Development of New Strategies Towards Accessing Chiral Nitrogen Heterocycles

by

Emilia J. Groso
A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
(Chemistry)
in the University of Michigan
2019

Doctoral Committee:
Professor Corinna S. Schindler, Chair
Professor Bart M. Bartlett
Professor Amanda L. Garner
Professor John Montgomery

Emilia J. Groso
egroso@umich.edu
ORCID iD: 0000-0001-6868-9973

© Emilia J. Groso 2019

To my family and friends

ACKNOWLEDGEMENTS

The work in this thesis was accomplished through the support and encouragement of large group of people. First and foremost, I would like to thank my advisor, Professor Corinna Schindler. As one of Corinna's first students, I had the opportunity to be a part of the lab's early development, and it has been amazing to watch the lab grow into such an amazing group of people. Corinna has also been incredibly supportive throughout my graduate career, always pushed me to think outside the box and pursue scientific inquiry with determination and enthusiasm. Corinna is an amazing mentor, and she has truly shaped my development as a scientist. I am also grateful to Corinna for always keeping the lab stocked with coffee and sweets!

I would also like to thank Professor Bart Bartlett, Professor Amanda Garner, and Professor John Montgomery for serving as my committee members. I appreciate all of your patience, guidance, and insights as I moved through my graduate studies. I would also like to thank Ashley Elizabeth Oxford for helping me to navigate graduate school and always keeping me on track and being one of my biggest allies.

I have also had the privilege to work with some of the most amazing colleagues. In particular, I would like to thank Ahlam Armaly and Paul Riehl. We started graduate school together, and throughout all of the ups and downs I could always turn to you guys, and I could not have asked for a better cohort. I would also like to give a special thanks to Haley Albright for being an incredible friend and always keeping me grounded. I am also fortunate to have worked with such amazing people in the Schindler lab. In particular

I would like to thank all of the people directly contributed to this work, including Brandon Alexander, Ryan Harding, Alexander Golonka, and Taylor Sodano. I would also like to thank all of my current and former labmates for being such extraordinary colleagues, with a particular shoutout to Joshua McManus, Rebecca Watson, Lara Cala, James Annand, Christopher McAtee, Hannah Vonesh, Marc Becker, Daniel Nasrallah, Jacob Ludwig, and Qiuhan Li.

In addition to all of the wonderful people in the Schindler lab, I would also like to thank all of my friends and colleagues who I have met while at the University of Michigan. In particular I would like to thank Kendra Souther, Daryl Staveness, Lindsey Drake, Mario Andres Gaviria, Tim Monos, Vikram Shende, Melissa Lee, Alexandra Sun, Gabriel Magallanes, and Isaac Blythe.

While I have been fortunate to have found such an amazing group of people here at the University of Michigan, I am also grateful for all of the support of my friends and family back in Nevada. First, I would like to thank Marcus Sacchetti and Ashley Shurtliff. We made it through undergrad together, and I am grateful to always have you guys in my corner. I would also like to thank Brianna Gormley for exploring the more interesting parts of Michigan and Pennsylvania with me. I would also like to thank Aaron Treator - my unofficial labmate - for all of your advice and support.

Finally, I would like to thank my parents and sisters. I would not be where I am today if it were not for my sisters, Felicia and Christina. I could not have asked for better sisters who have both challenged and encouraged me. I also would not have been able to pursue higher education without the support of my parents - Joe and Denise Groso. You have always encouraged me to question everything, and your unwavering love
support has given me the opportunity to do just that. You guys continue to inspire me, and I am grateful to have you in my life.

TABLE OF CONTENTS

Dedication ii
Acknowledgements iii
List of Figures ix
List of Tables xi
List of Abbreviations xiii
Abstract xV
Chapter 1: Recent Developments in the Synthesis of Nitrogen Heterocycles via Olefin Metathesis 1
1.1 Introduction 1
1.2 Strategies towards the synthesis of nitrogen heterocycles 2
1.3 Application of Olefin Metathesis 5
1.3.1 Previous Challenges 6
1.3.2 Advances in Catalyst Design 10
1.3.3 Indenylidene Catalysts 15
1.3.4 Unsymmetrical NHC Ligands 19
1.4 The Development of the Carbonyl-Olefin Metathesis Reaction 22
1.5 References 24
Chapter 2: Application of Carbonyl-Olefin Metathesis Towards the Synthesis of Chiral 3- Pyrrolines 35
2.1 Introduction 35
2.2 Results and Discussions 37
2.3 Conclusion 45
2.4 Experimental Procedures 45
2.4.1 General Considerations 45
2.4.2 General Alkylation Procedure for the Synthesis of Styrenyl Olefin Substrates 47
2.4.3 General Weinreb Amidation Procedure for N-protected Amino Acids 51
2.4.4 General Procedures for the Synthesis of Metathesis Substrates 58
2.4.5 General Procedure for the Carbonyl-Olefin Metathesis Reaction 79
2.4.6 4.4.6 Miscellaneous Procedures 92
$2.5{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 100
2.6 HPLC Analysis of Phenylalanine Substrate 19 and 25 248
2.7 References. 252
Chapter 3: Synthesis of Tetrahydropyridines via the Carbonyl-Olefin Metathesis Reaction 257
3.1 Introduction 257
3.2 Results and Discussion. 259
3.3 Experimental Procedures 267
3.3.1 General Considerations 267
3.3.2 General Procedure for the N-Protection and Weinreb Amidation of Amino Acids 269
3.3.3 General Procedures for the Synthesis of Metathesis Substrates 273
3.3.4 General Procedure for the Carbonyl-Olefin Metathesis Reaction 294
3.3.5 Deprotection of the Carbonyl-Olefin Metathesis Product with Sml 2 303
$3.4{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. 304
3.5 SFC Analysis for Compounds 10 and 27 388
3.6 References 390
Chapter 4: Mechanistic Investigations into the Formation of Nitrogen Heterocycles via the Carbonyl-Olefin Metathesis Reaction 393
4.1 Introduction 393
4.2 Investigations into Competitive Binding Sites 394
4.3 Evaluation of the Reaction Pathway and Steric Considerations 395
4.4 Computational Considerations and XYZ Files 400
4.4.1 Computational Details 400
4.4.2 XYZ Coordinates for Structures 400
4.5 References 465
Chapter 5: Conclusions and Outlook. 466

LIST OF FIGURES

Figure 1.1 Selected examples of nitrogen heterocycles found in amino acids,nucleobases, therapeutics, and natural products2Figure 1.2 Current strategies towards accessing 3-pyrrolines and tetrahydropyridines. 3
Figure 1.3 Recent advances in the application of catalytic ring-closing metathesis towards
the synthesis of nitrogen heterocycles 6
Figure 1.4 Application of olefin-metathesis towards ammonium salts 9
Figure 1.5 Asymmetric allylic alkylation and subsequent RCM for the preparation of chiral
tetrahydropyridines 10
Figure 1.6 Role of electronics on benzylidene catalyst design 11
Figure 1.7 Retrosynthetic strategy towards the synthesis of grazoprevir via an olefin ring-
closing metathesis and subsequent reduction 13
Figure 1.8 Study of ruthenium catalysts containing quinone ligands. 14
Figure 1.9 Studies into indenylidene catalysts 16
Figure 1.10 Molybdenum catalysts in asymmetric ring-closing olefin metathesis 19
Figure 1.11 Development of unsymmetrical catalysts 21
Figure 1.12 Titanium-mediated carbonyl-olefin metathesis for the synthesis of
unsaturated nitrogen heterocycles 24
Figure 2.1 Strategies towards accessing chiral nitrogen heterocycles 35
Figure 2.2 Strategies towards accessing chiral 3-pyrrolines 36

Figure 2.3 Flexible 3-step strategy for accessing substrates from commercially available, chiral amino acids.. 37

Figure 2.4 Preparation of 3-pyrrolines using allyltrimethylsilane as a superstoichiometric additive... 39

Figure 2.5 Secondary modifications of 3-pyrrolines.. 44
Figure 3.1 Current Strategies towards accessing tetrahydropyridines...................... 257
Figure 3.2 Reaction design strategy for the extension of carbonyl-olefin metathesis towards tetrahydropyridines... 258

Figure 3.3 Deprotection of chiral tetrahydropyridines.. 263
Figure 3.4 Studies towards the synthesis of quinolines... 266
Figure 4.1 Competitive binding sites in amino acid-derived substrates...................... 392
Figure 4.2 Electrostatic potential maps comparing the tosyl and 4(trifluoromethyl)benzenesulfonyl protecting groups... 393

Figure 4.3 Computational studies exploring the Lewis basic binding sites and the role of the protecting... 394

Figure 4.4 Proposed concerted and stepwise pathways for the carbonyl-olefin metathesis reaction in the presence of amines 395

Figure 4.5 Reaction profile for the carbonyl-olefin metathesis reaction of various chiral 3pyrrolines... 396

Figure 4.6 Reaction profile for the carbonyl-olefin metathesis reaction of tetrahydropyridines... 398

LIST OF TABLES

Table 1.1 Catalytic ring-closing metathesis towards the synthesis of cyclic alkenyl
\qquad
Table 1.2 Investigation into the olefin subunit for the synthesis of alkenyl halides.......... 8
Table 1.3 Role of chelating ligands, solvents and additives in ring closing metathesis... 12
Table 1.4 Application of Indenylidenes towards the synthesis of nitrogen heterocycles 18

Table 1.5 Application of adamantyl-containing ruthenium catalyst towards the synthesis of chiral pyrrolines and tetrahydropyridines.. 20

Table 1.6 Early examples of carbonyl-olefin metathesis applied towards the synthesis of cycloalkenes... 23

Table 2.1 Evaluation of carbonyl-olefin metathesis conditions................................ 38
Table 2.2 Evaluation of nitrogen protecting groups and their effect on carbonyl-olefin
\qquad
Table 2.3 Competitive binding studies with different sulfonamides........................... 40
Table 2.4 Evaluation of olefin substituents on the carbonyl-olefin reaction.................. 41
Table 2.5 Evaluation of substrate scope.. 42
Table 3.1. Optimization of Reaction Conditions.. 259
Table 3.2 Evaluation of Ring Formation.. 260
Table 3.3 Evaluation of electronically differentiated protecting groups.................... 261
Table 3.4 Examination of olefin subunit. 262
Table 3.5 Evaluation of Substrate Scope. 265

LIST OF ABBREVIATIONS

${ }^{\circ} \mathrm{C}$	degrees Celsius
δ	chemical shift in parts per million
Abs	absorbance
AIBA	aminoisobutyric acid
Ala	alanine
allyl-TMS	allyltrimethylsilane
aq.	Aqueous
Ar	aryl
atm	atmosphere
Bn	benzyl
Boc	tert-butyloxycarbonyl
Cbz	carboxybenzyl
CH3	acetonitrile
CITs	4-chlorobenzenesulfonyl
Cy	cyclohexyl
DCC	N,N-dicyclohexycarbodiimide
DCE	1,2-dichloroethane
DCM	dichloromethane
dd	doublet of doublet
DFT	density functional theory
DMF	dimethylformamide
DMSO	dimethylsulfoxide
ee	enantiomeric excess
equiv	molar equivalents
Et	ethyl
EtOAc	ethyl acetate
FTs	4-(trifluoromethyl)benzenesulfonyl
g	grams
Gly	glycine
h	hour
HCl	hydrochloric acid
HCV	hepatitis C virus
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
HTs	benzenesulfonyl
Hz	Hertz
INT	intermediate

iPr	isopropyl
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
L	liter
M	molarity (mol/L)
$m C P B A$	meta-chloroperoxybenzoic acid
Me	methyl
MeOH	methanol
Mes	mesylate
mg	milligrams
MgSO_{4}	magnesium sulfate
MHz	megahertz
min	minutes
mL	milliliters
mmol	millimoles
mol	moles
NaHCO_{3}	sodium bicarbonate
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
NHC	N-heterocyclic carbene
NMM	N-methylmorpholine
NMR	nuclear magnetic resonance
Nos	o-nitrobenzenesulfonyl
$\mathrm{OMe}^{\text {Ts }}$	4-methoxylbenzenesulfonyl
PDT	carbonyl-olefin metathesis product
PG	protecting group
Ph	phenyl
ppm	parts per million
q	quartet
RCM	ring-closing metathesis
rt	room temperature
S	singlet
S	substrate for a given metathesis reaction (following the number scheme in the main text)
SFC	supercritical fluid chromatography
t	triplet
T	temperature
TBDMS	tert-butyldimethylsilyl
tBuOH	tert-butanol
THF	tetrahydrofuran
TLC	thin layer chromatography
Ts	tosyl
TS	transition state
Val	valine
W	watts
WA	Weinreb amide intermediate

Abstract

The olefin-olefin metathesis reaction is a revolutionary industrial process that utilizes precious metal complexes to enable direct carbon-carbon bond formation from simple olefin starting materials. This powerful tool has been utilized in a wide range of applications including natural product synthesis, materials and polymers, medicines, and fine chemical synthesis. While this approach has been employed for the construction of new carbon-carbon bonds in a wide range of systems through the use of metal alkylidene catalysts, recent advances have led to the development of the direct metathesis between carbonyls and olefins that relies on Lewis acids catalysts. This method is not only marked by the use of inexpensive sustainable catalysts, but it also eliminates the need for the prerequisite synthesis of the olefin substrates.

The Schindler lab recently identified an inexpensive iron catalyst capable of promoting exclusively carbonyl-olefin metathesis reactions with catalyst loadings as low as 1 mol percent. This design principle fundamentally differs from stoichiometric carbonylolefin metathesis protocols proceeding via intermediate oxametallacycles. It is instead based on the in situ formation of oxetanes as reactive intermediates via initial cycloaddition of a carbonyl and an olefin. While this method has been successfully applied to a wide range of carbocyclic systems, we envisioned that this could be a valuable method towards the synthesis of nitrogen heterocycles, which are ubiquitous in both

natural products and pharmaceuticals. This thesis details the application of the carbonylolefin metathesis reaction towards the synthesis of chiral nitrogen heterocycles. While nitrogen containing systems have previously represented challenging substrates for metathesis reactions due to their ability to coordinate to the active catalyst, Chapter 2 describes the development and application of electron-deficient protecting groups enable the successful progression of the reaction as well as a general synthetic strategy from chiral amino acids that provides access to a diverse array of chiral substrates that can be utilized to access both chiral 3-pyrrolines. Chapter 3 further describes the application of both the synthetic strategy and carbonyl-olefin metathesis towards the preparation of tetrahydropyridines and other diverse nitrogen heterocycles in a unified approach.

In order to gain insight into the principals governing this reaction, conducted a series of experimental and computational studies to model that provided a variety of mechanistic insights into the reaction pathway of both 3-pyrrolines and tetrahydropyridines. These studies have not only provided further insights into the electronics of the sulfonamide and its role as a competitive binding sight, but they have also provided key insights into substrate design. The details of these efforts are provided in Chapter 4.

Chapter 1

Developments in the Synthesis of Nitrogen Heterocycles via Olefin Metathesis*

1.1 Introduction

Nitrogen heterocycles are among the most prevalent structural motifs that can be found in a variety of biologically active compounds, natural products, therapeutics, and valuable materials (Figure 1.1). The simplest example comes from the fact that they are present in both amino acids and nucleobases, which are ubiquitous in all life. In addition to these biologically essential components, nitrogen heterocycles have played a huge role in the advancements of pharmaceuticals. Once such example came from the discovery of haloperidol by P.A. Janssen. ${ }^{1-3}$ This antipsychotic is considered one of the greatest advances of $20^{\text {th }}$ century psychiatry and is included in the World Health Organization's list of essential medicines for its contributions to both palliative care and the treatment of mental and behavioral disorders. ${ }^{4}$ Further studies of the piperidine scaffold led to the development of new medicines for the treatment of debilitating and chronic pain including the introduction of analgesics such as fentanyl that could be used as an alternative to opioid-based anesthesias (also derived from nitrogen heterocycles) with fewer side-effects. ${ }^{5}$ Nitrogen heterocycles continue to be among the most prevalent scaffold found in pharmaceuticals, and they can be found in over 59% of the U.S. FDA approved drugs. ${ }^{6}$

[^0]

Figure 1.1 Selected examples of nitrogen heterocycles found in amino acids, nucleobases, therapeutics, and natural products.

In this introduction, the synthetic strategies towards accessing 5- and 6-membered nitrogen heterocycles are first presented. The discussion will focus on pyrrolidine and piperidine scaffolds. It is then expanded to include recent strategies towards the application of ring-closing metathesis towards the synthesis of these privileged motifs including the development of new catalysts and enantioselective systems. Finally, the method of ring-closing carbonyl-olefin metathesis, which was the basis of this work, is introduced and its application towards carbocyclic systems is examined.

1.2 Strategies Towards the Synthesis of Nitrogen Heterocycles

For the purposes of this review, we will focus on the unsaturated five- and sixmembered nitrogen heterocycles - specifically 3-pyrrolines and tetrahydropyridines (Figure 1.2). Such compounds serve as useful synthetic building blocks as the resulting

Figure 1.2 Current strategies towards accessing 3-pyrrolines and tetrahydropyridines.
olefin provides a functional handle for further diversification. ${ }^{9}$ There are a variety of strategies to directly access these aza-cycles. ${ }^{7,8}$ Several cyclization strategies have been developed to access 3-pyrrolines, including the cyclization of α-amino allenes mediated by transition metals ${ }^{10}$ and potassium carbonate. ${ }^{11}$ Other cyclization strategies include Heck-aza-Michael reactions, ${ }^{12}$ in situ formation of alkylidene carbenes from vinyl bromides resulting in $1,5-\mathrm{C}-\mathrm{H}$ insertion, ${ }^{13}$ the use of azomethine ylides, ${ }^{14}$ and Lewis acidmediated cyclizations. ${ }^{15}$ Another interesting approach includes the ring-expansion of aziridines ${ }^{16}$ to the corresponding pyrroline, or alternatively the ring contraction of diazooxazepanes. ${ }^{17}$ Tetrahydropyridines present a greater challenge, however many versatile methods have been developed including 6π-cyclization strategies ${ }^{18}$ such as the aza-Diels-Alder reaction ${ }^{19}$ (Figure 1.2). Alternative strategies take advantage of traditional
amine reactivity including nucleophilic additions to substituted olefins ${ }^{20}$ and phosphine catalysis ${ }^{21}$ to promote the cyclization to generate the desired tetrahydropyridines. Finally, similar mechanistic strategies for accessing 3-pyrrolines and tetrahydropyridines have been reported, including allene annulation ${ }^{22}$ and the reduction of the aromatic pyrroles and pyridines. ${ }^{23}$

One strategy that has been proven effective for the synthesis of unsaturated nitrogen heterocycles is ring-closing olefin metathesis. Metal alkylidenes have been implemented in ring-closing metathesis reactions to access both aliphatic and heterocyclic rings, ${ }^{24}$ however electron-rich amines have proven to be challenging substrates under metathesis conditions. The synthesis of aza-cycles via olefin-olefin metathesis was initially reported by Grubbs, ${ }^{25}$ who found that subjecting allylamines to a metal alkylidene such as Grubb's first-generation catalyst G-I or Schrock's catalyst provided the ring-closing metathesis product in good to excellent yields. As this approach was expanded to more complex amine-containing systems, it was revealed that the ring-closing metathesis worked well for substituted or electron-deficient amines. However, systems in which the amines maintained high electron densities shut down due to decomposition of the catalyst caused by coordination between the amines and the metal alkylidene complex. ${ }^{26}$

While the presence of Lewis basic amines in metathesis substrates has created a dogma that amines will disrupt the desired reaction, several strategies have emerged that have successfully led to favorable outcomes including utilizing steric affects, attenuating amine basicity, and controlling the nature of the catalyst itself. There have been several excellent reviews on this topic covering substrate design strategies that have led to the application of ring-closing metathesis to access increasingly complex nitrogen
heterocycles. ${ }^{27}$ This review will instead focus on recent developments in both reaction and catalyst design that have further advanced the field.

1.3 Application of Olefin Metathesis

Since its discovery in the late 1950s, olefin-olefin metathesis emerged as a highly successful synthetic tool that has been applied towards the synthesis high value materials including polymers, natural products, and therapeutics. While this method has been a significant development, one key application of this method was towards the synthesis of heterocycles via the ring closing metathesis reaction. This strategy has been valuable for the synthesis of nitrogen-containing compounds including pyrrolidines and piperidines which constitute ubiquitous scaffolds in natural products and bioactive compounds.

One strategy that has been proven effective for the synthesis of unsaturated nitrogen heterocycles is ring-closing olefin metathesis. Metal alkylidenes have been implemented in ring-closing metathesis reactions to access both aliphatic and heterocyclic rings, ${ }^{24}$ however electron-rich amines have proven to be challenging substrates under metathesis conditions. This approach was first reported by Grubbs and Fu ${ }^{25}$ who found that when allylamines are subjected to a metal alkylidene such as G-I or Schrock's catalyst they found that the amines underwent ring-closing metathesis in good to excellent yields. As this approach was expanded to more complex amine-containing systems, it was revealed that while the ring-closing metathesis worked well for substituted or electron-deficient amines, systems in which the amines maintained high electron densities shut down due to decomposition of the catalyst caused by coordination between the amines and the metal alkylidene complex. ${ }^{26}$

While the presence of Lewis basic amines has created this dogma that amines will shut down the desired metathesis, several strategies have emerged that have successfully led to favorable outcomes including utilizing steric affects, attenuating amine basicity, and controlling the nature of the catalyst itself. There have been several excellent reviews on this topic, ${ }^{27}$ but this chapter will focus on developments in both reaction and catalyst design since 2010.

1.3.1 Previous Challenges

As previously mentioned, amines representing a challenging functional group that can coordinate to metal alkylidenes resulting in catalyst decomposition and inhibition of olefin metathesis reactions. ${ }^{26} \mathrm{~A}$ variety of strategies have been employed to overcome this inherent shortcoming, including deactivation of the amine by introducing steric bulk to the substrates or by reducing electron density around the nitrogen atom. With these solutions available, ring-closing metathesis has been successfully applied to increasing complex nitrogen heterocycles with lower catalyst loadings and shorter reaction times.

Since olefin metathesis was first applied towards the synthesis of heterocyclic amines, ruthenium catalysts and the understanding of the reaction mechanism have enabled the ring-closing metathesis reaction of unencumbered bis-allylamine
(a) Early Exmples of Catalytic Ring-Closing Metathesis:

(b) Recent Advances:

14 ($\mathrm{n}=1$)
$16(n=2)$

Figure 1.3 Recent advances in the application of catalytic ringclosing metathesis towards the synthesis of nitrogen heterocycles.

14 in good yields with low catalyst loadings. Yields continue to rise as the phosphine ligands were replaced with N -heterocyclic carbenes as in HG-II. ${ }^{28}$ However, while these homogeneous catalysts have been employed in a variety of systems, one challenge particularly on an industrial scale - is the high catalyst coast and the removal of residual ruthenium. As such there has been a continued effort to lower catalyst loadings. ${ }^{29,30}$ Kuhn, et al. ${ }^{30}$ recently employed high throughput robotic techniques using Symyx technology in order to identify the optimum reaction conditions for accessing five-, six-, and sevenmembered nitrogen heterocycles. They found that by extending the reaction times to 8 h , the catalyst loading could be lowered to as little as 500 ppm and generate the cyclic amines in as high as 99\% yield (Figure 1.3). The approach also works well for di-, tri-, and tetra-substituted olefins.

Another hurdle that has been surpassed in recent years was the application of ring closing metathesis to access cyclic alkenyl halides which are valuable synthons. The first reported examples of utilizing ring-closing metathesis for the synthesis of vinyl halides came from Weinreb and co-workers ${ }^{31}$ who were able to access cyclic chloroalkenes in good yields; however the method did not work for the synthesis of the more synthetically useful vinylbromides. ${ }^{32}$ Dorta and co-

Conditions: a) Reactions were performed using 0.16 mmol of substrate in 0.1 M benzene and $2 \mathrm{~mol} \%$ of G-II. Reactions were run for 1.5-2 h. b) Reaction was run for 4 h with 5 mol\% of G-II in DCM.

Table 1.1 Catalytic ring-closing metathesis towards the synthesis

Products: ${ }^{\text {a }}$

21 (95\%)

22 (97\%)

20 (95\%)

$23(81 \%)^{\text {b }}$
of cyclic alkenyl halides.
workers ${ }^{33}$ recently reported the Table 1.2 Investigation into the olefin subunit for the synthesis of alkenyl halides.
first example of the synthesis of cyclic alkenyl bromides by replacing the unsubstituted olefins with the styrene derivatives in order to avoid undesired reactivity between the olefin and the active

Conditions: All reactions were performed in benzene with 0.1 M substrate concentration. Yields are based on NMR analysis.
ruthenium species. This method has also been applied to towards tosyl-protected amines to access pyrroles and tetrahydropyridines (Table 1.1). The reaction worked well for both unsubstituted substrates 18 and 20. Yields were further increased up to 97% by adding a phenyl substituent adjacent to the amine (19, 21, and 22). The method was also surprisingly facile and led to the synthesis of tetra-substituted cyclic chloro-alkenes 22 and 23 (Table 1.1). Norta proposes that the terminal olefins 24 undergo initiation with GII to generate intermediates 25 . The bromoalkenes $\mathbf{2 5}$ can then react with the Ru-center leading to undesired catalyst decomposition (Table 1.2). During examination of the bromoalkenes, Dorta ${ }^{33}$ found that while the unsubstituted 24a and (E)-styrene 24b both led to complete decomposition of the catalyst, the (Z)-styrene provided the desired product in just 30 minutes with greater than 98% yield (Table 1.2, entry 3).

While this strategy focused on substrate modification, many approaches have targeted ways to reduce the electron-density around the amine without the introduction of additional functional groups or steps. One such approach involves the in situ protection of amines via the formation of amine salts in order to prevent catalyst decomposition
(Figure 1.4). Similar deactivation strategies have been employed performing the in situ deactivation of amines via the addition of Bronsted ${ }^{34}$ or Lewis acids. ${ }^{35}$ Recently, this approach was successfully utilized by Woodward, et al. ${ }^{36}$ to generate both

Figure 1.4 Application of olefin-metathesis towards ammonium salts. (a) Conventional Method: HG-II (5 mol\%), 0.1 M DCM, $40^{\circ} \mathrm{C}$, 24 h . (b) Microwave Conditions (yield in parentheses): HG-II (5 mol\%), $0.1 \mathrm{M} \mathrm{DCM}, 2 \mathrm{~h}, 100 \mathrm{~W}$, under nitrogen. All yields determined by 1 H NMR cyclic and acyclic aminoalkenes. spectroscopy in d4-MeOH.

Initially, the approach was hindered by the solubility of the amine salts in organic solvents. After examining a variety of amine salts including halide, triflate, and tetrafluoroborate salts, the amine tosylate salts 27 and 29 were identified as superior substrates due to their solubility in dichloromethane at elevated temperatures. The amine tosylate salts were subject to ring closing metathesis under both conventional and microwave heating conditions. While the ammonium salt $\mathbf{2 7}$ gave excellent yields under both conditions, the quaternary amine 29 gave low conversion (9\%) under conventional methods. However, when subjected to microwave irradiation the reaction proceeded to generate pyrroline $\mathbf{3 0}$ in excellent yield. Furthermore, this approach is desirable that the resulting product 28 could be readily deprotected via subjection to a base without further chemical transformations required.

Other advances in the metathesis-mediated formation of nitrogen heterocycles is the strategic implementation of the synthetic tool to access highly desired chiral nitrogen heterocycles. 37 One such example came from Feringa and coworkers, 38 who developed a copper-catalyzed method for the asymmetric substitution of allylic bromides with

Grignard reagents through the use of chiral ferrocene-based bisphosphine ligands L1. heterocycles. ${ }^{37}$ One such example came from Feringa and coworkers, ${ }^{38}$ who developed a copper-catalyzed method for the asymmetric substitution of allylic bromides with Grignard reagents through the use of chiral ferrocene-based bisphosphine ligands L1. Recognizing that this method produced terminal olefins, Feringa utilized this method to access chiral products 32 and 35 from the allylic bromides 31 and 34 (Figure 1.5). The allylic bromides could then be subjected to either olefin metathesis or ene-yne metathesis to provide chiral tetrahydropyridines 33 and 36 in good yields and complete stereoretention (Figure 1.5). This method could also be applied to seven- and eightmembered rings.

1.3.2 Advances in Catalyst Design

While the previous discussion focused on modifications in the reaction design and conditions to promote the desired ring-closing metathesis, another key strategy employs changes in catalyst design. Significant advances in metathesis reactions have been realized as the result of the development of more robust and highly reactive ruthenium catalysts that promote ring-closing metathesis without unfavorable side reactions.

Figure 1.5 Asymmetric allylic alkylation and subsequent RCM for the preparation of chiral tetrahydropyridines.

(c) Electronic effects on Hoveyda-Grubbs catalysts

(b) Catalysts containing a nitrogen chelator.

(d) Electronic effects with chelating nitrogen

Figure 1.6 Role of electronics on benzylidene catalyst design.
Specifically, modifications on the benzylidene ligands have resulted in significant changes in steric strain, chelate ring size, and electron density of the aromatic ring. Two such examples of major modifications in ligand design have been the replacement of the tricyclohexyl phosphine ligand from G-I with a more active N-heterocyclic carbene (G-II) ${ }^{28}$ and the incorporation of benzylidene ligands (HG-II). ${ }^{39}$

Continued studies of ligand development and design reveal that the electronic substitution of the ligand also plays a critical role in catalyst reactivity and stability (Figure 1.6). ${ }^{40}$ For instance, the reactivity of HG-II can be significantly enhanced by the addition of an electron-withdrawing substituent such as the nitro group in $\mathrm{HG}-\mathrm{II}-\mathrm{NO}_{2}$ which diminishes the donor activity of the oxygen chelate (Figure 1.6c). Grela and Lemcoff ${ }^{41}$ recently undertook a variety of studies exploring electronic effects in ruthenium catalysts containing oxygen, nitrogen, and sulfur-chelated ligands. Changing the chelating heteroatom had a significant impact on the reactivity of the catalyst and its ability to undergo initiation. The electron-rich nitrogen (Ru-II, Ru-III, and Ru-IV) and sulfur
derivatives required elevated temperatures and longer reaction times to give yields comparable to those obtained with HG-II and HG-II-NO2 (Figure 1.6d). However, while these catalysts were relatively slow to initiate, addition of the nitro group greatly affected the overall stability of the catalyst and its ability to mediate the ring-closing metathesis of allyl amines 37and 39. The reaction temperature could be lowered from $55^{\circ} \mathrm{C}$ to room temperature and provided good yields of the product, albeit in longer reaction times. When the ligand was altered to contain an electron-rich benzylidene ring as in Ru-IV, the yield decreased to 61\% (Figure 1.6c). A similar trend was observed in the synthesis of tetrahydropyridine 40. Use of electron-rich catalyst Ru-IV required elevated temperature and longer reaction times whereas the electron-deficient catalyst Ru-III gave similar yields at room temperature in only 7 hours.

The chelating heteroatom can also play a significant role in the catalyst stability. While most metal alkylidene catalysts perform well at room temperature or slightly elevated temperatures, some selected applications require that the catalyst have high thermal stability. For examples, the latent catalyst is activated, the methylidene species

Table 1.3 Role of chelating ligands, solvents and additives in ring closing metathesis.

can rapidly form in solution. At higher temperatures, decomposition of the metal alkylidene is proven to lead to the formation of ruthenium hydride species that can result in the isomerization of olefinic bonds and the formation of byproducts such as 42 (Table 1.3). ${ }^{42}$ Ligands with a strongly coordinating heteroatom chelator such as oxygen, ${ }^{43}$ nitrogen, ${ }^{44}$ sulfur, ${ }^{45}$ and selenium ${ }^{46}$ provide greater thermal stability. For instance, Slugovc et al. ${ }^{47}$ began exploring the use of ruthenium alkylidene catalysts bearing a chelating phosphine ligand Ru-V for both ring-opening metathesis polymerization and ring-closing metathesis. When this catalyst was used for the synthesis of pyrroline 33, it provided the desired product in $>97 \%$ yield with reaction temperatures as high as $110{ }^{\circ} \mathrm{C}$. Slugove also found that the catalyst Ru-V could provide good yields of the product at lower temperatures when the solvent was switched to chloroform. At both elevated and lower temperatures, some traces of the isomerized product 41 were observed, but this could further be avoided by the introduction of a hydride scavenger such as benzoquinone (Table 1.3, entry 6).

While the phosphine chelator provides increased stability of the active methylidene species at elevated temperatures, another continued goal is accessing a tunable, shelfstable catalyst. Such a catalyst was serendipitously discovered during the synthesis of the macrocyclic backbone of the HCV therapeutic agent grazoprevir 42 (MK-5172, Figure 1.7). ${ }^{48}$

42
Grazoprevir (MK-5172)

Figure 1.7 Retrosynthetic strategy towards the synthesis of grazoprevir via an olefin ring-closing metathesis and subsequent reduction.

The first quinoxaline Ru-VI was isolated as a byproduct of the metathesis reaction to obtain the desired macrocycle from 43. Quinoxaline Ru-VI was found to be stable in deuterated dichloromethane for up to 30 days, while the neat catalyst demonstrated shelf stability of up to 6 months. This stability is likely due the steric repulsion between the quinoxaline and the mesitylene rings preventing the rearrangement to the inactive cis isomer of the catalyst. ${ }^{49}$

The effectiveness of the catalyst Ru-VI was tested against allyl amine $\mathbf{3 7}$ to access pyrroline 38. Catalyst Ru-VI gave complete conversion of sulfonamide $\mathbf{3 2}$ in 6 hours and 99% yield (Table 1.3, entry 7). Considering that electron-deficient catalysts are more active in ring-closing metathesis reactions, McLaughlin proposed ${ }^{49}$ that the reaction rate could be increased through the protonation of the quinoxaline ligand with an acid catalyst.

After examining both Brønsted and Lewis acids, AlCl_{3} was found to give complete conversion and excellent yields of 37 in only 30 minutes (Table 1.3, entries 9 and 10).

As previously discussed, the decomposition of the active methylidene species in solution to ruthenium hydrides results in undesired isomerization of the olefins. ${ }^{42}$ While hydride
(a) Incorporation of quinone moiety for the prevention of olefin isomerization

(b) Applications towards RCM and nitrogen heterocycles

Figure 1.8 Study of ruthenium catalysts containing quinone ligands. (a) Application of quinone moiety as part of ligand design to function as a Ru-hydride scavenger; (b) Comparison of catalysts containing quinone motifs towards the synthesis of nitrogen heterocycles.
scavengers such as quinones, acids, and chlorocatecholborane have proven effective in the prevention of undesired pathways, they do not necessarily prevent catalyst decomposition. Wozniak and coworkers ${ }^{50}$ envisioned incorporating the quinone moiety into the catalyst structure, and synthesized the Hoveyda-Grubbs derivatives with benzoquinone HG-BQ, napthoquinone HG-NQ, and anthraquinone moieties HG-AQ. These catalysts were tested and compared to HG-II for the metathesis of tosylamide 44 and lactam 46 (Figure 1.8). The benzoquinone catalyst gave comparable yields to HG-II demonstrating that there is no loss in reactivity of the catalyst. These catalysts were also tested for their ability to prevent olefin isomerization by gauging their ability to selectively perform the homodimerisation of dodec-1-ene. While HG-II could perform the metathesis reaction in 69\% conversion, it only had a selectivity of 70\%. However, HG-BQ and HGNQ were able to complete the reaction in 89% and 94% conversion, respectively. And not only did these catalysts outperform HG-II, but they both formed the desired product in 95\% selectivity.

1.3.3 Indenylidene Complexes

One class of ruthenium catalysts that has become increasingly popular are ruthenium-pyridine adducts which have been referred to as the "third generation" of olefin metathesis catalysts. ${ }^{51}$ Such complexes are straightforward to access via ligand substitution by stirring in excess pyridine. ${ }^{52}$ One advantage of the pyridine ligands is that they are only weakly coordinating to the metal center, and initiation of the catalyst is much faster. Unfortunately, this means the catalysts show decreased stability overtime and are often outperformed by their tricyclohexylphosphine-containing analogues. ${ }^{53}$ In an effort to increase the overall stability of these ruthenium-pyridine catalysts, indenylidene catalyst
have been developed. This new class of catalyst is accessible from commercially available ruthenium precursors. These complexes exhibit enhanced stability in harsh reaction conditions, higher functional group tolerance, and greater stability on the bench. ${ }^{53 c, 54,55}$

Nolan and coworkers ${ }^{55}$ recently reported a series of indenylidene catalysts (Figure
(a) Development of Ruthenium Indenylidene Catalysts
1.9) to explore their reactivity and effects of sterics in ringclosing, enyne, and cross metathesis reactions. When tested against the diallylamine 37, the pyridine ligands outperformed the phosphine derivatives by up to 30% with catalyst loadings as low as 100
ppm (Figure 1.9b, entries 1, 2, and 3). The reaction also worked exceedingly well with the more substituted prenyl amine, however, higher catalyst loadings of 250 ppm were required due to the increase in steric bulk around the olefin.

(b) Analysis of the role of sterics on the synthesis of 1-tosyl-2,5-dihydro-1H-pyrrole.

		 37	$\xrightarrow[\text { DCM }]{[\mathrm{Ru}] \text {-catalyst }}$		 38	
entry	catalyst	loading	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$t(h)$	concentration (M)	conversion (\%)
1	Ru-VII	100 ppm	30	1	0.5	50
2	Ru-VIII	100 ppm	30	1	0.5	76
3	Ru-IX	100 ppm	30	1	0.5	88
4	Ru-VII	$1 \mathrm{~mol} \%$	rt	0.5	0.1	>99
5	Ru-VIII	$1 \mathrm{~mol} \%$	rt	0.25	0.1	>99
6	Ru-X	$1 \mathrm{~mol} \%$	rt	3	0.1	>99
7	Ru-XI	$1 \mathrm{~mol} \%$	rt	3	0.1	96

Figure 1.9 Studies into indenylidene catalysts: (a) catalyst design and synthesis; (b) analysis of new catalysts towards the synthesis of 3-pyrroline; (b) applications of indenylidene catalysts towards the synthesis of substituted pyrrolines and tetrahydropyridines.

Nolan, et al. 56 expanded studies on the indenylidene catalysts and synthesized catalysts Ru-XI, Ru-XII, and Ru-XIII. For the unsubstituted diallylamine 37, all the catalysts were able to provide the metathesis product 38 in excellent yields, however, a significant difference in reactivity between the more substituted catalysts was observed. The NHC ligands bearing increased steric bulk required longer reaction times of 3 hours (Figure 1.9, entries 6 and 7). Comparing catalyst Ru-VII and Ru-VIII, the catalyst containing the pyridine ligand was more reactive than the phosphane. The reaction went to completion in 30 min with Ru-VII, while the reaction with Ru-VIII was completed in 15 min (Figure 1.9 b , entries 4 and 5 , respectively).

When the amine bearing the substituted olefin 48 was subjected to metathesis conditions with catalyst Ru-X, the reaction required 3 hours and only resulted in 76% conversion of the starting material. This may be due to unfavorable steric interactions of the catalyst that slows down the reaction, but when the phosphane was replaced with the pyridine analogue Ru-XI, the reaction proceeded in $>99 \%$ conversion in just 1 hour. The reaction also resulted in excellent yields of the pyrroline 49, while the more reactive analogue did give a slightly diminished yield.

Because less sterically encumbered NHC ligands such as Ru-VIII tend to be more reactive, albeit less stable overall, there have been significant efforts made to improve their general stability to make them more productive for catalysis. One factor that contributes to the decomposition of the less substituted (and more reactive) indenylidene catalysts is due to increased rotation around the aryl $\mathrm{C}-\mathrm{N}$ bond. ${ }^{57}$ In an effort to prevent this rotation, one strategy to increase stability is to add alkyl substituents to the backbone as illustrated in Ru-XI, ${ }^{58}$ however, bulky substituents are also known to lead to reaction
inhibition. A viable alternative is to replace the benzylidene with the more stable indenylidene RuXIII. ${ }^{59}$ When this catalyst was used to promote the ring-closing metathesis of substituted olefin 45 (Table 1.4), it out performed its benzylidene counterpart resulting in 98% of the desired product. The catalyst could also be applied towards the synthesis of substituted tetrahydropyridines 33 and 51, albeit with longer reaction times and in diminished yields.

Another new and exciting field is the conversion of the neutral NHC catalysts to their

Table 1.4 Application of Indenylidenes towards the synthesis of nitrogen heterocycles.

Conditions: (a) rt, DCM [0.1 M], (b) $60^{\circ} \mathrm{C}$, toluene [0.1 M], (c) $140^{\circ} \mathrm{C}$, xylene [0.25M]. corresponding cationic derivatives. Only a handful of groups have developed systems that utilize cationic catalysts in ring-closing metathesis, but the catalysts can be a powerful tool for accessing challenging metathesis products. ${ }^{60} \mathrm{~A}$ recent example comes from Cazin, et al. ${ }^{61}$ with the synthesis of cationic catalyst Caz-1+ with a phosphite ligand. Interestingly, similarly reported cationic ruthenium species which are 14 electron complexes tend to dimerize to the more stable 16 electron species. In the case of cationic
species Caz-1+ ${ }^{+}$, no dimerization is observed due to the formation of an unusual sawhorse geometry. This makes the catalyst especially stable in solution. While studying ability of the catalyst Caz-1+ to convert tosylamine 44 to the pyrroline $\mathbf{4 5}$ compared to G-II and HGII at $140^{\circ} \mathrm{C}$, G-II and HG-II both displayed rapid decomposition and only 40% conversion of the tosylamine. Interestingly, Caz-1+ displayed higher thermal stability and reached 90% conversion after only 10 min . This catalyst was used to access other challenging substrates including tetrahydropyridines 40 and 51 in 97% and 85% yield, respectively.

1.3.4 Unsymmetrical NHC Ligands

While NHC ligands have led to a new generation of metal alkylidene catalysts that enable access to new, more complex structures, an ongoing challenge in ringclosing metathesis reactions is performing them asymmetrically to access enantioenriched products. ${ }^{62}$ While asymmetric olefin metathesis reactions have been successfully employed in ring-opening cross metathesis, controlling the olefin geometry continues to be a challenge in asymmetric ring closing metathesis. Key strategies for applying ring-closing metathesis are through the kinetic resolution of dienes or the
(a) Chiral molybdenum catalysts of interest.

Mo-I
Mo-II
(b) Application of Mo-I and Mo-II towards tetrahydropyridines.

entry	Ar		catalyst	time (h)	conversion (\%)	ee (\%)
1	Ph	$\mathbf{5 2}$	Mo-I	0.3	95	98
2	Ph	$\mathbf{5 2}$	Mo-II	1	95	94
3	$p-O M e P h$	$\mathbf{5 3}$	Mo-I	0.35	97	97
4	p-BrPh	$\mathbf{5 4}$	Mo-I	0.35	>98	98

Figure 1.10 Molybdenum catalysts in asymmetric ringclosing olefin metathesis. (a) Development of chiral molybdenum catalysts and (b) applications of chiral alkylidenes towards the synthesis of enantioenriched tetrahydropyridines.
desymmetrization of meso- trienes, particularly when the unique olefin is less bulky than the enantiotopic olefins. ${ }^{62}$ Asymmetric ring closing metathesis has been successfully applied to a variety of systems using molybdenum alkylidene catalysts (Figure 1.10). ${ }^{63}$ Specifically Hoveyda and coworkers were able to utilize molybdenum catalyst Mo-I to access both cyclic six-, seven-, and eight-membered rings and bicyclic amines in good yields with up to 98% ee. ${ }^{64}$

Grubbs and coworkers ${ }^{65}$ postulated that for prochiral trienes to proceed in an enantioselective metathesis reaction, the pathway can either consist of an irreversible alkylidene formation of one to the enantiotopic olefins, or the alkylidene can from the unique olefin which can then cyclize with one of the other enantiotopic olefins. Cavallow ${ }^{66}$ performed computational studies on the origin of stereoselectivity and found that the nonreacting olefin is oriented in pseudo-equitorial and pseudo-axial positions in the respective diastereomeric transition states for cyclization. With larger substituents, higher selectivities are expected due to the large energy difference between the two configurations. Grubbs hypothesized that utilizing adamantyl catalyst Ru-XIV would promote the alkylidene form cation with the unique olefin (Table 1.5). The utility of this catalyst was first probed against tosylamine 55, and the reaction gave good yields of the pyrroline 56 with modest enantioselectivity. The reaction
also works well in the synthesis of tetrahydropyridine 58 providing the product with similar yield and slightly higher ee. It is proposed that the stereoinduction is due to the possible transition state in which the vinyl groups are in the pseudo-equitorial position.

Unsymmetrical NHC catalysts are also of interest for addressing the challenge of achieving high selectivity in certain metathesis reactions. Such complexes, as demonstrated in the previous examples can significantly alter the stability of key intermediates thus introducing the ability to control the reaction outcome. In order to expand this class of catalyst, Grisi and Grela ${ }^{67}$ set out to identify new ways to enhance the stability of the unsymmetrical NHC catalysts by introducing substituents to the ligand backbone. In particular, syn- and anti-complexes Ru-XV and Ru-XVI were synthesized, as well as catalysts containing the N-neopentyl backbone (Figure 1.11). After 1 week, the syn complexes Ru-XVa and Ru-XVb were almost completely decomposed, however, the anti-
(a) Recent developments in unsymmetrical N-heterocyclic carbenes as catalysts in ring-closing metathesis.

Ru-XVa ($\mathrm{R}=\mathrm{Cy}$)
$\mathbf{R u - X V b}(R=M e)$

Ru-XVIa (R = Cy)
Ru-XVIb ($\mathrm{R}=\mathrm{Me}$)

Ru-XVII

Ru-XVIII

Ru-XII
(b) Key results form kinetic profiles comparing unsymmetrical N-heterocyclic carbenes in the synthesis of 38 and 46.

38

45

46

entry	catalyst	time (min)	\%yield
1	Ru-XVa	32	60
2	Ru-XVb	65	60
3	Ru-XVIa	94	35
4	Ru-XVIb	94	35
5	Ru-XVII	60	94
6	Ru-XVIII	3	99
7	Ru-XII	>99	27
8	HG-II	4	>99

catalyst	time (min)	\%yield
Ru-XVa	60	33
Ru-XVb	60	29
Ru-XVIa	60	64
Ru-XVIb	60	31
Ru-XVII	60	77
Ru-XVIII	60	97
Ru-XII	60	92
HG-II	60	72

Figure 1.11 Development of unsymmetrical catalysts.
complexes Ru-XVIa and Ru-XVIb proved more resistant to decomposition and were stable for up to 10 days. Furthermore, bulkier N -alkyl groups tended to help stabilize the catalyst.

In terms of overall reactivity, the N-alkyl substituent did not play a major role in the catalyst reactivity (Figure 1.11b). When less substituted olefin 32 was subjected to a variety of catalysts with varying N-alkyl substituents, no significant difference in yield was observed, however, the bulkier catalysts required slightly longer reaction times. The backbone substituents played a more significant role in reactivity, as the anti-complexes Ru-XVIa and Ru-XVIb gave higher yields than their syn-counterparts. In the presence of bulkier olefins, a slight decrease in reactivity was observed which is attributed to unfavorable steric interactions. ${ }^{68}$

1.4 The Development of the Carbonyl-Olefin Metathesis Reaction

Metal-catalyzed metathesis reactions have revolutionized today's industrial processes and led to more advanced technologies, medicines, and materials. One of the biggest challenges facing our generation is identifying sustainable alternatives to precious metals that are often required for these processes. Precious metals such as gold, platinum, palladium and ruthenium are characterized by their limited geochemical abundance. The olefin-olefin metathesis reaction is a revolutionary industrial process that utilizes precious metal complexes to enable direct carbon-carbon bond formation from simple olefin starting materials. ${ }^{69}$ Its importance was recognized in 2005 when Grubbs, Schrock, and Chauvin received the Nobel Prize for their contribution to its development. In this transformation, parts of the olefin substrates are exchanged upon reaction with a ruthenium catalyst and recombined to form a new olefin product. Current limitations in
metathesis reactions include the need for precious metals, high catalyst loadings, and the required synthesis of olefin substrates. ${ }^{70}$ Prerequisite synthesis of substrates, prepared from carbonyl compounds via olefination reactions, use stoichiometric reagents. This is problematic in that one equivalent of reagent is required per substrate and inevitably results in the formation of an undesired waste product in equal amounts. Consequently, the direct conversion of a carbonyl and olefin substrate in a carbonyl-olefin metathesis reaction would obviate this limitation.

While traditional olefin-olefin Table 1.6 Early examples of carbonyl-olefin metathesis applied towards the synthesis of metathesis has been a powerful tool in a wide range of applications including natural product synthesis, materials and polymers, medicines, and fine chemical synthesis, a continued challenge is cycloalkenes.

$63(86 \%)$

64 (84%)

65 (86%) finding inexpensive, sustainable catalysts. An intriguing alternative that has emerged in recent years is the application of carbonyl-olefin metathesis. In 1993 Grubbs and Fu reported the synthesis of five-, six-, and seven-membered cycloalkenes (Table 1.6) by subjecting various olefinic ketones 59 to Schrock's catalyst to perform the carbonyl-olefin metathesis sequence via the formation and fragmentation of intermediate oxametallacycles $60 .{ }^{71}$ However, stoichiometric quantities of Schrock's catalyst were required due to the formation of a metal-oxo species 62, which is difficult to reduce back to the active metal alkylidene.

The first reported example of carbonyl-olefin metathesis in the presence of amines came from Zhou and Rainier. 70 Their strategy focused on the formation of titanium alkylidenes. This method was used to synthesize five-, six-, and sevenmembered rings through a carbonyl-olefin metathesis pathway (Figure 1.12). Mechanistic insights for this synthesis came when tosylamine 71 was subjected

Figure 1.12 Titanium-mediated carbonyl-olefin metathesis for the synthesis of unsaturated nitrogen heterocycles (a) quinolines and (b)
 tetrahydropyridines.
to the metathesis conditions resulting in a mixture of tetrahydropyridine 73A and acyclic enamide 73B. When the acyclic enamide was resubjected to the reaction conditions, none of the cyclic product was formed. This supports the hypothesis that the cyclic product proceeds via a carbonyl-olefin pathway as opposed to an olefin-olefin metathesis mechanism (Figure 1.12a).

1.5 References

(1) Galemmo, R. A.; Janssens, F. E.; Lewi, P. J.; Maryanoff, B. E. In Memoriam: Dr. Paul A. J. Janssen (1926-2003). J. Med. Chem. 2005, 48 (6), 1686-1686.
(2) Janssen, P. A.; Van De Westeringh, C.; Jageneau, A. H.; Demoen, P. J.; Hermans, B. K.; Van Daele, G. H.; Schellekens, K. H.; Van Der Eyckens, C. A.; Niemegeers, C. J. E. Chemistry and Pharmacology of CNS Depressants Related to 4-(4-Hydroxy-4-phenylpiperidine)butyrophenone Part 1-Synthesis and screening data in mice. J. Med. Chem. 1958, 1 (3), 281-297.
(3) Tyler, M. W.; Zaldivar-Diez, J.; Haggarty, S. J. Classics in Chemical Neuroscience: Haloperidol. ACS Chem. Neurosci. 2017, 8 (3), 444-453.
(4) World Health Organization. WHO Models List of Essential Medicines; Geneva, Switzerland, 2017; 20 ${ }^{\text {th }}$ Edition.
(5) Stanley, T. H.; Egan, T. D.; Van Aken, H. A. A Tribute to Dr. Paul A. J. Janssen: Entrepreneur Extraordinaire, Innovative Scientist, and Significant Contributor to Anesthesiology. Anesthesia \& Analgesia. 2008, 106 (2), 451-462.
(6) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257-10274.
(7) (a) Xu, Z.; Lu, X. A Novel [3+2] Cycloaddition Approach to Nitrogen Heterocycles via Phosphine-Catalyzed Reactions of 2,3-Butadienoates or 2-Butynoates and Dimethyl Acetylenedicarboxylate with Imines: A Convenient Synthesis of Pentabromopseudilin. J. Org. Chem. 1998, 63 (15), 5031-5041; (b) Hodgson, D.M.; Miles, T.J.; Witherington, J. Organolithium-induced synthesis of acyclic unsaturated amino alcohols from epoxides of dihydropyrroles and tetrahydropyridines. Tetrahedron, 2003, 59, 9729-9742; (c) Hong, J.; Zhang, Z.; Lei, H.; Cheng, H.; Hu, Y.; Yang, W.; Liang, Y.; Das, D.; Chen, S.-H.; Li, G. A novel (BAY35-3377). Tetrahedron Lett. 2009, 50 (21), 2525-2528.
(8) Asymmetric Synthesis of Nitrogen Heterocycles; Royer, J. Eds.; Wiley-VCH: Weinheim Germany, 2009, pp 1-397.
(9) (a) Advances in Heterocyclic Chemistry; Scriven, E. F. V.; Ramsden, C.; Academic Press: Cambridge, MA., 2015, 115, 1-354; (b) Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Chem. Rev. 2017, 117, 14091-14299; (c) Lewis, J.C.; Bergman, R.G.; Ellman, J.A. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation. Acc. Chem. Res. 2008, 41 (8), 1013-1025; (d) Schultz, D.M.; Wolfe, J.P. Recent Developments in Pd-Catalyzed Alkene Aminoarylation Reactions for the Synthesis of Nitrogen Heterocycles. Synthesis, 2012; 44 (3), 351-361; (d) Patil, N.T.; Yamamoto, Y. Coinage Metal-Assisted Synthesis of Heterocycles. Chem. Rev. 2008, 108 (8), 3395-3442.
(10) For selected examples, see: (a) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. First Palladium-Catalyzed Aziridination Reaction of Amino Allenes. J. Org. Chem. 1999, 64 (9), 2992-2993; (b) Dieter, R.K.; Yu, H. Synthesis of 3-Pyrrolines, Annulated 3-Pyrrolines, and Pyrroles from α-Amino Allenes. Org. Lett. 2001, 3 (24), 3855-3858; (c) Billet, M.; Schoenfelder, A.; Klotz, P.; Mann, A. A convenient procedure for the preparation of α aminoallenes using a three-component reaction of aldehyde, carbamate and propargylsilane. Tetrahedron Lett. 2002, 43 (8), 1453-1456; (d) Sai, M.; Matsubara, S. Silver-Catalyzed Intramolecular Chloroamination of Allenes: Easy Access to Functionalized 3-Pyrroline and Pyrrole Derivatives. Org. Lett. 2011, 13 (17), 4676-4679; (e) Xu, T.; Mu, X.; Peng, H.; Liu, G. Silver-Catalyzed Intramolecular Aminofluorination of Activated Allenes. Angew. Chem. 2011, 123 (35), 8326-8329; (f) Morita, N.; Krause, N. Gold Catalysis in Organic Synthesis: Efficient Cycloisomerization of α-Aminoallenes to 3-Pyrrolines. Org. Lett. 2004, 6 (22), 4121-4123; (g) Morita, N.; Krause, N. Gold-Catalyzed Cycloisomerization of α-Aminoallenes to 3-Pyrrolines - Optimization and Mechanistic Studies. Eur. J. Org. Chem. 2006, 4634-4641; (h) Kang, S.-K.; Kim, K.-J. Palladium(0)-Catalyzed

Carbonylation-Coupling-Cyclization of Allenic Sulfonamides with Aryl Iodides and Carbon Monoxide. Org. Lett. 2001, 3 (4), 511-514; (i) Ma, S.; Yu, F.; Gao, W. Studies on Pd(II)-Catalyzed Coupling-Cyclization of α - or β-Amino Allenes with Allylic Halides. J. Org. Chem. 2003, 68 (15), 5943-5949.
(11) Ohno, H.; Kadoh, Y.; Fujii, N.; Tanaka, T. Potassium Carbonate-Promoted Stereospecific 5-Endo-Trig Cyclization of Unactivated Allenes in the Absence of Any Transition Metals. Org. Lett. 2006, 8 (5), 947-950.
(12) Wu, P.; Liu, H.; Tong, X. Synthesis of 3-pyrroline via domino Heck-aza-Michael reaction. Tet. Lett. 2012, 53, 4673-4675.
(13) Hayes, C.J.; Sherlock, A.E.; Green, M.P.; Wilson, C.; Blake, A.J.; Selby, M.D.; Prodger, J.C. Enantioselective Total Syntheses of Omuralide, 7-epi-Omuralide, and (+)-Lactacystin. J. Org. Chem. 2008, 73, 2041-2051.
(14) Tran, G.; Meier, R.; Harris, L.; Browne, D.L.; Ley, S.V. Synthesis and Use of a Trifluoromethylated Azomethine Ylide Precursor. J. Org. Chem. 2012, 77, 1107111078.
(15) (a) Boominathan, S.S.K.; Hu, W.-P.; Sendi, G.P.; Wang, J.J. Silver(I)-Catalyzed Conia-Ene Reaction: Synthesis of 3-Pyrrolines via a 5-endo-dig-Cyclization. Adv. Synth. Catal. 2013, 355, 3570-3574; (b) Zheng, C.; Wang, Y.; Fan, R. Iodine(III)Mediated Oxidative Cross-Coupling of Enamines and Propargylamines under Metal-Free Conditions: An Alternative Way to Prepare Highly Substituted 3Pyrrolines. Org. Lett. 2015, 17 (4), 916-919.
(16) Chogii, I.; Njardarson, J.T. Asymmetric [3+2] Annulation Approach to 3Pyrrolines: Concise Total Syntheses of (-)-Supinidine, (-)-Isoretronecanol, and (+)Elacomine. Angew. Chem. Int. Ed. 2015, 54 (46), 13706-13710.
(17) Chelucci, G.; Saba, A. (S)-(+)- and (R)-(-)-1,5-Dimethyl-4-phenyl-1,5-dihydro-2H-pyrrol-2-ones by Carbene Ring Contraction and Decarboxylation of (2R, 3S)-(-)and (2S, 3R)-(+)-6-Diazo-3,4-dimethyl-2-phenyloxazepane-5,7-diones. Angew. Chem. Int. Ed. Engl. 1995, 34 (1), 78-79.
(18) Duttwyler, S.; Lu, C.; Rheingold, A.L.; Bergman, R.G.; Ellman, J.A. Highly Diastereoselective Synthesis of Tetrahydropyridines by a C-H Activation-Cyclization-Reduction Cascade. J. Am. Chem. Soc. 2012, 134, 4064-4067.
(19) (a) Beceño, C.; Krappitz, T.; Raabe, G.; Enders, D. Asymmetric Synthesis of Tetrahydropyridines via a Brønsted Acid Catalyzed Aza-Diels-Alder Reaction. Synthesis, 2015, 47 (23), 3813-3821; (b) He, L.; Laurent, G.; Retailleau, P.; Folleas, B.; Brayer, J.-L.; Masson, G. Highly Enantioselective Aza-Diels-Alder Reaction of 1-Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric Acids. Angew. Chem. Int. Ed. 2013, 52 (42), 11088-11091; (c) Tambar, U.K.; Lee, S.K.; Leighton, J.L. Enantioselective (Formal) Aza-Diels-Alder Reactions with Non-Danishefsky-Type Dienes. J. Am. Chem. Soc. 2010, 132 (30), 10248-10250.
(20) de la Pradilla, R.F.; Simal, C.; Bates, R.H.; Viso, A.; Infantes, L. SulfoxideDirected Enantioselective Synthesis of Functionalized Tetrahydropyridines. Org. Lett. 2013, 15 (19), 4936-4939.
(21) (a) Zhu, X.F.; Lan, J.; Kwon, O. An Expedient Phosphine-Catalyzed [4+2] Annulation: Synthesis of Highly Functionalized Tetrahydropyridines. J. Am. Chem. Soc. 2003, 125, 4716-4717; (b) Wurz, R.P.; Fu, G.C. Catalytic Asymmetric Synthesis of Piperidine Derivatives through the [4+2] Annulation of Imines with Allenes. J. Am. Chem. Soc. 2005, 127 (35), 12234-12235; (c) Zhou, L.; Yuan, C.; Zeng, Y.; Liu, H.; Wang, C.; Gao, X.; Wang, Q.; Zhang, C.; Guo, H. Phosphinecatalyzed [5+1] annulation of γ-sulfonamide-substituted enones with N sulfonylimines: a facile synthesis of tetrahydropyridines. Chem. Sci. 2018, 9, 18311835.
(22) For selected examples, see: (a) Wang, Z.; Xu, H.; Su, Q.; Hu, P.; Shao, P.-L.; He, Y.; Lu, Y. Enantioselective Synthesis of Tetrahydropyridines/Piperidines via Stepwise [4+2][2+2] Cyclization. Org. Lett. 2017, 19 (12), 3111-3114; (b) Hu, P.; Hu, J.; Jiao, J.; Tong, X. Amine-Promoted Asymmetric (4+2) Annulations for the Enantioselective Synthesis of Tetrahydropyridines: A Traceless and Recoverable Auxiliary Strategy. Angew. Chem. Int. Ed. 2003, 52 (20), 5319-5322; (c) Rutjes, F. P. J. T.; Tjen, K. C. M. F.; Wolf, L.B.; Karstens, W. F. J.; Schoemaker, H. E.; Hiemstra, H. Selective Azetidine and Tetrahydropyridine Formation via PdCatalyzed Cyclization of Allene-Substituted Amines and Amino Acids. Org. Lett. 1999, 1 (5), 717-720; (d) Inuki, S.; Iwata, A.; Oishi, S.; Fujii, N.; Ohno, H. Enantioselective Total Synthesis of (+)-Lysergic Acid, (+)-Lysergol, (+)-Isolysergol by Palladium-Catalyzed Domino Cyclization of Allenes Bearing Amino and Bromoindolyl Groups. J. Org. Chem. 2011, 76 (7), 2072-2083; (e) Ohno, H.; Mizutani, T.; Kadoh, Y.; Aso, A.; Miyamura, K.; Fujii, N.; Tanaka, T. A Highly Regioand Stereoselective Formation of Bicyclo[4.2.0]oct-5-ene Derivatives through Thermal Intramolecular [2+2] Cycloaddition of Allenes. J. Org. Chem. 2007, 72 (12), 4378-4389; (f) Inkui, S.; Oishi, S.; Fujii, N.; Ohno, H. Total Synthesis of (\pm)Lysergic Acid, Lysergol, and Isolysergol by Palladium-Catalyzed Domino Cyclization of Amino Allenes Bearing a Bromoindolyl Group. Org. Lett. 2008, 10 (22), 5239-5242.
(23) For examples, see: (a) Donohoe, T.J.; Guyo, P.M.; Helliewll, M. The stereoselective Birch reduction of pyrroles. Tetrahedron Lett. 1999, 40 (3), 435438. (b) Schafer, A.; Schafer, B. Diastereoselective protonation after the Birch reduction of pyrroles. Tetrahedron, 1999, 55 (42), 12309-12312; (c) Donohoe, T.J.; Thomas, R.E. Partial reduction of pyrroles: application to natural product synthesis. Chem. Rec. 2007, 7, 180-190; (d) Wu, J.; Tang, W.; Pettman, A.; Xiao, J. Efficient and Chemoselective Reduction of Pyridines to Tetrahydropyridines and Piperidines via Rhodium-Catalyzed Transfer Hydrogenation. Adv. Synth. Catal. 2013, 355, 35-40.
(24) For recent reviews, see: (a) Blechert, S.; Schuster, M. Olefin Metathesis in Organic Chemistry. Angew. Chem. Int. Ed. Engl. 1997, 36 (19), 2036-2056; (b) Montgomery, T.P.; Johns, A.M.; Grubbs, R.H. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts. Catalysts, 2017, 6, 87; (c) Ogba, O.M.; Warner, N.C.; O'Leary, D. J.; Grubbs, R.H. Recent advances
in ruthenium-based olefin metathesis. Chem. Soc. Rev. 2018, 47, 4510-4544; (d) Dieters, A.; Martin, S.F. Synthesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis Chem. Rev. 2004, 104 (5), 2199-2238.
(25) (a) Fu, G.C.; Grubbs, R.H. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles. J. Am. Chem. Soc. 1992, 114 (13), 5426-5427; (b) Fu, G.C.; Grubbs, R.H. The synthesis of nitrogen heterocycles via catalytic ring-closing metathesis of dienes. J. Am. Chem. Soc. 1992, 114 (18), 7324-7325.
(26) (a) Ulman, M.; Grubbs, R.H.; Ruthenium Carbene-Based Olefin Metathesis Initiators: Catalyst Decomposition and Longevity. J. Org. Chem. 1999, 64 (19), 7202-7207; (b) Yee, N.K.; Farina, V.; Houpis, I.N.; Haddad, N.; Frutos, R.P.; Gallou, F.; Wang, X.-j.; Wei, X.; Simpson, R.D.; Feng, X.; Fuchs, V.; Xu, Y.; Tan, J.; Zhang, L.; Xu, J.; Smith-Keenan, L.L.; Vitous, J.; Ridges, M.D.; Spinelli, E.M.; Johnson, M. Efficient Large-Scale Synthesis of BILN 2061, a Potent HCV Protease Inhibitor, by a Convergent Approach Based on Ring-Closing Metathesis. J. Org. Chem. 2006, 71 (19), 7133-7145; (b) Hong, S. H.; Wenzel, A.G.; Salguero, T.T.; Day, M.W.; Grubbs, R.H. Decomposition of Ruthenium Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2007, 129 (25), 7961-7968; (c) Manzini, S.; Poater, A.; Nelson, D.J.; Cavallo, L.; Slawin, A.M.Z.; Nolan, S.P. Insights into the decomposition of olefin metathesis precatalysts. Angew. Chem. Int. Ed. 2014, 53, 8995-8999; (d) Wilson, G.O.; Porter, K.A.; Weissman, H.; White, S.R.; Sottos, N.R.; Moore, J.S. Stability of Second Generation Grubbs' Alkylidenes to Primary Amines: Formation of Novel Ruthenium-Amine Complexes. Adv. Synth. Catal. 2009, 351, 1817-1825; (e) Lummiss, J.A.M.; Ireland, B.J.; Sommers, J.M.; Fogg, D.E. Amine-Mediated Degradation in Olefin Metathesis Reactions that Employ the Second-Generation Grubbs Catalyst. Chem. Cat. Chem. 2014, 6, 459-463; (f) Ireland, B.J.; Dobigny, B.T.; Fogg, D.E. Decomposition of a Phosphine-Free Metathesis Catalyst by Amines and Other Bronsted Bases: Metallacyclobutane Deprotonation as a Major Deactivation Pathway. ACS Catal. 2015, 5 (8), 46904698.
(27) (a) Compain, P. Olefin Metathesis of Amine-Containing Systems: Beyond the Current Consensus. Adv. Syn. Catl. 2007, 349, 1829-1846; (b) Compain, P.; Hazelard, D. Synthesis of Amine-Containing Heterocycles by Metathesis Reactions: Recent Advances and Opportunities. Top. Heterocycl. Chem. 2017, 47, 111-154.
(28) School, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1 (6), 953956; (b) Trnka, T.M.; Morgan, J.P.; Sanford, M.S.; Wilhelm, T.E.; School, M.; Choi, T.L.; Ding, S.; Day, M.W.; Grubbs, R.H. Synthesis and Activity of Ruthenium Alkylidene Complexes Coordinated with Phosphine and N-Heterocyclic Carbene Ligands. J. Am. Chem. Soc. 2003, 125 (9), 2546-2558.
(29) Zaidi, K. Pharmacopeial Forum 2008, 34, 1345-1348.
(30) Kuhn, K.M.; Champagne, T.M.; Hong, S. H.; Wei, W.-H.; Nickel, A.; Lee, C.W.; Virgil, S.C.; Grubbs, R.H.; Pederson, R.L. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring-Closing Metathesis. Org. Lett. 2010, 12 (5), 984-987.
(31) Chao, W.; Weinreb, S.M. The First Examples of Ring-Closing Olefin Metathesis of Vinyl Chlorides. Org. Lett. 2003, 5 (14), 2505-2507; (b) Chao, W.; Meketa, m.L.; Weinreb, S.M. Ring-Closing Metathesis of Vinyl Chlorides for Formation of 5-, 6and 7-Membered Carbocyclic and Heterocyclic Systems. Synthesis 2004, 12, 2058-2061.
(32) For reviews of metal-catalyzed cross-couplings, see: (a) Metal-Catalyzed CrossCoupling Reactions, (EDs.; A. de Meijere, F. Diederich), Wiley-VCH, New York, 2004; (b) Cross-Coupling Reactions: A Practical Guide (Ed.: N. Miyaura), Topics in Current Chemistry Series 219, Spring-Verlag, New York, 2002; (c) Handbook of Organopalladium Chemistry for Organic Synthesis, (Ed.; E.-i. Negishi, WileyInterscience, New York, 2002.
(33) Gatti, M.; Drinkel, E.; Wu, L.; Pusteria, I.; Gaggia, F.; Dorta, R. Efficient RingClosing Metathesis of Alkenyl Bromides: The Importance of Protecting the Catalyst during the Olefin Approach. J. Am. Chem. Soc. 2010, 132 (43), 1517915181.
(34) (a) Furstner, A.; Leitner, A. A Catalytic Approach to (R)-(+)-Muscopyridine with Integrated "Self-Clearance." Angew. Chem. Int. Ed. 2003, 42 (3), 308-311; (b) Furstner, A.; Grabowski, J.; Lehmann, C.W. Total Synthesis and Structural Refinement of the Cyclic Tripyrrole Pigment Nonylprodigiosin. J. Org. Chem. 1999, 64 (2), 8275-8280; (c) Scheiper, B.; Glorius, F.; Leitner, A.; Furstner, A. Catalysisbased enantioselective total synthesis of the macrocyclic spermidine alkaloid isooncinotine. Proc. Natl. Acad. Sci. U.S.A., 2004, 101 (33), 11960-11965; (d) Edwards, A.S.; Wybrow, R.A.; Johnstone, C.; Adams, H.; Harrity, J.P. A new approach to functionalised spiropiperidines through tandem RCM and nitrogendirected reactions. Chem. Commun. 2002, 1542-1543; (e) Gracias, V.; Gasiecki, A.F.; Moor, J.D.; Akritopoulou-Zanze, I.; Djuric, S.W. An expedient route to diazaspirocycles utilizing a sequential multicomponent α-aminoallylation/ring-closing metathesis strategy. Tetrahedron, Lett. 2006, 47 (50), 8977-8980; (f) Prusov, E.; Maier, M.E. Synthesis of nitrogen-containing spirocyclic scaffolds via aminoallylation/RCM sequence. Tetrahedron 2007, 63, 10486-10496; (g) Wright, D.L.; Schulte II, J.P.; Page, M.A. An Imine Addition/Ring-Closing Metathesis Approach to the Spirocyclic Core of Halichlorine and Pinnaic Acid. Org. Lett., 2000, 2 (13), 1847-1850; (h) Fu, G.C.; Nguyen, S.T.; Grubbs, R.H. Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex. J. Am. Chem. Soc. 1993, 115 (21), 9856-9857.
(35) Yang, Q.; Xiao, W.J.; Yu, Z. Lewis Acid Assisted Ring-Closing Metathesis of Chiral Diallylamines: An Efficient Approach to Enantiopure Pyrrolidine Derivatives. Org. Lett. 2005, 7 (5), 871-874.
(36) Woodward, C.P.; Spiccia, N.D.; Jackson, W.R.; Robinson, A.J. A simple amine protection strategy for olefin metathesis reactions. Chem. Commun., 2011, 47, 779-781.
(37) (a) Boger, D.L.; Turnbull, P. Synthesis and Evaluation of CC-1065 and Duocarmycin Analogs Incorporating the 1,2,3,4,11,11a-Hexahydrocyclopropa[c]naphtho[2,1-b]azepin-6-one (CNA) Alkylation Subunit: Structural Features that Govern Reactivity and Reaction Regioselectivity. J. Org. Chem. 1997, 62 (17), 5849-5863; (b) Martin, S.F.; Liao, Y.S.; Wong, Y.L.; Rein, T. A novel approach to the asymmetric synthesis of manzamine A. Construction of the tetracyclic ABCE ring system. Tetrahedron Lett. 1994, 35, 691-694; (c) Pilli, R.A.; de Oliveria, M.D.C.F. Recent progress in the chemistry of the Stemona alkaloids. Nat. Prod. Preb. 2000, 127 (17), 225-235; (d) Sakai, R.; Higa, T.; Jefford, C.W.; Bernardinelli, G. Manzamine A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 1986, 108 (20), 6404-6405; (e) Wipf, P.; Spencer, S.R. Asymmetric Total Syntheses of Tuberostemonine, Didehydrotuberostemonine, and 13-Epituberostemonine. J. Am. Chem. Soc. 2005, 127 (1), 225-235.
(38) Teichert, J.F.; Zhang, S.; van Zijl, A.W.; Slaa, J.W.; Minnaard, A.J.; Feringa, B.L. Asymmetric Allylic Alkylation in Combination with Ring-Closing Metathesis for the Preparation of Chiral N-Heterocycles. Org. Lett. 2010, 12 (20), 4658-4660.
(39) (a) Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. J. Am. Chem. Soc. 2000, 122 (34), 8168-8179; (b) Gessler, S.; Randl, S.; Blechert, S. Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex. Tetrahedron Lett. 2000, 41, 9973-9976.
(40) (a) Grela, K.; Harutyunyan, S.; Michrowska, A. A Highly Efficient Ruthenium Catalyst for Metathesis Reactions. Angew. Chem. 2002, 114 (21), 4210-4212; A Highly Efficient Ruthenium Catalyst for Metathesis Reactions. Angew. Chem. Int. Ed. 2002, 41 (21), 4038-4040; (b) Grela, K.; Kim, M. A Good Bargain: An Inexpensive, Air-Stable Ruthenium Metathesis Catalyst Derived from α-Asarone. Eur. J. Org. Chem. 2003, 963-966; (d) Van Veldhuizen, J. J.; Gillingham, D.G.; Garber, S.B.; Katoaka, O.; Hoveyda, A.H. Chiral Ru-Based Complexes for Asymmetric Olefin Metathesis: Enhancement of Catalyst Activity through Steric and Electronic Modifications. J. Am. Chem. Soc. 2003, 125 (41), 12502-12508.
(41) Tzur, E.; Szadkowska, A.; Ben-Asuly, A.; Makal, A.; Goldberg, I.; Wozniak, K.; Grela, K.; Lemcoff, N.G. Studies on Electronic Effects in O-, N- and S-Chelated Ruthenium Olefin-Metathesis Catalysts. Chem. Eur. J. 2010, 16, 8726-8737.
(42) (a) Schmidt, B. Ruthenium-Catalyzed Cyclizations: More than Just Olefin Metathesis! Angew. Chem. Int. Ed. 2003, 42 (41), 4996-4999; (b) Yammamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. Ruthenium(II)-Catalyzed Isomer-Selective Cyclization of 1,6-Dienes Leading to exo-Methylenecyclopentanes: Unprecedented Cycloisomerization Mechanism Involving Ruthenacyclopentane(hydrido) Intermediate. J. Am. Chem. Soc. 2001, 123 (26), 6372-6380; (c) Hong, S.; Sanders, D.P.; Lee, C.W.; Grubbs, R.H. Prevention of

