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ABSTRACT

Modern data analysis increasingly involves extracting insights, trends and pat-

terns from large and messy data collected from myriad heterogeneous sources. The

scale and heterogeneity present exciting new opportunities for discovery, but also

create a need for new statistical techniques and theory tailored to these settings.

Traditional intuitions often no longer apply, e.g., when the number of variables mea-

sured is comparable to the number of samples obtained. A deeper theoretical under-

standing is needed to develop principled methods and guidelines for statistical data

analysis. This dissertation studies the low-dimensional modeling of high-dimensional

data in three heterogeneous settings.

The first heterogeneity is in the quality of samples, and we consider the standard

and ubiquitous low-dimensional modeling technique of Principal Component Analysis

(PCA). We analyze how well PCA recovers underlying low-dimensional components

from high-dimensional data when some samples are noisier than others (i.e., have

heteroscedastic noise). Our analysis characterizes the penalty of heteroscedasticity

for PCA, and we consider a weighted variant of PCA that explicitly accounts for

heteroscedasticity by giving less weight to samples with more noise. We character-

ize the performance of weighted PCA for all choices of weights and derive optimal

weights.

The second heterogeneity is in the statistical properties of data, and we generalize

the (increasingly) standard method of Canonical Polyadic (CP) tensor decomposition

to allow for general statistical assumptions. Traditional CP tensor decomposition is

most natural for data with all entries having Gaussian noise of homogeneous variance.

Instead, the Generalized CP (GCP) tensor decomposition we propose allows for other

statistical assumptions, and we demonstrate its flexibility on various datasets arising

in social networks, neuroscience studies and weather patterns. Fitting GCP with

alternative statistical assumptions provides new ways to explore trends in the data

and yields improved predictions, e.g., of social network and mouse neural data.

The third heterogeneity is in the class of samples, and we consider learning a

mixture of low-dimensional subspaces. This model supposes that each sample comes

from one of several (unknown) low-dimensional subspaces, that taken together form

a union of subspaces (UoS). Samples from the same class come from the same sub-

space in the union. We consider an ensemble algorithm that clusters the samples,

xxi



and analyze the approach to provide recovery guarantees. Finally, we propose a

sequence of unions of subspaces (SUoS) model that systematically captures samples

with heterogeneous complexity, and we describe some early ideas for learning and

using SUoS models in patch-based image denoising.
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CHAPTER I

Introduction

Modern data analysis increasingly involves extracting insights and patterns from

large and heterogeneous data. New technologies and increasing computational power

are enabling us to collect and process more data from more sources than ever be-

fore, opening up exciting new opportunities for discovery. Recent examples of this

trend abound in social networks, business, medicine, and astronomy, to name just a

few. Obtaining meaningful insights from all this raw and messy data requires data

analysis techniques that are both computationally efficient and statistically sound.

Efficient methods are necessary for handling the scale of modern datasets, and sound-

ness enables us to trust and reason about their outputs. This dissertation aims to

address these challenges of modern data analysis in a few specific but fundamental

settings; we discuss some ideas for future work and open problems at the end of the

dissertation.

1.1 Low-dimensional models for high-dimensional data

Finding trends and patterns in data entails finding structure among the variables

measured, i.e., ways in which the data are correlated rather than unrelated. Intu-

itively, there are often fewer actual “degrees of freedom” than variables measured,

and we seek to find this lower-dimensional structure. For a simple and illustrative ex-

ample, consider measuring the arm spans and heights of many people. Two variables,

arm span and height, are measured but these two are actually tightly correlated, and

much of the data is well-represented by a single variable capturing, roughly speaking,

how large a person is. Such trends can be easy to visualize and spot when considering

only a few measured variables, but we often measure numerous variables, i.e., the

data are high-dimensional. Low-dimensional modeling seeks to find these trends in

an automatic and principled way.

This dissertation focuses on low-dimensional linear models. The first two works

1
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center specifically on Principal Component Analysis (PCA). The third centers on

the Canonical Polyadic (CP) tensor decomposition; one can view this technique as

a generalization of PCA to tensor-shaped data. The final two works center on union

of subspace models; one can view these as generalizations of PCA to data arising

from a mixture. Chapter II describes these three models in detail and provides some

relevant mathematical background.

1.2 Data with heterogeneous quality

The first two contributions (Chapters III and IV) consider data with heterogenous

quality. Specifically, samples have heterogeneous noise variances; some samples are

noisier than others. A few natural questions arise for such data:

a) What is the performance of standard techniques that do not explicitly account

for this heteroscedasticity? What is the “cost” of heteroscedasticity?

b) How should we adjust standard techniques to account for varying data quality?

Chapter III addresses (a) for PCA, a standard and widely used technique for di-

mensionality reduction. We provide expressions for the asymptotic performance of

PCA, and our analysis quantifies the impact of heteroscedasticity. It reveals that

PCA performance is always better for homoscedastic noise of the same average noise

variance or of the same average inverse noise variance. As a result, both these av-

erage measures of noise give overly optimistic impressions of PCA performance for

heteroscedastic noise.

Chapter IV addresses (b) by considering a weighted variant of PCA that gives

less weight to noisier samples. The key question for weighted PCA becomes how best

to assign weights; how much less weight should be given to samples that are twice

as noisy? A natural approach is to assign weights reciprocal to noise variance, i.e.,

to give half the weight to samples with twice the noise variance. Another pragmatic

approach is to exclude noisier samples, i.e., to give zero weight to samples with larger

noise variance. Standard PCA gives equal weight to all samples. We provide expres-

sions for the asymptotic performance of weighted PCA for any choice of weights.

Our analysis reveals that none of the above weights are optimal, and we derive the

optimal weights.

1.3 Data with heterogeneous statistical assumptions

The third contribution (Chapter V) generalizes CP tensor decomposition to al-

low for a greater variety of statistical assumptions than the Gaussian model with
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homogeneous variances implicit in traditional CP. The generalized CP (GCP) tensor

decomposition unifies various modifications of CP for differing statistical assump-

tions into a single algorithmic framework, and furthermore readily allows for hetero-

geneous statistical assumptions (and data types) throughout the data. Allowing for

this generality is useful for modern data analysis since it enables the data analyst to

• easily incorporate domain knowledge about the statistical uncertainties in the

data, i.e., to utilize existing statistical models for the data, and

• rapidly experiment with various notions of fit when available domain expertise

does not clearly specify the appropriate choice.

As illustrated in Section 5.5, this flexibility provides a variety of new lenses through

which to view multiway data and obtain new insights. Fitting GCP involves solving

a new optimization problem that lacks the structure typically exploited in fitting CP,

so the primary challenge addressed in Chapter V is how to carry out this optimization

using practical techniques.

1.4 Data with heterogeneous linear structure

The final two contributions (Chapters VI and VII) consider unions of subspaces.

Samples in this case are modeled as each lying close to one of several subspaces, or in

other words, as lying in a mixture of low-dimensional linear models with class corre-

sponding to subspace. This generalization of subspace models makes it appropriate

for broader types of signals, such as those arising in computer vision, where no single

subspace may be able to parsimoniously represent all the data. As an example, con-

sider images of handwritten digits 0, 1, . . . , 9. Once appropriately aligned, it turns

out that images of the same digit lie close to a low-dimensional subspace. However,

the digits taken all together span a much higher-dimensional subspace; this data is

more naturally modeled by a union of ten low-dimensional subspaces, one for each

digit.

A major challenge is in developing algorithms that can efficiently and reliably

fit union of subspace models. Chapter VI proposes one such algorithm, Ensemble

K-subspaces, and provides partial guarantees for when it correctly identifies which

samples came from the same subspace. Another interesting avenue is to draw con-

nections to dictionary (or transform) sparsity models since they have a similar flavor

to unions of subspaces. Chapter VII studies this connection, observed previously

by many authors, and proposes a generalization for unions of subspaces that more

firmly cements the connection by accounting for heterogeneous sparsity. We propose



4

a procedure for fitting the proposed sequence of unions of subspaces (SUoS) model,

and demonstrate its potential benefits with an application to image denoising.

1.5 Organization of dissertation

Chapter II introduces the models considered in this dissertation in addition to

some of the relevant mathematical tools. We also discuss some connections to medical

imaging. While the topics in this dissertation apply broadly to modern data analysis,

many of the questions asked were motivated by various challenges in imaging, and we

take this opportunity to describe some of the connections. The subsequent chapters

are based on the following papers.

Chapter III:

[94] David Hong, Laura Balzano, and Jeffrey A. Fessler. Towards a theoretical

analysis of PCA for heteroscedastic data. In 2016 54th Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton). IEEE, September 2016.

doi: 10.1109/allerton.2016.7852272.

[95] David Hong, Laura Balzano, and Jeffrey A. Fessler. Asymptotic performance

of PCA for high-dimensional heteroscedastic data. Journal of Multivariate Analysis,

167:435–452, September 2018. doi: 10.1016/j.jmva.2018.06.002.

Chapter IV:

[96] David Hong, Jeffrey A. Fessler, and Laura Balzano. Optimally Weighted PCA

for High-Dimensional Heteroscedastic Data, 2018. Submitted. arXiv: 1810.12862v2.

Chapter V:

[97] David Hong, Tamara G. Kolda, and Jed A. Duersch. Generalized Canonical

Polyadic Tensor Decomposition. SIAM Review, 2019. To appear. arXiv: 1808.

07452v2.

Chapter VI:

[98] David Hong∗, John Lipor∗, Yan Shuo Tan, and Laura Balzano. Subspace Clus-

tering using Ensembles of K-Subspaces, 2018. Submitted. (∗equal contribution).

arXiv: 1709.04744v2.

Chapter VII:

[99] David Hong, Robert P. Malinas, Jeffrey A. Fessler, and Laura Balzano. Learning

Dictionary-Based Unions of Subspaces for Image Denoising. In 2018 26th European

Signal Processing Conference (EUSIPCO). IEEE, September 2018. doi: 10.23919/eu-

sipco.2018.8553117.



5

Chapter VIII concludes the dissertation with a discussion of some ideas for further

work and open problems.



CHAPTER II

Background

This chapter introduces the low-dimensional models considered in this disserta-

tion, as well as some relevant mathematical background and tools. We also briefly

discuss connections to challenges in medical imaging that motivated some of the work

on these topics for the author, though the work in this dissertation remains broadly

applicable to modern data analysis and is otherwise presented in that generality. The

sections after Section 2.1 are somewhat self-contained and can be read in any order.

2.1 Notations and Conventions

We define a few general notational conventions that we use throughout this disser-

tation. First, the fields of real and complex numbers are denoted in blackboard bold

as R and C, respectively. The real line restricted to nonnegative values is denoted

as R+. Scalars and vector variables are typically lowercase and in normal weight,

e.g., α ∈ R+ or u ∈ Cd. Matrices, on the other hand, are typically uppercase and

bold, e.g., U ∈ Rd×k. Tensors are typically denoted by uppercase bold Euler font,

e.g., X ∈ Cm×n×p. Typically hats are used to decorate estimates or other quantities

derived from data, e.g., û ∈ Cd may be a principal component derived from data.

Superscript > and H denote non-conjugate and conjugate transpose, respectively,

and vectors are treated as column matrices so that vHu is an inner product and uvH is

an outer product. We also notate inner products as 〈u, v〉 = vHu and outer products

as u ◦ v = uv>. Linear span is notated by span(·), trace by tr(·) and determinant by

det(·). Uppercase calligraphy is typically used for sets, an primarily for subspaces,

e.g., S = span(e1, e2) is the subspace spanned by e1 and e2.

A couple miscellaneous notations are the Kronecker delta δij, which is one if i = j

and zero otherwise, and the Dirac delta distribution δx centered at x. Typically it will

be clear from the context which is meant. Another operation we will find convenient

is the rectifier (·)+ = max(0, ·) that simply truncates at zero.

6
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R2

û1

Figure 2.1: Illustration of PCA for sample vectors in R2, i.e., with two variables.

2.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a classical method for reducing the di-

mensionality of data by representing them in terms of a new set of variables, called

principal components, where variation in the data is largely captured by the first few

principal components. This section provides a brief introduction to this standard and

ubiquitous data analysis technique, and places it in the context of low-dimensional

subspace learning and matrix factorization. There are numerous motivations and

derivations of PCA. See the textbook [114] for a comprehensive treatment.

The input to PCA is a sequence of sample vectors y1, . . . , yn ∈ Cd that are typi-

cally centered to have zero mean as a preprocessing step. Namely, the jth centered

sample is formed as

(2.1) ỹj = yj −
1

n
(y1 + · · ·+ yn)︸ ︷︷ ︸
empirical mean

.

For simplicity, we will typically suppose the given sample vectors are already zero

mean and work directly with the samples y1, . . . , yn. Each entry of a sample vector

often corresponds to a measured variable, e.g., the temperature at a particular lo-

cation. When the measured variables have different units, it is common to replace

them with standardized (unitless) versions.

PCA seeks unit norm vectors called principal components1 û1, . . . , ûk ∈ Cd that

maximally capture the variability in the data. Namely, the first principal component

û1 maximizes the variance in the direction of û1, i.e.,

(2.2) û1 ∈ argmax
u:‖u‖2=1

1

n

n∑
j=1

|〈yj, u〉|2,

1In contrast to [114], “principal components” throughout this dissertation refers to the unit norm
direction vectors and “scores” refers to the derived variables, i.e., the coefficients of the samples
with respect to the components.
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as illustrated in Fig. 2.1. Subsequent principal components solve the same optimiza-

tion problem over perpendicular unit norm vectors:

û2 ∈ argmax
u:‖u‖2=1

uHû1=0

1

n

n∑
j=1

|〈yj, u〉|2, û3 ∈ argmax
u:‖u‖2=1

uHû1=0
uHû2=0

1

n

n∑
j=1

|〈yj, u〉|2, . . .(2.3)

The (empirical) variance in the direction of each principal component ûi is its corre-

sponding amplitude, given by

(2.4) θ̂2
i :=

1

n

n∑
j=1

|〈yj, ûi〉|2 ∈ R+.

Finally, each principal component ûi produces a new variable for each sample; these

new variables can be used as a low-dimensional representation of the samples, e.g.,

for visualization. Collecting the values for all n samples produces the score vector

(2.5) ẑi =
1

θ̂i
(〈y1, ûi〉, . . . , 〈yn, ûi〉)H ∈ Cn

associated with the ith principal component ûi. Note that dividing by θ̂i standardizes

the scores to have unit (empirical) variance.

2.2.1 PCA in terms of the covariance matrix

Observe that the objective in (2.2) can be rewritten as

(2.6)
1

n

n∑
j=1

|〈yj, u〉|2 =
1

n

n∑
j=1

uHyjy
H
j u = uH

(
1

n

n∑
j=1

yjy
H
j

)
︸ ︷︷ ︸
covariance matrix

u = uHVΛVHu,

where VΛVH is a unitary eigendecomposition of the (positive semi-definite) sample

covariance matrix. V = (v1, . . . , vd) is a unitary matrix whose orthonormal columns

v1, . . . , vd ∈ Cd are eigenvectors corresponding to the eigenvalues λ1 ≥ · · · ≥ λd given

in decreasing order by the diagonal entries of Λ = diag(λ1, . . . , λd). Covariance ma-

trices are positive semi-definite with nonnegative eigenvalues, so (2.6) is maximized

with value λ1 when VHu = (1, 0, . . . , 0)H, i.e., when û1 = v1.

Likewise, (2.6) is maximized among unit norm vectors orthogonal to û1 by the

second principal eigenvector û2 = v2 with corresponding amplitude θ̂2 = λ2. Continu-

ing along these lines yields that the principal components û1, . . . , ûk are the principal

eigenvectors of the sample covariance matrix (y1y
H
1 + · · · + yny

H
n )/n and the ampli-

tudes θ̂2
1, . . . , θ̂

2
k are the associated eigenvalues. Geometrically, (2.6) is a paraboloid

whose contours are ellipses centered at the origin with principal axes λ1v1, . . . , λdvd,

and these principal axes are exactly the principal components and amplitudes.
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2.2.2 PCA as low-dimensional subspace learning

PCA can also be thought of as least-squares fitting of a low-dimensional subspace

to data. Consider the problem of finding a k-dimensional subspace Ŝ of Cd that

minimizes the mean square residual

(2.7) Ŝ ∈ argmin
S∈Gr(k,Cd)

1

n

n∑
j=1

‖yj − PSyj‖2
2,

where the Grassmannian Gr(k,Cd) is the set of k-dimensional subspaces of Cd, and

PS : Cd → S is the associated (orthogonal) projection operator. Projection onto a

subspace satisfies Pythagorean theorem, i.e., ‖y − PSy‖2
2 + ‖PSy‖2

2 = ‖y‖2
2 for any

y ∈ Cd, so the optimization problem (2.7) is equivalently

(2.8) Ŝ ∈ argmax
S∈Gr(k,Cd)

1

n

n∑
j=1

‖PSyj‖2
2.

Moreover, one can equivalently optimize over orthonormal bases for k-dimensional

subspaces given by orthonormal vectors u1, . . . , uk ∈ Cd, yielding

(2.9) (û1, . . . , ûk) ∈ argmax
u1,...,uk∈Cd

1

n

n∑
j=1

k∑
i=1

|〈yj, ui〉|2 s.t. ∀i,j 〈ui, uj〉 = δij,

since the projection of any y ∈ Cd onto the subspace S = span(u1, . . . , uk) and the

resulting squared norm are given by

PSy =
k∑
i=1

〈y, ui〉ui, ‖PSy‖2
2 =

k∑
i=1

|〈y, ui〉|2.(2.10)

Rewriting the objective in (2.9) as in (2.6) yields the objective

(2.11)
1

n

n∑
j=1

k∑
i=1

|〈yj, ui〉|2 =
k∑
i=1

{
1

n

n∑
j=1

|〈yj, ui〉|2
}

=
k∑
i=1

uHi VΛVHui,

where VΛVH is again a unitary eigendecomposition of the (positive semi-definite)

sample covariance matrix (y1y
H
1 + · · · + yny

H
n )/n. As before, this objective is maxi-

mized by the first k principal eigenvectors v1, . . . , vk of the sample covariance matrix

with maximum value λ1 + · · · + λk. Namely, the principal components û1, . . . , ûk

form an orthonormal basis for a least squares subspace fit, connecting PCA to low-

dimensional subspace learning.

A subtle distinction is that subspace learning seeks a subspace Ŝ, while PCA seeks

a set of principal component vectors û1, . . . , ûk. Hence, any orthonormal basis span-

ning the same subspace as the principal components also solves (2.9). Namely, for
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any unitary k×k matrix Q, the columns of (û1, . . . , ûk)Q form an orthonormal basis

with equivalent span, and hence equivalent objective function value in (2.9). These

vectors need not, however, be principal components since each may not maximally

capture variance orthogonal to its preceding components; principal components form

an orthonormal basis aligned with the principal axes of the sample covariance.

A natural setting for low-dimensional subspace learning is when we believe the

samples are noisy measurements of signal vectors x1, . . . , xn ∈ S? from some un-

derlying subspace S? ⊂ Cd. The least-squares objective is especially natural when

the noise is assumed to be isotropic Gaussian that is independent and identically

distributed across samples, namely:

(2.12) yj = xj + εj, j ∈ {1, . . . , n},

where ε1, . . . , εn
iid∼ N (0, σ2Id), and σ2 is a homogeneous noise variance across all

samples. Projecting onto the estimated subspace Ŝ from (2.7) then yields estimates of

the underlying signals x1, . . . , xn. This projection can be written in a few equivalent

ways that highlights the connection to principal components, amplitudes and scores:

(2.13) x̂j := PŜyj =
k∑
i=1

〈yj, ûi〉ûi =
k∑
i=1

θ̂iûi
(
ẑ

(j)
i

)∗
,

where the first equality arises from (2.10) and the second equality follows from (2.5).

The quality of the estimates x̂1, . . . , x̂n depends on how well û1, . . . , ûn capture S?,
so it is important to understand the performance of PCA. We study this question

for heterogeneous noise in Chapters III and IV.

2.2.3 PCA as approximate low-rank matrix factorization

Yet another view into PCA is through the lens of matrix factorization; Chap-

ters III and IV use this connection to apply tools from random matrix theory to

analyze PCA. Consider the data matrix whose columns are the sample vectors

(2.14) Y := (y1, . . . , yn) ∈ Cd×n.

In terms of the data matrix, the PCA objective in (2.2) and (2.3) becomes

(2.15)
1

n

n∑
j=1

|〈yj, u〉|2 =
1

n
‖(〈y1, u〉, . . . , 〈yn, u〉)‖2

2 =
1

n
‖uHY‖2

2 ∝ ‖uHY‖2
2.

so it follows that the first k principal components û1, . . . , ûk are the first k left singular

vectors of the data matrix Y. Likewise, the ith amplitude θ̂i = ‖ûHi Y‖2/
√
n is the ith

largest singular value of Y divided by
√
n and the ith score vector ẑi = (ûHi Y)H/θ̂i is
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the ith right singular vector of Y multiplied by
√
n. As a result, characterizing the

properties of principal components, amplitudes and scores is equivalent to studying

the singular value decomposition (SVD) of the data matrix Y.

Reconstructing using the first k principal components yields

X̂ := (x̂1, . . . , x̂n) =

( k∑
i=1

θ̂iûi
(
ẑ

(1)
i

)∗
, . . . ,

k∑
i=1

θ̂iûi
(
ẑ

(n)
i

)∗)
(2.16)

=
k∑
i=1

θ̂iûiẑ
H
i = (û1, . . . , ûk)︸ ︷︷ ︸

Û∈Cd×k

diag(θ̂1, . . . , θ̂k)︸ ︷︷ ︸
Θ̂∈Rk×k+

(ẑ1, . . . , ẑk)︸ ︷︷ ︸
Ẑ∈Cn×k

H = ÛΘ̂ẐH,

and so the principal components, amplitudes and scores form a matrix factorization

of X̂. Furthermore, (2.16) corresponds exactly to a rank-k truncated SVD of Y.

As a result, the principal components, amplitudes and scores form an approximate

low-rank matrix factorization of Y, namely [63]

(2.17)
k∑
i=1

θ̂iûiẑ
H
i = ÛΘ̂ẐH ∈ argmin

X∈Cd×n
‖X−Y‖2

F s.t. rank X ≤ k.

Writing the sample covariance matrix in terms of Y yields the Gram matrix

(2.18)
1

n

n∑
j=1

yjy
H
j =

1

n
YYH.

The eigenvalues and eigenvectors of YYH are, respectively, the square singular values

and left singular vectors of Y, drawing a direct connection to the eigendecomposition

in Section 2.2.1. Furthermore, projection onto a subspace S = span(u1, . . . , uk)

with orthonormal basis given by columns of a matrix U = (u1, . . . , uk) ∈ Cd×k is

PSy = UUHy for any y ∈ Cd. As a result, (2.7) can be written in terms of U and Y

as

(2.19) Û ∈ argmin
U∈Cd×k

1

n
‖Y −UUHY‖2

F s.t. UHU = Ik,

providing a simple relationship to subspace fitting as described in Section 2.2.2.

2.2.4 Asymptotic PCA performance and random matrix theory

A key question in understanding PCA performance is analyzing how well the

principal components, amplitudes and scores recover underlying counterparts from

noisy observations. This section introduces asymptotic approaches to this problem

to provide some preparation for the work of Chapters III and IV and to describe



12

some of the connections to random matrix theory. See the recent survey [112] for an

excellent overview of this topic.

Consider a data matrix (2.14) with noisy observations of underlying components

(2.20) Y := (y1, . . . , yn) =
k∑
i=1

θiuiz
H
i + σ (ε1, . . . , εn)︸ ︷︷ ︸

=E∈Cd×n

=
k∑
i=1

θiuiz
H
i + σE,

where u1, . . . , uk ∈ Cd are underlying (orthonormal) components, θ1 > · · · > θk ∈ R+

are underlying amplitudes,2 and z1, . . . , zk ∈ Cn are underlying (orthonormal) score

vectors. Typically, one models the noise matrix E as random, yielding a data matrix

Y that is a rank-k latent (or signal) matrix plus a random noise matrix. The question

becomes: how close are the principal components û1, . . . , ûk, amplitudes θ̂1, . . . , θ̂k

and score vectors ẑ1, . . . , ẑk to their underlying counterparts?

Consider the first principal component û1. How close in angle is û1 to u1, i.e., how

close is the inner product |〈û1, u1〉|2 to one? Observe first that |〈û1, u1〉|2 is in fact a

random variable because Y is a random matrix as a result of randomness in E, mak-

ing û1 a random vector. Furthermore, the columns of ZH = (z1, . . . , zk)
H ∈ Ck×n are

often modeled as being n i.i.d. random vectors to produce i.i.d. samples, providing

another source of randomness. However, considering well-chosen asymptotic regimes

can produce limiting behavior that is instead deterministic and easier to reason with,

while remaining similar enough to provide useful insights for non-asymptotic settings.

One natural limit to consider is n→∞, i.e., numerous samples. Suppose both Z

and E have i.i.d. normal entries (mean zero, variance one), yielding i.i.d. Gaussian

sample vectors3

(2.21) y1, . . . , yn
iid∼ N

(
0,

k∑
i=1

θ2
i uiu

H
i + σ2Id

)
.

When n→∞, the sample covariance matrix of i.i.d. samples consistently estimates

the associated population covariance matrix:

(2.22)
1

n

n∑
j=1

yjy
H
j

a.s.−→ E(Y Y H) as n→∞,

where
a.s.−→ denotes almost sure convergence, i.e., convergence with probability one.

Moreover, the top k eigenvalues and eigenvectors of the sample covariance converge,

yielding θ̂2
1

a.s.−→ θ2
1 + σ2, . . . , θ̂2

k
a.s.−→ θ2

k + σ2 and |〈û1, u1〉|2, . . . , |〈û1, u1〉|2 a.s.−→ 1.

2Using distinct amplitudes simplifies discussion here; Chapters III and IV allow for equal am-
plitudes.

3The covariance is a scaled identity perturbed by the addition of k spikes. This data model is a
type of Johnstone spiked covariance model [110, 111]; see also Section 3.8.1 for discussion of some
subtle aspects of this connection.
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However, this limit is not well-suited for modern high-dimensional data where the

number of variables d is comparable to, or even larger than, the number of samples

n, taking us quite far from the regime where n → ∞ while d is fixed. To handle

these new settings, we instead consider the limiting behavior as n, d → ∞ with

n/d→ c > 0. Since d is no longer fixed, note that the d× d covariance matrix grows

in this limit; we will, however, assume that the number of components k and their

amplitudes θ1, . . . , θk are fixed.

In the limit n, d → ∞ with n/d → c, the principal components no longer con-

sistently estimate the underlying components, but, perhaps surprisingly, the angle

between each principal component and its underlying counterpart still converges al-

most surely to a deterministic number. In particular, in this homoscedastic setting

where the noise σE has i.i.d. entries,

(2.23) |〈ûi, ui〉| a.s.−→
{
c− (σ/θi)

4

c+ (σ/θi)2

}
+

as n, d→∞ with n/d→ c > 0,

for each i ∈ {1, . . . , k}. The recovery (2.23) depends on the samples per dimension

c and the noise to signal ratio σ/θi. A large number of samples per dimension

relative to the noise to signal ratio, i.e., c � (σ/θi)
4, is needed for recovery close

to one. When c < (σ/θi)
4, the recovery is zero and the principal component is

asymptotically orthogonal to the underlying component. Namely, there is a phase

transition at c = (σ/θi)
4 between positive recovery and no recovery; the asymptotic

recovery does not smoothly approach zero, e.g., as the noise variance σ2 increases.

The expression (2.23) for asymptotic recovery in the high-dimensional regime

provides an elegant tool for understanding the behavior of principal components

under the homoscedastic model (2.21). Chapter III analyzes the more general het-

eroscedastic setting where samples have potentially heterogeneous noise variances,

and Chapter IV goes a step further by extending the analysis to weighted PCA,

where samples are also given heterogeneous weight in PCA to account for the het-

erogeneous noise. The analyses are based on the perturbation technique of [22] that

relates the singular values and vectors of low-rank plus random matrices like Y in

(2.20) to (an integral with respect to) the singular values of the noise E.

The analyses rely on a surprising fact from random matrix theory: the singular

value distributions of these noise matrices (appropriately normalized) converge al-

most surely to deterministic distributions. Consider, for example, the above noise

matrix E ∈ Cd×n with i.i.d. normal entries (mean zero, variance one), suppose d ≤ n

for simplicity, and let Ẽ := E/
√
n ∈ Cd×n be the normalized version. Any draw of

the random matrix Ẽ has d singular values λ1 ≥ · · · ≥ λd ≥ 0 with corresponding

(empirical) singular value distribution µ̂ := (δλ1 + · · ·+ δλd)/d, where δλ is the Dirac

delta distribution centered at λ. Since Ẽ is a random matrix, the associated singular
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Figure 2.2: Histograms visualizing the empirical singular value distributions of three
500 × 1000 random matrices, each generated with i.i.d. (mean zero,
variance 1/1000) Gaussian entries. Overlaid is the Marcenko-Pastur dis-
tribution (2.24) in orange. The empirical singular value distribution is
random, as indicated by slight differences among the three, but all are
concentrating around the limiting Marcenko-Pastur distribution (2.24).

value distribution µ̂ is also random. However, this random singular value distribu-

tion converges almost surely [14, Chapter 3]: µ̂
a.s.−→ µẼ as n, d → ∞ with n/d → c

where the limiting singular value distribution µẼ is deterministic and has density

(2.24) dµẼ(x) =

√
4c− (cx2 − c− 1)2

πx
1(1−1/

√
c,1+1/

√
c)(x)dx.

This distribution, shown in Fig. 2.2, is the Marcenko-Pastur distribution [138]. The

existence of deterministic limits for these spectral properties of random matrices is a

surprising fact, and has been the subject of a large body of work; see the textbooks

[9, 14, 52] for excellent overviews of this field.

2.3 Canonical Polyadic Tensor Decomposition

The canonical polyadic (CP) tensor decomposition is a generalization of PCA

to tensor, or multiway, data. Whereas PCA produces a low-rank approximation of

data shaped as a matrix, i.e., a two-indexed array, CP produces a low-rank approx-

imation of data shaped as a tensor, i.e., a two- or more-indexed array. For example,

Section 5.5.2 considers measurements of neural activity in mice over the course of a

task that they repeat for multiple trials. This data is most naturally organized as a

three-way tensor Y ∈ Rn1×n2×n3 with three modes corresponding to n1 neurons, n2

time steps and n3 trials. One might reshape this tensor into an n1n2 × n3 matrix to

use PCA by flattening the neuron and time modes into a single mode; CP instead

generalizes PCA to handle such data directly. For the purpose of the dissertation,

this section provides a brief introduction to this increasingly standard data analysis

tool; see the surveys [118, 183] for a more comprehensive introduction to this and

other tensor decompositions, their properties and their many applications to data

analysis.
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b(1)
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+
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+ · · · +
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b(k)
c(k)

=: X̂

Figure 2.3: Illustration of a rank-k canonical polyadic (CP) structured 3-way tensor.
The tensor is the sum of k components, each of which is the outer product
of d vectors (here d = 3).

CP tensor decomposition seeks to approximate the data tensor with a low-rank

tensor X̂, i.e., a sum of (only a few) rank-one outer products,

(2.25) Y ≈ X̂ = a(1) ◦ b(1) ◦ c(1) + · · ·+ a(k) ◦ b(k) ◦ c(k) ∈ Rn1×n2×n3 ,

where ◦ denotes an outer product, and a(1), . . . , a(k) ∈ Rn1 , b(1), . . . , b(k) ∈ Rn2 and

c(1), . . . , c(k) ∈ Rn3 are k factors in each of the three modes, respectively. As illus-

trated in Fig. 2.3, the factors combine to approximate the data tensor Y in the same

way that the principal components û1, . . . , ûk ∈ Cd and scores ẑ1, . . . , ẑk ∈ Cn in

(2.16) combined to approximate the data matrix Y. Namely, the (i, j, `)th entry of

the reconstructed tensor X̂ is

(2.26) x̂ij` = a
(1)
i b

(1)
j c

(1)
`︸ ︷︷ ︸

(a(1)◦b(1)◦c(1))ij`

+ · · ·+ a
(k)
i b

(k)
j c

(k)
`︸ ︷︷ ︸

(a(k)◦b(k)◦c(k))ij`

,

where i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} and ` ∈ {1, . . . , n3}. Observe that while the

data tensor Y has n1n2n3 independent entries, the entries of the low-rank tensor X̂ are

all determined by the k(n1 +n2 +n3) entries in the factors. It is this interdependence

among data entries that a low-rank CP tensor decomposition captures.

2.3.1 Approximate low-rank CP tensor decomposition

We turn now to a precise description of CP tensor decomposition and its as-

sociated optimization problem. So far, we have described CP in the context of a

three-way tensor, but the work in this dissertation applies to tensors with any num-

ber of modes and taking a moment to more clearly establish some notation will ease

the discussion.

An n1 × · · · × nd tensor Y ∈ Rn1×···×nd refers throughout this dissertation to a

real array with d indices i1, . . . , id that run from one to n1, . . . , nd, respectively. The
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number of ways d is the order of the tensor and each way is called a mode. Defining

(2.27) n = d

√√√√ d∏
k=1

nk and n̄ =
1

d

d∑
k=1

nk

to be the geometric and arithmetic means of the dimensions n1, . . . , nd, the tensor

has nd entries with the sum of the dimensions given by dn̄. The tensor is indexed by

the multiindex

(2.28) i := (i1, . . . , id) ∈ I := { 1, . . . , n1 } ⊗ { 1, . . . , n2 } ⊗ · · · ⊗ { 1, . . . , nd } ,

i.e., yi is the entry of Y at (i1, . . . , id).

A rank-k tensor X is one that can be expressed as a sum of k outer products4

(2.29) X = a
(1)
1 ◦ · · · ◦ a(1)

d + · · ·+ a
(k)
1 ◦ · · · ◦ a(k)

d ,

where a
(1)
1 , . . . , a

(k)
1 ∈ Rn1 , a

(1)
2 , . . . , a

(k)
2 ∈ Rn2 , and so on through a

(1)
d , . . . , a

(k)
d ∈ Rnd ,

are k factors in each of the d modes. It is often convenient to refer to the factors for

a mode together, so we define the factor matrices

(2.30) A1 := (a
(1)
1 , . . . , a

(k)
1 ) ∈ Rn1×k · · · Ad := (a

(1)
d , . . . , a

(k)
d ) ∈ Rnd×k,

with which we denote (2.29) compactly as X = JA1,A2, . . . ,AdK. Expressed in terms

of both the factors and the factor matrices, the ith entry of X is

xi =
k∑
j=1

a
(j)
1 (i1) · · · a(j)

d (id) =
k∑
j=1

A1(i1, j) · · ·Ad(id, j),(2.31)

where we use parentheses here to denote indexing into a variable that already has a

subscript. As before, X has nd entries but is defined entirely by the kdn̄� nd entries

in the factors. The entries in X are not unrelated but are instead correlated through

the CP structure. Put another way, X is parsimoniously represented by the factors.

Approximate CP tensor decomposition conventionally seeks a rank-k tensor X

that is closest to the given data tensor Y by solving the optimization problem

(2.32) X̂ ∈ argmin
X:rankX≤k

‖Y− X‖2
F :=

∑
i∈I

(yi − xi)2,

or in terms of factor matrices, X̂ = JÂ1, Â2, . . . , ÂdK where

(2.33) (Â1, . . . , Âd) ∈ argmin
A1∈Rn1×k,

...,
Ad∈Rnd×k

‖Y− JA1,A2, . . . ,AdK‖2
F .

4Technically, such a tensor is rank at most k since it may be possible to represent it with fewer
than k outer products. The rank is the minimum number of outer products needed.



17

In words, we seek a low-rank tensor that is a least-squares fit to the data tensor. As

we describe in Section 5.3.1, this traditional choice of fit is most natural when data

are believed to be Gaussian with homogeneous variances. Chapter V generalizes CP

tensor decomposition to allow for different notions of fit, e.g., ones motivated by

other statistical assumptions.

Observe that unlike PCA the factors in (2.33) are not constrained to be jointly

orthogonal. Low-rank tensors with three or more modes typically have (essentially)

unique factors, making the additional constraint less necessary; see [118, Section 3.2]

for further discussion. Another significant difference from the matrix setting of PCA

is that the best rank-k factors do not necessarily contain the best rank-(k−1) factors,

and in some cases a best rank-k approximation may not even exist. These aspects

of tensors are beyond the scope of this dissertation, and are discussed with pointers

to relevant works in [118, Section 3.3].

2.3.2 Computing CP by alternating least squares

Computing the (approximate) CP tensor decomposition of a data tensor Y means

solving the optimization problem (2.33). The problem is not jointly convex since the

entries of X = JA1,A2, . . . ,AdK are products of the factor matrix entries, i.e., the

optimization variables. However, the objective in (2.33) can be written as

(2.34) ‖Y− JA1,A2, . . . ,AdK‖2
F = ‖Y(1) −A1(Ad � · · · �A2)>‖2

F ,

where Y(1) ∈ Rn1×(nd/n1) is the unfolding or matricization of Y along the first mode,

and � denotes the Khatri-Rao product, i.e., the column-wise Kronecker product; see

[118, Section 2.4] for discussion of matricization and [118, Section 2.6] for discussion

of the Khatri-Rao product.

Observe that (2.34) is the usual least squares problem with respect to A1 and is

minimized over A1 by Y(1){(Ad � · · · � A2)>}†. The same is true for A2, . . . ,Ad:

(2.33) is a least squares problem with respect to each Ak individually and can be

solved via a pseudo-inverse. This simple but powerful fact forms the basis for a

standard approach to fitting CP: the alternating least squares algorithm. Roughly

speaking, the algorithm initializes all the factor matrices then cycles through updat-

ing each one via least squares. Pseudo-inverses of Khatri-Rao products also turn out

to have special structure that makes it possible to compute them efficiently, i.e., by

pseudo-inverting only a k × k matrix [118, Equation (2.2)], making this approach a

practical and fast means for the CP tensor decomposition of even large tensors. The

alternation hits local minima depending on the initialization, but this issue is often

effectively mitigated in practice by trying multiple initializations and selecting the

run with the best fit.
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Unfortunately, this structure does not surface for the general notions of fit we

investigate in Chapter V. As a result, a major challenge becomes developing a more

general algorithmic framework for fitting CP models; one such framework is the main

contribution of Chapter V.

2.3.3 Aside: Forming tensors from data

We close this section on the CP tensor model with an aside on how data gets

formed into a tensor, sometimes referred to as quantization of the tensor. This aspect

of tensor decompositions is somewhat orthogonal to the work in this dissertation, but

can have a significant practical impact and is worth discussing a bit.

As an example, consider measuring monthly rainfall in 36 regions over the course

of 115 years. A natural approach is to form a 36×1380 two-way tensor, i.e., a matrix,

with the first mode corresponding to region and the second mode corresponding to

month. However, one could also form a 36× 12× 115 three-way tensor with modes

corresponding to region, month-in-year and year, as done in Section 5.5.3. One can

even further split the year mode into decades and year-in-decade. How to quantize

is one of the first questions faced by someone hoping to use a tensor decomposi-

tion. Selecting appropriate quantizations depends entirely on the application and

a thorough discussion is beyond our scope; instead we highlight here a simple way

quantization affects the resulting decomposition.

Consider first flattening two modes into one, e.g., flattening the month-in-year

and year modes in the above rainfall example into a single month mode. Any rank-k

tensor in the original quantization immediately yields a rank-at-most-k tensor in the

new quantization. To see why, consider a four-way rank-k tensor X4 = JA1, . . . ,A4K.
Flattening its last two modes into one mode produces the three-way rank-k tensor

X3 = JA1,A2,A3 �A4K. Intuitively, a low-rank tensor quantized into three modes

has entries that are less constrained than those in its four-mode analogue. Conversely,

splitting a single mode into two modes often increases the rank.

In practice, the impact of flattening two modes is that the resulting CP model

may not capture patterns in the data as naturally as the more structured (higher-

order) model. For example, the rainfall data described above has strong yearly

patterns based on the season; a three-way tensor separates this pattern out from the

year-to-year variations. Videos present another interesting quantization scenario. A

natural choice is to form a three-way tensor with the first two modes corresponding

to the rows and columns of each frame and the last mode corresponding to the

frame. A low-rank approximation of this tensor effectively seeks low-rank structure

across the spatial modes, i.e., within each frame, and some thought is needed to

decide if such structure is expected. Note that a line connecting opposite corners
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R2

S1

S2 S3

Figure 2.4: Illustration of a union of three one-dimensional subspaces for sample
vectors in R2. No one-dimensional subspace can fit all the samples but
the union of three subspaces can.

in a frame corresponds to a (full-rank) identity image matrix. Sometimes it can be

more appropriate to flatten two modes into one. In the end, one often tries several

quantizations; understanding the rough impact makes it easier to assess which choices

may be reasonable given domain knowledge or even given patterns seen in the factors

obtained for previously considered quantizations.

2.4 Unions of subspaces

Union of subspaces (UoS) models generalize PCA through the lens of subspace

learning. Rather than modeling samples as all lying close to a single shared subspace,

a UoS models samples as each lying close to one of several subspaces as shown in

Fig. 2.4. This generality allows a UoS to model data that is too heterogeneous to be

captured by a single low-dimensional subspace but that can be grouped into a few

classes with each class well represented by a low-dimensional subspace. In Fig. 2.4,

no one-dimensional subspace can fit all the samples but the combination of three

subspaces does. This section provides a brief introduction to this model and a couple

broad approaches to fitting it. See the textbook [207] for a comprehensive treatment

of the model and its many modern applications ranging from face recognition [74]

to handwritten digit recognition [84] and motion segmentation [198]. See especially

[207, Chapter 5] for algebraic-geometric approaches that we skip here for brevity.

UoS learning seeks to recover a UoS given (possibly noisy) samples drawn from it.

Consider a union of k subspaces U = S1∪· · ·∪Sk ⊂ RD, where S1, . . . ,Sk ⊂ RD are,

respectively, d1, . . . , dk-dimensional subspaces of the ambient space RD. Considering

noiseless data for simplicity, the goal is to recover the UoS U ⊂ Rd from given

samples y1, . . . , yn ∈ U . A closely related task is to cluster the samples y1, . . . , yn by

subspace, i.e., to put samples from S1 in a single cluster, samples from S2 in a single

cluster, and so on. Subspaces to form a UoS can be obtained from a solution to
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this subspace clustering problem by running PCA on each cluster of samples; correct

clustering results in good UoS recovery. Likewise, clusters can be formed from a

UoS by clustering samples to their nearest subspace,5 and good UoS recovery will

yield good clustering. Hence, for the purpose of this dissertation, we will generally

treat these two goals as roughly equivalent. The remainder of this section discusses

various approaches for subspace clustering in particular, and Chapter VI describes

an ensemble approach to subspace clustering based on K-subspaces. Chapter VII

proposes a generalization of UoS models to sequences of unions of subspaces (SUoS).

2.4.1 Self-expressive approaches

Several state of the art approaches to subspace clustering seek a parsimonious self-

expressive representation of the samples, i.e., they express each sample in terms of the

rest. Doing so leverages the key insight that samples tend to be more parsimoniously

represented by other samples from the same subspace than by samples from different

subspaces. A common approach is to solve an optimization problem of the form

(2.35) Ẑ ∈ argmin
Z∈Rn×n

1

n

n∑
i=1

∥∥∥yi − n∑
j=1

zjiyj

∥∥∥2

2︸ ︷︷ ︸
=‖Y−YZ‖2F

+λ‖Z‖ s.t. diag(Z) = 0

where Y := (y1, . . . , yn) ∈ RD×n is the data matrix, the constraint prevents samples

from representing themselves, the first term in the objective encourages fidelity in

the representation, and the second term typically regularizes the representation by

using a parsimony-encouraging norm, such as

• the `1 norm: sparse subspace clustering (SSC) [67],

• the nuclear norm (with constraint omitted): low-rank representation [132], or

• some combination of these and other norms.

The representation Ẑ is then used to obtain a symmetric affinity matrix |Ẑ|+|Ẑ|>, so

called because each entry gives an affinity between the corresponding pair of samples.

Spectral clustering on this affinity matrix yields the output clusters.

Many recent approaches [135, 181, 187, 206] consider variations on (2.35) to

improve robustness to noise and outliers. Self-expressive approaches typically come

with theoretical results that guarantee no false connections (NFC), i.e., that points

lying in different subspaces have zero affinity. See [210] for an excellent overview of

the state of the art.
5If multiple subspaces are equally close to a sample, one might typically assign it to an arbitrary

cluster. Carefully handling this case is beyond the scope of this dissertation.



21

2.4.2 Geometric approaches

Another group of approaches seek to leverage the geometry of a UoS more di-

rectly. An early example is the Spectral Local Best-Fit Flat (SLBF) algorithm [226].

The algorithm first identifies nearest neighbors in Euclidean distance, with the num-

ber of neighbors determined via an iterative local best-fit procedure [226, Algorithm

1], then forms pairwise affinities from the neighborhoods and applies spectral cluster-

ing. While the procedure is theoretically motivated [226, Section 2.1.1], no clustering

guarantee accompanies the overall clustering approach. Greedy subspace clustering

(GSC) [162] first greedily identifies nearest subspace neighbors by iteratively build-

ing a neighbor subspace around each sample [162, Algorithm 1], then greedily se-

lects neighbor subspaces that approximately fit the most samples [162, Algorithm 2].

GSC is accompanied by theoretical clustering guarantees under both random and

deterministic assumptions on the subspaces. Finally, thresholding-based subspace

clustering (TSC) [91] chooses nearest neighbors by angle then applies spectral clus-

tering. TSC comes with theoretical correct clustering guarantees under assumptions

similar to those considered in the analysis of SSC.

2.4.3 K-subspaces

In contrast to the above methods, K-subspaces (KSS) [7, 30] seeks a least-squares

fit of a union of k subspaces to the samples y1, . . . , yn ∈ RD. Given k subspace

dimensions d1, . . . , dk, one seeks to solve the following optimization problem:

(2.36) (Ŝ1, . . . , Ŝk) ∈ argmin
S1∈Gr(d1,RD),

...,
Sk∈Gr(dk,RD)

1

n

n∑
j=1

min
S∈{S1,...,Sk}

‖yj − PSyj‖2
2,

where the resulting UoS is formed by taking the union Û := Ŝ1 ∪ · · · ∪ Ŝk. Note that

minS∈{S1,...,Sk} ‖yj − PSyj‖2
2 is the square residual to the UoS U := S1 ∪ · · · ∪ Sk.

Rewriting (2.36) by introducing cluster assignment variables yields the usual form

(2.37) (ĉ1, . . . , ĉn, Ŝ1, . . . , Ŝk) ∈ argmin
c1,...,cn∈{1,...,k},
S1∈Gr(d1,RD),

...,
Sk∈Gr(dk,RD)

1

n

n∑
j=1

‖yj − PScj yj‖
2
2.

A nice feature of the objective in (2.37) is that its minimum value depends only on

the least squares residual to the best UoS fit; it is not a function of how well spread

the subspaces are, providing some hope that minimizers to (2.37) may have good

recovery even when subspaces are close together. Unfortunately, even approximating

(2.37) turns out to be NP-hard [76].
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Instead, KSS randomly initializes k candidate subspaces then alternates between

the following two steps:

• cluster assignment: optimize (2.37) with respect to ĉ1, . . . , ĉn;

• subspace (PCA) update: optimize (2.37) with respect to S1, . . . ,Sk.

Observe that cluster assignment amounts to assigning each sample to its nearest

subspace, and the subspace update amounts to updating each subspace via subspace

learning (PCA) on its assigned samples. As a result, KSS is computationally efficient

with guaranteed convergence to a local minimum [30, 200]. However, the output is

highly dependant on the initialization, so KSS is typically run many times after which

the run with smallest cost (2.37) is chosen as the final output. Chapter VI instead

combines the outputs from all the runs to form a more reliable ensemble estimate;

this dissertation focuses on the current corresponding theoretical guarantees.

KSS has been extended and modified in a number of ways to improve its recovery

performance. For example, [225] minimizes the sum of the residuals rather than the

sum of the square residuals to improve outlier and noise robustness, [17] proposes a

streaming version that can also handle missing data, and [89] proposes a streaming

approach with a novel initialization based on ideas from [226]. Most recently, [76]

replace PCA in the subspace update with coherence pursuit (CoP) [169].

2.5 Low-dimensional models and medical imaging

We close this background chapter with a brief discussion of some connections

between low-dimensional models and medical imaging, specifically, image formation.

Image formation is the problem of creating an image from data that do not correspond

to direct measurements of the pixel values. Image here means a grid of d pixel (or

voxel) values represented as a d-dimensional vector x ∈ Cd. In many interesting and

important settings, such as magnetic resonance imaging (MRI) and X-ray computed

tomography (CT), the vector y ∈ Cm of m measurements from the imaging device

can be reasonably modeled as linear measurements, i.e., y ≈ Ax, where the system

matrix A ∈ Cm×d models the imaging device. Image formation is the inverse problem

of “inverting” this forward model to obtain x given y.

Typically, we expect images of interest x to not have arbitrary pixel values;

this prior knowledge is what enables us to identify noise and artifacts in images.

Mathematically modeling this prior knowledge holds great promise for improving

the quality and safety of medical imaging systems. For example, lowering the X-ray

dose in X-ray CT reduces patient exposure to radiation but results in noisier data.

Image models can be used to discourage noisy images in image formation. In MRI,



23

forming an image from fewer measurements can help reduce scan times or can enable

dynamic imaging with better temporal resolution. However, having fewer measure-

ments than voxels, i.e., m < d, results in an under-determined linear system in image

formation, with infinitely many images consistent with the measured data. Image

models can help disambiguate among the consistent images, encouraging artifact-free

images. Intuitively, good image models can help “fill the gaps” in measured data by

incorporating the prior knowledge of what images should be expected.

Developing good image models and fast image formation algorithms that exploit

them is both a well-established and active area of work, with significant attention

in recent years on models that are learned from example images. A survey of this

large (and rapidly growing) area is beyond the scope of this discussion. Instead,

we describe a few connections to the low-dimensional models and the challenges

considered in this dissertation.

2.5.1 Dictionary/transform sparsity and unions of subspaces

Dictionary sparse patch models for images suppose that patches of an image are

well approximated by sparse combinations of atomic signals d1, . . . , dn ∈ Cm that

taken together form a dictionary D := (d1, . . . , dn) ∈ Cm×n. Namely, we model an

m-pixel patch x ∈ Cm as

(2.38) x ≈ Dz = z1d1 + · · ·+ zndn, ‖z‖0 ≤ k,

where ‖ · ‖0 denotes the `0 pseudo-norm that counts the number of nonzero entries

of its argument. Since ‖z‖0 ≤ k the linear combination in (2.38) is a sparse combi-

nation of at most k of the atoms. A closely related model is the transform sparse

patch model, where patches are modeled as being approximately sparse under some

transform T ∈ Cn×m. Namely

(2.39) Tx ≈ z, ‖z‖0 ≤ k,

where T might, e.g., compute differences between neighboring pixels to encourage

piecewise constant patches [176, 184]. Both models are well-motivated by the obser-

vation that images tend to be sparse in appropriate representations, and that this

sparsity can be exploited to aid image formation. See [136] for some early applica-

tions in MRI.

The dictionary in (2.38) or transform in (2.39) is sometimes hand-crafted based

on our intuitions about what structure we anticipate images to have. See, e.g., [136,

Figure 3] and the associated discussion for examples in MRI where wavelet transform

sparsity or DCT sparsity are natural choices. The opportunity to obtain dictionaries
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and transforms tailored for particular types of data has also sparked significant recent

work on learning dictionaries and transforms from data. Dictionary and transform

learning is now a large and active area; see [8] and [172] for some of the early works

in the context of image models.

In either setting, both dictionary and transform sparse models can also be viewed

through the lens of unions of subspaces. Chapter VII discusses this connection in

detail, and proposes a generalization to unions of subspaces that more firmly cements

their relationship. The basic observation is that signals of a given sparsity level form

a union of subspaces. For example, signals x ∈ Cm satisfying (2.38) with exact (not

approximate) equality for sparsity level k = 2 are formed by a linear combination of

at most two atoms. This set of signals is the union of two-dimensional subspaces

(2.40) UD := {Dz : ‖z‖0 ≤ 2} =
⋃

{i,j}∈Ω2

span(di, dj),

where Ω2 is the set of pairs of indices drawn from {1, . . . , n}. Likewise, signals

satisfying (2.39) with exact equality for sparsity level k = 2 form a union of two-

dimensional nullspaces

(2.41) UT := {x ∈ Cm : ‖Tx‖0 ≤ 2} =
⋃

I∈Ωn−2

null(TI),

where TI ∈ C(n−2)×m is the matrix formed from the rows of T indexed by I, and

Ωn−2 is the set of (n− 2)-sized index sets drawn from {1, . . . , n}. Hence, dictionary

and transform models can also be thought of as structured unions of subspaces.

2.5.2 Learning image models from heterogeneous images

Learning image models from previously acquired images poses challenges result-

ing from several sources of heterogeneity. A first source of heterogeneity is variability

from person to person that can make it unclear how well a model learned on previ-

ously seen subjects will generalize to a new subject being imaged. For this reason,

some methods do not use training images, choosing instead to fit the model jointly

with image formation. A natural question is whether the two approaches can be com-

bined: can previously acquired, potentially cleaner, images be used together with an

image still being formed to learn a model that both takes advantage of historical scans

while also being tailored to the new scan? Another source of heterogeneity in learn-

ing from historical scans is varying noise and artifact levels. Image quality depends

on many factors from scanner configuration to even subject size, and these factors

can change from image to image. As a consequence, samples provided to learning

algorithms have varying quality, and an important question is how to account for this
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heterogeneity in learning. Noisier, less informative, samples should roughly speak-

ing be given less weight while fitting the model, but how much less weight is not

always obvious. Chapter IV studies this question for learning subspace models with

weighted PCA. In both cases, incorporating more data into model learning requires

understanding and accounting for the various ways that they are heterogeneous. This

is an exciting new challenge of modern data analysis and we discuss some ideas in

Chapter VIII.



CHAPTER III

Asymptotic performance of PCA for

high-dimensional heteroscedastic data

As described in Section 2.2, Principal Component Analysis (PCA) is a classical

and ubiquitous method for reducing the dimensionality of data by projecting them

onto components that captures most of their variation. Effective use of PCA in mod-

ern applications requires understanding its performance for data that are both high-

dimensional and heteroscedastic. This chapter analyzes the statistical performance

of PCA in this setting, i.e., for high-dimensional data drawn from a low-dimensional

subspace and degraded by heteroscedastic noise. We provide simplified expressions

for the asymptotic PCA recovery of the underlying subspace, subspace amplitudes

and subspace coefficients; the expressions enable both easy and efficient calculation

and reasoning about the performance of PCA. We exploit the structure of these ex-

pressions to show that, for a fixed average noise variance, the asymptotic recovery

of PCA for heteroscedastic data is always worse than that for homoscedastic data

(i.e., for noise variances that are equal across samples). Hence, while average noise

variance can be a convenient measure for the overall quality of data, it gives overly

optimistic estimates of the performance of PCA for heteroscedastic data.

This chapter specifically addresses the characterization of the classical and ubiq-

uitous unweighted form of PCA that treats all samples equally and remains a natural

choice in applications where estimates of the noise variances are unavailable or one

hopes the noise is “close enough” to being homoscedastic. Our analysis uncovers

several practical new insights for this setting; the findings both broaden our under-

standing of PCA and also precisely characterize the impact of heteroscedasticity.

This work led to the following published conference and journal papers that this

chapter presents:

26
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[94] David Hong, Laura Balzano, and Jeffrey A. Fessler. Towards a theoretical

analysis of PCA for heteroscedastic data. In 2016 54th Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton). IEEE, September

2016. doi: 10.1109/allerton.2016.7852272.

[95] David Hong, Laura Balzano, and Jeffrey A. Fessler. Asymptotic performance

of PCA for high-dimensional heteroscedastic data. Journal of Multivariate Anal-

ysis, 167:435–452, September 2018. doi: 10.1016/j.jmva.2018.06.002.

3.1 Introduction

A natural setting for PCA is when data are noisy measurements of points drawn

from a subspace. In this case, the first few principal components û1, . . . , ûk form

an estimated basis for the underlying subspace; if they recover the underlying sub-

space accurately then the low-dimensional scores ẑ(1), . . . , ẑ(k) will largely capture the

meaningful variation in the data. This chapter analyzes how well the first k principal

components û1, . . . , ûk, PCA amplitudes θ̂1, . . . , θ̂k and score vectors ẑ(1), . . . , ẑ(k) re-

cover their underlying counterparts when the data are heteroscedastic, that is, when

the noise in the data has non-uniform variance across samples.

3.1.1 High-dimensional, heteroscedastic data

Modern PCA applications span numerous and diverse areas, ranging from medical

imaging [10, 164] to cancer data classification [179], genetics [124], and environmental

sensing [160, 208], to name just a few. Increasingly, the number of variables measured

is large, i.e., comparable to or even larger than the number of samples; the data are

high-dimensional. Traditional asymptotic results that consider performance as only

the number of samples grows do not apply well to such settings. New intuitions,

theory and approaches are needed for the high-dimensional regime where the number

of variables grows together with the number of samples [113].

