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ABSTRACT

Hospital readmissions are burdensome and costly to both healthcare providers

and patients. In the U.S., one in five Medicare patients is readmitted within 30 days

of discharge. We study how to use operations research models to reduce hospital

readmissions. Our approach focuses on both the hospital operations level and the

policymaker system level. We develop a delay-time optimization framework to maxi-

mize the detection of post-operative complications via post-discharge checkups. Then

we study how to design a bundled payment policy to balance and incentivize pre-

and post-discharge readmission reduction efforts. We build a readmission prediction

model using laboratory values observed during the index hospitalization. Ultimately,

we provide novel methods for reducing readmissions in the continuum of care span-

ning between the pre- and post-discharge stages, at the hospital and policymaker

levels.

ix



CHAPTER I

Introduction

1.1 Background

In the United States, hospital readmissions are heavily scrutinized as a driver

of healthcare costs. According to Weinberger et al. (1996), up to half of all hos-

pitalizations are readmissions. Furthermore, it is estimated that up to 75% of all

readmissions are preventable by patient education, pre-discharge assessment, and

domiciliary aftercare (Benbassat and Taragin, 2000). In effect, preventable hospital

readmissions represent approximately $25 billion in annual healthcare costs (PwC

Health Research Institute, 2010). One in eight Medicare patients are readmitted

within 30 days of discharge after surgery (PerryUndem Research & Communica-

tions, 2013), and 56.5% of readmitted Medicare patients are readmitted through the

Emergency Department (ED) (Kocher et al., 2013), contributing to high costs. These

readmissions represent not only preventable healthcare costs, but also a tremendous

burden on patients and their families.

In order to address this problem, policies such as the Affordable Care Act (ACA)

have been implemented (Koh and Sebelius, 2010). Following the ACA, the Centers

for Medicare and Medicaid Services (CMS) now penalize hospitals with worse than

expected 30-day readmission rates (Joynt and Jha, 2012). For example, Section 3025

of the Affordable Care Act added Section 1886(q) to the Social Security Act establish-

ing the Hospital Readmissions Reduction Program (HRRP). This program requires

CMS to reduce payments to the Inpatient Prospective Payment System (IPPS) hos-

pitals with excessive readmission rates beginning in October 2012 (James, 2013). To

provide stronger readmission reduction incentives, the CMS is gradually shifting its

reimbursement schemes from Fee-For-Service to Pay-For-Performance and Bundled

Payment. Among these reimbursement schemes, the Bundled Payment is believed

to be most effective at providing incentives to reduce readmissions (Andritsos and

1
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Tang, 2018; Guo et al., 2016). The CMS has established the Bundled Payment for

Care Improvement (BPCI) Initiative in 2013. Under BPCI, a hospital receives a

bundled payment for all costs incurred during an episode of care. Specifically, Model

2 of BPCI defines an episode of care to be “the inpatient stay in an acute care hos-

pital plus the post-acute care and all related services up to 90 days after hospital

discharge” (CMS, 2018a). These circumstances encourage healthcare professionals to

more actively search for and implement solutions to minimize hospital readmissions

(Wong et al., 2013).

Various methods have been proven effective at reducing readmissions. Nonethe-

less, such methods are costly(Jack et al., 2009), as they require hospitals to exert

readmission reduction effort in two stages of care, namely the inpatient stay stage (be-

fore discharge) and the post-discharge follow-up stage (after discharge). For instance,

a hospital can extend the length of stay to further stabilize a patient’s condition in

the inpatient stay stage. It can also perform follow-up checkups (e.g., office visits

and telephone calls) and treatments in the post-discharge stage. There is a lack of a

systematic approach for hospitals and policymakers to manage readmissions. More-

over, the proliferation of Electronic Health Records and rich data therein provides an

opportunity to leverage analytics to predict the readmission risk and better target

interventions.

This dissertation aims to create new models to study how hospitals and public

health policymakers can reduce hospital readmissions to mitigate the readmission

crisis. Figure 1.1 gives an overview of the thesis.In Chapter II, we present our

model of post-discharge monitoring as well as analytical and numerical results. In

Chapter III, we study how hospitals balance readmission reduction efforts and how a

policymaker designs an effective reimbursement and penalty program to incentivize

readmission reduction. Chapter IV presents a model using pre-discharge laboratory

data to forecast readmissions. Finally, we conclude the thesis and discuss future

research work in Chapter V.

1.2 Post-discharge Monitoring

Post-discharge checkup policies can reduce readmissions through early detection of

health conditions, however, the methods behind designing effective checkup policies

are poorly understood.

In practice, checkup policies implemented by hospitals are designed and based

on unsupported heuristics. For example, current practice recommends that doctors

first follow-up with cystectomy (a major surgery for bladder cancer) patients with



3

Ch.IV Pre-Discharge	
Risk	Prediction

Discharge

Readmission

Admission

Ch.II Post-Discharge	
Monitoring

Ch.III Balancing	Pre- and	Post-Discharge	Efforts

Hospital Home
Ch.I Introduction Ch.V Conclusions

Figure 1.1: Overview of the Dissertation

an office visit approximately two weeks after their hospital discharge; however, 40%

of readmitted cystectomy patients are readmitted within one week of discharge, and

as many as 67% of readmitted cystectomy patients are already readmitted before the

first scheduled office visit (Hu et al., 2014; Skolarus et al., 2015). If post-surgical com-

plications can be detected and treated promptly, many readmissions can be avoided.

This chapter seeks to reclaim this missed opportunity by identifying the optimal

timing as well as the type of checkups to perform after discharge. It also provides

guidance for how many visits would be most effective. This will give healthcare

professionals an increased chance of detecting a patient’s health condition before it

causes a readmission.

We develop and analyze a new delay-time analysis model to identify the optimal

type and timing of checkups to implement post-discharge monitoring plans. By

analyzing the structure of the optimal policies, we develop checkup schedules that

can detect up to 43.7% more readmission-causing conditions before they result in a

readmission. Further, we uncover simple rules of thumb that can help doctors design

and improve monitoring plans even in the absence of advanced computer software or

complex computations.

1.2.1 Contributions

This work is published in Liu et al. (2018a) and Krishnan et al. (2016). The main

contributions of this chapter are summarized as follows: we develop new extensions

of the traditional delay-time framework, providing new insights into the structure

of delay-time machine maintenance problems and broadening the scope of problems

in which delay-time analysis can be applied. In particular, we analyze the optimal
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structure of the checkup policies without assuming a specific parametric family. We

show that imperfect checkups (such as phone calls) can affect the timing and detec-

tion probability significantly by considering the detection rate of checkups. Moreover,

we incorporated various sources of data to estimate the hidden time-to-develop the

condition distributions using the numerical inverse Laplace transform.

In addition to theoretical implications, this study contributes beneficial insights

for physicians and other healthcare decision makers to help them improve post-

discharge monitoring for patients. The application of our model and findings has

the potential for broad impact including reduced hospital readmissions, improved

quality of patient care, improved patient satisfaction, and reduced healthcare costs,

all without overburdening clinicians (as clinician burden is often a major barrier to

implementation of new healthcare practices). This is achievable by aligning checkup

policy design with a number of key insights, namely: timing of checkups is the most

important factor, checkup timing should be adjusted according to checkup detection

rates, and checkup quantity is more important than checkup quality.

1.3 Chapter III: Balancing Pre- and Post-discharge Efforts

To incentivize hospitals to reduce readmissions, the Centers for Medicare and

Medicaid Services (CMS) have established the Hospital Readmissions Reduction Pro-

gram (HRRP) to penalized hospitals with excessive readmission rates. Moreover, the

CMS has been experimenting with different reimbursement schemes, such as Pay-

For-Performance (P4P) and Bundled Payments (BP), to provide stronger financial

incentives for hospitals to reduce readmissions.

The battle against readmissions requires hospitals to exert readmission reduction

effort in two phases of care: pre-discharge (during the inpatient stay) and post-

discharge follow-up (after the patient has left the hospital). For instance, before

discharge, a hospital can extend the length of stay to further stabilize a patient’s

condition. After discharge, the hospital can perform follow-up checkups (e.g., office

visits, telephone calls, and e-visits) and treatments to prevent readmissions. Though

proven effective, these readmission reduction efforts can be overly costly. For ex-

ample, the Reengineered Hospital Discharge Program (Project RED) conducted a

randomized clinical trial and found that readmission reduction could substantially

impact on health care financing (Jack et al., 2009). Due to the excessive financial

burden of the required efforts and investments, the momentum of readmission re-

duction has stalled since the implementation of the HRRP, as reported in a JAMA

study (Desai et al., 2016).
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As a policymaker, the CMS faces challenging decisions when designing the BP

policy and readmission penalty programs to properly incentivize readmission reduc-

tion. If the cost (or penalty) of a readmission is small, hospitals may be unmotivated

to take action. If the costs of readmission reduction measures (e.g., extended length

of stay and intensive post-discharge follow-up care) are too expensive, hospitals may

give up. In addition to the cost and penalty structures, the length of the readmis-

sion penalty window and length of an episode of care also play an important role.

A New England Journal of Medicine article (Joynt and Jha, 2012) argued that hos-

pitals have little control over readmissions that occur more than seven days after

discharge, therefore policymakers should consider limiting the readmission penalty

window. Further complicating the matter are factors such as the baseline readmis-

sion risk of the patient cohort, the type of the complications that cause readmissions,

and the effectiveness of the post-discharge treatments in preventing readmissions.

This chapter studies operational factors that are critical to effective bundled pay-

ment policy design. We study key policy-level decisions such as designing readmis-

sion penalty programs, subsidizing post-discharge follow-up treatments, and short-

ening/extending the readmission penalty window length. Specifically, we study how

a hospital may allocate readmission reduction efforts between the pre- and post-

discharge phases of care. In the pre-discharge phase, the hospital exerts effort to

reduce the readmission risk of a patient cohort. In the post-discharge phase as a pa-

rameter, the hospital provides post-discharge follow-up care to prevent readmission.

This integrated two-stage framework enables us to analytically study how the CMS

should design a bundled payment policy to align incentives.

1.3.1 Contributions

This work is to be submitted for publication in Liu et al. (2018b). This chapter

makes theoretical contributions to the machine maintenance literature. We develop a

novel Strengthen Then Maintain (STM) framework and study how a decision maker

balances efforts between the strengthening stage and the maintaining stage. The

maintaining stage is modeled as a discrete time finite horizon Markov Decision Pro-

cess (MDP) machine maintenance problem. We provide a closed-form expression for

the cost-to-go function for the machine maintenance MDP under an engaged policy.

We prove a theoretical bound on the optimality gap for the closed-form solution when

an engaged policy is not optimal. By studying the closed-form expression analyti-

cally, we demonstrate how the cost-to-go is affected by the failure rate of the machine

(which is analogous to the patient in a healthcare setting). By integrating the two
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stages, we study how an entity in charge of the maintenance of a machine should

allocate efforts between the two stages – in the strengthening stage, the failure rate

can be reduced; and in the maintaining stage, the machine is maintained accordingly.

The analytical results of the STM framework can be generalized to many machine

maintenance problems.

We also uncover novel insights for designing an effective Bundled Payment policy

to reduce readmissions. Our analytical results suggest that hospitals have more

financial incentives if the readmission penalty window is shortened, the cost of

post-discharge follow-up treatment is reduced, the cost/penalty of readmission is

increased, and the post-discharge treatment efficacy is improved. For patients that

are likely to experience acute events leading to a swift readmission, a more effective

mechanism is to shorten the penalty window. For other cohorts, subsidizing inpatient

and outpatient efforts may be effective. We believe that our model is the first study

that analytically addresses how the penalty window length impacts the incentives

for readmission reduction. Unlike many game-theoretical studies which use stylized

functional forms, our model is less restrictive with minimal assumptions imposed on

the functional form. At the core of our model is a Markov Decision Process model,

which directly captures the patient’s deterioration and the cost structures.

1.4 Chapter IV: Pre-discharge Risk Prediction

Radical cystectomy has one of the highest rates of complications and readmissions

of any surgical procedure, with 25% of patients experiencing unplanned readmission

within 30 days (Borza et al., 2017; Stimson et al., 2010; Hu et al., 2014; Skolarus et al.,

2015). These high readmission rates, coupled with increasing policy focus on reducing

readmissions, have motivated investigations into identification and optimization of

patients at highest readmission risk. However, the ability to predict readmission

using traditional administrative data is limited. This limitation makes it unclear

where and when to focus resources, leaving readmission rates largely unchanged

(Minnillo et al., 2015; James et al., 2016).

In this chapter, we used data from electronic health record to examine whether

incorporating dynamic laboratory data into readmission prediction models improved

risk stratification after radical cystectomy. Specifically, we assessed daily post-

operative values for commonly obtained laboratory tests, and used machine learning

techniques to compare values between readmitted and non-readmitted patients. We

characterized the trajectory of laboratory values obtained in complete blood counts,

basic metabolic panels, and coagulation studies during the index hospital stay. The
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framework showcases that common postoperative laboratory values may have dis-

criminatory power to help identify patients at high risk of readmission after radical

cystectomy.

1.4.1 Contributions

This work is to be submitted for publication in Kirk et al. (2018). In this work,

we combined a logistic regression model and a support vector machine (SVM) model

to incorporate longitudinal clinical data. By combining a regression model and a

machine learning model, the framework is able to predict readmissions without loss

of interpretability. Moreover, the SVM model can handle missing values. This is es-

pecially important, as missing values are very common in real-world clinical datasets.

This study demonstrates the unique promise of readily available, dynamic data to

inform risk stratification of patients most likely to be readmitted after cystectomy.

Incorporating available, dynamic sources of physiological data (such as laboratory

values) into prediction algorithms could enable more accurate identification and tar-

geting of patients at greatest readmission risk.



CHAPTER II

Post-Discharge Monitoring

ABSTRACT: Hospital readmissions affect hundreds of thousands of patients

every year, negatively impacting patients and placing a tremendous burden on the

national healthcare system. Post-discharge checkup policies can reduce readmissions

through early detection of health conditions, however, the methods behind designing

effective checkup policies are poorly understood. Under current practice, up to 67%

of readmitted patients return to the hospital before their first scheduled office visit.

This work aims to develop effective checkup plans to monitor patients following

hospital discharge using a variety of checkup methods including phone calls and

office visits. We develop and analyze a new delay-time analysis model to identify

the optimal type and timing of checkups to implement post-discharge monitoring

plans. By analyzing the structure of optimal policies, we develop checkup schedules

that can detect up to 43.7% more readmission-causing conditions experienced by

readmission-bound patients. Further, we uncover simple rules of thumb that can

help doctors design and improve monitoring plans even in the absence of advanced

computer software or complex computations.

2.1 Introduction

In the United States, hospital readmissions are heavily scrutinized as a driver

of healthcare costs. According to Weinberger et al. (1996), up to half of all hos-

pitalizations are readmissions. Furthermore, it is estimated that up to 75% of all

readmissions are preventable by patient education, pre-discharge assessment, and

domiciliary aftercare (Benbassat and Taragin, 2000). In effect, preventable hospital

readmissions represent approximately $25 billion in annual healthcare costs (PwC

Health Research Institute, 2010). One in eight Medicare patients are readmitted

within 30 days of discharge after surgery (PerryUndem Research & Communica-

8
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tions, 2013), and 56.5% of readmitted Medicare patients are readmitted through the

Emergency Department (ED) (Kocher et al., 2013), contributing to high costs. These

readmissions represent not only preventable healthcare costs, but also a tremendous

burden on patients and their families.

In order to address this problem, policies such as the Affordable Care Act (ACA)

have been implemented (Koh and Sebelius, 2010). Following the ACA, the Centers

for Medicare and Medicaid Services (CMS) now penalize hospitals with worse than

expected 30-day readmission rates (Joynt and Jha, 2012). For example, Section 3025

of the Affordable Care Act added Section 1886(q) to the Social Security Act estab-

lishing the Hospital Readmissions Reduction Program. This program requires CMS

to reduce payments to the Inpatient Prospective Payment System (IPPS) hospitals

beginning in October 2012 (James, 2013). These circumstances encourage health-

care professionals to more actively search for and implement solutions to minimize

hospital readmissions (Wong et al., 2013).

Numerous interventions have been proposed to prevent readmissions (including

better pre-discharge care and improved discharge instructions). Post-discharge check-

ups such as phone calls, home visits, and office visits have been independently shown

in the clinical literature to significantly reduce hospital readmissions (Dudas et al.,

2001; Wong et al., 2013) and offset increases in demand for physician services (Green

et al., 2013). The purpose of these checkups is to detect developing conditions before

they worsen and cause either an unnecessary trip to the ED and/or an inpatient

readmission.

Although checkups can mitigate the readmissions crisis, the methods behind de-

signing effective checkup policies are poorly understood. Specifically, healthcare

providers remain uncertain about how many checkups to schedule, what types of

checkups to schedule, and when to schedule those checkups. In practice, checkup

policies currently implemented by hospitals are designed and based on unsupported

heuristics. For example, current practice recommends that doctors first follow-up

with cystectomy (a major surgery for bladder cancer) patients with an office visit

approximately two weeks after their hospital discharge; however, 40% of readmitted

cystectomy patients are readmitted within one week of discharge, and as many as

67% of readmitted cystectomy patients are already readmitted before the first sched-

uled office visit (Hu et al., 2014; Skolarus et al., 2015). Our research seeks to reclaim

this missed opportunity by identifying the optimal timing as well as the type of

checkups to perform after discharge. It also provides guidance for how many visits

would be most effective. This will give healthcare professionals (both clinicians and
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non-physicians) an increased chance of detecting a patient’s health condition before

it causes a readmission.

Because most hospitals do not yet have a systematized mechanism for managing

follow-ups for their cohort of patients, much of the follow-up decision making is left to

the treating surgeon, and it is typically determined on a case-by-case basis. This work

seeks to improve the efficacy of these personalized follow-up plans. This approach

has been confirmed as having low barriers to implementation relative to a larger

scale, system-wide approach that considers costs and savings relative to total hospital

resources. This is because medical professionals currently make decisions on a per-

patient basis (hence no major culture change required) by weighing the expected

benefit (e.g. early detection, readmission reduction, improved quality, etc.) versus

the amount of time the practice is able/willing to commit to follow-ups. Cost-based

calculations are not frequently used in these individual patient decisions, in part

because it is difficult to assign a monetary value to early detection of a condition. This

chapter provides analytical, data-based methods and decision guidelines (medical

professionals are comfortable with both) to better personalize these decisions that

doctors already make on a daily basis.

To provide contextual grounding for our practice-focused readmission detection

approach, we develop our models in close collaboration with a urological practice,

with a focus on cystectomy, which is one of the highest readmission rate surgeries in

the U.S. Other papers have shown similarities in the readmission characteristics of

cystectomy patients and other types of surgical patients (Jacobs et al., 2017). This

approach could hence be generalizable to other types of surgery and other patient

conditions by changing the model parameterization based on historical data, as long

as the processes for follow-ups and underlying disease dynamics remain similar. More

information about the key assumptions that must be verified before applying our

models to other diseases is provided in subsequent sections.

The post-discharge monitoring process after cystectomy proceeds as follows. At

the time of discharge, a monitoring schedule is determined by the discharge team

and the patient is made aware of when they will be receiving phone calls and when

they are scheduled to return for an office visit to check on their recovery. During

a phone call or office visit, the patient will be tested to see if they have developed

a condition that is likely to lead to readmission. For cystectomy, the two most

common conditions are infection and failure to thrive (unable to eat enough food),

which account for the majority of readmissions (Hu et al., 2014; Skolarus et al., 2015).

These conditions exhibit important characteristics that are suited to early detection
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and mitigation: (1) these types of conditions are readily detectable via phone call,

telemedicine, or office visit, (2) the window for detection is long enough to make

a follow-up potentially effective (e.g. patients stay at home with an infection for

several days before becoming sick enough for readmission), and (3) early detection

can be effective in mitigating the condition on an outpatient basis or at the very

least result in a reduced cost ED visit or readmission (e.g. providing antibiotics to

treat infection, or early detection means the condition is less serious when treatment

begins leading to reduced cost and better patient outcomes).

If a condition is detected early by a follow-up, steps to mitigate the condition can

be immediately undertaken. These steps can include starting antibiotics to eliminate

infection, or IV treatment for patients suffering from failure to thrive. Hence, early

detection may avoid the readmission entirely, prevent an expensive ED visit, or at

the very least lessen the time and cost of overcoming the condition while improving

the quality of the outcome by catching the condition before it becomes too severe.

At the suggestion of our clinical collaborator, we do not attempt to directly quantify

the monetary value of such outcomes in our model, but instead leave the decision to

the clinician/practice as to the amount of follow-up effort that is reasonable relative

to the increased likelihood of early detection.

To capture this personalized follow-up process, we develop a delay-time modeling

approach adapted from the machine maintenance literature to analyze and optimize

post-discharge checkup policies. Several unique features of readmission dynamics

require new extensions of the traditional framework, providing new insights into the

structure of delay-time machine maintenance problems and broadening the scope

of problems in which delay-time analysis can be applied. In addition to theoreti-

cal implications, this chapter contributes beneficial insights for physicians and other

healthcare decision-makers to help them improve post-discharge monitoring for pa-

tients.

As a proof of concept, we calibrate, test, and validate our models on nationwide

data for cystectomy patients. Cystectomy, often performed on bladder cancer pa-

tients, is a type of surgery that involves removal of all or part of the urinary bladder.

Cystectomy patients experience one of the highest readmission rates of any surgery,

as approximately 25% of cystectomy patients are readmitted within 30 days of dis-

charge from the hospital (Hu et al., 2014; Jacobs et al., 2013).

The structure of this chapter is as follows. In Sections 2.3 and 2.4, we develop

and analyze our model to understand key properties of the optimal checkup policies.

We identify the importance of checkup timing, and how checkup timing is affected



12

by the stochasticity of how long patients are ill prior to readmission (delay-time),

as well as the detection rate of checkups. In Section 2.5, we verify our findings

through numerical analyses by applying our model to the national State Inpatient

Database patient cohorts. The numerical analyses also demonstrate that our model

is robust to the system parameters and consistently outperforms current checkup

policies. Using the same number of checkups, current practice (which is expected

to detect only 16% of the conditions experienced by readmitted patients) can be

improved by up to 43.7%. In Section 2.6, we summarize the theoretical and practical

implications of our study. In particular, we highlight how our model provides valuable

extensions to the traditional delay-time analysis framework and how our findings can

effectively detect readmission-causing conditions and improve the quality of patient

care, thereby mitigating the national readmissions crisis.

2.2 Literature Review

Readmissions play a critical role in recent clinical literature. It is estimated that

up to 75% of readmissions are preventable by patient education, pre-discharge assess-

ment, and domiciliary aftercare (Benbassat and Taragin, 2000), and post-discharge

checkups such as phone calls, home visits, pharmacists’ visits, and doctors’ office

visits can significantly reduce hospital readmissions (Dudas et al., 2001; Wong et al.,

2013; D’Amore et al., 2011; Bellone et al., 2012; Costantino et al., 2013). Within the

healthcare operations research literature, models have been created to improve post-

discharge health outcomes, including reducing readmissions and mortality rates:

Bartel et al. (2014) analyzes how the initial hospitalization length of stay impacts

post-discharge mortality rate; Chan et al. (2012) studies the impact of ICU dis-

charge strategies on readmissions; Kim et al. (2014) analyzes how ICU admission

control strategies impact readmission rate. Bayati et al. (2014) builds a classifica-

tion model to predict readmissions and analyzed intervention decisions. However,

this work does not address the timing of interventions. Leeds et al. (2015) conducts

a statistical analysis to study how surgeons make discharge decisions and the effect

of decision-support tools for discharge. None of those models directly address how

patients should be monitored after hospital discharge. To address that question, two

areas in the operations research literature are especially relevant to our study: (1)

machine maintenance and inspection, and (2) disease screening.

Machine maintenance and inspection: The literature of machine maintenance

and inspection is very well-established. Literature surveys (Barlow and Proschan,

1996; Wang, 2002) categorize maintenance policies into two groups: preventive main-
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tenance (PM) and corrective maintenance (CM). Our problem aligns more closely

with PM frameworks since PMs proactively prevent failure, whereas CMs are only

performed after failures occur. PMs can be scheduled in the following fashion: (1)

age-dependent policies perform PM at a fixed time T ; (2) periodic and sequential

policies schedule multiple PMs in fixed or variable intervals; and (3) failure limit

policies perform PMs when the failure rate of a machine exceeds a predetermined

threshold. The dynamics of machine deterioration are typically modeled by (1)

Markovian processes (Sim and Endrenyi, 1993), (2) semi-Markovian processes (Mil-

ioni and Pliska, 1988; Yeh, 1997), (3) hidden Markov models (White, 1977), and

(4) delay-time models (Wang, 2012). More specifically, Sim and Endrenyi (1993)

models the deterioration as a continuous time Markov chain and considers multiple

failure types and repair/maintenance actions. They minimize the long-run average

down-time and cost, which is not suitable for our problem. Yeh (1997) uses phase-

type distributions to approximate general distributions of a semi-Markovian model.

They develop algorithms for optimal state-age-dependent policies that also minimize

long-run average cost. White (1977) develops a POMDP model for the machine

inspection/maintenance problem which minimizes the long-run average cost. These

models are not suitable for our problem because they assumed Markovian deteriora-

tion and optimized long-run average cost and down-time.

Wang (2012) gives a thorough survey on delay-time models, which are a special

case of semi-Markovian models with three states. Traditional delay-time analysis

is based on renewal theory and reliability which assumes the unit lifetime has an

increasing failure rate. The goal of those models is typically to determine an in-

spection schedule that minimizes long-run costs (Christer and Jack, 1991; Jardine

and Tsang, 2005) or minimizes expected down-times (Dagpunar, 1994) given iden-

tical units that can be replaced. Our problem necessitates several extensions: (1)

unlike interchangeable machine components, patients cannot be “replaced”; (2) our

objective is to maximize the probability of a checkup (inspection) detecting a pa-

tient’s condition; (3) readmission rates depend on time since discharge, so we have a

time-varying failure rate; and (4) existing models do not allow for policies composed

of different types of inspections with varying inspection detection rates (Christer,

1999). Monitoring policies composed of inhomogeneous checkups (e.g. phone calls,

office visits, etc.) are particularly valuable because empirical evidence indicates that

policies consisting of mixed checkup methods are more effective than policies con-

sisting of only one checkup method (Holland et al., 2005; Wong et al., 2013).

Close to our work is Milioni and Pliska (1988), where a semi-Markovian model



14

with three states was used to model machine deterioration and catastrophic failure

(i.e. no repair/replacement after failed). They considered two objectives: minimize

the cost of inspections, false positives, and treatment; and minimize the probability

of failure. Existence of optimal solutions and algorithms for solving the problems

were established. However, the authors did not provide insights into the structure of

the optimal policies. Moreover, they assumed perfect inspections in the sick state.

Although this model is somewhat similar to our model, the key difference is that this

model is still a long-run steady state planning model in both objective functions.

Disease screening: Within the healthcare operations research field, models have

been developed to establish medical inspection schedules that detect the onset and

progressions of diseases such as chlamydia infection (Teng et al., 2011), diabetes

(Brandeau et al., 2004), AIDS (Sanders et al., 2005; Jónasson et al., 2017), hepatitis

(Fu et al., 2012), breast cancer (Ayer et al., 2012; Brailsford et al., 2012; Ayer et al.,

2015; Maillart et al., 2008), colorectal cancer (Harper and Jones, 2005; Güneş et al.,

2015; Erenay et al., 2014), cervical cancer (Myers et al., 2000), prostate cancer (Pin-

sky, 2004; Tsodikov et al., 2006; Zhang et al., 2012a), bladder cancer (Kent et al.,

1989), and glaucoma (Helm et al., 2015). Delay-time models are used to model hep-

atitis progression (Fu et al., 2012) and vascular patency loss (Zhang et al., 2012b).

Most of the models are based on discrete time Markovian assumptions (Ayer et al.,

2012; Myers et al., 2000; Kent et al., 1989; Ayer et al., 2015; Maillart et al., 2008;

Erenay et al., 2014; Zhang et al., 2012a), which do not fit into our problem since the

deterioration dynamics of the readmitted patients are not necessarily Markovian.

Bavafa et al. (2017) studies a three-state continuous time Markov model in the

context of primary care routine visits. The authors examine the effectiveness of of-

fice visits as well as e-visits as a cost-effective preventative action. However, the

model assumes Markovian deterioration and focuses on steady-state planning from

the perspective of the primary care providers. Fu et al. (2012) applies delay-time

models on hepatitis screening. However, they focus on optimal statistical estimation

rather than the optimal monitoring schedule planning. Closest to our work is Zhang

et al. (2012b), where follow-up checkups are scheduled to minimize the probability

that the time between patency loss and its detection exceeds some length of time.

The results on the timing of checkups under the assumptions of deterministic delay-

time and Weibull-distributed failure rate are generally consistent with our findings.

However, the authors consider perfect checkups only and do not consider general

distributions. Their work focuses on the timing of checkups only and does not study

how quantity, quality, or mix of different checkups impact monitoring schedules.
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Moreover, they estimate the distributions using maximum likelihood methods as-

suming Erlang and exponential distributions, whereas we use best-fit distributions

obtained directly from the data. The novelties of our work leverage the composi-

tion of different checkup methods (e.g. office visits and phone calls) and address the

tradeoffs in scheduling checkups with both perfect and imperfect inspections under

inhomogeneous failure rates. Our work differentiates from Zhang et al. (2012a) in

the following aspects. 1) In contrast to their model, we analyze the optimal structure

of the checkup policies (consisting of perfect checkups) without assuming a specific

parametric family. 2) For imperfect checkups, we show that imperfect checkups

(such as phone calls) can affect the timing and detection probability significantly by

considering the detection rate of checkups. Moreover, 3) we incorporated various

sources of data to estimate the hidden time-to-develop the condition distributions

using numerical Laplace inverse transform. Helm et al. (2016) developed a mixed

integer programming (MIP) approach to solving a planning problem for how many

healthcare professionals to staff to implement a follow-up program. This model,

however, assumed a homogeneous population(s) of patients and was designed as a

static planning model for a cohort of patients taking the hospital’s perspective. Our

model, on the other hand, is patient centered and can be tailored based on each

individual’s projected readmission density curve – focusing on the operational level

rather than a steady-state planning model. Our delay-time modeling approach also

enables us to identify structural properties, which is not possible using their MIP

formulation.

2.3 Model for Optimizing Post-discharge Checkup Policies

In this section, we develop and analyze a general model for designing monitoring

plans for patients after they are discharged from the hospital. First, we introduce our

model notation and parameters. A summary of the notation is presented in Table

2.1).

2.3.1 Delay-Time Model for Readmissions

Based on our field research, the dynamics of an inpatient readmission occur as

follows. After a patient is discharged, he/she may develop a readmission-causing con-

dition. When this condition first develops, it does not necessarily cause an immediate

readmission (e.g. an infection). Instead, the patient’s condition will degrade over

time, eventually becoming so severe that he/she must return to the hospital and be

readmitted. These dynamics are identical to those found in machine failure models,
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ρ The random variable representing time-to-readmission (time
between discharge and readmission) given no checkups

gρ(·) The probability density function of τ
D Delay-time, i.e., the length of time prior to τ that the illness

was detectable by a checkup; this is equivalent to the amount of
time that a patient is in the ill state

f(·) The probability density function of D; accordingly, F (·) is the
cumulative distribution function of D

δ The time when the condition developed, i.e., when the illness is
first detectable by a checkup

gδ(·) The probability density function of δ
ti The time when checkup i is performed
T The latest time following discharge that readmissions are

tracked until; thus, this also represents the latest time during
which a checkup can be placed

m The number of different checkup methods available
yij ∈ {0, 1} An indicator variable that denotes whether checkup method

j ∈ {1, ...,m} is used at ti
rj ∈ [0, 1] The detection rate of checkup method j, i.e. if checkup

method j is performed when a patient is ill, then the checkup
will detect the illness with probability rj

r(i) ∈ [0, 1] The detection rate of the checkup employed at ti ∀ i ∈ {1, ..., n}
wj ∈ N The maximum number of times checkup method j can be used
Π = (t1, ..., tn A checkup policy
, y11, ..., ynm)
NΠ

i ∈ {0, 1} An indicator variable that denotes whether or not an illness is
detected at ti given policy Π

Table 2.1: Model Notation and Parameters

which have been shown in the machine maintenance literature to be well modeled

by a delay-time model. Unlike Markovian models, our model handles general dis-

tributions under mild conditions (see Section 2.3.4). Moreover, since our problem

has a short planning horizon (30 days) and a transient nature (patient-centric not

steady-state planning), continuous delay-time models allow us to keep track of how

long a patient has been in each state and we can tailor the objective function as we

shall see later. As seen in Figure 2.1, we consider individual patients stochastically

progressing through three sequential states upon discharge: healthy, ill, and read-

mitted. Thus, within the framework of traditional delay-time analysis models used

in preventative maintenance, the patient represents the system, illnesses represent

defects, and readmissions represent failures.