Undesirable Isomerization during Olefin Metathesis. J. Am. Chem. Soc. 2005, 127 (49), 17160-17161.
(43) (a) Slugovc, C.; Perner, B.; Stelzer, F.; Mereiter, K. "Second Generation" Ruthenium Carbene Complexes with a cis-Dichloro Arrangement. Organometallics, 2004, 23 (15), 3622-3626; (b) Burtscher, D.; Perner, B.; Mereiter, K.; Slugovc, C. Peculiarities of the reaction of (SPY-5-34)-dichloro-(k2(C,O)-2-formylbenzylidene)(1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-
ylidene)ruthenium with potassium hydridotris(pyrazolyl)borate. J. Organomet. Chem. 2006, 691, 5423-5430.
(44) (a) Ung, T.; Heijl, A.; Grubbs, R.H.; Schrodi, Y. Latent Ruthenium Olefin Metathesis Catalysts That Contain an N-Heterocyclic Carbene Ligand. Organometallics, 2004, 23 (23), 5399-5401; (b) Slugovc, C.; Burtscher, D.; Stelzer, F.; Mereiter, K. Thermally Switchable Olefin Metathesis Initiators Bearing Chelating Carbenes: Influence of the Chelate's Ring Size. Organometallics, 2005, 24 (10), 2255-2258; (c) Szadkowska, A.; Gstrein, X.; Burtscher, D.; Jarzembska, K.; Wozniak, K.; Slugovc, C.; Grela, K. Latent Thermo-Switchable Olefin Metathesis Initiators Bearing a Pyridyl-Functionalized Chelating Carbene: Influence of the Leaving Group's Rigidity on the Catalyst's Performance. Organometallics, 2010, 29 (1), 117-124.
(45) (a) Szadkowska, A.; Makal, A.; Wozniak, K.; Kadyrov, R.; Grela, K. Ruthenium Olefin Metathesis Initiators Bearing Chelating Sulfoxide Ligands. Organometallics, 2009, 28 (9), 2693-2700; (b) Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N.G. Latent sulfur chelated ruthenium catalysts: Steric acceleration effects on olefin metathesis. J. Organomet. Chem. 2008, 693, 2200-2203; (c) BenAsuly, A.; Tzur, E.; Diesendruck, C.E.; Sigalov, M.; Goldberg, I.; Lemcoff, N.G. A Thermally Switchable Latent Ruthenium Olefin Metathesis Catalyst. Organometallics 2008, 27 (5), 811-813; (d) Ben-Asuly, A.; Tzur, E.; Diesendruck, C.E.; Sigalov, M.; Goldberg, I.; Lemcoff, N.G. Photoactivation of Ruthenium Olefin Metathesis Initiators. Organometallics 2009, 28 (16), 4652-4655.
(46) Diesendruck, C.E.; Tzur, E.; Ben-Asuly, A.; Goldberg, I.; Straub, B.F.; Lemcoff, N.G. Predicting the Cis-Trans Dichloro Configuration of Group 15-16 Chelated Ruthenium Olefin Metathesis Complexes: A DFT and Experimental Study. Inorg. Chem. 2009, 48 (22), 10819-10825.
(47) Lexer, C.; Brutscher, D.; Perner, B.; Tzur, E.; Lemcoff, N.G.; Slugovc, C. Olefin metathesis catalyst bearing a chelating phosphine ligand. J. Organomet. Chem. 2011, 696, 2466-2470.
(48) Kuethe, J.; Zhong, Y.-L.; Yasuda, N.; Beutner, G.; Linn, K.; Kim, M.; Marcune, B.; Dreher, S.D.; Humphrey, G.; Pei, T. Development of a Practical, Asymmetric Synthesis of the Hepatitis C Virus Protease Inhibitor MK-5172. Org. Lett. 2013, 15 (16), 4174-4177.
(49) Williams, M.J.; Kong, J.; Chung, C.K.; Brunskill, A.; Campeau, L.-C.; McLaughlin, M. The Discovery of Quinoxaline-Based Metathesis Catalysts from Synthesis of Grazoprevir (MK-5172). Org. Lett. 2016, 18 (9), 1952-1955.
(50) Kajetanowicz, A.; Milewski, M.; Roginska, J.; Gajda, R.; Wozniak, K. HoveydaType Quinone-Containing Complexes - Catalysts to Prevent Migration of the Double Bond under Metathesis Conditions. Eur. J. Org. Chem. 2017, 626-638.
(51) (a) Trnka, T.M.; Grubbs, R.H. The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story. Acc. Chem. Res. 2001, 34 (1), 18-29; (b) Samojlowicz, C.; Bieniek, M.; Grela, K. Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands. Chem. Rev. 2009, 109 (8), 3708-3742.
(52) Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-Based Heterocyclic CarbeneCoordinated Olefin Metathesis Catalysts. Chem. Rev. 2010, 110 (3), 1746-1787.
(53) (a) Love, J.A.; Morgan, J.P.; Trnka, T.M.; Grubbs, R.H. A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. 2002, 114 (21), 4207-4209; (b) Love, J.A.; Morgan, J.P.; Trnka, T.M.; Grubbs, R.H. A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. Int. Ed. 2002, 41 (21), 4035-4037; (c) Clavier, H.; Petersen, J.L.; Nolan, S.P. A pyridinecontaining ruthenium-indenylidene complex: Synthesis and activity in ring-closing metathesis. J. Organomet. Chem. 2006, 691, 5444-5447.
(54) (a) Boeda, F.; Clavier, H.; Nolan, S.P. Ruthenium-indenylidene complexes: powerful tools for metathesis transformations. Chem. Commun. 2008, 2726-2740; (b) Clavier, H.; Urbina-Blanco, C.A.; Nolan, S.P. Indenylidene Ruthenium Complex Bearing a Sterically Demanding NHC Ligand: An Efficient Catalyst for Olefin Metathesis at Room Temperature. Organometallics, 2009, 28 (9), 2848-2854; (c) Bantriel, X.; Schmid, T.E.; Randall, Slawin, A.M.Z.; Xazin, C.S.J. Mixed Nheterocyclic carbene/phosphite ruthenium complexes: towards a new generation of olefin metathesis catalysts. Chem. Commun. 2010, 46 (38), 7115-7117; (d) Clavier, H.; Nolan, S.P.; N-Heterocyclic Carbene and Phosphine Ruthenium Indenylidene Precatalysts: A Comparative Study in Olefin Metathesis. Chem. Eur. J. 2007, 13 (28), 8029-8036; (e) Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K. In an Attempt to Provide a User's Guide to the Galaxy of Benzylidene, Alkoxybenzylidene, and Indenylidene Ruthenium Olefin Metathesis Catalysts. Chem. Euro. J. 2008, 14 (3), 806-818.
(55) Urbina-Blanco, C. A.; Leitgeb, A.; Slugovc, C.; Bantreil, X.; Clavier, H.; Slawin, A. M. Z.; Nolan, S.P. Olefin Metathesis Featuring Ruthenium Indenylidene Complexes with a Sterically Demanding NHC Ligand. Chem. Eur. J. 2011, 17(18), 5045-5053.
(56) Manzini, S.; Urbina Blanco, C. A.; Slawin, A. M. Z.; Nolan, S. P. Effect of Ligand Bulk in Ruthenium-Catalyzed Olefin Metathesis: IPr^{*} vs IPr. Organometallics 2012, 31 (18), 6514-6517.
(57) (a) Vehlow, K.; Gessler, S.; Blechert, S. Deactivation of Ruthenium Olefin Metathesis Catalysts through Intramolecular Carbene-Arene Bond Formation. Angew. Chem. Int. Ed. 2007, 46 (42), 8082-8085; (b) Hong, S. H.; Chlenov, A.; Day, M.W.; Grubbs, R.H.Double C--H activation of an N-heterocyclic carbene
ligand in a ruthenium olefin metathesis catalyst. Angew. Chem. Int. Ed. 2007, 46 (27), 5148-5151.
(58) (a) Chung, C.K.; Grubbs, R.H. Olefin Metathesis Catalyst: Stabilization Effect of Backbone Substitutions of N-Heterocyclic Carbene. Org. Lett. 2008, 10 (13), 26932696; (b) Kuhn, K.M.; Bourg, J.-B.; Chung, C.K.; Virgil, S.C.; Grubbs, R.H. Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-Based Olefin Metathesis. J. Am. Chem. Soc. 2009, 131 (14), 5313-5320; (c) Grisi, F.; Mariconda, A.; Costabile, C.; Bertolasi, V.; Longo, P. Influence of syn and anti Configurations of NHC Backbone on Ru-Catalyzed Olefin Metathesis. Organometallics, 2009, 28 (17), 4988-4995; (d) Costabile, C.; Mariconda, A.; Cavallo, L.; Longo, P.; Bertolasi, V.; Ragone, F.; Grisi, F. The Pivotal Role of Symmetry in the Ruthenium-Catalyzed Ring-Closing Metathesis of Olefins. Chem. Eur. J. 2011, 17 (31), 8618-8629.
(59) Torborg, C.; Szczepaniak, G.; Zielinski, A.; Malinska, M.; Wozniak, K.; Grela, K. Stable ruthenium indenylidene complexes with a sterically reduced NHC ligand. Chem. Commun. 2013, 49, 3188-3190.
(60) (a) Furstner, A.; Liebl, M.; Lehmann, C.W.; Picquet, M.; Kunz, R.; Bruneau, C.; Touchard, D.; Dixneuf, P.H. Cationic Ruthenium Allenylidene Complexes as Catalysts for Ring Closing Olefin Metathesis. Chem. Eur. J. 2000, 6, 1847-1857; (b) Miyaki, Y.; Onishi, T.; Kurosawa, H. Synthesis and reaction of ruthenium(II) complexes containing heteroatom donor (O, N, and P) tethered to $\eta 6$-arene ring. Inorg. Chim. Acta. 2000, 300-302, 369-377; (c) Wang, D.; Wurst, K.; Knolle, W.; Decker, U.; Prager, L.; Naumov, S.; Buchmeiser, M.R. Cationic Ru(II) complexes with N -heterocyclic carbene ligands for UV-induced ring-opening metathesis polymerization. Angew. Chem. Int. Ed. 2008, 47 (17), 3267-3270; (d) Volland, M.A.O.; Hansen, S.M.; Rominger, F.; Hofmann, P. Synthesis, Structure, and Reactivity of Cationic Ruthenium(II) Carbene Complexes with Bulky Chelating Bisphosphines: Design of Highly Active Ring Opening Metathesis Polymerization (ROMP) Catalysts. Organometallics, 2004, 23 (4), 800-816; (e) Zirngast, M.; Pump, E.; Leitgeb, A.; Albering, J.H.; Slugovc, C. Pyridine as trigger for chloride isomerisation in chelated ruthenium benzylidene complexes: implications for olefin metathesis. Chem. Commun., 2011, 47, 2261-2263.
(61) Songis, O.; Slawin, A. M. Z.; Cazin, C. S. J. An unusual cationic Ru(II) indenylidene complex and its Ru (III) derivative-efficient catalysts for high temperature olefin metathesis reactions. Chem. Commun. 2012, 48, 1266-1268.
(62) Olefin Metathesis: Theory and Practice; Grela, K. Ed.; Wiley-VCH: Weinheim Germany, 2014; pp 253-267.
(63) For examples, see: (a) Alexander, J.B.; La, D.S.; Cefalo, D.R.; Hoveyda, A.H.; Schrock, R.R. Catalytic Enantioselective Ring-Closing Metathesis by a Chiral Biphen-Mo Complex. J. Am. Chem. Soc. 1998, 120 (16), 4041-4042; (b) La. D.S.; Alexander, J.B.; Cefalo, D.R.; Graf, D.D.; Hoveyda, A.H.; Schrock, R.R. MoCatalyzed Asymmetric Synthesis of Dihydrofurans. Catalytic Kinetic Resolution and Enantioselective Desymmetrization through Ring-Closing Metathesis. J. Am.

Chem. Soc. 1998, 120 (37), 9720-9721; (c) Zhu, S.S.; Cefalo, D.R.; La, D.S.; Jamieson, J.Y.; Davis, W.M.; Hoveyda, A.H.; Schrock, R.R. Chiral Mo-Binol Complexes: Activity, Synthesis, and Structure. Efficient Enantioselective SixMembered Ring Synthesis through Catalytic Metathesis. J. Am. Chem. Soc. 1999, 121 (36), 8251-8259; (d) Cefalo, D.R.; Kiely, A.F.; Wuchrer, M.; Jamieson, J.Y.; Schrock, R.R.; Hoveyda, A.H. Enantioselective Synthesis of Unsaturated Cyclic Tertiary Ethers By Mo-Catalyzed Olefin Metathesis. J. Am. Chem. Soc. 2001, 123 (13), 3139-3140; (e) Kiely, A.F.; Jernelius, J.A.; Schrock, R.R.; Hoveyda, A.H. Enantioselective Synthesis of Medium-Ring Heterocycles, Tertiary Ethers, and Tertiary Alcohols by Mo-Catalyzed Ring-Closing Metathesis. J. Am. Chem. Soc. 2002, 124 (12), 2868-2869; (f) Sattely, E.S.; Cortex, A.; Moebius, D.C.; Schrock, R.R.; Hoveyda, A.H. Enantioselective Synthesis of Cyclic Amides and Amines through Mo-Catalyzed Asymmetric Ring-Closing Metathesis. J. Am. Chem. Soc. 2005, 127 (23), 8526-8533.
(64) Dolman, S.J.; Schrock, R.R.; Hoveyda, A. H. Enantioselective Synthesis of Cyclic Secondary Amines through Mo-Catalyzed Asymmetric Ring-Closing Metathesis (ARCM). Org. Lett. 2003, 5 (25), 4899-4902.
(65) Hartung, J.; Dornan, P.K.; Grubbs, R.H. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes. J. Am Chem. Soc. 2014, 136 (37), 1302913037.
(66) Costabile, C.; Cavallow, L. Origin of Enantioselectivity in the Asymmetric RuCatalyzed Metathesis of Olefins. J. Am. Chem. Soc. 2004, 126 (31), 9592-9600.
(67) Paradiso, V.; Bertolasi, V.; Costabile, C.; Caruso, T.; Dabrowski, M.; Grela, K.; Grisi, F. Expanding the Family of Hoveyda-Grubbs Catalysts Containing Unsymmetrical NHC Ligands. Organometallics 2017, 36 (19), 3692-3708.
(68) Paradiso, V.; Bertolasi, V.; Costabile, C.; Grisi, F. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes. Dalton Trans. 2016, 45 (2), 561-571.
(69) Grubbs, R.H.; Carr, D.D.; Hoppin, C.; Burk, P.L. Consideration of the mechanism of the metal catalyzed olefin metathesis reaction. J. Am. Chem. Soc., 1976, 98, 3478-3483.
(70) Hoveyda, A. H.; Zhugralin, A.R. The remarkable metal-catalyzed olefin metathesis reaction. Nature, 2007, 450, 243-251.
(71) Fu, G.C.; Grubbs, R.H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc. 1993, 115 (9), 38003801.
(72) Zhou, J.; Rainier, J.D. Olefinic-Amide and Olefinic-Lactam Cyclizations. Org. Lett. 2009, 11 (16), 3774-3776.

Chapter 2

Application of Carbonyl-Olefin Metathesis Towards the Synthesis of Chiral

3-Pyrrolines**

2.1 Introduction

Chiral pyrrolidine and pyrrole derivatives represent ubiquitous structural motifs in biologically active natural products ${ }^{1}$ and serve as important templates in drug discovery. ${ }^{2}$ Moreover, chiral pyrrolidines function as ligands in asymmetric catalysis ${ }^{3}$ and are crucial
(a) Current strategies towards accessing chiral pyrrolidines.

Ellman's
sulfinamides

Ellmatic
hydroamination
catalytic α-arylation and -alkylation

α-arylation

Campos (2006): α-arylation Fu (2013): α-alkylation

Yu (2017): α-arylation of thioamides
with $\mathrm{R}=$ aryl, alkyl
(b) Current strategies for accessing 3-pyrrolines.

Figure 2.1 Strategies towards accessing chiral nitrogen heterocycles.

[^1]components of hydrogen-bond donor catalysts. ${ }^{4}$ As a result of these wide-ranging implications, the development of synthetic strategies to chiral nitrogen-containing heterocycles constitutes an active area of research. Among the currently available synthetic strategies are the reductive cyclization of N-tert-butanesulfinyl ketimines ${ }^{5,6}$ to access chiral pyrrolidines 1 (Figure 2.1a). An alternative approach relies on enantioselective olefin hydroamination strategies ${ }^{7-10}$ as a synthetic approach to α substituted pyrrolidines 2. Additionally, transition-metal catalyzed asymmetric α-arylation and -alkylation strategies ${ }^{11-14}$ give rise to protected pyrrolidines 3 and 4. However, xamples of direct cyclization strategies towards accessing chiral 3-pyrrolines are somewhat limited (Figure 2.1b). The most common strategy for accessing this motif is via ring closing metathesis (5-8, Figure 2.1b), however, recent reports have employed allene annulation to access substituted 3-pyrrolines 9. Despite these efforts, imparting stereochemistry still presents a challenge (Figure 2.1b). Furthermore, precursors can be challenging to access and these approaches often require expensive precious metal catalysts.

With the recent development of carbonyl-olefin metathesis, we envisioned a strategy that would enable us to access chiral 3-pyrrolines 10 by utilizing chiral pool reagents. This

Figure 2.2 Strategies towards accessing chiral 3-pyrrolines.
chapter describes the development of a synthetic strategy towards access chiral α-amino ketones and the application of the Lewis-acid catalyzed carbonyl-olefin metathesis reaction. Our strategy relies on an iron(III)-catalyzed carbonyl-olefin ring-closing metathesis reaction which enables the direct coupling of carbonyl and olefin functional groups 12 to form intermediate oxetanes 13 which then fragment generating the desired metathesis products $14 .{ }^{15,16}$ Substrates containing nitrogen atoms were previously shown to be problematic in carbonyl-olefin ring-closing metathesis reactions. ${ }^{16 a, 17}$ In this report, we identify the sulfonamide as a competitive binding site of the FeCl 3 catalyst which prevents the desired metathesis (11, Figure 2.2b). Based on these insights, we show that attenuating the Lewis basicity of the sulfonamide moiety is a viable strategy to overcome this limitation due to iron sequestration to ultimately promote the desired carbonyl-olefin metathesis. This approach enables efficient turnover of the iron catalyst and results in the desired, chiral pyrrolines in high yields.

2.2 Results and Discussion

At the outset of our investigations, we developed a concise and modular synthetic strategy to access metathesis substrates from commercially available amino acids which enables distinct variations of the α-amino and aryl ketone substituents (Figure 2.3). ${ }^{18}$ Starting with the protected amino acids 15, we first performed a peptide coupling reaction

Figure 2.3 Flexible 3-step strategy for accessing substrates from commercially available, chiral amino acids.
using DCC to access the Weinreb amides 16. Upon subjecting the Weinreb amide to either the aryl Grignard or aryl lithium reagents, we were able to access the aryl ketones 17 in up to 79% yield over two steps. Alkylation of the secondary amine with prenyl bromide provides the desired substrates 18 in up to 99% yield. Some key highlights of 3 this synthetic sequence are that it is a concise, 3 -step reaction sequence that is scalable and lends itself well to accessing a diverse array of chiral substrates.

With a substrate synthesis in hand, we first accessed the chiral phenylalanine derivative 19 and tested it against a variety of Lewis and Brønsted acids. When the N tosyl amine 19 was reacted with 20 mol\% of weak Lewis acids (e.g. $\mathrm{ZnCl}_{2}, \mathrm{FeCl}_{2}$) no formation of the desired metathesis product $\mathbf{2 0}$ was observed. Similarly, catalytic amounts of the strong Lewis acid AlCl_{3} resulted in exclusive re-isolation of unreacted starting material. Notably, the use of SnCl_{4} and GaCl_{3} under otherwise identical reaction conditions resulted in the formation of desired metathesis product 20, albeit in low yields while significant amounts of dealkylated starting material were observed (entries 1 and 2 , Table 2.1).

Subsequent experiments identified FeCl_{3} as a superior Lewis acid which formed 20 in 19\% yield while no competing substrate dealkylation was observed (entry 3, Table 1). These results are consistent with our previous studies of catalytic carbonylolefin metathesis reactions which

Table 2.1 Evaluation of carbonyl-olefin metathesis conditions.

illustrated that a fine-tuned combination of Lewis acidity and oxophilicity was essential for an efficient Lewis acid catalyst. ${ }^{16 b, 19}$

Figure 2.4 Preparation of 3-pyrrolines using allyltrimethylsilane as a superstoichiometric additive. Longer reaction times did not improve the yield, however, higher catalyst loadings of up to $50 \mathrm{~mol} \%$ resulted in increased yields of metathesis product 12a in 72% (entries 4-6, Table 2.1). Importantly, no erosion in enantioselectivity was observed in the carbonylolefin metathesis of 19 , resulting in the formation of the desired product in 98% ee. Brønsted acids such as pTsOH and anhydrous HCl did not promote the desired carbonylolefin metathesis reaction (entries 7 and 8, Table 2.1). During our initial investigations into the synthesis of highly valuable heterocyclic compounds using carbonyl-olefin metathesis, we observed the need for super stoichiometric amounts of FeCl_{3} or additional nucleophilic reagents and hypothesized that competitive Lewis acid binding to the tosyl protecting group was hampering effective catalysis. Li and coworkers reported a procedure that utilized styrenyl olefins 21 in place of the prenyl fragment, however, this strategy relied on the use of super stoichiometric allyltrimethylsilane (5.0 equiv.) as additive. Li proposed product inhibition was due to the formation of the benzaldehyde byproduct and that the allyltrimethylsilane could play a dual role by acting as both a benzaldehyde scavenger as well as activating the FeCl_{3} for catalysis. ${ }^{17}$

This strategy was proven to be quite effective, but we postulated that the presence of Lewis basic sites other than the carbonyl oxygen in 19 was leading to sequestration of the catalyst, so higher catalyst loadings were required. Subsequent efforts focused on the evaluation of electronically distinct nitrogen-protecting groups (e.g. Boc, Cbz, Ns) in the
carbonyl-olefin metathesis of Table 2.2 Evaluation of nitrogen protecting groups and phenylalanine-based substrates which resulted in increased substrate dealkylation and provided diminished yields of the desired metathesis products. We hypothesized that attenuating the electronic properties of the sulfonamide functionality by adding electron-withdrawing their effect on carbonyl-olefin metathesis.

Conditions: all reactions were performed using 0.06 mmol of the substrate in DCE (0.01 M) for 24 h . Yields are reported as NMR yields with naphthalene as internal standard.
substituents to the aromatic ring would disfavor sequestering of FeCl 3 and prevent stalling of the carbonyl-olefin metathesis reaction. When the tosyl group was replaced with N -4-chlorobenzene-sulfonamide 23 and subjected to carbonyl-olefin metathesis, the desired product was obtained in up to 96% yield (entry 2, Table 2.2). These yields were increased to 99% yield when the protecting group was replaced with the N -(4-trifluoromethyl)-benzenesulfonyl group (entry 3, Table 2.2), supporting our initial hypothesis. Importantly, the desired carbonyl-olefin metathesis product $\mathbf{2 6}$ is now obtainable in up to 80% yield with as low as $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ (entry 6, Table 2.2). In comparison.

Subsequent competitive binding studies supported our initial hypothesis that an

Conditions: reactions were performed using 0.033 mmol of substrates $(\mathbf{1 9 + 2 5})$ with 0.017 mmol of $\mathrm{FeCl}_{3}(50 \mathrm{~mol} \%)$ in DCE $(0.01 \mathrm{M})$. Reactions were stirred for 1 h at $0^{\circ} \mathrm{C}$.
electron-deficient sulfonamide moiety enables better turnover of the Lewis acid catalyst (Table 2.3). When 25 was subjected to attenuated reaction conditions, metathesis product 26 was formed in 83% yield (entry 1, Table 2.3). However, when the reaction of 25 was conducted in the presence of 0.3 equiv. of N-tosyl amine 19, 26 was formed in decreased yields of 76% (entry 2, Table 2.3). The yield is further reduced to 53% of 26 when equimolar amounts of both amines 19 and 25 are converted under the carbonylolefin metathesis conditions (Table 2.3, entry 3).

We next evaluated the effect of varying olefin substitution on the iron(III)-catalyzed carbonyl-olefin metathesis reaction (Table 2.4). Prenylated moieties proved to be superior and led to efficient formation of the desired metathesis products in up to 99% yield (entry

1, Table 2.4). Styrene derivatives 2834 resulted in overall decreased yields of 3-pyrroline 26 (entries 2-6, Table 2.4). Importantly, paramethoxystyrene $\mathbf{3 0}$ failed to undergo carbonyl-olefin metathesis and resulted in complete dealkylation of the starting material. ${ }^{19}$ While prenylderived alkenes undergo the desired transformation in an asynchronous, concerted fashion, the corresponding styrenyl-derivatives proceed via a distinct reaction pathway. ${ }^{21}$ For these

Table 2.4 Evaluation of olefin substituents on the carbonylolefin reaction.

substrates, oxetane fragmentation has been found to occur in a stepwise fashion via intermediate carbocations. This does explain the lower yields obtained for these substrates as a result of competing reaction paths (entries 2-6, Table 2.4). In comparison, no formation of the desired metathesis products was observed when crotyl alkene 33 or terminal alkene 34 were subjected to the optimized reaction conditions, which is consistent with previous reports. ${ }^{16,19}$ These results support our previous findings which establish prenyl-derived alkenes as superior substrates for catalytic carbonyl-olefin metathesis. ${ }^{21}$

The optimized reaction conditions developed for the iron(III)-catalyzed carbonyl-olefin metathesis reaction proved efficient to access a wide range of commercially available, natural and unnatural amino acid-derived 3-pyrrolines (Table 2.5). Importantly, toluene

Table 2.5 Evaluation of substrate scope.

Products Obtained:

Conditions: reactions were performed using 0.20 mmol of substrate and $\mathrm{FeCl}_{3}(0.5 \mathrm{eq})$ in $\mathrm{DCE}[0.01 \mathrm{M}]$. The reactions were stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then warmed to rt.
${ }^{\text {a }}$ Reactions were run in toluene [0.01 M] under otherwise identical conditions. ${ }^{\text {b }}$ Reaction was run using 5.0 equiv of allylTMS as an additive.
was established as a viable alternative solvent (26 and 38, Table 2.5) resulting in up to 94\% yield of the desired metathesis product. Substrates stemming from alanine resulted in the desired metathesis products in good to excellent yields (36-39, Table 3). Similarly, phenylalanine-derived starting materials proved efficient in the carbonyl-olefin metathesis reaction and resulted in the corresponding 3-pyrrolines in excellent yields (20,26,50, and 53, Table 2.5).

Substrates incorporating heteroatoms were also compatible with the optimal reaction conditions for carbonyl-olefin metathesis. Methionine-derived 3-pyrroline 44 is obtained in 64% yield while the metathesis product 48 stemming from thienyl-alanine is obtained in 84% yield. This method is amendable to heteroaromatic ketones as well - the thienyl derivative 43 provided 70\% of the desired product. Additional unnatural amino acid analogs of phenylalanine bearing naphthyl substituents provided the desired metathesis products in good to excellent yields of up to 91% (52, 57, 58 and 59, Table 2.5). It is interesting to note that glycine-derived 3-pyrroline 35 was formed in diminished yield of 50% while lower yields are also observed for the valine-derived substrate 40 . In comparison, the leucine-derived 3-pyrroline 41 is obtained in good yields of 67%. We suspect that a methylene-substituent in α-position to the nitrogen-heteroatom is beneficial for the formation of an intermediate oxetane whereas additional steric bulk at the β positions leads to more sterically constrained oxetane intermediates and thus diminished yields of the desired products. Notably, aryl substitution in the α-position is well tolerated resulting in 97\% yield (51) with addition of allytrimethylsilane. Furthermore, 2-amino isobutyric acid-derived 3-pyrrolines bearing a gem-dimethyl substituent in the α-position

Figure 2.5 Secondary modifications to chiral 3-pyrrolines.

are formed in excellent yields of up to 92% (45-47, Table 2.5). Further evaluation revealed that the carbonyl-olefin metathesis reaction is well tolerated by both electron deficient and electron-rich aryl ketone substrates (37-39, 46-47, 49, 50, 56, and 59, Table 2.5). Additionally, the substrates bearing the electron-deficient sulfonamide protecting groups unanimously resulted in higher yields than their corresponding N-tosylated analogs, providing further support for our design principle for iron-catalyzed carbonyl-olefin metathesis reactions (26, 52-55 Table 2.5).

Finally, the resulting chiral 3-pyrroline building blocks can undergo facile subsequent modifications to result in valuable chiral building blocks (Figure 2.5). Cleavage of the protecting group is facile with Sml 2 to generate the free amines 60 which could then be reprotected with TsCl to access 20 or the Boc-protected 3-pyrroline $61 .{ }^{22}$ Importantly, the reaction sequence proceeds with complete stereoretention ($98 \% \mathrm{ee}$) and generates the desired products in up to 97% yield (over two steps). Furthermore, these
building blocks can be used to access epoxides 62 bearing three contiguous stereocenters, as well as pyrrolidin-3-ones 63 (Figure 2.5).

2.3 Conclusions

The development of a new strategy for the synthesis of chiral 3-pyrrolines is reported relying on the design principle of an iron(III)-catalyzed carbonyl-olefin metathesis reaction. Importantly, the carbonyl-olefin metathesis reaction described herein is operationally facile, relies on commercially available chiral pool reagents and proceeds under mild reaction conditions with complete stereoretention to result in the desired 3pyrrolines in up to 98% ee. We expect that our strategy of attenuating the Lewis basicity of the sulfonamide to enable the desired mode of Lewis acid-activation for carbonyl-olefin metathesis can serve as a general strategy for other reactions in which sequestering of the active Lewis acid catalyst is observed.

2.4 Experimental Procedures

2.4.1 General Considerations

General Laboratory Procedures. All moisture-sensitive reactions were performed under an atmosphere of nitrogen in flame-dried round bottom flasks or glass vials fitted with rubber septa and/or septa equipped screw caps. Stainless steel syringes were used to transfer air or moisture sensitive liquids. Flash chromatography was performed using silica gel Silia Flash® 40-63 micron (230-400 mesh) from Silicycle.

Materials and Instrumentation. All chemicals were purchased from Sigma-Aldrich, VWR, Oakwood or Acros and were used as received unless otherwise stated. Tetrahydrofuran was dried by being passed through columns of activated alumina and distilled over sodium hydride and benzophenone. Triethylamine was distilled over calcium
hydride, and water was degassed following the freeze-pump-thaw approach. Proton Nuclear Magnetic Resonance NMR (${ }^{1} \mathrm{H} N M R$) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Varian Unity Plus 400, Varian MR400, Varian vnmrs 500, Varian Inova 500, Varian Mercury 500, and Varian vnmrs 700 spectrometers. Chemical shifts for protons are reported in parts per million and are references to the NMR solvent peak ($\mathrm{CDCl}_{3}: \delta 7.26, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 7.16, \mathrm{DMSO}-d_{6}: \delta 2.50$, or $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta 5.32$). Chemical shifts for carbons are reported in parts per million and are referenced to the carbon resonances of the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 77.16, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 128.06\right.$, DMSO-d6: $\delta 39.52$, or $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta 53.84$). Data are represented as follows: chemical shift, integration, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $m=$ multiplet), and coupling constants in Hertz (Hz). Mass spectroscopic (MS) data was recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Michigan in Ann Arbor, MI on an Agilent Q-TOF HPLC-MS with ESI high resolution mass spectrometer. Infrared (IR) spectra were obtained using either an Avatar 360 FT-IR or Perkin Elmer Spectrum BX FT-IR spectrometer. IR data are represented as frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. High-performance liquid chromatography (HPLC) was performed on an Agilent 1260 series instrument with a binary pump and a variable wavelength detector with Chiralpak AD-H and Chiralpak IB columns (4.6 x 250 mm).

2.4.2 General Alkylation Procedure for the Synthesis of Styrenyl Olefin Substrates

A round bottom flask equipped with a magnetic stir bar was charged with the secondary amine and sealed under a nitrogen atmosphere. Dry DMF (0.1 M) was added via syringe, and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Potassium carbonate (2 eq) was added in one portion, and the reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 minutes. The respective alkyl bromide (2 eq) was then added via one portion. The mixture was allowed to warm to room temperature over 16 hours, or until judged complete by TLC analysis. The reaction was quenched with deionized water, diluted with EtOAc, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc $(3 x)$. The organic layers were then combined, washed with deionized water (2x), brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate in 16-57\% yield.

28
(S)- N -cinnamyl- N -(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (28): Purification by flash column chromatography provided 28 as a white foam. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD2Cl2) $\delta 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=14.7,6.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 H), 6.44(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.77(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=$
13.9, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl ${ }_{3}$) δ 197.1, 144.0, 136.6, 136.1, 135.9, 134.72-133.90 (m), 133.9, 133.8, 129.5, 128.9, 128.7, 128.6, 128.1, 128.1, 127.1, 126.5, 126.13-126.03 (m), 125.1, 123.22 (q, $J=272.9 \mathrm{~Hz}$), 60.9, 47.6, 35.7; IR (neat) 3122, 1686, 1596, 1580, 1496, 1448, 1404, 1320, 1233, 1160, 1131, 1108, 1095, 1061, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{NH} 4}$: 567.1924 , found: 567.1917.

29
(S,E)-N-(1-oxo-1,3-diphenylpropan-2-yl)-N-(3-(p-tolyl)allyl)-4-(trifluoromethyl)benzenesulfonamide (29): Purification by flash column chromatography provided 29 as a colorless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53 (dd, $J=14.3,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.04$ (dd, J $=25.9,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=8.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=$ $15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{qd}, J=17.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.47$ (dd, $J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (dd, $J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0,144.0,137.9$, 136.7, 135.9, 134.1 (dd, $J=66.1,33.1 \mathrm{~Hz}$), 133.8, 133.7, 133.3, 129.5, 129.2, 128.80, $128.79,128.7,128.1,126.4,126.0(q, J=3.6 \mathrm{~Hz}), 124.3(q, J=272.8 \mathrm{~Hz}), 123.9,61.0$, 47.6, 35.6, 21.3; IR (neat) 2920, 2852, 1683, 1596, 1512, 1496, 1448, 1404, 1321, 1262, 1236, 1162, 1128, 1108, 1096, 1061, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}$: 586.1634, found: 586.1625.

30
(S,E)-N-(3-(4-methoxyphenyl)allyl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (30): Purification by flash column chromatography provided $\mathbf{3 0}$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.70$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (dd, $J=12.4,7.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.38 (dd, $J=17.5,9.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 - 7.17 (m, 5H), 7.07 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90$ (dd, $J=8.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.64 (dt, $J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.16 (qd, $J=16.0,6.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1,159.6,144.1,136.8,136.0,134.2(\mathrm{q}, J=33.0 \mathrm{~Hz}), 133.7$,
133.6, 129.5, 128.94, 128.87, 128.86, 128.8, 128.1, 127.8, 127.1, 126.1 (q, J=3.4 Hz), $123.3(q, J=273.0 \mathrm{~Hz}$), 122.6, 114.0, 61.0, 55.4, 47.8, 35.7; IR (neat) 2931, 1734, 1683, 1606, 1579, 1511, 1448, 1404, 1347, 1321, 1247, 1160, 1130, 1107, 1094, 1061, 1032, $1014 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{3} 2 \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+\mathrm{NH} 4}: 597.2029$, found: 597.2020.

31
(S,E)- N-(3-(4-fluorophenyl)allyl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (31): Purification by flash column chromatography provided 31 as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}$, 5H), 7.10 (dd, $J=7.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.39$ (d, J=15.9 Hz, 1H), 5.97 $-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.71(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=13.9,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91 (dt, $J=18.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 197.0, 162.6 (d, $J=247.5$ $\mathrm{Hz}), 143.9,136.6,135.8,134.3(\mathrm{t}, \mathrm{J}=49.6 \mathrm{~Hz}), 133.8,132.6,132.3(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.4$, 128.9, 128.7, 128.08, 128.07, 128.02, 127.1, 126.1 (q, $J=3.5 \mathrm{~Hz}$), 124.8 (d, $J=2.1 \mathrm{~Hz}$), 123.2 (q, $J=273.0 \mathrm{~Hz}$), 115.6 (d, $J=21.7 \mathrm{~Hz}$), 60.8, 47.4, 35.6; IR (neat) 2924, 1682, 1602, 1546, 1508, 1446, 1404, 1320, 1282, 1231, 1181, 1155, 1120, 1109, 1091, 1060, $1013 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}^{+N H 4}: 585.1830$, found: 585.1824.

32
(S,E)-N-(3-(4-chlorophenyl)allyl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoro-methyl)benzenesulfon-amide (32): Purification by flash column chromatography provided 31 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.07$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.37 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (dt, $J=15.7$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (qd, $J=16.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (dd, $J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=$ $14.1,6.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{D}_{1} 196.9,143.8,136.5,135.7,134.6,134.2$ (q, $J=33.1 \mathrm{~Hz}$), 133.8, 133.6, 132.4, 128.9, 128.8, 128.73, 128.66, 126.1 (q, $J=3.5 \mathrm{~Hz}$), 125.9, 123.2 (q, $J=273.0 \mathrm{~Hz}$), 60.7, 47.3, 35.5; IR (neat) 3060.8, 1686.2, 1595.9, 1581.3,
1490.6, 1447.9, 1403.8, 1344.6, 1320.8, 1263.5, 1233.0, 1161.8, 1132.1, 1091.9, 1107.5, 11061.7, $1013.3 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{CIF}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+N \mathrm{NH} 4}: 601.1534$, found: 601.1532.

33
(S,E)-N-(but-2-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (33): Purification by flash column chromatography provided 33 as a colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=11.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.15(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{dd}, J=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dq}, J=13.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dtd, J $=15.2,6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (qd, $J=16.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (ddd, $J=13.9,8.7,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84$ (dd, $J=13.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (dd, $J=6.5,1.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (176 MHz , CDCl_{3}) 196.8, 144.0, 136.9, 136.0, 134.2 (q, $J=33.0 \mathrm{~Hz}$), 133.7, 130.6, 129.4, 128.80, 128.78, 128.7, 128.1, 127.0, 126.6, 126.0 (q, $J=3.7 \mathrm{~Hz}$), 123.3 (q, $J=272.9 \mathrm{~Hz}$), 60.9 , 47.5, 35.5, 17.7; IR (neat) 3064, 2936, 2922, 2856, 1687, 1597, 1582, 1496, 1448, 1404, 1345, 1320, 1233, 1161, 1129, 1107, 1091, 1061, 1014; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 488.1502, found: 488.1497.

34
(S)-N-allyl-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (34): Purification by flash column chromatography provided 21b as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (d, J=8.2 Hz, 2H), 7.58 (d, J $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.80$ (dd, $J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ (ddt, $J=16.6,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{qd}, J=16.4,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=13.8,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.86 (dd, $J=13.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,143.7,136.6,136.0$, 134.4 (q, $J=33.1 \mathrm{~Hz}$), 134.4, 133.8, 129.4, 128.87, 128.87, 128.7, 128.1, 127.1, 126.1 (q, $J=3.6 \mathrm{~Hz}$), 123.3 (q, $J=273.1 \mathrm{~Hz}$), 118.6, 60.8, 48.0, 35.7; IR (neat) 3065, 3029, 1687, 1597, 1582, 1496, 1448, 1404, 1349, 1320, 1233, 1162, 1129, 1107, 1091, 1061, 1030, 1014; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 488.1502 , found: 488.1497.

2.4.3 General Weinreb Amidation Procedure for N-protected Amino Acids ${ }^{23,24}$

WA
A round bottom flask equipped with a magnetic stir bar was charged with the appropriate amino acid. Deionized water (0.4 M) was then added, followed by NaOH (2.5 eq), and the mixture was stirred until all solid was fully dissolved. To the resulting mixture was added a solution of the aryl sulfonyl chloride (1.2 eq) in diethyl ether (0.4 M). The reaction was allowed to stir for 12 hours, or until judged complete by TLC analysis. Aqueous hydrochloric acid (1 M) was added until the the reaction mixture had a $\mathrm{pH}=1$, and the layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine (1x), dried over anyhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the desired protected amino acid, which was carried forward without purification.

A round bottom flask equipped with a magnetic stir bar was charged with the protected amino acid and N, O-dimethylhydroxylamine hydrochloride (1.1 eq). The flask was sealed under a nitrogen atmosphere, and dry DCM (0.3 M) and NMM (1.4 eq) were subsequently added via syringe. The stirring mixture was cooled to $0^{\circ} \mathrm{C}$, and DCC (1.1 eq) was added in one portion. The reaction was allowed to warm to room temperature over 12 hours, or until judged complete by TLC analysis. The reaction was then filtered over a pad of celite, eluted with multiple DCM washes, and the combined organic eluent was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{x})$. The organic layer was washed with
brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the crude product. Purification by flash column chromatography eluting with EtOAc/hexanes (1:1) provided the desired Weinreb amide in 45-76\% yield.

19 WA
(S)-N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)-3-phenylpropanamide (19 WA): Purifi-cation by flash column chromatography provided 19 WA as a faint white oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=12.1,7.4 \mathrm{~Hz}, 5 \mathrm{H})$, $7.11-7.06$ (m, 2H), $5.40(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=16.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, $3.00-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.83$ (dd, $J=13.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) 171.1, 143.2, 136.9, 135.8, 129.5, 129.4, 128.4, 127.2, 126.9, 61.2, 54.1, 39.7, 32.0, 21.5.

23 WA
(S)-2-((4-chlorophenyl)sulfonamido)-N-methoxy-N-methyl-3-phenylpropanamide (23 WA): Purification by flash column chromatography provided 23 WA as a white solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18$ (m, 3H), $7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38 (s, 3H), 3.01 (s, 3H), 2.98 (dd, $J=13.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=13.5,8.0$); ${ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,138.8,138.6,135.9,129.5,129.0,128.5,128.4,126.9$, 61.4, 54.4, 39.4, 32.0, 14.2.

25 WA
(S)-N-methoxy-N-methyl-3-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (25 WA): Purification by flash column chromatography provided 25 WA as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2 H), $7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=$ $14.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{dd}, J=13.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (176 MHz, CDCl3) ס 171.1, 143.6, 135.9, 134.1 (q, J=32.7 Hz), 129.6, 128.6, 127.7, $127.3,126.0(q, J=3.6 \mathrm{~Hz}), 123.4(q, J=272.7 \mathrm{~Hz}), 61.6,54.8,39.6,32.2$.

36 WA
(S)-N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)propenamide (36 WA): Purification by flash column chromatography provided 36 WA as a clear oil that slowly solidified to give a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $5.50(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}$, 3H), 2.40 (s, 3H), 1.28 (d, J = $13.6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{D}^{2} 172.3$, 143.4, 137.1, 129.5, 127.2, 61.4, 48.8, 32.1, 21.5, 19.9.

40 WA
(S)-N-methoxy- N -3-dimethyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)butanamide (40 WA): Purifi-cation by flash column chromatography provided 40 WA as a clear oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.05 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dd, $J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (s, 3H), 2.86 (s, 3H), $1.94-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 0.91$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 171.2,143.8,134.1(\mathrm{q}, J=33.0 \mathrm{~Hz}), 128.0,125.9(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.4(\mathrm{q}, J=$ $272.8 \mathrm{~Hz})$, 61.2, $57.9,31.8,31.2,19.5,16.8$.

(S)-N-methoxy-N,4-dimethyl-2-((4-methylphenyl)sulfonamido)pentanamide

WA): Purification by flash column chromatography provided 41 WA as a clear oil. ${ }^{1}$ H NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{td}, \mathrm{J}=10.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{td}$, $J=12.0,10.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.33-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ (d, $J=3.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,143.5,136.9,129.5,127.5,61.4,51.6,42.5$, 32.2, 24.2, 23.4, 21.6, 21.0.

42 WA
(S)-3-cyclohexyl-N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)propenamide (42 WA): Purification by flash column chromatography provided 42 WA as a white foam. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (td, $J=10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (s, 3H), 2.88 (s, 3H), 2.34 (s, $3 \mathrm{H}), 1.69(\mathrm{~d}, ~ J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.29$ (ddq, $J=19.4,10.0,5.4,4.7 \mathrm{~Hz}$, 2H), $1.18-0.98(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{qd}, J=12.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.76-0.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) б 172.9, 143.5, 137.0, 129.5, 127.6, 61.4, 50.8, 41.1, 34.1, 33.4, 32.3, 31.8, 26.6, 26.3, 26.0, 21.6.

44 WA
N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)-4-(methylthio)butanamide (44 WA): Purification by flash column chromatography provided 44 WA as a white foam. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$, $2.98(\mathrm{~s}, 3 \mathrm{H}), 2.64$ (ddd, $J=12.7,7.3$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,143.7,136.8,129.6,127.6,61.6,52.1$, 32.7, 32.4, 30.1, 21.7, 15.4.

45 WA
N-methoxy-N,2-dimethyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (45 WA): Purification by flash column chromatography provided 45 WA as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}$, 1 H), 3.74 ($\mathrm{s}, 3 \mathrm{H}$), 3.13 ($\mathrm{s}, 3 \mathrm{H}$), 1.50 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 173.0,146.4$, 134.1 (q, $J=33.1 \mathrm{~Hz}$), 127.7, $126.2(q, J=3.6 \mathrm{~Hz}), 123.4(q, J=272.9 \mathrm{~Hz}), 61.2,60.3$, 33.9, 25.3.

48 WA
N-methoxy-N-methyl-3-(thiophen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (48 WA): Purification by flash column chromatography provided 48 WA as a pale yellow foam. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, 1 H), 5.88 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.55 (ddd, $J=9.9,7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (s, 3H), 3.20 (dd, $J=14.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 170.5,143.9,137.6,134.1(q, J=33.0 \mathrm{~Hz}), 127.7,127.10,127.08,126.0(q, J$ $=3.9 \mathrm{~Hz})$, 125.0, $123.3(\mathrm{q}, J=273.6 \mathrm{~Hz}), 61.63,54.81,33.42,32.17$.

49 WA
3-(4-bromophenyl)-N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)propenamide (49 WA): Purification by flash column chromatography provided 49 WA as a white foam. ${ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dq}, J=8.9$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (s, 3H), 3.03 (s, 3H), 2.91 (dd, $J=13.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=13.8$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,143.5,136.7,134.9,131.4$, 131.2, 129.4, 127.1, 121.0, 61.4, 54.1, 38.9, 32.1, 21.6.

52a WA
N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)-3-(naphthalen-1-yl)propenamide (52a WA): Purification by flash column chromatography provided 52a WA as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=17.5,8.1 \mathrm{~Hz}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.62(\mathrm{~m}$, 1 H), 3.42 (dd, $J=13.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.21$ (dd, $J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}$, 3H), 2.29 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 171.3,143.0,136.8,133.6,133.3,132.4$,
129.1, 128.2, 127.9, 127.6, 127.52, 127.49, 126.9, 125.9, 125.6, 61.5, 54.4, 39.5, 32.1, 21.4.

52b WA
N -methoxy- N -methyl-3-(naphthalen-1-yl)-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (52b WA): Purification by flash column chromatography provided 52b WA as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=18.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29-7.17$ (m, 4H), 6.03 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{td}, J=10.0,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.62 (s, 3H), 3.51 (dd, $J=14.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (s,3H), 3.13 (dd, $J=14.1,10.0 \mathrm{~Hz}$, ${ }^{1 H}$); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,143.1,133.7,133.5$ (q, $J=37.2 \mathrm{~Hz}$), 132.0, 131.7, 129.1, 128.7, 128.1, 126.9, 126.3, 125.7, 125.5 (q, J=3.5 Hz), 125.4, 123.4 (q, J $=272.8 \mathrm{~Hz}$), 122.9, 61.7, 54.0, 36.5, 32.3.

54a WA
N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)hexanamide (54a WA): Purification by flash column chromatography provided 54a WA as a clear oil. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, 1H), 4.19 (td, J = 9.3, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (s, 3H), 2.93 (s, 3H), 2.37 (s, 3H), 1.62 - 1.41 (m, $2 \mathrm{H}), 1.41-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 172.1, 143.4, 137.0, 129.4, 127.4, 61.3, 52.9, 33.1, 32.1, 27.2, 22.1, 21.5, 13.8.

54b WA
N -methoxy- N -methyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)hexanamide (54b WA): Purification by flash column chromatography provided 54b WA as a clear oil. ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl3) $\delta 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~d}, J=$
$9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (td, $J=9.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.85$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,143.8,134.3(\mathrm{q}, J=33.0 \mathrm{~Hz})$, $127.9,126.0$ (dd, $J=6.9,3.3 \mathrm{~Hz}$), 123.3 (q, $J=272.8 \mathrm{~Hz}$), 61.5, 53.1, 33.0, 32.1, 27.3, 22.0, 13.8.

55a WA
N-methoxy-N-methyl-2-((4-methylphenyl)sulfonamido)pent-4-enamide (55a WA): Purification by flash column chromatography provided 55a WA as a white foam. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) ס 7.72 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.70 (ddd, $J=23.6$, 10.7, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.42 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-$ $4.29(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,143.4,137.0,132.1,129.5,127.3,118.9,61.4,52.6,37.8,32.1$, 21.5.

55b WA
N-methoxy-N-methyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)pent-4-enamide (55b WA): Purification by flash column chromatography 55b WA as a pale yellow foam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.68 (ddd, $J=24.2,10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{dt}, J=9.7$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 170.7,143.7,134.3(q, J=33.0 \mathrm{~Hz}), 131.8,127.8,126.0(q, J=3.6 \mathrm{~Hz}), 123.2(q, J=$ $272.9 \mathrm{~Hz}), 119.2,61.5,52.7,37.6,32.0$.

57 WA
N -methoxy- N -methyl-3-(naphthalen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (57 WA): Purification by flash column chromatography provided 57 WA as a white foam. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (dd, $\left.J=6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.68$ (dd, $J=6.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$,
7.45 (dd, $J=6.3,3.2 \mathrm{~Hz}, 2 H), 7.25(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.65 (td, $J=9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=13.6,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{dd}, J=13.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta 171.3$, 143.6, 133.7 (q, J = 32.8 Hz), 133.5, 133.4, 132.5, 128.5, 128.3, 127.7, 127.5, 127.4, $127.2,126.4,126.0,125.5(q, J=3.8 \mathrm{~Hz}), 123.1(\mathrm{q}, J=273.4 \mathrm{~Hz}), 61.7,55.0,39.6,32.3$.

2.4.4 General Procedures for the Synthesis of Metathesis Substrates

(a) General Procedure A: N-Alkylation of Weinreb Amide followed by Grignard Reaction ${ }^{24}$

A round bottom flask equipped with a magnetic stir bar was charged with Weinreb amide WA and sealed under a nitrogen atmosphere. Dry DMF (0.1 M) was added via syringe, and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Sodium hydride (2 eq, 60\% dispersion in mineral oil) was added in one portion, and the reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 minutes before prenyl bromide (1.2 eq) was added via syringe. The mixture was allowed to warm to room temperature over 3 hours, or until judged complete by TLC analysis. The reaction was quenched with deionized water, diluted with EtOAc, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with an aqueous $5 \% \mathrm{LiCl}$ solution (3x), brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired intermediate INT in $63-99 \%$ yield.

A round bottom flask equipped with a magnetic stir bar was charged with acidwashed magnesium turnings (3 eq) and sealed under a nitrogen atmosphere. Dry THF
(0.2 M) was added via syringe, followed by the desired aryl bromide (3 eq). The solution was allowed to stir (heating as necessary) until all magnesium turnings had dissolved, and was then cooled to $0^{\circ} \mathrm{C}$. To the mixture was added intermediate INT suspended in dry THF (0.2 M) dropwise via cannula. The reaction was allowed to warm to room temperature over 12 hours, or until judged complete by TLC analysis, at which point it was quenched with a saturated ammonium chloride solution. The reaction mixture was diluted with EtOAc, the layers were partitioned, and the organic layer was collected. The aqueous phase was extracted with EtOAc (3x), and the combined organic layers were washed with brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired substrate \mathbf{S} in 71-86\% yield.

52a INT
N -methoxy-N-methyl-2-((4-methyl-N-(3-methylbut-2-en-1-yl)phenyl)sulfonamido)-3-(naphthalen-1-yl)propenamide (52a INT): Purification by flash column chromatography provided 52a INT as a pale yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55$ (dd, $J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (dd, $J=16.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=16.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=13.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J$ = 13.6, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.85(\mathrm{~s}, 6 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,143.0,137.9,133.8,132.6,132.2,129.3,128.8,128.0,127.7$, $127.45,127.45,126.4,125.7,125.4,123.7,123.0,61.0,54.0,43.1,34.9,31.7,25.8,21.6$, 18.0.
(S)-4-methyl-N-(3-methylbut-2-en-1-yl)-N-(3-(naphthalen-1-yl)-1-oxo-1-phenylpro-pan-2-yl)benzene-sulfonamide (52a S): Bromobenzene was employed to synthesize substrate 52a S. Purification by flash column chromatography provided 42a \mathbf{S} as a pale
yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{dd}, \mathrm{J}=8.0,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.01 (dd, $J=9.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (t, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dd, $J=16.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (dd, $J=16.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, $J=14.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=14.0,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.4,143.4$, 137.4, 136.4, 135.3, 133.9, 133.1, 132.8, 132.0, 129.5, 129.0, 128.5, 128.4, 128.1, 127.6, 127.6, 126.4, 125.7, 125.4, 123.6, 121.5, 58.6, 43.2, 32.8, 25.7, 21.5, 17.9; IR (neat) 2918, 1686, 1596, 1448, 1339, 1233, 1155, 1091, 1013, 942, 904, 799, 778, 758, 694, $660 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 498.2097, found: 498.2091.

4-methyl-N-(3-methylbut-2-en-1-yl)-N-(3-(naphthalen-1-yl)-1-oxo-1-(p-tolyl)propan-2-yl)benzene-sulfonamide (58 S): 4-bromotoluene was employed to synthesize substrate 58 S . Purification by flash column chromatography provided 46 S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.07$ (dd, $J=15.9,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.00(\mathrm{dd}, J=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 1 \mathrm{H})$, $4.16(\mathrm{dd}, J=16.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=16.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=14.0,9.8 \mathrm{~Hz}$, 1 H), $3.45(\mathrm{dd}, J=14.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.9,144.1,143.4,137.4,135.1,133.9,133.8,132.9$, 132.0, 129.5, 129.2, 129.0, 128.7, 128.0, 127.6, 127.5, 126.4, 125.7, 125.5, 123.7, 121.7, 58.3, 43.1, 32.8, 25.7, 21.7, 21.6, 17.9; IR (neat) 2925, 1679, 1605, 1442, 1408, 1378, $1335,1234,1206,1184,1153,1090,1018,940,907,793,774,730,672,657 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 512.2254 , found: 512.2246

N-(1-(4-chlorophenyl)-3-(naphthalen-1-yl)-1-oxopropan-2-yl)-4-methyl-N-(3-methyl-but-2-en-1-yl)benzenesulfonamide (59 S): 4-chlorobromobenzene was employed to synthesize substrate 59 S . Purification by flash column chromatography provided 59 S as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1$ Hz, 1H), 7.66 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.61-7.47$ (m, 6H), $7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18$ (m, 2H), $7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{dd}, J=10.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 1 \mathrm{H})$, $4.14(\mathrm{dd}, J=16.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=16.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=13.9,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=13.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 196.3,143.7,139.6,137.3,135.7,134.7,134.0,132.7,132.0,129.9$, $129.6,129.1,128.7,128.1,127.7,127.6,126.5,125.8,125.5,123.6,121.4,58.6,43.2$, 32.6, 25.8, 21.6, 17.9; IR (neat) 2922, 1688, 1588, 1441, 1400, 1339, 1231, 1156, 1091, 1013, 940, 910, 796, 777, 729, $661 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{CINO}_{3} \mathrm{~S}^{+}$: 532.1708, found: 532.1709.

N-methoxy-N-methyl-2-((4-methyl-N-(3-methylbut-2-en-1-yl)phenyl)sulfonamido)hexanamide (52a INT): Purification by flash column chromatography provided 52a INT as a clear oil. ${ }^{1} \mathrm{H}$ NMR (401 MHz, CDCl 3) $\delta 7.66(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $16.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.19(\mathrm{~m}, 5 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3$)$ б 172.50, 143.03, 137.82, 133.38, 129.34, 127.40, 122.84, 61.68, 55.17, 43.09, 32.04, 29.83, 28.39, 25.74, 22.32, 21.58, 17.89, 13.94.

