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Abstract 

 

Variations in pubertal timing and tempo have implications for the risk of adult diseases. 

Influences on the timing of pubertal onset and pace of pubertal progression have been widely 

discussed, but the underlying biological mechanisms remain unclear. Epigenetic modifications, 

the study of heritable changes in gene expression that does not involve changes to the underlying 

DNA sequence, are known to regulate developmental processes; thus, puberty, known to be one 

developmentally plastic phase, could be potentially affected.  

Given that gene expression changes mediated by DNA methylation, may play a role in pubertal 

tempo regulation, availability of methyl donor nutrients also could affect these pathways. 

Additionally, few studies have examined the associations of physical activity with DNA 

methylation, pubertal status and reproductive hormones among free-living adolescents. Since 

adolescence is the life stage of significant change during which cognitive, psychosocial and 

lifestyle behaviors that persist into adulthood are formed, examination of epigenetic and lifestyle 

influences could inform future interventions. We conducted a population-based analysis using 

the Mexico City birth cohort, ELEMENT, to deepen our understanding of the link between 

developmental epigenetic processes and pubertal trajectory.  

In Aim 1, we used a longitudinal design to investigate the association of peripubertal blood DNA 

methylation at LINE-1 repetitive elements, known as the marker of global methylation, and 

growth-related candidate loci IGF2, H19, HSD11B2 with pubertal timing and tempo, and 

observed gene-specific, sex-specific results. Among boys, a percent DNA methylation increase 

of HSD11B2 was associated with earlier pubarche (onset of pubic hair). Increases in IGF2 DNA 
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methylation were associated with later onset but faster progression of genital development in 

boys. Among girls, percent increase in DNA methylation of H19 was associated with later onset 

of breast development. 

In Aim 2, we examined first trimester maternal and adolescent diet patterns that may be 

associated with DNA methylation at LINE-1 repetitive elements in adolescence. We used 

LASSO to calculate an Epigenetics-Associated Diet Score (EADS) for each pattern; then tested 

the associations of these scores with pubertal status. We observed associations between maternal 

EADS and pubertal onset, but not pubertal progression. Each standard deviation (SD) higher 

maternal EADS was associated with higher odds of later onset of menarche. In contrast, we 

observed associations between adolescent EADS and pubertal progression, but not pubertal 

onset. For each SD higher adolescent EADS, there was increased odds of slower genital 

progression, and slower testicular development in boys.  

In Aim 3, we used an isotemporal substitution paradigm and regression models to examine the 

association of different physical activity intensities with reproductive hormones (testosterone, 

cortisol, progesterone, and androstenedione concentrations), DNA methylation (LINE-1 

repetitive elements and the genes H19, HSD11B2, and PPARA), and Tanner stages in both boys 

and girls. Results suggested that substituting 30 minutes of sedentary behavior for moderate 

physical activity per day was associated with lower testosterone levels in boys, while a 30-

minute increase in sedentary behavior was associated with higher progesterone levels in girls. 

Substituting 30 minutes of sedentary behavior for vigorous physical activity per day was 

associated with higher percent of HSD11B2 DNA methylation in boys, while a 30-minute 

increase in sedentary behavior was associated with lower percent of HSD11B2 DNA 

methylation.  
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Findings from this dissertation suggested that modifications in peripubertal DNA methylation 

may influence pubertal outcomes. Epigenetic-associated diet and accelerometer-measured 

physical activity may also influence reproductive hormones and pubertal status in a sex-, timing- 

and intensity-specific manner. Limitations of this dissertation include 1) we did not genotype the 

ELEMENT population though our subjects come from a mixed ancestry population, 2) self-

reported menarche and dietary information may not be accurate due to recall bias, and 3) we 

have only collected blood leukocytes to analyze DNA methylation level, and 4) growth-related 

candidate genes we included in the analysis are not directly linked to pubertal status. 

Nevertheless, this dissertation has numerous number of strengths. This is the first and only 

population-based study so far that conducted a full examination of global and gene-specific DNA 

methylation with pubertal onset and progression in both sexes. We also used validated food 

frequency questionnaires (FFQs) and accelerometers to estimate subjects’ daily diet and physical 

activity patterns. In order to examine whether the findings are generalizable, future studies 

should consider recruiting a larger sample size with longitudinal design and repeated 

measurements. 
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Chapter 1 Introduction 

 

Puberty and adolescence mark the metamorphosis of the child into the adult. This 

dynamic period of development is signaled by rapid, sexually dimorphic changes in body size, 

composition, and function (Rogol et al., 2002). Somatic growth and maturation are influenced by 

various factors that act independently or in concert to modify an individual’s phenotypic 

plasticity, which could be pivotal to the future aging process (Rogol et al., 2002; Cutler & 

Mattson, 2006). From an endocrine perspective, puberty is the process by which and the period 

during which sexual maturation occurs and reproductive capacity is attained (Golub et al., 2008). 

Biologically, these maturational events are driven by reproductive hormonal changes and are 

continua that begin during intrauterine life and extend through the life cycle (Sisk & Foster, 

2004). There are two seemingly related but hormonally distinct processes that mark the timing of 

change: 1) the maturation of the hypothalamic-pituitary-adrenal androgenesis system, or 

adrenarche (prepuberty), and 2) the maturation of the hypothalamic-pituitary-gonadal (HPG) 

system, or gonadarche (puberty) (Golub et al., 2008). Adrenarche typically begins at 6-8 years of 

age and involves increased production of adrenal androgens. Gonadarche usually begins several 

years later and involves increased production of reproductive hormones that are responsible for 

physical and sexual maturation. Appearance of pubic hair is considered a physical manifestation 

of adrenarche in boys and girls. The development of genital and testicles in boys and of breasts 

in girls are considered a manifestations of gonadarche (Wan et al., 2013). Tanner (1962) 

described five stages of puberty, ranging from 1 (no development) to 5 (adult development), that 
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classify visible secondary sexual characteristics and have been applied in clinical and research as 

the gold standard for assessing pubertal status (Shirtcliff, 2009).  

       Previous studies have shown that pubertal timing (onset of pubertal development) 

and tempo (pace of pubertal progression) are not synonymous and should be considered 

individually in puberty-related research (Negriff et al., 2015; Mendle et al., 2010; Marceau et al., 

2011). There is empirical evidence of significant correlations between pubertal timing and tempo 

(Mendle et al., 2010; Biro et al., 2001), although the directions of the correlations are debated 

(Huang et al., 2009; Marceau et al., 2011). Nevertheless, it is well established that the timing of 

onset and tempo of pubertal development are important and unique risk factors for numerous 

health and behavior problems (Negriff et al., 2015; Negriff et al., 2010; Golub et al., 2008). The 

timing of puberty has a wide physiological variation in different racial/ethnic groups. Girls 

exhibiting pubertal change before age 6 among African Americans, age 7 among Caucasians in 

the United States or age 8 in other parts of the world or boys with pubertal findings before age 9 

are considered to have precocious puberty (Herman-Giddens et al., 1997; Kaplowitz, 1999). 

Delayed puberty, on the other hand, is defined as the lack of pubertal onset by an age ≥2 SD 

above the population mean and can occur as late as age 13 in girls and age 14 in boys (Zhu et al., 

2017).  

        Studies have implicated changes in pubertal timing and tempo as risk factors for 

multiple adult diseases, including polycystic ovary syndrome (PCOS), obesity, type 2 diabetes, 

and cardiovascular disease (Golub et al., 2008). In addition, adolescents with early pubertal 

timing and faster pubertal tempo are at a higher risk of accelerated skeletal maturation and short 

adult height, depression, eating disorders, substance use, potential sexual abuse, and delinquency 

(Marceau et al., 2011; Golub et al., 2008; Mendle et al., 2010; Stice et al., 2001; Ge et al., 2001; 
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Negriff et al., 2015). As reproductive hormones advance puberty, altered pubertal timing is a 

concern for the development of reproductive tract cancers later in life. Previous research has 

shown that an early age of menarche is a risk factor of breast cancer among girls; while a low 

age at male puberty is associated with an increased risk for testicular and prostate cancer (Golub 

et al., 2008).  

       Over recent decades, the risk factors for precocious or delayed puberty have been 

discussed, including chemical exposures, unbalanced diet, abnormal hormone levels caused by 

diseases, high intensity exercise and psychological stress (Cesario & Hughes, 2007; Jansen et al., 

2017). However, the results are inconsistent across different human studies and underlying 

biological mechanisms that may lead to early or delayed pubertal onset and faster or slower 

pubertal tempo remain unclear. 

       With advances in molecular biology, we are beginning to understand that the aging 

process is characterized by a host of changes at the cellular and molecular levels, which include 

senescence, telomere shortening, and changes in gene expression (Jones et al., 2015). Given that 

epigenetic patterns established during development also change over the lifespan, epigenetic 

mark changes may constitute an important component of the aging process (Jones et al., 2015). 

Epigenetics is the study of heritable changes in gene expression that does not involve changes to 

the underlying DNA sequence (genotype), but can still affect how cells read the genes 

(phenotype) (Maccani & Marsit, 2009). At least three modes of epigenetic regulation, including 

DNA methylation, histone modification and non-coding RNA (ncRNA) associated gene 

silencing, are currently known to initiate and sustain gene regulation (Maccani & Marsit, 2009). 

       DNA methylation is one of the mechanisms of epigenetic regulation that is heritable 

through cell division (Bollati, 2008). In mammalian cells, DNA methylation usually occurs at the 
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C-5 position of cytosine within the CpG dinucleotide (Bollati, 2008). The process is first 

catalyzed by DNA methyltransferases (DNMTs) that transfer methyl groups from S-

adenosylmethionine (SAM) to cytosine (Jones, 2001). There are three major DNMTs in 

mammals, including the maintenance DNMT1, and de no DNMT3a, and DNMT3b (Jones, 

2001). The methylated cytosines then, bind to a family of methyl cytosine-binding proteins 

(MeCP1, MeCP2, MBD1, MBD2, MBD3 and MBD4) located in the promoter region of genes, 

thus inhibiting transcription factors from binding to that promoter (Jones, 2001).  

       Information on DNA methylation for this dissertation was analyzed from Long 

Interspersed Nuclear Element (LINE-1), and growth-related genes Insulin Like Growth Factor 2 

(IGF2), H19, Hydroxysteroid 11-Beta Dehydrogenase 2 (HSD11B2), and Peroxisom Proliferator 

Activated Receptor Alpha (PPARA). LINE-1 are transposable elements and comprise 

approximately 17% of the human genome (Lander et al., 2001). IGF2 and H19 genes are 

imprinted in mammals. IGF2 is a paternal imprinted growth factor that promotes both fetal and 

placental growth and also nutrient transfer from mother to offspring via the placenta (Nordin et 

al, 2012). H19 gene is a maternal imprinted gene for a long noncoding DNA, playing a role in 

the negative regulation of body weight and cell proliferation (Gabory et al., 2009). HSD11B2 

catalyzes the glucocorticoid cortisol to the inactive metabolite cortisone, thus preventing illicit 

activation of the mineralocorticoid receptor (National Institutes of Health: Genetics Home 

Reference). PPARA is a transcription factor and a major regulator of lipid metabolism in the 

liver. Studies indicate that PPARA plays an important role in the management of energy stores 

during fasting, too (Kersten et al., 1999).  

         Recent work has highlighted the significance of DNA methylation in both DNA 

repair and genome stability, which is essential for cell development, the aging process, 
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carcinogenesis, etc. (Jones, 2001). The result of epigenetic changes during aging is altered local 

accessibility to the genetic material, leading to aberrant gene expression, reactivation of 

transposable elements, and genomic instability (Pal & Tyler, 2016). Until recently, one of the 

most promising new aging clocks that serves as a measurable biomarker of epigenetic age is 

DNA methylation (DNAm) age (Horvath, 2013). There is a strong correlation between 

reproductive aging and organismic aging; age of pubertal onset and concentrations of gonadal 

steroids are considered as potential predictors of aging (Nelson, 1988). The Developmental 

Origins of Health and Disease (DOHaD) theory includes puberty/adolescence period as one of 

the specific sensitive windows of developmental plasticity when environmental exposures and 

stressors could lead to time- and tissue- specific effects, via influencing the epigenome (Heindel 

& Vandenberg, 2015). Previous animal and population studies have found some evidence 

supporting the association of DNA methylation levels with pubertal brain development and 

pubertal aging (Almstrup et al., 2016; Morrison et al., 2014). Therefore, it is plausible to make 

the assumption that epigenetic modifications may be associated with the timing of pubertal onset 

and the pace of pubertal progression.  

       Epigenetic modification is a regular and natural occurrence that can be influenced by 

factors such as age, environmental exposure, lifestyle, and disease state (Maccani, 2009). 

Moreover, since adolescence is also the life stage of significant change during which cognitive, 

psychosocial and lifestyle behaviors that persist into adulthood are formed, examination of 

epigenetic and lifestyle influences could inform future interventions (Sata F, Springer, 2019; 

Nelson et al., 2005; Videon & Manning, 2003; Summerbell et al., 1996). Studies have shown 

poor diet and sedentary behavior patterns, such as high TV/video during adolescence are 

associated with more risk behaviors and higher risk of metabolic syndrome later in life (Nelson 
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& Gordon-Larsen, 2005; Pan & Pratt, 2008). Therefore, other than examining the association 

between epigenetic changes and puberty, we also aim to explore whether improving dietary 

quality and increasing physical activity would modify the associations.  

       DNA methylation depends upon the availability of methyl groups from S-adenosyl 

methionine, which is derived from methionine. Thus, methyl donor nutrients, including folate, 

choline/betaine, methionine, riboflavin (B2 vitamin), pyridoxine (B6 vitamin) and cobalamin (B12 

vitamin) are essential of the one-carbon metabolism cycle and transmethylation process 

(Anderson et al., 2012). Animal studies showed that rats fed diets deficient in methyl donors 

have hypomethylated DNA methylation in their liver tissues, in both global methylation and 

gene-specific methylation patterns, including c-myc, c-Ha-ras, c-fos, and EGF-receptor 

(Tsujiuchi et al., 1999; Wainfan & Poirier, 1992). Moreover, methyl donor supplementation 

during weaning was able to prevent intergenerational amplification of obesity in mice models 

(Waterland et al., 2008; Cordero et al., 2013). Thus, we hypothesize that methyl donor nutrients 

may affect pubertal timing and tempo via modifying DNA methylation.  

       We are also interested in learning more about the association of physical activity 

patterns with reproductive hormones, epigenetic and puberty among healthy adolescents. 

Previous studies have suggested an association between physical activity and pubertal timing. 

One systematic review of 154 papers summarized that exercises or intense physical activities 

(e.g., ballet, soccer, figure skating) could lead to, on average, a 1-year delay in age at menarche 

in Caucasians (Yermachenko, 2014). The association between physical activity and reproductive 

hormones, which advance pubertal timing and progression, is also well-reported. A systematic 

review with 40 randomized controlled trials of healthy adult women concluded that there was an 

inverse correlation of physical activity with total estradiol and free estradiol concentrations, and 
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a positive correlation with SHBG concentrations. No significant association was observed with 

other estrogens and total testosterone concentrations (Ennour-Idrissi et al., 2015). Furthermore, 

previous evidence has shown current and cumulative reproductive hormone exposures were 

associated with change of LINE-1 and Alu DNA methylation levels among healthy 

postmenopausal women (Boyne et al., 2017). Nevertheless, to our knowledge, no study has gone 

one step further and examined the association between physical activity, DNA methylation, 

reproductive hormones and pubertal status among healthy adolescents. By testing the 

association, we hope to better understand the mechanism of how physical activity may regulate 

pubertal timing and tempo.  

       Developmental influences have lifelong effects on cardiovascular, metabolic function 

and aging process, and these heritable traits and susceptibilities can be transmitted across 

generations by non-genetic means (Hanson et al, 2011). Puberty, one of growth milestones with 

high developmental plasticity (Hanson et al., 2011), should be considered as a fitting timeframe 

for intervention. However, few population-based studies have targeted this period and so much 

remain unclear, and we hope this dissertation will address this research gap. Through examining 

the association of blood DNA methylation of LINE-1 repetitive elements and candidate genes 

with pubertal outcomes, as well as exploring the effect of diets rich in methyl donor nutrients and 

physical activity levels on these associations, we expect to deepen our understanding on the link 

between developmental epigenetic processes and pubertal trajectories. We also hope findings of 

this dissertation can provide some evidence to support behavior interventions during 

adolescence, one of environmentally vulnerable phases along life course.  
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Chapter 2 Association of Blood Leukocyte DNA Methylation at LINE-1 and Growth-

related Candidate Genes with Pubertal Timing and Progression 

 

INTRODUCTION 

     Puberty is the process by which and during which sexual maturation occurs and 

reproductive capacity is attained (Golub et al., 2008). The timing of puberty ranges widely. Early 

onset of puberty has been documented, with U.S girls exhibiting pubertal change before age 6 

among African Americans and age 7 among Caucasians, age 8 for girls in other parts of the 

world, and age 9 for Caucasian boys (Niculescu, 2008; Herman-Giddens et al., 1997; Herman-

Giddens et al., 2012; Kaplowitz et al., 1999). Delayed puberty, on the other hand, is defined as 

the lack of pubertal onset by an age ≥2 SD above the population mean and can occur as late as 

age 13 in girls and age 14 in boys (Zhu & Chan, 2017). These variations in pubertal timing have 

implications for the risk of later adult diseases, including polycystic ovary syndrome (PCOS), 

obesity, type 2 diabetes, cardiovascular disease and reproductive tract cancers (Golub et al., 

2008; Zhu & Chan, 2017). Moreover, they may negatively affect adult psychosocial functioning, 

educational achievement, height, and bone mineral density (Golub et al., 2008; Zhu & Chan, 

2017). Over recent decades, the risk factors of earlier or later puberty, including chemical 

exposures, unbalanced diet, and abnormal hormone levels caused by diseases and psychological 

stress, have been discussed (Cesario et al., 2007; Jansen et al., 2017). However, the underlying 

biological mechanisms that lead to early or delayed puberty remain unclear. Moreover, studies in 

racially and ethnically diverse groups are few and have methodologic limitations (for instance, 

cross-sectional study design).  
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     Epigenetic modification is a biological mechanism that may underline pubertal timing 

and progression, since it is known to regulate development processes and is responsive to 

environmental factors. The epigenome consists of heritable, yet potentially reversible, 

modifications including DNA methylation, posttranslational histone tail modifications and non-

coding RNA (ncRNA)-associated gene silencing which regulate gene expression but do not alter 

the DNA sequence (Rozek et al., 2014). Epigenetic modifications including DNA methylation 

are known to regulate developmental processes (Turan et al., 2012; Banister et al., 2011; Relton 

et al., 2012). Given that sexual maturation is continual from the time it is initiated in intrauterine 

life through the life cycle (Golub et al., 2008), epigenetic programming may contribute to the 

timing of puberty. Several reports have examined the role of epigenetics in regulating changes in 

body composition and growth milestones, which typically occur at the same time as puberty 

(Relton et al., 2012; Chen et al., 2016). Epigenetic age, an estimate of biological age based on 

changes in DNA methylation at particular locations along the genome (Jones, 2001), was 

associated with longitudinal changes in weight, BMI, height and fat mass during childhood and 

adolescence in a sample of 1018 children (Simpkin et al., 2017). Other studies found the levels 

of cord blood DNA methylation were related to development of adiposity later in life (Relton et 

al., 2012; Perng et al., 2013). However, few studies have examined the specific effect of 

epigenetics on pubertal onset and progression. A rat study revealed epigenetic control of Kiss1 is 

important for pubertal timing in females, and an epidemiological study linked repetitive element 

DNA hypomethylation at long interspersed nucleotide elements (LINE-1) to increased odds of 

menarche by age 12 among girls and lower luteinizing hormone levels at age 9 years among boys  

(Lomniczi et al., 2013; Huen et al., 2016). 
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     Based upon previous biological evidence, there are two reasons to hypothesize an 

association between altered DNA methylation and changes in pubertal timing. Firstly, a growing 

body of literature has demonstrated that increased body mass index (BMI) is associated with 

altered methylation at multiple genes (Dick et al., 2014; Milagro et al., 2012; Soubry et al., 

2013). Moreover, evidence from both animal and human studies suggest that pre-pubertal obesity 

might be causally related to earlier puberty (Freedman et al., 2002; Kaplowitz et al., 2008). 

Secondly, reproductive hormones, primarily testosterone and dehydroepiandrosterone (DHEA), 

two androgens that facilitate masculine development, and estradiol, an estrogen that facilitates 

feminine development (Shirtcliff et al., 2009), advance puberty. DNA methylation levels could 

potentially modify reproductive hormone levels or sensitivity/expression of hormone receptors 

(Huen et al., 2016; Ulrich et al., 2012; Takahashi et al., 2002; Kumar & Thakur, 2004). These 

two proposed mechanisms are possibly intertwined, given that feedback from reproductive 

hormones fat mass might stimulate the central pulsatile gonadotrophin secretion and trigger the 

onset of puberty (Ahima et al., 1997; Chehab et al., 1996). However, in spite of evidence to 

support the possible association between DNA methylation, BMI and sexual maturation 

outcomes, no research has examined relationships among all three in adolescent children.  

     To address these research gaps, this longitudinal observational study in Mexico City 

tests the hypothesis that peripubertal blood leukocyte DNA methylation at LINE-1 and specific 

genes (HSD11B2, as well as imprinted genes IGF2 and H19) will be associated with pubertal 

onset and progression assessed at two time periods, adjusted for BMI, age and household 

socioeconomic status (SES). Regions were selected for DNA methylation analysis based on 

demonstrated variability across age and/or by various environmental factors in previous studies 

(Goodrich et al., 2016; Goodrich et al., 2015; Talens et al., 2012; Li et al., 2016; King et al., 
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2015; Perkins et al., 2012). In addition, LINE-1 repetitive elements have been associated with 

pubertal status and hormone levels in Mexican Americans. H19, IGF2, and HSD11B2 are linked 

to early life growth but their implications for adolescent health, specifically with regards to 

pubertal onset and tempo, have not yet been studied.   