When samples are obtained under varied conditions, they will likely have varied

quality. In particular, some samples will have noise of larger variance than others,

i.e., the data will have heteroscedastic noise. For example, Cochran and Horne [49]

use a type of weighted PCA because their spectrophotometric data is obtained from

averages taken over increasing windows of time; samples from longer windows have

lower noise variance. Similarly, astronomical measurements of stars [194] have het-

erogeneous amounts of noise among samples due to differing atmospheric effects from

one sample to the next. Finally, modern big data inference is increasingly done using
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datasets built up from myriad sources, and hence one can expect heteroscedasticity

will be the norm.

3.1.2 Contributions of this chapter

This chapter provides simplified expressions for the performance of PCA from het-

eroscedastic data in the limit as both the number of samples and dimension tend to

infinity. The expressions quantify the asymptotic recovery of an underlying subspace,

subspace amplitudes and coefficients by the principal components, PCA amplitudes

and scores, respectively. The asymptotic recoveries are functions of the samples per

ambient dimension, the underlying subspace amplitudes and the distribution of noise

variances. Forming the expressions involves first connecting several results from ran-

dom matrix theory [14, 22] to obtain initial expressions for asymptotic recovery that

are difficult to evaluate and analyze, and then exploiting a nontrivial structure in the

expressions to obtain much simpler algebraic descriptions. These descriptions enable

both easy and efficient calculation and reasoning about the asymptotic performance

of PCA. Identifying and exploiting the nontrivial structure here is the key technical

innovation that helps us find and study the simplified expressions in this chapter.

The impact of heteroscedastic noise, in particular, is not immediately obvious

given results of prior literature. How much do a few noisy samples degrade the

performance of PCA? Is heteroscedasticity ever beneficial for PCA? Our simplified

expressions enable such questions to be answered. In particular, we use these ex-

pressions to show that, for a fixed average noise variance, the asymptotic subspace

recovery, amplitude recovery and coefficient recovery are all worse for heteroscedastic

data than for homoscedastic data (i.e., for noise variances that are equal across sam-

ples), confirming a conjecture in [94]. Hence, while average noise variance is often a

practically convenient measure for the overall quality of data, it gives an overly opti-

mistic estimate of PCA performance. This analysis provides a deeper understanding

of how PCA performs in the presence of heteroscedastic noise.

3.1.3 Relationship to previous works

Homoscedastic noise has been well-studied, and there are many nice results char-

acterizing PCA in this setting. Benaych-Georges and Nadakuditi [22] give an ex-

pression for asymptotic subspace recovery, also found in [111, 147, 163], in the limit

as both the number of samples and ambient dimension tend to infinity. As argued

in [111], the expression in [22] reveals that asymptotic subspace recovery is per-

fect only when the number of samples per ambient dimension tends to infinity, so

PCA is not (asymptotically) consistent for high-dimensional data. Various alter-



29

natives [28, 65, 111] can regain consistency by exploiting sparsity in the covariance

matrix or in the principal components. As discussed in [22, 147], the expression in [22]

also exhibits a phase transition: the number of samples per ambient dimension must

be sufficiently high to obtain non-zero subspace recovery (i.e., for any subspace re-

covery to occur). This chapter generalizes the expression in [22] to heteroscedastic

noise; homoscedastic noise is a special case and is discussed in Section 3.2.3. Once

again, (asymptotic) consistency is obtained when the number of samples per ambient

dimension tends to infinity, and there is a phase transition between zero recovery and

non-zero recovery.

PCA is known to generally perform well in the presence of low to moderate

homoscedastic noise and in the presence of missing data [43]. When the noise is

standard normal, PCA gives the maximum likelihood (ML) estimate of the sub-

space [195]. In general, [195] proposes finding the ML estimate via expectation max-

imization. Conventional PCA is not an ML estimate of the subspace for heteroscedas-

tic data, but it remains a natural choice in applications where we might expect noise

to be heteroscedastic but hope it is “close enough” to being homoscedastic. Even for

mostly homoscedastic data, however, PCA performs poorly when the heteroscedas-

ticity is due to gross errors (i.e., outliers) [56, 104, 114], which has motivated the

development and analysis of robust variants; see [38, 42, 54, 87, 88, 127, 168, 214, 220]

and their corresponding bibliographies. This chapter provides expressions for asymp-

totic recovery that enable rigorous understanding of the impact of heteroscedasticity.

The generalized spiked covariance model, proposed and analyzed in [15] and [215],

generalizes homoscedastic noise in an alternate way. It extends the Johnstone spiked

covariance model [110, 111] (a particular homoscedastic setting) by using a popula-

tion covariance that allows, among other things, non-uniform noise variances within

each sample. Non-uniform noise variances within each sample may arise, for example,

in applications where sample vectors are formed by concatenating the measurements

of intrinsically different quantities. This chapter considers data with non-uniform

noise variances across samples instead; we model noise variances within each sample

as uniform. Data with non-uniform noise variances across samples arise, for example,

in applications where samples come from heterogeneous sources, some of which are

better quality (i.e., lower noise) than others. See Section 3.8.1 for a more detailed

discussion of connections to spiked covariance models.

Our previous work [94] analyzed the subspace recovery of PCA for heteroscedastic

noise but was limited to real-valued data coming from a random one-dimensional

subspace where the number of samples exceeded the data dimension. This chapter

extends that analysis to the more general setting of real- or complex-valued data

coming from a deterministic low-dimensional subspace where the number of samples
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no longer needs to exceed the data dimension. This chapter also extends the analysis

of [94] to include the recovery of the underlying subspace amplitudes and coefficients.

In both works, we use the main results of [22] to obtain initial expressions relating

asymptotic recovery to the limiting noise singular value distribution.

The main results of [147] provide non-asymptotic results (i.e., probabilistic ap-

proximation results for finite samples in finite dimension) for homoscedastic noise

limited to the special case of one-dimensional subspaces. Signal-dependent noise was

recently considered in [203], where they analyze the performance of PCA and pro-

pose a new generalization of PCA that performs better in certain regimes. Another

line of work [58] extends [22] to linearly reduced data. Chapter IV extends [22] to

weighted data to analyze a weighted variant of PCA. Such analyses are beyond the

scope of this chapter, but are interesting avenues for further study.

3.1.4 Organization of the chapter

Section 3.2 describes the model we consider and states the main results: simplified

expressions for asymptotic PCA recovery and the fact that PCA performance is best

(for a fixed average noise variance) when the noise is homoscedastic. Section 3.3

uses the main results to provide a qualitative analysis of how the model parameters

(e.g., samples per ambient dimension and the distribution of noise variances) affect

PCA performance under heteroscedastic noise. Section 3.4 compares the asymptotic

recovery with non-asymptotic (i.e., finite) numerical simulations. The simulations

demonstrate good agreement as the ambient dimension and number of samples grow

large; when these values are small the asymptotic recovery and simulation differ

but have the same general behavior. Sections 3.5 and 3.6 prove the main results.

Finally, Section 3.7 discusses the findings and describes avenues for future work, and

Section 3.8 provides some supplementary discussions to this chapter.

3.2 Main results

3.2.1 Model for heteroscedastic data

We model n heteroscedastic sample vectors y1, . . . , yn ∈ Cd from a k-dimensional

subspace as

(3.1) yi = UΘzi + ηiεi =
k∑
j=1

θjuj(z
(j)
i )∗ + ηiεi.

The following are deterministic:

• U = (u1, . . . , uk) ∈ Cd×k forms an orthonormal basis for the subspace,
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• Θ = diag(θ1, . . . , θk) ∈ Rk×k
+ is a diagonal matrix of amplitudes,

• ηi ∈ {σ1, . . . , σL} are each one of L noise standard deviations σ1, . . . , σL,

and we define n1 to be the number of samples with ηi = σ1, n2 to be the number of

samples with ηi = σ2 and so on, where n1 + · · ·+ nL = n.

The following are random and independent:

• zi ∈ Ck are iid sample coefficient vectors that have iid entries with mean

E(zij) = 0, variance E|zij|2 = 1, and a distribution satisfying the log-Sobolev

inequality [9],

• εi ∈ Cd are unitarily invariant iid noise vectors that have iid entries with mean

E(εij) = 0, variance E|εij|2 = 1 and bounded fourth moment E|εij|4 <∞,

and we define the k (component) coefficient vectors z(1), . . . , z(k) ∈ Cn such that the

ith entry of z(j) is z
(j)
i = (zij)

∗, the complex conjugate of the jth entry of zi. Defining

the coefficient vectors in this way is convenient for stating and proving the results

that follow, as they more naturally correspond to right singular vectors of the data

matrix formed by concatenating y1, . . . , yn as columns.

The model extends the Johnstone spiked covariance model [110, 111] by incorpo-

rating heteroscedasticity (see Section 3.8.1 for a detailed discussion). We also allow

complex-valued data, as it is of interest in important signal processing applications

such as medical imaging; for example, data obtained in magnetic resonance imaging

are complex-valued.

Remark 3.1. By unitarily invariant, we mean that left multiplication of εi by any

unitary matrix does not change the joint distribution of its entries. As in our previous

work [94], this assumption can be dropped if instead the subspace U is randomly

drawn according to either the “orthonormalized model” or “iid model” of [22]. Under

these models, the subspace U is randomly chosen in an isotropic manner.

Remark 3.2. The above conditions are satisfied, e.g., when the entries zij and εij

are circularly symmetric complex normal CN (0, 1) random variables. Rademacher

random variables (i.e., ±1 with equal probability) are another choice for coefficient

entries zij; see Section 2.3.2 of [9] for discussion of the log-Sobolev inequality. Only

circularly symmetric complex normal distributions satisfy all conditions for noise

entries εij,
1 but as noted in Remark 3.1, unitary invariance can be dropped if we

assume the subspace is randomly drawn as in [22].

1Gaussianity follows from orthogonal invariance via the Herschel-Maxwell theorem [33, Theorem
0.0.1] for real-valued random vectors. Its extension to complex-valued random vectors can be shown
by observing that unitary invariance implies orthogonal invariance of its real part and circular
symmetry of each entry in the complex plane.
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Remark 3.3. The assumption that noise entries εij are identically distributed with

bounded fourth moment can be relaxed when they are real-valued as long as an

aggregate of their tails still decays sufficiently quickly, i.e., as long as they satisfy

Condition 1.3 from [157]. In this setting, the results of [157] replace those of [14] in

the proof.

3.2.2 Simplified expressions for asymptotic recovery

The following theorem describes how well the PCA estimates û1, . . . , ûk, θ̂1, . . . , θ̂k

and ẑ(1), . . . , ẑ(k) recover the underlying subspace basis u1, . . . , uk, subspace ampli-

tudes θ1, . . . , θk and coefficient vectors z(1), . . . , z(k), as a function of the sample-to-

dimension ratio n/d→ c > 0, the subspace amplitudes θ1, . . . , θk, the noise variances

σ2
1, . . . , σ

2
L and corresponding proportions n`/n → p` for each ` ∈ {1, . . . , L}. One

may generally expect performance to improve with increasing sample-to-dimension

ratio and subspace amplitudes; Theorem 3.4 provides the precise dependence on

these parameters as well as on the noise variances and their proportions.

Theorem 3.4 (Recovery of individual components). Suppose that the sample-to-

dimension ratio n/d → c > 0 and the noise variance proportions n`/n → p` for

` ∈ {1, . . . , L} as n, d→∞. Then the ith PCA amplitude θ̂i is such that

(3.2) θ̂2
i

a.s.−→ 1

c
max(α, βi)

{
1 + c

L∑
`=1

p`σ
2
`

max(α, βi)− σ2
`

}
,

where α and βi are, respectively, the largest real roots of

A(x) = 1− c
L∑
`=1

p`σ
4
`

(x− σ2
` )

2
, Bi(x) = 1− cθ2

i

L∑
`=1

p`
x− σ2

`

.(3.3)

Furthermore, if A(βi) > 0, then the ith principal component ûi is such that

|〈ûi, span{uj : θj = θi}〉|2 a.s.−→ A(βi)

βiB′i(βi)
, |〈ûi, span{uj : θj 6= θi}〉|2 a.s.−→ 0,(3.4)

the normalized score vector ẑ(i)/
√
n is such that∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ A(βi)

c{βi + (1− c)θ2
i }B′i(βi)

,(3.5) ∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj 6= θi}

〉∣∣∣∣2 a.s.−→ 0,

and

(3.6)
∑
j:θj=θi

〈ûi, uj〉
〈
ẑ(i)

√
n
,
z(j)

‖z(j)‖

〉∗
a.s.−→ A(βi)√

cβi{βi + (1− c)θ2
i }B′i(βi)

.
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Section 3.5 presents the proof of Theorem 3.4. The expressions can be easily and

efficiently computed. The hardest part is finding the largest roots of the univariate

rational functions A(x) and Bi(x), but off-the-shelf solvers can do this efficiently.

See [94] for an example of similar calculations.

The projection |〈ûi, span{uj : θj = θi}〉|2 in Theorem 3.4 is the square cosine

principal angle between the ith principal component ûi and the span of the basis

elements with subspace amplitudes equal to θi. When the subspace amplitudes are

distinct, |〈ûi, span{uj : θj = θi}〉|2 = |〈ûi, ui〉|2 is the square cosine angle between ûi

and ui. This value is related by a constant to the squared error between the two (unit

norm) vectors and is one among several natural performance metrics for subspace

estimation. Similar observations hold for |〈ẑ(i)/
√
n, span{z(j) : θj = θi}〉|2. Note that

ẑ(i)/
√
n has unit norm.

The expressions (3.4), (3.5) and (3.6) apply only if A(βi) > 0. The following

conjecture predicts a phase transition at A(βi) = 0 so that asymptotic recovery is

zero for A(βi) ≤ 0.

Conjecture 3.5 (Phase transition). Suppose (as in Theorem 3.4) that the sample-

to-dimension ratio n/d → c > 0 and the noise variance proportions n`/n → p` for

` ∈ {1, . . . , L} as n, d → ∞. If A(βi) ≤ 0, then the ith principal component ûi and

the normalized score vector ẑ(i)/
√
n are such that

|〈ûi, span{u1, . . . , uk}〉|2 a.s.−→ 0,

∣∣∣∣〈 ẑ(i)

√
n
, span{z(1), . . . , z(k)}

〉∣∣∣∣2 a.s.−→ 0.

This conjecture is true for a data model having Gaussian coefficients and homoscedas-

tic Gaussian noise as shown in [163]. It is also true for a one-dimensional subspace

(i.e., k = 1) as we showed in [94]. Proving it in general would involve showing

that the singular values of the matrix whose columns are the noise vectors exhibit

repulsion behavior; see Remark 2.13 of [22].

3.2.3 Homoscedastic noise as a special case

For homoscedastic noise with variance σ2, A(x) = 1− cσ4/(x−σ2)2 and Bi(x) =

1 − cθ2
i /(x − σ2). The largest real roots of these functions are, respectively, α =

(1 +
√
c)σ2 and βi = σ2 + cθ2

i . Thus the asymptotic PCA amplitude (3.2) becomes

(3.7) θ̂2
i

a.s.−→

θ2
i {1 + σ2/(cθ2

i )}(1 + σ2/θ2
i ) if cθ4

i > σ4,

σ2(1 + 1/
√
c)2 otherwise.
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Further, if cθ4
i > σ4, then the non-zero portions of asymptotic subspace recovery (3.4)

and coefficient recovery (3.5) simplify to

|〈ûi, span{uj : θj = θi}〉|2 a.s.−→ c− σ4/θ4
i

c+ σ2/θ2
i

,(3.8) ∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ c− σ4/θ4
i

c(1 + σ2/θ2
i )
,

These limits agree with the homoscedastic results in [22, 29, 111, 147, 163]. As noted

in Section 3.2.2, Conjecture 3.5 is known to be true when the coefficients are Gaussian

and the noise is both homoscedastic and Gaussian, in which case (3.8) becomes

|〈ûi, span{uj : θj = θi}〉|2 a.s.−→ max

(
0,
c− σ4/θ4

i

c+ σ2/θ2
i

)
,∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ max

{
0,

c− σ4/θ4
i

c(1 + σ2/θ2
i )

}
.

See Section 2 of [111] and Section 2.3 of [163] for a discussion of this result.

3.2.4 Bias of the PCA amplitudes

The simplified expression in (3.2) enables us to immediately make two observa-

tions about the recovery of the subspace amplitudes θ1, . . . , θk by the PCA ampli-

tudes θ̂1, . . . , θ̂k.

Remark 3.6 (Positive bias in PCA amplitudes). The largest real root βi of Bi(x) is

greater than max`(σ
2
` ). Thus 1/(βi − σ2

` ) > 1/βi for ` ∈ {1, . . . , L} and so evaluat-

ing (3.3) at βi yields

0 = Bi(βi) = 1− cθ2
i

L∑
`=1

p`
βi − σ2

`

< 1− cθ2
i

1

βi
.

As a result, βi > cθ2
i , so the asymptotic PCA amplitude (3.2) exceeds the subspace

amplitude, i.e., θ̂i is positively biased and is thus an inconsistent estimate of θi.

This is a general phenomenon for noisy data and motivates asymptotically optimal

shrinkage in [145].

Remark 3.7 (Alternate formula for amplitude bias). If A(βi) ≥ 0, then βi ≥ α

because A(x) and Bi(x) are both increasing functions for x > max`(σ
2
` ). Thus, the
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asymptotic amplitude bias is

θ̂2
i

θ2
i

a.s.−→ βi
cθ2
i

(
1 + c

L∑
`=1

p`σ
2
`

βi − σ2
`

)
=

βi
cθ2
i

{
1 + c

L∑
`=1

p`

(
−1 +

βi
βi − σ2

`

)}

=
βi
cθ2
i

(
1 + βic

L∑
`=1

p`
βi − σ2

`

− c
)

=
βi
cθ2
i

[
1 +

βi
θ2
i

{1−Bi(βi)} − c
]

=
βi
cθ2
i

(
1 +

βi
θ2
i

− c
)

= 1 +

(
βi
cθ2
i

− 1

)(
βi
θ2
i

+ 1

)
,(3.9)

where we have applied (3.2), divided the summand with respect to σ2
` , used the facts

that p1 + · · · + pL = 1 and Bi(βi) = 0, and finally factored. The expression (3.9)

shows that the positive bias is an increasing function of βi when A(βi) ≥ 0.

3.2.5 Overall subspace and signal recovery

Overall subspace recovery is more useful than individual component recovery

when subspace amplitudes are equal and so individual basis elements are not identi-

fiable. It is also more relevant when we are most interested in recovering or denoising

low-dimensional signals in a subspace. Overall recovery of the low-dimensional sig-

nal, quantified here by mean square error, is useful for understanding how well PCA

“denoises” the data taken as a whole.

Corollary 3.8 (Overall recovery). Suppose (as in Theorem 3.4) that the sample-

to-dimension ratio n/d → c > 0 and the noise variance proportions n`/n → p` for

` ∈ {1, . . . , L} as n, d → ∞. If A(β1), . . . , A(βk) > 0, then the subspace estimate

Û = (û1, . . . , ûk) ∈ Cd×k from PCA is such that

(3.10)
1

k
‖ÛHU‖2

F
a.s.−→ 1

k

k∑
i=1

A (βi)

βiB′i (βi)
,

and the mean square error is

1

n

n∑
i=1

∥∥∥UΘzi − ÛΘ̂ẑi

∥∥∥2

2

a.s.−→
k∑
i=1

2

{
θ2
i −

A(βi)

cB′(βi)

}
+

(
βi
cθ2
i

− 1

)
(βi + θ2

i ),(3.11)

where A(x), Bi(x) and βi are as in Theorem 3.4, and ẑi is the vector of score entries

for the ith sample.

Proof of Corollary 3.8. The subspace recovery can be decomposed as

1

k
‖ÛHU‖2

F =
1

k

k∑
i=1

∥∥ûHi Uj:θj=θi

∥∥2

2
+
∥∥ûHi Uj:θj 6=θi

∥∥2

2
,
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where the columns of Uj:θj=θi are the basis elements uj with subspace amplitude θj

equal to θi, and the remaining basis elements are the columns of Uj:θj 6=θi . Asymptotic

overall subspace recovery (3.10) follows by noting that these terms are exactly the

square cosine principal angles in (3.4) of Theorem 3.4.

The mean square error can also be decomposed as

1

n

n∑
i=1

∥∥∥UΘzi − ÛΘ̂ẑi

∥∥∥2

2
=

∥∥∥∥∥UΘ

(
1√
n

Z

)H

− ÛΘ̂

(
1√
n

Ẑ

)H
∥∥∥∥∥

2

F

=
k∑
i=1

θ2
i

[∥∥∥∥ z(i)

√
n

∥∥∥∥2

2

+
θ̂2
i

θ2
i

− 2<
{
θ̂i
θi

k∑
j=1

θj
θi
〈ûi, uj〉

〈
ẑ(i)

√
n
,
z(j)

√
n

〉∗}]
,(3.12)

where Z = (z(1), . . . , z(k)) ∈ Cn×k, Ẑ = (ẑ(1), . . . , ẑ(k)) ∈ Cn×k and < denotes the real

part of its argument. The first term of (3.12) has almost sure limit 1 by the law of

large numbers. The almost sure limit of the second term is obtained from (3.9). We

can disregard the summands in the inner sum for which θj 6= θi; by (3.4) and (3.5)

these terms have an almost sure limit of zero (the inner products both vanish). The

rest of the inner sum∑
j:θj=θi

θj
θi
〈ûi, uj〉

〈
ẑ(i)

√
n
,
z(j)

√
n

〉∗
=
∑
j:θj=θi

(1)〈ûi, uj〉
〈
ẑ(i)

√
n
,
z(j)

√
n

〉∗

has the same almost sure limit as in (3.6) because ‖z(i)/
√
n‖2 → 1 as n → ∞.

Combining these almost sure limits and simplifying yields (3.11).

3.2.6 Importance of homoscedasticity

How important is homoscedasticity for PCA? Does having some low noise data

outweigh the cost of introducing heteroscedasticity? Consider the following three

settings:

1.- All samples have noise variance 1 (i.e., data are homoscedastic).

2.- 99% of samples have noise variance 1.01 but 1% have noise variance 0.01.

3.- 99% of samples have noise variance 0.01 but 1% have noise variance 99.01.

In all three settings, the average noise variance is 1. We might expect PCA to perform

well in Setting 1 because it has the smallest maximum noise variance. However,

Setting 2 may seem favorable because we obtain samples with very small noise, and

suffer only a slight increase in noise for the rest. Setting 3 may seem favorable

because most of the samples have very small noise. However, we might also expect
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PCA to perform poorly because 1% of samples have very large noise and will likely

produce gross errors (i.e., outliers). Between all three, it is not initially obvious what

setting PCA will perform best in. The following theorem shows that PCA performs

best when the noise is homoscedastic, as in Setting 1.

Theorem 3.9. Homoscedastic noise yields the best asymptotic PCA amplitude (3.2),

subspace recovery (3.4) and coefficient recovery (3.5) in Theorem 3.4 for a given

average noise variance σ̄2 = p1σ
2
1 +· · ·+pLσ2

L over all distributions of noise variances

for which A(βi) > 0. Namely, homoscedastic noise minimizes (3.2) (and hence the

positive bias) and it maximizes (3.4) and (3.5).

Concretely, suppose we had c = 10 samples per dimension and a subspace ampli-

tude of θi = 1. Then the asymptotic subspace recoveries (3.4) given in Theorem 3.4

evaluate to 0.818 in Setting 1, 0.817 in Setting 2 and 0 in Setting 3; asymptotic

recovery is best in Setting 1 as predicted by Theorem 3.9. Recovery is entirely lost

in Setting 3, consistent with the observation that PCA is not robust to gross errors.

In Setting 2, only using the 1% of samples with noise variance 0.01 (resulting in 0.1

samples per dimension) yields an asymptotic subspace recovery of 0.908 and so we

may hope that recovery with all data could be better. Theorem 3.9 rigorously shows

that PCA does not fully exploit these high quality samples and instead performs

worse in Setting 2 than in Setting 1, if only slightly.

Section 3.6 presents the proof of Theorem 3.9. It is notable that Theorem 3.9

holds for all proportions p, sample-to-dimension ratios c and subspace amplitudes θi;

there are no settings where PCA benefits from heteroscedastic noise over homoscedas-

tic noise with the same average variance. The following corollary is equivalent and

provides an alternate way of viewing the result.

Corollary 3.10 (Bounds on asymptotic recovery). If A(βi) ≥ 0 then the asymptotic

PCA amplitude (3.2) is bounded as

(3.13) θ̂2
i

a.s.−→ θ2
i + θ2

i

(
βi
cθ2
i

− 1

)(
βi
θ2
i

+ 1

)
≥ θ2

i

(
1 +

σ̄2

cθ2
i

)(
1 +

σ̄2

θ2
i

)
,

the asymptotic subspace recovery (3.4) is bounded as

(3.14) |〈ûi, span{uj : θj = θi}〉|2 a.s.−→ A (βi)

βiB′i (βi)
≤ c− σ̄4/θ4

i

c+ σ̄2/θ2
i

,

and the asymptotic coefficient recovery (3.5) is bounded as

(3.15)

∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ A(βi)

c{βi + (1− c)θ2
i }B′i(βi)

≤ c− σ̄4/θ4
i

c(1 + σ̄2/θ2
i )
,

where σ̄2 = p1σ
2
1 + · · · + pLσ

2
L is the average noise variance and the bounds are met

with equality if and only if σ2
1 = · · · = σ2

L.
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Proof of Corollary 3.10. The bounds (3.13), (3.14) and (3.15) follow immediately

from Theorem 3.9 and the expressions for homoscedastic noise (3.7) and (3.8) in

Section 3.2.3.

Corollary 3.10 highlights that while average noise variance may be a practically con-

venient measure for the overall quality of data, it can lead to an overly optimistic esti-

mate of the performance of PCA for heteroscedastic data. The expressions (3.2), (3.4)

and (3.5) in Theorem 3.4 are more accurate.

Remark 3.11 (Average inverse noise variance). Average inverse noise variance I =

p1 × 1/σ2
1 + · · · + pL × 1/σ2

L is another natural measure for the overall quality of

data. In particular, it is the (scaled) Fisher information for heteroscedastic Gaussian

measurements of a fixed scalar. Theorem 3.9 implies that homoscedastic noise also

produces the best asymptotic PCA performance for a given average inverse noise

variance; note that homoscedastic noise minimizes the average noise variance in this

case. Thus, average inverse noise variance can also lead to an overly optimistic

estimate of the performance of PCA for heteroscedastic data.

3.3 Impact of parameters

The simplified expressions in Theorem 3.4 for the asymptotic performance of PCA

provide insight into the impact of the model parameters: sample-to-dimension ratio c,

subspace amplitudes θ1, . . . , θk, proportions p1, . . . , pL and noise variances σ2
1, . . . , σ

2
L.

For brevity, we focus on the asymptotic subspace recovery (3.4) of the ith component;

similar phenomena occur for the asymptotic PCA amplitudes (3.2) and coefficient

recovery (3.5) as we show in Section 3.8.3.

3.3.1 Impact of sample-to-dimension ratio c and subspace amplitude θi

Suppose first that there is only one noise variance fixed at σ2
1 = 1, i.e., L = 1,

while we vary the sample-to-dimension ratio c and subspace amplitude θi. This is the

homoscedastic setting described in Section 3.2.3. Figure 3.1a illustrates the expected

behavior: decreasing the subspace amplitude θi degrades asymptotic subspace recov-

ery (3.4) but the lost performance could be regained by increasing the number of

samples. Figure 3.1a also illustrates a phase transition: a sufficient number of sam-

ples with a sufficiently large subspace amplitude is necessary to have an asymptotic

recovery greater than zero. Note that in all such figures, we label the axis |〈ûi, ui〉|2
to indicate the asymptotic recovery on the right hand side of (3.4).

Now suppose that there are two noise variances σ2
1 = 0.8 and σ2

2 = 1.8 occurring

in proportions p1 = 80% and p2 = 20%. The average noise variance is still 1, and



39

0 0.5 1 1.5 2

c

0.5

1

1.5

2

2.5

θ i

0

0.2

0.4

0.6

0.8

1

|〈û
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(a) Homoscedastic noise with σ2
1 = 1.
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(b) Heteroscedastic noise with p1 = 80% of sam-
ples at σ2

1 = 0.8 and p2 = 20% of samples at
σ2
2 = 1.8.

Figure 3.1: Asymptotic subspace recovery (3.4) of the ith component as a function
of sample-to-dimension ratio c and subspace amplitude θi with average
noise variance equal to one. Contours are overlaid in black and the region
where A(βi) ≤ 0 is shown as zero (the prediction of Conjecture 3.5). The
phase transition in (b) is further right than in (a); more samples are
needed to recover the same strength signal.

Figure 3.1b illustrates similar overall features to the homoscedastic case. Decreas-

ing subspace amplitude θi once again degrades asymptotic subspace recovery (3.4)

and the lost performance could be regained by increasing the number of samples.

However, the phase transition is further up and to the right compared to the ho-

moscedastic case. This is consistent with Theorem 3.9; PCA performs worse on

heteroscedastic data than it does on homoscedastic data of the same average noise

variance, and thus more samples or a larger subspace amplitude are needed to recover

the subspace basis element.

3.3.2 Impact of proportions p1, . . . , pL

Suppose that there are two noise variances σ2
1 = 0.1 and σ2

2 = 3.25 occurring

in proportions p1 = 1 − p2 and p2, where the sample-to-dimension ratio is c = 10

and the subspace amplitude is θi = 1. Figure 3.2 shows the asymptotic subspace

recovery (3.4) as a function of the proportion p2. Since σ2
2 is significantly larger,

it is natural to think of p2 as a fraction of contaminated samples. As expected,

performance generally degrades as p2 increases and low noise samples with noise

variance σ2
1 are traded for high noise samples with noise variance σ2

2. The performance

is best when p2 = 0 and all the samples have the smaller noise variance σ2
1 (i.e., there

is no contamination).

It is interesting that the asymptotic subspace recovery in Figure 3.2 has a steeper

slope initially for p2 close to zero and then a shallower slope for p2 close to one. Thus
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Figure 3.2: Asymptotic subspace recovery (3.4) of the ith component as a function
of the contamination fraction p2, the proportion of samples with noise
variance σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1 occurs in

proportion p1 = 1 − p2. The sample-to-dimension ratio is c = 10 and
the subspace amplitude is θi = 1. The region where A(βi) ≤ 0 is the red
horizontal segment with value zero (the prediction of Conjecture 3.5).

the benefit of reducing the contamination fraction varies across the range.

3.3.3 Impact of noise variances σ2
1, . . . , σ

2
L

Suppose that there are two noise variances σ2
1 and σ2

2 occurring in proportions p1 =

70% and p2 = 30%, where the sample-to-dimension ratio is c = 10 and the subspace

amplitude is θi = 1. Figure 3.3 shows the asymptotic subspace recovery (3.4) as a

function of the noise variances σ2
1 and σ2

2. As expected, performance typically de-

grades with increasing noise variances. However, there is a curious regime around

σ2
1 = 0 and σ2

2 = 4 where increasing σ2
1 slightly from zero improves asymptotic per-

formance; the contour lines point slightly up and to the right. We have also observed

this phenomenon in finite-dimensional simulations (see Fig. 8.1), so this effect is not

simply an asymptotic artifact. This surprising phenomenon is an interesting avenue

for future exploration.

The contours in Figure 3.3 are generally horizontal for small σ2
1 and vertical for

small σ2
2. This indicates that when the gap between the two largest noise variances is

“sufficiently” wide, the asymptotic subspace recovery (3.4) is roughly determined by

the largest noise variance. While initially unexpected, this property can be intuitively

understood by recalling that βi is the largest value of x satisfying

(3.16)
1

cθ2
i

=
L∑
`=1

p`
x− σ2

`

.

When the gap between the two largest noise variances is wide, the largest noise

variance is significantly larger than the rest and it dominates the sum in (3.16) for
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Figure 3.3: Asymptotic subspace recovery (3.4) of the ith component as a function
of noise variances σ2

1 and σ2
2 occurring in proportions p1 = 70% and p2 =

30%, where the sample-to-dimension ratio is c = 10 and the subspace
amplitude is θi = 1. Contours are overlaid in black and the region where
A(βi) ≤ 0 is shown as zero (the prediction of Conjecture 3.5). Along the
dashed cyan line, the average noise variance is σ̄2 ≈ 1.74 and the best
performance occurs when σ2

1 = σ2
2 = σ̄2. Along the dotted green curve,

the average inverse noise variance is I ≈ 0.575 and the best performance
again occurs when σ2

1 = σ2
2.

x > max`(σ
2
` ), i.e., where βi occurs. Thus βi, and similarly, A(βi) and B′i(βi) are

roughly determined by the largest noise variance.

The precise relative impact of each noise variance σ2
` depends on its corresponding

proportion p`, as shown by the asymmetry of Figure 3.3 around the line σ2
1 = σ2

2.

Nevertheless, very large noise variances can drown out the impact of small noise

variances, regardless of their relative proportions. This behavior provides a rough

explanation for the sensitivity of PCA to even a few gross errors (i.e., outliers); even

in small proportions, sufficiently large errors dominate the performance of PCA.

Along the dashed cyan line in Figure 3.3, the average noise variance is σ̄2 ≈ 1.74

and the best performance occurs when σ2
1 = σ2

2 = σ̄2, as predicted by Theorem 3.9.

Along the dotted green curve, the average inverse noise variance is I ≈ 0.575 and the

best performance again occurs when σ2
1 = σ2

2, as predicted in Remark 3.11. Note,

in particular, that the dashed line and dotted curve are both tangent to the contour

at exactly σ2
1 = σ2

2. The observation that larger noise variances have “more impact”

provides a rough explanation for this phenomenon; homoscedasticity minimizes the

largest noise variance for both the line and the curve. In some sense, as discussed

in Section 3.2.6, the degradation from samples with larger noise is greater than the
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benefit of having samples with correspondingly smaller noise.

3.3.4 Impact of adding data

Consider adding data with noise variance σ2
2 and sample-to-dimension ratio c2

to an existing dataset that has noise variance σ2
1 = 1, sample-to-dimension ratio

c1 = 10 and subspace amplitude θi = 1 for the ith component. The combined dataset

has a sample-to-dimension ratio of c = c1 + c2 and is potentially heteroscedastic

with noise variances σ2
1 and σ2

2 appearing in proportions p1 = c1/c and p2 = c2/c.

Figure 3.4 shows the asymptotic subspace recovery (3.4) of the ith component for

this combined dataset as a function of the sample-to-dimension ratio c2 of the added

data for a variety of noise variances σ2
2. The dashed orange curve, showing the

recovery when σ2
2 = 1 = σ2

1, illustrates the benefit we would expect for homoscedastic

data: increasing the samples per dimension improves recovery. The dotted red curve

shows the recovery when σ2
2 = 4 > σ2

1. For a small number of added samples,

the harm of introducing noisier data outweighs the benefit of having more samples.

For sufficiently many samples, however, the tradeoff reverses and recovery for the

combined dataset exceeds that for the original dataset; the break-even point can be

calculated using expression (3.4). Finally, the green curve shows the performance

when σ2
2 = 1.4 > σ2

1. As before, the added samples are noisier than the original

samples and so we might expect performance to initially decline again. In this case,

however, the performance improves for any number of added samples. In all three

cases, the added samples dominate in the limit c2 →∞ and PCA approaches perfect

subspace recovery as one may expect. However, perfect recovery in the limit does

not typically happen for PCA amplitudes (3.2) and coefficient recovery (3.5); see

Section 3.8.3.4 for more details.

0 25 50 75 100 125 150
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0.8
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Figure 3.4: Asymptotic subspace recovery (3.4) of the ith component for samples
added with noise variance σ2

2 and samples-per-dimension c2 to an existing
dataset with noise variance σ2

1 = 1, sample-to-dimension ratio c1 = 10
and subspace amplitude θi = 1.
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Note that it is equivalent to think about removing noisy samples from a dataset

by thinking of the combined dataset as the original full dataset. The green curve

in Figure 3.4 then suggests that slightly noisier samples should not be removed; it

would be best if the full data was homoscedastic but removing slightly noisier data

(and reducing the dataset size) does more harm than good. The dotted red curve

in Figure 3.4 suggests that much noisier samples should be removed unless they are

numerous enough to outweigh the cost of adding them. Once again, expression (3.4)

can be used to calculate the break-even point.

3.4 Numerical simulation

This section simulates data generated by the model described in Section 3.2.1

to illustrate the main result, Theorem 3.4, and to demonstrate that the asymptotic

results provided are meaningful for practical settings with finitely many samples in a

finite-dimensional space. As in Section 3.3, we show results only for the asymptotic

subspace recovery (3.4) for brevity; the same phenomena occur for the asymptotic

PCA amplitudes (3.2) and coefficient recovery (3.5) as we show in Section 3.8.4.

Consider data from a two-dimensional subspace with subspace amplitudes θ1 = 1 and

0 1/2 1
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(a) 103 samples in 102 dimensions.
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(b) 104 samples in 103 dimensions.

Figure 3.5: Simulated subspace recovery (3.4) as a function of the contamination
fraction p2, the proportion of samples with noise variance σ2

2 = 3.25,
where the other noise variance σ2

1 = 0.1 occurs in proportion p1 = 1−p2.
The sample-to-dimension ratio is c = 10 and the subspace amplitudes
are θ1 = 1 and θ2 = 0.8. Simulation mean (dashed blue curve) and
interquartile interval (light blue ribbon) are shown with the asymptotic
recovery (3.4) of Theorem 3.4 (green curve). The region where A(βi) ≤ 0
is the red horizontal segment with value zero (the prediction of Con-
jecture 3.5). Increasing data size from (a) to (b) results in smaller in-
terquartile intervals, indicating concentration to the mean, which is itself
converging to the asymptotic recovery.
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θ2 = 0.8, two noise variances σ2
1 = 0.1 and σ2

2 = 3.25, and a sample-to-dimension ratio

of c = 10. We sweep the proportion of high noise samples p2 from zero to one, setting

p1 = 1− p2 as in Section 3.3.2. The first simulation considers n = 103 samples in a

d = 102 dimensional ambient space (104 trials). The second increases these to n = 104

samples in a d = 103 dimensional ambient space (103 trials). Both simulations

generate data from the standard normal distribution, i.e., zij, εij ∼ N (0, 1). Note

that sweeping over p2 covers homoscedastic settings at the extremes (p2 = 0, 1) and

evenly split heteroscedastic data in the middle (p2 = 1/2).

Figure 3.5 plots the recovery of subspace components |〈ûi, ui〉|2 for both simula-

tions with the mean (dashed blue curve) and interquartile interval (light blue ribbon)

shown with the asymptotic recovery (3.4) of Theorem 3.4 (green curve). The region

where A(βi) ≤ 0 is the red horizontal segment with value zero (the prediction of

Conjecture 3.5). Figure 3.5a illustrates general agreement between the mean and

the asymptotic recovery, especially far away from the non-differentiable points where

the recovery becomes zero and Conjecture 3.5 predicts a phase transition. This is a

general phenomenon we observed: near the phase transition the smooth simulation

mean deviates from the non-smooth asymptotic recovery. Intuitively, an asymptotic

recovery of zero corresponds to PCA components that are like isotropically random

vectors and so have vanishing square inner product with the true components as the

dimension grows. In finite dimension, however, there is a chance of alignment that

results in a positive square inner product.

Figure 3.5b shows what happens when the number of samples and ambient di-

mension are increased to n = 104 and d = 103. The interquartile intervals are roughly

half the size of those in Figure 3.5a, indicating concentration of the recovery of each

component (a random quantity) around its mean. Furthermore, there is better agree-

ment between the mean and the asymptotic recovery, with the maximum deviation

between simulation and asymptotic prediction still occurring nearby the phase tran-

sition. In particular for p2 < 0.75 the largest deviation for |〈û1, u1〉|2 is around 0.03.

For p2 /∈ (0.1, 0.35), the largest deviation for |〈û2, u2〉|2 is around 0.02. To summa-

rize, the numerical simulations indicate that the subspace recovery concentrates to

its mean and that the mean approaches the asymptotic recovery. Furthermore, good

agreement with Conjecture 3.5 provides further evidence that there is indeed a phase

transition below which the subspace is not recovered. These findings are similar to

those in [94] for a one-dimensional subspace with two noise variances.



45

3.5 Proof of Theorem 3.4

The proof has six main parts. Section 3.5.1 connects several results from random

matrix theory to obtain an initial expression for asymptotic recovery. This expression

is difficult to evaluate and analyze because it involves an integral transform of the

(nontrivial) limiting singular value distribution for a random (noise) matrix as well

as the corresponding limiting largest singular value. However, we have discovered a

nontrivial structure in this expression that enables us to derive a much simpler form

in Sections 3.5.2-3.5.6.

3.5.1 Obtain an initial expression

Rewriting the model in (3.1) in matrix form yields

(3.17) Y = (y1, . . . , yn) = UΘZH + EH ∈ Cd×n,

where

• Z = (z(1), . . . , z(k)) ∈ Cn×k is the coefficient matrix,

• E = (ε1, . . . , εn) ∈ Cd×n is the (unscaled) noise matrix,

• H = diag(η1, . . . , ηn) ∈ Rn×n
+ is a diagonal matrix of noise standard deviations.

The first k principal components û1, . . . , ûk, PCA amplitudes θ̂1, . . . , θ̂k and (normal-

ized) scores ẑ(1)/
√
n, . . . , ẑ(k)/

√
n defined in Section 3.1 are exactly the first k left

singular vectors, singular values and right singular vectors, respectively, of the scaled

data matrix Y/
√
n.

To match the model of [22], we introduce the random unitary matrix

R = [ Ŭ Ŭ⊥ ][ U U⊥ ]H = ŬUH + Ŭ⊥(U⊥)H,

where the random matrix Ŭ ∈ Cd×k is the Gram-Schmidt orthonormalization of a

d × k random matrix that has iid (mean zero, variance one) circularly symmetric

complex normal CN (0, 1) entries. We use the superscript ⊥ to denote a matrix of

orthonormal basis elements for the orthogonal complement; the columns of U⊥ form

an orthonormal basis for the orthogonal complement of the column span of U.

Left multiplying (3.17) by the scaled rotation R/
√
n yields that Rû1, . . . ,Rûk,

θ̂1, . . . , θ̂k and ẑ(1)/
√
n, . . . , ẑ(k)/

√
n are the first k left singular vectors, singular values

and right singular vectors, respectively, of the scaled and rotated data matrix

Ỹ =
1√
n

RY.
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The matrix Ỹ matches the low rank (i.e., rank k) perturbation of a random matrix

model considered in [22] because

Ỹ = P + X,

where

P =
1√
n

R
(
UΘZH

)
=

1√
n

ŬΘZH =
k∑
i=1

θiŭi

(
1√
n
z(i)

)H

,

X =
1√
n

R (EH) =

(
1√
n

RE

)
H.

Here P is generated according to the “orthonormalized model” in [22] for the vectors

ŭi and the “iid model” for the vectors z(i) and P satisfies Assumption 2.4 of [22]; the

latter considers ŭi and z(i) to be generated according to the same model, but its proof

extends to this case. Furthermore RE has iid entries with zero mean, unit variance

and bounded fourth moment (by the assumption that εi are unitarily invariant), and

H is a non-random diagonal positive definite matrix with bounded spectral norm

and limiting eigenvalue distribution p1δσ2
1

+ · · ·+ pLδσ2
L
, where δσ2

`
is the Dirac delta

distribution centered at σ2
` . Under these conditions, Theorem 4.3 and Corollary 6.6

of [14] state that X has a non-random compactly supported limiting singular value

distribution µX and the largest singular value of X converges almost surely to the

supremum of the support of µX. Thus Assumptions 2.1 and 2.3 of [22] are also

satisfied.

Furthermore, ûHi uj = ûHi RHRuj = (Rûi)
Hŭj for all i, j ∈ {1, . . . , k} so

|〈Rûi, span{ŭj : θj = θi}〉|2 = |〈ûi, span{uj : θj = θi}〉|2,
|〈Rûi, span{ŭj : θj 6= θi}〉|2 = |〈ûi, span{uj : θj 6= θi}〉|2,

and hence Theorem 2.10 from [22] implies that, for each i ∈ {1, . . . , k},

(3.18) θ̂2
i

a.s.−→

ρ2
i if θ2

i > θ̄2,

b2 otherwise,

and that if θ2
i > θ̄2, then

|〈ûi, span{uj : θj = θi}〉|2 a.s.−→ −2ϕ(ρi)

θ2
iD
′(ρi)

,(3.19) ∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ −2{c−1ϕ(ρi) + (1− c−1)/ρi}
θ2
iD
′(ρi)

,
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and

|〈ûi, span{uj : θj 6= θi}〉|2 a.s.−→ 0,(3.20) ∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj 6= θi}

〉∣∣∣∣2 a.s.−→ 0,

where ρi = D−1(1/θ2
i ), θ̄

2 = 1/D (b+), D(z) = ϕ(z){c−1ϕ (z)+(1−c−1)/z} for z > b,

ϕ (z) =
∫
z/(z2 − t2) dµX (t) , b is the supremum of the support of µX and µX is the

limiting singular value distribution of X (compactly supported by Assumption 2.1

of [22]). We use the notation f (b+) = limz→b+ f (z) as a convenient shorthand for

the limit from above of a function f (z).

Theorem 2.10 from [22] is presented therein for d ≤ n (i.e., c ≥ 1) to simplify their

proofs. However, it also holds without modification for d > n if the limiting singular

value distribution µX is always taken to be the limit of the empirical distribution of

the d largest singular values (d− n of which will be zero). Thus we proceed without

the condition that c > 1.

Furthermore, even though it is not explicitly stated as a main result in [22], the

proof of Theorem 2.10 in [22] implies that

(3.21)
∑
j:θj=θi

〈ûi, uj〉
〈
ẑ(i)

√
n
,
z(j)

‖z(j)‖

〉∗
a.s.−→

√
−2ϕ(ρi)

θ2
iD
′(ρi)

−2{c−1ϕ(ρi) + (1− c−1)/ρi}
θ2
iD
′(ρi)

,

as was also noted in [145] for the special case of distinct subspace amplitudes.

Evaluating the expressions (3.18), (3.19) and (3.21) would consist of evaluating

the intermediates listed above from last to first. These steps are challenging because

they involve an integral transform of the limiting singular value distribution µX for

the random (noise) matrix X as well as the corresponding limiting largest singular

value b, both of which depend nontrivially on the model parameters. Our analysis

uncovers a nontrivial structure that we exploit to derive simpler expressions.

Before proceeding, observe that the almost sure limit in (3.21) is just the geo-

metric mean of the two almost sure limits in (3.19). Hence, we proceed to derive

simplified expressions for (3.18) and (3.19); (3.6) follows as the geometric mean of

the simplified expressions obtained for the almost sure limits in (3.19).

3.5.2 Perform a change of variables

We introduce the function defined, for z > b, by

(3.22) ψ (z) =
cz

ϕ (z)
=

{
1

c

∫
1

z2 − t2dµX (t)

}−1

,
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because it turns out to have several nice properties that simplify all of the following

analysis. Rewriting (3.19) using ψ (z) instead of ϕ (z) and factoring appropriately

yields that if θ2
i > θ̄2 then

|〈ûi, span{uj : θj = θi}〉|2 a.s.−→ 1

ψ(ρi)

−2c

θ2
iD
′(ρi)/ρi

,(3.23) ∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ 1

c{ψ(ρi) + (1− c)θ2
i }

−2c

θ2
iD
′(ρi)/ρi

,

where now

(3.24) D (z) =
cz2

ψ2 (z)
+
c− 1

ψ (z)

for z > b and we have used the fact that

1

c

{
1

ψ(ρi)
+

1− c−1

ρ2
i

}
=

1

c

{
ψ(ρi) +

1− c
D(ρi)

}−1

=
1

c{ψ(ρi) + (1− c)θ2
i }
.

3.5.3 Find useful properties of ψ(z)

Establishing some properties of ψ (z) aids simplification significantly.

Property 1. We show that ψ (z) satisfies a certain rational equation for all z > b

and derive its inverse function ψ−1(x). Observe that the square singular values of

the noise matrix X are exactly the eigenvalues of cXXH, divided by c. Thus we

first consider the limiting eigenvalue distribution µcXXH of cXXH and then relate its

Stieltjes transform m (ζ) to ψ (z).

Theorem 4.3 in [14] establishes that the random matrix cXXH = (1/d)EH2EH

has a limiting eigenvalue distribution µcXXH whose Stieltjes transform is given, for

ζ ∈ C+, by

(3.25) m(ζ) =

∫
1

t− ζ dµcXXH (t) ,

and satisfies the condition

(3.26) ∀ζ∈C+ m (ζ) = −
{
ζ − c

L∑
`=1

p`σ
2
`

1 + σ2
`m (ζ)

}−1

,

where C+ is the set of all complex numbers with positive imaginary part.

Since the d square singular values of X are exactly the d eigenvalues of cXXH

divided by c, we have for all z > b

(3.27) ψ (z) =

{
1

c

∫
1

z2 − t2dµX (t)

}−1

= −
{∫

1

t− z2c
dµcXXH (t)

}−1

.
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For all z and ξ > 0, z2c+ iξ ∈ C+ and so combining (3.25)–(3.27) yields that for all

z > b

ψ (z) = −
{

lim
ξ→0+

m(z2c+ iξ)

}−1

= z2c− c
L∑
`=1

p`σ
2
`

1− σ2
`/ψ (z)

.

Rearranging yields

(3.28) 0 =
cz2

ψ2 (z)
− 1

ψ (z)
− c

ψ (z)

L∑
`=1

p`σ
2
`

ψ (z)− σ2
`

,

for all z > b, where the last term is

− c

ψ (z)

L∑
`=1

p`σ
2
`

ψ (z)− σ2
`

=
c

ψ (z)
− c

L∑
`=1

p`
ψ (z)− σ2

`

,

because p1 + · · · + pL = 1. Substituting back into (3.28) yields 0 = Q{ψ (z) , z} for

all z > b, where

(3.29) Q (s, z) =
cz2

s2
+
c− 1

s
− c

L∑
`=1

p`
s− σ2

`

.

Thus ψ(z) is an algebraic function (the associated polynomial can be formed by

clearing the denominator of Q). Solving (3.29) for z > b yields the inverse

(3.30) ψ−1(x) =

√√√√1− c
c

x+ x2

L∑
`=1

p`
x− σ2

`

=

√√√√x

c

(
1 + c

L∑
`=1

p`σ2
`

x− σ2
`

)
.

Property 2. We show that max`(σ
2
` ) < ψ(z) < cz2 for z > b. For z > b, one can

show from (3.22) that ψ(y) increases continuously and monotonically from ψ(z) to

infinity as y increases from z to infinity, and hence ψ−1(x) must increase continuously

and monotonically from z to infinity as x increases from ψ(z) to infinity. However,

ψ−1(x) is discontinuous at x = max`(σ
2
` ) because ψ−1(x) → ∞ as x → max`(σ

2
` )

from the right, and so it follows that ψ(z) > max`(σ
2
` ). Thus 1/{ψ(z)− σ2

`} > 0 for

all ` ∈ {1, . . . , L} and so

cz2 = c[ψ−1{ψ(z)}]2 = ψ(z)

{
1 + c

L∑
`=1

p`σ
2
`

ψ(z)− σ2
`

}
> ψ(z).

Property 3. We show that 0 < ψ (b+) < ∞ and ψ′ (b+) = ∞. Property 2 in the

limit z = b+ implies that

0 < max
`

(σ2
` ) ≤ ψ(b+) ≤ cb2 <∞.
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Taking the total derivative of 0 = Q{ψ(z), z} with respect to z and solving for ψ′(z)

yields

(3.31) ψ′ (z) = −∂Q
∂z
{ψ (z) , z}

/∂Q
∂s
{ψ (z) , z}.

As observed in [146], the non-pole boundary points of compactly supported distri-

butions like µcXXH occur where the polynomial defining their Stieltjes transform has

multiple roots. Thus ψ(b+) is a multiple root of Q(·, b) and so

∂Q

∂s
{ψ
(
b+
)
, b} = 0,

∂Q

∂z
{ψ
(
b+
)
, b} =

2cb

ψ2 (b+)
> 0.

Thus ψ′ (b+) =∞, where the sign is positive because ψ (z) is an increasing function

on z > b.

Summarizing, we have shown that

a) 0 = Q{ψ (z) , z} for all z > b where Q is defined in (3.29), and the inverse

function ψ−1(x) is given in (3.30),

b) max`(σ
2
` ) < ψ(z) < cz2,

c) 0 < ψ (b+) <∞ and ψ′ (b+) =∞.

We now use these properties to aid simplification.

3.5.4 Express D(z) and D′(z)/z in terms of only ψ(z)

We can rewrite (3.24) as

(3.32) D (z) = Q{ψ(z), z}+ c

L∑
`=1

p`
ψ (z)− σ2

`

= c
L∑
`=1

p`
ψ (z)− σ2

`

.

because 0 = Q{ψ (z) , z} by Property 1 of Section 3.5.3. Differentiating (3.32) with

respect to z yields

D′ (z) = −cψ′ (z)
L∑
`=1

p`
{ψ(z)− σ2

`}2
,

and so we need to find ψ′ (z) in terms of ψ (z). Substituting the expressions for the

partial derivatives ∂Q{ψ (z) , z}/∂z and ∂Q{ψ (z) , z}/∂s into (3.31) and simplifying

we obtain ψ′ (z) = 2cz/γ (z), where the denominator is

γ (z) = c− 1 +
2cz2

ψ (z)
− c

L∑
`=1

p`ψ
2 (z)

{ψ (z)− σ2
`}2

.
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Note that
2cz2

ψ (z)
= −2 (c− 1) + c

L∑
`=1

2p`ψ (z)

ψ (z)− σ2
`

,

because 0 = Q{ψ (z) , z} for z > b. Substituting into γ(z) and forming a common

denominator, then dividing with respect to ψ(z) yields

γ (z) = 1− c+ c
L∑
`=1

p`
ψ2 (z)− 2ψ (z)σ2

`

{ψ (z)− σ2
`}2

= 1− c
L∑
`=1

p`σ
4
`

{ψ (z)− σ2
`}2

= A{ψ (z)},

where A(x) was defined in (3.3). Thus

(3.33) ψ′ (z) =
2cz

A{ψ (z)} ,

and

(3.34)
D′ (z)

z
= − 2c2

A{ψ (z)}
L∑
`=1

p`
{ψ (z)− σ2

`}2
= −2c

θ2
i

B′i{ψ(z)}
A{ψ (z)} ,

where B′i(x) is the derivative of Bi(x) defined in (3.3).

3.5.5 Express the asymptotic recoveries in terms of only ψ(b+) and ψ(ρi)

Evaluating (3.32) in the limit z = b+ and recalling that D(b+) = 1/θ̄2 yields

(3.35) θ2
i > θ̄2 ⇔ 0 > 1− θ2

i

θ̄2
= 1− cθ2

i

L∑
`=1

p`
ψ (b+)− σ2

`

= Bi

{
ψ
(
b+
)}
,

where Bi(x) was defined in (3.3). Evaluating the inverse function (3.30) both for

ψ(ρi) and in the limit ψ(b+) then substituting into (3.18) yields

(3.36) θ̂2
i

a.s.−→


ψ(ρi)

c

{
1 + c

L∑
`=1

p`σ
2
`

ψ(ρi)− σ2
`

}
if Bi{ψ(b+)} < 0,

ψ(b+)

c

{
1 + c

L∑
`=1

p`σ
2
`

ψ(b+)− σ2
`

}
otherwise.

Evaluating (3.34) for z = ρi and substituting into (3.23) yields

|〈ûi, span{uj : θj = θi}〉|2 a.s.−→ 1

ψ(ρi)

A{ψ(ρi)}
B′i{ψ(ρi)}

,(3.37) ∣∣∣∣〈 ẑ(i)

√
n
, span{z(j) : θj = θi}

〉∣∣∣∣2 a.s.−→ 1

c{ψ(ρi) + (1− c)θ2
i }
A{ψ(ρi)}
B′i{ψ(ρi)}

,

if Bi{ψ (b+)} < 0.
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3.5.6 Obtain algebraic descriptions

This subsection obtains algebraic descriptions of (3.35), (3.36) and (3.37) by

showing that ψ(b+) is the largest real root of A(x) and that ψ(ρi) is the largest real

root of Bi(x) when θ2
i > θ̄2. Evaluating (3.33) in the limit z = b+ yields

(3.38) A{ψ
(
b+
)
} =

2cb

ψ′ (b+)
= 0,

because ψ′ (b+) =∞ by Property 3 of Section 3.5.3. If θ2
i > θ̄2 then ρi = D−1(1/θ2

i )

and so

(3.39) 0 = 1− θ2
iD (ρi) = 1− cθ2

i

L∑
`=1

p`
ψ (ρi)− σ2

`

= Bi{ψ (ρi)}.

(3.38) shows that ψ (b+) is a real root of A(x), and (3.39) shows that ψ (ρi) is a real

root of Bi(x).

Recall that ψ(b+), ψ(ρi) ≥ max`(σ
2
` ) by Property 2 of Section 3.5.3, and note

that both A(x) and Bi(x) monotonically increase for x > max`(σ
2
` ). Thus each has

exactly one real root larger than max`(σ
2
` ), i.e., its largest real root, and so ψ(b+) = α

and ψ(ρi) = βi when θ2
i > θ̄2, where α and βi are the largest real roots of A(x) and

Bi(x), respectively.

A subtle point is that A(x) and Bi(x) always have largest real roots α and β even

though ψ(ρi) is defined only when θ2
i > θ̄2. Furthermore, α and β are always larger

than max`(σ
2
` ) and both A(x) and Bi(x) are monotonically increasing in this regime

and so we have the equivalence

(3.40) Bi (α) < 0 ⇔ α < βi ⇔ 0 < A (βi) .