4-methyl- N -(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylhexan-2-yl)benzenesulfonamide (52a S): Purification by flash column chromatography provided 42a \mathbf{S} as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.46$ ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.93$ (m, 1H), 3.98 (dd, $J=16.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=16.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0,143.4,137.4,136.2,135.1,133.3,129.5,128.73,128.68,127.5$, 121.5, 60.0, 43.1, 29.0, 28.5, 25.7, 22.6, 21.6, 17.8, 14.0; IR (neat) 2928, 2860, 1687, 1597, 1494, 1448, 1340, 1304, 1232, 1202, 1156, 1090, 1045, 1016, 937, 908, 850, 814, 754, 722, 694, $674 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{NH}^{4}}$: 485.2080, found: 485.2081.
(b) General Procedure B: Grignard Addition to Weinreb Amide followed by \boldsymbol{N} Alkylation

A round bottom flask equipped with a magnetic stir bar was charged with acid-
washed magnesium turnings (3 eq) and sealed under a nitrogen atmosphere. Dry THF (0.2 M) was added via syringe, followed by the desired aryl bromide (3 eq). The solution was allowed to stir (heating as necessary) until all magnesium turnings had dissolved,
and was then cooled to $0^{\circ} \mathrm{C}$. To the mixture was added Weinreb amide WA suspended in dry THF (0.2 M) dropwise via cannula. The reaction was allowed to warm to room temperature over 12 hours, or until judged complete by TLC analysis, at which point it was quenched with a saturated ammonium chloride solution. The reaction mixture was diluted with EtOAc, the layers were partitioned, and the organic layer was collected. The aqueous phase was extracted with EtOAc (3x), and the combined organic layers were washed with brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired intermediate INT in 51-90\% yield.

A round bottom flask equipped with a magnetic stir bar was charged with intermediate INT and sealed under a nitrogen atmosphere. Dry DMF (0.1 M) was added via syringe, and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Potassium carbonate (2 eq) was added in one portion, and the reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 minutes before prenyl bromide (1.2 eq) was added via syringe. The mixture was allowed to warm to room temperature over 3 hours, or until judged complete by TLC analysis. The reaction was quenched with deionized water, diluted with EtOAc , and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with an aqueous $5 \% \mathrm{LiCl}$ solution (3x), brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired substrate S in 73-99\% yield.

(S)-4-methyl-N-(1-oxo-1,3-diphenylpropan-2-yl)benzenesulfonamide (20 INT): Purification by flash column chromatography provided 20 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72$ (d, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (t, J=7.3 Hz, 1H), 7.42 (t, J=7.6 Hz, 3H), 7.17 (s, 2H), 7.09 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 5.66$ (d, J= $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=14.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=14.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=$ $14.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl3) $\delta 197.3,143.4,136.8,134.9$, 134.2, 134.0, 129.62, 129.57, 128.8, 128.4, 127.1, 127.0, 58.2, 40.2, 21.4.
(S)-4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)benzenesulfonamide (20): Purification by flash column chromatography provided 20 as a white solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.75$ (dd, $J=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (dd, $J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, $J=13.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right)$ б 196.3, 143.5, 137.5, 137.4, 136.0, 135.8, 133.1, 129.6, 129.4, 128.7, 128.5, 128.4, 127.5, 126.5, 120.7, 60.8, 43.1, 34.4, 25.5, 21.5, 17.7; IR (neat): 3063, 3030, 2925, 1683, 1597, 1580, 1495, 1449, 1341, 1261, 1228, 1157, 1091, 978, 947, 914, $813 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 448.1941 , found: 418.1943.

(S)-4-chloro-N-(1-oxo-1,3-diphenylpropan-2-yl)benzenesulfonamide (23 INT): Purification by flash column chromatography provided 23 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, 2H), $7.05-7.01$ (m, 2H), 5.71 (dd, $J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dt, $J=8.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (dd, $J=14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) 197.1, 138.4, 134.8, 134.2, 134.0, 129.5, 129.2, 129.0, 128.4, 128.1, 127.2, 126.9, 125.8, 58.4, 40.1.
(S)-4-chloro-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)benzenesulfonamide (23): Purification by flash column chromatography provided 23 as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}$,
$J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=9.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=16.0$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=13.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=$ $13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.58 (s, 3H), 1.52 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl3) $\delta 196.5,139.1$, $138.9,137.1,136.1,135.9,133.4,129.3,129.1,128.9,128.6,128.5,126.7,125.8,120.5$, 60.7, 43.2, 34.9, 25.6, 17.7; IR (neat): 3063, 3028, 2828, 1688, 1597, 1583, 1495, 1448, 1344, 1278, 1233, 1206, 11160, 1092, 1012, 944, 901, 829, $765 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClNO}_{3} \mathrm{~S}^{+\mathrm{NH}_{4}}$: 485.1660 , found: 485.1661 .

(S)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (25 INT): Purification by flash column chromatography provided 25 INT as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.67$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddd}, J=9.0,6.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.1,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.92 (dd, $J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 197.1,143.6,134.9,134.5$, 134.3 (q, $J=33.0 \mathrm{~Hz}$), 134.0, 129.6, 129.2, 128.7, 128.6, 127.6, 127.5, 126.2 (q, $J=3.6$ $\mathrm{Hz}), 123.2$ (q, J=273.0 Hz), 58.7, 40.3.
(S)-N-(1-(4-methoxyphenyl)-1-oxo-3-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (50 INT): Purification by flash column chromatography provided 50 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{dd}, J=6.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (ddd, $J=9.0,6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, 3 H), 3.14 (dd, $J=14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (dd, $J=14.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 195.1,164.4,143.5,135.0,134.0(\mathrm{q}, ~ J=33.0 \mathrm{~Hz}), 130.8,129.5,128.5,127.5$, 127.2, 126.7, $126.0(q, J=3.5 \mathrm{~Hz}), 123.3(q, J=272.8 \mathrm{~Hz}), 114.2,58.2,55.6,40.5$.
(S)-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluorometh-yl)benzenesulfon-amide (25): Purification by flash column chromatography provided 25 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2$ Hz, 2H), 7.58 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ 7.17 (m, 5H), 5.81 (dd, $J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (ddd, $J=51.8$, $16.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (dd, $J=13.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, $J=13.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}$, 3H), $1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,144.1,137.1,136.4,136.0,134.2$ (q, $J=33.0 \mathrm{~Hz}$), 133.6, 129.5, 128.80, 128.78, 128.7, 128.0, 127.0, 126.0 (q, $J=3.6 \mathrm{~Hz}$), 123.3 (q, $J=273.0 \mathrm{~Hz}$), 120.6, 60.9, 43.5, 35.3, 25.7, 17.9; IR (neat) 3069, 3024, 2973, 2951, 2925, 2852, 1692, 1607, 1597, 1581, 1495, 1448, 1435, 1403, 1378, 1345, 1322,

1275, 1234, 1207, 1187, 1156, 1132, 1104, 1061, 1013; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{NH} 4}: 519.1924$, found: 519.1923.
(S)-N-(1-(4-methoxyphenyl)-1-oxo-3-phenylpropan-2-yl)-N-(3-methylbut-2-en-1-yl)-4-(trifluorometh-yl)benzenesulfonamide (50 S): Purification by flash column chromatography provided 50 S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{dd}, J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=16.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J$ $=13.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,164.0,144.3,137.1,136.0,134.2$ (q, $J=32.9 \mathrm{~Hz}$), 131.2, 129.5, 128.80, 128.77, 128.0, 126.9, 126.0 (q, $J=3.6 \mathrm{~Hz}$), 123.3 (q, $J=272.8 \mathrm{~Hz}$), 120.9, 114.0, 60.3, 55.6, 43.4, 35.5, 25.7, 17.9; IR (neat): 2936.18, 1678, 1512, 1322, 1264, 1241, 1180, 1132, 1107, 1093, 1062, 1105, $841 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}$: 532.1764, found: 532.1759.

(S)-N-(3-methyl-1-oxo-1-phenylbutan-2-yl)-4-(trifluoromethyl)benzenesulfonamide
(40 INT): Purification by flash column chromatography provided 40 INT as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ $-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=9.6,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9,143.4,134.30,134.30(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.0,128.3,128.2,127.8$, 126.1 (q, $J=3.7 \mathrm{~Hz}), 123.1$ (q, $J=272.7 \mathrm{~Hz}), 62.5,31.7,20.1,16.2$.
(S)-N-(3-methyl-1-oxo-1-phenylbutan-2-yl)-N-(3-methylbut-2-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (40 S): Purification by flash column chromatography provided 40 S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.25(\mathrm{~d}, ~ J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=16.1,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.85 (dd, $J=15.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.44-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.14$ (d, J $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) $\delta 198.7,144.6,137.6$, $135.5,133.9,133.8(q, J=32.9 \mathrm{~Hz}), 129.1,128.6,127.8,125.5(q, J=3.7 \mathrm{~Hz}), 123.4$ (q, $J=272.7 \mathrm{~Hz}$), 120.8, 63.4, 42.7, 27.8, 25.8, 25.7, 19.9, 19.8, 17.8; IR (neat) 2967, 1683, 1596, 1448, 1404, 1321, 1293, 1220, 1161, 1131, 1107, 1091, 1062, 1042, 1012, 944, 906, 842, 805, 785, 754, 712, 694, $668 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}$: 476.1478, found: 476.1474.

(S)-4-methyl-N-(4-methyl-1-oxo-1-phenylpentan-2-yl)benzenesulfonamide (41 INT): Purification by flash column chromatography provided 41 INT as a clear oil. ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{td}, J=$ $9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (s, 3H), 2.01 (dddd, $J=13.4,10.7,6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.39 (qdd, $J=$ 14.3, $9.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.03 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,143.6,136.7,134.0,133.9,129.6,128.9,128.3,127.3,56.1,43.1$, 24.7, 23.4, 21.5, 21.2.
(S)-4-methyl-N-(4-methyl-1-oxo-1-phenylpentan-2-yl)-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (41 S): Purification by flash column chromatography provided 41 S as a clear oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.59-7.54$ (m, 3H), 7.46 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.58 (dd, $J=7.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ $-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=16.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=5.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) $\delta 198.2$, 143.3, 137.4, 136.0, 134.5, 133.3, 129.5, 128.8, 128.6, 127.5, 122.0, 58.2, 43.2, 37.7, 25.7, 25.3, 22.7, 22.2, 21.6, 17.8; IR (neat) 2954, 1685, 1652, 1597, 1448, 1339, 1245, 1206, 1156, 1122, 1089, 1042, 1002, 909, 813, 740, 694, 676, $653 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 414.2097, found: 414.2092.

(S)-N-(3-cyclohexyl-1-oxo-1-phenylpropan-2-yl)-4-methylbenzenesulfonamide (42 INT): Purification by flash column chromatography provided 42 INT as a clear oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)^{2}$ ס $7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (t, J=7.4 Hz, $1 \mathrm{H}), 7.41$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.66 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (td, J $=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.58-$ 1.39 (m, 2H), 1.30 (ddd, $J=14.3,10.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.21 (dddd, $J=15.7,12.5,7.8,3.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.14-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.86$ (ttd, $J=12.4,9.1,8.6,4.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz,
$\left.\mathrm{CDCl}_{3}\right)$ б 198.7, 143.5, 136.7, 134.0, 133.8, 129.6, 128.8, 128.3, 127.3, 55.6, 41.6, 34.0 , 33.7, 32.0, 26.5, 26.2, 26.0, 21.5 .
(S)-N-(3-cyclohexyl-1-oxo-1-phenylpropan-2-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)-benzenesulfonamide (42 S): Purification by flash column chromatography provided 42 S as a clear oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}$, 3H), 7.46 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=16.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 1.91 (dt, $J=12.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.57$ (s, 3H), $1.56(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{qt}, J=12.4,3.5 \mathrm{~Hz}$, 2H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.3,143.3,137.4,135.9,134.4,133.3,129.5,128.8$, 128.6, 127.5, 122.1, 57.6, 43.2, 36.3, 34.6, 33.5, 32.9, 26.5, 26.3, 26.2, 25.7, 21.6, 17.8; IR (neat) 2922, 2852, 1688, 1597, 1447, 1339, 1230, 1207, 1160, 1092, 814, 740, 697, $676,653 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}^{+}: 454.2410$, found 454.2402 .

(S)-4-methyl- N-(4-(methylthio)-1-oxo-1-phenylbutan-2-yl)benzenesulfonamide INT): Purification by flash column chromatography provided 44 INT as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ (dd, $J=$ $10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06$ (td, $J=9.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dt}, J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.72$ (ddt, $J=10.1,7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl3) ס 197.7, 143.8, 136.5, 134.3, 133.6, 129.8, 129.0, 128.6, 127.3, 56.4, 33.6, 30.4, 21.6, 15.7.
(S)-4-methyl-N-(3-methylbut-2-en-1-yl)-N-(4-(methylthio)-1-oxo-1-phenylbutan-2yl)benzenesulfonamide (44 S): Purification by flash column chromatography provided 44 S as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 ($\mathrm{d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $5.66(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=16.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=13.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (s, 3H), 2.28 (dq, $J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (s, 3H), 1.69 (td, $J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.54 (s, $J=9.4 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (176 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 197.7,144.1,137.7,136.4,136.0$, 133.6, 129.9, 129.0, 129.0, 127.8, 121.5, 59.3, 43.7, 31.6, 28.3, 25.7, 21.6, 17.8, 15.7; IR (neat) 2969, 2917, 2856, 1685, 1597, 1580, 194, 1447, 1377, 1339, 1305, 1237, 1208, 1183, 1154, 1090, 1043, 1018, $1001 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2}{ }^{+}$: 432.1662, found: 432.1664.

N-(2-methyl-1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (45 INT): Purification by flash column chromatography provided 45 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.94(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}) 1.67(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 201.2,146.3,135.0,134.3(q, J=33.5 \mathrm{~Hz}), 132.6,129.1$, 128.6, 127.5, 126.3 (q, $J=3.7 \mathrm{~Hz}$), 123.4 (q, $J=272.8 \mathrm{~Hz}$), 64.6, 27.0.

N-(1-(4-methoxyphenyl)-2-methyl-1-oxopropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (46 INT): Purification by flash column chromatography provided 46 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=20.7,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.08 (s, 1H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.3,163.4,146.5,134.1(\mathrm{q}, J=33.0 \mathrm{~Hz}), 132.1,127.4,126.4$, 126.2 (q, $J=3.6 \mathrm{~Hz}$), 123.4 (q, $J=272.8 \mathrm{~Hz}$), 113.8, 64.4, 55.6, 27.3.

N-(1-(4-fluorophenyl)-2-methyl-1-oxopropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (47 INT): Purification by flash column chromatography provided 47 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=9.9,4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.{ }_{3}\right) \delta$ $199.1,165.3(\mathrm{~d}, J=255.4 \mathrm{~Hz}), 146.2,134.4(\mathrm{q}, J=33.1 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 130.9$ (d, $J=3.3 \mathrm{~Hz}$), 127.5, 126.3 (q, $J=3.6 \mathrm{~Hz}), 123.3(\mathrm{q}, J=272.7 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.8$ $\mathrm{Hz})$, 64.4, 27.1.
\mathbf{N}-(2-methyl-1-oxo-1-phenylpropan-2-yl)-N-(3-methylbut-2-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (45 S): Purification by flash column chromatography provided 45 S as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.62$ $(\mathrm{m}, 4 \mathrm{H}), 7.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.68(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl $\left.{ }_{3}\right) \delta$ 200.3, 143.7, 136.1, 135.3, 134.3 (q, $J=33.0 \mathrm{~Hz}$), 132.1, 129.6, 128.9, 128.3, 125.8 (q, $J=3.6 \mathrm{~Hz}), 123.3(q, J=272.9 \mathrm{~Hz}), 121.1,68.9,44.3,26.5,25.9,18.0$; IR (neat) 2918, 1684, 1596, 1479, 1446, 1401, 1361, 1320, 1265, 1208, 1183, 1169, 1144, 1121, 1110, 1088, 1061, 1042, $1008 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 440.1502 , found: 440.1502.

N-(1-(4-methoxyphenyl)-2-methyl-1-oxopropan-2-yl)-N-(3-methylbut-2-en-1-yl)-4-(trifluoromethyl)-benzenesulfonamide (46 S): Purification by flash column chromatography provided 46 S as a white solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, J $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.20 (t, J = $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.86$ (s, 3H), 1.65 (s, 3H), 1.64 (s, 6H),
1.62 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 197.9,162.8,144.1,135.4,134.2$ (q, J=33.0 Hz), 132.1, 128.7, 128.0, 125.8 (dd, $J=7.2,3.5 \mathrm{~Hz}$), 123.3 (dd, $J=545.8,272.9 \mathrm{~Hz}$), 121.1, 113.4, 68.8, 55.5, 44.6, 26.5, 25.9, 18.0; IR (neat) 2984, 2946, 1674, 1600, 1504, 1457, 1444, 1419, 1404, 1382, 1363, 1330, 1254, 1207, 1190, 1163, 1145, 1125, 1088, 1062, 1053, 1035, $1010 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+\mathrm{NH} 4}$: 487.1873, found: 487.1871.

N-(1-(4-fluorophenyl)-2-methyl-1-oxopropan-2-yl)-N-(3-methylbut-2-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (47 S): Purification by flash column chromatography provided 47 S as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (dd, J=8.9, $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=22.9,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.63 (s, 3H), $1.62(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl 3) δ 198.2, 165.0 ($\mathrm{d}, J=254.2 \mathrm{~Hz}$), 143.8, 135.6, $134.5(\mathrm{q}, J=33.1 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=8.9 \mathrm{~Hz})$, $132.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.8,126.0(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.3(\mathrm{q}, J=273.0 \mathrm{~Hz}), 120.7,115.3$ (d, $J=21.5 \mathrm{~Hz}$), 68.7, 44.4, 26.3, 25.8, 17.9; IR (neat) 2920, 1682, 1596, 1505, 1480, 1436, 1402, 1362, 1322, 1297, 1265, 1246, 1208, 1138, 1110, 1088, 1063, 1042, 1009; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}:} 480.1227$, found: 480.1225.

N-(1-oxo-1-phenyl-3-(thiophen-2-yl)propan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (48 INT): Purification by flash column chromatography provided 48 INT as a pale yellow foam. ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl3) $\delta 7.87(\mathrm{~d}, ~ J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 2H), $7.64-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=$ $15.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl $)^{2}$) 196.5 , $143.6,136.1,134.5,134.4(q, J=33.1 \mathrm{~Hz}$), 133.8, 129.2, 128.6, 127.6, 127.4, 127.1, 126.3 (q, $J=3.5 \mathrm{~Hz}$), 125.3, 123.2 (q, $J=272.7 \mathrm{~Hz}$), 58.5, 34.5.

N -(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenyl-3-(thiophen-2-yl)propan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (48 S): Purification by flash column chromatography provided 48 S as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96$ (d, J=6.9 $\mathrm{Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{tt}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=$ $15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (dd, $J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (dd, $J=14.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dd, $J=14.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1$, 144.1, 139.2, 136.8, 135.8, 134.4 (q, $J=33.0 \mathrm{~Hz}$), 133.7, 128.8, 128.8, 128.1, 127.2, 126.7, 126.2 (q, $J=3.7 \mathrm{~Hz}$), 124.6, 123.3 (q, $J=273.4 \mathrm{~Hz}$), 120.3, 61.4, 43.6, 29.3, 25.7,
17.9; IR (neat) 2925, 1689, 1597, 1448, 1404, 1321, 1228, 1162, 1132, 1107, 1092, 1062, 1014, $908,844,743,712 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}{ }^{+}$: 508.1228 , found: 508.1226 .

N-(3-(4-bromophenyl)-1-oxo-1-phenylpropan-2-yl)-4-methylbenzenesulfonamide (49 INT): Purification by flash column chromatography provided 49 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.84 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.63$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (dd, $J=14.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (dd, $J=14.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (dd, $J=14.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,143.6,136.7,134.2,134.0,133.9,131.4,131.3,129.6,129.0$, 128.4, 127.0, 121.2, 58.0, 39.5, 21.5.

N-(3-(4-bromophenyl)-1-oxo-1-phenylpropan-2-yl)-4-methyl-N-(3-methylbut-2-en-1-$\mathrm{yl})$-benzenesulfonamide (49 S): Purification by flash column chromatography provided 49 S as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (dd, $J=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{dd}, J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=15.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (dd, $J=13.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (dd, $J=13.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2,143.8,137.4,136.7,136.3,136.0,133.5$, 131.7, 131.3, 129.8, 128.9, 128.7, 127.7, 126.6, 120.7, 60.8, 43.2, 34.0, 25.7, 21.7, 17.8; IR (neat): 2360, 2339, 1716, 1697, 1683, 1652, 1558, 1540, 1521, 1506, 1489, 1456, 1339, 158, $902,756 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{BrNO}_{3} \mathrm{~S}^{+}$: 526.1046, found: 526.1033.

(S)-N-(3-(naphthalen-1-yl)-1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (52b INT): Purification by flash column chromatography provided 52b INT as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4$

Hz, 1H), 7.67 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddt, $J=21.9,13.5,7.1$ Hz, 5H), $7.41-7.29$ (m, 4H), 7.16 (dt, J = 15.5, $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 5.95 (d, J = $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (td, $J=8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=14.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (dd, $J=14.2,8.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 198.5,143.2,134.4,134.4,133.9$ (q, $J=33.0 \mathrm{~Hz}$), 133.9, $131.8,131.5,129.2,129.0,128.4,128.4,128.3,127.1,126.6,125.9,125.8(q, J=3.7$ $\mathrm{Hz}), 125.3,123.2(\mathrm{q}, \mathrm{J}=273.2 \mathrm{~Hz}), 123.1,57.9,37.4$.
(S)-N-(3-methylbut-2-en-1-yl)-N-(3-(naphthalen-1-yl)-1-oxo-1-phenylpropan-2-yl)-4(trifluoromethyl)benzenesulfonamide (52b S): Purification by flash column chromatography provided 52 b S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 6 \mathrm{H})$, $7.47-7.41$ (m, 3H), $7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.02$ (dd, $J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{tt}, J=6.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=16.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=16.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=$ $14.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=14.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 197.6,144.0,136.4,136.0,134.0,133.9$ (q, $\left.J=33.0 \mathrm{~Hz}\right), 133.5$, $132.4,131.9,129.2,128.6,128.3,128.2,127.9,127.8,126.7,125.9,125.7$ (q, J=3.7 Hz), 125.5, 123.4, 123.1 (q, $J=273.4 \mathrm{~Hz}$), 121.2, 58.8, 43.5, 33.3, 25.7, 18.0; IR (neat) 2913, 2364, 1685, 1597, 1559, 1448, 1404, 1322, 1230, 1162, 1132, 1107, 1093, 1062, 1014, 942, 906, 844, 797, 778, $710 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 552.1815, found: 552.1839.

54b INT
54b S
N -(1-oxo-1-phenylhexan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (54b INT): Purification by flash column chromatography provided 54b INT as a white solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $3 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{td}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80$ (ddd, $J=14.5,10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl3) $\delta 197.7,143.6,134.47,134.46(\mathrm{q}, \mathrm{J}=33.1 \mathrm{~Hz})$, $133.7,129.1,128.3,127.8,126.2(q, J=3.6 \mathrm{~Hz}), 123.2(q, J=273.0 \mathrm{~Hz}), 57.8,33.9,27.1$, 22.3, 13.9.

N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylhexan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (54b S): Purification by flash column chromatography provided 54b S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dd, $J=16.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=16.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (dt, $J=15.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{td}, J=13.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ - 1.33 (m, 3H), 1.28 (dd, $J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9,144.1,135.9,135.5,134.2(\mathrm{q}, ~ J=33.0 \mathrm{~Hz}$), 133.7, 129.0, 128.5, $127.9,126.0(q, J=3.6 \mathrm{~Hz}), 123.3(q, J=272.9 \mathrm{~Hz}), 121.3,60.3,43.5,29.1,28.9,25.7$, 22.5, 17.9, 14.0; IR (neat) 2960, 2932, 2874, 1689, 1597, 1581, 1448, 1404, 1345, 1321, 1233, 1162, 1131, 1092, 1107, 1062, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{NH} 4}$: 485.2080, found: 485.2081.

4-methyl-N-(1-oxo-1-phenylpent-4-en-2-yl)benzenesulfonamide (55a INT): Purification by flash column chromatography provided 55a INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (401 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (ddd, $J=$ $17.2,8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.91(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 1 \mathrm{H})$, 2.42 - 2.32 (m, 1H), 2.30 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) ס 197.1, 143.5, 139.4, 136.8, 134.0, 133.9, 131.1, 129.6, 128.8, 128.3, 119.5, 57.0, 38.3, 21.4.
\mathbf{N}-(1-oxo-1-phenylpent-4-en-2-yl)-4-(trifluoromethyl)benzenesulfonamide (55b INT): Purification by flash column chromatography provided 55b INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl 3) $\delta 7.93(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 3 \mathrm{H})$, $7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 2 \mathrm{H})$, $4.98(\mathrm{dd}, \mathrm{J}=17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.78$ (s), 143.7, 134.34, 134.29 (q, $J=33.1 \mathrm{~Hz}$), 133.7, 130.9, 129.0, 128.3, 127.6, 126.1 (q, $J=3.6 \mathrm{~Hz}$), 123.1 (q, $J=273.0 \mathrm{~Hz}$), 119.8, 57.2, 38.2.

4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylpent-4-en-2-yl)benzenesulfonamide (55a S): Purification by flash column chromatography provided 55 a S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.73$ (ddd, $J=$ $23.9,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=8.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (dd, $J=15.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dd, $J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dt, $J=$ $14.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{dt}, J=13.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,143.6,137.5,136.1,136.0,134.1,133.4,129.7,128.9,128.7$, 127.7, 120.9, 118.2, 59.8, 43.2, 32.6, 25.7, 21.7, 17.8. IR (neat): 2925, 16686, 1597, 1448, 1340, 1239, 1178, 1089, 1000, 911, $814 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaNO}_{3} \mathrm{~S}^{+\mathrm{Na} \text { : }}$ 420.1604, found: 420.1603.

N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylpent-4-en-2-yl)-4-(trifluoromethyl)benzenesulfonamide (55b S): Purification by flash column chromatography provided 55b S as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($401 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{ddt}, J=16.9,10.2,6.9$
$\mathrm{Hz}, 1 \mathrm{H}), 5.58-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=16.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dt}$, $J=13.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 196.8$, 144.2, 136.3, 135.9, 134.3 (q, J = 33.1 Hz), 133.6, 133.5, 128.8, 128.7, 128.1, 126.0 (q, $J=3.7 \mathrm{~Hz}$), 123.3 (q, $J=272.9 \mathrm{~Hz}$), 120.6, 118.6, 59.9, 43.5, 33.3, 25.6, 17.8; IR (neat) 3075, 2931, 2859, 1688, 1642, 1597, 1581, 1448, 1404, 1346, 1320, 1240, 1207, 1161, 1130, 1107, 1092, 1061, 1014, $1001 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 452.1502, found: 452.1495.

(R)-N-(3-(naphthalen-2-yl)-1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (57 INT): Purification by flash column chromatography provided 57 INT as a white foam. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (dd, $J=6.1,3.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.64 (ddt, $J=13.3,7.5,4.5 \mathrm{~Hz}, 5 \mathrm{H}$), $7.53-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11$ (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=9.1,7.7,4.8$ Hz, 1H), 3.33 (dd, $J=14.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=14.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1,143.5,134.5,134.1(\mathrm{q}, ~ J=32.8 \mathrm{~Hz}), 134.0,133.4,132.6,132.5$, 129.3, 128.7, 128.6, 128.4, 127.8, 127.6, 127.4, 127.3, 126.5, 126.1, 125.9 (q, J=3.8 $\mathrm{Hz}), 123.0(\mathrm{q}, J=278.5 \mathrm{~Hz}), 58.9,40.4$.
(R)-N-(3-methylbut-2-en-1-yl)-N-(3-(naphthalen-2-yl)-1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)-benzenesulfonamide (57 S): Purification by flash column chromatography provided 57 S as a pale yellow oil. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=7.4$ Hz, 2H), $7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H})$, 7.55 (dd, $J=22.4,7.8 \mathrm{~Hz}, 3 \mathrm{H}$), $7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.95(\mathrm{dd}, J=$ $8.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.87-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (dd, $J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=16.1$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=14.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,144.0,136.4,135.9,134.6,133.9$ (q, J $=33.0 \mathrm{~Hz}$), 133.7, 133.6, 132.4, 128.8, 128.7, 128.5, 128.4, 128.0, 127.73, 127.66, 127.4, 126.4, 126.0, 125.7 (q, $J=3.7 \mathrm{~Hz}), 123.1(\mathrm{q}, J=273 \mathrm{~Hz}), 120.6,61.1,43.4,35.4$, 25.8, 17.9; IR (neat) 2920, 1687, 1597, 1448, 1404, 1321, 1161, 1131, 1107, 1062, 1015, 909, 843, 816, 742, 709, $691 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 552.1815, found: 552.1812.

(c) General Procedure C: Aryl Lithium ${ }^{3}$ Addition to Weinreb Amide followed by N Alkylation

A round bottom flask charged with a stir bar was sealed under a nitrogen atmosphere and cooled to $0^{\circ} \mathrm{C}$. Dry $\mathrm{Et}_{2} \mathrm{O}(1.33 \mathrm{M})$ was added via syringe, followed by $n-$ butyllithium (4 equiv., 2.5 M in hexanes) and the desired aryl bromide (4.1 equiv.), respectively. The solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 minutes, and then transferred to $\mathrm{a}-78{ }^{\circ} \mathrm{C}$ solution of Weinreb amide WA in $\mathrm{Et} 2 \mathrm{O}(0.05 \mathrm{M})$ via cannula. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over 2 hours, or until judged complete by TLC analysis. The reaction was quenched with deionized water, diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were then washed with brine (1x), dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate INT in 68-95\% yield.

A round bottom flask equipped with a magnetic stir bar was charged with intermediate INT and sealed under a nitrogen atmosphere. Dry DMF (0.1 M) was added via syringe, and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Potassium carbonate (2 eq) was added in one portion, and the reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 minutes before prenyl bromide (1.2 eq) was added via syringe. The mixture was allowed to warm to room temperature over 3 hours, or until judged complete by TLC analysis. The reaction was
quenched with deionized water, diluted with EtOAc , and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with an aqueous $5 \% \mathrm{LiCl}$ solution (3x), brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate \mathbf{S} in $71-86 \%$ yield.

(S)-4-methyl-N-(1-oxo-1-phenylpropan-2-yl)benzenesulfonamide (36 INT): Purification by flash column chromatography provided 36 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.83(\mathrm{~m}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 198.2,143.6$, 137.1, 134.2, 133.4, 129.7, 128.9, 128.6, 127.1, 53.4, 21.5, 21.2.
(S)-4-methyl-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide (37 INT): Purification by flash column chromatography provided 37 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 197.6,145.2,143.4,137.1,130.8,129.6,129.5,128.6$, 127.0, 53.2, 21.7, 21.4, 21.3.
(S)-4-methyl-N-(1-oxo-1-(p-tert-butyl)propan-2-yl)benzenesulfonamide (38 INT): Purification by flash column chromatography provided 38 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (d, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.66$ (d, J=8.4 Hz, $2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.79 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.92(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (d, J=7.2 $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 197.6,146.8,143.5,139.3,137.1,131.9,129.7$, 129.1, 129.0, 128.6, 127.4, 127.2, 127.0, 53.3, 21.5, 21.3.
(S)-4-methyl-N-(1-oxo-1-(m-tolyl)propan-2-yl)benzenesulfonamide (39 INT): Purification by flash column chromatography provided 39 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{p}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (s, 3H), 2.32 (s, 3H), 1.39 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (176 MHz,
$\left.\mathrm{CDCl}_{3}\right)$ б 198.4, 143.6, 139.0, 137.2, 135.0, 133.5, 129.8, 129.1, 128.8, 127.2, 125.8, 53.5, 21.6, 21.5, 21.4.
(S)-4-methyl- N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylpropan-2-yl)benzenesulfonamide ($\mathbf{3 6} \mathbf{S}$): Purification by flash column chromatography provided $\mathbf{3 6} \mathbf{S}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ -7.11 (m, 3H), 6.73 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (dd, $J=15.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dd, $J=15.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (s, 3H), 1.33 (s, 3H), $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2$, 143.7, 137.3, 136.9, 136.0, 133.1, 129.8, 129.0, 128.6, 127.7, 120.5, 77.2, 56.1, 42.7, 25.7, 21.7, 17.8, 13.3; IR (neat): 2924, 1687, 1597, 1448, 1378, 1340, 1229, 1159, 1090, 992, 954, 890, $816 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+}: 372.1628$, found: 372.1623 .
(S)-4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide ($\mathbf{3 7} \mathbf{S}$): Purification by flash column chromatography provided 37 S as a white solid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d})$) $\delta 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, \mathrm{J}=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, 6 H), 1.46 (s, 3H), $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.07$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ 197.2, 143.4, 143.3, 137.0, 135.5, 133.0, 129.7, 128.9, 128.6, 127.2, 120.6, 55.9, 42.3, 25.4, 21.2, 21.0, 17.4, 13.0; IR (neat): 2925.0, 1597, 1513, 450, 1334, 1158, 094, 1048, 1016, $799 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 386.1784, found 386.1789.
(S)-4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-(p-tert-butyl)propan-2-yl)benzenesulfonamide ($\mathbf{3 8} \mathbf{S}$): Purification by flash column chromatography provided $38 \mathbf{S}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 6 \mathrm{H})$, $7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=15.5,7.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.41 (s, 3H), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,145.4,143.4,139.8,137.0,136.7,134.4,129.5,129.3,128.9$, 128.1, 127.5, 127.1, 126.9, 120.3, 55.9, 42.5, 25.4, 21.4, 17.5, 13.0; IR (neat): 2925, 1684, 1603, 1487, 1446, 1340, 1231, 1161, 1119, 1090, 993, 951, $892 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29}, \mathrm{NO}_{3} \mathrm{~S}^{+}: 448.1941$, found 448.1934 .
(S)-4-methyl- N -(3-methylbut-2-en-1-yl)-N-(1-oxo-1-(m-tolyl)propan-2-yl)benzenesulfonamide ($\mathbf{3 9} \mathbf{S}$): Purification by flash column chromatography provided 39 S as a white solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=15.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}$, 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right)$ б 198.2, 143.7, 137.2, 136.9, 135.9, 133.1, 129.8, 128.9, 128.6, 127.7, 120.5, 56.1, 42.7, 25.7, 21.69, 21.67, 17.7, 13.3; IR (neat): 2964, 1684, 1604, 1444, 1378, 1339, 1233, 1160, 1090, 952, 892, $846 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 386.1784; found: 386.1794.

(S)-N-(1-oxo-3-phenyl-1-(thiophen-2-yl)propan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (43 INT): Purification by flash column chromatography provided 43 INT as a white solid. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~d}, ~ J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.91(\mathrm{~m}$, 1 H), 3.16 (dd, $J=14.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (dd, $J=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 189.8,143.4,140.9,135.9,135.1,134.4(\mathrm{q}, ~ J=33.2 \mathrm{~Hz}), 133.4,129.6,128.7$, 128.6, 127.4, 126.1 (q, J=3.6 Hz), 60.0, 40.9.
(S)-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-3-phenyl-1-(thiophen-2-yl)propan-2-yl)-4(trifluoromethyl)benzenesulfonamide (43 S): Purification by flash column chromatography provided 43 S as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91$ (d, J $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.24 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (dd, $J=12.7,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.09-7.06$ (m, 1H), 5.66 (dd, J $=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=13.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dd, $J=13.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, 3H), 1.54 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 196.5,139.1,138.9,137.1,136.1,135.9$, $133.4,129.3,129.1,128.9,128.6,128.5,126.7,125.8,120.5,60.7,43.2,34.9,25.6,17.7$; IR (neat): 3060, 2829, 1665, 1643, 1607, 1500, 1460, 1413, 1403, 1322, 1247, 1162, 1132, 1093, 1062, 1014, 917, $886 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}+\mathrm{Na}$: 530.1042, found: 530.1042.

(S)-N-(1-([1,1'-biphenyl]-4-yl)-1-oxo-3-phenylpropan-2-yl)-4-methylbenzenesulfon-
amide (53a INT): Purification by flash column chromatography provided 53a INT as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 6 \mathrm{H})$, $7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2 H), 7.02 (dd, $J=6.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.63$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dt, $J=8.8,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.18 (dd, $J=13.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, $J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 196.91,146.77,143.59,139.50,136.98,135.07,132.93,129.79$, 129.72, 129.19, 129.15, 128.72, 128.55, 127.50, 127.37, 127.26, 127.19, 58.33, 40.45, 21.58.
(S)-N-(1-([1,1'-biphenyl]-4-yl)-1-oxo-3-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (53b INT): Purification by flash column chromatography provided 53b INT as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(401 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{dd}, J=6.5$, $2.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.70 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.20 (ddd, $J=9.0,6.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=$ 14.0, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dd, $J=14.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4$, 147.0, 143.4, 139.2, 134.8, 134.1 (q, $J=33.2 \mathrm{~Hz})$, 132.4, 129.5, 129.04, 128.99, 128.6, 128.5, 127.6, 127.4, 127.3, 127.23, 126.02 (q, $J=3.6 \mathrm{~Hz}), 123.0(q, J=272.8 \mathrm{~Hz}), 58.6$, 40.2.
(S)-N-(1-([1,1'-biphenyl]-4-yl)-1-oxo-3-phenylpropan-2-yl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (53a S): Purification by flash column chromatography provided 53a S as a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 2H), $7.68-7.59(\mathrm{~m}, 5 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $11.4,6.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.18(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.98 (dd, $J=16.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (dd, $J=16.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=$ $13.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, $J=13.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (s, 3H), 1.58 (s, 3H), 1.52 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, cdcl3) δ 195.91, 145.91, 143.68, 139.96, 137.62, 137.54, 135.96, 134.81, 129.74, 129.58, 129.51, 129.09, 128.65, 128.38, 127.68, 127.37, 127.20, 126.68, 120.97, 60.95, 43.25, 34.49, 25.74, 21.65, 17.89; IR (neat): 2926, 1685, 1603, 1494, 1449, 1341, 1289, 1235, 1184, 1158, 1091, 945, 902, 845, $815 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}^{+}: 524.2254$, found: 524.2245 .

(S)-N-(1-([1,1'-biphenyl]-4-yl)-1-oxo-3-phenylpropan-2-yl)-N-(3-methylbut-2-en-1-

 yl)-4-(trifluoromethyl)benzenesulfonamide (53b S): Purification by flash column chromatography provided 53 b S as a clear, colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.88 (d, J= $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (d, J= $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55-7.48$ (m, 6H), 7.37 (t, J= 7.6 Hz , $2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 5 \mathrm{H}), 5.75(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (dd, $J=16.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, $J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=13.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2,146.3,144.2,139.7,137.1,136.3,134.6,134.3$ (q, J=33.1 $\mathrm{Hz}), 129.5,129.4,129.1,128.8,128.54,128.48,128.1,127.4,127.0,126.1$ (q, J = 3.7 Hz), 123.3 ($\mathrm{q}, J=272.9 \mathrm{~Hz}$), 120.7, 60.9, 43.5, 35.4, 25.8, 17.9; IR (neat): 2931, 1684, 1603, 1496, 1404, 1321, 1236, 1162, 1132, 1093, 1062, 1014, 975, 906, $843 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}: 600.1791$, found: 600.1791.
2.4.5 General Procedure for the Carbonyl-Olefin Metathesis Reaction

S
A round bottom flask equipped with a magnetic stir bar was charged with substrate \mathbf{S} (0.25 mmol) and sealed under a nitrogen atmosphere. Dry DCE (0.01 M) was added via syringe, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the stirring solution was added FeCl_{3} (0.5 eq) in one portion. The reaction was allowed to warm to room temperature over 3 hours, or until judged complete by TLC analysis. The reaction mixture was filtered over a silica plug, eluting thoroughly with DCM, and the resulting eluent was concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired metathesis product.

20
(S)-2-benzyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (20): Purification by flash column chromatography provided 20 as a white foam in 72% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl3) ठ 7.77 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35(\mathrm{dd}, J=14.5,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{dd}, J=6.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}$, $1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~d}, ~ J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=15.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (dd, $J=$ $13.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, $J=13.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) б 143.6, 140.7, 136.3, 135.2, 133.4, 130.8, 129.9, 129.0, 128.4, 127.7, 127.3, 126.6, 126.4, 121.3, 67.4, 55.7, 39.8, 21.7; IR (neat): 2962, 1724, 1598, 1495, 1453, 1333, 1161, 1094, 910, $841 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}^{+}: 389.1450$, found 389.1452 .

24 (d, J=7.3 Hz, 3H), 7.27 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.16$ (m, 3H), 7.02 (d, J=3.9 Hz, 2H), $5.66(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=15.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (dd, $J=13.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 140.6$, 139.2, 136.5, 135.9, 132.9, 130.6, 129.5, 128.9, 128.5, 128.4, 127.6, 126.4, 120.9, 67.4, 55.5, 39.6; IR (neat) 3061, 3028, 2928, 2853, 1585, 1495, 1476, 1454, 1476, 1447, 1394, 1335, 1162, 1098, 1088, 1012, $910 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{CINO}_{2} \mathrm{~S}^{+}$: 410.0976, found: 410.0977.

26
(S)-2-benzyl-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-
pyrrole (26): Purification by flash column chromatography provided 26 as a white foam in 99% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{dq}, J=14.2,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.02-$ 6.97 (m, 2H), $5.67(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=15.5,3.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.37 (dd, $J=13.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, $J=13.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,140.7,135.9,134.5(\mathrm{q}, J=33.1 \mathrm{~Hz}), 132.9,130.7,129.1,128.6$, $127.8,127.7,126.6,126.5,126.5(q, J=3.6 \mathrm{~Hz}), 123.3(q, J=272.9 \mathrm{~Hz}), 120.9,67.6$, 55.7, 39.7; IR (neat) 3060, 2917, 1495, 1454, 1402, 1320, 1248, 1163, 1130, 1105, 1061, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 444.1240, found: 444.1243.

35
3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (35): Purification by flash column chromatography provided 35 as a white solid in 50% yield. ${ }^{1} \mathrm{H}$ NMR (401 MHz, CDCl 3) ס 8.01 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (m, 5H), 6.06 $-5.99(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=6.3,4.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 141.0,137.5,134.6(\mathrm{q}, J=33.1 \mathrm{~Hz}$), 132.3, 128.9, 128.8, 128.0, $126.6(q, J=3.6 \mathrm{~Hz}), 125.5,123.4(q, J=273.0 \mathrm{~Hz}), 118.7,55.9$, 55.1; IR (neat) 2860, $1608,1498,1473,1448,1402,1343,1322,1187,1154,1108,1081,1060,1008 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 354.0770, found: 354.0771.

36
(S)-2-methyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (36): Purification by flash column chromatography provided 36 as a white solid in 84% yield. ${ }^{1} \mathbf{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 7 \mathrm{H}), 5.82(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-$ $4.97(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.56,143.48,135.2,133.1,129.9,128.8,128.3,127.4,126.5,118.9$, 63.0, 54.9, 22.2, 21.7; IR (neat): 2923, 2360, 1598, 1496, 1448, 1339, 1161, 1095, 815, $755 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}^{+}: 13.1136$, found: 13.1138.

(S)-2-methyl-3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (37): Purification by flash column chromatography provided 37 as a white solid in 74% yield. ${ }^{1} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}$, DMSO-d6) $\delta 7.79$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=16.0,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, DMSO-d6) $\delta 143.3,142.0,137.5,134.1,129.8,129.6,129.2,127.2,126.2$, 118.5, 62.1, 54.9, 22.1, 20.9, 20.7; IR (neat): 2864, 1597, 1514, 1450, 1335, 1158, 1094, $812 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 328.1366, found: 328.1367.

38
(S)-3-([1,1'-biphenyl]-4-yl)-2-methyl-1-tosyl-2,5-dihydro-1H-pyrrole (38): Purification by flash column chromatography provided 38 as a yellow oil in 67% yield. ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.36 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H})$, $5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 143.6,143.1,141.1,140.4,135.2,132.0,129.9,129.0,127.7,127.5$, 127.4, 127.1, 126.9, 119.0, 63.0, 54.9, 22.3, 21.7; IR (neat): 2928, 1598, 1489, 1448, 1336, 1161, 1095, 1050, 910, $815 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 390.1521, found 390.1521.

39
(S)-2-methyl-3-(m-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (39): Purification by flash column chrom-atography provided 39 as a clear yellow oil in 97\% yield. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 (dd, J = 15.9, $9.5 \mathrm{~Hz}, 3 \mathrm{H}$), 5.80 (s, 1H), $5.04-4.94$ (m, 1H), 4.27 (m, 2H), 2.40 (s, 3 H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl3) $\delta 143.5,143.4$, 138.3, 135.1, 132.9, 129.7, 128.9, 128.5, 127.2, 127.0, 123.4, 118.5, 62.9, 54.7, 22.1, 21.5, 21.4; IR (neat): 2923, 598, 1493, 1451, 1340, 1161, 1095 1051, 1016, $815 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 328.1366, found: 328.1369.

40
(S)-2-isopropyl-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1Hpyrrole (40): Purification by flash column chromatography provided 40 as a colorless oil in 32% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), $7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.12(\mathrm{~m}$, 2H), $2.15-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,141.8,134.5(\mathrm{q}, ~ J=33.3 \mathrm{~Hz}), 133.7,128.9,128.5,128.0,126.7$, $126.3(q, J=3.6 \mathrm{~Hz}), 123.3(q, J=273.1 \mathrm{~Hz}), 120.7,73.0,56.6,32.8,19.7,16.9$; IR (neat) 3062, 3029, 2966, 2929, 2874, 1608, 1577, 1496, 1463, 1447, 1402, 1389, 1351, 1320, 1164, 1129, 1107, 1061, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 396.1240, found: 396.1237.

41
(S)-2-isobutyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (41): Purification by flash column chromatography provided 41 as a pale yellow oil in 67% yield. ${ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{~s}$, $1 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 2.04(\mathrm{dt}, J=13.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 143.49,143.45,134.9,133.2,129.7$, 128.7, 128.2, 127.4, 126.3, 119.5, 65.9, 55.0, 43.2, 24.3, 24.0, 22.4, 21.6; IR (neat) 2953,

1598, 1494, 1446, 1336, 1160, 1093, 1043, 911, 813, 752, 729, 678, $662 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{~S}^{+}: 356.1679$, found: 356.1684 .

42
(S)-2-(cyclohexylmethyl)-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (42): Purification by flash column chromatography provided $\mathbf{4 2}$ as a pale yellow oil in 66% yield. ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (d, J= $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34-7.18(\mathrm{~m}, 7 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{dt}$, $J=7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.26 (ddd, $J=12.8,3.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ (s, 3H), $2.12-2.03$ (m, $1 \mathrm{H}), 1.75-1.43(\mathrm{~m}, 7 \mathrm{H}), 1.37-1.01(\mathrm{~m}, 3 \mathrm{H}), 0.86$ (dqd, $J=27.6,12.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.6,143.5,135.0,133.3,129.7,128.8,128.2,127.4,126.4$, 119.5, 65.4, 55.0, 41.9, 34.5, 33.5, 33.2, 26.7, 26.5, 26.3, 21.6; IR (neat) 2921, 2853, 1713, 1599, 1494, 1340, 1156, 1089, 1038, 814, 736, 684, $662 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 396.1992, found: 396.1987.

43
(S)-2-benzyl-3-(thiophen-2-yl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (43): Purification by flash column chromatography provided 43 as a pale yellow oil in 66% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75$ (d, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (s, 1H), 7.18 (s, 3H), 7.06 (s, 2H), 7.02 (s, 1H), 6.98 (s, 1H), 5.57 (s, $1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17$ ($\mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 141.7, 136.2, 135.5, 134.5, 134.4 ($q, J=33.2 \mathrm{~Hz}$), 130.6, 127.8, 127.7, 127.5, $126.3(q, J=3.4 \mathrm{~Hz}), 125.8$, 125.1, 120.3, 68.2, 55.2, 40.0; IR (neat) 3030, 2930, 2865, 1608, 1495, 1454, 1404, 1321, 1164, 1131, 1107, 1062, 1032, 1014, 909, $873 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$: 450.0804, found: 450.0802 .

44
2-(2-(methylthio)ethyl)-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (44): Purification by flash column chromatography provided 44 as a colorless oil in 64% yield. ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{dd}, J=7.6,6.5$
$\mathrm{Hz}, 3 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.12-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.21(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.41$ $-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (176 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 144.2$, 141.6, 134.9, 133.1, 130.2, 129.1, 128.7, 127.6, 126.7, 120.8, 66.4, 56.0, 33.7, 29.1, 21.6, 15.5; IR (neat) 3060, 3028, 2916, 2861, 1597, 1494, 1446, 1400, 1333, 1306, 1291, 1260, 1191, 1157, 1092, 1059, $1017 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$: 374.1243, found: 374.1245.

2,2-dimethyl-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1Hpyrrole (45): Purification by flash column chromatography provided 45 as a white solid in 92% yield. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.61 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,144.8,134.6,134.1$ ($\mathrm{q}, \mathrm{J}=$ 33.0 Hz), 128.7, 128.4, 128.2, 127.9, $126.2(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.5(\mathrm{q}, J=272.8 \mathrm{~Hz}), 119.7$, 73.7, 53.7, 27.2; IR (neat) 2961, 2932, 2862, 1608, 1494, 1462, 1442, 1402, 1336, 1320, 1217, 1159, 1128, 1106, 1097, 1061, $1014 \mathrm{~cm}^{-1}$, HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FF}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 382.1083, found: 382.1081.

3-(4-methoxyphenyl)-2,2-dimethyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (46): Purification by flash column chromatography provided 46 as a white solid in 71% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (d, J= $2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5$, 148.0, 144.7, 134.0 (q, $J=32.9 \mathrm{~Hz}$), 129.7, 127.8, 126.8, 126.2 (dd, $J=7.1,3.5 \mathrm{~Hz}$), 123.4 ($q, J=272.9 \mathrm{~Hz}$), 119.1, 113.8, 73.6, 55.4, 53.5, 27.1; IR (neat) 2932, 2839, 1734, 1607, 1572, 1511, 1462, 1337, 1320, 1295, 1259, 1246, 1217, 1160, 1127, 1106, 1098, 1061, 1034, $1015 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 412.1189$, found: 412.1191.

47

3-(4-fluorophenyl)-2,2-dimethyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (47): Purification by flash column chromatography provided 47 as a white solid in 87% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.16$ (dd, $J=8.3,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.02(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.59 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7$ (d, $J=247.6 \mathrm{~Hz}$), 147.5, 144.6, 134.1 ($q, J=33.0 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 130.40,130.36,126.2(\mathrm{q}, J=3.6 \mathrm{~Hz})$, $123.4(\mathrm{q}, ~ J=272.8 \mathrm{~Hz}), 120.2,115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 73.5,53.6,27.1$; IR (neat) 2932, 2866, 2356, 2334, 1599, 1500, 1461, 1402, 1338, 1322, 1305, 1299, 1213, 1156, 1125, 1097, 1064, $1016 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}: 400.0989$, found: 400.0985 .

48
3-phenyl-2-(thiophen-2-ylmethyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (48): Purification by flash column chromatography provided 48 as a pale yellow oil in 84% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{dd}, J=5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (dd, $J=5.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{td}, J=4.6,2.1 \mathrm{~Hz}$, 1 H), 4.15 (dt, $J=15.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (ddd, $J=15.4,5.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (dd, $J=$ $15.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=15.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9$, $140.5,137.0,134.6(q, J=33.3 \mathrm{~Hz}), 132.8,129.0,128.7,127.8,127.5,126.6,126.5(q$, $J=3.8 \mathrm{~Hz}$), 126.4, 124.8, 123.3 (q, $J=273.4 \mathrm{~Hz}$), 121.3, 67.3, 56.0, 34.1; IR (neat) 2922, 1598, 1496, 1403, 1321, 1166, 1131, 1106, 1062, 1014, 842, 800, 755, 737, 713, 693, $669 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$: 450.0804, found: 450.0803.

49
(S)-2-(4-bromobenzyl)-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (49): Purification by flash column chromatography provided 49 as a white solid in 79% yield. ${ }^{1}$ H NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=15.7,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{dd}, J=13.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,140.3,135.3,134.9,133.1,132.5,130.8,130.0,129.0$, 128.5, 127.3, 126.5, 121.4, 120.6, 67.1, 55.7, 39.1, 21.7; IR (neat): 2922, 1598, 1487, 1447, 1404, 323, 1162, 1134, 1105, 1062, 1012, 911, $816 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}^{+}: 468.0627$, found: 468.0629 .

50
(S)-2-benzyl-3-(4-methoxyphenyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-di-hydro-1H-pyrrole (50): Purification by flash column chromatography provided 50 as a white solid in 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.90$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.54(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.55$ (dd, $J=15.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=13.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl 3) б 159.8, 141.9, 140.2, 136.0, 134.5 (q, J = 33.2 Hz), 130.8, 127.84, 127.78, 127.7, 126.6, 126.5 (q, $J=3.5 \mathrm{~Hz}), 125.6,123.3$ ($\mathrm{q}, J=272.9 \mathrm{~Hz}$), 118.9, 114.4, 67.7, 55.6, 55.5, 39.7; IR (neat): 2935, 1608, 1513, 1454, 1403, 1322, 1259, 1165, 1132, 1107, 1062, 1033, 1015, $910,840 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 474.1345$, found: 474.1346.

51
(R)-2,3-diphenyl-1-tosyl-2,5-dihydro-1H-pyrrole (51): Purification by flash column chromatography provided 51 as a clear oil in 97% yield. Characterization matches previously reported product. ${ }^{4}$

(S)-2-(naphthalen-1-ylmethyl)-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (52a): Purification by flash column chromatography provided 52 a as a pale yellow solid in 82% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.75$ (dd, $J=9.7,6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.62 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.04$ $-6.97(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=16.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ $-3.51(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 143.6, 142.1, 135.0, 133.74, 133.68, 133.1, 132.9, 129.9, 129.2, 128.6, 128.3, 128.1, 127.3, 127.2, 126.4, 125.7, 125.4, 125.0, 124.9, 121.4, 67.4, 55.2, 38.1, 21.6; IR (neat) 2930, 1653, 1340, 1204, 1176, 1155, 1096, 760, 679, $660 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}^{+}: 440.1679$, found: 440.1679.

(S)-2-(naphthalen-1-ylmethyl)-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (52b): Purification by flash column chromatography provided 52b as a white foam in 91% yield. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44 (p, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{q}, J=7.1,6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}$), 5.66 (s, 1H), 5.55 (q, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dd, $J=16.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dd, $J=14.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (ddd, $J=20.4,15.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (176 MHz , CDCl_{3}) 142.2, 141.7, 134.4 (q, $J=33.2 \mathrm{~Hz}$), 133.7, 133.2, 132.8, 132.7, 129.1, 128.8, 128.5, 128.4, 127.6, 127.4, 126.4 ($q, J=3.5 \mathrm{~Hz}$), 126.3, 125.8, 125.5, 125.0, 124.7, 123.3 (q, $J=274.6 \mathrm{~Hz}$), 121.0, 67.6, 55.1, 37.8; IR (neat) 3054, 1608, 1496, 1447, 1402, 1321, 1164, 1129, 1106, 1062, 1014, 842, 796, 777, 754, 736, 712, 693, $671 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 494.1396, found: 494.1394.

53a
(S)-3-([1,1'-biphenyl]-4-yl)-2-benzyl-1-tosyl-2,5-dihydro-1H-pyrrole (53a): Purification by flash column chromatography provided 53 a as a clear, colorless oil in 53% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=10.8,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H})$, 7.05 (dd, $J=6.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.67 (s, 1H), 5.33 (s, 1H), 4.06 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=15.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=13.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=13.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{~ 1 4 3 . 6 5 , ~ 1 4 1 . 1 0 , ~ 1 4 0 . 3 8 , ~ 1 4 0 . 3 2 , ~ 1 3 6 . 3 1 , ~}$ 135.18, 132.27, 130.85, 129.96, 129.03, 127.77, 127.72, 127.59, 127.28, 127.09, 126.98, 126.43, 121.34, 67.45, 55.70, 39.89, 21.67; IR (neat): 2922, 1599, 1488, 1452, 1334, 1161, 1095, 847, $814 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{~S}^{+}: 466.1835$, found: 466.187.

53b
(S)-3-([1,1'-biphenyl]-4-yl)-2-benzyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (53b): Purification by flash column chromatography provided 53b as a clear, colorless oil in 93% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{dd}, J=6.3,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.73$ (s, 1H), $5.37(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (ddd, $J=15.6,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dd, $J=13.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=13.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) δ $141.9,141.4,140.4,140.3,135.9,134.6(q, J=33.0 \mathrm{~Hz}), 131.8,130.8,129.1,127.8$, 127.70, 127.69, 127.1, 127.0, 126.6, 126.5 (q, $J=3.7 \mathrm{~Hz}$), 123.3 (q, $J=272.9 \mathrm{~Hz}$), 121.0, 67.7, 55.7, 39.8; IR (neat): 2926, 1603, 1488, 1403, 1321, 1165,1132, 1106, 1062, 1014, 909, 883, $844 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 520.1553 , found: 520.1551.

54a
2-butyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (54a): Purification by flash column chromatography provided 54a as a pale yellow oil in 75% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 7 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.35-$ $4.18(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (ddd, $J=18.2,9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.40$ - 1.07 (m, 4H), $0.78(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl ${ }_{3}$) $\delta 143.5,141.9,135.2$, 133.3, 129.8, 128.8, 128.3, 127.3, 126.4, 119.9, 67.1, 55.7, 33.5, 25.5, 22.7, 21.6, 14.2; IR (neat) 2956, 2927, 2856, 1598, 1494, 1446, 1340, 1333, 1188, 1160, 1134, 1123, 1097, 1074, 1058, $1019 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 356.1679, found: 356.1670.

54b
2-butyl-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1 H-pyrrole (54b): Purification by flash column chromatography provided 54b as a pale yellow oil in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.02 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.18-5.12$ (m, $2 \mathrm{H}), 4.04(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=15.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddt}, J=15.9,11.8$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{ddt}, J=16.1,11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.12(\mathrm{~m}$, $1 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) 142.1, 141.9, $134.5(\mathrm{q}, \mathrm{J}=33.0 \mathrm{~Hz}), 132.9,128.9,128.6,127.8,126.40$, 126.40 (q, $J=3.3 \mathrm{~Hz}$), 123.4 (q, $J=273.2 \mathrm{~Hz}$), 119.6, 67.4, 55.8, 33.3, 25.4, 22.7, 14.1; IR (neat) 2958, 2934, 2861, 1608, 1496, 1466, 1448, 1403, 1349, 1340, 1321, 1165, 1130, 1106, 1061, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 410.1396, found: 410.1397 .

55a
2-allyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (55a): Purification by flash column chromatography provided 55 a as a pale yellow oil in 64% yield. ${ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (s, 1H), 5.66 (td, $J=17.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (d, $J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=16.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (ddd, $J=14.6,6.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (ddd, $J=14.5,7.1$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (176 MHz , DMSO-d6) $\delta 143.4,140.1,134.2,132.7$, 132.5, 129.8, 128.6, 128.1, 127.3, 126.3, 121.0, 118.2, 65.7, 55.4, 37.9, 20.9; IR (neat): 2922, 1598, 1495, 1446, 1349, 1331, 1160, 1094, 1059, 996, $916,816 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 340.1366 , found: 340.1371 .

55b
2-allyl-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole
(55b): Purification by flash column chromatography provided 55b as a colorless oil in 92\% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ $-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.69$ (ddt, $J=17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (s, 1H), 5.12 (d, J = 3.2 Hz, 1H), $4.99-4.81$ (m, 2H), $4.03-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.86$ (ddd, $J=$ $15.6,5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.35$ (ddd, $J=14.4,7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\delta 142.1,141.3,134.5(\mathrm{q}, ~ J=33.1 \mathrm{~Hz}), 132.8,132.0,128.9,128.6$, $127.8,126.5,126.4(q, J=3.7 \mathrm{~Hz}), 123.3(q, J=272.9 \mathrm{~Hz}), 120.1,119.1,67.0,55.8,37.9$; IR (neat) 3079, 2981, 2921, 2866, 1642, 1609, 1577, 1497, 1467, 1447, 1403, 1351, 1320, 1164, 1129, 1105, 1061, $1014 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 394.1083, found: 394.1085.

56
(S)-4-(2-methyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrol-3yl)benzonitrile (56): Purification by flash column chromatography provided 56 as a yellow oil in 50% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (ddd, $J=$ $15.7,5.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=13.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 141.8,141.2,140.3,134.9$ (q, $J=33.2 \mathrm{~Hz}$), 132.5, 131.6, 131.5, $129.3,129.0,127.8,126.7(q, J=3.6 \mathrm{~Hz}), 126.5,123.3$ (q, $J=273.0), 121.2,119.1,110.7$, 67.3, 55.8, 39.8; IR (neat): 2923, 2228 1608, 1496, 1447, 1403, 1321, 1166, 1132, 1107, 1062 1014, $911,833 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$: 469.1192, found: 469.1191.

57
(R)-2-(naphthalen-2-ylmethyl)-3-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-2,5-dihydro-1H-pyrrole (57): Purification by flash column chromatography provided 57 as a white foam in 87% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (dd, $J=9.1,2.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.65(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.32-$ 7.24 (m, 2H), 7.21 (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (dq, $J=3.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.03 (ddd, $J=15.7,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.58-3.48$ (m, 2H), 3.20 (dd, $J=13.8,2.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) $\delta 141.9,140.8,134.5(\mathrm{q}, J=33.2 \mathrm{~Hz}$), 133.6, 133.2, 133.0, 132.4, 129.3, 129.1, 129.1, 128.7, 127.8, 127.7, 127.6, 127.2, 126.6, 126.5 (q, J= 3.7 Hz), 125.8, 125.5, 123.3 (q, $J=274.7$), 121.0, 67.8, 55.7, 39.8; IR (neat) 2928, 1600, 1403, 1322, 1166, 1132, 1107, 1062, 1015, 844, 820, 754, 715, $672 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}: 494.1396$, found: 494.1396.

58
(S)-2-(naphthalen-1-ylmethyl)-3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (58): Purification by flash column chromatography provided 58 as a pale yellow solid in 72% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.99$ (m, 3H), 6.95 (d, J=7.9 Hz, 2H), $5.53(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=16.1$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=$ $16.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (s, 3H), 2.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,141.8$, $138.0,135.1,133.7,133.2,133.0,130.8,129.8,129.3,129.2,128.3,127.2,127.1,126.3$, 125.7, 125.4, 125.1, 124.9, 120.4, 67.5, 55.1, 37.7, 21.6, 21.3; IR (neat) 2923, 1596, 1558, 1457, 1335, 1184, 1158, 1100, 1055, 798, 778, 735, 709, $667 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 454.1835, found: 454.1837.

59
(S)-3-(4-chlorophenyl)-2-(naphthalen-1-ylmethyl)-1-tosyl-2,5-dihydro-1H-pyrrole (59): Purification by flash column chromatography provided 59 as a yellow solid in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.47-5.39$ (m, 1H), 4.09 (dd, $J=16.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76-3.62$ (m, 2H), 3.61 (dd, $J=14.0,6.9 \mathrm{~Hz}$, 1H), 2.36 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 143.7, 141.4, 135.0, 133.8, 133.7, 133.0, 132.7, 132.3, 129.9, 129.0, 128.6, 128.5, 127.6, 127.3, 127.3, 125.9, 125.5, 125.0, 124.7, 122.0, 67.3, 55.1, 38.7, 21.7; IR (neat) 2927, 1596, 1492, 1345, 1160, 1092, 1013, 802, $778,738,709,666 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{CINO}_{2} \mathrm{~S}^{+}: 474.1289$, found: 474.1284.

2.4.6 Miscellaneous Procedures

Glycine Substrate Synthesis

N-(3-methylbut-2-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (35 INT): A round bottom flask equipped with a magnetic stir bar was charged with 4(trifluoromethyl)benzenesulfonyl chloride. The solid was suspended in a 30\% ammonium hydroxide solution $(0.1 \mathrm{M})$ and allowed to stir at room temperature for 16 hours. The reaction mixture was diluted with EtOAc, and aqueous hydrochloric acid (1 M) was added until the pH was less than 9 , then the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. A magnetic stir bar and $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$ were added to the flask containing the crude sulfonamide, which was subsequently sealed under nitrogen. The crude mixture was suspended in acetone (0.1 M) and allowed to stir for 30 minutes, at which point prenyl bromide (0.67 eq) was added via syringe. The flask was fitted with a reflux condenser and allowed to stir at reflux for 14 hours. Deionized water and EtOAc were added to the reaction mixture, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate 35 INT (65\%
over two steps) as yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2H), $1.57(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.0,138.0,134.3(\mathrm{q}, \mathrm{J}=$ $33.0 \mathrm{~Hz}), 127.8,126.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.4(\mathrm{q}, J=272.8 \mathrm{~Hz}), 118.6,41.2,25.5,17.8$.

N-(3-methylbut-2-en-1-yl)-N-(2-oxo-2-phenylethyl)-4-(trifluoromethyl)benzenesul-

 fonamide (35 S): A round bottom flask equipped with a magnetic stir bar was charged with starting material 35 INT and potassium carbonate (2 eq) The flask was sealed under nitrogen, and dry DMF (0.5 M) was added via syringe. To the stirring solution was added 2-bromoacetophenone (1.1 eq) suspended in dry DMF (0.5 M) via syringe. The reaction was allowed to stir for 3 hours, at which point it was quenched with deionized water and diluted with EtOAc, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with an aqueous $5 \% \mathrm{LiCl}$ solution $(3 x)$, washed with brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 35 S as a pale yellow oil in 85% yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.4$ Hz, 1H), $7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{tt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.1,143.9,139.8$, 134.9, 134.1 (q, $J=32.9 \mathrm{~Hz}), 134.0,129.0,128.1,128.0,126.1(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.5(\mathrm{q}$,$J=273.0 \mathrm{~Hz}$), 118.0, 51.7, 45.6, 25.8, 17.7; IR (neat) 2920, 1699, 1598, 1582, 1449, $1404,1320,1226,1159,1128,1108,1093,1061,1016,989,929,908,842,810,787$, 748, 731, 706, 689, $662 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 412.1189, found: 412.1190.