METHODS 

3.1 Study Population  

     The study population comprised a subset of participants from the Early Life Exposure 

in Mexico to ENvironmental Toxicants (ELEMENT) project, a longitudinal epidemiological 

study consisting of three sequentially-enrolled birth cohorts. As originally designed, ELEMENT 

focused primarily on lead exposure and its impact on cognitive performance, and analysis of 

other metals, chemicals and epigenetics have been incorporated overtime (Cantoral et al., 2015; 

Watkins et al., 2017). Participants were recruited at three maternity hospitals representing low- to 

moderate-income populations (Mexican Social Security Institute, Manuel Gea Gonzalez 

Hospital, and the National Institute of Perinatology) in Mexico City from 1994 to 2005. Mothers 

provided written consent upon enrollment in the study, and children also provided assent at peri-

adolescent study visits. The research protocol was approved by the Human Subjects Committee 

of the National Institute of Public Health of Mexico, participant hospitals, and the Internal 

Review Board at all participating institutions including the University of Michigan. The subjects 

in this project were a subset of mother-child pairs from the second and third birth cohorts (n=646 

pairs at baseline). At the clinic visit after the child was born, mothers provided household and 

demographic information, including age, education, and previous numbers of pregnancies. Their 

offsprings were followed from birth until 4 years of age. Starting in 2008, we re-contacted a 

subset of the offspring (n=250; henceforth referred to as the early-teen visit) based on availability 
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of prenatal and neonatal biospecimens (Cantoral et al., 2015). One more peri-pubertal visit (late-

teen visit) was completed approximately five years later (549, with 223 having also participated 

in the 2010 visit). Fasting blood, pubertal status and anthropometry were collected at both teen 

visits (Perng et al., 2017).  

3.2 Laboratory Measurements and Outcomes 

DNA Methylation 

     Blood samples were obtained at the early teen visit and collected in PAXGene tubes 

by trained staff following standard protocols. High-molecular-weight DNA was extracted from 

blood leukocytes with the PAXgene Blood DNA kit (PreAnalytix, Switzerland). DNA samples 

were treated with sodium bisulfite using kits from Zymo or Qiagen (Li & Tollesfsbol, 2011). 

Percent of methylated cells was then quantitatively analyzed in well-characterized differentially 

methylated regions (DMRs) of two imprinted genes (the DMR upstream of the H19 paternally 

imprinted, maternally expressed transcript (non-coding), H19, which is within the imprinting 

control region (Hoyo et al., 2011); and the DMR within exon 3 of the IGF2AS transcript of the 

maternally imprinted, paternally expressed insulin-like growth factor, IGF2 (Heijmans et al., 

2007), the promoter region of a non-imprinted gene (hydroxysteroid (11-beta) dehydrogenase 2, 

HSD11B2), and a conserved sequence found in the promoter region of LINE-1 repetitive 

elements of all subfamilies (sequence: 5’- CTCGTGGTGCGCCGTTTCTTAAGCCG).  DNA 

methylation was quantified via pyrosequencing at 4 (H19, LINE-1) or 5 (HSD11B2) CpG sites. 

The Sequenom EpiTYPER was used to quantify DNA methylation at 5 units of IGF2 

representing a total of 7 CpG sites due to the resolution capabilities of EpiTYPER. Quality 

control includes running >10% of samples in duplicate and including human DNA controls of 

known methylation status (i.e. 0%, 100%) on each batch. Full details on primers, quality control, 
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and analysis methods have been previously published (Goodrich et al., 2016). Primer sequences 

and loci of CpG sites can be found in Supplemental Table 4. LINE-1, HSD11B2, and H19 data 

exhibited batch effects and as such were standardized to controls included on experimental plates 

as previously described (Goodrich et al., 2016). For example, the value of 0% methylation 

controls on each plate of samples amplified and pyrosequenced together (a batch) for HSD11B2 

was subtracted from the raw DNA methylation values generated for each sample in the same 

batch.    

Pubertal Outcomes  

     Pubertal outcomes were obtained at both early-teen and late-teen visits. Tanner stages 

of breast and pubic hair growth in girls as well as Tanner stages of genitalia and pubic hair 

growth in boys were examined and collected by trained physicians (Chavarro et al., 2017). 

Outcomes were recorded with a range from stage 1 indicating pre-puberty to stage 5 indicating 

full maturation (Marshall & Tanner, 1970). Testicular volumes were measured by trained 

physicians using orchidometers (range from 1 to 25 ml). Occurrence and age of menarche were 

gathered from a self-reported questionnaire (Chavarro et al., 2017; Cooper et al., 2006).  

Covariates 

     Based on a priori knowledge and preliminary correlation tests between predictors and 

potential confounders, covariates included in the final model were SES and BMI of the child, 

obtained at the early-teen visit. The socioeconomic status (SES) information was collected at 

baseline during the pregnancy visits, using a validated questionnaire consisting of thirteen 

questions on housing quality, services, material goods and education of the head of household by 

AMAI (Asociación Mexicana de Agencias de Investigación de Mercados y Opinión Pública, 

version 13x6). With the use of fourteen hierarchical trees this scale classified households into six 
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SES categories (A/B, C+, C, D+, D, E; with A/B being the highest category) (Jansen et al., 2017; 

Cantoral et al., 2016). This scale was validated using the results of the National Survey of 

Household Income and Expenditure 2005, Mexico (ENIGH, Encuesta Nacional de Ingresos y 

Gastos de los Hogares 2004), using a point based system (Jansen et al., 2017; Cantoral et al., 

2016). Weight and height of the child were measured by trained nurses, following standardized 

protocols we have previously described (Nuttall, 2015); BMI was calculated as weight over 

height squared (kg/m2) (Nuttall, 2015). Children’s age was recorded at each visit.  

3.3 Statistical Methods 

     We examined the distribution of Tanner stages among individuals who attended only 

the early-teen visit and among those who attended both early- and late teen visits, and compared 

the distributions across categories of background characteristics using χ2 tests.  

     Some participants had missing CpG site values for HSD11B2 (n of missing=14 at site 

5), IGF2 (n of missing= 20 at site 1, 30 at site 2, 15 at site 3, 47 at site 4, 14 at site 5), SES (n of 

missing=48). Thus, we performed multiple imputation (Rubin, 1988) including all covariates; 

five imputed datasets were obtained. In order to test the assumption that the gene variables were 

missing at random, we examined the DNA methylation distribution (means ± SD) of CpG sites 

in all genes before and after imputation. The final sample size for the DNA methylation dataset 

was 114 boys and 129 girls. Values were not imputed for 7 subjects that were missing 3 out of 4 

genes. 

     We used interval censored regression models to analyze time to pubertal onset at each 

visit separately. We created binomial Tanner stage outcomes using > 1 as the pubertal onset cut-

off point (Marshall & Tanner, 1970; Marceau et al., 2011) for pubic hair, genital development 

and breast development characteristics. Testicular volume ≤ 3 mL indicated pre-pubertal stage; 
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testicular volume > 3mL but ≤ 11mL indicates pubertal onset; and > 11mL indicated sexual 

maturity (Marshall & Tanner, 1970; Marceau et al., 2011). Age from early-teen visit was used as 

the time to follow-up here.   

We used the following ordinal regression model:   

𝐿𝑜𝑔𝑖𝑡 (𝑌𝑖𝑗) =  𝛽0 +  𝛽1 × (𝑎𝑔𝑒) +  𝛽2 × (𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) + 𝛽3 × (𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛) +

𝛽4 × (𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) + 𝛽5 × (𝑎𝑔𝑒 × 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) + 𝛽6 ×

(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠)  

to analyze pubertal progression between early- and late-teen visits in boys and girls 

separately where methylation is the percent methylation at a given CpG site in one of the foaur 

genes, age is the age at the early teen visit, and time difference is the time between the early and 

late teen visits.      

     We selected confounders based on a priori knowledge and variables that were 

significantly associated with DNA methylation and pubertal stage. We included BMI and SES in 

adjusted interval censored regression models. BMI, SES and age from early-teen visit as well as 

the time difference between these two visits in the adjusted ordinal regression model. We used a 

cutoff value of  p < 0.05 to define statistical significance. However, since we conducted a large 

number of tests, we also considered significance after adjusting for multiple testing.  A 

Bonferroni correction for multiple testing would be overly conservative given that correlations 

among the 18 CpG sites can be large (e.g. several CpG sites within LINE-1 (Pearson r>0.7) or 

within H19 (r>0.85) are highly correlated within assay).  Moreover, pubertal outcomes are also 

correlated.  Thus, we corrected for multiple testing by using a cutoff point of 0.0028, obtained as 

0.05/18, which considers that for each outcome we tested 18 CpG sites. All analyses were 

conducted using SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA). 



    

 20 

RESULTS 

     The cohort included 250 subjects who attended the early-teen visit (boys: 118 

(47.2%), girls: 132 (52.8%), and 222 subjects who attended both visits (boys: 108 (48.6%), girls: 

114 (51.4%)). After eliminating 7 individuals with major missing predictors, the analytical 

sample included 243 subjects (boys: 114 (46.9%), girls: 129 (53.1%)). The mean age for the 

early-teen visit was 10.4 years in boys and 10.3 years in girls; the mean was 13.7 years in boys 

and 13.5 for girls for the late-teen visit. We observed children moving to more advanced pubertal 

stages from the early- to late-teen visits. Among boys, 79.7% and 48.3% were at Tanner stage 1 

for pubic hair and  genital development in the early-teen visit; and the number dropped down to 

25.0% and 6.5% in the second visit. In terms of testicular volume, the percentage of boys in the 

pre-pubertal stage dropped from 15.3% to 0%. Among girls, 74.2% of them had Tanner stage 1 

for pubic hair and 65.9% for breast development in the early-teen visit; and the percentage 

dropped to 7.9% and 4.4% later (Table 1).  

     LINE-1 methylation was higher among boys compared to girls, both before (Table 2) 

and after (Supplemental Table 1) imputation of missing values. No statistically significant sex 

differences of DNA methylation levels at HSD11B2, H19 or IGF2 were observed.  

     Among boys, we observed associations between early-teen DNA methylation and 

pubertal outcomes cross-sectionally at the early teen visit as well as prospectively at the late teen 

visit, and with the progression between the two. In the cross-sectional adjusted analysis (Table 

3), we found for each percent increase of DNA methylation at H19 CpG sites 2 and 3 (equivalent 

to 0.31 and 0.29 SD increase of DNA methylation, respectively; they were obtained as 1/SD in 

% (sex-specific and site-specific) from Supplemental Table 1), there were 36% and 26%  

increased odds of later pubarche (p=0.025 and 0.039). However, the associations did not remain 



    

 21 

statistically significant in the prospective analysis (Table 3). We also found for each percent 

methylation increase of HSD11B2 site 4 (0.62 SD), there was a 60% increased odds of earlier 

pubarche (p=0.030), and a 67% increased odds in earlier onset of genital development (p=0.003), 

in cross-sectional analysis. Prospectively, for each percent methylation increase of HSD11B2 site 

4, there was 20% increased odds of earlier pubarche (p=0.034). HSD11B2 site 4 was also 

associated with 17% increased odds of slower genital development progression (p=0.016, Table 

4). For each percent methylation increase of IGF2 site 3 (0.13 SD), there was 7% increased odds 

of later onset of genital development, in both cross-sectional and prospective analyses (p=0.010 

and 0.005). IGF2 methylation was also associated with faster genital development progression 

(p=0.036) (Table 4).        

       Among girls, we found for each percent increase in methylation of LINE-1 CpG sites 

3 and 4 (0.36 and 0.44 SD equivalents, respectively), there were 11% and 17% increased odds of 

later onset of breast development (p=0.008 and <0.001) in the cross sectional analysis. For each 

percent increase in methylation of H19 sites 1 and 4 (0.11 SD of each), there were 5% increased 

odds in the earlier onset of breast development (both p values <0.001). However, the associations 

mentioned above were not statistically significant in prospective analyses. In terms of HSD11B2, 

we found for each percent increase in methylation of site 1 and 3 (0.51 and 0.45 SD), there were 

20% and 13% increased odds of later onset of breast development (p<0.001 and 0.02); for each 

percent increase in methylation of site 4 (0.53 SD), there were 25% increased odds in the 

expected earlier onset of breast development (p<0.001). In addition, with one percent increase 

methylation of IGF2 site 5 (0.18 SD), there was 7% increased odds of earlier pubarche (p=0.020) 

(Table 3). DNA methylation was not found to be associated with pubertal progression among 

girls (Table 4).   
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     After corrections for multiple testing, associations of LINE-1, H19 and HSD11B2 with 

breast onset among girls, as well as the association of HSD11B2 with genital onset among boys 

remained significant with p values < 0.0028 (Table 3). None of the pubertal progression results 

maintained statistical significance, however, after correction for multiple testing (Table 4).  

DISCUSSION 

     There have been a limited number of population-based longitudinal studies examining 

the potential association between epigenetics and puberty. The goal of this sex-specific analysis 

was to investigate the potential effects of peri-pubertal DNA methylation on pubertal status and 

progression. We found that DNA methylation of H19, IGF2, and HSD11B2 were associated with 

pubic hair and genital onset in boys, while methylation of LINE-1, H19, IGF2 and HSD11B2 

were associated with pubic hair and breast development among girls. These findings suggest that 

DNA methylation at genes known to influence early-life growth and development may also 

influence pubertal outcomes, though the mechanism (direct or indirect) remains to be elucidated.  

     While it is well established that pubertal timing and progression is controlled by many genes 

(Seminara et al., 2004; Abreu et al., 2013; Silveira et al., 2010), the epigenetic regulation 

involved in this process is less understood. One study found rats treated with 5-azacytidine 

(Aza), a DNA methylation inhibitor had delayed vaginal opening, failed to reach puberty, as 

assessed by the lack of ovulation, and showed no estrous cyclicity (Lomniczi et al., 2013). In our 

gene-specific analysis, we found decreased DNA methylation levels in H19 and IGF2 were 

linked to later onset of breast development and menarche in girls. Among boys, decreased DNA 

methylation levels in HSD11B2 were associated with delayed pubic hair onset and genitalia 

onset.  
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     Our findings build on prior studies in other important ways, with both consistent and 

contrasting results. For example, in a longitudinal study, Huen et al examined the relationship of 

Alu and LINE-1 repetitive element DNA methylation measured in umbilical cord and 9-year old 

child blood samples with puberty status in Mexican-American participants of the Center for 

Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort. They found no 

association between child LINE-1 methylation and odds of genital or pubic hair development in 

boys, but found a significant association with later onset of menarche in girls (Huen et al., 2016). 

We also did not observe any association between peri-pubertal LINE-1 methylation and male 

sexual characteristics in either cross-sectional or longitudinal analysis. However, cross-sectional 

analysis showed that elevated LINE-1 methylation was suggestively associated with later breast 

onset, but not menarche in girls. The findings were consistent in terms of directionality. As both 

breast development and menarche are advanced by estrogens (Karapanou & Papadimitriou, 

2010), the different findings may be due to age differences between the two cohorts. Moreover, 

based on observational studies, the estimated mean age at menarche is different in Mexico City 

(11.40 years (Marván et al., 2016)), versus among Mexican Americans (12.25 years (Chumlea et 

al., 2003)), and timing differed between the two studies as children were only followed through 

age 12 in the CHAMACOS study.      

     To our knowledge, although no population-based studies have examined the 

associations between H19 and IGF2 methylation and pubertal outcomes specifically, several 

articles support the effect of methylation on imprinted genes with growth, growth-related 

hormone concentrations, adiposity and birth weight. For instance, Huang et al found greater 

peripheral blood H19/IGF2 methylation was associate with elevated subcutaneous fat measures 

in 315 young adults (Gallou-Kabani et al., 2010). In addition, Deodati et al observed that 
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elevated IGF2 methylation levels from blood lymphocytes were associated with higher levels of 

triglycerides, triglyceride/HDL-cholesterol ratio and C-peptide concentrations among overweight 

and obese adolescents (Deodati et al., 2013). Future studies are needed to explore the sexually 

differentiated mechanisms behind DNA methylation and pubertal status.  

     In the post-hoc analysis examining the pubertal progression pattern, our findings that 

may provide statistical evidence to support the “catch-up growth” and “compensatory growth” 

theory in pubertal development. Based on previous studies (Apter & Vihko, 1985), we had 

hypothesized that individuals with early pubertal onset have faster pubertal progression, and 

those with later onset will have slower pubertal progression. However, we found older age of 

onset of puberty was associated with shorter duration (tempo) of puberty, and vice versa 

(Marceau et al., 2011). IGF2 site 3 was associated with later onset of genital development in 

both cross-sectional and prospective analyses (Table 3). Correspondingly, we observed 20% 

increased odds of faster genital development progression with IGF2 methylation, though the 

association was not statistically significant. Similarly, HSD11B2 site 4 was associated with 

earlier onset of genital development but slower tempo among boys. Much research on catch-up 

growth has been published since 1963 (Ashworth & Millward, 1986; Wi & Boersma, 2002; 

Wilmott, 2013). Most studies observed that among infants and children whose growth had been 

slowed by illness or starvation, there was a rapid and longer phase of growth until the children 

reached their pre-illness growth curve (Ashworth & Millward, 1986; Wi & Boersma, 2002). 

However, catch-up in pubertal characteristics during adolescence is less well-defined. Consistent 

with the interpretations from our results, pubertal timing and tempo adjustments exist among 

Mexican boys. Considering pre-adult periods of adaptive plasticity from juvenility to 

adolescence establishes longevity and the age of reproduction and fecundity (Hochberg et al., 
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2011), our results indicated modified DNA methylation levels may affect this timing and 

progression. Some significant associations seen at pubertal onset were attenuated in the 

progression model, which may be due in underpowered statistics part to less sensitivity of the 

ordinal regression model compared to the Cox proportional hazard model (Jeon, 2015). 

     This analysis had some limitations, including a moderate sample size with 

approximately 20% missing rates of IGF2 DNA methylation at some of the CpG sites. Though 

we used multiple regression imputation to increase the number of predictors, this method can 

underestimate standard error, which might result in inflated p-values (Soley-bori, 2013). While 

pubertal status was based on a highly trained physicians’ observation, age of menarche was self-

reported and may not be accurate due to recall bias. Our sample comes from a mixed ancestry 

population but we did not genotype this population in order to estimate ancestry. As such, it is 

possible that ancestry differences could influence the relationships we are observing between 

DNA methylation and pubertal timing. Since the epigenome and transcriptome vary by cell and 

tissue type, analyzing DNA methylation in blood leukocytes which consist of multiple cell types 

is a limitation, though recent studies have identified blood leukocyte differentially methylated 

genes associated with BMI or adiposity in adults that replicated in adipose or skeletal muscle, 

biologically relevant tissues (Perng et al., 2013; Day et al., 2017; Demerath et al., 2015).  The 

number of genes studied was also a limitation, and we recommend epigenome-wide studies in 

this area to identify key genes regulating puberty. In addition, we performed both unadjusted and 

adjusted model analyses of onset and progression and observed that including BMI did not 

significantly attenuate the associations. Nevertheless, we cannot rule out the possibility that 

DNA methylation is a mediator between BMI and sexual maturation, if BMI was measured at an 

earlier time point.    
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     In conclusion, this is the first study to evaluate the effect of DNA methylation of H19, 

IGF2, and HSD11B2 on pubertal onset and progression among boys and girls. Unlike previous 

puberty- related studies that primarily used menarche as the only pubertal indicator (Demetriou 

et al., 2013; He et al., 2009), we applied multiple secondary sexual characteristics (pubic hair, 

genital development and testicular volumes in boys, as well as pubic hair, breast development 

and menarche in girls). We found suggestive evidence of associations of DNA methylation with 

pubertal onset among adolescents. By using ordinal regression models and repeated 

measurements of Tanner stages, we observed the effect of DNA methylation on pubertal 

progression in boys only. The findings also raise the possibility of influencing pubertal timing by 

regulating DNA methylation levels. Future work in this field should consider epigenetic 

regulation in a larger panel of genes that may directly or indirectly influence puberty. 
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Table 2.1 Distributions of Tanner stages and other covariates among 250 ELEMENT children at the early-teen visit (Visit 1) and at the late-teen 
visit (Visit 2) for 222 children who continued follow-up. 

Boys Visit 1 (N=118) Visit 2 (N=108) 

 N  % N %  

Pubic Hair: Tanner Stage    
Refused Observation/Missing 3  2.54 3 2.78 

1 94  79.66 27  25.00 
2 17  14.41 16 14.81 
3 3  2.54 30 27.78 
4 1  0.85 18 16.67 
5 0  0.00 14 12.96 

   
Genital Development: Tanner Stage    

Refused Observation/Missing 3  2.54 3 2.78 
1 57  48.31 7  6.48 
2 43  36.44 17 15.74 
3 10  8.47 26 24.07 
4 5  4.24 37  34.26 
5 0  0.00 18 16.67 

   
Testicular Development (L)    

Refused Observation/Missing 3  2.54 3 2.78 
1-3 ml 18  15.25 0  0.00 

3-11 ml 75  63.56 16 14.81 
>11 ml 22  18.65 89  82.41 

   
Testicular Development (R)   

Refused Observation/Missing 4 3.39 3 2.78 
1-3 ml 18 15.25 0 0.00 

3-11 ml 76 64.41 16 14.81 
>11 ml 20 16.95 89 82.41 

   
Age (years) 10.35 ± 1.61 13.72 ± 1.75 
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BMI 19.06 ± 3.14 20.43 ± 3.68 
   
Household SES: Quartile  N=100  

1 24  24.00  
2 27  27.00  
3 24  24.00  
4 25 25.00  

   

Girls Visit 1 (N=132)  Visit 2 (N=114) 

 N % N % 

Pubic Hair: Tanner Stage    
Refused Observation/Missing 0  0.00 2  1.75 

1 98  74.24 9  7.90 
2 22  16.67 39  34.21 
3 9  6.82 29 25.44 
4 2  1.52 21 18.42 
5 1  0.76 14  12.28 

   
Breast Development: Tanner Stage   

Refused Observation/Missing 0  0.00 2  1.75 
1 87  65.90 5  4.39 
2 20  15.15 12 10.53 
3 18  13.63 46  40.35 
4 7  5.30 31  27.19 
5 0  0.00 18  15.79 

   
Menarche   

Refused Observation/Missing 0  0.00 1 0.88 
Yes 30  22.73 90  78.95 
No 102  77.27 23  20.17 

   
Age (years) 10.30 ± 1.72 13.54 ± 1.75 
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BMI  19.66 ± 3.95 21.61 ± 4.07 
   
Household SES: Quartile  N=102  

1 25  24.51  
2 29 28.43  
3 24  23.53  
4 24 23.53  
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Table 2.2: DNA Methylation at LINE-1, H19, HSD11B2 and IGF2 among all individuals and stratified by sex1. 