Remark II.1 (“Ill State”). It is important to note here that the ill state is defined as

identifying a patient in a state that causes them to be at risk for a future readmission.

This includes conditions such as infection and failure to thrive, but also includes

conditions such as when the patient has failed to fill a prescription, is taking their
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medicine incorrectly, or has not understood or followed post-discharge treatment

plans such as exercise or nutritional guidelines. Both medical and compliance issues

can be checked for during a phone call or office visit and incorporated into our

modeling framework.

At time 0, we assume a patient is discharged in a healthy state. After a stochastic

amount of time, δ, the patient develops a detectable condition and is considered to be

in the ill state (the first black dot in Figure 2.1). We denote this time δ as the time-

to-develop the condition. Following a period of time (delay-time), D (between the

first and second black dots in Figure 2.1), the patient’s condition worsens to the point

where he/she is readmitted to the hospital. We denote this time-to-readmission as

ρ = δ+D (the second black dot in Figure 2.1). Lastly, we let T denote the length of

our model’s planning horizon (e.g. T = 30 days). Clinical literature and policy both

support a finite horizon model as the Centers for Medicare and Medicaid Services

specify that hospital admissions only qualify as readmissions if they occur within 30

days of discharge.

Figure 2.1: Patient State Progression and Checkup Policy

At the point of a patient’s discharge, the case manager needs to determine the

post-discharge checkup plan for the patient for the next 30 days. Given n checkup

opportunities, our goal is to place a checkup at each time ti, i ∈ {1, ..., n} (white

circles in Figure 2.1), to maximize the probability of detecting the patient in the ill

state. While there is a possibility of a competing risk of patient mortality, 30-day

mortality rates post-discharge are very small relative to readmission rates

In addition to choosing checkup times, decisions must be made regarding what

type of checkup method (e.g. phone calls, home visits, doctors’ office visits) to use

at each checkup time, ti. Given m different checkup methods, the indicator variable

yij ∈ {0, 1} denotes whether checkup method j ∈ {1, ...,m} is used at time ti. In

Figure 2.1, y1a = y2b = y3c = y4d = 1. To model checkup method resource limitations,

let wj denote the maximum number of times checkup method j ∈ {1, ...,m} can be

used.

As mentioned in the contextual grounding of Section 2.1, we are developing this re-

search to help personalize monitoring plans for each patient at the provider/practice
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level. Thus, we allow these constraints to be tailored to what the clinician believes is

an appropriate level of checkup intensity (i.e. how many office visits and phone calls

they are able/willing to make). For example, our clinical collaborator indicates that

most surgeons would typically be willing to do one office visit, two in cases where they

are more concerned about the patient, and a maximum of three where the patient’s

condition indicates very high risk. These determinations, however, are typically

made by the clinician based on a medical and historical knowledge of the patient

and their condition and are difficult to quantify in a cost-based or constraint-based

structure. Further, budgets for checkups are not typically considered when making

individual checkup decisions for specific patients, hence the inclusion of costs does

not fit the current practice and would provide barriers given that many clinicians are

averse to such an approach in individual patient decision making. Hence, we allow

the provider/practice to determine how many office visits and phone calls (i.e. wj’s)

they believe to be appropriate on a patient-by-patient basis and enter this number

as a model parameter. The model also allows for clinicians to perform sensitivity

analysis to determine, for example, the marginal benefit of an extra phone call or

office visit compared to their base resource allocation.

To account for the differences in checkup methods, e.g. an office visit is more

effective than a phone call, we let the detection rate rj ∈ [0, 1] denote the probability

that method j ∈ {1, ...,m} will detect a condition when the patient is in the ill state

(i.e. true-positive). If r = 1, then we say that the checkup is a perfect checkup.

If r < 1, we say that the checkup is an imperfect checkup. The detection rate

accounts for the chance that a condition is present and yet is not detected. This

could be due to an inability to detect illness based on the questions asked, poor

patient responsiveness, or other reasons. Patients not answering the phone can also

be considered, but based on discussions with a company that provides automated

phone calls to detect readmittable conditions (www.cloud9hcs.com), they achieve full

patient responses to their readmission detection scripts (questions) in greater than

85% of their phone calls. We do not consider false-positives in this model.

Each checkup policy is now defined as, Π = (t1, ..., tn, y11, ..., ynm). Further, let

NΠ
i ∈ {0, 1} be the indicator variable denoting whether or not the patient is detected

in an ill state at time ti, given policy Π. Our objective is to select the checkup policy

that maximizes the probability of detecting the patient in an ill state (detection

probability in shorthand):

max
Π

n∑
i=1

E[NΠ
i ]. (2.1)
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2.3.2 Optimization Formulation

The time-to-develop the condition, δ, is described by a differentiable probability

density function gδ(·), which is assumed to be independent of delay-time, D. This

assumption is necessary for the mathematical formulation and is present in all re-

lated machine maintenance literature. We also confirm statistical independence of

these two random variables in Section 2.5.1 using historical data. D has PDF f(·),
CDF F (·), and complementary cumulative distribution function (CCDF) F̄ (·). Fur-
thermore, the time-to-readmission, ρ, has probability density function gρ(·), which is

the convolution of δ and D. The checkup optimization can be expressed as follows:

max
t1,...,tn

y11,...,ynm

n∑
i=1

m∑
β=1

yiβrβ

i∑
s=1

∫ ts

ts−1

gδ(k)F̄ (ti − k) dk
i−1∏
q=s

m∑
α=1

yqα(1− rα) (2.2)

s.t.
m∑
l=1

yil = 1, ∀ i ∈ {1, ..., n} (2.3)

n∑
i=1

yil ≤ wl, ∀ l ∈ {1, ...,m} (2.4)

0 ≤ti < ti+1≤ T , ∀ i ∈ {1, ..., n− 1} (2.5)

where t0 = 0 and the empty product, Π, equals 1.

The first term in the objective, yiβrβ, accounts for the detection rate of the method

used for checkup i. The second term represents the probability that the patient de-

veloped the condition between checkups (s − 1) and s and is still not readmitted

by checkup i. The last term (the product) represents the probability that checkups

s, ..., (i − 1) all failed to properly detect the patient’s existing condition. The con-

straint of Eq. (2.3) ensures that only one checkup method is utilized at each checkup

time, Eq. (2.4) ensures that checkup method resource capacities are not violated,

and Eq. (2.5) ensures proper ordering of the checkups.

Remark II.2. Note that our objective function only considers the probability of de-

tection and does not account for how early the condition was detected. We chose

this objective for several reasons. First, it is intuitive for the clinical audience and

captures the essence of the post-discharge monitoring goal - to detect conditions

and prevent readmissions. Second, there is no data, to our knowledge, that cap-

tures quantifies the benefits of capturing a condition earlier versus later. To capture

this relationship, it would require the estimation of the detection probability as a

function of the earliness of detection, which is difficult given the lack of delay-time

related data. Nevertheless, capturing conditions early would likely be beneficial. It
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is possible to modify our objective function to achieve this, given proper data on the

benefits of early detection.

2.3.3 Solution Approach

We solve this program numerically by dividing it into subproblems and enumer-

ating all feasible y vectors. For each subproblem, we implemented an algorithm that

combines a genetic algorithm (GA) with an ascent algorithm in the following fashion.

The GA is used to generate solutions through random initialization, mutation, and

crossover.

initialization
Generate 200 solutions1 according to the recursive construction described in Proposition

II.4. Each of the 200 initial seeds is generated assuming a deterministic delay-time
randomly sampled from the true delay-time distribution; t← 1

while Not converged 2 or t ≤ 200 or gradient norm ≤ 10−5 do
1. Keep the top 25 fittest solutions and eliminate the rest 175 solutions
2. Randomly mate solutions from the 25 solutions to generate 175 offspring solutions
3. Mutate 20 randomly selected solutions by randomly permuting the timing
4. Apply 5 iterations of gradient ascent to each solution
5. t← t+ 1

end
Note:
1 : A solution, for a n−checkup problem, is a n dimensional vector. For example, n = 2,
(t1, t2) is a valid solution where t is the timing of checkups. The fitness of a solution is its
detection probability (i.e. the objective value).

2 : We say the algorithm converged if the change in population average fitness is less than
10−5 from t to t+ 1.

Algorithm 1: Solution Procedure

In each generation, after the genetic operations, an ascent algorithm is applied

to each of the solutions in the solution pool for no more than five iterations with

decreasing step size. The master algorithm stops if the gradient is sufficiently small

or the maximum number of iterations is reached. Note that the ascent algorithm

alone is sufficient to find local optima if the distributions are differentiable with

support on (0,+∞). The GA component is added to encourage escaping from local

optima in the search for a global optimum and to handle distributions that are not

differentiable and/or have finite support.

Remark II.3. Note that the objective function is not necessarily concave. For exam-

ple, when the delay-time is deterministic and we are optimizing for only one perfect

checkup, the concavity of the objective function is equivalent to the concavity of the

probability density function of the time-to-develop the condition. However, under

reasonable parameterizations in our numerical analysis, we found that our problem

tends to have a unique optimum near the mode of the time-to-readmission curve (see
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Figures 2.2 and 2.3). Hence the first order necessary conditions we analyze below

provide strong intuition regarding the region of interest for scheduling checkups.
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Figure 2.3: Objective Value for Two Checkups

2.3.4 Moving Parts and Assumptions

Our model consists of three moving parts that require estimation. The estimation

of these moving parts is crucial and challenging due to data scarcity and censoring.

In this section, we discuss each of the moving parts and modeling assumptions sur-

rounding them. Later in Section 2.5, we discuss the estimation in detail and conduct

sensitivity analysis

• Detection rate of imperfect checkups (r)

The detection rate of an imperfect checkup is defined as the probability of

detecting an existing condition. In our numerical analyses, we consider r =
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0.6 for phone calls as a baseline and conduct sensitivity analyses by varying r

between 0.2 and 1. In Section 2.4.3, we analyze the impact of detection rate (r)

by studying gamma gδ distributions.

• Time-to-develop the condition distribution (pdf: gδ)

The time-to-develop the condition distribution is the probability density of de-

veloping a readmission-causing condition after discharge. In order to establish

the First Order Necessary Condition, we require gδ to be continuously differ-

entiable with support on [0, T ]. In Section 2.4.1, we analyze the structure of

the checkup timing assuming gδ is unimodal. However, in Section 2.4.2, the

unimodality assumption is relaxed.

• Delay-time distribution (pdf: f)

The delay-time distribution is the probability density of the time between con-

dition onset and readmission. We assume that the delay-time is independent of

the time-to-develop the condition. In order to establish the First Order Nec-

essary Condition, we assume f to be continuously differentiable with support

on [0, T ]. In Section 2.4.3, we analyzed the impact of detection rate (r) by

studying exponentially distributed delay-time. Table 2.3 shows the results of

the sensitivity analyses using different delay-time distributions.

Our model also assumes that 1) the 30-day post-discharge mortality rates are

small relative to 30-day hospital readmission rates and therefore can be neglected;

2) the post-discharge checkup plan is not dynamically modified or updated; and 3)

the planning horizon is finite (i.e., 30 days).

2.4 Structural Properties

In this section, we analyze special cases to develop structural insights, which are

extended to more general cases through numerical analyses in Section 2.5. We first

focus on the timing of checkups. Then we examine how different features such as

stochastic delay-time, D, and different detection rates imply small modifications to

the general timing structure. The analysis in Sections 2.4.1-2.4.3 serves to develop

intuition into rules of thumb that are combined to design a practical, implementable

policy for providers/practices described in Section 2.4.4, with each section providing

a key building block. The overarching goal is to provide guidance toward a prac-

tical policy that is effective based only on historical data without relying on the

optimization itself.
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2.4.1 General Checkup Timing in Optimal Policies

We later show through numerical analyses (Section 2.5) that checkup timing has

the highest impact on detecting an ill patient, so we begin our analysis with this

feature. To understand the general structure of checkup timing, we analyze the

case of current practice where standard protocol dictates a single doctor’s office

visit (n = 1). We begin by assuming a deterministic delay-time, D = z ≥ 0, and a

perfect detection rate. We later generalize these analytical results through numerical

analyses in Section 2.5. The objective function for this special case can be rewritten

as follows:

max
t1

E[NΠ
1 ] = max

t1

∫ t1

0

gδ(k)(1− F (t1 − k)) dk = max
t1

∫ t1

t1−z

gδ(k) dk (2.6)

The second equality follows from the fact that the deterministic delay-time, D =

z ≥ 0, implies F (t1 − k) = 1, if t1 − k ≥ z, and F (t1 − k) = 0 otherwise.

Differentiating the objective function with respect to t1 yields the following First

Order Necessary Condition (FONC) for optimality

0 =
∂

∂t1

∫ t1

t1−z

gδ(k) dk =⇒ gδ(t1 − z) = gδ(t1) (2.7)

Based on results from our data on readmitted cystectomy patients, we also lever-

age the fact that the time-to-develop the condition of readmitted patients, gδ(k), is

unimodal. By unimodality of gδ(k), the condition gδ(t1 − z) = gδ(t1) implies that

(t1 − z) is before the mode of gδ(k) and t1 is after the mode of gδ(k). Thus, the

probability density of developing a condition at t1 − z must equal the probability

density of a condition developing at t1. In practical terms, this informs decision-

makers that, given only one checkup opportunity, they should schedule the checkup

a little bit (< z) after the time when conditions are most likely to develop.

Next, consider a more aggressive approach with n checkups. The following propo-

sition shows that the general multivariate optimization can be transformed into a uni-

variate optimization, focused only on the time of the first checkup. The proposition

indicates the best way to achieve maximum coverage of high risk times in a patient’s

post-discharge recovery. Specifically, we want our checkups to cover as much of the

period of time when the patient is at highest risk of having a readmission-causing

condition as possible. This results in the following two insights. First, if checkups

are too close (i.e. spaced closer than z time units), there is unnecessary overlap in

the coverage (i.e. two checkups covering the same time period). Better coverage can
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be achieved by spacing them further apart without any loss in detection (since delay-

time is deterministic). Second, we want the checkups to cover the high-risk period

(i.e. the time window containing the highest time-to-develop the condition density),

hence it is best to center all of the checkups around the mode of the time-to-develop

the condition distribution, since the density is decreasing monotonically on either

side of the mode.

Proposition II.4. If the delay-time is deterministic (D = z with probability 1) and

the time-to-develop the condition gδ is unimodal, then (1) it is sufficient to optimize

t1 only; (2) the checkups are spaced z days apart equidistantly ; and (3) the densities

of developing the condition are equal at t1 − z and tn

max
t1,...,tn

n∑
i=1

E[NΠ
i ] = max

t1

∫ t1+(n−1)z

t1−z

gδ(k) dk (2.8)

s.t. gδ(t1 − z) = gδ(t1 + (n− 1)z) (2.9)

ti+1 = ti + z, ∀ i ∈ {1, ..., n− 1} (2.10)

Proof. We first show that (tn− t1) = (n− 1)z. In other words, the time between the

first and last checkups is exactly (n− 1)z.

The structure of our objective function appropriately avoids double counting the

detection of conditions. To see how, notice that under the assumptions of determin-

istic delay-time (D = z) and perfect detection rates, the objective function in Eq.

(2.2) becomes

n∑
i=1

∫ ti

ti−1

gδ(k)F̄ (ti − k) dk =
n∑

i=1

∫ ti

max(ti−1,ti−z)

gδ(k) dk (2.11)

Thus, only the earliest successful checkup contributes a positive amount to the objec-

tive function. For example, if a condition was present during a time interval (δ, δ+D)

and three checkups were scheduled at some arbitrary times ti, tj, tk ∈ (δ, δ + D),

then only the checkup at min{ti, tj, tk} contributes a positive amount to the objective

function.

This implies that an optimal solution must be such that the intervals (ti − z, ti)
are disjoint for all i. To see why, consider an arbitrary checkup schedule that has

nondisjoint intervals. Suppose the smallest index corresponding to nondisjoint in-

tervals is j < n such that (tj − z, tj) and (tj+1 − z, tj+1) are nondisjoint. Then,

tj = tj+1 − z + γ with γ ∈ (0, z). We can construct another solution that is
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strictly better, by increasing tj+1 by (z − γ). This increases the objective value by a

non-negative amount:
∫ min(tj+2−z,tj+1+z−γ)

tj+1
gδ(k) dk, if j ≤ n− 2∫ tj+1+z−γ

tj+1
gδ(k) dk, if j = n− 1

(2.12)

If j = n − 1, then the change in the objective value is strictly positive. Similarly,

if j ≤ n − 2 and the upper limit of the integral in Eq. (2.12) is tj+1 + z − γ, the
change in the objective value is strictly positive and the adjustment of tj+1 leaves

the intervals (tj+1 − z, tj+1) and (tj+2 − z, tj+2) disjoint. The last case we need to

consider is if j ≤ n− 2 and the upper limit of the integral in Eq. (2.12) is tj+2 − z.
In this case, there is a non-negative change in the objective value and the intervals

(tj+1 − z + (z − γ), tj+1 + (z − γ)) and (tj+2 − z, tj+2) become nondisjoint, so we can

repeat the steps above. This process terminates in finite iterations and results in a

strictly positive change in the objective value. Thus, we can conclude that an optimal

solution must satisfy (tn − t1) ≥ (n − 1)z. Figure 2.4 illustrates how Eq. 2.12 is

derived in the case of j ≤ n− 2 and tj+2 − z ≥ tj+1 + z − γ.

tj−1 − z tj−1

tj − z tj

tj+1 − z tj+1

tj+2 − z tj+2γ

tj−1 − z tj−1 tj − z tj

tj+1 − z
+(z − γ)

tj+1

+(z − γ)

tj+2 − z tj+2
gain

Figure 2.4: Schematic Sketch for Eq. 2.12

We will now argue that an optimal solution cannot have (tn − t1) > (n − 1)z.

Combining this with our previous finding yields our desired result that an optimal

solution must satisfy (tn−t1) = (n−1)z. If (tn−t1) > (n−1)z, then ∃ i ∈ {1, ..., n−1}
such that ti+1 − ti = z + γ, with γ > 0. In other words, there is at least one pair of

consecutive checkups that are spaced farther than z apart. A checkup schedule with

this property is necessarily suboptimal because the objective value can be improved

by adjusting either ti or ti+1 (without changing any other checkup times), depending

on their relative positions to the mode of gδ(·).
In particular, if ti < ti+1 ≤ mode of gδ(·), we can increase the objective value

by shifting the checkup i from ti to ti + ϵ, where ϵ ∈ (0, γ]. This increases the
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objective value by
∫ ti+ϵ

ti
gδ(k)dk −

∫ max(ti+ϵ−z,ti−1)

max(ti−z,ti−1)
gδ(k)dk. Observe that the second

term is integrated over the interval [max(ti − z, ti−1),max(ti + ϵ − z, ti−1)], which

has length ≤ ϵ. Since the second integral interval is to the left of the first inte-

gral interval, and these two intervals are to the left of the mode, it follows that∫ ti+ϵ

ti
gδ(k)dk −

∫ max(ti+ϵ−z,ti−1)

max(ti−z,ti−1)
gδ(k)dk > 0. By symmetry, if ti > ti+1 ≥ mode of

gδ(·), we can shift checkup i + 1 from ti+1 to ti+1 − ϵ, where ϵ ∈ (0, γ], to achieve a

nonnegative improvement . If ti < mode of gδ(·) < ti+1, we can achieve a nonnegative

improvement by moving ti to the right (if gδ(ti) ≥ gδ(ti+1)) or moving ti+1 to the left

(if gδ(ti) < gδ(ti+1)). The improvement is strictly positive if gδ is strictly unimodal,

i.e., has a unique mode.

We can now conclude that an optimal solution must satisfy (tn − t1) = (n− 1)z.

Given our previous result that an optimal solution must have checkup times such

that the intervals (ti, ti + z) ∀ i are disjoint, this implies that an optimal solution

must be of the form ti = ti−1 + z, ∀ i ∈ {2, ..., n}. This is equivalent to letting

ti = t1 + (i − 1)z, ∀ i ∈ {2, ..., n}. Note that this only holds assuming the delay-

time is deterministic. This proves that maxt1
∫ t1+(n−1)z

t1−z
gδ(k) dk is in fact optimal.

Remark II.5. If the distribution of the time-to-develop the condition is right/left

skewed (yet still unimodal), this does not affect our optimality results at all, since

our results assume nothing about the skewness of the curve. The checkups would still

be centered around the mode, even though the mode will be later/sooner in the 30-

day readmission window. If the distribution is not unimodal, then alternative optima

might exist. Nonetheless, some of the properties from Proposition II.4 still hold. For

example, under the assumptions of bimodal distribution and deterministic delay-

time, we know the following: (1) if there was only one checkup to place, Proposition

II.4 still holds; (2) if there were multiple checkups, checkups are placed no closer

than z days apart (might be farther than z days apart depending on the shape of the

bimodal curve). For the general case with multiple modes, the First Order Necessary

Conditions still hold and the problem can still be solved numerically.

From Proposition II.4, we see that the problem effectively becomes the single

checkup problem while letting D = nz. Thus, an optimal solution in the case of

perfect inspection checkups and deterministic delay-times must satisfy the following

conditions

gδ(t1 − z) = gδ(t1 + (n− 1)z) (2.13)

ti+1 = ti + z, ∀ i ∈ {1, ..., n− 1} (2.14)
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Reducing the n-dimensional optimization problem to a univariate optimization

problem makes these conditions especially valuable because these univariate op-

timizations are easy to solve using ascent search or binary search even without

specialized computer software. This can be achieved by solving the univariate

FONC equation (which is in the form of ψ(t1) = 0) using binary search since

gδ(t1 − s) − gδ(t1 + (n − 1)z) is monotone increasing for a unimodal function), as-

cent search, or Newton’s method. Furthermore, the conditions imply that an optimal

policy schedules one contiguous block of checkups with the checkups collectively cov-

ering a time of length nz. Practically speaking, this informs decision-makers that if

they have n perfect checkups (e.g. doctors’ office visits), then the checkups should be

scheduled surrounding the time when conditions develop most frequently such that

there are z (delay-time) time units between each checkup.

2.4.2 Effect of Stochastic Delay-time on Optimal Checkup Timing

Proposition II.4 gives us the block structure of an optimal checkup policy with

deterministic delay-time, D. In this section, we investigate how stochastic D affects

the spacing of checkups within the block of checkups. First, relaxing the assumption

that D = z, the objective function becomes

max
t1,...,tn

n∑
i=1

∫ ti

ti−1

gδ(k)[1− F (ti − k)] dk (2.15)

which for n = 1 equals
∫ t1
0
gδ(k)[1− F (t1 − k)] dk, resulting in the following FONC:

0 =
∂

∂t1

∫ t1

0

gδ(k)[1− F (t1 − k)] dk =⇒ gδ(t1) =

∫ t1

0

gδ(k)f(t1 − k) dk = gρ(t1)

(2.16)

Notice that the RHS of Eq. (2.16) is the formula for the probability density associated

with a readmission occurring at t1. This implies that at an optimal t1, the marginal

rate of developing a condition (i.e. the marginal increase in patients who could be

detected if t1 was increased) is equal to the marginal rate of a readmission occurring

(i.e. the marginal lost patients that would be readmitted if t1 was increased). Both

results extend our intuition from Section 2.4.1 to the case of stochastic delay-time.

Generalizing the FONC to an arbitrary number of checkups yields∫ ti

ti−1

gδ(k)f(ti − k) dk = gδ(ti)F (ti+1 − ti), ∀ i ∈ {1, ..., n− 1} (2.17)∫ tn

tn−1

gδ(k)f(tn − k) dk = gδ(tn) (2.18)
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The intuition behind these equations is similar to when n = 1 in that the optimal

solution balances the marginal rate of catching a condition with the ith checkup

with the marginal rate of missing a later condition. The LHS of Eq. (2.17) is the

probability of checkup i detecting a condition developed between ti−1 and ti. Since

the perfect checkup at ti−1 ensures ti will only detect conditions between ti−1 and ti,

the LHS of Eq. (2.17) can be thought of as the marginal benefit of moving inspection

i slightly to the right from ti to ti + ϵ (as ϵ → 0+), and therefore capturing more

conditions that could have developed between ti and ti + ϵ. This is essentially the

marginal opportunity cost. The RHS of Eq. (2.17) is the probability of ti+1 missing

the condition developed after ti. This is analogous to lost sales, in that it represents

the marginal rate of patients developing a condition at ti and being readmitted before

the next inspection at ti+1.

Rearranging the terms of Eq. (2.17) implies the timing between inspections follows

a newsvendor-type solution:

ti+1 − ti = F−1

(∫ ti
ti−1

gδ(k)f(ti − k) dk
gδ(ti)

)
(2.19)

The structure of Eq. (2.19) closely resembles the equation for the optimal stocking

quantity in traditional newsvendor problems. This highlights the inherent tradeoff

between (1) scheduling checkups closer together to increase the likelihood of detecting

illnesses that develop between the checkups and (2) scheduling checkups farther apart

to have the opportunity to detect more illnesses by covering a wider span of time.

Both of these tradeoffs are inherently linked to the density of the delay-time function,

F . Thus, the distance between any two checkups is determined by a solution where

the delay-time density functions as the demand function.

It is worth noting that one can construct a recursive algorithm to solve the opti-

mization in light of Eq. (2.19). For instance, given t0 = 0 and t1, one can determine

t2 = t1 + F−1

(∫ t1
t0
gδ(k)f(t1 − k) dk

gδ(t1)

)
. Recursively, one can determine t3, ..., tn.

This reduces the problem to a univariate optimization where t1 is the only decision

variable. Moreover, an optimal solution must exist since we are maximizing a con-

tinuous function over a compact set. For the general case with stochastic delay-time

and imperfect checkups, our solution procedure utilizes this recursive construction

to generate the initial solution seeds.

If the solution to the FONCs is not unique, then one can solve the following
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univariate maximization to generate the optimal checkup policy.

max
t1

n∑
i=1

E[NΠ(t1)
i ] (2.20)

s.t. t1 ∈ [0, T ] (2.21)

In this optimization problem, the checkup policy Π(t1) is drawn from a set of

potential candidates based on the FONCs:

Π(t1) = [t1, t2, ..., tn]
T (2.22)

=



t1

t1 + F−1

(∫ t1
t0
gδ(k)f(t1 − k) dk

gδ(t1)

)

t2 + F−1

(∫ t2
t1
gδ(k)f(t2 − k) dk

gδ(t2)

)
...

tn−1 + F−1

(∫ tn−1

tn−2
gδ(k)f(tn−1 − k) dk
gδ(tn−1)

)


(2.23)

Remark II.6. The analyses in this section are based on the KKT conditions, which

assume (1) gδ has support on [0, T ]; (2) f has support on [0,∞); and (3) gδ and f are

continuously differentiable. It is worth highlighting that these results do not require

unimodality.

2.4.3 Effect of Imperfect Inspection Checkups on Optimal Checkup Timing

As previously mentioned, hospitals have various checkup methods available with

differing detection rates. Hence, it is valuable from both a practical and a theoretical

perspective to understand how the optimal timing of checkups is affected by the

detection rates of the checkups. For the purpose of exposition, we let r(i) ∀ i ∈
{1, ..., n} denote the detection rate of the checkup method employed at time ti. We

begin by considering the case where n = 2 and r(1) = r(2) = r. This yields the

following objective value

r

∫ t1

0

gδ(k)[1−F (t1−k)] dk+(1−r)r
∫ t1

0

gδ(k)[1−F (t2−k)]dk+r
∫ t2

t1

gδ(k)[1−F (t2−k)] dk

(2.24)
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We can then derive FONCs as follows∫ t1

0

gδ(k)f(t1 − k) dk = gδ(t1) (F (t2 − t1) + (1− r)(1− F (t2 − t1))) (2.25)

(1− r)
∫ t1

0

gδ(k)f(t2 − k) dk +
∫ t2

t1

gδ(k)f(t2 − k) dk = gδ(t2) (2.26)

The intuition behind these equations are similar to the perfect checkup case in

Eq. (2.17) and (2.18). The LHS of Eq. (2.25) is the probability density of detecting

a condition that developed between 0 and t1, i.e. marginal rate of gain in terms of

detection. The RHS of Eq. (2.25) is the marginal density of missing a condition

developed after t1, i.e. loss sales. To see this, note the term gδ(t1)F (t2− t1) appears
and has the same intuition as in Eq. (2.17), i.e., the condition developed after t1

but the patient was readmitted before t2. However, the inspection at t2 could also

miss an extant condition due to the imperfect detection. This event is captured by

the term gδ(t1)(1 − r)(1 − F (t2 − t1)), which implies the condition was detectable

at time t2 but failed to be detected. Eq. (2.26) represents the tradeoff between lost

sales (RHS) and marginal change in detection (LHS). The RHS of Eq. (2.26) is the

marginal density of a condition developing at time t2, i.e. lost sales as before since

any conditions developing after t2 will not be detected. The first term on the LHS

is the density of a condition being detectable at time t2 that developed on 0 to t1

and was missed by the inspection at time t1, i.e. the marginal change in detection

for conditions missed by the first inspection. The second term on the LHS is the

probability density of detecting a condition that developed between t1 and t2.

Using the FONCs, we next show that as r increases, the two checkups move

farther apart. Hence, by improving the detection rate of a particular method, the

doctors should place inspections farther apart and can cover a larger time period

in which to catch potentially developing conditions. The intuition behind this is

that with a poor detection rate, a subsequent inspection can catch a condition that

was previously missed if placed closer to the previous inspection. This comes at

the expense of covering less overall timespan, as placing this inspection earlier will

miss the opportunity to catch later developing conditions. As the detection rate

increases, however, there is a smaller benefit of catching conditions missed by a

previous inspection, since fewer patients are missed the first time.

For the analysis, let t∗1 and t∗2 be the optimal values of t1 and t2, respectively.

To show this property analytically, we first introduce an inequality that relates the

probability densities of developing the condition and readmission.

Definition II.7. Assuming gρ and gδ are differentiable, the delayed readmission log-
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likelihood inequality at time t is defined as d
dt
log gδ(t) =

g′δ(t)

gδ(t)
≤ d

dt
log gρ(t) =

g′ρ(t)

gρ(t)
.

This inequality states that, at time t, the derivative of the log-likelihood of de-

veloping the condition is less than or equal to the derivative of the log-likelihood

of readmission. This is similar to previous results we have seen relating the den-

sity functions of time-to-develop the condition, δ, and time-to-readmission, ρ. The

following remark shows that this condition holds for Erlang and exponential distri-

butions. The condition has been verified numerically for other distributions we use in

our numerical studies (see Table 2.3 in Section 2.5). As we shall see in our numerical

analyses, the shape of Erlang distributions resembles the observed time-to-develop

the condition, and an exponential distribution is actually the best fit distribution for

the delay-time.

Remark II.8. If the time-to-develop the condition follows an Erlang distribution

with scale µ and shape parameter kδ (Erlang(kδ, µ)), and the delay-time follows

Erlang(kD, µ), then the time-to-readmission follows an Erlang(kρ, µ) where kρ =

kδ + kD. The delayed readmission log-likelihood inequality becomes (kδ − 1)t−1 ≤
(kρ − 1)t−1, which holds ∀t > 0.

The following lemma shows that, as the detection rate increases, the first inspec-

tion will be placed closer to the patient’s time of discharge (i.e. moved earlier).

Lemma II.9. If the delayed readmission log-likelihood inequality holds, then t∗1 de-

creases in r.