Synthesis of p-Cyanophenylalanine Substrate ${ }^{25}$

A round-bottom flask equipped with a magnetic stir bar was charged with starting material 49 S and sealed under nitrogen. Dry, degassed DMF (0.3 M) was added via syringe, followed by addition of zinc cyanide (0.6 eq) and the palladium catalyst (0.05 M) in one portion. The reaction was heated to $80_{-}^{\circ} \mathrm{C}$ and allowed to stir under nitrogen for 12 hours, or until the reaction was judged complete by TLC analysis. The reaction was then cooled to room temperature and quenched by the addition of a saturated aqueous NaHCO_{3} solution. EtOAc was added to the reaction mixture, and the resulting layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with $\mathrm{EtOAc}(3 x)$. The organic layers were then combined, washed with an aqueous $5 \% \mathrm{LiCl}$ solution (3x), brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 56 S as a pale yellow oil in 15% yield. ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl 3) $\delta 7.85$ (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.71$ (d, J=8.1 Hz, 2H), 7.61 (d, J $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$,
7.12 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{dd}, J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, $J=16.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=16.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=13.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3$, 144.0, 136.7, 136.1, 135.9, 134.4 (q, J = 33.2 Hz), 133.8, 131.9, 131.8, 131.3, 128.9, 128.7, 128.0, 126.1 (q, $J=3.8 \mathrm{~Hz}$), 123.3 ($\mathrm{q}, J=272.5 \mathrm{~Hz}$), 120.9, 120.4, 60.8, 43.5, 34.8, 25.7, 17.9; IR (neat): 2929, 1688, 1608, 1448, 1325, 1233, 1163, 1134, 1062, 1014, 845 $\mathrm{cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$: 527.1611, found: 527.1607.

Deprotection with Sml2

A 0.13 M solution of Sml_{2} is prepared with samarium metal a diiodoethane according to previously reported procedures. ${ }^{5}$ The carbonyl-olefin metathesis product 26 (0.1 mmol) is added to a round-bottom flask equipped with a stir and placed under a nitrogen atmosphere. The Sml_{2} solution (6.0 equiv) is then added to the flask while stirring. Next a degassed solution of water (12.0 equiv) is added to the reaction mixture, which immediately turns red. Triethylamine (18.0 equiv) is then added. After 3 minutes, the reaction mixture is filtered under nitrogen over a celite plug. The crude product 60 is collected into a flask and subjected to protection conditions to give $\mathbf{2 0}$ (TsCl, 2.5 equiv) and 62 ($\mathrm{Boc}_{2} \mathrm{O}, 2.5$ equiv).

tert-butyl-(S)-2-benzyl-3-phenyl-2,5-dihydro-1H-pyrrole-1-carboxylate (61): Purification by flash column chromatography provided 61 as a clear oil and a mixture of rotamers. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.15-$ $7.12(\mathrm{~m}, 6 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 4 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H})$,
$4.18(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=13.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (ddd, $J=16.1,5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (dd, $J=13.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.28-3.23$ (m, 1H), 2.85 (t, J=13.2 Hz, 2H), $1.61(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl3) $\delta 154.00$, 140.85, 140.78, 137.18, 136.94, 134.07, 134.03, 130.41, 130.23, 128.95, 128.89, 128.05, 128.02, 127.80, 127.54, 126.58, 126.29, 126.12, 121.72, 121.54, 79.95, 79.44, 77.34, 77.16, 76.98, 64.42, 64.17, 53.87, 53.60, 37.31, 35.71, 28.86, 28.75.; IR (neat) 2974, 2361, 2338, 17501, 1734, 1695, 1684, 1559, 1464, 1399, 1363, 1254, 1170, 1115, 1077, $968 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}{ }^{+N a}: 358.1778$, found: 358.1779.

Epoxidation of Metathesis Products

A round bottom flask equipped with a magnetic stir bar was charged with mCPBA (1.25 eq, 77% purity) and sealed under nitrogen. Dry DCM (0.2 M) was added via syringe, and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before the 3 -pyrroline was added portion-wise over 5 minutes. The resultant mixture was allowed to warm to room temperature over 16 hours, or until judged complete by TLC analysis. The reaction was quenched with saturated aqueous NaHCO_{3}, diluted with DCM , and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with DCM (3x). The organic layers were combined, washed with brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired epoxide.

62a
(1S,2S,5R)-2-benzyl-1-phenyl-3-tosyl-6-oxa-3-azabicyclo[3.1.0]hexane (62a): Purification by flash column chromatography provided 62 as a white foam in 86% yield. ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl3) $\delta 7.69(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1$ Hz, 2H), $7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.98$ (dd, $J=6.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62$ (dd,
$J=5.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,136.3,135.7,132.3,130.5,129.6,129.5,129.2,128.9,128.1$, 127.7, 126.6, 68.9, 63.0, 59.3, 49.0, 38.4, 21.7; IR (neat) 2923, 1453, 1338, 1160, 1121, 1091, 1007, 815, 759, 720, 698, 678, $667 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{+}$: 406.1471, found: 406.1476 .

Position	δ_{c}	δ_{H}	$m(J(H z))$	NOE
C6	38.4	$3.15,2.89$	$d d(14.0,6.0)$,	H 8
C8	130.5	6.98	$\mathrm{dd}(14.0,3.5)$	

62b
(1S,2S,5R)-2-benzyl-1-phenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)-6-oxa-3-azabicyclo[3.1.0]hexane (62b): Purification by flash column chromatography provided 51b as a white foam in 80% yield. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H})$, $7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dd, $J=14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=14.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.3,136.0,134.2(q, J=33.0 \mathrm{~Hz}), 131.9,130.3,129.7,129.1$, 129.0, 128.3, 128.1, 126.9, 126.1 (q, $J=3.7 \mathrm{~Hz}), 123.4$ (q, $J=272.8 \mathrm{~Hz}), 68.8,63.5,59.0$, 49.0, 38.2; IR (neat) 2931, 1496, 1455, 1404, 1322, 1165, 1129, 1108, 1062, 1016, 842, $760,712,698,674 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 460.1189$, found: 460.1190 .

Position	\bar{c}	$\overline{\mathrm{H}}$	$\mathrm{m}(J(\mathrm{~Hz}))$	NOE
C6	38.2	$3.12,2.86$	$\mathrm{dd}(14.0,5.6)$,	H 8
			$\mathrm{dd}(14.0,4.2)$	
C8	130.3	$7.01-6.96$	m	H 6

Rearrangement of Pyrrolidine Epoxides to 3-oxo pyrrolidines

A round bottom flask equipped with a magnetic stir bar was charged with the epoxide substrate and sealed under nitrogen. The substrate was suspended in dry DCM (0.1 M), and the mixture was cooled to $-78^{\circ} \mathrm{C}$ before $\mathrm{BF}_{3} \mathrm{OEt} 2$ (1 eq) was added slowly via syringe. The reaction was allowed to stir for 30 minutes and then quenched with the addition of water. The mixture was then diluted with DCM, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with DCM (3x). The organic layers were combined, washed with brine (1x), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired ketone as an intractable mixture of diastereomers.

(4S/R,5S)-5-benzyl-4-phenyl-1-tosylpyrrolidin-3-one (63a): Purification by flash column chromatography provided 63a as a white solid in 74% yield and $86: 14$ d.r. Data reported as a mixture of diastereomers, NOE data reported for major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.32 \mathrm{H}), 7.35-$ 7.27 (m, 4H), $7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92-6.87$ (m, 0.32H), $6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{dd}, J=14.1,9.1 \mathrm{~Hz}, 0.16 \mathrm{H}), 4.49$ $-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 0.16 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 0.16 \mathrm{H}), 3.70(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.45$ (s, 3H), 2.39 (s, 0.48 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor diastereomer carbons marked
with *) δ 208.2, 144.4, 136.4, 135.9, 135.3*, 134.9, 130.3, 130.2, 130.0*, 129.9*, 129.4*, 129.1, 128.9, 128.4, 127.6, 127.5, 127.4, 124.9*, 66.2, 63.8*, 57.9, 53.8, 41.4, 37.1*, 21.7; IR (neat) 2928, 1761, 1598, 1495, 1453, 1347, 1155, 1091, 1038, 911, 815, 735, 699, $664 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{-}: 404.1326$, found: 404.1321.

Position	$\delta \bar{c}$	δ_{H}	$m(J(H z))$	NOE
C3	53.8	3.48	$d(3.6)$	H 6
C6	41.4	$3.25-3.10$	m	H 3

(4S/R,5S)-5-benzyl-4-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-3one (63b): Purification by flash column chromatography provided 63b as a white solid in 72\% yield and 88:12 d.r. Data reported as a mixture of diastereomers, NOE data reported for major diastereomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.24 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.24 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $0.12 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.24 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $0.24 \mathrm{H}), 6.49(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.03-4.97(\mathrm{~m}, 0.12 \mathrm{H}), 4.54(\mathrm{dt}, J=7.6,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 0.12 \mathrm{H}), 4.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.12 \mathrm{H}), 3.86(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (d, $J=18.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (d, $J=18.6 \mathrm{~Hz}, 0.12 \mathrm{H}$), 3.54 (s, 1H), 3.24 (dd, $J=13.6,3.8 \mathrm{~Hz}$, 1 H), 3.08 (dd, $J=13.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (dd, $J=14.4,4.1 \mathrm{~Hz}, 0.12 \mathrm{H}$), 2.32 (dd, $J=14.2$, $11.6 \mathrm{~Hz}, 0.12 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor diastereomer carbons marked with *) б 207.8, 141.8, 136.3, 135.6, 134.9 (q, J = 33.2 Hz), 130.1, 129.9*, 129.22, 129.19*, 129.12, 129.07*, 128.6*, 127.8, 127.7, 127.6, 127.0*, 126.9, 126.6 (q, J=3.6 Hz), 123.2 (q, $J=273.0$), 67.1, 64.4*, 59.2*, 57.7, 53.4, 51.7*, 42.1, 37.1*; IR (neat) 2928, 1762, 1607, 1496, 1454, 1404, 1355, 1321, 1248, 1161, 1131, 1108, 1093, 1061, 1013, 910, 843, 787, 741, 711, 698, 668; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{-}$: 458.1043, found: 458.1036.

Position	δ c	δ_{H}	$m(J(\mathrm{~Hz}))$	NOE
C3	53.4	3.54	s	H 6
C6	42.1	$3.24,3.08$	$\mathrm{dd}(13.6,3.8)$,	H 3
			$\mathrm{dd}(13.6,8.5)$	

$2.5^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

|

25

28

$$
1\left\|\|\left.\right|_{111} 11,1\right.
$$

29

31

31

32

32

33

$\underbrace{\infty}_{V}$

33

34

© がヘヘヘへへへへへへ
 $\stackrel{4}{4}$

e

				$\stackrel{\sim}{6}$	$\stackrel{\otimes}{\sim}$

37

38 S

38 S

39 S

39 S

合

	ส	$\stackrel{8}{+8}$	-
$\xrightarrow{\text { 込込 }}$	~~~	$\stackrel{3}{4}$	

CTs
45 S

45 S

46 S

50 S

								$\stackrel{\text { H }}{\text { - }}$		$\stackrel{\text { ¢ }}{\text { ¢ }}$	-				
1	1	1	1												
13	12	11	10	9	8	7	$\begin{gathered} 6 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	5	4		3	2	1	0	-1

52a S

-197.59

$52 b \mathrm{~S}$

53a S

નૈ
 in

($)$
2

53b S

品


``` －ヘへへへへへべ，
```


 $4 \underbrace{4}$

54b S

$$
\int|1| 1|1| 1 \mid
$$

55a S

N	
	$\xrightarrow{\text { H- }}$ -

$\stackrel{\infty}{\infty}$

55b S

（隹

58 S

59 S


```
N~
| N
```


20

1	1	1	T	1		1	1		1		1		1	1	1	1	T	1	T	1	1		,	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

24

24

26

36

42

 |

42

1	1	1	I	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	1	T
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												f1 (ppm)												