  Entire Cohort   Boys  Girls P value2 

 N  Mean % methylation 
(SD) 

N  Mean % methylation  
(SD) 

N Mean % methylation  
(SD) 

 

LINE-1 methylation         
Site 1 243 79.88 (3.87) 113 80.48 (4.13) 130 79.37 (3.57) 0.026 
Site 2 243 81.89 (1.99) 113 82.20 (2.15) 130 81.62 (1.80) 0.022 
Site 3 243 78.64 (2.93) 113 79.26 (2.99) 130 78.10 (2.77) 0.002 
Site 4 243 73.54 (2.14) 113 73.96 (1.96) 130 73.18 (2.22) 0.004 
        
H19 methylation         
Site 1 245 59.08 (8.24) 115 58.46 (7.57) 130 59.63 (8.79) 0.266 
Site 2 245 58.23 (4.83) 115 58.23 (3.32) 130 58.22 (5.87) 0.990 
Site 3 245 59.26 (3.78) 115 59.05 (3.54) 130 59.45 (3.98) 0.412 
Site 4 245 56.66 (8.51) 115 55.83 (7.74) 130 57.39 (9.09) 0.153 
        
HSD11B2 methylation         
Site 1  246 -1.54 (2.14) 115 -1.57 (2.35) 131 -1.51 (1.94) 0.844 
Site 2  246 0.08 (0.92) 115 -0.04 (0.92) 131 0.19 (0.92) 0.057 
Site 3  245 -2.20 (2.25) 115 -2.23 (2.33) 130 -2.18 (2.19) 0.856 
Site 4  244 -0.76 (1.75) 115 -0.70 (1.58) 129 -0.81 (1.89) 0.601 
Site 5   229 0.24 (4.46) 108 0.20 (4.33) 121 0.28 (4.58) 0.898 
        
IGF2 methylation         
Site 1  223 35.15 (12.23) 101 34.71 (11.98) 122 35.51 (12.46) 0.630 
Site 2  213 44.85 (14.06) 94 42.99 (14.56) 119 46.31 (13.54) 0.087 
Site 3  228 53.79 (6.40) 102 53.57 (6.92) 126 53.97 (5.97) 0.644 
Site 4  196 37.87 (4.26) 88 37.69 (4.65) 108 38.01 (3.94) 0.607 
Site 5  229 52.94 (6.51) 103 52.90 (6.21) 126 52.97 (6.76) 0.932 

1 LINE-1, HSD11B2, and H19 data exhibited batch effects and as such were standardized to controls included on experimental plates as 

previously described (Goodrich et al., 2016), while the IGF2 data exhibited no batch effect.   

2 P-value of 2-sample t test comparing boys and girls.  
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 Table 2.3: DNA Methylation at LINE-1, H19, HSD11B2 and IGF2 among all individuals and stratified by sex after imputation of missing values1,2. 

 Entire Cohort  Boys Girls P value3 

 Mean % methylation 
(SD) 

Mean % methylation 
(SD) 

Mean % methylation 
(SD) 

 

LINE-1 methylation  N = 243 N = 114 N = 129  
Site 1 79.99 (4.11) 80.56 (4.37) 79.49 (3.80) 0.033 
Site 2 81.92 (2.03) 82.28 (2.17) 81.61 (1.83) 0.015 
Site 3 78.65 (3.00) 79.35 (3.06) 78.03 (2.80) <0.001 
Site 4 73.56 (2.17) 73.99 (2.00) 73.18 (2.25) 0.006 
     
H19 methylation  N= 243 N= 114 N=129  
Site 1 58.95 (8.38) 58.22 (7.70) 59.60 (8.90) 0.148 
Site 2 58.20 (4.86) 58.27 (3.27) 58.14 (5.92) 0.755 
Site 3 59.26 (3.74) 59.06 (3.41) 59.44 (4.00) 0.443 
Site 4 56.58 (8.66) 55.71 (7.76) 57.35 (9.31) 0.069 
     
HSD11B2 methylation  N=243 N=114 N=129  
Site 1  -1.56 (2.16) -1.55 (2.38) -1.57 (1.95) 0.841 
Site 2 0.09 (0.93) -0.02 (0.92) 0.20 (0.93) 0.087 
Site 3  -2.21 (2.29) -2.17 (2.37) -2.25 (2.22) 0.736 
Site 4  -0.72 (1.77) -0.66 (1.62) -0.78 (1.89) 0.636 
Site 5  0.18 (4.48) 0.31 (4.25) 0.07 (4.68) 0.556 
     
IGF2 methylation  N=243 N=114 N=129  
Site 1  34.91 (12.79) 34.35 (13.04) 35.42 (12.54) 0.319 
Site 2  44.28 (15.42) 42.59 (16.80) 45.79 (13.93) 0.065 
Site 3  53.56 (6.71) 53.25 (7.49) 53.83 (5.93) 0.650 
Site 4  37.00 (4.75) 36.31 (5.52) 37.61 (3.86) 0.006 
Site 5  53.02 (6.14) 53.16 (6.60) 52.90 (5.70) 0.888 

1 Regression imputation method was applied.  

2 LINE-1, HSD11B2, and H19 data exhibited batch effects and as such were standardized to controls included on experimental plates as 

previously described (Goodrich et al., 2016), while the IGF2 data exhibited no batch effect.   
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3 P-value of 2-sample t test comparing boys and girls. 
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Table 2.4: Associations between site-specific visit 1 (early-teen) DNA methylation and visit 1 (early-teen) and visit 2 (late-teen) pubertal onset, in 
adjusted Cox survival models1,2. 

Boys (N=114) Pubic Hair  Genital Development  Testicular Volume (L)  Testicular Volume (R) 

  Hazard Ratio  
(CI)  

Hazard Ratio 
 (CI)  

Hazard Ratio  
(CI)  

Hazard Ratio  
(CI)  

  Visit 1 Visit 2 Visit 1 Visit2 Visit 1 Visit 2 Visit 1 Visit 2 

 Site Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 

LINE1 1 0.95  
(0.84, 1.08) 

1.03  
(0.89, 1.03) 

0.97  
(0.89, 1.05) 

1.00  
(0.90, 1.03) 

1.01  
(0.92, 1.10) 

1.01  
(0.92, 1.10) 

0.99  
(0.91, 1.08) 

1.03  
(0.91, 1.08) 

2 0.81  
(0.59, 1.11) 

0.96  
(0.83, 1.10) 

0.88  
(0.73, 1.07) 

0.96  
(0.83, 1.08) 

1.05  
(0.90, 1.22) 

1.08  
(0.89, 1.21) 

1.03  
(0.89, 1.19) 

1.07  
(0.88, 1.18) 

3 0.93  
(0.77, 1,12) 

0.97  
(0.89, 1.10) 

0.97  
(0.86, 1.10) 

0.95  
(0.90, 1.08) 

1.04  
(0.93, 1.15) 

1.10  
(0.92, 1.14) 

1.02  
(0.91, 1.13) 

1.08  
(0.91, 1.11) 

4 1.02  
(0.76, 1.37) 

1.02  
(0.91, 1.31) 

0.92  
(0.77, 1.10) 

1.00  
(0.88, 1.15) 

1.04  
(0.88, 1.22) 

1.01  
(0.87, 1.18) 

1.06  
(0.91, 1.23) 

1.03  
(0.90, 1.19) 

H19 1 1.01  
(0.93, 1.09) 

1.03  
(0.99, 1.07) 

1.03  
(0.99, 1.08) 

1.00  
(0.97, 1.04) 

1.01  
(0.96, 1.06) 

1.01  
(0.97, 1.06) 

1.03  
(0.98, 1.08) 

1.03  
(0.98, 1.08) 

2 0.64  
(0.43, 0.94) 

0.96  
(0.87, 1.05) 

0.93  
(0.84, 1.03) 

0.96  
(0.90, 1.03) 

1.08  
(0.97, 1.21) 

1.08  
(0.97, 1.20) 

1.07  
(0.97, 1.18) 

1.07 
 (0.97, 1.18) 

3 0.74  
(0.55, 0.99) 

0.97  
(0.88, 1.06) 

0.93  
(0.84, 1.03) 

0.95  
(0.89, 1.02) 

1.10  
(0.98, 1.24) 

1.10  
(0.98, 1.24) 

1.08  
(0.97, 1.19) 

1.08  
(0.98, 1.19) 

4 1.02  
(0.94, 1.10) 

1.02  
(0.98, 1.06) 

1.03  
(0.98, 1.07) 

1.00  
(0.97, 1.03) 

1.00  
(0.96, 1.05) 

1.01  
(0.97, 1.06) 

1.02  
(0.98, 1.07) 

1.03  
(0.98, 1.07) 

HSD11B2 1 0.85  
(0.69, 1.03) 

0.89  
(0.78, 1.02) 

0.89  
(0.76, 1.04) 

0.97  
(0.87, 1.08) 

1.01  
(0.86, 1.19)  

1.00  
(0.85, 1.18) 

0.98  
(0.85, 1.14) 

0.97  
(0.84, 1.13) 

2 1.07 
 (0.62, 1.85) 

0.96  
(0.68, 1.34) 

0.96  
(0.67, 1.37) 

1.09  
(0.81, 1.46) 

0.66  
(0.40, 1.08) 

0.66  
(0.41, 1.06) 

0.67  
(0.43, 1.06)  

0.67  
(0.43, 1.04) 

3 0.86  
(0.68, 1.08) 

0.95  
(0.84, 1.06) 

0.93  
(0.80, 1.08) 

0.90  
(0.81, 1.01) 

1.01  
(0.87, 1.16) 

1.00  
(0.87, 1.15) 

0.99  
(0.87, 1.13) 

0.98  
(0.86, 1.13) 

4 1.60  
(1.05, 2.44) 

1.20  
(1.01, 1.43) 

1.67  
(1.19, 2.33) 

1.01  
(0.88, 1.16) 

0.99  
(0.78, 1.27) 

1.01  
(0.78, 1.30) 

1.03  
(0.83, 1.29) 

1.05  
(0.84, 1.31) 

5 1.06  
(0.91, 1.23) 

0.99  
(0.92, 1.07) 

0.96  
(0.89, 1.05) 

0.99  
(0.93, 1.05) 

0.99  
(0.91, 1.07) 

0.98 
(0.90, 1.07) 

0.98 
 (0.90, 1.06) 

0.97  
(0.90, 1.06) 
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IGF2 1 1.01  
(0.97, 1.05) 

1.00  
(0.97, 1.03) 

0.99  
(0.96, 1.01) 

0.99  
(0.96, 1.01) 

1.01  
(0.98, 1.04) 

1.01  
(0.97, 1.04) 

1.01 
 (0.98, 1.04) 

1.01  
(0.98, 1.04) 

2 1.01  
(0.98, 1.05) 

1.01  
(0.99, 1.03) 

1.02  
(1.00, 1.05) 

1.01  
(0.99, 1.03) 

1.01  
(0.98, 1.03) 

1.01  
(0.98, 1.03) 

1.00  
(0.98, 1.02) 

1.00  
(0.98, 1.02) 

3 0.95  
(0.89, 1.01) 

0.96  
(0.92, 1.01) 

0.93  
(0.88, 0.99) 

0.93  
(0.89, 0.98) 

1.03  
(0.97, 1.10) 

1.03  
(0.96, 1.10) 

1.01  
(0.96, 1.07) 

1.01  
(0.95, 1.07) 

4 0.95  
(0.87, 1.03) 

1.00  
(0.94, 1.07) 

0.95  
(0.88, 1.02) 

0.97  
(0.92, 1.03) 

1.05  
(0.97, 1.13) 

1.04  
(0.97, 1.11) 

1.04  
(0.97, 1.11) 

1.03  
(0.96, 1.10) 

5 0.99  
(0.89, 1.10) 

1.02  
(0.96, 1.08) 

0.98  
(0.92, 1.05) 

0.99  
(0.94, 1.03) 

1.07  
(0.99, 1.15) 

1.06  
(0.98, 1.14) 

1.05  
(0.99, 1.11) 

1.05  
(0.98, 1.11) 

          
          

Girls (N=129) Pubic Hair Breast Development Menarche (Y/N) Menarche Age 

  Hazard Ratio  
(CI)  

Hazard Ratio  
(CI)  

Hazard Ratio  
(CI)  

Hazard Ratio  
(CI)  

 Site Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 

LINE1 1 0.96  
(0.82, 1.12) 

1.00  
(0.91, 1.09) 

0.99  
(0.92, 1.06)  

0.96  
(0.89, 1.05) 

0.97  
(0.86, 1.09) 

0.96  
(0.89, 1.04) 

0.97  
(0.89, 1.07) 

0.97  
(0.92, 1.03) 

 2 1.05  
(0.73, 1.50)  

0.95  
(0.76, 1.20) 

0.92  
(0.81, 1.04)  

0.88  
(0.73, 1.06) 

0.81  
(0.58, 1.14) 

0.89  
(0.76, 1.05) 

0.88  
(0.71, 1.10) 

0.97  
(0.86, 1.10) 

 3 1.07  
(0.86, 1.34) 

0.95  
(0.84, 1.08) 

0.89  
(0.82, 0.97) 

0.97  
(0.87, 1.09) 

0.83  
(0.67, 1.03) 

0.98  
(0.89, 1.08) 

0.87  
(0.72, 1.06) 

0.94  
(0.92, 1.10) 

 4 1.01  
(0.78, 1.31) 

0.92  
(0.79, 1.07) 

0.83  
(0.75, 0.93) 

0.88  
(0.76, 1.02) 

0.85  
(0.66, 1.09) 

0.88  
(0.77, 1.01) 

0.89  
(0.74, 1.06) 

1.01  
(0.84, 1.04) 

H19 1 1.03  
(0.95, 1.12) 

1.02  
(0.98, 1.07) 

1.05  
(1.02, 1.07) 

1.02  
(0.99, 1.06) 

0.99  
(0.94, 1.06) 

1.02  
(0.99, 1.06) 

1.01 
 (0.95, 1.06) 

1.01  
(0.99, 1.04) 

 2 1.21  
(1.00, 1.47) 

1.02  
(0.96, 1.07) 

1.02  
(0.96, 1.09) 

0.93  
(0.88, 0.99) 

0.98  
(0.88, 1.09) 

0.99  
(0.94, 1.04) 

0.96  
(0.85, 1.09) 

1.00 
 (0.96, 1.04) 

 3 1.22  
(1.01, 1.49) 

1.07  
(0.99, 1.17) 

1.06  
(0.99, 1.13) 

0.99  
(0.91, 1.07) 

0.99  
(0.87, 1.13) 

1.01  
(0.93, 1.10) 

0.97  
(0.86, 1.09) 

1.01  
(0.95, 1.08) 

 4 1.03  
(0.95, 1.13) 

1.03  
(0.98, 1.08) 

1.05  
(1.03, 1.08) 

1.03  
(0.99, 1.06) 

1.00  
(0.94, 1.06) 

1.03  
(1.00, 1.06) 

1.01  
(0.95, 1.06) 

1.01  
(0.99, 1.04) 

HSD11B2 1 0.98  
(0.79, 1.22) 

0.97  
(0.84, 1.11) 

0.80  
(0.71, 0.91) 

0.86  
(0.72, 1.02) 

0.93  
(0.76, 1.14) 

0.95  
(0.80, 1.12) 

0.92  
(0.77, 1.10) 

0.98  
(0.88, 1.09) 



    

 41 

 2 0.87  
(0.56, 1.34) 

0.89  
(0.58, 1.36) 

0.91  
(0.75, 1.11) 

0.88  
(0.66, 1.18) 

0.88  
(0.58, 1.32) 

0.73  
(0.50, 1.08) 

0.93  
(0.66, 1.32) 

0.84  
(0.63, 1.11) 

 3 1.07  
(0.87, 1.33) 

1.04  
(0.90, 1.20) 

0.87  
(0.77, 0.98) 

0.92  
(0.79, 1.07) 

0.89  
(0.72, 1.11) 

0.91  
(0.79, 1.06) 

0.91  
(0.77, 1.08) 

0.96  
(0.87, 1.06) 

 4 1.32  
(0.91, 1.90) 

1.06  
(0.93, 1.20) 

1.25  
(1.13, 1.38) 

1.08  
(0.95, 1.24) 

1.18  
(0.87, 1.60) 

0.93  
(0.76, 1.13) 

1.21  
(0.94, 1.57) 

0.90  
(0.76, 1.07) 

 5 0.97  
(0.87, 1.09) 

0.95  
(0.87, 1.04) 

0.96  
(0.91, 1.01) 

0.99  
(0.93, 1.05) 

0.96  
(0.87, 1.06) 

0.97  
(0.92, 1.03) 

0.99  
(0.91, 1.07) 

1.01  
(0.96, 1.05) 

IGF2 1 0.99  
(0.95, 1.04) 

1.00  
(0.97, 1.02) 

1.00  
(0.98, 1.02) 

1.00  
(0.98, 1.03) 

1.03  
(0.99, 1.08) 

1.01  
(0.99, 1.03) 

1.02  
(0.99, 1.05) 

1.01  
(0.99, 1.02) 

 2 1.02  
(0.98, 1.06) 

1.00  
(0.98, 1.03) 

1.01  
(1.00, 1.03) 

1.01  
(0.99, 1.04) 

0.99  
(0.96, 1.03) 

0.99  
(0.97, 1.01) 

1.00  
(0.97, 1.03) 

0.99  
(0.98, 1.01) 

 3 0.96  
(0.88, 1.04) 

0.98  
(0.90, 1.07) 

1.00  
(0.95, 1.05) 

0.97  
(0.91, 1.04) 

1.12  
(1.02, 1.22) 

0.99  
(0.94, 1.04) 

1.03  
(0.98, 1.09) 

0.98  
(0.94, 1.01) 

 4 0.99  
(0.89, 1.10) 

1.00  
(0.93, 1.08) 

0.97  
(0.91, 1.04) 

0.94  
(0.86, 1.03) 

1.08  
(0.95, 1.23) 

0.94  
(0.87, 1.03) 

1.03  
(0.93, 1.15) 

1.00  
(0.93, 1.06) 

 5 1.05  
(0.94, 1.17) 

1.07  
(1.01, 1.14) 

1.01  
(0.96, 1.07) 

1.02  
(0.96, 1.09) 

1.12  
(1.00, 1.26) 

1.00  
(0.95, 1.06) 

1.02  
(0.96, 1.09) 

0.99  
(0.95, 1.03) 

1 Adjusted for age, BMI and SES status at visit 1 (early-teen).  

2 Bolded value indicates the association is significant with a P value < 0.05.  
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Table 2.5: Associations between site-specific visit 1 (early-teen) DNA methylation and pubertal progression from visit 1 (early-teen) to visit 2 
(late-teen), in adjusted multivariate regression models1,2,3. 

Boys (N=114)  Pubic Hair Genital Development Testicular Volume (L) Testicular Volume (R) 

  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  

 Site Main Effect  Site by Time  Main Effect  Site by Time Main Effect  Site by Time Main Effect  Site by Time 

LINE1 1 1.03  
(0.76, 1.39) 

0.97  
(0.89, 1.06) 

1.01  
(0.86, 1.20) 

0.97  
(0.93, 1.01) 

1.05  
(0.82, 1.36) 

0.96  
(0.89, 1.05) 

1.10  
(0.83, 1.47) 

0.94  
(0.87, 1.03) 

2 1.00  
(0.52, 1.93) 

0.97  
(0.79, 1.19) 

0.96  
(0.70, 1.31) 

0.99  
(0.92, 1.07) 

1.12  
(0.67, 1.87) 

0.94  
(0.79, 1.11) 

1.22  
(0.66, 2.24) 

0.90  
(0.76, 1.08) 

3 1.03  
(0.64, 1.66) 

0.98  
(0.85, 1.12) 

0.99  
(0.80, 1.22) 

1.00  
(0.95, 1.06) 

1.05  
(0.71, 1.54) 

0.95  
(0.86, 1.06) 

1.11  
(0.73, 1.67) 

0.94  
(0.84, 1.04) 

4 1.09 
 (0.38, 3.12) 

0.98 
(0.73, 1.33) 

0.90 
 (0.63, 1.27) 

1.04  
(0.96, 1.14) 

1.11  
(0.59, 2.08) 

0.96  
(0.81, 1.13) 

1.18  
(0.64, 2.16) 

0.97 
 (0.82, 1.13) 

H19 1 0.99  
(0.80, 1.23) 

1.02  
(0.96, 1.08) 

1.04  
(0.95, 1.14) 

0.99  
(0.98, 1.01) 

1.00  
(0.85, 1.16) 

1.01  
(0.97, 1.05) 

1.00  
(0.87, 0.97) 

1.01  
(0.97, 1.04) 

2 0.82  
(0.31, 2.14) 

1.06  
(0.82, 1.37) 

0.92  
(0.73, 1.14) 

1.05  
(0.99, 1.12) 

1.07  
(0.74, 1.54) 

0.99  
(0.89, 1.09) 

1.05  
(0.77, 1.43) 

0.98  
(0.90, 1.07) 

3 0.86  
(0.36, 2.10) 

1.06  
(0.83, 1.35) 

0.95  
(0.77, 1.16) 

1.02  
(0.97, 1.06) 

1.09  
(0.74, 1.61) 

0.98  
(0.89, 1.09) 

1.07  
(0.77, 1.48) 

0.98  
(0.90, 1.07) 

4 1.00  
(0.79, 1.25) 

1.01  
(0.95, 1.08) 

1.04  
(0.95, 1.13) 

0.99  
(0.97, 1.01) 

1.01  
(0.87, 1.17) 

1.01  
(0.97, 1.05) 

1.01  
(0.88, 1.15) 

1.01  
(0.97, 1.04) 

HSD11B2 1 0.84  
(0.42, 1.68) 

1.04  
(0.90, 1.20) 

0.77  
(0.53, 1.12) 

1.12  
(1.01, 1.24) 

0.94  
(0.60, 1.50) 

1.03  
(0.92, 1.15) 

0.96  
(0.64, 1.45) 

1.03  
(0.93, 1.14) 

2 0.94  
(0.25, 3.46) 

1.00  
(0.73, 1.37) 

0.70  
(0.33, 1.50) 

1.16  
(0.94, 1.42) 

0.52  
(0.09, 2.97) 

1.41  
(0.87, 2.28) 

0.63  
(0.17, 2.33) 

1.39  
(0.99, 1.95) 

3 0.87  
(0.41, 1.87) 

1.03  
(0.88, 1.21) 

0.82  
(0.53, 1.25) 

1.07  
(0.96, 1.19) 

0.96  
(0.61, 1.52) 

0.99  
(0.91, 1.08) 

0.98  
(0.65, 1.48) 

1.00  
(0.91, 1.09) 

4 1.36  
(0.47, 3.96) 

0.97 
(0.76, 1.23) 

1.59  
(0.92, 2.74) 

0.83  
(0.72, 0.97) 

1.08  
(0.49, 2.40) 

1.01  
(0.85, 1.19) 

1.14  
(0.55, 2.38) 

1.00  
(0.85, 1.18) 

5 1.03  
(0.74, 1.43) 

0.99  
(0.91, 1.07) 

0.97  
(0.83, 1.14) 

1.01  
(0.97, 1.05) 

1.00  
(0.78, 1.29) 