Using this lemma, we now prove An increase in r causes the LHS of Eq. (2.25)

to become smaller than the RHS, so t∗1 is no longer optimal. After simple algebraic

manipulation of Eq. (2.25), r can be expressed in terms of t∗1 as:

r(t∗1) =
gδ(t

∗
1)−

∫ t∗1
0
gδ(k)f(t

∗
1 − k) dk

gδ(t∗1)
[
1− F (t∗2 − t∗1)

]
=

1

1− F (t∗2 − t∗1)
−
∫ t∗1
0
gδ(k)f(t

∗
1 − k) dk

gδ(t∗1)[1− F (t∗2 − t∗1)]
(2.27)

Differentiating this function with respect to t∗1 yields

∂r

∂t∗1
= − f(t∗2 − t∗1)

[1− F (t∗2 − t∗1)]2
−
∫ t∗1
0
gδ(k)f

′(t∗1 − k) dk + gδ(t
∗
1)f(0)

gδ(t∗1)[1− F (t∗2 − t∗1)]

+
f(t∗2 − t∗1)

∫ t∗1
0
gδ(k)f(t

∗
1 − k) dk

gδ(t∗1)[1− F (t∗2 − t∗1)]2
+
g′δ(t

∗
1)
∫ t∗1
0
gδ(k)f(t

∗
1 − k) dk

gδ(t∗1)
2[1− F (t∗2 − t∗1)]

(2.28)
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Then, notice the following:

gρ(t
∗
1) =

∫ t∗1

0

gδ(k)f(t
∗
1 − k) dk (2.29)

g′ρ(t
∗
1) =

∫ t∗1

0

gδ(k)f
′(t∗1 − k) dk + gδ(t

∗
1)f(0) (2.30)

We are interested in the situation where the derivative in Eq. (2.28) is non-positive.

Plugging Eq. (2.29) and (2.30) into Eq. (2.28), this is equivalent to saying:

0 ≥ − f(t∗2 − t∗1)
[1− F (t∗2 − t∗1)]2

−
g′ρ(t

∗
1)

gδ(t∗1)[1− F (t∗2 − t∗1)]
+

f(t∗2 − t∗1)gρ(t∗1)
gδ(t∗1)[1− F (t∗2 − t∗1)]2

+
g′δ(t

∗
1)gρ(t

∗
1)

gδ(t∗1)
2[1− F (t∗2 − t∗1)]
(2.31)

Combining like terms, we have

0 ≥ f(t∗2 − t∗1)
[1− F (t∗2 − t∗1)]2

(gρ(t∗1)
gδ(t∗1)

− 1
)
+

1

gδ(t∗1)[1− F (t∗2 − t∗1)]

(g′δ(t∗1)gρ(t∗1)
gδ(t∗1)

− g′ρ(t∗1)
)

(2.32)

=⇒ f(t∗2 − t∗1)
[1− F (t∗2 − t∗1)]

(
1− gρ(t

∗
1)

gδ(t∗1)

)
≥ 1

gδ(t∗1)

(g′δ(t∗1)gρ(t∗1)
gδ(t∗1)

− g′ρ(t∗1)
)

(2.33)

Multiplying both sides by gδ(t
∗
1) yields(

gδ(t
∗
1)− gρ(t∗1)

) f(t∗2 − t∗1)
[1− F (t∗2 − t∗1)]

≥ g′δ(t
∗
1)gρ(t

∗
1)

gδ(t∗1)
− g′ρ(t∗1) (2.34)

From Eq. (2.25), it follows that gρ(t
∗
1) ≤ gδ(t

∗
1). Then, the LHS of Eq. (2.34) is

positive. Hence, it is sufficient to show that the RHS of Eq. (2.34) is negative. That

is, it is sufficient that

g′δ(t
∗
1)gρ(t

∗
1)

gδ(t∗1)
≤ g′ρ(t

∗
1) ⇐⇒

g′δ(t
∗
1)

gδ(t∗1)
≤
g′ρ(t

∗
1)

gρ(t∗1)
(2.35)

The above inequality holds as a result of the delayed readmission log-likelihood in-

equality, which completes our proof.

Leveraging Lemma II.9, we next show that the gap, t∗1− t∗2, widens as r increases.
Notice that the optimal timing t∗1 and t

∗
2 is the solution to the FONCs, i.e. Eq. (2.25)

and (2.26). For general delay-time and time-to-develop the condition distributions,

the FONCs are essentially a set of integral equations without a closed form solution.

In the following theorem, we consider the case where the delay-time is exponential

and the time-to-develop the condition is Erlang so that the time-to-readmission is in

closed form since the convolution of exponential and Erlang distributions is an Erlang

distribution. The structure and shape of the Erlang and exponential distributions
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are close to what is observed in practice through our numerical analyses (see Figure

2.7 in Section 2.5.1). With exponential-Erlang distributions, Eq. (2.26) effectively

becomes a polynomial where t∗1 can be directly expressed in closed form.

Theorem II.10 now shows, for the case of Erlang and exponential densities for δ

and D, that the two tests move farther apart as the detection rate increases. This

result is later generalized in our numerical study.

Theorem II.10. If the time-to-develop the condition follows Erlang(k, µ) and the

delay-time follows exponential(µ), then t∗2 − t∗1 strictly increases in r.

We begin with the following technical lemma.

Lemma II.11. If the delayed readmission log-likelihood inequality holds, then
gρ(t)

gδ(t)
increases in t.

Proof.

∂

∂t

(
gρ(t)

gδ(t)

)
=
gδ(t)g

′
ρ(t)− gρ(t)g′δ(t)
g2δ (t)

(2.36)

=

g′ρ(t)

gρ(t)
− g′δ(t)

gδ(t)

g2δ (t)

gρ(t)gδ(t)

≥ 0 (2.37)

The last inequality follows from the delayed readmission log-likelihood inequality.

Using this lemma, we now prove Theorem II.10.

Proof. Without loss of generality, assume µ = 1. For µ ̸= 1, the problem can be

scaled. We then rewrite Eq. (2.26) as follows:

gρ(t
∗
2)− gδ(t∗2) = r

∫ t∗1

0

gδ(s)f(t
∗
2 − s)ds ⇔

e−t∗2t∗2
k

k!
− e−t∗2t∗2

k−1

(k − 1)!
= r

∫ t∗1

0

e−t∗2sk−1

(k − 1)!
ds

(2.38)

e−t∗2t∗2
k

k!
− e−t∗2t∗2

k−1

(k − 1)!
= r

e−t∗2t∗1
k

k!
⇔ t∗2

k − kt∗2
k−1 = rt∗1

k (2.39)

⇔ t∗1 =

(
t∗2

k − kt∗2k−1

r

) 1
k

(2.40)

The first and second derivatives of t∗1 with respect to t∗2 are

∂t∗1(t
∗
2)

∂t∗2
=

(t∗2 − k + 1)
(

t∗2
k−1(t∗2−k)

r

) 1
k

t∗2(t
∗
2 − k)

and
∂2t∗1(t

∗
2)

∂t∗2
2 = −

(k − 1)
(

t∗2
k−1(t∗2−k)

r

) 1
k

t∗2
2(t∗2 − k)2

(2.41)
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Based on the first and second derivatives, we show that t∗1(t
∗
2) has the following

properties: (1) t∗1 strictly increases in t∗2; (2) t
∗
1(t

∗
2) is concave; (3) limt∗2→+∞

∂t∗1(t
∗
2)

∂t∗2
=

(1/r)
1
k > 1; and (4)

∂t∗1(t
∗
2)

∂t∗2
> 1, ∀t∗1, t∗2.

For (1), notice that (t∗2 − k) has to be strictly positive for t∗1 ∈ R+. Hence,
∂t∗1(t

∗
2)

∂t∗2
> 0, which implies t∗1 strictly increases in t∗2. For (2), since (t∗2 − k) > 0, it

is clear that
∂2t∗1(t

∗
2)

∂t∗2
2 < 0 for k > 1, integer. Hence t∗1(t

∗
2) is concave. To see (3), for

k > 1 and r ∈ (0, 1), we have

lim
t∗2→+∞

∂t∗1(t
∗
2)

∂t∗2
= lim

t∗2→+∞

(t∗2 − k + 1)
(

t∗2
k−1(t∗2−k)

r

) 1
k

t∗2(t
∗
2 − k)

(2.42)

> lim
t∗2→+∞

(t∗2 − k)(t∗2k−1(t∗2 − k))1/k

t∗2(t
∗
2 − k)

(
1

r

)1/k

(2.43)

= lim
t∗2→+∞

(
t∗2

k − kt∗2k−1

t∗2
k

)1/k (
1

r

)1/k

(2.44)

= lim
t∗2→+∞

(
1− k

t∗2

)1/k (
1

r

)1/k

=

(
1

r

)1/k

> 1 (2.45)

Finally, (4) follows from properties 2 and 3. Given the four properties above,

Figure 2.5 sketches t∗1(t
∗
2) schematically.

0 k t∗∗2 t∗2

t∗∗1

t∗1

Figure 2.5: Schematic Sketch of t∗1 as a Function of t∗2

Consider optimal t∗1 and t∗2 with detection rate r. As r increases, t∗1 decreases

(Lemma II.9). By property 1, t∗2 also decreases. Denote the new optimal solution as

t∗∗1 and t∗∗2 . As shown in Figure 2.5, since the slope of t∗1(t
∗
2) is always strictly greater

than one, it follows that t∗2 − t∗∗2 < t∗1 − t∗∗1 . Therefore t∗∗2 − t∗∗1 > t∗2 − t∗1 as desired,

which completes our proof.

Proposition II.12. Under the assumptions of Theorem II.10, if the detection rate

changes from r to r+ϵ, (ϵ > 0), then the increase in the gap between the two checkups

is bounded above by 1− r (if k = 1) or 2(r + ϵ)k (if k ≥ 2).
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Proof. For Erlang-exponential distributions, Eq. (2.25) and (2.26) (FONCs) become:

et2(k − t1)− e−t1kr =0 (2.46)

rt1
k =t2

k − kt2k−1 (2.47)

Suppose r increases to r+ϵ, from Theorem II.10, we know that t1 moves to t1−x, x >
0.

Suppose t2 moves to t2 − y, y > 0, at the new optimum, Eq. (2.26) becomes:

rt1
k =t2

k − kt2k−1 (2.48)

(r + ϵ)(t1 − x)k =(t2 − y)k − k(t2 − y)k−1 (2.49)

For k = 1, we have

(r + ϵ)x = y − ϵt1 (2.50)

We would like to express x− y as a function of r and ϵ then put lower and upper

bounds on it.

Lower bound: One trivial lower bound is x− y ≥ 0 (result of Theorem II.10)

(r + ϵ)x− y = ϵt1 (2.51)

⇔ (r + ϵ)x− (r + ϵ)y ≥ ϵt1 > 0 (2.52)

Upper bound: From Eq. (2.46) we know t1 < k = 1. Also, we know that x ≤ t1.

So

(r + ϵ)x− y = ϵt1 (2.53)

−y = ϵt1 − (r + ϵ)x (2.54)

x− y = x− (r + ϵ)x+ ϵt1 (2.55)

x− y ≤ (1− r − ϵ)t1 + ϵtk ≤ (1− r) (2.56)

For k ≥ 2:

(t2 − k)tk−1
2 = rt1t

k−1
1 (2.57)
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Since t2 > t1 and k ≥ 2, we have tk−1
2 ≥ tk−1

1 . Then

t2 − k ≤ rt1 ≤ rk (since t1 < k) (2.58)

t2 ≤ (r + 1)k (2.59)

Now we bound t1.

et2(k − t1)− e−t1kr = 0 (2.60)

(k − t1)− e−t1kr ≤ 0 (2.61)

(k − t1)− kr ≤ 0 (2.62)

(1− r)k − t1 ≤ 0 (2.63)

t1 ≥ (1− r)k (2.64)

The bounds for t1 and t2 at the new equilibrium (i.e. t1−x and t2−y are optimal

for t+ ϵ):

t2 − y ≤ (1 + r + ϵ)k (2.65)

x− t1 ≤ −(1− r − ϵ)k (2.66)

Combine the two inequalities, we have

x− y − t1 + t2 ≤ 2(r + ϵ)k (2.67)

Therefore, the desired upper and lower bounds are

0 ≤ x− y ≤ 2(r + ϵ)k (2.68)

In practical terms, checkups should be placed farther apart as the detection rates

improve. This is because when the detection rate is relatively low, there is a benefit

to scheduling checkups that “overlap” each other in case a checkup fails to detect

an existing illness. However, this benefit diminishes as the detection rate improves,

so the checkups spread farther apart from one another. This allows the checkup

schedule to cover a wider range of potential readmissions without losing detection

quality.
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2.4.4 From Theory to Practice: Implementable Policies from Modeling Insights

Through the prior analysis, we have captured the key factors affecting the effi-

cacy of post-discharge checkup policies. To summarize the analytical insights of the

previous section into practical rules of thumb, we now illustrate how to design a

simple checkup policy for doctors and discharge planners. Suppose a patient is to be

discharged and a post-discharge follow-up plan needs to be determined by the case

manager. The case manager first decides the aggressiveness of the follow-up plan,

i.e., how many office visits and phone calls to use. This can be done by evaluating

the patient’s readmission risk using existing risk calculators (Hu et al. (2014)). Given

the estimates of the time-to-develop the condition density curve and the delay-time

D (later in Section 2.5.1 we estimate the densities using historical data), the next

step is to determine the timing of checkups.

From the analyses in Sections 2.4.1 and 2.4.2 and Proposition II.4, the checkups

should be placed approximately z days apart (z being the average delay-time) such

that the first and the last checkups are at the same height on the time-to-develop the

condition curve (one on either side of the mode). Finally, from Theorem II.10, the

case manager adjusts the spacing of checkups according to the detection rate of the

checkups: higher detection rate spreads the checkups farther apart. For instance, the

case manager should make less frequent contact with the patient if he/she believes

that the patient was well educated for the diagnosis and understands what post-

operative complications might happen (this translates to a higher detection rate);

or the case manager may want to make frequent contact if he/she believes that

the patient is less responsive to phone calls or is less adherent to the follow-up

appointments (this translates to a lower detection rate). In the next section, we

generalize the analytical insights using numerical studies to deepen the understanding

of how to empirically estimate model parameters, of the impact of office visit and

phone call sequencing, and of quantity versus quality of checkups.

2.5 Numerical Analyses

In this section, we conduct extensive numerical analyses on cystectomy readmis-

sions from a regional hospital as well as the national State Inpatient Database (SID)

to address the key questions that arise in post-discharge checkup policies: when to

schedule checkups, how many checkups to schedule, and what types of checkups to

schedule. First, we study two-checkup policies with one phone call and one office

visit, which are consistent with current practice at our partner hospitals. We show
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that our approach improves the detection probability upon current practice by up

to 43.7% when applied to readmitted patients. We test the robustness of our model

with different exponential and gamma delay-time distributions. We also verify the

delayed readmission log-likelihood inequality defined in Section 2.4.3. Next, we ex-

amine more aggressive checkup plans with more checkups to develop insights into: (1)

optimal checkup timing and sequencing, (2) effects of varying the detection rate, and

(3) checkup quantity vs. quality. We then validate our work by applying the optimal

policies found to a different subset of patients and show that our results continue to

hold. We conclude this section by summarizing rules of thumb that can be easily

implemented by healthcare professionals to develop post-discharge checkup policies

that have the potential to improve detection of readmission causing conditions.

2.5.1 Data and Model Parametrization

The numerical analyses in this section are based on two datasets. The first dataset

contains delay-time information of 327 cystectomy patients discharged from our part-

ner hospital between 2007 and 2012. The information in the dataset includes the

following: date of discharge from the hospital, date of first contact with the health-

care provider after discharge, who initiated the contact, what the chief complaint

was, date of readmission, what condition caused the readmission, and when the

condition was first experienced. By computing the difference between the date of

readmission and date of condition onset, we obtain the delay-time for each patient

in this cohort. The data was manually collected by a medical student and a medical

fellow at our partner hospital by going over medical charts and reviewing each pa-

tient’s triage notes upon readmission. This patient cohort consisted of 79 female and

248 male patients between 37 and 91 years old (mean = 65.9, standard deviation =

11.2). Among the 327 patients, 63 patients (19%) were readmitted within 30 days of

discharge. We used this database to obtain data on the delay-time random variable

and the time-to-develop the condition random variable. Note that we focus on the

readmitted patients only and exclude the patients who were not readmitted from

our analysis. We also ignore the intervention and prevention effect of the checkups a

patient received, which, at our partner hospital, typically included a phone call and

a follow-up office visit on the 2nd and 12th day after discharge respectively.

We acknowledge there are many empirical challenges with this type of data and we

do not address them all in this chapter. One of the key challenges is the estimation

of the distributions. Since we only used readmitted patients in our estimation, it is

likely that the estimated distributions differ from the ones parameterized using all
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patients, including readmitted and non-readmitted patients. In addition, since we

ignored the intervention and prevention effect of existing checkups, our estimated

distributions could be biased. Next, we provide an initial approach addressing how

incorporating both readmitted and non-readmitted patients might affect our model’s

performance. Notice that results presented in that appendix are obtained from a

limited case study on a very specific dataset. Nevertheless, empirical estimation is

not the primary focus of our study and the remaining empirical challenges are left

to future work.

At our partner hospital, current practice is to place a phone call on day 2 and an

office visit on day 12 after discharge. These checkups could bias the data and results

as there could be endogeneity induced by current checkup practice. We considered

four types of patients in our chart review cohort: (1) patients who were not going to

be readmitted regardless of checkups and intervention (non-readmit-able patients),

(2) patients whose 30-day readmissions were detected and prevented by the day-2

and the day-12 checkups, (3) patients whose 30-day readmissions could have been

prevented if the checkups were placed on days other than day-2 or day-12, and (4)

patients who were going to be readmitted regardless of checkups and intervention

(unavoidable readmissions).

To include all four types of patients, we went back to the chart review data

set, which contained 327 cystectomy patients who underwent cystectomy at our

collaborating hospital. We believe that the cohort of 327 patients included the four

types of patients. Out of the 327 patients, 63 developed post-surgical conditions

that lead to a 30-day readmission. The 63 patients included in our original analyses

included type 3 and type 4 patients. The remaining 327−63 = 264 patients included

type-1 and type 2 patients, which were not readmitted and therefore not included in

our original analysis.

Of the remaining 264 patients, 236 of them developed a condition at some point

in their post-discharge recovery. The 264 − 236 = 28 patients that never developed

a condition were considered to be type 1 (not going to be readmitted regardless of

monitoring policy). Of the 236 patients that developed a condition at some point, 24

patients were found to have had a condition detected on either the day-2 or the day-

12 checkups as recorded on the medical chart. These 24 patients could have either

(1) developed a non-readmission causing condition (reason 1) or (2) could have devel-

oped a readmission-causing condition that was mitigated by the checkups (reason 2).

However, we do not have sufficient data to distinguish between the two reasons. Let

q denote the proportion of reason 2 patients among the 24 patients. These patient
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could be considered as type 2 patients. We could estimate this proportion by looking

at those 236 − 24 = 212 patients who developed a condition but were not detected

on day 2 or day 12 by the current follow-up protocol. Out of those 212 patients, 63

patients (63/212 = 30%) were readmitted. This means that if we assume that the

characteristics of those 24 patients are same as the population (212 patients), and

that the checkups are perfect inspections that can prevent readmissions with proba-

bility one, then q can be estimated to be 30%. In reality, q may be smaller than 30%

(if the checkups are not perfect) and it may not prevent readmissions with probabil-

ity one; or q could be greater than 30% if patients who are found sick on day-2 and

day-12 are more likely to be readmitted than the population average is. Another way

to estimate q is to use the national average readmission rate of cystectomy (which

was observed to be 24% in the SID database). We conducted sensitivity analyses

around the proportion of type 2 patients at q = 25%, 50%, 75%, and 100%. Gamma

distributions were fitted to these cohorts with q = 25%, 50%, 75%, and 100% of the

24 patients added.

Finally, we took the checkup policies obtained using the original gamma distri-

bution (types 3 and 4 only) and computed their objective values (suboptimal) by

plugging the computed policies into the gamma distributions that included patients

(simulated by adding q = 25%, 50%, 75%, and 100% of the 24 patients) type 2 pa-

tients. We then computed the difference in objective values between the suboptimal

objective values and the optimal objective values (using the distribution that in-

cluded type 2 patients as our testbed) for checkup policies consisting of 1 to 3 office

visits and 1 to 7 phone calls. As seen in the following table, by ignoring types 1 and

2 patients, the detection probabilities degraded by at most 3.5%. The most likely

value of q, according to our estimation, would be around 24%, which shows at worst a

very small difference of 0.54% between the original checkup policy (from our simpler

model containing only types 3 and 4 patients) and the true optimal. We believe that

the small observed differences are sufficient to demonstrate that the results from our

simpler analysis with only types 3 and 4 patients should still be valid.

To the best of our knowledge, this is the first study in the clinical or operational

literature to attempt to characterize these two variables using actual data. This

is because existing available datasets do not capture delay-time or time when a

readmission-causing condition developed. Due to data scarcity, we conducted our

numerical analysis using population-based distribution curves. Given sufficient delay-

time data, our approach can be tailored to individual patients by applying transfer

learning techniques for personalized readmission forecasting (Helm et al. (2016)). We
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q 1 Phone Call 2 Phone Calls 3 Phone Calls 4 Phone Calls

1 Office Visit

25% −0.42% −0.46% −0.48% −0.49%
50% −1.16% −1.25% −1.24% −1.24%
75% −1.96% −2.15% −2.20% −2.24%
100% −2.64% −2.90% −2.98% −3.05%

2 Office Visits

25% −0.51% −0.54% −0.54% −0.51%
50% −1.34% −1.45% −1.40% −1.27%
75% −2.34% −2.51% −2.47% −2.33%
100% −3.17% −3.39% −3.33% −3.16%

3 Office Visits

25% −0.49% −0.53% −0.52% −0.53%
50% −1.17% −1.32% −1.26% −1.26%
75% −2.22% −2.41% −2.37% −2.39%
100% −3.04% −3.28% −3.22% −3.25%

Table continued

q 5 Phone Calls 6 Phone Calls 7 Phone Calls

1 Office Visit

25% −0.49% −0.49% −0.50%
50% −1.22% −1.18% −1.24%
75% −2.24% −2.22% −2.28%
100% −3.04% −3.02% −3.09%

2 Office Visits

25% −0.51% −0.53% −0.52%
50% −1.24% −1.34% −1.29%
75% −2.31% −2.42% −2.38%
100% −3.14% −3.27% −3.23%

3 Office Visits

25% −0.49% −0.49% −0.54%
50% −1.11% −1.14% −1.38%
75% −2.20% −2.22% −2.49%
100% −3.02% −3.04% −3.37%

Table 2.2: Difference in Detection Probabilities
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demonstrate robustness of our optimal policies to distribution in Table 2.3 and the

analytical results from Section 2.4 are not dependent on the form of the delay-time

distribution. Further, the mean of the delay-time distribution observed in the data

(2.35 days) is very close to delay-time estimates for common readmission-causing

conditions in a survey given to an independent group of five practicing surgeons

(average of 2 days). These cross-checks should help mitigate some concerns about

the accuracy of the estimation. We also tested the dependency between delay-time

and the time-to-develop the condition using the 63 readmitted patients from this new

data set. The correlation between the two variables is 0.14, and they are independent

(p-value < 0.05) using the Hilbert-Schmidt independence criterion (Gretton et al.,

2007). While data for this study was collected manually as a proof of concept, this

process could be appropriately scaled with IT support due to the proliferation of

electronic health records. This type of analysis, however, is left to future work.

The second dataset comes from the the State Inpatient Databases (SID), which

was gathered as part of the Healthcare Cost and Utilization Project sponsored by

the Agency for Healthcare Research and Quality. From the SID dataset, we iden-

tified 717 cystectomy patients (ICD-9 code 577, 5771, and 5779) from the states of

Florida, Iowa, North Carolina, New York, and Washington that were readmitted

within 30 days of discharge in 2009 and 2010. As mentioned in Section 1, we choose

cystectomy patients as a proof of concept given that our clinical collaborator is an

expert in this type of surgery and that it has one of the highest readmission rates in

the U.S. Note that subsequent work by our collaborator’s surgical research group in-

dicates the dynamics of cystectomy are similar to many other surgeries, particularly

lower torso/abdomen surgeries (Jacobs et al., 2017), and our clinical collaborator be-

lieves this approach would be broadly applicable in the surgery domain; this includes

surgeries targeted for inclusion in Medicare’s readmission penalty program (HRRP).

To further verify that the unimodality assumption holds for other surgery cohorts,

we extracted the readmission records of patients who had some of the most com-

mon abdominal and chest surgeries in 2009 and 2010: Abdominal Aortic Aneurysm

Repair (AAA), Esophagectomy, Pancreatectomy, Aortic Valve Replacement (AVR),

Coronary Artery Bypass Grafting (CABG), and Lung Resection. In all six cases,

the time-to-readmission and the estimated time-to-develop the condition curves (es-

timated using readmitted patients) appeared to be unimodal (see Figure 2.5.1).

We excluded patients who had ICD-9 code 4411, 4412, 4413, 4415 or 4416, patients

who were 18 years old or younger, and patients who died during cystectomy or

during their inpatient stay. The SID database captures the length of time between
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Figure 2.6: Time-to-Readmission and Time-to-Develop the Condition Distributions for Six Major
Abdominal and Chest Surgeries

each patient’s initial discharge and his/her subsequent readmission. Among the 717

patients, 385 patients from 2010 were used for parametrization and optimization of

the models, and 332 patients from 2009 were used to test the optimal policies. We

used the first dataset to estimate the delay-time distribution and to validate the

efficacy of recovering the time-to-develop the condition distribution. To do that,

we started by fitting distributions to the observed time-to-readmission (shown in

Figure 2.7(a)) and to the observed delay-time (shown in Figure 2.7(b)). Gamma

and exponential distributions worked well to model the time-to-readmission and the

delay-time, respectively.

Given the time-to-readmission and the delay-time distributions, we recovered the

time-to-develop the condition distribution through a numerical inverse Laplace trans-

form. Next, we describe the inverse Laplace transform in detail.

Clinical data used to parametrize the delay-time models is limited in the fact that

time-to-develop the condition is currently not recorded in any databases known to

the authors. The historical data most readily available is the time-to-readmission. To

obtain data on the delay-time, which is not recorded in any major clinical databases,
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Figure 2.7: Time-to-Readmission and Delay-Time Distribution Fitted from Medical Charts

Note. Time-to-readmission ρ ∼ gamma(1.74, 5.98), delay-time D ∼ exponential(2.35)

we conducted a study of 327 medical records and extracted data on how long the

patient had been feeling ill before returning to the hospital based on triage notes upon

readmission. However, given the time-to-readmission distribution and the delay-time

distribution, we can obtain the time-to-develop the condition probability density on

larger databases by applying the inverse Laplace transform.

Recall that the time-to-readmission, ρ, is the summation of the time-to-develop

the condition δ and the delay-time D, i.e., ρ = δ+D. Since δ and D are assumed to

be independent, the Laplace transform of ρ, L{gρ(x)}(s), is equivalent to the product
of the Laplace transforms of δ and D, i.e., L{gδ(x)}(s) and L{f(x)}(s).

L{gδ(x)}(s)L{f(x)}(s) = L{gρ(x)}(s) (2.69)

Dividing both sides by L{f(x)}(s), we get the following expression for the Laplace

transform of the time-to-develop the condition, denoted by G(s):

L{gδ(x)}(s) =
L{gρ(x)}(s)
L{f(x)}(s)

=: G(s) (2.70)

Applying the inverse Laplace transform L−1{·} to both sides of Eq. (2.70), we

obtain the probability density function of the time-to-develop the condition:

gδ(x) = L−1{G(s)}(x) (2.71)

The inverse Laplace transform yields closed-form solutions for certain gρ(·)-f(·)
pairs such as Erlang-exponential and normal-normal. Given arbitrary gρ(·) and f(·),
a closed-form solution may not exist. In such cases, numerical algorithms for inverse

Laplace transform (Avdis and Whitt, 2007; Rizzardi, 1995; Lyness and Giunta, 1986)

can be implemented.
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The numerical Laplace inversion fitted the true time-to-develop the condition

well with a Pearson χ2 p-value = 0.36. This validates the efficacy of recovering the

distribution of the time-to-develop the condition using inverse Laplace transform.

With an effective approach to recover the time-to-develop the condition, we ex-

panded our analysis to the SID database (which includes patients from many hospi-

tals across five states). Using the 2010 SID patients, we fitted a gamma distribution

to the time-to-readmission as shown in Figure 2.8. Since the delay-time information

was not recorded on the SID database, we assumed that the delay-time for the SID

patients followed the same distribution as the delay-time observed on patients at

our partner hospital (exponential(2.35)). We used the inverse Laplace transform to

estimate the time-to-develop the condition distribution (see Figure 2.8).
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Figure 2.8: Fitted Time-to-Readmission and Recovered Time-to-Develop the Condition for 2010
SID Patients

Note. Time-to-readmission ρ ∼ gamma(2.50, 4.80), time-to-develop the condition δ ∼ gamma(1.81, 5.08)

2.5.2 Comparison of Policies Against Current Practice

With the model parameterized on the 2010 SID patients, we evaluated how our

policy improves upon the current practice at our partner hospital. We also examined

the robustness of our model by fitting various exponential and gamma delay-time

distributions (see Table 2.3). The distributions tested in Table 2.3 satisfy the delayed

readmission log-likelihood inequality defined in Section 2.4.3.

The current practice for post-discharge monitoring at our partner hospitals is to

place a phone call on the 2nd day after discharge and an office visit on the 12th day

after discharge. Throughout our numerical analyses, we assume that an office visit

is a perfect inspection with detection rate r = 1; and a phone call is an imperfect

inspection with detection rate r = 0.6 (given the patient has developed a condition,

a phone call will detect the condition successfully with probability 0.6). These values

were estimated by our clinical collaborators. In Section 2.5.4, we perform a sensitivity
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analysis on the detection rate.

Applying the algorithm described in Section 2.3.2, we solve for the optimal 2-

checkup policies with one phone call and one office visit (for fair comparison with

current practice) using the 2010 SID patients. We tested seven delay-time distri-

butions (see Table 2.3) with the same mean and different variance as a sensitivity

analysis, since the delay-time distribution is estimated based on a small sample of 63

patients and no other publicly available data set captured delay-time information.

Table 2.3 shows how our policy outperforms current practice by significantly increas-

ing the probability that ill patients are detected before readmission (defined as the

detection probability). The relative improvement of the detection probability ranges

from 23.9% to 65.3% (average = 49%) for the exponential and gamma delay-time

distributions tested. This improvement is achieved solely by optimizing the timing

and sequencing of the two checkups. As we shall see in the following sections, the

detection probability further increases if we adopt more aggressive post-discharge

monitoring policies by increasing the number of checkups. However, we would like

to point out that the improvement is computed using readmitted patients only, which

represent 19% of the entire cohort. Hence, when taking both readmitted and non-

readmitted patients into account, the improvement might be smaller. As a sanity

check, we conducted simulations and verified that, under current practice, the sim-

ulated readmission rates predicted by our model were very close to the readmission

rates that were actually observed in the data (both around 20%).

Distribution Time of Time Detection Probability
Delay-time E[D] Var[D] First between Optimal Current Relative
Distribution Checkup Checkups 2-Checkup Practice Improvement
exponential(µ/2) 1.2 1.4 4.9 3.1 0.13 0.08 56.8%
exponential(µ)* 2.4 5.5 5.9 4.4 0.23 0.16 43.7%*
exponential(2µ) 4.7 22.1 7.4 6.1 0.35 0.29 23.9%
gamma(1/2, 2µ) 2.4 11.0 6.5 5.0 0.20 0.15 30.8%
gamma(2, µ/2) 2.4 2.8 5.5 3.9 0.25 0.16 56.4%
gamma(3, µ/3) 2.4 1.9 5.3 3.6 0.26 0.16 62.1%
gamma(4, µ/4) 2.4 1.4 5.2 3.5 0.26 0.16 65.3%

Table 2.3: Optimal 2-Checkup for Exponential/Gamma Delay-Time Distributions)

Note. * marks the estimated delay-time distribution using our chart review data set. The timing of checkup (rounded
to the first decimal place) is in days. In our numerical studies, we observed that the solutions are insensitive to
rounding of the checkup timing.