|r

44

|

44


```
N~
```


Ph
45


```
~0


48







```

~

```
隹

52a



52a




52b










53b







54a







\section*{ \\ 人}



(


56






57




57



\section*{ \\ \(\xrightarrow{\sim}\)}


\begin{tabular}{|c|c|}
\hline f & \(\stackrel{\rightharpoonup}{7}\) \\
\hline \(\stackrel{0}{0}\) & ก่ \\
\hline | & | \\
\hline
\end{tabular}


58



59



59








\section*{}





\subsection*{2.6 HPLC Analysis of Phenylalanine Substrate 19 and 25}

Racemic phenylalanine substrate 19: Chiralpak IB, 3\% IPA in hexanes, 15 min run, \(1 \mathrm{~mL} / \mathrm{min}\).


Enantioenriched phenylalanine substrate 19: Chiralpak IB, \(3 \% \mathrm{IPA}\) in hexanes, \(15 \mathrm{~min} \mathrm{run}, 1 \mathrm{~mL} / \mathrm{min}\).


Racemic phenylalanine metathesis product 20: Chiralpak AD-H, 10\% IPA in hexanes, 30 min run, \(1 \mathrm{~mL} / \mathrm{min}\).


Enantioenriched phenylalanine metathesis product 20: Chiralpak AD-H, 10\% IPA in hexanes, 30 min run, \(1 \mathrm{~mL} / \mathrm{min}\).


Racemic phenylalanine metathesis product 26: Chiralpak AD-H, \(10 \%\) IPA in hexanes, 30 min run, \(1 \mathrm{~mL} / \mathrm{min}\).


Enantioenriched phenylalanine metathesis product 26: Chiralpak AD-H, 10\% IPA in hexanes, 30 min run, \(1 \mathrm{~mL} / \mathrm{min}\).


Racemic \(N\)-Boc-protected phenylalanine product 61: Chiralpak AD-H, 15\% IPA in hexanes, 40 min run, \(1 \mathrm{~mL} / \mathrm{min}\).


Enantioenriched \(N\)-Boc-protected phenylalanine product 61: Chiralpak AD-H, 15\% IPA in hexanes, 40 \(\min\) run, \(1 \mathrm{~mL} / \mathrm{min}\).


\subsection*{2.7 References}
(1) For leading references, see: (a) Naturally Occurring Pyrrolizidine Alkaloids; Rizk, A.F.M., Ed.; CRC Press: Boca Raton, FL, 1991; (b) Mattocks, A.R. Chemistry and Toxicology of Pyrrolizidine Alkaloids; Academic Press: London, 1986; (c) Bronner, S.M.; Im, G.-Y.J.; Garg, N.K. In Heterocycles in Natural Product Synthesis; Majumdar, K.C.; Chattopadhyay, S.K., Eds.; Wiley-VCH: Weinheim, Germany, 2011; pp 221-265; (d) Michael, J.P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep. 2008, 25, 139-165; (e) Michael, J.P. Simple indolizidine and quinolizidine alkaloids. Alkaloids. Chem. Biol. 2001, 55, 91-258; (f) Michael, J.P. The Alkaloids, Vol 75, H.-J.Knölker, Ed.; Academic Press: San Diego, CA, 2016, 1-498.
(2) For examples, see: Li, X.; Li, J. Recent Advances in the Development of MMPIs and APNIs Based on the Pyrrolidine Platforms. Mini-Rev. Med. Chem. 2010, I, 794-805.
(3) For examples, see: Choi, Y.H.; Choi, J.Y.; Yang, H.Y.; Him, Y.H. Copper-catalyzed conjugate addition on macrocyclic, cyclic, and acyclic enones with a chiral phosphoramidite ligand having a C2-symmetric amine moiety. Tetrahedron Asymmetry. 2002, 13 (8), 801-804.
(4) For an example, see: Reisman, S.E.; Doyle, A.G.; Jacobsen, E.N. Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium lons. J. Am. Chem. Soc. 2008, 130 (23), 7198-7199.
(5) For a review, see: Ellman, J.A.; Owens, T.D.; Tang, T.P. N-tert-Butanesulfinyl Imines: Versatile Intermediates for the Asymmetric Synthesis of Amines. Acc. Chem. Res. 2002, 35 (11), 984-995.
(6) (a) Brinner, K.M.; Ellman, J.A. A rapid and general method for the asymmetric synthesis of 2 -substituted pyrrolidines using tert-butanesulfinamide. Org. Biomol. Chem. 2005, 3, 2109-2113; (b) Reddy, L.R.; Das, S.G.; Liu, Y.; Prashad, M. A Facile Asymmetric Synthesis of Either Enantiomer of 2-Substituted Pyrrolidines. J. Org. Chem. 2010, 75 (7), 2236-2246.
(7) For recent reviews on hydroamination, see: a) Chemler, S.R. The enantioselective intramolecular aminative functionalization of unactivated alkenes, dienes, allenes and alkynes for the synthesis of chiral nitrogen heterocycles. Org. Biomol. Chem. 2009, 7, 3009-3019; b) Müller, T.E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev. 2008, 108 (9), 3796-3892.
(8) For asymmetric intramolecular hydroamination with group 4 metals, see: (a) Knight, P.D.; Munslow, I.; O'Shaughnessy, P.N.; Scott, P. Zirconium catalysed enantioselective hydroamination/cyclisation. Chem. Comm. 2004, 7, 894-895; (b) Watson, D.A.; Chiu, M.; Bergman, R.G. Zirconium Bis(Amido) Catalysts for Asymmetric Intramolecular Alkene Hydroamination. Organometallics 2006, 25 (20), 4731-4733; (c) Wood, M.C.; Leitch, D.C.; Yeung, C.S.; Kozak, J.A.; Schafer, L.L. Chiral Neutral Zirconium Amidate Complexes for the Asymmetric Hydroamination of Alkenes Angew. Chem. Int. Ed. 2007, 46 (3), 354-358; (d)

Scott, A.L.; Clarke, A.J.; Clarkson, G.J.; Scott, P. Structure-Activity Relationships for Group 4 Biaryl Amidate Complexes in Catalytic Hydroamination/Cyclization of Aminoalkenes. Organometallics 2007, 26 (7), 1729-1737; (e) Zi, G.; Liu, X.; Xiang, L.; Song, H. Synthesis of Group 4 Metal Amides with New Chiral BiaryldiamineBased Ligands and Their Use as Catalysts for Asymmetric Hydroamination/Cyclization. Organometallics 2009, 28 (4), 1127-1137; (f) Manna, K.; Xu, S.; Sadow, A.D. A Highly Enantioselective Zirconium Catalyst for Intramolecular Alkene Hydroamination: Significant Isotope Effects on Rate and Stereoselectivity. Angew. Chem. Int. Ed. 2011, 50 (8), 1865-1868. For asymmetric intramolecular hydroamination with main-group metals, see: (g) Martinez, P.H.; Kultzsch, K.C.; Hampel, F. Base-catalysed asymmetric hydroamination/cyclisation of aminoalkenes utilising a dimeric chiral diamidobinaphthyl dilithium salt. Chem. Comm. 2006, 21, 2221-2223; (h) Ogata, T.; Ujihara, A.; Tsuchida, S.; Shimizu, T.; Kaneshige, A.; Tomioka, K. Catalytic asymmetric intramolecular hydroamination of aminoalkenes. Tetrahedron Lett. 2007, 48 (38), 6648-6650; (i) Zhang, X.; Emge, T.J.; Hultzsch, K.C. A Chiral Phenoxyamine Magnesium Catalyst for the Enantioselective Hydroamination/Cyclization of Aminoalkenes and Intermolecular Hydroamination of Vinyl Arenes. Angew. Chem. Int. Ed. 2012, 51 (2), 394-398. For asymmetric intramolecular hydroamination with late transition metals, see: (j) Shen, X.; Buchwald, S.L. Rhodium-Catalyzed Asymmetric Intramolecular Hydroamination of Unactivated Alkenes. Angew. Chem. Int. Ed. 2010, 49 (3), 564567; (k) Turnpenny, B.W.; Hyman, K.L.; Chemler, S.R. Chiral Indoline Synthesis via Enantioselective Intramolecular Copper-Catalyzed Alkene Hydroamination. Organometallics 2012, 31, 7819-7822. For asymmetric intramolecular hydroaminations with lanthanide complexes, see: (I) Giardello, M.A.; Conticello, V.P.; Brard, L.; Gagne, M., Marks, T.J. Chiral Organolanthanides Designed for Asymmetric Catalysis. A Kinetic and Mechanistic Study of Enantioselective Olefin Hydroamination/Cyclization and Hydrogenation by C1-Symmetric Me2Si(Me4C5)(C5H3R*)Ln Complexes where R* = Chiral Auxiliary. J. Am. Chem. Soc. 1994, 116 (22), 10241-10254; (m) Hong, S.; Tian, S.; Metz, M.V.; Marks, T.J. C2-Symmetric Bis(oxazolinato)lanthanide Catalysts for Enantioselective Intramolecular Hydroamination/Cyclization. J. Am. Chem. Soc. 2003, 125 (48), 14768-14783; (n) Kim, J.Y.; Livinghouse, T. Enantioselective Intramolecular Alkene Hydroaminations Catalyzed by Yttrium Complexes of Axially Chiral Bis(thiolate) Ligands. Org. Lett. 2005, 7 (9), 1737-1379; (o) Collin, J.; Daran, J.; Jacquet, O.; Schulz, E.; Trifonov, A. Chem. Eur. J. 2005, 11 (11), 3455-3462; (p) Riegert, D.; Collin, J.; Meddour, A.; Schulz, E.; Trifonov, A. Enantioselective Intramolecular Hydroamination Catalyzed by Lanthanide Ate Complexes Coordinated by N-Substituted (R)-1,1'-Binaphthyl-2,2'-diamido Ligands. J. Org. Chem. 2006, 71 (6), 2514-2517; (q) Gribkov, D.V.; Hultzsch, K.C.; Hampel, F. 3,3‘-Bis(trisarylsilyl)-Substituted Binaphtholate Rare Earth Metal Catalysts for Asymmetric Hydroamination. J. Am. Chem. Soc. 2006, 128 (11), 3748-3759; r) Chapurina, Y.; Ibrahim, H.; Guillot, R.; Kolodziej, E.; Collin, J.; Trifonov, A.; Schulz,
E.; Hannedouche, J. Catalytic, Enantioselective Intramolecular Hydroamination of Primary Amines Tethered to Di- and Trisubstituted Alkenes. J. Org. Chem. 2011, 76 (24), 10163-10172.
(9) For a hydrogen-bond donor-catalyzed intramolecular hydroamination approach, see: Brown, A.R.; Uyeda, C.; Brotherton, C.A.; Jacobsen, E.N. Enantioselective Thiourea-Catalyzed Intramolecular Cope-Type Hydroamination. J. Am. Chem. Soc. 2013, 135 (18), 6747-6749.
(10) For carboamination approaches, see: (a) Yip, L.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. Pd(II)-Catalyzed Enantioselective Oxidative Tandem Cyclization Reactions. Synthesis of Indolines through C-N and C-C Bond Formation. J. Am. Chem. Soc. 2006, 128 (10), 3130-3131; (b) Zeng, W.; Chemler, S.R. Copper(II)Catalyzed Enantioselective Intramolecular Carboamination of Alkenes. J. Am. Chem. Soc. 2007, 129 (43), 12948-12949; (c) Zeng, W.; Chemler, S.R. Total Synthesis of (S)-(+)-Tylophorine Via Enantioselective Intramolecular Alkene Carboamination. J. Org. Chem. 2008, 73 (15), 6045-6047; (d) Duy, M.N.; Wolfe, J.P. Asymmetric Palladium-Catalyzed Carboamination Reactions for the Synthesis of Enantiomerically Enriched 2-(Arylmethyl)- and 2(Alkenylmethyl)pyrrolidines. J. Am. Chem. Soc. 2010, 132 (35), 12157-12159; (e) Liwosz, T.W.; Chemler, S.R. Copper-Catalyzed Enantioselective Intramolecular Alkene Amination/Intermolecular Heck-Type Coupling Cascade. J. Am. Chem. Soc. 2012, 134 (4), 2020-2023; (f) Hopkins, B.A.; Wolfe, J.P. Synthesis of Enantiomerically Enriched Imidazolidin-2-Ones through Asymmetric PalladiumCatalyzed Alkene Carboamination Reactions. Angew. Chem. Int. Ed. 2012, 51 (39), 9886-9890.
(11) For reviews, see: a) Mitchell, E.A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B.U.W. Direct \(\alpha\)-Functionalization of Saturated Cyclic Amines. Chem. Eur. J. 2012, 18 (33), 10092-10142; b) Campos, K.R. Direct sp3 C-H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 2007, 36, 1069-1084.
(12) For leading references on enantioselective \(\alpha\)-arylations of pyrrolidines, see: (a) Campos, K.R.; Klapars, A.; Waldman, J.H.; Dormer, P.G.; Chen, C.-y. J. Am. Chem. Soc. 2006, 128, 3538; (b) Barker, G.; McGrath, J.L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K.R.; O’Brien, P. J. Org. Chem. 2011, 76, 5936; (c) Sheikh, N.S.; Le-onori, D.; Barker, G.; Firth, J.D.; Campos, K.R.; Meijer, A.J.H.M.; O'Brien, P.; Coldham, I. J. Am. Chem. Soc. 2012, 134, 5300; (d) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nature. Chem. 2017, 9, 140.
(13) For catalytic, asymmetric \(\alpha\)-alkylations of \(N\)-Boc-pyrrolidine, see: Cordier, C.J.; Lundgren, R.J.; Fu, G.C. Enantioconvergent Cross-Couplings of Racemic Alkylmetal Reagents with Unactivated Secondary Alkyl Electrophiles: Catalytic Asymmetric Negishi \(\alpha\)-Alkylations of N-Boc-pyrrolidine. J. Am. Chem. Soc. 2013, 135 (30), 10946-10949.
(14) For an alternative strategy for the catalytic, asymmetric synthesis of 2alkylpyrrolidines, see: Trost, B.M.; Lam. T.M.; Herbage, M.A. Regio- and Enantioselective Synthesis of Pyrrolidines Bearing a Quaternary Center by

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition of Trimethylenemethanes. J. Am. Chem. Soc. 2013, 135 (7), 2459-2461.
(15) For other approaches to carbonyl-olefin metathesis, see: (a) Schopov, I.; Jossifov, C. Makromol. A carbonyl-olefin exchange reaction - new route to polyconjugated polymers, 1. A new synthesis of polyphenylacetylene. Chem., Rapid Commun. 1983, 4 (10), 659-662; (b) Fu, G.C.; Grubbs, R.H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc. 1993, 115 (9), 3800-3801. For carbonyl-olefin metathesis reactions proceeding via oxetane photoadducts, see: (c) Jones, G., II; Schwartz, S.B.; Marton, M.T. Regiospecific thermal cleavage of some oxetane photoadducts: carbonyl-olefin metathesis in sequential photochemical and thermal steps. J . Chem. Soc., Chem. Comm. 1973, 11, 374-375; (d) Jones, G., II; Acquadro, M.A.; Carmody, M.A. Long-chain enals via carbonyl-olefin metathesis. An application in pheromone synthesis. J. Chem. Soc., Chem. Comm. 1975, 6, 206-207; (e) Carless, H.A.J.; Trivedi, H.S. New ring expansion reaction of 2-t-butyloxetane. J. Chem. Soc., Chem. Commun. 1979, 8, 382-383; (f) D'Auria, M.; Racioppi, R.; Viggiani, L. Paternò-Büchi reaction between furan and heterocyclic aldehydes: oxetane formation vs. metathesis. Photochem. Photobiol. Sci. 2010, 9 (8), 11341138; (g) Pérez-Ruiz, R.; Gil, S.; Miranda, M.A. Stereodifferentiation in the Photochemical Cycloreversion of Diastereomeric Methoxynaphthalene-Oxetane Dyads. J. Org. Chem. 2005, 70 (4), 1376-1381; (h) Pérez-Ruiz, R.; Miranda, M.A.; Alle, R.; Meerholz, K.; Griesbeck, A.G. An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò-Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci. 2006, 5, 51-55; (i) Valiulin, R.A.; Arisco, T.M.; Kutateladze, A.G. DoubleTandem \(\quad[4 \pi+2 \pi] \cdot[2 \pi+2 \pi] \cdot[4 \pi+2 \pi] \cdot[2 \pi+2 \pi] \quad\) Synthetic Sequence with Photoprotolytic Oxametathesis and Photoepoxidation in the Chromone Series. J. Org. Chem. 2011, 76 (5), 1319-1332; (j) Valiulin, R.A.; Arisco, T.M.; Kutateladze, A.G. Photoinduced Intramolecular Cyclopentanation vs Photoprotolytic Oxametathesis in Polycyclic Alkenes Outfitted with Conformationally Constrained Aroylmethyl Chromophores. J. Org. Chem. 2013, 78 (5), 2012-2025. For Brønsted and Lewis acid mediated carbonyl-olefin metathesis reactions, see: (k) Soicke, A.; Slavov, N.; Neudörfl, J.-M.; Schmalz, H.-G. Metal-Free Intramolecular CarbonylOlefin Metathesis of ortho-Prenylaryl Ketones. Synlett 2011, 17, 2487-2490; (I) van Schaik, H.-P.; Vijn, R.-J.; Bickelhaupt, F. Acid-Catalyzed Olefination of Benzaldehyde. Angew. Chem. Int. Ed. 1994, 33 (15-16), 1611-1612; (m) Bah, J.; Franzén, J.; Naidu, V.R. Direct Organocatalytic Oxo-Metathesis, a trans-Selective Carbocation-Catalyzed Olefination of Aldehydes. Eur. J. Org. Chem. 2015, 8, 1834-1839; (n) Jossifov, C.; Kalinova, R.; Demonceau, A. Chim. Oggi. 2008, 26, 85-87; For catalytic carbonyl-olefin metathesis reactions proceeding via [3+2]/retro-[3+2]-cycloaddition, see: (o) Griffith, A.K.; Vanos, C.M.; Lambert, T.H. Organocatalytic Carbonyl-Olefin Metathesis. J. Am. Chem. Soc. 2012, 134 (45), 18581-18584; (p) Hong, X.; Liang, Y.; Griffith, A.K.; Lambert, T.H.; Houk, K.N.

Distortion-accelerated cycloadditions and strain-release-promoted cycloreversions in the organocatalytic carbonyl-olefin metathesis. Chem. Sci. 2014, 5, 471-475.
(16) (a) This work was first reported as Ludwig, J.R.; Gianino, J.B.; Schindler, C.; Abstracts of Papers, 250th ACS National Meeting \& Exposition, Boston, MA, United States, August 16th-20th, 2015, ORGN-388. Nitrogen-containing substrates were disclosed as challenging for Lewis acid-catalyzed carbonyl-olefin metathesis; (b) Ludwig, J.R.; Zimmerman, P.M.; Gianino, J.B.; Schindler, C.S. Iron(III)-catalysed carbonyl-olefin metathesis. Nature 2016, 533 (7603), 374-379.
(17) Excess allyltrimethylsilane ( 5.0 equiv.) is required as an additive together with 20 \(\mathrm{mol} \% \mathrm{FeCl} 3\) to effect the carbonyl-olefin ring-closing metathesis of unsaturated \(\beta\) aminoketones: Ma, L.; Li, W.; Xi, H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. FeCl3Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angew. Chem. Int. Ed. 2016, 55 (35), 10410-10413.
(18) See Supporting Information for details.
(19) McAtee, C.M.; Riehl, P.S.; Schindler, C.S. Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis. J. Am. Chem. Soc. 2017, 139 (8), 2960-2963.
(20) For example, \({ }^{\mathrm{Cl}} \mathrm{TsCl}\) and \({ }^{\mathrm{F} T s C l}\) are available from Oakwood (US\$40.00/100G and US\$48.50/100g, respectively).
 ambient temperatures. For an example, see: Yu, W.Z.; Chen, F.; Cheng, Y.A.; Yeung, Y.-Y. Catalyst-Free and Metal-Free Electrophilic Bromoamidation of Unactivated Olefins Using the N-Bromosuccinimide/Sulfonamide Protocol. J. Org. Chem. 2015, 80 (5), 2815-2821.
(22) Ankner, T.; Hilmersson, G. Instantaneous Deprotection of Tosylamides and Esters with Sml2/Amine/Water. Org. Lett. 2009, 11 (3), 503-506.
(23) Han, Z-J.; Wang, R.; Zhou, Y-F.; Liu, L. Simple Derivatives of Natural Amino Acids as Chiral Ligands in the Catalytic Asymmetric Addition of Phenylacetylene to Aldehydes. Eur. J. Org. Chem. 2005, 5, 934-938.
(24) Zhou, Z. H.; Tang, Y.L.; Li, K.Y.; Liu, B.; Tang, C.C. Synthesis of optically active N-protected \(\alpha\)-aminoketones and \(\alpha\)-amino alcohols. Heteroatom Chem. 2003, 14, 603-606.
(25) Florjancic, A.S.; Sheppard, G.S. A Practical Synthesis of \(\alpha\)-Amino Ketones via Aryllithium Addition to N-Boc-a-Amino Acids. Synthesis 2003, 11, 1653-1656.

\section*{Chapter 3}

\section*{Synthesis of Tetrahydropyridines via Carbonyl-Olefin Metathesis Reaction***}

\subsection*{3.1 Introduction}

Chiral tetrahydropyridines and piperidines represent ubiquitous structural scaffolds found in a variety of biologically active natural products and pharmaceuticals. \({ }^{1}\) Recent estimates report that in the past decade, over 12,000 piperidine-derived compounds were included in clinical and pre-clinical studies. \({ }^{2}\) A variety of methods have been developed to access these nitrogen-containing heterocycles (1) including approaches relying on olefin-olefin metathesis, \({ }^{3}\) asymmetric multicomponent reactions, \({ }^{4}\) aza-Diels Alder reactions, \({ }^{5}\) and asymmetric annulations \({ }^{6}\) (Figure 3.1). Additional strategies include the cyclization of sulfinyl dienamines, \({ }^{7}\) ring expansion of furan derivatives, \({ }^{8}\) the reduction of pyridine scaffolds, \({ }^{9}\) and transition metal-catalyzed cyclizations. \({ }^{10}\) While these strategies provide differentially substituted tetrahydropyridines, they require precious metal catalysts, expensive chiral ligands, extended reaction times, and have a limited substrate scope.



- precious metal catalysts
- requires chiral ligands
current challenges
- limited substrate scope - long reaction times

Figure 3.1 Current Strategies towards accessing tetrahydropyridines.

\footnotetext{
\({ }^{* * *}\) Groso, E.J.; Schindler, C.S. Manuscript in Revision.
}

amino acids
Access to tetrahydropyridines?


Figure 3.2 Reaction design strategy for the extension of carbonyl-olefin metathesis towards tetrahydropyridines.

After the successful application of the carbonyl-olefin metathesis \({ }^{11-12}\) reaction towards the synthesis of chiral 3 -pyrrolines, \({ }^{13}\) we set out to apply this strategy towards the synthesis of tetrahydropyridines. Our reaction design involved employing our previous synthetic strategy of utilizing chiral amino acids 2 to access substrates with high enantiopurity could be easily modified by alkylating the secondary amine 4 with homoprenylbromide or -iodide. With this flexible, robust synthetic strategy, we were able to rapidly access a wide range of substrates from both natural and unnatural amino acids.

This chapter is focused on the extension of the carbonyl-olefin metathesis reaction towards the synthesis of chiral tetrahydropyridines using the previously established sequence. Our approach continues to rely on readily available amino acids as chiral pool reagents and \(\mathrm{FeCl}_{3}\) as an inexpensive and Earth-abundant catalyst. This strategy is superior for prenyl-derived alkenes, is robust on gram-scale and results in the desired products in up to \(99 \%\) yield with complete retention of enantiopurity.

\subsection*{3.2 Results and Discussion}

With a robust substrate synthesis in hand, we turned our attention to the evaluation of distinct Lewis acids upon their ability to promote the desired carbonyl-olefin metathesis reactions (Table 3.1). While carbonyl-olefin metathesis has worked well for the synthesis of 3-pyrrolines, the application We first evaluated stronger Lewis acids for their ability to promote the desired carbonyl-olefin metathesis reaction of chiral, phenylalanine-derived substrate 9. When aryl ketone 9 was subjected to \(50 \mathrm{~mol} \%\) of \(\mathrm{AlCl}_{3}\), the desired tetrahydropyridine 10 was formed in only 7\% yield (entry 1, Table 3.1). Similarly, 50 mol \% of \(\mathrm{TiCl}_{4}\) did not provide the desired heterocycle 10, albeit complete conversion of aryl ketone 9 was observed (entry 2, Table 3.1). In comparison, the use of \(50 \mathrm{~mol} \% \mathrm{SnCl}_{4}\) or \(50 \mathrm{~mol} \% \mathrm{BiCl}_{3}\) provided the desired product 10 in 43\% yield and 48\% yield, respectively, with \(45 \%\) conversion in both Table 3.1. Optimization of Reaction Conditions. cases (entries 3 and 4, Table 3.1). Improved yields of 10 (up to 58\% yield) were observed with \(\mathrm{GaCl}_{3}\) while a solution of \(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\) (50 mol \%) resulted in 52\% yield, both with complete consumption of the starting material (entries 5 and 6, Table 3.1). Diminished yields of tetrahydropyridine 9 were obtained when \(\mathrm{FeBr}_{3}\) was selected as the Lewis acid
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} &  & \\
\hline & & & & 10 & 11 \\
\hline entry & Lewis acid & mol \% & time (h) \({ }^{\text {a }}\) & yield (\%) \({ }^{\text {b }}\) & conversion (\%) \({ }^{\text {b }}\) \\
\hline 1 & \(\mathrm{AlCl}_{3}\) & 50 & 24 & 7 & 45 \\
\hline 2 & \(\mathrm{TiCl}_{4}\) & 50 & 24 & 0 & 99 \\
\hline 3 & \(\mathrm{SnCl}_{4}\) & 50 & 24 & 43 & 45 \\
\hline 4 & \(\mathrm{BiCl}_{3}\) & 50 & 24 & 48 & 49 \\
\hline 5 & \(\mathrm{GaCl}_{3}\) & 50 & 24 & 58 & 99 \\
\hline 6 & \(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\) & 50 & 24 & 52 & 95 \\
\hline 7 & \(\mathrm{FeBr}_{3}\) & 50 & 24 & 40 & 97 \\
\hline 8 & \(\mathrm{FeCl}_{3}\) & 50 & \(24^{\text {c }}\) & 68 & 99 \\
\hline 9 & \(\mathrm{FeCl}_{3}\) & 50 & 12 & 69 & 99 \\
\hline 10 & \(\mathrm{FeCl}_{3}\) & 50 & 24 & 88 & 99 \\
\hline 11 & \(\mathrm{FeCl}_{3}\) & 30 & 24 & 89 & 99 \\
\hline 12 & \(\mathrm{FeCl}_{3}\) & 10 & 24 & 6 & 10 \\
\hline 13 & \(\mathrm{FeCl}_{3}\) & 10 & 72 & 39 & 40 \\
\hline 14 & \(\mathrm{Fe}(\mathrm{OTf})_{3}\) & 50 & 24 & 30 & 91 \\
\hline 15 & \(\mathrm{Sc}(\mathrm{OTf})_{3}\) & 50 & 24 & 37 & 97 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Reactions were performed using 0.02 mmol of aryl ketone and were run at \(84^{\circ} \mathrm{C}\) for the indicated time. \({ }^{6}\) Percent yield and percent conversion determined by \({ }^{1} \mathrm{H}\)-NMR using dimethyl terephthalate as an internal standard. \({ }^{\circ}\) The Lewis acid was added at \(0^{\circ} \mathrm{C}\) and the reaction was allowed to warm to room temperature and stirred for the indicated time.
catalyst whereas \(\mathrm{FeCl}_{3}\) ( \(50 \mathrm{~mol} \%\) ) proved superior and resulted in \(88 \%\) yield (entries 7 and 10, Table 1). However, attempts to lower the reaction temperature to ambient conditions or shorten the reaction time to 12 hours led to diminished yields of tetrahydropyridine 6 in 68\% and 69\%, respectively (entries 8 and 9, Table 1). However, lower catalyst loadings of \(30 \mathrm{~mol} \% \mathrm{FeCl}_{3}\) were tolerated well and resulted in the formation of 6 in \(89 \%\) yield with \(99 \%\) conversion of starting material, which was ultimately established as the optimal set of reaction conditions (entry 11, Table 1). Interestingly, ironand scandium-based metal triflates similarly resulted in the formation of the desired carbonyl-olefin metathesis products, albeit in diminished yields of \(30 \%\) and \(37 \%\), respectively (entries 14 and 15, Table 1). Importantly, when the reaction was conducted relying on toluene as solvent under otherwise optimal reaction conditions, the desired tetrahydropyridine 6 was obtained in \(75 \%\) yield.

While examining the formation of the tetrahydropyridine products, we wanted to explore the preference of five- versus six-membered ring formation. Due to the requirement of an Table 3.2 Evaluation of Ring Formation
electron-withdrawing

Conditions: Reactions were performed using a combined 0.03 mmol of substrate and \(0.009 \mathrm{mmol}(0.3\) reaction preference, eq) of \(\mathrm{FeCl}_{3}\). Yields are reported as NMR yields with dimethyl terephthalate as an internal standard.
however, we did perform competition experiments between the homoallylic and allylic amino substrates 9 and 12, respectively (Table 3.2). When selecting the conditions to best test the reactivity, attempted to find attenuated reaction conditions in order to best monitor product formation. When the prenyl amine 12 was subjected to the carbonyl-olefin metathesis conditions for only 1 hr under the otherwise optimized conditions, we still found that the reaction went to completion (entry 1, Table 3.2). When we subjected 12 to the carbonyl-olefin metathesis conditions at elevated temperatures, the desired product was obtained in \(71 \%\) yield, however, the reaction went to completion (entry 2, Table 3.2). This led us to lower both the temperature and the catalyst loading which provided the desired product 13 in \(89 \%\) yield (entry 3, Table 3.2). Upon subjection of substrate 9 to the attenuated reaction conditions, we observed a significant drop to on \(26 \%\) yield of metathesis product 10 (entry 5). When 9 and 13 were subjected to \(\mathrm{FeCl}_{3}\) in the same reaction flask, there was a slight decrease in the formation of 10, but the generation of 3pyrroline 13 was largely unaffected. This data suggests that the carbonylolefin metathesis reaction favors the formation of the 5 -membered ring products.

Electronically differentiated sulfonamides were then examined as nitrogen protecting groups in the catalytic carbonyl-olefin metathesis reaction towards tetrahydropyridines

Table 3.3 Evaluation of electronically differentiated protecting groups.


Conditions: all reactions were performed using 0.1 mmol of substrate and \(\mathrm{FeCl}_{3}\) ( \(30 \mathrm{~mol} \%\) ) in DCE ( 0.01 M ). The reactions were stirred for 24 h at \(84^{\circ} \mathrm{C}\).
\({ }^{\text {a }}\) Reaction was stirred for 48 h .
(Table 2). Our previous efforts focused on the development of a synthetic approach towards 3-pyrrolines revealed that the sulfonamides can function as competitive binders to \(\mathrm{FeCl}_{3}\), which results in sequestration of the catalyst and lower overall yields of the catalyst and lower overall yields of the desired products. \({ }^{13 b}\) By utilizing more electronpoor protecting groups, \({ }^{14}\) the reactivity of the Lewis basic site was attenuated and the carbonyl-olefin metathesis reaction was able to proceed in excellent yields. \({ }^{13 b}\) Similar observations were made in the present study towards chiral tetrahydropyridines in which electron-deficient sulfonamides resulted in the desired metathesis products in yields up to \(89 \%\) (entries 1, 2, 7, Table 2). However, more electron-rich sulfonamides also proved viable substrates and resulted in good yields of up to \(78 \%\) of the desired tetrahydropyridines, albeit requiring prolonged reaction times of 48 hours (entries 4-6, Table 2). This is in stark contrast to observations made in our previous studies towards chiral 3-pyrrolines in which electron-deficient sulfonamides were essential to obtain high yields of the carbonyl-olefin metathesis product.

Next, we evaluated the effect of olefin substitution (Table 3.4). While both prenyl- or styrenylderived olefins were previously shown to be viable reaction partners

Table 3.4 Examination of olefin subunit.



3


0\%
4


22
0\%


23 3\% 6

\(24 R=M e 10 \%\)
\(25 \mathrm{R}=\mathrm{OMe} 0 \%\)

Conditions: all reactions were performed using 0.1 mmol of substrate and \(\mathrm{FeCl}_{3}\) (30 \(\mathrm{mol} \%\) ) in DCE \((0.01 \mathrm{M})\). The reactions were stirred at \(84^{\circ} \mathrm{C}\) for 24 h .
for catalytic carbonyl-olefin ring-closing metathesis reactions, \({ }^{12}\) aryl ketones bearing a prenyl substituent were found to be superior in the synthesis of tetrahydropyridines resulting in up to \(89 \%\) yield of the desired product (entry 1, Table 1). Importantly, the corresponding styrenyl-derivatives either failed or provided the desired tetrahydropyridines in low yields of \(10 \%\) (entries 3-6, Table 3.4). The addition of superstoichiometric allyltrimethylsilane to carbonyl-olefin metathesis reactions of styrenederivatives was previously shown to be beneficial for high yields and conversions. \({ }^{15 b}\) However, upon addition of 5.0 equivalents of allytrimethylsilane \({ }^{15 a}\) to \(\mathbf{2 5}\) under otherwise identical reaction conditions, no formation of the desired product was observed. These results are particularly valuable to obtain further insights into the controlling features of catalytic carbonyl-olefin metathesis reaction.

Subsequent efforts focused on developing an efficient protocol for sulfonamide deprotection of the tetrahydropyridine products obtained (Figure 3.3). Reductive conditions \({ }^{13 b, 15}\) relying on \(\mathrm{Sml}_{2}\) resulted in facile deprotection of 6 to the corresponding secondary amine 19 which, upon exposure to \(\mathrm{Boc}_{2} \mathrm{O}\) at \(50^{\circ} \mathrm{C}\) affords the corresponding carbamate 20 in \(92 \%\) yield over the two-step sequence. Oxidation of the amine or aromatization to the corresponding pyridine was not observed under the optimized reaction conditions. Importantly, the sequence of deprotection and reprotection as the corresponding carbamate proceeded with complete retention of the stereocenter ( \(98 \%\) ee) and established catalytic carbonylolefin metathesis reactions as a


9
98\% ee


Figure 3.3 Deprotection of chiral tetrahydropyridines.
viable approach for the synthesis of chiral tetrahydropyridines from amino acids as chiral pool reagents.

With these results in hand, we investigated the scope of this transformation. Specifically, the reaction proceeds with a variety of aryl ketones derived from natural and unnatural amino acids bearing sterically and electronically distinct substitution. Previously challenging substrates such as unsubstituted glycine-derived aryl ketone 14, provided metathesis product 28 in up to \(84 \%\) yield. \({ }^{13 a}\) Furthermore, this reaction protocol was shown to be viable for substrates bearing substitution in the \(\alpha-\) position. The reaction gave excellent yields of the alanine-derived products 32 and 34 and proceeded well for the sterically congested napthyl product 52. Further examination of the substitution on the aromatic ring revealed that both meta- and para-substituents were also well tolerated and formed the desired alanine-derived products in up to \(85 \%\) yield ( 36 and 38 , Table 3.5 ). We next investigated the electronic effects on the aromatic ring with phenylalanine-based substrates. The reaction was tolerant of electron poor substituents 42 and 44 resulting in \(76 \%\) and \(77 \%\) yield, respectively. However, electron rich aryl ethers 46 formed the desired carbonyl-olefin metathesis products in slightly lower yields. It is possible that the benzylether substituent acts as an additional Lewis basic site and competitively binds to the \(\mathrm{FeCl}_{3}\)-catalyst which ultimately slows down the desired carbonyl-olefin metathesis reaction. Other electron rich systems including heteroaromatics were well tolerated, affording the desired products \(\mathbf{4 8}\) derived from thienylalanine in \(\mathbf{8 5 \%}\) yield and \(\mathbf{5 0}\) from the corresponding thienyl ketone in \(84 \%\) yield. Importantly, the reaction also proceeds in good yields with other electron rich sulfonamide protecting groups such as 29 and 31.

Table 3.5 Evaluation of Substrate Scope



Conditions: all reactions were performed using 0.1 mmol of substrate and \(\mathrm{FeCl}_{3}(30 \mathrm{~mol} \%)\) in \(\mathrm{DCE}(0.01 \mathrm{M})\). The reactions were stirred at \(84{ }^{\circ} \mathrm{C}\) for 24 h .
However, the 4-(trifluoromethyl)benzene-sulfonyl protecting group consistently provided the highest yield of the desired products.

Finally, we wanted to explore the application of carbonyl-olefin metathesis towards the synthesis of quinoline motifs. These fused heterocycles are important pharmacophores can be found in a variety of pharmaceuticals, specifically anti-bacterials, and they can also be found in a variety of natural products. \({ }^{16}\) Substrates were prepared via the Wittig olefination \({ }^{17}\) of 2-aminobenzaldehyde 53 followed by the protection and
alkylation of the amine.
Once the \(\alpha\)-amino ketone
55 was obtained, the material was subjected to the metathesis conditions
(Figure 3.4). We found that while extended reaction times were required, we were able to access the desired quinoline 56 in modest yields. Unfortunately, the

Figure 3.4 Studies towards the synthesis of quinolines.
(a) Quinoline Substrate Synthesis

(b) Preliminary results towards the preparation of quinolines.

\begin{tabular}{ccccc} 
entry & eq. of \(\mathrm{FeCl}_{3}\) & time (h) & \%yield \(\mathbf{5 6}\) & \%yield \(\mathbf{5 7}\) \\
\hline 1 & 0.25 & 48 & 19 & 15 \\
2 & 0.50 & 48 & 31 & 22 \\
3 & 1 & 24 & 29 & 16 \\
4 & 2 & 24 & 27 & 16 \\
5 & 1 & 48 & 41 & 35 \\
\hline
\end{tabular}

Conditions: Substrate ( 0.03 mM ) was dissolved in DCE \([0.01 \mathrm{M}]\) and subjected to \(\mathrm{FeCl}_{3}\). Reactions were stirred at \(84^{\circ} \mathrm{C}\). (a) NMR yields reported with dimethyl terephthalate as an internal standard. (b) Isolated yields.
formation of the carbonyl-ene product 57 was found to be a competing byproduct. These preliminary results highlight the utility of this methodology and it's potential application towards an even more diverse and complex array of biologically important nitrogen heterocycles.

\subsection*{3.3 Experimental Procedures}

\subsection*{3.3.1 General Considerations}

General Laboratory Procedures. All moisture-sensitive reactions were performed under an atmosphere of nitrogen in flame-dried round bottom flasks, glass vials fitted with rubber septa and/or septa equipped screw caps, or sealed microwave vials. Stainless steel syringes were used to transfer air or moisture sensitive liquids. Flash chromatography was performed using silica gel Silia Flash® 40-63 micron (230-400 mesh) from Silicycle.

Materials and Instrumentation. All chemicals were purchased from Sigma-Aldrich, VWR, Oakwood or Acros and were used as received unless otherwise stated. Tetrahydrofuran, ether, toluene, and \(N, N\)-dimethylformamide were dried by being passed through columns of activated alumina. Proton Nuclear Magnetic Resonance NMR ( \({ }^{1} \mathrm{H}\) NMR) spectra and carbon nuclear magnetic resonance ( \(\left(^{13} \mathrm{C}\right.\) NMR) spectra were recorded on a Varian Unity Plus 400, Varian MR400, Varian vnmrs 500, Varian Inova 500, Varian Mercury 500, and Varian vnmrs 700 spectrometers. Chemical shifts for protons are reported in parts per million and are references to the NMR solvent peak (CDCl3: \(\delta 7.26\), \(\mathrm{C}_{6} \mathrm{D}_{6}: \delta 7.16\), \(\mathrm{DMSO}-d_{6}: \delta 2.50\), or \(\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta 5.32\) ). Chemical shifts for carbons are reported in parts per million and are referenced to the carbon resonances of the NMR solvent ( \(\mathrm{CDCl}_{3}: \delta 77.00, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 128.06, \mathrm{DMSO}-\mathrm{d}_{6}: \delta 39.52\), or \(\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta 53.84\right)\). Data are represented as follows: chemical shift, integration, multiplicity ( \(b r=b r o a d, s=s i n g l e t, d=\) doublet, \(\mathrm{t}=\) triplet, \(\mathrm{q}=\) quartet, \(\mathrm{p}=\) pentet, \(\mathrm{m}=\) multiplet), and coupling constants in Hertz (Hz). Mass spectroscopic (MS) data was recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Michigan in Ann Arbor, MI on an Agilent Q-TOF HPLC-MS with ESI high resolution mass spectrometer. Infrared (IR) spectra were obtained using either an Avatar 360 FT-IR or Perkin Elmer Spectrum BX FT-IR spectrometer. IR data are represented as frequency of absorption \(\left(\mathrm{cm}^{-1}\right)\) and all compounds were collected neat. Supercritical fluid chromatography (SFC) was performed on a Waters SFC instrument with a Waters Investigator SFC System with a Chiralpack AD-H column ( \(4.6 \times 250 \mathrm{~mm}\) ).

All moisture-sensitive reactions were performed under an atmosphere of nitrogen in flame-dried round bottom flasks, glass vials fitted with rubber septa and/or septa equipped
screw caps, or sealed microwave vials. Stainless steel syringes were used to transfer air or moisture sensitive liquids. Flash chromatography was performed using silica gel Silia Flash® 40-63 micron (230-400 mesh) from Silicycle.

Materials and Instrumentation. All chemicals were purchased from Sigma-Aldrich, VWR, Oakwood or Acros and were used as received unless otherwise stated. Tetrahydrofuran, ether, toluene, and N,N-dimethylformamide were dried by being passed through columns of activated alumina. Proton Nuclear Magnetic Resonance NMR (1H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a Varian Unity Plus 400, Varian MR400, Varian vnmrs 500, Varian Inova 500, Varian Mercury 500, and Varian vnmrs 700 spectrometers. Chemical shifts for protons are reported in parts per million and are references to the NMR solvent peak (CDCI3: \(\delta 7.26\), C6D6: \(\delta 7.16\), DMSOd6: \(\delta 2.50\), or \(\mathrm{CD} 2 \mathrm{Cl} 2: \delta 5.32\) ). Chemical shifts for carbons are reported in parts per million and are referenced to the carbon resonances of the NMR solvent (CDCI3: \(\delta 77.00, \mathrm{C} 6 \mathrm{D} 6\) : \(\delta\) 128.06, DMSO-d6: \(\delta 39.52\), or CD2Cl2: \(\delta 53.84\) ). Data are represented as follows: chemical shift, integration, multiplicity \((\mathrm{br}=\) broad, \(\mathrm{s}=\) singlet, \(\mathrm{d}=\) doublet, \(\mathrm{t}=\) triplet, \(\mathrm{q}=\) quartet, \(\mathrm{p}=\) pentet, \(\mathrm{m}=\) multiplet), and coupling constants in Hertz (Hz). Mass spectroscopic (MS) data was recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Michigan in Ann Arbor, MI on an Agilent QTOF HPLC-MS with ESI high resolution mass spectrometer. Infrared (IR) spectra were obtained using either an Avatar 360 FT-IR or Perkin Elmer Spectrum BX FT-IR spectrometer. IR data are represented as frequency of absorption (cm-1) and all compounds were collected neat. Supercritical fluid chromatography (SFC) was performed
on a Waters SFC instrument with a Waters Investigator SFC System with a Chiralpack AD-H column ( \(4.6 \times 250 \mathrm{~mm}\) ).

\subsection*{3.3.2 General Procedure for the \(N\)-Protection and Weinreb Amidation of Amino Acids}


WA
A round bottom flask equipped with a magnetic stir bar was charged with the appropriate amino acid. The amino acid was dissolved in deionized water ( 0.4 M ), and NaOH (2.5 eq) was added. The mixture was stirred until the solid was fully dissolved. To the resulting mixture was added a solution of the aryl sulfonyl chloride (1.2 eq) in diethyl ether ( 0.4 M ). The reaction stirred for 12 hours, or until judged complete by TLC analysis. Aqueous hydrochloric acid (1 M) was added until the reaction mixture had a \(\mathrm{pH}=1\), and the layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine (1x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure to give the desired protected amino acid, which was carried forward without purification. \({ }^{1}\)

A round bottom flask equipped with a magnetic stir bar was charged with the protected amino acid and N,O-dimethylhydroxylamine hydrochloride (1.1 eq). The flask was sealed under a nitrogen atmosphere, and dry DCM ( 0.3 M ) followed by NMM (1.4 eq) were subsequently added via syringe. The stirring mixture was cooled to \(0^{\circ} \mathrm{C}\), and \(\mathrm{DCC}(1.1\) eq) was added in one portion. The reaction was allowed to warm to room temperature over 4-6 hours based on TLC analysis. The reaction was then filtered over a pad of celite, eluted with multiple DCM washes, and the combined organic eluent was washed with
saturated aqueous \(\mathrm{NaHCO}_{3}(2 x)\). The organic layer was washed with brine (1x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure to give the crude product. Purification by flash column chromatography eluting with EtOAc/hexanes (1:1) provided the desired Weinreb amide in \(45-80 \%\) yield. \({ }^{2}\)


9 WA
(S)-N-methoxy-N-methyl-3-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (9 WA): Purification by flash column chromatography provided 9 WA as a white solid. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}\), \(3 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=14.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53\) (s, 3H), \(3.06-2.96(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{dd}, J=13.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 171.1,143.6,135.9,134.1(q, J=32.7 \mathrm{~Hz}), 129.6,128.6,127.7,127.3,126.0(q, J=\) \(3.6 \mathrm{~Hz}), 123.4(\mathrm{q}, J=272.7 \mathrm{~Hz}), 61.6,54.8,39.6,32.2\).


31 WA
(S)-2-((4-chlorophenyl)sulfonamido)-N-methoxy- \(N\)-methylpropanamide (31 WA): Purification by flash column chromatography provided 31 WA as a clear oil that slowly solidified to give a white solid. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.77\) (d, J=8.6 Hz, 2H), 7.45 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(5.77-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})\), 1.31 (d, \(J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 172.09,139.10,138.60,129.15\), 128.70, 61.47, 49.03, 32.15, 19.99, 14.17.; IR: 2929.96, 2939.78, 1651.18, 1585.99, 1476.77, 1437.83, 1387.35, 1334.33, 1277.72, 1163.19, 1083.41, 1052.04, 1013.62, 1052.04, 1013.62, 985.44, 911.10, 871.97, 829.89; HRMS: calcd for \(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}\): 329.0333, found: 329.0332.


33 WA
(S)-N-methoxy-N-methyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (33 WA): Purifi-cation by flash column chromatography provided 33 WA as a clear oil that solidified to give a white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74\) (d, \(J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(5.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}\), 3H), 1.31 (d, \(J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 172.05,143.84,134.44\) (q, J \(=32.8 \mathrm{~Hz}\) ), 127.93, 126.16 (q, \(J=7.1,3.4 \mathrm{~Hz}\) ), 125.66 (dd, \(J=588.3,244.9 \mathrm{~Hz})\), 61.62, 49.17, 32.21, 20.03; IR: 2940.40, 1721.9, 1654.85, 1404.75, 1384.61, 1320.91, 1267.74, 1167.86, 1129.60, 1107.94, 1093.36, 1061.36, 1017.35, 989.00, 911.31, 874.23, 842.57; HRMS calcd for \(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+\mathrm{H}}: 341.0777\), found: 341.0780.


43 WA
3-(4-bromophenyl)-N-methoxy-N-methyl-2-((4-(trifluoromethyl)phenyl)sulfonamido)propanamide (43 WA): Purification by flash column chromatography provided 36 WA as an off-white solid. \({ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.64\) (d, \(J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})\), 4.50 (td, \(J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.61 (s, 3H), 3.05 (s, 3H), 2.94 (dd, \(J=13.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.72 (dd, \(J=13.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 170.80,143.50,134.83\), 134.12 (dd, \(J=56.2,22.9 \mathrm{~Hz}\) ), 131.54, 131.11, 127.42, 125.88 (dd, \(J=6.9,3.5 \mathrm{~Hz}\) ), 121.11, 61.53, 54.49, 38.54, 32.04; IR: 2944.73, 1721.98, 1647.67, 1488.46, 1436.46, 1405.00, 1324.05, 1163.40, 1126.86, 1106.64, 1096.78, 1061.75, 1011.35, 989.89,
 517.0012.


45 WA
(S)-3-(4-(benzyloxy)phenyl)-N-methoxy-N-methyl-2-((4-(trifluoromethyl)phenyl)-sulfonamido)propan-amide ( 45 WA ): Purification by flash column chromatography provided 45 WA as a white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=24.8,8.6 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=\)
\(2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})\), \(5.32-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})\), 3.17 (dd, \(J=13.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, J=22.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=13.2,4.9 \mathrm{~Hz}, 1 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl 3 ) \(\delta 169.34,148.05,143.90,138.90,136.88,136.09,136.05\), 135.77 (dd, \(J=66.5,33.3 \mathrm{~Hz}\) ), 130.69, 128.95, 128.20, 127.78, 127.43, 126.29 (dd, \(J=\) \(7.1,3.5 \mathrm{~Hz}\) ), 125.73, 123.02 (q, \(J=231.0 \mathrm{~Hz}\) ), 122.17, 65.24, 61.31, 56.23, 48.81, 36.29, 31.65; HRMS calcd for \(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+\mathrm{NH} 4}: 540.1175\), found: 540.2824.


47 WA
(S)-N-methoxy-N-methyl-3-(thiophen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonamido)propanamide (47 WA): Purification by flash column chromatography provided 47 WA as a pale yellow foam. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09\) (dd, \(J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}\) ), 6.83 (dd, \(J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88\) (d, \(J=9.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), 4.55 (ddd, \(J=9.9,7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.57 (s, 3H), 3.20 (dd, \(J=14.8,5.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.08\) (dd, \(J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 170.5\), \(143.9,137.6,134.1\) (q, \(J=33.0 \mathrm{~Hz}\) ), 127.7, 127.10, \(127.08,126.0\) (q, \(J=3.9 \mathrm{~Hz}\) ), 125.0, 123.3 (q, \(J=273.6 \mathrm{~Hz}\) ), 61.63, 54.81, 33.42, 32.17.


51 WA
(S)-N-methoxy-N-methyl-3-(naphthalen-1-yl)-2-((4-(trifluoromethyl)phenyl)sulfonamido)propenamide (44 WA): Purification by flash column chromatography provided 51 WA as a white foam. Spectral data was found to be in accordance with literature data. \({ }^{3}\) \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J\) \(=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=18.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.17(\mathrm{~m}\), \(4 \mathrm{H}), 6.03(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{td}, J=10.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=\) \(14.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.18 (s, 3H), 3.13 (dd, \(J=14.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 171.5,143.1,133.7,133.5(q, J=37.2 \mathrm{~Hz}), 132.0,131.7,129.1,128.7,128.1\), \(126.9,126.3,125.7,125.5(q, J=3.5 \mathrm{~Hz}), 125.4,123.4(q, J=272.8 \mathrm{~Hz}), 122.9,61.7\), 54.0, 36.5, 32.3.

\subsection*{3.3.3 General Procedures for the Synthesis of Metathesis Substrates} General Procedure A: N-Alkylation of Weinreb Amides followed by Grignard Reaction


A round bottom flask equipped with a magnetic stir bar was charged with Weinreb amide WA and sealed under a nitrogen atmosphere. Dry DMF ( 0.1 M ) was added via syringe, and the reaction mixture was cooled to \(0{ }^{\circ} \mathrm{C}\). Sodium hydride (2 eq, 60\% dispersion in mineral oil) was added in one portion, and the reaction was allowed to stir at \(0{ }^{\circ} \mathrm{C}\) for 30 minutes before homoprenyl iodide ( 1.2 eq ) was added via syringe. The mixture was allowed to warm to room temperature over 3 hours, or until judged complete by TLC analysis. The reaction was quenched with deionized water, diluted with EtOAc, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed brine (3x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired intermediate INT in 55-99\% yield.

A round bottom flask equipped with a magnetic stir bar was charged with acidwashed magnesium turnings (3 eq) and a crystal of iodine then sealed under a nitrogen atmosphere. Dry THF (0.2 M) was added via syringe, followed by the desired aryl bromide (3 eq). The solution was allowed to stir (heating as necessary) until all magnesium turnings had dissolved and was then cooled to \(0^{\circ} \mathrm{C}\). The mixture was then cooled to \(0^{\circ} \mathrm{C}\)
and added to a cooled solution \(\left(0^{\circ} \mathrm{C}\right)\) of intermediate INT suspended in dry THF (0.2 M) dropwise via cannula. The reaction was allowed to warm to room temperature over 12 hours, or until judged complete by TLC analysis, at which point it was quenched with 1 M HCl . The reaction mixture was diluted with EtOAc, the layers were partitioned, and the organic layer was collected. The aqueous phase was extracted with EtOAc (3x), and the combined organic layers were washed with brine (1x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired substrate \(\mathbf{S}\) in \(65-95 \%\) yield.

(S)-2-((4-chloro-N-(4-methylpent-3-en-1-yl)phenyl)sulfonamido)-N-methoxy-Nmethylpropanamide (24 INT): Purification by flash column chromatography provided 31 INT as a white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=\) \(7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.26\) - \(3.18(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.62\) (s, 3H), \(1.28(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 171.90,138.92,138.55\), 134.39, 129.08, 128.76, 120.15, 61.71, 51.09, 44.82, 30.59, 25.64, 17.80, 14.15; HRMS calcd for \(\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{CIN}_{2} \mathrm{O}_{4} \mathrm{~S}^{+\mathrm{Na}}\) : 411.1116 , found: 411.1113.

(S)-4-chloro-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1-phenylpropan-2-yl)benzenesulfonamide (31): Purification by flash column chromatography provided 31 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 8.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71\) (d, \(J=8.6 \mathrm{~Hz}\),
\(2 H), 7.60(t, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{q}, J\) \(=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.21-\) \(2.10(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 197.64,139.23,138.36,135.22,134.68,133.62,129.29,128.85,128.82\), 128.74, 119.80, 55.85, 44.84, 29.99, 25.59, 17.70, 14.42; IR: 2738, 1687, 1448, 1342, 1159, 1093, 738, 638; HRMS calcd for \(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{CINO}_{3} \mathrm{~S}^{+\mathrm{NH} 4}\) : 423.1504, found: 423.1039.

(S)-N-methoxy-N-methyl-2-((N-(4-methylpent-3-en-1-yl)-4-(trifluoromethyl)phenyl)-sulfonamido)prop-anamide (33 INT): Purification by flash column chromatography provided 33 as a white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74\) (d, \(J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=9.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.68\) \((\mathrm{s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl3) \(\delta 171.79\), 143.54, 134.53, 134.12 (q, \(J=33.2 \mathrm{~Hz}\) ), 127.84, 125.95, 125.93 (q, \(J=3.3 \mathrm{~Hz}\) ), 123.24 (dd, \(J=545.8,272.8 \mathrm{~Hz}\) ), 120.02, 61.70, 51.27, 45.02, 32.04, 30.64, 25.64, 17.81, 16.07; HRMS calcd for \(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+\mathrm{Na}}\) : 445.1379 , found: 445.1377.

(S)-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (34): Purification by flash column chromatography provided 34 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.89\) (d, J= \(8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})\), \(5.63(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2 \mathrm{H})\), \(1.61(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, CDCl \({ }_{3}\) ) \(\delta 197.49\), 143.35, 135.12, 134.78, 134.32 (q, \(J=33.1 \mathrm{~Hz}\) ), 133.70, 128.85, 128.64, 127.91, 126.11 (q, \(J=3.7 \mathrm{~Hz}\) ), \(126.11(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.17(\mathrm{q}, J=273.0 \mathrm{~Hz}), 119.68,55.94,45.03\), 30.07, 25.58, 17.69, 14.79; IR (neat): 2932, 1688, 1597, 1449, 1403, 1342, 1322, 1229, 1167, 1134, 1108, 1091, 1062, 1017, 991, 963, 920, 844, 787; HRMS calcd for \(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}\) : 462.1321, found: 462.1323.

(S)-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1-(m-tolyl)propan-2-yl)-4-(trifluoromethyl)-benzenesulfon-amide (35): Purification by flash column chromatography provided 35 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.88\) (d, \(J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.80-7.76\) (m, 2H), \(7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62\) (q, J=7.1 Hz, 1H), \(4.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22\) (dd, J \(=16.0,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 197.78,143.40,135.16,134.75,134.50,134.27\) (q, \(J=33.0 \mathrm{~Hz}\) ), 123.19 (q, \(J=272.8 \mathrm{~Hz}\) ), 129.08, 128.73, 127.85, 126.08 (q, \(J=3.6 \mathrm{~Hz}\) ), 125.80, 123.19 (q, \(J=\) \(272.8 \mathrm{~Hz}), 119.75,55.88,45.11,30.19,25.60,21.34,17.72,15.13\); IR: 2760, 1688, 1403, 1323, 1253, 1167, 1135, 1108, 1062, 1018, \(844 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na} \text { : }}\) 476.1478, found: 476.1530.


37
(S)-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1-(p-tolyl)propan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (37): Purification by flash column chromatography provided 37 as a clear colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=\) \(8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})\), 3.18 (ddd, \(J=16.5,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.08\) (m, 1H), 2.42 (s, 3H), 2.24 - 2.14 (m, 2H), 1.62 (s, 3H), 1.56 (s, \(J=4.9 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 197.01,144.72,143.41,134.72,134.25(q, J=33.1 \mathrm{~Hz}\), \(132.55,129.54\), 128.75, 127.89, 126.08 (dd, \(J=7.3,3.6 \mathrm{~Hz}\) ), 123.18 (q, \(J=273.0 \mathrm{~Hz}\) ), 119.73, 77.18, \(77.00,76.82,55.75,45.01,30.18,25.58,21.69,17.70,14.92\); IR (neat) 2925, 1686, 1607, 1404, 1323, 1167, 1135, 1100, 1062, 1017, \(924,843 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}: 476.1478\), found: 476.1474 .


40
(S)-N-(1-([1,1'-biphenyl]-4-yl)-1-oxopropan-2-yl)-N-(4-methylpent-3-en-1-yl)-4(trifluoromethyl)benzenesulfonamide (40): Purification by flash column chromatography provided 40 as a clear, faintly yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=8.2,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}\), \(J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=16.3,10.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.27\) -2.17 (m, 2H), \(1.62(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 196.94,146.39,143.38,139.58,134.81,134.35(\mathrm{q}, ~ J=33.1 \mathrm{~Hz})\), 133.71, 130.92, 129.31, 129.01, 128.43, 127.94, 127.45, 127.25, 126.15 (dd, \(J=7.2,3.5 \mathrm{~Hz}\) ), 123.18 (dd, \(J=545.9,272.8 \mathrm{~Hz}\) ), 119.70, \(55.95,45.02,30.12,25.59,17.72,14.70\); IR (neat): 2925, 1684, 1603, 1404, 1322, 1230, 1167, 1135, 1107, 1062, 1017, 922, \(847 \mathrm{~cm}^{-1}\) \({ }^{1}\); HRMS calcd for \(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}\) : 538.1634, found: 538.1631.

(S)-3-(4-(benzyloxy)phenyl)-N-methoxy-N-methyl-2-((N-(4-methylpent-3-en-1-yl)-4(trifluoromethyl)phenyl)sulfonamido)propanamide (45 INT): Purification by flash column chromatography provided 45 INT as a white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 7.79 (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19\) (m, \(3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76\) (d, \(J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19\) (t, \(J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=87.0,16.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})\), 3.15 (dd, \(J=13.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.71\) (dd, \(J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.45 (q, J \(=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl \({ }_{3}\) ) \(\delta 169.70,157.95\), \(144.15,137.32,134.42,133.87\) (q, \(J=32.9 \mathrm{~Hz}\) ), 130.38, 128.16, 127.80, 125.64 (q, \(J=\) 2.7 Hz ), 123.21 (d, \(J=272.8 \mathrm{~Hz}\) ), 119.43, 114.56, 67.64, 61.29, 56.44, 48.77, 36.36, 31.55, 28.19, 25.71, 17.81; HRMS calcd for \(\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+\mathrm{Na}: ~ 643.1850 \text {, found: }}\) 643.2677.


45
(S)-N-(3-(4-(benzyloxy)phenyl)-1-oxo-1-phenylpropan-2-yl)-N-(4-methylpent-3-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (45): Purification by flash column chromatography provided 45 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.84\) (dd, \(J=16.2,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{q}, J=\) \(7.7 \mathrm{~Hz}, 6 \mathrm{H}), 7.31(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})\), 5.70 (dd, \(J=9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36\) (dd, \(J=13.5\), \(9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.15(\mathrm{~m}, 2 \mathrm{H})\), 2.65 (dd, \(J=13.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H})\), 1.63 (s, 3H), 1.57 (s, 3H); \({ }^{13} \mathrm{C}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 196.53,157.68,143.45,136.86\), 135.79, 134.89, ס 134.27 (q, J = 33.1 Hz), 133.65, 130.23, 128.73, 128.63, 128.59, 128.55, 127.95, 127.84, 127.42, 126.09 (q, \(J=3.5 \mathrm{~Hz}), 123.12\) (q, \(J=273.0 \mathrm{~Hz}), 119.63\), 115.05, 69.95, 60.42, 45.00, 34.09, 29.70, 25.62, 17.72; IR (neat): 2925, 1686, 1610, 1582, 1512, 1449, 1494, 1322, 1244, 1164, 1134, 1108, 1092, 1062, 1016, 942, 844, 822 \(\mathrm{cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}\): 622.2233, found: 622.2228.

\section*{General Procedure B: Grignard Addition to Weinreb Amides followed by NAlkylation}


A round bottom flask equipped with a magnetic stir bar was charged with acidwashed magnesium turnings (3 eq) and a crystal of iodine then sealed under a nitrogen atmosphere. Dry THF (0.2 M) was added via syringe, followed by the desired aryl bromide (3 eq). The solution was allowed to stir (heating as necessary) until all magnesium turnings had dissolved, and was then cooled to \(0^{\circ} \mathrm{C}\). To the mixture was added Weinreb amide WA suspended in dry THF (0.2 M) dropwise via cannula. The reaction was allowed
to warm to room temperature over 12 hours, or until judged complete by TLC analysis, at which point it was quenched with a saturated ammonium chloride solution. The reaction mixture was diluted with EtOAc, the layers were partitioned, and the organic layer was collected. The aqueous phase was extracted with EtOAc (3x), and the combined organic layers were washed with brine (1x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired intermediate INT in 51-90\% yield.

A round bottom flask equipped with a magnetic stir bar was charged with intermediate INT and sealed under a nitrogen atmosphere. Dry DMF ( 0.1 M ) was added via syringe, and the reaction mixture was cooled to \(0^{\circ} \mathrm{C}\). Potassium carbonate (2 eq) was added in one portion, and the reaction was allowed to stir at \(0^{\circ} \mathrm{C}\) for 30 minutes before prenyl bromide (1.2 eq) was added via syringe. The mixture was allowed to warm to room temperature over 3 hours, or until judged complete by TLC analysis. The reaction was quenched with deionized water, diluted with EtOAc, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with an aqueous \(5 \% \mathrm{LiCl}\) solution (3x), brine (1x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure. Purification by flash column chromatography eluting with EtOAc/hexanes (1:4) afforded the desired substrate \(\mathbf{S}\) in 65-99\% yield.


9 INT


9
(S)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide

INT) Purification by flash column chromatography provided 9 INT as a white solid. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})\), 6.83 (dd, \(J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75\) (d, \(J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88\) (d, \(J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55\) (ddd, \(J=9.9,7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(3.57(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=14.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08\) (dd, \(J=14.8\), \(7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl 3 ) ס 170.5, 143.9, 137.6, 134. 1 (q, J \(=33.0 \mathrm{~Hz}), 127.7,127.10,127.08,126.0(q, J=3.9 \mathrm{~Hz}), 125.0,123.3(q, J=273.6 \mathrm{~Hz})\), 61.63, 54.81, 33.42, 32.17.
(S)-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (9) Purification by flash column chromatography provided 9 as a white solid. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathrm{H}\) NMR (700 MHz, CDCl 3 ) \(\delta 7.86(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=\) \(7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})\), \(7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=13.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}\), 1 H ), 2.72 (dd, \(J=13.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(2.22(\mathrm{tt}, J=12.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.15 (ddd, \(J=17.6\), \(12.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.56\) (s, 3H); \({ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl3) \(\delta 196.35,143.38\), 136.44, 135.67, 134.90, 134.27 (q, \(J=33.1 \mathrm{~Hz}\) ), 133.68, 129.15, 128.73, 128.69, 128.58, 127.82, 126.87, \(126.10(q, J=3.6 \mathrm{~Hz}), 123.09(q, J=273.0 \mathrm{~Hz}), 119.58,65.83,44.99\), 34.86, 29.65, 25.60, 17.69.

(S)-N-(1-(4-fluorophenyl)-1-oxo-3-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (41 INT): Purification by flash column chromatography provided 41 INT as a white solid. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.83-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})\), \(7.19-7.08\) (m, 5H), 6.98 (dd, \(J=7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}\) ), 5.76 (d, \(J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13\) (ddd, J \(=9.1,6.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.12 (dd, \(J=14.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.91 (dd, \(J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta{ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{cdcl}_{3}\) ) \(\delta 195.58,167.03,165.57\), \(143.45,134.69,134.20(q, J=33.1 \mathrm{~Hz}), 131.16(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 130.34(\mathrm{~d}, J=2.9 \mathrm{~Hz})\),
129.40, 128.58, 127.42, 127.37, 126.04 (q, \(J=3.6 \mathrm{~Hz}\) ), 123.05 (q, \(J=272.9 \mathrm{~Hz}\) ), 116.27 (d, \(J=22.1 \mathrm{~Hz}\) ), 58.50, 40.18; IR: HRMS calcd for \(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}^{+N a}: 474.0757\), found: 474.0731.
(S)-N-(1-(4-fluorophenyl)-1-oxo-3-phenylpropan-2-yl)-N-(4-methylpent-3-en-1-yl)-4-(trifluoromethyl)-benzenesulfonamide (41): Purification by flash column chromatography provided 41 as a pale yellow oil. Spectral data was found to be in accordance with literature data. \({ }^{31} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.98\) (dd, \(J=8.5,5.4 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J\) \(=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.72\) (dd, \(J=9.6,4.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 4.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=13.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.62\) (dd, \(J=13.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=18.7,12.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 195.57,143.20,138.32,136.05\), 135.26-134.11 (m), 135.16, 130.97, 129.14, 129.04, 128.82, 127.84, 127.07, 126.26 (q, \(J=3.7 \mathrm{~Hz}\) ), 125.77 (q, \(J=3.5 \mathrm{~Hz}\) ), 119.36, 60.82, 45.01, 34.43, 29.59, 25.59, 17.70; IR (neat) 2931, 1692, 1608, 1495, 1454, 1405, 1321, 1164, 1128, 1093, 1108, 1063, 1017, \(941,844,788 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{NH} 4}\) : 551.1986 , found: 551.3545.

(S)-N-(3-(4-bromophenyl)-1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (43 INT): Purification by flash column chromatography provided 43 INT as a white solid. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.77\) (dd, \(J=15.5,7.8 \mathrm{~Hz}, 4 \mathrm{H}\) ), 7.63 (t, J=7.4 Hz, 1H), 7.58 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}\), \(2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15\) (ddd, \(J=8.8,6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})\), 3.14 (dd, \(J=14.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.88 (dd, \(J=14.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 196.48,143.28,134.55, \delta 134.35(\mathrm{dd}, \mathrm{J}=67.4,34.3 \mathrm{~Hz}\) ), 133.66, 133.55, 131.61, 131.22, 129.14, 128.34, 127.41, 126.11 (q, \(J=3.7 \mathrm{~Hz}\) ), 121.43, 58.22, 39.56; IR: 2930.22, 1684.65, 1596.99, 1506.27, 1457.48, 1430.58, 1407.13, 1324.95, 1297.09, 1263.20, 1228.60, 1166.45, 1154.60, 1126.64, 1093.69, 1109.19, 1063.16, 1016.15, 982.86, 950.19, 915.97, 875.28, 837.52; HRMS calcd for \(\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrF}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}: ~ 533.9957, ~}\) found: 533.9952.
(S)-N-(3-(4-bromophenyl)-1-oxo-1-phenylpropan-2-yl)-N-(4-methylpent-3-en-1-yl)-4-(trifluoromethyl)-benzenesulfonamide (43): Purification by flash column chromatography provided 43 as a white solid. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83\) (dd, J= \(16.6,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{dd}, J=9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93\)