0.94  
(0.85, 1.04) 

0.97  
(0.78, 1.22) 

0.96  
(0.89, 1.04) 

IGF2 1 1.00  
(0.90, 1.10) 

1.01  
(0.98, 1.03) 

0.99  
(0.94, 1.04) 

1.01  
(1.00, 1.02) 

0.98  
(0.90, 1.07) 

1.01  
(0.99, 1.03) 

1.00 
(0.92, 1.09) 

1.00  
(0.98, 1.02) 
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2 1.00  
(0.92, 1.10) 

1.00  
(0.97, 1.02) 

1.01  
(0.97, 1.06) 

0.99  
(0.98, 1.01) 

1.02  
(0.95, 1.10) 

1.00  
(0.98, 1.02) 

1.01 
(0.94, 1.08) 

1.00  
(0.98, 1.02) 

3 0.94  
(0.79, 1.13) 

1.02  
(0.98, 1.07) 

0.94  
(0.85, 1.04) 

1.02  
(0.99, 1.04) 

0.96  
(0.82, 1.12) 

1.01  
(0.98, 1.05) 

0.97  
(0.85, 1.12) 

1.02  
(0.98, 1.06) 

4 0.95  
(0.78, 1.15) 

1.02  
(0.98, 1.06) 

0.93  
(0.82, 1.05) 

1.04  
(1.00, 1.07) 

1.04  
(0.85, 1.27) 

1.01  
(0.96, 1.06) 

1.04  
(0.87, 1.25) 

1.01  
(0.96, 1.06) 

5 0.96  
(0.80, 1.15) 

1.03  
(0.99, 1.07) 

1.00  
(0.90, 1.11) 

1.01  
(0.98, 1.03) 

1.03  
(0.86, 1.22) 

1.00  
(0.95, 1.04) 

1.01  
(0.86, 1.18) 

0.99  
(0.94, 1.04) 

          
          

Girls (N=129) Pubic Hair Breast Development Menarche (Y/N)  

  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  

 Site Main effect Site by Time Main effect Site by Time Main effect Site by Time  

LINE1 1 1.00  
(0.73, 1.38) 

1.01  
(0.94, 1.08) 

0.96 
 (0.76, 1.22) 

0.97 
(0.91, 1.03) 

1.06 
(0.75, 1.51) 

0.98  
(0.89, 1.08) 

 2 1.03 
 (0.44, 2.41) 

1.01 
(0.82, 1.24) 

0.93 
 (0.57, 1.50) 

0.94  
(0.83, 1.06) 

1.19 
(0.49, 2.90) 

0.99 
(0.78, 1.26) 

 3 1.04  
(0.48, 2.25) 

1.00  
(0.82, 1.22) 

0.95  
(0.69, 1.30) 

0.95  
(0.87, 1.04) 

1.17 
(0.71, 1.94) 

1.06  
(0.92, 1.22) 

 4 1.06  
(0.41, 2.71) 

1.02  
(0.79, 1.32) 

0.93 
 (0.63, 1.38) 

0.97  
(0.89, 1.06) 

1.20 
(0.59, 2.42) 

1.03  
(0.81, 1.31) 

H19 1 1.03  
(0.86, 1.23) 

1.01  
(0.97, 1.05) 

1.01  
(0.90, 1.13) 

1.01  
(0.98, 1.04) 

0.98  
(0.82, 1.16) 

1.01  
(0.94, 1.07) 

 2 1.08  
(0.64, 1.82) 

1.03  
(0.90, 1.20) 

0.94  
(0.81, 1.09) 

0.98  
(0.94, 1.02) 

1.01  
(0.76, 1.34) 

1.00  
(0.93, 1.08) 

 3 1.11  
(0.64, 1.93) 

1.04  
(0.90, 1.20) 

0.95  
(0.69, 1.31) 

0.98 
(0.90, 1.07) 

0.99  
(0.66, 1.48) 

0.99  
(0.89, 1.11) 

 4 1.02 
 (0.84, 1.24) 

1.00 
(0.96, 1.05) 

1.01 
 (0.91, 1.12) 

1.01 
(0.99, 1.03) 

0.98 
(0.82, 1.16) 

1.01 
(0.94, 1.07) 

HSD11B2 1 0.92  
(0.46, 1.85) 

0.95 
(0.80, 1.13) 

0.93  
(0.60, 1.43) 

0.95 
(0.86, 1.06) 

1.17 
(0.64, 2.14) 

1.09  
(0.92, 1.30) 

 2 0.74  
(0.24, 2.25) 

0.99  
(0.78, 1.26) 

0.77  
(0.32, 1.86) 

0.93  
(0.76, 1.15) 

1.29 
(0.38, 4.46) 

1.02  
(0.62, 1.65) 

 3 1.00  1.02  0.91 0.99  1.21 1.04  
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(0.44, 2.27) (0.80, 1.29)  (0.62, 1.32) (0.90, 1.08) (0.65, 2.24) (0.84, 1.30) 
 4 1.24  

(0.63, 2.47) 
1.13 

(0.93, 1.37) 
1.24  

(0.80, 1.93) 
1.15  

(0.97, 1.37) 
0.82 

(0.42, 1.64) 
0.86  

(0.74, 1.00) 
 5 0.97 

 (0.74, 1.27) 
1.02  

(0.96, 1.08) 
0.98  

(0.82, 1.17) 
1.01 

(0.97, 1.04) 
1.05 

(0.80, 1.39) 
1.02  

(0.95, 1.10) 

IGF2 1 0.99  
(0.89, 1.10) 

1.00  
(0.97, 1.02) 

0.99  
(0.92, 1.07) 

1.00  
(0.98, 1.02) 

0.95  
(0.84, 1.06) 

0.98  
(0.95, 1.02) 

 2 1.02  
(0.92, 1.13) 

1.01  
(0.98, 1.03) 

1.02  
(0.96, 1.08) 

1.00 
(0.99, 1.01) 

1.01 
(0.92, 1.11) 

0.99  
(0.96, 1.02) 

 3 0.97  
(0.80, 1.17) 

1.00  
(0.96, 1.04) 

1.01  
(0.87, 1.17) 

1.00 
(0.97, 1.03) 

0.89  
(0.69, 1.16) 

0.93  
(0.84, 1.04) 

 4 1.01 
 (0.72, 1.41) 

1.02  
(0.93, 1.12) 

0.87  
(0.65, 1.18) 

0.98  
(0.91, 1.06) 

0.90 
(0.65, 1.25) 

0.95  
(0.84, 1.07) 

 5 1.04  
(0.84, 1.29) 

1.01  
(0.97, 1.06) 

0.99  
(0.86, 1.16) 

1.00 
(0.96, 1.03) 

0.87 
(0.62, 1.23) 

0.96  
(0.88, 1.04) 

1 Adjusted for age, BMI and SES status at visit 1 (early-teen).  

2 Bolded value indicates the association is significant with a P value < 0.05.  

3 Model: logit (Y ij) = β0 + β1*age + β2*time_difference + β3*CpG_Site + β4*CpG_Site*time_difference +β5*age*time_difference 
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Figure 2.1: Selection of ELEMENT subjects for the study1. 
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1 Offspring from enrollment cohorts 2 and 3 were re-contacted and re-enrolled based on availability of prenatal and neonatal biospecimens. 

We did not re-contact Cohort 1 participants, originally recruited in 1994-96, because the majority had advanced stages or had completed 

pubertal development.  
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Chapter 3 Dietary Exposures, Epigenetics, and Pubertal Tempo 

 

INTRODUCTION 

       Early or late age at pubertal onset is an established risk factor for a number of 

reproductive tract cancers, insulin resistance, and adiposity in adulthood, as well as all-cause 

mortality (Golub et al., 2007; Niculescu, 2008; Zhu & Chan, 2016; Jacobson & Heuch, 2007). 

Over recent decades, the risk factors for earlier or later puberty, including chemical exposures, 

unbalanced diet, and abnormal hormone levels caused by diseases and psychological stress, have 

been widely studied (Cesario et al., 2007; Jansen et al., 2016; Mills et al., 1986; Marceau et al., 

2012). 

       Patterns of health, illness and disease risks are influenced and “programmed” at 

different stages of the life course by a combination of genetic, epigenetic and environmental 

factors, as articulated by the “Development Origins of Health and Disease (DOHaD)” concept 

(El-Heis & Godfrey, 2015; Li, 2002). Epigenetics is the study of mitotically heritable yet 

potentially reversible molecular modifications to DNA and chromatin without alteration to the 

underlying DNA sequence (Li, 2002; Reik et al., 2001). The influence of epigenetic regulation, 

which includes DNA methylation, on pubertal onset has been considered in animal models and 

global changes in specific epigenetic factors appear to be key players in the regulation of the 

onset of puberty (Lomniczi et al., 2013; Tomikawa et al., 2012; Rzeczkowska et al., 2014).  

However, potential associations of DNA methylation with pubertal tempo (e.g. pubertal onset 

and progression through stages of maturation) in both sexes has not been considered in human or 

animal studies. In female rats, interference of DNA methylation was associated with delayed 
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vaginal opening and compromised fecundity by inhibiting Kiss1 gene, whose product is involved 

in controlling expression of GnRH (Lomniczi et al., 2013). Another study found that elevated 

expression of neurokinin B (Nkb) and Kiss1 amplified gonadotropin hormone-releasing hormone 

(GnRH) secretion, triggering the onset of puberty in the mice (Gill et al., 2012).   

       The impact of diet on pubertal tempo has also been addressed in several 

epidemiological studies (Berkey et al., 2000; De Ridder et al., 1991; Merzenich et al., 1993; Li et 

al., 2012) They observed that high total energy intake, as well as high animal (red meat) versus 

vegetable protein ratio, is associated with early menarche (Berkey et al., 2000; De Ridder et al., 

1991; Merzenich et al., 1993; Li et al., 2012). However, these studies focused primarily on 

macronutrients and relied on menarche as the sole puberty indicator (Wolff et al., 2008; Kaput, 

2004). Previous animal and population-based studies provide strong evidence of diet and gene 

interactions (Ross, 2003; Mehedint et al., 2010; Ba et al., 2011; Amaral et al., 2011; Anderson et 

al., 2012). Yet, our understanding of the impact of micronutrients on puberty as well as the 

underlying mechanisms is limited, especially, but not only, in boys.  

       Methyl donor nutrients -- including folate, choline/betaine, methionine, riboflavin 

(B2 vitamin), pyridoxine (B6 vitamin) and cobalamin (B12 vitamin) -- play essential roles in the 

one-carbon metabolism cycle (Mentch & Locasale, 2016). DNA methylation, the most 

extensively studied epigenetic modification (De Araújo et al., 2015) provides a link to the one-

carbon metabolism cycle through the generation of methyl donor, S-adenosylmethionine (SAM) 

(Mentch & Locasale, 2016). DNA methyltransferases (DNMTs) methylate the carbon-5 position 

of cytosine bases to methylated DNA using SAM (Mentch & Locasale, 2016). Therefore, the 

functioning of the cycle and subsequent availability of SAM is important for the establishment 
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and maintenance of DNA methylation and is in part dependent on the availability of methyl 

donor micronutrients.   

       To our knowledge, no previous study has examined the potential association between 

methyl-donor rich diet, DNA methylation and puberty tempo. To address these research gaps, 

this study examines the effect of maternal and adolescent diet on puberty tempo, and in 

particular, how foods rich in methyl donor nutrients influence puberty through epigenetic 

regulation. We hypothesize that methyl donor-rich diet may have an impact on pubertal tempo 

via altering DNA methylation. We utilized data from an ongoing cohort study in Mexico City to 

1) examine which methyl donor-rich foods from maternal first trimester and adolescent diets are 

associated with methylation of the surrogate marker for global methylation, long interspersed 

nucleotide (LINE-1) repeats, collected during adolescence (8-14 years of age), and calculate a 

DNA methylation-associated dietary scores from both maternal first trimester and adolescence, 

and 2) examine the association of these scores with pubertal onset and progression in adolescent 

boys and girls.  

MATERIALS AND METHODS 

3.1 Study Population  

       The study population comprised a subset of participants from the Early Life 

Exposure in Mexico to ENvironmental Toxicants (ELEMENT) project, a longitudinal 

epidemiological study consisting of three sequentially enrolled birth cohorts (Cantoral et al., 

2015). The mother-child pairs were recruited at three maternity hospitals representing low- to 

moderate-income populations in Mexico City from 1997 to 2005. The subjects in this project 

were a subset of children from the second and third birth cohorts (n=646 pairs at baseline). At the 

research visit after the child was born, mothers provided household and demographic 
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information, including age, education, and previous numbers of pregnancies. Their newborns 

were followed from birth until 4 years of age. Starting in 2010, a subset of offspring were re-

contacted (n=250; henceforth referred to as Visit 1) based on availability of prenatal and neonatal 

biospecimens (Perng et al., 2017). One more peri-pubertal visit (Visit 2) was completed 

approximately five years later (n=549, with 223 having also participated in the 2010 Visit 1). 

Fasting blood, pubertal status, anthropometry and household socioeconomic status were 

collected at both teen visits (Perng et al., 2017).  

3.2 Laboratory Measurements and Outcomes  

DNA methylation 

       Blood samples were obtained at Visit 1 and collected in PAXGene tubes by trained 

staff following standard protocols. High-molecular-weight DNA was extracted from blood 

leukocytes with the PAXgene Blood DNA kit (PreAnalytix, Switzerland). DNA samples were 

treated with sodium bisulfite using kits from Zymo or Qiagen (Li & Tollefsbol, 2011). Percent of 

methylated cells was then quantitatively analyzed in a consensus region of repetitive elements 

from the LINE-1 family. DNA methylation was quantified via pyrosequencing using a PyroMark 

MD at 4 CpG sites. Full details on primers, quality control (which included running 

unmethylated and fully methylated human DNA controls with each batch and duplicating > 10% 

of the samples), and analysis methods have been previously published (Goodrich et al., 2016). 

DNA methylation levels exhibited batch effects and as such were standardized to controls 

included on each experimental batch (96-well plate), as previously described (Goodrich et al., 

2016).  

Dietary intake 
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        Diets of pregnant women were assessed during the first trimester using an 

interviewer-administered semi-quantitative food frequency questionnaire (FFQ) designed to 

allow recall of dietary intake over the previous month (Willett, 2009). The list of 104 food items 

was built from the items that proved most representative of local consumption based on the 1983 

Dietary Survey of the Mexican National Institute of Nutrition (Hernández-Avila et al., 1998) 

       Usual dietary intake of adolescents over the past week was collected using a 116-

item interviewer-administered semi-quantitative FFQ adapted from the 2006 Mexican Health and 

Nutrition Survey (Villalpando et al., 2003) at Visit 1. The questionnaire asked participants to 

recall how often they typically consumed one serving of a standard portion size of each food 

item (in g or ml); response options ranged from never to ≥6 times per day.  

Pubertal outcomes  

       Pubertal outcomes were obtained at both Visit 1 and Visit 2. Trained physicians 

assessed Tanner stages of breast and pubic hair growth in girls as well as Tanner stages of 

genitalia and pubic hair growth in boys using standardized methods at both visits (Chavarro et 

al., 2017; Marshall & Tanner, 1970). Outcomes were recorded with a range from stage 1 

indicating pre-puberty to stage 5 indicating full maturation (Marshall & Tanner, 1970; Biro et al., 

1995). Testicular volumes were measured by trained physicians using orchidometers (range from 

1 to 25 ml). Occurrence and age of menarche were gathered from a self-reported questionnaire 

(Marshall & Tanner, 1970; Biro et al., 1995; Jansen et al., 2017).  

Covariates 

        Based on a priori knowledge and preliminary correlation tests of predictors, 

outcomes and potential confounders, covariates included in the final models were household SES 

and BMI of the child, obtained at Visit 1. The SES measure included material wellbeing (for 
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instance, number of bedrooms in the home) and education level of the head of the household. 

Combined information was ranked from A to E based on the scale developed by Mexican 

Association of Market Research and Public Opinion (AMAI) (Amaya et al., 2013). Weight and 

height of the child were measured by trained nurses, following standardized protocols, as 

previously described [41]; BMI was calculated as weight over height squared (kg/m2) (Nuttall, 

2015). Children’s age was collected at both visits.  

3.3 Statistical analysis  

       Descriptive statistics were obtained for all variables. We created an ‘Epigenetic-

Associated Diet Score’ (EADS) as a weighted average of methyl-donor rich food items for 

maternal and adolescent diets, respectively, with weights based on the association of the food 

items with the mean of methylation of 4 CpG sites of LINE-1. The weights were obtained by 

using the LASSO regression with LINE-1 methylation as the dependent variable, and intake of 

methyl-donor rich food items as the predictors. The LASSO method is a powerful method in 

feature selection, which can efficiently reduce the number of variables included in the model. 

LASSO applies a shrinking process that penalizes the coefficients of the regression variables 

shrinking some to zero, while variables that still have a non-zero coefficient after the shrinking 

are selected to be part of the model (Zhang & Huang, 2008). Methyl donor rich food items used 

as input for the LASSO regression were those that are known to have high content of at least one 

of the following six major micronutrients: folate, choline/betaine, methionine, B2/riboflavin, 

B6/pyridoxine, and B12/cobalamin. To examine the food items used in the regression we 

identified, for each of these six “methyl donor” nutrients, up to 20 food items with highest 

specific nutrient content per serving based on information gathered from National Institute of 

Health (NIH) Dietary Supplement Fact Sheets datasets (National Institutes of Health: Office of 
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Dietary Supplements. Dietary Supplemental Fact Sheets. https://ods.od.nih.gov/factsheets (31 

October 2018, date last accessed). We cross-referenced the up to 20 items for each micronutrient, 

with food items included on the FFQ used in the study. For the ELEMENT study, some food 

items have been grouped into categories based on nutritional similarity and cultural relevance 

(Jansen et al., 2017). Because many food items are rich in more than one of the six 

micronutrients, in total, there were a possible of 21 unique food groups that served as predictors 

in the LASSO regression model (Supplemental Table 1).  

       We retained seven food items (high-fat dairy, yogurt, beef, potato, refined grain, 

chicken and whole grain) from the maternal diet and eight food items (tomato, yogurt, fish, egg, 

cruciferous vegetables, leafy greens, pork and other vegetables) from the adolescent diet based 

on cross-validated results from LASSO selections. Based on the output from the LASSO 

algorithm, we calculated predicted LINE-1 methylation values and named them EADS. EADS 

was calculated separately for maternal diet and adolescent diet. From these regression models, 

we then calculated residuals by taking the observed LINE-1 methylation value and subtracting 

the EADS. We term these residuals as “methylation residuals” (MR), and note that they represent 

DNA methylation variation not explained by the dietary score (Spearman correlation between 

EADS and MR = -0.206). To improve interpretation of model results, these scores were 

transformed into z-scores; i.e., coefficients from outcome models (below) can be interpreted as 

differences in outcome per one SD higher EADS. 

       Secondly, we examined means ± SD for the selected food groups according to 

categories of maternal and adolescent characteristics to identify potential confounders. We 

conducted a linear trend test for ordinal characteristics (age, BMI) and a type-III Wald test for 

nominal characteristics (SES).  

https://ods.od.nih.gov/factsheets%25252520(31
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       To examine the association between EADS and onset of each pubertal outcome, we 

performed time-to-event analysis using interval-censored regression models. Within the interval 

censored time to event model, age at Visit 1 was the ‘time in follow-up’ and attainment of each 

of the following Tanner stages and menarche was the ‘event’. Children were classified as having 

experienced the ‘pubertal onset event’ of interest if Tanner stages were > 1 (Chavarro et al., 

2017; Marshall & Tanner, 1970; Biro et al., 1995) for pubic hair, genital development, breast 

development characteristics or answered “Yes” on self-reported menarche questionnaire at the 

visit time. Testicular volume ≤ 3 mL indicates pre-pubertal stage; testicular volume > 3mL but ≤ 

11mL indicates pubertal onset; and > 11mL indicates sexual maturity (Chavarro et al., 2017; 

Marshall & Tanner, 1970; Biro et al., 1995).  Models were adjusted for BMI and SES measured 

at Visit 1. Then, we repeated the model further adjusted for the MR term to test the association 

while controlling the effect of methylation not due to diet on puberty.   

       Next we assessed the association between EADS and pubertal progression, using the 

following ordinal regression model: logit (Yij) = β0 + β1* Agei + β2*Timej-i + β3* EADS + 

β4*EADS*Timej-i + β5*MR + β6*MR*Timej-i + β7*Agei*Timej-i + β8*covariates to analyze the 

potential, gender-specific associations between EADS and pubertal progression between Visit 1 

and Visit 2. Agei represents the age at Visit 1. Time represents the difference between visits.  

RESULTS 

       The analytical sample included 118 boys and 132 girls who attended the Visit 1, of 

whom 108 boys and 114 girls remained at Visit 2. The mean age for Visit 1 was 10.4 years in 

boys and 10.3 years in girls; the mean age was 13.7 years in boys and 13.5 for girls at Visit 2. We 

observed fewer children remaining at lower pubertal stages in Visit 2. Among boys, 79.7% and 

48.3% were at Tanner stage 1 for pubic hair and genital development in Visit 1; and the number 
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dropped to 25.0% and 6.5% in Visit 2. In terms of testicular volume, the percentage of boys in 

the pre-pubertal stage dropped from 15.3% to 0%. Among girls, 74.2% were classified Tanner 

stage 1 for pubic hair and 65.9% for breast development in Visit 1; and the percentage dropped to 

7.9% and 4.4%, respectively, at the later visit (Table 1). Since some mothers were not recruited 

until the child was born, the study sample with maternal diet information was smaller (85 boys, 

92 girls). Nevertheless, we observed similar changes in pubertal stages from Visit 1 to Visit 2 

(Table 1).  

       As analyzed in our previous published results, LINE-1 methylation was higher 

among boys compared to girls in our study cohort (Averaged LINE-1 methylation across 4 CpG 

sites (mean/SD): 78.98/2.39 in boys, 78.07/2.15 in girls). Unpaired t-test suggested a significant 

sex-difference of LINE-1 methylation (P value = 0.002) while actual methylation differences 

were minimum. The food groups that contributed to the EADS were different for maternal diet 

and adolescent diet (Table 2). LASSO-selected items that contributed to the maternal EADS 

included: high-protein, high-fat and high-carbohydrate food items, such as high-fat dairy, yogurt, 

beef, chicken, potato, refined grains and whole grains. The contributions from some items were 

positive while others negative. High-protein and high-fat food items were negatively associated 

with LINE-1 methylation, and thus diets with a high frequency of these items resulted in lower 

maternal EADS. Overall, whole grains were positively associated with LINE-1 methylation 

levels, and thus diets rich in these diets had higher EADS.     

