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ABSTRACT

Live-cell imaging elucidates subcellular dynamics, and single-molecule imaging extends

the capabilities of �uorescence microscopy to the scale of tens of nanometers. To understand

the physics of cellular processes on the molecular scale, accurate and precise localization

of single molecules is important. The molecule localization precision is related to the

brightness of the �uorescence emission, which is sensitive to the local environment.

Plasmonic nanoparticles, which act as optical antennas, can enhance the brightness of

nearby �uorophores for improved live-cell super-resolution imaging. Additionally, single-

molecule �uorescence imaging makes it possible to study light-matter interactions, such as

plasmon-enhanced �uorescence, on the nanometer scale. The enhancement of �uorophores

is through both a redistribution in the excitation �eld and a change in the radiative and

nonradiative pathways.

In this Thesis, I investigate the e�ect of the properties of gold nanoparticle arrays, such

as particle size, shape and array pitch, on the enhancement factors for plasmon-enhanced

live-cell super-resolution imaging, I study the spectral e�ects of single dyes coupled to

individual plasmonic nanoparticles, and I work toward developing an all-�uorescence

method for nanothermometry. Chapter I details the background of single-molecule super-

resolution �uorescence imaging, plasmon-enhanced �uorescence, and nano-fabrication of

plasmonic substrates for �uorescence imaging.

To investigate the live-cell enhancement factors, in Chapter II, I use photoactivation

localization microscopy to measure the intensities of single �uorescent proteins in live cells

that are imaged on nanosphere lithographed gold nanotriangle arrays of di�erent sizes
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and pitches. The results of this work demonstrate how �uorescence enhancement depends

on the array characteristics and indicate the ability of plasmonic nanoparticle arrays to

increase the brightness of a �uorescent protein in living bacteria. The use of plasmonic

substrates for enhanced live-cell imaging is generally accessible for membrane-associated

targets, and nanosphere lithography is a cheap and easy method for making the plasmonic

substrates.

Although we were able to enhance the �uorescence in living cells, we propose to

improve the enhancement beyond two-fold by examining a wider range of nanoparticle

sizes, nanoparticle shapes, array order, and array pitch. In Chapter II, I present the use of

electron-beam lithography to fabricate a wide range of nanoparticle arrays and I measure

their optical responses. I use dark-�eld scattering spectroscopy to measure the resonance

strength and spectrum of the nanoparticle arrays, building on conclusions from earlier

in Chapter II. Electron-beam lithography allows for tighter control over the particles and

arrays for more carefully tuned substrates for enhanced live-cell imaging.

In addition to live-cell enhancement, single-molecule super-resolution imaging en-

ables studies of light-matter interactions. Plasmon-enhanced �uorescence is a distance-

and wavelength-dependent process, and super-resolution hyperspectral imaging allows

us to study the heterogeneity of coupling. In Chapter III, I study the distance and spec-

tral dependencies of enhanced �uorescence by combining super-resolution imaging with

hyperspectral imaging for simultaneous super-localization and spectroscopy. These re-

sults demonstrate the power of single-molecule hyperspectral imaging to elucidate subtle

changes in the emission spectrum upon plasmon-coupled �uorescence.

In Chapter IV, I present relevant future directions for super-resolution imaging and

studies of light-matter interaction such as: single-particle photoluminescence imaging to

study the power and temperature dependence of gold nanoparticle photoluminescence,

integrating plasmonics and micro�uidics for active control of cellular environments with

enhanced imaging, and hyperspectral polarization imaging for information dense imaging
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of many �uorophores in complex environments.
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CHAPTER I

Introduction

1.1 Optical Microscopy

Optical microscopy has been a critical technique in all �elds of science for centuries [1].

Although the �rst microscopes were simple, single lens instruments, they were capable of

magni�cations of over 100×, allowing early scientists, then known as natural philosophers,

to discover and characterize the microscopic world. Although microscopes have undergone

immense improvements over the centuries, such as eliminating aberrations and increasing

magni�cation, one basic limitation of optical microscopes remains: the di�raction limit

[2]. The ultimate limitation in microscope resolution is the wave-particle duality that is

exhibited by all particles: the wave nature of photons leads to the di�raction limit (Equation

1.1). For example, 400 nm light collected with a 1.4 NA objective would have a di�raction

limit of d = 143 nm.

d =
λ

2NA
(1.1)

where λ is the wavelength of emitted light and the numerical aperture (NA) is de�ned as

NA = n sinθ where n is refractive index, and θ is the collection angle of the objective.

One simple solution to overcome the optical wavelength di�raction limit is to use some

other means of “illumination” that has a smaller wavelength and thus a smaller di�raction

limit. Electron microscopy, which uses high-energy electrons to interact with a substrate,
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surpasses the optical wavelength di�raction limit to a sub-nanometer scale. This resolution

gain is at the expense of having to perform the microscopy in high vacuum on �xed

samples with potential damage from the high energy electrons, though advances in sample

preparation and in situ methods are obviating these concerns [3]. While the limitations of

electron microscopy presented here may be of little or no concern for some applications,

they mostly preclude the use of electron microscopy for live-cell analyses where subcellular

and intercellular dynamics are studied. Thus, in spite of optical microscopy having a

relatively large di�raction limit, it is incredibly important for cellular analyses and the

study of how light interacts with materials, both of which are focuses for this body of

research. I will note that electron microscopy can inform us about some light-matter

interactions, although indirectly [4]. Additionally, optical and biochemical techniques

can be employed to improve the speci�city and contrast of optical microscopy. Two such

techniques relevant to this work are �uorescence and dark-�eld microscopies.

1.1.1 Fluorescence microscopy and super-resolution imaging

Fluorescence, the absorption of a photon and subsequent emission of a photon of lower

energy (Figure 1.1a), is utilized in optical microscopy to greatly enhance the contrast and

speci�city of the objects imaged. In �uorescence microscopy, a sample is labeled with

�uorescent probes, which are selected for based on their excitation and emission spectra

and their structural target. The sample is then imaged under monochromatic illumination

and the emitted light is collected. An example diagram of an epi-�uorescence microscope

setup is depicted in Figure 1.1b. Here, a laser is used to excite the �uorophores with wide-

�eld illumination by focusing the beam on the back focal plane of the objective using an

imaging lens and dichroic �lter. In an “epi” setup, the same objective used for illumination

collects the scattered light and emission from the �uorophores. The elastically scattered

light is �ltered by the dichroic and long-pass �lters, while the �uorescence or longer

wavelength inelastically scattered light is transmitted and focused onto the camera, in