In Table 2.3, where the mean of the gamma distribution is held constant and the

variance is increased, we see that increased (gamma-distributed) delay-time variance

leads to greater spacing between checkups. The performance of the optimal policy
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also degrades as the (gamma-distributed) delay-time variance increases. This im-

plies that efforts at standardizing patients’ behavior at home could have benefits

for readmission reduction because it reduces the delay-time variance. This variance

effect is offset in the exponential case by the concurrent increase in mean delay-time,

which indicates that efforts to keep patient conditions from degrading too fast (e.g.

compliance with physician orders and adherence to medication), can also provide

significant benefit by allowing the healthcare provider time to detect the condition

before it becomes too severe. Note that our approach can be tailored to each pa-

tient’s time to readmission characteristics, but because of data scarcity, it is difficult

tailor the delay-time. If there were sufficient data, the delay-time could also be per-

sonalized using the same method used to personalize time to readmission predictions

(Helm et al., 2016).

2.5.3 Optimal Timing and Sequencing of Checkups: Timing outweighs sequencing

Next, we explore the delay-time-spaced block structure shown by Proposition II.4

and the optimal sequencing of checkups in a more generalized scheme involving four

to ten checkups in total with three office visits. Though conducting ten checkups

within a 30-day period could be burdensome for both clinicians and patients, the

purpose here is to study 10-checkup policies as the extreme upper bound for the sake

of comparison and completeness, and further investigate the structure of checkup

policies and their timing and sequencing.
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Figure 2.9: Optimal n-Checkup Sequencing and Timing, n ∈ {4, ..., 10}: Consecutive Perfect Check-
ups Appear around the Mode of gδ(·)

Note. Assumptions: D ∼ exponential(2.35)); r of perfect checkups = 1, r of imperfect checkups = 0.6; the left axis
denotes the probability density; the right axis denotes the number of checkups. The detection probabilities are 0.40,
0.43, 0.46, 0.48, 0.50, 0.52, and 0.54 respectively (from bottom to top).

From Figure 2.9, we draw the following insights: (1) checkups are scheduled in

a contiguous block surrounding the mode of the time-to-develop the condition dis-

tribution with spacing approximately equal to the mean delay-time. Slightly wider
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spacing is observed around the perfect checkups and the spacing increases as the

probability of developing the condition decreases; and (2) consecutive perfect check-

ups are placed surrounding the mode of the time-to-develop the condition curve (i.e.

put the best checkups in the most hazardous period).

Although optimal policies favor consecutive perfect checkups around the mode, it

is sometimes impractical to schedule them consecutively in a short period of time;

particularly because many patients may live far from the hospital where their initial

treatment occurred, making frequent travel to the hospital difficult or impossible.

Fortunately, we find that, as long as the timing is optimal, the policies are robust to

sequencing. That is, the gaps between the worst-case and the best-case sequences

for all policies in our test suite (1 to 10 checkups consisting of 0 to 3 office visits and

phone calls) ranged between 0.2% and 0.5%, indicating that the timing of checkups

is much more important than the sequencing. One way to explain why sequencing is

less important is that the optimization will mimic a perfect checkup by scheduling

multiple imperfect checkups closer together. For example, three phone calls of de-

tection rate 0.6 (made at once) have an equivalent detection rate of 1− 0.43 = 0.94.

We conjecture that, by striking a balance between the spacing of checkups and the

effective detection rate, the sub-optimal sequencing can mimic the behavior of the

optimal sequencing. The robustness to sequencing is a valuable property: as the

number of checkups increases, the number of permutations of checkup sequences be-

comes large (e.g. the 10-checkup policy in Figure 2.9 has
(
10
3

)
= 120 sequences),

requiring a significant amount of computational power to obtain an optimal solu-

tion. Results from the sequencing analysis, however, generate near-optimal policies

by fixing the checkup sequence that is convenient for the physician and the patient

and then optimizing the timing of checkups. This also allows for accommodating

physician and patient preferences with little degradation in performance.

Remark II.13 (Multi-modal time-to-develop the condition distributions). We test our

model numerically using a multi-modal time-to-develop the condition distribution

estimated using a Gaussian Kernel Density Estimator. We show that checkup policies

can still be solved numerically to optimality and the differences in optimal detection

probabilities are within 2%.

To test the robustness of our model under a multi-modal distribution. We created

a counter-factual time-to-develop the condition distribution by simulating the time-

to-develop the condition of 63 patients according to the fitted gamma distribution

presented in Section 2.5.1. Then, patients that may have been readmitted on day-12

but were not (possibly due to the current practice of following up with patients on day
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12) were added to the cohort. We simulated 24 patients who developed a condition

prior to day-12 based on the exponential delay-time distribution. A Gaussian Kernel

Density Estimator (KDE) with bandwidth 0.8 was used to fit the time-to-develop

the condition distribution curve. The KDE distribution is shown in Figure 2.10.
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Figure 2.10: The Counter-Factual Multi-Modal Distribution Created by a Gaussian Kernel Density
Estimator

We studied the sequencing and timing of checkups. Solving for optimal n-checkup

(n = 4, ..., 10) sequencing and timing under a multi-modal distribution, we found that

the insights on sequencing and timing developed under the unimodality assumption

of Proposition II.4 did not hold in the multi-modal case as perfect checkups were no

longer placed consecutively. However, the policies were still robust to the sequencing

of checkups: the gaps between the worst-case and the best-case sequences for all

policies in this test suite (4 to 10 checkups consisting of 3 office visits and 1 to 7

phone calls) were between 0.9% and 1.5%. Moreover, as can be seen in Table 2.5.1,

the optimal detection probabilities of these policies were close to the ones obtained

using the original gamma distribution.

Checkup Policy 1P3O 2P3O 3P3O 4P3O 5P3O 6P3O 7P3O

Optimal Detection Original Gamma 0.40 0.43 0.46 0.48 0.50 0.52 0.54
Probabilities KDE 0.39 0.42 0.45 0.47 0.50 0.51 0.53

Gaps b/t Worst Original Gamma 0.2% 0.3% 0.4% 0.5% 0.4% 0.3% 0.4%
and Best Cases KDE 1.2% 1.2% 1.3 % 1.5% 1.1% 0.9% 1.2%

Table 2.4: Comparison of Optimal Detection Probabilities (P=Phone Call, O=Office Visit)

As the detection rate increased, we noticed that imperfect checkups were centered

around each mode and placed closer together. However, increasing the detection

rate did not necessarily widen the overall coverage area. Since the checkups were

scattered to cover the prominent modes, the overall coverage area was dictated by

the separation of the modes.
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2.5.4 Impact of Detection Rate on Timing: Greater Coverage with Better Checkups

In this section, we study the impact of varying the detection probability of an

imperfect checkup, r, and extend the insight drawn from Theorem II.10 using a

realistic potential monitoring schedule (according to our clinical collaborator) of one

office visit and nine phone calls. While this scenario is more aggressive than current

practice, it is still reasonable because phone calls can be done cost-effectively using

nurses, trained technicians, or even automated call systems (see www.cloud9hcs.com

and Tagliente et al. (2016)). Results are presented in Figure 2.11.

In Figure 2.11, the spacing between checkups increases as the detection rate im-

proves. This aligns with Theorem II.10 and our intuition: more accurate checkups

can be spread farther apart; whereas less accurate checkups should be placed closer

together to account for the higher probability that the condition is missed by pre-

vious checkups. With more accurate checkups, the associated larger spacings will

cover a longer time period. Since checkups are scheduled less frequently, patients

and family members are less likely to be inconvenienced. For example, too much

contact may lead patients to become irritated, ignore phone calls, or not consider

questions as attentively. Another benefit is that by covering a longer time period,

there is an increased ability to detect potentially developing conditions. Finally,

the extended monitoring period may help patients feel that they are receiving bet-

ter attention/care, which can build trust between the patient and clinician, thereby

improving patient satisfaction.
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Figure 2.11: Optimal Checkup Timings under Different Detection Rates

Note. Assumptions: D ∼ exponential(2.35), number of checkups = 10. The detection probabilities are 0.31, 0.41,
0.50, 0.57, and 0.64 respectively (from bottom to top).

2.5.5 Marginal Benefits of Increasing Checkup Quantity vs. Improving Checkup
Quality: Quantity Outweighs Quality

Since scheduling frequent follow-up office visits will increase the burden on fre-



51

quently heavily loaded clinician schedules (Baron, 2010) , in this section, we consider

the value of doing more phone calls as a substitute for office visits. Importantly

for the clinical community, we find that checkup quantity is more important than

quality; i.e. multiple phone calls function as a good substitute for office visits.

In our first experiment, we study optimal checkup policies that have a total num-

ber of checkups between one and ten with zero to three office visits.
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Figure 2.12: Detection Probability of n-Checkup Policies with 0–3 Perfect Checkups

Note. Assumptions: D ∼ exponential(2.35), r of perfect checkups = 1, r of imperfect checkups = 0.6

As shown in Figure 2.12, both increasing the number of checkups and increasing

the number of perfect checkups improves the detection probability. However, we find

that adding one additional phone call is nearly as effective as switching one phone call

to an office visit. In our test suite where 1 to 10 checkups consisting of 0 to 3 office

visits and phone calls were optimized, scheduling one additional phone call increases

the detection probability by an average of 3.35% whereas replacing a phone call with

an office visit (and rerunning the optimization) increases the detection probability

by 3.45%. We also calculated the minimum number of additional phone calls needed

to outperform replacing a phone call with an office visit. Across our test suite, on

average, an office visit (r = 1) can be replaced with 2.57 phone calls (r = 0.6).

Further, when the total number of checkups is less than five, an office visit can be

replaced with 2 phone calls.

This result is highly valuable from the practical perspective, as phone calls are

significantly less resource-intensive than office visits for both patients and physicians.

Notice that phone calls have numerous benefits over office visits: (1) patients may be

located far from the clinic and may have limited mobility and transportation options;

(2) making an office visit is burdensome as the capacity of the clinic and physicians’

time are limited; and (3) making phone calls can be done efficiently through special-

ized call centers or physicians’ nursing or auxiliary staff in their spare time. The key

finding is that an effective checkup policy can leverage these inexpensive phone calls
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to achieve similar results as those obtained with the more expensive and inconvenient

office visits.

2.5.6 The Benefit of Improving the Efficacy of Phone Calls

One strong interest in efforts at readmission reduction lies in designing effective

questionnaires for phone and telemedicine checkups (see, for example, readmission

reduction startup company Cloud9, which has developed detailed questionnaires for

many conditions, www.cloud9hcs.com) and testing predictive models based on histor-

ical responses to survey questions. Design of such questionnaires to effectively target

the main causes of readmission (as an example for cystectomy, five main conditions

account for almost all of the readmissions) can increase the detection probability of

a phone call. These questionnaires are particularly easy to implement if the call is

being conducted by someone who is not the physician or, or if it is conducted by

an automated call system. To determine the importance of such improvements and

subsequently the amount of effort that should be expended to perfect such surveys,

we analyzed the impact of the detection probability, r, on the efficacy of a monitoring

schedule.

Figure 2.13 shows that, as might be expected, the benefit of replacing a phone

call with an office visit diminishes as the detection rate improves. To analyze the

overall impact, we developed a test suite, where policies consisting of 10 checkups

with 0-3 office visits were optimized. We incremented the detection rate from 0.2 to

0.8 (with a step size of 0.2), with 0.2 and 0.8 functioning as extreme lower/upper

bounds for the sake of comparison and completeness. We started by computing the

detection probability as a function of the detection rate of the phone calls. We then

estimated (1) the improvement in detection probability achieved by upgrading an

existing phone call to an office visit; and (2) the improvement in detection probability

achieved by increasing the detection rate of the phone calls. Finally, we computed the

relative effectiveness of increasing the phone call detection rate by 20% (compared

to upgrading an existing phone call to an office visit). A relative effectiveness of

100% means that increasing the phone call detection rate by 20% is as effective as

upgrading a phone call to an office visit.

Across this test suite, on average, increasing the detection rate by 20% absolutely

(e.g. 0.2 → 0.4) achieves 29% to 70% (average = 47%) of the benefit achieved by

replacing a phone call with an office visit. The following table shows the relative

effectiveness.

The relative marginal benefit of increasing the detection rate is greater when the
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Figure 2.13: Detection Probability as a Function of the Detection Rate

Note. Assumptions: D ∼ exponential(2.35) with 10 checkups

# of
Office
Visits

Phone Call
Detection

Rate
0.2→ 0.4 0.4→ 0.6 0.6→ 0.8

0→ 1 58% 63% 70%
1→ 2 41% 46% 50%
2→ 3 35% 29% 31%

Table 2.5: Relative Effectiveness of Increasing Phone Call Detection Rate with respect to Replace-
ment of a Phone Call with an Office Visit

detection rate is low and the number of office visits is few (see Table 2.5). Notice

that the relationship is not linear (plausibly concave as shown in Figure 2.13). The

intuition is that the effort required to improve checkup policies increases as the

policies get more aggressive and effective.

The practical implication suggests that physicians can benefit significantly by

designing more effective phone call questionnaires, which may be used to help replace

excessive or burdensome office visits. Increasing the detection rate of phone calls may

be achieved by providing patient education upon hospital discharge (e.g. informing

patients of symptoms that indicate worsening conditions), ensuring that the content

of post-discharge questionnaires are tailored as much possible to individual patients

and their personal characteristics (which can be identified with readmission risk

models at the time of discharge), and targeting high risk conditions (e.g. infection,

dehydration, kidney failure, failure to thrive) with focused questions.

2.5.7 Out-of-Sample Testing on a Separate Dataset and Solution Robustness

To validate and test our models, we parameterized our delay-time random variable

using the first dataset from our partner hospital for radical cystectomy patients. We
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then estimated the time-to-readmission by fitting a gamma distribution (best fit)

to the 2010 SID dataset, also for radical cystectomy patients. Using our inverse

Laplace transform method, we were able to recover the distribution on the time-to-

develop the condition. Finally, we generated an optimal monitoring schedule based

on the dynamics obtained from combining our partner hospital delay-time data with

the 2010 SID readmission data. We then tested this policy on a new dataset, 2009

SID data, comparing our checkup times to the readmissions for cystectomy patients

across five states in 2009. To do so, we consider two methods. In both methods, we

begin by determining the optimal policy with parameters estimated from 2010 SID

data. Method 1: We compare the performance of the optimal policy from 2010 data

when applied to a time-to-readmission curve estimated from the 2009 data versus

the policy that optimizes according to the true 2009 time-to-readmission curve. We

can then compare the optimality gap caused by errors in estimation of the time-to-

readmission curve. Method 2: We apply the 2010 optimal policy to all the cystectomy

patients from 2009 SID data and estimate the performance using each patient’s actual

readmission time and calculating the probability that his/her delay-time was long

enough such that one of the inspections from our optimal policy would have caught

the condition before it caused a readmission.

Method 1 is shown in Figure 2.17. The detection probabilities range from 0.1

to 0.5 and are very close to the detection probabilities using a time-to-readmission

curve estimated with the 2009 data itself (in-sample). The absolute optimality gaps

were less than 5% (see Table 2.6).

# of
Office
Visits

Total # of
Checkups

1 2 3 4 5 6 7 8 9 10

0 1.4% 2.1% 2.4% 2.7% 2.9% 2.6% 2.9% 2.9% 2.7% 2.9%
1 2.4% 2.7% 2.9% 3.0% 2.8% 2.9% 2.8% 2.9% 2.8% 2.8%
2 N/A 3.0% 3.1% 3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 2.6%
3 N/A N/A 3.2% 3.0% 3.2% 3.1% 2.9% 2.9% 2.8% 2.6%

Table 2.6: Absolute Optimality Gap for 2009 SID Patients Using n-Checkup Policies with 0-3 Per-
fect Checkups that Were Parameterized Using 2010 SID Patients

We also calculated the relative optimality gaps and switched the testing and

training sets to further validate the findings (see Figures 2.5.7, 2.5.7, 2.5.7, 2.5.7.

The largest relative optimality gaps were observed in one-checkup models, which

are not advisable in practice. As the number of checkups increases, the relative
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optimality gap diminishes. This indicates that the model becomes more robust as

the number of checkups increases, providing more support for the idea that quantity

of checkups is highly important. Practically speaking, not only does larger quantity

eliminate the need for excessive office visits, it also increases the robustness of the

solution to errors in estimation.

Figure 2.14: Fitted Time-to-Readmission and Recovered Time-to-Develop the Condition for 2009
SID Patients

Figure 2.15: Detection Probability of Checkup Policies with 0-3 Perfect Checkups for 2009 SID
Patients.

Method 2 assumes independence between delay-time and time-to-readmission.

Let T be the time that the patient was actually readmitted (in the data). The

detection probability, D̂, can then be calculated using the following formula. Let
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Figure 2.16: Detection Probability of Checkup Policies with 0-3 Perfect Checkups (Developed Using
2009 SID Patients) Tested on 2010 SID Patients (Method 1)
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Figure 2.17: Detection Probability of Checkup Policies with 0–3 Perfect Checkups Tested on 2009
SID Patients (Method 1)

N = argmaxn : tn ≤ T .

D̂ =r1 · (1− F (T − t1)) (2.72)

+
N∑

α=2

(
rα ·

(
α−1∏
β=1

(1− rβ)

)
· (1− F (T − t1))

)
(2.73)

+
N∑

α=3

(
α−1∑
β=2

(
rα ·

α−1∏
γ=β

(1− rγ) · (F (T − tβ−1)− F (T − tβ))

))
(2.74)

+
N∑

α=2

(rα · (F (T − tα−1)− F (T − tα))) (2.75)

where the four summands collectively represent the total probability of detecting

the patient as ill during every scheduled checkup. In particular, the first summand

(2.72) represents the probability that the patient enters the ill state before the first

checkup and is successfully identified as ill during the first checkup. The second

summand (2.73) represents the probability that the patient becomes ill before the
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first checkup, but checkups 1 through (α − 1) fail to properly detect the patient

condition and checkup α ∈ {2, ..., N} successfully identifies the patient as ill. The

third summand (2.74) represents the probability that the patient becomes ill between

checkups (β − 1) and β for β ∈ {2, ..., (α − 1)}, but is not properly identified as

being ill until checkup α ∈ {3, ..., N}. The fourth summand (2.75) represents the

probability that the patient enters the ill state between checkups (α− 1) and α, and

is immediately identified as being ill during checkup α ∈ {2, ..., N}.
Method 2 evaluates how well the optimal policy would have performed in practice

if implemented on the radical cystectomy patients from the 2009 SID data. Figure

2.18 presents the results of this study, indicating that the optimal policies estimated

from 2010 SID data would in fact have been highly effective if put into practice

on the patients of the out-of-sample dataset. In particular, the estimated detection

probabilities (based on actual readmission times) are greater than 60% using one

or more perfect checkups on the 2009 SID patients. It is worth highlighting the

difference between Methods 1 and 2 (i.e. Figure 2.12 vs Figure 2.18): in Figure

2.12, we were plotting the objective function, which is parameterized with gamma

and exponential distribution curves fitted from the training data set. Whereas in

Figure 2.18, we were plotting a different objective, which uses the actual time to

readmission observations combined with the delay-time distribution function plus

the discrete observations.
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Figure 2.18: Proportion of Conditions Captured by the Optimal Policy with 0-3 Perfect Checkups
Obtained Using 2010 SID Patients and Tested on 2009 SID Patients (Method 2)

This improved performance seems to stem from the fact that the true time-to-

readmission for cystectomy patients tends to be more heavily front-loaded in the

first 7-8 days than the fitted gamma distribution. Another fact that contributed

to this higher performance is that the time to readmissions we used are in days

(discrete) rather than time (continuous). Using discrete data created a lumping
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effect and lead to improved performance. We are unable to use the exact time of

readmission (continuous data) to validate our model as it is protected information

and could be used to identify patients. Moreover, since the optimal policies tend to

also bunch a number of checkups soon after patient discharge, this policy ends up

actually detecting more conditions in practice that would have been estimated by

the fitted gamma distribution for time-to-readmission.

As a further benefit revealed by this study (seen in Figure 2.18), it appears that

one office visit along with a few phone calls is sufficient to capture much of the value

of post-discharge checkups. This is good news for busy clinicians concerned about

the added burden of increased checkups.

2.5.8 Design of Practical Post-discharge Checkup Policy

Combining the insights drawn from our analytical and numerical analyses, we

provide the following rules of thumb to facilitate the design of post-discharge checkup

policies.

• Timing of checkups outweighs sequencing: (1) schedule checkups in a

block surrounding the most-likely time (mode) of developing a condition; (2)

keep the time between checkups close to the expected delay-time; (3) office visits

should be scheduled near the time of highest risk of readmission for the patient.

• Cover a longer time period and reduce office visits with better check-

ups: Improving the quality of phone call checkups (e.g. better questionnaires,

patient education) allows the checkup team to (1) cover a longer time period

with less frequent calls (better for patients and detects more potential condi-

tions), (2) reduce the number of office visits without reducing readmission de-

tection (better for patients, clinicians, and healthcare organizations). Further,

helping to standardize patient behavior at home, thereby reducing delay-time

variance, has added detection benefits.

• Quantity of checkups outweighs quality: Multiple imperfect checkups

serve as a good substitute for office visits; i.e., making more phone calls can

be nearly as effective as replacing a few phone calls with office visits. Further,

the larger the quantity of checkups, the more robust the solution is to errors in

estimation/optimization.

In practice, hospitals could use the following steps to design better post-discharge

monitoring policies: (1) estimate the time-to-develop the condition and the delay-

time; (2) design an effective phone call questionnaire; (3) schedule checkups in a
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block with spacings approximately equal to the mean delay-time; (4) schedule office

visits (perfect checkups) close to the time at which patients are at the highest risk of

readmission; (5) spread phone calls farther apart from each other to cover a longer

time period with improvements on the phone call questionnaires.

2.6 Discussion and Conclusion

In this study, we address the prevalent issue of hospital readmissions that con-

cerns healthcare professionals, hospital patients, and policy-makers. We propose an

analytical model based on delay-time analysis to design more effective post-discharge

checkup policies for individual patients. Key results from our model not only pro-

vide theoretical extensions of the traditional delay-time analysis framework, but also

important insights for healthcare decision-makers designing post-discharge checkup

policies. By simultaneously optimizing with respect to multiple factors such as the

number of checkups, the timing of checkups, and the types of checkup methods used,

our model demonstrates significant improvements over current practice. Using the

same number of checkups, current practice (which detects only 16% of the conditions

experienced by readmission-bound patients) can be improved up to 23%, a relative

improvement of 43.7%.

Future extensions upon this research may involve examining the benefit of detect-

ing illnesses as early as possible. The current model assumes equal benefit from all

early illness detections, however, it may be valuable to assign more benefit to earlier

detections as they may result in less burden on the patients. Similarly, the current

model also assumes that checkups have constant detection rate over the duration of

a patient’s readmission-causing condition. It may be valuable to examine the effect

of time-dependent detection rate of phone calls, for example, the detection rate

becomes higher as the patient has had the condition for a longer time. Another

extension is to jointly optimize discharge (inpatient) and post-discharge (outpatient)

decisions as the timing of discharge can affect readmission risk (Kelly et al., 2015;

Rosen et al., 2017). While parameterizing our model with real data, we realized that

empirical estimation could be challenging as our model requires two distributions

(time-to-develop the condition and delay-time) as the input. One of the key empir-

ical challenges is the issue of censoring, as we only utilized data within the finite

30-day readmission penalty window. In addition, patients have different intrinsic

readmission risk: while some patients would not be readmitted, other patients would

be readmitted regardless of post-discharge monitoring and interventions. Though

the two distributions (and data beyond 30-day follow-up) are not widely available
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currently, we believe that our analysis will motivate the documentation and utiliza-

tion of the delay-time and time-to-develop the condition information. We leave to

future work the personalized delay-time and time-to-develop the condition forecast

as well as more robust empirical estimation that considers the censorship of data.

The application of our model and findings has the potential for broad impacts

including reduced hospital readmissions, improved quality of patient care, improved

patient satisfaction, and reduced healthcare costs, all without overburdening clini-

cians (as clinician burden is often a major barrier to implementation of new health-

care practices). This is achievable by aligning checkup policy design with a number

of key insights, namely: timing of checkups is the most important factor, checkup

timing should be adjusted according to checkup detection rates, and checkup quan-

tity is more important than checkup quality. At the same time, our model presents

unique extensions to the traditional delay-time analysis framework by allowing for

a time-varying failure rate and inhomogeneous detection rate. Thus, our model ex-

tends the scope of delay-time modeling and provides new insights into the structure

of these types of problems. This ultimately broadens the scope of problems in which

delay-time analysis can be applied.

Tested on an out-of-sample dataset containing 332 patients from the states of

Florida, Iowa, North Carolina, New York, and Washington, our results demonstrate

robustness, with absolute optimality gaps within 5%. As the number of checkups

increases, the robustness further increases as the optimality gaps diminish. Our

clinical collaborators have shown great interest in implementing our models and look

forward to putting them through clinical testing. Going beyond cystectomy patients,

the new framework developed has the potential to significantly reduce readmissions

from a variety of surgical procedures, thereby improving the quality of patient care

and decreasing healthcare costs.



CHAPTER III

Balancing Pre- and Post-Discharge Efforts

ABSTRACT: We developed a two-stage, Strengthen-then-Maintain framework

for reducing hospital readmissions in the continuum of care spanning pre- and post-

discharge. For the Markov Decision Process in the maintain stage, we develop a

closed-form approximation for the cost-to-go with a theoretical accuracy bound which

can then be used to understand the structure of the integrated two-stage framework.

We apply this model to study 1) how a hospital balances readmission reduction efforts

between pre- and post-discharge to minimize the cost of an episode of care and 2)

how a healthcare funder designs a bundled payment and readmission penalty policy

to incentivize readmission reduction. We specifically consider three policy levers:

readmission penalty, treatment cost, and the length of the window of time that

hospitals are responsible for readmissions (episode/penalty window). We provide

a simple closed-form sufficient condition that captures the impact of these levers

on the scope and efficacy of hospital readmission reduction programs. We find the

episode/penalty window to be a major driver, which has yet to be purposefully

employed by payers. Specifically, the length of the 30-day penalty window and 90-day

bundled payment episode may be too long to incentivize readmission reduction for

any but the low risk patients (which have little impact on overall readmission rate),

even under additional penalty or subsidy. This may be an explanation for stalled

readmission reduction after the implementation of the 30-day Medicare readmission

penalty program, HRRP. Though payers want long windows to ensure hospitals cover

as many readmission candidates as possible under reduction programs, long windows

lead to smaller programs as hospitals “give up” on risky patients, whereas shortening

this window can in fact encourage hospitals to expand readmission programs to

include more and riskier patients.

61
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3.1 Introduction

Hospital readmissions are burdensome and costly to the U.S. healthcare system.

One in five Medicare Fee-For-Service patients were readmitted within 30 days of

discharge (Jencks et al., 2009), and as much as 75% of readmissions have been deter-

mined to be preventable (Benbassat and Taragin, 2000). Reducing these preventable

readmissions can save up to $25 billion for the U.S. healthcare system (PwC Health

Research Institute, 2010). To incentivize hospitals to reduce readmissions, the Cen-

ters for Medicare and Medicaid Services (CMS) have established the Hospital Read-

missions Reduction Program (HRRP) to penalized hospitals with excessive readmis-

sion rates. Moreover, the CMS has been experimenting with different reimbursement

schemes, such as Pay-For-Performance (P4P) and Bundled Payments (BP), to pro-

vide further financial incentives for hospitals to reduce readmissions. Nonetheless,

avoiding readmissions is still challenging both clinically and financially, and it is un-

clear whether the new payment structures offered by BP, P4P and penalty programs

will be sufficient to incentivize further progress.

The battle against readmissions requires hospitals to exert readmission reduction

effort in two phases of care: pre-discharge (during the inpatient stay) and post-

discharge follow-up (after the patient has left the hospital). For instance, a hospital

can extend the length of stay (LOS) to further stabilize a patient’s condition and/or

can perform follow-up checkups and treatments after the patient has been discharged.

Though proven effective, these readmission reduction efforts can be overly costly. For

example, the Reengineered Hospital Discharge Program (Project RED) conducted

a randomized clinical trial and found that “the cost of the (readmission reduction)

intervention (...) involved 0.5 full-time equivalent for a nurse and 0.15 full-time equiv-

alent for a clinical pharmacist. If adopted broadly, this intervention could produce

substantial effects on health care financing.” (Jack et al., 2009). Due to the finan-

cial burden of the required efforts and investments, the momentum of readmission

reduction has stalled since the implementation of the HRRP, as reported in a JAMA

study (Desai et al., 2016).

To provide stronger readmission reduction incentives, the CMS is gradually shift-

ing its reimbursement schemes from Fee-For-Service to Pay-For-Performance and

Bundled Payment. Among these reimbursement schemes, the Bundled Payment is

believed to be most effective at providing incentives to reduce readmissions (Andrit-

sos and Tang, 2018; Guo et al., 2016). In 2013, the CMS established the Bundled

Payment for Care Improvement (BPCI) Initiative. Under BPCI, a hospital receives



63

a bundled payment for all costs incurred during an episode of care. Specifically,

Model 2 of BPCI defines an episode of care to be “the inpatient stay in an acute care

hospital plus the post-acute care and all related services up to 90 days after hospi-

tal discharge” (CMS, 2018a), including readmissions. Although a BP policy would

provide stronger incentives for readmission reduction, the design of an effective BP

policy still requires further investigation.

As a policymaker, the CMS faces challenging decisions when designing the BP pol-

icy and readmission penalty programs to properly incentivize readmission reduction.

If the cost (plus penalty) of a readmission is too little, hospitals may be unmotivated

to take action. If the costs of readmission reduction measures (e.g., extended LOS

and intensive post-discharge follow-up care) are too expensive, hospitals may give

up. In addition to the cost and penalty structures, the length of the readmission

penalty window and length of an episode of care also play an important role. A

New England Journal of Medicine article (Joynt and Jha, 2012) argued that hos-

pitals have little control over readmissions that occur more than seven days after

discharge, therefore policymakers should consider limiting the readmission penalty

window. Besides the readmission time frame, further complicating the matter are

factors such as the variation in the baseline readmission risk among surgical cohorts

(e.g., total joint arthroplasty has a 4% 30-day readmission rate while cystectomy

has a 25% one), the pathological nature of the complications that cause readmis-

sions (infection, organ failure, heart attack, etc.), and the various effectiveness of the

post-discharge treatments in preventing readmissions.

This chapter studies the policy-level decisions driven by the operational factors

that are critical to a hospital’s readmission reduction. We study key policy-level de-

cisions such as designing readmission penalty programs, subsidizing post-discharge

follow-up treatments, and shortening/extending the length of an episode and the

readmission penalty window length. We consider these factors in the context of the

CMS’s BPCI program – “Model 2 and Model 3 involve a retrospective bundled pay-

ment arrangement where actual expenditures are reconciled against a target price

for an episode of care” (CMS, 2018a). To study policy-level decisions, we study how

a hospital may allocate readmission reduction efforts between the pre- and post-

discharge stages of care. In the pre-discharge stage, the hospital exerts effort to

reduce the readmission risk of a patient cohort. In the post-discharge stage, the hos-

pital provides post-discharge follow-up care to the patient cohort whose readmission

risk is determined by the pre-discharge efforts. This integrated two-stage framework

enables us to analytically study the design of an effective bundled payment policy to
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align incentives.

This two-stage framework, which we call the Strengthen Then Maintain (STM)

framework, is applicable to a set of machine maintenance problems beyond read-

mission management. In the strengthening stage, a machine is strengthened so that

its failure rate is reduced. In the maintaining stage, the failure rate (determined

by the strengthening efforts) is exogenous and the machine is (ad-hoc) repaired if

defects appeared. If not repaired promptly, the machine could result a catastrophic

failure. An example of such problems can be an aircraft maintenance problem – in

the strengthening stage, an airline company performs (downtime) maintenance for

an aircraft, which reduces the failure rate. In the maintaining stage, the aircraft

is in operation, ad-hoc repairs are provided at the destination airports. Our model

uncovers valuable managerial insights into this type of maintenance problems.