       The adolescent EADS comprised fresh high-fiber vegetables, including tomato, 

cruciferous vegetables, leafy greens, other vegetables, as well as lean protein sources, such as 

yogurt, fish, egg and pork. Similarly, both positive and negative directions were observed 

between adolescent food items and LINE-1 methylation. Fresh vegetables were positively 
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associated with LINE-1 methylation level, while lean protein food items were negatively 

associated, and thus resulted in higher or lower adolescent EADS, respectively (Table 2).  

       Maternal and adolescent EADS had different strengths of associations with pubertal 

onset and progression. We observed significant associations between maternal, but not 

adolescent  EADS, on pubertal onset in girls (Table 3). In the adjusted analysis, each SD 

increase of the maternal EADS was associated with a 76% lower probability of having menarche 

at Visit 1 (p=0.059), and 33% lower probability of having menarche at Visit 2 ((p=0.028). Each 

SD increase of the maternal EADS was associated with approximately half a year increase of the 

age at menarche (p=0.031). However, statistically significant associations were not observed 

between adolescent EADS and most indicators of pubertal onset.  

      In terms of pubertal progression, we observed statistically significant associations 

between adolescent EADS, but not for the associations with maternal EADS (Table 4). Among 

boys, for each standard deviation higher in the adolescent EADS, there was 13% increased odds 

of slower genital progression (p=0.050), as well as 26% and 27% increased odds of slower 

testicular developments (Left and right: p=0.001 and 0.001). Among girls, each standard 

deviation higher in the adolescent EADS score was associated with 16% increased odds of faster 

pubic hair progression (p=0.082) only.   

DISCUSSION  

       Among participants in this Mexico City cohort, we observed different epigenetic-

associated diet patterns in mothers and offspring. Most food items in the maternal diet selected in 

the LASSO model were rich in fat and protein, and were negatively associated with LINE-1 

DNA methylation. However, selected components of the adolescent diet included more high 

fiber vegetables that in turn had a positive association with DNA methylation levels. We also 
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found evidence suggesting time- and gender-specific associations between EADS and pubertal 

tempo. Specifically, we observed significant associations between maternal EADS and pubertal 

onset in girls only, and significant associations between adolescent EADS and pubertal 

progression predominantly in boys. 

       The environment during development is emerging as a strong predictor of phenotype 

and disease in later life. Major environmental influences on developmental plasticity, including 

nutrition, behavior, stress, and toxicants, can act though different mechanisms and result in an 

array of changes to the epigenome, including DNA methylation (Faulk & Dolinoy, 2011). Based 

on previous in vivo and in vitro studies, periods of DNA methylation lability occur in three 

waves: primordial germ cell methylation reprogramming, post-fertilization zygotic methylation 

reprogramming, and somatic cell differentiation methylation reprogramming of adults (Faulk & 

Dolinoy, 2011). Other than the perinatal period, growth and the hormonally active puberty as 

well as senescence are also vulnerable periods to a variety of external insults (Barouki et al., 

2012). Previous population- and animal-based research has highlighted the importance of 

maternal methyl donor dietary intake on fetal development (Barouki et al., 2012; Zeisel, 2006; 

Waterland & Jirtle, 2003), childhood respiratory health (Håberg et al., 2009; Miller, 2008), high 

childhood cognition scores (Villamor et al., 2012), healthy weight status [Barouki et al., 2012;  

Waterland et al., 2008; Dolinoy et al., 2007; Carlin et al., 2013), and lower cancer risks (Ly et 

al., 2011). However, its impact on timing and stages of puberty is not well understood. This 

study expands our understanding of both maternal first trimester diet and adolescent diet on 

LINE-1 DNA methylation and subsequently pubertal tempo, as well as the change in the strength 

of the associations with timing of the dietary exposure.  
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       Our results showed a stronger effect of maternal diet with pubertal onset, while a 

statistically significant association was observed between adolescent diet and pubertal 

progression. The findings suggest a long-term effect of maternal diet and a short-term health 

impact of concurrent diet on pubertal tempo. Previous animal-based studies found evidence that 

maternal high-fat (Aagaard-Tillery et al., 2008) diet or high-methyl donor (Cordero et al., 2013) 

diet, or undernutrition (Jousse et al., 2011) would alter the epigenomic profile, including mRNA 

expression and fatty acid synthase (FASN) promoter methylation of the developing offspring and 

result in alterations in fetal gene expression. In terms of the effect of adolescent diet, Tomizawa 

et al. found that a 3-week folate-, methionine- and choline-deficient during the developmental 

phase was associated with decreased glutamate receptor 1 (Gria1) gene expression in the mouse 

hippocampus, affecting learning and memory (Tomizawa et al., 2015). Previous studies have 

suggested that the need for methyl donors might be much greater in pregnancy when DNA 

methylation patterns in the developing zygote are reprogrammed (Faulk & Dolinoy, 2011). 

However, methyl donors in adolescence may contribute to the maintenance and the stability of 

DNA methylation, which may potentially withstand more fluctuations in availability of these 

nutrients.  

       We also observed sex-specific differences between the effects of EADS and pubertal 

tempo. For instance, high maternal EADS was statistically associated with later menarche onset 

among girls, while higher adolescent EADS was associated with slower progression of genital 

and testicular development among boys. These were potential interesting findings since they 

highlighted the differences in the female and male reproductive system development. According 

to biological evidence, females are considered the “fundamental sex”, in which without chemical 

prompting, all fertilized eggs would develop into females (Haley, 2012). Gonadal differentiation 
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occurs before the end of the embryonic period, approximately the 7th week of gestation; both the 

reproductive ducts, external genitalia and sex differentiates occur around the 10th week of 

gestation (Haley, 2012). After birth, maternal and placental estrogens no longer suppress the 

hypogonadal production of GnRH and pituitary gonadotropin. This results in the second major 

surge of hormone production in female and male development. During puberty, initiated by 

hormonal signals from the brain to the gonads (the ovaries in a girl, the testes in a boy), 

transformation of the nervous, muscular and reproductive systems are promoted, height and 

weight growth are accelerated. However, studies have found sexual dimorphism in the growth of 

the hippocampus in adolescence, which was associated with a more pronounced pubertal growth 

in males (Suzuki et al., 2005; Lenroot et al., 2007). These and previous studies suggest that the 

embryonic period is more sensitive for the female reproductive system, while adolescence may 

be a more efficient time for the male reproductive system to mature. Such differences may make 

children more prone to the impact of diet at specific developmental periods, which was 

supported by our EADS findings.   

       It is possible that the associations between LINE-1 methylation and diet were not 

induced solely by methyl-donor nutrients. Previous studies showed that chronic maternal high-fat 

diet could modify gene expression through epigenetic changes (Vucetic et al., 2011; Masuyama 

et al., 2016; Dudley et al., 2011). In terms of health impact, animals that were exposed to high-

fat diet in utero had been associated with higher susceptibility to type 2 diabetes, 

overweight/obesity and non-alcoholic fatty liver disease (Williams et al., 2013). Animal studies 

also provided evidence on the causal association between maternal protein restriction and 

alterations in DNA methylation (Goyal et al., 2010; Lillycrop et al., 2005). Among 
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micronutrients, Gaedicket et al. found that vitamin E deficiency resulted in reduced expression 

on microRNA (Gaedicke et al., 2008).  

       This analysis has some limitations, including a relatively small sample size. 

Considering the sparsity and bias of the LASSO selection in high-dimensional linear regression, 

we applied cross-validation to estimate prediction error (Zhang & Huang, 2008). However, every 

method of statistical inference depends on a complex set of assumptions, so interpretation of 

these analyses should be done cautiously. In terms of data collection, maternal diet, adolescent 

diet and menarche information were self-reported and may not be accurate due to recall bias. We 

would argue that this systematic within-person error applies to all subjects equally since methyl 

donor-rich dietary patterns are not known in the general population. Thus, it should not distort 

measures of EADS and the associations between EADS and pubertal tempo (Rosner et al., 

1989). Moreover, since the epigenetic programming varies by genomic loci and by cell and 

tissue type, we need to consider the limitation of including the LINE-1 DNA methylation from 

blood leukocytes as the sole indicator for individual’s global methylation status.  

        To our knowledge, this is the first longitudinal study examining the association 

between methyl-donor rich diet, DNA methylation and pubertal tempo. Our findings suggested 

timing- and sex-specific differences between the effects of methyl donor associated diets and 

pubertal tempo. Our observations may suggest the potential to develop dietary recommendations 

for mothers in the first trimester or for adolescents that may influence pubertal tempo. Future 

work in this field should consider examining other “developmentally plastic” phases and include 

epigenome-wide DNA methylation to consider whether the same findings apply.
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Table 3.1: Distributions of Tanner stages and other covariates among ELEMENT children at the early-teen visit (Visit 1) and at the late-teen visit 
(Visit 2) for children who continued follow-up, in both adolescent and maternal diet analysis samples. 

 Adolescent Diet Sample Maternal Diet Sample 

Boys Visit 1 (N=118) Visit 2 (N=108) Visit 1 (N=102) Visit 2 (N=94) 

 N  % N %  N  % N %  

Pubic Hair1      
1 94  79.66 27  25.00 83  81.37 27  28.72 
2 17  14.41 16 14.81 13  12.75 16 17.02 
3 3  2.54 30 27.78 2 1.96 25 26.60 
4 1  0.85 18 16.67 1  0.98 11 11.70 
5 0  0.00 14 12.96 0  0.00 12 12.77 

Missing 3  2.54 3 2.78 3  2.94 3 3.19 
     
Genital Development      

1 57  48.31 7  6.48 53 51.96 7  7.45 
2 43  36.44 17 15.74 35  34.31 17 18.09 
3 10  8.47 26 24.07 8  7.84 22 23.40 
4 5  4.24 37  34.26 3 2.94 31  32.98 
5 0  0.00 18 16.67 0  0.00 14 14.89 

Missing 3  2.54 3 2.78 3  2.94 3 3.19 
     
Testicular Development (L)      

1-3 ml 18  15.25 0  0.00 17 16.66 0  0.00 
3-11 ml 75  63.56 16 14.81 65 63.74 16 17.02 
>11 ml 22  18.65 89  82.41 17  16.66 75 79.79 
Missing 3  2.54 3 2.78 3  2.94 3 3.19 

     
Testicular Development (R)     

1-3 ml 18 15.25 0 0.00 17 16.66 0 0.00 
3-11 ml 76 64.41 16 14.81 65 63.74 16 17.02 
>11 ml 20 16.95 89 82.41 16 15.68 75 79.79 
Missing 4 3.39 3 2.78 4 3.92 3 3.19 
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Age (years) 10.35 ± 1.61 13.72 ± 1.75 10.24 ± 1.60 13.51 ± 1.73 
     
BMI 19.06 ± 3.14 20.43 ± 3.68 18.96 ± 3.19 20.33 ± 3.88 
     
Household SES: Quartile  N=100  N=98 N=90 

1 24  24.00  23  23.47 21 23.33 
2 27  27.00  26 26.53 24 26.67 
3 24  24.00  22 22.45 22 24.44 
4 25 25.00  27 27.55 23 25.56 

     

Girls Visit 1 (N=132)  Visit 2 (N=114) Visit 1 (N=117)  Visit 2 (N=103) 

 N % N % N % N % 

Pubic Hair      
1 98  74.24 9  7.90 92  78.63 9  8.74 
2 22  16.67 39  34.21 15  12.82 38  36.89 
3 9  6.82 29 25.44 8 6.84 26 25.24 
4 2  1.52 21 18.42 1  0.85 17 16.50 
5 1  0.76 14  12.28 1  0.85 12  11.65 

Missing 0  0.0 2  1.75 0  0.00 1  0.97 
     
Breast Development     

1 87  65.90 5  4.39 82  70.09 5  4.85 
2 20  15.15 12 10.53 18  15.38 12 11.65 
3 18  13.63 46  40.35 13  11.11 45  43.69 
4 7  5.30 31  27.19 4 3.42 24 23.30 
5 0  0.00 18  15.79 0  0.00 16  15.53 

Missing 0  0.0 2  1.75 0  0.00 1  0.97 
     
Menarche     

Yes 30  22.73 90  78.95 22  18.80 79  76.70 
No 102  77.27 23  20.17 95  81.20 23  22.33 

Missing 0  0.00 1 0.88 0  0.00 1 0.88 
     
Age (years) 10.30 ± 1.72 13.54 ± 1.75 10.12 ± 1.66 13.37 ± 1.72 



    

 69 

     
BMI  19.66 ± 3.95 21.61 ± 4.07 19.63 ± 3.87 21.80 ± 4.16 
     
Household SES: Quartile  N=102  N=108 N=94 

1 25  24.51  30 27.78 23 24.47 
2 29 28.43  28 25.93 26 27.66 
3 24  23.53  26 24.07 24 25.53 
4 24 23.53  24 22.22 21 22.34 

1 Distributions were listed across different Tanner Stages. Also applies for Genital Development and Breast Development.  
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Table 3.2: Diet patterns related to child’s LINE-1 methylation at Visit 1 using LASSO feature selection. 

Maternal Diet Pattern  

Food Item Estimate1 Average Intake (Serving/day) in Study Sample: Mean (± SD) 

High-fat dairy -22.46 1.00 ± 0.76 
Yogurt  -18.88 0.45 ± 0.44 
Beef -37.73 0.26 ± 0.20 

Potato  30.12 0.31 ± 0.23 
Refined grain -2.41 2.42 ± 1.15 

Chicken -9.41 0.35 ± 0.25 
Whole grain 2.77 0.37 ± 0.61 

Adolescent Diet Pattern  

Food Item Estimate Average Intake (g/day) in Study Sample: Mean (± SD) 

Tomato  1.55 6.34 ± 12.12  
Yogurt  0.20 91.04 ± 73.97  

Fish  -0.78 10.35 ± 10.57  
Egg -0.33 30.49 ± 24.76  

Cruciferous vegetables  0.55 5.44 ± 7.27  
Leafy greens 0.05 42.58 ± 49.32  

Pork  0.11 7.95 ± 11.82  
Other vegetables  -0.04 84.40 ± 68.41  

1 Estimate = β * 100 
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Table 3.3: List of top ranked food sources of 6 methyl donor nutrients based on National Institutes of Health (NIH) Dietary Supplement Fact 
Sheets1,2. 

Top Ranked 
Food Items 

Folate ELEMENT Food Group 
Available  

Choline/Betaine  ELEMENT Food Group 
Available 

1 Beef liver  Organ meat Beef liver  Organ meat  
2 Spinach  Leafy vegetables Whole egg  Eggs 
3 Black peas N/A Beef, lean  Beef 
4 Fortified breakfast cereal Refined grains Soybeans  N/A 
5 White rice  Refined grains Chicken breast  Chicken 
6 Asparagus  Other vegetables Ground beef  Beef 
7 Spaghetti  Refined grains Cod fish  Fish 
8 Brussels spouts  Cruciferous vegetables Shiitake mushrooms N/A 
9 Romaine lettuce  Leafy vegetables Potatoes  Potato 

10 Avocado  Avocado  Wheat germ  N/A 
11 Broccoli  Cruciferous vegetables  Kidney beans  Legumes 
12 Mustard greens  N/A Quinoa  N/A 
13 Green peas  N/A 1% fat milk  Milk 
14 Kidney beans  Legumes  Yogurt  Yogurt 
15 White bread  Legumes Brussels sprouts  Cruciferous vegetables 
16 Dry roasted peanuts  Legumes Broccoli  Cruciferous vegetables 
17 Wheat germ  N/A Cottage cheese  High fat dairy 
18 Canned tomato juice  N/A Tuna fish  Fish 
19 Dungeness crab  Fish Dry roasted peanuts  Legumes 
20 Orange juice  Fruits Cauliflower  Cruciferous vegetables 
21 Frozen turnip greens  N/A Green peas  N/A 
22 Fresh orange  Fruits Sunflower seeds Legumes 
23 Raw papaya  Fruits Brown rice  Whole grain 
24 Banana  Fruits Pita bread  Refined grain 
25 Whole egg  Eggs Cabbage  Cruciferous vegetable 

     
     

Top Ranked 
Food Items 

Methionine ELEMENT Food Group 
Available 

B2 (Riboflavin) ELEMENT Food Group 
Available 
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1 Whole egg Eggs Beef liver  Organ meat 
2 Chicken  Chicken Fortified breakfast cereal  Refined grains 
3 Canned tuna  Fish Oats/Oatmeal  N/A 
4 Turkey  N/A Yogurt  Yogurt 
5 Pork  Pork Milk  Milk 
6 Cheese  High fat dairy Beef, steak  Beef 
7 Beef  Beef Clams  N/A 
8 Salmon  Fish Mushrooms N/A 
9 Lamb  N/A Almonds N/A 

10 Soybeans  N/A Cheese  High fat dairy  
11 Yogurt  Yogurt Rotisserie chicken Chicken 
12 White beans  Legumes Whole egg  Eggs 
13   Quinoa  N/A 
14   Bagel  N/A 
15   Pink salmon Fish 
16   Spinach  Leafy greens 
17   Apple, with skin  Fruits 
18   Kidney beans  Legumes 
19   Macaroni  N/A 
20   Whole Wheat Bread  Whole grains 
21   Codfish  Fish 
22   Sunflower seeds  N/A 
23   Tomatoes  Tomato 
24   White rice  Refined grains 
25   Brown rice  Whole grains 
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Top Ranked 
Food Items 

B6 (Pyridoxine) ELEMENT Food Group 
Available 

B12 (Cobalamin) ELEMENT Food Group 
Available 

1 Chickpeas Other vegetables Clams  N/A 
2 Beef liver  Organ meat Beef liver  Organ meat 
3 Fresh tuna  Fish Fortified breakfast cereals  Refined grains 
4 Salmon  Fish Trout  N/A 
5 Chicken breast  Chicken Salmon Fish 
6 Fortified breakfast cereal Refined grains Canned tuna fish  Fish 
7 Potatoes Potato Cheeseburger  Processed meat  
8 Turkey  N/A Haddock  N/A 
9 Banana  Fruits Beef  Beef 

10 Marinara sauce   N/A Milk  Milk 
11 Ground beef  Beef Yogurt  Yogurt 
12 Waffles  N/A Cheese  High fat dairy  
13 Bulgur  N/A Beef taco  N/A 
14 Cheese High fat dairy Cured ham  Processed meat  
15 Winter squash  Other vegetables Whole egg  Eggs 
16 White rice  Refined grains Chicken  Chicken  
17 Mixed nuts  Legumes    
18 Raisins   N/A   
19 Onions  N/A   
20 Spinach  Leafy greens   
21 Tofu  N/A   
22 Watermelon  Fruits   
23     
24     
25     

1 Yellow highlighted food items were those collected in FFQ from ELEMENT study cohort. 

2 1: most content rich; 25: least content rich . 
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Table 3.4: Associations between predicted maternal and adolescent epigenetic-associated diet score and visit 1 (early-teen) and visit 2 (late-
teen) pubertal onset, accounting for methylation residuals1,2. 

Maternal Diet:  

Boys (N=85) Pubic Hair  Genital Development  Testicular Volume (L)  Testicular Volume (R) 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 0.92 

(0.30. 2.85) 
0.91 

(0.63, 1.31) 
0.83 

(0.54, 1.27) 
1.17 

(0.88, 1.56) 
1.19 

(0.82, 1.72) 
1.28 

(0.86, 1.91) 
1.14 

(0.81, 1.62) 
1.20 

(0.84, 1.73) 
         

Girls (N=92) Pubic Hair Breast Development Menarche (Y/N) Menarche Age 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 1.17 

(0.47, 2.96) 
0.76  

(0.50, 1.15) 
1.42 

(0.81, 2.49)  
1.24 

(0.84, 1.84) 
0.24 

(0.06, 1.06) 
0.67  

(0.47, 0.96) 
0.48  

(0.25, 0.93) 
0.85  

(0.68, 1.06)  

Adolescent Diet:  

Boys (N=118) Pubic Hair  Genital Development  Testicular Volume (L)  Testicular Volume (R) 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 0.53 

(0.21. 1.33) 
0.88 

(0.64, 1.21) 
0.99 

(0.70, 1.38) 
0.80 

(0.61, 1.06) 
1.31 

(0.82, 2.07) 
1.32 

(0.80, 2.15) 
1.45 

(0.89, 2.35) 
1.46 

(0.86, 2.47) 
         

Girls (N=132) Pubic Hair Breast Development Menarche (Y/N) Menarche Age 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 1.17 

(0.67, 2.05) 
0.71  

(0.47, 1.07) 
0.95  

(0.61, 1.49)  
0.78  

(0.53, 1.15) 
0.97  

(0.65, 1.43) 
0.88  

(0.66, 1.19) 
0.98  

(0.71, 1.36) 
0.93  

(0.74, 1.16)  
1 Adjusted for age, BMI and SES status at visit 1 (early-teen).  

2 Bolded value indicates the association is significant with a P value < 0.1.  
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3 Model 2: β0 + β1*Epigenetic-Associated Diet Score + β2*Methylation Residual + β3*Covariates 
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Table 3.5: Associations between predicted maternal and adolescent epigenetic-associated diet score and visit 1 (early-teen) as well as visit 2 

(late-teen) pubertal onset1,2. 

Maternal Diet: 

Boys (N=85) Pubic Hair  Genital Development  Testicular Volume (L)  Testicular Volume (R) 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 0.96  

(0.32, 2.91) 
0.92 

(0.65, 1.30) 
0.83 

(0.54, 1.26) 
1.22 

(0.92, 1.60) 
1.18 

(0.83, 1.67) 
1.24 

(0.85, 1.80) 
1.15 

(0.82, 1.61) 
1.19 

(0.84, 1.69) 
         

Girls (N=90) Pubic Hair Breast Development Menarche (Y/N) Menarche Age 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 1.16 

(0.50, 2.68) 
0.82  

(0.56, 1.22) 
1.58 

(0.91, 2.76)  
1.36 

(0.94, 1.97) 
0.48 

(0.21, 1.09) 
0.77 

(0.56, 1.07) 
0.58  

(0.33, 1.03) 
0.86  

(0.69, 1.08) 

Adolescent Diet:  

Boys (N=118) Pubic Hair  Genital Development  Testicular Volume (L)  Testicular Volume (R) 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 0.52  

(0.21, 1.31) 
0.89 

(0.65, 1.22) 
1.01 

(0.73, 1.38) 
0.80 

(0.62, 1.04) 
1.25 

(0.81, 1.93) 
1.26 

(0.80, 1.99) 
1.45 

(0.90, 2.33) 
1.41 

(0.87, 2.28) 
         

Girls (N=132) Pubic Hair Breast Development Menarche (Y/N) Menarche Age 
 Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  Hazard Ratio (CI)  
 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 
 Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted 
 1.24 

(0.75, 2.07) 
0.74  

(0.51, 1.10) 
1.00 

(0.66, 1.52)  
0.83 

(0.58, 1.20) 
1.05 

(0.72, 1.52) 
0.91 

(0.68, 1.21) 
1.02 

(0.74, 1.40) 
0.93  

(0.74, 1.17) 
1 Adjusted for age, BMI and SES status at visit 1 (early-teen).  