2



Figure 1.1: Fluorescence energy diagram and �uorescence microscope diagram. (a)
Fluorescence energy diagram illustrating the absorption of a green photon
and emission of a red photon. (b) A simple �uorescence microscope with
monochromatic laser excitation and an electron multiplying charge coupled
device detector.
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this case an electron multiplying charge-coupled device (EMCCD) detector. The image

contrast and speci�city are improved over transmission microscopy by �ltering out the

illumination light and collecting only the light emitted from the �uorescent probes. Thus,

objects of interest appear as bright features with a dark background that can be selectively

imaged based on excitation or emission wavelength. As technology and methodology

progressed and more sensitive cameras were developed, single molecules were eventually

able to be detected then imaged [5–7]. The image of a single �uorophore appears as a

di�raction-limited spot with point spread function (PSF) de�ned by an Airy disk (Equation

1.2);

I (θ ) = I0

(
2J1(x)
x

)2
(1.2)

where I0 is the maximum intensity of the Airy disk center, J1 is is the �rst order Bessel

function of the �rst kind and x ≈ πr
d where r is the radial distance from the center of the

optical axis in the focal plane and d is the di�raction limit de�ned in Equation 1.1. For the

di�raction limited signal produced by a single emitter, we assume that the center of the

intensity distribution under normal imaging conditions, i.e. no PSF engineering, is the

actual location of the emitter, thus breaking the di�raction limit (Figure 1.2) [8–10].

We can extend this super-localization of a single molecule to super-resolution mi-

croscopy by determining the super-localized positions of many single molecules from a

di�raction-limited image or image sequence. The super-resolution techniques that fall

within this description and are used within this thesis are: points accumulation for imaging

in nanoscale topography (PAINT) and photoactivated localization microscopy (PALM)

[11, 12]. The PAINT technique relies on having �uorophores in a solution stochastically

adsorb and desorb from the structure of interest such that only one �uorophore is emit-

ting within a di�raction-limited spot at a time and the solvated �uorophores cannot be

imaged. The PALM technique on the other hand utilizes a photoactivatable �uorophore. A

sparse subset of the photoactivatable �uorophore is converted from a non-emissive to an

emissive state with a low-power activation pulse. The emissive �uorophore can then be

4



Figure 1.2: PSF and Gaussian �tting. (a) 3D view of an Airy disk PSF with the same param-
eters in the example for Equation 1.1. (b) Grey scale image of (a) as seen on a
camera. (c) Gaussian �t to cross section of (b).
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super-localized until it returns to the non-emissive state or irreversibly bleaches, at which

point a subsequent activation pulse can repeat the sequence. Regardless of which technique

is used, once the single-molecule criterion is met, the �uorophore can be super-localized

and the characteristics of the �uorophore can be studied or a super-resolution image can

be constructed.

1.1.2 Dark-�eld microscopy

The second method I present for improving the contrast of optical microscopy is dark-

�eld microscopy. A dark-�eld microscope illuminates the sample with incident light at

an angle that is blocked out on the detection side, and any light that is scattered by the

sample and has a di�erent angle than the incident light is collected (Figure 1.3). The object

imaged on a dark-�eld microscope appears bright against a dark background. This method

is especially useful for objects with high scattering cross sections, since the object will

appear brighter the more it scatters. If the scattered light is originating from a single

object, the geometric center of the object can be determined using the same principles of

super-localization in �uorescence imaging. Thus, the position of a sub-di�raction limited

object can be determined with high accuracy.

1.2 Plasmon-Enhanced Fluorescence

1.2.1 Plasmonics

Metal nanoparticles have been rapidly growing in popularity as a the potential applica-

tions for their use have dramatically expanded, such as for enhanced spectroscopy, catalysis,

light concentration, and photothermal conversion [13–16]. The primary phenomenon that

makes metal nanoparticles useful is the localized surface plasmon resonance (LSPR). This

con�ned, collective oscillation of conduction band electrons (Figure 1.4), acts as a nano-

optical antenna by converting free-space light into local electromagnetic energy and vice

6



Figure 1.3: Dark-�eld microscope diagram. Light from a lamp (yellow) is collected by a
condenser to form an annular illumination �eld which is focused on the sample.
A low NA objective collects the scattered and blocks the transmitted light. The
collected scattered light (red) either is focused on a camera for imaging or
dispersed through a spectrometer.
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Figure 1.4: Light-induced LSPR. Induced oscillation of conduction band electrons in a
sub-wavelength sized sphere. Adapted from [20].

8



versa [17]. The LSPR depends on the properties of the metal nanoparticle; such as mate-

rial, size, shape, and surrounding medium [18–21]. One of the most common plasmonic

nanoparticle materials is gold, which is popular due to its low reactivity, tunable LSPR

throughout the visible and infrared spectrum, and relatively high plasmonicity—how well

a substance can support a plasmon—second only to silver in the visible region [22, 23].

1.2.2 Plasmon-enhanced �uorescence

The localization precision of a super-localized �uorophore, de�ned as the mean squared

error in position, 〈(∆x)2〉, that can be achieved through PSF �tting is arbitrary high and

depends upon only a few parameters [24]:

〈(∆x)2〉 =
s2 + a2/12

N
+

4
√
πs3b2

aN 2 (1.3)

where s is the standard deviation of the PSF, a is the pixel size, N is the number of photons

collected, and b is the background noise. The readily adjustable parameter in Equation 1.3

that does not require changing the microscope equipment is the total number of detected

photons from the �uorophore, N . Fluorophore brightness can be controlled by increasing

the extinction coe�cient or the quantum yield via novel dye synthesis or �uorescent

protein engineering. Alternatively, the optical properties of a �uorophore can be changed

by augmenting the local dielectric constant around the �uorophore by changing the media

or by engineering the local density of (photonic) states (LDOS), for instance by positioning

the dye molecule in the near �eld of a gold nanoparticle (AuNP). A AuNP can improve

the photon yield of a �uorophore by increasing either the excitation �eld intensity or the

radiative rate of the �uorophore [25–28]. A �uorophore in close proximity to a AuNP that

is resonantly excited can experience much higher excitation �elds than in homogeneous

medium. Additionally, a �uorophore can drive a LSPR, which can increase the far-�eld

radiation of the �uorophore, by increasing the LDOS. Thus, the localization precision of
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a �uorophore can be immensely improved by carefully selecting an appropriate AuNP

antenna for a given �uorophore.

Plasmonic nanoparticles are not only useful in improving the optical properties of

�uorophores for super-resolution microscopy, they are also interesting in themselves. Super-

resolution microscopy is a powerful tool for unveiling the properties and mechanisms of

plasmons and plasmon-enhanced �uorescence. Properties such as the distance, shape, and

size dependence of enhancement and the mechanisms of emission polarization, PSF, and

spectrum reshaping are uniquely accessible through super-resolution methods [28–33].