3.1.1 Contributions

• Theoretical. This chapter makes theoretical contributions to the reliability

literature. We develop a novel Strengthen Then Maintain (STM) framework

and study how a decision maker balances efforts between the strengthening

stage and the maintaining stage. The maintaining stage is modeled as a discrete-

time finite-horizon Markov Decision Process (MDP). We provide a closed-form

expression for the cost-to-go for the machine maintenance MDP. Our approach

does not require a parametric failure rate distribution – for an arbitrary (non-

stationary) failure rate, we prove a theoretical accuracy bound for the closed-

form cost-to-go under an arbitrary optimal policy. By studying the closed-form

expression analytically, we show that the cost-to-go is affected by the failure

rate at an asymptotically linear rate. By integrating the strengthening and

maintaining stages, we provide a simple closed-form sufficient condition for a

policy to incentivize the reduction of the failure rate (i.e., readmission rate).

The analytical results of the STM framework can be generalized to machine

maintenance problems with two distinct stages.

• Practical. We also uncover novel insights for designing an effective Bun-

dled Payment policy for readmission reduction. Our analytical results suggest

that hospitals have more financial incentives if the readmission penalty win-

dow is shortened, the cost of post-discharge follow-up treatment is reduced, the

cost/penalty of readmission is increased, and the post-discharge treatment effi-

cacy is improved. For patients that are likely to experience acute events leading

to a swift readmission, a more effective mechanism is to shorten the penalty
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window. For other cohorts, subsidizing inpatient and outpatient efforts may be

effective. We believe that our model is the first study that analytically addresses

how the penalty window length impacts the incentives for readmission reduction.

Unlike many game-theoretical studies which use stylized functional forms, our

model is less restrictive with minimal assumptions imposed on the functional

form. At the core of our model is a Markov Decision Process model, which

directly captures the patient’s pathological deterioration and the cost/penalty

structures.

The practical implications of this chapter add valuable insights to Bundled Pay-

ment and readmission penalty policy design. As a proof of concept, we develop

and validate our models using clinical data collected from bladder patients un-

dergo cystectomy. We found that 90-day and 30-day windows may not provide

readmission reduction incentives sufficiently for high-risk surgery cohorts. Our

study suggests that 14-day window would be robust in incentivizing readmis-

sion reduction, even if post-discharge treatments are inefficient and the efficacy

is low.

The rest of the chapter is organized as follows. Section 3.2 gives a brief re-

view of the relevant literature. In Section 3.3, we give an overview of the modeling

framework, which consists of a pre-discharge stage and a post-discharge stage. The

post-discharge stage model is introduced in Section 3.4 and the pre-discharge stage

model is introduced in Section 3.5. Section 3.6 studies the balance of efforts between

the two stages. The policy implications are discussed in Section 3.7. In Section

3.8, we conduct numerical studies using institutional data from patient undergo cys-

tectomy. Section 3.9 discusses some practical considerations and limitations of our

policy recommendations and potential future works. Finally, Section 3.10 concludes

the chapter.

3.2 Literature Review

This work lies at the junction of disease screening/monitoring and healthcare

payment/contract policy. Four streams of literature are relevant to this chapter: 1)

reliability; 2) disease monitoring and screening; 3) readmission management studies

in the operations management literature; and 4) the healthcare payment/contract

studies that aim to align incentives for better health outcomes. We provide a brief

overview of these four streams of literature.
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1) Reliability. In the reliability literature, many machine maintenance models

assume that once a machine fails, it can be repaired or replaced and it will resume its

normal operations. Hence, these models focus on minimizing the long-run cost and

downtime in a steady-state (infinite horizon) setting (Wang, 2002). These models are

thus not suitable for our problem as we consider a finite period of time (due to the

finite nature of an episode of care, by definition). Our problem also considers failures

to be catastrophic, since readmission is a major adverse health event and may require

intensive treatments. Few papers, such as Özekici and Pliska (1991) and Milioni and

Pliska (1988), study maintenance policies with catastrophic failures. However, most

models focus on “maintenance” only – they do not study the “strengthening” stage

where the failure rate can be reduced.

A relevant stream of literature studies maintenance under warranties. These stud-

ies are close to our work, as the manufacturer is responsible for all repair costs within

a warranty (see Shafiee and Chukova (2013a) for a literature survey). In particular,

models have been created to study used item upgrades/refurbishments and warranties

– before selling the item, the manufacturer can spend money to upgrade/refurbish the

item to reduce the failure rate. Among these models, Shafiee and Chukova (2013b)

is one of the first that studies how the seller of a used item can spend efforts to

upgrade an item, so that the failure rate is reduced and the warranty service cost is

consequently reduced. Our model is different from this stream of literature in the

following ways: 1) We aim to study the policy-level decisions where a policymaker

(the CMS) makes a policy and an agent (the hospital) responds to the policy; while

reliability models typically have only one decision maker – the seller, whose goal is to

maximize profits. 2) Our model does not force the seller to provide warranty mainte-

nance when it is economically not viable to do so (due to high costs). In particular,

we allow a hospital to adopt an engaged policy or a disengaged policy, whichever is

cheaper, depending on the cost and penalty structure and the patient’s risk charac-

teristics. The goal of our model is to incentivize (not to force) “upgrade/refurbish”

behaviors via policy levers. 3) Reliability models often assume specific failure dis-

tributions (e.g., Weibull) but our model can handle arbitrary distributions with a

proven accuracy bound.

2) Disease Monitoring and Screening. Many models have been studied for

the prevention and treatment of chronic diseases such as cancer, hepatitis, and glau-

coma (Ayer et al., 2012; He et al., 2016; Helm et al., 2015). These models optimize

prevention and treatment decisions based on continuous and/or categorical variables

that are well-established clinical studies of these diseases. Examples include the
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Intra-ocular Pressure (continuous) of a glaucomatous eye and the METAVIR fibrosis

score (categorical) of a hepatitis patient. Unlike these models, our problem focuses

on modeling the post-discharge deterioration and readmission of a patient after the

patient leaves the hospital, where little to no clinical information is observed while

the patient is away from the hospital. Hence, we model the disease deterioration

using three discrete states (healthy, sick, and readmitted), similar to many studies

in existing literature (Helm et al., 2016; Liu et al., 2018a).

Some papers in the healthcare management literature consider the “strengthen-

ing” effect of inpatient care. For example, Andritsos and Tang (2018) models the

health outcome as a co-production process. Zhang et al. (2016) and Adida et al.

(2016) also model the readmission risk reduction effect of a hospitalization. We fol-

low the literature and model the cost of “strengthening” efforts in a stylized way,

without specific functional form assumptions. The novelty of our model is that we

link the strengthening stage to a more structured MDP model that captures key

operational factors in the post-discharge monitoring practice.

3) Readmission Management. Many clinical studies have found effective

methods to reduce hospital readmissions. These methods include patient education,

pre-discharge assessment, domiciliary aftercare, and post-discharge follow-up care.

(Benbassat and Taragin, 2000; Wong et al., 2013). In the operations management

literature, scholars have studied readmissions empirically and analytically. Kim et al.

(2014) and Chan et al. (2012) studied how admission and discharge strategies of ICU

admission affects readmission rates respectively. Chen et al. (2018) builds a read-

mission prediction model that incorporates latent heterogeneity using claims data.

Bayati et al. (2014) developed a readmission prediction model and analyzed post-

discharge intervention decisions. Helm et al. (2016) built a readmission prediction

model and optimized staffing decisions for post-discharge follow-up appointments.

Related to our work is Zhang et al. (2016), where the HRRP program was ana-

lyzed from a game theoretic approach. The authors studied single-year, multi-year,

and two-hospital games to analyze the financial incentives under HRRP. Moreover,

their model considers readmission reduction effort at a high level of abstraction (not

detailing the operational tactics) and does not focus on the operational interplay

between pre- and post-discharge efforts. Our model is different from these models as

these models do not capture the effect of post-discharge follow-up care. Moreover,

we believe we are the first to analytically study the effect of the readmission penalty

window length.

4) Healthcare Payments and Contracts. Many papers studied the design of
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effective healthcare payment policies and contracts to align incentives for better care

and health outcome. Some recent works include Adida et al. (2016); Andritsos and

Tang (2018); Guo et al. (2016); Aswani et al. (2017); Bastani et al. (2016); Adida

and Bravo (2018). Within this domain, a stream of literature takes a game-theoretic

approach. Guo et al. (2016) is at the intersection between payment policy and

hospital operations management. They studied a three-level game with an M/M/1

queue embedded to analyze incentives. Andritsos and Tang (2018) models the health

outcome (readmissions) as a co-production process by the hospital and the patient.

They studied the equilibria under FFS, P4P, and BP schemes. In their model,

the hospital exerts effort in the inpatient stay stage only – it does not consider post-

discharge outpatient treatments that can potentially avert readmissions. Close to our

work is Adida et al. (2016), where the model consists of a first-stage (inpatient-stay

stage) cost and a second-stage (post-discharge stage) cost. They assumed that the

second-stage cost of follow-up is independent of the first stage cost. In our model, the

two costs are interlinked by the readmission risk as a surrogate for the effort. This is

an important distinction, since the operations management literature indicates that

the efficacy of follow-up programs is strongly dependent on the patient risk at time

of discharge (Helm et al., 2016), which is what is controlled in the inpatient stage.

3.3 Modeling Framework Overview

The overarching goal of this chapter is to study the design of an effective BP

policy. To achieve this, we study the behavior of a hospital under a BP policy to

infer policy-level implications for BP policy design. An overview of the framework

is illustrated in Figure 3.1.

At the provider level, we study how a hospital behaves when it minimizes the cost

of a T -day episode of care under a BP policy. In particular, we seek to understand

what would entice a hospital to engage in readmission reduction in both the pre-

and post-discharge stages. In the pre-discharge stage, the hospital invests CS(ρ) to

reduce a patient’s readmission risk to ρ from a baseline ρ0 (see Definition III.2). A

lower readmission risk ρ requires greater effort and thus a greater CS(ρ). This may

involve clinical interventions such as administering advanced treatments and extend-

ing the LOS for further observation and stabilization. In the post-discharge stage,

the hospital provides outpatient follow-up care for the patient whose readmission

risk is ρ. The two stages are interlinked by the readmission risk ρ as we assume

that the post-discharge readmission risk is a result of the pre-discharge efforts.1 The

1We assume that the readmission risk can only be reduced during the index hospitalization. This is not a
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Figure 3.1: Overview of the Framework

cost of follow-up is denoted by CM(ρ), which includes the cost of conducting post-

discharge follow-up treatment (which costs ω per treatment) to avert readmissions

(e.g., treating an infection outpatient) and potentially the cost a readmission (R) if

readmitted. The hospital chooses the optimal readmission risk level ρ∗ (as a surro-

gate for the optimal effort level) to minimize the cost of the entire episode of care

Z(ρ) = CS(ρ) + CM(ρ).

We would like to emphasize that our model is generalizable to a set of produc-

tion and maintenance problems consisting of a strengthening stage – where a ma-

chine/product is strengthened, so that its failure rate is reduced to ρ at a cost of

CS(ρ) – and a maintaining stage – where CM(ρ) is incurred by the maintenance and

repair/replacement of the machine/product over a finite period. A table of notation

is provided in Table 3.1.

restrictive assumption because, in clinically practice, physicians have more control over a patient’s health via inpatient
interventions. In the post-discharge stage, we assume that the outpatient treatments do not alter the nature of a
patient’s readmission pathology. This is a critical assumption to ensure the Markovian property and therefore the
model’s analytical tractability.
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Notation Description

ρ, ρt, ρ⃗ Readmission risk
ρ0 Baseline readmission risk
ρ̄ Engagement threshold
ρ A lower bound for ρ̄

d Delay-time failure rate
f Treatment efficacy
CS(ρ) The pre-discharge (strengthening) stage cost of reducing readmission risk to ρ
CM (ρ) The post-discharge (maintaining) stage cost of follow-up with a patient cohort at readmission risk ρ
Z(ρ) The total cost Z(ρ) = CS(ρ) + CM (ρ)
R Cost of a readmission
ω Cost of a post-discharge outpatient treatment
RA,S,H Readmitted, Sick, Healthy states in the Markov Decision Process
V ∗
t The optimal cost-to-go

V π
t The cost-to-go if policy π is implemented

Table 3.1: Table of Notation

3.3.1 BP Policy and Balance Criterion

At the policy level, we study how the CMS shall leverage critical policy levers to

incentivize hospitals to engage in readmission reduction. First, we define the notion

of a BP policy and the key policy levers therein.

Definition III.1 (A Bundled Payment Policy). Let the tuple (T, ω,R) denote a

Bundled Payment (BP) policy. It has the following policy levers:

• T , the episode length: this is a key policy-level decision we consider for the CMS.

The length of a BP episode (and the HRRP penalty window) is a nontrivial and

challenging policy decision as argued by Joynt and Jha (2012).

• ω, the (average) cost of a post-discharge outpatient treatment: although this

cost is determined by the types of treatment and procedures administered in

each post-discharge outpatient encounter, we argue that the CMS can subsidize

post-discharge monitoring and treatments (e.g., PCP visit, home care, and etc.)

to effectively lower the cost of treatment ω to achieve a better continuum of care

between pre- and post-discharge.

• R, the (average) cost (plus potential penalties) of a readmission: this cost is

determined by the pathological nature of each readmission case. However, we

argue that the CMS can have some control over this cost by penalizing read-

missions and/or decreasing the Bundled Payment amount (so that readmission

costs take up a greater portion of the BP budget).2

2Currently, BPCI and HRRP do not overlap – hospitals do not get penalized for excessive readmissions if they
are reimbursed under a BP scheme. However, if stronger incentives are needed, it might be viable for the CMS to
impose HRRP penalties on top of the BP scheme.
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In this chapter, we do not consider the decision of the Bundled Payment amount

(a.k.a. the target price as defined by BPCI). The CMS has a well-established method

for calculating the target price (CMS, 2018b); therefore this is out of our research

scope.

To determine whether the hospital is effectively reducing readmissions, we intro-

duce the following notion of the baseline readmission risk. We follow Zhang et al.

(2016) and define the baseline readmission risk as follows:3

Definition III.2 (Baseline Readmission Risk). The baseline readmission risk of a

patient cohort, ρ0, is defined as the readmission risk observed without exerting any

additional (costly) readmission reduction effort. Ideally, this would be the natural

readmission rate intrinsic to the pathology of the surgery and its recovery. However,

it is difficult to observe such a natural readmission risk since patients are rarely free

of interventions. For the policy-level purpose of incentivizing readmission reduction,

in practice, the CMS can set ρ0 to the national average or the pre-HRRP histori-

cal readmission risk. This serves as a baseline for evaluating whether a hospital is

effectively reducing readmissions.

We say a hospital or a BP policy is balancing pre- and post-discharge readmission

reduction efforts if it manages to reduce the readmission risk to below the baseline

risk. The following definition formalizes this criterion.

Definition III.3 (Balance). Suppose the hospital minimizes the cost of the entire

episode of care by choosing the optimal readmission risk level (as a surrogate for the

effort level):

ρ∗ = argmin
ρ∈[0,ρ0]

CS(ρ) + CM(ρ). (3.1)

If ρ∗ < ρ0, the hospital and the BP policy is balancing efforts.

As we shall see later in Section 3.6, this implies that the hospital is engaged in

post-discharge care so that the follow-up cost CM(ρ∗) < R is reduced and the hospital

is exerting pre-discharge readmission reduction effort so that CS(ρ) > 0.

3.4 The Post-Discharge (“Maintaining”) Stage

In this section, we develop the post-discharge stage model. We first introduce

the post-discharge MDP model that captures the key cost/penalty structure and the

3Zhang et al. (2016) defines the “cost of process improvements” to be C(r0, r), which captures the cost of reducing
the readmissions rate from the baseline r0 to r.
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readmission risk characteristics. Then, we study a hospital’s behavior if it minimizes

the cost according to this MDP. As such, we obtain key insights from the MDP to

guide policy-level decisions.

3.4.1 The Post-Discharge Follow-Up MDP

Under a BP policy, a hospital aims to minimize the expected cost of the entire

episode of care. As such, in the post-discharge stage, the hospital seeks to find

the optimal follow-up policy to minimize the follow-up cost. We assume that the

hospital’s optimal post-discharge policy can be obtained by solving a discrete-time,

finite-horizon MDP. Figure 3.2 summarizes the immediate costs, the terminal costs,

and the transition probabilities of the MDP. The notations of the post-discharge

MDP are as follows.

ct(s, a) s = RA s = S s = H

a = Treat 0 ω ω
a = Wait 0 0 0

Terminal Costs R 0 0

Healthy Sick Readmitted

Wait: ρt(1− d)
Treat: 0

Wait: ρtd
Treat: 0

Wait: 0
Treat: f

Wait: d
Treat: 1− f

Wait: 1− ρt
Treat: 1

1Wait: 1− d
Treat: 0

Figure 3.2: Costs and Transition Probabilities of the Post-Discharge Follow-Up MDP.

• t ∈ {0, 1, ..., T}: we assume that decisions are made on a daily basis after

discharge. The day of discharge is denoted by t = 0. The episode length is

denoted by T .

• s, st ∈ S = {H,S,RA}: the state space S consists of Healthy (H) – the patient

is free of readmission-causing conditions such as infections and failure to thrive;

Sick (S) – the patient has developed some readmission-causing condition but

has not yet readmitted; and Readmitted (RA) – the patient has been readmitted

to the hospital.

• a, at ∈ A = {Treat,Wait} in each decision epoch, the healthcare provider

decides whether to treat the patient or to wait.

• ct(s, a) represents the immediate cost of applying action a on a patient in state

s in period t ∈ {0, 1, ..., T − 1}. We assume that the cost of treating a patient

who is not yet readmitted (s ∈ {H,S}) is ω. We set the cost of treatment
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on a readmitted patient zero, since readmission is assumed to be the absorbing

state. The immediate cost of waiting (doing nothing) is zero in all states. cT (s)

represents the terminal cost. We assume that the cost of a readmission is R.

The cost of terminating in the healthy state or the sick state is zero.

• Pt(st+1|st, at) denotes the transition probability from st to st+1 when action

at is applied in period t ∈ {0, 1, ..., T − 1}. The developing and worsening

of a readmission-causing complication is governed by two probabilities. The

readmission risk, denoted by ρt ∈ [0, 1], is the probability of a patient developing

such a complication in period t (transitioning from H to S). The delay-time

failure rate, denoted by d ∈ [0, 1], is the probability of a sick patient worsening

to the point of requiring a readmission in period t (transitioning from S to RA).

This concept stems from the delay-time analysis framework (Liu et al., 2018a),

which models the time it takes for a condition to worsen to a readmission.

The treatment efficacy, denoted by f ∈ [0, 1], is the probability of a treatment

successfully averting a readmission. We assume that treating a healthy patient

will maintain the patient’s healthy state. Finally, we assume RA is an absorbing

state.4

• π(s, t) denotes a follow-up policy that maps S × {0, 1, ..., T − 1} to A. An

optimal follow-up policy is denoted by π∗.

The MDP model makes the following key assumptions. 1) The hospital mini-

mizes the cost under a BP policy. Although hospitals are typically not-for-profit

organizations, they more or less act like cost-minimizing business entities as widely

modeled in the literature (Zhang et al., 2016; Adida et al., 2016). 2) An episode

of care consists of an index hospitalization and at most one readmission due to the

finite nature of an episode of care defined by BPCI. This is consistent with many

Markov disease models in the literature – typically the absorbing state involves a

major adverse event and/or a major pathological change (e.g., heart attack, death,

readmission, cancer diagnosis). Moreover, among surgery patients, more than one

readmissions within 90 days are rare. Even if there are repeated readmissions, the

pathology after the index hospitalization and each re-hospitalization is drastically

different.

To minimize the expected cost in the post-discharge stage, the hospital solves

4Note that from a modeling stand-point, it is possible to model death as an absorbing state. However, we
do not model death since we assumed hospitals minimize costs and it is difficult to assign a monetary cost to
death. Furthermore, the chance of death within the bundle payment window is rare compared to the probability of
readmissions, and mortality rate is not penalized by the CMS. For these considerations, we do not model mortality.
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the Bellman equations of the MDP. Let V ∗
t (s) = V π∗

(s) be the minimum expected

post-discharge cost of following-up with a patient in state s ∈ S on the tth day after

discharge. The Bellman equations are given by:

If t = T : V ∗
t (s) = cT (s),∀s ∈ S. For t ∈ {0, 1, ..., T − 1} : V ∗

t (RA) = R, and

V ∗
t (H) = min


ω + V ∗

t+1(H) (at = Treat)

(1− ρt)V ∗
t+1(H) + ρt(1− d)V ∗

t+1(S) + ρtdR (at = Wait)

(3.2)

V ∗
t (S) = min


ω + fV ∗

t+1(H) + (1− f)R (at = Treat)

(1− d)V ∗
t+1(S) + dR (at = Wait)

(3.3)

We are interested in analyzing hospitals’ behavior as they reduce the readmission

risk ρt. Hence, we introduce the following notation for the purpose of evaluating the

post-discharge cost as a function of the risk ρt. When an arbitrary follow-up policy

π (not necessarily optimal) is applied to a patient whose readmission risk is ρt, the

expected follow-up cost is given by:
If t = T : V π

t (s, ρt) = cT (s),∀s ∈ S. For t ∈ {0, 1, ..., T − 1} : V π
t (RA, ρt) = R, and

V π
t (H, ρt) =

{
ω + V π

t+1(H, ρt+1) if π(H, t) = Treat

(1− ρt)V
π
t+1(H, ρt+1) + ρt(1− d)V π

t+1(S, ρt+1) + ρtdR if π(H, t) = Wait

V π
t (S, ρt) =

{
ω + fV π

t+1(H, ρt+1) + (1− f)R if π(S, t) = Treat

(1− d)V π
t+1(S, ρt+1) + dR if π(S, t) = Wait

Without loss of generality, the patient is assumed to be in the healthy state upon

discharge in period t = 0. Under policy π, the expected T -period follow-up cost of a

patient whose readmission risk is ρ⃗ = (ρ0, ρ1, . . . , ρT ) is denoted by

V π
0 (ρ⃗) = V π

0 (H, ρ0). (3.4)

If the readmission risk is stationary (i.e. ρt = ρ, ∀t), then we write V π
0 (ρ) =

V π
0 (H, ρ) for simplicity. Next, we shall analyze the behavior of a hospital when the

minimize the expected cost according to the optimal policy obtained by solving the

post-discharge follow-up MDP.

3.4.2 Technical Preliminaries

To facilitate our discussion, we present some technical preliminaries, including

some assumptions we impose and some structural properties of the MDP. First,

we make the following two mild assumptions so that the follow-up MDP model is

realistic and the hospital’s follow-up behavior is sensible.
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Assumption III.4 (Treatments are Effective). We assume that 1 − f < d, i.e.,

the probability of a sick patient being treated and readmitted is smaller than the (no-

treatment) delay-time failure rate.

In reality, this is very likely to hold since post-discharge care is clinically proven

to be effective at reducing readmissions.

Assumption III.5 (Following-Up Every Day is Expensive). We assume that Tω >

R, i.e., the cost of providing treatments every single day over the T -day period is

more expensive than a readmission.

This assumption is likely to be true as verified in our numerical study (see Section

3.8.1). If this is violated, a hospital could provide post-discharge treatments every

single day at a cost cheaper than a readmission. Under the current definition of an

episode of care by BPCI, this may require the provider to see the patient every single

day in the 90-day period, which will be unrealistic and much more expensive than a

readmission.

In addition to these mild assumptions to ensure sensible behavior, we also make

the following stationary readmission risk assumption for analytical tractability. We

do acknowledge that a patient’s readmission risk is not likely to be stationary in

reality (Liu et al., 2018a). Nonetheless, this assumption is only used for tractability

in the development of some initial structural properties.

Assumption III.6 (Stationary Readmission Risk). The readmission risk is station-

ary, i.e., ρt = ρ, ∀t ∈ {0, 1, ..., T − 1}.

This assumption is only used in Propositions III.9 and Theorem III.13. When the

readmission risk is nonstationary, Theorem III.16 provides a theoretical accuracy

bound.

First, we present a lemma which will be used in later proofs. Lemma III.7 states

that in any period, the cost-to-go of a healthy patient is no more than the cost-to-go

of a sick patient. All costs-to-go are bounded by the cost of a readmission R since

the worst case cost is R as it is assumed to be the absorbing state.

Lemma III.7. V ∗
t (H) ≤ V ∗

t (S) ≤ V ∗
t (RA) = R, ∀t ∈ {0, 1, ..., T}.

Proof. Proof of Lemma III.7. Define a policy π such that π(s, t) = W,∀s ∈ S, t ∈
{0, 1, ..., T}. Note that this policy always applies “wait” to a patient, which incurs no

immediate cost. Hence its maximum expected cost is no greater than the maximum

terminal cost cT (RA) = R. Then we have V ∗
t (s) ≤ V π

t (s) ≤ R, ∀s ∈ S,∀t ∈
{0, 1, ..., T}.
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Next, we show V ∗
t (H) ≤ V ∗

t (S),∀t ∈ {0, 1, ..., T} by induction. For t = T ,

V ∗
T (H) = 0 ≤ V ∗

T (S) = 0 holds. Suppose the induction base assumption holds:

V ∗
t+1(H) ≤ V ∗

t+1(S).

Recall the Bellman equations in t:

V ∗
t (H) = min


ω + V ∗

t+1(H) (at = Treat)

(1− ρt)V ∗
t+1(H) + ρt(1− d)V ∗

t+1(S) + ρtdR (at = Wait)

(3.5)

V ∗
t (S) = min


ω + fV ∗

t+1(H) + (1− f)R (at = Treat)

(1− d)V ∗
t+1(S) + dR (at = Wait)

(3.6)

We first argue that Vt(H, at = Treat) ≤ Vt(S, at = Treat). ω + V ∗
t+1(H) ≤

ω + V ∗
t+1(S) ≤ ω + fV ∗

t+1(S) + (1 − f)R since V ∗
t+1(S) ≤ R and V ∗

t+1(H) ≤ R.

We next argue that Vt(H, at = Wait) ≤ Vt(S, at = Wait). It follows that (1 −
ρt)V

∗
t+1(H)+ρt(1−d)V ∗

t+1(S)+ρtdR = (1−ρt)V ∗
t+1(H)+ρtV

∗
t+1(S)+ρtd(R−V ∗

t+1(S)) ≤
V ∗
t+1(S) + d(R− V ∗

t+1(S)) = (1− d)V ∗
t+1(S) + dR.

Finally, we argue that V ∗
t (H) = min(Vt(H, at = Treat), Vt(H, at = Wait)) ≤

V ∗
t (S) = min(Vt(S, at = Treat), Vt(S, at = Wait)). We show this by contradic-

tion. Suppose (for contradiction) that min(Vt(H, at = Treat), Vt(H, at = Wait)) >

min(Vt(S, at = Treat), Vt(S, at = Wait)). At least one of the following must hold:

• Vt(H, at = Treat) > Vt(S, at = Treat) and Vt(H, at = Wait) > Vt(S, at =

Treat)

• Vt(H, at = Treat) > Vt(S, at = Wait) and Vt(H, at = Wait) > Vt(S, at = Wait)

However, either one leads to contradiction. Hence, by contradiction, the induction

holds.

Next, we develop some structural properties of the post-discharge MDP. The

following proposition establishes the optimality of a control limit policy. In practice,

a hospital is very likely to adopt such a control limit policy because it is insensible

for a hospital to treat a sick patient and not to treat a healthy patient.

Proposition III.8 (Control Limit Policy Optimality). If f = 1 (treatments are

perfect), then there exists an optimal control limit policy π∗ such that if π∗(H, t) =

Treat then π∗(S, t) = Treat, and if π∗(S, t) = Wait then π∗(H, t) = Wait ∀t ∈
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{0, 1, ..., T − 1}. If f < 1 (treatments are imperfect), then condition 4 in Puterman

(2005) Theorem 4.7.4 is violated. The existence of optimal control limit policies is

not necessary.

Proof. Proof of Proposition III.8. To show the existence of an optimal control limit

policy, we introduce a dummy action ∅ and modifies the costs and transition prob-

abilities as follows:

Costs
s = RA s = S s = H

a = ∅ 0 0 0
a = Treat M ω ω
a = Wait 2M 0 0

Terminal Costs R 0 0

ω: cost of treatment
R: cost of readmission

M : a sufficiently large cost (M > R+ Tω)
Transition Probabilities

at = ∅ st+1 = RA st+1 = S st+1 = H

st = RA 1 0 0
st = S 1 0 0
st = H 1 0 0

at = Treat st+1 = RA st+1 = S st+1 = H

st = RA 0 0 1
st = S 0 0 1
st = H 0 0 1

at = Wait st+1 = RA st+1 = S st+1 = H

st = RA 1 0 0
st = S d 1− d 0
st = H ρtd ρt(1− d) 1− ρt

Note that it is always optimal to take the dummy action in the RA state. Hence,

the new MDP with the dummy action is equivalent to the original MDP.

Let us order the state space as S = {0 = RA, 1 = S, 2 = H} and order the actions

as A = {0 = ∅, 1 = Treat, 2 = Wait}. Now we can verify the sufficient conditions

for the existence of an optimal control limit policy (Theorem 4.7.4 in Puterman

(2005)).

1. ct(s, a) is non-increasing in s ∈ S for all a ∈ A.

2. The tail sum of transition probabilities qt = (k|s, a) =
∑2

j=k Pt(j|s, a) is nonde-
creasing in s for all k ∈ S and a ∈ A.

3. ct(s, a) is subadditive on S ×A.

4. The tail sum of transition probabilities qt = (k|s, a) is supermodular on S × A
for all k ∈ S.
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5. cT (s) is non-increasing in s.

Conditions 1 and 5 can be easily verified. We verify conditions 2, 3, and 4.

Condition 2:

qt(k|s, a) =



a = 0 k = 0 k = 1 k = 2

s = 0 1 0 0

s = 1 1 0 0

s = 2 1 0 0

a = 1 k = 0 k = 1 k = 2

s = 0 1 1 1

s = 1 1 1 1

s = 2 1 1 1

a = 2 k = 0 k = 1 k = 2

s = 0 1 0 0

s = 1 1 1− d 0

s = 2 1 1− ρtd 1− ρt

Condition 3 holds as ω − 0 ≤M − 0 and 0− ω ≤ 2M −M .

Condition 4:

• k = 0 then qt(0|s, a) = 1,∀a ∈ A and s ∈ S. Supermodularity holds trivially.
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• k = 1, we have

qt(1|s+ 1, a+ 1)− qt(1|s+ 1, a) =

a = 0 a = 1

s = 0 1 −d

s = 1 1 −ρtd

(3.7)

qt(1|s, a+ 1)− qt(1|s, a) =

a = 0 a = 1

s = 0 1 −1

s = 1 1 −d

(3.8)

(3.9)

qt(1|s+1, a+1)−qt(1|s+1, a) ≥ qt(1|s, a+1)−qt(1|s, a) holds for s ∈ {0, 1}, a ∈
{0, 1}.

• k = 2, we have

qt(2|s+ 1, a+ 1)− qt(2|s+ 1, a) =

a = 0 a = 1

s = 0 1 −1

s = 1 1 −ρt

(3.10)

qt(2|s, a+ 1)− qt(2|s, a) =

a = 0 a = 1

s = 0 1 −1

s = 1 1 −1

(3.11)

(3.12)

qt(1|s+1, a+1)−qt(1|s+1, a) ≥ qt(1|s, a+1)−qt(1|s, a) holds for s ∈ {0, 1}, a ∈
{0, 1}.

qt(2|s+1, a+1)−qt(2|s+1, a) ≥ qt(2|s, a+1)−qt(2|s, a) holds for s ∈ {0, 1}, a ∈ {0, 1}.
Therefore, all five conditions are satisfied. There exists an optimal control limit

policy π∗ that is non-decreasing in s. In other words, if π∗(H, t) = Treat then

π∗(S, t) = Treat and if π∗(S, t) = Wait then π∗(S, t) = Wait.

Note that when f < 1, the existence of an optimal control limit policy is necessary.

However, in our numerical experiments, optimal control limit policies still exist if ω/R
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is sufficiently small and the treatment efficacy f is sufficiently large. As we shall see

later in Definition III.22, a sufficiently small ω/R quotient requires the treatments

to be sufficiently efficient.

The next proposition shows that reducing the readmission risk reduces the follow-

up cost. Moreover, under a mild condition, the relationship is concave, implying that

reducing readmission risk generates a larger saving as the risk gets closer to zero.