Writing (3.35), (3.36) and (3.37) in terms of α and βi, then applying the equiva-

lence (3.40) and combining with (3.20) yields the main results (3.2), (3.4) and (3.5).

3.6 Proof of Theorem 3.9

If A(βi) ≥ 0 then (3.4) and (3.5) increase with A(βi) and decrease with βi and

B′(βi). Similarly, (3.2) increases with βi, as illustrated by (3.9). As a result, The-

orem 3.9 follows immediately from the following bounds, all of which are met with

equality if and only if σ2
1 = · · · = σ2

L:

βi ≥ cθ2
i + σ̄2, B′i(βi) ≥

1

cθ2
i

, A(βi) ≤ 1− 1

c

(
σ̄

θi

)4

.(3.41)
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The bounds (3.41) are shown by exploiting convexity to appropriately bound the

rational functions Bi(x), B′i(x) and A(x). We bound βi by noting that

0 = Bi(βi) = 1− cθ2
i

L∑
`=1

p`
βi − σ2

`

≤ 1− cθ2
i

βi − σ̄2
,

because σ2
` < βi and f(v) = 1/(βi−v) is a strictly convex function over v < βi. Thus

βi ≥ cθ2
i + σ̄2. We bound B′i(βi) by noting that

B′i(βi) = cθ2
i

L∑
`=1

p`
(βi − σ2

` )
2
≥ cθ2

i

(
L∑
`=1

p`
βi − σ2

`

)2

= cθ2
i

(
1

cθ2
i

)2

=
1

cθ2
i

,

because the quadratic function z2 is strictly convex. Similarly,

A(βi) = 1− c
L∑
`=1

p`σ
4
`

(βi − σ2
` )

2
≤ 1− c

(
L∑
`=1

p`σ
2
`

βi − σ2
`

)2

≤ 1− 1

c

(
σ̄

θi

)4

,

because the quadratic function z2 is strictly convex and

L∑
`=1

p`σ
2
`

βi − σ2
`

= βi

L∑
`=1

p`
βi − σ2

`

− 1 =
βi
cθ2
i

− 1 ≥ cθ2
i + σ̄2

cθ2
i

− 1 =
σ̄2

cθ2
i

.

All of the above bounds are met with equality if and only if σ2
1 = · · · = σ2

L because

the convexity in all cases is strict. As a result, homoscedastic noise minimizes (3.2),

and it maximizes (3.4) and (3.5). See Section 3.8.2 for some interesting additional

properties in this context.

3.7 Discussion

This chapter provided simplified expressions (Theorem 3.4) for the asymptotic re-

covery of a low-dimensional subspace, the corresponding subspace amplitudes and the

corresponding coefficients by the principal components, PCA amplitudes and scores,

respectively, obtained from applying PCA to noisy high-dimensional heteroscedastic

data. The simplified expressions provide generalizations of previous results for the

special case of homoscedastic data. They were derived by first connecting several

recent results from random matrix theory [14, 22] to obtain initial expressions for

asymptotic recovery that are difficult to evaluate and analyze, then identifying and

exploiting a nontrivial structure in the expressions to find the much simpler algebraic

descriptions of Theorem 3.4.

These descriptions enable both easy and efficient calculation as well as reason-

ing about the asymptotic performance of PCA. In particular, we use the simplified
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expressions to show that, for a fixed average noise variance, asymptotic subspace

recovery, amplitude recovery and coefficient recovery are all worse when the noise

is heteroscedastic as opposed to homoscedastic (Theorem 3.9). Hence, while aver-

age noise variance is often a practically convenient measure for the overall quality

of data, it gives an overly optimistic estimate of PCA performance. Our expres-

sions (3.2), (3.4) and (3.5) in Theorem 3.4 are more accurate.

We also investigated examples to gain insight into how the asymptotic perfor-

mance of PCA depends on the model parameters: sample-to-dimension ratio c, sub-

space amplitudes θ1, . . . , θk, proportions p1, . . . , pL and noise variances σ2
1, . . . , σ

2
L.

We found that performance depends in expected ways on

a) sample-to-dimension ratio: performance improves with more samples;

b) subspace amplitudes: performance improves with larger amplitudes;

c) proportions: performance improves when more samples have low noise.

We also learned that when the gap between the two largest noise variances is “suf-

ficiently wide”, the performance is dominated by the largest noise variance. This

result provides insight into why PCA performs poorly in the presence of gross errors

and why heteroscedasticity degrades performance in the sense of Theorem 3.9. Nev-

ertheless, adding “slightly” noisier samples to an existing dataset can still improve

PCA performance; even adding significantly noisier samples can be beneficial if they

are sufficiently numerous.

Finally, we presented numerical simulations that demonstrated concentration of

subspace recovery to the asymptotic prediction (3.4) with good agreement for practi-

cal problem sizes. The same agreement occurs for the PCA amplitudes and coefficient

recovery. The simulations also showed good agreement with the conjectured phase

transition (Conjecture 3.5).

There are many exciting avenues for extensions and further work. Chapter IV

extends the analysis here to a weighted variant of PCA that gives noisier samples less

weight. Another natural direction is to consider general noise variance distributions

ν, where the empirical noise distribution (δη2
1

+ · · · + δη2
n
)/n

a.s.−→ ν as n → ∞. We

conjecture that if η1, . . . , ηn are bounded for all n and
∫
dν(τ)/(x − τ) → ∞ as

x→ τ+
max, then the almost sure limits in this chapter hold but with

A (x) = 1− c
∫

τ 2dν(τ)

(x− τ)2 , Bi (x) = 1− cθ2
i

∫
dν(τ)

x− τ ,

where τmax is the supremum of the support of ν. The proofs of Theorem 3.4 and

Theorem 3.9 both generalize straightforwardly for the most part; the main trickiness

comes in carefully arguing that limits pass through integrals in Section 3.5.3.
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Proving that there is indeed a phase transition in the asymptotic subspace re-

covery and coefficient recovery, as conjectured in Conjecture 3.5, is another area of

future work. That proof may be of greater interest in the context of a weighted

PCA method. Another area of future work is explaining the puzzling phenomenon

described in Section 3.3.3, where, in some regimes, performance improves by increas-

ing the noise variance. More detailed analysis of the general impacts of the model

parameters could also be interesting. A final direction of future work is deriving

finite sample results for heteroscedastic noise as was done for homoscedastic noise

in [147].

3.8 Supplementary material

This section provides supplementary discussion of some details from Chapter III.

Section 3.8.1 relates the model (3.1) in this chapter to spiked covariance mod-

els [15, 110]. Section 3.8.2 discusses interesting properties of the simplified expres-

sions. Section 3.8.3 shows the impact of the parameters on the asymptotic PCA am-

plitudes and coefficient recovery. Section 3.8.4 contains numerical simulation results

for PCA amplitudes and coefficient recovery, and Section 3.8.5 simulates complex-

valued and Gaussian mixture data.

3.8.1 Relationship to spiked covariance models

The model (3.1) considered in this chapter is similar in spirit to the generalized

spiked covariance model of [15]. To discuss the relationship more easily, we will

refer to the model (3.1) as the “inter-sample heteroscedastic model”. Both this and

the generalized spiked covariance model generalize the Johnstone spiked covariance

model proposed in [110]. In the Johnstone spiked covariance model [15], sample

vectors y1, . . . , yn ∈ Cd are generated as

(3.42) yi = diag(α2
1, . . . , α

2
k, 1, . . . , 1︸ ︷︷ ︸
d−k copies

)1/2xi,

where xi ∈ Cd are independent identically distributed (iid) vectors with iid entries

that have mean E(xij) = 0 and variance E|xij|2 = 1.

For normally distributed subspace coefficients and noise vectors, the inter-sample

heteroscedastic model (3.1) is equivalent (up to rotation) to generating sample vectors

y1, . . . , yn ∈ Cd as

(3.43) yi = diag(θ2
1 + η2

i , . . . , θ
2
k + η2

i , η
2
i , . . . , η

2
i︸ ︷︷ ︸

d−k copies

)1/2xi,
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where xi ∈ Cd are iid with iid normally distributed entries. (3.43) generalizes the

Johnstone spiked covariance model because the covariance matrix can vary across

samples. Heterogeneity here is across samples; all entries (yi)1, . . . , (yi)d within each

sample yi have equal noise variance η2
i .

The generalized spiked covariance model generalizes the Johnstone spiked co-

variance model differently. In the generalized spiked covariance model [15], sample

vectors y1, . . . , yn ∈ Cd are generated as

(3.44) yi =

[
Λ

Vd−k

]1/2

xi,

where xi ∈ Cd are iid with iid entries as in (3.42), Λ ∈ Ck×k is a deterministic Hermi-

tian matrix with eigenvalues α2
1, . . . , α

2
k, Vd−k ∈ R(d−k)×(d−k) has limiting eigenvalue

distribution ν, and these all satisfy a few technical conditions [15]. All samples share

a common covariance matrix, but the model allows, among other things, for het-

erogenous variance within the samples. To illustrate this flexibility, note that we

could set

Λ = diag(θ2
1 + η2

1, . . . , θ
2
k + η2

k), Vd−k = diag(η2
k+1, . . . , η

2
d).(3.45)

In this case, there is heteroscedasticity among the entries of each sample vector.

Heterogeneity here is within each sample, not across them; recall that all samples

have the same covariance matrix.

Therefore, for data with intra-sample heteroscedasticity, one should use the re-

sults of [15] and [215] for the generalized spiked covariance model. For data with

inter-sample heteroscedasticity, one should use the new results presented in Theo-

rem 3.4. A couple variants of the inter-sample heteroscedastic model are also natural

to consider in the context of spiked covariance models; the next two subsections dis-

cuss these.

3.8.1.1 Random noise variances

The noise variances η2
1, . . . , η

2
n in the inter-sample heteroscedastic model (3.1)

are deterministic. A natural variation could be to instead make them iid random

variables defined as

(3.46) η2
i =


σ2

1 with probability p1,
...

σ2
L with probability pL,

where p1 + · · · + pL = 1. To ease discussion, this section will use the words “deter-

ministic” and “random” before “inter-sample heteroscedastic model” to differentiate
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(c) Johnstone spiked co-
variance model with covari-
ance (3.47).

Figure 3.6: Simulated subspace recovery as a function of the contamination fraction
p2, the proportion of samples with noise variance σ2

2 = 3.25, where the
other noise variance σ2

1 = 0.1 occurs in proportion p1 = 1− p2. Subspace
amplitudes are θ1 = 1 and θ2 = 0.8, and there are 104 samples in 103

dimensions. Simulation mean (dashed blue curve) and interquartile in-
terval (light blue ribbon) are shown with the asymptotic recovery (3.4)
of Theorem 3.4 (green curve). The region where A(βi) ≤ 0 is the red
horizontal segment with value zero (the prediction of Conjecture 3.5).
Deterministic noise variances η2

1, . . . , η
2
n are used for simulations in (a),

random ones are used for those in (b), and (c) has data generated accord-
ing to the Johnstone spiked covariance model with covariance matrix set
as (3.47).

between the model (3.1) that has deterministic noise variances and its variant that

instead has iid random noise variances (3.46). In the random inter-sample het-

eroscedastic model, scaled noise vectors η1ε1, . . . , ηnεn are iid vectors drawn from a

mixture. As a result, sample vectors y1, . . . , yn are also iid vectors with covariance

matrix (up to rotation)

(3.47) E(yiy
H
i ) = diag(θ2

1 + σ̄2, . . . , θ2
k + σ̄2, σ̄2, . . . , σ̄2︸ ︷︷ ︸

d−k copies

),

where σ̄2 = p1σ
2
1 + · · ·+ pLσ

2
L is the average variance.

(3.47) is a spiked covariance matrix and the samples y1, . . . , yn are iid vectors,

and so it could be tempting to think that the data can be equivalently generated

from the Johnstone spiked covariance model with covariance matrix (3.47). However

this is not true. The PCA performance of the random inter-sample heteroscedastic

model is similar to that of the deterministic version and is different from that of

the Johnstone spiked covariance model with covariance matrix (3.47). Figure 3.6

illustrates the distinction in numerical simulations. In all simulations, we drew 104

samples from a 103 dimensional ambient space, where the subspace amplitudes were

θ1 = 1 and θ2 = 0.8. Two noise variances σ2
1 = 0.1 and σ2

2 = 3.25 have proportions

p1 = 1−p2 and p2. In Figure 3.6a, data are generated according to the deterministic



58

inter-sample heteroscedastic model. In Figure 3.6b, data are generated according to

the random inter-sample heteroscedastic model. In Figure 3.6c, data are generated

according to the Johnstone spiked covariance model with covariance matrix (3.47).

Figures 3.6a and 3.6b demonstrate that data generated according to the inter-

sample heteroscedastic model have similar behavior whether the noise variances

η2
1, . . . , η

2
n are set deterministically or randomly as (3.46). The similarity is expected

because the random noise variances in the limit will equal σ2
1, . . . , σ

2
L in propor-

tions approaching p1, . . . , pL by the law of large numbers. Thus data generated with

random noise variances should have similar asymptotic PCA performance as data

generated with deterministic noise variances.

Figures 3.6b and 3.6c demonstrate that data generated according to the random

inter-sample heteroscedastic model behave quite differently from data generated ac-

cording to the Johnstone spiked covariance model, even though both have iid sample

vectors with covariance matrix (3.47). To understand why, recall that in the ran-

dom inter-sample heteroscedastic model, the noise standard deviation ηi is shared

among the entries of the scaled noise vector ηiεi. This induces statistical dependence

among the entries of the sample vector yi that is not eliminated by whitening with

E(yiy
H
i )−1/2. Whitening a sample vector yi generated according to the Johnstone

spiked covariance model, on the other hand, produces the vector xi that has iid

entries by definition. Thus, the random inter-sample heteroscedastic model is not

equivalent to the Johnstone spiked covariance model. One should use Theorem 3.4

to analyze asymptotic PCA performance in this setting rather than existing results

for the Johnstone spiked covariance model [22, 29, 111, 147, 163].

3.8.1.2 Row samples

In matrix form, the inter-sample heteroscedastic model can be written as

Y = (y1, . . . , yn) = UΘZH + EH ∈ Cd×n,

where

Z = (z(1), . . . , z(k)) ∈ Cn×k is the coefficient matrix,

E = (ε1, . . . , εn) ∈ Cd×n is the (unscaled) noise matrix,

H = diag(η1, . . . , ηn) ∈ Rn×n
+ is a diagonal matrix of noise standard deviations.
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Samples in this chapter are the columns y1, . . . , yn of the data matrix Y, but one

could alternatively form samples from the rows

(3.48) y(i) =

(y1)i
...

(yn)i

 = Z∗Θu(i) + Hε(i),

where u(i) = ((u1)i, . . . , (un)i) and ε(i) = ((ε1)i, . . . , (εn)i) are the ith rows of U and

E, respectively. Row samples (3.48) are exactly the columns of the transposed data

matrix Y> and so row samples have the same PCA amplitudes as column samples;

principal components and score vectors swap.

In (3.48), noise heteroscedasticity is within each row sample y(i) rather than

across row samples y(1), . . . , y(d), and so one might think that the row samples could

be equivalently generated from the generalized spiked covariance model (3.44) with

a covariance similar to (3.45). However, the row samples are neither independent

nor identically distributed; U induces dependence across rows as well as variety in

their distributions. As a result, the row samples do not match the generalized spiked

covariance model.

One could make U random according to the “i.i.d. model” of [22]. As noted

in Remark 3.1, Theorem 3.4 still holds and the asymptotic PCA performance is

unchanged. For such U, the row samples y(1), . . . , y(d) are now identically distributed

but they are still not independent; dependence arises because Z is shared. To remove

the dependence, one could make Z deterministic and also design it so that the row

samples are iid with covariance matrix matching that of (3.44), but doing so no

longer matches the inter-sample heteroscedastic model. It corresponds instead to

having deterministic coefficients associated with a random subspace. Thus to analyze

asymptotic PCA performance for row samples one should still use Theorem 3.4 rather

than existing results for the generalized spiked covariance model [15, 215].

3.8.2 Additional properties

This section highlights a few additional properties of βi, B
′
i(βi) and A(βi) that

lend deeper insight into how they vary with the noise variances σ2
1, . . . , σ

2
L.
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x
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2 σ2
1

∑L
`=1
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x−σ2

`

1
cθ2
i

βi

Figure 3.7: Location of the largest real root βi of Bi(x) for two noise variances σ2
1 = 2

and σ2
2 = 0.75, occurring in proportions p1 = 70% and p2 = 30%, where

the sample-to-dimension ratio is c = 1 and the subspace amplitude is
θi = 1.

3.8.2.1 Expressing A(βi) in terms of βi and B′i(βi)

We can rewrite A(βi) in terms of βi and B′i(βi) as follows:

A (βi) = 1− c
L∑
`=1

p`σ
4
`

(βi − σ2
` )

2 = 1− c
L∑
`=1

p`

{
1− −2βiσ

2
` + β2

i

(βi − σ2
` )

2

}

= 1− c
L∑
`=1

p`

{
1− −2βiσ

2
` + 2β2

i − β2
i

(βi − σ2
` )

2

}

= 1− c
L∑
`=1

p`

{
1 + β2

i

1

(βi − σ2
` )

2 − 2βi
1

βi − σ2
`

}

= 1− c
L∑
`=1

p` − cβ2
i

L∑
`=1

p`

(βi − σ2
` )

2 + 2cβi

L∑
`=1

p`
βi − σ2

`

= 1− c− cβ2
i

{
1

cθ2
i

B′i (βi)

}
+ 2cβi

{
1−Bi (βi)

cθ2
i

}
= 1− c− βi

θ2
i

{βiB′i (βi)− 2},(3.49)

since Bi(βi) = 0. Thus we focus on properties of βi and B′i(βi) for the remainder of

Section 3.8.2; (3.49) relates them back to A(βi).

3.8.2.2 Graphical illustration of βi

Note that βi is the largest solution of

(3.50)
1

cθ2
i

=
L∑
`=1

p`
x− σ2

`

,

because βi is the largest real root of Bi(x). Figure 3.7 illustrates (3.50) for two

noise variances σ2
1 = 2 and σ2

2 = 0.75, occurring in proportions p1 = 70% and

p2 = 30%, where the sample-to-dimension ratio is c = 1 and the subspace amplitude
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Figure 3.8: Illustration of βi − σ̄2 and B′i(βi) as a function of two noise variances
σ2

1 and σ2
2. The level curves are along lines parallel to σ2

1 = σ2
2 for

all values of sample-to-dimension ratio c, proportions p1 and p2, and
subspace amplitude θi

is θi = 1. The plot is a graphical representation of βi and gives a way to visualize the

relationship between βi and the model parameters. Observe, for example, that βi is

larger than all the noise variances and that increasing θi or c amounts to moving the

horizontal red line down and tracking the location of the intersection.

3.8.2.3 Level curves

Figure 3.8 shows βi − σ̄2 and B′i(βi) as functions (implicitly) of L = 2 noise

variances σ2
1 and σ2

2, where

σ̄2 = p1σ
2
1 + · · ·+ pLσ

2
L

is the average noise variance. Figure 3.8 illustrates that lines parallel to the diagonal

σ2
1 = σ2

2 are level curves for both βi − σ̄2 and B′i(βi). This is a general phenomenon:

lines parallel to the diagonal σ2
1 = · · · = σ2

L are level curves of both βi− σ̄2 and B′i(βi)

for all sample-to-dimension ratios c, proportions p1, . . . , pL and subspace amplitudes

θi.

To show this fact, note that βi − σ̄2 is the largest real solution to

(3.51) 0 = Bi(x+ σ̄2) = 1− cθ2
i

L∑
`=1

p`
x− (σ2

` − σ̄2)
,

because 0 = Bi(βi). Changing the noise variances to σ2
1 + ∆, . . . , σ2

L + ∆ for some ∆

also changes the average noise variance to σ̄2 +∆ and so σ2
` − σ̄2 remains unchanged.

As a result, the solutions to (3.51) remain unchanged.
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Similarly, note that

(3.52) B′i(βi) = cθ2
i

L∑
`=1

p`
(βi − σ2

` )
2

= cθ2
i

L∑
`=1

p`
{(βi − σ̄2)− (σ2

` − σ̄2)}2

remains unchanged when changing the noise variances to σ2
1 + ∆, . . . , σ2

L + ∆.

Thus we conclude from (3.51) and (3.52) that lines parallel to σ2
1 = · · · = σ2

L

are level curves for both βi − σ̄2 and B′i(βi). The line σ2
1 = · · · = σ2

L in particular

minimizes the value of both, as was established in the proof of Theorem 3.9.

3.8.2.4 Hessians along the line σ2
1 = · · · = σ2

L

We consider βi − σ̄2 and B′i(βi) as functions (implicitly) of the noise variances

σ2
1, . . . , σ

2
L. To denote derivatives more clearly, we denote the ith noise variance as

vi = σ2
i .

Written in this notation, we have

0 = 1− cθ2
i

L∑
`=1

p`
βi − v`

,(3.53)

B′i(βi) = cθ2
i

L∑
`=1

p`
(βi − v`)2

.(3.54)

Taking the total derivative of (3.53) with respect to vs and vt and solving for

∂2βi/(∂vt∂vs) yields an initially complicated expression, but evaluating it on the

line v1 = · · · = vL vastly simplifies it, yielding:

(3.55)
∂2(βi − σ̄2)

∂vt∂vs
=

2

cθ2
i

(psδs,t − pspt).

where δs,t = 1 if s = t and 0 otherwise. Notably, σ̄2 = p1v1 + · · · + pLvL has zero

Hessian everywhere.

Likewise, taking the total derivative of (3.54) with respect to vs and vt yields an

initially complicated expression that is again vastly simplified by evaluating it on the

line v1 = · · · = vL, yielding:

(3.56)
∂2B′i(βi)

∂vt∂vs
=

2

(cθ2
i )

4
(psδs,t − pspt).

(3.55) and (3.56) show that the Hessian matrices for βi − σ̄2 and B′i(βi) are both

scaled versions of the matrix

(3.57) H =

p1

. . .

pL


︸ ︷︷ ︸

diag(p)

−

p1

...

pL

[p1 · · · pL

]
︸ ︷︷ ︸

pp>
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on the line v1 = · · · = vL. The (scaled) Hessian matrix (3.57) is a rank one pertur-

bation by −pp> of diag(p), and so its eigenvalues downward interlace with those of

diag(p) (see Theorem 8.1.8 of [77]). Namely, H has eigenvalues λ1, . . . , λL satisfying

λ1 ≤ p(1) ≤ λ2 ≤ · · · ≤ λL ≤ p(L),

where p(1), . . . , p(L) are the proportions in increasing order. The vector 1 of all ones,

i.e., the vector in the direction of v1 = · · · = vL, is an eigenvector of H with eigenvalue

zero; note that H1 = diag(p)1 − pp>1 = p − p = 0. This eigenvalue is less than

p(1) > 0 and so λ1 = 0 and λ2, . . . , λL ≥ p(1) > 0. Hence the Hessians of βi − σ̄2 and

B′i(βi) are both zero in the direction of the line v1 = · · · = vL and positive definite

in other directions. This property provides deeper insight into the fact that βi − σ̄2

and B′i(βi) are minimized on the line σ2
1 = · · · = σ2

L, as was established in the proof

of Theorem 3.9.

3.8.3 Impact of parameters: amplitude and coefficient recovery

Section 3.3 discusses how the asymptotic subspace recovery (3.4) of Theorem 3.4

depends on the model parameters: sample-to-dimension ratio c, subspace ampli-

tudes θ1, . . . , θk, proportions p1, . . . , pL and noise variances σ2
1, . . . , σ

2
L. This section

shows that the same phenomena occur for the asymptotic PCA amplitudes (3.2) and

coefficient recovery (3.5). For the asymptotic PCA amplitudes, we consider the ratio

θ̂2
i /θ

2
i . As discussed in Remark 3.6, the asymptotic PCA amplitude θ̂i is positively

biased relative to the subspace amplitude θi, and so the almost sure limit of θ̂2
i /θ

2
i is

greater than one, with larger values indicating more bias.

3.8.3.1 Impact of sample-to-dimension ratio c and subspace amplitude θi

As in Section 3.3.1, we vary the sample-to-dimension ratio c and subspace am-

plitude θi in two scenarios:

a) there is only one noise variance fixed at σ2
1 = 1

b) there are two noise variances σ2
1 = 0.8 and σ2

2 = 1.8 occurring in propor-

tions p1 = 80% and p2 = 20%.

Both scenarios have average noise variance 1. Figures 3.9 and 3.10 show analogous

plots to Figure 3.1 but for the asymptotic PCA amplitudes (3.2) and coefficient

recovery (3.5), respectively.

As was the case for Figure 3.1 in Section 3.3.1, decreasing the subspace amplitude

θi degrades both the asymptotic amplitude performance (i.e., increases bias) shown in

Figure 3.9 and the asymptotic coefficient recovery shown in Figure 3.10, but the lost
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1 = 0.8 and p2 = 20% of samples at
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2 = 1.8.

Figure 3.9: Asymptotic amplitude bias (3.2) of the ith PCA amplitude as a function
of sample-to-dimension ratio c and subspace amplitude θi with average
noise variance equal to one. Contours are overlaid in black. The contours
in (b) are slightly further up and to the right than in (a); more samples
are needed to reduce the positive bias.
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1 = 1.
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(b) Heteroscedastic noise with p1 = 80% of sam-
ples at σ2

1 = 0.8 and p2 = 20% of samples at
σ2
2 = 1.8.

Figure 3.10: Asymptotic coefficient recovery (3.5) of the ith score vector as a func-
tion of sample-to-dimension ratio c and subspace amplitude θi with
average noise variance equal to one. Contours are overlaid in black and
the region where A(βi) ≤ 0 is shown as zero (the prediction of Conjec-
ture 3.5). The phase transition in (b) is further right than in (a); more
samples are needed to recover the same strength signal.

performance could be regained by increasing the number of samples. Furthermore,

both the asymptotic amplitude performance shown in Figure 3.9 and the asymptotic

coefficient recovery shown in Figure 3.10 decline when the noise is heteroscedastic.

Though the difference is subtle for the asymptotic amplitude bias, the contours move

up and to the right in both cases. This degradation is consistent with Theorem 3.9;

PCA performs worse on heteroscedastic data than it does on homoscedastic data of
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(b) Asymptotic coefficient recovery (3.5).

Figure 3.11: Asymptotic amplitude bias (3.2) and coefficient recovery (3.5) of the
ith PCA amplitude and score vector as functions of the contamination
fraction p2, the proportion of samples with noise variance σ2

2 = 3.25,
where the other noise variance σ2

1 = 0.1 occurs in proportion p1 = 1−p2.
The sample-to-dimension ratio is c = 10 and the subspace amplitude is
θi = 1. The region where A(βi) ≤ 0 is the red horizontal segment in (b)
with value zero (the prediction of Conjecture 3.5).

the same average noise variance and more samples or a larger subspace amplitude

are needed to compensate.

3.8.3.2 Impact of proportions p1, . . . , pL

As in Section 3.3.2, we consider two noise variances σ2
1 = 0.1 and σ2

2 = 3.25

occurring in proportions p1 = 1− p2 and p2, where the sample-to-dimension ratio is

c = 10 and the subspace amplitude is θi = 1. Figure 3.11 shows analogous plots to

Figure 3.2 but for the asymptotic PCA amplitudes (3.2) and coefficient recovery (3.5).

As was the case for Figure 3.2 in Section 3.3.2, performance generally degrades in

Figure 3.11 as p2 increases and low noise samples with noise variance σ2
1 are traded

for high noise samples with noise variance σ2
2. The performance is best when p2 = 0

and all the samples have the smaller noise variance σ2
1, i.e., there is no contamination.

3.8.3.3 Impact of noise variances σ2
1, . . . , σ

2
L

As in Section 3.3.3, we consider two noise variances σ2
1 and σ2

2 occurring in pro-

portions p1 = 70% and p2 = 30%, where the sample-to-dimension ratio is c = 10 and

the subspace amplitude is θi = 1. Figure 3.12 shows analogous plots to Figure 3.3

but for the asymptotic PCA amplitudes (3.2) and coefficient recovery (3.5). As was

the case for Figure 3.3 in Section 3.3.3, performance typically degrades with increas-

ing noise variances. The contours in Figure 3.12b are also generally horizontal for

small σ2
1 and vertical for small σ2

2. They indicate that when the gap between the

two largest noise variances is “sufficiently” wide, the asymptotic coefficient recov-
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(b) Asymptotic coefficient recovery (3.5).

Figure 3.12: Asymptotic amplitude bias (3.2) and coefficient recovery (3.5) of the
ith PCA amplitude and score vector as functions of noise variances σ2

1

and σ2
2 occurring in proportions p1 = 70% and p2 = 30%, where the

sample-to-dimension ratio is c = 10 and the subspace amplitude is θi =
1. Contours are overlaid in black and the region where A(βi) ≤ 0 is
shown as zero in (b), matching the prediction of Conjecture 3.5. Along
each dashed cyan line, the average noise variance is fixed and the best
performance occurs when σ2

1 = σ2
2 = σ̄2. Along each dotted green curve,

the average inverse noise variance is fixed and the best performance
again occurs when σ2

1 = σ2
2.

ery is roughly determined by the largest noise variance. This property mirrors the

asymptotic subspace recovery and occurs for similar reasons, discussed in detail in

Section 3.3.3. Along each dashed cyan line in Figure 3.12, the average noise variance

is fixed and the best performance for both the PCA amplitudes and coefficient recov-

ery again occurs when σ2
1 = σ2

2 = σ̄2, as was predicted by Theorem 3.9. Along each

dotted green curve in Figure 3.12, the average inverse noise variance is fixed and the

best performance for both the PCA amplitudes and coefficient recovery again occurs

when σ2
1 = σ2

2, as was predicted in Remark 3.11.

3.8.3.4 Impact of adding data

As in Section 3.3.4, we consider adding data with noise variance σ2
2 and sample-to-

dimension ratio c2 to an existing dataset that has noise variance σ2
1 = 1, sample-to-

dimension ratio c1 = 10 and subspace amplitude θi = 1 for the ith component. The

combined dataset has a sample-to-dimension ratio of c = c1 + c2 and is potentially

heteroscedastic with noise variances σ2
1 and σ2

2 appearing in proportions p1 = c1/c
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(b) Asymptotic coefficient recovery (3.5).

Figure 3.13: Asymptotic amplitude bias (3.2) and coefficient recovery (3.5) of the ith
PCA amplitude and score vector for samples added with noise variance
σ2

2 and samples-per-dimension c2 to an existing dataset with noise vari-
ance σ2

1 = 1, sample-to-dimension ratio c1 = 10 and subspace amplitude
θi = 1.

and p2 = c2/c.

Figure 3.13 shows analogous plots to Figure 3.4 in Section 3.3.4 but for the

asymptotic PCA amplitudes (3.2) and coefficient recovery (3.5). As was the case

for Figure 3.4, the dashed orange curves show the recovery when σ2
2 = 1 = σ2

1

and illustrate the benefit we would expect for homoscedastic data: increasing the

samples per dimension improves recovery. The green curves show the performance

when σ2
2 = 1.1 > σ2

1; as before, these samples are “slightly” noisier and performance

improves for any number added. Finally, the dotted red curves show the performance

when σ2
2 = 1.4 > σ2

1. As before, performance degrades when adding a small number

of these noisier samples. However, unlike subspace recovery, performance degrades

when adding any amount of these samples. In the limit c2 → ∞, the asymptotic

amplitude bias is 1 + σ2
2/θ

2
i and the asymptotic coefficient recovery is 1/(1 + σ2

2/θ
2
i );

neither has perfect recovery in the limit when added samples are noisy.

3.8.4 Numerical simulation: amplitude and coefficient recovery

Section 3.4 shows that the asymptotic subspace recovery (3.4) of Theorem 3.4 is

meaningful for practical settings with finitely many samples in a finite-dimensional

space. This section shows the same for the asymptotic PCA amplitudes (3.2) and

coefficient recovery (3.5). For the asymptotic PCA amplitudes, we again consider

the ratio θ̂2
i /θ

2
i . As discussed in Remark 3.6, the asymptotic PCA amplitude θ̂i is

positively biased relative to the subspace amplitude θi, and so the almost sure limit

of θ̂2
i /θ

2
i is greater than one, with larger values indicating more bias.
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Figure 3.14: Simulated amplitude bias (3.2) as a function of the contamination frac-
tion p2, the proportion of samples with noise variance σ2

2 = 3.25, where
the other noise variance σ2

1 = 0.1 occurs in proportion p1 = 1 − p2.
The sample-to-dimension ratio is c = 10 and the subspace amplitudes
are θ1 = 1 and θ2 = 0.8. Simulation mean (dashed blue curve) and
interquartile interval (light blue ribbon) are shown with the asymptotic
bias (3.2) of Theorem 3.4 (green curve). Increasing data size from (a)
to (b) results in even smaller interquartile intervals, indicating concen-
tration to the mean, which is converging to the asymptotic bias.
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ẑ

(
i
)

√
n
,
z

(
i
)

‖z
(
i
)
‖〉
|2

i = 1

i = 2

(a) 103 samples in 102 dimensions.
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(b) 104 samples in 103 dimensions.

Figure 3.15: Simulated coefficient recovery (3.5) as a function of the contamination
fraction p2, the proportion of samples with noise variance σ2

2 = 3.25,
where the other noise variance σ2

1 = 0.1 occurs in proportion p1 =
1 − p2. The sample-to-dimension ratio is c = 10 and the subspace
amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (dashed blue
curve) and interquartile interval (light blue ribbon) are shown with the
asymptotic recovery (3.5) of Theorem 3.4 (green curve). The region
where A(βi) ≤ 0 is the red horizontal segment with value zero (the
prediction of Conjecture 3.5). Increasing data size from (a) to (b) results
in smaller interquartile intervals, indicating concentration to the mean,
which is converging to the asymptotic recovery.
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As in Section 3.4, this section simulates data according to the model described in

Section 3.2.1 for a two-dimensional subspace with subspace amplitudes θ1 = 1 and

θ2 = 0.8, two noise variances σ2
1 = 0.1 and σ2

2 = 3.25, and a sample-to-dimension

ratio of c = 10. We sweep the proportion of high noise points p2 from zero to one,

setting p1 = 1− p2 as in Section 3.4. The first simulation considers n = 103 samples

in a d = 102 dimensional ambient space (104 trials). The second increases these to

n = 104 samples in a d = 103 dimensional ambient space (103 trials). All simulations

generate data from the standard normal distribution, i.e., zij, εij ∼ N (0, 1). Fig-

ures 3.14 and 3.15 show analogous plots to Figure 3.5 but for the asymptotic PCA

amplitudes (3.2) and coefficient recovery (3.5), respectively.

As was the case for Figure 3.5 in Section 3.4, both Figures 3.14 and 3.15 illustrate

the following general observations:

a) the simulation mean and almost sure limit generally agree in the smaller sim-

ulation of 103 samples in a 102 dimensional ambient space

b) the smooth simulation mean deviates from the non-smooth almost sure limit

near the phase transition

c) the simulation mean and almost sure limit agree better for the larger simulation

of 104 samples in a 103 dimensional ambient space

d) the interquartile intervals for the larger simulations are roughly half the size of

those in the smaller simulations, indicating concentration to the means.

In fact, the amplitude bias in Figure 3.14 and the coefficient recovery in Figure 3.15

both have significantly better agreement with their almost sure limits than the sub-

space recovery in Figure 3.5 has with its almost sure limit. The amplitude bias in

Figure 3.14, in particular, is tightly concentrated around its almost sure limit (3.2).

Furthermore, Figure 3.15 demonstrates good agreement with Conjecture 3.5, provid-

ing evidence that there is indeed a phase transition below which the coefficients are

also not recovered.

3.8.5 Additional numerical simulations

Section 3.4 and Section 3.8.4 provide numerical simulation results for real-valued

data generated using normal distributions. This section illustrates the generality

of the model in Section 3.2.1 by showing analogous simulation results for circularly

symmetric complex normal data in Figure 3.16 and for a mixture of Gaussians in

Figure 3.17. As before, we show the results of two simulations for each setting. The

first simulation considers n = 103 samples in a d = 102 dimensional ambient space
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samples in 102 dimensions.
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Figure 3.16: Simulated complex-normal PCA performance as a function of the con-
tamination fraction p2, the proportion of samples with noise variance
σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1 occurs in proportion

p1 = 1 − p2. The sample-to-dimension ratio is c = 10 and the sub-
space amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (dashed
blue curve) and interquartile interval (light blue ribbon) are shown with
the almost sure limits of Theorem 3.4 (green curve). The region where
A(βi) ≤ 0 is shown as red horizontal segments with value zero (the
prediction of Conjecture 3.5).

(104 trials). The second increases these to n = 104 samples in a d = 103 dimensional

ambient space (103 trials).

Figure 3.16 mirrors Sections 3.4 and 3.8.4 and simulates data according to the

model described in Section 3.2.1 for a two-dimensional subspace with subspace ampli-

tudes θ1 = 1 and θ2 = 0.8, two noise variances σ2
1 = 0.1 and σ2

2 = 3.25, and a sample-

to-dimension ratio of c = 10. We again sweep the proportion of high noise points p2

from zero to one, setting p1 = 1−p2. The only difference is that Figure 3.16 generates

data from the standard complex normal distribution, i.e., zij, εij ∼ CN (0, 1).

Figure 3.17 instead simulates a homoscedastic setting of the model described

in Section 3.2.1 over a range of noise distributions, all mixtures of Gaussians. As

before, we consider a two-dimensional subspace with subspace amplitudes θ1 = 1

and θ2 = 0.8, and a sample-to-dimension ratio of c = 10. Figure 3.17 generates

coefficients zij ∼ N (0, 1) from the standard normal distribution and generates noise
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(c) Coefficient recovery, 103

samples in 102 dimensions.
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Figure 3.17: Simulated mixture model PCA performance as a function of the mixture
probability p2, the probability that a scaled noise entry ηiεij is Gaussian
with variance λ2

2 = 3.25, where it is Gaussian with variance λ2
1 = 0.1

otherwise, i.e., with probability p1 = 1 − p2. The sample-to-dimension
ratio is c = 10 and the subspace amplitudes are θ1 = 1 and θ2 = 0.8.
Simulation mean (dashed blue curve) and interquartile interval (light
blue ribbon) are shown with the almost sure limits of Theorem 3.4
(green curve). The region where A(βi) ≤ 0 is shown as red horizontal
segments with value zero (the prediction of Conjecture 3.5).

entries εij from the Gaussian mixture model

εij ∼

N (0, λ2
1/σ

2) with probability p1,

N (0, λ2
2/σ

2) with probability p2,

where λ2
1 = 0.1 and λ2

2 = 3.25, and the single noise variance is set to

(3.58) σ2 = p1λ
2
1 + p2λ

2
2.

Each scaled noise entry ηiεij = σεij is a mixture of two Gaussian distributions

with variances λ2
1 and λ2

2. We sweep the mixture probability p2 from zero to one,

setting p1 = 1 − p2. Thus, Figure 3.17 illustrates performance over a range of

noise distributions. The noise variance (3.58) in Figure 3.17 matches the average

noise variance in Figure 3.16 as we sweep p2. However, Figures 3.17 and 3.16 differ

because Figure 3.17 simulates a homoscedastic setting while Figure 3.16 simulates a

heteroscedastic setting. Figure 3.17 also differs from Figure 3.6b that simulates data



72

from the random inter-sample heteroscedastic model of Section 3.8.1.1. While both

simulate (scaled) noise from a mixture model, scaled noise entries ηiεij in Figure 3.17

are all iid. Scaled noise entries ηiεij in the random inter-sample heteroscedastic model

are independent only across samples; they are not independent within each sample.

Figure 3.17 is instead more like Figure 3.6c that simulates data from the Johnstone

spiked covariance model. See Section 3.8.1.1 for a comparison of these models.

As was the case for (real-valued) standard normal data in Sections 3.4 and 3.8.4,

Figures 3.16 and 3.17 illustrate the following general observations:

a) the simulation means and almost sure limits generally agree in the smaller

simulations of 103 samples in a 102 dimensional ambient space

b) the smooth simulation means deviate from the non-smooth almost sure limits

near the phase transitions

c) the simulation means and almost sure limits agree better for the larger simu-

lations of 104 samples in a 103 dimensional ambient space

d) the interquartile intervals for the larger simulations are roughly half the size of

those in the smaller simulations, indicating concentration to the means.

The agreement between simulations and almost sure limits demonstrated in both

Figures 3.16 and 3.17 highlights the generality of the model considered in this chapter:

it allows for both complex-valued data and non-Gaussian distributions. In both cases,

the asymptotic results of Theorem 3.4 remain meaningful for practical settings with

finitely many samples in a finite-dimensional space.



CHAPTER IV

Optimally weighted PCA for high-dimensional

heteroscedastic data

As the analysis of Chapter III quantified, PCA does not robustly recover under-

lying components in the presence of heteroscedastic noise. Specifically, PCA suffers

from treating all data samples as if they are equally informative. This chapter gen-

eralizes the analysis of Chapter III to characterize a weighted variant of PCA that

can account for heteroscedasticity by giving samples with larger noise variance less

influence. The analysis provides expressions for the asymptotic recovery of underly-

ing low-dimensional components for any choice of weights. Surprisingly, it turns out

that whitening the noise by using inverse noise variance weights is suboptimal. We

derive optimal weights, characterize the performance of weighted PCA, and consider

the problem of optimally collecting samples under budget constraints. The work in

this chapter led to the following submitted journal paper that this chapter presents:

[96] David Hong, Jeffrey A. Fessler, and Laura Balzano. Optimally Weighted

PCA for High-Dimensional Heteroscedastic Data, 2018. Submitted. arXiv: 1810.

12862v2.

4.1 Introduction

We consider a sample-weighted PCA [114, Section 14.2.1] to account for het-

eroscedastic noise in the data; giving noisier samples smaller weights reduces their in-

fluence. Sample-weighted PCA (WPCA) replaces the sample covariance matrix with

a weighted sample covariance matrix (ω1y1y
H
1 +· · ·+ωnynyHn )/n where y1, . . . , yn ∈ Cd

are zero-mean sample vectors, ω1, . . . , ωn ≥ 0 are the weights, and the superscript H

denotes Hermitian transpose. As in PCA, the principal components1 û1, . . . , ûk ∈ Cd

1As in Section 2.2, “principal components” here refers to eigenvectors of the (weighted) sample
covariance matrix and “scores” refers to the derived variables, i.e., the coefficients of the samples

73
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and amplitudes θ̂2
1, . . . , θ̂

2
k are the first k eigenvectors and eigenvalues, respectively,

of the weighted sample covariance matrix. The scores ẑ1, . . . , ẑk ∈ Cn are given by

ẑi = (1/θ̂i){ûHi (y1, . . . , yn)}H for each i ∈ {1, . . . , k}. Taken together, the principal

components, amplitudes and scores solve the weighted approximation problem

min
ũ1,...,ũk∈Cd

θ̃1,...,θ̃k≥0
z̃1,...,z̃k∈Cn

n∑
j=1

ω2
j

∥∥∥∥yj − k∑
i=1

ũiθ̃i
(
z̃

(j)
i

)∗∥∥∥∥2

2

(4.1)

such that ũHs ũt = δst, z̃
H
s W2z̃t = nδst,

where W := diag(ω1, . . . , ωn) is a diagonal matrix of weights, and δst = 1 if s = t

and 0 otherwise. Namely, they form a truncated generalized singular value decom-

position [79, Appendix A] of the data matrix Y := (y1, . . . , yn) ∈ Cd×n formed with

samples as columns. Note that the scores ẑ1, . . . , ẑk are orthonormal with respect

to the weighted Euclidean metric W2, and are not necessarily so with respect to

the Euclidean metric. Reconstructed samples x̂1, . . . , x̂n ∈ Cd are formed for each

j ∈ {1, . . . , n} as

(4.2) x̂j :=
k∑
i=1

ûiθ̂i
(
ẑ

(j)
i

)∗
,

and are projections of the samples y1, . . . , yn onto the principal component subspace,

i.e., the span of û1, . . . , ûk.

To use WPCA, one must first select weights. Some natural choices to consider

for heteroscedastic data are:

• uniform weights ω2
j = 1: standard (unweighted) PCA may be a natural choice

when data are “nearly” homoscedastic, but its performance generally degrades

with increasing heteroscedasticity as shown, e.g., in Theorem 3.9.

• binary weights ω2
j = 0 for noisier samples and ω2

j = 1 for the rest: excluding

samples that are much noisier is both practical and natural, but how much

noisier they need to be is not obvious. Our analysis quantifies when doing so

is nearly optimal.

• inverse noise variance weights ω2
j = 1/η2

j where η2
j is the jth sample noise

variance: weighting by inverse noise variance whitens the noise, making it ho-

moscedastic, and can be interpreted as a maximum likelihood weighting [218],

but given that conventional PCA is not robust to gross outliers, e.g., from very

noisy samples, it is uncertain whether inverse noise variance downweights such

samples aggressively enough.

with respect to the components.
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It has been unclear which, if any, of these three options should be chosen, but among

them inverse noise variance weights generally appear most natural, especially when

all noise variances are moderate. Surprisingly, our analysis shows that none of these

options optimally recover underlying components when the data have heteroscedastic

noise. In some cases, they are near optimal, and our analysis uncovers these regimes

as well.

4.1.1 Contributions of this chapter

This chapter analyzes WPCA and characterizes, for any choice of weights, the

asymptotic recovery of underlying components, amplitudes and scores from data

samples with heteroscedastic noise (Theorem 4.3). The main technical challenge lies

in characterizing the almost sure limit of a weighted resolvent (Lemma 4.9) to ex-

tend [22, Theorems 2.9-2.10] to account for the weights, and we use a convenient

expansion to divide and tackle the problem (Section 4.11.2). We provide simplified

expressions as we did in Chapter III that allow us to obtain insights into the perfor-

mance of WPCA as well as optimize the weights for various types of recovery, and we

derive a surprisingly simple closed-form expression (Theorem 4.10) for weights that

optimally recover an underlying component of amplitude θi: ω
2
j = 1/{η2

j (θ
2
i + η2

j )}.
Deriving optimal weights involves identifying and exploiting nontrivial structure in

the simplified expressions to characterize the critical points of the asymptotic compo-

nent recovery with respect to square inverse weights. The simplified expressions also

allow us to find optimal strategies for collecting samples under budget constraints

(Theorem 4.11). Finally, we investigate some cases where suboptimal weights may

be practical and sufficient and study how weighting changes the ways that data

properties, e.g., noise variances and number of samples, affect PCA performance.

4.1.2 Relationship to previous works

Jolliffe [114, Section 14.2.1] describes a more general WPCA; one may, for ex-

ample, also weight the coordinates of each sample. Within-sample weighting is dis-

cussed in [55, Sections 5.4–5.5] to account for variables with differing noise variances;

the weights are inverse noise variance and the authors note that it corresponds to

maximum likelihood estimation for the factor analysis model [55, Equation (20)].

Weighting both across and within samples is proposed in [49, Equation (28)] for

analyzing spectrophotometric data from scanning wavelength kinetics experiments.

The weights in [49] are also inverse noise variance. Similar weighting is used in [194,

Equation (1)] for analyzing photometric light curve data from astronomical studies,

and in [108] for analyzing metabolomics data. Weighting data by their inverse noise
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variance has been a recurring theme, but the resulting performance has not been

studied in the high-dimensional regime. This chapter analyzes the high-dimensional

asymptotic performance of general across-sample weighting in WPCA for noise with

heteroscedasticity across samples. Generalizing the analysis of this chapter to het-

eroscedasticity that is both across and within samples with correspondingly general

weighting is an interesting area of future work.

Weighted variants of PCA have also been applied to account for other hetero-

geneities in the data. Jolliffe [114, Section 14.2.1] surveys and discusses several such

settings, and Yue and Tomoyasu [219, Sections 3–5] use weights to account for, among

other aspects, the relative importance of variables. Weighted variants of PCA are

also closely tied to the problem of computing weighted low-rank approximations of

matrices; see, e.g., [189] and [202, Section 4.2], where weights are used to account

for unobserved data or to denote relative importance. Understanding how to handle

such heterogeneities is an exciting area for future work and will become increasingly

important for big data inference from “messy” data.

Choosing uniform weights specializes WPCA to (unweighted) PCA, so the anal-

ysis here generalizes that of Chapter III. There we analyzed the asymptotic recovery

of PCA and characterized the impact of heteroscedastic noise, showing, in particu-

lar, that PCA performance is always best (for fixed average noise variance) when the

noise is homoscedastic. See Section 3.1.3 for a discussion of the many connections to

previous analyses for homoscedastic noise, and Section 3.8.1 for a detailed discussion

of connections to spiked covariance models.

Recent work [221] considers noise that is heteroscedastic within each sample, pro-

ducing a non-uniform bias along the diagonal of the covariance matrix that skews

its eigenvectors. To address this issue, they propose an algorithm called HeteroPCA

that iteratively replaces the diagonal entries with those of the current estimate’s low-

rank approximation, and they show that it has minimax optimal rate for recovering

the principal subspace. Dobriban, Leeb and Singer [59] also study a data model

with noise heteroscedasticity within samples, but with the goal of optimally shrink-

ing singular values to recover low-rank signals from linearly transformed data. In

contrast to both these works, we seek to optimally weight samples in PCA to address

noise with across-sample heteroscedasticity. Understanding if and how these various

questions and techniques relate is an interesting area for future investigation.

4.1.3 Organization of the chapter

Section 4.2 describes the model we consider for underlying components in het-

eroscedastic noise, and Section 4.3 states the main analysis result (Theorem 4.3):

expressions for asymptotic WPCA recovery. Section 4.4 outlines its proof. Sec-
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tion 4.5 derives optimal weights for component recovery (Theorem 4.10), and Sec-

tion 4.6 discusses the suboptimality, or in some cases, the near optimality, of other

choices. Section 4.7 illustrates the ways weighting affects how recovery depends

on the data parameters. Section 4.8 derives optimal sampling strategies under

budget constraints (Theorem 4.11). Section 4.9 illustrates in simulation how the

asymptotic predictions compare to the empirical performance of WPCA for var-

ious problem sizes. Section 4.11 contains detailed proofs and additional simula-

tions, and code for reproducing the figures in this chapter can be found online at:

https://gitlab.com/dahong/optimally-weighted-pca-heteroscedastic-data

4.2 Model for heteroscedastic data

As in Section 3.2.1, we model n sample vectors y1, . . . , yn ∈ Cd as

(4.3) yj =
k∑
i=1

uiθi
(
z

(j)
i

)∗
︸ ︷︷ ︸

xj∈Cd

+ηjεj = xj + ηjεj.

The following are deterministic:

• u1, . . . , uk ∈ Cd are orthonormal components,

• θ1, . . . , θk > 0 are amplitudes,

• ηj ∈ {σ1, . . . , σL} are each one of L noise standard deviations σ1, . . . , σL,

and we define n1 to be the number of samples with ηj = σ1, n2 to be the number of

samples with ηj = σ2, and so on, where n1 + · · ·+ nL = n.

The following are random:

• z1, . . . , zk ∈ Cn are iid score vectors whose entries are iid with mean E(z
(j)
i ) = 0,

variance E|z(j)
i |2 = 1, and a distribution satisfying a log-Sobolev inequality [9,

Section 2.3.2],

• εj ∈ Cd are unitarily invariant iid noise vectors that have iid entries with mean

E(ε
(s)
j ) = 0, variance E|ε(s)

j |2 = 1 and bounded fourth moment E|ε(s)
j |4 <∞.

In words, (4.3) models data samples as containing k underlying components with

additive mean zero heteroscedastic noise. Without loss of generality, we further

assume that the weights correspond to the noise variances, that is, samples with

noise variance η2
j = σ2

1 are weighted as ω2
j = w2

1, and so on.

https://gitlab.com/dahong/optimally-weighted-pca-heteroscedastic-data
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Remark 4.1 (Unitary invariance). Unitarily invariant noise means that left multi-

plication of each noise vector εj by any unitary matrix does not affect the joint

distribution of its entries. As in Section 3.2.1, this assumption can be removed if the

set of components u1, . . . , uk is isotropically drawn at random as in [22, Section 2.1].

Remark 4.2 (Example distributions). The conditions above are all satisfied when the

entries z
(j)
i and ε

(s)
j are, for example, circularly symmetric complex normal CN (0, 1).

Rademacher random variables (i.e., ±1 with equal probability) are another choice for

scores z
(j)
i . Only circularly symmetric complex normal distributions satisfy all the

noise conditions,2 but as noted in Remark 4.1, unitary invariance can be removed if

the components are random.

4.3 Asymptotic performance of weighted PCA

The following theorem quantifies how well the weighted PCA estimates û1, . . . , ûk,

θ̂1, . . . , θ̂k, and ẑ1, . . . , ẑk recover the underlying components u1, . . . , uk, amplitudes

θ1, . . . , θk, and scores z1, . . . , zk, from (4.3) as a function of:

• limiting sample-to-dimension ratio n/d→ c > 0,

• underlying amplitudes θ1, . . . , θk,

• noise variances σ2
1, . . . , σ

2
L,

• weights w2
1, . . . , w

2
L, and

• limiting proportions n1/n→ p1, . . . , nL/n→ pL.

The expressions enable us to later study the behavior of weighted PCA and to opti-

mize the weights.

Theorem 4.3 (Asymptotic recovery of amplitudes, components, and scores). Sup-

pose the sample-to-dimension ratio n/d→ c > 0 and the noise variance proportions

n`/n→ p` for ` = 1, . . . , L as n, d→∞. Then the ith WPCA amplitude θ̂i converges

as

(4.4) θ̂2
i

a.s.−→ 1

c
max(α, βi)C(max(α, βi)) =: r

(θ)
i ,

2Gaussianity follows from orthogonal invariance via the Herschel-Maxwell theorem [33, Theorem
0.0.1] for real-valued random vectors. Its extension to complex-valued random vectors can be shown
by observing that unitary invariance implies orthogonal invariance of its real part and circular
symmetry of each entry in the complex plane.
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where α and βi are, respectively, the largest real roots of

A(x) := 1− c
L∑
`=1

p`w
4
`σ

4
`

(x− w2
`σ

2
` )

2
, Bi(x) := 1− cθ2

i

L∑
`=1

p`w
2
`

x− w2
`σ

2
`

,(4.5)

and where

(4.6) C(x) := 1 + c
L∑
`=1

p`w
2
`σ

2
`

x− w2
`σ

2
`

.

Furthermore, if A(βi) > 0 then the ith component ûi has asymptotic recovery∑
j:θj=θi

|〈ûi, uj〉|2 a.s.−→ 1

βi

A(βi)

B′i(βi)
=: r

(u)
i ,

∑
j:θj 6=θi

|〈ûi, uj〉|2 a.s.−→ 0,(4.7)

the normalized ith score ẑi/
√
n has asymptotic weighted recovery∑

j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 1

cθ2
iC(βi)

A(βi)

B′i(βi)
=: r

(z)
i ,(4.8)

∑
j:θj 6=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 0,

and

(4.9)
∑
j:θj=θi

〈ûi, uj〉
〈
ẑi√
n
,
zj√
n

〉∗
W2

a.s.−→
√
r

(u)
i r

(z)
i =

1√
cθ2
i βiC(βi)

A(βi)

B′i(βi)
.

Section 4.4 outlines the proof of Theorem 4.3 with the details deferred to Sec-

tion 4.11.1. An overall roadmap is as follows: a) analyze almost sure limits of two key

normalized traces, b) extend [22, Theorems 2.9-2.10] using these limits to account

for weighting, then c) simplify the resulting expressions. Among other challenges,

the fact that weights are associated with specific samples complicates the analysis.

Remark 4.4 (Location of the largest real roots). Finding the largest real roots of

the univariate rational functions A(x) and Bi(x) is the most challenging aspect of

computing the expressions in Theorem 4.3, but they can be found efficiently, e.g.,

with bisection, by observing that they are the only roots larger than the largest pole

max`(w
2
`σ

2
` ) as shown in Fig. 4.1.

Remark 4.5 (Scaling properties for the weights). Scaling all the weights w2
1, . . . , w

2
L

does not affect the relative influence given to samples, and as a result, doing so only

scales the WPCA amplitudes and scores. Theorem 4.3 reflects this scaling property of

WPCA. Scaling all the weights by a constant λ, scales βi by λ. As a result, A(βi) and

C(βi) are unchanged, and B′i(βi) is scaled by 1/λ. Thus, as expected, the asymptotic

component recovery (4.7) is unchanged, and the asymptotic amplitude (4.4) and

asymptotic weighted score recovery (4.8) are both scaled by λ.
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Figure 4.1: Location of the largest real roots α and βi of A and Bi, respectively, for
c = 0.1 samples per dimension, underlying amplitude θ2

i = 16, p1 = 25%
of samples having noise variance σ2

1 = 1 and weight w2
1 = 2.5, and

p2 = 75% of samples having noise variance σ2
2 = 5 and weight w2

2 = 1.

4.3.1 Special cases: uniform, binary, and inverse noise variance weights

Uniform weights w2
` = 1 correspond to unweighted PCA, and binary weights

w2
` ∈ {0, 1} correspond to unweighted PCA carried out on only samples with nonzero

weight. As a result, the analysis of unweighted PCA in Section 3.2 applies to uniform

and binary weights. Theorem 4.3 specializes exactly to Theorem 3.4 for these weights.

As shown in Section 3.2.6, the performance with these weights degrades (for both

fixed average noise variance and for fixed average inverse noise variance) when the

noise is heteroscedastic among the samples used. Binary weights can be chosen to use

only samples with the same noise variance but doing so would preclude using all the

data. Further discussion of the resulting tradeoff is in Section 3.3.4 and Section 4.7.4.