1.3 Nanolithography

It is important to understand the substrate fabrication process so that the advantages

and limitations of the fabrication process can be considered when making a substrate. There

are two major classes of lithography for making the plasmonic nanoparticle substrate:

top-down and bottom-up. Here, I will discuss the strengths and weaknesses of each as

well as di�erent methods within these classes through the lens of fabricating a sample for

epi-�uorescence, single-molecule microscopy.

1.3.1 Methods used in this thesis

In this thesis, I use three methods for fabricating plasmonic substrates: nanosphere

lithography (NSL) and electron-beam lithography (EBL) Chapter II and drop-castingin

Chapter III and IV. NSL involves the bottom-up assembly of microspheres into a hexago-

nally packed monolayer, which is used as a deposition mask to form gold nano-triangles

after the nanospheres are removed, (Figure 1.5b). EBL is used for increasing the param-

eter space over NSL for fabricating gold nanoparticle arrays by adjusting the nanopar-

ticle shape, size, and array pitch (Figure 1.5a). Drop-casting was used in conjunction

with photolithographed labeled grids to fabricate samples for the spectral reshaping and

temperature-dependent photoluminescence experiments (Figure 1.5c).
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Figure 1.5: Lithography processes. (a) Electron-beam lithography process. (b) Nanosphere
lithography processes. (c) Drop-casting process.
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Each fabrication method was chosen for speci�c reasons. NSL is a cheap and easy

method for making large arrays of nanotriangles. The nanotriangle sizes and interparticle

distances are controlled by the size of sphere used to make the NSL mask. EBL can be used

to fabricate nearly any size, shape, and pitch desired, within the resolution of the instrument.

A large parameter space is available to �nd the optimal size, shape, and array spacing

to achieve highest enhancement. Drop-casting was used to obtain single, monodisperse,

chemically synthesized particles. Chemically synthesized particles are bene�cial because

they have much sharper resonances than the polycrystalline NSL or EBL particles, and,

in this case, are spherical for theoretical modeling and simulation where symmetry can

be invoked to decrease simulation time. Additionally, the drop-cast particles were used

with a labeled grid, which allowed for repeated experiments on the same particles and

correlated characterization. Each experiment has certain requirements, thus, choosing the

appropriate fabrication is important to the design of the experiment.

1.3.2 Bottom-up lithography

One of the simplest ways to fabricate a plasmonic substrate is with bottom-up lithog-

raphy by simply drop-casting colloidal nanoparticles onto a glass coverslip. The end result

will be a random array of nanoparticles with spacing and clustering dependent on the

concentration of particles deposited on the surface. This method is by far the fastest and

easiest way to make a sample, but it lacks any array order, contains both single particles

and clusters of particles of di�ering populations, and the particle size distribution is depen-

dent on the particles used from the stock colloid. This method of bottom-up fabrication is

useful if the goal is to have many particles from a well de�ned size and shape distribution.

The drawbacks are that the particles need to be carefully selected for single-particles,

since dimers and oligomers exist, anisotropic nanoparticles will be randomly oriented,

and the particles cannot be easily revisited for correlated experiments without �duciaries

(Figure 5.1). Simply drop-casting particles on a surface is easy and if the surface has been
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particularly modi�ed and/or external forces are introduced, higher order can be introduced

into the �nal substrate. Some recent methods for introducing order in drop-cast bottom-up

lithography include using template assistance and electrophoretic [34,35] or optical [36–38]

forces.

1.3.3 Top-down lithography

In contrast to bottom-up lithography, top-down lithography is used to make nanopar-

ticles by removing material to make the �nal product. Common top-down lithography

methods for fabricating nanoparticles include electron- or ion-beam lithography and

photolithography, where features are chemically formed in a “resist” which appear after

development [39], or etched directly in the material as in the case of electron or ion milling.

The advantages of top-down methods include �ne control over array structure and shape

of the nanoparticles and the ability to have many nanoparticle sizes and shapes on a

single substrate. The draw-backs are that it is often time-consuming and expensive, with

individual substrates costing in excess of $200 to fabricate, and the particles themselves

are not as ideal, exhibiting polycrystallinity and defects.

1.3.4 Combination approaches

The lithography classes listed above need not be mutually exclusive. In fact, many

successful methods for fabricating nanoparticles use a combination of both approaches.

Stencil lithography for instance uses an EBL fabricated substrate as a shadow mask for

evaporating metal through to make nanoscopic features on a new substrate behind [40].

NSL can be used as a combination approach, where the bottom-up formed nanosphere

metacrystal can be etched and used as a mask for metal deposition to form nanohole

arrays [41]. In fact, many of the new bottom-up approaches rely on top-down methods

in order to self-assemble the particles, such as in template assisted methods, where the

template has been fabricated with a top-down lithography method [34, 37, 38].
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1.4 Thesis Outline

In this thesis, I used plasmonic nanoparticle arrays of various size, shape, and array

structure to optimize the enhancement of �uorescent proteins in living Vibrio cholerae

cells (Chapter II). In Chapter II, gold nanotriangle array (NTA)s on glass coverslips were

used as inexpensive, facile, and broadly applicable imaging substrates for living Vibrio

cholerae cells expressing photoactivatable �uorescent proteins—the red PAmCherry or

the green PAGFP—and resulted in �uorescence enhancements upon coupling living cells

to nanotriangle (NT)s. Within the requirements for this wide-�eld coupling geometry, I

analyzed and optimized the coupling as a function of local surface plasmon resonance

frequency and particle coverage and determined that particles with strong scattering and

good resonance overlap with the �uorophore and dense arrays provide largest enhancement.

I extended upon the conclusions of Chapter II and fabricated various AuNP arrays with

EBL to systematically examine the live-cell single-molecule �uorescence-enhancement

toward optimal enhancement. These results demonstrate that plasmonic nanoparticle

arrays can be used to enhance the �uorescence emission intensity within living cells and

that the size and interparticle spacing must be carefully tuned for optimal �uorescence

intensity enhancement.

I also used single-molecule super-resolution imaging to characterize the emission

spectrum reshaping of dye/nanoparticle coupled systems. In Chapter III, I uncovered the

distance and spectral dependence of single-molecule emission spectrum reshaping for four

di�erent �uorophores and complemented experiment with electromagnetic simulations

to better understand the e�ects of plasmonic nanoparticle (NP)s on nearby �uorescent

emitters. These results demonstrate the power of single-molecule hyperspectral imaging

and may be used to improve analytical models of plasmon/dye coupling.

Finally, in Chapter IV I used single-particle super-resolution imaging to study the

temperature dependence of gold nanoparticle photoluminescence toward the development

of an all-�uorescence, absolute nanothermometer. The method developed here, will enable
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accurate measurements of the photothermal conversion of AuNPs and their immediate

surroundings.