Proposition III.9 (Follow-Up Cost Concave Non-Decreasing in Readmission Risk).

If Assumption III.6 (stationary readmission risk) holds, then the follow-up cost V π
0 (ρ)

is non-decreasing in the readmission risk ρ. Furthermore, under a mild condition

(supermodularity in the health state and the readmission risk (s, ρ) ∈ S × [0, 1]), the

follow-up cost is concave in ρ.

Proof. Proof of Proposition III.9. We prove by induction. The base case t = T holds

trivially. Suppose in period t+ 1, V ∗
t+1(s), s ∈ {H,S} is non-decreasing in ρ.

Recall the Bellman equations in t:

V ∗
t (H) = min


ω + V ∗

t+1(H) (at = Treat)

(1− ρ)V ∗
t+1(H) + ρ(1− d)V ∗

t+1(S) + ρdR (at = Wait)

(3.13)

V ∗
t (S) = min


ω + fV ∗

t+1(H) + (1− f)R (at = Treat)

(1− d)V ∗
t+1(S) + dR (at = Wait)

(3.14)

It follows trivially that Vt(H, at = Treat) = ω + V ∗
t+1(H), Vt(S, at = Treat) =

ω + fV ∗
t+1(H) + (1 − f)R, and Vt(S, at = Wait) = (1 − d)V ∗

t+1(S) + dR are non-

decreasing in ρ. Since taking the minimum preserves monotonicity, it suffices to show

that Vt(H, at = Wait) = (1−ρ)V ∗
t+1(H)+ρ(1−d)V ∗

t+1(S)+ρdR is non-decreasing in ρ.

To see the non-increasing monotonicity, we shall look at the first order derivative. Let

us simplify the notation, let VH(ρ) := V π∗
t+1(H, ρ) and VS(ρ) := V π∗

t+1(S, ρ). Following

from Lemma III.7, we have:

d

dρ
((1− ρ)VH(ρ) + ρ(1− d)VS(ρ) + ρdR) (3.15)

=d(R− Vs(ρ)) + (VS(ρ)− VH(ρ)) + (1− ρ)V ′
H(ρ) + (1− d)ρV ′

S(ρ) ≥ 0 (3.16)

To show the concavity, consider any 0 ≤ ρ1 ≤ ρ2 ≤ 1 and α ∈ [0, 1]. We shall verify
the following inequality:

(1− αρ1 − (1− α)ρ2)VH(αρ1 + (1− α)ρ2) + (αρ1 + (1− α)ρ2)(1− d)VS(αρ1 + (1− α)ρ2)

≥α(1− ρ1)VH(ρ1) + (1− α)(1− ρ2)VH(ρ2) + αρ1(1− d)VS(ρ1) + (1− α)ρ2(1− d)VS(ρ2) (3.17)
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Applying the induction hypothesis, Eq. (3.17) can be rewritten as

α(1− α)(ρ2 − ρ1)[VH(ρ2)− VH(ρ1) + (1− d)(VS(ρ1)− VS(ρ2))] ≥ 0 (3.18)

This follows as Vs(ρ) = V π
t (s, ρ) is assumed to be supermodular in {s, ρ} ∈ S × [0, 1]

for all t ∈ {0, 1, ..., T}.
The supermodularity assumption states that the benefit of reducing the read-

mission risk is greater on a healthy patient than on a sick patient. Note that the

supermodularity does not hold in general. For example, if d = 0, then supermodu-

larity is violated. However, it holds for large enough R and d.

It is intuitive that the cost of follow-up is non-decreasing in the readmission risk ρ

since lower risk patients require fewer treatments and are less likely to be readmitted.

For the cost of follow-up to be concave in ρ, the Bellman equations are required to

be supermodular in the health state and the readmission risk (s, ρ) ∈ S × [0, 1].

Supermodularity here means that the marginal benefit of having a lower readmission

risk, ρ, in the healthy state is greater than the marginal benefit for a patient in the

sick state. This condition is intuitive, since risk of getting sick is less important to

future cost when a patient is already sick, because there is a chance that she will

never return to the healthy state and thus the risk of getting sick becomes irrelevant.

In contrast, for a healthy patient, this risk is more relevant to future outcomes. Note

that supermodularity does not necessarily hold. For instance, in the pathological

case where the delay-time failure rate d is zero, supermodularity does not hold.

However, for sufficiently large R and d, which is the most likely case in practice,

supermodularity should hold.

Next, we numerically verify concavity and demonstrate that even when the func-

tion is not technically concave, it still resembles a concave shape. To do this, we

compute the second derivative of V (·) numerically.

We tested the following 144 combinations of parameters: T ∈ {7, 14, 30, 90},
ω/R ∈ {0.01, 0.2, 5, 10}, d ∈ {0.1, 0.3, 0.5}, f ∈ {0.5, 0.75, 1}. Out of the 144 cases,

97 cases were found to be concave as desired. The rest 47 cases were non-concave.

Figure 3.3 shows the 47 non-concave cases. The tuple above each subplot denotes

(T, f, d, ω/R). The horizontal axis is the readmission risk ρ and the vertical axis is

the cost V (ρ). In these nonconcave cases, V (ρ) still behaves very much like a concave

function.
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Figure 3.3: Examples of Non-concave V



83

3.4.3 Engaged and Disengaged Follow-Up Policies

In this section, we first identify two types of follow-up policies – the engaged policy

and the disengaged policy (Proposition III.10). We show that disengaged policies

are expensive and undesirable (Proposition III.11) and that the engaged policy is

optimal when patients are at low risk and the treatments are effective and efficient

(Proposition III.12). We argue that an effective BP policy should entice hospitals to

adopt an engaged policy.

First, we identify two types of follow-up policies adopted by a hospital to minimize

the expected follow-up cost. Under Assumption III.5 (following-up every day is

expensive), a hospital will adopt either one of the following two policies.

Proposition III.10 (Engaged and Disengaged Follow-Up Policies). Suppose As-

sumption III.5 (following-up every day is expensive) holds, either one of the following

two types of policies is optimal:

• Engaged Follow-Up Policy: a policy πE is said to be an engaged policy if

∀t ∈ {0, 1, . . . , T − 1}, πE(S, t) = Treat, πE(H, t) = Wait,∀t ∈ {0, 1, ..., T − 1}.

• Disengaged Follow-Up Policy: a policy πDE is said to be a disengaged policy if

in some period t ∈ {0, 1, . . . , T−1}, the action is πDE(H, t) = πDE(S, t) = Wait.

Proof. Proof of Proposition III.10. Since Tω > R, it is never optimal to treat the

patient every single day. Hence, by definition, a hospital adopts either the engaged

policy or a disengaged policy.

Adopting an engaged follow-up policy, a hospital will provide treatment to a pa-

tient if and only if the patient is sick. This means that the hospital is responsive

and fully engaged in providing timely post-discharge care. It also means that med-

ical resources are not “wasted” on treating a healthy patient. In contrast, under a

disengaged follow-up policy, a hospital is not fully engaged because it may prefer to

wait and let a sick patient get readmitted rather than providing treatments to avert

the readmission.

It is tempting to wonder why a hospital would ever adopt a disengaged policy

to minimize the follow-up cost. Intuitively, one may conjecture that a hospital may

adopt such a disengaged policy due to the following reasons. 1) The patient is at very

high risk of readmission. As such, an engaged policy requires the hospital to provide

intensive post-discharge interventions, which may be more costly than a readmission

(this case was found to exist in the modeling efforts of Zhang et al. (2016) and found

empirically by Desai et al. (2016)). 2) Treatments that can avert a readmission may
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be very expensive. In such cases, the hospital would rather readmit the patient. 3)

Post-discharge treatment may be little effective in averting readmissions (f is very

small). 4) Readmissions are very cheap (or not penalized sufficiently), therefore the

hospital cares little about preventing readmissions. 5) The bundled payment episode

length is too long, requiring too much effort. A hospital may give up on preventing

readmissions for such a long time interval. As we shall see later in Section 3.6, our

analytical results confirm our intuition.

As a policymaker, the CMS shall design a BP policy to eliminate the financial

incentives for disengaged policies. Although it is not illegal for hospitals to deny

non-emergent patients treatment (Adida et al., 2016), it is arguably irresponsible

and unethical to do so. Moreover, from the provider’s perspective, we argue that

disengaged policies are also undesirable. The next proposition shows that a disen-

gaged policy is undesirable due to its excessive cost.

Proposition III.11 (Disengaged Policies are Expensive). Suppose Assumption III.4

(treatments are effective) holds, if a disengaged policy is ever optimal, then over the

T -day follow-up period, the hospitals incurs a follow-up cost V ∗
0 (H) = V πDE

0 (H) ≥
R − ω

d− (1− f)
, which equates to the cost of a readmission less a multiple of the

cost of a treatment.

Proof. Proof of Proposition III.11. Since in period t, the optimal action is to wait

when a patient is sick, we have

(1− d)V ∗
t+1(S) + dR ≤ ω + fV ∗

t+1(H) + (1− f)R (3.19)

By Lemma III.7, V ∗
t+1(H) ≤ V ∗

t+1(S) implies

(1− d)V ∗
t+1(H) + dR ≤ ω + fV ∗

t+1(H) + (1− f)R (3.20)

V ∗
t+1(H) ≥ R− ω

f + d− 1
≥ R− ω

f + d− 1
(3.21)

By Lemma III.7, we have V ∗
t−1(S) ≥ V ∗

t−1(H) ≥ R− ω
f+d−1

. Since all immediate costs

are nonnegative, it follows that V ∗
0 (S) ≥ V ∗

0 (H) ≥ R− ω
f+d−1

holds.

Note that if 1− f ≪ d (i.e., treatments are highly effective), then the disengaged

policy follow-up cost becomes as expensive as the cost of a readmission. In this case,

since treatments are very effective, not providing them (under a disengaged policy)

will result in a very high cost. For instance, if treatments are perfect (f = 1) and

the delay-time failure rate d = 0.3 (representing the baseline estimate, see Section
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3.8.1), then the cost of follow-up is greater than R− 3.3ω, which equates to the cost

of a readmission less the cost of 3.3 treatments.

As disengaged policies are shown to be undesirable from both the policymaker’s

and the provider’s perspectives, we now shift our focus to the engaged policy. The

next proposition shows that a hospital will adopt an optimal engaged policy if 1) the

patient is at very low risk of readmission, 2) the treatments are sufficiently effective

(in this case a sufficient condition is f = 1), and 3) treatments are sufficiently

efficient5 (ω/R ≤ d, and this holds in our numerical studies, see Section 3.8.1).

Proposition III.12 (Engaged Policy Optimality). Suppose Assumption III.6 (sta-

tionary readmission risk) holds, if ω/R ≤ d (this requires treatments to be sufficiently

efficient).5 There exists fE ≥ 0 and ρE ≥ 0 such that for all f ≥ fE and ρ ≤ ρE, an

engaged policy is optimal.

Proof. Proof of Proposition III.12. Suppose 0 ≤ ρ ≤ ρE = 0. Let f = 1 ≥ fE = 1.

The Bellman equations become:

V ∗
t (RA) = R (3.22)

V ∗
t (H) = min


ω + V ∗

t+1(H) (at = Treat)

V ∗
t+1(H) (at = Wait)

(3.23)

V ∗
t (S) = min


ω + V ∗

t+1(H) (at = Treat)

(1− d)V ∗
t+1(S) + dR (at = Wait)

(3.24)

It follows that wait is the optimal action in the healthy state and V ∗
t (H) = 0,∀t ∈

{0, 1, ..., T − 1}. So V ∗
t (S) = min


ω (at = Treat)

(1− d)V ∗
t+1(S) + dR (at = Wait)

.

Since ω < dR, the optimal action in the sick state is to treat the patient.

As the policymaker, we shall entice a hospital to adopt an engaged policy be-

cause it implies that the hospital is being responsive and engaged in providing post-

discharge care.

5 The quotient ω/R is defined as the treatment inefficiency in Definition III.22. Therefore, a smaller ω/R value
implies higher efficiency.
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3.4.4 Closed-Form Engaged Policy Follow-Up Cost

In this section, we develop crucial structural properties when an engaged follow-

up policy is adopted by the hospital. We show that under an engaged policy, the

follow-up cost can be closed-form expressed in terms of the MDP’s costs, transition

probabilities, and the episode length T (Theorem III.13). This closed-form expression

reveals that reducing readmission risk generates savings (asymptotically) linear in

the readmission risk (Corollary III.14). Moreover, Corollary III.14 uncovers the

relationship between the follow-up cost and the policy-level levers (T, ω,R).

Theorem III.13 (Engaged Policy Follow-Up Cost in Closed-Form). Suppose As-

sumption III.6 (stationary readmission risk) holds. Given an engaged follow-up pol-

icy πE, the cost of following-up with a patient (who is discharged healthy initially)

for T days is

V (ρ) := V πE
0 (H, ρ) = α1z

T
1 + α2z

T
2 + β, (3.25)

where α1, α2, z1, z2, and β are functions of ρ, f, d, R, and ω. Note that T is the

exponent not to be confused with the transpose operator in linear algebra. The closed-

form expressions for these terms are defined in Eq. (3.27) – (3.30).

The function V (ρ) is strictly increasing in ρ (following from the proof of Propo-

sition III.9), though V (ρ) is not necessarily concave.6 Under mild condition (super-

modularity), V (ρ) is concave (by Proposition III.9).

Proof. Proof of Theorem III.13. We first list the variables:

α1 =
(d− 1)ω

(√
(1− ρ)2 + 4ρf(1− d)− ρ− 1

)
−R((d− 1)f + 1)

(√
(1− ρ)2 + 4ρf(1− d) + 2dρ− ρ− 1

)
2((d− 1)f + 1)

√
(1− ρ)2 + 4ρf(1− d)

(3.26)

α2 =
(d− 1)ω

(√
(1− ρ)2 + 4ρf(1− d) + ρ+ 1

)
−R((d− 1)f + 1)

(√
(1− ρ)2 + 4ρf(1− d)− 2dρ+ ρ+ 1

)
2((d− 1)f + 1)

√
(1− ρ)2 + 4ρf(1− d)

(3.27)

z1 =
(1− ρ)−

√
(1− ρ)2 + 4ρf(1− d)

2
(3.28)

z2 =
(1− ρ) +

√
(1− ρ)2 + 4ρf(1− d)

2
(3.29)

β =
(1− d)ω + dR+ (1− d)(1− f)R

1− f + fd
(3.30)

Since an engaged policy is implemented, we can rewrite the Bellman equations as

follows:
6For example, let T = 3, d = 0.4, ω = 1, R = 2.9, and f = 1, then V ′′(0.99) = 0.12 > 0 implies the function is

not concave. However, we observe that, for large T and f , V (ρ) is concave. Since V (ρ) is obtained by solving a
recurrence relation, it is difficult to derive a tractable and meaningful condition to ensure concavity. Nevertheless,
one can numerically compute the second order derivative of V (ρ) using the closed-form expression (Eq. (3.25)) to
verify concavity.
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If t ∈ {0, 1, ..., T − 1}:

V πE
t (H) = (1− ρ)V πE

t+1(H) + ρ(1− d)V πE
t+1(S) + ρdR (3.31)

V πE
t (S) = ω + fV πE

t+1(H) + (1− f)R (3.32)

V πE
t (RA) = R (3.33)

If t = T :

V πE
T (H) = 0 (3.34)

V πE
T (S) = 0 (3.35)

V πE
T (RA) = R (3.36)

The Bellman equation in the healthy state can be expressed in the following

recurrence relation:

V πE
t (H) = (1− ρ)V πE

t+1(H) + ρ(1− d)(ω + fV πE
t+2(H) + (1− f)R) + ρdR (3.37)

To simplify our notation, define Vt = V πE
T−t(H). Then we have

Vt+2 =



(1− ρ)Vt+1 + ρ(1− d)(ω + fVt + (1− f)R) + ρdR if t ∈ {0, . . . , T − 2}

0 if t = 0

ρdR if t = 1

(3.38)

We can solve this nonhomogeneous recurrence. First we solve for a homogeneous

solution V H
t . The characteristic equation is

z2 − (1− ρ)z − ρf(1− d) = 0 (3.39)

The two roots are

z1 =
(1− ρ)−

√
(1− ρ)2 + 4ρf(1− d)

2
(3.40)

z2 =
(1− ρ) +

√
(1− ρ)2 + 4ρf(1− d)

2
(3.41)
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So the homogeneous solution is

V H
t = zt1α1 + zt2α2 (3.42)

where α1 and α2 are constants that are determined later. For the particular solution,

we guess a constant form V P
t = β. Plugging in to the recurrence, β − (1 − ρ)β −

ρf(1 − d)β = ρ(1 − d)ω + ρdR + ρ(1 − d)(1 − f)R. The solution is V P
t = β =

(1−d)ω+dR+(1−d)(1−f)R
1−f+fd

.

Now we can plug in the two boundary conditions to solve for α1 and α2:

V0 = V H
0 + β = 0 (3.43)

V1 = V H
1 + β = ρdR (3.44)

The solutions are

α1 =
(d− 1)ω

(√
(1− ρ)2 + 4ρf(1− d)− ρ− 1

)
−R((d− 1)f + 1)

(√
(1− ρ)2 + 4ρf(1− d) + 2dρ− ρ− 1

)
2((d− 1)f + 1)

√
(1− ρ)2 + 4ρf(1− d)

(3.45)

α2 =
(d− 1)ω

(√
(1− ρ)2 + 4ρf(1− d) + ρ+ 1

)
−R((d− 1)f + 1)

(√
(1− ρ)2 + 4ρf(1− d)− 2dρ+ ρ+ 1

)
2((d− 1)f + 1)

√
(1− ρ)2 + 4ρf(1− d)

(3.46)

Computing the follow-up cost in closed-form, instead of using backward induc-

tion, enables us to derive powerful analytical insights into the operational impact of

bundled payment design features. Corollary III.14 reveals that if a hospital manages

to reduce the readmission risk to a low level (ρ→ 0), then readmission reduction will

generate savings linearly in the readmission risk. The marginal benefit is a function

of the MDP’s costs, transition probabilities, and the episode length.

Corollary III.14 (Marginal Benefit of Reducing Readmission Risk). For an engaged

policy πE with Bellman equation V (ρ) := V πE
0 (H, ρ), the marginal benefit of reducing

the readmission risk is asymptotically linear for sufficiently small ρ. Formally, we

have

lim
ρ→0+

V ′(ρ) := lim
ρ→0+

V πE
0 (H, ρ) = {d+ [1− (1− d) f ] (T − 1)}R + (T − 1) (1− d)ω.

(3.47)
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Proof. Proof of Corollary III.14. For the purpose of exposition, we prove for the case

f = 1. For f < 1, the idea is similar.

Let f = 1: for notational convenience, we define the following function:

s(ρ) =
√

(1− ρ2) + 4ρ(1− d) (3.48)

k = −(1− d)ω
d

−R (3.49)

g = 2Rd+ k (3.50)

Note that as ρ→ 0+, we have

lim
ρ→0+

s(ρ) = 1 (3.51)

lim
ρ→0+

s′(ρ) = lim
ρ→0+

1 + ρ− 2d

s(ρ)
= 1− 2d (3.52)

Then we can rewrite α1, α2, z1, and z2 as follows:

α1 =
1

2

(
k − gρ+ k

s(ρ)

)
,α2 =

1

2

(
k +

gρ+ k

s(ρ)

)
(3.53)

z1 =
1− ρ− s(ρ)

2
,z2 =

1− ρ+ s(ρ)

2
(3.54)

Hence, we rewrite V (ρ) as

V (ρ) =
1

2

(
k − gρ+ k

s(ρ)

)(
1− ρ− s(ρ)

2

)T

+
1

2

(
k +

gρ+ k

s(ρ)

)(
1− ρ+ s(ρ)

2

)T

− k

(3.55)

Take the derivative with respect to ρ, we have

V ′(ρ) = (3.56)

− T

4

(
k − gρ+ k

s(ρ)

)(
1− ρ− s(ρ)

2

)T−1

(1 + s′(ρ)) +
1

2

(
1− ρ− s(ρ)

2

)T (
−gs(ρ) + (gρ+ k)s′(ρ)

s(ρ)2

)
− T

4

(
k +

gρ+ k

s(ρ)

)(
1− ρ+ s(ρ)

2

)T−1

(1− s′(ρ)) +
1

2

(
1− ρ+ s(ρ)

2

)T (
gs(ρ)− (gρ+ k)s′(ρ)

s(ρ)2

)
(3.57)

Taking the limit, we have

lim
ρ→0+

V ′(ρ) =− T

4

(
k − 0 + k

1

)(
1− 0− 1

2

)T−1

(1 + s′(ρ)) +
1

2

(
1− 0− 1

2

)T (
−g + (0 + k)s′(ρ)

12

)
− T

4

(
k +

0 + k

1

)(
1− 0 + 1

2

)T−1

(1− s′(ρ)) +
1

2

(
1− 0 + 1

2

)T (
g − (0 + k)s′(ρ)

12

)
(3.58)

=0 + 0− Tk

2
(1− s′(ρ)) +

g − ks′(ρ)

2
(3.59)

=dRT + (T − 1)(1− d)ω (3.60)
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For f < 1, the idea behind the proof is the same. We omit the proof since the proof

is too lengthy for exposition.

3.4.5 Approximation of the Post-Discharge Cost

So far we have shown some very nice properties of the engaged follow-up policy.

However, in reality, a hospital may not always adopt the engaged policy. In this

section, we shall allow a hospital to adopt either the engaged policy or a disengaged

policy, whichever is cheaper. We show that we can still leverage the closed-form

engaged policy cost V (ρ) to construct a piece-wise closed-form (PWCF) expression

CM(ρ) that approximates the optimal post-discharge cost well (Eq. (3.63)). Even

when the readmission risk is nonstationary, we can still use the PWCF expression to

approximate the follow-up cost with a proven accuracy bound (Theorem III.16).

To construct the approximation, let us first compare the engaged policy follow-up

cost V (ρ) (given by Eq. (3.25)) with the optimal dynamic programming (DP) policy

cost V ∗(ρ) (obtained by solving the Bellman equations). Under Assumption III.6

(stationary readmission risk), Figure 3.4 shows that the engaged policy is optimal

in the light grey area, when the patient’s readmission risk is below ρE (confirming

Proposition III.12). Moreover, we see that the curve resembles a linear relationship

as ρ → 0, which confirms Corollary III.14. In this light grey area, the optimal DP

policy cost (the dashed line) coincides with the engaged policy cost (the solid line)

because the engaged policy is in fact optimal. However, as the readmission risk

increases into the dark grey area, a disengaged policy is optimal.

Figure 3.4: Engaged Policy Cost and Optimal DP Policy Cost (T = 30, d = 0.3, f = 1, ω =
$1, 000, R = $5, 000)

In the dark grey area, we also observe that the engaged policy cost can be more

expensive than a readmission. For instance, in the extreme (pathological) case where
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ρ = 1 and f = 1, we have V (1) = R + (1 − d)ω/d ≥ R. This may seem counter-

intuitive because a trivial worst-case cost for the hospital is to provide no treatments

at all in the post-discharge stage and get a readmission. This worst case costs at

most R, which is lower than the engaged policy cost R + (1 − d)ω/d ≥ R. In fact,

the engaged policy may be suboptimal when the readmission risk is very high. In

such cases, a patient being very likely to develop complications will require intensive

and frequent post-discharge treatments. As such, the required intensive care can be

more costly than a readmission, which makes a readmission more economical for the

hospital. When f = 1, the difference between the engaged policy and the optimal

dynamic programming policy is (1−d)ω/d. As the delay-time failure rate d decreases

and the cost of a treatment ω increases, the engaged policy performs worse since it

“wastes” expensive treatments on a patient who is unlikely to be readmitted due to

low failure rate.

Since the engaged policy might be more expensive than a readmission, we shall

allow a hospital to switch to a disengaged policy if the engaged policy cost exceeds

the cost of a readmission (V (ρ)= V πE
0 (H, ρ) ≥ R). As such, we define the piece-wise

closed-form (PWCF) follow-up cost approximation function as

CM(ρ) = min{V (ρ), R}. (3.61)

Since V (ρ) is non-decreasing in ρ (Theorem III.13), we can define ρ̄, the threshold

below which an engaged policy is cheaper than the cost of a readmission, as

ρ̄ =


argminρ V (ρ) ≥ R if ∃ρ ∈ [0, 1] : V (ρ) ≥ R

1 otherwise

(3.62)

Remark III.15 (Post-Discharge “Maintaining” Cost Function). The post-discharge

“Maintaining” cost is expressed as a PWCF function:

CM(ρ) =


V (ρ) if ρ ∈ [0, ρ̄]

R if ρ ∈ (ρ̄, 1]

(3.63)

Next, we shall show that the PWCF function can approximate the optimal DP cost

well. When the readmission risk is nonstationary, it can still be used to approximate

the follow-up cost with a proven accuracy bound.
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Theorem III.16 (PWCF Approximation is ∆-Accurate). Suppose Assumption III.4

(treatments are effective) holds. For a patient whose readmission risk ρt is non-

stationary, let V π∗
0 (H, ρ⃗) denote the optimal DP policy cost of follow-up. We can

approximate the cost of follow-up using CM(ρ) such that |CM(ρ) − V π∗
0 (H, ρ⃗)| ≤

∆. The accuracy ∆ = max

{
ω

f + d− 1
,
∑T−1

t=0 ϵtR

}
, where ϵt = |ρt − ρ| for all

t ∈ {0, 1, . . . , T − 1}. To achieve best accuracy, one can compute ρ using the Least

Absolute Deviation (LAD) estimates of ρt, which is the median over the time index.

Proof. Proof of Theorem III.16. To prove this, we first prove a lemma.

Lemma III.17 (Non-Stationary Readmission Risk Approximation). Suppose

the true readmission risk ρ⃗ = (ρ0, . . . , ρT ) is non-stationary. The engaged pol-

icy follow-up cost V πE
0 (H, ρ⃗) can be approximated using V (ρ) (which assumes

stationary readmission risk ρ). The accuracy is given by |V πE
0 (H, ρ⃗)− V (ρ)| ≤∑T−1

t=0 ϵtR, where ϵt = |ρt − ρ| for all t ∈ {0, 1, . . . , T − 1}.

Proof. Proof of Lemma III.17. To simplify the notation, let the engaged policy

cost of follow-up for the non-stationary readmission risk model is V ρt
t (s) :=

V πE
t (s, ρt). Let the engaged policy cost of follow-up for the stationary read-

mission risk model is V ρ
t (s) := V πE

t (s, ρ). Define the loss in each period gt =

maxs∈S |Gt(s)| = maxs∈S |V ρ
t (s)− V

ρt
t (s)|.

We prove by induction. Given gt+1, t ∈ {1, . . . , T}, we shall establish bounds

for gt. We focus on Gt(S) first. Since the follow-up policy is to wait on sick

patients, we have

Gt(S) = V ρ
t (S)− V

ρt
t (S) (3.64)

= ω + fV ρ
t+1(H) + (1− f)R− (ω + fV ρt

t+1(H) + (1− f)R) (3.65)

= fGt+1(H) (3.66)

By the induction hypothesis, we have

−gt+1 ≤ −fgt+1 ≤ Gt(S) ≤ fgt+1 ≤ gt+1 (3.67)

Next, we derive the bounds for the healthy state, in which the optimal action



93

is to wait:

Gt(H) =V ρ
t (H)− V ρt

t (H) (3.68)

=(1− ρ)V ρ
t+1(H) + ρ(1− d)V ρ

t+1(S) + ρdR

− (1− ρt)V ρt
t+1(H)− ρt(1− d)V ρt

t+1(S)− ρtdR (3.69)

=(1− ρ)Gt+1(H) + ρGt+1(S) + (ρ− ρt)(dR + (1− d)V ρt
t+1(S)− V

ρt
t+1(H))

(3.70)

To obtain an upper bound, we construct a linear program (LPUB
H ):

GUB
H = max

ρt,GH ,GS ,VH ,VS

(1− ρ)GH + ρGS + (ρ− ρt)(dR + (1− d)VS − VH)

(3.71)

s.t. ρ− ϵt ≤ ρt ≤ ρ+ ϵt (3.72)

0 ≤ VH ≤ VS ≤ R (3.73)

− gt+1 ≤ GS, GH ≤ gt+1 (3.74)

0 ≤ ρt ≤ 1 (3.75)

This linear program attains its maximum GUB
H = gt+1 + ϵtR when ρt = ρ −

ϵt, VS = R, VH = 0, and GS = GH = gt+1.

To obtain a lower bound, we construct a linear program (LPLB
H ):

GLB
H = min

ρt,GH ,GS ,VH ,VS

(1− ρ)GH + ρGS + (ρ− ρt)(dR + (1− d)VS − VH)

(3.76)

s.t. ρ− ϵt ≤ ρt ≤ ρ+ ϵt (3.77)

0 ≤ VH ≤ VS ≤ R (3.78)

− gt+1 ≤ GS, GH ≤ gt+1 (3.79)

0 ≤ ρt ≤ 1 (3.80)
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This linear program attains its maximum GLB
H = −gt+1 − ϵtR when ρt = ρ +

ϵt, VS = R, VH = 0, and GS = GH = −gt+1. Hence, −gt+1 − ϵ(t)R ≤ Gt(H) ≤
gt+1 + ϵtR. Thus, gt ≤ gt+1 + ϵtR.

Observe that GT (S) = GT (H) = 0. Hence, it follows that g0 ≤
∑T−1

t=0 ϵtR

inductively.

Now we leverage this lemma to prove the theorem.

Consider a T -period problem with non-stationary readmission risk ρ⃗. The state

space ρ⃗ = (ρ0, ρ1, ..., ρT−1) ∈ [0, 1]T can be partitioned into two mutually exclusive

sets: F and P . For any ρ⃗ ∈ F , an engaged policy is optimal. For any ρ⃗ ∈ P , a

disengaged policy is optimal.

Let’s focus on π∗ ∈ F first. Let the optimal engaged policy cost of follow-up for

the non-stationary readmission risk model be V π∗
0 (H, ρ⃗). Since an engaged policy is

optimal, i.e., V π∗
0 (H, ρ⃗) = V πE

0 (H, ρ⃗), by Lemma III.17, we have

−
T−1∑
t=0

ϵtR ≤ V π∗

0 (H, ρ⃗)− V (ρ) ≤
T−1∑
t=0

ϵtR (3.81)

Since by Lemma III.7, V π∗
0 (H, ρ⃗) ≤ R. We can pick ρ such that V (ρ) = CM(ρ) ≤ R

and ensure |CM(ρ)− V π∗
0 (H, ρ⃗)| ≤ ∆ =

∑T−1
t=0 ϵtR.

Next, let us consider π∗ ∈ P . Take any ρ⃗ ∈ P , by Proposition III.11 and Lemma

III.7, we have R − ω
f+d−1

≤ V π∗
0 (H, ρ⃗) ≤ R. We can pick ρ such that CM(ρ) = R to

ensure |CM(ρ)− V π∗
0 (H, ρ⃗)| ≤ ∆ = ω

f+d−1
.

Theorem III.16 provides a theoretical accuracy bound for using the PWCF func-

tion CM(ρ) to approximate the optimal value function for a non-stationary readmis-

sion risk. This enables us to use the PWCF function to compute the cost of follow-up

for patients with non-stationary readmission risks. To achieve the best accuracy, one

can use the median readmission risk (over the time index) to approximate the optimal

follow-up cost.

Note that in our numerical studies, the estimated ρ are small (between 0.01 and

0.08, see Table 3.2 in Section 3.8.1). So Theorem III.16 can potentially provide a

reasonably tight theoretical accuracy bound. Numerically, the accuracy is observed

to be reasonably tight for the purpose of policy-level decisions. For example, if

ω/R ≤ 1 (which is likely to hold as it requires a treatment to be less expensive than a

readmission), the accuracy is within 20% of the cost of a readmission (see Figure 3.6).

Based on our baseline estimates (see Section 3.8.1), 20%×R ≈ $1, 000 is comparable
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to the cost of one outpatient treatment (e.g. one Primary Care Physicians (PCP)

office visit and the medications and procedures administered). It is also comparable

to the cost of a half day of hospitalization (Henry J Kaiser Family Foundation, 2015).

