numerator can be rewritten in terms of components that

are independent, since in general Rk = Rj−1 +
∑k

`=j G` for any j ≤ k. For simplicity

let R(j,k) =
∑k

`=j G`, for j ≤ k, which has a Gamma(k − j + 1, λ) distribution. Then

the numerator becomes

Pr{Rj−1>(w−1)a,Rj−1+Gj≤min(aw, s), Rj−1+Gj+R
(j+1,k)≤s,Rj−1+Gj+R

(j+1,k)+Gk+1>s}

= Pr{Rj−1 > (w − 1)a,Rj−1 +Gj ≤ min(aw, s), Rj−1 +Gj +R(j+1,k) ≤ s} (C.1)

−Pr{Rj−1 > (w−1)a,Rj−1+Gj ≤ min(aw, s), Rj−1+Gj+R
(j+1,k)+Gk+1 ≤ s} (C.2)

Equation (C.1) becomes

=Pr{Rj−1 +Gj ≤ min(aw, s), Rj−1 +Gj +R(j+1,k) ≤ s}

− Pr{Rj−1 ≤ (w − 1)a,Rj−1 +Gj ≤ min(aw, s), Rj−1 +Gj +R(j+1,k) ≤ s}

=Pr{Rj ≤ min(aw, s), Rj +R(j+1,k) ≤ s}

− Pr{Rj−1 ≤ (w − 1)a,Rj−1 +Gj ≤ min(aw, s), Rj−1 +Gj +R(j+1,k) ≤ s}

=

min(aw,s)∫
0

pdfGamma(j,λ)(r) · cdfGamma(k−j,λ)(s− r)dr

−
(w−1)a∫

0

min(aw,s)−r∫
0

pdfGamma(j−1,λ)(r) · pdfExp(λ)(g) · cdfGamma(k−j,λ)(s− r − g)dgdr
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Similarly equation (C.2) becomes

=

min(aw,s)∫
0

pdfGamma(j,λ)(r) · cdfGamma(k−j+1,λ)(s− r)dr

−
(w−1)a∫

0

min(aw,s)−r∫
0

pdfGamma(j−1,λ)(r) · pdfExp(λ)(g) · cdfGamma(k−j+1,λ)(s− r − g)dgdr

So that combining (C.1) and (C.2) we finally have

p = 1−
∞∑
k=2

1

k

k∑
j=2

b∑
w=1[ min(aw,s)∫

0

pdfGamma(j,λ)(r)

{
cdfGamma(k−j,λ)(s− r)− cdfGamma(k−j+1,λ)(s− r)

}
dr

−
(w−1)a∫

0

min(aw,s)−r∫
0

pdfGamma(j−1,λ)(r) · pdfExp(λ)(g)

{
cdfGamma(k−j,λ)(s− r − g)− cdfGamma(k−j+1,λ)(s− r − g)

}
dgdr

]
,

as given in Chapter IV.
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APPENDIX D

Supplementary Materials for Chapter V

D.1 The Derivation of the Marginal Distribution of Ti(t) With

Independent Recurrent Event Times

In this appendix section we describe that for an individual i, when Gij, j =

1, . . . , Ji are independently and identically distributed as exponential with inten-

sity λi the marginal distribution of Ti(t) for a fixed t is also distributed as ex-

ponential with hazard λi. This result is trivial for the case where t = 0, since
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Ti(t = 0) ≡ Gi1 ∼ Exp(λi). For the case when t > 0,

Pr{Ti(t) > u}

=Pr{Ti1 > t+ u}+ Pr{Ti1 ≤ t, Ti2 > t+ u}+ · · ·+ Pr{TiJi−1 ≤ t, TiJi > t+ u}

=Pr{Ti1 > t+ u}+

Ji∑
j=2

Pr{Tij−1 ≤ t, Tij > t+ u}

=Pr{Gi1 > t+ u}+

Ji∑
j=2

Pr{Tij−1 ≤ t, Tij−1 +Gij > t+ u}

=

∞∫
t+u

λie
−λiydy +

Ji∑
j=2

t∫
0

∞∫
t+u−p

f(Tij−1 = p,Gij = q)dqdp

(D.1)