15



CHAPTER II

Interplay of Nanoparticle Resonance Frequency and

Array Surface Coverage in Live-Cell

Plasmon-Enhanced Single-Molecule Imaging

2.1 Abstract

1 Super-resolution imaging has provided new insights into nanoscale optics. Plasmonic

gold nanotriangle arrays created by nanosphere lithography can enhance single-molecule

�uorescence intensity to further improve imaging. Here, gold nanotriangle arrays on glass

coverslips were used as inexpensive, facile, and broadly applicable imaging substrates

for living Vibrio cholerae cells expressing photoactivatable �uorescent proteins—the red

PAmCherry or the green PAGFP—and resulted in �uorescence enhancements upon coupling

living cells to nanotriangle arrays. Within the requirements for this wide-�eld coupling

geometry, we analyze and optimize the coupling as a function of local surface plasmon

resonance frequency and particle coverage.
1The material in this chapter was previously published. S. A. Lee, J. S. Biteen, “Interplay of nanoparticle

resonance frequency and array surface coverage in live-cell plasmon-enhanced single-molecule imaging”,
The Journal of Physical Chemistry C 122, 5705. DOI: 10.1021/acs.jpcc.8b01436.
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2.2 Introduction

Super-resolution �uorescence imaging has greatly improved our understanding of both

light-matter interactions and biological mechanisms by taking the resolution of far-�eld

optical microscopy down to the nanometer scale [11, 42–45]. Recently, super-resolution

�uorescence imaging has been used to map the e�ect of plasmonic nanoparticles on local-

ization position [29, 33, 46, 47], to describe the activities of proteins in living mammalian

plasma membranes [48], and to measure biomolecule dynamics in bacterial cells [49–51].

Single-molecule microscopy beats the standard di�raction limit of light by super-localizing

probes with a precision that depends on many factors; given a particular experimental

setup where the microscope and detector components are �xed and the wavelength and

intensity of the excitation source have been optimized, the most controllable experimental

parameter is the brightness of the �uorescent label (�uorophore) [24, 52]. Fluorophore

brightness can be controlled by increasing the extinction coe�cient or the quantum yield

via novel dye synthesis or �uorescent protein engineering [53, 54]. Alternatively, the

optical properties of a �uorophore can be changed by augmenting the local dielectric

constant around the �uorophore by changing the media [55] or by engineering the local

density of photonic states, for instance by positioning the dye molecule in the near �eld

of a plasmonic nanoparticle [39, 56–58]. The brightness enhancement from plasmonic

coupling depends on the nanoparticle properties, including the localized surface plasmon

resonance (LSPR) frequency and intensity, the nanoparticle shape and orientation, and the

dye/nanoparticle separation distance [20, 59]. A desirable substrate for plasmon-enhanced

super-resolution bioimaging must consider these requirements, and additionally consist

of nontoxic nanoparticles that cover a large surface area and that are su�ciently dense

without touching since charge transfer between nanoparticles leads to blinking which

precludes single-molecule detection (Figure 2.1) [45]. Plasmon-enhanced �uorescence has

been known for a long time [60], but its application to super-resolution imaging has only

been realized recently [28,39,46,61] and its use in cellular single-molecule super-resolution
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Figure 2.1: Large �eld-of-view scanning electron micrograph of NTA1000 showing
nanotriangles that cover a large surface area without touching. Region a) is �at
gold. Region b) is �at glass. Scale bar is 10 µm.
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imaging has thus far been limited [62]. In this chapter, we show that the �uorescence inten-

sity of nanoparticle-coupled, membrane-bound �uorescent proteins (the red PAmCherry

and the green PAGFP) can be enhanced for improved live-cell super-resolution imaging by

tuning the surface coverage and LSPR frequencies of gold nanotriangle arrays made by

nanosphere lithography.

2.3 Experimental Section

2.3.1 Nanotriangle array fabrication

Microscope coverslips were coated with nanotriangle arrays (NTAs) using nanosphere

lithography (NSL) [41]. Polystyrene latex nanospheres of 550, 746, or 990 nm diameter

(coe�cient of variance < 3%) (Polysciences, Inc.) were drop-cast onto O2 plasma-etched

(PE 50, PlasmaEtch Inc.) glass coverslips (Fisher Scienti�c) for monolayer sphere coverage,

and dried under ambient conditions. The nanosphere-on-glass substrates were coated

by electron beam evaporation (Enerjet Evaporator, Denton) with a 5 ± 1 nm Ti wetting

layer followed by 100 ± 4 nm of gold. The polystyrene nanospheres were dissolved using

Remover PG (Micro-Chem Corp.), leaving the Ti/Au NTAs adhered to the glass.

2.3.2 Nanotriangle array characterization

Each NTA-coated coverslip was characterized by dark-�eld spectroscopy (DFS) spectro-

scopy and scanning electron microscope (SEM). For DFS spectroscopy, we illuminated the

NTAs with white light from a tungsten lamp through a dark-�eld condenser (numerical

aperture (NA) 1.2—1.4) and collected the scattered light with a 100× adjustable objective

set to NA 0.6. The collected light was dispersed through a spectrometer (SP2300, Princeton

Instruments) onto an electron multiplying charge-coupled device (EMCCD) camera (Ixon3

897, Andor Technologies, Ltd). DFS spectra were measured for 9 individual particles within

each NTA (Figure 2.2), and corrected by dividing the background-subtracted nanotriangle
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DFS by the bright-�eld white light spectrum (collected with NA = 1.3). The scattering peaks

were determined by Gaussian �ts (Table 1). The SEM images were taken in deceleration

mode: 2.5 kV acceleration, 1 kV landing, 7 A current (SU8000, Hitachi High Technologies

America, Inc.) to obtain overall array morphology (Figures 2.1 and 2.3), and the average

nanoparticle edge length is the average edge length for each of 34—89 nanotriangles.

Table 2.1: Nanotriangle Array Characteristics2

NTA NT edge length (nm) NT surface coverage LSPR peaks (nm)
(nps/µm2)

NTA500 178 ± 9,n = 89 10.2 565b , 771a
NTA750 223 ± 7,n = 61 4.5 556c , 632b , 1000a
NTA1000 327 ± 10, n = 34 2.6 570d , 683c , 900b , >> 1000a

2.3.3 Vibrio cholerae growth

O395 V. cholerae expressing fusions of photoactivatable �uorescent proteins to inner

membrane-bound proteins (TcpP-PAmCherry or ToxR-PAGFP; strains CS23 and CS34,

respectively) were grown to OD 0.6 at 37 oC in LB media at pH 8.5 with shaking overnight.

The cultures were then diluted 500-fold in LB at pH 6.5 and incubated with shaking at 30

oC for 4 h to induce fusion protein expression. The cells were concentrated by centrifuging

at 10,000 rpm for 1 min at 25 oC.