When treatments are expensive (ω is large), the treatment efficacy f is low, or the

delay-time failure rate d is small, the accuracy bound becomes large. Under these

conditions, however, it is unlikely that a hospital would be interested in engaging

in post-discharge effort since the cost is high and efficacy is low, and the patient is

unlikely to be readmitted, hence these are unrealistic scenarios.

3.4.6 Analysis for Nonstationary Readmission Risk

In this section, we relax the assumption on stationary readmission risk. We fitted a

kernel smoothed estimation of the readmission risk (Diehl and Stute, 1988) using the

327 patients from our partner hospital. Figure 3.5 shows the fitted and the empirical

cumulative distributions as well as the readmission risk (failure rate/hazard). The

readmission risk was non-stationary in this case, being noticeably high within the

first two weeks after discharge. It then dropped and became steady after day-20.

After day-50, the readmission risk dropped even more. Towards the end of the 90-

day window, the readmission risk increased. One possible explanation for this slight

increase near day-90 is the “bathtub” failure curve – increasing failure rate indicates

“wear-out”. A more plausible cause of this bathtub shape was due to the censoring

of our data and the finite support ([0, 90]) used in the kernel smoothed estimation.

For the 7-, 14-, 30-, and 90-day penalty windows, we computed the Least Ab-

solute Deviation (LAD) estimates of the readmission risk: ρT=7
LAD = 0.079, ρT=14

LAD =

0.059, ρT=30
LAD = 0.035, and ρT=90

LAD = 0.026.

Kernel Smoothed CDF
Empirical CDF

Kernel Smoothed
Least Absolute Deviation (LAD)

Panel A: CDF Panel B: Readmission Risk

Figure 3.5: Fitted Kernel Smoothed Distribution (Panel A) and Least Absolute Deviation Estimates
(Panel B) for the Readmission Risk

We first demonstrate that the PWCF approximation CM(ρTLAD) is a good approx-
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imation. We normalize the readmission cost to R = 1 and let d = 0.3 and computed

the difference between the LAD estimates CM(ρTLAD) and the optimal dynamic pro-

gramming policy cost (V π∗
0 (H, ρ⃗)). Figure 3.6 shows the accuracy, which is defined

as |CM(ρTLAD) − V π∗
0 (H, ρ⃗)|. Since R = 1, the gaps can also be interpreted as a

relative (percentage) gap with respect to the cost of a readmission (R). We varied

the treatment inefficiency ω/R from 0.01 to 1 and plotted the accuracy versus the

treatment inefficiency ω/R in a log scale. The cost-to-go using LAD approximation

was within 20% of the optimal non-stationary cost for ω/R ≤ 100 = 1. This approx-

imation error is comparable to the cost of one outpatient treatment (e.g. one PCP

office visit) or half day of hospitalization (Henry J Kaiser Family Foundation, 2015).

We also observed that the approximation gaps were smaller as the treatment efficacy

increased.

Figure 3.6: Gaps between the Optimal Dynamic Programming Cost with Non-stationary Readmis-
sion Risk and the LAD Estimations

Next, we consider reducing the non-stationary readmission risk and its effect on

the cost of follow-up. Let ρ⃗ be the non-stationary readmission risk vector. We scale

the readmission risk vector up/down element-wise ρrt ← min{ρtr, 1} where r > 0 is

the scaling factor. This scaling operation preserved the shape of the non-stationary

risk. We varied r from a very small value (10−5/maxt(ρt)) to a very large value

(1/mint(ρt)). As a result, the scaled readmission risk ranged from (10−5, ..., 10−5) to

(1, ..., 1) For each scaled readmission risk ρrt , we computed the LAD estimate ρLAD.

Figure 3.7 shows that CM(ρLAD) can approximate the optimal DP cost very well

for T ∈ {7, 14, 30, 90}. Using Proposition III.21, the lower bound

ρ = 1
d+[1−(1−d)f ](T−1)+(1−d)(T−1)ω/R

(plotted as dotted line) served as a reasonably

tight lower bound on ρ̄.
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Figure 3.7: Effect of Reducing Non-stationary Readmission Risk Approximated Using LAD Esti-
mations

3.4.7 Post-Discharge Care Engagement Threshold

Having established that the PWCF approximation CM(ρ) =


V (ρ) if ρ ∈ [0, ρ̄]

R if ρ ∈ (ρ̄, 1]

is an accurate approximation, we now discuss the implications of the term ρ̄.

Remark III.18 (Post-Discharge Care Engagement Threshold). The term ρ̄ can be

interpreted as an engagement threshold – for patients whose risk is at above this

threshold, a hospital has no incentive to engage in exerting post-discharge readmis-

sion reduction efforts. If a hospital can manage to reduce the readmission risk to
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below the threshold ρ̄, the hospital will engage in post-discharge readmission preven-

tion and benefit from it at an (asymptotically) linear rate by Corollary III.14.

Note that ρ̄ is uniquely determined by the MDP’s costs, transition probabilities,

and the episode length (ω,R, f, d, T ). Since V (ρ) is non-decreasing in ρ by Theorem

III.13, ρ̄ can be efficiently computed using a univariate binary search. However, a

closed-form expression is not available for ρ̄. We present Proposition III.19 to bound

ρ̄ from below using a closed-form expression. This lower bound is denoted by ρ. For

patients at risk below ρ, a hospital would engage in post-discharge care since it could

generate savings at a linear rate.

Proposition III.19. If V (ρ) is concave (see Theorem III.13, and Proposition III.9),

then a lower bound for ρ̄ is ρ, such that

ρ̄ ≥ ρ =
1

d+ [1− (1− d) f ] (T − 1) + (T − 1)(1− d)ω/R
. (3.82)

This means that for patients at risk below ρ, the hospital would engage in post-

discharge care because it could generate savings at a linear rate.

Proof. Proof of Proposition III.19. The result follows from the concavity of V (ρ):

ρ̄ ≥ R

limρ→0+ V ′(ρ)
=

R

{d+ [1− (1− d) f ] (T − 1)}R + (T − 1) (1− d)ω

⇒ρ̄ ≥ ρ =
1

d+ [1− (1− d) f ] (T − 1) + (1− d)(T − 1)ω/R
(3.83)

This lower bound relies on the concavity of V (ρ), as it implies the marginal benefit

(i.e., the derivative) decreases in ρ. Although V (ρ) is not necessarily concave (see

footnote 6 for a counter-example), in our numerical studies, V (ρ) behaves very much

like a concave function even it is not concave.

3.5 The Pre-Discharge (“Strengthening”) Stage

In this section, we provide a stylized way to capture the relationship between a

patient’s readmission risk and the required pre-discharge efforts and costs for achiev-

ing the readmission risk. We do acknowledge that it is very difficult to quantify the

exact cost of a hospital exerting efforts that reduce the readmission risk to a specific

value ρ. This chapter does not attempt to provide a structural pre-discharge model

or to estimate CS(ρ) from data. Specifying and estimating such a structural model
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would require a separate empirical study like Bartel et al. (2014). Instead, we take

a stylized approach and follow Zhang et al. (2016) to define this cost. Different from

their work, our approach is more general as it does not assume a specific functional

form. Note that the functional form used in Zhang et al. (2016) satisfies all of the

assumptions we impose.7

Assumption III.20 (Pre-Discharge “Strengthening” Cost Function). Without spe-

cific functional form assumptions, the pre-discharge strengthening cost CS(ρ) should

satisfy the following mild and intuitive conditions:

1. CS(ρ) = 0 for ρ ∈ [ρ0, 1] – a hospital can achieve the baseline readmission risk

(or worse) without any (additional) spending on readmission reduction (which

is true by definition of ρ0).

2. CS(ρ) is continuous on [0, 1]. This condition is for analytical tractability.

3. CS(ρ) is twice differentiable on [0, ρ0) and twice left differentiable at ρ0. This is

also for analytical tractability.

4. CS(ρ) is strictly convex and strictly decreasing on [0, ρ0). This requires that the

cost of reducing the readmission risk becomes more costly as ρ gets closer to

zero.

5. CS(0) = H0 > R – eliminating the possibility of a readmission is more expensive

than the cost of a readmission. This is likely to be true because otherwise, a hos-

pital could spend CS(0) < R in the pre-discharge stage to eliminate readmissions

completely.

3.6 Balancing Pre- and Post-Discharge Efforts

Next, we integrate the pre- and post-discharge stages and study how a hospital

balances efforts between the two stages to minimize the total expected cost of the

entire episode of care.

To check whether a BP policy is balancing, we analyze how Z(ρ) behaves and

find the minimizer ρ∗. There are two important cases that must be considered: (1)

ρ̄ ≤ ρ0 and (2) ρ̄ > ρ0. Figure 3.8 provides an example of each case. Recall that ρ̄ is

a threshold above which the hospital does not engage in reducing readmissions and

7Following the functional form used in Zhang et al. (2016), we can define: CS(ρ) =

{
0 if ρ ≥ ρ0
H0
ρα0

(ρ0 − ρ)α if ρ < ρ0
,

where 1 < α < ∞. This satisfies Assumption III.20 for all 1 < α < ∞ if H0 > R. The parameter α and H0

characterize the convexity and the difficulty of reducing readmissions. A larger α indicates a more convex shape of
CS(ρ) so that reducing readmissions become increasingly difficult as ρ approaches zero.
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below which the hospital benefits from reducing readmissions at an (asymptotically)

linear marginal rate. Theorem III.21, shows that a BP chosen such that ρ̄ > ρ0

balances the efforts between both the pre- and post-discharge stages.

Figure 3.8: Schematic Sketch of the Costs in Cases 1 and 2

Theorem III.21 (Sufficient Condition For Balancing BP Policy). Suppose the fol-

lowing mild condition on the derivative of the pre-discharge strengthening cost func-

tion CS(·) holds:

C ′
S(0) > min

{
−CS(0)−R

ρ0
,−V ′(ρ0)

}
(3.84)

This condition requires that the first order derivative be sufficiently large (i.e., not

too negative). Intuitively, this requires reducing readmissions in the pre-discharge

stage to be not too difficult and expensive. Graphically, the CS curve should not be

too “steep.” This condition holds if we use the specific functional form from Zhang

et al. (2016).

If V (ρ) is concave (see Theorem III.13, Proposition III.9), then a sufficient con-

dition for a BP policy to be balancing is

ρ =
1

d+ [1− (1− d) f ] (T − 1) + (1− d)(T − 1)ω/R
≥ ρ0. (3.85)

If V (ρ) is not concave, a sufficient condition is ρ̄ > ρ0, where ρ̄ can be efficiently

computed using a univariate search for V (ρ̄) = R on ρ̄ ∈ [0, 1].

Note that the cost of a treatment ω and the cost of a readmission R appear as

a quotient in the denominator in Eq. (3.85). In fact, this quotient has a practical

meaning – it quantifies how inefficient and expensive a treatment is, relative to the

cost of a readmission. We shall now formally define this quotient as the treatment

inefficiency.
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Definition III.22 (Treatment Inefficiency). The quotient ω/R denotes the treat-

ment inefficiency. If ω/R ≥ 1, a treatment is considered very inefficient since it

is as expensive as a readmission (if not more so). In this case, a hospital would

rather readmit the patient and incur the readmission cost and avoid providing any

treatments. If ω/R = 0, the treatment is considered very efficient as it is virtually

costless. Hence, a larger value of ω/R indicates that treatments are more inefficient.

Eq. (3.85) provides powerful insights into the design of a bundled payment policy.

Next, we discuss each one of the moving parts and the policy implications of this

equation.

3.7 Design of a Balancing Bundled Payment Policy

Theorem III.21 provides intuition into how the CMS can design a bundled pay-

ment policy that can incentivize readmission reduction. In this section, we discuss

the policy implications. To provider stronger readmission reduction incentives, the

following actions can be taken by the CMS.

• Shortening the Episode Length (T ↘)(T ↘)(T ↘). Shortening the BP episode length

provides stronger incentives for hospitals to exert more readmission reduction

effort. As shown in Eq. (3.85), the episode length T being in the denominator

suggests that reducing the length has a “convex” impact on the incentives –

as the length gets shorter, the incentives get increasingly stronger (the convex

relationship is shown numerically in Figure 3.13). This aligns with our intu-

ition. A longer episode length means that the hospital is held accountable for

a longer period of time, making preventing readmissions less feasible and more

expensive.8 Hence, extended episode length can strongly disincentivize hospi-

tals to reduce readmissions, possibly explaining the observed lack of progress in

national readmission reduction (Desai et al., 2016). Conversely, shortening the

penalty window can incentivize hospitals to exert more readmission reduction

effort, as the financial benefits of such efforts begin to outweigh the costs.

Moreover, we find that shortening the episode length is more effective if the

patient cohort experiences urgent and acute post-discharge complications that

require immediate inpatient care (e.g., an organ failure). In such cases, patients

will get readmitted very quickly once a complication develops. This is reflected

8For example, as T increases to ∞, Corollary III.14 implies that the post-discharge cost becomes a step func-
tion. This means that following-up will be as expensive as a readmission, unless the readmission risk is completely
eliminated (i.e., ρ = 0). In this case, the hospital would not exert any readmission reduction effort in either pre- or
post-discharge stage.
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by a larger delay-time failure rate d. As d increases, the delay-time window in

which post-discharge outpatient treatment is effective becomes shorter. This

means that there is little room for error. The hospital must exert full effort to

engage in preventing readmissions, because otherwise, if the patient developed

a complication and was not treated timely, this complication would quickly trig-

ger a readmission. Consider the extreme case in which complications require

immediate inpatient care (d = 1). Despite perfect treatments (f = 1), subsi-

dizing treatment and penalizing readmission would not work. In this case, Eq.

(3.85) becomes 1/T ≥ ρ0, from which ω/R disappears. The only way to increase

incentives is to shorten the episode length.

In recent medical literature, how long a BP episode of care should be and how

long the HRRP penalty window should be have been controversial. A New Eng-

land Journal of Medicine article argued that “policymakers (...) could consider

limiting the (HRRP) time window. The causes of readmissions occurring within

3 days after discharge or even 7 days after discharge are much more under the

hospital’s control, and these near-term readmissions are preventable far more

often than later ones” (Joynt and Jha, 2012). The Healthcare Cost and Utiliza-

tion Project (HCUP) (Fingar et al., 2017) found that over one-third of 30-day

readmissions were 7-day readmissions and 7-day and 30-day readmissions were

similar for many surgeries. Moreover, a recent study (Graham et al., 2018)

showed that early readmissions (within 7 days of discharge) were more likely to

be preventable than late ones (after day 7). Our findings support these medical

hypotheses on the benefits of a shorter HRRP/BP window, and could provide

a quantitative guideline for policy design.

• Making Post-Discharge Treatment More Efficient (ω/R↘ω/R↘ω/R↘). To fur-

ther incentivize readmission reduction, the treatment inefficiency can be low-

ered by subsidizing post-discharge treatments and/or increasing the readmission

penalty:

– Subsidizing Post-Discharge Treatments (ω ↘ω ↘ω ↘). To incentivize read-

mission reduction, the CMS should encourage post-discharge outpatient

treatment by subsidizing and cost sharing. High cost of outpatient follow-

up treatment can be burdensome thus can make reducing readmission costly

for hospitals. Reducing this cost ω, without sacrificing the quality of care,

can incentivize members of a healthcare bundle (e.g., Accountable Care Or-

ganizations) to work to reduce readmissions. Under current BP policy, the
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payment covers the costs of post-discharge outpatient treatments. However,

the CMS does not have policies in place for post-discharge care subsidies. In

some cases, post-discharge services and treatments are not even covered by

Medicare or Medicaid. Our finding suggests that subsidizing post-discharge

care could entice hospitals to reduce readmission. In fact, some private

healthcare providers have already started to encourage and support their

patients to seek better post-discharge care. For example, Tenet Healthcare,

a private healthcare corporation, has put into effect a policy to fund patients

for their spendings in post-discharge care such as “non-covered medically

appropriate outpatient services at a hospital or another provider of the pa-

tients choice” (Tenet Healthcare, 2015). Our finding suggests that the CMS

should encourage post-discharge outpatient treatment by subsidizing and

cost sharing. In particular, for high-risk surgeries, such subsidies would

play an important role to ensure hospitals exerts effort in the continuum of

care pre- and post-discharge.

– Penalizing Readmissions (R↗R↗R↗). As readmissions become more costly

or more penalized, the hospital will put more efforts into readmission re-

duction to avoid such a high cost. Although this cost is determined by

the pathological nature of each readmission case, we believe that the CMS

can still have some control over this cost by penalizing readmissions and/or

decreasing the Bundled Payment amount (so that readmission costs take

up a greater portion of the BP budget). Currently, BPCI and HRRP do

not overlap – hospitals do not get penalized for excessive readmissions if

they are reimbursed under a BP scheme. However, if stronger incentives

are needed, it might be viable for the CMS to impose HRRP penalties on

top of the BP scheme.

In practice, the cost of a readmission exhibits large variation: a 30-day

readmission after a major abdominal or chest surgery can cost as low as

$576 and as high as $147,904 (Jacobs et al., 2017; Leow et al., 2018). As

such, hospitals may not have enough incentives to reduce low-cost readmis-

sions. In practice, a hospital can anticipate the cost of a future readmission

– medical studies have found predictors and flags for high readmission costs

and longer readmission LOS, such as blood transfusion, imaging, patho-

logical stage, and comorbidity in the index hospitalization (Jacobs et al.,

2017). Therefore, it is possible that a hospital decides to exert less effort

on patients who exhibit low-cost readmission characteristics. To “equally”
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incentivize the reduction of both low-cost and high-cost readmissions, we

argue that the CMS could consider penalizing readmissions differently to

reduce the variance in costs. For instance, readmissions can be reviewed

case by case by a panel of external clinicians, and accordingly, the CMS can

determine a case-specific penalty based on the cause, cost, and intensity of

each readmission. In fact, this fits well into the CMS’s current policy and

practice as the BPCI retrospectively reconciles with the hospital for the

bundled payments (CMS, 2018a).

3.8 Numerical Case Study

In this section, we first estimate the parameters using two datasets of cystectomy

patients. We then discuss how to design a BP policy and how each moving part

impacts the policy.

3.8.1 Parameters Estimation

As a proof of concept, we use data collected from bladder patients who have

undergone cystectomy surgery. Cystectomy, a surgery to remove the bladder, has

one of the highest 30-day readmission rates among all major chest and abdominal

surgeries. Using these patients as an initial testbed, we validate some of the key

assumptions used in our analytical study.

We used two datasets to parameterize the model. The first dataset consists of

327 cystectomy patients discharged from our partner hospital between 2007 and

2012. The second dataset contains 717 cystectomy patients from the State Inpatient

Database (SID) discharge in 2009 and 2010. For detailed description of the inclusion

and exclusion criteria, we refer the readers to Liu et al. (2018a).

Baseline Readmission Risk (ρ0)(ρ0)(ρ0) and the Delay-Time Failure Rate (d)(d)(d).

To estimate the readmission risk ρ0, we first fitted an exponential distribution with

λ = 0.044 using right-censored data from the 327 cystectomy patients (see Meeker

and Escobar (2014) for estimation method).9

We estimate the readmission risk ρt = P (st+1 = S|st = H, at = Wait) =

9We would like to stress that the readmission risk is distinct from the probability of readmission. Recall that
the readmission risk ρ is the probability of a healthy patient developing a post-operative complication (i.e. becomes
sick). The reason why this rate may seem higher than expected is due to the fact that a post-operative complication
may not necessarily lead to a readmission. Potential reasons include: 1) some complications were treated (thus a
readmission was prevented); 2) some complications may have caused mortality (instead of a readmission); and 3)
some complications were never treated and did not trigger a readmission. Nevertheless, in clinical practice, without
proper diagnoses at a clinical encounter, it is difficult to tell whether a patient’s condition would cause a readmission
or not. Thus, as long as the patient is experiencing complications, our model treats them indifferently as a potential
readmitable complication. Although this is a simplification, we believe that this is suitable for policy-level analyses.
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Panel A: Readmission Risk ρ0 Panel B: Failure rate d

Figure 3.9: Fitted Exponential Distribution for the Time to Symptom (Panel A) and Time between
Symptom Onset and Readmission (Panel B)

S(t)−S(t+1)
S(t)

, where S(t) is the survival function (i.e. complementary cumulative dis-

tribution function) of the exponential distribution. For an exponential distribution

with rate λ, the readmission risk can be computed using ρt = 1 − exp(−λ). Hence

we estimate the baseline readmission risk ρ0 = 0.04. This represents the 25% 30-

day readmission rate of cystectomy patients. Since the overall 30-day readmission

rate of Medicare beneficiaries are 20% (Jencks et al., 2009), we use ρ0 = 0.04 as a

baseline scenario and varied it between 0.01 and 0.08 to represent a low-risk case

and a high-risk case respectively. This serves as a baseline for evaluating whether

a hospital is effectively reducing readmissions. In this chapter, we do not attempt

to estimate the natural readmission rate intrinsic to the pathology of the surgery

and its recovery because it is difficult to observe such a natural readmission risk as

patients are rarely free of interventions. Based on the data fitting shown in Figure

3.9, the delay-time failure rate d is estimated to be d = 0.3 . We varied d between

0.1 and 0.5 for sensitivity analysis.

Cost of a Readmission (R)(R)(R) and Cost a Treatment (ωωω). There are huge

variations in the cost of readmissions. A 30-day readmission can cost as low as

$576 and as high as $147,904 (Jacobs et al., 2017; Leow et al., 2018). While this

might be an issue for an operational model, for policy-level analyses, we use the

population average to gain insights. The average cost of a readmission is estimated to

be R = $5, 000 according to Leow et al. (2018). To estimate the cost of a treatment

ω, we refer to Kilroy et al. (2013), which estimated that an average Emergency

Department (ED) visit within 30 days of discharge costs $1,900. Given the fact that

ED visits are very expensive, if patients were treated at the Primary Care level, the

cost will be much less. For a baseline treatment cost, we use the cost of half of an
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ED visit ω = $1, 000. The cost of post-discharge readmission reduction efforts is

difficult to estimate in practice due to the varied methods that can be employed and

the difficulty of quantifying the cost of those efforts in practice. To address this, we

vary the cost of ω along a reasonable interval, with the average cost of a readmission

$5,000 as an upper bound and $200 as a lower bound (which represents the average

cost of a Primary Care visit).

Pre-Discharge Cost of Eliminating Readmissions (CS(0))(CS(0))(CS(0)). We acknowledge

that it is very difficult to estimate the cost of eliminating readmissions completely

for a patient cohort. Here we propose a conservative estimate. Based on a study of

49,540 cystectomy patients in the U.S. between 2003 and 2010 (Leow et al., 2015),

the 95% confidence upper bound for the 90-day hospital direct cost was $27,269.
The average LOS was 10.8 days. The average cost of hospitalization per day can be

roughly estimated to be $2,525. One conservative estimate for the cost of eliminating

readmissions is the cost of keeping all patients hospitalized for 90 days after surgery.

We estimate this cost to be CS(0) = $230, 000 ≥ $227, 242 = 90× $2, 525.

Treatment Efficacy (f)(f)(f). In the medical literature, studies have found varying

levels of efficacy for post-discharge follow-up care to reduce readmissions. Jack et al.

(2009) found that follow-up care, joined with other readmission reduction measures,

reduced readmissions. Misky et al. (2010) reported that patients who had timely

PCP follow-up after discharge had 2% readmission rate whereas patients lacking

timely PCP visit had 21% readmission rate. According to Benbassat and Taragin

(2000), up to 75% percent of readmissions are preventable. In line with the latter

paper, we choose f = 0.75 to be the baseline scenario. We vary f between 0.5 and

1 to conduct sensitivity analyses.

For the purpose of exposition, we round the parameters and present them in

Table 3.2 to summarize the estimation results, the uncertainties, and the bounds for

sensitivity analyses. We acknowledge that many of these parameters are difficult to

estimate, however we believe our ranges are reasonable based on available financial

and clinical data for our stated purpose, which is to provide insight into system-level

policy design, rather than operational-level decision support, which requires more

accurate estimates of model parameters. There are many practical and theoretical

challenges in the estimation of these parameters, which provide motivation for a

separate empirical study as future work.
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Parameter Baseline Uncertainty Lower Bound Upper Bound Source

ρ0 0.04 Moderate 0.01 0.08 Liu et al. (2018a)
d 0.3 Low 0.1 0.5 Liu et al. (2018a)
R $5,000 Very High $500 $150,000 Leow et al. (2018)
ω $1,000 Very High $200 $5,000 Kilroy et al. (2013)

H(0) $230, 000 Moderate $230,000 +∞ Leow et al. (2018)
f 0.75 High 0.5 1 Benbassat and Taragin (2000)

Table 3.2: Summary of Baseline Estimates, Uncertainties, and Bounds for Sensitivity Analyses

3.8.2 Assumption Justification and Validation

Assumption III.4 (treatments are effective) holds in the baseline scenario

of d = 0.3 and f = 0.75. Assumption III.5 (Following-Up Every Day is

Expensive) holds in the baseline scenario of ω = $1, 000 and R = $5, 000 if T ≥ 5.

Assumption III.6 (stationary readmission risk) is used to derive a closed-form

expression for analysis of the post-discharge follow-up cost. When this assumption

violated, Theorem III.16 provides an accuracy bound for the PWCF expression.

Assumption III.20 (Pre-Discharge “Strengthening” Cost Function) is quite

general as it only specified the shape of the curve. As mentioned previously, if we

follow the literature and use a similar functional form as in Zhang et al. (2016),

CS(ρ) =


0 if ρ ≥ ρ0

H0(ρ0 − ρ)α/ρα0 if ρ < ρ0

, then Assumption III.20 holds for CS(0) =

H0 > R and for all α ∈ (1,∞).

3.8.3 Policy Recommendations

In this section, we first analyze the status quo and shed light on the recent trend

indicating that readmission reduction has stalled under current HRRP penalty pro-

gram. We then propose policy recommendations through policy levers of (1) short-

ening the episode length (or the HRRP penalty window) T . (2) subsidizing post-

discharge treatments, and (3) penalizing readmissions.

Status Quo: lengthy episode/penalty window weakens readmission reduction incen-
tives.

Much of the work on readmissions has focused on penalties and methods (costs)

for preventing readmissions. In this section, we analyze these two methods in con-

junction with a third dimension: the episode/penalty window length. Here, we define

the status quo as T = 30 under the HRRP defined penalty window, and T = 90 un-
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der the BPCI defined length of an episode of care. We test whether the sufficient

condition for balanced readmission reduction efforts is met by varying the treatment

efficacy f and inefficiency ω/R for low (ρ0 = 0.01), medium (ρ0 = 0.04), and high

(ρ0 = 0.08) risk cohorts.

Baseline Case
Unbalanced
Balanced

Figure 3.10: Status Quo: in Baseline Scenarios, 90-day BP Episode Length is Too Long for Medium
and High-Risk Cohorts. HRRP 30-day Window is Too Long for High-Risk Cohorts

In Fig. 3.10, the green (light gray) region indicates that the optimal policy is

balanced (i.e. the sufficient condition (Eq. (3.85)) is met) and red (dark gray) region

is indicates the optimal policy is unbalanced and the hospital will not exert effort in

both stages (i.e. the condition is not met). For the medium- and high-risk cohorts,

it appears that a 90-day BP episode may be too long to incentivize readmission

reduction; the effort of keeping these patients out of the hospital is too great even if

post-discharge treatments are very effective and efficient. In this case, it is unlikely

that a treatment subsidy or operational improvement to decrease cost of treatments

or an increase in penalty can overcome the burden of preventing these riskier patients

from returning to the hospital for up to 90-days after discharge. The only option

for these cases is to shorten the penalty and episode window. This could be done

on a case-by-case basis for diagnoses/procedures that are considered particularly at

medium or high risk for readmission; e.g. radical cystectomy with a 25% readmission

rate (Lee et al., 2019).

In the baseline scenario (marked with asterisks), a 30-day penalty window could

incentivize readmission reduction only for low and medium risk cohorts. Unfortu-

nately, the contribution of these patients to the overall readmission rate is dampened

by the fact that their risk is low, hence targeting these patients may not have the

desired magnitude of impact on readmissions. For the high-risk cohorts, treatment

efficacy and efficiency must be high for readmission reduction incentives, even if there

is only a 30-day penalty window. This observation supports one possible explanation
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for why the readmission reduction has plateaued under the HRRP’s 30-day penalty

program (Desai et al., 2016): the penalty window is arduously long, particularly for

riskier patients that contribute significantly to the overall readmission rate, while the

low hanging fruit (low and medium risk) provides insufficient improvement to move

the needle.

In the next two subsections, we analyze each of these three levers in greater detail.

To do so, we quantify what we mean by “incentivizing readmission reduction” as

follows. For each BP policy, (ω,R, T ), there is an upper threshold on the risk level

of patients that would be included in a Readmission Reduction Program that we

call the RRP threshold ; e.g. only patients with baseline risk level ρ0 < 0.04 would

induce the hospital to employ a balanced policy (i.e. exert appropriate effort in a

readmission reduction program). The higher the threshold, the more (and riskier)

patients would be included in a readmission reduction program. Hence we quantify

readmission reduction incentive in terms of the impact on this threshold: the higher

the threshold, the more the incentive to expand readmission reduction programs and

to target riskier (and hence more needy) patients. We refer to this quantitative

measure as X%-RRP (readmission reduction program) expansion (or similarly RRP

expansion), an increase in the risk threshold for program inclusion by X% (absolute).

Subsidizing Post-Discharge Treatments and Penalizing Readmissions.

In this section, we study how a policymaker (e.g., the CMS) may consider sub-

sidizing post-discharge treatments and/or increasing the penalty of readmissions to

incentivize readmission reduction.
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Figure 3.11: Readmission Reduction Program (RRP) Threshold is Convex Decreasing in Treatment
Inefficiency ω/R (d = 0.3)

In Fig. 3.11, the lines show the RRP threshold for inclusion as a function of

treatment inefficiency, ω/R . If a point (ω/R, ρ0) falls below the line then the hospital
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will engage in readmission reduction and if the point lies above line, then the hospital

will not. In the latter case, the CMS may subsidize the post-discharge treatments or

increase the readmission penalty to incentivize readmission reduction. The curves can

be interpreted as displaying how many extra patients (greater ρ0) would be targeted

for reduction efforts if treatments are made more efficient. Note, more efficient is to

the left in this graph.

The convex shape of the impact of the subsidy/penalty inefficiency ratio indicates

that an improvement in efficiency (move to the left on the curve) has greater im-

pact when the treatments are already efficient. This means that, if the BP structure

and readmission ecosystem is already inefficient, it will take significant efficiency

improvement to see even a small change in RRP expansion (as a measure of read-

mission reduction effort). Conversely, if the system is already fairly efficient, small

improvements in efficiency can result in increasingly more substantial RRP expan-

sion. The managerial implication is that, it may take significant improvements in

efficiency (e.g. like a setup cost) for incentives to begin having an impact on RRP

programs (literature indicates current efforts may not be sufficient), but once we

start seeing an impact a program may experience increasingly impactful gains from

further increases in efficiency. This is with the caveat, however, that BP design may

not linearly impact inefficiency as a function of their controllable inputs. We next

study the impact of the subsidy/penalty levers individually to shed more insight on

the policy design choices for insurers.

Fig. 3.12 plots the sensitivity (marginal) to subsidy/penalty for a wide range

of ω and R (based on Table 3.2). On the left panel, we set the treatment cost to

the baseline ω = $1, 000 and varied the cost of readmission between the estimated

lower and upper bounds (from $500 to $150,000). To do so, we compute the deriva-

tives of the LHS of Eq. (3.85) with respect to ω and R. The absolute values of

the derivative measure the sensitivities to subsidy and penalty (| d/ dω ρ(ω)| and
| d/ dR ρ(R)| respectively). Hence, a larger sensitivity indicates a greater change in

terms of incentives (i.e., LHS of Eq. (3.85)) per dollar of subsidy/penalty.

We found that subsidizing is more effective when the cost of a readmission is

relatively low. When the readmission penalty is too high, the additional impact of

subsidy becomes muted because the high penalty is already sufficiently motivating.

On the right panel, we set the readmission cost to the baseline R = $5, 000 and

varied the cost of treatment between the estimated lower and upper bounds (from

$200 to $5,000). We found that increasing the penalty is more robust to a variety of

treatment costs. In contrast to subsidy, the general trend indicates that increasing
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Figure 3.12: Sensitivities to Subsidy and Penalty (T = 30, f = 0.75)

readmission penalties is more effective when treatment costs are higher. Thus, if

readmission prevention methods are expensive a penalty can be more incentivizing.