Inverse noise variance weights w2
` = 1/σ2

` do not correspond to an unweighted

PCA and were not analyzed in Chapter III. The following corollary uses Theorem 4.3

to provide new simple expressions for these weights.

Corollary 4.6 (Asymptotic recoveries for inverse noise variance weights). Suppose

the sample-to-dimension ratio n/d → c > 0 and the noise variance proportions

n`/n → p` for ` = 1, . . . , L as n, d → ∞, and let the weights be set as w2
` = σ̄2/σ2

`

where σ̄−2 := p1/σ
2
1 + · · · + pL/σ

2
L is the average inverse noise variance. Then the

ith WPCA amplitude θ̂i converges as

(4.10) θ̂2
i

a.s.−→ r
(θ)
i =

θ2
i {1 + σ̄2/(cθ2

i )}(1 + σ̄2/θ2
i ) if cθ4

i > σ̄4,

σ̄2(1 + 1/
√
c)2 otherwise.

Furthermore, if cθ4
i > σ̄4 then the ith component ûi has asymptotic recovery∑

j:θj=θi

|〈ûi, uj〉|2 a.s.−→ r
(u)
i =

c− σ̄4/θ4
i

c+ σ̄2/θ2
i

,
∑
j:θj 6=θi

|〈ûi, uj〉|2 a.s.−→ 0,(4.11)
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and the normalized ith score ẑi/
√
n has asymptotic weighted recovery∑

j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ r
(z)
i =

c− σ̄4/θ4
i

c(1 + σ̄2/θ2
i )
,(4.12)

∑
j:θj 6=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 0.

Proof of Corollary 4.6. When w2
` = σ̄2/σ2

` , (4.5) and (4.6) simplify to

A(x) = 1− cσ̄4

(x− σ̄2)2
, Bi(x) = 1− cθ2

i

x− σ̄2
, C(x) = 1 +

cσ̄2

x− σ̄2
,

yielding α = σ̄2(1 +
√
c) and βi = σ̄2 + cθ2

i . Substituting into (4.4), (4.7) and (4.8)

in Theorem 4.3 yields (4.10)–(4.12).

Observe that σ̄2 captures the overall noise level, and performance with inverse

noise variance weights is the same as that for homoscedastic noise of variance σ̄2. In

contrast to uniform and binary weights, the performance of inverse noise variance

weights for fixed average inverse noise variance does not degrade with heteroscedas-

ticity because the weights always whiten the noise to be homoscedastic. In fact,

performance for fixed average noise variance improves with heteroscedasticity, with

perfect recovery occurring when one noise variance is taken to zero with the rest

set to have the desired average. As we show in Section 4.5, however, these weights

generally result in suboptimal asymptotic component recovery (4.7).

4.3.2 Aggregate performance of weighted PCA

The following corollary applies Theorem 4.3 to analyze aggregate recovery of the

components, scores and samples.

Corollary 4.7 (Aggregate recovery). Suppose the conditions of Theorem 4.3 hold,

and additionally A(β1), . . . , A(βk) > 0. Then the WPCA component subspace basis

Û := (û1, . . . , ûk) ∈ Cd×k recovers the underlying subspace basis U := (u1, . . . , uk) ∈
Cd×k asymptotically as

(4.13) ‖ÛHU‖2
F

a.s.−→
k∑
i=1

r
(u)
i =

k∑
i=1

1

βi

A(βi)

B′i(βi)
,

the aggregate WPCA scores Ẑ := (ẑ1, . . . , ẑk) ∈ Cn×k recover their underlying coun-

terparts Z := (z1, . . . , zk) ∈ Cn×k asymptotically as

(4.14)
1

n2
‖ẐHW2Z‖2

F
a.s.−→

k∑
i=1

r
(z)
i =

k∑
i=1

1

cθ2
iC(βi)

A(βi)

B′i(βi)
,
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and the reconstructed samples x̂1, . . . , x̂n have asymptotic (weighted) mean square

error with respect to the underlying samples x1, . . . , xn given by

(4.15)
1

n

n∑
j=1

ω2
j‖x̂j − xj‖2

2
a.s.−→ 1

c

k∑
i=1

{
cw̄2θ2

i + βiC(βi)− 2
A(βi)

B′i(βi)

}
,

where w̄2 := p1w
2
1 + · · ·+ pLw

2
L.

Proof of Corollary 4.7. The subspace and aggregate score recoveries decompose as

‖ÛHU‖2
F =

k∑
i=1

( ∑
j:θj=θi

|〈ûi, uj〉|2 +
∑
j:θj 6=θi

|〈ûi, uj〉|2
)
,(4.16)

1

n2
‖ẐHW2Z‖2

F =
k∑
i=1

( ∑
j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 +
∑
j:θj 6=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2
)
.

(4.17)

Substituting (4.7)–(4.8) into (4.16)–(4.17) yields (4.13)–(4.14).

The (weighted) mean square error decomposes as

1

n

n∑
j=1

ω2
j‖x̂j − xj‖2

2 =
∥∥∥ÛΘ̂

( 1√
n

Ẑ
)H

W −UΘ
( 1√

n
Z
)H

W
∥∥∥2

F
(4.18)

=
k∑
i=1

θ̂2
i +

θ2
i

n
‖Wzi‖2

2 − 2<
(
θ̂i

k∑
j=1

θj〈ûi, uj〉
〈
ẑi√
n
,
zj√
n

〉∗
W2

)

where Θ̂ := diag(θ̂1, . . . , θ̂k) ∈ Rk×k and Θ := diag(θ1, . . . , θk) ∈ Rk×k are diagonal

matrices of amplitudes, and < denotes the real part of its argument. The first term

of (4.18) has almost sure limit given by (4.4), and the second term has almost sure

limit θ2
i (p1w

2
1 + · · ·+ pLw

2
L) by the law of large numbers. The inner sum of the third

term simplifies since summands with θj 6= θi are zero by (4.7)–(4.8); the remaining

sum has almost sure limit given by (4.9). Substituting the almost sure limits and

simplifying yields (4.15).

4.3.3 Conjectured phase transition

The expressions for asymptotic component recovery (4.7) and asymptotic score

recovery (4.8) in Theorem 4.3 and the resulting recoveries in Corollary 4.7 apply

only when A(βi) > 0. The following conjecture predicts a phase transition when

A(βi) = 0 resulting in zero asymptotic recovery when A(βi) ≤ 0.
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Conjecture 4.8 (Phase transition). Suppose the sample-to-dimension ratio n/d→
c > 0 and the noise variance proportions n`/n → p` for ` = 1, . . . , L as n, d → ∞.

If A(βi) ≤ 0 then

k∑
j=1

|〈ûi, uj〉|2 a.s.−→ 0,
k∑
j=1

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 0.(4.19)

Namely, (4.7) and (4.8) extend to A(βi) ≤ 0 by truncating r
(u)
i and r

(z)
i at zero.

4.4 Proof sketch for Theorem 4.3

This section provides a rough outline, deferring the details to Section 4.11.1. Ob-

serve first that in matrix form, the model (4.3) for the data matrix Y := (y1, . . . , yn) ∈
Cd×n is

(4.20) Y = (u1, . . . , uk)︸ ︷︷ ︸
U∈Cd×k

diag(θ1, . . . , θk)︸ ︷︷ ︸
Θ∈Rk×k

(z1, . . . , zk)︸ ︷︷ ︸
Z∈Cn×k

H + (ε1, . . . , εn)︸ ︷︷ ︸
E∈Cd×n

diag(η1, . . . , ηn)︸ ︷︷ ︸
H∈Rn×n

.

The weighted PCA components û1, . . . , ûk, amplitudes θ̂1, . . . , θ̂k, and normalized

weighted scores Wẑ1/
√
n, . . . ,Wẑk/

√
n are, respectively, principal left singular vec-

tors, singular values, and right singular vectors of the normalized and weighted data

matrix

(4.21) Ỹ :=
1√
n

Y diag(ω2
1, . . . , ω

2
n)︸ ︷︷ ︸

W∈Rn×n

= UΘZ̃HW + Ẽ,

where Z̃ := Z/
√
n are normalized underlying scores and Ẽ := EHW/

√
n are normal-

ized and weighted noise. Namely, Ỹ is a low-rank perturbation of a random matrix.

We extend [22, Theorems 2.9-2.10] to account for weights, then exploit structure in

the expressions similar to the proof in Section 3.5.

As shown in [14, Chapters 4, 6] and discussed in Section 3.5.1, the singular

value distribution of Ẽ converges almost surely weakly to a nonrandom compactly

supported measure µẼ, and the largest singular value of Ẽ converges almost surely

to the supremum b of the support of µẼ. Hence, as reviewed in Section 4.11.1.1,

(4.22)
1

d
tr ζ(ζ2I− ẼẼH)−1 a.s.−→ ϕ1(ζ) :=

∫
ζ

ζ2 − t2dµẼ(t),

where the convergence is uniform on {ζ ∈ C : <(ζ) > b + τ} for any τ > 0, and ϕ1

has the following properties:

∀ζ>b ϕ1(ζ) > 0, ϕ1(ζ)→ 0 as |ζ| → ∞, ϕ1(ζ) ∈ R⇔ ζ ∈ R.(4.23)
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Furthermore, for any ζ ∈ C with <(ζ) > b,

(4.24)
∂

∂ζ

1

d
tr ζ(ζ2I− ẼẼH)−1 a.s.−→ ϕ′1(ζ).

The main technical challenge in extending [22, Theorems 2.9-2.10] to account for the

weights lies in proving analogous weighted results stated in the following lemma.

Lemma 4.9. Under the model assumptions in Section 4.2,

(4.25)
1

n
tr ζW(ζ2I− ẼHẼ)−1W

a.s.−→ ϕ2(ζ) :=
L∑
`=1

p`w
2
`

ζ − w2
`σ

2
`ϕ1(ζ)/c

,

where the convergence is uniform on {ζ ∈ C : <(ζ) > b + τ} for any τ > 0, and ϕ2

has the following properties:

∀ζ>b ϕ2(ζ) > 0, ϕ2(ζ)→ 0 as |ζ| → ∞, ϕ2(ζ) ∈ R⇔ ζ ∈ R.(4.26)

Furthermore, for any ζ ∈ C with <(ζ) > b,

(4.27)
∂

∂ζ

1

n
tr ζW(ζ2I− ẼHẼ)−1W

a.s.−→ ϕ′2(ζ).

Lemma 4.9 is proved in Section 4.11.2 and enables us to extend [22, Theorems

2.9-2.10] in Sections 4.11.1.2 and 4.11.1.3 to conclude that for each i ∈ {1, . . . , k},

(4.28) θ̂2
i

a.s.−→

ρ2
i if θ2

i > θ̄2,

b2 otherwise,
=: r

(θ)
i

and when θ2
i > θ̄2, ∑

j:θj=θi

|〈ûi, uj〉|2 a.s.−→ −2ϕ1(ρi)

θ2
iD
′(ρi)

=: r
(u)
i ,(4.29)

∑
j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ −2ϕ2(ρi)

θ2
iD
′(ρi)

=: r
(z)
i ,(4.30)

∑
j:θj 6=θi

|〈ûi, uj〉|2,
∑
j:θj 6=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 0,(4.31)

and

(4.32)
∑
j:θj=θi

〈ûi, uj〉
〈
ẑi√
n
,
zj√
n

〉∗
W2

a.s.−→
√
r

(u)
i r

(z)
i ,

where D(ζ) := ϕ1(ζ)ϕ2(ζ), ρi := D−1(1/θ2
i ) and θ̄2 := 1/ limζ→b+ D(ζ).

The final step (Section 4.11.1.4) is to find algebraic descriptions of r
(u)
i and r

(z)
i .

We change variables to ψ(ζ) := cζ/ϕ1(ζ) and, analogous to Section 3.5.3, observe

that ψ has the following properties:
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a) 0 = Q(ψ(ζ), ζ) for all ζ > b where

(4.33) Q(s, ζ) :=
cζ2

s2
+
c− 1

s
− c

L∑
`=1

p`
s− w2

`σ
2
`

,

with the inverse function given by

(4.34) ψ−1(γ) =

√√√√γ

c

(
1 + c

L∑
`=1

p`w2
`σ

2
`

γ − w2
`σ

2
`

)
,

b) max`(σ
2
`w

2
` ) < ψ(ζ) < cζ2,

c) 0 < limζ→b+ ψ(ζ) <∞ and limζ→b+ ψ
′(ζ) =∞.

Combining these properties with the observation that

(4.35) D(ζ) = ϕ1(ζ)
L∑
`=1

p`w
2
`

z − w2
`σ

2
`ϕ1(ζ)/c

= c
L∑
`=1

p`w
2
`

ψ(ζ)− w2
`σ

2
`

,

then simplifying analogously to Sections 3.5.4 to 3.5.6, yields (4.4)–(4.9) and con-

cludes the proof.

4.5 Optimally weighted PCA

The following theorem optimizes the expressions in Theorem 4.3 to find weights

that maximize component recovery. The absolute scale and units of the weights are

arbitrary here since the components depend on only the relative weights given to

samples, as discussed in Remark 4.5.

Theorem 4.10 (Optimal component recovery). The weights

(4.36) w2
` =

1

σ2
`

1

θ2
i + σ2

`

,

maximize the asymptotic recovery r
(u)
i of the ith underlying component ui by the

WPCA component ûi with the corresponding optimal value of r
(u)
i given by the largest

real root of

(4.37) R
(u)
i (x) := 1− cθ2

i

L∑
`=1

p`
σ2
`

1− x
σ2
`/θ

2
i + x

.
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θ2
i /σ

2
j

w
2 `
/w
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Figure 4.2: Relative weight w2
`/w

2
j given by optimal weights (4.36) to samples with

twice the noise variance σ2
` = 2σ2

j as a function of the underlying am-
plitude θ2

i . As the underlying amplitude increases, optimal weighting in-
terpolates between square inverse noise variance weights (w2

`/w
2
j = 1/4)

and inverse noise variance weights (w2
`/w

2
j = 1/2).

When θ2
i � σ2

1, . . . , σ
2
L, i.e., when the noise is relatively small, 1/(θ2

i + σ2
` ) be-

comes uniform over ` and the optimal weights (4.36) reduce to inverse noise variance

weights, providing further justification for these commonly used weights. However,

when θ2
i � σ2

1, . . . , σ
2
L and the noise is relatively large, 1/(θ2

i +σ2
` ) becomes 1/σ2

` and

the optimal weights reduce to square inverse noise variance weights. Inverse noise

variance weights do not downweight noisier samples aggressively enough when the

signal-to-noise ratio is small. Rather than give samples with twice the noise vari-

ance half the weight as with inverse noise variance weights, it is better to give them

a quarter the weight in this regime. In general, optimal weights strike a balance

between inverse noise variance weights and square inverse noise variance weights, as

1/σ4
`

1/σ4
j

<
σ4
j

σ4
`

θ2
i /σ

2
j + 1

θ2
i /σ

2
` + 1

=
w2
`

w2
j

=
σ2
j

σ2
`

θ2
i + σ2

j

θ2
i + σ2

`

<
1/σ2

`

1/σ2
j

,

for any two noise variances σ2
` > σ2

j . Samples with twice the noise variance are given

between a half and a quarter of the weight, with the particular balance dictated by

the underlying amplitude θ2
i , as shown in Fig. 4.2. In practice, one may estimate the

underlying amplitudes θ2
i by de-biasing PCA estimates θ̂2

i using expressions like (4.4).

Interestingly, the optimal weights (4.36) do not depend on the sample-to-dimension

ratio c or proportions p1, . . . , pL, though these properties greatly impact how infor-

mative each group of samples is on the whole, as shown in Section 4.6. Consequently,

there is no benefit to using different weights for samples with the same noise vari-

ance. Furthermore, note that the second term 1/(θ2
i + σ2

` ) normalizes samples by

their variance in the direction of ui.

The remainder of this section proves Theorem 4.10. Though the result (4.36) is

simple to state, deriving it is nontrivial in part due to the fact that any scaling of
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the weights produces the same components. The proof exploits this structure to find

optimal weights and their corresponding recovery.

Proof of Theorem 4.10. The objective is to maximize r
(u)
i with respect to the weights

w2
1, . . . , w

2
L under the implicit constraint that the weights are nonnegative. Partition

the feasible region into 2L − 1 sets each defined by which weights are zero. Namely,

consider partitions of the form

(4.38) PL := {(w2
1, . . . , w

2
L) : ∀` ∈ L w2

` = 0,∀` /∈ L w2
` > 0},

where L ⊂ {1, . . . , L} is a proper, but potentially empty, subset. Note that the

origin, where all the weights are zero, is not within the domain of r
(u)
i . Since r

(u)
i is

invariant to scaling of the weights, as discussed in Remark 4.5, a maximizer exists

within at least one of the partitions. Moreover, since r
(u)
i is a differentiable function

of the weights, r
(u)
i is maximized at a critical point of a partition PL. It remains to

identify and compare the critical points of all the partitions.

First consider P∅, i.e., the set of positive weights w2
1, . . . , w

2
L > 0, and let w̃j :=

1/w2
j . This reparameterization ends up simplifying the manipulations. Differenti-

ating key terms from Theorem 4.3, specifically (4.7) and (4.5), with respect to w̃j

yields

∂r
(u)
i

∂w̃j
= r

(u)
i

{
− 1

βi

∂βi
∂w̃j

+
1

A(βi)

∂A(βi)

∂w̃j
− 1

B′i(βi)

∂B′i(βi)

∂w̃j

}
,(4.39)

∂A(βi)

∂w̃j
= A′(βi)

∂βi
∂w̃j

+ 2c
pjσ

4
j

(βiw̃j − σ2
j )

3
βi,(4.40)

∂B′i(βi)

∂w̃j
= B′′i (βi)

∂βi
∂w̃j
− 2cθ2

i

pj
(βiw̃j − σ2

j )
3
βiw̃j + cθ2

i

pj
(βiw̃j − σ2

j )
2
,(4.41)

0 =
∂Bi(βi)

∂w̃j
= B′i(βi)

∂βi
∂w̃j

+ cθ2
i

pj
(βiw̃j − σ2

j )
2
βi,(4.42)

where one must carefully account for the fact that A and Bi are implicit functions

of w̃j, so βi is as well. Rewriting (4.40) and (4.41) in terms of ∂βi/∂w̃j using (4.42)

yields

∂A(βi)

∂w̃j
=

{
A′(βi)−

2B′i(βi)

θ2
i

σ4
j

βiw̃j − σ2
j

}
∂βi
∂w̃j

,(4.43)

∂B′i(βi)

∂w̃j
=

{
B′′i (βi) + 2B′i(βi)

w̃j
βiw̃j − σ2

j

}
∂βi
∂w̃j
− 1

βi
B′i(βi)

∂βi
∂w̃j

.(4.44)

Substituting (4.43) and (4.44) into (4.39) then rearranging yields

(4.45)
∂r

(u)
i

∂w̃j
=

2

θ2
i βi

∂βi
∂w̃j

{
θ2
i∆i −

θ2
i βir

(u)
i w̃j + σ4

j

βiw̃j − σ2
j

}
,
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where the following term is independent of j:

(4.46) ∆i :=
1

2

A(βi)

B′i(βi)

{
A′(βi)

A(βi)
− B′′i (βi)

B′i(βi)

}
.

Since βi > max`(w
2
`σ

2
` ) > 0 it follows that ∂βi/∂w̃j 6= 0, so (4.45) is zero exactly

when

(4.47) θ2
i∆i =

θ2
i βir

(u)
i w̃j + σ4

j

βiw̃j − σ2
j

.

Rearranging (4.7) and substituting (4.47) yields

0 = A(βi)− r(u)
i βiB

′
i(βi) = 1− c

L∑
`=1

p`(σ
4
` + θ2

i βir
(u)
i w̃`)

(βiw̃` − σ2
` )

2
(4.48)

= 1−∆icθ
2
i

L∑
`=1

p`
βiw̃` − σ2

`

= 1−∆i(1−Bi(βi)) = 1−∆i,

so ∆i = 1. Substituting into (4.47) and solving for w̃j yields

(4.49) w2
j =

1

w̃j
=

(1− r(u)
i )θ2

i βi
σ2
j (θ

2
i + σ2

j )
=

κi
σ2
j (θ

2
i + σ2

j )
,

where the constant κi := (1− r(u)
i )θ2

i βi is: a) independent of j, b) parameterizes the

ray of critical points in P∅, and c) can be chosen freely, e.g., as unity yielding (4.36).

Solving (4.49) for βiw̃j, substituting into (4.5), and rearranging yields that the corre-

sponding r
(u)
i is a root of R

(u)
i in (4.37). Since R

(u)
i (x) increases from negative infinity

to one as x increases from −min`(σ
2
` )/θ

2
i to one, it has exactly one real root in that

domain. In particular, this root is the largest real root since R
(u)
i (x) ≥ 1 for x ≥ 1.

Furthermore, r
(u)
i increases continuously to one as c increases to infinity, so r

(u)
i is

the largest real root.

Likewise, the critical points of other partitions PL are given by setting the positive

weights proportional to (4.36) with the corresponding r
(u)
i given by the largest real

root of

(4.50) R
(u)
i,L(x) := 1− cθ2

i

∑
`/∈L

p`
σ2
`

1− x
σ2
`/θ

2
i + x

.

For L1 ⊂ L2 a proper subset, the largest real root of R
(u)
i,L1

is greater than that of

R
(u)
i,L2

since R
(u)
i,L1

(x) < R
(u)
i,L2

(x) for any x ∈ (−min`(σ
2
` )/θ

2
i , 1). As a result, r

(u)
i is

maximized in P∅.



89

0 1/4 1/2 3/4 1

0.75

0.8

0.85

0.9
unif inv inv2

opt

w2
1 = 1− w2

2

r(u
)

i

(a) p1 = 10%, p2 = 90%.
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(b) p1 = p2 = 50%.

Figure 4.3: Asymptotic component recovery (4.7) for c = 150 samples per dimension,
underlying amplitude θ2

i = 1, and noise variances σ2
1 = 1 and σ2

2 = 5.75,
as the weight w2

1 = 1 − w2
2 for the cleaner samples sweeps from zero to

one. At the extremes only noiser samples are used (w2
1 = 0) or only

cleaner samples are used (w2
1 = 1). Vertical lines indicate which weights

correspond to unweighted PCA (unif), inverse noise variance weights
(inv), square inverse noise variance weights (inv2), and optimal weights
(opt) from (4.36). Theorem 4.3 quantifies the benefit of combining in
(a), and the near optimality of using only cleaner data in (b).

4.6 Suboptimal weighting

Theorem 4.3 provides a way to not only find optimal weights, but to also quantify

how suboptimal other weights are. Suppose there are c = 150 samples per dimension,

the underlying amplitude is θ2
i = 1 and p1 = 10% of samples have noise variance

σ2
1 = 1 with the remaining p2 = 90% having noise variance σ2

2 = 5.75. Figure 4.3a

shows the asymptotic component recovery (4.7) as the weight w2
1 given to the cleaner

samples increases, with the weight for the noisier samples set as w2
2 = 1 − w2

1; this

sweep covers all possible weights since the components depend on only the relative

weights as discussed in Remark 4.5. In this case, excluding either set of samples is

significantly suboptimal. Using the noisier data alone (w2
1 = 0) achieves r

(u)
i ≈ 0.72,

using the cleaner data alone (w2
1 = 1) achieves r

(u)
i ≈ 0.88, and optimal weighting

achieves r
(u)
i ≈ 0.91. Inverse noise variance weights achieve r

(u)
i ≈ 0.88 and are

similar to using only the cleaner data. The optimal weights here are closer to square

inverse noise variance.

Now suppose the proportions are p1 = p2 = 50% with all other parameters the

same. Figure 4.3b shows the asymptotic component recovery (4.7). In this case,

using only the cleaner data, using inverse noise variance weights, or using square

inverse noise variance weights are all nearly optimal; these choices and the optimal

weighting all have recovery r
(u)
i ≈ 0.97. Observe that all the indicated weights are



90

0 1 2 3 4
1
4

8

12

16

c

θ2 i

(a) Unweighted PCA.
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Figure 4.4: Asymptotic component recovery (4.7) as a function of the number of sam-
ples per dimension c and the underlying amplitude θ2

i , where p1 = 20%
of samples have noise variance σ2

1 = 1, and the remaining p2 = 80% have
noise variance σ2

2 = 10. Contours are shown in black, and the contours
for optimal weights (c) are overlaid as light blue dashed lines in (a) and
(b). Inverse noise variance and optimal weights significantly improve
PCA performance, with optimal weights providing greater improvement
for small amplitudes.

the same as those in (a) since none depend on proportions. However, the recovery

depends on weights in a dramatically different way. The cleaner data is sufficiently

abundant in this setting to achieve great recovery, and the noisy data add little.

Using suboptimal weights is sometimes convenient. For example, (square) in-

verse noise variance weights can be applied without estimating θ2
i . Dropping noisier

samples can reduce computational or administrative burden. For some applications,

these suboptimal weights may perform sufficiently well; Theorem 4.3 enables quan-

titative reasoning about the trade-offs.

4.7 Impact of model parameters

Theorem 4.3 also provides new insight into the ways weighting changes the per-

formance of PCA with respect to the model parameters: sample-to-dimension ratio c,

amplitudes θ2
1, . . . , θ

2
k, proportions p1, . . . , pL and noise variances σ2

1, . . . , σ
2
L. This sec-

tion compares the impact on: a) unweighted PCA, b) inverse noise variance weighted

PCA, and c) optimally weighted PCA. We illustrate the phenomena with two noise

variances for simplicity; the same insights apply more broadly. See also Section 3.3

for related discussion regarding unweighted PCA.

4.7.1 Impact of sample-to-dimension ratio c and amplitude θ2
i

Suppose that p1 = 20% of samples have noise variance σ2
1 = 1, and the remaining

p2 = 80% have noise variance σ2
2 = 10. Figure 4.4 shows the asymptotic compo-
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Figure 4.5: Asymptotic component recovery (4.7) as a function of the proportion p2

of samples corrupted by noise with a large variance σ2
2 = 10 while the

remaining p1 = 1−p2 samples have noise variance σ2
1 = 1. There are c =

75 samples per dimension and the underlying amplitude is θ2
i = 1. Inverse

noise variance weighted PCA is more robust to such contaminations than
unweighted PCA, and optimally weighted PCA is even more robust.

nent recovery (4.7) as the samples per dimension c and the underlying amplitude

θ2
i vary. Decreasing the amplitude degrades recovery, and the lost performance can

be regained by increasing the number of samples per dimension. Both inverse noise

variance and optimal weights significantly outperform unweighted PCA, with op-

timal weights providing more improvement for small underlying amplitudes. Each

contour for inverse noise variance weights is defined by (4.11) in Corollary 4.6, and

each contour for optimal weights is defined by (4.37) in Theorem 4.10.

4.7.2 Impact of proportions p1, . . . , pL

Suppose there are c = 75 samples per dimension, the underlying amplitude is

θ2
i = 1, and contaminated samples with noise variance σ2

2 = 10 occur in proportion

p2 while the remaining p1 = 1−p2 proportion of samples have noise variance σ2
1 = 1.

Figure 4.5 shows the asymptotic component recovery (4.7) as the contamination

proportion p2 increases. Unweighted PCA is not robust to such contamination, but

inverse noise variance weights achieve good recovery for even significant amounts of

contamination. Optimal weights are even more robust at extreme levels of contami-

nation, since they more aggressively downweight noisier samples.

4.7.3 Impact of noise variances σ2
1, . . . , σ

2
L

Suppose p1 = 70% of samples have noise variance σ2
1, p2 = 30% have noise

variance σ2
2, and there are c = 10 samples per dimension with underlying amplitude

θ2
i = 1. Figure 4.6 shows the asymptotic component recovery (4.7) as σ2

1 and σ2
2

vary. In general, performance degrades as noise variances increase. As discussed

in Section 3.3.3, a large noise variance can dominate unweighted PCA performance
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Figure 4.6: Asymptotic component recovery (4.7) as a function of noise variances σ2
1

and σ2
2 appearing in proportions p1 = 70% and p2 = 30%. There are

c = 10 samples per dimension and the underlying amplitude is θ2
i = 1.

Contours are shown in black, and the contours for optimal weights (c) are
overlaid as light blue dashed lines in (a) and (b). While unweighted PCA
is most sensitive to the largest noise variance, inverse noise variance and
optimal weights are most sensitive to the smallest noise variance, with
optimal weights providing more improvement for large heteroscedasticity.

even when it occurs in a small proportion of samples; unweighted PCA is not robust

to gross errors, i.e., outliers. In Fig. 4.6a, the contours show that decreasing σ2
1 does

not significantly improve performance when σ2
2 is large.

In contrast, weighted PCA performance depends more on the smallest noise vari-

ance for both inverse noise variance weights and optimal weights since both types

of weights give cleaner samples more influence. In Figs. 4.6b and 4.6c, the contours

show that increasing σ2
1 does not significantly degrade performance when σ2

2 is small

and vice versa for small σ2
1. In particular, each contour in Fig. 4.6b is defined by

having equal average inverse noise variance σ̄−2 := p1/σ
2
1 + · · · + pL/σ

2
L; see Corol-

lary 4.6. Similarly, each contour in Fig. 4.6c is defined by (4.37) in Theorem 4.10. In

both cases, as a noise variance grows to infinity, its impact diminishes and the other

noise variances determine the resulting performance. For optimal weights, this limit-

ing performance matches that of excluding the noisiest data. Inverse noise variance

weights, however, achieve worse performance in this limit as shown by the overlaid

contours; excluding the noisiest data is better. Since inverse noise variance weights

always scale samples to have unit variance noise, the noisiest samples remain in the

weighted PCA even though their signal to noise ratio diminishes to zero as their

noise variance grows to infinity. Optimal weights are more aggressive and do remove

the noisiest samples in this limit.

A surprising finding of Section 3.3.3 was that adding noise sometimes improves

the performance of unweighted PCA. The same is not true for inverse noise variance
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Figure 4.7: Asymptotic component recovery (4.7) as c2 samples per dimension with
noise variance σ2

2 are added to c1 = 10 samples per dimension having
noise variance σ2

1 = 1. The underlying amplitude is θ2
i = 1. Includ-

ing noisier samples can degrade the performance of unweighted PCA
or inverse noise variance weights, but optimally weighted PCA always
improves when given more data.

or optimal weights. Adding any noise increases σ̄2, degrading the performance for

inverse noise variance weights. Likewise, adding noise increases the function R
(u)
i

in (4.37), decreasing its largest root and degrading the performance for optimal

weights.

4.7.4 Impact of including noisier data

Consider adding c2 samples per dimension with noise variance σ2
2 to a dataset

containing c1 = 10 samples per dimension with noise variance σ2
1 = 1, all with

underlying amplitude θ2
i = 1. The combined dataset has c = c1 + c2 samples per

dimension with noise variances σ2
1 and σ2

2 occurring with proportions p1 = c1/c and

p2 = c2/c. Figure 4.7 shows the asymptotic component recovery (4.7) for various

noise variances σ2
2 as a function of the amount of samples c2. When c2 = 0 only the

original data are used; horizontal green lines indicate this baseline recovery.

As discussed in Section 3.3.4, the additional samples improve unweighted PCA

performance when σ2
2 is small enough or when c2 is large enough to overcome the

additional noise. Including a small number of much noisier samples degrades perfor-

mance since unweighted PCA is not robust to them. Inverse noise variance weighted

PCA is more robust and outperforms unweighted PCA, but including very noisy
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samples again degrades performance unless c2 is large enough. Inverse noise variance

weights do not downweight the noisier samples enough, and sometimes excluding

noisier data is better.

With optimally weighted PCA, on the other hand, using more data always im-

proves performance. Since the weights are optimal, they are necessarily at least as

good as binary weights that exclude the noisier data. The optimal combination of

original and noisier data is no worse than either one alone, so including more samples

only helps. See Remark 4.14 for related discussion. This benefit is most dramati-

cally seen when the data being included are much noisier, and it would be interesting

to characterize the regimes where optimal weighting most significantly impacts this

aspect of weighted PCA performance.

4.8 Optimal sampling under budget constraints

This section uses Theorem 4.10 to consider optimizing a sampling strategy to

maximize the recovery of optimally weighted PCA. Specifically, consider acquiring

samples of varying quality, cost and availability under a budget. Given that the

samples will be optimally weighted, what combination of inexpensive noisy samples

and expensive clean samples maximizes asymptotic component recovery? What if we

already have previously collected data? The following theorem uses (4.37) to answer

these questions. Note that previously collected data are simply samples with limited

availability and zero acquisition cost.

Theorem 4.11 (Optimal sampling for a budget). Consider L sources of d-dimensional

samples with associated noise variances σ2
1, . . . , σ

2
L and corresponding costs τ1, . . . , τL.

Let n1, . . . , nL ≥ 0 be the numbers of samples collected. Suppose the total cost is con-

strained by the available budget T as

(4.51) n1τ1 + · · ·+ nLτL ≤ T,

and n1, . . . , nL are constrained by limited availability of samples as

(4.52) n` ≤ q`, ` ∈ {1, . . . , L},

where q` is the quantity available for source `. Then the sample-to-dimension ratios

c1, . . . , cL ≥ 0, defined for each ` ∈ {1, . . . , L} as c` := n`/d, are constrained to the

polyhedron in the nonnegative orthant defined by

c1τ1 + · · ·+ cLτL ≤ T/d, c` ≤ q`/d, ` ∈ {1, . . . , L},(4.53)
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Figure 4.8: Optimal sampling under a budget occurs at extreme points of the poly-
hedron in the nonnegative orthant defined by the budget and availability
constraints (4.53) shown in purple and blue, respectively. The total bud-
get per dimension is T/d = 4.5, and samples cost τ1 = 1 and τ2 = 4
with associated availabilities per dimension q1/d = 2 and q2/d = 1, i.e.,
samples from the first source are cheaper and more abundant. Contours
of r

(u)
i for optimal weights are overlaid for noise variances σ2

1 = 2 and
σ2

2 = 1 and an underlying amplitude θ2
i = 10. The best contour (green)

intersects the feasible polyhedron at c1 = 2, c2 = 5/8, where all available
cheaper, noisier samples are collected with the remaining budget used
for the higher quality samples.

and the asymptotic component recovery (4.37) with optimal weights is maximized

with respect to c1, . . . , cL at an extreme point of the polyhedron (4.53). Further-

more, all maximizers occur at points where increasing any one of c1, . . . , cL would

violate (4.53), i.e., at points where the budget and availability are fully utilized.

Remark 4.12 (Additional budget constraints). Theorem 4.11 considers a single bud-

get constraint (4.51) for simplicity, but the same result holds with multiple linear

constraints. For example, one constraint may pertain to the time needed for acquir-

ing samples and another could pertain to the money needed.

Remark 4.13 (Unlimited availability). Theorem 4.11 assumes that all sources have a

limited availability of samples q` for simplicity, but the same result holds as long as

all sources have either nonzero cost, limited availability or both. If a source has both

no cost and unlimited availability, asymptotic component recovery is maximized by

acquiring increasingly many of its samples.

Remark 4.14 (Samples with no cost). An immediate consequence of Theorem 4.11 is

that any samples with no cost, e.g., previously collected data, should always be in-

cluded when using optimal weights. Doing so is, perhaps surprisingly, not always best

when using unweighted or inverse noise variance weighted PCA. As demonstrated

in Section 4.7.4, including noisier samples can degrade performance for suboptimal

weights.

To illustrate Theorem 4.11, suppose that samples with noise variance σ2
1 = 2 cost

τ1 = 1 and have availability per dimension q1/d = 2, and samples with noise variance
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σ2
2 = 1 cost τ2 = 4 and have availability per dimension q2/d = 1, where the overall

budget per dimension is T/d = 4.5. Namely, the first source of samples is twice as

noisy but also a quarter the cost and twice as abundant. What combination of sam-

pling rates c1 and c2 maximizes recovery by optimally weighted PCA of an underlying

component with associated amplitude θ2
i = 10? As predicted by Theorem 4.11, the

maximum in Fig. 4.8 occurs at an extreme point of the polyhedron in the nonneg-

ative orthant defined by (4.53). Furthermore, it occurs at an extreme point where

increasing either c1 or c2 would violate the constraints, i.e., at c1 = 2, c2 = 5/8. The

other candidate extreme point is c1 = 1/2, c2 = 1, but r
(u)
i is smaller there. In words,

the optimal choice is to collect all available cheaper, noisier samples then spend the

remaining budget on the more costly, higher quality samples.

The proof of Theorem 4.11 relies on the following lemma that generalizes the

optimality of extreme points in linear programs (see, e.g., [24, Theorem 2.7]) to

nonlinear objective functions for which each level set is a flat. A flat here refers

to the solution set of an (underdetermined) linear system of equations, polyhedron

means a finite intersection of half-spaces, and an extreme point of a set is a point

that is not a convex combination of any other points in the set; see [24, Chapter 2]

for further discussion and properties. We prove Lemma 4.15 in Section 4.11.3.

Lemma 4.15 (Optimality of extreme points). Let P ⊂ Rn be a polyhedron with at

least one extreme point, and let f : P → R be a continuous function such that each

level set is a flat. If there exists a point in P that maximizes f , then there exists an

extreme point of P that maximizes f .

Proof of Theorem 4.11. Observe first that c = c1 + · · · + cL and p` = c`/c for each

` ∈ {1, . . . , L}, so rewriting (4.37) yields that r
(u)
i is the largest real value that

satisfies

(4.54) 0 = R
(u)
i (r

(u)
i ) = 1−

L∑
`=1

c`
θ2
i

σ2
`

1− r(u)
i

σ2
`/θ

2
i + r

(u)
i

,

when the weights are set optimally. Thus, r
(u)
i is a continuous function of c1, . . . , cL

over the domain c1, . . . , cL ≥ 0 with level sets that are affine hyperplanes. The

constraint set P defined by c1, . . . , cL ≥ 0 and (4.53) is a bounded polyhedron, so

contains an extreme point as well as a maximizer of r
(u)
i . Thus, Lemma 4.15 implies

that an extreme point of P maximizes r
(u)
i .

The final statement of the theorem follows by observing that the right hand side

of (4.54) decreases when any one of c1, . . . , cL increases, increasing the resulting r
(u)
i .

Namely, r
(u)
i with optimal weighting improves when any of c1, . . . , cL increases. As a

result, any point where c1, . . . , cL could be increased without violating (4.53) cannot

be a maximizer.
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Figure 4.9: Simulated component recoveries |〈ûi, ui〉|2 for data generated according
to the model (4.3) with c = 1 sample per dimension, underlying am-
plitudes θ2

1 = 25 and θ2
2 = 16, and p1 = 20% of samples having noise

variance σ2
1 = 1 with the remaining p2 = 80% of samples having noise

variance σ2
2 = 4. Weights are set as w2

1 = (1−λ)/p1 and w2
2 = λ/p2. Sim-

ulation mean (blue curve) and interquartile interval (light blue ribbon)
are shown with the asymptotic prediction (4.7) of Theorem 4.3 (orange
dashed curve). Vertical lines indicate uniform weights (unif) for un-
weighted PCA, inverse noise variance weights (inv) and optimal weights
(opt). Increasing the data size from (a) to (b) shrinks the interquartile
intervals, indicating concentration to the mean, which is itself converging
to the asymptotic recovery.

4.9 Numerical simulation

This section uses numerical simulations to demonstrate that the asymptotic re-

sults of Theorem 4.3 provide meaningful predictions for finitely many samples in

finitely many dimensions. Data are generated according to the model (4.3) with

c = 1 sample per dimension, underlying amplitudes θ2
1 = 25 and θ2

2 = 16, and

p1 = 20% of samples having noise variance σ2
1 = 1 with the remaining p2 = 80% of

samples having noise variance σ2
2 = 4. Underlying scores and unscaled noise entries

are both generated from the standard normal distribution, i.e., zij, εij ∼ N (0, 1),

and the weights are set to w2
1 = (1 − λ)/p1 and w2

2 = λ/p2 where λ is swept from

zero to one. Setting the weights in this way keeps the average weighting fixed at

p1w
2
1 + p2w

2
2 = 1 and places using only samples with noise variance σ2

1 at λ = 0 and

using only samples with noise variance σ2
2 at λ = 1. Unweighted PCA corresponds to

uniform weights and occurs when λ = p2, and inverse noise variance weights occurs

when λ = (p2/σ
2
2)/(p1/σ

2
1 + p2/σ

2
2).

We carry out two simulations: the first has n = 103 samples in d = 103 dimen-

sions, and the second increases these to n = 104 samples in d = 104 dimensions.



98

Both are repeated for 500 trials. Figure 4.9 plots the component recoveries |〈ûi, ui〉|2
for both simulations with the mean (blue curve) and interquartile interval (light

blue ribbon) shown with the asymptotic component recovery (4.7) of Theorem 4.3

(orange dashed curve). Vertical lines denote uniform weights for unweighted PCA,

inverse noise variance weights and optimal weights (4.36). Figure 4.9a illustrates

general agreement in behavior between the non-asymptotic recovery and its asymp-

totic prediction. Though the asymptotic recovery is larger than the interquartile

recovery, both have the same qualitative trend. In our experience, this phenomenon

occurs in general. Figure 4.9b shows what happens when the number of samples

and dimensions are increased. The interquartile intervals shrink dramatically, in-

dicating concentration of each component recovery (a random quantity) around its

mean. Furthermore, each mean component recovery closely matches the asymptotic

recovery, indicating convergence to the limit. Convergence also appears to be faster

for larger λ, i.e., where more weight is given to the larger set of samples. Charac-

terizing non-asymptotic component recoveries is an important and challenging area

of future work; the agreement here gives confidence that the asymptotic predictions

provide meaningful insights for finite dimensions. In this setting, for example, it was

significantly suboptimal to use unweighted PCA or to use only some of the samples,

and using inverse noise variance weights was close to optimal. Section 4.11.4 shows

analogous plots for the amplitudes θ̂2
i , weighted score recoveries |〈ẑi/

√
n, zi/

√
n〉W2|2

and products 〈ûi, ui〉〈ẑi/
√
n, zi/

√
n〉∗W2 .

Figure 4.10 plots the unweighted score recoveries |〈ẑi/
√
n, zi/

√
n〉|2. Though

Theorem 4.3 does not provide their asymptotic counterparts, one might expect that

they have similar behavior to the component recoveries. Better component recoveries

should generally lead to better score recoveries. Comparing with Fig. 4.9, the peak

occurs for slightly larger λ indicating better performance when slightly more weight

is given to the larger set of samples, but has an otherwise similar shape and trend,

as well as statistical concentration. Hence, the asymptotic component recovery (4.7)

of Theorem 4.3 also provides some insight into how well the underlying scores are

recovered. Note that normalizing the weights to fix the average p1w
2
1 +p2w

2
2 is critical

for these comparisons since, e.g., doubling the weights effectively halves the resulting

scores and hence halves the resulting unweighted recoveries |〈ẑi/
√
n, zi/

√
n〉|2.

4.10 Discussion

This chapter analyzes weighted PCA in the high-dimensional asymptotic regime

where both the number of samples n and ambient dimension d grow. We provide

expressions for the asymptotic recovery of underlying amplitudes θ2
i , components ui
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Figure 4.10: Simulated unweighted score recoveries |〈ẑi/
√
n, zi/

√
n〉|2 for data gen-

erated according to the model (4.3) with c = 1 sample per dimension,
underlying amplitudes θ2

1 = 25 and θ2
2 = 16, and p1 = 20% of samples

having noise variance σ2
1 = 1 with the remaining p2 = 80% of samples

having noise variance σ2
2 = 4. Weights are set as w2

1 = (1 − λ)/p1

and w2
2 = λ/p2. Simulation mean (blue curve) and interquartile in-

terval (light blue ribbon) are shown with vertical lines indicating uni-
form weights (unif) that correspond to unweighted PCA, inverse noise
variance weights (inv), and weights that optimize component recovery
(opt). The peak score recovery shown here occurs at a slightly larger λ
than the peak component recovery in Fig. 4.9, but they have otherwise
similar behavior.

and scores zi by the WPCA amplitudes θ̂2
i , components ûi and scores ẑi. These

expressions provide new insight into how weighting affects the performance of PCA,

and also led to weights that optimize the recovery of an underlying component. We

also use the analysis to investigate how to optimize sampling strategies under budget

constraints.

An interesting avenue of future work is further study of the benefits of optimal

weighting, e.g., to characterize when optimal weights provide significant benefit over

inverse noise variance or square inverse noise variance weights. A benefit of such

weights over the optimal choice is that they are independent of the underlying am-

plitude θ2
i . Understanding the range of performance between inverse noise variance

and square inverse noise variance weights might reveal simple choices for weights that

are near-optimal for all components. Section 4.7.4 also demonstrated that including

noisier data can degrade inverse noise variance weighted PCA, and it would be great

to check if the same is true for square inverse noise variance weighted PCA. Some

quick tests suggest that square inverse noise variance weights may in fact always

improve given more data; the analysis of this chapter provides tools to answer this

question more thoroughly.
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Another interesting direction is to estimate the underlying amplitudes from an

initial PCA of the data, e.g., using (4.4) in Theorem 4.3. Likewise, estimating noise

variances could aid many important applications. The normalized squared norm

‖yi‖2
2/d of any single sample should concentrate around its noise variance in high

dimensions since the signal component has asymptotically zero relative energy, so

this is a reasonable candidate for estimating noise variances. Grouping samples

into clusters of similar noise variances could also be used to improve the estimates,

though this clustering can become challenging if the number of groups L grows

with the number of samples n. Incorporating spectrum estimation methods such as

[120, 141] is another promising approach, and one can further exploit knowledge of

which samples share a noise variance by considering the spectrums of subsets of data.

The noise spectrum might be isolated by dropping the first few singular values or by

permuting the data as done in parallel analysis [57]; alternating between estimating

components with weighted PCA and estimating noise variances can help mitigate

interference from large principal components. Investigating these various approaches

is ongoing and future work. This chapter’s analysis can already quantify how much

the performance of weighted PCA degrades when weights deviate from optimal, so it

may help characterize the impact of errors in estimating the underlying amplitudes

and noise variances.

Alternative approaches to finding the optimal weights could also be interesting.

This chapter analyzes the asymptotic recovery first then optimizes that deterministic

quantity. Another approach could be to try to optimize the random non-asymptotic

recovery, perhaps by some kind of leave-one-out analysis, resulting in random weights

that we then attempt to show converge almost surely to deterministic weights.

Finally, extending the analysis here to more general forms of weighted PCA is

an important and nontrivial direction. In particular, one might consider weighting

that is across variables in addition to across samples, e.g., to handle heterogeneous

amounts of noise among the variables. Such analysis could also provide insight into

the common preprocessing step of standardizing the variables to have unit variance.

One might also consider a variant of (4.1) with a general weighted orthonormality in

place of W2. Developing and studying alternative ways to account for heteroscedas-

ticity in PCA is another avenue for future work. For example, one might consider a

probabilistic PCA [195] approach that accounts for heteroscedasticity; the nonuni-

form noise variances complicate the resulting optimization, making algorithm devel-

opment for this approach nontrivial and interesting. Generally speaking, considering

broader types of heterogeneity is an important area of future work. Increasingly, data

from multiple sources are combined to find latent phenomenon so investigating how

to fully utilize the available data is important both for furthering our understanding
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and for developing practical guidelines.

4.11 Supplementary material

4.11.1 Proof of Theorem 4.3

The model (4.3) for the data matrix Y := (y1, . . . , yn) ∈ Cd×n is the low-rank

perturbation of a random matrix

Y = (u1, . . . , uk)︸ ︷︷ ︸
U∈Cd×k

diag(θ1, . . . , θk)︸ ︷︷ ︸
Θ∈Rk×k

(z1, . . . , zk)︸ ︷︷ ︸
Z∈Cn×k

H + (ε1, . . . , εn)︸ ︷︷ ︸
E∈Cd×n

diag(η1, . . . , ηn)︸ ︷︷ ︸
H∈Rn×n

(4.55)

= UΘZH + EH,

The weighted PCA components û1, . . . , ûk, amplitudes θ̂1, . . . , θ̂k, and normalized

weighted scores Wẑ1/
√
n, . . . ,Wẑk/

√
n are, respectively, principal left singular vec-

tors, singular values, and right singular vectors of the normalized and weighted data

matrix

(4.56) Ỹ :=
1√
n

Y diag(ω2
1, . . . , ω

2
n)︸ ︷︷ ︸

W∈Rn×n

= UΘZ̃HW + Ẽ,

where Z̃ := Z/
√
n are normalized underlying scores and Ẽ := EHW/

√
n are nor-

malized and weighted noise.

Without loss of generality, suppose that the components U := (u1, . . . , uk) are

randomly generated according to the “orthonormalized model” of [22, Section 2.1];

since the noise vectors are unitarily invariant, this assumption is equivalent to con-

sidering a random rotation of data from a deterministic U as done in Section 3.5.1.

The normalized scores Z̃ = (z1/
√
n, . . . , zk/

√
n) are generated according to the “iid

model” of [22, Section 2.1], and E has iid entries with zero mean, unit variance

and bounded fourth moment. Finally, HW is a non-random diagonal nonnega-

tive definite matrix with bounded spectral norm and limiting eigenvalue distribution

p1δw2
1σ

2
1

+ · · ·+ pLδw2
Lσ

2
L
, where δx denotes the Dirac delta distribution at x.

A roadmap for the proof is as follows:

1. State some preliminary results on Ẽ that, taken with Lemma 4.9, provide a

foundation for the remainder of the analysis.

2. Extend [22, Theorem 2.9] to find asymptotic weighted PCA amplitudes.

3. Extend [22, Theorem 2.10] to find asymptotic component recovery and asymp-

totic weighted score recovery.
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4. Similar to Sections 3.5.2 to 3.5.6, find algebraic descriptions for the expressions

derived in Section 4.11.1.2 and Section 4.11.1.3. The original expressions are

challenging to evaluate and analyze.

Unless otherwise specified, limits are as n, d→∞. Lemma 4.9 was crucial to carrying

out the above extensions, and its proof (Section 4.11.2) is one of our main technical

contributions.

4.11.1.1 Preliminary results on Ẽ

The normalized and weighted noise matrix Ẽ fits within the random matrix model

studied in [14, Chapters 4, 6]. In particular, from [14, Theorem 4.3] and [14, Corollary

6.6] we conclude that the singular value distribution of Ẽ converges weakly almost

surely to a nonrandom compactly supported measure µẼ, and the largest singular

value of Ẽ converges almost surely to the supremum b of the support of µẼ.

It follows then that

(4.57)
1

d
tr ζ(ζ2I− ẼẼH)−1 a.s.−→ ϕ1(ζ) :=

∫
ζ

ζ2 − t2dµẼ(t),

where the convergence is uniform on {ζ ∈ C : <(ζ) > b + τ} for any τ > 0.

Furthermore, for any ζ ∈ C with <(ζ) > b,

(4.58)
∂

∂ζ

1

d
tr ζ(ζ2I− ẼẼH)−1 a.s.−→ ϕ′1(ζ).

We conclude the preliminaries by verifying some properties of ϕ1.

a) For any ζ > b, the integrand in (4.57) is positive and bounded away from zero

since the support of µẼ lies between zero and b.

Thus, ∀ζ>b ϕ1(ζ) > 0.

b) As |ζ| → ∞, the integrand in (4.57) goes to zero uniformly in t.

Thus, ϕ1(ζ)→ 0 as |ζ| → ∞.

c) The imaginary part of ϕ1(ζ) is

={ϕ1(ζ)} =

∫
=
( ζ

ζ2 − t2
)
dµẼ(t) = −=(ζ)

∫ |ζ|2 + t2

|ζ2 − t2|2dµẼ(t)︸ ︷︷ ︸
>0

.

Thus, ϕ1(ζ) ∈ R⇔ ζ ∈ R.

Lemma 4.9 establishes the analogous results for the weighted trace.
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4.11.1.2 Largest singular values

This section extends [22, Theorem 2.9] to find the limiting largest singular values

of the weighted matrix Ỹ in (4.56). As in [22, Section 4], lim inf θ̂i ≥ b almost surely

for each i ∈ {1, . . . , k} so we focus on singular values larger than b + τ where τ > 0

is arbitrary. The following lemma generalizes [22, Lemma 4.1] to account for the

weights.

Lemma 4.16. Let ζ > 0 be arbitrary but not a singular value of Ẽ. Then ζ is a

singular value of Ỹ = UΘZ̃HW + Ẽ if and only if the following matrix is singular:

M(ζ) :=

[
UHζ(ζ2I− ẼẼH)−1U UH(ζ2I− ẼẼH)−1ẼWZ̃

Z̃HWẼH(ζ2I− ẼẼH)−1U Z̃HζW(ζ2I− ẼHẼ)−1WZ̃

]

−
[

Θ−1

Θ−1

]
.(4.59)

Lemma 4.16 is proved in the same way as [22, Lemma 4.1] but with the weights

incorporated; for convenience, we state it here with some additional detail.

Proof of Lemma 4.16. By [100, Theorem 7.3.3], ζ is a singular value of Ỹ if and only

if it is a root of the characteristic polynomial

0 = det

{
ζI−

(
Ỹ

ỸH

)}
(4.60)

= det

{
ζI−

(
Ẽ

ẼH

)
−
(

U

WZ̃

)(
Θ

Θ

)(
U

WZ̃

)H}
(4.61)

= det

{
ζI−

(
Ẽ

ẼH

)}
det

(
Θ

Θ

)
det{−M(ζ)},(4.62)

where (4.61) is a convenient form of the matrix, and (4.62) follows from the deter-

minant identity

(4.63) det(A−BDC) = det(A) det(D) det(D−1 −CA−1B),

for invertible matrices A and D and the block matrix inverse [100, Equation (0.7.3.1)]

(4.64)

{
ζI−

(
Ẽ

ẼH

)}−1

=

{
ζ(ζ2I− ẼẼH)−1 (ζ2I− ẼẼH)−1Ẽ

ẼH(ζ2I− ẼẼH)−1 ζ(ζ2I− ẼHẼ)−1

}
.

Note that (4.64) is invertible because ζ is not a singular value of Ẽ. As a further

consequence, (4.62) is zero exactly when M(ζ) is singular.
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Applying Ascoli’s theorem, [22, Proposition A.2], (4.57) and Lemma 4.9 yields

(4.65) M(ζ)
a.s.−→ M̃(ζ) :=

(
ϕ1(ζ)Ik

ϕ2(ζ)Ik

)
−
(

Θ−1

Θ−1

)
,

where the convergence is uniform on {ζ ∈ C : <(ζ) > b + τ}. Finally, applying [22,

Lemma A.1] in the same way as [22, Section 4] yields

(4.66) θ̂2
i

a.s.−→

ρ2
i if θ2

i > θ̄2,

b2 otherwise,
=: r

(θ)
i

where D(ζ) := ϕ1(ζ)ϕ2(ζ) for ζ > b, ρi := D−1(1/θ2
i ), θ̄

2 := 1/D(b+), and f(b+) :=

limζ→b+ f(ζ) denotes a limit from above.

4.11.1.3 Recovery of singular vectors

This section extends [22, Theorem 2.10] to find the limiting recovery of singular

vectors. Suppose θi > θ̄. Then θ̂i
a.s.−→ ρi > b and so, almost surely, θ̂i > ‖Ẽ‖

eventually. Namely, θ̂i is almost surely eventually not a singular value of Ẽ. The

following lemma generalizes [22, Lemma 5.1] to account for the weights.

Lemma 4.17. Suppose θ̂i is not a singular value of Ẽ. Then

(4.67) M(θ̂i)

(
ΘZ̃HW2ẑi/

√
n

ΘUHûi

)
= 0,

and

(4.68) 1 = χ1 + χ2 + 2<(χ3),

where Γ := (θ̂2
i I− ẼẼH)−1 and

χ1 :=
k∑

j1,j2=1

θj1θj2

〈
ẑi√
n
,
zj1√
n

〉
W2

〈
ẑi√
n
,
zj2√
n

〉∗
W2

uHj2 θ̂
2
iΓ

2uj1 ,(4.69)

χ2 :=
k∑

j1,j2=1

θj1θj2〈ûi, uj1〉〈ûi, uj2〉∗z̃Hj2WẼHΓ2ẼWz̃j1 ,

χ3 :=
k∑

j1,j2=1

θj1θj2〈ûi, uj1〉
〈
ẑi√
n
,
zj2√
n

〉∗
W2

uHj2 θ̂iΓ
2ẼWz̃j1 .

Lemma 4.17 is proved in the same way as [22, Lemma 5.1] but with the weights

incorporated.
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Proof of Lemma 4.17. Let X̃ := UΘZ̃HW be the weighted and normalized underly-

ing data. Substituting (4.59) into (4.67) and factoring yields

M(θ̂i)

[
ΘZ̃HW2ẑi/

√
n

ΘUHûi

]
(4.70)

=

[
UH{(θ̂2

i I− ẼẼH)−1(θ̂iX̃Wẑi/
√
n+ ẼX̃Hûi)− ûi}

Z̃HW{(θ̂2
i I− ẼHẼ)−1(ẼHX̃Wẑi/

√
n+ θ̂iX̃

Hûi)−Wẑi/
√
n}

]
(4.71)

=

[
UH(ûi − ûi)

Z̃HW(Wẑi/
√
n−Wẑi/

√
n)

]
= 0(4.72)

where (4.71) uses the matrix identity ẼH(θ̂2
i I−ẼẼH)−1 = (θ̂2

i I−ẼHẼ)−1ẼH, and (4.72)

follows by substituting X̃ = Ỹ − Ẽ and using the singular vector identities

ỸWẑi/
√
n = θ̂iûi, ỸHûi = θ̂iWẑi/

√
n.(4.73)

To obtain (4.68), reuse the identity ûi = (θ̂2
i I− ẼẼH)−1(θ̂iX̃Wẑi/

√
n+ ẼX̃Hûi) used

to obtain (4.72) and expand as

1 = ûHi ûi(4.74)

=

(
θ̂iX̃W

ẑi√
n

+ ẼX̃Hûi

)H

(θ̂2
i I− ẼẼH)−2

(
θ̂iX̃W

ẑi√
n

+ ẼX̃Hûi

)
= χ1 + χ2 + 2<(χ3),

where the outer terms are

χ1 :=
ẑHi√
n

WX̃Hθ̂2
iΓ

2X̃W
ẑi√
n
, χ2 := ûHi X̃ẼHΓ2ẼX̃Hûi,(4.75)

and the cross term is

(4.76) χ3 :=
ẑHi√
n

WX̃Hθ̂iΓ
2ẼX̃Hûi.