2.3.4 Single-molecule cellular imaging

The concentrated cells were prepared for imaging by sandwiching 2 µL of concentrated

culture between a 2% agarose in M9 minimal media (pH 6.5) gel pad and either a reference

glass coverslip (PE 50, PlasmaEtch Inc.) or an NTA-coated coverslip. The V. cholerae cells

were imaged at room temperature on a wide-�eld inverted microscope (Olympus IX71)

with a 1.4 NA, 100× oil-immersion phase-contrast objective. Phase-contrast images were
2NTA500, NTA750, and NTA1000 refer to the polystyrene latex nanosphere diameters (in nm). Edge

lengths are measured by SEM of at least 34 NTs per array. LSPR frequencies measured by dark-�eld spectro-
scopy. aFirst LSPR peaks in the order of appearance. bSecond LSPR peaks in order of appearance. cThird
LSPR peaks in order of appearance. dFourth LSPR peaks in order of appearance.
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Figure 2.2: Nine representative single-particle dark-�eld scattering spectra for each of (I)
NTA500, (II) NTA750, and (III) NTA1000. These spectra are averaged to give
the dark-�eld plots in Figure 2.5 d–f, respectively.
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Figure 2.3: Scanning electron micrographs of (a) NTA500, (b) NTA750, and (c) NTA1000 at
200,000× magni�cation. Scale bars are 500 nm.
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obtained with white light illumination through a phase condenser (Figure 2.4). Single

molecules of TcpP-PAmCherry or ToxR-PAGFP were photoactivated in cells with a 70–100

ms exposure to a 405 nm CW laser (0.06 µW/µm2; Coherent Cube) and then imaged at 25

fps under continuous 3.9 µW/µm2 excitation by a 488 nm CW laser (Sapphire, Coherent)

for PAGFP or a 561 nm laser (Sapphire, Coherent) for PAmCherry, until photobleaching

was observed (≤5 s). The cycle of photoactivation and imaging was repeated for 5 minutes.

We ensured that only isolated single molecules were detected by using this low 405 nm

activation intensity such that only 1-2 molecules per cell were photoactivated per activation

cycle.

2.3.5 Single-molecule intensity analysis

The SMALL-LABS algorithm was used to detect single �uorescent molecules in the

�uorescence images and to subtract accurate backgrounds. Brie�y, for every detected

molecule, the local accurate background was the average of all imaging frames in which

no molecules were detected in the vicinity of that molecule. This local background was

subtracted from the raw image, and the background-corrected integrated intensity was

the sum of the background-corrected pixel intensities over 15 × 15 image pixels (735 ×

735 nm; i.e., a di�raction-limited area from the molecule center). The enhancement factors

for each NTA size were calculated from the ratio of the mean single-molecule integrated

intensity in cells on NTA to the mean single-molecule integrated intensity in cells on a

clean coverslip. The error on the mean was determined by Monte-Carlo bootstrapping with

1000 bootstraps, and that error was propagated through for the error on the enhancement

factor.

23



Figure 2.4: Phase contrast image of V. cholerae on NTA750 array. Scale bar 5 µm
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2.4 Results and Discussion

2.4.1 NTA coated coverslips

Gold NTAs were fabricated on glass coverslips via NSL with varying nanosphere

diameters [63]. Because the nanotriangles (NTs) are formed at the interstitial spaces

between the nanosphere mask, the NT size and surface coverage depend on the nanosphere

diameter [41]. The NTA morphologies were characterized with SEM (Figure 2.5a–c and

Figure 2.3) to determine the NT edge length and array coverage for each NTA (Table 2.1).

Larger nanospheres used for the NSL deposition mask lead to larger NTs which have

lower resonance frequencies, due to decreased surface plasmon con�nement, but higher

scattering intensities, due to their size [41, 64]. Average DFS spectra for each of the NTAs

are plotted in Figure 2.5d–f and the peak wavelengths are listed in Table 2.1; single NT DFS

spectra are plotted in Figure 2.2. As expected, when the nanosphere diameter increases,

the NT size increases while concurrently, the number of particles per area decreases.

Additionally as the NT size increases, so do the scattering intensity and the number of

visible LSPR modes, and each LSPR mode red-shifts. The NTA-coated coverslip made from

the smaller (500 nm NSL) mask has the greatest number of particles per area (Table 2.1),

but it also has a much lower scattering intensity in the 540–640 nm range that provides

overlap with the excitation and emission spectra of PAmCherry (Figure 2.5a). Conversely,

NTA1000 has only one quarter the number of NTs per area relative to NTA500, but an

approximately 4-fold greater scattering intensity in the 540–640 nm range.

2.4.2 Plasmon-enhanced live-cell �uorescence imaging

Vibrio cholerae is a human pathogen and causative agent in the disease cholera. V.

cholerae pathogenicity is due to the secretion of cholera toxin, expression of which is

regulated by the transcription activators TcpP and ToxR, two inner membrane proteins [65].

Imaging single molecules in living cells allows for a more complete understanding of the
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Figure 2.5: SEM of (a) NTA500, (b) NTA750, and (c) NTA1000 NT arrays (scale bars: 1
µm). The measured NT side lengths are tabulated in Table 2.1. (d–f) Average
DFS spectra of nine single-particle spectra for each gold NTA. Individual DFS
spectra presented in Figure 2.2. Peak positions tabulated in Table 2.1.
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dynamics and mechanisms involved in biochemical pathways, such as the role of TcpP

in V. cholerae virulence [66]. When V. cholerae cells are placed on top of extracellular

nanoparticles, TcpP-PAmCherry is perfectly positioned for plasmon-enhanced single-

molecule �uorescence imaging because it is localized to the inner membrane, roughly 20 nm

away from the plasmonic NTA and well within the enhanced near �eld. PAmCherry also has

�uorescence excitation and emission maxima of 564 nm and 595 nm, respectively; [67] these

wavelengths overlap well with the NTA LSPR frequencies (540–640 nm). The �uorescence

intensity distributions from all TcpP-PAmCherry single-molecule localizations in living

V. cholerae cells on NTA-coated coverslips were compared to localization in cells on bare

reference coverslips to determine the average brightness enhancement for NT-coupled

PAmCherry in living cells (Figure 2.6). The intensity distributions for the single-molecule

localizations are shifted to higher intensity for cells on all NTA-coated coverslips compared

to the reference. Additionally, the intensity distributions for cells on the NTA-coated

coverslips are broader than the distribution for bare glass. This distribution broadening

is largely due to the distance dependence of plasmon-enhanced �uorescence leading to

heterogeneous enhancement [68].

Obvious enhancements were seen for all of the NTA-coated coverslips, but NTA500

provided the largest average enhancement (greater than two-fold). The average enhance-

ment factor depends on many variables including the overlap between the �uorescence

emission and LSPR frequencies [31,69], the LSPR mode strength [70], and the NT coverage.