Because penalty and subsidy move in opposite directions with respect to each other,

it may be prudent to consider only engaging in one of these mechanisms, depending

on the status quo of current costs.

Shortening the BPCI/HRRP Window Length.

As our analytical result suggests (see §3.7), reducing the episode/penalty window

length T has a “convex” effect on the incentives, making the episode/penalty window

length a highly effective mechanism to increase the incentives to reduce readmissions.

In Fig. 3.13, we varied the window length T for two treatment inefficiency (ω/R)

scenarios at 0.2 (baseline) and 0.8 (inefficient treatments). A larger area under

the line in Fig. 3.13 indicates more robustness in readmission reduction incentives

because the hospital will engage in readmission reduction for cohorts at or below

the baseline readmission risk ρ0. Due to the convex impact of T , shortening the

window length is increasingly effective as the window shrinks. Fig. 3.13 indicates

that a 14-day window would provide sufficient incentives for hospitals to reduce

readmissions for patient cohorts at high risk. Moreover, shortening the window is

also more effective than improving the inefficiency (as the great area under the curve

covers a broader range of risks).

From Fig. 3.13, we also observed that when the treatment inefficiency increases

(from 0.2 to 0.8), increasing the treatment efficacy becomes less effective in providing

incentives. This is due to the fact that the high cost makes the post-discharge

treatments less economically viable. As a result, under the same budgetary constraint

(a hospital is willing to spend at most R in the post-discharge stage), the hospital
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Figure 3.13: Readmission Reduction Program (RRP) Threshold is Convex Decreasing in the Win-
dow Length (d = 0.3)

will conduct fewer post-discharge treatments.

3.8.4 Summary of Numerical Insights

We summarize the insights from our numerical studies.

Status quo HRRP penalty window and BPCI episode are possibly too

long. Specifically, current BPCI 90-day episode of care might be too long if the

patient cohort is at medium- or high-risk of readmission. Under HRRP, if a hospital

minimizes the cost (as it does under a BP policy), then 30-day HRRP penalty window

might be too long for high-risk surgery cohorts. With too long a HRRP/BPCI

window, there is no amount of subsidy or penalty that could incentivize hospitals to

include medium or high risk patients in their readmission reduction program. This

shed light on why readmission reduction has recently stalled under current HRRP

scheme.

For high-risk patients, HRRP/BPCI window must be appropriately

shortened first, before exploring other subsidy and penalty options. Short-

ening the BPCI episode and HRRP penalty window has a convex impact – as it

shortens to 14-day, hospitals would gain sufficient incentives to reduce readmissions

for patient cohorts at a broad range of readmission risks.

Subsidy of treatment and penalty of readmission can make treatments

efficient enough to provide readmission incentives. In particular, the treat-

ment efficiency has a convex impact – improving the efficiency has a greater im-

pact when the system is already efficient. The more we work toward incentivizing

readmission reduction, the more effective our efforts become. In conjunction with

the shortening of the BPCI/HRRP window, subsidy and penalty in readmission re-

duction initiatives can become increasingly effective to overcome the stalling of the
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readmission reduction momentum.

Effectiveness of subsidy and penalty work in contrasting ways. When

treatments are expensive, penalties are increasingly effective. In contrast, subsidy is

only effective when penalties are small to moderate and rapidly becomes ineffective as

the readmission cost/penalty increases. Depending on the readmission and treatment

costs intrinsic to each patient cohort, the CMS should focus on the most effective

lever between subsidy and penalty.

3.9 Practical Considerations, Limitations, and Future Work

Our analytical and numerical analyses have found the following policy levers could

be used to increase the incentives: the readmission penalty could be increased; the

post-discharge treatment that prevents readmissions can be subsidized; the HRRP

penalty window and the BPCI episode of care length can be shortened to provide

stronger incentives. Implementing such policy changes might raise some practical

concerns. The policymakers should consider the following practical issues before

actually implementing the recommended policy changes. These considerations also

provide sensible directions for future research.

Shortening the BPCI Episode (or HRRP’s Penalty Window) Length.

Reducing the window T in certain instances may be very effective. However, there is

an argument that this may lead hospitals to try to avoid readmissions by deferring

the readmission to day T + 1. For instance, if a patient presents him/herself at the

ED on day T after discharge, the hospital can simply keep the patient in the ED or

an observation unit till day T+1 and then admit the patient. However, this incentive

exists regardless of the window, T , and there is anecdotal evidence that healthcare

providers are already doing this with a 30-day readmission window. With a shorter

window, the concern becomes that a larger fraction of the overall readmissions may

be avoided in this manner. However, the choice of penalty window impacts this

delay phenomenon only in terms of the number of potential readmissions that could

occur within 1-2 days of the penalty cut-off. Hence, choosing an appropriate window

based on historical readmission times (which would be not tampered with if the

window were shortened below 30 days) could mitigate some of this behavior. A

future research direction is to study and incorporate the this “defer” behavior of

hospitals.

Post-discharge Treatment Subsidy. Subsidizing post-discharge treatment can

help lessen the hospital’s financial burden so that better post-discharge care can be

provided. In practice, such subsidies can create unnecessary incentives for premature
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discharge and/or unnecessary post-discharge efforts exceeding what is economical to

reduce readmissions. Earlier discharge, on one hand, could reduce the LOS and in-

crease throughput. On the other hand, it could also lead to adverse health outcomes.

Discharge timing and the LOS play important roles in readmission risk management.

In this chapter, our inpatient stay model does not consider discharge timing. This is

left to future work, where a more structured model for the inpatient stage could be

developed with the support of empirical estimation.

Readmission Penalty. Currently, BPCI and HRRP do not overlap – hospitals

do not get penalized for excessive readmissions if they are reimbursed under a BP

scheme. However, if stronger incentives are needed, it might be viable for the CMS to

impose HRRP penalties on top of the BP scheme. The HRRP readmission penalty

is limited to 3% of the reimbursement amount Our study provides insights and a

quantitative guideline for increasing this penalty, if stronger incentives are needed.

However, if the readmission penalty is too high, it could lead hospitals to eschew

patients from that payer (e.g. Medicare HRRP) or may cause significant financial

hardship for the healthcare industry. Therefore, a sensible future extension is to

incorporate patient selection.

While many aspects of our modeling framework require more investigation and

empirical support, we believe that our analyses point to new directions for future

research regarding incentives to reduce readmissions.

3.10 Conclusion

In this chapter, we study how a health funding policymaker can design an effective

bundled payment and readmission penalty policy to incentivize hospitals to balance

pre- and post-discharge efforts and thus reduce readmissions. To do so, we propose

a novel Strengthen Then Maintain (STM) framework that models an episode of care

consisting of an inpatient stay (strengthening) stage and a post-discharge follow-up

(maintaining) stage. This framework is applicable to a set of machine maintenance

problems where the failure rate of a machine can be reduced at a cost in the strength-

ening stage, and in the maintaining stage maintenance policies are optimized based

on the failure rate produced by the strengthening stage. To study policy-level deci-

sions, we first study how a hospital would behave under a BP policy. By analyzing

the hospital’s behaviors, we identified two possible follow-up monitoring regimes –

in an engaged policy, the hospital treats the patient if and only if the patient is

sick; whereas, in a disengaged policy, the hospital may not treat a sick patient due

to the high costs associated with readmission prevention efforts. We show that a
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disengaged policy is undesirable due to its high costs and should be disincentivized

at the policy level. We then develop a piece-wise closed-form expression for the

post-discharge stage cost-to-go and provide a theoretical bound for the optimality

gap when key assumptions are violated. Making minimal assumptions on the cost of

the inpatient stay stage, we derive a sufficient condition to incentivize the hospital

to reduce readmission while minimizing the cost of both the pre- and post-discharge

stages.

Our analytical findings suggest that the following policy levers could be used

to increase the incentives for reducing readmissions: 1) subsidizing post-discharge

outpatient follow-up treatments; 2) penalizing readmissions; and 3) shortening the

readmission penalty window and the length of an episode of care. We also provide

a quantitative guideline for the CMS to decide the subsidization and penalty as well

as the program window length. Parameterized with data from a cystectomy patient

cohort, we found that the bundled payment policy and the readmission penalty

program status quo may not provide sufficient incentives for hospitals to reduce

readmissions. This sheds lights on the potential causes of the plateaued readmission

reduction momentum since the implementation of the HRRP.



CHAPTER IV

Pre-Discharge Readmission Risk Prediction

ABSTRACT: Despite efforts to reduce their frequency and severity, complica-

tions and readmissions following radical cystectomy remain common. Leveraging

readily available, dynamic information such as laboratory results may allow for im-

proved prediction and targeted interventions for patients at risk of readmission. We

used an institutional electronic medical records database to obtain demographic,

clinical, and laboratory data for patients undergoing radical cystectomy. We charac-

terized the trajectory of common postoperative laboratory values during the index

hospital stay using support vector machine (SVM) learning techniques. We com-

pared models with and without laboratory results to assess predictive ability for

readmission. Among 996 patients who underwent radical cystectomy, 259 (26%) pa-

tients experienced a readmission within 30 days. During the first week after surgery,

median daily values for white blood cell count, urea nitrogen, bicarbonate, and creati-

nine differentiated readmitted and non-readmitted patients. Inclusion of laboratory

results greatly increased the ability of models to predict 30-day readmissions af-

ter cystectomy. Common postoperative laboratory values may have discriminatory

power to help identify patients at higher risk of readmission after radical cystectomy.

Dynamic sources of physiological data such as laboratory values could enable more

accurate identification and targeting of patients at greatest readmission risk after

cystectomy

4.1 Introduction

Radical cystectomy has one of the highest rates of complications and readmissions

of any surgical procedure, with 25% of patients experiencing unplanned readmission

within 30 days (Borza et al., 2017; Stimson et al., 2010; Hu et al., 2014; Skolarus et al.,

2015). These high readmission rates, coupled with increasing policy focus on reducing

116
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readmissions, have motivated investigations into identification and optimization of

patients at highest readmission risk. However, the ability to predict readmission

using traditional administrative data is limited, making it unclear where and when

to focus resources, leaving readmission rates largely unchanged (Minnillo et al., 2015;

James et al., 2016).

There is increasing interest in incorporating dynamic data sources into readmis-

sion prediction models to better enable identification of high risk cohorts (Goldstein

et al., 2017). While traditional administrative data are typically limited to static fac-

tors (e.g., demographics, comorbidities), widespread use of electronic health records

has made dynamic sources of data, laboratory results for example, readily available.

The degree to which readily available laboratory data used to guide day-to-day clin-

ical decision-making might impact readmission risk prediction after cystectomy is

unknown. Indeed, such variables can be successfully incorporated into prediction

models to improve performance for other outcomes ranging from transfer to the in-

tensive care unit to mortality (Escobar et al., 2008; Kipnis et al., 2016; Escobar

et al., 2015; Lim et al., 2015). For cystectomy patients with frequent postopera-

tive lab draws, models using dynamic laboratory data could allow for better risk

stratification and postoperative planning.

In this context, we used data from our institutional electronic health record to

examine whether incorporating dynamic laboratory data into readmission prediction

models improved risk stratification after radical cystectomy. Specifically, we assessed

daily post-operative values for commonly obtained laboratory tests, and used ma-

chine learning techniques to compare values between readmitted and non-readmitted

patients. This study demonstrates the unique promise of readily available, dynamic

data to inform risk stratification of patients most likely to be readmitted after cys-

tectomy.

4.2 Data Source

We used the Michigan Medicine database containing records on all inpatient and

outpatient visits at our tertiary care facilities. This dataset was queried for all

inpatient encounters associated with a diagnosis of bladder cancer (International

Classification of Diseases 9th Revision code 188.X) and procedural codes for radical

cystectomy (57.71) for the period from 2006 to 2016.1 This yielded a cohort of 996

patients who underwent radical cystectomy during the study period.

1The nature of this surgery, which is the removal of the entire bladder, has not changed over the study period.
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4.3 Outcomes and Covariates

Our primary outcome for this study was unplanned readmission within 30 days

of discharge from the index hospitalization. Among patients who did not have an

additional inpatient record within 30 days of discharge, we manually reviewed their

electronic charts to identify any patients who had documentation of readmission to an

outside facility during the post-discharge time window. This revealed an additional

62 readmitted patients.

We extracted the following administrative data as covariates for this study includ-

ing age, body mass index (BMI), Charlson comorbidity score (precalculated within

the source data using ICD-9 codes), marital status, gender, race, and insurance.

We also obtained daily laboratory result data for the index admission after radical

cystectomy. In order to focus on the most clinically relevant and readily available

laboratory data, we restricted our analysis to the most common laboratory tests

during the postoperative period including: complete blood count (white blood cell

count, hemoglobin, hematocrit, and platelet count), basic metabolic panel (sodium,

potassium, chloride, bicarbonate, blood urea nitrogen (BUN), creatinine, and glu-

cose), and coagulation studies (prothrombin time (PT), international normalized

ratio (INR), partial thromboplastin time (PTT)). We used ICD-9 codes to deter-

mine postoperative complications for inclusion in our readmission prediction models

using previously described methods (Tan et al., 2011).

4.4 Statistical Analysis

We tested for differences between readmitted and non-readmitted patient charac-

teristics using chi square testing for categorical variables and t-tests or Wilcoxon

rank-sum tests for continuous variables depending on distribution. We assessed

changes in laboratory values in several ways including: minimum and maximum

during hospitalization, mean across the entire hospitalization, proportion of mea-

sured laboratory values outside of the normal reference range, and binary indicator

variables if values were ever outside reference ranges.

To assess for differences in laboratory results between readmitted and non-readmitted

cohorts, we applied support vector machine (SVM) techniques. This is a machine

learning method used to generate classifications for a group of observations. In this

case, we used SVM to generate cut-off laboratory values between readmitted and

non-readmitted patients across the postoperative time period, with unique thresh-

olds generated for each laboratory value on each postoperative day. We also assessed
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whether variance in these laboratory values differed between readmitted and non-

readmitted patients.

Lastly, we built multiple logistic regression models using a combination of the SVM

laboratory value thresholds, complications data, and baseline patient demographic

and clinical data to examine effects on readmission risk stratification. We halved our

cohort into derivation and validation cohorts, and selected predictors for inclusion in

the model on the basis of the Akaike information criterion, a statistic that estimates

the relative quality of competing models (Akaike, 1974). For comparison we also

built a model using the same variables and a random forest regression algorithm, a

machine learning technique which captures interactions between variables.

All analyses were conducted using SAS software version 9.4 (SAS Institute, Cary,

NC) and all testing was two-sided using an alpha of 0.05. This study was approved

by our Institutional Review Board (HUM00128698).

4.5 Results

Demongraphics Readmitted (N=259) Non-readmitted (N=737) p-value
Mean age, y. (SD) 67.6 (10.8) 66.3 (11.0) 0.09
Male gender, % 81.2 83.2 0.5
Mean BMI, kg/m2 (SD) 29.2 (7.1) 28.8 (7.5) <0.01
Race, % 0.54
Caucasian 90.8 91.3
Black 4.6 2.4
Other/unknown 4.6 6.3

Marital status, % 0.17
Married 74.1 68.1
Unmarried 2.3 3.6
Unknown 23.6 28.3

Charlson comorbidity index, % 0.22
0 3.5 4.9
1 0 0
2+ 96.5 95.1

Primary Payer, % 0.41
Private 39 39.7
Medicare 53.4 52.3
Medicaid 5.7 5.9
Other 1.9 2.1

Robotic cystectomy, % 3.1 4.5 0.43

Table 4.1: Patient Characteristics Stratified by Readmission Status after Radical Cystectomy

Among the 996 patients included in this cohort 259 (26%) were readmitted within

30 days of discharge. Readmitted and non-readmitted patients were similar in their

demographic and clinical characteristics, though readmitted patients had higher
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Body Mass Index (BMI) values, on average (Table 4.1, p < 0.01). Most patients

were older, married, Caucasian men, and the minority were treated with robotic

cystectomy.

As illustrated in Figures 4.1, 4.2, 4.3, and 4.4, several of the laboratory tests in this

study showed differences between readmitted and non-readmitted patients during the

postoperative period. The common postoperative laboratory values demonstrating

discriminatory ability according to readmission status included: white blood cell

count, bicarbonate, blood urea nitrogen, and creatinine. On the top panels, the

red (green) line shows the median lab values of (non-) readmitted patients. The

red (green) shaded area shows the 25th and 75th percentile of the lab values (non-)

readmitted patients. For each lab, a one-dimensional SVM is constructed for each

postoperative day to separate readmitted and non-readmitted patients. The dashed

line plots the SVM boundary. The SVM decision boundaries for these laboratory

values are shown in Table 4.2. On the bottom panels, the red (green) line, which

corresponds to the right axis, shows the number of (non-) readmitted patients whose

lab results available on each day. Note that the number of available lab results

dropped in the days after surgery (length of stay). On the 7th day after surgery,

about 55% patients had lab taken. The bars (corresponding to the left axis) show

the p-value of two sample t-tests for difference in mean and the black line shows the

α = 0.1 significance level. We included up to seven days of lab results in the model

since the p-values were relatively small (indicating significant difference between

readmitted and non-readmitted patients) within the first seven days after surgery.

Laboratory
Value

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

CO2 (mmol/L, <) 24 26 26 26 26 26 25 25
Creatinine (mg/dL, >) 1.2 1.2 1.1 1 0.98 1 1 1
BUN (mg/dL, >) 18 19 18 17 16 18 19 20
WBC (billion cells/L, >) 12.9 11.4 10.5 8.8 8.6 8.3 8.6 9.2

Table 4.2: Daily Postoperative Laboratory Value Thresholds for Readmission Risk as Determined
by Support Vector Machine Learning Techniques

To examine whether including postoperative laboratory data into readmission

prediction models would increase predictive ability, we tested several multiple logistic

regression models (Figure 4.5) (A) included baseline clinical and demographic values

and achieved a c-statistic of 0.52. The value of this c-statistic increased to 0.54 with

inclusion of laboratory value thresholds solely from the day of discharge (B). Next,

we added daily postoperative laboratory thresholds (within 7 days of surgery) to the
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Figure 4.1: Daily WBC Values and Readmission Risk Thresholds during the Postoperative Period
after Radical Cystectomy
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after Radical Cystectomy
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after Radical Cystectomy
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demographic and clinical variables to achieve a c-statistic of 0.59 when applied to the

validation half of our sample (C). The inclusion of postoperative complications data

further increased the c-statistic to 0.62 (D). Lastly, the random forest classification

including baseline characteristics, laboratory values, and complications achieved a

c-statistic of 0.68 (E). In between model (B) and (C), we included 3, 4, 5, 6, and 7

days of laboratory values incrementally. The c-statistics were 0.55, 0.55, 0.56, 0.56,

and 0.59 respectively.

4.6 Discussion

Using machine learning techniques, we found differences in common postopera-

tive laboratory values between readmitted and non-readmitted patients treated with

cystectomy. We also calculated threshold values to help differentiate patients at

high and low risk of readmission within 30 days of discharge. Moreover, incorporat-

ing daily postoperative laboratory value thresholds into our readmission prediction

models greatly increased accuracy as measured by the c-statistic, when compared to

models using only static demographic and clinical variables. Taken together these

findings suggest that inclusion of dynamic sources of physiologic information such as

laboratory values into prediction models may allow for important advancements in

risk stratification and intervention targeting, especially in the seemingly refractory

setting of readmissions after radical cystectomy.

While use of dynamic data points obtained from electronic health record sources is

a new approach in the cystectomy literature, recognition and use of this information

has been growing in other fields. The utility of EHR data such as laboratory values

and vital signs has been established in prediction and risk adjustment for in-hospital

mortality (Escobar et al., 2008; Liu et al., 2013; Escobar et al., 2013; Tabak et al.,

2013). While these data are used to direct daily clinical decision-making, our cog-

nitive capacity to incorporate subtle trends across multiple factors (e.g., laboratory

data, vital signs, medications) and predict clinical decompensation and readmission

is limited. For example, we found a trend for higher blood urea nitrogen over time

among readmitted patients indicating potential subclinical postoperative dehydra-

tion placing patients at risk for readmission. In light of such human information

processing limitations, similar methods have been explored in the projection of in-

tensive care admission, extended length of stay, as well as condition-specific risk

adjustment (Kipnis et al., 2016; Lim et al., 2015; Escobar et al., 2012; Liu et al.,

2010; Smith et al., 2016). More recently, these techniques have used in predicting

readmissions in large, generalized cohorts of patients (Escobar et al., 2015). As use
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Figure 4.5: Area under the Receiver Operating Curve Showing the Performance of Multiple Logistic
Regression Models Incorporating Daily Laboratory Values Tested in a Validation Cohort
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of these methods continues to grow, they will likely become more standardized and

broadly applicable (Goldstein et al., 2017).

The proximal opportunities for these approaches lie not only in their improved

predictive ability, but also in the chance to directly build these algorithms into the

electronic medical record systems from which they draw their data. This real-time

approach has been piloted with promising results in the identification of patients

at risk for death in the hospital (Khurana et al., 2016). More streamlined, albeit

simplistic, rehospitalization prediction algorithms such as the LACE index already

appear in some interfaces. Our findings suggest that these techniques may hold sim-

ilar promise in the care of patients following radical cystectomy. Ongoing advances

in predictive methodology and incorporation into medical information systems may

significantly advance the ability of urological surgeons and their teams to more read-

ily assess patient risk after cystectomy, consequently improving discharge planning

and patient outcomes.

We note several important limitations to this study. First, using data from a

single institution limits the external generalizability of our findings. However, our

results are consistent with robust data from prior studies in different cohorts illus-

trating the predictive power of physiologic data contained in electronic health record

systems. Next, while application of laboratory values in risk stratification for cys-

tectomy patients is unique and improved prediction, we were unable to include vital

signs into the models as the data were incomplete. Similarly, this analysis did not

incorporate other granular data such as inpatient medications or in-hospital proce-

dures. Nonetheless, existing studies have found the most significant improvements in

model performance appear to be realized with inclusion of laboratory values. Last,

while this retrospective study did include novel laboratory data, due to the nature of

the data source we were unable to include more detailed disease-specific information

(e.g., stage) that could impact postoperative care and readmission risk. However, our

inclusion of daily postoperative laboratory testing could actually account for greater

testing typically associated with more aggressive resections.

In spite of these limitations, this work highlights an opportunity to advance read-

mission risk assessment following radical cystectomy. If coupled with effective inter-

ventions, this could in turn have positive effects on bladder cancer patient outcomes

regarding discharge timing decisions and after leaving the hospital. These improve-

ments could also enable urologists to apply these techniques across the range of

urological surgery, providing spillover benefits to an even larger patient cohort.
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4.7 Conclusion

We found that readmission risk assessment following radical cystectomy is signif-

icantly improved by the addition of dynamic physiologic data collected in modern

electronic health record systems. Future work should refine these algorithms and

study their implementation into daily practice in order to help guide clinical deci-

sion making. While the problem of readmission after radical cystectomy appears

refractory, innovative, dynamic approaches to existing data sources appear poised

to enable significant progress towards risk stratification, ultimately helping ensure

patients who are discharged home are able and ready to stay there.



CHAPTER V

Conclusion and Future Research

How to effectively and efficiently reduce hospital readmissions is one of the major

challenges faced by healthcare systems. Readmissions burden patients (as well as

hospitals and practitioners) and cause a significant amount of unnecessary healthcare

spendings. While up to 75% of the readmissions are preventable, we still struggle

to understand why unnecessary readmissions happen and how to prevent them from

happening.

In this dissertation, we develop operations research models to reduce hospital read-

missions. Our approach focuses on both the hospital operations level and the policy-

maker system level. We develop a delay-time optimization framework to maximize

the detection of post-operative complications via post-discharge checkups. Then,

we study how to design a bundled payment policy to balance and incentivize pre-

and post-discharge readmission reduction efforts. We build a readmission predic-

tion model using laboratory values observed during the index hospitalization. Ulti-

mately, we provide novel methods for reducing readmissions between the pre- and

post-discharge stages at the hospital and policymaker levels.

In the following sections, we discuss a potential future research direction for each of

the three research works in this thesis. In the post-discharge stage, we ask questions

regarding E-visits and their consequences on readmissions. In the pre-discharge stage,

a stochastic programming model could be developed to incorporate the learning and

reduction of a patient’s readmission risk. Between the pre- and post-discharge stages,

the management of a panel of patients at various readmission risks could be modeled

and solved as a multi-armed bandit problem.

129
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5.1 Future Research: E-Visits and Readmission

The analytical results in Chapter II demonstrate that E-visits and telemedicine

visits could serve as replacements for traditional office visits. Nonetheless, the remote

nature of E-visits requires more careful investigation.

The adoption of E-visits has significantly increased in recent years. Many believe

that E-visits are cost-effective replacements for office visits. By replacing office visits

with E-visits, clinics can increase the capacity and patients can receive health care

at their convenience. Studies have found that E-visits are cheaper (in terms of

the cost of the initial visit, subsequent medical care, and pharmacy) than many

other patient-provider encounter modes such as PCP visits, ED visits, retail clinical

visits, and urgent care center visits (Gordon et al., 2017). Moreover, the majority of

patients (more than 60%) are willing to accept E-visits as shown in a survey of 1,378

ambulatory urology patients (Viers et al., 2015).

Although E-visits are more affordable and convenient, whether they can improve

patient health outcomes remains unclear – studies in both the medical literature and

the operations management literature have found mixed results (Schoenfeld et al.,

2016; Bavafa et al., 2018). Moreover, a study empirically showed that E-visits may

trigger 6% more follow-up visits (compared to office visits). This could undermine

the premises of adopting E-visits and ultimately result in a 15% reduction in new

patients acceptance each month (Bavafa et al., 2018). In the context of readmission

reduction, a randomized trial found that phone calls after discharge did not decrease

but increased the readmission rate (Auger et al., 2018). Before adopting E-visits

widely to replace office visits, researchers need to further research and investigate

the nature of E-visits and its consequences.

Specifically, we suggest the following research questions as future work that could

be done in this field:

Who (Physicians and Patients) Should Adopt E-Visits? Shaw et al.

(2018) pointed out that “whilst some clinicians are very keen to use this format (E-

visits), others are reluctant or oppose.” Aside from personal preferences (e.g., tech-

savviness), what factors influence physicians’ willingness to adopt E-visits? What

patient cohorts (e.g., medical vs. surgical), what clinical settings (e.g., acute care

vs. primary care), and what stages of care (e.g., chronic/routine care vs. post-acute

care) should adopt E-visits?

Do Physicians Behave Differently in E-Visits? If So, Do E-Visits Im-

pact Health Outcomes? Due to the remote communication nature of E-visits,
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physicians may behave more conservatively. A few medical papers (Mehrotra et al.,

2013; Uscher-Pines et al., 2016, 2015) found that physicians prescribe more antibi-

otics in E-visits. Moreover, E-visits may trigger more follow-up tests and visits

to resolve the uncertainties about the patient’s condition that arise during the E-

visit (Bavafa et al., 2018). It is unclear whether E-visits in a post-discharge setting

will effectively reduce readmissions. Moreover, if E-visits can detect and intervene

readmissions promptly, a potential future step would be to examine whether the

readmission intensity (e.g., LOS and cost) is reduced by E-visits.

How do E-visits Affect Physician Productivity? How to Incorporate

E-visits into a Physician’s (and the Clinic’s) Practice and Workflow? It

is known that communications within an E-visit are different from a face-to-face

encounter. According to Shaw et al. (2018), physicians are more likely to dominate

the communication in E-visits. Moreover, both physicians and patients sometimes

needed to state things explicitly in a remote consultation that remained implicit in a

face-to-face encounter. Moreover, the cognitive tasks and resources that are required

in an E-visit also differ. As such, switching between E-visit and office visit may

incur a cognitive “switching” cost that degrades the productivity and burdens the

physician’s cognitively. While designing a physician’s clinic schedule, one may want

to schedule E-visits back-to-back to avoid such switching cost.

To address these questions, one may first use empirical methods (e.g., difference-

in-difference and instrumental variables) to address these questions. One could use

data from EHR and insurance claims to build empirical models.

5.2 Future Research: Incorporating Pre-Discharge Readmission Learn-
ing and Reduction Intervention

Chapter III focused on the policy-level analysis in a continuum of care spanning

between pre- and post-discharge. In this section, we discuss a future research direc-

tion that focuses on the patient-level analysis.

As a future research, we propose a patient-level modeling framework for the trade-

off faced between pre- and post-discharge readmission learning and reduction as a

two-stage model. The problem of interest consists of two stages. The first stage

is the inpatient stay stage. In clinical literature, there are mixed results on how

the length of stay is associated with readmission risk Engelman et al. (1994); Lahey

et al. (1998); Lazar et al. (2001); Bohmer et al. (2002); Cowper et al. (2007); Hannan

et al. (2003). In the proposed future research, we could consider two actions in the

inpatient stay, namely taking readmission reduction interventions and learning the
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patient’s readmission risk characteristics. Upon discharge, the patient enters into

the second stage, which is the post-discharge monitoring stage. Moreover, the post-

discharge planning is dynamic, in the sense that we will update our belief on what

time the patient will be readmitted dynamically using the information learned in

each checkup. For example, if we checked up a patient and the patient was not sick,

our belief on readmission timing (i.e., the time-to-readmission probability density

curve) should change accordingly.

A partially observable Markovian decision process (POMDP) could be developed

to jointly optimize both discharge decisions and post-discharge activities. One may

incorporate a sequential learning component that enables the model to create per-

sonalized treatment and monitoring policies specific to each individual patient.

5.3 Future Research: Balancing Pre-Discharge Efforts for a Panel of
Patients

Chapter IV focused on the prediction of readmission risk for an individual pa-

tient. In this section, we propose a model that utilizes the individual readmission

risk prediction model for the management of a panel of patients at various risks of

readmission.

Programs and initiatives for reducing readmissions have been developed and im-

plemented at U.S. hospitals for almost a decade (Strunin et al., 2007; Mitchell et al.,

2010). Particularly, the project called Re-Engineered Discharge (project RED) has

been proven to be very effective at reducing hospital readmissions (Jack et al., 2009).

However, implementing the project RED involves 12 components which requires the

effort from both the physicians and nurses. Implementing project RED to every

patient is very resource-intensive and impractical. Moreover, the probability of read-

mission, the time of the readmission, the cause of readmission, and the intensity

of readmission vary across different types of patients (Jacobs et al., 2013; Skolarus

et al., 2015). Given constrained resources, it is important to identify the patients

that are at higher risk of readmission and focus the readmission reduction effort on

the subset of high-risk patients.

There exists an extensive amount of literature in predicting the readmission risk

for patients (Kansagara et al., 2011; Helm et al., 2016). However, many existing

studies model the prediction and learning process as a static one. They do not

utilize the longitudinal clinical data observed during the inpatient stay in a sequential

fashion (online learning). Moreover, there does not exist a quantitative model for

the readmission management of a panel of patients. We propose, as future work,
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to develop a sequential learning model to dynamically learn the readmission risk

of the patients in the panel and optimally allocate readmission reduction resources

across the inpatient stage and the post-discharge monitoring stage. While operations

research models have been developed for screening a panel of patients at risk of

developing conditions (Lee et al., 2015, 2018) and treating a panel of patients with

chronic conditions (Jónasson et al., 2017), there does not exist a quantitative model

addressing readmission management for a panel of patients at the patient-level.

5.4 Conclusion

In conclusion, this thesis provides operations research models that aims to re-

duce hospital readmissions, nonetheless, there is still much work to be done in this

field. We propose three potential future research directions and hope that more

investigation and research would be done to reduce hospital readmissions. In partic-

ular, we propose to study the effect of E-visits, and analyze whether they could help

detect and avert readmissions, and how they could be incorporated into clinical prac-

tices. We also propose that one could build a patient-level model to personalize the

readmission reduction interventions spanning between the pre- and post-discharge

stages. As the medical data proliferates, one could incorporate dynamic readmission

risk prediction models to manage the readmission risk for a panel of patients. As

more attention is given to reducing readmission from both medical and operations

research communities, it is our hope that hospital readmissions would be reduced

and managed efficiently and effectively.
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