Expanding X̃ = UΘZ̃HW = θ1u1(z1/
√
n)HW + · · ·+ θkuk(zk/

√
n)HW in the terms

(4.75)–(4.76) and simplifying yields (4.69).

Applying the convergence M(θ̂i)
a.s.−→ M̃(ρi) to (4.67) in Lemma 4.17 yields

(4.77)

(
ξ

δ

)
:= proj{ker M̃(ρi)}⊥

(
ΘZ̃HW2ẑi/

√
n

ΘUHûi

)
a.s.−→ 0.

Observe next that, similar to [22, Section 5],

(4.78) ker M̃(ρi) =

{(
s

t

)
∈ C2k :

tj = sj = 0 if θj 6= θi

tj = θiϕ1(ρi)sj if θj = θi

}
,
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so the projection entries are

(4.79)

(
ξj

δj

)
= θj

(
〈ẑi/
√
n, zj/

√
n〉W2

〈ûi, uj〉

)
,

for j such that θj 6= θi, and

(4.80)

(
ξj

δj

)
=

{
θiϕ1(ρi)

〈
ẑi√
n
,
zj√
n

〉
W2

− 〈ûi, uj〉
}

θi
θ2
iϕ

2
1(ρi) + 1

(
θiϕ1(ρi)

−1

)
,

for j such that θj = θi. Applying the convergence (4.77) to (4.79) yields

(4.81)
∑
j:θj 6=θi

|〈ûi, uj〉|2 +

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 0,

and applying the convergence (4.77) to (4.80) yields

(4.82)
∑
j:θj=θi

∣∣∣∣∣
√
ϕ1(ρi)

ϕ2(ρi)

〈
ẑi√
n
,
zj√
n

〉
W2

− 〈ûi, uj〉
∣∣∣∣∣
2

a.s.−→ 0,

recalling that D(ρi) = ϕ1(ρi)ϕ2(ρi) = 1/θ2
i .

Turning now to (4.68) in Lemma 4.17, note that applying [22, Proposition A.2]

yields the convergence χ3
a.s.−→ 0 as well as the almost sure convergence to zero of the

summands in (4.69) for χ1 and χ2 for which j1 6= j2. By (4.81), the summands for

which θj1 , θj2 6= θi also converge almost surely to zero. Furthermore, by (4.58) and

Lemma 4.9

1

d
tr θ̂2

iΓ
2 =

1

d
tr ζ2(ζ2I− ẼẼH)−2

∣∣∣
ζ=θ̂i

(4.83)

=

(
1

2ζ
− 1

2

∂

∂ζ

){
1

d
tr ζ(ζ2I− ẼẼH)−1

}∣∣∣∣∣
ζ=θ̂i

a.s.−→ ϕ1(ρi)

2ρi
− ϕ′1(ρi)

2
,

1

n
tr WẼHΓ2ẼW =

1

n
tr WẼH(ζ2I− ẼẼH)−2ẼW

∣∣∣
ζ=θ̂i

(4.84)

=

(
− 1

2ζ
− 1

2

∂

∂ζ

){
1

n
tr ζW(ζ2I− ẼHẼ)−1W

}∣∣∣∣∣
ζ=θ̂i

a.s.−→ −ϕ2(ρi)

2ρi
− ϕ′2(ρi)

2
,



107

so applying [22, Proposition A.2] once more we have

χ1 = θ2
i

{ϕ1(ρi)

2ρi
− ϕ′1(ρi)

2

} ∑
j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 + o(1),(4.85)

χ2 = θ2
i

{
− ϕ2(ρi)

2ρi
− ϕ′2(ρi)

2

} ∑
j:θj=θi

|〈ûi, uj〉|2 + o(1),

where o(1) denotes a sequence that almost surely converges to zero. Combining

(4.68), (4.82) and (4.85) yields

1 = −θ
2
iD
′(ρi)

2ϕ1(ρi)

∑
j:θj=θi

|〈ûi, uj〉|2 + o(1),(4.86)

1 = −θ
2
iD
′(ρi)

2ϕ2(ρi)

∑
j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 + o(1),

where we use the fact that D′(ζ) = ϕ′1(ζ)ϕ2(ζ) + ϕ1(ζ)ϕ′2(ζ). Solving (4.86) for the

recoveries and recalling (4.81) yields∑
j:θj=θi

|〈ûi, uj〉|2 a.s.−→ −2ϕ1(ρi)

θ2
iD
′(ρi)

=: r
(u)
i ,(4.87)

∑
j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ −2ϕ2(ρi)

θ2
iD
′(ρi)

=: r
(z)
i ,(4.88)

∑
j:θj 6=θi

|〈ûi, uj〉|2,
∑
j:θj 6=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
W2

∣∣∣∣2 a.s.−→ 0.(4.89)

Furthermore, combining (4.82) and (4.86) yields

(4.90)
∑
j:θj=θi

〈ûi, uj〉
〈
ẑi√
n
,
zj√
n

〉∗
W2

a.s.−→ −2ϕ1(ρi)

θ2
iD
′(ρi)

√
ϕ2(ρi)

ϕ1(ρi)
=

√
r

(u)
i r

(z)
i .

4.11.1.4 Algebraic description

This section concludes the proof by finding algebraic descriptions of the almost

sure limits (4.66), (4.87)–(4.88) and (4.90). As in Section 3.5.2, we change variables

to

(4.91) ψ(ζ) :=
cζ

ϕ1(ζ)
=

{
1

c

∫
dµẼ(t)

ζ2 − t2
}−1

,

and observe that analogously to Section 3.5.3 ψ has the properties:
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a) 0 = Q(ψ(ζ), ζ) for all ζ > b where

(4.92) Q(s, ζ) :=
cζ2

s2
+
c− 1

s
− c

L∑
`=1

p`
s− w2

`σ
2
`

,

and the inverse function is given by

(4.93) ψ−1(x) =

√√√√x

c

(
1 + c

L∑
`=1

p`w2
`σ

2
`

x− w2
`σ

2
`

)
=

√
xC(x)

c
,

where C is defined in (4.6);

b) max`(w
2
`σ

2
` ) < ψ(ζ) < cζ2;

c) 0 < ψ(b+) <∞ and ψ′(b+) =∞.

Expressing D in terms of ψ yields

(4.94) D(ζ) = ϕ1(ζ)
L∑
`=1

p`w
2
`

ζ − w2
`σ

2
`ϕ1(ζ)/c

= c
L∑
`=1

p`w
2
`

ψ(ζ)− w2
`σ

2
`

=
1−Bi(ψ(ζ))

θ2
i

,

and

(4.95)
D′(ζ)

ζ
= −cψ

′(ζ)

ζ

L∑
`=1

p`w
2
`

{ψ(ζ)− w2
`σ

2
`}2

= −2c

θ2
i

B′i(ψ(ζ))

A(ψ(ζ))
,

where A and Bi are defined in (4.5) and the second equality in (4.95) follows analo-

gously to Section 3.5.4 by deriving the identity

(4.96) ψ′(ζ) =
2cζ

A(ψ(ζ))
,

from Property (a) then simplifying.

Rearranging (4.96) then applying Property (c) yields

(4.97) A(ψ(b+)) =
2cb

ψ′(b+)
= 0,

so ψ(b+) is a root of A. If θ2
i > θ̄2, then ρi = D−1(1/θ2

i ) and rearranging (4.94) yields

(4.98) Bi(ψ(ρi)) = 1− θ2
iD(ρi) = 0,

so ψ(ρi) is a root of Bi. Recall that ψ(b+), ψ(ρi) ≥ max`(w
2
`σ

2
` ) by Property (b), and

observe that both A(x) and Bi(x) monotonically increase for x > max`(w
2
`σ

2
` ) from

negative infinity to one. Thus, each has exactly one real root larger than max`(w
2
`σ

2
` ),
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i.e., its largest real root, and so ψ(b+) = α and ψ(ρi) = βi when θ2
i > θ̄2, where α

and βi are the largest real roots of A and Bi, respectively.

Even though ψ(ρi) is defined only when θ2
i > θ̄2, the largest real roots α and β

are always defined and always larger than max`(w
2
`σ

2
` ). Thus

θ2
i > θ̄2 =

1

D(b+)
=

θ2
i

1−Bi(ψ(b+))
⇔ Bi(α) < 0(4.99)

⇔ α < βi ⇔ A(βi) > 0

where the final equivalence holds because A(x) and Bi(x) are both strictly increasing

functions for x > max`(w
2
`σ

2
` ) and A(α) = Bi(βi) = 0.

Using the inverse function (4.93) in Property (a) and (4.99), write (4.66) as

(4.100) r
(θ)
i =

{ψ−1(ψ(ρi))}2 if θ2
i > θ̄2,

{ψ−1(ψ(b))}2 otherwise,
=

βiC(βi)/c if α < βi,

αC(α)/c otherwise.

Using max to be succinct yields (4.4). Likewise, rewrite (4.87) and (4.88) using ψ

and (4.95), obtaining

r
(u)
i =

−2ϕ1(ρi)

θ2
iD
′(ρi)

=
1

ψ(ρi)

A(ψ(ρi))

B′i(ψ(ρi))
=

1

βi

A(βi)

B′i(βi)
,(4.101)

r
(z)
i =

−2ϕ2(ρi)

θ2
iD
′(ρi)

=
ϕ2(ρi)

cρi

A(ψ(ρi))

B′i(ψ(ρi))
=
ϕ1(ρi)ϕ2(ρi)

cρiϕ1(ρi)

A(ψ(ρi))

B′i(ψ(ρi))
(4.102)

=
ψ(ρi)

c2θ2
i ρ

2
i

A(ψ(ρi))

B′i(ψ(ρi))
=

1

cθ2
iC(βi)

A(ψ(ρi))

B′i(ψ(ρi))
,

and combine with (4.89) to obtain (4.7)–(4.8). Taking the geometric mean likewise

yields (4.9) as an algebraic description of the almost sure limit (4.90).

4.11.2 Proof of Lemma 4.9

Unless otherwise specified, limits are as n, d→∞. Consider the expansion

(4.103)
1

n
tr ζW(ζ2I− ẼHẼ)−1W =

L∑
`=1

n`
n
w2
`

{
1

n`
tr ∆`(ζ)

}

where ∆`(ζ) ∈ Cn`×n` is the `th diagonal block of ζ(ζ2I − ẼHẼ)−1. The proof

proceeds as follows:

1. Prove that for any fixed ζ = r + ıs ∈ C with r, s 6= 0,

(4.104)
1

n`
tr ∆`(ζ)

a.s.−→ E
1

n`
tr ∆`(ζ).



110

2. Prove that for any fixed ζ = r + ıs ∈ C with r, s 6= 0,

(4.105) E
1

n`
tr ∆`(ζ)→ 1

ζ − w2
`σ

2
`ϕ1(ζ)/c

.

3. Combine (4.104) and (4.105) to obtain pointwise almost sure convergence then

extend to the almost sure uniform convergence (4.25) and the convergence of

the derivative (4.27) in Lemma 4.9.

4. Prove that ϕ2 has the properties (4.26) in Lemma 4.9.

(4.11.2.1)–(4.11.2.3) follows the approach of the analogous proofs in [14, Section

2.3.2]. In (4.11.2.1) and (4.11.2.2), we let ` = 1 to simplify notation; the results hold

for all ` in the same way.

4.11.2.1 Pointwise almost sure convergence to the mean

Let ζ = r + ıs ∈ C with r, s 6= 0, and consider the expansion [14, Section 2.3.2]

(4.106)
1

n1

tr ∆1(ζ)− E
1

n1

tr ∆1(ζ) =
n∑
i=1

(Ei−1 − Ei)
{ 1

n1

tr ∆1(ζ)
}

︸ ︷︷ ︸
=:γi

,

where Ei denotes expectation over the first i columns of Ẽ. Note that

tr ∆1(ζ) = ζ tr Ω(ζ2I− ẼHẼ)−1ΩH

= ζ
[
δi{(ζ2I− ẼHẼ)−1}ii + tr Ω−i{(ζ2I− ẼHẼ)−1}−iiΩH

−i

]
(4.107)

for each i ∈ {1, . . . , n} where

• Ω := [In1×n1 0n1×(n−n1)] ∈ {0, 1}n1×n is used to extract the first n1×n1 diagonal

block of (ζ2I− ẼHẼ)−1,

• δi is one when i ∈ [1, n1] and zero otherwise,

• {(ζ2I− ẼHẼ)−1}ii is the ith diagonal entry of (ζ2I− ẼHẼ)−1,

• Ω−i ∈ {0, 1}n1×(n−1) is Ω with the ith column removed, and

• {(ζ2I− ẼHẼ)−1}−ii is (ζ2I− ẼHẼ)−1 with both the ith column and the ith row

removed.
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Taking block matrix inverses [100, Equation (0.7.3.1)] yields

(4.108) {(ζ2I− ẼHẼ)−1}ii =
1

ζ2 − ε̃Hi ε̃i − ε̃Hi Ẽ−i(ζ2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i

,

and with the Sherman-Morrison-Woodbury formula [100, Equation (0.7.4.1)]

{(ζ2I− ẼHẼ)−1}−ii = (ζ2I− ẼH
−iẼ−i)

−1

+
(ζ2I− ẼH

−iẼ−i)
−1ẼH

−iε̃iε̃
H
i Ẽ−i(ζ2I− ẼH

−iẼ−i)
−1

ζ2 − ε̃Hi ε̃i − ε̃Hi Ẽ−i(ζ2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i

,(4.109)

where ε̃i is the ith column of Ẽ and Ẽ−i is Ẽ with the ith column removed. As a

result,

(4.110) tr ∆1(ζ) = ζ
{

tr Ω−i(ζ
2I− ẼH

−iẼ−i)
−1ΩH

−i + γ̃i

}
,

where

(4.111) γ̃i :=
δi + ε̃Hi Ẽ−i(ζ2I− ẼH

−iẼ−i)
−1ΩH

−iΩ−i(ζ
2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i

ζ2 − ε̃Hi ε̃i − ε̃Hi Ẽ−i(ζ2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i

.

Since tr Ω−i(ζ2I− ẼH
−iẼ−i)

−1ΩH
−i does not depend on ε̃i,

(Ei−1 − Ei)
{

tr Ω−i(ζ
2I− ẼH

−iẼ−i)
−1ΩH

−i
}

= 0,

and so

(4.112) γi = (Ei−1 − Ei)
{ 1

n1

tr ∆1(ζ)
}

=
ζ

n1

(Ei−1 − Ei)(γ̃i).

We now bound the magnitude of γ̃i by observing first that

|ε̃Hi Ẽ−i(ζ
2I− ẼH

−iẼ−i)
−1ΩH

−iΩ−i(ζ
2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i|(4.113)

≤ ‖{(ζ2I− ẼH
−iẼ−i)

H}−1ẼH
−iε̃i‖2‖(ζ2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i‖2

= ‖(ζ2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i‖2

2,

where the inequality follows by Cauchy-Schwarz and ‖ΩH
−iΩ−i‖ = 1, and the equality

holds because ζ2I− ẼH
−iẼ−i is a normal matrix even though it is not Hermitian. On

the other hand∣∣ζ2 − ε̃Hi ε̃i − ε̃Hi Ẽ−i(ζ
2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i
∣∣(4.114)

≥
∣∣={ζ2 − ε̃Hi ε̃i − ε̃Hi Ẽ−i(ζ

2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i}

∣∣
=
∣∣=(ζ2) + =(ζ2)‖(ζ2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i‖2
2

∣∣
= |=(ζ2)|

{
1 + ‖(ζ2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i‖2
2

}
,
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where the first equality follows by applying [14, Equation (A.1.11)] to the term

(ζ2I− ẼH
−iẼ−i)

−1 to obtain

={ε̃Hi Ẽ−i(ζ
2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i} = −=(ζ2)‖(ζ2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i‖2

2.

Applying (4.113) and (4.114) to (4.111), and observing that |δi| ≤ 1, yields

(4.115) |γ̃i| ≤
1 + ‖(ζ2I− ẼH

−iẼ−i)
−1ẼH

−iε̃i‖2
2

|=(ζ2)|
{

1 + ‖(ζ2I− ẼH
−iẼ−i)

−1ẼH
−iε̃i‖2

2

} =
1

|=(ζ2)| =
1

2|rs| .

As a result γ1, . . . , γn are bounded and form a complex martingale difference se-

quence, and applying the extended Burkholder inequality [14, Lemma 2.12] for the

fourth moment yields

E
∣∣∣∣ 1

n1

tr ∆1(ζ)− E
1

n1

tr ∆1(ζ)

∣∣∣∣4 = E
∣∣∣∣ n∑
i=1

γi

∣∣∣∣4(4.116)

≤ K4E
( n∑

i=1

|γi|2
)2

= K4
|ζ|4
n4

1

E
{ n∑

i=1

∣∣(Ei−1 − Ei)(γ̃i)
∣∣2}2

≤ K4
|ζ|4
n4

1

E
( n∑

i=1

1

|rs|2
)2

= K4
|ζ|4
|rs|4

n2

n4
1

,

where the final inequality follows from (4.115) and the fact that∣∣(Ei−1 − Ei)(γ̃i)
∣∣ ≤ |Ei−1(γ̃i)|+ |Ei(γ̃i)| ≤ Ei−1|γ̃i|+ Ei|γ̃i|.

Applying the Borel-Cantelli lemma [80, Example 14.14] and recalling that n1/n→ p1

yields (4.104).

4.11.2.2 Pointwise convergence of the mean

Let ζ = r + ıs ∈ C with r, s 6= 0, and note that

(4.117) E
1

n1

tr ∆1(ζ) =
1

n1

n1∑
i=1

E{ζ(ζ2I− ẼHẼ)−1}ii =
1

n1

n1∑
i=1

E

{
1

ζ − ε̃Hi (ζΓi)ε̃i

}
,

where Γi := (ζ2I− Ẽ−iẼH
−i)
−1 and the expression for {ζ(ζ2I− ẼHẼ)−1}ii comes from

applying the Sherman-Morrison-Woodbury formula [100, Equation (0.7.4.1)] to the

denominator in (4.108). Hence

(4.118) E
1

n1

tr ∆1(ζ)− 1

µ
=

1

n1

n1∑
i=1

E

(
1

µ− ξi
− 1

µ

)
=

1

n1

n1∑
i=1

E

{
ξi

µ(µ− ξi)

}
,
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where

µ := ζ − w2
1σ

2
1E

1

n
tr(ζΓ), ξi := ε̃Hi (ζΓi)ε̃i − w2

1σ
2
1E

1

n
tr(ζΓ),(4.119)

and Γ := (ζ2I− ẼẼH)−1. Now note that

(4.120)
ξi

µ(µ− ξi)
=

ξi
µ(µ− ξi)

(µ− ξi) + ξi
µ

=
ξi
µ2

+
ξ2
i

µ2(µ− ξi)
,

and so

(4.121)

∣∣∣∣∣E
{

ξi
µ(µ− ξi)

}∣∣∣∣∣ ≤ |E(ξi)|
|µ|2 + E

( |ξi|2
|µ|2|µ− ξi|

)
.

For any λ ∈ R,

(4.122)
ζ

ζ2 − λ =
ζ((ζ∗)2 − λ)

|ζ2 − λ|2 =
ζ∗|ζ|2 − ζλ
|ζ2 − λ|2 = r

|ζ|2 − λ
|ζ2 − λ|2 − ıs

|ζ|2 + λ

|ζ2 − λ|2 ,

and so

sign[={tr(ζΓ)}] = sign

[
d∑
j=1

=
{

ζ

ζ2 − λj(ẼẼH)

}]
(4.123)

= sign

[
d∑
j=1

{
− s |ζ|

2 + λj(ẼẼH)

|ζ2 − λj(ẼẼH)|2︸ ︷︷ ︸
>0

}]
= − sign(s),

where sign denotes the sign of its argument, λj denotes the jth eigenvalue of its

argument, and we use the fact that ẼẼH has nonnegative eigenvalues. Hence |µ| is

lower bounded as

(4.124) |µ| ≥
∣∣∣={ζ − w2

1σ
2
1E

1

n
tr(ζΓ)

}∣∣∣ =
∣∣∣s− w2

1σ
2
1E

1

n
={tr(ζΓ)}

∣∣∣ ≥ |s|.
Likewise, sign[={ε̃Hi (ζΓi)ε̃i}] = − sign(s) and |µ − ξi| ≥ |s| As a result, (4.121) is

further bounded as

(4.125)

∣∣∣∣∣E
{

ξi
µ(µ− ξi)

}∣∣∣∣∣ ≤ |E(ξi)|
|s|2 +

E|ξi|2
|s|3 =

|E(ξi)|
|s|2 +

|E(ξi)|2
|s|3 +

E
∣∣ξi − E(ξi)

∣∣2
|s|3 ,

so it remains to bound the mean and variance of ξi. Note that

(4.126) |E(ξi)| =
∣∣∣w2

1σ
2
1E

1

n
tr(ζΓi)− w2

1σ
2
1E

1

n
tr(ζΓ)

∣∣∣ ≤ w2
1σ

2
1

n
E| tr(ζΓi)− tr(ζΓ)|,

since ε̃i and Γi are independent and E(ε̃iε̃
H
i ) = (w2

1σ
2
1/n)I when i ∈ [1, n1]. Next,

observe that

(4.127) | tr(ζΓi)− tr(ζΓ)| = |ζ| |ε̃
H
i Γ2

i ε̃i|
|1− ε̃Hi Γiε̃i|

≤ |ζ|
2|rs| ,
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where the equality follows from applying the Sherman-Morrison-Woodbury formula

[100, Equation (0.7.4.1)] to Γ = (ζ2I − Ẽ−iẼH
−i − ε̃iε̃Hi )−1 then simplifying. The in-

equality follows in a similar way as in [14, Section 3.3.2, Step 1]. Substituting (4.127)

into (4.126) yields the bound on the mean:

(4.128) |E(ξi)| ≤
w2

1σ
2
1

n
E

(
|ζ|

2|rs|

)
=

1

n

w2
1σ

2
1|ζ|

2|rs| .

Now note that

E
∣∣ξi − E(ξi)

∣∣2 = E
∣∣ε̃Hi (ζΓi)ε̃i − w2

1σ
2
1E

1

n
tr(ζΓi)

∣∣2(4.129)

= E
∣∣∣ε̃Hi (ζΓi)ε̃i − w2

1σ
2
1

1

n
tr(ζΓi)

∣∣∣2 + w4
1σ

4
1E
∣∣∣ 1
n

tr(ζΓi)− E
1

n
tr(ζΓi)

∣∣∣2,
since Eε̃i{ε̃Hi (ζΓi)ε̃i} = w2

1σ
2
1(1/n) tr(ζΓi). Defining T := ζΓi and recalling that

ε̃i = (w1σ1/
√
n)εi, the first term in (4.129) is

w4
1σ

4
1

n2
E
∣∣εHi Tεi − tr T

∣∣2 =
w4

1σ
4
1

n2
E
∣∣∣∣ d∑
p,q=1

E∗piEqiTpq −
d∑
p=1

Tpp

∣∣∣∣2(4.130)

=
w4

1σ
4
1

n2
E
∣∣∣∣∑
p 6=q

E∗piEqiTpq +
d∑
p=1

Tpp(|Epi|2 − 1)

∣∣∣∣2

=
w4

1σ
4
1

n2

(
E
∣∣∣∣∑
p 6=q

E∗piEqiTpq

∣∣∣∣2 + E
∣∣∣∣ d∑
p=1

Tpp(|Epi|2 − 1)

∣∣∣∣2

+ 2<E
[(∑

p 6=q
E∗piEqiTpq

)∗{ d∑
p=1

Tpp(|Epi|2 − 1)

}])
.

Since the entries of E are independent and mean zero,

(4.131) E

[(∑
p 6=q

E∗piEqiTpq

)∗{ d∑
p=1

Tpp(|Epi|2 − 1)

}]
= 0,

so it remains to bound the other two terms in (4.130). Observe that

E
∣∣∣∣∑
p 6=q

E∗piEqiTpq

∣∣∣∣2 =
∑
p 6=q
j 6=k

E
(
EpiE

∗
qiT
∗
pqE

∗
jiEkiTjk

)
(4.132)

=
∑
p 6=q

E
(
EpiE

∗
qiT
∗
pqE

∗
piEqiTpq

)
+
∑
p6=q

E
(
EpiE

∗
qiT
∗
pqE

∗
qiEpiTqp

)
=
∑
p 6=q

E|Epi|2E|Eqi|2E|Tpq|2 +
∑
p6=q

E(Epi)
2E(E∗qi)

2E(T∗pqTqp),
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where the second equality is obtained by dropping terms in the sum with expectation

equal to zero, e.g., terms with p 6= q, j, k for which E(Epi) = 0 can be pulled out by

independence. Now note that∑
p 6=q

E(Epi)
2E(E∗qi)

2E(T∗pqTqp) ≤
∑
p 6=q

∣∣E(Epi)
2E(E∗qi)

2E(T∗pqTqp)
∣∣(4.133)

≤
∑
p6=q

E|Epi|2E|Eqi|2E|T∗pqTqp| =
∑
p 6=q

E|T∗pqTqp| ≤
∑
p 6=q

E|Tpq|2,

where the second inequality follows from Jensen’s inequality, the equality holds be-

cause E|Epi|2 = E|Eqi|2 = 1, and the final inequality follows from the arithmetic

mean geometric mean inequality as∑
p6=q

E|T∗pqTqp| =
∑
p 6=q

E
(
|Tpq||Tqp|

)
=
∑
p 6=q

E
(√
|Tpq|2|Tqp|2

)
≤
∑
p 6=q

E
( |Tpq|2 + |Tqp|2

2

)
=
∑
p 6=q

E|Tpq|2.

Combining (4.132) and (4.133), and recalling that E|Epi|2 = 1, yields

E
∣∣∣∣∑
p6=q

E∗piEqiTpq

∣∣∣∣2 ≤ 2
∑
p 6=q

E|Tpq|2 ≤ 2
d∑

p,q=1

E|Tpq|2.(4.134)

Denoting κ > 1 for an upper bound to E|Epi|4 < ∞, the second term in (4.130) is

bounded as

E
∣∣∣∣ d∑
p=1

Tpp(|Epi|2 − 1)

∣∣∣∣2 =
d∑
p=1

E|Tpp|2(E|Epi|4 − 1)(4.135)

≤ (κ− 1)
d∑
p=1

E|Tpp|2 ≤ (κ− 1)
d∑

p,q=1

E|Tpq|2.

where the equality can be obtained by expanding the squared magnitude and drop-

ping terms from the resulting double sum that are equal to zero.

Combining (4.131), (4.134), and (4.135) yields the bound for (4.130),

w4
1σ

4
1

n2
E
∣∣εHi Tεi − tr T

∣∣2 ≤ w4
1σ

4
1

n2

{
2

d∑
p,q=1

E|Tpq|2 + (κ− 1)
d∑

p,q=1

E|Tpq|2
}

(4.136)

=
w4

1σ
4
1

n2
(κ+ 1)

d∑
p,q=1

E|Tpq|2 ≤
w4

1σ
4
1

n2
(κ+ 1)

d|ζ|2
4|rs|2 =

d

n2

w4
1σ

4
1(κ+ 1)|ζ|2
4|rs|2 ,
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where the final inequality holds because

d∑
p,q=1

E|Tpq|2 = E tr(TTH) = E
{ d∑

j=1

|ζ|2
|ζ2 − λj(Ẽ−iẼH

−i)|2

}

≤ E
{ d∑

j=1

|ζ|2
|={ζ2 − λj(Ẽ−iẼH

−i)}|2

}
= E

{ d∑
j=1

|ζ|2
(2|rs|)2

}
=

d|ζ|2
4|rs|2 ,

where λj denotes the jth eigenvalue of its argument.

To bound the second term in (4.129), consider the expansion

(4.137)
1

n
tr(ζΓi)− E

1

n
tr(ζΓi) =

n∑
j=1

(Ej−1 − Ej)
{ 1

n
tr(ζΓi)

}
︸ ︷︷ ︸

=:νj

,

where Ej denotes expectation over the first j columns of Ẽ. Note that νi = 0 since

(1/n) tr(ζΓi) does not involve ε̃i. When j 6= i

|νj| =
1

n

∣∣∣∣(Ej−1 − Ej)
[

tr{ζ(ζ2I− Ẽ−iẼ
H
−i)
−1}(4.138)

− tr{ζ(ζ2I− Ẽ−i,jẼ
H
−i,j)

−1}
]∣∣∣∣

≤ 1

n
(Ej−1 + Ej)

∣∣∣ tr{ζ(ζ2I− Ẽ−iẼ
H
−i)
−1}

− tr{ζ(ζ2I− Ẽ−i,jẼ
H
−i,j)

−1}
∣∣∣

≤ 1

n
(Ej−1 + Ej)

|ζ|
2|rs| =

1

n

|ζ|
|rs| ,

where Ẽ−i,j is Ẽ with both the ith and the jth columns removed, and the final

inequality follows in a similar way as (4.127). As a result ν1, . . . , νn form a complex

martingale difference sequence, and applying the extended Burkholder inequality [14,

Lemma 2.12] for the second moment yields

E
∣∣∣ 1
n

tr(ζΓi)− E
1

n
tr(ζΓi)

∣∣∣2 = E
∣∣∣ n∑
j=1

νj

∣∣∣2(4.139)

≤ K2E
n∑
j=1

|νj|2 ≤ K2E
n∑
j=1

1

n2

|ζ|2
|rs|2 =

1

n

K2|ζ|2
|rs|2 .

Substituting (4.136) and (4.139) into (4.129) yields the variance bound for ξi:

(4.140) E
∣∣ξi − E(ξi)

∣∣2 ≤ d

n2

w4
1σ

4
1(κ+ 1)|ζ|2
4|rs|2 +

1

n

w4
1σ

4
1K2|ζ|2
|rs|2 .
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Finally, combining (4.118), (4.125), (4.128), and (4.140) yields∣∣∣∣E 1

n1

tr ∆1(ζ)− 1

µ

∣∣∣∣ ≤ 1

n1

n1∑
i=1

∣∣∣∣∣E
{

ξi
µ(µ− ξi)

}∣∣∣∣∣(4.141)

≤ 1

n1

n1∑
i=1

(
1

n

w2
1σ

2
1|ζ|

2|rs3| +
1

n2

w4
1σ

4
1|ζ|2

4|r2s5|

+
d

n2

w4
1σ

4
1(κ+ 1)|ζ|2
4|r2s5| +

1

n

w4
1σ

4
1K2|ζ|2
|r2s5|

)
=

1

n

(
w2

1σ
2
1|ζ|

2|rs3| +
w4

1σ
4
1K2|ζ|2
|r2s5|

)
+

1

n2

w4
1σ

4
1|ζ|2

4|r2s5| +
d

n2

w4
1σ

4
1(κ+ 1)|ζ|2
4|r2s5|

→ 0,

since 1/n, 1/n2, d/n2 → 0 as n, d → ∞ while n/d → c, and (4.105) follows by

observing that

E
1

n
tr(ζΓ) =

d

n
E

1

d
tr{ζ(ζ2I− ẼẼH)−1} → ϕ1(ζ)

c
,

and |µ|, |ζ − w2
1σ

2
1ϕ1(ζ)/c| ≥ |s| 6= 0.

4.11.2.3 Almost sure uniform convergence

Let τ > 0 be arbitrary, and consider the (countable) set

(4.142) C0 := {r + ıs : r ∈ Q, s ∈ Q, r > b+ τ, s 6= 0} ⊂ {ζ ∈ C : <(ζ) > b+ τ},

and observe that for any ζ ∈ C0 it follows from (4.103)–(4.105) that

(4.143)
1

n
tr ζW(ζ2I− ẼHẼ)−1W

a.s.−→
L∑
`=1

p`w
2
`

ζ − σ̃2
`ϕ1(ζ)/c

.

More precisely

(4.144) ∀ζ∈C0 Pr

{
1

n
tr ζW(ζ2I− ẼHẼ)−1W→

L∑
`=1

p`w
2
`

ζ − σ̃2
`ϕ1(ζ)/c

}
= 1,

but since C0 is countable, it follows that

(4.145) Pr

{
∀ζ∈C0

1

n
tr ζW(ζ2I− ẼHẼ)−1W→

L∑
`=1

p`w
2
`

ζ − σ̃2
`ϕ1(ζ)/c

}
= 1.

Now consider ζ ∈ C with <(ζ) > b+ τ , and observe that eventually <(ζ) for all such

ζ exceed all the singular values of Ẽ by at least τ/2 since the largest singular value
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of Ẽ converges to b. Thus, eventually∣∣∣ 1
n

tr ζW(ζ2I− ẼHẼ)−1W
∣∣∣2 =

∣∣∣ 1
n

tr{W2ζ(ζ2I− ẼHẼ)−1}
∣∣∣2(4.146)

≤
( 1

n
‖W2‖2

F

){ 1

n
‖ζ(ζ2I− ẼHẼ)−1‖2

F

}
≤ 4

τ 2

L∑
`=1

p`w
4
` ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second

inequality holds because ‖W2‖2
F/n = p1w

4
1 + · · ·+ pLw

4
L and

1

n
‖ζ(ζ2I− ẼHẼ)−1‖2

F(4.147)

=
1

n

n∑
j=1

∣∣∣∣ ζ

ζ2 − ν2
j (Ẽ)

∣∣∣∣2 =
1

n

n∑
j=1

{
1

|ζ − νj(Ẽ)|
|ζ|

|ζ + νj(Ẽ)|

}2

≤ 1

n

n∑
j=1

1

|ζ − νj(Ẽ)|2
≤ 1

n

n∑
j=1

1

|<(ζ)− νj(Ẽ)|2
≤ 4

τ 2

where νj denotes the jth largest singular value of its argument, and we use the fact

that <(ζ), νj(Ẽ) ≥ 0. Applying [14, Lemma 2.14] yields, almost surely, the uniform

convergence (4.25) and the derivative convergence (4.27).

4.11.2.4 Properties

This section concludes the proof by verifying the following properties (4.26) of

ϕ2:

a) For any ζ > b, almost surely eventually ζ2 exceeds all the square singular values

of Ẽ, so (ζ2I− ẼHẼ)−1 � (1/ζ2)I and

(4.148)
1

n
tr ζW(ζ2I− ẼHẼ)−1W ≥ 1

ζ

L∑
`=1

n`
n
w2
` > 0.

Thus ϕ2(ζ) > 0 for all ζ > b.

b) As |ζ| → ∞, |ζ − w2
`σ

2
`ϕ1(ζ)/c| → ∞ for each ` ∈ {1, . . . , L} since ϕ1(ζ) → 0

as shown in Section 4.11.1.1. Thus ϕ2(ζ)→ 0 as |ζ| → ∞.

c) As shown in Section 4.11.1.1, ={ϕ1(ζ)} is zero if =(ζ) is zero and has the

opposite sign of =(ζ) otherwise. As a result,

={ζ − w2
`σ

2
`ϕ1(ζ)/c} = =(ζ)− (w2

`σ
2
`/c)={ϕ1(ζ)}

is zero if =(ζ) is zero and has the same sign as =(ζ) otherwise. Thus we

conclude that ϕ2(ζ) ∈ R⇔ ζ ∈ R.
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4.11.3 Proof of Lemma 4.15

Let Q ⊂ P be the set of points that maximize f , and note that it is nonempty

by assumption. Since every level set of f is a flat, there exists some matrix A and

vector b such that

(4.149) Q = P ∩ {x ∈ Rn : Ax = b},

so Q is also a polyhedron. Since P has at least one extreme point, Q must also have

at least one extreme point.

Let x be an extreme point of Q. Next we show that x is an extreme point of P

by contradiction. Suppose x is not an extreme point of P . Then there exist points

y, z ∈ P , both different from x, that have convex combination equal to x. Without

loss of generality, let f(y) ≤ f(z). Recalling that x ∈ Q maximizes f yields

(4.150) f(y) ≤ f(z) ≤ f(x).

By the intermediate value theorem, there exists some z̃ between y and x for which

f(z̃) = f(z). Namely, z and z̃ lie in the same level set, as do their affine combinations

because the level sets are flats. In particular, both y and x are affine combinations

of z and z̃, and as a result

(4.151) f(y) = f(z̃) = f(x) = f(z),

and so y, z ∈ Q, implying that x is not an extreme point of Q and producing a

contradiction. Thus x is an extreme point of P that maximizes f .

4.11.4 Additional Numerical Simulations

This section provides additional numerical simulations to demonstrate that the

asymptotic results of Theorem 4.3 provide meaningful predictions for finitely many

samples in finitely many dimensions. In particular, this section provides analogous

plots to Fig. 4.9 in Section 4.9 for the:

• amplitudes θ̂2
i in Fig. 4.11,

• weighted score recoveries |〈ẑi/
√
n, zi/

√
n〉W2|2 in Fig. 4.12,

• products 〈ûi, ui〉〈ẑi/
√
n, zi/

√
n〉∗W2 in Fig. 4.13.

As in Section 4.9, data are generated according to the model (4.3) with c = 1 sample

per dimension, underlying amplitudes θ2
1 = 25 and θ2

2 = 16, and p1 = 20% of samples

having noise variance σ2
1 = 1 with the remaining p2 = 80% of samples having noise
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Asymptotic recovery (4.4) Mean Interquartile interval
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(a) 103 samples in 103 dimensions.
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(b) 104 samples in 104 dimensions.

Figure 4.11: Simulated amplitudes θ̂2
i for data generated according to the model (4.3)

with c = 1 sample per dimension, underlying amplitudes θ2
1 = 25 and

θ2
2 = 16, and p1 = 20% of samples having noise variance σ2

1 = 1 with the
remaining p2 = 80% of samples having noise variance σ2

2 = 4. Weights
are set as w2

1 = (1 − λ)/p1 and w2
2 = λ/p2. Simulation mean (blue

curve) and interquartile interval (light blue ribbon) are shown with the
asymptotic prediction (4.4) of Theorem 4.3 (orange dashed curve). In-
creasing the data size from (a) to (b) shrinks the interquartile intervals,
indicating concentration to the mean, which is itself converging to the
asymptotic recovery.

variance σ2
2 = 4. Underlying scores and unscaled noise entries are both generated

from the standard normal distribution, i.e., zij, εij ∼ N (0, 1), and the weights are

set to w2
1 = (1− λ)/p1 and w2

2 = λ/p2 where λ is swept from zero to one.

Two simulations are shown: the first has n = 103 samples in d = 103 dimensions,

and the second increases these to n = 104 samples in d = 104 dimensions. Both

are repeated for 500 trials. As in Fig. 4.9, the first simulation illustrates general

agreement in behavior between the non-asymptotic recovery and its asymptotic pre-

diction, and the second simulation shows what happens when the number of samples

and dimensions are increased. The interquartile intervals shrink dramatically, in-

dicating concentration of each recovery (a random quantity) around its mean, and

each mean converges to the corresponding limit.
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Asymptotic recovery (4.8) Mean Interquartile interval
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Figure 4.12: Simulated weighted score recoveries |〈ẑi/
√
n, zi/

√
n〉W2|2 for data gen-

erated according to the model (4.3) with c = 1 sample per dimension,
underlying amplitudes θ2

1 = 25 and θ2
2 = 16, and p1 = 20% of samples

having noise variance σ2
1 = 1 with the remaining p2 = 80% of samples

having noise variance σ2
2 = 4. Weights are set as w2

1 = (1 − λ)/p1 and
w2

2 = λ/p2. Simulation mean (blue curve) and interquartile interval
(light blue ribbon) are shown with the asymptotic prediction (4.8) of
Theorem 4.3 (orange dashed curve). Increasing the data size from (a)
to (b) shrinks the interquartile intervals, indicating concentration to the
mean, which is itself converging to the asymptotic recovery.
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Asymptotic recovery (4.9) Mean Interquartile interval
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Figure 4.13: Simulated products 〈ûi, ui〉〈ẑi/
√
n, zi/

√
n〉∗W2 for data generated accord-

ing to the model (4.3) with c = 1 sample per dimension, underlying
amplitudes θ2

1 = 25 and θ2
2 = 16, and p1 = 20% of samples having noise

variance σ2
1 = 1 with the remaining p2 = 80% of samples having noise

variance σ2
2 = 4. Weights are set as w2

1 = (1 − λ)/p1 and w2
2 = λ/p2.

Simulation mean (blue curve) and interquartile interval (light blue rib-
bon) are shown with the asymptotic prediction (4.9) of Theorem 4.3
(orange dashed curve). Increasing the data size from (a) to (b) shrinks
the interquartile intervals, indicating concentration to the mean, which
is itself converging to the asymptotic recovery.



CHAPTER V

Generalized canonical polyadic tensor

decomposition for non-Gaussian data

Tensor decomposition is a fundamental unsupervised machine learning method

in data science. It generalizes matrix decomposition methods to multiway data and

has numerous applications ranging from network analysis to sensor signal processing.

Standard tensor decompositions seek to minimize the squared residuals between the

low-rank approximation and data. This chapter develops a generalized canonical

polyadic (GCP) low-rank tensor decomposition that allows for other loss functions.

For instance, the logistic loss or the generalized Kullback-Leibler divergence [122,

Equation (3)] can be used to enable tensor decomposition for binary or count data.

We present a variety of statistically-motivated loss functions for various scenarios.

We provide a generalized framework for computing gradients and handling missing

data that enables the use of standard optimization methods for fitting the model.

Finally, we demonstrate the flexibility of GCP on several real-world examples includ-

ing interactions in a social network, neural activity in a mouse, and monthly rainfall

measurements in India.

This chapter presents joint work with Dr. Tamara G. Kolda, Dr. Cliff Anderson-

Bergman, and Dr. Jed Duersch that began during a summer internship at Sandia

National Labs under the mentorship of Dr. Kolda and Dr. Anderson-Bergman and

that led to the recently accepted journal paper:

[97] David Hong, Tamara G. Kolda, and Jed A. Duersch. Generalized Canonical

Polyadic Tensor Decomposition. SIAM Review, 2019. To appear. arXiv: 1808.

07452v2.
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5.1 Introduction

As discussed in Section 2.3, many data sets are naturally represented as higher-

order tensors. The CANDECOMP/PARAFAC or canonical polyadic (CP) tensor

decomposition builds a low-rank tensor decomposition model and is a standard tool

for unsupervised multiway data analysis [41, 83, 93, 118]. Structural features in the

dataset are represented as rank-1 tensors, which reduces the size and complexity of

the data. This form of dimensionality reduction has many applications including data

decomposition into explanatory factors, filling in missing data, and data compression.

It has been used to analyze multiway data sets in a variety of domains including

neuroscience [2, 51, 212], chemistry [106, 144], cybersecurity [139], network analysis

and link prediction [62, 116, 153], machine learning [6, 25, 173], hyperspectral imaging

[68, 223], function approximation [26, 27, 81, 174], and so on. In this chapter, we

consider generalizing the loss function for determining the low-rank model.

= + + · · · +

Figure 5.1: Illustration of CP-structured tensor. The tensor is the sum of r compo-
nents, and each component is the outer product of d vectors, also known
as a rank-1 tensor (here we show d = 3). The rank of such a tensor that
has r components is bounded above by r, so it is low-rank if r is small.

Given a d-way data tensor X of size n1×n2×· · ·×nd, we propose a generalized CP

(GCP) decomposition that approximates X as measured by the sum of elementwise

losses specified by a generic function f : R⊗ R→ R, i.e.,

(5.1) minF (M;X) :=

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

f(xi,mi) subject to M is low rank.

Here, M is a low-rank model tensor that has CP structure, as illustrated in Fig. 5.1.

For the usual CP decomposition, the elementwise loss is f(x,m) = (x−m)2. While

this loss function is suitable for many situations, it implicitly assumes the data is

normally distributed. Many datasets of interest, however, do not satisfy this hidden

assumption. Such data can be nonnegative, discrete, or boolean.

Our goal in this chapter is to develop a general framework for fitting GCP models

with generic loss functions, enabling the user to adapt the model to the nature of the

data. For example, we later see that a natural elementwise loss function for binary
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tensors, which have all entries in { 0, 1 }, is f(xi,mi) = log(mi + 1) − xi logmi. We

show that the GCP gradient has an elegant form that uses the same computational

kernels as the standard CP gradient. The formula handles the case where the sum in

(5.1) is only over a subset of entries, so it also covers the case of incomplete tensors,

where some data is missing due to either collection issues or an inability to make

measurements. This is a common issue for real-world datasets, and it can be easily

handled in the GCP framework.

5.1.1 Contributions of this chapter

We develop the GCP algorithmic framework for computing the CP tensor de-

composition with an arbitrary elementwise loss function.

• The main difference between GCP and standard CP is the choice of loss func-

tion, so we discuss loss function choices and their statistical connections in

Section 5.3.

• We describe fitting the GCP model in Section 5.4. We derive the gradient

for GCP with respect to the model components, along with a straightforward

way of handling missing data. We explain how to add regularization and use

a standard optimization method.

• In Section 5.5, we demonstrate the flexibility of GCP on several real-world

examples with corresponding applications including inference of missing entries,

and unsupervised pattern extraction over a variety of data types.

5.1.2 Relationship to previous works

Applications of the CP tensor decomposition date back to the 1970 work of Carrol

and Chang [41] and Harshman [83], though its mathematical origins date back to

Hitchcock in 1927 [93]. Many surveys exist on CP and its applications; see, for

instance, [6, 31, 118, 161]. Our proposed GCP framework uses so-called direct or

all-at-once optimization, in contrast to the alternating approach that is popular

for computing CP known as CP-ALS. The direct optimization approach has been

considered for CP by Acar, Dunlavy, and Kolda [62] and Phan, Tichavský, and

Cichocki [167]. The later case showed that the Hessians have special structure, and

similar structure applies in the case of GCP though we do not discuss it here. The

GCP framework can incorporate many of the computational improvements for CP,

such as tree-based MTTKRP computations [166] and ADMM for constraints [102].

Our approach for handling missing data is essentially the same as that proposed for
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standard CP by Acar, Dunlavy, Kolda, and Mørup [5]; the primary difference is that

we now have a more elegant and general theory for the derivatives.

There have been a wide variety of papers that have considered alternative loss

functions, so here we mention some of the most relevant. The famous nonnegative

matrix factorization paper of Lee and Seung [121] considered KL divergence in the

matrix case, and Welling and Weber [211] and others [44, 82, 180] considered it in

the tensor case. This equates to Poisson with identity link (5.21) in our framework.

Cichocki, Zdunek, Choi, Plemmons, and Amari [48] have considered loss functions

based on alpha- and beta-divergences for nonnegative CP [47]; both these divergences

fit into the GCP framework and we explicitly discuss beta-divergence. GCP unifies

these varied loss functions into a single algorithmic framework that can fit them all.

To the best of our knowledge, no general loss function frameworks have been

proposed in the tensor case, but several have been proposed in the matrix case.

Collins, Dasgupta, and Schapire [50] developed a generalized version of matrix prin-

cipal component analysis (PCA) based on loss functions from the exponential family

(Gaussian, Poisson with exponential link, Bernoulli with logit link). Gordon [78]

considers a “Generalized2 Linear2 Model” for matrix factorization that allows differ-

ent loss functions and nonlinear relationships between the factors and the low-rank

approximation. Udell et al. [202] develop a general framework for matrix factoriza-

tion that allows for the loss function to be different for each column; several of their

proposed loss functions overlap with ours (e.g., their “Poisson PCA” is equivalent to

Poisson with the log link).

5.2 Background and notation

Before we continue, we review some basic tensor notation and concepts; see Kolda

and Bader [118] for a full review. The number of ways or dimensions of the tensor

is called the order. Each way is referred to as a mode. The Khatri-Rao product of

two matrices A ∈ Rm×p and B ∈ Rn×p is the columnwise Kronecker product, i.e.,

A�B =
(
A(:, 1)⊗B(:, 1), . . . ,A(:, p)⊗B(:, p)

)
(5.2)

=


a11b11 a12b12 · · · a1pb1p

a11b21 a12b22 · · · a1pb2p

...
...

. . .
...

am1bn1 am2bn2 · · · ampbnp

 ∈ Rmn×p.

In the remainder of this chapter, we assume all tensors are real-valued d-way arrays

of size n1 × n2 × · · · × nd. We define n and n̄ to be the geometric and arithmetic
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means of the sizes, i.e.,

(5.3) n = d

√√√√ d∏
k=1

nk and n̄ =
1

d

d∑
k=1

nk.

In this way, nd is the total number of elements in the tensor and dn̄ is the sum

of the sizes of all the modes. As shown above, modes are typically indexed by

k ∈ { 1, . . . , d }.
Tensors are indexed using i as shorthand for the multiindex (i1, i2, . . . , id), so that

xi := x(i1, i2, . . . , id). We let I denote the set of all possible indices, i.e.,

(5.4) I := { 1, . . . , n1 } ⊗ { 1, . . . , n2 } ⊗ · · · ⊗ { 1, . . . , nd } .

It may be the case that some entries of X are missing, i.e., were not observed due to

measurement problems. We let Ω ⊆ I denote the set of observed entries, and then

I \ Ω is the set of missing entries.

The vectorization of X rearranges its elements into a vector of size nd and is

denoted by x. Tensor element x(i1, i2, . . . , id) is mapped to x(i′) in x where the

linear index i′ ∈ { 1, . . . , nd } is given by i′ = 1 +
∑d

k=1(ik − 1)n′k with n′1 = 1 and

n′k =
∏k−1

`=1 n` otherwise. The mode-k unfolding or matricization of X rearranges its

elements into a matrix of size nk×(nd/nk) and is denoted as Xk, where the subscript

indicates the mode of the unfolding. Element (i1, . . . , id) ∈ I maps to matrix entry

(ik, i
′
k) where

(5.5) i′k = 1 +
k−1∑
`=1

(i` − 1)n′` +
d∑

`=k+1

(i` − 1)(n′`/nk)

We assume the model tensor M in (5.1) has low-rank CP structure as illustrated

in Fig. 5.1. Following Bader and Kolda [12], we refer to this type of tensor as a

Kruskal tensor. Specifically, it is defined by a set of d factor matrices, Ak of size

nk × r for k = 1, . . . , d, such that

(5.6) mi := m(i1, i2 . . . , id) =
r∑
j=1

a1(i1, j)a2(i2, j) · · · ad(id, j) for all i ∈ I.

The number of columns r is the same for all factor matrices and equal to the number

of components (d-way outer products) in the model. In Fig. 5.1, the jth component

is the outer product of the jth column vectors of the factor matrices, i.e., A1(:, j),

A2(:, j), etc. We denote (5.6) in shorthand as M = JA1,A2, . . . ,AdK. The mode-k

unfolding of a Kruskal tensor has a special form that depends on the Khatri-Rao

products of the factor matrices, i.e.,

(5.7) Mk = AkZ
>
k where Zk := Ad � · · · �Ak+1 �Ak−1 � · · · �A1.
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If r is relatively small (e.g., r ≤ O(n)), then we say M has low rank. The

advantage of finding a low-rank structure is that it is more parsimonious. The model

M has nd entries but the number of values to define it is only

r
d∑

k=1

nk = drn̄� nd.

It is sometimes convenient to normalize the columns of the factor matrices and have

an explicit weight for each component. For clarity of presentation, we omit this

from our main discussion but do provide this alternative form and related results in

Section 5.7.1.

5.3 Choice of loss function

The difference between GCP and the standard CP formulation is flexibility in the

choice of loss function. This section motivates alternative loss functions by looking

at the statistical likelihood of a model for a given data tensor.

In statistical modeling, we often want to maximize the likelihood of a model that

parameterizes the distribution; see, e.g., [85, section 8.2.2]. We assume that we have

a parameterized probability density function (PDF) or probability mass function

(PMF) that gives the likelihood of each entry, i.e.,

xi ∼ p(xi | θi) where `(θi) = mi,

where xi is an observation of a random variable and `(·) is an invertible link function

that connects the model parameter mi and the corresponding natural parameter of

the distribution, θi. The link function is oftentimes just the identity function, but

we show the utility of a nontrivial link function in Section 5.3.2. Link functions are

a common statistical concept and have been used for generalized matrix factoriza-

tions [50, 78].

Our goal is to find the model M that is the maximum likelihood estimate (MLE)

across all entries. Conditional independence of observations1 means that the overall

likelihood is just the product of the likelihoods, so the MLE is the solution to

(5.8) max
M

L(M;X) :=
∏
i∈Ω

p(xi | θi) with `(θi) = mi for all i ∈ Ω.

We are trying to estimate the parameters θi, but we only have one observation per

random variable xi. Nevertheless, we are able to make headway because of the low-

1The independence is conditioned on M. Although there are dependencies between the entries
of M since indeed the entire purpose of the GCP decomposition is to discover these dependencies,
the observations themselves remain conditionally independent.
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rank structure of M and corresponding interdependences of the θi’s. Recall that we

have nd observations but only drn̄ free variables.

For a variety of reasons, expression (5.8) is awkward for optimization. Instead

we take the negative logarithm to convert the product into a sum. Since the log is

monotonic, it does not change the maximizer. Negation simply converts the max-

imization problem into a minimization problem which is common for optimization.

Eliminating θi as well, we arrive at the minimization problem

(5.9) minF (M;X) :=
∑
i∈Ω

f(xi,mi) where f(x,m) := − log p(x | `−1(m)).

In the remainder of this section, we discuss how specific choices of distributions (and

corresponding p’s) lead naturally to specific choices for the elementwise loss function

f . Each distribution has its own standard notation for the generic parameter θ,

e.g., the Poisson distribution in Section 5.3.5 refers to its natural parameter as λ.

Although our focus here is on statistically-motivated choices for the loss function,

other options are possible as well. We mention two, the Huber loss and β-divergence,

explicitly in Section 5.3.7.

5.3.1 Gaussian distribution and the standard formulation

This subsection reviews the fact that the standard squared error loss function,

f(x,m) = (x−m)2, comes from an assumption that the data is Gaussian distributed.

A usual assumption is that the data has low-rank structure but is contaminated by

“white noise,” i.e.,

(5.10) xi = mi + εi with εi ∼ N (0, σ) for all i ∈ Ω.

Here N (µ, σ) denotes the normal or Gaussian distribution with mean µ and standard

deviation σ. We assume σ is constant across all entries. We can rewrite (5.10) to

see that the data is Gaussian distributed:

xi ∼ N (µi, σ) with µi = mi for all i ∈ Ω.

In this case, the link function between the natural parameter µi and the model mi

is simply the identity, i.e., `(µ) = µ.

From standard statistics, the PDF for the normal distribution N (σ, µ) is

p(x |µ, σ) = e−(x−µ)2 / 2σ2 /√
2πσ2.

Following the framework in (5.9), the elementwise loss function is

f(x,m) = (x−m)2
/

(2σ2) + 1
2

log(2πσ2).
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Since σ is constant, it has no impact on the optimization, so we remove those terms

to arrive at the standard form

f(x,m) = (x−m)2 for x,m ∈ R.

Note that this final form is no longer strictly a likelihood which has implications

for, e.g., using Akaike information criterion (AIC) or the Bayesian information cri-

terion (BIC) to choose the number of parameters. In the matrix case, the maximum

likelihood derivation can be found in [218].

It is not uncommon to add a nonnegativity assumption on M [121, 154–156, 211],

which may correspond to some prior knowledge about the means being nonnegative.

5.3.2 Bernoulli distribution and connections to logistic regression

This subsection describes a loss function for binary data. A binary random

variable x ∈ { 0, 1 } is Bernoulli distributed with parameter ρ ∈ [0, 1] if ρ is the

probability of a 1 and, consequently, (1− ρ) is the probability of a zero. We denote

this by x ∼ Bernoulli(ρ). Clearly, the PMF is given by

(5.11) p(x | ρ) = ρx(1− ρ)(1−x) x ∈ { 0, 1 } .

A reasonable model for a binary data tensor X is

(5.12) xi ∼ Bernoulli(ρi) where `(ρi) = mi.

If we choose ` to be the identity link, then we need to constrain mi ∈ [0, 1] which is

a complex nonlinear constraint, i.e.,

(5.13) 0 ≤
r∑
j=1

a1(i1, j)a2(i2, j) · · · ad(id, j) ≤ 1 for all i ∈ I,

Instead, we can use a different link function.

One option for the link function is to work with the odds ratio, i.e.,

(5.14) `(ρ) = ρ
/

(1− ρ).

It is arguably even easier to think in terms of odds ratios than the probability, so this

is a natural transformation. For any ρ ∈ [0, 1), we have `(ρ) ≥ 0. Hence, using (5.14)

as the link function means that we need only constrain mi ≥ 0. This constraint can

be enforced by requiring the factor matrices to be nonnegative, which is a bound

constraint and much easier to handle than the nonlinear constraint (5.13). With

some algebra, it is easy to show that we can write the log of (5.11) as

− log
(
p(x | ρ)

)
= log

(
1
/

(1− ρ)
)
− x log

(
ρ
/

(1− ρ)
)
.
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Plugging this and the link function (5.14) into our general framework in (5.9) yields

the elementwise loss function

f(x,m) = log(1 +m)− x logm for x ∈ { 0, 1 } ,m ≥ 0.