Because of this combination of factors, the degree of enhancement can be di�cult to pre-

dict, although our results point toward maximal enhancement when the surface coverage

is increased while maintaining some resonance overlap and some moderate resonance

intensity at the resonance frequency.

The e�ect of surface coverage on �uorescence enhancement was further investigated

by measuring the single-molecule �uorescence intensity enhancement for ToxR-PAGFP in

living V. cholerae cells upon coupling to the NTA500 and NTA1000 NTA-coated coverslips
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Figure 2.6: Fluorescence intensity distributions of membrane-bound TcpP-PAmCherry
molecules in V. cholerae cells imaged on glass coverslips (white) and on NTA-
coated coverslips (grey) for (a) NTA500, (b) NTA750, and (c) NTA1000. The
nanoparticle-coupled TcpP-PAmCherry molecules are enhanced by a factor of
2.13 ± 0.05, 1.38 ± 0.02, and 1.59 ± 0.03 in (a), (b), and (c), respectively.
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(Figure 2.7). Since PAGFP excitation and emission maxima are at 502 nm and 516 nm,

respectively [71], the resonance overlap between PAGFP and the NTAs is small. Still,

there is a modest ~1.2-fold enhancement, and the NTA500 array leads to a slightly larger

enhancement due to its denser NTA coverage (Table 2.1). Overall, these results indicate that

a large parameter space exists within which to obtain optimal �uorescence enhancement

for live-cell imaging. In the case of PAmCherry, where the LSPR and �uorescence spectra

overlap (Figure 2.6), good enhancement is observed. The LSPR intensity and NTA surface

coverage both have signi�cant e�ect on overall enhancement: NTA500, which has high

NTA coverage (Table 2.1), and NTA1000, which has high LSPR strength (Figure 2.5), have

greater average enhancements than NTA750, which is intermediate between the two. In

the case of PAGFP, whose �uorescence spectrum overlaps very little with the gold LSPR,

despite the absence of resonant coupling, the enhancement is nearly the same for NTA500

and NTA1000, if only slightly higher for NTA500.

2.5 Conclusions

Single-molecule �uorescence imaging has improved our understanding of biological

mechanisms and light-matter interactions [31, 72]. Since the localization precision of

single-molecule super-resolution methods is limited by the number of photons collected

from the �uorophore, any increase in the emission intensity can signi�cantly impact the

quality of the data. Here, we have demonstrated by fabricating gold NTAs with nanosphere

lithography that �uorescence enhancements of the red photoactivatable �uorescent protein

PAmCherry in excess of two-fold are accessible for live-cell single-molecule �uorescence

imaging. Moreover, we have uncovered an important tradeo� in this sample geometry

between LSPR strength and the NTA surface density. Finally, we have shown that some

�uorescence enhancement is attainable for the green �uorescent protein PAGFP, but that

in the absence of resonant coupling, this enhancement is much more modest. Overall,

the ability to use simple, inexpensive plasmonic substrates to produce enhanced single-
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Figure 2.7: Fluorescence intensity distributions of membrane-bound ToxR-PAGFP in Vibrio
cholerae cells imaged on glass coverslips (white) and on NTA-coated coverslips
(grey) for (a) NTA500 and (b) NTA1000 (gray). The nanoparticle-coupled ToxR-
PAGFP is enhanced by a factor of 1.28 ± 0.03 and 1.21 ± 0.04 in (a) and (b),
respectively.
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molecule �uorescence will be immediately applicable in the life sciences, while at the

same time it is clear that alternative, more costly solutions that allow careful selection of

NTA characteristics such as particle size, shape, and coverage will yield much greater than

two-fold single-molecule �uorescence enhancements in live cells.

2.6 Toward Optimal Live-Cell Plasmon-Enhanced Fluorescence

Single-molecule super-resolution �uorescence imaging has enabled sub-di�raction-

limited imaging in living cells, leading to an improved understanding of biological pro-

cesses previously obscured by ensemble and in vitro methods [49]. Additionally, plasmon-

enhanced �uorescence has demonstrated that the emission intensity of coupled �uorescent

proteins can be improved through resonant-enhancement of the �uorophore excitation

and emission [28, 30]. Previous approaches to live-cell plasmon-enhanced �uorescence

imaging have used NSL fabricated nanotriangle arrays [30, 62] and stencil lithography

fabricated bowtie nanoapertures [40] as enhancement substrates. Although we were able

to realize enhancement factors in excess of 2-fold, the fabrication process did not allow for

independent control of the particle resonance frequency and surface coverage. Here, we

expand upon the previous results to develop �gures of merit for designing a plasmonic

substrate for optimal enhanced, live-cell imaging. The major factors for optimizing the

enhancement of live-cell �uorescence imaging are, nanoparticle size and shape, and the

nanoparticle array morphology: inter-particle spacing and array packing. Thus, we use

electron-beam lithography (EBL) to fabricate a variety of gold nanoparticle (AuNP) arrays

in which the particle size and shape (and thus the LSPR modes can be tuned separately

from the surface coverage.
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2.6.1 EBL experimental design

2.6.1.1 Plasmonic substrate preparation

24 sets of nanoparticle arrays (NPAs) were designed with di�erent sizes, shapes, array

order, and center-to-center distance (pitch) (Table 2.2).

Table 2.2: EBL Nanoparticle Array Combinations
Nominal Nanoparticle Pitch (nm) Array order Nanoparticle type

size (nm)3

70, 90, 110, 130 250, 300, 1000 Square, Hexagonal Circle, Triangle

Microscope coverslips were coated with NPAs using EBL. A 200 nm poly(methyl

meth-acrylacte) (PMMA, Michrochem) layer was spin coated onto a glass coverslip. A 5

nm sacri�cial gold �lm was thermally deposited onto the PMMA to ground the surface

(Angstrom Engineering, Evovac Evaporator), then the sample was exposed to the e-beam,

100 kV, 940–1040 pA (JEOL JBX 6300FS). The exposed substrate was developed by removing

the sacri�cial gold layer with gold etch (KI and iodine complex), soaking in 1:3 MiBK:IPA,

rinsing in IPA and �nally cleaned with O2 plasma descum (YES Plasma Etch). The substrate

was coated with a 5 ± 1 nm Ti wetting layer followed by 50 ± 4 nm of gold through

electron beam evaporation (Denton Enerjet Evaporator). The PMMA resist was dissolved

overnight using Remover PG (Micro-Chem Corp.) followed by sonication, leaving the

Ti-Au nanoparticles adhered to the glass.