2 Bolded value indicates the association is significant with a P value < 0.1.  
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3 Model 1: β0 + β1*Epigenetic-Associated Diet Score + β2*Covariates  
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Table 3.6: Associations between predicted maternal and adolescent epigenetic-associated diet score and pubertal progression from visit 1 

(early-teen) to visit 2 (late-teen), in adjusted multivariate regression models1,2,3.  

Maternal Diet:      

Boys (N=85)  Pubic Hair Genital Development Testicular Volume (L) Testicular Volume (R) 
 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect  Score by Time  Main Effect  Score by Time Main Effect  Score by Time Main Effect  Score by Time 
 0.83 

(0.38, 1.79) 
0.98 

(0.74, 1.28) 
0.77 

(0.46, 1.28) 
1.17 

(0.91, 1.51) 
1.28 

(0.72, 2.27) 
0.90 

(0.67, 1.21) 
1.27 

(0.76, 2.14) 
0.99 

(0.74, 1.31) 
         
Girls (N=92) Pubic Hair Breast Development Menarche (Y/N)  

 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect Score by Time Main Effect Score by Time Main Effect Score by Time  
 0.64 

(0.32, 1.26) 
0.86 

(0.67, 1.10) 
1.08 

 (0.68, 1.71) 
0.92 

(0.77, 1.10) 
2.59 

(1.05, 6.35) 
1.19 

(0.87, 1.62) 

Adolescent Diet:  

Boys (N=118)  Pubic Hair Genital Development Testicular Volume (L) Testicular Volume (R) 
 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect  Score by Time  Main Effect  Score by Time Main Effect  Score by Time Main Effect  Score by Time 
 0.89 

(0.57, 1.39) 
0.93 

(0.79, 1.10) 
1.03 

(0.77, 1.38) 
0.87 

(0.75, 1.00) 
1.94 

(1.15, 3.27) 
0.74 

(0.61, 0.88) 
2.15 

(1.32, 3.51) 
0.73 

(0.61, 0.87) 
         
Girls (N=132) Pubic Hair Breast Development Menarche (Y/N)  

 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect Score by Time Main Effect Score by Time Main Effect Score by Time  
 1.28 

(0.88, 1.85) 
1.16 

(0.98, 1.36) 
0.97 

 (0.62, 1.51) 
0.98 

(0.83, 1.14) 
1.10 

(0.55, 2.17) 
0.88 

(0.69, 1.12) 
 

1 Adjusted for age, BMI and SES status at visit 1 (early-teen).  

2 Bolded value indicates the association is significant with a P value < 0.1.  

3 Model: logit (Y ij) = : logit (Yij) = β0 + β1* Agei + β2*Timej-i + β3* EADS + β4*EADS*Timej-i + β5*MR + β6*MR*Timej-i + β7*Agei*Timej-i + 

β8*covariates   
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Table 3.7: Associations between predicted maternal and adolescent epigenetic-associated diet score and pubertal progression from visit 1 

(early-teen) to visit 2 (late-teen), in adjusted multivariate regression models1,2,3.  

Maternal Diet:      

Boys (N=85)  Pubic Hair Genital Development Testicular Volume (L) Testicular Volume (R) 
 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect  Score by Time  Main Effect  Score by Time Main Effect  Score by Time Main Effect  Score by Time 
 0.82 

(0.38, 1.74) 
0.99 

(0.76, 1.30) 
0.77 

(0.47, 1.25) 
1.19 

(0.94, 1.51) 
1.24 

(0.72, 2.14) 
0.94 

(0.73, 1.22) 
1.19 

(0.73, 1.93) 
1.03 

(0.80, 1.33) 
         
Girls (N=92) Pubic Hair Breast Development Menarche (Y/N)  

 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect Score by Time Main Effect Score by Time Main Effect Score by Time  
 0.64 

(0.33, 1.24) 
0.85 

(0.67, 1.08) 
1.18 

 (0.74, 1.87) 
0.96 

(0.80, 1.15) 
2.19 

(0.89, 5.36) 
1.19 

(0.88, 1.63) 

Adolescent Diet:  

Boys (N=118)  Pubic Hair Genital Development Testicular Volume (L) Testicular Volume (R) 
 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect  Score by Time  Main Effect  Score by Time Main Effect  Score by Time Main Effect  Score by Time 
 0.84 

(0.55, 1.28) 
0.98 

(0.83, 1.16) 
1.07 

(0.80, 1.42) 
0.87 

(0.76, 1.00) 
1.71 

(1.07, 2.75) 
0.80 

(0.68, 0.95) 
1.94 

(1.15, 3.27) 
0.80 

(0.67, 0.95) 
        

Girls (N=132) Pubic Hair Breast Development Menarche (Y/N)  
 Odds Ratio (CI)  Odds Ratio (CI)  Odds Ratio (CI)  
 Main Effect Score by Time Main Effect Score by Time Main Effect Score by Time  
 1.28 

(0.89, 1.83) 
1.16 

(0.99, 1.35) 
1.01 

 (0.66, 1.57) 
1.01 

(0.86, 1.18) 
0.97 

(0.52, 1.81) 
0.85 

(0.68, 1.06) 
1 Adjusted for age, BMI and SES status at visit 1 (early-teen).  

2 Bolded value indicates the association is significant with a P value < 0.1.  

3 Model: logit (Y ij) = β0 + β1*baseline age + β2*time_difference + β3*EADS + β4*EADS *time_difference +β5*baseline age*time_difference 
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Table 3.8: Pyrosequencing assays with primer sequences and details of CpG sites assessed.  

 

* Loci are based off of genome build CRCh38/hg38.  
§ All reverse primers for pyrosequencing are 5’ biotinylated.  
$ A sequence in the promoter region of nearly all LINE-1s is amplified and sequenced here. The specific sequence is as follows 5’-

CTCGTGGTGCGCCGTTTCTTAAGCCG.  

    Primer Sequences  

Gene or 

Element 

Name 

# of 

CpG 

Sites 

Assessed 

Loci of 

CpG 

Sites* 

DNA 

Methylation 

Analysis 

Method 

Forward Reverse§ Sequencing Locus of 

Amplified 

Region 

LINE-1 4 Various$ Pyrosequencing TTGAGTTAGGTGTGGGATATAGTT CAAAAAATCAAAAAATTCCCTTTCC AGGTGTGGATATAGT Various 
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Figure 3.1: Timeline and selection of ELEMENT subjects for the study.  

                                                                                                                                                                                                                                                                                                                

 

 

 

    

 

 

 

 

                                             

Cohort 2: 1997-2000  

Prenatal recruitment 

N=686  

Observational study 

Cohort 3: 2001-2005 

Prenatal recruitment 

N=393  

Randomized trial 

Recruitment Mothers Offspring: Visit 1 Offspring: Visit 2 

Maternal diet:  
1997-2000 

 Food frequency and 

nutrients at 1st trimester 

N=188 children 

 

Maternal diet:  
2001-2005 

 Food frequency and 

nutrients at 1st trimester 

N=302 Mothers 

 

Covariates:  
 Household SES 

N=490 

 

Early-teen diet:  
2008-2012 

 Food frequency and 

nutrients questionnaire 

N=250 Adolescents 

 

Early-teen puberty status: 
2008-2012 

Male:  

N=118 Adolescents 

Female:  

N= 132 Adolescents 

 

Covariates:  
 Age, BMI 

N=250 

 

Late-teen puberty status: 
2013-2018 

Male:  

N=258 Adolescents 

Female:  

N= 279 Adolescents 

 

Maternal diet:  
Male:  

N=85 Subjects 

Female: 

N=92 Subjects 

Early-teen diet:  
Male:  

N=118 Subjects 

Female: 

N=132 Subjects 

Final Sample Size  
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Chapter 4 Accelerometer-measured Physical Activity is Associated with Reproductive 

Hormones and DNA Methylation in the ELEMENT Cohort 

 

INTRODUCTION 

       The health benefits of physical activity for school-aged children and adolescents are 

well documented (Janseen, 2007; Twisk, 2001; Tolfrey et al., 2000). Physical activity has 

beneficial effects on adiposity, musculoskeletal health and fitness, and several components of 

cardiovascular health, includinginflammatory markers, endothelial function, and heart rate 

variability (Janseen, 2007). Adolescents, however, experience unfavorable shifts in activity 

patterns from early to late adolescence, including decreases in moderate to vigorous physical 

activity, coupled with secular increases in leisure-time computer use (Nelson et al., 2006; Biddle 

et al., 2004). The Developmental Origins of Health and Disease (DOHaD) theory includes 

adolescence period as one of the specific sensitive windows of developmental plasticity (Heindel 

& Vandenberg, 2015). Adolescence is also a life stage of adjustments in healthy lifestyle 

behaviors that may persist into adulthood (Sata, 2019), highlighting the potential importance of 

behavioral interventions during this period.  

       Early or late age at pubertal maturation is an established risk factor for a number of 

reproductive tract cancers, insulin resistance, and higher adiposity in adulthood, as well as all-

cause mortality (Golub et al., 2007; Niculescu, 2008; Zhu & Chan, 2017; Jacobsen et al., 2007). 

The risk factors for earlier or later puberty, including chemical exposures, unbalanced diet, and 

abnormal hormone levels caused by diseases and psychological stress, have been widely studied 

(Cesario & Hughes, 2007; Jansen et al., 2016; Mills et al., 1986; Marceau et al., 2012). Studies 
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also have suggested an association between high intensity exercise and sexual maturation, 

documenting delayed pubertal growth among the elite male and female rhythmic gymnasts, 

wrestlers and dancers (Georgepoulos et al., 1999; Rogol et al., 2000). Few studies, however, 

have examined the association between the overall physical activity and sexual maturation in 

healthy, free-living adolescents. Methodologically, it can be difficult to monitor usual daily 

physical activities, which are defined as any bodily movement produced by skeletal muscles that 

result in energy expenditure (Caspersen et al., 1984). Yet, the period and intensity of the exercise 

that elite athletes perform are easier to track since given training schedules and competition 

records. In addition, physical activity questionnaires used in population-based research are 

subject to self-reported bias compared to accelerometry.  

       Some evidence supports an association between physical activity and reproductive 

hormone levels, which are known to advance sexual maturation. Schmitz et al. observed an 

inverse association between physical activity level and estradiol and testosterone concentrations 

among adult breast cancer survivors (Schmitz et al., 2007). No association was found between 

physical activity levels and luteinizing hormone, follicle-stimulating hormone or 

dehydroisoandrosterone (DHEA) sulfate (Schmitz et al., 2007). Another study found that total 

physical activity was negatively associated with concentrations of estrogen, estradiol and 

androstenedione in postmenopausal women (McTiernan et al., 2006). Our work in animal 

models also suggested that physical activity can elicit effects on estrogen receptor alpha (ESR1) 

DNA methylation in female mouse blood, suggesting that increase activity may partially 

abrogate the effects of high fat diet on the aging epigenome (Kochmanski et al., 2017).  

       To our knowledge, no previous study has examined potential mechanisms that may 

explain the effect of physical activity levels on sexual maturation and reproductive hormones, 
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and we hypothesize that epigenetic gene regulation may mediate this pathway. Previously, we 

showed an association between DNA methylation, a mitotically inherited epigenetic mark, and 

pubertal status in free-living adolescents (Wu et al., 2018). Other reports documented an 

association between DNA methylation and reproductive hormones. For example, Suzuki et al. 

observed a significant correlation between 0N promotor region of DNA hypermethylation and 

the loss of estrogen receptor genes ERβ1, ERβ2, and ERβ4 mRNA expression in human 

epithelial ovarian carcinoma (Suzuki et al., 2008). A cross-sectional study showed current and 

cumulative estrogen exposure was associated with positive repetitive element DNA methylation 

LINE-1 and Alu in a group of healthy postmenopausal women (Boyne et al., 2017). Based on 

available information on the associations of 1) physical activity and sexual maturation, as well as 

reproductive hormones, 2) physical activity and DNA methylation, and 3) DNA methylation and 

sexual maturation, as well as reproductive hormones, it is plausible that DNA methylation could 

be a potential mediator of the associations between physical activity and hormones or sexual 

maturation outcomes.  

       To address these research gaps, we utilized data from an ongoing cohort study in 

Mexico City to examine 1) the association of accelerometer-based physical activity on levels of 

reproductive hormones and sexual maturation status among free-living, healthy adolescents, and 

2) the associations of physical activity and DNA methylation of long interspersed nucleotide 

(LINE-1) repeats, and the genes H19, HSD11B2, and PPARA. 

METHODS 

3.1 Study Population  

     The study population comprised a subset of participants from the Early Life Exposure 

in Mexico to ENvironmental Toxicants (ELEMENT) project, a longitudinal epidemiological 
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study consisting of three sequentially enrolled birth cohorts. As originally designed, ELEMENT 

focused primarily on lead exposure and its impact on cognitive performance, and analysis of 

other metals, chemicals and epigenetics have been incorporated overtime (Cantoral et al., 2015; 

Watkins et al., 2017). Participants were recruited at three maternity hospitals representing low- to 

moderate-income populations (Mexican Social Security Institute, Manuel Gea Gonzalez 

Hospital, and the National Institute of Perinatology) in Mexico City from 1994 to 2005. Mothers 

provided written consent upon enrollment in the study, and children provided assent at peri-

adolescent study visits. The research protocol was approved by the Human Subjects Committee 

of the National Institute of Public Health of Mexico, participant hospitals, and the Internal 

Review Board at all participating institutions including the University of Michigan. The subjects 

in this project were a subset of mother-child pairs from the second and third birth cohorts (n=646 

pairs at baseline). At the first study visit after the child was born, mothers provided household 

and demographic information, including age, education, and previous numbers of pregnancies. 

Their offspring were followed from birth until 4 years of age. Starting in 2015, we re-contacted a 

subset of the offspring for a teenage visit (n=549). Accelerometer-based physical activity levels, 

fasting blood, pubertal status, and anthropometry were collected at this visit.  

3.2 Measurements and Outcomes 

Physical Activity Levels 

       Participants wore the ActiGraph GT3X+ accelerometer on the non-dominant wrist 

fastened with a wrist strap throughout the 7-day duration of study. They were asked to wear the 

accelerometer each day for 24 hours; since accelerometer would have to be cut off by trained 

staff at the end of the study, intermittent removal of the device was unlikely.  
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       Data were imported in ActiLife (ActiGraph LLC. 2009, Version 6.13.3) and the 

duration of the physical activity was estimated with the use of a fused lasso-based calculator 

package developed in R. Participants with at least four days of accelerometer data, including at 

least one weekend day, were retained for further analysis. Days with fewer than 10 hours of 

accelerometer activity data were removed. To estimate the duration of physical activity in 

different intensity categories, sleep time estimated from the participant’s activity log was first 

removed. We then used Chandler Vector Magnitude cutoffs (Chandler et al., 2016) to categorize 

awake time for each day into sedentary behavior, light, moderate and vigorous activity levels. 

Minutes per day for each individual participant were summed as minutes of that week spent 

across different physical activity intensity categories. The weekly value was then divided by the 

number of valid days the individual wore ActiGraph, to yield as average minutes spent at that 

type of physical activity intensity per day.  

Reproductive Hormones 

       Testosterone, cortisol, progesterone and androstenedione serum concentrations were 

measured using LC-MS/MS. Detailed materials and methods information has been previously 

reported (Rege et al., 2018).  

DNA Methylation 

     Blood samples were obtained among 369 adolescents (boys: 174; girls: 195) at the 

teenage visit and collected in tubes with EDTA-preservative (BD Vacutainer) by trained staff 

following standard protocols. High-molecular-weight DNA was extracted from blood leukocytes 

with the Flexigene kit (Qiagen). DNA samples were treated with sodium bisulfite using kits from 

Zymo Research (Irvine, CA) (Li & Tollefsbol, 2011). Percent of methylated cells was then 

quantitatively analyzed in a differentially methylated region (DMR) of the imprinted gene, H19; 
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in the promoter of PPARA; the promoter region of HSD11B2; and a conserved sequence found in 

LINE-1 repetitive elements of all subfamilies (sequence: 

5’- CTCGTGGTGCGCCGTTTCTTAAGCCG).  DNA methylation was quantified via 

pyrosequencing at 2 (PPARA), 4 (H19 & LINE-1), or 5 (HSD11B2) CpG sites (Supplemental 

Table 1). For all regions, the target sequence was amplified with HotStarTaq Master Mix 

(Qiagen) from approximately 50 ng bisulfite-converted DNA. Positive controls of known 

methylation status (0%, 25%, 50%, 75%, and 100%) and negative controls were included in all 

PCR plates (batches). Samples were randomized across batches. The percentage of methylated 

cells was quantified by a PyroMark ID Pyrosequencer (Qiagen) (Montrose et al., 2018). Pyro Q-

CpG Software computes percent methylation and performs internal quality control checks (e.g., 

completed bisulfite conversion, signal vs. background). A random subset of samples (>10% of 

samples and all controls) were run in duplicate, and in this case duplicate reads were averaged.     

Pubertal Outcomes  

       Tanner stages of breast and pubic hair growth in girls as well as Tanner stages of 

genitalia and pubic hair growth in boys were examined and collected by trained physicians using 

standard methods (Chavarro et al., 2017; Marshall & Tanner, 1970). Stages were recorded with a 

range from stage 1 indicating pre-puberty to stage 5 indicating full maturation (Marshall & 

Tanner, 1970). Physicians used orchidometers (range from 1 to 25 ml) to measure testicular 

volumes in boys.  

Covariates 

       Based on a priori knowledge and preliminary correlation tests between predictors 

and potential confounders, household socioeconomic status (SES), and BMI and age of the 

participant all obtained at the teenage visit were included in the final simple linear regression and 
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linear logistic regression models. Household SES was collected using a validated questionnaire 

consisting of thirteen questions on housing quality, services, material goods and education of the 

head of household by AMAI (Asociación Mexicana de Agencias de Investigación de Mercados y 

Opinión Pública, version 13x6). This scale classifies households into six SES categories (A/B, 

C+, C, D+, D, E; with A/B being the highest category), and was validated using the results of 

National Survey of Household Income and Expenditure 2005, Mexico (ENIGH, Encuesta 

Nacional de Ingresos y Gastos de los Hogares 2004) (Jansen et al., 2017). Weight and height of 

the child were measured by trained nurses, following standardized protocols we have previously 

described [34]; BMI was calculated as weight divided by height squared (kg/m2) (Nuttall, 2015).  

3.3 Statistical Methods 

       We examined the distribution of Tanner stages, physical activity levels, reproductive 

hormone levels and demographic information among individuals who did not have DNA 

methylation data collected and among those who had DNA methylation collected.  

       We used the isotemporal substitution method to estimate the effect of replacing 30 

minutes of sedentary behavior with light, moderate or vigorous intensity physical activity for the 

same amount of time (Melary et al., 2009). In analyses including DNA methylation data, we 

averaged values for all CpG sites within a region (LINE-1, H19, and HSD11B2) due to the 

similarity across sites. For PPARA, we ran separate models for the two CpG sites. The 

association between physical activity and reproductive hormones as well as the association 

between physical activity and DNA methylation were examined in simple linear regression 

models. The association between physical activity and Tanner stages were examined in ordinal 

logistic regression models. We included household SES, participant’s BMI and age as 
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confounders in adjusted models. The analysis was performed using SAS version 9.4 (SAS 

Institute, Cary, NC).  

RESULTS 

       The analytical sample included 248 boys and 271 girls who attended the late teen 

visit, of whom 174 boys and 195 girls had their blood leukocyte DNA methylation quantified. 

The mean age was 14.5 years for both boys (SD: 2.05 years) and girls (SD: 2.14 years) at the 

visit. We did not observe significant differences in physical activity, Tanner stage distributions, 

or reproductive hormone levels between the full analytical sample and sub-sample (Table 1). 

According to unpaired t-test results, there were significant sex differences for LINE-1 and H19 

DNA methylation levels (Table 2).  

       The substitution models showed that substituting 30 minutes sedentary behavior for 

30 minutes moderate physical activity per day was associated with lower testosterone levels in 

boys, while holding other activity types constant (Unadjusted: -30.62 ng/dL (-46.50 ng/dL, -

14.74 ng/dL); Adjusted: -22.06 ng/dL (-36.99 ng/dL, -7.14 ng/dL)). Among girls, a 30-minutes 

increase in sedentary behavior was associated with higher progesterone concentrations 

(Unadjusted:  7.35 ng/dL (2.25 ng/dL, 12.46 ng/dL); Adjusted 6.58 ng/dL (1.13 ng/dL, 12.03 

ng/dL)) (Table 3). 

       In terms of the associations between physical activity and DNA methylation, our 

results suggested that substituting 30 minutes sedentary behavior for 30 minutes vigorous 

physical activity per day was associated with higher percent of HSD11B2 methylation in boys, 

holding other activity type constant (Adjusted: 2.47 (0.05, 4.90)). However, among girls, a 30-

minutes increase in sedentary behavior was associated with lower percent of HSD11B2 

methylation (Adjusted: -0.27 (-0.54, -0.01)) (Table 4).  
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       After adjusting for household SES, participant’s BMI and age, no statistically 

significant associations were observed between different intensities of physical activity and 

Tanner stages in the substitution models (Table 5).  

DISCUSSION 

       In this cross-sectional analysis of a Mexico City cohort, we observed associations 

between physical activity levels and reproductive hormones, but not with Tanner stages of sexual 

maturation. We found a statistically significant, inverse association between moderate physical 

activity and testosterone in boys, and there was a statistically significant positive association 

between sedentary behavior and progesterone concentrations in girls. Increased minutes spent in 

vigorous physical activity was associated with higher percent DNA methylation of HSD11B2 in 

boys, while increased minutes spent in sedentary behavior was associated with lower percent 

DNA methylation of HSD11B2 in girls. In preliminary analyses, we found no evidence for DNA 

methylation as a mediator of the associations between physical activity and reproductive 

hormones or sexual maturation in our study.   