For a given odds m ≥ 0, the associated probability is ρ = m/(1 + m). Note that

f(1, 0) = −∞ because this represents a statistically impossible situation. In practice,

we replace logm with log(m+ ε) for some small ε > 0 to prevent numerical issues.

Another common option for the link function is to work with the log-odds, i.e.,

(5.15) `(ρ) = log
(
ρ
/

(1− ρ)
)
.

It is so common that it has a special name: logit. The loss function then becomes

f(x,m) = log(1 + em)− xm for x ∈ { 0, 1 } ,m ∈ R,

and the associated probability is ρ = em/(1 + em). In this case, m is completely

unconstrained and can be any real value. This is the transformation commonly used

in logistic regression. A form of logistic tensor decomposition for a different type of

decomposition called DEDICOM was proposed by Nickel and Tresp [151].

We contrast the odds and logit link functions in terms of the interpretation of the

components. An advantage of odds with nonnegative factors is that each component

can only increase the probability of a 1. The disadvantage is that it requires a non-

negativity constraint. The logit link is common in statistics and has the advantage

that it does not require any constraints. A potential disadvantage is that it may be

harder to interpret components since they can counteract one another. Moreover,

depending on the signs of its factors, an individual component can simultaneously

increase the probability of a 1 for some entries while reducing it for others. As such,

interpretations may be nuanced.

5.3.3 Gamma distribution for positive continuous data

There are several distributions for handling nonnegative continuous data. As

mentioned previously, one option is to assume a Gaussian distribution but impose a

nonnegativity constraint. Another option is a Rayleigh distribution, discussed in the

next subsection. Yet another is the gamma distribution (for strictly positive data),

with PDF

(5.16) p(x | k, θ) =
(
xk−1

/
(Γ(k) θk)

)
e−x/θ for x > 0,

where k > 0 and θ > 0 are called the shape and scale parameters respectively and

Γ(·) is the Gamma function.2 We assume k is constant across all entries and given, in

2The Gamma distribution may alternatively by parameterized by α = k and β = 1/θ.
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which case this is a member of the exponential family of distributions. For example,

k = 1 and k = 2 are the exponential and chi-squared distributions, respectively. If

we use the link function `(θ) = kθ which induces a positivity constraint m > 0 as a

byproduct,3 and plug this and (5.16) into (5.9) and remove all constant terms (i.e.,

terms involving only k), the elementwise loss function is

(5.17) f(x,m) = log(m) + x/m for x > 0,m > 0.

In practice, we use the constraint m ≥ 0 and replace m with m+ ε (with small ε) in

the loss function (5.17).

5.3.4 Rayleigh distribution for nonnegative continuous data

As alluded to in the previous subsection the Rayleigh distribution is a distribution

for nonnegative data. The PDF is

(5.18) p(x |σ) =
(
x
/
σ2
)
e−x

2/(2σ2) for x ≥ 0,

where σ > 0 is called the scale parameter. The link `(σ) =
√
π/2 σ (corresponding

to the mean) induces a positivity constraint on m. Plugging this link and (5.18) into

(5.9) and removing the constant terms yields the loss function

(5.19) f(x,m) = 2 log(m) + π
4

(x/m)2 for x ≥ 0,m > 0.

We again replace m > 0 with m ≥ 0 and replace m with m+ ε (with small ε) in the

loss function (5.19).

5.3.5 Poisson distribution for count data

If the tensor values are counts, i.e., natural numbers (N = { 0, 1, 2, . . . }), then

they can be modelled as a Poisson distribution, a discrete probability distribution

commonly used to describe the number of events that occurred in a specific window

in time, e.g., emails per month. The PMF for a Poisson distribution with mean λ is

given by

(5.20) p(x |λ) = e−λλx
/
x! for x ∈ N.

If we use the identity link function (`(λ) = λ) and (5.20) in (5.9) and drop constant

terms, we have

(5.21) f(x,m) = m− x logm for x ∈ N,m ≥ 0.

3This also means that we set m to be the expected mean value, i.e., m = E[x] = kθ.
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This loss function has been studied previously by Welling and Weber [211] and Chi

and Kolda [44] in the case of tensor decomposition; Lee and Seung introduced it

in the context of matrix factorizations [121]. As in the Bernoulli case, we have a

statistical impossibility if x > 0 and m = 0, so we make the same correction of

adding a small ε inside the log term.

Another option for the link function is the log link, i.e., `(λ) = log λ. In this case,

the loss function becomes

(5.22) f(x,m) = em − xm for x ∈ N,m ∈ R.

The advantage of this approach is that m is unconstrained.

5.3.6 Negative binomial for count data

Another option for count data is the negative binomial (NegBinom) distribution.

This distribution models the number of trials required before we experience r ∈ N
failures, given that the probability of failure is ρ ∈ [0, 1]. The PMF is given by

(5.23) p(x | r, ρ) =

(
x+ r − 1

k

)
ρx(1− ρ)r for x ∈ N.

If we use the odds link (5.14) with the probability of failure ρ, then the loss function

for a given number of failures r is

f(x,m) = (r + x) log(1 +m)− x logm for x ∈ N,m > 0.

We could also use a logit link (5.15). This is sometimes used as an alternative when

Poisson is overdispersed.

5.3.7 Choosing the loss function

Our goal is to give users flexibility in the choice of loss function. In rare cases

where the generation of the data is well understood, the loss function may be easily

prescribed. In most real-world scenarios, however, some guesswork is required. The

choice of fit function corresponds to an assumption on how the data is generated (e.g.,

according to a Bernoulli distribution) and we further assume that the parameters for

the data generation form a low-rank tensor. Generally, users would experiment with

several different fit functions and several choices for the model rank.

An overview of the statistically-motivated loss functions that we have discussed

is presented in Table 5.1. The choices of Gaussian, Poisson with log link, Bernoulli

with logit link, and Gamma with given k are part of the exponential family of loss

functions, explored by Collins et al. [50] in the case of matrix factorization. We
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note that some parameters are assumed to be constant (denoted in blue). For the

normal and Gamma distributions, the constant terms (σ and k, respectively) do not

even appear in the loss function. The situation is different for the negative binomial,

where r does show up in the loss function. We have modified the positivity constraints

(m > 0) to instead be nonnegativity constraints (m ≥ 0) by adding a small ε = 10−10

in appropriate places inside the loss functions; these changes are indicated in red.

This effectively converts the constraint to m ≥ ε. The modification is pragmatic

since otherwise finite-precision arithmetic yields in ±∞ gradient and/or function

values. In the sections that follow, nonnegativity of M is enforced by requiring that

the factor matrices ({Ak | k = 1, . . . , d }) be nonnegative.

Table 5.1: Statistically-motivated loss functions. Parameters in blue are assumed to
be constant. Numerical adjustments are indicated in red.

Distribution Link function Loss function Constraints

N (µ, σ) m = µ (x−m)2 x,m ∈ R

Gamma(k, θ) m = kθ x/(m+ε) + log(m+ε) x > 0,m ≥ 0

Rayleigh(σ) m =
√
π/2σ 2 log(m+ε) + (π/4)(x/(m+ε))2 x > 0,m ≥ 0

Poisson(λ) m = λ m− x log(m+ε) x ∈ N,m ≥ 0

m = log λ em − xm x ∈ N, m ∈ R

Bernoulli(ρ) m = ρ / (1−ρ) log(m+1)−x log(m+ε) x ∈ { 0, 1 } ,m ≥ 0

m = log(ρ / (1− ρ)) log(1+em)− xm x ∈ { 0, 1 }, m ∈ R

NegBinom(r, ρ) m = ρ / (1−ρ) (r+x) log(1+m)− x log(m+ε) x ∈ N, m ≥ 0

In terms of choosing the loss function from this list, the choice may be dictated

by the form of the data. If the data is binary, for instance, then one of the Bernoulli

choices may be preferred. Count data may indicate a Poisson or NB distribution.

There are several choices for strictly positive data: Gamma, Rayleigh, and even

Gaussian with nonnegativity constraints.

The list of possible loss functions and constraints in Table 5.1 is by no means

comprehensive, and many other choices are possible. For instance, we might want

to use the Huber loss [103], which is quadratic for small values of |x−m| and linear

for larger values. This is a robust loss function [85]. The Huber loss is

(5.24) f(x,m; ∆) =

(x−m)2 if |x−m| ≤ ∆,

2∆|x−m| −∆2 otherwise.

This formulation has continuous first derivatives and so can be used in the GCP

framework. Another option is to consider β-divergences, which have been popular in
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Figure 5.2: Graphical comparison of different loss functions. Note that some are only
defined for binary or integer values of x (bottom row) and that some are
only defined for nonnegative values of x and/or m.

matrix and tensor factorizations [46, 47, 69]. We give the formulas with the constant

terms (depending only on x) omitted:

f(x,m; β) =


1
β
mβ − 1

β−1
xmβ−1 if β ∈ R \ { 0, 1 } ,

m− x logm if β = 1,

x
m

+ logm if β = 0.

Referring to Table 5.1, β = 1 is the same as Poisson loss with the identity link, and

β = 0 is the same as the Gamma loss with the linear link.

Figure 5.2 shows a graphical summary of all the loss functions. The top row is

for continuous data, and the bottom row is for discrete data. The Huber loss can

be thought of as a smooth approximation of an L1 loss. Gamma, Rayleigh, and

β-divergence are similar, excepting the sharpness of the dip near the minimum.

5.4 GCP decomposition

We now consider how to compute the GCP for a given elementwise loss function.

The majority of this section focuses on dense tensors. Section 5.4.3 discusses both

sparse tensors, i.e., tensors with many entries equal to zero, and scarce tensors, i.e.,

tensors with many entries missing/unknown.
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Recall that we have a data tensor X of size n1 × n2 × · · · × nd and that Ω ⊆ I is

the set of indices where the values of X are known. For a given r, the objective for

GCP decomposition is to find the factor matrices Ak ∈ Rnk×r for k = 1, . . . , d that

solve

(5.25) min F (M;X,Ω) :=
1

|Ω|
∑
i∈Ω

f(xi,mi) subject to M = JA1,A2, . . . ,AdK.

We sum only over the known entries, i.e., i ∈ Ω; the same approach to missing data

has been used for the CP decomposition [4, 5]. We scale by the constant 1/|Ω| so

that we are working with the mean. This is simply a convenience that makes it

easier to compare function values for tensors with different sizes or different amounts

of missing data. This is an optimization problem, and we propose to solve it using

an off-the-shelf optimization method, which has been successful for the standard CP

decomposition [3, 167] and is amenable to missing data [4, 5]. In contrast to an

alternating approach, we do not have to solve a series of optimization problems. The

main advantage of the alternating least squares in the solution of the standard CP

decomposition is that the subproblems have closed-form solutions [118]; in contrast,

the GCP subproblems do not have general closed-form solutions so we do not use an

alternating method.

We focus on first-order methods, so we need to calculate the gradient of F with

respect to the factor matrices. This turns out to have an elegant formulation as

shown in Section 5.4.1. The GCP formulation (5.25) can also be augmented in

various ways. We might add constraints on the factor matrices such as nonnegativity.

Another option is to add L2-regularization on the factor matrices to handle the scale

ambiguity [3], and we explain how to do this in Section 5.4.2. We might alternatively

want to use L1-regularization on the factor matrices to encourage sparsity. The

special structure for sparse and scarce tensors is discussed in Section 5.4.3.

5.4.1 GCP gradient

We need the gradient of F in (5.25) with respect to the factor matrices, and this

is our main result in Theorem 5.3. The importance of this result is that it shows

that the gradient can be calculated via a standard tensor operation called the matri-

cized tensor times Khatri-Rao product (MTTKRP), allowing us to take advantage

of existing optimized implementations for this key tensor operation. Before we get

to that, we establish some useful results in the matrix case. These will be applied to

mode-k unfoldings of M in the proof of Theorem 5.3. The next result is standard in

matrix calculus and left as an exercise for the reader.
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Lemma 5.1. Let M = AB> where A is a matrix of size n × r and B is a matrix

of size p× r. Then

∂mi`

∂ai′j
=

b`j if i = i′,

0 if i 6= i′
for all i, i′ ∈ { 1, . . . , n } , j ∈ { 1, . . . , r } , ` ∈ { 1, . . . , p } .

Next, we consider the problem of generalized matrix factorization in Lemma 5.2,

which is our linchpin result. This keeps the index notation simple but captures

exactly what we need for the main result in Theorem 5.3. In Lemma 5.2, the matrix

W is an arbitrary matrix of weights for the terms in the summation, and the matrix

Y (which depends on W) is a matrix of derivatives of the elementwise loss function

with respect to the model.

Lemma 5.2. Let X,W,A,B be matrices of size n × p, n × p, n × r, and p × r,

respectively. Let f : R×R→ R be a function that is continuously differentiable w.r.t.

its second argument. Define the real-valued function F̃ as

(5.26) F̃ (M; X,W) =
n∑
i=1

p∑
`=1

wi` f(xi`,mi`) subject to M = AB>.

Then the first partial derivative of F̃ w.r.t. A is

∂F̃

∂A
= YB ∈ Rn×r

where we define the n× p matrix Y as

(5.27) yi` = wi`
∂f

∂mi`

(xi`,mi`) for all i ∈ { 1, . . . , n } , ` ∈ { 1, . . . , p } .

Proof. Consider the derivative of F̃ with respect to matrix element aij. We have

∂F̃

∂aij
=

n∑
i′=1

p∑
`=1

wi′`
∂f

∂aij
(xi′`,mi′`) by definition of F

=
n∑

i′=1

p∑
`=1

wi′`
∂f

∂mi′`
(xi′`,mi′`)

∂mi′`

∂aij
by chain rule,

=

p∑
`=1

yi`b`j by Lemma 5.1 and (5.27).

Rewriting this in matrix notation produces the desired result.

Now we can consider the tensor of the GCP problem (5.25) in Theorem 5.3.

For simplicity, we replace Ω with an indicator tensor W such that wi = δi∈Ω and

rewrite F using W. Although this result specifies a specific W, it could be extended

to incorporate general weights such as the relative importance of each entry; see

Section 5.6 for further discussion on this topic.
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Theorem 5.3 (GCP Gradients). Let X be a tensor of size n1 × n2 × · · · × nd and

Ω be the indices of known elements of X. Let f : R × R → R be a function that is

continuously differentiable w.r.t. its second argument. Define W to be an indicator

tensor such that wi = δi∈Ω/|Ω|. Then we can rewrite the GCP problem (5.25) as

(5.28) min F (M;X,W) :=
∑
i∈I

wi f(xi,mi) subject to M = JA1,A2, . . . ,AdK.

Here Ak is a matrix of size nk × r for k ∈ { 1, . . . , d }. For each mode k, the first

partial derivative of F w.r.t. Ak is given by

(5.29)
∂F

∂Ak

= YkZk

where Zk is defined in (5.7) and Yk is the mode-k unfolding of a tensor Y defined by

(5.30) yi = wi
∂f

∂mi

(xi,mi) for all i ∈ I.

Proof. For a given k, recall that Mk = AkZ
>
k . Hence, we can write F in (5.28) as

F (M;X,W) = F̃ (AkZ
>
k ; Xk,Wk),

where F̃ is from (5.26). The result follows from Lemma 5.2 with the substitutions

used in the following table:

Matrix Case X W A B Y n p r

Tensor Case Xk Wk Ak Zk Yk nk nd/nk r

We note that the definition of Y is consistent across all k.

Theorem 5.3 generalizes several previous results: the gradient for CP [3, 180], the

gradient for CP in the case of missing data [5], and the gradient for Poisson tensor

factorization [44].

Consider the gradient in (5.29). The Zk has no dependence on X, Ω, or the

loss function; it depends only on the structure of the model. Conversely, Y has no

dependence on the structure of the model. The elementwise derivative tensor Y is the

same size as X and is zero wherever X is missing data. The structure of Ω determines

the structural sparsity of Y, and this will be important in Section 5.4.3. The form of

the derivative is a matricized tensor times Khatri-Rao product (MTTKRP) with the

tensor Y and the Khatri-Rao product Zk. The MTTKRP is the dominant kernel in

the standard CP computation in terms of computation time and has optimized high-

performance implementations [12, 86, 128, 186]. In the dense case, the MTTKRP

costs O(rnd).
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Algorithm 5.1 computes the GCP loss function and gradient. On Line 2 we

compute elementwise values at known data locations. If all or most elements are

known, we can compute the full model using (5.7) at a cost of rnd. However, if only

a few elements are known, it may be more efficient to compute model values only

at the locations in Ω using (5.6) at a cost of 2r|Ω|. We compute the elementwise

derivative tensor Y in Line 4; here the quantity δi∈Ω is 1 if i ∈ Ω and 0 otherwise. The

cost of Lines 3 and 4 is O(|Ω|). Lines 5 to 7 compute the gradient with respect to

each factor matrix, and the cost is O(drnd). Communication lower bounds as well as

a parallel implementation for MTTKRP for dense tensors are covered in [16]. Since

this is a sequence of MTTKRP operations, we can also consider reusing intermediate

computations as has been done [166] and reduces the d part of the expense. Hence,

the cost is dominated by the MTTKRP, just as for the standard CP-ALS. We revisit

this method in the case of sparse or large-scale tensors in Section 5.4.3.

Algorithm 5.1 GCP loss function and gradient

1: function gcp fg(X,Ω,{Ak | k = 1, . . . , d })
2: mi ← entry({Ak | k = 1, . . . , d } , i) for all i ∈ Ω . Model entries
3: F ← 1

|Ω|
∑

i∈Ω f(xi,mi) . Loss function

4: yi ← (δi∈Ω/|Ω|) ∂f
∂mi

(xi,mi) for all i ∈ I . Elementwise derivative tensor
5: for k = 1, . . . , d do . Full sequence of MTTKRPs
6: Gk ← mttkrp(Y, JA1,A2, . . . ,AdK, k) . Gradients w.r.t. Ak

7: end for
8: return F and {Gk | k = 1, . . . , d }
9: end function

5.4.2 Regularization

It is straightforward to add regularization to the GCP formulation. This may

especially be merited when there is a large proportion of missing data, in which case

some of the factor elements may not be constrained due to lack of data. As an

example, consider simple L2 regularization. We modify the GCP problem in (5.25)

to be

(5.31) minF (M;X,Ω, { ηk }) :=
1

|Ω|
∑
i∈Ω

f(xi,mi) +
d∑

k=1

ηk
2
‖Ak‖2

2

subject to M = JA1,A2, . . . ,AdK.

In this case, the gradients are given by

(5.32)
∂F

∂Ak

= YkZk + ηkAk,
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where Yk and Zk are the same as in (5.30). The difficulty is in picking the regular-

ization parameters, { ηk }. These can all be equal or different, and can be selected

by cross-validation using prediction of held out elements.

5.4.3 GCP Decomposition for Sparse or Scarce Tensors

Sparse and scarce tensors can be efficiently stored by keeping only nonzero/known

values and the corresponding indices. If s is the number of nonzero/known values,

the required storage is s(d+ 1) rather than nd for the dense tensor where every zero

or unknown value is stored explicitly.

The fact that X is sparse does not imply that the Y tensor needed to compute

the gradient (see Theorem 5.3) is sparse. This is because ∂f
∂mi

(0,mi) 6= 0 for general

values of mi. There are two cases where the gradient has a structure that allows us

to avoid explicitly calculating Y:

• Standard Gaussian formulation; see Section 5.7.2 for details.

• Poisson formulation with the identity link; see [44] for details.

Otherwise, we have to calculate the dense Y explicitly to compute the gradients.

For many large-scale tensors, this is infeasible. The fact that X is scarce, however,

does imply that the tensor Y is sparse. This is because all missing elements in X

correspond to zeros in Y.

Let us take a moment to contrast the implication of sparse versus scarce. Recall

that a sparse tensor is one where the vast majority of elements are zero, whereas a

scarce tensor is one where the vast majority of elements are missing. The elementwise

gradient tensor Y for a sparse tensor is structurally dense, but it is sparse for a scarce

tensor. To put it another way, if X is sparse, then the MTTKRP calculation in Line 6

of Algorithm 5.1 has a dense Y; but if X is scarce, then the MTTKRP calculation

uses a sparse Y. Further discussion of sparse versus scarce in the matrix case can be

found in a blog post by Kolda [117]. We summarize the situation in Fig. 5.3.

Dense X⇒ Dense Y

Sparse X⇒ Dense Y

Scarce X⇒ Sparse Y

Figure 5.3: Contrasting sparsity and scarcity in GCP.

The idea that scarcity yields sparsity in the gradient calculation suggests several

possible approaches for handling large-scale tensors. One possibility is to simply

leave out some of the data, i.e., impose scarcity. Consider that we have a vastly
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overdetermined problem because we have nd observations but only need to determine

rdn̄ parameters. Special care needs to be taken if the tensor is sparse, since leaving

out the vast majority of the nonzero entries would clearly degrade the solution.

Another option is to consider stochastic gradient descent, where the batch at each

iteration can be considered as a scarce tensor, leading again to a sparse Y in the

gradient calculation. These are topics that we will investigate in detail in future

work.

5.5 Experimental results

The goal of GCP is to give data analysts the flexibility to try out different loss

functions. This section shows examples that illustrate the differences in the tensor

factorization from using different loss functions. We do not claim that any particular

loss function is better than any other; instead, we want to highlight the ability to

easily use different loss functions. Along the way, we also show the general utility of

tensor decomposition, which includes:

• Data decomposition into explanatory factors: We can directly visual-

ize the resulting components and oftentimes use this for interpretation. This

is analogous to matrix decompositions such as principal component analysis,

independent component analysis, nonnegative matrix factorization, etc.

• Compressed object representations: Object ik in mode k corresponds to

row ik in factor matrix Ak, which is a length-r vector. This can be used as

input to regression, clustering, visualization, machine learning, etc.

We focus primarily on these types of activities. However, we could also consider

filling in missing data, data compression, etc.

All experiments are conducted in MATLAB. The method is implemented as

gcp opt in the Tensor Toolbox for MATLAB [11, 13]. For the optimization, we

use limited-memory BFGS with bound constraints (L-BFGS-B) [36] that requires

only the objective function and its gradient.4 To initialize, we generate random fac-

tors with i.i.d. entries uniform on (0, 1), then re-scale them to make the Frobenius

norm of the corresponding model tensor match that of the data tensor. First-order

optimization methods such as L-BFGS-B typically expect a vector-valued function

f : Rn → R and a corresponding vector-valued gradient, but the optimization vari-

ables in GCP are matrix-valued; see Section 5.7.3 for discussion of how we practically

4We specifically use the MATLAB-compatible translation by Stephen Becker, available at https:
//github.com/stephenbeckr/L-BFGS-B-C.

https://github.com/stephenbeckr/L-BFGS-B-C
https://github.com/stephenbeckr/L-BFGS-B-C
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handle the required reshaping. For simplicity, we choose a rank that works reason-

ably well for the purposes of illustration. Generally, however, the choice of model

rank is a complex procedure. It might be selected based on model consistency across

multiple runs, cross-validation for estimation of hold-out data, or some prediction

task using the factors. Likewise, we choose an arbitrary “run” for the purposes of

illustration. These are nonconvex optimization problems, and so we are not guaran-

teed that every run will find the global minimum. In practice, a user would do a few

runs and usually choose the one with the lowest objective value.

5.5.1 Social network

We consider the application of GCP to a social network dataset. Specifically,

we use a chat network from students at UC Irvine [152, 153, 159]. It contains

transmission times and sizes of 59,835 messages sent among 1899 anonymized users

over 195 days from April to October 2004. Because many of the users included in

the dataset sent few messages, we select only the 200 most prolific senders in this

analysis. We consider a three-way binary tensor of size 200×200×195 of the following

form:

x(i1, i2, i3) =

1 if student i1 sent a message to student i2 on day i3,

0 otherwise.

It has 9764 nonzeros, so it is only 0.13% dense though we treat it as dense in this

work. The number of interacting pairs per day is shown in Fig. 5.4a, and there is

clearly more activity earlier in the study. To give a sense of how many days any

given pair of students interact, we consider the histogram in Fig. 5.4b. The vast

majority of students that interacted had only one interaction, i.e., 4 × 104 of the

interactions were for only one day. The maximum number of interaction days was

33, which occurred for only one pair.

5.5.1.1 Explanatory factors for social network

We compare the explanatory GCP factors using three different loss functions in

Fig. 5.5. Recall that each component is the outer product of three vectors; these

vectors are what we plot to visualize the model. In all cases, we use r = 7 compo-

nents because it seemed to be adequately descriptive. To visualize the factorization,

components are shown as “rows”, numbered on the left, and ordered by magnitude.

We show all three modes as bar plots. The first two modes correspond to students,

as senders and receivers. They are ordered from greatest to least total activity and
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(a) Number of interacting pairs per day. Note
the gap around day 70 and the decrease in ac-
tivity toward the end of the experiment.

(b) Histogram of number of interactions per pair
where count is in the log scale. Most students
only interact once. The greatest number of in-
teraction days is 33.

Figure 5.4: Statistics for a social network tensor where x(i1, i2, i3) = 1 if student i1
sends a message to student i2 on day i3.

normalized to unit length. The third mode is day, and it is normalized to the mag-

nitude of the component. Each component groups students that are messaging one

another along with the dates of activity.

For the standard CP in Fig. 5.5a, we did not add a nonnegative constraint on the

factors, but there are only a few small negative entries (see, e.g., the third compo-

nent). There is a clear temporal locality in the first three factors. The remaining four

are more diffuse. A few sender/receiver factors capture only a few large magnitude

entries: sender factor 4, receiver factor 6, and both sender/receiver factors 7.

For Bernoulli with an odds link in Fig. 5.5b, the factor matrices are constrained

to be nonnegative. We see even more defined temporal locality in this version. In

particular, components 6 and 7 do not really have an analogue in the Gaussian ver-

sion. The sender and receiver factors are correlated with one another in components

2, 6, and 7, which is something that we did not really see in the Gaussian case. Such

correlations are indicative of a group talking to itself. The factors in this case seem

to do a better job capturing the activity on the most active days per Fig. 5.4a.

For Bernoulli with a logit link in Fig. 5.5c, the interpretation is very different.

Recall that negative values correspond to observing zeros. The first component is

roughly inversely correlated with the activity per day, i.e., most entries are zeros and

this is what is picked up. It is only really in components 5 and 7 where there is some

push toward positive values, i.e., interactions.

Overall, the three loss functions produce fairly different decompositions and each

choice exposes a different aspect of the data. For example, standard CP tended

to find factors with smaller groups of senders and receivers while Bernoulli with

an odds link tended to find factors that were generally more temporally localized.
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(a) Gaussian (standard CP). Some factors only pick up one or two students as
senders or receivers.

(b) Bernoulli-odds (with nonnegativity constraints). Compared with CP-ALS,
many students are identified with each component and more emphasis is placed
on the heavier traffic days.

(c) Bernoulli-logit. A negative product means the likely result is a zero, i.e., no
communication. The first few factors are focused primarily on the zeros.

Figure 5.5: GCP tensor decomposition of 200×200×195 binary (0/1) social network
tensor using different loss functions and r = 7. The three loss functions
group senders and receivers in different ways, exposing different aspects
of the data; selecting the most appropriate will depend on the context.
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Bernoulli with a logit link seemed to most clearly identify overall activity over time.

In this case it is not immediately clear which decomposition to prefer, highlighting

the benefit of a generic framework like GCP that allows data analysts to try several

decompositions and combine the insights obtained from them all.

5.5.1.2 Prediction for social network

To show the benefit of using a different loss function, we consider the problem

of predicting missing values. We run the same experiment as before but hold out

50 ones and 50 zeros at random when fitting the model. We then use the model to

predict the held out values. Let Ω denote the set of known values, so i 6∈ Ω means

that the entry was held out. We measure the accuracy of the prediction using the

log-likelihood under a Bernoulli assumption, i.e., we compute

log-likelihood =
∑
xi=1
i6∈Ω

log pi +
∑
xi=0
i 6∈Ω

log(1− pi),

where pi is the probability of a one as predicted by the model. A higher log-likelihood

indicates a more accurate prediction. We convert the predicted values mi, computed

from (5.6), to probabilities pi (truncated to the range [10−16, 1− 10−16]) as follows:

• Gaussian. Let pi = mi, truncating to the range (0,1).

• Bernoulli-odds. Convert from the odds ratio: pi = mi/(1 +mi).

• Bernoulli-logit. Convert from the log-odds ratio: pi = emi/(1 + emi).

We repeat the experiment two hundred times, each time holding out a different set of

100 entries. The results are shown in Fig. 5.6. This is a difficult prediction problem

since ones are extremely rare; the differences in prediction performance were negli-

gible for predicting the zeros but predicting the ones was much more difficult. Both

Bernoulli-odds and Bernoulli-logit consistently outperform the standard approach

based on a Gaussian loss function. We also note that the Gaussian-based predic-

tions were outside of the range [0, 1] for 11% of the predictions, making it tricky to

interpret the Gaussian-based predictions.

5.5.2 Neural activity of a mouse

In recent work, Williams et al. [212] consider the application of CP tensor decom-

position to analyze the neural activity of a mouse completing a series of trials. They

have provided us with a reduced version of their dataset to illustrate the utility of the

GCP framework. In the dataset we study, the setup is as follows. A mouse runs a



146

(a) Prediction of 100 missing entries for 200 trials. (b) Box plot of prediction results.

Figure 5.6: Log-likelihood for GCP with different loss functions. Each trial holds out
50 ones and 50 zeros at random. The GCPs are computed and used to
estimate each held-out value. A higher log-likelihood indicates a better
prediction. In the box plot, the box represents 25th–75th percentiles
with a horizontal midline at the 50th percentile, i.e., the median. The
whiskers extend to the most extreme data points that are not considered
outliers, and then outliers are indicated with plus-symbols.

maze over and over again, for a total of 300 trials. The maze has only one junction,

at which point the mouse must turn either right or left. The mouse is forced to

learn which way to turn to receive a reward. For the first 75 trials, the mouse gets

a reward if it turns right; for the next 125 trials, it gets a reward if it turns left; and

for the final 100 trials, it gets a reward if it turns right. Data was recorded from

the prefrontal cortex of a mouse using calcium imaging; specifically, the activity of

282 neurons was recorded and processed so that all data values lie between 0 and 1.

The neural activity in time for a few sample neurons is shown in Fig. 5.7; we plot

each of the 300 different trials and the average value. From this image, we can see

that different neurons have distinctive patterns of activity. Additionally, we see an

example of at least one neuron that is clearly active for some trials and not for others

(Neuron 117).

This is large and complex multiway data. We can arrange this data as a three-

way nonnegative tensor as follows: 282 (neurons) × 110 (time points) × 300 trials.

Applying GCP tensor decomposition reduces the data into explanatory factors, as

we discuss in Section 5.5.2.1. We show how the factors can be used in a regression

task in Section 5.5.2.2.
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Figure 5.7: Example neuron activity across all trials. Each thin line (randomly col-
ored) is the time profile for a single trial, and the single dark line is the
average over all 300 trials. Different neurons have distinctive temporal
patterns. Moreover, some have markedly different activity for different
trials, like Neuron 117.

5.5.2.1 Explanatory factors for mouse neural activity

We compare the results of using different loss functions in terms of explanatory

factors. In all cases, we use r = 8 components. The first mode corresponds to the

neurons and is normalized to the size of the component, The second and third modes

are, respectively, within-trial time and trial, each normalized to length 1. The neuron

factors are plotted as bar graphs, showing the activation level of each neuron. The

example neurons in Fig. 5.7 are highlighted as red bars; the rest are gray. The time

factors are plotted as lines, and turn out to be continuous because that is an inherent

feature of the data itself. We did nothing to enforce continuity in those factors. The

trial factors are scatter plots, color coded to indicate which way the mouse turned.

The dot is filled in if the mouse received a reward. When the rules changed (at trial

75 and 200, indicated by vertical dotted lines), the mouse took several trials to figure

out the new way to turn for the reward.

The result of a standard CP analysis is shown in Fig. 5.8a. Several components are

strongly correlated with the trial conditions, indicating the power of the CP analysis.

For instance, component 3 correlates with receiving a reward (filled). Components

5, 6, and 8 correlate to turning left (orange) and right (green). Their time profiles
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align with when these activities are happening (e.g., end of trial for reward and mid-

trial for turn). The problem with the standard CP model is that interpretation of

the negative values is difficult. Consider that neuron 212 has a significant score for

nearly every component, making it hard to understand its role. Indeed, several of

the example neurons have high magnitude scores for multiple components, and so it

might be hard to hypothesize which neurons correspond to which trial conditions.

In contrast, consider Fig. 5.8b which shows the results of GCP with β-divergence

with β = 0.5. The factorization is arguably easier to interpret since it has only

nonnegative values. As before, we see that several components clearly correlate

with the trial conditions. Components 3 and 6 correlate with reward conditions.

Components 5 and 7 correlate to the turns. In this case, the example neurons seem

to have clearer identities with the factors. Neuron 176 is strongest for factor 3

(reward), whereas neuron 273 is strongest for factor 6 (no reward). Some of the

components do not correspond to the reward or turn, and we do not always know

how to interpret them. They may have to do with external factors that are not

recorded in the experimental metadata. We might also hypothesize interpretations

for some components. For instance, the second component is active mid-trial and

may have to do with detecting the junction in the maze. The fourth component

also seems to capture similar behavior but slightly shifted in time, suggesting that

aligning the temporal traces could yield an even more parsimonious decomposition.

For further comparison, we include the results of using Rayleigh, Gamma, and

Huber loss functions in Fig. 5.9. These capture many of the same trends.

5.5.2.2 Regression task for mouse neural activity

Recall that the tensor factorization has no knowledge of the experimental con-

ditions, i.e., which way the mouse turned or whether or not it received a reward.

Suppose that the experimental logs were corrupted in such a way that we lost 50%

of the trial indicators (completely at random rather than in a sequence). For in-

stance, we might not know whether the mouse turned left or right in Trial 87. We

can use the results of the GCP tensor factorization to recover that information. Ob-

serve that each trial is represented by 8 values, i.e., a score for each component.

These vectors can be used for regression.

Our experimental setup is as follows. We randomly selected 50% of the 300 trials

as training data and use the remainder for testing. We do simple linear regression.

Specifically, we let Atrain
3 be the rows of A3 corresponding to the training trials and

ytrain be the corresponding binary responses (e.g., 1 for left turn and 0 for right turn).
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(a) Gaussian (standard CP) is difficult to interpret because of negative values

(b) Beta-divergence with β=0.5 has no negative factor values and so is easier to interpret

Figure 5.8: GCP tensor decomposition of mouse neural activity. Components or-
dered by size (top to bottom). Example neurons (26, 62, 82, 117, 154,
176, 212, 249, 273) from Fig. 5.7 are highlighted in red. Trial symbols are
coded by conditions: color indicates turn and filled indicates a reward.
The rule changes are denoted by vertical dotted lines. Some factors split
the trials by turn (green versus orange) and others split by reward (open
versus filled), even though the tensor decomposition has no knowledge of
the trial conditions.
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(a) Rayleigh with nonnegativity constraints

(b) Gamma with nonnegativity constraints

(c) Huber with ∆=0.25 and nonnegativity constraints

Figure 5.9: Additional GCP tensor decompositions of mouse neural activity (cf.
Fig. 5.8).
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Loss Regression Coefficients Max Incorrect
Type 1 2 3 4 5 6 7 8 Std. Dev. out of 15000

Gaussian -9.6 2.1 0.5 -0.8 3.7 15.9 3.5 1.3 2.2e+00 0
Beta Div. 5.5 5.4 -4.6 3.0 5.9 -1.8 -5.6 1.9 1.2e+00 0
Rayleigh 2.7 1.9 1.2 0.9 5.6 3.7 -5.3 -0.4 1.2e+00 0
Gamma -15.1 22.4 6.2 4.3 -0.3 -7.6 -8.2 10.5 3.0e+00 1454
Huber 2.8 -1.3 3.4 9.7 -0.6 1.4 -1.5 -2.7 7.1e-01 0

(a) Turn

Loss Regression Coefficients Max Incorrect
Type 1 2 3 4 5 6 7 8 Std. Dev. out of 15000

Gaussian 11.6 -0.5 18.7 -2.1 -6.9 -8.6 0.0 -3.2 3.6e+00 37
Beta Div. 5.1 -0.8 7.4 -0.1 2.8 -3.8 2.6 2.4 1.1e+00 0
Rayleigh -6.3 8.5 8.1 1.0 -1.6 5.1 1.9 -3.0 1.3e+00 520
Gamma 10.7 1.9 0.5 0.3 -2.1 3.6 5.6 -6.4 1.3e+00 172
Huber 3.0 13.5 -9.0 2.3 2.5 2.2 -1.0 4.0 1.3e+00 62

(b) Reward

Table 5.2: Regression coefficients and prediction performance for different loss func-
tions

We solve the regression problem:

min
β
‖Atrain

3 β − ytrain‖.

We let Atest
3 be the rows of A3 corresponding to the testing trials. Using the optimal

β, we make predictions for ytest by computing

ŷtest =
[
Atest

3 β ≥ 0.5
]
.

We did this 100 times, both for determining the turn direction (left or right) and the

reward (yes or no).

The results are shown in Table 5.2. We caution that these are merely for illustra-

tive purposes as changing the ranks and other parameters might impact the relative

performance of the methods. For the turn results, shown in Table 5.2a, only the

Gamma loss failed to achieve perfect classification. We can see which factors were

most important based on the regression coefficients. For instance, the sixth compo-

nent is clearly the most important for Gaussian, whereas the fifth and seventh are

key for β-divergence. The reward was harder to predict, per the results in Table 5.2b.

This is likely due to the fact that there were relatively few times when the reward

was not received. For instance, the Rayleigh method performed worst, in contrast

to its perfect classification for the turn direction. Only the β-divergence achieved

perfect regression with the third component being the most important predictor.
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Figure 5.10: Rainfall totals per month in several regions in India. Each colored thin
line represents a single year. The average is shown as a thick black line.
Monsoon season is June – September.

Figure 5.11: Histogram of monthly rainfall totals for 36 regions in India over 115
years. The estimated gamma distribution is shown in red.

5.5.3 Rainfall in India

We consider monthly rainfall data for different regions in India for the period

1901–2015, available from Kaggle.5 For each of 36 regions, 12 months, and 115

years, we have the total rainfall in millimeters. There is a small amount of missing

data (0.72%), which GCP handles explicitly. We show example monthly rainfalls for

6 regions in Fig. 5.10.

Oftentimes the gamma distribution is used to model rainfall. A histogram of all

monthly values is shown in Fig. 5.11 along with the estimated gamma distribution

(in red), and it seems as though a gamma distribution is potentially a reasonable

model. Most rainfall totals are very small (the smallest nonzero value is 0.1mm,

which is presumably the precision of the measurements), but the largest rainfall in a

month exceeds 2300mm. For this reason, we consider the GCP tensor decomposition

with gamma loss.

A comparison of two GCP tensor decompositions is shown in Fig. 5.12. Factors in

the first two modes (region and year) are normalized to length one, and the monthly

factor is normalized by the size of the component. The rainfall from year to year

5https://www.kaggle.com/rajanand/rainfall-in-india

https://www.kaggle.com/rajanand/rainfall-in-india
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(a) Gaussian (standard CP) with nonnegativity constraints, which separates July into its own
component.

(b) Gamma (with nonnegativity constraints), which picks up the monsoon in the first component.

Figure 5.12: GCP tensor decomposition of India rainfall data, organized into a ten-
sor of 36 regions, 115 years, and 12 months. The first two modes are
normalized to length 1

follows no clear pattern, and this is consistent with the general understanding of these

rainfall patterns. India is known for its monsoons, which occur in June–September

of each year.

The GCP with standard Gaussian error loss and nonnegative constraints is shown

in Fig. 5.12a. The first component captures the period July–September, which is the

main part of the monsoon season. Components 3, 4, and 5 are dominated by a few

regions. It is well known that Gaussian fitting can be swamped by outliers, and this

may be the case here.

The GCP with the gamma distribution loss function is shown in Fig. 5.12b. This

captures the monsoon season primarily in the first two components. There are no

particular regions that dominate the factors.
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5.6 Discussion

We have presented the GCP tensor decomposition framework which allows the use

of an arbitrary differentiable elementwise loss function, generalizing previous works

and enabling some extensions. GCP includes standard CP tensor decomposition

and Poisson tensor decomposition [44], as well as decompositions based on beta

divergences [48]. Using the GCP framework, we are able to define Bernoulli tensor

decomposition for binary data, which is something like the tensor decomposition

version of logistic regression and is derived via maximum likelihood. Alternatively,

GCP can also handle a heuristic loss function such as Huber loss. We do not claim

that any particular loss function is necessarily better than any other. Rather, for

data analysis, it is often useful to have a variety of tools available, and GCP provides

flexibility in terms of choosing among different loss functions to fit the needs of the

analyst. Additionally, the GCP framework efficiently manages missing data, which

is a common difficulty in practice. Our main theorem (Theorem 5.3) generalizes

prior results for the gradient in the case of standard least squares, Poisson tensor

factorization, and for missing data. It further reveals that the gradient takes the

form of an MTTKRP, enabling the use of efficient implementations for this key

tensor operation.

In our framework, we have proposed that the weights wi be used as indicators

for missingness and restricted as wi ∈ { 0, 1 }. To generalize this, we can easily

incorporate nonnegative elementwise weights wi ≥ 0. For instance, we might give

higher or lower weights depending on the confidence in the data measurements. In

recommender systems, there is also an idea that missing data may not be entirely

missing at random. In this case, it may be useful to treat missing data elements as

zeros but with low weights; see, e.g., [190].

For simplicity, our discussion also focused on using the same elementwise loss

function f(xi,mi) for all entries of the tensor. However, we could easily define a

different loss function for every entry, i.e., fi(xi,mi). The only modification is to the

definition (5.30) of the elementwise derivative tensor Y. If we have a heterogeneous

mixture of data types, this may be appropriate. In the matrix case, Udell, Horn,

Zadeh, and Boyd [202] have proposed generalized low-rank models (GLRMs) which

use a different loss function for each column in matrix factorization. We have also

assumed our loss functions are continuously differentiable with respect to mi, but

that can potentially be relaxed as well in the same way as done by Udell et al. [202].

In our discussion of scarcity in Section 5.4.3, we alluded to the potential utility of

imposing scarcity for scaling up to larger scale tensors. In stochastic gradient descent,

for example, we impose scarcity by selecting only a few elements of the tensor at each
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iteration. Another option is to purposely omit most of the data, depending on the

inherent redundancies in the data (assuming it is sufficiently incoherent). These are

topics that we will investigate in detail in future work.

Lastly, it may also be of interest to extend the GCP framework to functional

tensor decomposition. Garcke [73], e.g., has used hinge and Huber losses for fitting

a functional version of the CP tensor decomposition.

5.7 Supplementary material

5.7.1 Kruskal tensors with explicit weights

It is sometimes convenient to write (5.6) with explicit positive weights λ ∈ Rr
+,

i.e.,

(5.33) m(i1, i2 . . . , id) =
r∑
j=1

λ(j) a1(i1, j) a2(i2, j) · · · ad(id, j),

with shorthand M = Jλ; A1,A2, . . . ,AdK. In this case, the mode-k unfolding in (5.7)

is instead given by

Mk = Ak diag(λ)ZT
k .

We can also define the vectorized form

(5.34) M = Jλ; A1,A2, . . . ,AdK⇒ m = Zλ,

where

(5.35) Z := Ad �Ad−1 � · · · �A1 ∈ Rnd×r.

Using these definitions, it is a straightforward exercise to extend Theorem 5.3 to

the case M = Jλ; A1,A2, . . . ,AdK.

Corollary 5.4. Let the conditions of Theorem 5.3 hold except that the model has

an explicit weight vector so that M = Jλ; A1,A2, . . . ,AdK. In this case, the partial

derivatives of F w.r.t. Ak and λ are

(5.36)
∂F

∂Ak

= YkZk diag(λ) and
∂F

∂λ
= ZTy,

where Yk and y are, respectively, the mode-k unfolding and vectorization of the tensor

Y defined in (5.30), Zk is defined in (5.7), and Z is defined in (5.35).
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Algorithm 5.2 Wrapper for using first-order optimization method

1: function gcp fg wrapper(a)
2: {Ak | k = 1, . . . , d } ← vec2kt(a)
3: [F, {Gk | k = 1, . . . , d }]← gcp fg(X,Ω, {Ak | k = 1, . . . , d })
4: g ← kt2vec({Gk | k = 1, . . . , d })
5: return [F, g]
6: end function

5.7.2 Special structure of standard CP gradient

In standard CP, which uses f(x,m) = (x−m)2, the gradient has special structure

that can be exploited when X is sparse. Leaving out the constant, ∂f
∂m

= −x + m;

therefore, Y = −X + M. From (5.29), the CP gradient is

(5.37)
∂F

∂Ak

= −(Xk −Mk)Zk = −XkZk + Ak(Z
>
k Zk).

The first term is an MTTKRP with the original tensor, and so it can exploit sparsity

if X is sparse, reducing the cost from O(rnd) to O(r2d ·nnz(X)) and avoiding forming

Zk explicitly. The second term can also avoid forming Zk explicitly since its gram

matrix is given by

(5.38) Z>k Zk = (A>1 A1) ∗ · · · ∗ (A>k−1Ak−1) ∗ (A>k+1Ak+1) ∗ · · · ∗ (A>d Ad),

where ∗ is the Hadamard (elementwise) product. This means that Z>k Zk is trivial to

compute, requiring only O(r2dn̄) operations. (5.37) is a well-known result; see, e.g.,

[3]. Computation of MTTKRP with a sparse tensor is discussed further in [12].

5.7.3 GCP optimization

First-order optimization methods expect a vector-valued function f : Rn → R
and a corresponding vector-valued gradient, but our variable is the set of d factor

matrices. Because it may not be immediately obvious, we briefly explain how to

make the conversion. We define the function kt2vec to convert a Kruskal tensor,

i.e., a set of factor matrices, as follows:

a← kt2vec({Ak | k = 1, . . . , d }) := [vec(A1); vec(A2); . . . ; vec(Ad)] .

The vec operator converts a matrix to a column vector by stacking its columns, and

we use MATLAB-like semicolon notation to say that the kt2vec operator stacks all

those vectors on top of each other. We can define a corresponding inverse operator,

vec2kt. The number of variables in the set of factor matrices {Ak | k = 1, . . . , d }
is drn̄, and this is exactly the same number in the vector version a because it is
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just a rearrangement of the entries in the factor matrices. Since the entries of the

gradient matrices correspond to the same entries in the factor matrices, we use the

same transformation function for them. The wrapper that would be used to call an

optimization method is shown in Algorithm 5.2. The optimization method would

input a vector optimization variable, this is converted to a sequence of matrices, we

compute the function and gradient using Algorithm 5.1, we turn the gradients into

a vector, and we return this along with the function value.



CHAPTER VI

Ensemble K-subspaces for data from unions of

subspaces

Subspace clustering is the unsupervised grouping of points lying near a union of

low-dimensional linear subspaces. Algorithms based directly on geometric proper-

ties of such data tend to either provide poor empirical performance, lack theoretical

guarantees, or depend heavily on their initialization. This chapter presents a novel

geometric approach to the subspace clustering problem that leverages ensembles of

the K-subspaces (KSS) algorithm via the evidence accumulation clustering frame-

work. We derive general recovery guarantees for algorithms that form an affinity

matrix with entries close to a monotonic transformation of pairwise absolute inner

products, and show that a specific instance of our Ensemble K-subspaces (EKSS)

method has this property, yielding recovery guarantees under similar conditions to

state-of-the-art algorithms. The finding is, to the best of our knowledge, the first re-

covery guarantee for evidence accumulation clustering and for a K-subspaces based

algorithm. Synthetic and real data experiments show excellent performance for a

broad range of setups.

This chapter presents joint work with Dr. John Lipor, Dr. Yan Shuo Tan, and

Dejiao Zhang that began when Dr. Lipor proposed we work together on the challenge

of analyzing the Ensemble K-subspaces algorithm he was developing. The analysis

ended up having some interesting and involved features, and our joint work led to

the submitted journal paper that this chapter presents:

[98] David Hong∗, John Lipor∗, Yan Shuo Tan, and Laura Balzano. Subspace

Clustering using Ensembles of K-Subspaces, 2018. Submitted. (∗equal contribu-

tion). arXiv: 1709.04744v2.

158
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6.1 Introduction

In modern computer vision problems such as face recognition [20] and object

tracking [198], researchers have found success applying the union of subspaces (UoS)

model, in which data vectors lie near one of several low-rank subspaces. This model

can be viewed as a generalization of principal component analysis (PCA) to the case

of multiple subspaces, or alternatively a generalization of clustering models where the

clusters have low-rank structure. The modeling goal is therefore to simultaneously

identify these underlying subspaces and cluster the points according to their nearest

subspace. Algorithms designed for this task are called subspace clustering algorithms.

This topic has received a great deal of attention in recent years [207] due to various

algorithms’ efficacy on real-world problems such as face recognition [74], handwritten

digit recognition [119], and motion segmentation [198].

One approach to subspace clustering is to leverage self-expressiveness [67, 132,

135, 216, 217], i.e., the fact that points lying on a UoS are often most efficiently

represented by other points in the same subspace. Several state-of-the-art algo-

rithms take this approach, but these methods can degrade when subspaces get very

close as shown for sparse subspace clustering (SSC) in Fig. 6.2. Geometric methods

[7, 30, 76, 91, 107, 162, 200, 225] take a different approach by more directly utilizing

the properties of data lying on a UoS. For many geometric methods, the inner prod-

uct between points is a fundamental tool used in algorithm design and theoretical

analysis. In particular, the observation that the inner product between points on

the same subspace is often greater than that between points on different subspaces

plays a key role. This idea motivates the thresholded subspace clustering (TSC)

algorithm [91], appears in the recovery guarantees of the conic subspace clustering

algorithm [107], and has been shown to be an effective method of outlier rejection

in both robust PCA [169] and subspace clustering [76]. However, despite directly

leveraging the UoS structure in the data, geometric methods tend to either exhibit

poor empirical performance, lack recovery guarantees, or depend heavily on their

initialization.

In this work, we aim to overcome these issues through a set of general recovery

guarantees as well as a novel geometric algorithm that achieves state-of-the-art per-

formance across a variety of benchmark datasets. We develop recovery guarantees

that match the state-of-the-art and apply to any algorithm that builds an affinity

matrix A with entries close to a monotonic transformation of pairwise absolute inner

products, i.e., for which

(6.1) |Ai,j − f (|〈xi, xj〉|)| < τ,

where f is a monotonic function, xi, xj are data points, and τ > 0 is the maximum
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deviation. Such affinity matrices arise in settings where only approximate inner

products are practically available (e.g., dimensionality-reduced data), as well as in

settings where deviating from pairwise inner products produces better empirical per-

formance (e.g., by incorporating higher-order structure). We propose the Ensemble

K-subspaces (EKSS) algorithm, which builds its affinity matrix by combining the

outputs of many instances of the well-known K-subspaces (KSS) algorithm [7, 30]

via the evidence accumulation clustering framework [72]. We show that the affinity

matrix obtained from the first iteration of KSS fits the observation model (6.1) and

consequently enjoys strong theoretical guarantees. To the best of our knowledge,

these results are the first theoretical guarantees characterizing an affinity matrix re-

sulting from evidence accumulation, as well as the first recovery guarantees for any

variant of the KSS algorithm. Finally, we demonstrate that EKSS achieves excellent

empirical performance on several canonical benchmark datasets.

The remainder of this chapter is organized as follows. In Section 6.2 we define

the subspace clustering problem in detail and give an overview of the related work.

In Section 6.3 we propose the Ensemble K-subspaces algorithm. Section 6.4 contains

the theoretical contributions of this chapter. We demonstrate the strong empirical

performance of EKSS on a variety of datasets in Section 6.5. Conclusions and future

work are described in Section 6.6.

6.2 Problem Formulation & Related Work

Consider a collection of points X = {x1, . . . , xN } in RD lying near a union of

K subspaces S1, . . . ,SK having dimensions d1, . . . , dK . Let X ∈ RD×N denote the

matrix whose columns are the points in X . The goal of subspace clustering is to label

points in the unknown union of K subspaces according to their nearest subspace.

Once the clusters have been obtained, the corresponding subspace bases can be

recovered using principal components analysis (PCA).

6.2.1 Self-expressive approaches

Most state-of-the-art approaches to subspace clustering rely on a self-expressive

property of UoS data: informally stated, each point in a UoS is often most efficiently

represented by other points in the same subspace. These methods typically use a self-

expressive data cost function that is regularized to encourage efficient representation

as follows:

min
Z
‖X−XZ‖2

F + λ ‖Z‖(6.2)

subject to diag(Z) = 0,
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where λ balances the regression and penalization terms and ‖Z‖ may be the 1-norm

as in sparse subspace clustering (SSC) [67], nuclear norm as in low-rank represen-

tation (which omits the constraint on Z) [132], or a combination of these and other

norms. The solution to (6.2) is used to form the affinity/similarity matrix |Z|+ |Z|T ,

and spectral clustering on this matrix concludes these methods. Other terms can

be added to (6.2) for robustness to noise and outliers, and numerous recent pa-

pers follow this framework [135, 181, 187, 206]. Solving (6.2) can be prohibitive

for large datasets; algorithms such as [216, 217] employ orthogonal matching pur-

suit and elastic-net formulations to reduce computational complexity and improve

connectivity.

Self-expressive approaches typically have theoretical results guaranteeing no false

connections (NFC), i.e., that points lying in different subspaces have zero affinity.

These guarantees depend on a notion of distance between subspaces called the sub-

space affinity (6.9). Roughly stated, the closer any pair of underlying subspaces is,

the more difficult the subspace clustering problem becomes. An excellent overview

of these results is given in [210].

6.2.2 Geometric approaches

One class of geometric approaches, broadly speaking, applies spectral cluster-

ing on an affinity matrix built by finding a set of q “nearest neighbors” for each

point. An early example of this type of algorithm is the Spectral Local Best-Fit

Flats (SLBF) algorithm [226], in which neighbors are selected in terms of Euclidean

distance, with the optimal number of neighbors estimated via the introduced local

best-fit heuristic. While this heuristic is theoretically motivated, no clustering guar-

antees accompany this approach, and its performance on benchmark datasets lags

significantly behind that of self-expressive methods. The greedy subspace clustering

(GSC) algorithm [162] greedily builds subspaces by adding points with largest projec-

tion to form an affinity matrix, with the number of neighbors fixed. This algorithm

has strong theoretical guarantees, and while its performance is still competitive, it

lags behind that of self-expressive methods. Thresholded subspace clustering (TSC)

[91] chooses neighbors based on the largest absolute inner product, and this simple

approach obtains correct clustering under assumptions similar to those considered

in the analysis of SSC. However, empirical results show that TSC performs poorly

on a number of benchmark datasets. Our proposed algorithm possesses the same

theoretical guarantees of TSC while also achieving excellent empirical performance.

In contrast to the above methods, the K-subspaces (KSS) algorithm [7, 30] seeks
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to minimize the sum of residuals of points to their assigned subspace, i.e.,

(6.3) min
C,U

K∑
k=1

∑
i:xi∈ck

∥∥xi −UkU
T
k xi
∥∥2

2
,

where C = { c1, . . . , cK } denotes the set of estimated clusters and U = {U1, . . . ,UK }
denotes the corresponding set of orthonormal subspace bases. We claim that this is

a “natural” choice of objective function for the subspace clustering problem since its

value is zero if a perfect UoS fit is obtained. Further, in the case of noiseless data,

the optimal solution to (6.3) does not depend on how close any pair of subspaces is,

indicating that a global solution to (6.3) may be more robust than other objectives

to subspaces with high affinity.

However, (6.3) was recently shown to be even more difficult to solve than the

K-means problem in the sense that it is NP-hard to approximate within a constant

factor [76] in the worst case. As a result, researchers have turned to the use of

alternating algorithms to obtain an approximate solution. Beginning with an initial-

ization of K candidate subspace bases, KSS alternates between (i) clustering points

by nearest subspace and (ii) obtaining new subspace bases by performing PCA on

the points in each cluster. The algorithm is computationally efficient and guaranteed

to converge to a local minimum [30, 200], but as with K-means, the KSS output is

highly dependent on initialization. It is typically applied by performing many restarts

and choosing the result with minimum cost (6.3) as the output.

This idea was extended to minimize the median residual (as opposed to mean) in

[225], where a heuristic for intelligent initialization is also proposed. In [17], the au-

thors use an alternating method based on KSS to perform online subspace clustering

in the case of missing data. In [89], the authors propose a novel initialization method

based on ideas from [226], and then perform the subspace update step using gradient

steps along the Grassmann manifold. While this method is computationally efficient

and improves upon the previous performance of KSS, it lacks theoretical guarantees.

Most recently, the authors of [76] show that the subspace estimation step in KSS

can be cast as a robust subspace recovery problem that can be efficiently solved us-

ing the Coherence Pursuit (CoP) algorithm [169]. The authors motivate the use of

CoP by proving that it is capable of rejecting outliers from a UoS and demonstrate

that replacing PCA with CoP results in strong empirical performance when there

are many points per subspace. However, performance is limited when there are few

points per subspace, and the algorithm performance is still highly dependent on the

initialization. Moreover, CoP can be easily integrated into our proposed algorithm

to provide improved performance.