2.6.1.2 EBL nanoparticle array characterization

Each array’s LSPR mode was measured using DFS spectroscopy to determine which

arrays have good spectral overlap with PAmCherry and PAGFP (500–600 nm) and large

LSPR intensity for enhanced live cell imaging (Figure 2.8). The substrate was illuminated

with a water immersed dark-�eld condenser (NA = 1.2–1.4) and collected through a 40×

0.95 NA objective (Olympus UPLSAPO 40X2).
3Size is diameter for circles and edge length for the equilateral triangles
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Figure 2.8: Dark-�eld scattering spectra of EBL circle nanoparticle arrays of di�erent sizes
and array pitches. Insets, dark-�eld image of the array for each given spectrum.
Dark�eld images are 245 µm by 245 µm.
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For the square arrays of circular nanoparticles in the 1000- and 300-nm array pitch

(columns 1 and 2 in Figure 2.8), the scattering intensity increases with particle size. This

increase is due to the increase physical cross-section and thus scattering cross-section. On

the other hand, in the 250-nm array pitch column, the the trend is reversed: increasing

particle size leads to a decrease in scattering intensity. This decrease in scattering intensity

could be due to either a grating e�ect or increased re�ectivity, either of which cause

the light to be scattered at angles not collected by the objective. Also, as the array pitch

decreases, we see that the scattering spectrum blue-shifts rapidly, thus there is tunability

in the scattering band of the nanoparticle arrays by changing the pitch. In addition to the

blue shift, there is also an increase in the scattering intensity. This scattering increase could

be due to the increased particle density as well as formation of lattice plasmon modes [73].

2.6.2 Future outlook

The results from the DFS analysis of the nanoparticles indicate that a circular nanoparti-

cle of 130 nm and an array pitch of 300 nm should be a good substrate for plasmon-enhanced

live-cell imaging of PAmCherry. Further improvements in the fabrication process are being

pursued to obtain arrays of triangular nanoparticles that lack large defects to compare

the LSPR mode strengths between circles and triangles. Finally, the substrates with high

LSPR strength and large particle densities will be used for live-cell enhancement studies to

measure the enhancement factors for each array.
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CHAPTER III

Single-Molecule Emission Spectrum Reshaping

3.1 Abstract

The radiation characteristics of �uorescent molecules are highly susceptible to their

local environment. Gold nanoparticles modify the local environment through a wavelength-

dependent redistribution of local electric �eld intensity and local density of (photonic)

states (LDOS). Thus, �uorescent molecules in the near �eld of plasmonic nanoparticles

can experience changes in their intrinsic �uorescence spectrum leading to a reshaping

of the emission spectrum. The heterogeneity of emission spectrum reshaping is uniquely

accessible to single-molecule hyperspectral imaging, as ensemble averaging is avoided

and both the super-resolved position of the �uorophore and its emission spectrum can be

measured simultaneously. Here, we demonstrate single-molecule �uorescence emission

spectrum reshaping upon near-�eld coupling to individual spherical gold nanoparticles

using hyperspectral super-resolution �uorescence imaging and we resolve this spectral

reshaping as a function of the spectral overlap and separation distance dependence be-

tween the nanoparticle and the dye. We �nd that dyes bluer than the plasmon resonance

maximum are red-shifted and dyes redder than the plasmon resonance maximum are

blue-shifted. Spectral reshaping shifts the primary vibronic peaks and changes the ratios

of vibronic transition probabilities to favor secondary vibronic peaks, leading to e�ective

emission maxima shifts in excess of 50 nm. These results illustrate the power of super-
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resolution hyperspectral imaging and full-�eld, full-spectrum electromagnetic simulations

for studying light-matter interactions.

3.2 Introduction

Single-molecule super-resolution imaging is a powerful technique that can elucidate

heterogeneities and uncover hidden or rare events that would otherwise be lost in en-

semble measurements, while also improving the image resolution by localizing the �uo-

rophore emission below the di�raction limit of light [42, 43, 74]. These attributes make

single-molecule super-resolution imaging indispensable for directly measuring the light-

matter interactions of metal nanoparticles and �uorophores. gold nanoparticles (AuNPs)

are particularly interesting in their ability to act as chemically stable optical antennas

that couple propagating light from free space to the near �eld through the resonant col-

lective oscillation of conduction band electrons known as a localized surface plasmon

resonance (LSPR) [17, 20]. The wide range of applications of noble metal nanoparticle

LSPRs include enhanced spectroscopies [30,75,76], enhanced solar light collection [77], hot-

electron/hot-hole chemistry [14,78], and enhanced catalysis [79]. Fluorescence microscopy

has explored many of the nuances of emitter-plasmon coupling, and single-molecule super-

resolution imaging has expanded our understanding of how plasmon-coupled �uorescence

depends on the dye/nanoparticle separation distance [29, 59, 80] and the dye/nanoparticle

spectral overlap [31,58,81]. Plasmon-enhanced �uorescence depends both on the excitation

enhancement, due to a redistribution of the local electric �eld around the plasmonic nano-

particle, and the emission enhancement, due to the wavelength- and distance-dependent

change in the LDOS [82].

The emission spectrum of a dye in the near �eld of a plasmonic nanoparticle will

be modi�ed by the wavelength-dependent radiative rate enhancement of the coupled

system. Since a �uorescence emission spectrum is a convolution of each vibronic transition

weighted by the respective rates, the relative rates of the transitions can be augmented in
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the presence of a nearby plasmonic nanoparticle, leading to emission spectrum reshaping.

The distributions of emission spectrum wavelength maxima and relative intensity ratios

of the vibronic transitions are highly accessible to single-molecule hyperspectral imag-

ing [83], where both the spectrum and super-resolved position of a �uorophore can be

determined, and wavelength-dependent e�ects of plasmonic coupling can be measured for

each molecule.

3.3 Experimental

3.3.1 AuNP sample preparation

Glass microscope coverslips were labeled with 100-nm thick Ti/Au grid marks, fabri-

cated with photolithography and physical vapor deposition (GCA, AS200 Autostep; Denton,

Enerjet Evaporator), and then cleaned by argon plasma etching (PlasmaEtch PE-50) fol-

lowed by sonication in 2% Hellmanex III solution (Hellma Analytics). The coverslips were

rinsed with distilled de-ionized (DDI) water and dried with nitrogen. 95 nm diameter

AuNPs (BBI solutions) were drop-cast onto the cleaned coverslips and dried in a vacuum

oven at 50 oC. The AuNP-coated coverslips were rinsed with DDI water and dried with

nitrogen.

3.3.2 Single-molecule hyperspectral super-resolution �uorescence imaging

Single-molecule epi�uorescence microscopy was performed on an inverted microscope

(Olympus IX-71) with a 1.4 NA 100× oil-immersion objective (Olympus UPLSAPO 100XO).