where Tij−1 ⊥ Gij by assumption. We know that Tij−1 =
∑k=j−1

k=1 Gik. When Gik
iid∼

Exp(λi), Tij−1 ∼ Gamma(j− 1, λi), where j− 1 is the shape parameter and λi is the

rate parameter. Then,

Pr{Ti(t) > u}

=e−λi(t+u) +

Ji∑
j=2

t∫
0

∞∫
t+u−p

pdfGamma(j−1,λi)
(Tij−1 = p)pdfExp(λi)(Gij = q)dpdq

where

pdfGamma(j−1,λi)
(Tij−1 = p) =

λj−1
i

Γ(j − 1)
pj−2e−λip,

pdfExp(λi)(Gij = q) = λie
−λiq.
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So,

Pr{Ti(t) > u}

=e−λi(t+u) +

Ji∑
j=2

t∫
0

λj−1
i

Γ(j − 1)
pj−2e−λip

∞∫
t+u−p

λie
−λiqdpdq

=e−λi(t+u) +

Ji∑
j=2

t∫
0

λj−1
i

Γ(j − 1)
pj−2e−λi(t+u)dp

=e−λi(t+u) +

Ji∑
j=2

(λit)
j−1

Γ(j)
e−λi(t+u)

=

Ji∑
j=1

(λit)
j−1

Γ(j)
e−λit × e−λiu

When Ji →∞, by Taylor series,

∞∑
j−1=0

(λit)
j−1

(j − 1)!
= eλit.

Therefore, Pr{Ti(t) > u} = e−λiu, namely, Ti(t) ∼ Exp(λi).

D.2 Example Showing the Imputation of Event Times

Figure D.1 shows the same example participant from the Azithromycin in COPD

Trial shown in Figure 5.1. For this example participant, Si = {180, 240, 300} so that

the sup window starts at tsup(Si) = 300. The sup impute becomes T̃i{tsup(Si)} =

T̃i{300} = 65. For the window starting at 240 days, the imputed time-to-first-event

becomes T̃i{240} = T̃i{300} + 300 − 240 = 125, which is greater than the censored

time-to-first-event that was observed for this window, Xi(240) = 113. Similarly for

the window starting at 180 days, T̃i{180} = T̃i{300} + 300 − 180 = 185, which

is greater than the censored time-to-first-event that was observed for this window,

Xi(180) = 173.
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Baseline AEAE CensoredAE

0 60 120 180 240 300

!"# = 353 days
'"# = 0

)*+, -" = 300

Sup Impute
./"{)*+, -" } = ./" 300 = 65

./" 240 = ./" 300 + 300 − 240 = 125

./" 180 = ./" 300 + 300 − 180 = 185

Figure D.1: Example Showing the Imputation of Event Times

D.3 Supplementary Table Corresponding to Figure 5.5
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PO MI

eβ̂ 95% CI P eβ̂ 95% CI P
Overall: 1.143 1.052 1.242 0.002 1.142 1.054 1.238 0.001
Sex:

Male 1.088 0.983 1.204 0.104 1.087 0.984 1.201 0.100
Female 1.234 1.074 1.417 0.003 1.230 1.076 1.406 0.002

Smoking Status:
Former 1.176 1.069 1.294 0.001 1.175 1.071 1.289 0.001

Current 1.032 0.875 1.218 0.707 1.040 0.884 1.223 0.639
Age:

≤ 65 years 1.067 0.949 1.198 0.278 1.069 0.955 1.198 0.246
> 65 years 1.233 1.096 1.387 <0.001 1.226 1.093 1.374 <0.001

FEV1:
≤ 50 % predicted 1.095 0.994 1.208 0.067 1.094 0.995 1.202 0.063
> 50 % predicted 1.291 1.104 1.510 0.001 1.289 1.107 1.502 0.001

Table D.1: Subset Analyses Comparing Azithromycin versus Placebo Using Proposed
PO and MI Approaches with a GEE Model Fit of Equation (5.3)

(CI: Confidence Interval; PO: Pseudo-observation; MI: Multiple Imputation.)
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