       Previous studies have offered potential explanations of the effect of physical activity 

on reproductive hormones by elucidating the synergy between physical activity and adiposity in 

their association with reproductive hormones (McTiernan et al., 2006). Among postmenopausal 

women, subjects who were the heaviest and the most sedentary had the lowest levels of sex 

hormone-biding globulin (SHGB), while subjects who had the lowest BMI and highest physical 

activity had the highest levels of SHGB. In addition, there was an inverse correlation between 

progesterone concentration and SHBG (Dalton, 1984). Our results, similarly, suggested that 

grater duration of sedentary behavior were associated with higher progesterone and lower levels 

SHBG. Healthy male participants are usually underrepresented in studies of health behaviors and 



    

 91 

reproductive hormones. We, however, found some evidence to support the inverse association 

between physical activity and testosterone levels among boys from our cohort. Physical activity 

might lower testosterone levels by decreasing adiposity, or possibly by increasing SHBG levels 

(and decreasing the bioavailability of testosterone) given decreased blood insulin levels (Kaaks, 

1996; Kaaks, 2010; Pugeat et al., 1991; Lynch et al., 2011).  

       Sexual maturation is advanced by changes in levels of the reproductive hormones 

(Sisk & Zehr, 2005; Forbes & Dahl, 2010). Based on the significant results between physical 

activity and reproductive hormones, it is plausible to deduce that physical activity may have an 

impact on sexual maturation. However, despite the biological plausibility, we did not observe 

any evidence supporting an association between physical activity and Tanner stages, after 

adjusting for household SES, age and BMI. Other than the limitation of being a cross-sectional 

study, two possible explanations are 1) Tanner stages in this study was collected at the teenage 

visit, at which most participants had reached advanced stages in pubertal development; and 2) 

Moderate physical activity daily might be associated with subclinical physiological changes, e.g. 

reproductive hormone and DNA methylation modifications, but it might not be intense enough to 

induce actual changes in Tanner stages. Future research should incorporate a longitudinal study 

design and larger sample size with more frequent measures to closely monitor physiological 

changes of sexual maturation stages.  

       Previous studies have examined the association between daily physical activity and 

DNA methylation levels among various population groups (van Roekel et al., 2018; King-

Himmelreich et al., 2016; Barrès R et al., 2012), but not in healthy, free-living adolescents 

specifically. Barrès et al. observed that genomic DNA methylation quantified by LUminometric 

Methylation Assay (LUMA) decreased in skeletal muscle biopsies obtained from 14 healthy 
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sedentary men and women after acute exercise. They also found that exercise could induce a 

dose-dependent expression of peroxisome proliferator-activated receptor-gamma coactivator 1-

alpha (PGC-1α), pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-

activated receptor delta (PPAR-σ) (Barrès R et al., 2012). Another study among 106 patients 

examined physical activity and DNA methylation at 6 tumor-related genes, including homeobox 

transcription factor (CDX2), bone morphogenetic protein 2 (BMP-2), p16 (INK4A), calcium 

channel-related (CACNA2D3), GATA-5 transcription factor and estrogen receptor (ER) among 

gastric cancer patients. These authors found that more physical activity was correlated with a 

lower methylation frequency of CACNA2D3 (Yuasa et al., 2009). Zhang et al. showed that 

among 161 cancer-free participants aged 45-75 years, individuals with physical activity 26-30 

min/day had a significantly higher levels of LINE-1 DNA methylation from peripheral blood 

compared to those with physical activity ≤ 10 min/day. However, the association was attenuated 

and became statistically insignificant after adjusting for age, gender, race/ethnicity, education, 

body composition, cigarette smoking, alcohol drinking and dietary folate intake (Zhang et al., 

2011). Similarly, we did not observe any effect of physical activity on LINE-1 DNA methylation 

in our healthy adolescent cohort after adjustment. Our results did suggest a statistically 

significant association between vigorous physical activity and HSD11B2 DNA methylation 

levels, adjusted for confounders. The results are biologically coherent since HSD11B genes 

regulate many metabolic processes, assist in regenerating active glucocorticoids from circulating 

inert 11-keto forms in specific tissues and catalyze the interconversion of cortisol and 

corticosterone (Kotelevtsev et al., 1997). Given that intense exercise tends to increase stress- and 

immunity-related outcomes (Cieslak et al., 2003), we hypothesize that HSD11B2 DNA 
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methylation might be also involved in stress or insulin metabolism pathways. However, future 

longitudinal studies are needed to validate the hypothesis.  

       This analysis has some limitations. First, as a cross-sectional study, predictors and 

outcomes of interest were simultaneously collected and assessed, thus we cannot assess 

temporality of the associations. Secondly, when measuring energy expenditure, the hip or waist 

is the most common site to wear an accelerometer (Murphy, 2009). Since accelerometers record 

acceleration in different axes or planes of movement, a monitor worn on the wrist could 

introduce “noise” into collected data, for example, moving hands when speaking, whereas a 

waist device is less sensitive to such movement. Thirdly, since the epigenetic programming 

varies by genomic loci and by cell and tissue type, we need to consider the limitation of 

quantifying DNA methylation in blood leukocytes as the sole indicator, though blood is a 

biologically available surrogate tissue. If possible, future studies should consider including other 

bio-indicators that may be able to capture minor changes, for instance, liver or muscle tissue, to 

further examine the mechanisms. Fourthly, we cannot exclude the possibility that BMI (or 

adiposity) is a mediator, instead of a confounder in the associations between physical activity 

and hormones or sexual maturation status.  

       We believe that this is the first study that shows the associations between 

accelerometer-measured daily physical activity and reproductive hormones, as well as its 

association with pubertal development among healthy, free-living adolescents. We also 

examined whether the physiological molecular marker, DNA methylation, was associated with 

physical activity. Our findings suggested that moderate and vigorous physical activity are 

associated with reproductive hormones and DNA methylation levels. Future studies should 
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consider examination of these questions using a longitudinal study design with repeated 

measures at multiple time points.       
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Table 4.1: Distributions of Tanner stages and other covariates among ELEMENT children at the teenage visit, without and with DNA methylation 

data.  

Boys:  Sample without DNA 
Methylation Collected 

Sample with DNA 
Methylation Collected 

Pubic Hair: Tanner Stage  N= 248 % N =174 % 
1 45  18.15 37 21.26 
2 32 12.90 25 14.37 
3 59 23.79 43 24.71 
4 52 20.97 36 20.69 
5 48  19.35 26 14.94 

Missing 12 4.84 7 4.02 
     
Genital Development: Tanner Stage      

1 12 4.84 9 5.17 
2 32  12.90 25 14.37 
3 44  17.74 32 18.39 
4 97 39.11 70 40.23 
5 51 20.56 31 17.82 

Missing  12 4.84 7 4.02 
     
Testicular Development (L)      

1-3 ml 0  0 0 0 
3-11 ml 23 9.27 19 10.92 
>11 ml 213 85.89 148 85.06 
Missing  12 4.84 7 4.02 

     
Testicular Development (R)     

1-3 ml 1 0.40 1 0.57 
3-11 ml 24 9.68 19 10.92 
>11 ml 210 84.68 147 84.48 
Missing  13 5.24 7 4.02 

     
Accelerometer-based Physical Activity Levels (min/day) N=248 N=174 
Sedentary (< 1.1 METs) 1 596.68 ± 76.98 594.13 ± 74.57 
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Light (1.1 - 3.0 METs) 252.56 ± 47.11 252.81 ± 46.89 
Moderate (< 3.0 - 6.0 METs) 71.44 ± 26.24 73.03 ± 26.94 
Vigorous (> 6.0 METs) 5.19 ± 5.49 5.74 ± 5.81 
     
Age (years)  14.51 ± 2.05 14.22 ± 1.99 
   
BMI 21.17 ± 3.89 20.95 ± 3.88 
   
Household SES: Quartile    

1 58 23.39 
2 56 22.58 
3 70 28.23 
4 62 25.00 

Missing  2 0.81 
   

Reproductive Hormone Levels (ng/dl)  N=186 N=158 
Testosterone  2789.46 ± 1961.95 2783.79 ± 2004.60 
Cortisol  97124.73 ± 46750.60 98549.07 ± 46334.16 
Progesterone 171.77 ± 1249.76 190.16 ± 1355.60 
Androstenedione 561.66 ± 290.93 574.58 ± 300.26 

Girls:  Sample without DNA 
Methylation Collected 

Sample with DNA 
Methylation Collected  

Pubic Hair: Tanner Stage  N=271 % N=195 % 
1 18 6.64 15 7.69 
2 62 22.88 56 28.72 
3 61 22.51 43 22.05 
4 69 25.46 50 25.64 
5 53  19.56 26 13.33 

Missing  8 2.95 5 2.56 
     
Breast Development: Tanner Stage     

1 11 4.06 9 4.62 
2 26 9.59 23 11.79 
3 66 24.35 57 29.23 
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4 97 35.79 64 32.82 
5 63  23.25 37 18.97 

Missing  8 2.95 5 2.56 
     
Menarche     

Yes 227 83.76 157 80.51 
No 41 15.13 36 18.46 

Missing  3 1.11 2 1.03 
     

Accelerometer-based Physical Activity Levels (min/day) N= 271 N=195 
Sedentary (< 1.1 METs)  582.17 ± 73.96 576.82 ± 70.78 
Light (1.1 – 3.0 METs)  255.80 ± 39.60 258.51 ± 39.42 
Moderate (< 3.0 – 6.0 METs)  77.85 ± 25.00 79.32 ± 25.47 
Vigorous (> 6.0 METs)  2.56 ± 3.02 2.78 ± 3.12 
   
Age (years) 14.47 ± 2.14 13.95 ± 2.04 
   
BMI  22.07 ± 4.39 21.82 ± 4.30 
   
Household SES: Quartile    

1 78 28.78 
2 69 25.46 
3 59 21.77 
4 64 23.62 

Missing 1 0.37 
   
Reproductive Hormone Levels (ng/dl)  N= 193 N= 173 
Testosterone  425.77 ± 877.99 438.87 ± 917.32 

Cortisol  95677.62 ± 57032.18 93700.95 ± 54898.50 

Progesterone 794.21 ± 1886.37 803.62 ± 1960.11 

Androstenedione 900.01 ± 447.08 889.68 ± 436.13 

 

1 METs are metabolic equivalent. One MET is defined as the energy it takes to sit quietly.
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Table 4.2: Percent DNA methylation at LINE-1, as well as H19, HSD11B2 and PPARA among all individuals and stratified by sex1.   

  Entire Cohort   Boys  Girls P value2 

 N  Mean % methylation 
(SD) 

N  Mean % methylation  
(SD) 

N Mean % methylation  
(SD) 

 

LINE-1 methylation         
Site 1 330 72.83 (6.19) 166 73.47 (6.15) 164 72.17 (6.19) 0.051 
Site 2 329 75.09 (3.73) 166 75.69 (3.37) 163 74.49 (3.99) 0.003 
Site 3 329 71.24 (5.95) 166 71.87 (5.26) 163 70.61 (6.54) 0.050 
Site 4 322 81.56 (4.39) 162 81.85 (4.32) 160 81.27 (4.45) 0.220 
Average value across 4 sites  319 75.17 (4.41) 161 75.71 (4.17) 159 74.62 (4.59) 0.029 
        
H19 methylation         
Site 1 346 50.10 (4.51) 167 50.79 (4.89) 179 49.45 (4.04) 0.004 
Site 2 344 48.87 (3.47) 167 49.09 (3.82) 177 48.65 (3.10) 0.276 
Site 3 345 47.90 (3.92) 167 48.19 (4.17) 178 47.62 (3.66) 0.137 
Site 4 343 50.05 (3.27) 166 50.36 (3.67) 177 49.76 (2.82) 0.099 
Average value across 4 sites  341 49.24 (3.17) 165 49.64 (3.46) 176  48.87 (2.84)  0.025 
        
HSD11B2 methylation         
Site 1  291 3.58 (4.98) 141 3.67 (5.06) 150 3.50 (4.92) 0.778 
Site 2  290 1.34 (2.70) 140 1.44 (2.77) 150 1.25 (2.65) 0.548 
Site 3  285 2.21 (4.40) 138 2.45 (4.71) 147 1.99 (4.10) 0.376 
Site 4  282 0.69 (1.53) 137 0.80 (1.51) 145 0.59 (1.56) 0.264 
Site 5   274 3.02 (4.06) 132 2.86 (2.82) 142 3.16 (4.94) 0.545 
Average value across at least 
4 sites 

251 1.95 (2.25) 129 2.04 (2.03) 145  1.87 (2.44) 0.540 

        
PPAR-alpha methylation         
Site 1  362 3.92 (1.80) 173 4.04 (1.74) 189 3.81 (1.85) 0.228 
Site 2  355 17.64 (2.61) 169 17.47 (2.38) 186 17.79 (2.81) 0.246 
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Table 4.3: Isotemporal substitution of sedentary activities, per 30-minute/day increase, and selected reproductive hormones among Mexican 

boys and girls 1,2. 

Boys (N=180)  Testosterone (ng/dl) Cortisol (ng/dl) 

 Unadjusted Adjusted  Unadjusted Adjusted 

Light PA 0.38 5.21 -23.32  21.50  
 (-8.45, 7.69) (-2.48, 12.90) (-231.87, 185.23) (-199.20, 242.21) 

Moderate PA -30.62  -22.06  94.62  187.08  
 (-46.50, -14.74) (-36.99, -7.14) (-315.96, 505.19) (-241.32, 615.48) 

Vigorous PA 21.56  18.85  -829.38  -661.76  
 (-36.06, 79.18) (-34.36, 72.06) (-2318.92, 660.15 (-2189.18, 865.66) 

Total PA 2.02  0.14  -13.80  -42.54  
 (-3.69, 7.72) (-5.09, 5.37) (-161.41, 133.80) (-192.78, 107.69) 

BMI  -80.72   368.30  
  (-145.69, -15.76)  (-1496.38, 2232.99) 

SES  -25.53   -119.22  
  (-232.45, 181.39  (-6058.65, 5820.21) 

Age  484.61   6393.84  
  (339.78, 629.44)  (2236.60, 10551.07) 

 Progesterone (ng/dl) Androstenedione (ng/dl) 

 Unadjusted Adjusted Unadjusted Adjusted 

Light PA -1.36  -2.03  -0.69  0.05  
 (-6.95, 4.22) (-8.14, 4.09) (-1.96, 0.58) (-1.08, 1.18) 

 Moderate PA 2.38  1.66  -1.13  0.69  
 (-8.62, 13.38) (-10.21, 13.53) (-3.63, 1.37) (-1.49, 2.87) 

Vigorous PA -1.26  -3.16  -2.73  -0.63  
 (-41.17, 38.65) (-45.48, 39.16) (-11.87, 6.40) (-8.44, 7.19) 

Total PA -0.50  -0.11  0.53  0.23  
 (-4.46, 3.45) (-4.27, 4.06) (-0.37, 1.43) (-0.53, 0.99) 

BMI  -7.74   -1.06  
  (-59.40, 43.93)  (-10.54, 8.41) 

SES  -33.51   -14.37  
  (-198.07, 131.05)  (-44.65, 15.91) 

Age  -56.74   92.65  
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  (-171.93, 58.44)  (71.50, 113.80) 



 

 

 106 

Table 4.3 (Continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Girls (N=187)  Testosterone (ng/dl)    Cortisol (ng/dl) 

 Unadjusted Adjusted  Unadjusted Adjusted 

Light PA -1.21  -1.05  -159.40  -35.04  
 (-5.52, 3.10) (-5.42, 3.32) (-436.69, 117.89) (-317.72, 247.64) 

Moderate PA -0.02  -1.05  395.29  316.49  
 (-7.07, 7.03) (-7.90, 5.79) (-45.72, 836.30) (-114.31, 747.30) 

Vigorous PA -2.46  20.22  -1330.97  484.80  
 (-52.01, 47.08) (-29.25, 69.70) (-4471.65, 1809.70 (-2668.03, 3637.63) 

Total PA -1.87  -2.14  105.55  81.48  
 (-4.32, 0.59) (-4.64, 0.35) (-50.72, 261.83) (-77.42, 240.37) 

BMI  12.15   202.00  
  (-18.01, 42.30)  (-1720.93, 2124.92) 

SES  -63.99   -468.93  
  (-166.10, 38.12)  (-6924.85, 5986.99) 

Age  60.04   7322.74  
  (-13.09, 133.17)  (2755.29, 11890.18) 

 Progesterone (ng/dl) Androstenedione (ng/dl) 

 Unadjusted Adjusted Unadjusted Adjusted 

Light PA -6.94  -3.03  -0.72  0.45  
 (-15.99, 2.12) (-12.72, 6.66) (-2.91, 1.46) (-1.78, 2.68) 

 Moderate PA 4.74  0.92  1.34  0.17  
 (-9.67, 19.14) (-13.85, 15.68) (-2.14, 4.81) (-3.23, 3.57) 

Vigorous PA -23.07  11.23  -3.96  12.61  
 (-125.65, 79.50) (-96.84, 119.30) (-28.72, 20.80) (-12.28, 37.50) 

Total PA 7.35  6.58  0.87  0.47  
 (2.25, 12.46) (1.13, 12.03) (-0.36, 2.11) (-0.78, 1.73) 

BMI  -3.71   4.10  
  (-69.62, 62.20)  (-11.08, 19.28) 

SES  114.36   -4.67  
  (-106.92, 335.65)  (-55.64, 46.29) 

Age  171.41   77.08  
  (14.86, 327.97)  (41.03, 113.14) 
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1 Bolded value indicates the association is significant with a P value < 0.05. 

2 All models were adjusted for late-teen age, BMI and household SES. 
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Table 4.4: Isotemporal substitution of activities, per 30-minute/day increase, and percent DNA methylation (%)1, 2,3. 

Boys:  LINE-1 (N=154) H19 (N=156) 

 Sedentary Light Moderate Vigorous Total Sedentary Light Moderate Vigorous Total  
 β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) 

 Dropped -0.19 
(-0.82, 0.44) 

0.73  
(-0.53, 1.99)  

-0.77  
(-5.28, 3.74)  

0.27  
(-0.22, 0.76) 

Dropped -0.27 
(-0.86, 0.31) 

0.37  
(-0.69, 1.44) 

-1.83  
(-5.74, 2.07) 

0.25  
(-0.15, 0.64) 

 HSD11B2 (N=129) PPAR-alpha Site 1 (N=160) 

 Sedentary Light Moderate Vigorous Total  Sedentary Light Moderate Vigorous Total 
 β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) 
 Dropped 0.12  

(-0.28, 0.52) 
-0.37 

(-1.07, 0.33) 
2.47 

(0.05, 4.90) 
0.25 

(-0.02, 0.52) 
Dropped 0.14  

(-0.13, 0.41) 
-0.48  

(-1.01, 0.04) 
1.68  

(-0.20, 3.56) 
0.03  

(-0.15, 0.22) 

 PPAR-alpha Site 2 (N=157)      

 Sedentary Light Moderate Vigorous Total      
 β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI)      
 Dropped 0.12  

(-0.26, 0.51) 
-0.17  

(-0.92, 0.57) 
1.21  

(-1.55, 3.96) 
0.01  

(-0.25, 0.27) 
     

Girls:  LINE-1 (N=159) H19 (N=174) 

 Sedentary Light Moderate Vigorous Total Sedentary Light Moderate Vigorous Total  
 β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) 

 Dropped -0.57 
(-1.39, 0.24) 

0.12  
(-1.19, 1.42)  

0.16 
(-9.15, 9.48)  

0.04  
(-0.41, 0.48) 

Dropped 0.07 
(-0.38, 0.52) 

0.18 
(-0.54, 0.91) 

-3.15  
(-8.40, 2.10) 

-0.20  
(-0.46, 0.07) 

 HSD11B2 (N=145) PPAR-alpha Site 1 (N=184) 

 Sedentary Light Moderate Vigorous Total  Sedentary Light Moderate Vigorous Total 
 β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI) 
 Dropped 0.25  

(-0.24, 0.75) 
-0.25 

(-1.00, 0.51) 
-1.24 

(-8.10, 5.62) 
-0.27 

(-0.54, -0.01) 
Dropped -0.04  

(-0.33, 0.25) 
0.10 

(-0.35, 0.55) 
0.43  

(-3.00, 3.86) 
-0.02  

(-0.18, 0.15) 

 PPAR-alpha Site 2 (N=181)  

 Sedentary Light Moderate Vigorous Total      
 β0 (95% CI) β1 (95% CI) β2 (95% CI) β3 (95% CI) β4 (95% CI)      
 Dropped -0.03  

(-0.46, 0.40) 
0.27  

(-0.39, 0.93) 
2.71  

(-2.34, 7.76) 
0.17  

(-0.08, 0.42) 
     

1 Bolded value indicates the association is significant with a P value < 0.05.  

2 All models were adjusted for late-teen age, BMI, and household SES.  

3Sedentary physical activities were dropped because they were used as the reference group in all models.  
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Table 4.5: Isotemporal substitution of sedentary activities, per 30-minute/day increase, and odds of pubertal maturation stages1. 

 

 

 

 

 

 

 

 

 

Boys (N=224)  Pubic Hair  Genital Development  

 Odds Ratio (CI)  Odds Ratio (CI)  

 Unadjusted Adjusted  Unadjusted Adjusted 
Light PA 0.79 (0.59, 1.07) 0.82 (0.57, 1.17) 0.75 (0.55, 1.01) 0.90 (0.63, 1.28) 

Moderate PA 0.47 (0.26, 0.86) 0.65 (0.33, 1.27) 0.58 (0.32, 1.06) 0.82 (0.42, 1.59) 
Vigorous PA 0.76 (0.08, 7.63) 1.06 (0.10, 10.90) 0.94 (0.11, 8.44) 0.69 (0.07, 6.85) 

Total PA 1.29 (1.01, 1.65) 1.08 (0.83, 1.40) 1.17 (0.92, 1.48) 0.93 (0.71, 1.21) 
BMI  1.09 (0.98, 1.21)  0.99 (0.89, 1.10) 
SES  1.10 (0.80, 1.52)  1.40 (1.00, 1.96) 
Age  3.27 (2.43, 4.14)  2.50 (1.88, 3.32) 

 Testicular Volume (L) Testicular Volume (R) 
 Unadjusted Adjusted Unadjusted Adjusted 

Light PA 0.82 (0.56, 1.19) 0.93 (0.58, 1.49) 0.82 (0.56, 1.20) 0.95 (0.59, 1.52) 
 Moderate PA 0.65 (0.32, 1.28) 0.89 (0.38, 2.07) 0.53 (0.26, 1.05) 0.70 (0.31, 1.61) 
Vigorous PA 0.38 (0.03, 5.27) 0.38 (0.01, 9.69) 0.66 (0.05, 9.18) 0.67 (0.03, 17.33) 

Total PA 1.30 (0.97, 1.73) 1.07 (0.76, 1.49) 1.15 (0.87, 1.52) 0.92 (0.65, 1.30) 
BMI  1.08 (0.94, 1.24)  1.07 (0.93, 1.22) 
SES  1.14 (0.74, 1.76)  1.14 (0.74, 1.76) 
Age  1.91 (1.40, 2.61)  1.96 (1.43, 2.69) 
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1 Bolded value indicates the association is significant with a P value < 0.05. 