Our method is based on the observation that the partially correct clustering in-
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formation from each random initialization of KSS can be leveraged using consensus

clustering in such a way that the consensus is much more informative than even the

best single run. Unlike the above-mentioned variations on KSS, our proposed ap-

proach has cluster recovery guarantees, and its empirical performance is significantly

stronger.

6.2.3 Consensus Clustering, Evidence Accumulation and Stability Selec-
tion

Ensemble methods have been used in the context of general clustering for some

time and fall within the topic of consensus clustering, with an overview of the benefits

and techniques given in [75]. The central idea behind these methods is to obtain

many clusterings from a simple base clusterer, such as K-means, and then combine

the results intelligently. To obtain different base clusterings, diversity of some sort

must be incorporated. This is typically done by obtaining bootstrap samples of the

data [125, 142], subsampling the data to reduce computational complexity [201], or

performing random projections of the data [197]. Alternatively, the authors of [70, 71]

use the randomness in different initializations of K-means to obtain diversity. We

take this approach here for subspace clustering. After diversity is achieved, the base

clustering results must be combined.

The evidence accumulation clustering framework laid out in [72] combines results

by voting, i.e., creating a co-association matrix A whose (i, j)th entry is equal to the

number of times two points are clustered together.1 A theoretical framework for this

approach is laid out in [34], where the entries of the co-association matrix are mod-

eled as Binomial random variables. This approach is studied further in [133, 134], in

which the clustering problem is solved as a Bregman divergence minimization. These

models result in improved clustering performance over previous work but are not ac-

companied by any theoretical guarantees with regard to the resulting co-association

matrix. Further, in our experiments, we did not find the optimization-based ap-

proach to perform as well as simply running spectral clustering on the resulting

co-association matrix.

Subspace clustering can also be viewed through the lens of variable selection by

restating the goal as follows: select from among all pairs of samples those that came

from the same subspace. Each variable corresponds to a pair of samples and selection

corresponds to clustering the two together. In this framework, the co-associations in

evidence accumulation [72, Section 3.2] correspond to the selection probabilities of

individual variables in stability selection [140, Definition 1]. This connection may be

1In the context of consensus clustering, we use the terms affinity matrix and co-association
matrix interchangeably.
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Figure 6.1: Co-association matrix of EKSS for B = 1, 5, 50 base clusterings. Data
generation parameters are D = 100, d = 3, K = 4, N = 400, and
the data is noise-free; the algorithm uses K̄ = 4 candidate subspaces of
dimension d̄ = 3 and no thresholding. Resulting clustering errors are
61%, 25%, and 0%.

a promising avenue for further investigation, especially in the aspects where stability

selection differs from our current approach. For example, [140] selects variables based

on their stability paths, i.e., their selection probabilities over a sweep of regularization

parameters, and using this to handle some of the tuning parameters in EKSS could

be an interesting extension of our current work. Furthermore, [140] obtains diversity

primarily by sub-sampling the data. The random initializations of EKSS are more

closely related to the randomized lasso discussed in [140, Section 3.1].

The remainder of this chapter applies ideas from consensus clustering to the

subspace clustering problem. We describe our Ensemble KSS algorithm and its

guarantees and demonstrate the algorithm’s state-of-the-art performance on both

synthetic and real datasets.

6.3 Ensemble K-subspaces

This section describes our method for subspace clustering using ensembles of the

K-subspaces algorithm, which we refer to as Ensemble K-subspaces (EKSS). Our key

insight leading to EKSS is the fact that the partially-correct clustering information

from each random initialization of KSS can be combined to form a more accurate

clustering of the data. We therefore run several random initializations of KSS and

form a co-association matrix combining their results that becomes the affinity matrix

used in spectral clustering to obtain cluster labels.

In more technical detail, our EKSS algorithm proceeds as follows. For each of

b = 1, . . . , B base clusterings, we obtain an estimated clustering C(b) from a single

run of KSS with a random initialization of candidate bases. The (i, j)th entry of
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Algorithm 6.1 Ensemble K-subspaces (EKSS)

1: Input: X = {x1, x2, . . . , xN } ⊂ RD: data, K̄: number of candidate subspaces,
d̄: candidate dimension, K: number of output clusters, q: threshold parameter,
B: number of base clusterings, T : number of KSS iterations

2: Output: C = { c1, . . . , cK }: clusters of X
3: for b = 1, . . . , B (in parallel) do

4: U1, . . . ,UK̄
iid∼ Unif(St(D, d̄)) Draw K̄ random subspace bases

5: ck ← {x ∈ X : ∀j
∥∥UT

k x
∥∥

2
≥
∥∥UT

j x
∥∥

2
} for k = 1, . . . , K̄ Cluster by

projection
6: for t = 1, . . . , T (in sequence) do
7: Uk ← PCA

(
ck, d̄

)
for k = 1, . . . , K̄ Estimate subspaces

8: ck ← {x ∈ X : ∀j
∥∥UT

k x
∥∥

2
≥
∥∥UT

j x
∥∥

2
} for k = 1, . . . , K̄ Cluster by

projection
9: end for

10: C(b) ← { c1, . . . , cK̄ }
11: end for
12: Ai,j ← 1

B

∣∣{ b : xi, xj are co-clustered in C(b) }
∣∣ for i, j = 1, . . . , N Form

co-association matrix
13: Ā← Thresh(A, q) Keep top q entries per row/column
14: C ← SpectralClustering(Ā, K) Final Clustering

the co-association matrix is the number of base clusterings for which xi and xj are

clustered together. We then threshold the co-association matrix as in [91] by taking

the top q values from each row/column. Once this thresholded co-association ma-

trix is formed, cluster labels are obtained using spectral clustering. Algorithm 6.1

gives pseudocode for EKSS, where Thresh sets all but the top q entries in each

row/column to zero as in [91] (pseudocode in Algorithm 6.2) and SpectralClus-

tering [150] clusters the data points based on the co-association matrix A. Note

that the number of candidates K̄ and candidate dimension d̄ need not match the

number K and dimension d of the true underlying subspaces. Figure 6.1 shows the

progression of the co-association matrix as B = 1, 5, 50 base clusterings are used

for noiseless data from K = 4 subspaces of dimension d = 3 in an ambient space

of dimension D = 100 using K̄ = 4 candidates of dimension d̄ = 3. Section 6.3.2

discusses the choice of parameters for EKSS.

6.3.1 Computational Complexity

Recall the relevant parameters: K is the number of output clusters, K̄ is the

number of candidate subspaces in EKSS, d̄ is the dimension of those candidates, N

is the number of points, D is the ambient dimension, B is the number of KSS base

clusterings to combine, and T is the number of iterations within KSS. To form the
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Algorithm 6.2 Affinity Threshold (Thresh)

1: Input: A ∈ [0, 1]N×N : affinity matrix, q: threshold parameter
2: Output: Ā ∈ [0, 1]N×N : thresholded affinity matrix
3: for i = 1, . . . , N do
4: Zrow

i,: ← Ai,: with the smallest N − q entries set to zero. Threshold rows
5: Zcol

:,i ← A:,i with the smallest N − q entries set to zero. Threshold columns
6: end for
7: Ā← 1

2

(
Zrow + Zcol

)
Average

co-association matrix, the complexity of EKSS is O(BT (K̄D2d̄+ K̄Dd̄N)). We run

the KSS base clusterings in parallel and use very few iterations, making the func-

tional complexity of EKSS O(K̄D2d̄ + K̄Dd̄N), which is competitive with existing

methods. In comparison, TSC has complexity O(DN2) and SSC-ADMM has com-

plexity O(TN3), where T is the number of ADMM iterations. Note that typically

N > D and sometimes much greater. We have not included the cost of spectral clus-

tering, which is O(KN2). For most modern subspace clustering algorithms (except

SSC-ADMM), this dominates the computational complexity as N grows.

6.3.2 Parameter Selection

EKSS requires six input parameters, whose selection we now discuss. As stated

in Section 6.3.1, we use a small number of KSS iterations, setting T = 3 in all

experiments. Typically, B should be chosen as large as computation time allows. In

our experiments on real data, we choose B = 1000. The number of output clusters

K is required for all subspace clustering algorithms, and methods such as those

described in [90] can be used to estimate this value. Hence, the relevant parameters

for selection are the candidate parameters K̄ and d̄ and the thresholding parameter q.

When possible, the candidate parameters should be chosen to match the true

UoS parameters. In particular, it is advised to set K̄ = K and d̄ = d when they are

known. In practice, a good approximating dimension for the underlying subspace is

often known. For example, images of a Lambertian object under varying illumination

are known to lie near a subspace with d = 9 [20] and moving objects in video are

known to lie near an affine subspace with d = 3 [196]. However, as we will show in the

following section, our theoretical guarantees hold even if there is model mismatch.

Namely, the choice of K̄ = 2 and d̄ = 1 still provably yields correct clustering, though

this results in a degradation of empirical performance.

The thresholding parameter q can be chosen according to data-driven techniques

as in [90], or following the choice in [91]. In our experiments on real data, we select q

(or the relevant thresholding parameter in the case of SSC) by sweeping over a large
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range of values and choosing the value corresponding to the lowest clustering error.

Note that q is applied to the co-association matrix A, and hence the computational

complexity of performing model selection is much lower than that of running the

entire EKSS algorithm numerous times.

We briefly consider the parameters required by existing algorithms. SSC [67]

and EnSC [216] both require two parameters to be selected when solving the sparse

regression problem (6.2). SSC also performs thresholding on the affinity matrix,

which in our experiments appears critical to performance on real data. See the

author code of [67] for details. TSC requires the thresholding parameter q to be

selected. To the best of our knowledge, no principled manner of selecting these

parameters has been proposed in the literature, and we consider this an important

issue for future study.

6.3.3 Base Clustering Accuracy

A natural heuristic to improve the clustering performance of EKSS is to add

larger values to the co-association matrix for base clusterings believed to be more

accurate, and smaller values for those believed to be less accurate. Here, we briefly

describe one such approach. Note that Step 12 in EKSS is equivalent to adding a unit

weight to each entry corresponding to co-clustered points, i.e., A← 1
B

∑B
b=1 A(b)w(b),

where A
(b)
i,j := 1

{
xi, xj are clustered together in C(b)

}
and w(b) = 1. The key idea

is that this weight w(b) can instead be chosen to reflect some estimation of the

quality of the bth clustering; we propose using the KSS cost function as a measure of

clustering quality. Let C(b) = { c(b)
1 , . . . , c

(b)
K } denote the bth base clustering, and let

U (b) = {U
(b)
1 , . . . ,U

(b)
K } denote the set of subspace bases estimated by performing

PCA on the points in the corresponding clusters. The clustering quality can then be

measured as

(6.4) w(b) = 1−
K∑
k=1

∑
i:xi∈c(b)k

∥∥∥xi −U
(b)
k U

(b)
k

T
xi

∥∥∥2

2
/ ‖X‖2

F ,

a value between 0 and 1 that decreases as the KSS cost increases. We employ this

value of w(b) in all experiments on real data.

6.3.4 Alternative Ensemble Approaches

As KSS is known to perform poorly in many cases, one may wonder whether bet-

ter performance can be obtained by applying the evidence accumulation framework

to more recent algorithms such as SSC and GSC. We attempted such an approach by

subsampling the data to obtain diversity in SSC-OMP [217] and EnSC [216]. How-

ever, the resulting clustering performance did not always surpass that of the base
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algorithm run on the full dataset. Similar behavior occurred for ensembles of the

GSC algorithm [162] as well as the Fast Landmark Subspace Clustering algorithm

[209]. We also experimented with MKF as a base clustering algorithm but found

little or no benefit at a significant increase in computational complexity. Hence, it

seems that the success of our proposed approach depends both on the evidence ac-

cumulation framework and the use of KSS as a base clustering algorithm. Toward

this end, we found that EKSS did benefit from the recent CoP-KSS algorithm [76] as

a base clusterer for larger benchmark datasets, as discussed in Section 6.5. The ap-

propriate combination of ensembles of other algorithms is nontrivial and an exciting

open topic for future research.

6.4 Recovery Guarantees

Recovery guarantees for KSS remain elusive despite nearly twenty years of use

since its introduction. Intelligent initialization methods based on probabilistic far-

thest insertion are used in [89, 225], but these too lack theoretical guarantees. This

section provides a first step toward recovery guarantees for EKSS (Alg. 6.1). In

particular, we show that (a) any “angle preserving” affinity matrix can be used to

obtain clustering with guarantees matching those of state-of-the-art subspace clus-

tering methods, and (b) EKSS has such an affinity matrix after the first KSS cluster-

ing step with high probability. Put together, these findings provide state-of-the-art

guarantees for EKSS in the case where only the first KSS iteration is performed (i.e.,

T = 0 in Alg. 6.1). We refer to this parameter choice as EKSS-0 and include explicit

pseudocode for this specialization in Algorithm 6.3. To the best of our knowledge,

our work is the first to provide any recovery guarantees for a KSS algorithm as well

as the first characterization of a co-association matrix in the context of consensus

clustering.

Section 6.4.1 presents the notion of an angle preserving affinity matrix and ex-

tends the guarantees of [91] to all algorithms that use such affinity matrices. Though

developed here to analyze EKSS, these results apply broadly and provide a promising

approach for analyzing other geometrically-based subspace clustering algorithms in

the future. Section 6.4.2 shows that the affinity/co-association matrix of EKSS with

T = 0 is angle preserving with high probability, and presents the resulting recovery

guarantees: correct clustering for noiseless data and no false connections (NFC) for

noisy data or data with missing entries.

We use Nmax (Nmin) throughout to refer to the maximum (minimum) number of

points on any single subspace and dmax to refer to the maximum subspace dimension.

The proofs of all results in this section are in Section 6.7.
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Algorithm 6.3 EKSS-0

1: Input: X = {x1, x2, . . . , xN } ⊂ RD: data, K̄: number of candidate subspaces,
d̄: candidate dimension, K: number of output clusters, q: threshold parameter,
B: number of base clusterings,

2: Output: C = { c1, . . . , cK }: clusters of X
3: for b = 1, . . . , B (in parallel) do

4: U1, . . . ,UK̄
iid∼ Unif(St(D, d̄)) Draw K̄ random subspace bases

5: ck ← {x ∈ X : ∀j
∥∥UT

k x
∥∥

2
≥
∥∥UT

j x
∥∥

2
} for k = 1, . . . , K̄ Cluster by

projection
6: C(b) ← { c1, . . . , cK̄ }
7: end for
8: Ai,j ← 1

B

∣∣{ b : xi, xj are co-clustered in C(b) }
∣∣ for i, j = 1, . . . , N Form affinity

matrix
9: Ā← Thresh(A, q) Keep top q entries per row/column

10: C ← SpectralClustering(Ā, K) Final Clustering

6.4.1 Recovery Guarantees for Angle Preserving Affinity Matrices

This section extends the NFC and connectedness guarantees of [91] to any algo-

rithm that uses angle preserving affinity matrices. The key idea is that these affinity

matrices sufficiently capture the information contained in pairwise angles and obtain

good recovery when the angles differentiate the clusters well. Observe that using

angles need not be a “goal” of such methods; deviating may in fact produce better

performance in broader regimes, e.g., by incorporating higher order structure. Nev-

ertheless, so long as the relative angles among points are sufficiently captured, the

method immediately enjoys the guarantees of this section.

Definition 6.1 (Angle Preserving). An affinity matrix A is τ -angle preserving for

a set of points X with respect to a strictly increasing function f : R+ → R+ if

(6.5) |Ai,j − f (|〈xi, xj〉|)| ≤ τ, i, j ∈ [N ],

where we note that cos−1 (|〈xi, xj〉|) is the angle between the points xi and xj.

Note that f is an arbitrary monotonic transformation that takes small angles

(large absolute inner products) to large affinities and takes large angles (small abso-

lute inner products) to small affinities, and τ quantifies how close the affinity matrix

is to such a transformation. Taking f(α) = α and τ = 0 recovers the absolute inner

product.

To guarantee correct clustering (as opposed to NFC only), it is sufficient to show

that the thresholded affinity matrix has both NFC and exactly K connected compo-

nents [91, Appendix A]. We formalize this fact for clarity in the proposition below.
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Proposition 6.2 (NFC and connectedness give correct clustering [91, Equation

(15)]). Assume that the thresholded affinity matrix formed by an algorithm satisfies

NFC with probability at least 1− ε1 and given NFC satisfies the connectedness con-

dition with probability at least 1− ε2. Then spectral clustering correctly identifies the

components with probability at least 1− ε1 − ε2.

Thus, we study conditions under which NFC and connectedness are guaranteed;

conditions for correct clustering follow. In particular, we provide upper bounds

on τ that guarantee NFC (Theorem 6.4) and connectedness (Theorem 6.5). The

upper bound for NFC is given by a property of the data that we call the q-angular

separation, defined as follows. We later bound this quantity in a variety of contexts.

Definition 6.3 (Angular Separation). The q-angular separation φq of the points

X = X1 ∪ · · · ∪ XK with respect to a strictly increasing function f : R+ → R+ is

(6.6) φq = min
l∈[K],i∈[Nl]

f

(∣∣∣〈x(l)
i , x

(l)
6=i

〉∣∣∣
[q]

)
− f

(
maxk 6=l,j∈[Nk]

∣∣∣〈x(l)
i , x

(k)
j

〉∣∣∣)
2

,

where x
(l)
i denotes the ith point of Xl, and

∣∣∣〈x(l)
i , x

(l)
6=i

〉∣∣∣
[q]

denotes the qth largest

absolute inner product between the point x
(l)
i and other points in subspace l.

In words, the q-angular separation quantifies how far apart the clusters are, as

measured by the transformed absolute inner products. When this quantity is positive

and large, pairwise angles differentiate clusters well. The following theorem connects

this data property to angle preserving affinity matrices.

Theorem 6.4 (No false connections (NFC)). Suppose X = X1 ∪ · · · ∪ XK have

q-angular separation φq with respect to a strictly increasing function f . Then the

q-nearest neighbor graph for any φq-angle preserving affinity matrix (with respect to

f) has no false connections.

Theorem 6.4 states that sufficiently small deviation τ guarantees NFC as long

as the data has positive q-angular separation. The next theorem provides an upper

bound on τ that guarantees connectedness within a cluster with high probability

given NFC. Under NFC, the q-nearest neighbors of any point (with respect to the

affinity matrix) are in the same subspace, and so the theorem is stated with respect to

only points within a single subspace. In particular, we restrict to the d-dimensional

subspace and so consider the q-nearest neighbor graph G̃ for points a1, . . . , an uni-

formly distributed on the sphere Sd−1.
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Theorem 6.5 (Connectedness). Let a1, . . . , an ∈ Rd be i.i.d. uniform on Sd−1 and

let G̃ be their corresponding q-nearest neighbor graph formed from a τ -angle pre-

serving affinity matrix. Let γ ∈ (1, n/ log n) be arbitrary, and let θ be the spherical

radius of a spherical cap covering γ log n/n fraction of the area of Sd−1. Suppose

q ∈ [4(24π)d−1γ log n, n] and θ < π/48. Then if τ < C3,

(6.7) P{G̃ is connected } ≥ 1− 2

nγ−1γ log n
,

where C3 depends only on d, n, f , and γ and is defined in the proof.

We now provide explicit high-probability lower bounds on the q-angular separa-

tion φq from (6.6) in some important settings relevant to subspace clustering. These

results can be used to guarantee NFC by bounding the deviation level τ . Consider

first the case where there is no intersection between any pair of subspaces but there

are potentially unobserved entries, i.e., missing data. Lemma 6.6 bounds φq from

below in such a setting; the bound depends on a variant of the minimum principal

angle between subspaces that accounts for missing data.

Lemma 6.6 (Angular separation for missing data). Let Sk, k = 1, . . . , K be sub-

spaces of dimension d1, . . . , dK in RD. Let the Nk points in Xk be drawn as x
(k)
j =

U(k)a
(k)
j , where a

(k)
j are i.i.d. uniform on Sdk−1 and U(k) ∈ RD×dk has (not necessar-

ily orthonormal) columns that form a basis for Sk. In each xj ∈ X , up to s entries

are then unobserved, i.e., set to zero. Let ρ ∈ [0, 1) be arbitrary and suppose that

Nmin > N0, where N0 is a constant that depends only on dmax and ρ. Suppose that

q < Nρ
min and

(6.8) rs =
maxk,l:k 6=l,D:|D|≤2s

∥∥∥U(k)
D
>
U(l)

∥∥∥
2

minl,D:|D|≤2s,‖a‖=1

∥∥∥U(l)
D
>
U(l)a

∥∥∥
2

< 1,

where U
(l)
D is the matrix obtained from U(l) by setting the rows indexed by D ⊂

{ 1, . . . , D } to zero. Then φq > C1 with probability at least 1 −∑K
k=1 Nke

−c1(Nk−1),

where c1 > 0 is a numerical constant that depends on Nρ
min, and C1 > 0 depends only

on rs and f . Both c1 and C1 are defined in the proof.

To gain insight to the above lemma, note that for full data s = 0, and rs simplifies

to maxk,l:k 6=l ||U(k)>U(l)||2, which is less than one if and only if there is no intersection

between subspaces. In this case, Lemma 6.6 states that φq is positive (i.e., NFC is

achievable) as long as there is no intersection between any pair of subspaces. We

next consider the case where the subspaces are allowed to intersect and points may

be corrupted by additive noise. Lemma 6.7 bounds φq from below in such a setting;
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it requires the subspaces to be sufficiently far apart with respect to their affinity,

which is defined as [91, 222]

(6.9) aff(Sk,Sl) =
1√

dk ∧ dl
∥∥UT

kUl

∥∥
F
,

where Uk and Ul form orthonormal bases for the dk- and dl-dimensional subspaces

Sk and Sl. Note that aff(Sk,Sl) is a measure of how close two subspaces are in terms

of their principal angles and takes the value 1 if two subspaces are equivalent and 0

if they are orthogonal.

Lemma 6.7 (Angular separation for noisy data). Let the points in Xk be the set of Nk

points x
(k)
i = y

(k)
i +e

(k)
i , where the y

(k)
i are drawn i.i.d. from the set { y ∈ Sk : ‖y‖ = 1 },

independently across k, and the e
(k)
i are i.i.d. N (0, σ

2

D
ID). Let X = X1 ∪ · · · ∪ XK

and q < Nmin/6. Suppose that

(6.10) max
k,l:k 6=l

aff(Sk,Sl) +
σ(1 + σ)√

logN

√
dmax√
D
≤ 1

15 logN
,

with D > 6 logN . Then φq > C2 with probability at least 1− 10
N
−∑K

k=1 Nke
−c2(Nk−1),

where c2 > 0 is a numerical constant, and C2 > 0 depends only on σ, D, dmax, N ,

maxk,l:k 6=l aff(Sk,Sl), and f . Both c2 and C2 are defined in the proof.

Lemmas 6.6 and 6.7 state that under certain conditions on the arrangement

of subspaces and points, the separation φq defined in (6.6) is positive with high

probability and with given lower bounds. In the following section, we show that

taking sufficiently many base clusterings B in EKSS-0 guarantees the affinity matrix

is sufficiently angle preserving with high probability.

6.4.2 EKSS-0 Recovery Guarantees

This section shows that the co-association/affinity matrix formed by EKSS-0

is angle preserving, leading to a series of recovery guarantees for the problem of

subspace clustering. We say that two points are co-clustered if they are assigned to

the same candidate subspace in line 5 of Algorithm 6.1 (note that lines 6-9 are not

computed for EKSS-0). The key to our guarantees lies in the fact that for points

lying on the unit sphere, the probability of co-clustering is a monotonically increasing

function of the absolute value of their inner product, as shown in Lemma 6.9 below.

For EKSS-0, the entries of the affinity matrix A are empirical estimates of these

probabilities, and hence the deviation level τ is appropriately bounded with high

probability by taking sufficiently many base clusterings B. These results allow us to

apply Theorems 6.4 and 6.5 from the previous section. We remind the reader that
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the parameters K̄ and d̄ are the number and dimension of the candidate subspaces

in EKSS, and need not be related to the data being clustered.

Theorem 6.8 (EKSS-0 is angle preserving). Let A ∈ RN×N be the affinity matrix

formed by EKSS-0 (line 12, Alg. 6.1) with parameters K̄, d̄ and B. Let τ > 0. Then

with probability at least 1 − N(N − 1)e−c3τ
2B, the matrix A is τ -angle preserving,

where the increasing function fK̄,d̄ is defined in the proof of Lemma 6.9, c3 = 2
√

log 2,

and the probability is taken with respect to the random subspaces drawn in EKSS-0

(line 4, Alg. 6.1).

In the context of the previous section, Theorem 6.8 states that the affinity matrix

formed by EKSS-0 is τ -angle preserving and hence satisfies the main condition re-

quired for Theorems 6.4 and 6.5. We refer to the transformation function as fK̄,d̄ to

denote the dependence on the EKSS-0 parameters, noting that fK̄,d̄ is increasing for

any natural numbers K̄ and d̄. A consequence of Theorem 6.8 is that by increasing

the number of base clusterings B, we can reduce the deviation level τ to be arbi-

trarily small while maintaining a fixed probability that the model holds. This fact

allows us to apply the results of the previous section to provide recovery guarantees

for EKSS-0. The major nontrivial aspect of proving Theorem 6.8 lies in establishing

the following lemma.

Lemma 6.9. The (i, j)th entry of the affinity matrix A formed by EKSS-0 (line 12,

Alg. 6.1) has expected value

(6.11) EAi,j = fK̄,d̄(|〈xi, xj〉|)

where fK̄,d̄ : R+ → R+ is a strictly increasing function (defined in the proof), and the

expectation is taken with respect to the random subspaces drawn in EKSS-0 (line 4,

Alg. 6.1). The subscripts K̄ and d̄ indicate the dependence of fK̄,d̄ on those EKSS-0

parameters.

Proof. We provide a sketch of the proof here; the full proof can be found in Sec-

tion 6.7. For notational compactness, we instead prove that the probability of two

points being co-clustered is a decreasing function of the angle θ between them. De-

note this probability by pK̄,d̄(θ). Let U1,U2, . . . ,UK̄ ∈ RD×d̄ be the K candidate

bases. Let p̃(θ) be the probability that any two points with corresponding angle θ

are assigned to the candidate U1. Then by symmetry we have pK̄,d̄(θ) = Kp̃(θ), and

it suffices to prove that p̃ is strictly decreasing. Without loss of generality, let xi = e1

and xj = cos(θ)e1 + sin(θ)e2, where em ∈ RD is the mth standard basis vector. We

then have that

p̃(θ) = P {Qxi,Qxj both assigned to U1 } ,
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where Q is an arbitrary orthogonal transformation of RD. Let E denote the event

of interest and L denote the span of e1 and e2. The event E can then be written as

zTQPL(P1 −Pk)PLQz > 0, for 1 < k ≤ K and z = xi, xj,(6.12)

where PL denotes the orthogonal projection onto the subspace L and Pk denotes the

orthogonal projection onto the subspace spanned by Uk. By restricting to L, (6.12)

can be reduced to a two-dimensional quadratic form, and we can compute in closed

form P {E | U1, . . . ,UK̄ }. Differentiating shows that this term is decreasing and

hence (by the law of total probability) so is p̃(θ).

Another approach to proving Lemma 6.9 and Theorem 6.8 for K̄ = 2 may be to

observe that in this case the co-association Ai,j is closely related to the Kendall rank

correlation between the random variables Xi = ‖UTxi‖2 and Xj = ‖UTxj‖2 since

(6.13) EAi,j =
1 + E

{
sign

( ∥∥UT
1 xi
∥∥

2
−
∥∥UT

2 xi
∥∥

2

)
sign

( ∥∥UT
1 xi
∥∥

2
−
∥∥UT

2 xj
∥∥

2

)}
2

.

This connection makes it possible to draw on ideas and insights from the analysis of

Kendall rank correlations. For example, as discussed in [19, Section 2], the Kendall

rank correlation is monotonically related to the Pearson correlation for transelliptical

distributions, and [19, Section 4.3] provides related error bounds for an empirical

estimator. Using these results would involve either establishing that (Xi, Xj) is

transelliptical or extending [19] to other distributions.

Note that the result of Lemma 6.9 does not depend on the underlying data

distribution, i.e., the number or arrangement of subspaces, but instead says that

clustering with EKSS-0 is (in expectation) a function of the absolute inner product

between points, regardless of the parameters. Thus, the results of this section all

hold even with the simple parameter choice of K̄ = 2 and d̄ = 1 in Algorithm

6.1. Our empirical results suggest that decreasing K̄ and increasing d̄ increases the

probability of co-clustering. However, when running several iterations of KSS (EKSS

with T > 0), we find that it is advantageous to choose K̄ and d̄ to match the true

parameters of the data as closely as possible, allowing KSS to more accurately model

the underlying subspaces.

Combined with the results of Section 6.4.1, Theorem 6.8 enables us to quickly

obtain recovery guarantees for EKSS-0, which we now present. We first consider

the case where the data are noiseless, i.e., lie perfectly on a union of K subspaces.

Theorems 6.10 and 6.11 provide sufficient conditions on the arrangement of subspaces

such that EKSS-0 achieves correct clustering with high probability.



175

Theorem 6.10 (EKSS-0 provides correct clustering for disjoint subspaces). Let Sk,

k = 1, . . . , K be subspaces of dimension d1, . . . , dK in RD. Let the Nk points in Xk
be drawn as x

(k)
j = U(k)a

(k)
j , where a

(k)
j are i.i.d. uniform on Sdk−1 and U(k) ∈ RD×dk

has orthonormal columns that form a basis for Sk. Let ρ ∈ [0, 1) be arbitrary and

suppose that Nmin > N0, where N0 is a constant that depends only on dmax and ρ.

Suppose that q ∈ [c4 logNmax, N
ρ
min] and

(6.14) r0 = max
k,l:k 6=l

∥∥∥U(k)>U(l)
∥∥∥

2
< 1,

where c4 = 12(24π)dmax−1. Then Ā obtained by EKSS-0 results in correct cluster-

ing of the data with probability at least 1 −∑K
k=1

(
Nke

−c1(Nk−1) + 2N−2
k

)
− N(N −

1)e−c3Bmin{C1,C3 }2, where c1, c3 > 0 are numerical constants, C1 > 0 depends on r0

and the function fK̄,d̄ defined in Theorem 6.8, and C3 > 0 depends on dmax, Nmin,

and fK̄,d̄.

Theorem 6.11 (EKSS-0 provides correct clustering for subspaces with bounded

affinity). Let Sk, k = 1, . . . , K be subspaces of dimension d1, . . . , dK in RD. Let the

points in Xk be a set of Nk points drawn uniformly from the unit sphere in subspace

k, i.e., from the set {x ∈ Sk : ‖x‖ = 1 }. Let X = X1 ∪ · · · ∪ XK and N =
∑

kNk.

Let q ∈ [c4 logNmax, Nmin/6), where c4 = 12(24π)dmax−1. If

max
k,l:k 6=l

aff(Sk,Sl) ≤
1

15 logN
,

then Ā obtained by EKSS-0 results in correct clustering of the data with probability

at least 1 − 10
N
−∑K

k=1

(
Nke

−c2(Nk−1) − 2N−2
k

)
− N(N − 1)e−c3Bmin{C2,C3 }2, where

c2, c3 > 0 are numerical constants, C2 > 0 depends only on maxk,l:k 6=l aff(Sk,Sl), D,

dmax, N , and the function fK̄,d̄ defined in Theorem 6.8, and C3 > 0 depends on dmax,

Nmin, and fK̄,d̄.

We next consider two forms of data corruption. Theorem 6.12 shows that the

affinity matrix built by EKSS-0 has NFC in the presence of data corrupted by addi-

tive Gaussian noise. Theorem 6.13 shows that EKSS-0 maintains NFC even in the

presence of a limited number of missing (unobserved) entries.

Theorem 6.12 (EKSS-0 has NFC with noisy data). Let Sk, k = 1, . . . , K be sub-

spaces of dimension d1, . . . , dK in RD. Let the points in Xk be the set of Nk points

x
(k)
i = y

(k)
i + e

(k)
i , where the y

(k)
i are drawn i.i.d. from the set { y ∈ Sk : ‖y‖ = 1 },

independently across k, and the e
(k)
i are i.i.d. N (0, σ

2

D
ID). Let X = X1 ∪ · · · ∪ XK

and q < Nmin/6. If

max
k,l:k 6=l

aff(Sk,Sl) +
σ(1 + σ)√

logN

√
dmax√
D
≤ 1

15 logN
,
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with D > 6 logN , then Ā obtained from running EKSS-0 has no false connections

with probability at least 1− 10
N
−∑K

k=1 Nke
−c2(Nk−1)−N(N−1)e−c3C

2
2B, where c2, c3 > 0

are numerical constants, and C2 > 0 depends only on maxk 6=l aff (Sk,Sl), σ, D, dmax,

N and the function fK̄,d̄ defined in Theorem 6.8.

Theorem 6.13 (EKSS-0 has NFC with missing data). Let the n points in Xk be

drawn as x
(k)
j = U(k)a

(k)
j , where a

(k)
j are i.i.d. uniform on Sd−1 and the entries of

U(k) ∈ RD×d are i.i.d. N (0, 1
D

). Let ρ ∈ [0, 1) be arbitrary and suppose that n > N0,

where N0 is a constant that depends only on d and ρ. Suppose that q < nρ, and

assume that in each xj ∈ X up to s arbitrary entries are unobserved, i.e., set to 0.

Let X = X1 ∪ · · · ∪ XK. If

(6.15) D − 3c5d− c5 logK ≥ s

(
c5 log

(
De

2s

)
+ c6

)
,

then Ā obtained by EKSS-0 has no false connections with probability at least 1 −
Ne−c1(n−1) − N(N − 1)e−c3C

2
1B − 4e−c7D, where c1, c3, c5, c6, c7 > 0, are numerical

constants and C1 > 0 depends only on the ratio rs defined in (6.8) and the function

fK̄,d̄ defined in Theorem 6.8.

6.4.3 Discussion of Results

The data model considered in Theorems 6.10-6.13 is known as the “semi-random”

model [187], due to the fixed arrangement of subspaces with randomly-drawn points,

and has been analyzed widely throughout the subspace clustering literature [91, 92,

187, 188, 210]. Our guarantees under this model are identical (up to constants and

log factors) to those for TSC and SSC (see [91, Section VII] for further discussion of

their guarantees). The key difference between our results and those of TSC is that

we pay a N(N − 1)/2e−c3τ
2B penalty in recovery probability due to the approximate

observations of the transformed inner products. Although our experiments indicate

that EKSS-0 appears to have no benefits over TSC, we do find that by running a

small number of KSS iterations, significant performance improvements are achieved.

While the above analysis holds only for the case of T = 0, letting T > 0 is guaranteed

to not increase the KSS cost function [30]. In our experiments, we found that setting

T > 0 uniformly improved clustering performance, and our empirical results indicate

that EKSS is in fact more robust (than EKSS-0 and TSC) to subspaces with small

principal angles.

While the explicit choice of B is tied to the unknown function fK̄,d̄, our results

provide intuition for setting this value; namely, the closer the underlying subspaces

(in terms of principal angles), the more base clusterings required. The inverse de-

pendence on logN in Theorems 6.11 and 6.12 indicates a tension as the problem
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size grows. On one hand, points from the same subspace are more likely to be close

when N is large, improving the angular separation. On the other hand, points are

also more likely to fall near the intersection of subspaces, potentially degrading the

angular separation. In all experimental results, we see that both EKSS and TSC per-

form better with larger N . Finally, we note that the leading O (N2) coefficient in the

above probabilities results from applying a union bound and is likely conservative.

6.5 Experimental Results

This section demonstrates the performance in terms of clustering error (defined

in Section 6.8.1) of EKSS on both synthetic and real datasets. We first show the

performance of our algorithm as a function of the relevant problem parameters and

verify that EKSS-0 exhibits the same empirical performance as TSC, as expected

based on our theoretical guarantees. We also show that EKSS can recover subspaces

that either have large intersection or are extremely close. We then demonstrate on

benchmark datasets that EKSS not only improves over previous geometric methods,

but that it achieves state-of-the-art results competitive with those obtained by self-

expressive methods. Unless otherwise specified, we use T = 3 iterations in EKSS

and B = 1000 base clusterings in EKSS-0 and EKSS, as described in Section 6.3.2.

The experiments in this section were produced by Dr. John Lipor.

6.5.1 Synthetic Data

For all experiments in this section, we take q = max(3, dNk/20e) for EKSS-0

and TSC and q = max(3, dNk/6e) for EKSS, where d·e denotes the largest integer

greater than or equal to its argument. We set B = 10000 for EKSS-0 and EKSS.

When the angles between subspaces are not explicitly specified, it is assumed that the

subspaces are drawn uniformly at random from the set of all d-dimensional subspaces

of RD. For all experiments, we draw points uniformly at random from the unit sphere

in the corresponding subspace and show the mean error over 100 random problem

instances. We use the code provided by the authors for TSC and SSC. We employ

the ADMM implementation of SSC and choose the parameters that result in the

best performance in each scenario.

We explore the influence of some relevant problem parameters on the EKSS al-

gorithm in Fig. 6.2. We take the ambient dimension to be D = 100, the number of

subspaces to be K = 3, and generate noiseless data. We first consider the depen-

dence on subspace dimension and the number of points per subspace. The top row

of Fig. 6.2 shows the misclassification rate as the number of points per subspace

ranges from 10− 500 and the subspace dimension ranges from 1− 75. When 2d > D



178

EKSS-0

0 20 40 60

d

0

200

400

N
k

EKSS

0 20 40 60

d

TSC

0 20 40 60

d

SSC

0 20 40 60

d

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8

20

40

60

80

100

N
k

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Figure 6.2: Clustering error (%) for proposed and state-of-the-art subspace clustering
algorithms as a function of problem parameters Nk, number of points per
subspace, and true subspace dimension d or angle between subspaces θ.
Fixed problem parameters are D = 100, K = 3.

(i.e., d ≥ 51), pairs of subspaces necessarily have intersection, and the intersection di-

mension grows with d. First, the figures demonstrate that EKSS-0 achieves roughly

the same performance as TSC, resulting in correct clustering even in the case of

subspaces with large intersection. Second, we see that EKSS can correctly cluster

for subspace dimensions larger than that of TSC as long as there are sufficiently

many points per subspace. For large subspace dimensions with a moderate number

of points per subspace, SSC achieves the best performance.

We next explore the clustering performance as a function of the distance between

subspaces, as shown in the second row of Fig. 6.2. We set the subspace dimension

to d = 10 and generate K = 3 subspaces such that the principal angles between

subspaces S1 and S2, as well as those between S1 and S3 are θ, for 20 values in

the range [0.001, 0.8]. Most strikingly, EKSS is able to resolve subspaces with even

the smallest separation. This stands in contrast to TSC; it fails in this regime

because when the subspaces are extremely close, the inner products between points

on different subspaces can be nearly as large as those within the same subspace.

Similarly, in the case of SSC, points on different subspaces can be used to regress

any given point with little added cost, and so it fails at very small subspace angles.

However, as long as there is still some separation between subspaces, EKSS is able

to correctly cluster all points. The theory presented here does not capture this

phenomenon, and recovery guarantees that take into account multiple iterations of

KSS are an important topic for future work.
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Figure 6.3: Clustering error (%) as a function of subspace angles with noisy data.
Problem parameters are D = 100, d = 10, K = 3, Nk = 500, σ2 = 0.05.

As a final comparison, we show the clustering performance with noisy data. Fig.

6.3 shows the clustering error as a function of the angle between subspaces for the

case of K = 3 subspaces of dimension d = 10, with Nk = 500 points corrupted by

zero-mean Gaussian noise with covariance 0.05ID. We again consider 20 values of

the angle θ between 0.001 and 0.08. EKSS-0 and TSC obtain similar performance,

and more importantly EKSS is more robust to small subspace angles than SSC, even

in the case of noisy data.

6.5.2 Benchmark Data

This section shows that EKSS achieves competitive subspace clustering perfor-

mance on a variety of datasets commonly used as benchmarks in the subspace clus-

tering literature. We consider the Hopkins-155 dataset [198], the cropped Extended

Yale Face Database B [74, 123], COIL-20 [149] and COIL-100 [148] object databases,

the USPS dataset provided by [37], and 10,000 digits of the MNIST handwritten digit

database [119], where we obtain features using a scattering network [32] as in [216].

Descriptions of these datasets and the relevant problem parameters are included

in Section 6.8.2. We compare the performance of EKSS to several benchmark algo-

rithms: KSS [30], CoP-KSS [76], Median K-Flats (MKF) [225], TSC [91], the ADMM

implementation of SSC [67], SSC-OMP [217], and Elastic Net Subspace Clustering

(EnSC) [216]. For all algorithms, we selected the parameters that yielded the low-

est clustering error, performing extensive model selection where possible. We point

out that this method of parameter selection requires knowledge of the ground truth

labels, which are typically unavailable in practice. For the larger USPS and MNIST

datasets, we obtained a small benefit by replacing PCA (line 7, Alg. 6.1) with the

more robust Coherence Pursuit, i.e., we use CoP-KSS as a base clustering algorithm

instead of KSS. Further implementation details, including parameter selection and
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Algorithm Hopkins Yale B COIL-20 COIL-100 USPS MNIST-10k
EKSS 0.26 14.31 13.47 28.57 15.84 2.39
KSS 0.35 54.28 33.12 66.04 18.31 2.60

CoP-KSS 0.69 52.59 29.10 51.38 7.73 2.57
MKF 0.24 41.32 35.69 59.50 28.49 28.17
TSC 2.07 22.20 15.28 29.82 31.57 15.98

SSC-ADMM 1.07 9.83 13.19 44.06 56.61 19.17
SSC-OMP 25.25 13.28 27.29 34.79 77.94 19.19

EnSC 9.75 18.87 8.26 28.75 33.66 17.97

Table 6.1: Clustering error (%) of subspace clustering algorithms for a variety of
benchmark datasets. The lowest two clustering errors are given in bold.
Note that EKSS is among the best three for all datasets, but no other
algorithm is in the top five across the board.

data preprocessing, can be found in Section 6.8.2.

The clustering error for all datasets and algorithms is shown in Table 6.1, with the

lowest two errors given in bold. First, note that EKSS outperforms its base clustering

algorithm (KSS or CoP-KSS) in all cases except the USPS dataset, and sometimes

by a very large margin. This result emphasizes the importance of leveraging all clus-

tering information from the B base clusterings, as opposed to simply choosing the

best single clustering. While CoP-KSS achieves lower clustering error than EKSS

on the USPS dataset, a deeper investigation of the performance of CoP-KSS re-

vealed that only 17 of the 1000 individual clusterings achieved an error lower than

the 15.84% obtained by EKSS. A more sophisticated weighting scheme than that

described in Section 6.3.3 could be employed to add more significant weights for the

small number of base clusterings corresponding to low error. Alternative measures

of clustering quality based on subspace margin [130] or novel internal clustering vali-

dation metrics [131] may provide improved performance. Next, the results show that

EKSS is among the top performers in all datasets considered, achieving nearly per-

fect clustering of the Hopkins-155 dataset, which is known to be well approximated

by the UoS model. Scalable algorithms such as SSC-OMP and EnSC perform poorly

on this dataset, likely due to the small number of points. For the larger COIL-100,

USPS, and MNIST datasets, EKSS also achieves strong performance, demonstrating

its flexibility to perform well in both the small and large sample regimes. The self-

expressive methods outperform EKSS on the Yale and COIL-20 datasets, likely due

to the fact that they do not explicitly rely on the UoS model in building the affin-

ity matrix. However, EKSS still obtains competitive performance on both datasets,

making it a strong choice for a general-purpose algorithm for subspace clustering.
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6.6 Discussion

In this work, we presented the first known theoretical guarantees for both evi-

dence accumulation clustering and the KSS algorithm. We showed that with a given

choice of parameters, the EKSS algorithm can provably cluster data from a union of

subspaces under the same conditions as existing algorithms. The theoretical guaran-

tees presented here match existing guarantees in the literature, and our experiments

on synthetic data indicate that the iterative approach of KSS provides a major im-

provement in robustness to small angles between subspaces. Further, our results

generalize those in the existing literature, yielding the potential to inform future al-

gorithm design and analysis. We demonstrated the efficacy of our approach on both

synthetic and real data, and showed that our method achieves excellent performance

on several real datasets.

A number of important open problems remain. First, extending our analysis to

the general case of Alg. 6.1 (i.e., T > 0) is an important next step that is difficult

because of the alternating nature of KSS. In selecting tuning parameters, we chose

the combination that resulted in the lowest clustering error, which is not known

in practice. Methods for unsupervised model selection are an important practical

consideration for EKSS and subspace clustering in general. Drawing connections to

stability selection [140] and its extensions, e.g., subspace stability selection [193], may

yield some interesting new approaches and insights. Random-projection ensemble

classification with screened projections [40, Section 3] also bears some similarity

to EKSS; considering connections in the theoretical analysis might provide some

new perspectives. Finally, further attempts at effective ensembles of state-of-the-art

algorithms such as SSC could yield improved empirical performance.

6.7 Proofs of Theoretical Results

The results of this section make use of the following notation. We define the

absolute inner product between points xi ∈ Sl and xj ∈ Sk as

z
(l,k)
i,j =

∣∣∣〈x(l)
i , x

(k)
j

〉∣∣∣ ,
where k may be equal to l. We denote the qth largest absolute inner product between

x
(l)
i and other points in the subspaces Sl as z

(l)
(i,q), i.e., we have

z
(l)
(i,q) =

∣∣∣〈x(l)
i , x

(l)
6=i

〉∣∣∣
[q]

in the context of Definition 6.3.
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6.7.1 Proof of Theorem 6.4

We first prove the statement for a fixed xi ∈ Sl. The statement of the theorem

can be written as

(6.16) f̂
(l)
(i,q) > max

k 6=l,j
f̂

(l,k)
i,j ,

where f̂
(l)
(i,q) denotes the qth largest value in the set { f̂ (l,l)

i,j }. We first bound f̂ in

terms of f . Let xι ∈ Sk∗ be such that maxk 6=l,j f̂
(l,k)
i,j = f̂

(l,k∗)
i,ι and note that z

(l,k∗)
i,ι ≤

maxk 6=l,j z
(l,k)
i,j . Then we have

max
k 6=l,j

f̂
(l,k)
i,j = f̂

(l,k∗)
i,ι ≤ f

(
z

(l,k∗)
i,ι

)
+ τ

≤ f

(
max
k 6=l,j

z
(l,k)
i,j

)
+ τ,

where the second line follows by monotonicity of f . To lower bound f̂
(l)
(i,q), let xκ be

such that f̂
(l)
(i,q) = f̂

(l,l)
i,κ . If z

(l,l)
i,κ ≥ z

(l)
(i,q), then f

(
z

(l,l)
i,κ

)
≥ f

(
z

(l)
(i,q)

)
by monotonicity of

f . For the case where z
(l,l)
i,κ < z

(l)
(i,q), define xλ ∈ Sl such that z

(l)
(i,q) = z

(l,l)
i,λ and note

that

f̂
(l,l)
i,κ > f̂

(l,l)
i,λ ≥ f

(
z

(l,l)
i,λ

)
− τ = f

(
z

(l)
(i,q)

)
− τ.

Therefore

f̂
(l)
(i,q) ≥ f

(
z

(l)
(i,q)

)
− τ,

and (6.16) holds as long as

f
(
z

(l)
(i,q)

)
− τ > f

(
max
k 6=l,j

z
(l,k)
i,j

)
+ τ,

or equivalently if

(6.17) τ <
f
(
z

(l)
(i,q)

)
− f

(
maxk 6=l,j z

(l,k)
i,j

)
2

.

Taking the minimum right-hand side of (6.17) among all x ∈ X completes the proof.

6.7.2 Proof of Theorem 6.5

To prove Theorem 6.5, we first prove a slightly more general result that we will

then apply.

Lemma 6.14. Let a1, . . . , an ∈ Rd be i.i.d. uniform on Sd−1 and let G̃ be the

corresponding q-nearest neighbor graph with respect to the (transformed and noisy)

inner products

(6.18) f̂ij = f(|〈ai, aj〉|) + τij, i, j ∈ 1, . . . , n
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where f : R+ → R+ is a strictly increasing function and τij ∈ [−τ, τ ] are bounded

measurement errors. Let δ ≥ 0 and γ ∈ (1, n/ log n) be arbitrary, and let θ be the

spherical radius of a spherical cap covering γ log n/n fraction of the area of Sd−1.

Then if q ∈ [3(24π)d−1γ log n + 3L(Sd−2)
L(Sd−1)

n
d−1

(2δ)d−1, n], θ ≤ (π/2 − δ)/24 and τ ≤
{f(cos(16θ))− f(cos(16θ + δ))}/2, we have

(6.19) P{G̃ is connected } ≥ 1− 2

nγ−1γ log n
,

where L denotes the Lebesgue measure of its argument.

Proof of Lemma 6.14. Following the approach taken in [91, Appendix A.B], we par-

tition the unit sphere Sd−1 into M := n/(γ log n) non-overlapping regions R1, . . . , RM

of equal area with spherical diameters upper bounded as

sup
x,y∈Rm

arccos(〈x, y〉) ≤ 8θ =: θ∗

for all m; the existence of such a partition was shown in [126, Lemma 6.2]. Consider

the events

Am := Rm contains at least one of a1, . . . , an

Bm := Fewer than q/2 samples are within 3θ∗ + δ of cm in spherical distance

where c1, . . . , cM are arbitrarily chosen points in R1, . . . , RM , respectively, and the

spherical distance between two points x and y is arccos(〈x, y〉). The proof proceeds

as in [91, Appendix A.B] by first showing that G̃ is connected if Am and Bm hold

for all m = 1, . . . ,M . It then follows that

(6.20) P{G̃ is connected} ≥ P{∀m Am ∧Bm} ≥ 1−
M∑
m=1

P{¬Am} −
M∑
m=1

P{¬Bm}

where ∧ is conjunction, ¬ is negation, and the second inequality follows from a union

bound. The proof concludes by upper bounding P{¬Am} and P{¬Bm}; substituting

the bounds into (6.20) yields the final result (6.19).

Implication. We show that G̃ is connected if Am and Bm hold for all m =

1, . . . ,M , by showing that all samples in neighboring regions are connected when Bm

holds for all m. Since each region contains at least one sample when Am holds for all

m, it then follows that any pair of samples is connected via a chain of connections

through neighboring regions and so G̃ is connected.

Let ai and a` be arbitrary samples in neighboring regions Rm and Rn. Then a`

is within 2θ∗ of ai in spherical distance and thus f̂i` ≥ f̃(2θ∗) − τ , where we define
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f̃(α) = f(cos(α)) for convenience and note that it is decreasing on [0, π/2]. Any

sample aj for which f̂ij ≥ f̃(2θ∗)− τ must satisfy

f̃(arccos |〈ai, aj〉|) = f̂ij − τij ≥ f̂ij − τ(6.21)

≥ f̃(2θ∗)− 2τ = f̃(16θ)− 2τ

≥ f̃(16θ + δ) = f̃(2θ∗ + δ)

and so must also satisfy arccos |〈ai, aj〉| ≤ 2θ∗ + δ because f̃ is decreasing. Namely,

any such sample must be within 2θ∗+δ of either ai or −ai, and must hence be within

3θ∗ + δ of either cm or cm′ where Rm′ is the region containing −ai. Under Bm and

Bm′ , there are fewer than q such samples and so all must be connected to ai. In

particular, a` must be connected to ai, and all samples in neighboring regions are

connected when Bm holds for all m.

Upper bound on P{¬Am}. As in [91, Equations (27)–(28)], we use the fact

that each sample falls outside of Rm with probability 1− 1/M since the samples are

drawn uniformly from Sd−1 and the M regions have equal area. The samples are

furthermore drawn independently, and so

(6.22) P{¬Am} =

(
1− 1

M

)n
≤ e−n/M =

1

M

1

nγ−1γ log n
.

Upper bound on P{¬Bm}. For convenience let Cm := {x : arccos(〈x, cm〉) ≤
3θ∗ + δ} denote the spherical cap of spherical radius 3θ∗ + δ around cm, and let

Nm denote the number of samples in Cm. In this notation, Bm is the event that

Nm ≤ q/2. As in [91, Appendix A.B], we note that Nm is a binomially distributed

random variable with n trials and probability p := L(Cm)/L(Sd−1), where L is the

area (Lebesgue measure) of a set.

We begin by bounding q/2 below by 3np; this will make applying a binomial tail

bound more convenient. By assumption, 3θ∗ + δ = 24θ + δ ≤ π/2 and so we can

apply [126, Equation (5.2)] as in [91] to bound p as

(6.23)

p :=
L(Cm)

L(Sd−1)
≤ L(Sd−2)

L(Sd−1)

(3θ∗ + δ)d−1

d− 1
≤ 1

2

(L(Sd−2)

L(Sd−1)

(6θ∗)d−1

d− 1
+
L(Sd−2)

L(Sd−1)

(2δ)d−1

d− 1

)
where the second inequality follows from the convexity of xd−1 (when x > 0) applied

to the convex combination x = 3θ∗ + δ = 1/2(6θ∗) + 1/2(2δ). The first term can be

further bounded since

(6.24) θ∗ ≤ 4π

(
(d− 1)

L(Sd−1)

L(Sd−2)

γ log n

n

)1/(d−1)
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as in [91, Equation (31)]; the proof is the same with 3(24π)d−1 in place of 6(12π)d−1.

Substituting into (6.23) yields

(6.25) p ≤ 1

2

(
(24π)d−1γ log n

n
+
L(Sd−2)

L(Sd−1)

(2δ)d−1

d− 1

)
and thus

(6.26) 3np ≤ 1

2

(
3(24π)d−1γ log n+ 3

L(Sd−2)

L(Sd−1)

n

d− 1
(2δ)d−1

)
≤ q

2
.

Applying the binomial tail bound [109, Theorem 1] as done in [91, Equation (29)]

now yields

(6.27)

P{¬Bm} = P{Nm > q/2} ≤ P{Nm > 3np} ≤ e−np ≤ e−n/M =
1

M

1

nγ−1γ log n
.

The last inequality holds since Rm ⊂ Cm and so p = L(Cm)/L(Sd−1) ≥
L(Rm)/L(Sd−1) = 1/M .

Remark 6.15. An alternative bound on (α+β)d−1 could have been used in the proof

of Lemma 6.14 to shift the constants more heavily on the δ term. For example,

(6.28) (α + β)d−1 ≤ λ
(α
λ

)d−1

+ (1− λ)

(
β

1− λ

)d−1

for any λ ∈ (0, 1) and taking λ ≈ 1 shifts the constants heavily onto the second term.

The proof of Lemma 6.14 uses λ = 1/2.

We are now prepared to prove Theorem 6.5 by applying Lemma 6.14 with a

particular choice of δ.

Proof of Theorem 6.5. Take

(6.29) C3 =
f(cos(16θ))− f(cos(16θ + δ))

2
> 0,

where we note that θ is implicitly a function of n, d and γ, and we define

(6.30) δ = min

{
12π

(
d− 1

3

L(Sd−1)

L(Sd−2)

γ log n

n

)1/(d−1)

,
π

2
− 24θ

}
> 0,

which is also implicitly a function of n, d and γ. Now we need only to verify that

the conditions of Theorem 6.5 satisfy Lemma 6.14. Note first that by construction

δ ≤ π/2− 24θ and so θ ≤ (π/2− δ)/24. Furthermore

(6.31) 3
L(Sd−2)

L(Sd−1)

n

d− 1
(2δ)d−1 ≤ (24π)d−1γ log n
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and so

q ≥ 4(24π)d−1γ log n = 3(24π)d−1γ log n+ (24π)d−1γ log n(6.32)

≥ 3(24π)d−1γ log n+ 3
L(Sd−2)

L(Sd−1)

n

d− 1
(2δ)d−1.(6.33)

Hence all conditions of Lemma 6.14 are satisfied and the conclusion follows.

6.7.3 Proof of Lemma 6.6

We again prove the statement for a fixed xi ∈ Sl, taking a union bound to show

the condition holds for all points. First define

α = min
l,D:|D|≤2s,‖a‖=1

∥∥∥U(l)
D
>
U(l)a

∥∥∥
2
,

and note that by the assumption of the lemma, there exists an η > 0 such that

(6.34) max
k,l:k 6=l,D:|D|≤2s

∥∥∥U(k)
D
>
U(l)

∥∥∥
2

= α− η.

Equation (6.34) implies that

(6.35) max
k 6=l,j

z
(l,k)
i,j ≤ α− η

deterministically. Next, we show that

(6.36) z
(l)
(i,q) ≥ α− η

2

with high probability. The proof is nearly identical to [91, Lemma 1]. First, we have

that

z
(l,l)
i,j ∼

∥∥∥U(l)
D
>
U

(l)
E a

(l)
i

∥∥∥
2

∣∣∣〈a(l)
i , a

(l)
j

〉∣∣∣
≥ min

l,D:|D|≤2s,‖a‖=1

∥∥∥U(l)
D
>
U(l)a

∥∥∥
2

∣∣∣〈a(l)
i , a

(l)
j

〉∣∣∣ ,
where the sets D, E ⊂ [D] are the indices of the unobserved entries of x

(l)
j and x

(l)
i ,

respectively. Letting z̃
(l,l)
i,j =

∣∣∣〈a(l)
i , a

(l)
j

〉∣∣∣, we see that

P { z(l,l)
i,j ≤ z } ≤ P { min

l,D:|D|≤2s,‖a‖=1

∥∥∥U(l)
D
>
U(l)a

∥∥∥
2
z̃

(l,l)
i,j ≤ z }

= P { z̃(l,l)
i,j ≤

z

α
} .