(t, J=7.2 Hz, 1H), 3.40 (dd, \(J=13.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.12\) (m, 2H), 2.68 (dd, \(J=13.6\), \(4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.05(\mathrm{~m}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.62(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 195.95,143.33,135.56,135.54,135.02,134.44(\mathrm{q}, \mathrm{J}=33.2 \mathrm{~Hz}), 133.86\), 131.80, 130.94, 128.82, 128.57, 127.84, 126.16 (q, J = 3.7 Hz ), 120.89 ( \(q, J=272.9 \mathrm{~Hz}\) ) 120.85, 119.45, 60.15, 45.00, 34.38, 29.54, 25.59, 17.68; IR (neat): 2929, 1686, 1596, 1489, 1449, 1320, 1161, 1132, 1107, 1092, 1012, 932, 908, 871, \(843 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{BrF}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}\): 594.0920, found: 594.0728.


47 INT


47
\(N\)-(1-oxo-1-phenyl-3-(thiophen-2-yl)propan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (47 INT): Pur-ification by flash column chromatography provided 47 INT as an off-white solid. Spectral data was found to be in accordance with literature data. \({ }^{31} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=\) \(8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(6.87-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})\), 3.69 (dd, \(J=14.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(3.27-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=\) \(14.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.56\) (s, 3H); \({ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 196.5,143.6,136.1,134.5,134.4\) (q, \(J=33.1 \mathrm{~Hz}\) ), 133.8, 129.2, 128.6, 127.6, 127.4, 127.1, 126.3 (q, \(J=3.5 \mathrm{~Hz}\) ), 125.3, \(123.2(\mathrm{q}, J=272.7\) Hz ), 58.5, 34.5.

\section*{\(N\)-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenyl-3-(thiophen-2-yl)propan-2-yl)-4-}
(trifluoromethyl)benzenesulfonamide (47): Purification by flash column chromatography provided 47 as a pale yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96\) (d, J \(=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})\), 7.44 (t, \(J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13\) (dd, \(J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83\) (d, \(J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73\) (dd, \(J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{tt}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98\) (dd, \(J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=14.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89\) (dd, \(J=14.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), 1.59 (s, 3H), 1.53 (s, 3H); \({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) ס 195.76, 143.32, 138.48, 135.49, 135.03, 134.48 ( \(q, J=33.1 \mathrm{~Hz}\) ), 133.85, 128.81, 127.90, 127.10, 126.51, 126.28 (dd, \(J=7.2,3.5 \mathrm{~Hz}\) ), 124.51, 122.34 (dd, \(J=906.3,413.1 \mathrm{~Hz}\) ), 119.45, 60.70, 45.08, 29.65, 28.76, 25.59, 17.69; IR (neat) 2929, 1685, 1597, 1448, 1404, 1347, 1322, 1228, 1162, 1134, 1107, 1092, 1062, 1014, 908, 844, 743, \(712 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{2+N a}: 544.1198\), found: 544.1199.


49 INT


49
(S)-N-(1-oxo-3-phenyl-1-(thiophen-2-yl)propan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (49 INT): Purification by flash column chromatography provided 49 INT as a white solid. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathrm{H}\) NMR (700 MHz, CDCl \()^{2} \delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=5.8 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.58(\mathrm{~d}, ~ J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08\) \((\mathrm{m}, 1 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.91(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.0\), \(5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, \mathrm{J}=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl \({ }_{3}\) ) \(\delta 189.8,143.4\), \(140.9,135.9,135.1,134.4\) (q, \(J=33.2 \mathrm{~Hz}\) ), 133.4, 129.6, 128.7, 128.6, 127.4, 126.1 (q, \(J=3.6 \mathrm{~Hz}), 60.0,40.9\).
(S)-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-3-phenyl-1-(thiophen-2-yl)propan-2-yl)-4-(trifluoromethyl)-benzenesulfonamide (49): Purification by flash column chromatography provided 49 as a clear, faintly yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 7.86 (dd, \(J=13.7,5.8 \mathrm{~Hz}, 3 H), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}\), \(J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})\), 5.60 (dd, \(J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.19\) (m, 1H), 2.67 (dd, \(J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 188.85,143.36,142.80,136.24,135.41,134.93,134.33\) (dd, \(J=66.3,33.2 \mathrm{~Hz}\) ), 133.87, 129.17, 128.69, 128.51, 127.79, 126.92, 126.18 (q, \(J=\) \(3.6 \mathrm{~Hz}), 123.13\) (q, \(J=272.9 \mathrm{~Hz}), 119.60,61.44,45.06,34.79,29.75,25.61,17.70 ;\) IR (neat): 2732, 1662, 1413, 1404, 1321, 1248, 1163, 1138, 1132, 1249, 1163, 1138, 1108, 1062, 1017, 847, \(737 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}+\mathrm{Na}\) : 544.1198 , found: 544.1187.


51 INT


(S)- N -(3-(naphthalen-1-yl)-1-oxo-1-phenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide ( 51 INT): Purification by flash column chromatography provided 51 INT as a white solid. . Spectral data was found to be in accordance with literature data. \({ }^{31} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}\),

2H), 7.59 (d, \(J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), 7.51 (ddt, \(J=21.9,13.5,7.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 4 \mathrm{H})\), \(7.16(\mathrm{dt}, J=15.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{td}, J=8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46\) (dd, \(J=14.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR \(\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 198.5, 143.2, 134.4, 134.4, 133.9 (q, \(J=33.0 \mathrm{~Hz}\) ), 133.9, 131.8, 131.5, 129.2, 129.0, \(128.4,128.4,128.3,127.1,126.6,125.9,125.8(q, J=3.7 \mathrm{~Hz}), 125.3\), \(123.2(q, J=273.2\) \(\mathrm{Hz})\), 123.1, 57.9, 37.4.
(S)-N-(3-methylbut-2-en-1-yl)-N-(3-(naphthalen-1-yl)-1-ox0-1-phenylpropan-2-yl)-4-(trifluoromethyl)-benzenesulfonamide (51): Purification by flash column chromatography provided 51 as a clear, colorless oil. \({ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15\) (d, \(J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 6 \mathrm{H})\), \(7.47-7.41\) (m, 3H), \(7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.02\) (dd, \(J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{tt}, J=6.2\), \(1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=16.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=16.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=\) \(14.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=14.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta{ }^{13} \mathrm{C}\) NMR (126 MHz, \(\mathrm{cdcl}_{3}\) ) \(\delta 197.29,143.27,136.02,134.92,134.50\) - 133.62 (m), 133.82, 133.50, 131.84, 131.76, 129.02, 128.55, 128.14, 127.88, 127.83, \(127.66,126.58,125.86(q, J=3.7 \mathrm{~Hz}), 125.80,125.36,123.10,123.06(q, J=272.8 \mathrm{~Hz})\), 119.78, 58.26, 45.00, 33.09, 30.06, 25.66, 17.78; IR (neat) 2940, 1666, 1459, 1403, 1322, 1164, 1132, 1108, 1092, 1062, 1017, 996, 931, 843, \(799 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{FF}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{K}}\) : 604.1530, found: 604.1767.

\section*{General Procedure C: Preparation of Protected, Homoprenylated Secondary Amines}


A round bottom flask equipped with a magnetic stir bar was charged with the parasubstituted benzenesulfonyl chloride. The solid was suspended in a \(30 \%\) ammonium hydroxide solution \((0.1 \mathrm{M})\) and allowed to stir at room temperature for 16 hours. The reaction mixture was diluted with EtOAc, and aqueous hydrochloric acid (1 M) was added until the pH was less than 9, then the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with brine, dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure

\(N\)-(4-methylpent-3-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (14 INT): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate 16 INT as a clear faintly yellow oil. \({ }^{1} \mathbf{H}\) NMR ( 500 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69\) (t, J=5.6 Hz, 1H), 2.99 (q, \(J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}\), 3H); \({ }^{13} \mathrm{C}\) NMR (126 MHz, CDCl3) \(\delta 143.66,136.00,134.29\) (q, J = 33.1 Hz ), 127.55, 126.23 (q, \(J=3.6 \mathrm{~Hz}\) ), 126.70-119.70 (m), 119.31, 43.01, 28.17, 25.72, 17.81; IR: 3268.44, 2972.65, 1430.10, 1404.92, 1326.60, 1307.93, 1296.26, 1160.20, 1131.60, 1109.32, 1094.11, 1065.57, 1015.18, 898.37, 854.48; HRMS calcd for \(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{Na}}\) : 330.0746 , found: 330.0732 .


4-chloro- N -(4-methylpent-3-en-1-yl)benzenesulfonamide (15 INT): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate 15 INT as a clear colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})\), 2.94 (q, \(J=6.6 \mathrm{~Hz}, 2 \mathrm{H}\) ), 2.14 (q, \(J=6.9 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.64 (s, 3H), 1.54 (s, 3H); \({ }^{13} \mathrm{C}\) NMR (176 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.14,136.90,135.18,129.53,127.00,119.69,42.87,28.07,25.60\), 21.37, 17.69; IR: 2970.11, 2915.12, 1585.56, 1475.39, 1450.58, 1338.45, 1276.19, 1199.41, 1156.65, 1091.91, 1013.50, 955.40, 916.22, 872.82, 826.73; HRMS calcd for \(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{~S}^{+\mathrm{Na}}\) : 286.0663, found: 286.0657.


16 INT
N-(4-methylpent-3-en-1-yl)benzenesulfonamide (16 INT): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate 16 INT as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.86\) (d, J=8.5 \(\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.95-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J\) \(=20.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}\), 3H); \({ }^{13} \mathrm{C}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 139.98,132.55,129.06,127.04,119.59,42.93,28.47\), 28.15, 25.75, 17.84; IR: 3346.05, 3251.80, 1553.35, 1447.05, 1331.17, 1311.05, 1180.27, 1158.50, 1091.17, 1071.24, 1025.33, 997.77, 904.69, 755.37; HRMS calcd for \(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{H}}: 240.1053\), found: 240.1050 .


4-methyl-N-(4-methylpent-3-en-1-yl)benzenesulfonamide (11 INT): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate 11 INT as a colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73\) (d, \(J=\) \(8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})\), 2.90 (q, J = 6.7 Hz, 2H), 2.40 (s, 3H), 2.12 (q, J = \(6.8 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.62 (s, 3H), 1.52 (s, 3H); \({ }^{13} \mathrm{C}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 143.14,136.90,135.18,129.53,127.00,119.69,42.87\), 28.07, 25.60, 21.37, 17.69; IR: 3355.91; 3259.70, 2929.72, 1598.48, 1526.91, 1446.36, 1386.86, 1299.78, 1248.50, 1156.31, 1096.08, 1018.22, 902.74, IR 3355.91, 3259.70, 2919.72, 1598.48, 1526.91, 1446.36, 1386.86, 1299.78, 1248.50, 1156.31, 1096.08, 1018.22, 902.74, 816.17; HRMS calcd for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{Na}} .276 .1029\), found: 276.1025.


18 INT
4-methoxy- \(N\)-(4-methylpent-3-en-1-yl)benzenesulfonamide (18 INT): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired intermediate 18 INT as a clear colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.78\) (d, \(J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.85(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 162.72,135.35,131.48,129.14,119.71,114.12,55.53\), 42.86, 28.07, 25.66, 17.76.; IR: 3277.20, 2929.06, 1596.22, 1579.06, 1497.91, 1440.79, 1377.40, 1321.51, 1300.36, 1257.13, 1179.57, 1148.41, 1111.74, 1094.18, 1023.78, 935.22, 885.92, 832.15, 803.01; HRMS calcd for \(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}\) : 292.0978, found: 292.0963.

General Procedure D: Alkylation of Secondary Amines with 2-
bromoacetophenones


A round bottom flask equipped with a magnetic stir bar was charged with starting material INT and \(\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})\). The flask was sealed under nitrogen, and dry DMF ( 0.5 M ) was added via syringe. To the stirring solution was added 2-bromoacetophenone (1.1 eq) suspended in dry DMF (0.5 M) via syringe. The reaction was allowed to stir for 3 hours or until complete by TLC analysis, at which point it was quenched with deionized water and diluted with EtOAc, and the resultant layers were partitioned. The organic layer was collected, and the aqueous phase was extracted with EtOAc (3x). The organic layers were then combined, washed with brine (1x), dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\), and concentrated under reduced pressure. The glycine substrates were obtained in 85-99\% yield.


N -(4-methylpent-3-en-1-yl)-N-(2-oxo-2-phenylethyl)-4-(trifluoromethyl)benzene-
sulfonamide (14 S): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 14 S as a pale yellow oil. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta\) 7.99 (d, \(J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 3.35-3.21(\mathrm{~m}\), 2 H ), 2.24 (dd, \(J=14.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.61 (s, 3H), 1.55 ( \(\mathrm{s}, 3 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 194.1,143.9,139.8,134.9,134.1(q, J=32.9 \mathrm{~Hz}), 134.0,129.0,128.1,128.0,126.1\) (q, \(J=3.8 \mathrm{~Hz}), 123.5(q, J=273.0 \mathrm{~Hz}), 118.0,51.7,45.6,25.8,17.7\).


4-chloro-N-(4-methylpent-3-en-1-yl)-N-(2-oxo-2-phenylethyl)benzenesulfonamide (15): Purification by flash column chromatography over silica eluting with EtOAc/hexanes
(1:4) afforded the desired substrate \(\mathbf{1 5}\) as slightly yellow oil. \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.91\) (d, \(J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=\) \(9.4,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=\) \(7.3 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.61 (s, 3H), 1.55 (s, 3H); \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) ס 193.66, 138.89, 138.50, 134.69, 133.84, 129.04, 128.89, 128.82, 127.86, 119.76, 52.79, 47.88, 27.09, 25.58, 17.71; IR (neat) 2914, 2361, 1700, 1597, 1584, 1476, 1337, 1224, 1224, 1156, 1093, 1013, \(970,942,912,827 \mathrm{~cm}^{-1} ;\) HRMS calcd for \(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{CINO}_{3} \mathrm{~S}^{+\mathrm{Na}:} 414.0901\), found: 414.0896.


N -(4-methylpent-3-en-1-yl)-N-(2-oxo-2-phenylethyl)benzenesulfonamide
(16):

Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 16 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 8.01 (d, \(J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{tt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=\) \(7.5 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.63 (s, 3H), 1.46 (s, 3H); \({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) ס 194.1, 143.9, 139.8, 134.9, 134.1 (q, \(J=32.9 \mathrm{~Hz}), 134.0,129.0,128.1,128.0,126.1\) (q, \(J=3.8 \mathrm{~Hz}), 123.5(\mathrm{q}\), \(J=273.0 \mathrm{~Hz}\) ), 118.0, 51.7, 45.6, 25.8, 17.7; IR (neat) 2929, 1702, 1598, 1450, 1405, 1322, 1226, 1161, 1132, 1094, 1108, 1062, 1016, 1001, 973, 913, 844, \(788 \mathrm{~cm}^{-1} ;\) HRMS calcd for \(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{+}: 412.1189\), found: 412.1190 .


4-methyl-N-(4-methylpent-3-en-1-yl)-N-(2-oxo-2-phenylethyl)benzenesulfonamide
(17): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 11 S as a an off-white solid. \({ }^{1} \mathrm{H}\) NMR ( 400 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48\) (t, \(J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.23\) (dd, \(J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}\) ), 2.43 ( \(\mathrm{s}, 3 \mathrm{H}\) ), 2.19 (dd, \(J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}\) ), 1.59 (s, 3H), 1.53 (s, 3H); \({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta\) 194.02, 143.24, 136.82, 134.91, 134.46, 133.69, 129.47, 128.77, 128.00, 127.45, 119.97, 53.10, 47.95, 27.11, 25.58, 21.51, 17.69.; IR
(neat) 2919, 1700, 1597, 1448, 1333, 1289, 1224, 1183, 1153, 1091, 1001, 969, 942, 912, \(813 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FNO}_{3} \mathrm{~S}^{+}\): 412.1189, found: 412.1190.


4-methoxy- \(N\)-(4-methylpent-3-en-1-yl)- \(N\)-(2-oxo-2-phenylethyl)benzenesulfonamide (18): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 18 as a clear colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}\), 1H), \(3.25-3.17\) (m, 1H), 2.19 (dd, \(J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 194.20,162.79,134.94,134.49,133.71,131.47,129.61\), 128.79, 128.03, 120.01, 114.01, 55.54, 53.11, 47.96, 27.13, 25.61, 17.73; IR (neat): 2916, 1700, 1596, 1579, 1498, 1449, 1413, 1334, 1302, 1259, 1302, 1259, 1224, 1151, 1093, 1025, 971, 943, 912, 834, 805, \(752 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+\mathrm{Na}: ~ 410.1397, ~}\) found: 410.1270.


4-chloro-N-(4-methylpent-3-en-1-yl)-N-(2-oxo-2-(p-tolyl)ethyl)benzenesulfonamide
(29): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 29 as white solid \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.80\) (dd, \(J=8.4,2.7 \mathrm{~Hz}, 4 \mathrm{H}\) ), 7.46 (d, \(J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{t}, J=6.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, \mathrm{J}=13.9,6.8 \mathrm{~Hz}, 2 \mathrm{H})\), 1.61 (s, 3H), 1.55 (s, 3H); \({ }^{33} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) ס 193.29, 144.91, 138.93, 138.54, \(134.75,132.25,129.55,129.08,128.95,128.02,119.81,52.65,47.88,27.14,25.64\), 21.75, 17.77.; IR (neat) 2917, 2361, 2337, 1700, 1695, 1684, 1652, 1576, 1559, 1539, 1506, 1456, 1336, 1229, 1155, 1092, 1012, 924, 826, 808, \(786 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{CINO}_{3} \mathrm{~S}^{+\mathrm{Na}}: 428.1058\), found: 428.1056 .

\section*{Mitsunobu Reaction Conditions to Obtain Differentiated-Olefin Substrates}


A round bottom flask equipped with a magnetic stir bar was charged with a solution of the secondary the secondary amine ( 1.0 mmol ), alcohol ( \(2.2 \mathrm{mmol}, 2.2\) equiv) \()^{5}\) and \(\mathrm{PPh}_{3}(3.0\) \(\mathrm{mmol})\). The flask was sealed under nitrogen, and dry DCM ( 10 mL ) was added via syringe. To the stirring solution was added DEAD ( \(3.0 \mathrm{mmol}, 40 \%\) solution in toluene) dropwise at \(0^{\circ} \mathrm{C}\). The mixure was warmed to room temperature and stirred under a nitrogen atmosphere for 24 h , at which point the reaction mixture was quenched with deionized water and diluted with EtOAc. The resultant layers were partition and the organic phase was collected. The aqueous phase was extracted with EtOac (3x). The organic layers were then combined, washed with brine (2x), and dried over \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). Purification by chromatography on silica gel gave the desired product in \(40 \%\) to \(93 \%\) yield.


20
(S)- \(N\)-(4-methylpent-4-en-1-yl)- \(N\)-(1-oxo-1,3-diphenylpropan-2-yl)-4-(trifluoromethyl)benzenesulfonamide (20): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 40 as a colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.85\) (d, \(J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.80(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63\) (d, \(J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.54(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H})\), \(7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{dd}, J=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=64.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J\) \(=13.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.7,4.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, CDCl 3 ) \(\delta 196.55,144.25,143.42,136.43,135.70,134.31(\mathrm{q}, \mathrm{J}=33.1\) \(\mathrm{Hz})\), 133.71, 129.14, 128.76, 128.72, 128.57, 127.82, 126.90, 126.12 (q, J = 3.6 Hz ), 123.11 ( \(\mathrm{q}, ~ J=272.9 \mathrm{~Hz}\) ), 110.62, 77.18, 77.00, 76.82, 60.31, 45.12, 35.02, 28.10, 22.14; IR (neat) 2926, 1687, 1597, 1496, 1449, 1404, 1349, 1323, 1233, 1164, 1134, 1108,

1063, 1016, \(945,890,844,787 \mathrm{~cm}^{-1} ;\) HRMS calcd for \(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{FF}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}: 538.1634\), found: 538.1724.

(S,E)-N-(1-oxo-1,3-diphenylpropan-2-yl)-N-(4-phenylbut-3-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (21): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 21 as a colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.84(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}\), \(J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=17.3,9.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}\), \(3 \mathrm{H}), 7.18\) (s, 3H), 6.32 (d, \(J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=8.2,4.6 \mathrm{~Hz}\), 1H), \(3.56-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{dd}, J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 196.54,143.28,137.08,136.29,135.64,134.38(\mathrm{q}, ~ J=32.7 \mathrm{~Hz}\) ), 133.75, 132.49, 129.14, 128.76, 128.75, 128.58, 128.48, 127.88, 127.29, 126.96, 126.16 (dd, \(J=7.1,3.5 \mathrm{~Hz}\) ), 126.05, 125.81, 123.07 ( \(\mathrm{q}, ~ J=265.8 \mathrm{~Hz}\) ), 60.30, 45.06, 34.99, 34.34; IR (neat) 2934, 1685, 1597, 1582, 1495, 1448, 1404, 1347, 1320, 1233, 1162, 1130, 1107, 1090, 1062, 1015, 935, 943, 909, \(842 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}\): 564.1815, found: 564.1815.

(S,E)-N-(4-(4-chlorophenyl)but-3-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4(trifluoromethyl)benzenesulfonamide (22): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 22 as a clear colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.84\) (d, \(J=8.0 \mathrm{~Hz}\), \(4 \mathrm{H}), 7.63\) (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.52 (t, \(J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23\) (dd, \(J\) \(=13.7,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.96(\mathrm{~m}, 1 \mathrm{H})\), 5.78 (dd, \(J=9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.44\) (ddd, \(J=22.8,14.5,8.3 \mathrm{~Hz}, 2 \mathrm{H})\), 2.72 (dd, \(J=13.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.45 (dd, \(J=15.0,9.9 \mathrm{~Hz}, 2 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR ( 176 MHz ,
\(\mathrm{CDCl}_{3}\) ) \(\delta 196.49,143.21,136.19,135.59,134.46(\mathrm{q}, ~ J=33.1 \mathrm{~Hz}), 133.80,132.85\), 131.29, 129.10, 128.77, 128.61, 128.59, 127.87, 127.25, 126.99, 126.60, 126.20 (q, J= 3.8 Hz ), 60.25, 44.92, 34.92, 34.31; IR (neat) 2729, 1685, 1596, 1491, 1449, 1322, 1234, 1164, 1133, 1091, 11008, 1062, 1013, 968, 945, \(844 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{CIF}-\) \({ }_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}\): 59.1425, found: 598.1420.

(S,E)-N-(1-oxo-1,3-diphenylpropan-2-yl)-N-(4-phenylpent-3-en-1-yl)-4-(trifluoro-methyl)benzenesulfon-amide (23) Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 23 as a clear, slightly yellow oil. \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.83(\mathrm{dd}, J=13.0,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.61(\mathrm{~d}, J\) \(=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{q}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})\), \(7.22(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.78(\mathrm{dd}, J=9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{t}, J\) \(=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.30(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41\) (ddd, J=18.1, \(12.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 196.49,143.33,143.28\), \(137.71,136.34,135.64,134.36\) (q, \(J=33.0 \mathrm{~Hz}\) ), 133.75, 129.15, 128.77, 128.74, 128.58, 128.16, 127.84, 126.94, 126.88, 126.16 (q, \(J=3.6 \mathrm{~Hz}\) ), 125.59, 123.01, 60.29, 44.70, 34.98, 30.36, 15.83; IR (neat) 2923, 1685, 1596, 1581, 1495, 1448, 1404, 1321, 1266, 1233, 1163, 1131, 1108, 1091, 1062, 1028, 1016, 944, 843, \(787 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}:} 616.5130\), found: 616.1714.

(S,E)-N-(1-oxo-1,3-diphenylpropan-2-yl)-N-(4-(p-tolyl)but-3-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (24): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 24 as a clear,
colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.86\) - 7.82 (m, 3H), 7.66 - 7.59 (m, 3H), 7.53 (t, \(J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 5 \mathrm{H})\), \(7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.78\) (dd, \(J=9.1\), \(5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 3 \mathrm{H}), 2.77\) (dd, \(J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43\) (qt, \(J=20.9,10.6\) \(\mathrm{Hz}, 2 \mathrm{H}\) ), 2.33 (s, 3H); \({ }^{13} \mathrm{C}\) NMR (176 MHz, CDCl3) \(\delta 196.55,143.31,137.06,136.33\), 135.67 , 134.35 ( \(q, J=33.0 \mathrm{~Hz}\) ), 134.30, 133.72, 132.34, 129.18, 129.14, 128.82, 128.76, \(128.74,128.58,127.87,126.94,126.14(q, J=3.6 \mathrm{~Hz}), 125.95,124.71,123.09(q, J=\) 273.0 Hz ), 60.32, 45.14, 35.01, 34.33, 21.14; IR (neat) 3027, 1686, 1595, 1581, 1513, \(1495,1448,1430,1348,1321,1233,1163,1132,1107,1062,1015,968,943,842,787\) \(\mathrm{cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 578.1971\), found: 578.1970.


25
(S,E)-N-(4-(4-methoxyphenyl)but-3-en-1-yl)-N-(1-oxo-1,3-diphenylpropan-2-yl)-4(trifluoromethyl)benzenesulfonamide (25): Purification by flash column chromatography over silica eluting with EtOAc/hexanes (1:4) afforded the desired substrate 25 as a \(1.5: 1\) mixture of \(E: Z\) isomers. \({ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{t}, \mathrm{J}=\) \(8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.19\) (qd, \(J=23.0,9.5 \mathrm{~Hz}, 9 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.83\) (m, 1H), 5.79 (ddd, J = 17.5, 9.4, \(4.9 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(3.52-3.41\) (m, 3H), \(2.80-2.73\) (m, 2H), 2.41 (pd, J=13.8, \(6.5 \mathrm{~Hz}, 2 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \({ }^{\delta}{ }^{13} \mathrm{C}\) NMR (176 MHz, cdcl3) б 196.53, 158.97, 143.31, 136.32, 135.94, 135.66, 134.45, 134.26, 133.72, 133.39, 131.87, 130.30, 129.92, 129.24, 129.14, 128.74, 128.60, 128.58, 128.47, 128.32, 128.14, 127.87, 127.79, 127.52, 127.17, 126.94, 126.78, 126.14 (q, J = 3.5 Hz ), 125.84, 125.81, 125.80, 123.53, 113.90, 113.52, 60.31, 55.27, 48.69, 45.16, 34.99, 34.30; IR (neat) 2919, 1686, 1607, 1512, 1448, 1403, 1320, 1247, 1151, 1129, 1088, 1060, 1031, 1015, 966, 943, 842, 805, \(786 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}\): 594.1920, found: 594.1920.

\subsection*{3.3.4 General Procedure for the Carbonyl-Olefin Metathesis Reaction}

A microwave vial is charged with a stir bar and \(\mathrm{FeCl}_{3}(30 \mathrm{~mol} \%)\) and placed under a nitrogen atmosphere. To the reaction vessel is added a 0.01 M solution of substrate ( 0.1 mmol ) in anhydrous DCE via syringe. The microwave vial is then sealed, and the reaction mixture is heated to \(84^{\circ} \mathrm{C}\) and allowed to stir for 24 h . The reaction is then cooled to room temperature and flushed through a small silica plug with DCM. The resultant organic mixture is then concentrated under reduced pressure to give the crude product. Purification by flash column chromatography eluting with EtOAc/hexanes (1:9) provided the desired tetrahydropyridine in 47-99\% yield.


10
(S)-6-benzyl-5-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydropyridine (10): Purification by flash column chromatography provided 10 as a clear, colorless oil. Spectral data was found to be in accordance with literature data. \({ }^{3}\) The reaction was also run on a 1 mmol scale in otherwise identical conditions to provide \(88 \%\) of the desired product. Furthermore, the reaction could be run on a 0.02 mmol scale with 0.3 eq \(\mathrm{FeCl}_{3}\) in toluene ( 0.01 M ) at \(84^{\circ} \mathrm{C}\) for 24 h and resulted in \(75 \%\) yield of the metathesis product. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.57\) (d, \(J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.53 (d, \(J=\) \(8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{td}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14\) (m, 2H), \(7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77\) (dd, \(J=14.6\), \(6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=14.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73\) (dd, \(J=14.3,9.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 144.32\), \(139.48,139.24,137.73,133.61\) (q, \(J=35.1 \mathrm{~Hz}\) ), 129.31, 128.85, 128.33, 128.03, 127.82, 127.32, 126.56, 126.23, 125.84 (q, \(J=3.7 \mathrm{~Hz}\) ), 123.92, 122.54 (q, \(J=255.1 \mathrm{~Hz}\) ), 56.74, 39.01, 37.66, 24.37; IR (neat) 3028, 2927, 1607, 1495, 1454, 1403, 1321, 1162, 1130, 1107, 1096, 1062, 1016, 973, 957, 911, 880, \(845 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}\): 458.1396, found: 458.1396.


28
5-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydropyridine (28):

Purification by flash column chromatography provided as 28 a clear, colorless oil. Spectral data was found to be in accordance with literature data. \({ }^{3}{ }^{1} \mathbf{H} \mathbf{N M R}(700 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28\) (t, J = 8.9 Hz, 3H), 6.12-6.05 (m, 1H), 4.00 (s, 2H), 3.31 (t, J = 5.8 Hz, 2H), 2.39 (qd, J \(=6.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 140.39,138.40,134.58(\mathrm{q}, \mathrm{J}=33.1 \mathrm{~Hz})\), 133.22, 128.59, 128.04, 127.88, 126.29 (q, \(J=3.7 \mathrm{~Hz}\) ), 125.17, 122.16, 46.31, 42.32, 25.46; IR (neat) 2925, 1404, 1347, 1322, 1169, 1132, 1107, 1062, 970, 90, \(845 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{H}}: 368.0927\), found: 368.0921 .


15 PDT
1-((4-chlorophenyl)sulfonyl)-5-phenyl-1,2,3,6-tetrahydropyridine (15 PDT): Purification by flash column chromatography provided 15 PDT as a clear, slightly yellow oil. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.77\) (d, \(\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-\) \(7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.10-6.04(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28\) (t, \(J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, CDCl \(\left.{ }_{3}\right) \delta 139.37,138.54\), 135.23, 133.33, 129.40, 128.99, 128.57, 127.81, 125.19, 122.16, 46.35, 42.31, 25.49.; IR (neat) 2833, 1585, 1495, 1476, 1446, 1394, 1343, 1278, 1204, 1166, 1097, 1010, 969,



16 PDT

5-phenyl-1-(phenylsulfonyl)-1,2,3,6-tetrahydropyridine (16 PDT): Purification by flash column chromato-graphy provided 10 as a clear oil. \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.84\) (d, \(J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.07\) (tt, \(J=3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.97 (dd, \(J=4.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}\) ), 3.27 (t, \(J=5.8 \mathrm{~Hz}, 2 \mathrm{H}\) ), 2.39 (qd, \(J=6.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 138.67,136.54,133.44,132.77\), 129.07, 128.53, 127.73, 127.62, 125.20, 122.17, 77.32, 77.00, 76.68, 46.37, 42.35, 25.59.IR (neat) 2921, 1495, 1446, 1342, 1169, 1098, 1011, 969, 899, 854, \(744 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{Na}}\) : 322.0872, found: 322.0859.


17 PDT
5-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine (17 PDT): Purification by flash column chromatography provided 17 PDT as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta\) 7.72 (d, \(J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.37-7.26\) (m, 7H), 6.07 (tt, \(J=3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94\) (dd, \(J=\) \(4.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{td}, J=5.8,3.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 143.58,138.72,133.47,133.41,129.67,128.50,127.69\), 125.20, 122.15, 46.39, 42.34, 25.63, 21.51; IR (neat) 2920, 1597, 1493, 1446, 1341, 1305, 1267, 1240, 1164, 1097, 1010, 979, 853, 816, \(757 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}-\) \({ }_{2} S^{+N a}\) : 336.1029, found: 336.0993.


18 PDT
1-((4-methoxyphenyl)sulfonyl)-5-phenyl-1,2,3,6-tetrahydropyridine (18 PDT): Purification by flash column chromatography provided 18 PDT as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.77\) (d, J= \(\left.8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24\) (m, 4H), \(6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.24\) ( \(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(2.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 163.00,138.74,133.49\), 129.76, 128.50, 128.05, 127.68, 125.20, 122.16, 114.21, 55.58, 46.41, 42.34, 25.62.; IR (neat) 2921, 2814, 1596, 1577, 1460, 1446, 1340, 1306, 1260, 1179, 1098, 1013, 1025,

969, \(900,835,805,757 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}^{+\mathrm{Na}}\) : 352.0978 , found: 352.0976.


30
1-((4-chlorophenyl)sulfonyl)-5-(p-tolyl)-1,2,3,6-tetrahydropyridine (30): Purification by flash column chromatography provided 30 as a clear oil. \({ }^{1} \mathrm{H}\) NMR \(\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 7.77 (d, \(J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.50 (d, \(J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.15 (dd, \(J=20.8,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.03\) (m, \(1 \mathrm{H}), 3.95(\mathrm{q}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~m}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}\), 3H); \({ }^{13}\) C NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 139.33,137.65,135.20,133.10,129.37,129.23\), 128.99, 125.03, 121.31, 46.36, 42.33, 25.44, 21.07; IR (neat) 2921, 1586, 1513, 1475, 1460, 1394, 1343, 1278, 1242, 1166, 1097, 1087, 1020, 972, 900, 812, \(762 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}^{+\mathrm{Na}}: 370.0639\), found: 370.0629 .


31
(S)-1-((4-chlorophenyl)sulfonyl)-6-methyl-5-phenyl-1,2,3,6-tetrahydropyridine (31): Purification by flash column chromatography provided 31 as a clear, yellow oil. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{q}, J=6.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.91\) (dd, \(J=14.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.26 (ddd, \(J=14.3,11.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(2.18-2.08\) (m, 1H), 2.03 (dt, \(J=18.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 140.35,139.93\), 139.22, 138.72, 129.22, 128.60, 128.17, 127.65, 126.11, 122.44, 50.86, 37.03, 24.44, 19.31; IR (neat) 2932, 1688, 1584, 1404, 1475, 1446, 1393, 1338, 1276, 1207, 1154, 1089, 1012, 1000, 953, 907, 868, 829, \(755 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}^{+\mathrm{Na}}\) : 370.0639, found: 370.0643 .


27
(S)-6-methyl-5-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydropyridine (27): Purification by flash column chromatography provided 27 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73\) (d, \(J=8.3 \mathrm{~Hz}\), 2H), 7.35 (d, \(J=14.9 \mathrm{~Hz}, 2 \mathrm{H}\) ), \(7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26\) (dd, \(J=6.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.78\) (d, \(J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{q}, ~ J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=14.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29\) (ddd, \(J\) \(=14.0,11.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( 176 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 145.07,140.40,139.15,134.08(\mathrm{q}, J=33.2 \mathrm{~Hz})\), 128.69, \(128.94-123.87\) (m), 127.78, 127.24, 126.17 ( \(\mathrm{q}, J=272.9\) ), 122.44, 51.08, 37.17, 24.59, 19.39; IR (neat) 3028, 2927, 1607, 1495, 1454, 1403, 1321, 1162, 1130, 1107, 1096, 1062, 1016, 973, 957, \(911,880,845 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FF}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{Na}}: 404.0903\), found: 404.1003.


36
(S)-6-methyl-5-(m-tolyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydropyridine (36): Purification by flash column chromatography provided 36 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11\) (d, \(J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.76\) (d, \(J\) \(=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28\) (ddd, \(J=\) 14.2, 11.9, \(4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.36 (s, 3H), \(2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) 45.10, 140.47, 139.14, 138.32, 134.07 (q, J=33.2 Hz), 128.56, 128.55, 127.24, 126.89, 126.16 (dd, \(J=7.3,3.6 \mathrm{~Hz}\) ), 123.26, 122.18, 121.69 (q, \(J=296.7\) Hz), 51.14, 37.19, 24.57, 21.47, 19.43.; IR (neat) 2933, 1607, 1403, 1322, 1165, 1134, 1107, 1062, 1016, 843, \(785 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}\): 396.1240, found: 396.1230.

(S)-6-methyl-5-(m-tolyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydropyridine (38): Purification by flash column chromatography provided 38 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.16(\mathrm{~s}, 3 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=14.3,6.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, CDCl \({ }_{3}\) ) \(\delta 145.08,140.11,137.62,136.22,134.03(q, J=33.1 \mathrm{~Hz}), 129.36\), 127.22, 126.14 (q, \(J=3.6 \mathrm{~Hz}\) ), 125.96, 123.22 (q, \(J=273.0\) ), 121.65, 121.59, 51.07, 37.19, 24.52, 21.07, 19.41; IR (neat) 2927, 1607, 1457, 1403, 1320, 1214, 1164, 1130, 1107, 1061, 1017, 1004, 966, 880, 843, \(785 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}\): 396.1240, found: 396.1220.

(S)-5-([1,1'-biphenyl]-4-yl)-6-methyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6tetrahydropyridine (40): Purification by flash column chromatography provided 33 as a clear oil, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.73\) (d, \(J=\) \(8.3 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.59 (dd, \(J=10.7,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}\), \(3 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95\) (dd, \(J=14.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.31 (ddd, \(J=\) 14.2, 11.9, \(4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})\); \({ }^{13} \mathrm{C}\) NMR ( 176 MHz , \(\mathrm{CDCl}_{3}\) ) 145.06, 140.68, 140.37, 139.90, 137.92, 134.08 ( \(\mathrm{q} J=33.1 \mathrm{~Hz}\) ), 128.81, 127.45, 127.35, 127.24, 126.94, 126.17 ( \(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}\) ), 126.45, 122.43, 50.97, 37.17, 24.64, 19.46.; IR (neat) 2927, 1608, 1488, 1448, 1403, 1340, 1322, 1168, 1130, 1107, 1062, 1017, 1000, 956, 909, 871, 843, 827, \(789 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}\): 458.1396, found: 458.1395.


42
(S)-6-benzyl-5-(4-fluorophenyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6tetrahydropyridine (42): Purification by flash column chromatography provided 42 as a clear oil. \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.58-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.19-\) \(7.13(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})\), 5.14 (d, \(J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.76 (dd, \(J=14.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(3.20-3.12\) (m, 1H), 2.85 (dd, J \(=14.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=14.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 162.43(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 144.21,138.51,137.64,135.68\), 133.70 (q, J = 33.2 Hz), 133.09, 129.77, 129.26, 128.41, 127.94, 127.88, 127.34, 126.65, 125.87 (q, \(J=3.6 \mathrm{~Hz}\) ), 124.05, 115.76 (d, \(J=21.5 \mathrm{~Hz}\) ), 56.91, 39.03, 37.63, 24.46; IR (neat) 2927, 1685, 1602, 1508, 1454, 1403, 1322, 1262, 1232, 1160, 1131, 1107, 1062, 1017, 974, 958, 829, \(786 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{Na}}\). 498.1121, found: 498.1127.


44
(S)-6-(4-bromobenzyl)-5-phenyl-1-(tosyl-l2-fluoraneyl)-1,2,3,6-tetrahydropyridine
(44): Purification by flash column chromatography provided 44 as a clear, colorless oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.64\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.61 (d, J=8.3 Hz, 2H), 7.42 \(7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.90\) (d, \(J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07\) (m, 1H), 2.83 (dd, \(J=14.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=14.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19\) (m, 1H), 2.06-1.98(m, 1H); \({ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 144.36,139.34,138.93,136.68\), 131.43, 131.08, 128.94, 127.96, 127.28, 126.23, 125.96, 124.16, 120.58, 56.56, 38.60, 37.78, 24.26; IR (neat) 2937, 1688, 1488, 1446, 1403, 1322, 1163, 1132, 1107, 1062, 1012, 959, 843, 809, \(760 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrF}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}\): 536.0501 , found: 536.0502 .


46
(S)-6-(4-(benzyloxy)benzyl)-5-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydro-pyridine (46): Purification by flash column chromatography provided 46 as a clear oil. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0\) \(\mathrm{Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H})\), 6.73 (d, J = \(8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54\) (d, J = \(7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85\) (s, 1H), 5.14 (s, 1H), 4.55 (s, 1H), \(3.88(d, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=14.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.79\) (dd, J \(=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.65 (dd, \(J=14.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(2.26-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (176 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 152.39,144.62,139.84,139.53,139.04,131.85,129.91,128.83,128.73\), 128.61, 128.59, 127.77, 127.29, 126.91, 126.35, 126.26, 125.82 (q, \(J=3.8 H z) 124.01\), \(115.57,56.70,38.27,37.86,36.23,24.37\); IR (neat) 3029, 2925, 1685, 1609, 1511, 1495, 1453, 1403, 1322, 1262, 1163, 1133, 1107, 1062, 1016, 984, 843, \(758 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}: 564.1815\), found: 564.1813.

(S)-5-phenyl-6-(thiophen-2-ylmethyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydro-pyridine (48): Purification by flash column chromatography provided 48 as a clear, yellow oil. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J\) \(=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-\) \(6.87(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}\), \(J=26.5,15.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}\), 2H); \({ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \({ }^{13} \mathrm{C}\) NMR ( 176 MHz, cdcl \(_{3}\) ) \(\delta 149.62,144.56,139.63\), \(138.85,133.73(\mathrm{~d}, J=32.7 \mathrm{~Hz}), 128.31,127.48,127.39,126.84,125.96(\mathrm{~d}, J=3.7 \mathrm{~Hz})\), 125.31, 124.42, 123.98, 123.60, 49.17, 48.20, 40.99, 21.49; IR (neat) 2919, 1403, 1322, 1163, 1130, 1107, 1062, 1015, 842, \(711 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}\): 464.0960, found: 464.0955 .


50
(S)-6-benzyl-5-(thiophen-2-yl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6tetrahydropyridine (50): Purification by flash column chromatography provided 50 as a clear, yellow oil. \({ }^{1} \mathrm{H}\) NMR ( \(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 7.76\) (d, \(J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\) ), 7.62 (d, \(J=8.3\) \(\mathrm{Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}\), \(J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}\), 1 H ), 3.80 (dd, \(J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.10 (dd, \(J=15.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.03 (ddd, \(J=14.6\), \(12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(2.98(\mathrm{dd}, J=15.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dt}, J=18.3\), \(5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\) NMR (126 MHz, CDCl3) \(\delta{ }^{13} \mathrm{C}\) NMR (176 MHz, cdcl3) \(\delta 144.56,139.25\), 139.14, 138.43, 133.85 (q, J=33.0 Hz), 128.89, 127.95, 127.38, 126.89, 126.41, 126.31, 125.97 ( \(q, J=3.7 \mathrm{~Hz}\) ), \(124.49,124.44,124.02,123.25(q, J=272.8 \mathrm{~Hz}), 122.47,56.50\), 37.89, 33.31, 24.25; IR (neat) 2921, 1404, 1323, 1165, 1132, 1107, 1094, 1062, 1016, \(851,764 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+\mathrm{Na}}: 486.0780\), found: 486.0852.


52
(S)-6-(naphthalen-1-ylmethyl)-5-phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1,2,3,6-tetrahydro-pyridine (52): Purification by flash column chromatography provided 52 as a clear oil. \({ }^{1} \mathrm{H}\) NMR \(\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J\) \(=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.25(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=14.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.31\) (dd, J \(=14.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}\) ), 3.08 (dd, \(J=14.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(2.54-2.47\) (m, 1H), \(2.20(\mathrm{dt}, J=\) \(18.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}\) ); \({ }^{13} \mathrm{C}\) NMR ( \(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 143.73,140.27,140.09,133.09(\mathrm{q}, \mathrm{J}=\) 32.8 Hz ), 133.76, 133.60, 131.72, 128.90, 128.79, 127.92, 127.83, 127.49, 126.68, 126.62, 125.93, 125.46, 125.31 (q, \(J=3.7 \mathrm{~Hz}\) ), 125.09, 124.12, 123.18 (q, \(J=272.8 \mathrm{~Hz}\) ), 123.08, 56.55, 37.72, 35.94, 24.95.; IR (neat) 3057, 2937, 1597, 1511, 1444, 1403, 1320,

1157, 1129, 1095, 1081, 1061, 1017, 971, 954, 915, 884, 873, 840, \(796 \mathrm{~cm}^{-1}\); HRMS calcd for \(\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+\mathrm{Na}}\) : 530.1372, found: 530.1380.

\subsection*{3.3.5 Deprotection of the Carbonyl-Olefin Metathesis Product with \(\mathbf{S m l}_{2}\)}

A 0.13 M solution of \(\mathrm{Sml}_{2}\) is prepared with samarium metal a diiodoethane according to previously reported procedures. \({ }^{6}\) The carbonyl-olefin metathesis product 6 ( 0.1 mmol ) is added to a flame-dried round-bottom flask equipped with a stir bar and placed under a nitrogen atmosphere. The \(\mathrm{Sml}_{2}\) solution ( 6.0 equiv) is then added to the flask while stirring. Next, a degassed solution of water ( 12.0 equiv) is added to the reaction mixture, which immediately turns red. The reaction is allowed to stir for 3 min , at which point triethylamine ( 18.0 equiv) is added. After an additional 3 minutes, the reaction mixture is filtered under nitrogen over a celite plug. The crude product is collected into a flask charged with a stir bar and \(\mathrm{Boc}_{2} \mathrm{O}\) ( 2.5 equiv). The mixture is then heated to \(50{ }^{\circ} \mathrm{C}\) and allowed to stir for 12 h . Once the reaction is complete, the mixture is concentrated under reduced pressure give the crude product. Purification by flash column chromatography eluting with EtOAc/hexanes (1:10) provided the desired carbamate 19 in \(92 \%\) yield.

tert-butyl (S)-6-benzyl-5-phenyl-3,6-dihydropyridine-1(2H)-carboxylate (27): Purification by flash column chromatography provided 27 as a mixture of rotamers. \({ }^{1} \mathrm{H}\) NMR (500 MHz, CDCl \()^{2}\) ס 7.42 (dd, \(\left.J=13.0,6.7 \mathrm{~Hz}, 5 \mathrm{H}\right), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23\) (d, J \(=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1\) \(\mathrm{Hz}, 3 \mathrm{H}), 6.04(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=9.1\) Hz, 1H), 4.28 (dd, \(J=13.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95\) (dd, \(J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}\) ), 2.94 (ddd, \(J=\) 20.2, 14.5, \(4.0 \mathrm{~Hz}, 2 \mathrm{H}\) ), 2.74 (tdd, \(J=23.4,16.4,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32\) (s, 1H), 2.13 (dt, \(J=18.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 4 \mathrm{H})\), 1.19 (d, \(J=16.3 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (176 MHz, \(\mathrm{CDCl}_{3}\) ) \(\delta 154.44,154.39,140.03,139.87\), 139.02, 138.46, 129.83, 129.42, 128.73, 128.59, 128.23, 127.49, 126.58, 126.34, 126.13, 124.79, 79.37, 55.34, 53.47, 38.26, 34.94, 28.56, 28.40, 28.01, 25.58; IR (neat) 2975, 2827, 1689, 1494, 1453, 1417, 1390, 1364, 1311, 1245, 1212, 1167, 1116, 1077, 1031,


\section*{\(3.4^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\) NMR Spectra}


 デ

 へic il


\section*{}
\(\underbrace{\text { No工 }}_{i c}\)
 \(\stackrel{\circ}{\circ}\)









菏
Non

쿠우웅
17



\footnotetext{
\(\begin{array}{lllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)
}
















23







傢


25



\(\underbrace{\square \rightarrow 0}\)

1
 \(\stackrel{\rightharpoonup}{i} \stackrel{n}{n}\)

\section*{29}
\[
\mid
\]
\[
11
\]
\[
\int|\mid
\]



















\(\stackrel{\text { ® }}{\substack{\circ}}\) ~ั















\(\begin{array}{lllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)






|







\(\stackrel{\stackrel{t}{i}}{\stackrel{\rightharpoonup}{i}}\)





よ为





べ

—<
15 PDT




|


\footnotetext{
\(\begin{array}{llllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)
}





(

-


\footnotetext{
\(\begin{array}{lllllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)
}



30
\(\begin{array}{llllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)

 M1

32












38




40









44




\section*{}



46



46

\(\stackrel{\rightharpoonup}{1}\)





\section*{}

48




 \(\underbrace{\text { Nincon }}\)
 \(||||\mid\) \(||||\mid\)



ત,

50





52





52









\subsection*{3.5 SFC Analysis for Compounds 10 and 27}

Racemic phenylalanine metathesis product 10: Chiralpack AD-H, \(30 \% \mathrm{iPrOH}, 8 \mathrm{~min} \mathrm{run}, 3.5 \mathrm{~mL} / \mathrm{min}\).


Peak Information
\begin{tabular}{|l|l|l|l|l|l|}
\hline Peak No & \% Area & Area & Ret. Time & Height & Cap. Factor \\
\hline 1 & 49.558 & 143.4114 & 1.73 min & 34.5419 & 1732.3333 \\
\hline 2 & 50.442 & 145.9692 & 1.98 min & 33.1507 & 1974 \\
\hline
\end{tabular}

Enantioenriched phenylalanine metathesis product 10: Chiralpack AD-H, 30\% iPrOH, 8 min run, 3.5 \(\mathrm{mL} / \mathrm{min}\).


Peak Information
\begin{tabular}{|l|l|l|l|l|l|}
\hline Peak No & \% Area & Area & Ret. Time & Height & Cap. Factor \\
\hline 1 & 1.7262 & 24.8784 & 1.77 min & 3.7873 & 1765.6667 \\
\hline 2 & 98.2738 & 1416.3409 & 1.93 min & 281.7983 & 1932.3333 \\
\hline
\end{tabular}

Racemic phenylalanine deprotection product 27: Chiralpack AD-H, 10\%-40\% iPrOH, 10 min run, 3.5 \(\mathrm{mL} / \mathrm{min}\).

Peak Information
\begin{tabular}{|l|l|l|l|l|l|}
\hline Peak No & \(\%\) Area & Area & Ret. Time & Height & Cap. Factor \\
\hline 1 & 48.4234 & 178.6481 & 2.43 min & 38.5549 & 2424 \\
\hline 2 & 51.5766 & 190.2812 & 2.72 min & 34.4533 & 2715.6667 \\
\hline
\end{tabular}

Enantioenriched phenylalanine deprotection product 27: Chiralpack AD-H, 10\%-40\% iPrOH, 10 min run, \(3.5 \mathrm{~mL} / \mathrm{min}\).


Peak Information
\begin{tabular}{|l|l|l|l|l|l|}
\hline Peak No & \% Area & Area & Ret. Time & Height & Cap. Factor \\
\hline 1 & 98.499 & 1337.1297 & 2.44 min & 294.3923 & 2440.6667 \\
\hline 2 & 1.501 & 20.3756 & 2.74 min & 4.4557 & 2740.6667 \\
\hline
\end{tabular}

\subsection*{3.6 References}
(1) Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57 (24), 10257-10274.
(2) Watson, P.S.; Jiang, B.; Scott, B. A Diastereoselective Synthesis of 2,4Disubstituted Piperidines: Scaffolds for Drug Discovery. Org. Lett. 2000, 2 (23), 3679-3681.
(3) For recent reviews, see (a) Compain, P. Olefin Metathesis of Amine-Containing Systems: Beyond the Current Consensus. Adv. Synth. Catal. 2007, 349, 18291846; (b) Dragutan, I.; Dragutan, V.; Demonceau, A. Targeted drugs by olefin metathesis: piperidine-based iminosugars. RSC Adv. 2012, 2, 719-736.
(4) (a) Li, X.; Zhao, Y.; Qu, H.; Mao, Z.; Lin, X. Chem. Commun., 2013, 49, 1401-1403; (b) Shi, F.; Tan, W.; Zhu, R.-Y.; Xing, G.-J.; Tu, S.-J. Organocatalytic asymmetric multicomponent reactions of aromatic aldehydes and anilines with \(\beta\)-ketoesters: facile and atom-economical access to chiral tetrahydropyridines. Adv. Synth. Catal. 2013, 355, 1605-1622; (c) Khan, Md. M.; Khan, S.; Iqbal, S.; Iqbal, S. Recent developments in multicomponent synthesis of structurally diversified tetrahydropyridines. RSC Adv. 2016, 6, 42045-42061.
(5) (a) Ceceño, C.; Krappitz, T.; Raabe, G.; Enders, D. Asymmetric Synthesis of Tetrahydropyridines via a Brønsted Acid Catalyzed Aza-Diels-Alder Reaction. Synthesis, 2015, 47, 38813-3821; (b) He, L.; Laurent, G.; Retailleau, P.; Folleas, B.; Brayer, J.-L.; Masson, G. Highly Enantioselective Aza-Diels-Alder Reaction of 1-Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric Acids. Angew. Chem. Int. Ed. 2013, 52, 11088-11091; (c) Tambar, U.K.; Lee, S.K.; Leighton, J.L. Enantioselective (Formal) Aza-Diels-Alder Reactions with Non-Danishefsky-Type Dienes. J. Am. Chem. Soc. 2010, 132, 10249-10250.
(6) (a) Hu, P.; Hu, J.; Jiao, J.; Tong, X. Amine-Promoted Asymmetric (4+2) Annulations for the Enantioselective Synthesis of Tetrahydropyridines: A Traceless and Recoverable Auxiliary Strategy. Angew. Chem. Int. Ed. 2013, 52, 5319-5322; (b) Zhou, L.; Yuan, C.; Zeng, Y.; Liu, H.; Wang, C.; Gao, X.; Wang, Q.; Zhang, C.; Guo, H. Phosphine-catalyzed [5+1] annulation of \(\delta\)-sulfonamidosubstituted enones with N -sulfonylimines: a facile synthesis of tetrahydropyridines. Chem. Sci., 2018, 9, 1831-1835.
(7) de la Pradilla, R.F.; Simal, C.; Bates, R.H.; Viso, A.; Infantes, L. Sulfoxide-Directed Enantioselective Synthesis of Functionalized Tetrahydropyridines. Org. Lett. 2013, 15 (19), 4936-4939.
(8) Leverett, C.A.; Cassidy, M.P.; Padwa, A. Application of the Aza-Achmatowicz Oxidative Rearrangement for the Stereoselective Synthesis of the Cassia and Prosopis Alkaloid Family. J. Org. Chem. 2006, 71 (22), 8591-8601.
(9) Wu, J.; Tang, W.; Pettman, A.; Xiao, J. Efficient and Chemoselective Reduction of Pyridines to Tetrahydropyridines and Piperidines via Rhodium-Catalyzed Transfer Hydrogenation. Adv. Synth. Catal. 2013, 355, 35-40.
(10) (a) Liu, H.; Li, C.; Diu, D.; Tong, X. Palladium-Catalyzed Cycloisomerizations of (Z)-1-lodo-1,6-dienes: lodine Atom Transfer and Mechanistic Insight to Alkyl lodide Reductive Elimination. J. Am. Chem. Soc. 2011, 133 (16), 6187-6193; (b) Duttwyler, S.; Lu, C.; Rheingold, A.L.; Bergman, R.G.; Ellman, J.A. Highly Diastereoselective Synthesis of Tetrahydropyridines by a C-H Activation-Cyclization-Reduction Cascade. J. Am. Chem. Soc. 2012, 134 (9), 4064-4067; (c) Yang, S.; Rui, K.-H.; Tang, X.-Y.; Xu, Q.; Shi, M. Rhodium/Silver Synergistic Catalysis in Highly Enantioselective Cycloisomerization/Cross Coupling of KetoVinylidenecyclopropanes with Terminal Alkynes J. Am. Chem. Soc. 2017, 139, 5957-5964; (d) Min, J.; Xu, G.; Sun, J. Synthesis of Six-Membered Carbo/Heterocycles via Cascade Reaction of Alkynes and Diazo Compounds. J. Org. Chem. 2017, 82 (10), 5492-5498.
(11) For other approaches to carbonyl-olefin metathesis, see: (a) Schopov, I.; Jossifov, C. A Carbonyl-Olefin Exchange Reaction - New Route to Polyconjugated Polymers. Makromol. Chem., Rapid Commun. 1983, 4, 659-662; (b) Fu, G.C.; Grubbs, R. H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc. 1993, 115 (9), 38003801. For catalytic carbonyl-olefin metathesis reactions proceeding via (3+2)/retro-(3+2)-cycloaddition, see: (c) Griffith, A. K.; Vanos, C. M.; Lambert, T.H. Organocatalytic Carbonyl-Olefin Metathesis. J. Am. Chem. Soc. 2012, 134 (45), 18581-18584; (d) Hong, X.; Liang, Y.; Griffith, A. K.; Lambert, T. H.; Houk, K. N. Distortion-accelerated cycloadditions and strain-release-promoted cycloreversions in the organocatalytic carbonyl-olefin metathesis. Chem. Sci. 2014, 5, 471-475. For more information, see: (e) Catti, L.; Tiefenbacher, K. Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis inside a Self-Assembled Supramolecular Host. Angew. Chem. Int. Ed. 2017, 57 (44), 14589-14592.
(12) (a) Ludwig, J.R.; Zimmerman, P.M.; Gianino, J.B.; Schindler, C.S. Iron(III)catalysed carbonyl-olefin metathesis. Nature 2016, 533, 374-379; (b) Ludwig, J.R.; Phan, S.; McAtee, C.C.; Zimmerman, P.M.; Devery, J. J., III; Schindler, C.S. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. J. Am. Chem. Soc. 2017, 139 (31), 10832-10842.
(13) (a) Ma, L.; Li, W.; Xi, J.; Bai, X.; Ma, E.; Yan, X.; Li, Z. FeCl3-Catalyzed RingClosing Carbonyl-Olefin Metathesis. Angew. Chem. Int. Ed. 2016, 55, 1041010413; (b) Groso, E.J.; Golonka, A.N.; Harding, R.A.; Alexander, B.W.; Sodano, T.M.; Schindler, C.S. 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catal. 2018, 8, 2006-2011.
(14) Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91 (2), 165-195.
(15) Ankner, T.; Hilmersson, G. Instantaneous Deprotection of Tosylamides and Esters with Sml2/Amine/Water. Org. Lett. 2009, 11 (3), 503-506.
(16) Adriole, V.T. Ed., The Quinolones, Academic Press: Waltham, MA, \(2^{\text {nd }}\) ed., 1998.
(17) Xu, H.; He, J.; Shi, J.; Tan, L.; Qiu, D.; Luo, X.; Li, Y. Domino Aryne Annulation via a Nucleophilic-Ene Process. J. Am. Chem. Soc. 2018, 140 (10), 3555-3559.

\section*{Chapter 4}

\section*{Mechanistic Investigations into the Formation of Nitrogen Heterocycles via the Carbonyl-Olefin Metathesis Reaction \({ }^{* * *}\)}

\subsection*{4.1 Introduction}

So far, this work has detailed the development of a new synthetic strategy to access chiral nitrogen heterocycles from amino acid-derived substrates subjected to a Lewis acid-catalyzed carbonyl-olefin metathesis reaction. During the course of these studies, we found that the protecting group played a significant role the reaction pathway. The selection of an electron-deficient protecting group led to a significant increase in yield of the desired metathesis product. \({ }^{1}\) We hypothesized that this reactivity was due to the presence of Lewis basic sites within the substrates. The sulfonamide moiety presented a competitive binding site that could coordinate to the \(\mathrm{FeCl}_{3}\), thus sequestering the iron and preventing activation of the aryl ketone. An electrondeficient protecting group, such as the 4(trifluoromethyl)benzenesulfonyl group, is believed to attenuate this unfavourable pathway. Furthermore, we have established certain substitution patterns within the amino acid backbone play a significant role in the


Figure 4.1 Competitive binding sites in amino acidderived substrates.

\footnotetext{
\({ }^{* * * *}\) Groso, E.J.; Schindler, C.S. Manuscript in Preparation.
}
progression of the reaction. Bulkier \(\alpha\)-substituents tend inhibit the reaction pathway, likely due to unfavourable steric interactions in the formation of intermediate oxetanes. This chapter details computational studies put forth to further probe the role of the protecting group and the steric interactions to better understand the carbonyl-olefin metathesis reaction.

\subsection*{4.2 Investigations into Competitive Binding Sites}

To further probe the effect of the Lewis basic sites on the \(\mathrm{FeCl}_{3}\) catalyst, we performed a density functional theory (DFT) analysis using Q-Chem software to generate electrostatic potential diagrams of the phenylalanine-derived substrate 1 (Figure 4.2). Upon examination of the \(N\)-tosyl- and 4-(trifluoromethyl)benzenesulfonyl-protected derivates ( \(\mathbf{1 a}\) and \(\mathbf{1 b}\), respectively), there was not a significant difference observed


Figure 4.2 Electrostatic potential maps comparing the tosyl and 4-(trifluoromethyl)benzenesulfonyl protecting groups.
between the electronics of these Energy: two structures. Despite these initial observations, we set out probe the ability of the different binding to coordinate to the iron catalyst.

The computational analysis ( \(\omega\)-UB97-D/6-31G*) revealed that unproductive binding of \(\mathrm{FeCl}_{3}\) to the sulfonamide oxygen in \(N\)-(4-


Figure 4.3 Computational studies exploring the Lewis basic binding sites and the role of the protecting. trifluoromethyl)tosyl amine 2 is \(1.9 \mathrm{kcal} / \mathrm{mol}\) higher in energy compared to the more electron-rich \(N\)-tosyl amine 3. This difference in energy reduces the sulfonamide in from sequestering \(\mathrm{FeCl}_{3}\), leading to preferential binding of \(\mathrm{FeCl}_{3}\) to the carbonyl which is more productive for catalysis. These observations are consistent with our experimental studies.

\subsection*{4.3 Investigations into the Reaction Pathway and Steric Considerations}

In recent years, the carbonyl-olefin metathesis reaction has emerged as a powerful tool to directly form carbon-carbon bonds from readily available precursors. This protocol has been applied towards the synthesis of five- and sixmembered carbocycles with iron(iii) chloride. \({ }^{2}\) Mechanistic and experimental studies have revealed that this reaction proceeds via the formation of an intermediate oxetane that fragments in a concerted, asynchronous pathway to generate a carbonyl by-product and a new olefin. \({ }^{3}\) Since these initial reports and as detailed in the previous chapters, we sent out to probe the reaction pathway for the synthesis of nitrogen heterocycles. In the case of the amine-containing


Figure 4.4 Proposed concerted and stepwise pathways for the carbonyl-olefin metathesis reaction in the presence of amines.
systems, we sent out to confirm that this reaction pathway still applied. In their recent report, the Li group hypothesized the substrates bearing styrenyl-olefins underwent a stepwise pathway in via intermediate carbocations. \({ }^{4}\) We proposed that in the case of the prenyl-based olefins, the reaction instead proceeded via the concerted formation of the oxetane fragment, which could then undergo fragmentation to provide the final product (Figure 4.4). For the computational studies, we utilized reaction discovery tools developed by the Zimmerman group, specifically the Growing String Method (GSM) to identify the lowest energy reaction pathway as well as the exact transition states.

We first examined that reaction pathway of the 3-pyrrolines. From our initial report, we know that this approach worked well for a variety of substrates derived from both natural and non-natural amino acids as chiral pool reagents. However,
sterically bulky substituents led to a significant decrease in yield of the desired 3pyrrolines. To identify the cause of this reaction inhibition, we began a series of computational studies to probe the effects of substitution on the amino acid backbone. We selected a series of substrates including the unsubstituted glycinederived 4 and alanine-derived 5 substrates to the more sterically encumbered aminoisobutyric acid-derived 6 and valine-derived 7 substrates. These substrates had yields ranging from \(32 \%\) up to \(99 \%\) yield (Table 1). The results of these studies are highlighted in Figure 4.5.

The analyses first confirmed that the amine carbonyl-olefin metathesis reaction mechanism undergoes the previously reported mechanism where the starting \(\alpha\) amino ketones coordinate with iron and can undergo a concerted, asynchronous
Figure 4.5 Reaction profile for the carbonyl-olefin metathesis reaction of various chiral 3-pyrrolines.

(b) Comparison of Free Energy and Reported Yield
\begin{tabular}{|ccccccccc|}
\hline entry & Substrate & Amino Acid & \(R^{1}\) & \(R^{2}\) & \(E_{a}\) & \(\Delta G_{298 K}\) Oxetane & \(\Delta G_{298 K} P D T\) & \(\%\) Yield \\
\hline 1 & \(\mathbf{4}\) & Gly & H & H & 28.1 & 7.8 & -0.1 & 50 \\
2 & \(\mathbf{5}\) & Ala & Me & H & 17.7 & 1.1 & -4.0 & 98 \\
3 & \(\mathbf{6}\) & AlB & Me & Me & 15.2 & -4.7 & -12.2 & 99 \\
4 & \(\mathbf{7}\) & Val & iPr & H & 26.5 & 8.8 & 18.2 & 32 \\
\hline
\end{tabular}

Conditions: (a) \({ }^{\mathrm{F}}\) Ts-protected amino acids ( 0.02 mmol ) were subjected to 0.5 eq of \(\mathrm{FeCl}_{3}\) in \(\mathrm{DCE}(0.01 \mathrm{M})\) and stirred at room temperature for 24 h ; (b) subtrate was the Ts-protected amino acid under otherwise identical conditions.
cyclization (Figure 4.5, TS-I) to generate an intermediate oxetane. No evidence of a carbocationic pathway was observed. This oxetane can then fragment via TS-II to generate the final 3-pyrroline product and a acetone as the carbonyl byproduct (Figure 4.5).

Interestingly, the results also illustrated that the product yields correlated with the activation barrier, \(\mathrm{E}_{\mathrm{a}}\). The glycine- and valine-derived substrates 4 and 7 exhibited the highest activations barriers of \(28.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\) and \(26.5 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\), respectively (Figure 4.5b, entries 1 and 4). These observation correlates with our previously reported experimental results, as both substrates afforded the metathesis products in diminished yields. Interestingly, the glycine-derived substrate 4 provided higher yields of the metathesis product despite having a higher activation barrier. This is likely due to the overall energetics of the reaction pathway, as the glycine product is thermodynamically favourable ( \(\Delta \mathrm{G}_{\mathrm{f}}=-12.2\) \(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\) ), whereas the valine product is significantly higher in energy overall ( \(\Delta \mathrm{G}_{\mathrm{f}}\) \(\left.=11.3 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)\).