2 All models were adjusted for late-teen age, BMI, and household SES. 

 

  

Girls (N=271)  Pubic Hair Breast Development 

 Odds Ratio (CI)  Odds Ratio (CI)  

 Unadjusted Adjusted Unadjusted Adjusted 
Light PA 0.65 (0.46, 0.91) 1.15 (0.79, 1.68) 0.63 (0.45, 0.90) 1.16 (0.78, 1.72) 

Moderate PA 1.77 (1.03, 3.04) 0.91 (0.51, 1.62) 1.78 (1.04, 3.06) 0.98 (0.54, 1.76) 
Vigorous PA 0.00 (0.00, 0.02) 0.11 (0.00, 15.29) 0.00 (0.00, 0.01) 0.03 (0.00, 3.54) 

Total PA 1.34 (1.12, 1.60) 1.09 (0.90, 1.34) 1.33 (1.11, 1.60) 1.09 (0.89, 1.34) 
BMI  1.05 (0.96, 1.14)  1.07 (0.98, 1.17) 
SES  1.16 (0.89, 1.50)   1.24 (0.95, 1.63) 
Age  2.57 (1.99, 3.32)   2.82 (2.11, 3.77) 
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Table 4.6: Primer sequences for pyrosequencing assays and genomic location of CpG sites assessed.  

 

Gene or 

Element 

Name

# of CpG 

Sites 

Assessed

Loci of CpG Sites‡
DNA Methylation 

Analysis Method
Forward Reverse† Sequencing Locus of Amplified Region

LINE-1 4 various* pyrosequencing TTGAGTTAGGTGTGGGATATAGTT CAAAAAATCAAAAAATTCCCTTTCC AGGTGTGGATATAGT various*

H19 4
chr11: 2003031, 2003029, 2003027, and 

2003024
pyrosequencing TTTGTTGATTTTATTAAGGGAG CTATAAATAAACCCCAACCAAAC GTGTGGAATTAGAAGT chr11: 2002966-2003111

PPARA 2 chr22: 46149160 and 46149179 pyrosequencing
GGAGGTTTTTATGAGGATGTAGTT 

ACACATATTAACCAACAATAACTA

TCAT GGATGTGGTTGTTTG
chr22: 46149046-46149244

HSD11B2 5
chr16: 67430541, 67430543, 67430562, 

67430564, and 67430580
pyrosequencing TTAAGTTTTGGAAGGAAAGGGAAAGA ACATCCCCATACCCTTTACTAATC AGTTTTTGTTTTAGGTAGG chr16: 67430512-67430745 

‡Loci are based off of genome build GRCh38/hg38

†All reverse primers for pyrosequencing are 5'biotinylated.

*A sequence in the promoter region of nearly all LINE-1s (located throughout the genome) is amplified and sequenced here. The specific sequence, with CpG sites in bold, is as follows: 5'-CTCGTGGTGCGCCGTTTCTTAAGCCG

Primer Sequences
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Chapter 5 Conclusion 

 

MAIN FINDINGS 

       This dissertation, to our knowledge, is the first population-based study demonstrating 

the associations of DNA methylation of repetitive element LINE-1, and candidate genes H19, 

HSD11B2, IGF2 and PPARA with pubertal onset and progression among healthy, free-living 

Mexican adolescents. Findings of this dissertation also suggest methyl donor nutrients may 

modify the associations between DNA methylation and pubertal status. In addition, results 

suggest that physical activities are related to DNA methylation and reproductive hormone 

regulation. In general, directions and strengths of all these associations are observed in a sex-

specific and timing-specific manner. 

 

Figure 5.1: Conceptual model.  
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       In the 2nd Chapter, we found evidence supporting the gene-specific, site-specific, 

and sex-specific associations of DNA methylation with pubertal timing and tempo. 

Longitudinally, among boys, a percent methylation increase of HSD11B2 site 4 was associated 

with increased odds of earlier pubarche. Percent methylation increase of IGF2 site 3 was 

associated with increased odds of later onset of genital development. In regard to pubertal tempo, 

increased methylation of HSD11B2 site 1 was associated with increased odds of faster genital 

development progression, while site 4 was associated with increased odds of slower progression 

of genital development. Increased methylation of IGF2 was associated with faster progression of 

genital development. Among girls, percent increase in methylation of H19 site 2 was 

longitudinally associated with increased odds in the later onset of breast development. DNA 

methylation was not related to pubertal tempo among girls.  

       Results from Chapter 2 overall indicated that DNA methylation, one of the 

mechanisms of epigenetic modifications, was associated with age of pubertal onset and the pace 

of pubertal progression. First and foremost, the growth-related, maternally imprinted gene IGF2 

was associated with onset and development of puberty in boys, while the paternally imprinted 

gene H19 was relevant to the onset of puberty in girls. Genomic imprinting is an epigenetic 

phenomenon in which only a single allele of a gene is expressed in a parent-of-origin 

development manner (Waterland and Jirtle, 2004). Most imprinted genes are found in clusters, 

and these imprinted domains are regulated in coordinate fashion via long-range mechanisms such 

as the antisense RNA interference and methylation-sensitive boundary elements (Waterland and 

Jirtle, 2004). For instance, H19 gene is located 100 kb downstream of IGF2 gene, and they 

shared the same regulatory elements (Waterland and Jirtle, 2004). The imposition of a functional 

haploid state at imprinted loci greatly increases their prominence in disease formation since a 
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single genetic mutation or lone epigenetic event can alter their function (Jirtle and Weidman, 

2007; Das et al., 2009). The conflict hypothesis states that imprinting is the unintended results of 

a reproductive battle between the sexes (Jirtle & Weidman, 2007). Specifically, this hypothesis 

predicts that genes are only active on paternal chromosomes will promote prenatal growth to 

maximize the evolutionary fitness of the offspring, while genes that are only active when 

inherited from the mother suppress offspring growth in order to maximize the mother’s 

reproductive success (Jirtle & Weidman, 2007). We still do not fully understand the mechanisms 

behind our sex-specific findings with imprinted genes, but they could be relevant to differences 

in methylation patterns (Gebert et al., 2009) or sensitivity toward reproductive hormone 

pathways (Berteaux et al., 2004) across sexes.  

      Given that elevated methylation of HSD11B2 was associated with earlier onset of 

pubertal timing, we speculated the gene affected the outcome via working through the 

metabolism and inflammation pathways (Staab & Maser, 2009). Published bservational studies 

to some extent agree with these results, showing that increased adiposity might result in the 

higher estrogen levels that were linked to early breast development and menarche (Laitinen et al., 

2001; Jasik & Lustig, 2008). We also found that increased methylation of IGF2 was associated 

with increased odds of later onset of genital development, and faster genital development 

progression. Our observation illustrated the possibility of “catch-up growth/compensatory gain” 

of sexual characteristics during adolescence. The theory has been well characterized for height 

velocity (Prader et al., 1963); our results suggested the same concept might apply in puberty 

transition.  

       In the 3rd Chapter, we presented maternal and adolescent epigenetic-associated 

dietary patterns among Mexico City birth cohort, and observed that epigenetic-associated food 
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groups were associated with pubertal onset and tempo in an exposure timing-specific, sex-

specific manner. Items that contributed to the maternal first trimester epigenetic-associated diet 

score (EADS) selected by LASSO included foods high in protein, fat and simple carbohydrate. 

High-protein and high-fat food items were negatively associated with LINE-1 methylation, and 

thus diets with a high frequency of these items resulted in lower maternal EADS. The findings 

make biological sense since food items high in fat and refined carbohydrates often lack methyl 

donor nutrients. Whole grains were positively associated with LINE-1 methylation levels, and 

thus diets rich in these foods had higher EADS. Compared to maternal EADS, adolescent EADS 

comprised fresh high-fiber vegetables and lean protein sources. Both positive and negative 

directions were observed between adolescent food items and LINE-1 methylation. Fresh 

vegetables, which are known with high content of methyl donor nutrients, were positively 

associated with LINE-1 methylation levels, while lean protein food items were negatively 

associated, and thus resulted in higher or lower adolescent EADS, respectively.  

       Maternal and adolescent EADS had different measures of associations with pubertal 

onset and progression. We recognized that there were statistically significant associations 

between maternal first trimester EADS, but not adolescent EADS, and pubertal onset in girls 

only. In terms of pubertal progression, we observed statistically significant associations with 

adolescent EADS, but not maternal first trimester EADS among boys only.  

       To our best knowledge, Chapter 3 is the first study that elaborated the associations of 

dietary patterns with a focus on methyl-donor nutrients in both pregnant women and healthy 

adolescents with adolescents’ pubertal outcomes. It also examined the association between the 

EADS scores of the dietary patterns and pubertal events. First, our results suggested a long-term 

effect of maternal first trimester diet and a short-term health impact of concurrent diet on 
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pubertal timing and tempo. According to DOHaD theory, exposures from early fetal life are able 

to influence the expression of genes, with effects on later health and disease (Suzuki, 2018). The 

“fetal origins hypothesis/thrifty phenotype hypothesis” also posits that poor prenatal nutrition in 

early life can increase the adverse effects of an affluent diet in adulthood, leading to an increased 

risk of various non-communicable diseases (Suzuki, 2018). Our results were consistent with this 

theory by showing increased maternal first trimester EADS was associated with higher odds of 

later menarche timing, which was biologically probable considering that higher levels of LINE-1 

methylation from white blood cells have been inversely related to body fat mass among health 

young individuals (Marques-Rocha et al., 2016). Secondly, we observed that different sex groups 

presented different associations with maternal first trimester and adolescent EADS. Specifically, 

maternal EADS had major influence on girls, while adolescent EADS, the concurrent diet, had 

predominant impact on boys. This finding might be related to the timing of sex dimorphism. 

Sexual differentiation begins early in the embryonic life and is reinforced and finished later in 

development (Berenbaum & Beltz, 2011). During early development the gonads of the fetus 

remain undifferentiated, meaning all fetal genitalia are the same and are phenotypically female 

(Wizemann & Pardue, 2001). The expression of a gene on the Y chromosome starts 6 to 7 weeks 

of gestation later and the production of testosterone does not begin until about 9 weeks of 

gestation (Wizemann & Pardue, 2001). We speculate that maternal EADS might be able to create 

biological environment for female reproductive organs while offspring is still in the womb. 

However, male reproductive organs may be more receptive of concurrent environmental 

exposures during the adolescent developmental phase.  

       In the 4th Chapter, we found evidence suggesting the effects of physical activity on 

hormone regulation in the cross-sectional analysis. Substituting 30 minutes sedentary behavior 
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for the same amount of moderate physical activity per day was associated with lower 

testosterone levels in boys, holding other activity types constant. Among girls, a 30-minute 

increase in sedentary behavior was associated with higher progesterone concentrations. 

However, no statistically significant associations were observed between intensities of physical 

activity and Tanner stages using substitution models, although biologically, reproductive 

hormones advance pubertal status. 

       In terms of the association between physical activity and DNA methylation, our 

results suggested that substituting 30 minutes sedentary behavior for 30 minutes in vigorous 

physical activity per day was associated with higher percent of HSD11B2 methylation in boys, 

while holding other activity types constant. However, among girls, a 30-minute increase in 

sedentary behavior was associated with lower percent of HSD11B2 methylation. Higher levels of 

physical activity have been associated with increased LINE-1 global DNA methylation in the 

peripheral blood among 647 non-Hispanic white woman with a family history of breast cancer 

(White et al., 2013). We did not, however, find any significant associations between physical 

activity intensities and LINE-1 DNA methylation. This inconsistency could be because LINE-1 

hypomethylation is found to play a potential role as a prognostic biomarker of cancer risks (Baba 

et al., 2018), while less variation of LINE-1 DNA methylation is observed among healthy 

adolescents (Phokaew et al., 2008; Zhang et al., 2011). In addition, we observed a positive 

association between daily vigorous physical activity and percent of HSD11B2 DNA methylation. 

This finding is biologically plausible because hypermethylated HSD11B2 is associated with 

decreased transcriptional activity (Alikhani-Koopaei et al., 2004), indicating less glucocorticoid 

cortisol will be catalyzed to the inactive metabolite cortisone. This is in line with the established 
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association that moderate to high intensity exercise provokes increased in circulating cortisol 

levels in human blood (Hill et al., 2008).  

       Although results needed to be interpreted carefully since Chapter 4 was a cross-

sectional analysis, findings can guide future research. Physical activity was associated with 

changes of reproductive hormone and DNA methylation levels, but not pubertal status. Other 

than limitations of sample size, we considered one of potential explanations that is daily physical 

activity might be able to induce subclinical physiological changes, but might not be consistent 

and intense enough to lead to actual changes in pubertal timing. Future research with more 

frequent physiological measures is needed to test this speculation. In addition, we have seen the 

association between adolescent physical activity and HSD11B2 DNA methylation, suggesting it 

would be fruitful to examine whether maternal physical activity would have similar effects on 

DNA methylation later in life. Showing the long-term effects of regular physical activity would 

further motivate behavioral interventions.  

STRENGTHS AND LIMITATIONS 

       Based on our conceptual model (Figure 1) and literature review, we have carefully 

chosen the timing of the variables, in order to examine the longitudinal effect of the exposures. 

Though the sample sizes are limited for this sex-specific analysis, we have cautiously selected 

confounders to account for potential external variables that might obscure the ‘real’ effect. 

However, there are some major limitations of this dissertation work that should be 

acknowledged. Common limitations across all three chapters centered on restrictions of our data 

collection methods. First, our sample comes from a mixed ancestry population but we did not 

genotype this population. It is possible that ancestry differences could influence the relationships 

we are observing between DNA methylation and pubertal timing. Second, while pubertal status 
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of pubic hair, breast, genital and testicular volume development was based on a highly trained 

physicians’ observation, age of menarche was self-reported and may be subject to recall bias. 

Third, since the epigenome and transcriptome vary by cell and tissue type, analyzing DNA 

methylation in blood leukocytes which consist of multiple cell types is a limitation. Recent 

studies, however, have identified concordant methylation alterations in blood and other 

physiologically related tissue (Masliah et al., 2013; Reinius et al., 2012), suggesting that blood 

might be a reliable surrogate for some epigenetic analysis. Last but not the least, we have 

included participant’s BMI in all adjusted models and observed that including BMI in models did 

not significantly attenuate the associations. Nevertheless, we cannot rule out the possibility that 

BMI was the mediator of the associations since some of association analyses are cross-sectional.   

       There also are some chapter distinct limitations. In Chapter 2, we used multiple 

regression imputation to increase the number of predictors. This method can underestimate 

standard error, which might result in inflated p-values (Soley-bori, 2013). In Chapter 3, though 

we have applied cross-validation to estimate prediction error when using LASSO selection, 

interpretations of the results may not be applicable in another cohort if those assumptions are not 

met. In Chapter 4, as a cross-sectional study, predictors and outcomes of interest were 

simultaneously collected and assessed, we cannot assess the temporality of the associations. 

Additionally, an accelerometer worn on the wrist could introduce more “noise” into collected 

date than a device worn on the waist.  

       The strengths of this dissertation deserve mention. This is the only population-based 

study that has conducted a full examination of global and gene-specific DNA methylation and 

pubertal status in both sexes. Since the differentiation of secondary sex characteristics might be 

related to different hormone or metabolism pathways, we analyzed the each association with 
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individual pubertal characteristic. Moreover, with Tanner stages gathered from two visits, we 

have examined not only the pubertal timing, but also the pubertal tempo, to understand the effect 

of DNA methylation on developmental trajectory better. In addition, we have used validated 

maternal and adolescent FFQs to assess participants’ dietary intake, and accelerometers to 

estimate their daily physical activity patterns. Variations and errors in data collection are not 

completely avoidable, but with the help of these tools, we expect information to be as reflective 

of their everyday life as possible.  

IMPLICATIONS, RECOMMENDATIONS AND SCOPE OF FUTURE RESEARCH  

       As suggested by limitations above, future research should consider improvements in 

some aspects of the study design and data collection methods. We have carefully considered the 

timing of exposure and made the effort to select the variables that make the most biological 

sense. However, limited by the timeframe of onsite visits, we have performed a few cross-

sectional analyses to examine the associations. Thus, future studies should consider revisiting 

these research questions using a longitudinal study design with repeated measures of multiple 

time points. For instance, in Chapter 4, we did not find any significant evidence supporting the 

association between physical activity levels and pubertal status. One of the possible explanations 

was because accelerometer-based daily physical activity was collected at late-teen visit, at which 

most participants had advanced pubertal stages. Additionally, we would highly recommend 

future research to include more candidate genes that targeted on pubertal development pathways. 

Candidate genes included in this dissertation are growth-related, but they are not directly linked 

to pubertal status. Therefore, we think it is worth identifying key genes regulating puberty and 

re-examining the associations. Last but not least, we used food frequency questionnaire (FFQ) to 

assess usual dietary intake of methyl donor nutrients from our Mexican City cohort. However, it 
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would be reassuring if we could collect blood or urine micronutrient biomarkers to validate the 

findings.  

CONCLUSIONS      

        This dissertation provides evidence supporting the association of DNA methylation 

with pubertal timing and tempo. It also finds that methyl donor rich diets affect epigenetics 

regulation, which in turn influence pubertal status. Furthermore, there is an association between 

physical activity and reproductive hormones, and DNA methylation levels. Findings indicate that 

epigenetic changes during developmentally plastic phases have the potential to reshape the 

timing of pubertal onset and trajectory of pubertal progression, which then might influence the 

aging process. It is gratifying to observe that diet and physical activity behaviors have the 

potential to regulate these processes.  

 



 

 

 122 

Bibliography 

 

Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigentic regulation of 11β-

hydroxysteroid dehydrogenase type 2 expression. J Clin Invest. 2004. doi:10.1172/JCI21647. 

 

Baba Y, Yagi T, Sawayama H, Hiyoshi Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, 

Baba H. Long interspersed element-1 methylation level as a prognostic biomarker in 

gastrointestinal cancers. In: Digestion. ; 2018. doi:10.1159/000484104. 

 

Berenbaum SA, Beltz AM. Sexual differentiation of human behavior: Effects of prenatal and 

pubertal organizational hormones. Front Neuroendocrinol. 2011. 

doi:10.1016/j.yfrne.2011.03.001. 

 

Berteaux N, Lottin S, Adriaenssens E, Van Coppennolle F, Leroy X, Coll J, Dugimont T, Curgy 

JJ. Hormonal regulation of H19 gene expression in prostate epithelial cells. J Endocrinol. 2004. 

doi:10.1677/joe.1.05696. 

 

Cutler RG, Mattson MP. The adversities of aging. Ageing Res Rev. 2006. 

doi:10.1016/j.arr.2006.05.002. 

 

Das R, Hampton DD, Jirtle RL. Imprinting evolution and human health. Mamm Genome. 2009. 

doi:10.1007/s00335-009-9229-y. 

 

Gebert C, Wrenzycki C, Herrmann D, Gröger D, Thiel J, Reinhardt R, Lehrach H, Hajkova P, 

Lucas-Hahn A, Carnwath JW, et al. DNA methylation in the IGF2 intragenic DMR is re-

established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics. 

2009. doi:10.1016/j.ygeno. 

 

Hill EE, Zacki E, Battaglini C, Viru M, Viru A, Hackney AC. Exercise and circulating cortisol 

levels: The intensity threshold effect. J Endocrinol Invest. 2008. doi:10.1007/BF03345606. 

 

Jasik CB, Lustig RH. Adolescent obesity and puberty: The “perfect storm.” In: Annals of the 

New York Academy of Sciences. ; 2008. doi:10.1196/annals.1429.009. 

 

Jirtle RL, Weidman JR. Imprinted and more equal. Am Sci. 2007. doi:10.1511/2007.64.143. 

 

Laitinen J, Power C, Järvelin MR. Family social class, maternal body mass index, childhood 

body mass index, and age at menarche as predictors of adult obesity. Am J Clin Nutr. 2001. doi: 

10.1093/ajcn/74.3.287. 

 

https://doi.org/10.1093/ajcn/74.3.287


 

 

 123 

Marques-Rocha JL, Milagro FI, Mansego ML, Zulet MA, Bressan J, Martínez JA. Expression of 

inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 

8 wk of following a Mediterranean diet-based weight loss program. Nutrition. 2016. 

doi:10.1016/j.nut. 

 

Masliah E, Dumaop W, Galasko D, Desplats P. Distinctive patterns of DNA methylation 

associated with Parkinson disease: identification of concordant epigenetic changes in brain and 

peripheral blood leukocytes. Epigenetics. 2013. doi:10.4161/epi.25865. 

 

Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S, Mutirangura A. LINE-1 methylation 

patterns of different loci in normal and cancerous cells. Nucleic Acids Res. 2008. 

doi:10.1093/nar/gkn571. 

 

Prader A, Tanner JM, von Harnack GA. Catch-up growth following illness or starvation. An 

example of developmental canalization in man. J Pediatr. 1963. doi:10.1016/S0022-

3476(63)80035-9. 

 

Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, Söderhäll C, Scheynius 

A, Kere J. Differential DNA methylation in purified human blood cells: Implications for cell 

lineage and studies on disease susceptibility. PLoS One. 2012. 

doi:10.1371/journal.pone.0041361. 

 

Soley-bori M. Dealing with missing data: Key assumptions and methods for applied analysis. 

PM931 Dir Study Heal Policy Manag. 2013. 

 

Staab CA, Maser E. 11β-Hydroxysteroid dehydrogenase type 1 is an important regulator at the 

interface of obesity and inflammation. J Steroid Biochem Mol Biol. 2010. 

doi:10.1016/j.jsbmb.2009.12.013. 

 

Suzuki K. The developing world of DOHaD. In: Journal of Developmental Origins of Health 

and Disease. ; 2018. doi:10.1017/S2040174417000691. 

 

Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, 

and enhanced susceptibility to adult chronic diseases. Nutrition. 2004. 

doi:10.1016/j.nut.2003.09.011. 

 

White AJ, Sandler DP, Bolick SCE, Xu Z, Taylor JA, Deroo LA. Recreational and household 

physical activity at different time points and DNA global methylation. Eur J Cancer. 2013. 

doi:10.1016/j.ejca.2013.02.013. 

 

Wizemann TM, Pardue M. Exploring the Biological Contributions to Human Health: Does Sex 

Matter? Washington (DC): National Academies Press (US), 2011.  

 

Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, Vishwanatha JK, Morabia 

A, Santella RM. Physical activity and global genomic DNA methylation in a cancer-free 

population. Epigenetics. 2011. doi:10.4161/epi.6.3.14378. 