We can bound the probability that (6.36) does not hold as

P { z(l)
(i,q) ≤ α− η

2
} ≤ P { z̃(l)

(i,q) ≤ 1− η

2α
}

≤
(
e
Nl − 1

q − 1

)q−1

pNl−q,



187

where p = P { z̃(l,l)
i,j ≤ 1− η

2α
}. Setting ξ = Nl−1

Nρ
l −1

, we obtain

P { z(l)
j ≤ 1− η

2α
} ≤ (eξ)

Nl−1

ξ p(Nl−1)(1− 1
ξ )

=
(

(eξ)
1
ξ p1− 1

ξ

)Nl−1

≤ e−(Nl−1)c1 ,

where the last inequality holds for a constant c1 > 0 as long as

(eξ)
1
ξ p1− 1

ξ < 1⇔ (eξ)−
1
ξ−1 > p.

This inequality can be satisfied for every p < 1 by taking N0, and consequently ξ,

sufficiently large. By inspection, we have p < 1 as long as η > 0, which is true by

assumption of the lemma.

By monotonicity of f , (6.35) implies that

f

(
max
k 6=l,j

z
(l,k)
i,j

)
≤ f (α− η)

and (6.36) implies that

f
(
z

(l)
(i,q)

)
≥ f

(
α− η

2

)
.

Finally, we have that

Ci,l := f
(
z

(l)
(i,q)

)
− f

(
max
k 6=l,j

z
(l,k)
i,j

)
≥ f

(
α− η

2

)
− f (α− η) > 0,

where the second line follows by monotonicity of f , noting that α − η/2 > α − η.

Taking C1 = minl∈[K],i∈[Nl] Ci,l/2 and a union bound completes the proof.

6.7.4 Proof of Lemma 6.7

We again prove the statement for a fixed xi ∈ Sl, with a union bound completing

the proof. Let ν = 2/3, Nl ≥ 6q, and c2 > 1/20. From [91, Appendix C], we have

that

(6.37) z
(l)
(i,q) ≥

ν√
dl
− ε

and

(6.38) max
k 6=l,j

z
(k)
j ≤ α + ε
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with probability at least 1− e−c2(Nl−1) − 10Ne−β
2/2, where

α =
β(1 + β)√

dl
max
k 6=l

1√
dk

∥∥∥U(k)>U(l)
∥∥∥
F
,

ε =
2σ(1 + σ)√

D
β

and 1√
2π
≤ β ≤

√
D. Let β =

√
6 logN and note that D ≥ 6 logN implies β ≤

√
D.

Noting that q < Nmin/6 implies N > 6, we have (1 + β) < 4
√

logN . These are

sufficient to guarantee that α + ε < ν√
dl
− ε. By monotonicity of f , (6.38) implies

that

f

(
max
k 6=l,j

z
(l,k)
i,j

)
≤ f (α + ε)

and (6.37) implies that

f
(
z

(l)
(i,q)

)
≥ f

(
ν√
dl
− ε
)
.

Finally, we have that

Ci,l := f
(
z

(l)
(i,q)

)
− f

(
max
k 6=l,j

z
(l,k)
i,j

)
≥ f

(
ν√
dl
− ε
)
− f (α + ε) > 0,

where the second line follows by monotonicity of f . Taking C2 = minl∈[K],i∈[Nl] Ci,l/2

and a union bound completes the proof.

6.7.5 Proof of Theorem 6.8

By Lemma 6.9, the expected entries of the co-association matrix obtained by

EKSS-0 are an increasing function of the inner product between points. It remains

to show how tightly these values concentrate around their mean. This concentration

allows us to bound the noise level τ via the following lemma.

Lemma 6.16. Let A be the affinity matrix formed by EKSS-0 (line 12, Alg. 6.1).

For two points xi, xj ∈ X , let

fK̄,d̄ (|〈xi, xj〉|) = EAi,j = P {xi, xj co-clustered }

and

f̂i,j = Ai,j =
1

B

B∑
b=1

1
{
xi, xj co-clustered in C(b)

}
.

Then for all τ > 0

(6.39) P {
∣∣∣f̂i,j − fK̄,d̄ (|〈xi, xj〉|)

∣∣∣ > τ } < 2e−c3τ
2B,
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where c3 = 2
√

log 2 and the randomness is with respect to the subspaces drawn in

EKSS-0 (line 4, Alg. 6.1).

Proof. The proof relies on sub-Gaussian concentration. The measurements f̂ are

bounded and hence sub-Gaussian with parameter 1√
log 2

. Note that f̂i,j is the empir-

ical estimate of fK̄,d̄ (|〈xi, xj〉|), and thus Ef̂i,j = fK̄,d̄ (|〈xi, xj〉|). Therefore, by the

General form of Hoeffding’s inequality [204, Theorem 2.6.2]

P {
∣∣∣f̂i,j − Ef̂i,j

∣∣∣ > τ } ≤ 2e−c3τ
2B,

where c3 = 2
√

log 2.

Combining the results of Theorem 6.9 and Lemma 6.16 shows that the (i, j)th

entry of the affinity matrix is τ -angle preserving with high probability for a single

point. A union bound over all N(N − 1)/2 unique pairs completes the proof.

6.7.6 Proof of Lemma 6.9

For notational compactness, we instead prove that the probability is a de-

creasing function of the angle θ between points and note that z = cos(θ). Let

U1,U2, . . . ,UK ∈ RD×d be the K candidate bases. Let p̃(θ) be the probability that

two points that are at angle θ apart are assigned to the candidate U1. Then we

clearly have pK,D(θ) = Kp̃(θ), and it suffices to prove that p̃ is strictly decreasing.

Let e1, . . . , eD be the standard basis vectors in RD. For a given θ, set xi := e1, and

xj = xj(θ) := cos(θ)e1 + sin(θ)e2. By definition, for any orthogonal transformation

Q of RD,

p̃(θ) = P {Qxi,Qxj both assigned to U1 } .

We may average out this equation over a choice subgroup of orthogonal matrices.

Indeed, let L denote the span of e1 and e2, and let Q be a random matrix uniformly

distributed over the set of orthogonal matrices that decompose into a rotation on L
and the identity on L⊥. We take expectations with respect to Q and exchange the

order of integration to get

p̃(θ) = EQPU1,...,UK
{Qxi,Qxj both assigned to U1 }

= EU1,...,UK
P {Qxi,Qxj both assigned to U1 | U1, . . . ,UK } .

Now fix U1, . . . ,UK . Let A = A(θ) be the event that Qxi and Qxj(θ) are

both assigned to U1. We claim that P {A(θ) | U1, . . . ,UK } is non-increasing in θ.

To see this, let us examine the event more closely. By the definition of candidate
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assignment, A occurs when U1 is the closest candidate to both xi and xj. More

mathematically, this is when

(6.40) ‖PU1Qz‖2
2 > ‖PUk

Qz‖2
2 , for 1 < k ≤ K, and z = xi, xj.

Here, we use PF to denote the orthogonal projection onto a subspace F .

We shall attempt to rewrite (6.40) in a more useful form. First, observe that

‖PU1Qz‖2
2 − ‖PUk

Qz‖2
2 = z>Q>P>U1

PU1z − z>P>Uk
PUk

Qz

= z>Q>PL
(
P>U1

PU1 −P>Uk
PUk

)
P>LQz.(6.41)

Let us also introduce some new notation. We use x̃i and x̃j to denote the two-

dimensional coordinate vectors of xi and xj with respect to e1 and e2, we let Q̃

denote the restriction of Q to L, and similarly let P̃L be the projection PL treated

as a map from RD to R2. We therefore have

z>Q>PL
(
P>U1

PU1 −P>Uk
PUk

)
P>LQz = z̃>Q̃>MkQ̃z̃,

where Mk := P̃L
(
P>U1

PU1 −P>Uk
PUk

)
P̃>L . Following these calculations, we see that

(6.40) is equivalent to

(6.42) z̃>Q̃>MkQ̃z̃ > 0, for 1 < k ≤ K, and z̃ = x̃i, x̃j.

When Q̃ is fixed, denote by AQ̃ the event over which (6.42) holds.

Observe that Mk is a 2 by 2 real symmetric matrix. As such, the set Sk of points

z̃ in R2 for which z̃TMkz̃ > 0 comprises the union of two (possibly degenerate)

antipodal sectors. The same is true for the intersection S := ∩k>1Sk. Let φ =

φ(U1, . . . ,UK) denote the angle spanned by one of the two sectors comprising S,

and note that 0 ≤ φ ≤ π. Furthermore, let T be the union of the sector spanned

by x̃i and x̃j with its antipodal reflection. Then AQ̃ holds if and only if Q̃T ⊂ S or

Sc ⊂ Q̃T . It is a simple exercise to compute

P { Q̃T ⊂ S | U1, . . . ,UK } =
(φ− θ)+

π
,

P {Sc ⊂ Q̃T | U1, . . . ,UK } =
(θ − π + φ)+

π
.

Since A is the disjoint union of these events, we have

(6.43) P {A(θ) | U1, . . . ,UK } =
(φ− θ)+

π
+

(θ − π + φ)+

π
.
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Differentiating at any point other than the obvious discontinuities, we have

d

dθ
P {A(θ) | U1, . . . ,UK } =

d

dθ

(φ− θ)+

π
+

(θ − π + φ)+

π

= − 1

π
1(0,φ)(θ) +

1

π
1(π−φ,π/2)(θ)

= − 1

π
+

1

π
1(φ,π/2)(θ) +

1

π
1(π−φ,π/2)(θ)

≤ 0.

Here, the last inequality follows from the fact that either φ ≥ π/2 or π −
φ > π/2, thereby completing the proof of the claim. Recalling that p̃(θ) =

EU1,...,UK
P {A(θ) | U1, . . . ,UK }, we have thus proved that p̃ is non-increasing. To

see that it is strictly decreasing, simply note that d
dθ
P {A(θ) | U1, . . . ,UK } < 0

whenever φ(U1, . . . ,UK) < π/2. This occurs on a set of positive measure.

6.7.7 Proof of Theorem 6.10

By Theorem 6.8, the co-association matrix Ā is τ -angle preserving with high

probability. Applying Lemma 6.6 with s = 0, we obtain C1 > 0 that lower bounds

the separation φq defined in (6.6) with high probability. Applying Lemma 6.5 with

γ = 3, we obtain C3 > 0 such that the components corresponding to each subspace

are connected with high probability. Setting τ = min {C1, C3 } in Theorem 6.8

completes the proof.

6.7.8 Proof of Theorem 6.11

By Theorem 6.8, the co-association matrix Ā is τ -angle preserving with high

probability. Applying Lemma 6.7 with σ = 0, we obtain C2 > 0 that lower bounds

the separation φq defined in (6.6) with high probability. Applying Lemma 6.5 with

γ = 3, we obtain C3 > 0 such that the components corresponding to each subspace

are connected with high probability. Setting τ = min {C1, C3 } in Theorem 6.8

completes the proof.

6.7.9 Proof of Theorem 6.12

By Theorem 6.8, the co-association matrix Ā is τ -angle preserving with high

probability. Applying Lemma 6.7, we obtain C2 > 0 that lower bounds the separation

φq defined in (6.6) with high probability. Setting τ = min {C1, C3 } in Theorem 6.8

completes the proof.
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6.7.10 Proof of Theorem 6.13

By Theorem 6.8, the co-association matrix Ā is τ -angle preserving with high

probability. By [91, Lemma 4], the condition (6.8) holds with probability at least 1−
4e−c7D as long as (6.15) is satisfied. Thus, applying Lemma 6.6 with the parameters

Nk = n, dk = d for all k, the result holds with the specified probability.

6.8 Implementation Details

This section includes implementation details beyond those included in the main

body. We define the clustering error precisely and describe the preprocessing steps

and parameters used for our experiments on real data.

6.8.1 Clustering Error

The clustering error, which is the metric used for all experimental results, is

computed by matching the true labels and the labels output by a given clustering

algorithm,

err =
100

N

(
1−max

π

∑
i,j

Qout
π(i)jQ

true
ij

)
,

where π is a permutation of the cluster labels, and Qout and Qtrue are the output

and ground-truth labelings of the data, respectively, where the (i, j)th entry is one

if point j belongs to cluster i and is zero otherwise.

6.8.2 Experiments on Benchmark Data

Dataset N K D
Hopkins-155 39-556 2-3 30-200

Yale 2432 38 2016
COIL-20 1440 20 1024
COIL-100 7200 100 1024

USPS 9298 10 256
MNIST-10k 10000 10 500

Table 6.2: Datasets used for experiments with relevant parameters; N : total number
of samples, K: number of clusters, D: ambient dimension.

This section describes the benchmark datasets used in our experiments, as well as

any preprocessing steps and the parameters selected for all algorithms. All datasets

are normalized so that each column lies on the unit sphere in the corresponding
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ambient dimension, as is common in the literature [89, 91, 187]. Table 6.2 gives a

summary of all datasets considered.

The Hopkins-155 dataset [198] consists of 155 motion sequences with K = 2 in

120 of sequences and K = 3 in the remaining 35. In each sequence, objects moving

along different trajectories each lie near their own affine subspace of dimension at

most 3. We perform no preprocessing steps on this dataset.

The Extended Yale Face Database B [74, 123] consists of 64 images of each

of 38 different subjects under a variety of lighting conditions. Each image is of

nominal size 192 × 168 and is known to lie near a 9-dimensional subspace [20]. We

downsample so that each image is of size 48× 42, as in [67]. For EKSS, KSS, CoP-

KSS, MKF, and TSC, we perform an initial whitening as in [91, 226] by removing the

first two singular components of the dataset and then project the data onto its first

500 principal components to reduce the computational complexity of these methods.

Whitening resulted in worse performance for all other algorithms, so we omitted this

step.

Algorithm Hopkins Yale COIL-20 COIL-100 USPS MNIST-10k
EKSS d = 3, q = 2 d = 2, q = 6 d = 2, q = 6 d = 8, q = 7 d = 13, q = 3 d = 13, q = 72
KSS d = 3 d = 3 d = 1 d = 5 d = 9 d = 13

CoP-KSS d = 4 d = 6 d = 9 d = 1 d = 7 d = 18
MKF d = 3 d = 17 d = 19 d = 18 d = 20 d = 20
TSC q = 3 q = 3 q = 4 q = 4 q = 3 q = 3

SSC-ADMM ρ = 0.1, α = 226.67 ρ = 0.1, α = 670 ρ = 0.8, α = 5 ρ = 1, α = 20 ρ = 1, α = 20 ρ = 1, α = 20
SSC-OMP ε = 2−52, kmax = 2 ε = 2−52, kmax = 2 ε = 2−52, kmax = 2 ε = 2−52, kmax = 2 ε = 2−52, kmax = 29 ε = 2−52, kmax = 17

EnSC λ = 0.01, α = 98 λ = 0.88, α = 3 λ = 0.99, α = 3 λ = 0.95, α = 3 λ = 0.95, α = 50 λ = 0.95, α = 3

Table 6.3: Parameters used in experiments on real datasets for all algorithms con-
sidered.

The COIL-20 [149] and COIL-100 [148] datasets consist of 72 images of 20 and

100 distinct objects (respectively) under a variety of rotations. All images are of

size 32× 32. On both datasets, we whiten by removing the first singular component

when it improves algorithm performance.

The USPS dataset provided by [37] contains 9,298 total handwritten digits of size

16× 16 with roughly even label distribution. No preprocessing is performed on this

dataset.

The MNIST dataset [119] contains a total of 70,000 handwritten digits, of which

we consider only the 10,000 “test” images. The images have nominal size 29 × 29,

and we use the output of the scattering convolutional network [32] of size 3,472 and

then project onto the first 500 principal components as in [216].

For all algorithms, we set K to be the correct number of clusters. For EKSS, we

set B = 1000 and T = 3 for all datasets except MNIST, for which we set T = 30.

Due to the benefits demonstrated in [76], we employed CoP-KSS instead of KSS as a

base clustering algorithm for the USPS and MNIST datasets. For a fair comparison
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to KSS, CoP-KSS, and MKF, we ran 1000 trials of each and use the clustering result

that achieves the lowest clustering error. The parameters used for all experiments

are shown in Table 6.3, with the most common parameters given among the 155

datasets for the Hopkins database. For the Hopkins, Yale, and COIL-20 datasets,

we performed extensive model sweeps over a wide range of values for each parameter

for each algorithm. For the larger COIL-100, USPS, and MNIST-10k datasets, this

was infeasible for SSC-ADMM and EnSC, so the values were instead chosen from an

intelligently-selected subset of parameters.



CHAPTER VII

Sequences of unions of subspaces for data with

heterogeneous complexity

In important applications ranging from medical imaging [137] to multi-band sig-

nal processing [143] and genetics [191], signals of interest are well-approximated by

sparse linear combinations of atomic signals from a dictionary. Equivalently, such

signals are well-approximated by a union of low-dimensional subspaces generated by

the dictionary where each sparsity level has an associated union of subspaces (UoS)

generated by sparse combinations of correspondingly many atoms. Considering a se-

quence of sparsity levels yields a sequence of unions of subspaces (SUoS) of increasing

dimension. This chapter considers the problem of learning such an SUoS from data.

While each UoS is combinatorially large with respect to sparsity level, our learning

approach exploits the fact that sparsity is structured for many signals of interest,

i.e., that certain collections of atoms are more frequently used together than others.

This is known as group sparsity structure and has been studied extensively when

the structure is known a priori. This chapter instead supposes that the structure is

unknown, and we seek to learn it from training data. We also adapt the subspaces

we obtain to improve representation and parsimony, similar to the goal of adapting

atoms in dictionary learning. Finally, a denoising example illustrates the benefits

of learning a dictionary-based SUoS; using a more parsimonious and representative

SUoS results in improved recovery of complicated structures and edges.

This work was conducted jointly with (then undergraduate) Robert Malinas, and

led to the conference paper that this chapter presents:

[99] David Hong, Robert P. Malinas, Jeffrey A. Fessler, and Laura Balzano.

Learning Dictionary-Based Unions of Subspaces for Image Denoising. In 2018

26th European Signal Processing Conference (EUSIPCO). IEEE, September

2018. doi: 10.23919/eusipco.2018.8553117.
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7.1 Introduction

Consider signals x ∈ Cm that are well-approximated by sparse linear combina-

tions from a large (over-complete) set of dictionary atoms, i.e., suppose that

(7.1) min
z:‖z‖0≤k

‖x−Dz‖2 ≤ ε
√
m,

where

• D ∈ Cm×n is a dictionary with n unit norm columns d1, . . . , dn ∈ Cm referred

to as atoms,

• k is the sparsity level (typically much smaller than n), and

• ε is the approximation root mean square error (RMSE).

Any signal that is exactly k-sparse in the dictionary D, i.e., that satisfies (7.1)

with ε = 0, lies in the span of the atoms identified by the support of its k-sparse

coefficient vector z. Hence, it has often been noted that such signals lie in a union

of
(
n
k

)
subspaces, each of dimension k.

Since the results of [39, 60] showed that it is possible to efficiently recover these

signals from only O(k log n) measurements using `1 optimization, this model has been

applied widely for signal denoising and inverse problems. It has also been widely

recognized that not all
(
n
k

)
possible k-sparse supports are equally likely, resulting in

an extensive literature on group sparsity or structured sparsity constraints for signal

representation and recovery. Identifying groups corresponds exactly to selecting a

subset in the union of k-dimensional subspaces (7.2) and hence this model is also

called a structured union of subspaces [66, 213]. In the vast majority of research,

however, the group structure is assumed known. This chapter considers learning the

group structure from data.

In general, learning which of the combinatorially many possible supports are

most relevant for a given dataset is challenging. Our key insight is that the lowest-

dimensional models represent the bulk of the signals for some datasets. Hence, we

first learn 1-sparse supports, then 2-sparse supports and so on, where at each stage

we seek to represent only the data not already well approximated. The training

data associated with each support can then be collected and used to learn an even

lower-dimensional subspace. We can also discard subspaces associated with only a

few signals; doing so further simplifies the model and increases overall representa-

tion error only slightly. Organizing the remaining subspaces by dimension yields a

sequence of unions of subspaces (SUoS) of increasing dimension.
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This chapter proposes an algorithm based on this intuition for learning a par-

simonious and representative SUoS from data. We demonstrate the benefit of the

learned model over unstructured sparsity by applying it to image denoising.

7.2 Related Work

7.2.1 Hidden Markov Models for Wavelet coefficients

Motivated by the observation that wavelet coefficients are typically correlated

within and across scales, [53, 175] propose learning hidden Markov models with

tree-structure to capture the correlations among the coefficients then using them to

improve signal estimation and classification. Capturing these correlations provides

rich information about the sparse coefficients and their relationships. In contrast,

our proposed approach learns only the structure of supports, but immediately applies

without extension to dictionaries without tree-structure.

7.2.2 Structured Sparsity and Group Lasso

Numerous applications ranging from multi-band signal processing [143] to genet-

ics [191] motivated extensive work in the past decade on both theory and algorithms

that exploit known group structure in supports to improve signal/subspace recovery

from compressive measurements [18, 61, 66, 171, 213] and classification [170]. Exam-

ple structures include non-overlapping groups [101], overlapping groups [105, 165],

tree-structured groups [115], and even groups with internal sparsity [185]. This

chapter is largely inspired by the benefits of capturing structured sparsity that they

demonstrate, but we focus instead on how to learn unknown structures from data.

7.2.3 Learning the structure for structured sparsity

The authors of [182] propose a statistical model for structured sparsity and an

inference scheme for its hyperparameters. In contrast to [182] and the works discussed

above, our proposed approach learns new subspaces that need not be generated

from atoms of the dictionary and so may provide more parsimonious representations.

Namely, we focus more on learning arbitrary sequences of unions of subspaces than

on sparsity structure for a given dictionary. Still, we use sparsity structure to first

cluster the data; incorporating ideas from [182] in that step would be an interesting

avenue for future work.
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F0(D), F1(D), F2(D), . . . Fn(D)

increasing subspace dimension

. . .

Figure 7.1: The sequence of unions of subspaces (SUoS) generated by a dictionary.

7.2.4 Subspace clustering

As discussed in Section 2.4, subspace clustering [205] groups data to their nearest-

subspaces and can be used to learn a union of subspaces by simply learning a subspace

for each cluster. Likewise, our proposed approach clusters data then learns a sub-

space for each cluster. However, it generally differs from other subspace clustering

approaches by exploiting structured sparsity with respect to an initial dictionary

to select the number of clusters. Additionally, while many subspace clustering tech-

niques can learn subspaces of different dimensions, an SUoS may further have higher-

dimensional subspaces that entirely contain lower-dimensional subspaces. Subspace

clustering techniques do not typically learn this type of structure, but this feature is

critical for SUoS models to generalize dictionary sparsity.

7.2.5 Dictionary learning

Dictionary learning adapts dictionary atoms to more parsimoniously represent

data [8, 129] and our proposal shares this trait. As with any collection of subspaces,

one can also obtain a learned dictionary from our proposal by using the subspace basis

vectors as atoms and assuming the corresponding non-overlapping group sparsity. In

contrast to dictionary learning approaches, however, we first cluster the data and

then learn subspaces for them. A notable consequence is that the (effective) number

of atoms and the sparsity structure are learned from data.

7.3 Learning a Sequence of Unions of Subspaces

The set of all k-sparse signals in a given dictionary D forms a union of
(
n
k

)
many

k-dimensional subspaces, defined as:

(7.2) Fk(D) := {Dz : z ∈ Cn, ‖z‖0 ≤ k} =
⋃
I∈Ωk

R(DI),
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U0, U1, U2, . . . Um

increasing subspace dimension

. . .

Figure 7.2: A general sequence of unions of subspaces (SUoS). This one has no gen-
erating dictionary.

where R(·) is the column span of its argument, DI is a matrix formed from the

columns of D indexed by I, and the union is carried out over the
(
n
k

)
index sets in

Ωk := {I ⊂ {1, . . . , n} : |I| = k}.

Taking all sparsity levels yields the sequence of unions of subspaces (SUoS) in Fig. 7.1.

Note that this sequence is distinct from a union of unions; F0(D) ∪ · · · ∪ Fn(D) is

actually just Fn(D) since it contains the rest.

7.3.1 Goal: Learn a “parsimonious” SUoS from data

We aim to learn a general SUoS U0,U1, . . . ,Um ⊆ Cm, e.g., as shown in Fig. 7.2,

that closely approximates a given collection of T training vectors x1, . . . , xT ∈ Cm.

Each Uk is a (potentially empty) union of Nk many k-dimensional subspaces

(7.3) Uk :=

Nk⋃
i=1

R(Uk,i) =

Nk⋃
i=1

{Uk,iz : z ∈ Ck},

where the columns of Uk,i ∈ Cm×k span a k-dimensional subspace. We consider {0}
to be a zero-dimensional subspace.

Note that U0 must be either {0} or ∅, and likewise Um must be either Cm or ∅.
Beyond that, however, there are infinitely many choices for each of U1, . . . ,Um−1 that

produce perfect representation of the training vectors. Two such choices are always:

U0,U2, . . . ,Um = ∅ U1 =
T⋃
i=1

R(xi),(7.4)

U0, . . . ,Um−1 = ∅ Um = Cm.(7.5)

However, (7.4) is undesirable because it does not generalize from the data; only scaled

training vectors appear in the SUoS. It is not parsimonious because U1 contains many
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subspaces. On the other hand, (7.5) has only one subspace but is not parsimonious

because it is not low-dimensional.

We seek low-dimensional subspaces, where each represents nontrivially many

training vectors. This requires balancing the trade-off between using low-dimensional

subspaces and using subspaces expressive enough to represent diverse data vectors.

Formulating this goal precisely and cleanly is challenging and ongoing work.

7.3.2 Proposal: A dictionary-based SUoS learning algorithm

We consider learning an SUoS U0, . . . ,Um where each subspace approximates a

subset of the training vectors x1, . . . , xN identified by their structured sparsity in a

dictionary. Given a dictionary D, approximation tolerances εs, εu and a threshold

number of training vectors τ , the proposed method has the following steps:

1. Sparsely approximate each training vector xt with the dictionary D by sparse

coding: for t = 1, . . . , T solve

(7.6) ẑt = argmin
zt∈Cn

‖zt‖0 s.t. ‖xt −Dzt‖2 ≤ εs

√
m.

Under mild conditions on the dictionary [199], orthogonal matching pursuit

(OMP) solves (7.6) efficiently and reliably. OMP solves (7.6) exactly for or-

thogonal atoms.

2. Cluster the training vectors by the atoms in their sparse approximation, i.e.,

by the supports supp(ẑt).

3. Discard clusters containing fewer than τ training vectors, obtaining L clusters

X1, . . . ,XL ⊂ {x1, . . . , xT}.

4. Learn an orthonormal subspace basis U` ∈ Cm×k` for each cluster X` by mini-

mizing the root mean square approximation error

(7.7) ρ(U`,X`) :=

√
1

|X`|
∑
x∈X`
‖x−U`UH

` x‖2
2,

where k` is the smallest dimension that results in a U` within the approxima-

tion tolerance ρ(U`,X`) ≤ εu

√
m.

We find the dimension k` and associated U` ∈ Cm×k` via the singular value

decomposition by noting that k` is the smallest value for which

(7.8)
1√
|X`|

√∑
j>k`

λ2
j(X`) ≤ εu

√
m,
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where λj(X`) is the jth singular value of the matrix X` ∈ Cm×|X`| whose

columns are the |X`| training vectors in X`. The columns of U` are simply the

first k` left singular vectors of X` [63].

5. Collect the subspace bases U1, . . . ,UL by their dimensions k1, . . . , kL, obtaining

the unions of subspaces:

(7.9) Uk =
⋃

`:k`=k

R(U`), k ∈ {0, . . . ,m}.

Steps 1–3 exploit structured sparsity to form clusters of training signals that we hope

lie near low-dimensional subspaces that are learned in steps 4–5. In this way, the

approach combines learning sparsity structure like [182] with adaptation to the data

like in dictionary learning [8].

Note that the approach automatically chooses how many subspaces of each dimen-

sion to include, and encourages a parsimonious SUoS with low-dimensional subspaces

that all represent nontrivially many training vectors. Furthermore, the approach is

efficient; the primary sources of computational cost are sparse coding, which is done

efficiently via OMP, and the singular value decomposition of each cluster.

7.4 Denoising with a general sequence of unions of subspaces

This section describes how to use an SUoS for denoising. Denoising a vector

y ∈ Cm using (unstructured) sparsity can be accomplished by solving the sparse

coding problem:

(7.10) ẑ ∈ argmin
z∈Cn

‖z‖0 s.t. ‖y −Dz‖2 ≤ ε
√
m,

then returning the “denoised” vector x̂ = Dẑ. We propose a generalization of this

scheme to arbitrary SUoS models as follows: given an SUoS U0, . . . ,Um solve the

low-dimensional coding problem:

(7.11) (ẑ, Û) ∈ argmin
z∈Ck,U∈Uk
k∈{0,...,m}

k s.t. ‖y −Uz‖2 ≤ ε
√
m,

then returning x̂ = Ûẑ. In essence, we seek to project y onto the lowest dimensional

subspace that approximates it with RMSE within ε. For a dictionary-generated

SUoS F0(D), . . . ,Fn(D), (7.11) is precisely a restatement of the sparsity approach;

the subspace dimension k in (7.11) corresponds exactly to the sparsity ‖z‖0 in (7.10).

One might solve the general denoising objective (7.11) with the following procedure:

1. Initialize k = 0.
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Figure 7.3: Training slice (475× 835) of the XCAT digital phantom [177, 178] and a
set of randomly selected 4 × 4 patches. The display window for both is
[900, 1100] HU.

2. Select the subspace basis U among those in Uk that maximizes the projection

length ‖UHy‖2 = ‖UUHy‖2 since that minimizes the residual

min
z∈Ck
‖y −Uz‖2 = ‖y −UUHy‖2 =

√
‖y‖2 − ‖UUHy‖2,

by Pythagorean theorem.

3. If ‖y −UUHy‖2 ≤ ε
√
m, return UUHy as x̂. Otherwise, increment k and go

back to step 2.

The exhaustive search in step 2 may appear worrisome, but for parsimonious SUoS

we hope to have relatively few subspaces in each union. Moreover, we hope that most

signals are close to low-dimensional subspaces and can exit early in the algorithm.

Varying ε trades off between model error and noise; larger choices allow approxi-

mation by lower-dimensional subspaces that further suppress noise but that are also

less likely to be representative. Adapting the dimension in this way is desirable for

diverse signal classes such as image patches where some are nearly constant while

others may be highly textured.

7.5 Experiments on an X-ray CT digital phantom

This section illustrates learning an SUoS for patches of an axial slice of the XCAT

digital phantom [177, 178] then using it for denoising.

7.5.1 Learning an SUoS

We learn an SUoS for 4 × 4 patches extracted from a 475 × 835 slice of the

XCAT phantom, shown in Figure 7.3 with a display window of 900 to 1100 modified

Hounsfield units (HU). Extracting all overlapping 4 × 4 patches yields T = 392704

training samples in R16, 53444 of which are not constant. We use 2D orthogonal Haar



203

Figure 7.4: Atoms of the 2D orthogonal Haar wavelet dictionary.

Table 7.1: Number of unique supports at each sparsity level for XCAT patches (εs =
5 HU).

Sparsity 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

τ = 1 1 1 7 10 11 15 29 50 67 89 98 101 63 74 32 4 0 652
τ = 25 1 1 2 4 1 0 8 11 11 16 6 16 11 10 2 4 0 104

# possible 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1 65536

wavelets (Figure 7.4) as the input dictionary D ∈ R16×16 since the XCAT phantom

is piecewise constant, and we set the approximation tolerances to εs = εu = 5 HU

based on a rough desired precision. The threshold number of training vectors τ = 25

is chosen to remove sufficiently rare subspaces; note that τ/T = 25/392704 ≈ 0.006%

of the training data.

Table 7.1 shows the number of unique supports obtained at each sparsity level

k after step 3 of the learning algorithm for both τ = 1 (i.e., no clusters discarded)

and τ = 25, in addition to the number of possible supports
(

16
k

)
. Discarding small

clusters (τ = 25) discards 2113 patches (approximately 0.5% of the training data) and

reduces the number of unique supports from 652 to 104, but even before discarding

any (τ = 1), there are already many fewer supports than the 216 = 65536 possible.

The patches are also sparsely representable by the 2D Haar wavelets overall, with

an average of (1/T )
∑T

t=1 ‖zt‖0 = 1.6 nonzero coefficients per patch. However, a

nontrivial number of patches are not easily represented by sparse combinations of

these wavelets, evidenced by the dense supports containing over eight atoms found

both when τ = 1 and when τ = 25. The second stage of learning finds lower-

dimensional subspace representations for these patches.

Table 7.2: Number of subspaces learned at each dimension for XCAT patches (εs =
εu = 5 HU).

Dimension 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

τ = 1 1 291 106 79 40 49 22 16 10 11 13 8 4 0 2 0 0 652
τ = 25 1 1 11 13 10 15 11 4 6 11 7 8 4 0 2 0 0 104
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Figure 7.5: Test slice (475 × 835) of the XCAT digital phantom [177, 178] on left
with a noisy version on right (noise std. dev. of 20 HU). Display window
is [900, 1100] HU.

Table 7.2 shows the number of subspaces obtained at each dimension after com-

pletion of the learning algorithm for both τ = 1 and τ = 25. As each subspace

is formed from a cluster identified in steps 1–3, there are once again 652 subspaces

when τ = 1 and 104 when τ = 25. Compared with the sparsity of supports in

Table 7.1, however, the dimensions of the final learned subspaces tend to be sig-

nificantly smaller. Adapting a subspace to each cluster allows for low-dimensional

subspaces when the cluster contains signals that are similar but not sparse in the

input dictionary, and seeking an average approximation error within εu allows for

even lower-dimensional subspaces that only approximate the cluster overall.

The learning algorithm automatically avoids the trivial solutions (7.4) and (7.5)

by exploiting structured sparsity in the 2D Haar wavelets to cluster and by adapting

the subspaces to obtain 104 generally low-dimensional subspaces that all represent

nontrivially many training vectors. Using a laptop with an Intel Core i5-6300U CPU

(2.40 GHz, 2.50 GHz) and 8 GB of RAM, learning the subspaces from the 392704

patches takes around 15 seconds with unoptimized code written in Julia.

7.5.2 Denoising using the learned SUoS

We denoised a 475× 835 test slice extracted from another portion of the XCAT

phantom that has additive zero-mean Gaussian noise with a standard deviation of

20 HU as shown in Figure 7.5. We first denoised all 4 × 4 patches extracted from

the noisy image and then combined the denoised patches back into a denoised im-

age, averaging where patches overlap. Figure 7.6 shows absolute error maps for the

denoised images obtained when patches are denoised by: a) solving (unstructured)

sparse coding (7.10) with 2D Haar wavelets, or b) using the learned SUoS. We chose

a tolerance of ε = 27 HU for both; it seemed to produce the best sparse coding

performance in our experiments. Using a laptop with an Intel Core i5-6300U CPU

(2.40 GHz, 2.50 GHz) and 8 GB of RAM, denoising the 475 × 835 test slice takes
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Figure 7.6: Absolute error maps in [0, 25] HU range for images denoised using un-
structured sparse coding (left) and the learned SUoS (right) with a tol-
erance of ε = 27 HU.

Figure 7.7: Color overlays (zoomed in on right), showing locations of the regions of
interest: edge vicinity (green), spine (red), their intersection (yellow),
and lung (cyan).

around 4 seconds for both sparse coding and the learned SUoS with unoptimized

Julia code.

Comparing against the true (noiseless) test slice, sparse coding obtains an overall

RMSE of 5.1 HU and the learned SUoS obtains a slight improvement to 4.6 HU.

However, edge detail is important for these images, and the error maps reveal that

the learned SUoS generally recovers edges more accurately, especially around the

spine. To investigate further, we consider four regions of interest (ROI) shown in

Figure 7.7: a) an edge ROI obtained by dilating the edge map provided by a Canny

edge detector, b) a spine ROI, c) their intersection, and d) a lung ROI. The RMSE’s

(in HU) on all ROI’s are:

Edge Spine Intersection Lung

Sparse coding 8.6 8.5 11.1 3.6

Learned SUoS 7.5 6.1 7.5 3.6

There is practically no improvement in the lung ROI, where the XCAT phantom is

nearly constant and the two models provide equally parsimonious representations.

However, the learned SUoS better recovers detailed regions, most significantly seen

in the intersection ROI, i.e., around edges in the spine.
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Figure 7.8: Absolute error maps in [0, 25] HU range for images denoised using un-
structured sparse coding (left) and the learned SUoS (right) with a larger
tolerance of ε = 50 HU.

Choosing the best ε can be a challenge in practice. Denoising again but with a

larger tolerance ε = 50 HU yields error maps shown in Figure 7.8 and the following

ROI RMSE’s (in HU):

Edge Spine Intersection Lung

Sparse coding 10.7 12.7 16.9 3.4

Learned SUoS 8.4 7.0 8.9 3.4

Since the learned SUoS captures more of the structure, it is significantly more robust

to overestimating ε.

7.6 Conclusion

This chapter introduced the sequence of unions of subspaces (SUoS) model that

unifies and generalizes union of subspace models and dictionary sparse models. We

proposed a method for learning a dictionary-based SUoS and illustrated the benefits

of the learned model with image denoising. Interesting avenues of future work include

understanding how to choose the approximation tolerances and threshold number of

atoms in learning as well as understanding the impact of the seed dictionary used,

especially if it was learned or over-complete. Formulating a precise and clean learning

objective is also an interesting and important challenge that might provide a more

principled foundation for further work on this model. A final avenue of future work

is the application of this model to inverse problems such as image reconstruction.



CHAPTER VIII

Conclusion and open problems

This dissertation studied low-dimensional modeling for the high-dimensional and

heterogenous data that are increasingly common in modern data analysis. In these

new regimes, some traditional intuitions and techniques break down. New theory and

techniques are needed to unlock the full potential for discoveries facilitated by the

scale and diversity of modern data. Chapter III analyzed the asymptotic performance

of the standard and ubiquitous Principal Component Analysis (PCA) when samples

have heterogeneous noise variance, characterizing how this heteroscedasticity harms

PCA performance. Chapter IV analyzed a weighted variant of PCA that gives noisier

samples less influence and found optimal weights that turn out to more aggressively

downweight noisy samples than the typical choice of inverse noise variance weights.

Chapter V considered data with heterogeneous statistical properties and generalized

the increasingly standard Canonical Polyadic (CP) tensor decomposition to provide a

unified algorithmic framework for many general notions of fit beyond the traditional

least-squares. The final two chapters, Chapters VI and VII, considered unions of

subspaces that model samples of heterogeneous type by combining several subspace

models where each subspace models one of the classes. Chapter VI proposed and

analyzed an ensemble method for clustering samples by associated subspace, and

Chapter VII proposed an extension of unions of subspaces to a sequence of unions of

subspaces that more systematically captures samples with heterogeneous complex-

ity. Much work remains and one can expect that the need for theory and techniques

suitable for large and heterogeneous data will only grow in the future. The conclu-

sions of Chapters III to VII each describe avenues for future work in context; the

remainder of this final chapter organizes and highlights a few.
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8.1 Open problems in asymptotic (weighted) PCA analysis

The analyses of PCA and weighted PCA in Chapters III and IV leave several

questions unanswered. First is the conjectured phase transition when A(βi) = 0,

stated as Conjecture 3.5 in the context of PCA and as Conjecture 4.8 in the more

general context of weighted PCA. The claim is that the asymptotic recovery of the

ith component is zero when A(βi) ≤ 0, which has been shown for unweighted PCA

in the special cases where:

• the noise is homoscedastic and Gaussian [163], or

• there is only one component, i.e., k = 1 [94].

The numerical experiments in Section 3.4 suggest the conjecture holds in general,

but proving this claim may involve showing that the noise singular values exhibit

repulsion; see [22, Remark 2.13].

A second open problem is to characterize the unweighted recovery of the scores

in weighted PCA. Theorem 4.3 characterizes the weighted score recovery∑
j:θj=θi

∣∣∣∣〈 ẑi√
n
,
zj√
n

〉
M

∣∣∣∣2,
with weighted Euclidean metric M = W2 in (4.8), resulting in weighted aggregate

score recovery (4.14) and weighted mean square error (4.15) in Corollary 4.7. Char-

acterizing the unweighted recovery, i.e., M = In, is important because it would

enable the optimization of weights for (unweighted) mean square error. Choosing

weights to optimize the weighted mean square error is conceptually peculiar because

the performance metric changes with the weights in this case. Numerical simulations

in Fig. 4.10 suggest that unweighted recovery also concentrates in high dimensions;

the challenge is in finding ways to extend our existing analysis tools to find the limit.

A third open problem is to explain a surprising phenomenon of unweighted PCA

predicted by Theorem 3.4: adding noise can improve the performance of PCA, e.g.,

when there is extreme imbalance in noise levels. Plotting the asymptotic recovery

(3.4) of unweighted PCA in Fig. 3.3 reveals this behavior. Increasing σ2
1 from zero

while keeping σ2
2 = 4 fixed initially improves recovery; see the discussion in Sec-

tion 3.3.3. Figure 8.1 shows numerical simulations further illustrating the behavior

for data generated according to (3.1) with c = 10 samples per dimension, an under-

lying amplitude θ2
1 = 1, and p2 = 1% of samples having noise variance σ2

2 = 7.5 with

the remaining p1 = 99% of samples having noise variance σ2
1 swept from 0 to 2. The

interquartile interval (light blue ribbon) concentrates around the mean (dashed blue

curve) as the data size increases from (a) to (b) and (c) while the mean approaches
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(b) 10000 samples in 1000
dims, 1000 trials.
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(c) 25000 samples in 2500
dims, 200 trials.

Figure 8.1: Simulated component recoveries |〈û1, u1〉|2 of (unweighted) PCA for data
generated according to (3.1) with c = 10 samples per dimension, an
underlying amplitude θ2

1 = 1, and p2 = 1% of samples having noise
variance σ2

2 = 7.5 with the remaining p1 = 99% of samples having noise
variance σ2

1 swept from 0 to 2. Simulation mean (dashed blue curve) and
interquartile interval (light blue ribbon) are shown with the asymptotic
prediction (3.4) of Theorem 3.4 (green curve). Increasing the data size
from (a) to (b) and (c) shrinks the interquartile intervals, indicating
concentration to the mean, which is itself converging to the asymptotic
recovery. The performance of unweighted PCA does indeed sometimes
improve with additional noise.

the asymptotic prediction (3.4) of Theorem 3.4 (green curve), indicating that The-

orem 3.4 correctly predicts the limit. Moreover, the empirical recoveries themselves

seem to initially improve as the noise level σ2
1 increases, indicating that this behavior

does not only occur in the limit, i.e., it is not an artifact of the asymptotic analysis.

Nevertheless, the phenomenon is puzzling because degrading data quality by adding

noise typically harms performance; neither inverse noise variance weighted PCA nor

optimally weighted PCA exhibit this behavior as discussed in Section 4.7.3. Under-

standing why adding noise can aid unweighted PCA may provide new and valuable

insight into PCA.

Further directions for future work on the analysis of (weighted) PCA with het-

eroscedastic noise are described in Sections 3.7 and 4.10. For example, one might

consider a continuum of noise variances by supposing that the empirical noise vari-

ance distribution converges (δη2
1

+ · · · + δη2
n
) → ν as n → ∞; this would, e.g., allow

the number of noise variances L to grow with n. Section 3.7 states our conjecture

for unweighted PCA. Analyzing more general types of heterogeneity and associated

forms of weighted PCA, e.g., heterogeneous noise variances both across variables and

across samples with weights applied across both, is another important avenue, but

the ability to first characterize unweighted recoveries will likely be crucial in this set-
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ting. Finally, obtaining tight non-asymptotic analyses remains a large open problem.

Results along this line of work would provide precise and rigorous characterizations

of the empirical concentration seen in Sections 3.4 and 4.9.

8.2 Extensions and applications of weighted PCA

In Chapters III and IV, the asymptotic analyses of PCA and weighted PCA were

used to characterize and gain various insights about:

• the positive bias of PCA amplitudes (Section 3.2.4)

• the impact of heteroscedasticity in PCA (Section 3.2.6)

• optimal weighting in weighted PCA (Sections 4.5 and 4.6)

• optimal sampling under linear sampling constraints (Section 4.8)

• the impact of data properties such as sample-to-dimension ratio, underlying

amplitudes, proportions, and noise variances (Sections 3.3 and 4.7), and

• the impact of including noisier samples (Sections 3.3.4 and 4.7.4).

Many such opportunities remain to exploit the simple algebraic descriptions for

asymptotic recovery (Theorems 3.4 and 4.3) to probe the behavior of (weighted)

PCA. For example, the study of how data properties impact recovery in Sections 3.3

and 4.7 forms largely qualitative conclusions; more carefully quantifying the insights

gained would be an interesting avenue for further work that the analyses in Chap-

ters III and IV bring within reach. Another interesting direction is to characterize or

bound the benefit of optimal weighting over inverse noise variance or square inverse

noise variance weights, and identify the regimes where optimal weighting significantly

improves asymptotic recovery.

An important avenue for extending weighted PCA is to develop a data driven

approach that estimates the underlying amplitudes and noise variances directly from

the data for use in an optimally weighted PCA. This extension would make optimally

weighted PCA practical for a broader set of applications. Underlying amplitudes

might be estimated from an initial PCA using (4.4) in Theorem 4.3. Estimating

the noise variances might be done by observing that the normalized squared norm

‖yi‖2
2/d of any single sample should concentrate around its noise variance in high di-

mensions since the signal component has asymptotically zero relative energy. Group-

ing samples into clusters of similar noise variances could also be used to improve the

estimates, though this clustering can become challenging if the number of groups
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L grows with the number of samples n. Incorporating spectrum estimation meth-

ods such as [120, 141] is another promising approach, and one can further exploit

knowledge of which samples share a noise variance by considering the spectrums of

subsets of data. The noise spectrum might be isolated by dropping the first few

singular values or by permuting the data as done in parallel analysis [57]; alternating

between estimating components with weighted PCA and estimating noise variances

can help mitigate interference from large principal components. Investigating these

various approaches and analyzing their performance would be significant contribu-

tions to the theory and practice of weighted PCA. The analysis of weighted PCA

in Chapter IV can quantify how much performance degrades when weights deviate

from optimal, so it may help characterize the impact of errors in estimates of the

underlying amplitudes and noise variances.

Another extension of weighted PCA is to other types of heterogeneity. For ex-

ample, the current work assumes that only the noise level is heterogeneous, with

all samples having the same underlying amplitudes. However, sometimes samples

also reflect the underlying components in heterogeneous ways. For example, some

samples may be more informative about the first component, while other samples

may be more informative about the second component. Understanding how weighted

PCA behaves in these settings, and determining how to modify PCA appropriately

is an exciting challenge. Even more sophisticated forms of heterogeneity arise in real

data, providing ample opportunity for further work along this direction.

Finally, it may be interesting to apply weighted PCA for two problems in MRI.

The first problem is coil compression, where measurements from several physical

coils are combined to form a smaller set of “virtual” coils that capture much of the

signal. This dimensionality reduction is currently done in some settings [35, 45, 224]

via (unweighted) PCA. However, one expects coils further from an area of interest

to have more noise relative to the signal, so weighted PCA may be a natural choice

here. The second problem is finding navigators. The goal here is to identify a low-

frequency signal corresponding to motion, e.g., due to breathing, that can be used

to compensate for motion in dynamic MRI. Once again, some approaches [158] use

unweighted PCA, but one expects some heterogeneity (even heteroscedasticity), so

weighted PCA may be an appropriate choice here as well.

8.3 Probabilistic PCA as an alternative to weighted PCA

Weighted PCA is a natural way of handling heteroscedastic noise across samples,

but it is not clear that this approach is optimal. For example, [221] showed that an

alternative iterative method has minimax optimal rate for noise that is heteroscedas-
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tic within samples, i.e., across the entries of each sample. An alternative approach

to weighted PCA for heteroscedastic noise across samples is to take a probabilistic

PCA [195] approach by modeling the samples y1, . . . , yn ∈ Cd as

(8.1) yi = Mzi + ηiεi, i ∈ {1, . . . , n},

where M ∈ Cd×k contains latent factors, η2
i is the ith noise variance, and the coeffi-

cient vector z1, . . . , zn ∈ Ck and noise vectors ε1, . . . , εn ∈ Cd are modeled as

z1, . . . , zn
iid∼ N (0, Ik), ε1, . . . , εn

iid∼ N (0, Id).(8.2)

Namely, yi ∼ N (0,MMH + η2
i Id) for i ∈ {1, . . . , n}, so the maximum likelihood

estimate of M is given by maximizing the log-likelihood

(8.3) L(M) :=
1

2

n∑
i=1

log det(MMH + η2
i Id)

−1 − 1

2

n∑
i=1

yHi (MMH + η2
i Id)

−1yi,

where (8.3) drops an irrelevant (2π)d/2 constant. An alternative is to optimize L(UΘ)

with respect to U ∈ Cd×k with orthonormal columns and diagonal matrix Θ ∈ Rk×k,

effectively working with the eigendecomposition MMH = UΘ2UH of MMH.

When the noise variances are homogeneous, i.e., η2
1 = · · · = η2

n = σ2, this problem

is solved by taking the principal eigenvectors and eigenvalues (with shrinkage) of

the sample covariance matrix (y1y
H
1 + · · · + yny

H
n )/n as in PCA [195, Section 3.2],

but the same is not true in general. Heterogeneous noise variances complicate the

optimization problem, making algorithm development for this approach an important

avenue for exploration. One approach is expectation maximization (EM) to optimize

with respect to M in the style of [195, Appendix B]. Another approach is to alternate

between optimizing with respect to Θ and U. The optimization with respect to Θ

turns out to separate into k univariate problems, each solvable by root-finding. The

optimization with respect to U has several candidates, such as a minorize-maximize

(MM) approach inspired by [23, 192] or gradient ascent on the Stiefel manifold [1, 64].

An interesting connection to optimally weighted PCA arises by applying the

matrix inversion lemma to obtain

(8.4) (UΘ2UH + η2
i Id)

−1 =
1

η2
i

Id −U diag

(
1

η2
i

θ2
1

θ2
1 + η2

i

, . . . ,
1

η2
i

θ2
k

θ2
k + η2

i

)
︸ ︷︷ ︸

=:Wi

UH,

where the entries of Wi ∈ Rk×k
+ are the (scaled) optimal weights in Theorem 4.10.

Using (8.4) to simplify L(UΘ) yields

(8.5) L(UΘ) = C +
1

2

n∑
i=1

log det(Θ2 + η2
i Ik)

−1 +
1

2

n∑
i=1

yHi UWiU
Hyi,
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with constant

C :=
1

2

n∑
i=1

log det(η2
i Id−k)

−1 − 1

2

n∑
i=1

yHi yi
η2
i

.

Thus optimizing L(UΘ) with respect to U amounts to the maximization problem

(8.6) argmax
U∈Cd×k

1

2

n∑
i=1

yHi UWiU
Hyi s.t. UHU = Ik,

coinciding exactly with an optimally weighted PCA when k = 1.

8.4 Efficient algorithms for GCP tensor decomposition

The optimization problem involved in fitting GCP tensor models presents new

challenges for developing efficient algorithms. General loss functions can destroy

the structure typically exploited by fast alternating minimization approaches to CP

tensor decomposition, making it difficult to fit GCP for large tensors. One approach

might be to try to find quadratic majorizers for each subproblem in the alternating

minimization that can then be efficiently minimized similarly to the alternating least

squares used in CP tensor decomposition. The key challenge is finding a majorizer

that is generic enough to easily handle general loss functions. Finding appropriate

places to sketch the data could also be an interesting approach; see [21] for a recent

work that does so for CP tensor decomposition. The challenge is again in handling

general loss functions.

Another promising approach is to replace the gradients used in Chapter V with

stochastic gradients formed from random subsets of data tensor entries. Doing so

raises numerous interesting design questions. For example, one must choose how

many entries to use for each stochastic gradient. Using too many entries eliminates

the benefit; using too few entries yields noisier gradients and makes it challenging

to efficiently reuse intermediately computed results. Another challenge in sampling

entries to calculate stochastic gradients is in properly handling tensors where a few

entries are highly informative. For example, the nonzero entries of a sparse tensor

may be critical but might account for a small percentage of the tensor. Uniform

sampling will likely miss these entries, and an approach for non-uniform sampling

with general losses in GCP is an open problem. A third challenge is in efficiently

choosing the step sizes for gradient descent. Theory to guide step size selection is

an area of incredibly active research, and GCP fitting would be a natural setting

for further work. Finally, assessing when to stop iterating often involves evaluat-

ing the objective function at each iterate, but this computation is impractical for

large tensors and a natural approach is to form a stochastic estimate. In this case,
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choosing how many entries to use in the estimate is another fundamental question.

Intuitively, few samples are needed when the iterate is far from optimal since further

iterations will descend the objective function rapidly, and many samples are needed

close to optimality where greater “resolution” is needed to determine whether to

stop. Making this qualitative intuition quantitative is an exciting challenge.

8.5 GCP tensor decompositions for heterogeneous data

A natural combination of the ideas in Chapters IV and V is to develop tensor

decomposition techniques for heteroscedastic data. GCP allows for weighting already,

and the core question again becomes how to choose the weights. Less is known about

the recovery of underlying latent factors by tensor decompositions, so this question

presents a challenging and important arena for fundamental work. Our previous

work on PCA suggests that weighting samples more aggressively than inverse noise

variance may be a good strategy, and developing new theory to understand if these

intuitions carry over to tensors would be fascinating to work on. In many cases, tensor

decompositions behave differently from their matrix counterparts, so new theory and

insights are needed.

For simplicity, our discussion of GCP also focused on using a single element-

wise loss function f(xi,mi) for all entries of the tensor. However, the algorithmic

framework of Chapter V easily allows for a different loss function for each entry,

i.e., fi(xi,mi). The only modification is to the definition (5.30) of the elementwise

derivative tensor Y. Different loss functions may be appropriate, e.g., if the tensor

contains a heterogeneous mixture of data types as studied for matrices in [202]. Fur-

ther investigation of these possibilities would be exciting avenues for testing out the

full potential of the framework in Chapter V.

8.6 Extended analysis of Ensemble K-subspaces

Our analysis of the Ensemble K-subspaces algorithm in Chapter VI characterized

only the first iteration of K-subspaces, showing that the first iteration effectively

reproduces thresholding-based subspace clustering (TSC) [91] and enjoys the same

recovery guarantees. One might expect that allowing K-subspaces to instead iterate

until convergence improves recovery by incorporating higher order correlations among

samples, and we do indeed see an improvement in practice. However, analyzing this

setting is challenging because the alternating nature of K-subspaces makes it difficult

to track the statistics of the resulting affinity matrix. Extending the existing analysis

to the general case of multiple iterations is an important next step. Another direction
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for extension is in making the analysis tighter by better characterizing the geometry

that drives, e.g., how many nearest-neighbors must be used in the thresholding step.

In general, selecting the tuning parameters of the algorithm in practice remains an

open question; better theory to guide this choice would be a significant contribution.

8.7 Principled approaches to learning an SUoS

Chapter VII proposed a generalization of the union of subspaces model to a se-

quence of unions of subspaces (SUoS), where the unions of subspaces in the sequence

increase in dimension. Doing so enables the model to distinguish between samples

that are simpler and can be well-represented by a low-dimensional subspace and

those that require a higher-dimensional representation. The hope is that a few low-

dimensional subspaces can adequately describe a bulk of signals of interest, while a

few signals of interest lie in higher-dimensional subspaces. Dimension is the SUoS

analogue to sparsity in dictionary sparse models. Chapter VII proposed a procedure

for learning an SUoS by using the connection to dictionary sparsity to cluster samples

then learn a subspace for each cluster. However, it remains unclear how SUoS models

should be learned in a principled way. Developing an approach is complicated by

the fact that parsimony in an SUoS model results both from having low-dimensional

subspaces and from having few subspaces, and it is unclear how these competing

objectives should be traded off. Finding principled ways to learn SUoS models, e.g.,

via an appropriate objective, will be an important but challenging next step.

8.8 Union of subspace and dictionary models for medical
imaging.

Union of subspace models remain generally unexplored in settings such as medical

imaging, except when they take the form of sparsity models. Developing ways of using

more general union of subspaces models, or the sequence of unions of subspaces model

proposed in Chapter VII, would be an exciting area of future work. A first step in this

direction would be to develop efficient image reconstruction algorithms that use such

models as regularization. The relevant optimization problem is combinatorial and

typically large enough to make exhaustive search impractical. Interesting avenues

include developing greedy approaches and considering models that are structured to

ease optimization.

A related direction is to return to the problem of learning dictionary models from

heterogeneous images as discussed in Section 2.5.2. This problem, in fact, motivated

much of the work in this dissertation on learning models from heterogeneous data.
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One path is to connect this question to the work of Chapters III, IV and VI, by con-

necting dictionary models to union of subspace models, as described in Section 2.5.1.

In this context, some of the tools of Chapter VI may provide insights into how image

patches can be clustered into subspaces that correspond to different sparse supports.

Chapters III and IV may then give some insight into how well each of these subspaces

that correspond to spans of dictionary atoms can be learned from data with hetero-

geneous noise. This approach would mirror the sparse code update and dictionary

update steps common in dictionary learning methods. Without an oracle identifying

the correct sparse code supports, however, the dictionary update step will likely con-

tain heterogeneity beyond the heteroscedasticity considered in Chapters III and IV.

These aspects pose new challenges to extending our current understanding and tools

for analysis, and they highlight the many exciting opportunities for important work

on these frontiers of modern data analysis.
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