Another interesting result came from the dimethyl-substituted substrate 6. We initially expected a higher activation barrier compared to the analogous alaninederive substrate 5. Instead, we found the that 6 has the lowest activation barrier of all the substrates studied ( \(15.2 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\), Figure 4.5 b , entry 3 ). This is likely due to the Thorpe-Ingold Effect, \({ }^{5}\) which overcomes any increased steric bulk that could affect oxetane formation. This same effect has been reported in the analogous ringclosing olefin-olefin reaction, and has led to significant advances in the expansion of the substrate scope. The synthesis of larger ring systems can present a
significant challenge for ring-closing metathesis; however, several groups have shown that the angle compression by the gem-dimethyl substituents can promoted the cyclization. This strategy has been employed to access synthetically challenging 7- and 8-membered rings. \({ }^{6}\)

Next, we set out to perform a similar computational analysis of the formation of tetrahydropyridines. Just as with the 3-pyrroline reaction pathway, we found that the mechanism of the reaction is predicted to proceed via the concerted, asynchronous (Figure 4.6, TS-III) formation of an intermediate oxetane that subsequently fragments to provide the tetrahydropyridine and acetone as a byproduct (Figure 4.6).

Figure 4.6 Reaction profile for the carbonyl-olefin metathesis reaction of tetrahydropyridines.


Conditions: \({ }^{\mathrm{F}}\) Ts-protected amino acids \((0.02 \mathrm{mmol})\) were subjected to 0.5 eq of \(\mathrm{FeCl}_{3}\) in \(\mathrm{DCE}(0.01 \mathrm{M})\) and stirred at room temperature for 24 h .

During the course of our initial reaction studies, we were surprised to find that the glycine substrate 8 afforded the desired metathesis product in significantly improved yields. We had initially expected that this substrate would give diminished yields as with the pyrroline counterpart 4. However, the computational data revealed that the activation barrier for the formation of the intermediate oxetane was significantly lower ( \(15.2 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\) ) making the reaction kinetically favourable. Furthermore, we found that of the three substrates studied which included the unsubstituted glycine- and alanine-derived substrates (8 and 9, respectively) and the sterically encumbered valine-derived substrate 10, all of the reactions were energetically favourable (Figure 4.6).

As reported above, the activation barrier to oxetane formation provided the best correlation to reaction yields. While the formation of the tetrahydropyridine rings was found to be energetically favourable in all of the substrates probed, we were unable to isolate any of the desired valine product. The reaction pathway revealed that activation barrier to access the intermediate oxetane was significantly higher valine 16 at \(30.1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\) compared to the corresponding glycine and alanine derivatives ( \(23.7 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\) and \(18.6 \mathrm{kcal} \cdot \mathrm{mol}^{-1}\), respectively). These results combined with the studies for the five-membered ring systems reveal that in the case of 4-(trifluoromethyl)benzenesulfonyl-protected substrates, an increase in steric bulk - particularly on the \(\beta\)-hydrogen will result in decreased yields of the desired metathesis products.

\subsection*{4.4 Computational Considerations and XYZ Files}

\subsection*{4.4.1 Computational details}

All quantum chemical calculations utilized density functional theory (DFT) as implemented in the Q-Chem 4.3 quantum chemistry package (Mol. Phys. 2015, 113, 184-215. S63). The unrestricted B97-D density functional (S. Grimme, J. Comp. Chem. 27 (2006) 17871799.) with singlet spin was used in combination with the 6-31G* basis set (Ditchfield, R; Hehre, W.J; Pople, J. A. (1971). J. Chem. Phys. 54 (2): 724-728.) to acquire gas phase geometries for the intermediates discussed. The reaction discovery tools developed by the Zimmerman group, specifically the Growing String Method (GSM), ((a) Zimmerman, P. M. J. Chem. Phys. 2013, 138, 184102. (b) Zimmerman, P. M. J. Chem. Theory Comput. 2013, 9, 3043-3050. (c) Zimmerman, P. M. J. Comput. Chem. 2015, 36, 601-611. (d) J. Comput. Chem. 2017, 38, 645-658.) were used to probe potential reaction paths and determine the exact transition state and minimum energy reaction path for each proposed elementary step. By optimizing the reaction path, GSM provides verification that the saddle point connects the reactant to product geometries through a single transition state. Frequency calculations were performed on all structures at the same level of theory to confirm that optimizations led to stable minima (intermediates) or transition states. Stable intermediates were characterized by all real frequencies, and transition states were identified by a single imaginary frequency. The wB97X-D3 (Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys., 2008, 10, 6615.) density functional and the triple-zeta, polarized 6-311G* basis set (ref Pople again) were used to calculate energies with the SMD solvent model (Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378-6396.) using 1,2-dichloroethane as the implicit solvent, in the ORCA software package (Neese, Frank (2012). "The ORCA program system". Wiley Interdisciplinary Reviews: Computational Molecular Science. 2 (1): 73-78.). Thermodynamic corrections were applied to the solvated energies at a temperature of 353.15 K. For these corrections, low frequencies (<50cm-1) were set to \(50 \mathrm{~cm}-1\). Energies reported are solvent-phase Gibbs free energies.

\subsection*{4.4.2 XYZ coordinates for structures}

\section*{Structure 2 (uncoordinated)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{61} \\
\hline \multicolumn{4}{|l|}{Step 35} \\
\hline C & -3.81208324 & 2.63674031 & -0.49689602 \\
\hline C & -2.36724056 & 2.20706207 & -0.63648018 \\
\hline C & 0.26255333 & 1.35042695 & -0.88985648 \\
\hline c & -1.48518985 & 2.91060951 & -1.47174400 \\
\hline C & -1.93533511 & 1.05969739 & 0.05740721 \\
\hline C & -0.61351567 & 0.62375058 & -0.07039946 \\
\hline c & -0.15525713 & 2.48160095 & -1.59963055 \\
\hline S & 1.97781443 & 0.78953336 & -1.08115252 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline & 95122 & -0.50728251 & \\
\hline & 2.760 & 1.92 & -1.6 \\
\hline & 2.70 & 1.65 & 1.38589808 \\
\hline & 1.45 & 2.34811 & 1.8 \\
\hline & 1.04738249 & 3.59477417 & 1.50819554 \\
\hline & 1.79411009 & 4.54252439 & 0.59559730 \\
\hline & -0.25614532 & 4.1408663 & 2.05 \\
\hline & 3.2901310 & -0.73707970 & 0.74576579 \\
\hline & 2.80472865 & -1.3438030 & . 08 \\
\hline & 4.80430810 & -0.43111597 & 0.709376 \\
\hline & 3.4192017 & -1.1081469 & . 130 \\
\hline & . 5281743 & -2.1330169 & 09 \\
\hline & -0.8675262 & -3.62466362 & . 22878446 \\
\hline & 0.97364659 & -2.49414457 & . 343 \\
\hline & 0.86523945 & -2.53462948 & 0.90943903 \\
\hline & -0.32396814 & -3.2756399 & 98073 \\
\hline & -0.21439909 & -3.231157 & 3.41213684 \\
\hline & 5.59112176 & -1.7215496 & 57 \\
\hline & 6.93733576 & -4.19365438 & 0.3161722 \\
\hline & 6.15687451 & -2.34951421 & 1.70395043 \\
\hline & 5.70204559 & -2.34850028 & -0.68015345 \\
\hline & 6.37149043 & -3.5754593 & -0.81302 \\
\hline & 6.8293863 & -3.5766408 & 1.574230 \\
\hline & -4.64602022 & 1.81035933 & -1.205170 \\
\hline & -4.03567178 & 3.90584120 & -0.94596734 \\
\hline & -4.23251931 & 2.59348549 & 0.805469 \\
\hline & -1.82549476 & 3.7960573 & -2.00803707 \\
\hline & -2.62833937 & 0.51958795 & . 70319 \\
\hline & -0.25851804 & -0.24476778 & 0.48216212 \\
\hline & 0.55142502 & 3.02908916 & -2.22258688 \\
\hline & 3.24002310 & 1.26105281 & 2.266482 \\
\hline & 3.40343997 & 2.31912390 & . 85490144 \\
\hline & 0.80552431 & 1.74120555 & 2.4732236 \\
\hline & 2.16461559 & 5.41277250 & 1.16705985 \\
\hline & 2.63965808 & 4.07634043 & 0.0733498 \\
\hline & 1.1 & 4.93972013 & -0.16982319 \\
\hline & -0.08673097 & 5.07820813 & 2.61131989 \\
\hline & -0.75807885 & 3.42145372 & 2.7160104 \\
\hline & -0.94376157 & 4.38653294 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 3.07771003 & -1.44084500 & -0.06469350 \\
\hline H & 4.98353063 & 0.21985287 & -0.16103081 \\
\hline H & 5.10077031 & 0.11117812 & 1.61797094 \\
\hline H & -1.79403486 & -4.20112848 & 2.27950524 \\
\hline H & 1.49223613 & -2.18366408 & 4.25180349 \\
\hline H & 1.25472828 & -2.26838887 & -0.07227458 \\
\hline H & -0.82377203 & -3.58028621 & 0.05872885 \\
\hline H & -0.63243437 & -3.50096007 & 4.38440250 \\
\hline H & 7.45828516 & -5.14878866 & 0.21596019 \\
\hline H & 6.05290919 & -1.87766956 & 2.68309639 \\
\hline H & 5.25888932 & -1.86880040 & -1.55785342 \\
\hline H & 6.45113771 & -4.04732135 & -1.7953202 \\
\hline & 7.26443033 & -4.05187710 & 2.456820 \\
\hline
\end{tabular}

Structure 2 (Coordinated to FeCl 3 via the Phenyl Ketone)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{Step 29} \\
\hline N & -1.30532458 & 0.53608690 & -0.16283553 \\
\hline C & -0.03793388 & 0.38374735 & 0.59006824 \\
\hline S & -2.31663642 & -0.85810642 & -0.22011520 \\
\hline 0 & -2.38940277 & -1.3628604 & \\
\hline 0 & -3.51870784 & -0.46719121 & -0.975 \\
\hline C & -1.39638697 & -2.07664699 & -1.18278524 \\
\hline C & 0.36367566 & -3.66644466 & -2.63037886 \\
\hline C & -0.613526 & -3.0233 & -0.50453012 \\
\hline C & -1.33817514 & -1.93512559 & -2. \\
\hline C & -0.45261722 & -2.74076149 & -3.3036220 \\
\hline C & 0.27205930 & -3.82009268 & -1.23678629 \\
\hline C & 1.30053580 & -4.56582130 & -3.41354363 \\
\hline F & 2.43613068 & -4.832779 & -2.71699963 \\
\hline F & 0.70330858 & -5.7591055 & -3.686 \\
\hline F & 1.66448637 & -4.01210408 & -4.6010725 \\
\hline C & -1.22660386 & 1.37738448 & -1.39197740 \\
\hline C & -0.99845643 & 2.80032871 & -0.96359436 \\
\hline C & 0.09939536 & 3.56131153 & -1.18082701 \\
\hline C & 1.32584735 & 3.13091132 & -1.945 \\
\hline C & 0.18994456 & 4.94576554 & -0.585903 \\
\hline C & 1.14976722 & -0.15384668 & -0.24385104 \\
\hline C & 0.31556267 & 1.69204876 & 1.3375102 \\
\hline & 1.49014164 & 2.12971727 & 1.19954044 \\
\hline
\end{tabular}
\begin{tabular}{rrrr} 
Fe & 3.16416481 & 2.82015498 & 1.94746121 \\
C & 2.22288444 & -0.85035582 & 0.57667008 \\
C & 4.27755066 & -2.14272558 & 2.02505436 \\
C & 3.57520718 & -0.62550502 & 0.26421841 \\
C & 1.91255895 & -1.74878618 & 1.61571798 \\
C & 2.93177050 & -2.38774824 & 2.33696492 \\
C & 4.59717079 & -1.26097950 & 0.98205672 \\
C & -0.63443890 & 2.31026423 & 2.26800793 \\
C & -2.39304160 & 3.53369180 & 4.08905339 \\
C & -0.34275768 & 3.59300633 & 2.79461773 \\
C & -1.81993274 & 1.64422543 & 2.67144590 \\
C & -2.68584188 & 2.25566450 & 3.58150689 \\
C & -1.21996694 & 4.20105993 & 3.69322300 \\
Cl & 4.66414822 & 2.65242232 & 0.34643972 \\
Cl & 2.99042486 & 4.96644301 & 2.44820798 \\
Cl & 3.47649115 & 1.57276692 & 3.70863654 \\
H & -0.26686796 & -0.32081817 & 1.40247484 \\
H & -0.68114791 & -3.10956080 & 0.57780820 \\
H & -1.97458161 & -1.20797904 & -3.08204414 \\
H & -0.38614927 & -2.64489107 & -4.38665980 \\
H & 0.91000342 & -4.54008512 & -0.72534065 \\
H & -0.43999628 & 1.00407514 & -2.06703667 \\
H & -2.19636545 & 1.28452453 & -1.89869357 \\
H & -1.81338146 & 3.22040412 & -0.36851482 \\
H & 2.19370308 & 3.08056475 & -1.26473664 \\
H & 1.57503001 & 3.88197244 & -2.71423156 \\
H & 1.22090345 & 2.15673430 & -2.44079221 \\
H & 1.07216762 & 5.01714457 & 0.07518688 \\
H & 0.33197070 & 5.70368703 & -1.37611462 \\
H & -0.70674040 & 5.20424399 & -0.00347970 \\
H & 1.60486720 & 0.67274474 & -0.80262289 \\
H & 0.73984096 & -0.85226576 & -0.98569231 \\
H & 5.06991000 & -2.62892787 & 2.59706851 \\
H & 3.82492532 & 0.06854659 & -0.53880649 \\
H & 0.87222608 & -1.95340550 & 1.87869117 \\
H & 2.67280522 & -3.07009775 & 3.14922705 \\
H & 5.63924854 & -1.05180711 & 0.73460799 \\
H & -3.07641949 & 4.00807554 & 4.79610691 \\
H & 0.56619415 & 4.10378471 & 2.49101853 \\
H & -2.05834187 & 0.65714139 & 2.28750368 \\
& & &
\end{tabular}
\begin{tabular}{llll}
H & -3.59072491 & 1.73366163 & 3.89530436 \\
H & -0.98655826 & 5.19008097 & 4.08950429
\end{tabular}

Structure 2 (Coordinated to FeCl 3 via the Sulfonamide) 65
Step 27
\begin{tabular}{lrrr} 
C & -3.56773318 & 2.51975707 & -1.06105078 \\
C & -2.14169462 & 2.01090792 & -1.08426174 \\
C & 0.51288698 & 1.25781088 & -1.01972343 \\
C & -1.19067574 & 2.75709365 & -1.80228142 \\
C & -1.76614716 & 0.86511069 & -0.36726218 \\
C & -0.42434434 & 0.47381721 & -0.33694274 \\
C & 0.15516148 & 2.38254881 & -1.77562743 \\
S & 2.24705074 & 0.81310519 & -0.94219226 \\
N & 2.48003113 & 0.34334445 & 0.65933835 \\
O & 2.43721133 & -0.49135000 & -1.71883718 \\
O & 3.06694382 & 1.95874795 & -1.37467204 \\
C & 2.60328765 & 1.51250299 & 1.61232394 \\
C & 1.24929173 & 2.06341640 & 1.96103840 \\
C & 0.74012041 & 3.26445897 & 1.61897768 \\
C & 1.46246282 & 4.32373660 & 0.81947209 \\
C & -0.67441973 & 3.63110382 & 2.01326304 \\
C & 3.37201756 & -0.83026154 & 0.90369536 \\
C & 2.90682616 & -1.40872640 & 2.27455242 \\
C & 4.88136372 & -0.51704686 & 0.84610058 \\
O & 3.61325780 & -1.27545550 & 3.27050237 \\
C & 1.54205796 & -2.01439537 & 2.34538856 \\
C & -1.06014454 & -3.06281310 & 2.59908933 \\
C & 0.92458115 & -2.09787147 & 3.61426231 \\
C & 0.84461201 & -2.47987506 & 1.20889863 \\
C & -0.44795298 & -3.00529202 & 1.33655024 \\
C & -0.37040573 & -2.61051302 & 3.73832978 \\
C & 5.65117720 & -1.80638117 & 0.62966706 \\
C & 6.92938294 & -4.28126567 & 0.20089645 \\
C & 6.28568411 & -2.47047078 & 1.69330665 \\
C & 5.65493382 & -2.39598624 & -0.65078304 \\
C & 6.28996086 & -3.62679737 & -0.86517025 \\
C & 6.92702956 & -3.70083011 & 1.47896875 \\
F & -4.07805157 & 2.61840017 & -2.31573324 \\
F & -3.60634538 & 3.77228503 & -0.51318651
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & 1.73025181 & -0.332892 \\
\hline & & & \\
\hline & . 51 & & \\
\hline & -0.112 & -0.3 & \\
\hline & 0.9110 & 2.951783 & 2.3 \\
\hline & 084 & , 09046 & \\
\hline & , & 仡 & \\
\hline & . 61385 & . 372526 & \\
\hline & . 584964 & 5.239556 & 1.42419915 \\
\hline & 449706 & 011265 & . 45 \\
\hline & 85192 & 6052 & -0.05542435 \\
\hline & 691 & , & 58 \\
\hline & -1.14538939 & 2.848134 & 62 \\
\hline & -1.2959400 & 3.785802 & . 11 \\
\hline & 3.1478192 & -1.566423 & 1258 \\
\hline & 0485465 & 0.173335 & 004 \\
\hline & 191285 & 01805 & . 775007 \\
\hline & -2.0709330 & -3.4641002 & . 6 \\
\hline & 1.47687245 & -1.7430696 & . 4849499 \\
\hline & 1.29110 & -2.4426 & . 21 \\
\hline & 967075 & -3.360641 & \\
\hline & . 8450529 & -2.658420 & 72022 \\
\hline & 4235834 & -5.240987 & . 035730 \\
\hline & 25766359 & -2.02615428 & .68 \\
\hline & 1540522 & -1.88964049 & -1.4803854 \\
\hline & 2823275 & -4.072440 & 861 \\
\hline & 4189664 & -4.207796 & \\
\hline & . 49167143 & -1.36918630 & \\
\hline & . 85939247 & 0.25515336 & -4.567440 \\
\hline & -0.18385851 & & \\
\hline & 3.03383777 & -2.67 & \\
\hline
\end{tabular}

Structure 3 (uncoordinated)
61
Step 18
\begin{tabular}{lrrr} 
C & -3.40512642 & 3.50496641 & -1.60270053 \\
C & -2.06648308 & 2.80426362 & -1.71161694 \\
C & 0.39812556 & 1.47603313 & -1.94259079 \\
C & -1.10020230 & 3.23670285 & -2.64144866 \\
C & -1.76770354 & 1.68989137 & -0.89863988
\end{tabular}
\begin{tabular}{lrrr} 
C & -0.54236401 & 1.02186661 & -1.00616534 \\
C & 0.13429986 & 2.58132852 & -2.76357017 \\
S & 1.96793156 & 0.60190002 & -2.13878183 \\
N & 2.45575980 & 0.44543726 & -0.50649128 \\
O & 1.71283757 & -0.77994172 & -2.61670354 \\
O & 2.87517769 & 1.48079100 & -2.91847516 \\
C & 2.72218863 & 1.71911684 & 0.23431559 \\
C & 1.60874085 & 1.99790557 & 1.21301143 \\
C & 0.85629028 & 3.11338817 & 1.31095368 \\
C & 1.00846404 & 4.35286422 & 0.45753671 \\
C & -0.27023819 & 3.19045244 & 2.31990031 \\
C & 3.29604857 & -0.72941851 & -0.18322620 \\
C & 2.94563347 & -1.09300333 & 1.28607883 \\
C & 4.81386262 & -0.53665430 & -0.42220990 \\
O & 3.72622826 & -0.81571891 & 2.19591851 \\
C & 1.60583766 & -1.71200032 & 1.56050288 \\
C & -0.90922841 & -2.82982810 & 2.18967361 \\
C & 1.22989488 & -1.92275844 & 2.90738470 \\
C & 0.70749467 & -2.07727326 & 0.53161176 \\
C & -0.54184896 & -2.63150752 & 0.84756187 \\
C & -0.01781398 & -2.47603613 & 3.21992402 \\
C & 5.51723279 & -1.87981132 & -0.44671503 \\
C & 6.72538749 & -4.43559459 & -0.50715453 \\
C & 6.20143014 & -2.37337900 & 0.68070917 \\
C & 5.43945682 & -2.68384760 & -1.60264247 \\
C & 6.03953842 & -3.95252576 & -1.63590342 \\
C & 6.80504767 & -3.64223049 & 0.65021943 \\
H & -4.15041216 & 3.02319847 & -2.26013871 \\
H & -3.79734953 & 3.46374944 & -0.57420287 \\
H & -3.32882667 & 4.56083741 & -1.90623065 \\
H & -1.31054463 & 4.10407027 & -3.27246568 \\
H & -2.49778195 & 1.34897682 & -0.16005032 \\
H & -0.31008387 & 0.18037086 & -0.35458776 \\
H & 0.88876456 & 2.92357273 & -3.47260520 \\
H & 3.67809385 & 1.58849995 & 0.76502355 \\
H & 2.87065681 & 2.53653525 & -0.48352890 \\
H & 1.38799154 & 1.16801323 & 1.89115327 \\
H & 1.81976562 & 4.28689204 & -0.27966986 \\
H & 0.06720618 & 4.55668558 & -0.08268189 \\
H & 1.20477188 & 5.23123556 & 1.09905177 \\
& & &
\end{tabular}
\begin{tabular}{lrrr} 
H & -0.32923459 & 2.28053454 & 2.93780178 \\
H & -1.23768906 & 3.32135900 & 1.79951730 \\
H & -0.14637619 & 4.06224614 & 2.98738516 \\
H & 2.96033452 & -1.54711189 & -0.83236313 \\
H & 4.92586763 & -0.02892193 & -1.39299993 \\
H & 5.24280781 & 0.10495486 & 0.36012876 \\
H & -1.88324059 & -3.26105706 & 2.43258195 \\
H & 1.93170014 & -1.64247619 & 3.69435374 \\
H & 0.96526646 & -1.92242731 & -0.51504217 \\
H & -1.22714711 & -2.90629590 & 0.04265029 \\
H & -0.29757799 & -2.63348840 & 4.26404326 \\
H & 7.19404878 & -5.42231627 & -0.52986670 \\
H & 6.24403936 & -1.76280158 & 1.58496431 \\
H & 4.90496612 & -2.30627507 & -2.47903337 \\
H & 5.97417500 & -4.56122358 & -2.54095965 \\
H & 7.33390767 & -4.01197568 & 1.53216480
\end{tabular}

Structure 3 (Coordinated to FeCl 3 via the Aryl Ketone) 65
Step 24
\begin{tabular}{lrrr} 
C & -3.53423785 & 2.62179294 & 0.62580616 \\
C & -2.20369545 & 2.18110486 & 0.05503317 \\
C & 0.30668685 & 1.43491381 & -0.95269452 \\
C & -1.66169100 & 2.82355977 & -1.07594289 \\
C & -1.46648623 & 1.14273727 & 0.65709576 \\
C & -0.21689928 & 0.76312259 & 0.15826311 \\
C & -0.40787565 & 2.46148204 & -1.58508403 \\
S & 1.92907798 & 0.98070200 & -1.60314789 \\
N & 2.93236722 & 0.85066536 & -0.22581872 \\
O & 1.85092573 & -0.37986460 & -2.18836064 \\
O & 2.41137805 & 2.11588949 & -2.41475488 \\
C & 3.26975836 & 2.11578663 & 0.49838407 \\
C & 2.12988365 & 2.64239452 & 1.32508712 \\
C & 1.45903334 & 3.79804464 & 1.15219559 \\
C & 1.71796784 & 4.79970136 & 0.05106370 \\
C & 0.33147775 & 4.16512858 & 2.09122699 \\
C & 3.52436559 & -0.44112931 & 0.14034580 \\
C & 2.89869157 & -0.86502204 & 1.47959280 \\
C & 5.07201853 & -0.46015182 & 0.22876158 \\
O & 3.29561826 & -0.21390202 & 2.48678864
\end{tabular}
\begin{tabular}{lrrr} 
C & 1.89743726 & -1.92820968 & 1.57545785 \\
C & -0.00296578 & -3.99352464 & 1.81864018 \\
C & 1.55351255 & -2.44637139 & 2.85102694 \\
C & 1.27234468 & -2.46992789 & 0.41907044 \\
C & 0.32216316 & -3.48513388 & 0.54890983 \\
C & 0.61922422 & -3.47511771 & 2.96787509 \\
C & 5.51090389 & -1.86249296 & 0.61017223 \\
C & 6.11300942 & -4.51816133 & 1.34672475 \\
C & 5.79705479 & -2.18474783 & 1.95026069 \\
C & 5.52600175 & -2.88552841 & -0.35699123 \\
C & 5.82963332 & -4.20513795 & 0.00657455 \\
C & 6.09691847 & -3.50513103 & 2.31803499 \\
H & -4.31749531 & 2.63001954 & -0.15003986 \\
H & -3.46498618 & 3.64608457 & 1.03037893 \\
H & -3.85917048 & 1.95852412 & 1.44112369 \\
H & -2.22165441 & 3.62950919 & -1.55641500 \\
H & -1.86534288 & 0.64045310 & 1.54038151 \\
H & 0.35305089 & -0.01773262 & 0.65412239 \\
H & 0.02438407 & 2.98015902 & -2.43989358 \\
H & 4.11158501 & 1.86676260 & 1.15769386 \\
H & 3.62999176 & 2.84244499 & -0.24149023 \\
H & 1.81864553 & 1.99017866 & 2.14331202 \\
H & 2.07519817 & 5.75553233 & 0.47466078 \\
H & 2.44317010 & 4.45595792 & -0.69849405 \\
H & 0.77201119 & 5.02017573 & -0.47388815 \\
H & 0.53822073 & 5.12819747 & 2.59148318 \\
H & 0.17681756 & 3.39615411 & 2.86158675 \\
H & -0.60776532 & 4.29193113 & 1.52476685 \\
H & 3.24815093 & -1.15465024 & -0.63746073 \\
H & 5.45881525 & -0.16391483 & -0.75810531 \\
H & 5.42361093 & 0.26421916 & 0.97551224 \\
H & -0.74001499 & -4.79332249 & 1.91271280 \\
H & 2.03975520 & -2.06150764 & 3.74200445 \\
H & 1.48044952 & -2.06814827 & -0.57018063 \\
H & -0.16623690 & -3.87908008 & -0.34326845 \\
H & 0.37492409 & -3.86974669 & 3.95464722 \\
H & 6.34584539 & -5.54639267 & 1.63092235 \\
H & 5.77605359 & -1.39978774 & 2.70853881 \\
H & 5.30088891 & -2.64165107 & -1.39880667 \\
H & 5.84525219 & -4.98824950 & -0.75451669 \\
& & &
\end{tabular}
\begin{tabular}{rrrr}
H & 6.31422698 & -3.73777003 & 3.36223502 \\
Fe & 2.95395063 & 0.40182986 & 4.32111060 \\
Cl & 3.80206196 & -1.17051669 & 5.60324057 \\
Cl & 0.77231072 & 0.60690673 & 4.49954984 \\
Cl & 4.05402020 & 2.28358996 & 4.47668334
\end{tabular}

Structure 3 (Coordinated to FeCl 3 via the Sulfonamide)
\begin{tabular}{crrr}
\multicolumn{4}{c}{65} \\
Step & 43 & & \\
C & -3.47884224 & 2.50791006 & -1.41571071 \\
C & -1.99553805 & 2.23088440 & -1.31190111 \\
C & 0.73545684 & 1.66733101 & -1.17500206 \\
C & -1.07836950 & 2.93108009 & -2.12315956 \\
C & -1.50985408 & 1.24683615 & -0.42742175 \\
C & -0.14586225 & 0.95176341 & -0.35303074 \\
C & 0.29151596 & 2.65795926 & -2.06528435 \\
S & 2.47498916 & 1.27255505 & -1.16218010 \\
N & 2.78930752 & 0.75946984 & 0.39446792 \\
O & 2.69335057 & 0.00359814 & -1.99823104 \\
O & 3.24452582 & 2.45704140 & -1.58126604 \\
C & 2.88021003 & 1.85237021 & 1.43448323 \\
C & 1.63607842 & 1.87966655 & 2.28084907 \\
C & 0.62013105 & 2.76332862 & 2.19973550 \\
C & 0.56940955 & 3.95650849 & 1.27609412 \\
C & -0.61603838 & 2.57956207 & 3.05128492 \\
C & 3.54168009 & -0.50462620 & 0.62054093 \\
C & 3.07883273 & -1.01762095 & 2.01864939 \\
C & 5.07457348 & -0.36645152 & 0.50693105 \\
O & 3.77909261 & -0.80404509 & 3.00578898 \\
C & 1.73263465 & -1.65668820 & 2.12950317 \\
C & -0.84350927 & -2.75009015 & 2.46068373 \\
C & 1.17567439 & -1.80230999 & 3.42186318 \\
C & 0.98884520 & -2.08899711 & 1.01037278 \\
C & -0.29231497 & -2.63252445 & 1.17566129 \\
C & -0.10444292 & -2.33802088 & 3.58532903 \\
C & 5.68687015 & -1.74969734 & 0.40962222 \\
C & 6.67765169 & -4.38080547 & 0.21638689 \\
C & 6.25803472 & -2.37732602 & 1.53041577 \\
C & 5.60799134 & -2.45410398 & -0.80846519
\end{tabular}
\begin{tabular}{rrrr} 
C & 6.10093645 & -3.76267785 & -0.90551842 \\
C & 6.75647617 & -3.68566576 & 1.43355473 \\
H & -3.92181299 & 1.90739555 & -2.22903329 \\
H & -3.67275411 & 3.56702919 & -1.64478182 \\
H & -4.00214497 & 2.24365595 & -0.48416364 \\
H & -1.44383440 & 3.69679467 & -2.80968140 \\
H & -2.20982660 & 0.69682627 & 0.20399393 \\
H & 0.22756285 & 0.19679541 & 0.33245260 \\
H & 1.00203416 & 3.19668618 & -2.68988928 \\
H & 3.76389856 & 1.61181414 & 2.04137602 \\
H & 3.08159196 & 2.80611643 & 0.93172002 \\
H & 1.53815745 & 1.04519522 & 2.97943295 \\
H & 0.43284714 & 4.88410047 & 1.85974218 \\
H & 1.46530414 & 4.07158276 & 0.65255387 \\
H & -0.30176776 & 3.86843099 & 0.60600396 \\
H & -0.80343804 & 3.46797060 & 3.68019708 \\
H & -0.53672407 & 1.69556590 & 3.70202263 \\
H & -1.50159307 & 2.45852136 & 2.40087899 \\
H & 3.21507944 & -1.21155171 & -0.14664691 \\
H & 5.28768015 & 0.21326317 & -0.40479239 \\
H & 5.46824686 & 0.18240873 & 1.37378455 \\
H & -1.84457411 & -3.16716330 & 2.58846856 \\
H & 1.76516213 & -1.47699473 & 4.27971478 \\
H & 1.38405829 & -2.00579875 & 0.00036593 \\
H & -0.84944853 & -2.95458439 & 0.29534399 \\
H & -0.53021316 & -2.43594937 & 4.58582107 \\
H & 7.06218812 & -5.40024352 & 0.14187336 \\
H & 6.29294889 & -1.83943844 & 2.47940038 \\
H & 5.15766798 & -1.97439659 & -1.68137204 \\
H & 6.03412308 & -4.29566467 & -1.85601472 \\
H & 7.20132635 & -4.16268079 & 2.30971544 \\
Fe & 1.66711878 & -0.90146722 & -3.45216088 \\
Cl & -0.05968780 & -1.85695094 & -2.47366682 \\
Cl & 1.08523451 & 0.64385559 & -4.88357354 \\
Cl & 3.12234172 & -2.35313799 & -4.18356238 \\
& &
\end{tabular}

Structure 4 (Starting Material)
52
\(\begin{array}{lllll}\text { C } & -2.8605731395 & -0.7370887739 & -3.6197229749\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline & -2.6620619676 & 0.6081288452 & -3.2721012 \\
\hline C & -2.7246560385 & 0.9975935827 & -1.9284317709 \\
\hline C & -2.9784292409 & 0.0241432466 & -0.9495313952 \\
\hline C & -3.1978434456 & -1.3222567095 & -1.2867712876 \\
\hline C & -3.1447002750 & -1.6974110152 & -2.6331755790 \\
\hline S & -2.7482298416 & 0.4490971890 & 0.7884353142 \\
\hline 0 & -2.9337569659 & 1.9015034245 & 0.9649870313 \\
\hline N & -1.0377786999 & 0.1675681223 & 1.0070370175 \\
\hline 0 & -3.4393417136 & -0.5427302838 & 1.6301476623 \\
\hline C & -0.2357726006 & 1.0048192595 & 0.1040026834 \\
\hline C & -0.6394793395 & -1.2742607888 & 0.9543886920 \\
\hline C & 0.7253875393 & -1.4138320511 & 1.5656717120 \\
\hline C & 1.2095223997 & 1.2380097096 & 0.5240812 \\
\hline C & 1.8681096492 & -1.8125339941 & 0.9586084073 \\
\hline 0 & 2.0792682157 & 1.2545705845 & -0.3983850681 \\
\hline c & 3.1648914063 & -1.8273772000 & 1.7339209948 \\
\hline C & 1.9967202709 & -2.2398106839 & -0.4808831438 \\
\hline & -2.6699784554 & -1.1965626953 & -5.0518163323 \\
\hline F & -2.8152450770 & -0.1828809331 & -5.9434740266 \\
\hline F & -3.5634974793 & -2.1706815002 & -5.3863292645 \\
\hline F & -1.4261643288 & -1.7207912251 & -5.2201540384 \\
\hline C & 1.6014291543 & 1.6095756215 & 1.88552632 \\
\hline C & 0.6309003680 & 1.9343403722 & 2.8656449036 \\
\hline C & 1.0412744843 & 2.3203384652 & 4.1451674393 \\
\hline C & 2.4093563077 & 2.3736914541 & 4.4638776398 \\
\hline C & 3.3778485476 & 2.0605995598 & 3.4918105092 \\
\hline & 2.9801343431 & 1.6909550262 & 2.2061652 \\
\hline & 1.8620247904 & 1.5538584386 & -2.3738087583 \\
\hline Cl & 3.8943334529 & 1.9650129363 & -3.0392619867 \\
\hline Cl & 0.4835756649 & 3.2713031117 & -2.4233664338 \\
\hline Cl & 0.9732888095 & -0.2078906493 & -3.3327921726 \\
\hline & -2.4399236551 & 1.3459116206 & -4.0410268181 \\
\hline H & -2.5630125014 & 2.0363273583 & -1.6448432097 \\
\hline H & -3.4118452159 & -2.0522026539 & -0.5068654348 \\
\hline H & -3.3141306448 & -2.7347832151 & -2.9206714531 \\
\hline H & -0.6893078801 & 2.0076634229 & 0.0447210593 \\
\hline H & -0.2172137937 & 0.5854628275 & -0.9156011393 \\
\hline & -1.3808750938 & -1.8219691123 & 1.5525816991 \\
\hline H & -0.6798154847 & -1.6420812470 & -0.0859213809 \\
\hline & 0.7783206838 & -1.1099712273 & 2.6141412382 \\
\hline
\end{tabular}
\begin{tabular}{rrrr} 
H & 3.9064720197 & -1.1776855416 & 1.2356842725 \\
H & 3.5999706749 & -2.8422194932 & 1.7501504196 \\
H & 3.0347712889 & -1.4805125006 & 2.7693317783 \\
H & 2.4255690329 & -3.2558052468 & -0.5341259065 \\
H & 1.0538751528 & -2.2359936198 & -1.0403850879 \\
H & 2.7029217010 & -1.5757977595 & -1.0082525701 \\
H & -0.4273831570 & 1.8879604301 & 2.6197011338 \\
H & 0.2929393294 & 2.5800835222 & 4.8951361136 \\
H & 2.7225514763 & 2.6671987503 & 5.4676838553 \\
H & 4.4393704601 & 2.1126951843 & 3.7385025685 \\
H & 3.7169698113 & 1.4561950548 & 1.4388985630
\end{tabular}

\section*{Structure 4 (TS-I) \\ 52}
\begin{tabular}{lrrr} 
& & -2.2401728824 & -1.2724381198 \\
C & -3.3769563534 \\
C & -2.1469979847 & 0.1156572460 & -3.1913040769 \\
C & -2.5085162822 & 0.6771854214 & -1.9594398797 \\
C & -2.9400095173 & -0.1690170128 & -0.9236139293 \\
C & -2.0956229856 & -1.5528505554 & -1.1215987856 \\
S & -2.9745434473 & -2.1014143085 & -2.3615982657 \\
O & -3.2885247166 & 1.9161618716 & 0.7583181872 \\
N & -1.3133403683 & 0.3650249813 & 1.18906173716 \\
O & -3.6757907006 & -0.4812445886 & 1.6257340265 \\
C & -0.3651339843 & 1.1804816451 & 0.4223792549 \\
C & -0.7849945312 & -1.0043216779 & 1.4150169502 \\
C & 0.7357187129 & -0.9122475984 & 1.2364077204 \\
C & 1.0537574451 & 0.7685190963 & 0.8886166332 \\
C & 1.3439638204 & -1.4517332559 & 0.0341718136 \\
O & 1.9766563909 & 0.7872724212 & -0.1413469199 \\
C & 2.7693018767 & -1.8642176576 & 0.0735494143 \\
C & 0.5725219237 & -1.6787191497 & -1.2092353243 \\
C & -1.6593276977 & -1.9145590895 & -4.6191153015 \\
F & -1.5713832405 & -1.0564018751 & -5.6601797530 \\
F & -2.3905472839 & -2.9905439738 & -5.0215959458 \\
F & -0.3961905939 & -2.3720557855 & -4.3518430374 \\
C & 1.5496669586 & 1.4408934606 & 2.1384320540 \\
C & 0.6719521330 & 1.7504194051 & 3.2024918237 \\
C & 1.1607217968 & 2.3801610814 & 4.3514242092
\end{tabular}
\begin{tabular}{lrrr} 
& & 2.5263852138 & 2.7019894342 \\
C & 3.4024094158 & 2.3927073449 & 3.4024704026 \\
C & 2.9221471802 & 1.7542392820 & 2.2522467441 \\
Fe & 2.2308368878 & 1.9731194084 & -1.5882677642 \\
Cl & 4.4194866557 & 2.0842094838 & -1.8281819111 \\
Cl & 1.2408682785 & 3.8816030095 & -1.0973725434 \\
Cl & 1.2490923204 & 0.9756014042 & -3.3371683145 \\
H & -1.7541914066 & 0.7487666020 & -3.9842175205 \\
H & -2.4291721702 & 1.7511697660 & -1.7944845078 \\
H & -3.4761421962 & -2.1757217254 & -0.3121792783 \\
H & -2.8536847282 & -3.1723095594 & -2.5377378564 \\
H & -0.5321073921 & 2.2476807562 & 0.6047843859 \\
H & -0.4185206083 & 0.9995917674 & -0.6651444567 \\
H & -1.0412071072 & -1.3253975533 & 2.4324518595 \\
H & -1.2239655666 & -1.7306419339 & 0.7095396747 \\
H & 1.3048173162 & -1.1613445155 & 2.1370065437 \\
H & 3.2876514921 & -1.5693665574 & -0.8498191230 \\
H & 2.7877222489 & -2.9723354405 & 0.1256090927 \\
H & 3.2892005909 & -1.4639487719 & 0.9533165795 \\
H & 0.1294046653 & -2.6927491150 & -1.1334616208 \\
H & -0.2667798040 & -0.9844054292 & -1.3111295311 \\
H & 1.2000784738 & -1.6481431564 & -2.1071901066 \\
H & -0.3881010625 & 1.5088833592 & 3.1165050092 \\
H & 0.4761754302 & 2.6266960227 & 5.1650688291 \\
H & 2.9034899450 & 3.1944666180 & 5.3540236142 \\
H & 4.4598904623 & 2.6530163641 & 3.4729958779 \\
H & 3.5915045779 & 1.5287265612 & 1.4227212446
\end{tabular}

Structure 4 (Oxetane)
52
\begin{tabular}{lrrr} 
C & -2.1674556448 & -1.1812915789 & -3.4565107925 \\
C & -2.1598618773 & 0.1973287468 & -3.1917986716 \\
C & -2.5862560609 & 0.6674734407 & -1.9428138908 \\
C & -3.0066411179 & -0.2573738234 & -0.9720490210 \\
C & -3.0792862889 & -1.6331905512 & -1.2518995874 \\
C & -2.6606494226 & -2.0919602161 & -2.5053709237 \\
S & -3.1719801908 & 0.2914977227 & 0.7402516225 \\
O & -3.5506470402 & 1.7129400130 & 0.7536400036 \\
N & -1.5434758064 & 0.2269835337 & 1.2742764452
\end{tabular}
\begin{tabular}{lrrr} 
O & -3.8880388723 & -0.7467576176 & 1.5001431814 \\
C & -0.6140065136 & 1.2074163897 & 0.6741438153 \\
C & -0.9229760191 & -1.1246847490 & 1.3710273293 \\
C & 0.5887739801 & -0.8455028760 & 1.3326700806 \\
C & 0.7771305633 & 0.6843071669 & 1.0969220814 \\
C & 1.4042783615 & -1.0948390890 & 0.0251520150 \\
O & 1.6158234631 & 0.4074829713 & -0.0977723028 \\
C & 2.7610416714 & -1.7457660020 & 0.2361181226 \\
C & 0.6617658752 & -1.6140931871 & -1.1914978140 \\
C & -1.5151654178 & -1.7241697596 & -4.7104561763 \\
F & -1.4096194365 & -0.7945661793 & -5.6893298325 \\
F & -2.1975629399 & -2.7889536251 & -5.2159795507 \\
F & -0.2534225562 & -2.1648187209 & -4.4195487847 \\
C & 1.5012621046 & 1.4794657754 & 2.1469253163 \\
C & 0.7723475075 & 1.9288247125 & 3.2647642271 \\
C & 1.4277180211 & 2.6071623882 & 4.3004968754 \\
C & 2.8094108229 & 2.8487009703 & 4.2217639514 \\
C & 3.5332565256 & 2.4038420663 & 3.1054217594 \\
C & 2.8852059612 & 1.7115815880 & 2.0721990350 \\
Fe & 2.2530440920 & 1.6469808869 & -1.5209712270 \\
Cl & 4.4194881629 & 1.3177613879 & -1.5571305669 \\
Cl & 1.5700128194 & 3.5759089586 & -0.7674827770 \\
Cl & 1.2497987310 & 1.0758163189 & -3.3858371885 \\
H & -1.7917306897 & 0.8948826160 & -3.9414258433 \\
H & -2.5789942326 & 1.7328839782 & -1.7153920655 \\
H & -3.4474889606 & -2.3206502559 & -0.4909138719 \\
H & -2.6905257568 & -3.1560035900 & -2.7400891246 \\
H & -0.8296671522 & 2.2108218589 & 1.0532368789 \\
H & -0.6576555889 & 1.2207547629 & -0.4295530643 \\
H & -1.2398893024 & -1.5910497671 & 2.3116376266 \\
H & -1.2287631160 & -1.7815153432 & 0.5397537552 \\
H & 1.1107716813 & -1.2166507582 & 2.2214073078 \\
H & 3.3887089499 & -1.611264779 & -0.6569536163 \\
H & 2.6199092407 & -2.824265749 & 0.4123199503 \\
H & 3.2713690830 & -1.3042760159 & 1.1038887258 \\
H & 0.3794331738 & -2.6646007944 & -1.0187728576 \\
H & -0.2486499274 & -1.0370246038 & -1.3896244864 \\
H & 1.2989772184 & -1.5692393124 & -2.0847736070 \\
H & -0.3018177510 & 1.7398931383 & 3.3213127187 \\
H & 0.8573000271 & 2.9531797343 & 5.1643359960 \\
& & &
\end{tabular}
\begin{tabular}{llll} 
H & 3.3175805585 & 3.3857429764 & 5.0248007778 \\
H & 4.6047182864 & 2.5977164106 & 3.0312763889 \\
H & 3.4471188004 & 1.3775049560 & 1.2004876569
\end{tabular}

Structure 4 (TS-II)
52
\begin{tabular}{lrrr} 
& C & -1.8992147124 & -0.7508421377 \\
C & -1.9348043070 & 0.5032861323 & -2.9049705512 \\
C & -2.4709295786 & 0.6171841834 & -1.6151537541 \\
C & -2.9376758782 & -0.5382322829 & -0.9665991610 \\
C & -2.9402280468 & -1.7914864748 & -1.6008676387 \\
C & -2.4285142869 & -1.8887417459 & -2.8981634106 \\
S & -3.3254402126 & -0.4567567666 & 0.7927944594 \\
O & -3.9347033183 & 0.8525286312 & 1.0806936301 \\
N & -1.8036541207 & -0.4080932874 & 1.5517596246 \\
O & -3.9221947731 & -1.7409763468 & 1.1958691677 \\
C & -1.0426011402 & 0.8390465712 & 1.5053926447 \\
C & -0.9110790983 & -1.5939559242 & 1.5941648628 \\
C & 0.5274813508 & -1.0029656475 & 1.5747596876 \\
C & 0.3344858589 & 0.4519373020 & 1.8867790875 \\
C & 1.3548577487 & -1.0218380477 & 0.1501984098 \\
O & 1.7038962413 & 0.3125256531 & -0.1107980860 \\
C & 2.6376606528 & -1.8548584216 & 0.3113824286 \\
C & 0.5084064145 & -1.5770119409 & -0.9991785415 \\
C & -1.2177789614 & -0.9387489917 & -4.8747086397 \\
F & -0.9674766154 & 0.2289242927 & -5.5073488799 \\
F & -1.9802295936 & -1.7085200636 & -5.7063290208 \\
F & -0.0337319477 & -1.5918824771 & -4.7093230572 \\
C & 1.2952840241 & 1.3519552009 & 2.4018975451 \\
C & 1.0336628650 & 2.7595654952 & 2.3936366496 \\
C & 2.0423602926 & 3.6580853691 & 2.7249501940 \\
C & 3.3113280811 & 3.1796877257 & 3.1030476818 \\
C & 3.5776871975 & 1.7950420073 & 3.1582123722 \\
C & 2.5864936969 & 0.8898442514 & 2.8065374044 \\
Fe & 1.8966230971 & 1.6927014508 & -1.2851028803 \\
Cl & 3.7694244898 & 2.7554785874 & -0.7341379383 \\
Cl & 0.1113118687 & 3.0747417382 & -0.9052313220 \\
Cl & 1.8603229415 & 0.9971691655 & -3.3792198624 \\
H & -1.5201446451 & 1.3793333702 & -3.3997344008
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 2.5051093383 & 1.5867896126 & -1.1214607028 \\
\hline H & -3.3287051758 & -2.6624148331 & -1.0742066360 \\
\hline H & -2.4132076572 & -2.8496623846 & -3.4126180656 \\
\hline H & -1.4948548394 & 1.6075297615 & 2.1465415425 \\
\hline H & -0.9511193212 & 1.2899544553 & 0.4856692869 \\
\hline H & -1.0965459100 & -2.152438771 & 2.5244141498 \\
\hline H & -1.1016359679 & -2.270726229 & 0.7516702422 \\
\hline H & 1.1567295304 & -1.5000095142 & 2.3251865666 \\
\hline H & 3.1894139131 & -1.8312109683 & -0.6401249007 \\
\hline H & 2.4012161392 & -2.9016019859 & 0.5635893243 \\
\hline H & 3.2862814866 & -1.4277197741 & 1.0905315349 \\
\hline H & 0.2695019302 & -2.641888919 & -0.8572546925 \\
\hline H & -0.4196056967 & -1.009001145 & -1.1122808151 \\
\hline H & 1.0890763572 & -1.4688089218 & -1.9256937487 \\
\hline H & 0.0664188369 & 3.1329396722 & 2.0648151823 \\
\hline H & 1.8546570212 & 4.7300971896 & 2.6715989391 \\
\hline H & 4.1013769534 & 3.8894982737 & 3.3529553402 \\
\hline H & 4.5651606805 & 1.4403768403 & 3.4534000583 \\
\hline & 2.7894194731 & -0.178779928 & 2.8254761459 \\
\hline
\end{tabular}

Structure 4 (Product) 52
\begin{tabular}{|c|c|c|c|}
\hline  & -1.8177266934 & -0.8256995158 & -3.4370459 \\
\hline C & -2.0508705152 & 0.4580627409 & -2.92375 \\
\hline C & -2.6333854159 & 0.6052285748 & -1.65 \\
\hline C & -2.9732050950 & -0.5406605421 & -0.9220226745 \\
\hline C & -2.7758834880 & -1.8316081821 & -1.4446099509 \\
\hline C & -2.195174515 & -1.969163186 & -2.7083 \\
\hline & -3.5250923467 & -0.3667090000 & 0.792197192 \\
\hline O & -4.1054921037 & 0.9765032373 & 0.9492433355 \\
\hline N & -2.0883430037 & -0.3685528301 & 1.6785812941 \\
\hline O & -4.2287536164 & -1.6067149448 & 1.1639340969 \\
\hline & -1.1867250010 & 0.8028418114 & 1.6082396647 \\
\hline & -1.3227860245 & -1.6294237057 & 1.8111361 \\
\hline C & 0.0374739906 & -1.1187604293 & 2.1998172681 \\
\hline C & 0.1259408423 & 0.2307446960 & 2.1194234332 \\
\hline & 1.8854599275 & -0.5754470114 & -0.3940789547 \\
\hline & 2.3146576475 & 0.5989017138 & -0.486092771 \\
\hline & 2.7310805923 & -1.5559343069 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 455700885 & -1.0072564399 & -1.1114565059 \\
\hline & -1.0907642306 & -1.0309087706 & -4.7490626715 \\
\hline F & -0.85 & 0.12180 & -5.4 \\
\hline F & -1.7864277495 & -1.8599580493 & -5.5758321927 \\
\hline F & 0.1216037416 & -1.6336212518 & -4.5225938712 \\
\hline C & 1.2727504828 & 1.0823013964 & 2.4488087735 \\
\hline C & 1.3122199300 & 2.42676343 & 2.01 \\
\hline C & . 43562766 & 3.22597600 & 2.26 \\
\hline C & . 532659815 & 2.702398170 & 2.96 \\
\hline C & 3.4935068098 & 1.3767156497 & 3.4314629 \\
\hline c & 2.374591353 & 0.57599394 & 3.17 \\
\hline Fe & 16716 & 2.15 & -1.7019607045 \\
\hline Cl & 3.6002726535 & 3.5467222646 & -1.3245 \\
\hline Cl & -0.0236340220 & 3.0044989024 & -1.33335676 \\
\hline Cl & 2.0630353185 & 1.1843079013 & -3.66586439 \\
\hline & -1.759892263 & 1.3377276719 & -3.4939606793 \\
\hline & -2.8160643707 & 1.59507313 & -1.2423271295 \\
\hline & 3.092838191 & -2.702047603 & -0.8712 \\
\hline & -2.0303486263 & -2.9591781471 & -3.1350330050 \\
\hline & -1.5703524120 & 1.6181383828 & 2.2391956549 \\
\hline & -1.0799853119 & 1.2005704015 & 0.5808728203 \\
\hline & -1.7875864617 & -2.2778223848 & 2.5711281702 \\
\hline & -1.2930747282 & -2.205020950 & 0.862 \\
\hline & 0.8295838418 & -1.7866894098 & 2.534155833 \\
\hline & 3.6421313905 & -1.7490922364 & -0.2218528286 \\
\hline & 2.2076210778 & -2.5024716702 & 0.5512233093 \\
\hline & 3.0501853271 & -1.0912550647 & 1.3163455733 \\
\hline & 0.2723586276 & -1.9693317988 & -0.7442818710 \\
\hline & -0.1367089108 & -0.2419382424 & -1.0225645933 \\
\hline & 0.8789951196 & -1.1005969593 & -2.1867662956 \\
\hline & 0.4711914413 & 2.8450128685 & 1.4629694434 \\
\hline & 2.4565608876 & 4.2534243657 & 1.8989964937 \\
\hline & 4.4089740805 & 3.3247702172 & 3.1535582283 \\
\hline & 4.3329891298 & 0.9713198118 & 3.9998495332 \\
\hline & 2.3362689019 & -0.442557099 & 3.57149782 \\
\hline
\end{tabular}

Structure 5 (Starting Material)
55
\(\begin{array}{llll}\mathrm{N} & -0.32160424 & -1.15577329 & 3.32607955\end{array}\)
\begin{tabular}{lrrr} 
C & 1.15603194 & -1.09702288 & 3.27542792 \\
C & 1.59352133 & 0.37586937 & 3.28019196 \\
C & -0.18706158 & -0.21909671 & 5.62736316 \\
C & -0.82879443 & -1.25808692 & 4.73515532 \\
H & 0.52731558 & -0.59679072 & 6.36384220 \\
H & -1.91883814 & -1.11935088 & 4.69861729 \\
H & -0.63034473 & -2.26925166 & 5.12983342 \\
O & 0.97285402 & 1.14848592 & 2.50551027 \\
C & -0.40884566 & 1.11548135 & 5.57854370 \\
C & 2.81377173 & 0.79119866 & 3.99307296 \\
C & 5.18829336 & 1.58867877 & 5.28179579 \\
C & 3.23952147 & 0.14254873 & 5.17976522 \\
C & 3.60277224 & 1.83951096 & 3.46164769 \\
C & 4.78453961 & 2.22739308 & 4.09838809 \\
C & 4.41173383 & 0.54738847 & 5.82199020 \\
H & 2.62518786 & -0.63672027 & 5.62584605 \\
H & 3.31279588 & 2.31699905 & 2.52990552 \\
H & 5.38626772 & 3.02954491 & 3.66984706 \\
H & 4.71909014 & 0.05720128 & 6.74690712 \\
H & 6.10561300 & 1.90066941 & 5.78420807 \\
S & -1.21559346 & -2.17297764 & 2.23927141 \\
O & -0.67339139 & -1.98672267 & 0.88183502 \\
O & -1.37963896 & -3.52943217 & 2.81210975 \\
C & -2.80617071 & -1.31646113 & 2.32114905 \\
C & -5.22491728 & 0.03388349 & 2.42333086 \\
C & -2.88809100 & -0.02981952 & 1.76832204 \\
C & -3.90891704 & -1.94727529 & 2.90884688 \\
C & -5.13185252 & -1.26189953 & 2.95474611 \\
C & -4.10745637 & 0.64955989 & 1.82887964 \\
H & -2.01509064 & 0.43726048 & 1.31689722 \\
H & -3.80578201 & -2.95157151 & 3.31938711 \\
H & -6.00544613 & -1.72958362 & 3.40690808 \\
H & -4.18580970 & 1.65835985 & 1.42461121 \\
C & 0.35291377 & 2.05885127 & 6.47748357 \\
H & 1.01785999 & 1.52124191 & 7.17068650 \\
H & -0.34302695 & 2.68496205 & 7.06182662 \\
H & 0.96336985 & 2.74878347 & 5.86965124 \\
C & -1.38619073 & 1.76145417 & 4.63407925 \\
H & -0.85470342 & 2.43941059 & 3.94795989 \\
H & -2.09241623 & 2.39502370 & 5.19765638 \\
& & &
\end{tabular}
\begin{tabular}{rrrr}
H & -1.94674630 & 1.03860388 & 4.03166592 \\
C & -6.54328341 & 0.78150421 & 2.42324937 \\
F & -7.09408195 & 0.78370730 & 1.17777541 \\
F & -6.37349099 & 2.08198935 & 2.78905711 \\
F & -7.45444714 & 0.23269555 & 3.27193078 \\
C & 1.90086132 & -1.73861495 & 2.07260828 \\
H & 1.55554045 & -1.59505604 & 4.17079093 \\
H & 1.66372517 & -2.80909092 & 2.01235807 \\
H & 2.98048944 & -1.62498847 & 2.25575092 \\
H & 1.63392846 & -1.25937730 & 1.12542531 \\
Fe & 0.77231475 & 2.96033844 & 1.75875516 \\
Cl & 2.23168812 & 3.02561166 & 0.12518982 \\
Cl & -1.29337940 & 3.15971724 & 1.05445142 \\
Cl & 1.23741051 & 4.37094762 & 3.37696015
\end{tabular}

Structure 5 (TS-I)
55
\begin{tabular}{lrrr} 
N & -0.35286207 & -0.98452995 & 3.24863251 \\
C & 1.11212683 & -0.81604343 & 3.06970831 \\
C & 1.39645076 & 0.48935351 & 3.89209539 \\
C & 0.23650258 & 0.28442860 & 5.17187264 \\
C & -0.60473022 & -0.90531531 & 4.70133895 \\
H & 0.79642642 & 0.10076113 & 6.09318560 \\
H & -1.68075991 & -0.77153215 & 4.88546224 \\
H & -0.27279007 & -1.81852553 & 5.22594127 \\
O & 1.02832899 & 1.62850549 & 3.22463657 \\
C & -0.34468051 & 1.61025814 & 5.12520928 \\
C & 2.78875454 & 0.55774159 & 4.47536912 \\
C & 5.40122305 & 0.68249710 & 5.52485881 \\
C & 3.29813108 & -0.50280960 & 5.25815430 \\
C & 3.59872443 & 1.68475159 & 4.23433288 \\
C & 4.90079948 & 1.74067207 & 4.75265047 \\
C & 4.59399790 & -0.44208528 & 5.77878033 \\
H & 2.67505259 & -1.37599852 & 5.46654167 \\
H & 3.21510421 & 2.49648912 & 3.62075756 \\
H & 5.52289658 & 2.61307261 & 4.54601852 \\
H & 4.97641764 & -1.26881546 & 6.38024398 \\
H & 6.41451231 & 0.72863388 & 5.92823337 \\
S & -1.19514911 & -2.31211198 & 2.51091611
\end{tabular}
\begin{tabular}{rrrr} 
O & -0.69016335 & -2.46446697 & 1.13773573 \\
O & -1.25207320 & -3.46560739 & 3.43819353 \\
C & -2.82389775 & -1.52378476 & 2.47439021 \\
C & -5.25960769 & -0.19701957 & 2.49015539 \\
C & -3.01378687 & -0.44353907 & 1.60033820 \\
C & -3.82838417 & -1.96478728 & 3.34589196 \\
C & -5.05786090 & -1.29267866 & 3.34767057 \\
C & -4.24424926 & 0.22340924 & 1.61254720 \\
H & -2.20972074 & -0.11364169 & 0.94424597 \\
H & -3.64311346 & -2.81185886 & 4.00627500 \\
H & -5.85515864 & -1.60915776 & 4.02008270 \\
H & -4.40339944 & 1.07597517 & 0.95385517 \\
C & 0.30632788 & 2.71099095 & 5.86056592 \\
H & 1.17614429 & 2.38485768 & 6.44349988 \\
H & -0.43335130 & 3.21800648 & 6.50639035 \\
H & 0.60357872 & 3.47208538 & 5.10801697 \\
C & -1.55918504 & 1.90432280 & 4.32938113 \\
H & -1.55247322 & 2.94341535 & 3.96990134 \\
H & -2.42855254 & 1.78520072 & 5.00968664 \\
H & -1.67590916 & 1.19798707 & 3.49842821 \\
C & -6.61293309 & 0.48698510 & 2.48035031 \\
F & -7.49711051 & -0.20022000 & 1.70630845 \\
F & -6.54586241 & 1.75455412 & 1.99734931 \\
F & -7.14476310 & 0.55236994 & 3.73481921 \\
C & 1.59221714 & -0.64627485 & 1.62671853 \\
H & 1.65126535 & -1.65078744 & 3.55398328 \\
H & 1.61333526 & -1.61598509 & 1.11659133 \\
H & 2.60247711 & -0.21199552 & 1.63308526 \\
H & 0.92113413 & 0.02423520 & 1.07834678 \\
Fe & 0.94249425 & 2.79356199 & 1.80210486 \\
Cl & 2.84933683 & 2.84450304 & 0.70254231 \\
Cl & -0.81292235 & 2.27523954 & 0.53137183 \\
Cl & 0.53097575 & 4.74468351 & 2.85782556 \\
& & &
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{3}{l}{ Structure 5 (Oxetane) } \\
55 & & \\
N & -0.39768029 & -0.91082081 & 3.20901871 \\
C & 1.06165379 & -0.65324989 & 2.98703747 \\
C & 1.35398881 & 0.47119786 & 4.02622436 \\
C & 0.19363883 & 0.42815334 & 5.05113999
\end{tabular}
\begin{tabular}{lrrr} 
C & -0.66050872 & -0.77276387 & 4.66237339 \\
H & 0.47889073 & 0.41740129 & 6.10810056 \\
H & -1.73542628 & -0.61666705 & 4.83221089 \\
H & -0.33579458 & -1.66657510 & 5.22304082 \\
O & 0.85740677 & 1.81285798 & 3.51618810 \\
C & -0.25575144 & 1.83014371 & 4.56877319 \\
C & 2.78409542 & 0.49676848 & 4.49956631 \\
C & 5.47111928 & 0.41465011 & 5.35071519 \\
C & 3.12078783 & -0.05881434 & 5.74863700 \\
C & 3.80979441 & 0.99110294 & 3.67260840 \\
C & 5.14320997 & 0.95970536 & 4.10047739 \\
C & 4.45686582 & -0.10142943 & 6.17124113 \\
H & 2.34439398 & -0.47434143 & 6.39223110 \\
H & 3.57819954 & 1.41248466 & 2.69703653 \\
H & 5.92162312 & 1.36656518 & 3.45347890 \\
H & 4.70127853 & -0.53299370 & 7.14349814 \\
H & 6.51026413 & 0.39196852 & 5.68372903 \\
S & -1.13384159 & -2.33112727 & 2.55072265 \\
O & -0.64129032 & -2.50741670 & 1.17363697 \\
O & -1.08766922 & -3.44708051 & 3.52185904 \\
C & -2.82736372 & -1.69033244 & 2.50025313 \\
C & -5.37407161 & -0.58220255 & 2.48172974 \\
C & -3.13385443 & -0.70134610 & 1.55377125 \\
C & -3.77261624 & -2.14603993 & 3.42713698 \\
C & -5.05740641 & -1.58536384 & 3.41244398 \\
C & -4.41769842 & -0.14687022 & 1.54642261 \\
H & -2.37441602 & -0.37064136 & 0.84579027 \\
H & -3.50253068 & -2.92100604 & 4.14418239 \\
H & -5.80831063 & -1.91784925 & 4.12882067 \\
H & -4.67441184 & 0.62803982 & 0.82506696 \\
C & 0.01891226 & 2.92429036 & 5.58987461 \\
H & 1.03709408 & 2.83795636 & 5.99353361 \\
H & -0.70275367 & 2.81521618 & 6.41596002 \\
H & -0.11155443 & 3.92097207 & 5.14662003 \\
C & -1.61480170 & 1.94627983 & 3.90176039 \\
H & -1.73922614 & 2.94363871 & 3.46148170 \\
H & -2.39170178 & 1.80641874 & 4.67084412 \\
H & -1.73579592 & 1.17731587 & 3.12979316 \\
C & -6.78177137 & -0.01925980 & 2.44317053 \\
F & -7.58645197 & -0.78452272 & 1.65620207 \\
& &
\end{tabular}
\begin{tabular}{crcc}
F & -6.81064760 & 1.24569992 & 1.94597825 \\
F & -7.34189565 & 0.01331365 & 3.68384675 \\
C & 1.40981283 & -0.28483076 & 1.54650067 \\
H & 1.65718297 & -1.52355828 & 3.32027760 \\
H & 1.22282417 & -1.13299024 & 0.88017856 \\
H & 2.47182452 & -0.01458230 & 1.48161172 \\
H & 0.80731482 & 0.57250855 & 1.22062191 \\
Fe & 1.68443845 & 3.48418106 & 2.75096966 \\
Cl & 2.61990117 & 3.04374610 & 0.81579918 \\
Cl & -0.02690346 & 4.83164508 & 2.44733331 \\
Cl & 3.08482989 & 4.30605621 & 4.21564787
\end{tabular}
\begin{tabular}{rrrr}
\multicolumn{3}{l}{ Structure 5 (TS-II) } & \\
55 & & \\
N & -0.49940741 & -0.99512391 & 3.21907366 \\
C & 0.93689435 & -0.80032156 & 2.87719972 \\
C & 1.48221496 & -0.08164915 & 4.07505671 \\
C & 0.3541534 & 0.32658540 & 4.97504568 \\
C & -0.72573620 & -0.72321492 & 4.65911734 \\
H & 0.65298291 & 0.28566055 & 6.02986826 \\
H & -1.74518663 & -0.34440635 & 4.81000631 \\
H & -0.58610616 & -1.63122425 & 5.27166184 \\
O & 1.13908692 & 2.34334336 & 3.96913002 \\
C & -0.01394866 & 1.86276932 & 4.62349549 \\
C & 2.86018630 & 0.10650347 & 4.32328801 \\
C & 5.58177555 & 0.71296322 & 4.69994038 \\
C & 3.28063780 & 0.93430485 & 5.41273270 \\
C & 3.85576144 & -0.43359299 & 3.44495164 \\
C & 5.19660199 & -0.13301410 & 3.63630354 \\
C & 4.62586041 & 1.24096356 & 5.58687599 \\
H & 2.54072488 & 1.38061445 & 6.07056774 \\
H & 3.55838295 & -1.07842238 & 2.61925548 \\
H & 5.94984967 & -0.53672034 & 2.95950100 \\
H & 4.92302275 & 1.92085301 & 6.38354686 \\
H & 6.63537608 & 0.96504339 & 4.83113108 \\
S & -1.25729699 & -2.41070500 & 2.61451701 \\
O & -0.69659475 & -2.62225413 & 1.26564018 \\
O & -1.24017542 & -3.49631542 & 3.61953773 \\
C & -2.94333087 & -1.77192013 & 2.50195186 \\
C & -5.50793488 & -0.71773596 & 2.36761925
\end{tabular}
\begin{tabular}{rrrr} 
C & -3.20476449 & -0.72877649 & 1.60103018 \\
C & -3.93978769 & -2.30498726 & 3.32951976 \\
C & -5.23262788 & -1.77013298 & 3.25661420 \\
C & -4.49862188 & -0.20135808 & 1.53549033 \\
H & -2.40692983 & -0.33253051 & 0.97359369 \\
H & -3.70230380 & -3.11716653 & 4.01602440 \\
H & -6.02310468 & -2.16131189 & 3.89668174 \\
H & -4.72148653 & 0.61413618 & 0.84880078 \\
C & -0.29858288 & 2.63197065 & 5.92364047 \\
H & 0.57215733 & 2.61653607 & 6.59442024 \\
H & -1.16917428 & 2.19898185 & 6.44305984 \\
H & -0.52078277 & 3.68127028 & 5.67799315 \\
C & -1.22460862 & 2.00446571 & 3.67788586 \\
H & -1.27279083 & 3.06621622 & 3.39500788 \\
H & -2.16516548 & 1.73079425 & 4.18092398 \\
H & -1.11896962 & 1.39541686 & 2.77342122 \\
C & -6.92642062 & -0.18787500 & 2.27248098 \\
F & -7.68500696 & -0.98411038 & 1.47057290 \\
F & -6.97085679 & 1.06946935 & 1.76029577 \\
F & -7.52644964 & -0.15749400 & 3.49409733 \\
C & 1.11146883 & 0.01851079 & 1.56839697 \\
H & 1.45994020 & -1.76664907 & 2.75623175 \\
H & 0.56224600 & -0.50351465 & 0.77454495 \\
H & 2.17471007 & 0.08247451 & 1.30133741 \\
H & 0.73184540 & 1.03661091 & 1.71011418 \\
Fe & 2.09706345 & 3.92571082 & 3.95490384 \\
Cl & 3.73667258 & 3.56326014 & 2.48945786 \\
Cl & 0.68642679 & 5.53522382 & 3.37259818 \\
Cl & 2.92503631 & 4.28536544 & 6.01617870
\end{tabular}

Structure 5 (Product)
55
\begin{tabular}{lrrr}
N & -0.37791978 & -1.84643118 & 3.79144081 \\
C & 0.92078739 & -1.38985972 & 3.21155450 \\
C & 1.44674828 & -0.52125006 & 4.35836812 \\
C & 0.65064363 & -0.62694618 & 5.44532227 \\
C & -0.49901669 & -1.57035586 & 5.23475483 \\
H & 0.84483511 & -0.14410949 & 6.40216897 \\
H & -1.48799755 & -1.12980500 & 5.46164289
\end{tabular}
\begin{tabular}{lrrr} 
H & -0.40611801 & -2.49090604 & 5.84026990 \\
O & 0.14462810 & 2.44723278 & 3.45992795 \\
C & -0.63422852 & 2.04836283 & 4.35932123 \\
C & 2.73444368 & 0.20140433 & 4.32933380 \\
C & 5.22140557 & 1.54962123 & 4.38558822 \\
C & 3.59004205 & 0.09988840 & 5.45124697 \\
C & 3.14555318 & 1.00434110 & 3.24082660 \\
C & 4.37793195 & 1.67076564 & 3.27231860 \\
C & 4.82016674 & 0.76658728 & 5.47971706 \\
H & 3.28832586 & -0.53356598 & 6.28762248 \\
H & 2.49063803 & 1.15057844 & 2.38663679 \\
H & 4.65883040 & 2.30627198 & 2.43189280 \\
H & 5.46807316 & 0.66936112 & 6.35303886 \\
H & 6.17933403 & 2.07194585 & 4.40648150 \\
S & -1.36018426 & -3.03237504 & 3.10591121 \\
O & -0.69374211 & -3.53530445 & 1.89120133 \\
O & -1.83194182 & -3.92769336 & 4.17965539 \\
C & -2.75459025 & -1.98120352 & 2.61796191 \\
C & -4.59414282 & 0.03192698 & 2.07378413 \\
C & -2.73535055 & -1.35785221 & 1.36089854 \\
C & -3.72032457 & -1.65637581 & 3.58225255 \\
C & -4.64158978 & -0.63834062 & 3.30642707 \\
C & -3.66033737 & -0.34487097 & 1.09155720 \\
H & -1.99259024 & -1.65069152 & 0.62038846 \\
H & -3.73706290 & -2.18683107 & 4.53371154 \\
H & -5.38623014 & -0.35688871 & 4.05025997 \\
H & -3.65361306 & 0.16400558 & 0.12767534 \\
C & -0.45603002 & 2.49988094 & 5.77868992 \\
H & 0.61056486 & 2.59892798 & 6.02151970 \\
H & -0.96811992 & 1.83484272 & 6.48493423 \\
H & -0.90333626 & 3.50955550 & 5.85278550 \\
C & -1.82132805 & 1.22015547 & 3.96124264 \\
H & -2.43516214 & 1.79173260 & 3.24679379 \\
H & -2.43408674 & 0.94600117 & 4.82696196 \\
H & -1.48548694 & 0.30936272 & 3.44453098 \\
C & -5.45848245 & 1.24970953 & 1.83301957 \\
F & -5.88691277 & 1.32767387 & 0.54702324 \\
F & -4.73777992 & 2.38870914 & 2.08567246 \\
F & -6.55040686 & 1.28079440 & 2.63964872 \\
C & 0.75043098 & -0.70726773 & 1.84383136 \\
& & &
\end{tabular}
\begin{tabular}{cccc}
H & 1.60179767 & -2.25108391 & 3.07945986 \\
H & 0.21227563 & -1.38155832 & 1.16719759 \\
H & 1.73782669 & -0.51978243 & 1.40194052 \\
H & 0.20881471 & 0.24466821 & 1.92943940 \\
Fe & 1.33992120 & 4.08389721 & 3.43649457 \\
Cl & 2.25197029 & 4.04951437 & 1.45093594 \\
Cl & -0.23790339 & 5.59853578 & 3.67272565 \\
Cl & 2.72822169 & 4.16693399 & 5.12329062
\end{tabular}

Structure 6 (Starting Material)
58
Step 15
\begin{tabular}{lrrr} 
N & -0.31602105 & -1.18277643 & 3.24950314 \\
C & 1.17305519 & -1.14708766 & 3.14022044 \\
C & 1.57119127 & 0.34347111 & 3.37891878 \\
C & -0.12128506 & -0.16529685 & 5.54241923 \\
C & -0.82937179 & -1.17165494 & 4.66883831 \\
H & 0.60042821 & -0.57144008 & 6.25501654 \\
H & -1.89885673 & -0.92809330 & 4.60829632 \\
H & -0.73917623 & -2.17545235 & 5.11277890 \\
O & 0.91625864 & 1.17846977 & 2.69739876 \\
C & -0.35693520 & 1.16961496 & 5.56550950 \\
C & 2.82307302 & 0.76399521 & 4.05111232 \\
C & 5.22758917 & 1.66609532 & 5.22269487 \\
C & 3.27787415 & 0.21411638 & 5.27352921 \\
C & 3.59703626 & 1.77317889 & 3.42958033 \\
C & 4.79416461 & 2.20990665 & 4.00409283 \\
C & 4.46229333 & 0.67171350 & 5.85692365 \\
H & 2.68167949 & -0.52873357 & 5.79195508 \\
H & 3.28115779 & 2.18676935 & 2.47616383 \\
H & 5.38038022 & 2.97893068 & 3.49982008 \\
H & 4.78727632 & 0.25557189 & 6.81190981 \\
H & 6.15512108 & 2.01543001 & 5.67983367 \\
S & -1.26209360 & -2.29646639 & 2.29875482 \\
O & -0.77317867 & -2.29819347 & 0.90878723 \\
O & -1.44330903 & -3.57503198 & 3.02598999 \\
C & -2.82742319 & -1.38556526 & 2.32959841 \\
C & -5.21274323 & 0.02870253 & 2.35351549 \\
C & -2.86287820 & -0.10420019 & 1.75814884 \\
C & -3.96043649 & -1.97872705 & 2.89838748 \\
C & -5.16606031 & -1.26199908 & 2.90304992
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 4.06510748 & 0.60753919 & 1.78016162 \\
\hline & -1.96 & 0.3 & \\
\hline & -3.892 & -2.97 & \\
\hline H & -6.06184734 & -1.7001311 & 3.3 \\
\hline H & -4.104434 & 1.614139 & 1.36 \\
\hline & 0.41894498 & 2.080022 & 6.4820 \\
\hline & 1.0738024 & . 52048692 & \\
\hline & -0.26558691 & 2.7099172 & \\
\hline & 1.04145135 & 2.7678445 & 5.8833 \\
\hline C & -1.3520785 & 1.8428397 & 4.662 \\
\hline & -0.867970 & 2.675943 & 4.12901496 \\
\hline & -2.1619135 & 294396 & 26203070 \\
\hline & -1.78607409 & 1.1646504 & 3.9193585 \\
\hline & -6.51180438 & 0.80814274 & 2.31098524 \\
\hline & -7.05436990 & 0.77263299 & . 06235 \\
\hline & -6.3131109 & 2.117964 & 2.62 \\
\hline & -7.4419980 & 0.316645 & 3.174112 \\
\hline & 1.73665985 & -1.3551489 & 1.695 \\
\hline & 1.84268206 & -2.22477179 & 4.02171287 \\
\hline & 1.63006800 & -2.4055962 & 1.40145324 \\
\hline & 2.8091945 & -1.10358470 & .71 \\
\hline & 1.22349112 & -0.7229778 & \\
\hline & 0.73191271 & 2.928251 & 1.8435170 \\
\hline Cl & 2.11564754 & 2.82516194 & 0.14080867 \\
\hline & -1.35075129 & 3.13245515 & . 17816199 \\
\hline & 1.28214608 & 4.4523 & \\
\hline & 1.51321513 & -3.20223912 & \\
\hline & 1.55272451 & -2.16257330 & 5.07691431 \\
\hline & 2.93780142 & -2.1681184 & 3.95184460 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Structure 6 (TS-I)
58} \\
\hline \multicolumn{4}{|l|}{Step 102} \\
\hline N & -0.29982735 & -1.12695015 & 3.24164635 \\
\hline C & 1.15357425 & -0.85035604 & 2.99131585 \\
\hline C & 1.35061707 & 0.44756534 & 3.93065512 \\
\hline C & 0.19360976 & 0.19514140 & 5.11385537 \\
\hline C & -0.53191374 & -1.08278438 & 4.69063828 \\
\hline H & 0.69751389 & 0.09760742 & 6.08182967 \\
\hline H & -1.60930346 & -1.06099655 & 4.90568950 \\
\hline
\end{tabular}
\begin{tabular}{lrrr} 
H & -0.10778690 & -1.95215795 & 5.22088931 \\
O & 0.97504086 & 1.60117085 & 3.26415042 \\
C & -0.57148039 & 1.45212086 & 5.09432744 \\
C & 2.74715798 & 0.58730953 & 4.52957966 \\
C & 5.38367657 & 0.82293916 & 5.52425735 \\
C & 3.19000230 & -0.21878922 & 5.60023880 \\
C & 3.64560185 & 1.51564514 & 3.96786076 \\
C & 4.95524992 & 1.62655733 & 4.45843358 \\
C & 4.49373542 & -0.10279538 & 6.09514457 \\
H & 2.51975229 & -0.95372910 & 6.04869598 \\
H & 3.32563123 & 2.14205883 & 3.13944664 \\
H & 5.63453954 & 2.34944196 & 4.00375936 \\
H & 4.81410511 & -0.73343558 & 6.92669840 \\
H & 6.39977417 & 0.91663165 & 5.91188078 \\
S & -1.15374283 & -2.40922239 & 2.46072730 \\
O & -0.62216993 & -2.54821649 & 1.09542135 \\
O & -1.27171624 & -3.57746904 & 3.36219750 \\
C & -2.75103222 & -1.55967790 & 2.42141025 \\
C & -5.05829426 & -0.02606217 & 2.55298685 \\
C & -2.90734087 & -0.49076860 & 1.52777073 \\
C & -3.73461357 & -1.89583247 & 3.36098312 \\
C & -4.90043531 & -1.11860833 & 3.42243546 \\
C & -4.07170106 & 0.27955489 & 1.59709160 \\
H & -2.11789839 & -0.24111082 & 0.82173704 \\
H & -3.57948030 & -2.74064575 & 4.03206403 \\
H & -5.67612974 & -1.34874053 & 4.15216085 \\
H & -4.19444593 & 1.13462549 & 0.93415692 \\
C & -0.02039168 & 2.61085082 & 5.81635803 \\
H & 0.92291813 & 2.39168083 & 6.33056894 \\
H & -0.77568925 & 3.00723472 & 6.51877973 \\
H & 0.13899114 & 3.42489386 & 5.07190302 \\
C & -1.81397174 & 1.62681803 & 4.32950644 \\
H & -1.48882722 & 1.82019802 & 3.27911038 \\
H & -2.38987250 & 2.50314478 & 4.65489652 \\
H & -2.43561254 & 0.72411256 & 4.26387689 \\
C & -6.32467031 & 0.80581563 & 2.60591215 \\
F & -7.25174743 & 0.34380519 & 1.72406234 \\
F & -6.08200876 & 2.10706020 & 2.29435385 \\
F & -6.89420025 & 0.78075261 & 3.84391360 \\
C & 1.44511426 & -0.46175583 & 1.53584306 \\
& & &
\end{tabular}
\begin{tabular}{cccc}
C & 2.03535561 & -2.05341572 & 3.38705328 \\
H & 1.54123275 & -1.36146482 & 0.91716164 \\
H & 2.38683892 & 0.10365724 & 1.49763312 \\
H & 0.64093724 & 0.15629241 & 1.12308857 \\
Fe & 0.85822683 & 2.85936905 & 1.94890334 \\
Cl & 2.57928420 & 2.92532289 & 0.57730097 \\
Cl & -1.08062121 & 2.45726792 & 0.86635919 \\
Cl & 0.61956068 & 4.78796806 & 3.08213348 \\
H & 1.79626793 & -2.88637285 & 2.71046280 \\
H & 1.86752882 & -2.38826579 & 4.41912295 \\
H & 3.09818068 & -1.79979085 & 3.27620751
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{3}{l}{\begin{tabular}{l} 
Structure 6 (Oxetane) \\
58 \\
Step 4
\end{tabular}} & \\
N & -0.38397053 & -1.00590742 & 3.26743359 \\
C & 1.08501134 & -0.75006404 & 3.01205967 \\
C & 1.35097030 & 0.40749431 & 4.04833401 \\
C & 0.21142209 & 0.33692226 & 5.09690166 \\
C & -0.63743412 & -0.87144078 & 4.71958893 \\
H & 0.51498469 & 0.32651818 & 6.14862564 \\
H & -1.71131555 & -0.71507304 & 4.89624667 \\
H & -0.31425043 & -1.76416743 & 5.28113193 \\
O & 0.78991816 & 1.72824489 & 3.53393069 \\
C & -0.27686830 & 1.73085916 & 4.62991054 \\
C & 2.78126115 & 0.53779430 & 4.50450635 \\
C & 5.48280124 & 0.66207730 & 5.31064290 \\
C & 3.17195008 & 0.06589201 & 5.77170126 \\
C & 3.76383553 & 1.05138039 & 3.63734475 \\
C & 5.10270755 & 1.12227585 & 4.04104690 \\
C & 4.51436739 & 0.12575287 & 6.17214695 \\
H & 2.43552247 & -0.37021181 & 6.44718742 \\
H & 3.49466191 & 1.40813988 & 2.64617674 \\
H & 5.84408387 & 1.54379482 & 3.36083548 \\
H & 4.79910328 & -0.24381920 & 7.15883200 \\
H & 6.52604336 & 0.71979282 & 5.62592293 \\
S & -1.18680264 & -2.37160558 & 2.58694197 \\
O & -0.67410130 & -2.57521316 & 1.21977637 \\
O & -1.23140267 & -3.49153016 & 3.55365142
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline C & -2.84431665 & -1.64610336 & 2.49655863 \\
\hline C & -5.33966750 & -0.43267772 & 2.41167270 \\
\hline C & -3.08477171 & -0.64873190 & 1.53991935 \\
\hline C & -3.82990591 & -2.05768768 & 3.40223930 \\
\hline C & -5.08854208 & -1.44265859 & 3.35476851 \\
\hline C & -4.34372945 & -0.04107655 & 1.49862738 \\
\hline H & -2.29426328 & -0.35324424 & 0.85071206 \\
\hline H & -3.61017732 & -2.84238893 & 4.12579276 \\
\hline H & -5.87115985 & -1.73783609 & 4.05325772 \\
\hline H & -4.55104407 & 0.74100185 & 0.76928423 \\
\hline C & 0.02338009 & 2.83174755 & 5.63658265 \\
\hline H & 1.06081935 & 2.76461462 & 5.99187668 \\
\hline H & -0.65849763 & 2.71202960 & 6.49431855 \\
\hline H & -0.14491957 & 3.82476259 & 5.19726033 \\
\hline C & -1.66434195 & 1.82531868 & 4.02188348 \\
\hline H & -1.83034890 & 2.82474445 & 3.60136383 \\
\hline H & -2.40593257 & 1.65745250 & 4.81964734 \\
\hline H & -1.79778840 & 1.06580399 & 3.24356883 \\
\hline C & -6.72318501 & 0.18331211 & 2.33446520 \\
\hline F & -7.53923085 & -0.56246364 & 1.53986497 \\
\hline F & -6.69394905 & 1.44145049 & 1.82087308 \\
\hline F & -7.30934489 & 0.25297556 & 3.56179485 \\
\hline C & 1.33627139 & -0.31050051 & 1.56753606 \\
\hline C & 1.94110347 & -1.98468799 & 3.37307291 \\
\hline H & 1.15597874 & -1.14773172 & 0.88463281 \\
\hline H & 2.37981085 & 0.01023513 & 1.45420159 \\
\hline H & 0.67787760 & 0.52418273 & 1.29812179 \\
\hline Fe & 1.55685845 & 3.41514404 & 2.73439944 \\
\hline Cl & 2.48924713 & 3.00796440 & 0.78881173 \\
\hline Cl & -0.21315931 & 4.68508059 & 2.43246517 \\
\hline Cl & 2.93588254 & 4.33453014 & 4.16335899 \\
\hline H & 1.67663815 & -2.80706335 & 2.69408551 \\
\hline H & 1.76470296 & -2.31016667 & 4.40877298 \\
\hline H & 3.00864437 & -1.75604652 & 3.25775384 \\
\hline
\end{tabular}
Structure 6 (TS-II)
58
Step 36
N
C
C
\begin{tabular}{|c|c|c|c|}
\hline & 1.4882 & -0.17650572 & 236 \\
\hline C & 0.34646628 & 0.04941833 & 5.10901753 \\
\hline C & -0.66691353 & -1.02644767 & 4.74041378 \\
\hline H & 0.55269989 & 0.11969395 & 6.18053490 \\
\hline H & -1.70961782 & -0.72421549 & 4.89919574 \\
\hline & -0.47908854 & -1.95260302 & 5.31391398 \\
\hline & 0.5950227 & 2.00409302 & 3.48232499 \\
\hline C & -0.10188025 & 1.67916402 & 4.62955004 \\
\hline C & 2.80031548 & 0.32818069 & 4.50055349 \\
\hline c & 5.34340427 & 1.39026037 & 5.10273518 \\
\hline C & 3.21761079 & 0.50725326 & 5.85609258 \\
\hline & 3.69396234 & 0.71217448 & 3.45690750 \\
\hline C & 4.93852108 & 1.25520065 & 3.76324517 \\
\hline C & 4.48288730 & 1.00814789 & 6.14856062 \\
\hline H & 2.55918289 & 0.19980255 & 6.66727096 \\
\hline & 3.3687989 & 0.6977240 & 96 \\
\hline & 5.58121023 & 1.60632195 & 2.95639377 \\
\hline & 4.79786177 & 1.11867859 & 7.18668033 \\
\hline H & 6.32165815 & 1.81444478 & 5.33400475 \\
\hline S & -1.29286209 & -2.49663169 & 2.60472469 \\
\hline O & -0.74886623 & -2.76080272 & 1.25895614 \\
\hline O & -1.44887272 & -3.59992833 & 3.57857432 \\
\hline C & -2.87832943 & -1.64258556 & 2.45675976 \\
\hline C & -5.29583711 & -0.30001150 & 2.23942482 \\
\hline C & -2.98902492 & -0.58517897 & 1.54061625 \\
\hline c & -3.95194297 & -2.04620252 & 3.26108255 \\
\hline & -5.17054554 & -1.36457831 & 3.14700647 \\
\hline C & -4.21053483 & 0.08860012 & 1.43412729 \\
\hline H & -2.13512825 & -0.28897420 & 0.93192049 \\
\hline & -3.82792754 & -2.87499128 & 3.95737070 \\
\hline & -6.02095460 & -1.65211577 & 3.76492892 \\
\hline & -4.31944147 & 0.91794977 & 0.73666231 \\
\hline C & 0.29708490 & 2.55089287 & 5.82548371 \\
\hline H & 1.37475776 & 2.47895910 & 6.02408627 \\
\hline & -0.27439170 & 2.27432013 & 6.72562237 \\
\hline & 0.07443174 & 3.59784079 & 5.56509437 \\
\hline & -1.60755587 & 1.72442459 & 4.36089589 \\
\hline H & -1.82612508 & 2.76024266 & 4.05398817 \\
\hline H & -2.19941876 & 1.48294695 & 5.25782045 \\
\hline & -1.87692447 & 1.05307625 & 3.53558303 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & -6.64365244 & 0.37953712 & 2.088803 \\
\hline & -7.46360555 & -0.35811896 & 1.28973410 \\
\hline F & -6.53808816 & 1.61577962 & 1.537 \\
\hline F & -7.26979816 & 0.51399566 & 3.29 \\
\hline C & 1.32883314 & -0.48938066 & 1.636 \\
\hline C & 1.86113693 & -2.38732773 & 3.27198 \\
\hline H & 0.69892549 & -1.05901635 & 0.94503305 \\
\hline H & 2.37086511 & -0.6506532 & 1.33208468 \\
\hline & 1.08270831 & 0.57592213 & 1.5838735 \\
\hline Fe & 1.43976547 & 3.56241988 & 2.910291 \\
\hline Cl & 2.35579115 & 3.03125821 & 0.94354196 \\
\hline Cl & -0.14136354 & 5.11773317 & 2.82930710 \\
\hline Cl & 3.06031950 & 4.14101553 & 4.339970 \\
\hline & 1.56270224 & -3.07626097 & 2.46998452 \\
\hline & 1.62455273 & -2.84267159 & 4.2447969 \\
\hline & 2.94188863 & -2.1995181 & 3.20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Structure 6 (Product)
\[
58
\]} \\
\hline \multicolumn{4}{|l|}{Step 66} \\
\hline N & -0.22277392 & -2.15130062 & 3.65876256 \\
\hline C & 1.09517853 & -1.55031695 & 3.25298346 \\
\hline C & 1.38777923 & -0.69944179 & 4.50087694 \\
\hline C & 0.51875515 & -0.97493447 & 5.49437936 \\
\hline C & -0.51444763 & -1.98972282 & 5.09310858 \\
\hline H & 0.56380903 & -0.54882500 & 6.49714009 \\
\hline H & -1.55161438 & -1.63925865 & 5.25145918 \\
\hline H & -0.41024537 & -2.94326081 & 5.64366827 \\
\hline O & -0.48421606 & 2.08342698 & 3.22861432 \\
\hline C & -0.72592342 & 1.93010785 & 4.45017332 \\
\hline C & 2.56515063 & 0.18583558 & 4.64037405 \\
\hline C & 4.77466799 & 1.90433943 & 5.04726895 \\
\hline C & 3.43890383 & -0.00716498 & 5.73415811 \\
\hline C & 2.82201543 & 1.25385572 & 3.75030675 \\
\hline C & 3.91390775 & 2.10887799 & 3.95742851 \\
\hline C & 4.53464096 & 0.84268746 & 5.93467255 \\
\hline H & 3.25491821 & -0.84109462 & 6.41378945 \\
\hline H & 2.14605375 & 1.44645344 & 2.92147500 \\
\hline H & 4.07792132 & 2.93953620 & 3.26947091 \\
\hline H & 5.20290794 & 0.67414676 & 6.78158149 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 5.62605030 & 2.5692605 & 5.20406807 \\
\hline & -1.3206 & & \\
\hline & -0.66 & -3.3 & \\
\hline & -1.96 & -3.991628 & 3.5 \\
\hline & -2.56 & -1.679546 & 2.39602675 \\
\hline & -4.2333 & 0.543820 & , \\
\hline & -2.30879 & -0.69416180 & \\
\hline & -3.682722 & -1.59796 & \\
\hline & -4.5229636 & -0.479270 & . 15 \\
\hline & -3.14272093 & 0.426181 & . 35 \\
\hline & -1.45741 & -0.79327907 & . 75834356 \\
\hline &  & -2.39756 & \\
\hline & -5.3901238 & -0.391539 & \\
\hline & -2.93907273 & 1.215015 & 0.631 \\
\hline & 0.0714167 & 2.661093 & . 4873 \\
\hline & 1.141379 & 2.46022 & 5.31807966 \\
\hline & . 2186 & 2.3743718 & 50543723 \\
\hline & -0.0658873 & 3.7461809 & . 3429 \\
\hline & -1.8943868 & 1.0684182 & 4.81485 \\
\hline & -2.801400 & 1.6785753 & 1502 \\
\hline & -1.8607 & 0.7353 & 5.85906610 \\
\hline & -1.959 & 220809 & 1245409 \\
\hline & -5.03628561 & . 825874 & 273 \\
\hline & -5.01225917 & 2.4922016 & 1.0969 \\
\hline & -4.52741924 & 2.674908 & 3.228 \\
\hline & -6.336710 & 603208 & 6060 \\
\hline & 1.028303 & 0.746822 & \\
\hline & 2.1667550 & 2.658632 & 133 \\
\hline & 0.73358397 & -1.4039315 & 11855410 \\
\hline & 2.024 & -0.348181 & 717005 \\
\hline & 325209 & . 091 & \\
\hline & 155088 & 484883 & 1.96029500 \\
\hline & 1.27736145 & 474876 & 析 \\
\hline & -1.77240209 & . 2694878 & 287 \\
\hline & & & \\
\hline & & -3 & \\
\hline & & - & \\
\hline & 3.156940 & 207109 & 965 \\
\hline
\end{tabular}

Structure 7 (Starting Material)
\begin{tabular}{lrrr}
\multicolumn{2}{l}{61} & & \\
Step & 11 & & \\
N & -0.28181503 & 0.10935351 & 3.49765076 \\
C & 0.82864626 & 0.74289609 & 2.75939753 \\
C & 2.06230149 & 1.11398762 & 3.61176264 \\
C & -0.27985297 & 1.74133435 & 5.37906255 \\
C & -1.10252147 & 1.05168079 & 4.32794117 \\
H & 0.01129954 & 1.11614932 & 6.22695830 \\
H & -1.57213793 & 1.76429756 & 3.63308479 \\
H & -1.90826833 & 0.46739513 & 4.79177826 \\
O & 2.54933666 & 2.25378385 & 3.36999895 \\
C & 0.15708203 & 3.02217133 & 5.34469102 \\
C & 1.35554957 & 0.01035381 & 1.46948661 \\
H & 1.80327088 & -0.94242913 & 1.77613908 \\
C & 2.81470151 & 0.12187642 & 4.39527775 \\
C & 4.36301121 & -1.80814524 & 5.73254774 \\
C & 2.21602655 & -0.73801217 & 5.34085328 \\
C & 4.20347364 & 0.01156781 & 4.13520390 \\
C & 4.96463315 & -0.96113080 & 4.78786502 \\
C & 2.99215612 & -1.68682902 & 6.01282557 \\
H & 1.16541125 & -0.63995564 & 5.58356711 \\
H & 4.67067642 & 0.65156917 & 3.38881331 \\
H & 6.02839236 & -1.04857676 & 4.56335935 \\
H & 2.51920282 & -2.33285550 & 6.75337408 \\
H & 4.96254028 & -2.55848706 & 6.25121256 \\
S & -0.62659162 & -1.53641444 & 3.70806491 \\
O & 0.34045799 & -2.33784640 & 2.93787144 \\
O & -0.82825866 & -1.81072453 & 5.14857727 \\
C & -2.28804593 & -1.69181301 & 2.98021891 \\
C & -4.84438500 & -2.03662578 & 1.92853872 \\
C & -2.81074037 & -0.72504201 & 2.11246297 \\
C & -3.03123962 & -2.83004195 & 3.33789487 \\
C & -4.31073232 & -3.00146076 & 2.80244107 \\
C & -4.09767562 & -0.90039878 & 1.58491657 \\
H & -2.22381991 & 0.15475577 & 1.85526854 \\
H & -2.61957190 & -3.55594785 & 4.03845742 \\
H & -4.90529584 & -3.87365428 & 3.07449191 \\
H & -4.52061893 & -0.15200974 & 0.91601704 \\
C & 1.05878959 & 3.54970517 & 6.43367983 \\
H & 1.27381601 & 2.78869355 & 7.19753288 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 0.6073749 & 4.4311173 & 22210041 \\
\hline H & 2.01416044 & 3.8901544 & 6.00091851 \\
\hline C & -0.15069274 & 4.01651572 & 4.25218894 \\
\hline H & 0.77231852 & 4.26690443 & 3.70451541 \\
\hline H & -0.51196829 & 4.95992631 & 4.69464523 \\
\hline H & -0.89941745 & 3.66943251 & 3.52747074 \\
\hline C & -6.22301209 & -2.26958003 & 1.34410025 \\
\hline F & -6.18887459 & -3.24735325 & 0.39641227 \\
\hline F & -6.73351079 & -1.15350395 & 0.76048204 \\
\hline F & -7.10247809 & -2.67258353 & 2.30173347 \\
\hline H & 0.41958111 & 1.705784 & 2.41148950 \\
\hline C & 0.19543593 & -0.2593038 & 0.4946 \\
\hline H & 0.60395120 & -0.65156221 & -0.44925191 \\
\hline H & -0.34338439 & 0.67606334 & 0.26408707 \\
\hline H & -0.51450875 & -0.99684628 & 0.88120135 \\
\hline C & 2.42738694 & 0.85904265 & 0.75052748 \\
\hline H & 2.70076263 & 0.35367483 & -0.18761858 \\
\hline H & 3.34609355 & 0.99062011 & 1.33674193 \\
\hline H & 2.03926501 & 1.85962280 & 0.50053734 \\
\hline Fe & 4.13060738 & 3.38504049 & 3.81651290 \\
\hline CI & 3.35663505 & 5.43251945 & 3.67989919 \\
\hline Cl & 4.82105917 & 2.91912336 & 5.83893314 \\
\hline & 5.59481843 & 2.945067 & 2.2370 \\
\hline
\end{tabular}

Structure 7 (TS-I) 61
Step 11
\begin{tabular}{|c|c|c|c|}
\hline N & -0.28181503 & 0.10935351 & 3.49765076 \\
\hline C & 0.82864626 & 0.74289609 & 2.75939753 \\
\hline C & 2.06230149 & 1.11398762 & 3.61176264 \\
\hline C & -0.27985297 & 1.74133435 & 5.37906255 \\
\hline C & -1.10252147 & 1.05168079 & 4.32794117 \\
\hline H & 0.01129954 & 1.11614932 & 6.22695830 \\
\hline H & -1.57213793 & 1.76429756 & 3.63308479 \\
\hline H & -1.90826833 & 0.46739513 & 4.7917782 \\
\hline 0 & 2.54933666 & 2.25378385 & 3.36999895 \\
\hline C & 0.15708203 & 3.02217133 & 5.34469102 \\
\hline C & 1.35554957 & 0.01035381 & 1.46948661 \\
\hline H & 1.80327088 & -0.94242913 & 1.77613908 \\
\hline c & 2.81470151 & 0.12187642 & 4.3952777 \\
\hline
\end{tabular}
\begin{tabular}{lrrr} 
C & 4.36301121 & -1.80814524 & 5.73254774 \\
C & 2.21602655 & -0.73801217 & 5.34085328 \\
C & 4.20347364 & 0.01156781 & 4.13520390 \\
C & 4.96463315 & -0.96113080 & 4.78786502 \\
C & 2.99215612 & -1.68682902 & 6.01282557 \\
H & 1.16541125 & -0.63995564 & 5.58356711 \\
H & 4.67067642 & 0.65156917 & 3.38881331 \\
H & 6.02839236 & -1.04857676 & 4.56335935 \\
H & 2.51920282 & -2.33285550 & 6.75337408 \\
H & 4.96254028 & -2.55848706 & 6.25121256 \\
S & -0.62659162 & -1.53641444 & 3.70806491 \\
O & 0.34045799 & -2.33784640 & 2.93787144 \\
O & -0.82825866 & -1.81072453 & 5.14857727 \\
C & -2.28804593 & -1.69181301 & 2.98021891 \\
C & -4.84438500 & -2.03662578 & 1.92853872 \\
C & -2.81074037 & -0.72504201 & 2.11246297 \\
C & -3.03123962 & -2.83004195 & 3.33789487 \\
C & -4.31073232 & -3.00146076 & 2.80244107 \\
C & -4.09767562 & -0.90039878 & 1.58491657 \\
H & -2.22381991 & 0.15475577 & 1.85526854 \\
H & -2.61957190 & -3.55594785 & 4.03845742 \\
H & -4.90529584 & -3.87365428 & 3.07449191 \\
H & -4.52061893 & -0.15200974 & 0.91601704 \\
C & 1.05878959 & 3.54970517 & 6.43367983 \\
H & 1.27381601 & 2.78869355 & 7.19753288 \\
H & 0.60737498 & 4.43111736 & 6.92210041 \\
H & 2.01416044 & 3.89015449 & 6.00091851 \\
C & -0.15069274 & 4.01651572 & 4.25218894 \\
H & 0.77231852 & 4.26690443 & 3.70451541 \\
H & -0.51196829 & 4.95992631 & 4.69464523 \\
H & -0.89941745 & 3.66943251 & 3.52747074 \\
C & -6.22301209 & -2.26958003 & 1.34410025 \\
F & -6.18887459 & -3.24735325 & 0.39641227 \\
F & -6.73351079 & -1.15350395 & 0.76048204 \\
F & -7.10247809 & -2.67258353 & 2.30173347 \\
H & 0.41958111 & 1.70578466 & 2.41148950 \\
C & 0.19543593 & -0.25930388 & 0.49468721 \\
H & 0.60395120 & -0.65156221 & -0.44925191 \\
H & -0.34338439 & 0.67606334 & 0.26408707 \\
H & -0.51450875 & -0.99684628 & 0.88120135
\end{tabular}
\begin{tabular}{llll}
C & 2.42738694 & 0.85904265 & 0.75052748 \\
H & 2.70076263 & 0.35367483 & -0.18761858 \\
H & 3.34609355 & 0.99062011 & 1.33674193 \\
H & 2.03926501 & 1.85962280 & 0.50053734 \\
Fe & 4.13060738 & 3.38504049 & 3.81651290 \\
Cl & 3.35663505 & 5.43251945 & 3.67989919 \\
Cl & 4.82105917 & 2.91912336 & 5.83893314 \\
Cl & 5.59481843 & 2.94506722 & 2.23707142
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{3}{l}{ Structure 7 (Oxetane) } & \\
61 & & \\
Step 2 & & \\
N & -0.60605880 & 0.35814048 & 3.02842718 \\
C & 0.73936369 & 0.88366630 & 2.62526101 \\
C & 1.44322374 & 1.11541506 & 4.02274075 \\
C & 0.26161855 & 1.60269074 & 4.89930075 \\
C & -1.03032142 & 1.30991622 & 4.09628382 \\
H & 0.20722045 & 1.15560716 & 5.89569212 \\
H & -1.42786196 & 2.20241868 & 3.59203911 \\
H & -1.82331562 & 0.87825704 & 4.71634789 \\
O & 2.07651474 & 2.50685720 & 4.09303633 \\
C & 0.90619898 & 3.01518447 & 4.93733777 \\
C & 1.47928388 & 0.21418809 & 1.45253433 \\
H & 2.01252533 & -0.67450146 & 1.81170927 \\
C & 2.40519782 & 0.07123725 & 4.52543923 \\
C & 4.31390586 & -1.77857436 & 5.49053976 \\
C & 2.17302646 & -0.64543648 & 5.71440757 \\
C & 3.60228336 & -0.16908251 & 3.81810035 \\
C & 4.55171889 & -1.07711578 & 4.30044767 \\
C & 3.11718344 & -1.56614871 & 6.18845115 \\
H & 1.24263466 & -0.52586468 & 6.26290982 \\
H & 3.81216366 & 0.35423064 & 2.89118738 \\
H & 5.47826719 & -1.22616373 & 3.74402839 \\
H & 2.91329918 & -2.11322150 & 7.11055839 \\
H & 5.05349558 & -2.48631139 & 5.86934920 \\
S & -0.76573811 & -1.30486411 & 3.54736916 \\
O & 0.20719665 & -2.12052298 & 2.79805358 \\
O & -0.83931556 & -1.40467952 & 5.02574808 \\
C & -2.44151349 & -1.63316278 & 2.93181729 \\
C & -4.96713873 & -2.30835473 & 1.98042021
\end{tabular}
\begin{tabular}{rrrr} 
C & -2.84454802 & -1.16990762 & 1.67091204 \\
C & -3.28262076 & -2.42662189 & 3.72665350 \\
C & -4.55223112 & -2.76362126 & 3.24361969 \\
C & -4.11580591 & -1.51311180 & 1.19571279 \\
H & -2.18206018 & -0.53551271 & 1.08632539 \\
H & -2.95020244 & -2.75964713 & 4.70915413 \\
H & -5.22506120 & -3.37055059 & 3.84926021 \\
H & -4.44871237 & -1.15547871 & 0.22220996 \\
C & 1.35622330 & 3.39863528 & 6.33971966 \\
H & 1.93528774 & 2.58552981 & 6.79796160 \\
H & 0.44981304 & 3.56901420 & 6.94417149 \\
H & 1.95541818 & 4.31781800 & 6.34007761 \\
C & 0.23647845 & 4.15699028 & 4.19387952 \\
H & 0.93101890 & 5.00653039 & 4.13752399 \\
H & -0.66725673 & 4.46870738 & 4.74118152 \\
H & -0.04755260 & 3.86320909 & 3.17451709 \\
C & -6.32493634 & -2.73376070 & 1.45746854 \\
F & -6.28354306 & -4.00907887 & 0.98119728 \\
F & -6.76018123 & -1.93627466 & 0.44584874 \\
F & -7.26747124 & -2.70387560 & 2.43960042 \\
H & 0.48583296 & 1.89632962 & 2.26429759 \\
C & 0.51682871 & -0.20892945 & 0.32459759 \\
H & 1.10583952 & -0.49666527 & -0.56074354 \\
H & -0.13273247 & 0.63480766 & 0.03544090 \\
H & -0.10367282 & -1.06552280 & 0.61129403 \\
C & 2.47595070 & 1.24350309 & 0.86718146 \\
H & 3.18679163 & 0.74092331 & 0.19461071 \\
H & 3.05173030 & 1.78358178 & 1.62869494 \\
H & 1.92695736 & 1.99941961 & 0.27960600 \\
Fe & 4.01773197 & 3.05580524 & 4.40455452 \\
Cl & 3.79555003 & 5.25229450 & 4.49666357 \\
Cl & 4.74363407 & 2.22344136 & 6.29178374 \\
Cl & 5.38543321 & 2.62182783 & 2.74159477 \\
& & &
\end{tabular}

Structure 7 (TS-II)
61
Step 19
\begin{tabular}{lrrr}
N & -0.90196890 & 0.03413279 & 2.96936554 \\
C & 0.52374233 & 0.50391937 & 2.77335712 \\
C & 1.07918034 & 0.45407435 & 4.23644017
\end{tabular}
\begin{tabular}{lrrr} 
C & 0.01638661 & 0.77361861 & 5.02537691 \\
C & -1.26245598 & 0.79063529 & 4.21349396 \\
H & 0.02928225 & 0.88746304 & 6.10699009 \\
H & -1.55399429 & 1.80490683 & 3.87842856 \\
H & -2.11968469 & 0.34707240 & 4.73711172 \\
O & 2.71900415 & 3.17936606 & 4.04570496 \\
C & 1.74457186 & 3.38098261 & 4.80998431 \\
C & 1.31256416 & 0.03471557 & 1.52545869 \\
H & 1.90565110 & -0.85644971 & 1.77195149 \\
C & 2.39944198 & 0.04561815 & 4.73927191 \\
C & 4.88298907 & -0.79642969 & 5.84458942 \\
C & 2.50776969 & -0.36062746 & 6.09895471 \\
C & 3.57162182 & -0.01244721 & 3.94960733 \\
C & 4.79374766 & -0.42466896 & 4.49768163 \\
C & 3.72799045 & -0.76617582 & 6.64332881 \\
H & 1.61136946 & -0.40429161 & 6.71730511 \\
H & 3.55078253 & 0.26184571 & 2.90357585 \\
H & 5.67987927 & -0.43333802 & 3.86269950 \\
H & 3.77422769 & -1.07356036 & 7.68970021 \\
H & 5.83876303 & -1.10816437 & 6.26811704 \\
S & -1.09812178 & -1.70876426 & 3.29289336 \\
O & -0.15572308 & -2.44730385 & 2.43003956 \\
O & -1.15577278 & -2.01346705 & 4.74210097 \\
C & -2.78847290 & -1.88299629 & 2.65147172 \\
C & -5.36052443 & -2.26079514 & 1.66534916 \\
C & -3.11120558 & -1.39154170 & 1.37738545 \\
C & -3.72796043 & -2.56339765 & 3.43866655 \\
C & -5.02214127 & -2.75125699 & 2.93728594 \\
C & -4.40694751 & -1.58359761 & 0.88504155 \\
H & -2.36640848 & -0.85376508 & 0.79359251 \\
H & -3.44801153 & -2.92866109 & 4.42617433 \\
H & -5.77123658 & -3.27014628 & 3.53503601 \\
H & -4.68073891 & -1.20122413 & -0.09759917 \\
C & 1.90215708 & 3.24722172 & 6.29502610 \\
H & 2.42769112 & 2.30573851 & 6.51809353 \\
H & 0.93885697 & 3.29397529 & 6.81868096 \\
H & 2.55197612 & 4.06722384 & 6.64877593 \\
C & 0.46856659 & 3.91364903 & 4.22156355 \\
H & 0.51025113 & 5.01526391 & 4.31864488 \\
H & -0.41112909 & 3.56004108 & 4.77290239 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & . 39631485 & 3.6716919 & 3.1534694 \\
\hline & - & -2.532435 & \\
\hline & -6.81352 & -3.78 & \\
\hline & -7.09623087 & -1.650 & 0.1 \\
\hline & -7.695527 & -2.46505 & 2.08876368 \\
\hline & 0.336298 & 1.576188 & .5652400 \\
\hline & . 3860385 & -0.282959 & 0.33 \\
\hline & 0.99416598 & -0.3698832 & -0.58418140 \\
\hline & -0.32923285 & 0.5433833 & 0.1815015 \\
\hline & -0.1650323 & -1.2188270 & . 46 \\
\hline & 2.23188 & 1.2060 & 078 \\
\hline & . 198892 & 844148 & 4012083 \\
\hline & 71198945 & 1.7416128 & 1.9083704 \\
\hline & 1.6280817 & 1.9484665 & . 528 \\
\hline & 4.7088154 & 3.3991235 & \\
\hline & & 5.599743 & \\
\hline & & & \\
\hline & 5.6989198 & 2.553418 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Structure 7 (Product) 61} \\
\hline \multicolumn{4}{|l|}{Step 19} \\
\hline N & -0.9019689 & 0.034132 & 2.96936 \\
\hline C & 0.52374233 & 0.50391937 & 2.77335712 \\
\hline C & 1.07918034 & 0.45407435 & 4.23644017 \\
\hline C & 0.01638661 & 0.77361861 & 5.02537691 \\
\hline C & -1.26245598 & 0.79063529 & 4.21349396 \\
\hline H & 0.02928225 & 0.88746304 & 6.10699009 \\
\hline H & -1.55399429 & 1.80490683 & 3.87842856 \\
\hline H & -2.11968469 & 0.34707240 & 4.73711172 \\
\hline 0 & 2.71900415 & 3.17936606 & 4.04570496 \\
\hline C & 1.74457186 & 3.38098261 & 4.80998431 \\
\hline C & 1.31256416 & 0.03471557 & 1.52545869 \\
\hline H & 1.90565110 & -0.85644971 & 1.77195149 \\
\hline C & 2.39944198 & 0.04561815 & 4.73927191 \\
\hline C & 4.88298907 & -0.79642969 & 5.84458942 \\
\hline C & 2.50776969 & -0.36062746 & 6.09895471 \\
\hline & 3.57162182 & -0.01244721 & 3.94960733 \\
\hline C & 4.79374766 & -0.42466896 & 4.49768163 \\
\hline C & 3.72799045 & -0.76617582 & 6.64332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 1.61136946 & -0.404291 & 6.71730511 \\
\hline H & 3.55078253 & 0.2618457 & 357585 \\
\hline H & 5.67987927 & -0.43333802 & 3.86269950 \\
\hline H & 3.77422769 & -1.07356036 & 7.68970021 \\
\hline H & 5.83876303 & -1.10816437 & 6.26811704 \\
\hline S & -1.09812178 & -1.7087642 & 3.29289336 \\
\hline 0 & -0.15572308 & -2.4473038 & 2.43003956 \\
\hline 0 & -1.15577278 & -2.0134670 & 4.74210097 \\
\hline C & -2.78847290 & -1.88299629 & 2.65147172 \\
\hline C & -5.36052443 & -2.26079514 & 1.66534916 \\
\hline C & -3.11120558 & -1.3915417 & 1.37738545 \\
\hline C & -3.72796043 & -2.56339765 & 3.43866655 \\
\hline C & -5.02214127 & -2.75125699 & 2.93728594 \\
\hline C & -4.40694751 & -1.58359761 & 0.88504155 \\
\hline H & -2.36640848 & -0.85376508 & 0.79359251 \\
\hline H & -3.44801153 & -2.9286610 & 33 \\
\hline H & -5.77123658 & -3.2701462 & 3.5350 \\
\hline H & -4.68073891 & -1.20122413 & -0.09759917 \\
\hline C & 1.90215708 & 3.24722172 & 6.29502610 \\
\hline H & 2.42769112 & 2.30573851 & 6.51809353 \\
\hline H & 0.93885697 & 3.2939752 & 6.81868096 \\
\hline H & 2.55197612 & 4.0672238 & 6.64877593 \\
\hline C & 0.46856659 & 3.91364903 & 4.22156355 \\
\hline H & 0.51025113 & 5.01526391 & 4.31864488 \\
\hline H & -0.41112909 & 3.56004108 & 4.77290239 \\
\hline H & 0.39631485 & 3.67169190 & 3.15346943 \\
\hline C & -6.74616719 & -2.53243563 & 1.11483209 \\
\hline & -6.81352286 & -3.78154076 & 0.57496740 \\
\hline F & -7.09623087 & -1.65042679 & 0.14049095 \\
\hline F & -7.69552751 & -2.46505830 & 2.08876368 \\
\hline H & 0.33629862 & 1.57618840 & 2.56524001 \\
\hline & 0.38603851 & -0.28295984 & 0.33043909 \\
\hline & 0.99416598 & -0.36988325 & -0.58418140 \\
\hline H & -0.32923285 & 0.54338335 & 0.18150156 \\
\hline & -0.16503237 & -1.21882700 & 0.46669157 \\
\hline C & 2.23188212 & 1.20608981 & 1.07867011 \\
\hline & 3.01988920 & 0.84414899 & 0.40120833 \\
\hline H & 2.71198945 & 1.74161283 & 1.90837049 \\
\hline H & 1.62808171 & 1.94846652 & 0.52850554 \\
\hline & 4.70881541 & 3.39912359 & 4.337268 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
CI & 4.70792332 & 5.59974328 & 4.38328653 \\
CI & 5.38670438 & 2.61394912 & 6.26147378 \\
CI & 5.69891984 & 2.55341893 & 2.58438346
\end{tabular}

Structure 8 (Starting Material) 55
\begin{tabular}{|c|c|c|c|}
\hline C & -1. & 0.5 & 988 \\
\hline c & -1.70443058 & -0.780346 & -3.39 \\
\hline c & -2.09954168 & -1.1413689 & -2.10335035 \\
\hline C & -2.43191995 & -0.12942062 & -1.19255107 \\
\hline C & -2.42880307 & 1.22676986 & -1.54876330 \\
\hline C & -2.02580243 & 1.57885817 & -2.84267723 \\
\hline S & -2.80886039 & -0.58861147 & 0.51159282 \\
\hline O & -3.51581214 & 0.539840 & 1.15206482 \\
\hline N & -1.16859032 & -0.73576186 & 1.14441548 \\
\hline 0 & -3.36355555 & -1.9554650 & 0.53008350 \\
\hline c & -0.44028317 & 0.5427104 & . 11245220 \\
\hline C & -1.17892915 & -1.3481063 & 2.5 \\
\hline C & 0.30835274 & 0.9223279 & -0.15462062 \\
\hline C & 1.41167083 & -1.48116542 & 2.74240415 \\
\hline C & 0.0803823 & -2.20785607 & 2.77127018 \\
\hline O & 0.576320 & 2.1517778 & -0.29613250 \\
\hline c & 1.86282116 & -0.6056873 & 31 \\
\hline C & 3.19691030 & 0.08599658 & 3.5046527 \\
\hline C & 1.08080254 & -0.21295721 & 4.90101949 \\
\hline C & -1.12961077 & 0.99746381 & -5.11250532 \\
\hline & -0.55215015 & -0.032181 & -5.78969265 \\
\hline & -0.18614747 & 1.979448 & -4.994 \\
\hline & -2.12867940 & 1.49364269 & -5.88646 \\
\hline C & 0.83047524 & -0.01328280 & -1.15594382 \\
\hline c & 0.95156818 & -1.40303822 & -0.90714585 \\
\hline C & 1.49869781 & -2.24022288 & -1.88371091 \\
\hline & 1.90277119 & -1.71388003 & -3.12350377 \\
\hline C & 1.77070641 & -0.33947049 & -3.38541210 \\
\hline C & 1.24862065 & 0.50839321 & -2.40704826 \\
\hline Fe & 0.27955551 & 3.78392491 & 0.81624889 \\
\hline Cl & -1.89251167 & 4.07844892 & 0.86361305 \\
\hline Cl & 1.34156154 & 5.34496955 & -0.271 \\
\hline & 1.1354602 & 3.289591 & 2.78039453 \\
\hline
\end{tabular}
\begin{tabular}{rrrr} 
H & -1.41153353 & -1.54566298 & -4.11011454 \\
H & -2.13250430 & -2.18588334 & -1.79744201 \\
H & -2.71326998 & 1.98725348 & -0.82269176 \\
H & -1.97991047 & 2.62832064 & -3.13394233 \\
H & -1.07910923 & 1.39868956 & 1.39449821 \\
H & 0.35082980 & 0.48098730 & 1.88247595 \\
H & -2.05511762 & -2.00564322 & 2.57684405 \\
H & -1.27591977 & -0.56205441 & 3.27743881 \\
H & 2.05397607 & -1.67474648 & 1.87705654 \\
H & -0.07492490 & -2.67273460 & 3.76063055 \\
H & 0.08682185 & -3.02657069 & 2.03451447 \\
H & 3.05602613 & 1.17835639 & 3.43090057 \\
H & 3.83964795 & -0.09429103 & 4.38461418 \\
H & 3.72832058 & -0.26176010 & 2.60528037 \\
H & 1.72719481 & -0.25030438 & 5.79466033 \\
H & 0.72958804 & 0.83049770 & 4.81176472 \\
H & 0.20601526 & -0.85562672 & 5.07865149 \\
H & 0.61164197 & -1.81217200 & 0.03900739 \\
H & 1.60229530 & -3.30751743 & -1.68201282 \\
H & 2.31453283 & -2.37618643 & -3.88758205 \\
H & 2.05671082 & 0.06885151 & -4.35466492 \\
H & 1.13802716 & 1.57223329 & -2.60486129
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Structure 8 (TS-I) 52} \\
\hline \multicolumn{4}{|l|}{Step 20} \\
\hline C & -2.16745564 & -1.18129158 & -3.45651079 \\
\hline C & -2.15986188 & 0.19732875 & -3.19179867 \\
\hline C & -2.58625606 & 0.66747344 & -1.94281389 \\
\hline C & -3.00664112 & -0.25737382 & -0.97204902 \\
\hline C & -3.07928629 & -1.63319055 & -1.25189959 \\
\hline C & -2.66064942 & -2.09196022 & -2.50537092 \\
\hline S & -3.17198019 & 0.29149772 & 0.74025162 \\
\hline O & -3.55064704 & 1.71294001 & 0.75364000 \\
\hline N & -1.54347581 & 0.22698353 & 1.27427645 \\
\hline O & -3.88803887 & -0.74675762 & 1.50014318 \\
\hline C & -0.61400651 & 1.20741639 & 0.67414382 \\
\hline C & -0.92297602 & -1.12468475 & 1.37102733 \\
\hline C & 0.58877398 & -0.84550288 & 1.33267008 \\
\hline C & 0.77713056 & 0.68430717 & 1.09692208 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 27836 & -1.0948390 & 0.0251520 \\
\hline & & & \\
\hline & 2.761 & 1.7 & \\
\hline & 0.661 & -1.61 & -1. \\
\hline & -1.515 & -1.72416 & -4.71045618 \\
\hline & -1.4096 & -0.794566 & -5.68 \\
\hline & -2.1975 & 楮 & \\
\hline & -0.253422 & -2.1648 & -4.41 \\
\hline & 1.50126210 & 1.4794 & 2.14 \\
\hline & 0.7723475 & 1.928824 & 26 \\
\hline & 427718 & 07 & 30049688 \\
\hline & 2.8094108 & 848700 & \\
\hline & 5332565 & 403 & \\
\hline & 2.8852059 & 1.711581 & 2.072 \\
\hline & 2.253044 & 1.646980 & . 5209 \\
\hline & 4.419488 & 1.317 & -1.55713057 \\
\hline & 1.57001282 & . 575908 & 0.76748278 \\
\hline & 1.24979873 & . 075816 & -385837 \\
\hline & -1.79173069 & 0.894882 & -3.94142 \\
\hline & -2.5789942 & & -1.71539 \\
\hline & -3.447488 & 2.320 & -0.490 \\
\hline & -2.690525 & -3.156003 & -2.740 \\
\hline & -0.829667 & 2.210821 & . 053 \\
\hline & -0.65765559 & 1.220754 & -0.4295 \\
\hline & -1.239 & -1.591049 & . 31 \\
\hline & -1.228763 & -1.7815153 & 539 \\
\hline & 1.1107716 & -1.216650 & . 22 \\
\hline & 3.38870895 & -1.611126 & -0.65 \\
\hline & . 61990924 & -2.82422657 & . 41 \\
\hline & 271 & -1.3042760 & \\
\hline & . 379433 & -2.664600 & 018 \\
\hline & -0.2486499 & -1.037024 & -1.389 \\
\hline & 1.29897722 & -1.5692393 & -2.08477 \\
\hline & -0.30181775 & 1.7398931 & 3.32131272 \\
\hline & 0 & 531 & 00 \\
\hline & & & \\
\hline & & 2.5977164 & \\
\hline & 3.4471188 & 1.377 & \\
\hline
\end{tabular}

Structure 8 (Oxetane)
\begin{tabular}{crrr}
\multicolumn{1}{l}{ 55 } & & \\
Step 4 & & \\
C & -1.72456694 & -0.69070279 & -3.85637175 \\
C & -2.09599149 & -1.86091302 & -3.17028070 \\
C & -2.58743619 & -1.77735895 & -1.86520570 \\
C & -2.71543505 & -0.51228252 & -1.27241092 \\
C & -2.39086832 & 0.66404984 & -1.96016379 \\
C & -1.88659063 & 0.56870481 & -3.26308867 \\
O & -3.20312650 & -0.41627030 & 0.46617129 \\
N & -1.63748988 & 0.91897588 & 0.70469253 \\
O & -3.91227872 & -0.52567223 & 1.17433562 \\
C & -0.87224524 & 0.72159451 & 0.83475304 \\
C & -1.42605915 & -1.39163378 & 1.26921887 \\
C & 0.61279131 & 0.33945911 & 1.040002741 \\
C & 1.07983298 & -0.89202170 & 1.86187886 \\
C & 0.01998922 & -1.93065263 & 2.28601356 \\
O & 1.48274055 & 1.22433320 & 1.90177836 \\
C & 1.74152057 & 0.08338102 & 2.87645963 \\
C & 3.24490709 & -0.06047445 & 3.05330724 \\
C & 1.01255311 & 0.30355710 & 4.19513679 \\
C & -1.16394794 & -0.82644824 & -5.25495936 \\
F & -0.19547067 & -1.79242422 & -5.30347707 \\
F & -0.60340708 & 0.32619364 & -5.70960293 \\
F & -2.12645784 & -1.19230596 & -6.14284595 \\
C & 0.97727412 & 0.36628094 & -0.42314772 \\
C & 1.00268562 & -0.83586273 & -1.15245340 \\
C & 1.26484949 & -0.82113835 & -2.52918712 \\
C & 1.51895701 & 0.39262905 & -3.18416608 \\
C & 1.48334284 & 1.59531478 & -2.46170481 \\
C & 1.19320015 & 1.58381572 & -1.09117754 \\
Fe & 1.89596700 & 3.17117586 & 2.03005011 \\
Cl & 0.02309620 & 4.16767774 & 1.46048651 \\
Cl & 3.56400134 & 3.57691652 & 0.67116161 \\
Cl & 2.48405742 & 3.57069874 & 4.10319256 \\
H & -1.97715590 & -2.83144582 & -3.65244861 \\
H & -2.86501888 & -2.67084023 & -1.30687765 \\
H & -2.52971069 & 1.63489666 & -1.48669654 \\
H & -1.60087246 & 1.46832627 & -3.80393448 \\
H & -1.18798480 & 1.44449601 & 0.51021625 \\
& & &
\end{tabular}
\begin{tabular}{rrrr} 
H & -1.01296752 & 1.19557513 & 2.25552598 \\
H & -2.13658290 & -2.22529835 & 2.30791999 \\
H & -1.61046228 & -0.82400148 & 3.27726220 \\
H & 1.87843193 & -1.40782080 & 1.31250905 \\
H & 0.29198223 & -2.37631267 & 3.25656697 \\
H & 0.03723853 & -2.74116925 & 1.54141364 \\
H & 3.64696786 & 0.80825776 & 3.59575055 \\
H & 3.45873450 & -0.96855982 & 3.64030962 \\
H & 3.74196421 & -0.13951316 & 2.07566039 \\
H & 1.08997120 & -0.61956477 & 4.79106479 \\
H & 1.47649252 & 1.12156262 & 4.76037910 \\
H & -0.04874078 & 0.53357138 & 4.04529254 \\
H & 0.79420394 & -1.77959185 & -0.64651497 \\
H & 1.25725915 & -1.75264233 & -3.09450503 \\
H & 1.71624149 & 0.39986627 & -4.25653645 \\
H & 1.67325559 & 2.54658679 & -2.96140441 \\
H & 1.14528106 & 2.52232204 & -0.54342927
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{4}{l}{ Structure 8 (TS-II) } \\
55 & & \\
Step 91 & & \\
C & -1.14445728 & -1.39278457 & -3.22024683 \\
C & -1.42673944 & -2.36289257 & -2.24039806 \\
C & -2.18472973 & -2.01755194 & -1.11884637 \\
C & -2.64548915 & -0.69733406 & -0.98717021 \\
C & -2.41991334 & 0.25810546 & -1.98691216 \\
C & -1.66561597 & -0.09578142 & -3.11201533 \\
S & -3.48956916 & -0.19519368 & 0.53940282 \\
O & -4.12135057 & 1.10314161 & 0.25398668 \\
N & -2.24765923 & 0.13012384 & 1.68306076 \\
O & -4.23345013 & -1.35506802 & 1.06071642 \\
C & -1.22288486 & 1.10580715 & 1.26584763 \\
C & -1.76091570 & -0.93112942 & 2.57930844 \\
C & -0.06928685 & 0.39932575 & 0.57657733 \\
C & 0.46961614 & -0.82042584 & 1.27861533 \\
C & -0.58272309 & -1.71537934 & 1.97771863 \\
O & 2.03946718 & 0.93676527 & 1.52073962 \\
C & 1.60437957 & -0.20385872 & 2.23967922 \\
C & 2.76684183 & -1.20090682 & 2.36577828 \\
C & 1.10902871 & 0.18364151 & 3.64445324
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & -0.261 & -1. & -4.38298 \\
\hline & 0.89716005 & -2.36427695 & -3.926 \\
\hline & 0.09085569 & -0.73749395 & -5.16 \\
\hline F & -0.87019981 & -2.71098608 & -5.1 \\
\hline C & 0.42983558 & 0.85904808 & -0.67 \\
\hline & 1.19648378 & 0.0224603 & -1.54 \\
\hline & 1.74653273 & 0.53026 & -2.72 \\
\hline & 1.57325136 & 1.8871280 & -3.04 \\
\hline C & 0.82673770 & 2.7343889 & -2.207940 \\
\hline C & 0.24075856 & 2.2283282 & -1.05291 \\
\hline & 2.6177060 & 2.650082 & 89 \\
\hline Cl & 0.72690831 & 8264 & 2.27566992 \\
\hline Cl & 3.58472322 & 3.38964700 & 0.03523 \\
\hline Cl & 3.96523868 & 2.60768553 & 3.646484 \\
\hline H & -1.04469756 & -3.3774526 & -2.356176 \\
\hline & -2.4333045 & -2.759733 & -0.36142 \\
\hline H & -2.82014450 & 1.264838 & -1.878369 \\
\hline & -1.45806843 & 0.64304083 & -3.88359093 \\
\hline H & -1.70183390 & 1.85508987 & 0.630102 \\
\hline & -0.85929614 & 1.6412954 & 2.156634 \\
\hline & -2.60173952 & -1.594304 & 2.81118 \\
\hline & -1.4626174 & -0.4239495 & 5066 \\
\hline & 1.02209059 & -1.44196274 & 0.56511 \\
\hline & -0.07957356 & -2.29827185 & 2.76442930 \\
\hline & -0.96845268 & -2.43616199 & 1.24186668 \\
\hline & 3.56389281 & -0.7391178 & . 96795 \\
\hline & 2.44174363 & -2.1321655 & 858249 \\
\hline & 3.17014806 & -1.43743924 & . 36957 \\
\hline & 0.73873576 & -0.69368754 & 4.19626217 \\
\hline & 1.96745878 & 0.60224393 & 4.18956477 \\
\hline & 0.32931474 & 0.9548388 & 3.62670333 \\
\hline & 1.31801210 & -1.03506959 & -1.3294785 \\
\hline & 2.30222032 & -0.12820899 & -3.38544519 \\
\hline & 2.02694521 & 2.28603942 & -3.95707146 \\
\hline & 0.72843439 & 3.79369809 & 4348050 \\
\hline & -0.26837236 & 2.9 & -37642367 \\
\hline
\end{tabular}

\footnotetext{
Structure 8 (Product)
55
Step 16
}
\begin{tabular}{|c|c|c|c|}
\hline & -1.33080327 & -1.80846410 & \\
\hline C & -1.88940264 & -2.70872168 & -2.20250499 \\
\hline C & -2.68725842 & -2.22810793 & -1.15936787 \\
\hline C & -2.90806259 & -0.84 & -1.051 \\
\hline C & -2.39827937 & 0.05127340 & -1.99901827 \\
\hline C & -1.59932049 & -0.43457038 & -3.03973391 \\
\hline S & -3.77032863 & -0.18266074 & 0.40172685 \\
\hline O & -4.36780079 & 1.09534868 & -0.02060450 \\
\hline N & -2.54438762 & 0.22532554 & 1.53923121 \\
\hline O & -4.55959137 & -1.2702 & 1.01115293 \\
\hline C & -1.44542901 & 1.05418437 & . 01212960 \\
\hline C & -2.06435170 & -0.82 & . 4 \\
\hline C & -0.29836445 & 0.22589144 & 0.41911734 \\
\hline C & -0.13058447 & -1.05778052 & . 82 \\
\hline C & -1.03951972 & -1.77240857 & 1.79153153 \\
\hline 0 & 2.62545998 & 1.47510556 & 1.72080568 \\
\hline C & 2.38106686 & 0.33160330 & 2.17298559 \\
\hline C & 3.01056935 & -0.83455343 & 1.46208219 \\
\hline C & 1.63173965 & 0.14970022 & 3.46139509 \\
\hline C & -0.35194663 & -2.32820141 & -4.15713658 \\
\hline & 0.88445917 & -2.51954475 & -3.58781976 \\
\hline & -0.17949019 & -1.47237632 & -5.19575229 \\
\hline & -0.73404508 & -3.53040567 & -4.66432051 \\
\hline & 0.55367040 & 0.85528864 & -0.61032318 \\
\hline C & 1.22270880 & 0.07404413 & -1.58244407 \\
\hline & 2.01553715 & 0.67229545 & -2.56714946 \\
\hline C & 2.16537806 & 2.06963763 & -2.59941963 \\
\hline & 1.50211611 & 2.85939761 & -1.64788378 \\
\hline C & 0.69656303 & 2.26027219 & -0.66902377 \\
\hline & 2.50424733 & 3.29753072 & 542723 \\
\hline & 0.37988970 & . 69118509 & 2.94944838 \\
\hline & 3.38796325 & . 68908306 & 1.12299328 \\
\hline & 3.66728562 & 2.98102530 & 4.37323951 \\
\hline & -1.69763168 & -3.77717580 & -2.30296598 \\
\hline & -3.13465452 & -2.90675278 & -0.43378428 \\
\hline & -2.61379081 & 1.11509452 & -1.91479801 \\
\hline & -1.16500509 & 0.25406435 & -3.76204475 \\
\hline & -1.85111851 & 1.74916985 & 0.26624298 \\
\hline & -1.08692134 & 1.6783916 & 1.846200 \\
\hline & -2.92823302 & 1.37543467 & 2.842 \\
\hline
\end{tabular}
\begin{tabular}{rrrr} 
H & -1.59291818 & -0.28525599 & 3.29000262 \\
H & 0.66173883 & -1.65996964 & 0.37871395 \\
H & -0.45124668 & -2.28811078 & 2.57285899 \\
H & -1.57121419 & -2.57100549 & 1.24364898 \\
H & 4.09424176 & -0.80455865 & 1.67380359 \\
H & 2.60192617 & -1.79494252 & 1.79804314 \\
H & 2.88556733 & -0.70748452 & 0.37621299 \\
H & 1.18346919 & -0.84817809 & 3.53551674 \\
H & 2.36401044 & 0.27524294 & 4.28128372 \\
H & 0.87533338 & 0.93633720 & 3.58638080 \\
H & 1.07073357 & -1.00305113 & -1.60349282 \\
H & 2.49087033 & 0.04389965 & -3.32277745 \\
H & 2.78501770 & 2.53938845 & -3.36536195 \\
H & 1.61696343 & 3.94396236 & -1.65681408 \\
H & 0.19304188 & 2.88976786 & 0.06575224
\end{tabular}
\begin{tabular}{lrrr}
\begin{tabular}{l} 
Structure 9 \\
58 \\
Step 2
\end{tabular} & & \\
Starting Material) \\
S & -1.59399894 & 1.07600485 & 0.96958200 \\
N & -0.16077375 & 0.28381861 & 1.44655638 \\
C & -0.44481292 & -2.03034994 & 2.27580796 \\
C & 2.09337423 & 0.49187095 & 2.6448335 \\
C & 1.66609510 & -0.50006340 & 3.71084514 \\
C & 0.98831129 & 1.16031809 & 1.77354890 \\
C & 0.08817161 & -1.13112170 & 1.14562495 \\
O & -1.75559099 & 2.22455103 & 1.87718420 \\
O & -2.63318982 & 0.05013484 & 0.79229249 \\
C & -1.20964089 & 1.75768517 & -0.66722627 \\
C & -0.50190580 & 2.74614890 & -3.17335625 \\
C & -1.65729148 & 1.09166986 & -1.81903913 \\
C & -0.43916851 & 2.92736585 & -0.75322658 \\
C & -0.07733835 & 3.41656205 & -2.01538262 \\
C & -1.30043547 & 1.59230905 & -3.07573014 \\
C & -0.06239120 & 3.21410384 & -4.54543594 \\
F & -1.07758998 & 3.14173539 & -5.44883487 \\
F & 0.39360115 & 4.49453891 & -4.53771969 \\
F & 0.94719422 & 2.42641609 & -5.01735682 \\
H & 1.17675033 & -1.22727543 & 1.10797361 \\
C & 0.18117289 & -3.33454663 & 2.54950933
\end{tabular}
\begin{tabular}{lrrr} 
C & 1.31559134 & -5.85019477 & 3.12881993 \\
C & -0.45349844 & -4.22059203 & 3.45280230 \\
C & 1.39616589 & -3.73534685 & 1.93664234 \\
C & 1.95564005 & -4.98199020 & 2.22546345 \\
C & 0.11055278 & -5.46608902 & 3.73943572 \\
H & 2.80688951 & -0.01960996 & 1.97859025 \\
H & 2.66199323 & 1.33016368 & 3.08831719 \\
C & -0.43660334 & -1.69284306 & -0.20499732 \\
H & -2.28665610 & 0.20781362 & -1.72385985 \\
H & -0.15036911 & 3.45981146 & 0.15185823 \\
H & 0.52023687 & 4.32341963 & -2.09898837 \\
H & -1.64826145 & 1.09658451 & -3.98215028 \\
H & 1.75668262 & -6.82320720 & 3.35283437 \\
H & -1.38607998 & -3.92490546 & 3.92550156 \\
H & 1.91346255 & -3.08008015 & 1.23723759 \\
H & 2.89129494 & -5.27857677 & 1.74905669 \\
H & -0.39380425 & -6.13547183 & 4.43736692 \\
O & -1.49523212 & -1.67167188 & 2.85959995 \\
C & 0.67879930 & -0.37038771 & 4.62717488 \\
H & 2.24572377 & -1.42722404 & 3.73244159 \\
C & -0.22077681 & 0.83706258 & 4.73796883 \\
C & 0.36703111 & -1.50094821 & 5.57597069 \\
H & 1.03704112 & -2.36175561 & 5.43187636 \\
H & -0.67351662 & -1.84061882 & 5.43138829 \\
H & 0.44010356 & -1.16203310 & 6.62391635 \\
H & -1.10693370 & 0.71869390 & 4.09257742 \\
H & 0.28394917 & 1.76546368 & 4.43519038 \\
H & -0.58145577 & 0.95911216 & 5.77114851 \\
Fe & -3.37654536 & -1.96019267 & 3.35967929 \\
Cl & -4.43610228 & -0.08246107 & 3.65155170 \\
Cl & -4.05599023 & -3.28023156 & 1.74482576 \\
Cl & -3.36384335 & -3.02412887 & 5.31142536 \\
H & 0.57543663 & 2.02258158 & 2.30573056 \\
H & 1.46541166 & 1.53327668 & 0.84632308 \\
H & -0.15732384 & -1.00102982 & -1.01173780 \\
H & -1.52442521 & -1.82155401 & -0.19505035 \\
H & 0.03719517 & -2.66785420 & -0.38634659
\end{tabular}

Structure 9 (TS-I) 58

Step 61
\begin{tabular}{|c|c|c|c|}
\hline S & -1.16884913 & 1.60094072 & 1.17836668 \\
\hline N & 0.09587650 & 0.56303582 & 1.62328174 \\
\hline C & 0.04505489 & -1.69428456 & 2.65403681 \\
\hline C & 1.96431106 & 0.17564930 & 3.18569925 \\
\hline C & 0.97647349 & -0.83059385 & 3.81338540 \\
\hline C & 1.37919941 & 1.10518118 & 2.07860524 \\
\hline C & 0.17881117 & -0.87584781 & 1.31283964 \\
\hline \(\bigcirc\) & -0.86825904 & 2.88697286 & 1.84229937 \\
\hline \(\bigcirc\) & -2.43413154 & 0.88928738 & 1.40434831 \\
\hline C & -0.98941379 & 1.86582086 & -0.60232330 \\
\hline C & -0.67252896 & 2.26438780 & -3.33545147 \\
\hline C & -1.94448170 & 1.34153225 & -1.48278623 \\
\hline C & 0.11652828 & 2.59775684 & -1.06369968 \\
\hline C & 0.27503362 & 2.79198802 & -2.43861325 \\
\hline C & -1.77925243 & 1.54331714 & -2.86014952 \\
\hline C & -0.44097113 & 2.43742871 & -4.82286371 \\
\hline F & -1.56857389 & 2.23247455 & -5.55094814 \\
\hline F & 0.01771247 & 3.68611578 & -5.11388353 \\
\hline F & 0.49876665 & 1.55507796 & -5.26761459 \\
\hline H & 1.19654028 & -1.03917377 & 0.92165686 \\
\hline C & 0.64364640 & -3.08656867 & 2.48560826 \\
\hline C & 1.74295323 & -5.66374038 & 2.11298081 \\
\hline C & -0.13040050 & -4.23670982 & 2.72692780 \\
\hline C & 1.98279971 & -3.24662413 & 2.06119097 \\
\hline C & 2.52832079 & -4.52178013 & 1.87745410 \\
\hline C & 0.41494603 & -5.51499373 & 2.53698128 \\
\hline H & 2.77946115 & -0.42332816 & 2.75742485 \\
\hline H & 2.41511101 & 0.79087155 & 3.98021439 \\
\hline C & -0.79208807 & -1.42637844 & 0.26186241 \\
\hline H & -2.79625794 & 0.78643029 & -1.09129227 \\
\hline H & 0.82605258 & 3.02485870 & -0.35479803 \\
\hline H & 1.12195948 & 3.36354262 & -2.81836099 \\
\hline H & -2.51330868 & 1.14678316 & -3.56062046 \\
\hline H & 2.16747710 & -6.65898195 & 1.96767459 \\
\hline H & -1.15622525 & -4.13704737 & 3.06717945 \\
\hline H & 2.60840856 & -2.37295209 & 1.87205183 \\
\hline H & 3.56426227 & -4.62536301 & 1.54832520 \\
\hline H & -0.20641982 & -6.39183312 & 2.72604773 \\
\hline O & -1.25288805 & -1.68722375 & 3.09357386 \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
C & -0.06503847 & -0.33551448 & 4.71808996 \\
H & 1.54502357 & -1.60964731 & 4.33768340 \\
C & -0.69077974 & 0.98628751 & 4.63471628 \\
C & -0.55971868 & -1.23575662 & 5.78329924 \\
H & -0.30067965 & -2.28785071 & 5.61631249 \\
H & -1.64831780 & -1.11926839 & 5.91322268 \\
H & -0.08996243 & -0.89476394 & 6.72932908 \\
H & -0.14107623 & 1.73623911 & 4.06245250 \\
H & -0.98541665 & 1.35002853 & 5.63174061 \\
H & -1.66403965 & 0.80091450 & 4.11655017 \\
Fe & -3.00272033 & -2.13634061 & 3.42101566 \\
Cl & -3.93891798 & -0.32681040 & 4.36536243 \\
Cl & -4.00676328 & -2.87183166 & 1.59880030 \\
Cl & -2.98053237 & -3.72058293 & 5.00974411 \\
H & 1.22591848 & 2.12082059 & 2.45656727 \\
H & 2.09625106 & 1.15920746 & 1.23605942 \\
H & -0.64674069 & -0.89812857 & -0.69019809 \\
H & -1.83441462 & -1.34090528 & 0.57929298 \\
H & -0.55969578 & -2.48974655 & 0.11477886
\end{tabular}

Structure 9 (Oxetane)
58
Step 37
\begin{tabular}{lrrr} 
S & -1.08716705 & 1.50672907 & 1.17645932 \\
N & 0.36924616 & 0.69836712 & 1.51610678 \\
C & 0.36184961 & -1.50963233 & 2.65480648 \\
C & 1.97498377 & 0.40150346 & 3.43375430 \\
C & 1.10157254 & -0.79919809 & 3.82458711 \\
C & 1.40214861 & 1.35567659 & 2.34368607 \\
C & 0.54275446 & -0.75148458 & 1.30842240 \\
O & -0.96986961 & 2.84040992 & 1.80118368 \\
O & -2.24256063 & 0.63403590 & 1.45981059 \\
C & -1.03446658 & 1.73480552 & -0.61796091 \\
C & -0.93304845 & 2.09601107 & -3.37022857 \\
C & -2.02806023 & 1.15511147 & -1.41646860 \\
C & 0.00307580 & 2.50350875 & -1.16746453 \\
C & 0.05231016 & 2.68111338 & -2.55257164 \\
C & -1.96971278 & 1.33705424 & -2.80526775 \\
C & -0.81426250 & 2.23666217 & -4.87412770 \\
F & -1.99775685 & 2.03374883 & -5.50878203
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & -0.36332950 & 3.47161459 & -5.22775787 \\
\hline & 0.07553042 & 1.33062048 & -5.37173741 \\
\hline & 1.62011078 & -0.87944713 & 1.09527431 \\
\hline & 0.66078662 & -2.98399273 & 2.50205623 \\
\hline C & 1.34196616 & -5.68372022 & 2.06726112 \\
\hline C & -0.33747325 & -3.93060768 & 2.22223713 \\
\hline & 2.00702395 & -3.39734452 & 2.54726244 \\
\hline & 34731280 & -4.73909529 & . 32670232 \\
\hline & . 00039176 & -5.27548515 & 2.01778096 \\
\hline & 92915827 & -0.0132555 & 3.07 \\
\hline & 2.21451314 & 0.98933961 & 4.33355155 \\
\hline & -0.20597282 & -1.33782524 & 0.1042911 \\
\hline & -2.81916436 & 0.56411871 & -0.95664386 \\
\hline & 0.75335608 & 2.95980407 & -0.52134477 \\
\hline & 0.84481061 & 3.27868020 & -3.00281721 \\
\hline & -2.73107720 & 0.89176875 & -3.44452291 \\
\hline & 1.60370652 & -6.73123619 & 1.90668681 \\
\hline & -1.37907427 & -3.62964666 & 2.17048068 \\
\hline & 2.79210114 & -2.66692197 & 2.75647757 \\
\hline & 3.39422624 & -5.04620048 & 2.36663751 \\
\hline & -0.79129624 & -5.99946979 & . 81973237 \\
\hline & -0.95631952 & -1.21404216 & . 30054386 \\
\hline & -0.26945029 & -0.61635674 & 4.52724518 \\
\hline & 1.72824722 & -1.50040844 & 4.39027023 \\
\hline & -0.75024077 & 0.79347338 & . 83301895 \\
\hline & -0.45569913 & -1.55503779 & . 71260862 \\
\hline & -0.15554352 & -2.57975875 & . 45401198 \\
\hline & -1.50230193 & -1.56716142 & . 04600913 \\
\hline & 0.17441706 & -1.19344116 & . 54197462 \\
\hline & -0.77749019 & 1.43802491 & . 95041116 \\
\hline & -0.05368333 & 1.22989097 & . 56818948 \\
\hline & -1.75146564 & 0.77411597 & 5.28201897 \\
\hline & -2.92969618 & -1.69355659 & 3053 \\
\hline & -4.13021258 & -0.14450591 & . 13680175 \\
\hline & -3.64274446 & -2.30184831 & . 17512732 \\
\hline & -3.08368087 & -3.49497063 & 4.45156765 \\
\hline & 0.96037006 & 2.24435410 & 2.80345096 \\
\hline & 2.22883890 & 1.69240323 & 1.69218814 \\
\hline & 0.05465791 & -0.76823833 & -0.79743776 \\
\hline & -1.29201624 & -1.32324043 & 0.235345 \\
\hline
\end{tabular}
\begin{tabular}{crrr}
\multicolumn{4}{c}{ Structure 9 (TS-II) } \\
58 & & \\
Step 10 & & \\
S & -1.50926226 & 2.41968898 & 0.68297943 \\
N & -0.73690840 & 1.30276015 & 1.78481579 \\
C & 0.17883966 & -0.96530623 & 2.19653408 \\
C & 0.96059545 & 1.03917726 & 3.53579792 \\
C & 0.59337025 & -0.47268435 & 3.54098153 \\
C & 0.62354979 & 1.72051377 & 2.20176195 \\
C & -0.74172468 & -0.12131689 & 1.35185756 \\
O & -1.09406122 & 3.76536362 & 1.11144880 \\
O & -2.92475498 & 2.04010837 & 0.57904549 \\
C & -0.70067952 & 2.04067151 & -0.88976020 \\
C & 0.69909486 & 1.23017037 & -3.15484699 \\
C & -1.27984108 & 1.09505702 & -1.75215173 \\
C & 0.56324666 & 2.59339844 & -1.14961965 \\
C & 1.26367662 & 2.18414562 & -2.29138635 \\
C & -0.57289510 & 0.69254300 & -2.89209535 \\
C & 1.48778958 & 0.71122505 & -4.34165032 \\
F & 0.68424434 & 0.45658737 & -5.40766832 \\
F & 2.44563024 & 1.58642435 & -4.74182118 \\
F & 2.11221929 & -0.45890159 & -4.01937821 \\
H & -0.35334466 & -0.16914761 & 0.31713991 \\
C & 0.59303108 & -2.24298330 & 1.69632768 \\
C & 1.15229519 & -4.88222721 & 0.83533652 \\
C & 1.08844252 & -3.23307822 & 2.60596567 \\
C & 0.42154837 & -2.62636531 & 0.32439118 \\
C & 0.70646128 & -3.91881820 & -0.09409618 \\
C & 1.33975638 & -4.53561009 & 2.18268121 \\
H & 2.04119224 & 1.14844279 & 3.71285124 \\
H & 0.43646248 & 1.55808914 & 4.34663344 \\
C & -2.15705075 & -0.78501622 & 1.33618125 \\
H & -2.27046493 & 0.69734376 & -1.53481637 \\
H & 0.97699624 & 3.34620966 & -0.47957773 \\
H & 2.24199493 & 2.60761404 & -2.51565230 \\
H & -1.00941421 & -0.03049560 & -3.58105351 \\
H & 1.35088988 & -5.90239763 & 0.50269264 \\
H & 1.18876548 & -3.01182766 & 3.66343202 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 0.08486991 & -1.90399824 & 371 \\
\hline H & 0.57711910 & -4.19083533 & -1.142115 \\
\hline H & 1.64050865 & -5.28174818 & 2.91660300 \\
\hline 0 & -1.19440657 & -2.02247365 & 3.95420233 \\
\hline c & -0.61367956 & -0.90814064 & 4.56938815 \\
\hline H & 1.46607716 & -1.04074113 & 3.876 \\
\hline C & -1.67130479 & 0.19894467 & 4.7636 \\
\hline C & 0.00267007 & -1.27754021 & 5.92712546 \\
\hline H & 0.66126435 & -2.15297831 & 5.83234629 \\
\hline H & -0.81287678 & -1.53658157 & 6.62004925 \\
\hline H & 0.56743263 & -0.4301888 & 6.34990516 \\
\hline H & -1.98603347 & 0.65777301 & 3.8199900 \\
\hline H & -1.30295279 & 0.99282931 & 5.43176791 \\
\hline H & -2.53433902 & -0.28131906 & 5.24849880 \\
\hline Fe & -1.90752552 & -3.65650325 & 4.42503746 \\
\hline Cl & -3.53223132 & -3.28279767 & 5.88561 \\
\hline Cl & -2.60086300 & -4.52067662 & 2.480428 \\
\hline Cl & -0.26854321 & -4.91617363 & 5.31695344 \\
\hline H & 0.64189098 & 2.80791478 & 2.32436178 \\
\hline H & 1.3640339 & 1.4383646 & 1.422559 \\
\hline H & -2.77114993 & -0.30753332 & 0.5659582 \\
\hline & -2.63592265 & -0.67465573 & 2.31252720 \\
\hline & -2.05555523 & -1.85778322 & 1.13447830 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{4}{l}{ Structure 9 (Product) } \\
58 \\
Step 46 & & \\
S & -1.15063674 & 2.18973353 & 1.16371976 \\
N & -0.04799347 & 1.08840350 & 1.94710569 \\
C & 1.04598834 & -1.12313824 & 2.21978705 \\
C & 1.85576089 & 0.91523101 & 3.44886420 \\
C & 1.80494113 & -0.56670895 & 3.19107507 \\
C & 1.28446939 & 1.66908425 & 2.24400427 \\
C & 0.06311039 & -0.29371056 & 1.36754743 \\
O & -0.74010685 & 3.54805042 & 1.57030523 \\
O & -2.51540759 & 1.70458195 & 1.42270079 \\
C & -0.79125347 & 1.99708301 & -0.60200196 \\
C & -0.11556949 & 1.56530953 & -3.26624933 \\
C & -1.66613182 & 1.27036689 & -1.42049513 \\
C & 0.41040715 & 2.52890756 & -1.09962205
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 0.74721422 & 2.30675641 & -2.4384 \\
\hline C & 1.32224818 & 1.05457458 & -2.762 \\
\hline C & 0.308032 & 1.28098 & -4.69 \\
\hline F & -0.73791894 & 0.92039279 & -5.48085969 \\
\hline F & 0.89935113 & 2.36668774 & -5.26300896 \\
\hline F & 1.21818981 & 0.26638227 & -4.73249415 \\
\hline H & 0.49225313 & -0.21043908 & 0.34 \\
\hline C & 1.1686404 & -2.5720036 & \\
\hline c & 1.45185146 & -5.32705055 & 1.323 \\
\hline C & 1.30676645 & -3.52268204 & 2.94438380 \\
\hline C & 1.17214658 & -3.03153140 & 0.57409238 \\
\hline c & 1.31289610 & -4.394 & 0.28420887 \\
\hline c & 1.45027209 & -4.88522969 & 2.655 \\
\hline H & 2.90049500 & 1.23200502 & 3.610636 \\
\hline H & 1.29576119 & 1.20525532 & 4.357555 \\
\hline C & -1.30281772 & -0.99896840 & 1.2576 \\
\hline H & -2.6044766 & 0.8949 & -1.0 \\
\hline & 1.05424878 & 3.12575205 & -0.4544579 \\
\hline & 1.67032871 & 2.71740733 & -2.84760380 \\
\hline & -1.99309320 & 0.49538845 & -3.41308 \\
\hline & 1.54607465 & -6.39060681 & 1.09782 \\
\hline & 1.27355209 & -3.18667881 & 3.98 \\
\hline & 1.06476043 & -2.31526192 & -0.24252192 \\
\hline & 1.30946075 & -4.72796644 & -0.75520361 \\
\hline H & 1.53712413 & -5.60482665 & 3.47172897 \\
\hline & -1.69879290 & -2.25047550 & 4.46226324 \\
\hline & -1.37867882 & -1.15871647 & 4.97944117 \\
\hline & 2.48681251 & -1.20850015 & 3.7537191 \\
\hline C & -2.09555530 & 0.12086452 & 4.68765787 \\
\hline C & -0.21787061 & -1.13802297 & 5.93740639 \\
\hline H & 0.37556922 & -2.05546724 & 5.85063872 \\
\hline & -0.63367383 & -1.06826833 & 6.9590831 \\
\hline & 0.40459568 & -0.24628895 & 5.777840 \\
\hline H & -1.57976174 & 0.59823602 & 3.82932302 \\
\hline H & -2.03037271 & 0.81311138 & 5.53981049 \\
\hline H & -3.13710028 & -0.05324514 & 4.38861473 \\
\hline Fe & -3.25708118 & -3.16796892 & 3.56795823 \\
\hline Cl & -4.64725682 & -1.69653220 & 2.72827554 \\
\hline Cl & -2.40716442 & -4.50353315 & 2.06903155 \\
\hline & -4.11309111 & -4.18615201 & 5.306130 \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
H & 1.17162966 & 2.73423390 & 2.46667842 \\
H & 1.96026044 & 1.54688730 & 1.37502471 \\
H & -1.94338100 & -0.53412700 & 0.50395692 \\
H & -1.83975584 & -0.95685946 & 2.20932269 \\
H & -1.15729425 & -2.04927956 & 0.98422001
\end{tabular}
\begin{tabular}{lrrr}
\multicolumn{4}{c}{ Structure 10 (Starting Material) } \\
64 & & \\
Step 21 & & \\
S & -0.46635003 & 1.42036113 & 1.80753369 \\
N & 0.68501857 & 0.13645217 & 1.71440692 \\
C & -0.05272236 & -2.05243621 & 2.68076757 \\
C & 3.23363952 & -0.11571549 & 2.09351816 \\
C & 2.92042786 & -1.14866604 & 3.15307863 \\
C & 2.04347549 & 0.52599057 & 1.29112522 \\
C & 0.15208614 & -1.19735372 & 1.40174743 \\
C & -0.79605461 & 1.83738696 & 0.07643047 \\
C & -1.18663632 & 2.25230844 & -2.64806670 \\
C & -1.97517174 & 1.37425076 & -0.52594186 \\
C & 0.17397254 & 2.53996238 & -0.65762244 \\
C & -0.02134775 & 2.73773650 & -2.02825326 \\
C & -2.16849120 & 1.58707148 & -1.89665690 \\
O & -1.70678306 & 0.84765862 & 2.35626337 \\
O & 0.22889140 & 2.56128740 & 2.42709056 \\
C & -1.34208766 & 2.38665818 & -4.14910821 \\
F & -0.73342104 & 1.34462489 & -4.78551267 \\
F & -0.77399114 & 3.53060762 & -4.61705936 \\
F & -2.64564855 & 2.38675430 & -4.53348595 \\
C & 0.66814919 & -1.95665272 & 0.13685570 \\
C & 0.23738558 & -1.21901629 & -1.14592659 \\
C & 2.15105241 & -2.37195966 & 0.05069970 \\
C & -0.05623366 & -3.54054392 & 2.61867537 \\
C & -0.23228762 & -6.33895888 & 2.49440532 \\
C & -1.31975720 & -4.16735315 & 2.55805421 \\
C & 1.11550520 & -4.31898451 & 2.63161173 \\
C & 1.02234251 & -5.71494854 & 2.58556458 \\
C & -1.40067628 & -5.56286739 & 2.47767759 \\
H & 3.92290778 & -0.56261429 & 1.36378450 \\
H & 3.77675122 & 0.71538497 & 2.57151065 \\
H & 2.16242764 & 0.33307041 & 0.21524165
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 10 & 45 & 1.43357 \\
\hline & 0.92264294 & -1.05406265 & \\
\hline H & -2.726023 & 0.862387 & 0.075 \\
\hline H & 1.05863415 & 2.93499689 & -0.1610 \\
\hline H & 0.72041806 & 3.27840384 & -2.61549010 \\
\hline H & -3.08004551 & 1.23954348 & -2.38203058 \\
\hline H & 0.09095967 & -2.8939477 & 0.168 \\
\hline H & 0.51919692 & -1.81594749 & -2.027 \\
\hline H & -0.85077446 & -1.06003451 & -1.1683 \\
\hline H & 0.71487280 & -0.23229474 & -1.23817677 \\
\hline H & 2.54903815 & -2.71050935 & 1.01201086 \\
\hline H & 2.7901 & -1.558177 & -0.3 \\
\hline & 2.23613903 & -3.20303476 & -0.666186 \\
\hline & -0.29825783 & -7.42742914 & 2.45210609 \\
\hline H & -2.22880636 & -3.56575243 & 2.57550929 \\
\hline & 2.08486044 & -3.83858131 & 2.73269613 \\
\hline & 1.93231601 & -6.31577147 & 2.62764585 \\
\hline & -2.38065188 & -6.03934802 & 2.425 \\
\hline & -0.55070422 & -1.47421850 & 3.670464 \\
\hline & 2.34861336 & -0.89164481 & 4.352215 \\
\hline & 3.30453446 & -2.15659306 & 2.975766 \\
\hline & 2.18463300 & -1.97671658 & 5.384 \\
\hline & 1.82875762 & 0.46389274 & 4.7499 \\
\hline & 2.59977992 & -2.93989263 & 5.051633 \\
\hline & 1.12121503 & -2.12766909 & 5.62834744 \\
\hline & 2.67397662 & -1.68522758 & 6.33008704 \\
\hline & 2.07399220 & 1.25228882 & 4.027462 \\
\hline & 2.21821314 & 0.74432695 & 5.743577 \\
\hline & 0.73176325 & 0.42989356 & 4.84233139 \\
\hline Fe & -1.65755268 & -2.00737531 & 5.26522703 \\
\hline Cl & -1.00714458 & -3.95668842 & 6.02455347 \\
\hline Cl & -3.68814197 & -2.06279320 & 4.42910104 \\
\hline & . 33 & -0. & 6.71155336 \\
\hline
\end{tabular}

Structure 10 (TS-I)
64
Step 3
\begin{tabular}{lrrr} 
S & -0.61608172 & 1.24354184 & 1.61530428 \\
N & 0.52638226 & -0.00973620 & 1.47730931 \\
C & 0.56213661 & -2.05949757 & 2.86590680
\end{tabular}
\begin{tabular}{lrrr} 
C & 2.85408253 & -0.63759503 & 2.10581947 \\
C & 2.19349335 & -1.45661034 & 3.23251530 \\
C & 1.93764344 & 0.33833291 & 1.31723833 \\
C & 0.13613088 & -1.41954311 & 1.47151588 \\
C & -0.80494999 & 1.84481719 & -0.08099340 \\
C & -1.01858171 & 2.62162854 & -2.74409228 \\
C & -1.96023680 & 1.51228706 & -0.79995726 \\
C & 0.23977641 & 2.57766552 & -0.66738607 \\
C & 0.13174095 & 2.96049399 & -2.00800775 \\
C & -2.06491691 & 1.90661880 & -2.14000432 \\
O & -1.89429306 & 0.64169307 & 2.02277408 \\
O & 0.03559889 & 2.32429851 & 2.38501860 \\
C & -1.08026713 & 2.98859156 & -4.21270824 \\
F & -0.33727732 & 2.12039543 & -4.95835016 \\
F & -0.57793764 & 4.23394194 & -4.43935603 \\
F & -2.34797106 & 2.96176664 & -4.69983853 \\
C & 0.39581194 & -2.20382963 & 0.14744952 \\
C & -0.31523414 & -1.47259206 & -1.00721181 \\
C & 1.83931734 & -2.53980838 & -0.26943674 \\
C & 0.53732392 & -3.59022813 & 2.81119291 \\
C & 0.19934390 & -6.39377524 & 2.54626090 \\
C & -0.74688040 & -4.17772864 & 2.86174050 \\
C & 1.64261010 & -4.43527580 & 2.59947785 \\
C & 1.47831102 & -5.82351765 & 2.47904084 \\
C & -0.91425836 & -5.56032995 & 2.72774167 \\
H & 3.29917636 & -1.35614811 & 1.41171335 \\
H & 3.69131588 & -0.06187623 & 2.53032111 \\
H & 2.22614871 & 0.33415807 & 0.25097533 \\
H & 2.07522496 & 1.35950791 & 1.69007731 \\
H & -0.95565039 & -1.43259013 & 1.58277018 \\
H & -2.75747440 & 0.95400308 & -0.31115616 \\
H & 1.11077895 & 2.86078525 & -0.07719179 \\
H & 0.92854347 & 3.53325723 & -2.48240594 \\
H & -2.95740964 & 1.65930071 & -2.71301057 \\
H & -0.11556841 & -3.16541167 & 0.30705241 \\
H & -0.22108140 & -2.05311565 & -1.93843834 \\
H & -1.38660004 & -1.33113612 & -0.79720844 \\
H & 0.13307591 & -0.48127767 & -1.17187461 \\
H & 2.38818888 & -3.06588581 & 0.52195035 \\
H & 2.40328963 & -1.64317434 & -0.57039508
\end{tabular}
\begin{tabular}{rrrr}
H & 1.80402256 & -3.20934386 & -1.14328810 \\
H & 0.07356577 & -7.47453722 & 2.46086065 \\
H & -1.62642265 & -3.54921801 & 2.99102737 \\
H & 2.65491016 & -4.03729096 & 2.51717972 \\
H & 2.35644711 & -6.45593188 & 2.33482493 \\
H & -1.91979859 & -5.98031008 & 2.78191454 \\
O & -0.29529416 & -1.55388428 & 3.79907128 \\
C & 2.00090481 & -0.81459295 & 4.51527922 \\
H & 2.76359951 & -2.37468074 & 3.40378136 \\
C & 1.95118257 & -1.65176271 & 5.73111091 \\
C & 1.70443490 & 0.60981491 & 4.65959613 \\
H & 1.84354692 & -2.72137333 & 5.51281679 \\
H & 1.14707805 & -1.30816955 & 6.40434922 \\
H & 2.90154055 & -1.48824286 & 6.27990269 \\
H & 2.04212458 & 1.24235938 & 3.83486079 \\
H & 1.98367750 & 1.00395028 & 5.64688931 \\
H & 0.58621323 & 0.62353198 & 4.64575303 \\
Fe & -1.51153883 & -1.87393835 & 5.15949950 \\
Cl & -0.85726477 & -3.64927812 & 6.33454454 \\
Cl & -3.54454454 & -2.14335650 & 4.32923792 \\
Cl & -1.32473242 & -0.04305797 & 6.44804045
\end{tabular}
\begin{tabular}{lrrr}
\begin{tabular}{l} 
Structure \\
64
\end{tabular} \\
Step & (Oxetane) & \\
S & -0.61990984 & 1.27870558 & 1.58704095 \\
N & 0.55054965 & 0.05218049 & 1.50056245 \\
C & 0.81593142 & -2.07876972 & 2.68620111 \\
C & 2.89928719 & -0.52897672 & 2.15539051 \\
C & 2.21198586 & -1.52614345 & 3.10360431 \\
C & 1.96292503 & 0.43204802 & 1.36579860 \\
C & 0.17518878 & -1.36943629 & 1.46102087 \\
C & -0.85334302 & 1.83162080 & -0.11986289 \\
C & -1.14434101 & 2.58825777 & -2.78060131 \\
C & -2.03339779 & 1.50354971 & -0.79842991 \\
C & 0.17817523 & 2.55231764 & -0.74424772 \\
C & 0.03153056 & 2.92363608 & -2.08394227 \\
C & -2.17694567 & 1.88723539 & -2.13846383 \\
O & -1.87659197 & 0.65643140 & 2.03470015 \\
O & 0.00242358 & 2.41301187 & 2.29962859
\end{tabular}
\begin{tabular}{lrrr} 
C & -1.24791770 & 2.94953629 & -4.24808305 \\
F & -0.51023534 & 2.09036146 & -5.00910727 \\
F & -0.76872917 & 4.20127688 & -4.48956459 \\
F & -2.52644634 & 2.90405237 & -4.70512273 \\
C & 0.44001859 & -2.10355086 & 0.10705804 \\
C & -0.18722126 & -1.33698774 & -1.06580028 \\
C & 1.90594101 & -2.46454124 & -0.20556974 \\
C & 0.57350753 & -0.01718690 & -6.3441313149 \\
C & -0.73104172 & -4.05265943 & 2.81356409 \\
C & 1.57781549 & -4.51766605 & 3.0075854658 \\
C & 1.28539076 & -5.88870557 & 3.05757698 \\
C & -1.02633106 & -5.41855312 & 2.51080456 \\
H & 3.49959042 & -1.10784668 & 1.44272238 \\
H & 3.60750974 & 0.07026334 & 2.74826847 \\
H & 2.25411412 & 0.44874084 & 0.30036466 \\
H & 2.06736862 & 1.44890509 & 1.75904299 \\
H & -0.90876707 & -1.39884473 & 1.62831820 \\
H & -2.82097074 & 0.95877528 & -0.27907983 \\
H & 1.06868578 & 2.83470501 & -0.18358945 \\
H & 0.81695102 & 3.48646402 & -2.58821233 \\
H & -3.08959142 & 1.64432660 & -2.68075416 \\
H & -0.09645481 & -3.05786509 & 0.20875969 \\
H & -0.06866911 & -1.91597490 & -1.99538880 \\
H & -1.26167717 & -1.16130322 & -0.90606601 \\
H & 0.29858069 & -0.36075104 & -1.20806927 \\
H & 2.38668469 & -2.98775743 & 0.63396407 \\
H & 2.50436974 & -1.57717011 & -0.46254203 \\
H & 1.92837234 & -3.13909391 & -1.07571190 \\
H & -0.24498751 & -7.41035193 & 2.86242572 \\
H & -1.53099717 & -3.35355976 & 2.22021522 \\
H & 2.60090979 & -4.20161792 & 3.20541579 \\
H & 2.08041054 & -6.59825861 & 3.29376999 \\
H & -2.04830062 & -5.75377273 & 2.32841876 \\
O & 0.21238223 & -1.44602372 & 3.93579905 \\
C & 1.57990231 & -1.01009213 & 4.42750441 \\
H & 2.94226048 & -2.31252431 & 3.31868924 \\
C & 1.97607546 & -1.83859013 & 5.64529180 \\
C & 1.60283565 & 0.48027079 & 4.71629677 \\
H & 1.89910644 & -2.91459541 & 5.43972983 \\
& & &
\end{tabular}
\begin{tabular}{cccc}
H & 1.33371839 & -1.59292656 & 6.50257474 \\
H & 3.01795866 & -1.59374396 & 5.90961865 \\
H & 1.17197368 & 1.07321136 & 3.90360880 \\
H & 2.65125064 & 0.78492605 & 4.87158480 \\
H & 1.04198104 & 0.68869217 & 5.63706225 \\
Fe & -1.35211509 & -2.00729492 & 5.07491608 \\
Cl & -0.90215492 & -3.97100342 & 5.94397583 \\
Cl & -3.19962957 & -2.00355192 & 3.89521842 \\
Cl & -1.38204919 & -0.46057000 & 6.63157305
\end{tabular}
\begin{tabular}{crrr}
\multicolumn{4}{c}{ Structure 10 (TS-II) } \\
64 & & \\
Step 6 & & \\
S & -0.80083593 & 1.02943187 & 1.42807618 \\
N & 0.48047649 & -0.09699220 & 1.35397038 \\
C & 1.06164507 & -2.28343036 & 2.34232514 \\
C & 2.83221044 & -0.50538612 & 2.08904270 \\
C & 2.16188477 & -1.57225191 & 2.96789001 \\
C & 1.85412314 & 0.42367118 & 1.33030544 \\
C & 0.19812355 & -1.53272911 & 1.36963727 \\
C & -0.86173826 & 1.75226458 & -0.23438299 \\
C & -0.94677575 & 2.80574786 & -2.81055303 \\
C & -1.98979654 & 1.52190585 & -1.03302532 \\
C & 0.21337667 & 2.53061464 & -0.69477011 \\
C & 0.17254464 & 3.04706095 & -1.99381315 \\
C & -2.03003553 & 2.05496361 & -2.32782926 \\
O & -2.04045023 & 0.26111058 & 1.62318919 \\
O & -0.38178994 & 2.12124343 & 2.32682656 \\
C & -0.93722944 & 3.32284117 & -4.23451488 \\
F & -0.16406142 & 2.52806227 & -5.02925589 \\
F & -0.41947492 & 4.57994708 & -4.30611784 \\
F & -2.18088774 & 3.35648518 & -4.78001396 \\
C & 0.30614382 & -2.24191022 & -0.04465823 \\
C & -0.57557985 & -1.51549209 & -1.06569722 \\
C & 1.75022339 & -2.37888642 & -0.56136367 \\
C & 0.76086811 & -3.65794649 & 2.64052861 \\
C & 0.15516251 & -6.33752189 & 3.28925397 \\
C & -0.57889745 & -4.14316733 & 2.56818204 \\
C & 1.78698808 & -4.55927725 & 3.05246960 \\
C & 1.48640002 & -5.88512120 & 3.35473455
\end{tabular}
\begin{tabular}{lrrr} 
C & -0.87370070 & -5.46213811 & 2.90299865 \\
H & 3.46733036 & -1.03718001 & 1.36425883 \\
H & 3.49961528 & 0.10242656 & 2.71480475 \\
H & 2.19809532 & 0.56473277 & 0.28963538 \\
H & 1.84074651 & 1.40618881 & 1.81457898 \\
H & -0.84680391 & -1.63358225 & 1.69458436 \\
H & -2.81787953 & 0.93260339 & -0.64198533 \\
H & 1.05815855 & 2.74643574 & -0.04301661 \\
H & 0.99721064 & 3.65289769 & -2.36947990 \\
H & -2.90126701 & 1.88991758 & -2.96066766 \\
H & -0.09719611 & -3.25294044 & 0.12128300 \\
H & -0.66798717 & -2.12619081 & -1.97784893 \\
H & -1.57893372 & -1.32413425 & -0.66025756 \\
H & -0.12903401 & -0.55100973 & -1.34358440 \\
H & 2.39142866 & -2.92474303 & 0.14991605 \\
H & 2.19897901 & -1.39210457 & -0.74948948 \\
H & 1.75042623 & -2.93108250 & -1.51375640 \\
H & -0.08015731 & -7.36879873 & 3.55728684 \\
H & -1.39883955 & -3.46489378 & 2.34383861 \\
H & 2.82348076 & -4.22581536 & 3.08218010 \\
H & 2.28296932 & -6.56884756 & 3.65069044 \\
H & -1.91086435 & -5.79624697 & 2.89853388 \\
O & -0.02583767 & -1.22343253 & 4.24055691 \\
C & 1.33038577 & -1.01564906 & 4.41573685 \\
H & 2.93423520 & -2.23428664 & 3.36837084 \\
C & 1.92337313 & -1.88813695 & 5.53058413 \\
C & 1.61629315 & 0.46696522 & 4.65241682 \\
H & 1.73336293 & -2.95389218 & 5.34776172 \\
H & 1.42381218 & -1.61775339 & 6.47394333 \\
H & 3.00545547 & -1.70761578 & 5.63425859 \\
H & 1.16038567 & 1.09491732 & 3.87983270 \\
H & 2.69459053 & 0.67230527 & 4.74322519 \\
H & 1.12805456 & 0.71734767 & 5.60831540 \\
Fe & -1.38397205 & -1.88855894 & 5.32173737 \\
Cl & -0.83523853 & -3.92830615 & 6.07956588 \\
Cl & -3.15903203 & -2.12365390 & 3.98564444 \\
Cl & -1.61793521 & -0.47579006 & 7.01346612 \\
& & &
\end{tabular}
\begin{tabular}{crrr}
\multicolumn{4}{c}{ Structure 10 (Product) } \\
64 & & \\
Step 3 & & \\
S & -0.13970670 & 1.01908923 & 1.33504006 \\
N & 0.78715115 & -0.28985459 & 0.74065930 \\
C & 1.53883855 & -2.24985371 & 2.10930025 \\
C & 3.04168593 & -0.23336839 & 1.79486522 \\
C & 2.66464863 & -1.55503928 & 2.41235453 \\
C & 2.21741977 & 0.01320356 & 0.52455384 \\
C & 0.46613842 & -1.67498693 & 1.18117669 \\
C & -0.49614914 & 1.90627150 & -0.20160487 \\
C & -1.01377370 & 3.21728970 & -2.59932508 \\
C & -1.61605319 & 1.52906778 & -0.95856594 \\
C & 0.35440764 & 2.94276976 & -0.61213136 \\
C & 0.09460239 & 3.59538996 & -1.82354378 \\
C & -1.87086191 & 2.19074964 & -2.16491651 \\
O & -1.40850863 & 0.48101011 & 1.85803295 \\
O & 0.70987600 & 1.92214024 & 2.15287677 \\
C & -1.24909393 & 3.87951912 & -3.94147014 \\
F & -0.59305767 & 3.21111646 & -4.93276656 \\
F & -0.79859922 & 5.16359565 & -3.95938580 \\
F & -2.56687081 & 3.90105215 & -4.27703138 \\
C & 0.15213858 & -2.60063167 & -0.03640468 \\
C & -1.06457748 & -2.06792044 & -0.80873407 \\
C & 1.34585122 & -2.82985304 & -0.97789957 \\
C & 1.29448890 & -3.59623127 & 2.68808110 \\
C & 0.85117618 & -6.10713816 & 3.93480463 \\
C & -0.01329191 & -4.04838390 & 2.97512947 \\
C & 2.37461557 & -4.45299848 & 3.00622445 \\
C & 2.15664726 & -5.68828379 & 3.62786649 \\
C & -0.23375228 & -5.28332170 & 3.59933289 \\
H & 4.11831194 & -0.23072234 & 1.54804354 \\
H & 2.87643222 & 0.59414446 & 2.50435388 \\
H & 2.56530351 & -0.64561955 & -0.28039868 \\
H & 2.31647235 & 1.04855526 & 0.17326921 \\
H & -0.47007509 & -1.61069371 & 1.75232499 \\
H & -2.27711034 & 0.74277783 & -0.59820174 \\
H & 1.18646439 & 3.25004309 & 0.02055766 \\
H & 0.73978023 & 4.40729476 & -2.15806976 \\
H & -2.73981347 & 1.91744110 & -2.76267910 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & -0.11693634 & -3.57112524 & 0.40807848 \\
\hline H & -1.31735681 & -2.74361853 & -1.64169401 \\
\hline H & -1.94375667 & -1.97665520 & -0.1523 \\
\hline H & -0.83376075 & -1.07642220 & -1.2280 \\
\hline H & 2.25659149 & -3.10449690 & -0.4221963 \\
\hline H & 1.55101616 & -1.92808712 & -1.57691152 \\
\hline H & 1.11394766 & -3.64477727 & -1.68131611 \\
\hline H & 0.68224684 & -7.0698419 & 4.420 \\
\hline H & -0.87095055 & -3.42297405 & 2.73969 \\
\hline H & 3.39055324 & -4.15040813 & 2.74616746 \\
\hline H & 3.00729503 & -6.33189701 & 3.862483 \\
\hline H & -1.25474359 & -5.5824088 & 3.83815 \\
\hline 0 & -0.44835872 & -1.0164327 & 4.35 \\
\hline c & 0.65509877 & -1.06896437 & 4.9455167 \\
\hline H & 3.36503912 & -1.98228772 & 3.13492365 \\
\hline C & 1.06481968 & -2.26943842 & 5.74982929 \\
\hline C & 1.51608677 & 0.16151777 & 4.96571635 \\
\hline & 0.69015003 & -3.19495129 & 5.29815 \\
\hline & 0.59405366 & -2.17717809 & 6.74545513 \\
\hline H & 2.15398179 & -2.30377897 & 5.88238828 \\
\hline H & 1.27268313 & 0.83334678 & 4.13430505 \\
\hline & 2.58334725 & -0.09572037 & 4.98382730 \\
\hline & 1.28525129 & 0.68698798 & 5.912746 \\
\hline Fe & -2.34166884 & -1.60020796 & 4.52874487 \\
\hline Cl & -2.27714205 & -3.29526782 & 5.93582189 \\
\hline Cl & -3.26367706 & -2.22253247 & 2.63567272 \\
\hline clan & -3.26415388 & 0.14359265 & 5.4632202 \\
\hline
\end{tabular}

\subsection*{4.5 References}
(1) Groso, E.J.; Golonka, A.N.; Harding, R.A.; Alexander, B.W.; Sodano, T.M.; Schindler, C.S. 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catal. 2018, 8, 2006-2011.
(2) Ludwig, J.R.; Zimmerman, P.M.; Gianino, J.B.; Schindler, C.S. Iron(III)-catalysed carbonyl-olefin metathesis. Nature 2016, 533, 374-379.
(3) Ludwig, J.R.; Phan, S.; McAtee, C.C.; Zimmerman, P.M.; Devery, J. J., III; Schindler, C.S. Mechanistic Investigations of the Iron(III)-Catalyzed CarbonylOlefin Metathesis Reaction. J. Am. Chem. Soc. 2017, 139 (31), 10832-10842.
(4) Ma, L.; Li, W.; Xi, J.; Bai, X.; Ma, E.; Yan, X.; Li, Z. FeCl3-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Angew. Chem. Int. Ed. 2016, 55, 10410-10413.
(5) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. The formation and stability of spirocompounds. Part I. spiro-Compounds from cyclohexane. J. Chem. Soc. 1915, 107, 1080-1106; (b) Ingold, C.K. The conditions underlying the formation of unsaturated and of cyclic compounds from halogenated open-chain derivatives. Part I. Products derived from \(\alpha\)-halogenated glutaric acids. J. Chem. Soc., 1921, 119, 305-329. For selected reviews, see: (d) Jung, M. E.; Piizzi, G. gem-Disubstituent Effect: Theoretical Basis and Synthetic Applications. Chem. Rev. 2005, 105 (5), 1735-1766.
(6) For selected examples, see: (a) Forbes, M. D. E.; Patton, J. T.; Meyers, T. L.; Maynard, H. D.; Smith, D. W.; Schulz, G. R.; Wagener, K. B. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect. J. Am. Chem. Soc. 1992, 114 (27), 10978-10980; (b) Urbina-Blanco, C. A.; Skibinski, M.; O'Hagan, D.; Nolan, S. P. Accelerating influence of the gem-difluoromethylene group in a ring-closing olefin metathesis reaction. A Thorpe-Ingold effect? Chem. Commun. 2013, 49, 7201-720.

\section*{Chapter 5}

\section*{Conclusions and Outlook}

Chiral nitrogen heterocycles are privileged scaffolds that represent ubiquitous structural motifs in biologically active natural products and serve as important templates in drug discovery. Moreover, 5- and 6-membered nitrogen heterocycles are utilized as ligands in asymmetric catalysis and as components of hydrogen-bond donor catalysis. Although many strategies towards accessing these chiral heterocyclic motifs have been developed, many of them rely on harsh reaction conditions or expensive, precious metal catalysts and are often limited in substrate scope. One such strategy that has proven effective for the synthesis of nitrogen heterocycles is the ring-closing olefin-olefin metathesis reaction. The olefin-olefin metathesis reaction is a revolutionary industrial process that utilizes precious metal complexes to enable direct carbon-carbon bond formation from simple olefin starting materials. While this strategy has been employed toward a variety of complex materials, amines often present an additional challenge due to the amine's ability to coordinate to the active catalysts which often led to catalyst decomposition. While many efforts have been made to obviate this undesired reactivity including substrate design and catalyst development, this approach still relies on expensive catalysts. In addition, access to chiral materials remains a significant challenge.

In recent years, carbonyl olefin metathesis has emerged as a powerful tool to directly form carbon-carbon bonds from readily available precursors. Our lab first reported a catalytic protocol for the synthesis five- and six-membered unsaturated carbocycles using iron(III) chloride and performed detailed mechanistic studies into the reaction pathway. With the successful application of this reaction platform towards a diverse array of cyclopentenes and cyclohexenes, we then envisioned using this synthetic tool to access nitrogen heterocycles. During the development of our synthetic strategy, we realized that we could access chiral materials through the use of amino acids as commercially available chiral pool reagents. From the protected amino acids we developed a general, 3-step substrate synthesis that allowed for a wide range of modifications and could be modified to allow for the synthesis of both 3-pyrrolines and tetrahydropyridines.

With this synthetic strategy, we were able to apply the carbonyl-olefin metathesis reaction to access a wide range of nitrogen heterocycles. Initially, we found that compared to the analogous carbocycles, the nitrogen-containing systems required higher catalyst loadings. The Lewis basic amine was subsequently identified as a competitive binding site, but we found that selection of an electron-deficient protecting group allowed for lower catalyst loadings and up to \(99 \%\) yield of the desired metathesis products. This reaction was shown to be tolerant of a wide range of electronically diverse systems and both natural and unnatural amino acids. This transformation is distinguished by its operational simplicity, mild reaction conditions, and high tolerance for electronically differentiated substrates. In addition, detailed computational analyses revealed that the choice of an electron-deficient protecting group prohibits competitive binding of the iron catalyst to

Lewis basic sites and enables catalytic turnover. These studies have also provided key insights into the reaction pathway of the formation of 3-pyrrolines. Furthermore, computational studies have also provided key insights into the oxetane formation. Specifically, introduction of steric bulk on the \(\beta\)-position can hinder the formation of the oxetane intermediate and shut down the reaction pathway, while quaternary stereocenters in the \(\alpha\)-position to the carbonyl can invoke the Thorpe-Ingold effect and improve the overall yield. With the knowledge of the limiting factors of this transformation, we have been able to establish a series of guidelines that can help direct the future applications of this strategy.```


[^0]:    * Groso, E.J.; Schindler, C.S. Synthesis. 2019, Accepted. Submitted as an invited contribution to the "Golden Synthesis Anniversary Special Issue.

[^1]:    ** Groso, E.J.; Golonka, A.N.; Harding, R.A.; Alexander, B.W.; Sodano, T.M.; Schindler, C.S. ACS Catal. 2018, 8, 20062011.