Four di�erent �uorophores were investigated: BDP-FL, BDP-R6G, Cy3, and Cy3.5 (Lu-

miprobe, NHS-ester conjugated). The dye was introduced by �owing 1–8 nM dye solution

into a reservoir on the AuNP-coated coverslip with syringe pumps (New Era Pump Systems,

Inc.); the dye solution in the reservoir was refreshed every 15 min by withdrawing the

old solution then infusing new dye solution into the reservoir. Single-molecule images
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and spectra were obtained by stochastic adsorption/desorption events of the dyes onto

the coverslip [12]. The dyes were all excited with collimated 1–2 kW·cm−2 488-nm laser

illumination (Coherent Sapphire). The scattered light was collected through the objective,

�ltered by a dichroic mirror and long-pass �lter (Semrock Di01-R488 and BLP01-488). The

light was then separated into two channels—one for imaging and one for spectroscopy—by

a 70R:30T beam splitter (Thorlabs BST10R). The 70% re�ected light was focused through

350-nm slits in the x-dimension in image-space and dispersed through a spectrometer

(Princeton Instruments SP-2300i, 150/500 nm grating) onto an electron multiplying charge-

coupled device (EMCCD) camera (Andor iXon 897) with 300-ms frame exposure times.

The 30% transmitted light was simultaneously imaged on a second EMCCD camera (Andor

iXon 887). The second camera was triggered by the spectral imaging camera and also had

an average exposure time of 300 ms. Microscope automation was performed using a custom

Matlab program integrated with Micro-Manager (Figure 3.5g) [84]. The background in the

single-molecule images and spectra was subtracted using the Single-Molecule Accurate

LocaLization by LocAl Background Subtraction (SMALL-LABS) method: the temporal aver-

age of imaging frames where no molecules were found within the same image region was

subtracted from each molecule image [85]. The background-subtracted image or spectrum

was then �t for super-localization and spectral deconvolution with two-term Gaussian

�tting (Equation 3.4). The substrates and syringe pump tubing were cleaned by sequential

soaking in hexanes (Fisher Scienti�c), acetone (Acros Organics), dimethyl sulfoxide (Sigma

Aldrich), and DDI water between experiments to prevent cross-contamination by the

di�erent dyes.

3.3.3 AuNP single-particle dark-�eld scattering spectroscopy

The AuNP-coated coverslip was immersed in DDI water and illuminated with a broad-

band white light source focused through a dark-�eld condenser (1.2–1.4 NA). The scattered

light was collected through a 100× 0.6-NA oil-immersion objective and imaged on the
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same hyperspectral imaging system. The scattering spectrum of each nanoparticle within

a 50 × 50 µm area was measured and correlated with its position on the coverslip.

3.3.4 Finite-di�erence time-domain simulations

Electromagnetic simulations were performed in Lumerical FDTD Solutions software

[31, 39]. To simulate the AuNP scattering spectrum, a 95-nm diameter AuNP on a glass

surface (n = 1.5) surrounded by water (n = 1.3) was excited by x- and y-polarized plane

waves from beneath the glass substrate. The scattering was measured as the total power

transmitted through a box surrounding the entire structure, and the electric �eld intensity

was measured in the xy-plane at 3 nm above the glass surface.

Dye coupling simulations were performed with a 95-nm AuNP in water on top of a

glass surface. Here the power was not supplied by a plane wave; rather, the dyes were

simulated as point electric dipoles at speci�c distances from the AuNP center (Figure 3.2b),

and transmission boxes were used to measure the total and radiative powers (Figure 3.3).

The FDTD simulation contains the information for all frequencies, which are preserved

for calculating the wavelength dependent excitation and emission enhancement factors

(Figure 3.1, Equations 3.1–3.3).

The reshaped spectrum of the coupled dye/AuNP pair, F (r ,ω), was calculated according

to Ringler et al. [82], this coupled spectrum was calculated for each dye at various dye/AuNP

separations, r , based on F0(ω), the intrinsic �uorescence emission spectrum of BDP-FL,

BDP-R6G, Cy3, or Cy3.5 (Equation 3.1–3.3):

F (r ,ω) = Fo(ω) × дex (r ,ωL) × дem(r ,ω) (3.1)

Here, дex is the excitation enhancement factor and дem is the emission enhancement

factor. The excitation enhancement factor is calculated at the laser frequency, ωL:
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Figure 3.1: (a) Excitation enhancement function, дex in Equation 3.2, vs.
dye/AuNP separation at 488 nm for a 95-nm diameter gold sphere.
(b–e) Emission enhancement function, дem in Equation 3.3, for (b) BDP-
FL, (c) BDP-R6G, (d) Cy3, and (e) Cy3.5. The enhancement factors in the
wavelength dimension remain relatively �at for dye/AuNP separations, r > 150
nm, but have a strong wavelength dependence for separations, r < 150 nm.
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дex (r ,ωL) =

∑
i=x,y,z E

2
i (r ,ωL)∑

i=x,y,z E
2
0i(r ,ωL)

(3.2)

where E2
i is the x-, y-, or z-component of the electric �eld intensity, and the emission

enhancement is calculated as:

дem(r ,ω) =
1
ηo

Pr (r ,ω)
P0r (r ,ω)∫ ∞

0 f (ω) Pr (r ,ω)P0r (r ,ω)
dω +

∫ ∞
0 f (ω)Ptot (r ,ω)−Pr (r ,ω)P0r (r ,ω)

dω + 1
η0
− 1

(3.3)

where Pr is the power radiated by a dipole source in the presence of the AuNP and P0r

is the power radiated by a dipole source in the absence of the AuNP, Ptot is the Purcell

enhancement of a dipole near the AuNP, f (ω) is the integral normalized intrinsic emission

spectrum of the dye, and η0 is the intrinsic quantum yield of the dye.

In the �nite di�erence time domain (FDTD) calculations, Ptot is measured as the total

power transmitted through a box around the dipole source (green box in Figure 3.2b) and

Pr is the power transmitted through a box around the source and the AuNP (purple box in

Figure 3.2b) [31, 39].

The resulting excitation factor is presented as a function of r in Figure 3.1a. The emission

enhancement factors, дem, are plotted as a function of distance and wavelength in Figure

3.1b–e. The greatest changes in the emission reshaping occur for separation distances <

150 nm.

3.4 Results and Discussion

3.4.1 AuNP characterization

A glass coverslip substrate labeled with a grid was decorated with AuNPs by drop-

casting for the series of single-molecule, single-particle measurements. The automated

sample stage was scanned over a 50 × 50 µm area and the relative position and dark-�eld

scattering spectrum of these 14 particles (grey points, Figure 3.2a and Figure 3.3) were
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measured; these spectra matched the LSPR peak from a FDTD simulation of a 95-nm

AuNPs in water on glass excited by a plane wave (black curve, Figure 3.2a).

3.4.2 Single-molecule hyperspectral super-resolution �uorescence imaging

The AuNPs were visualized by hyperspectral microscopy (Figure 3.5) to obtain their

super-resolution position (Figure 3.5a) and single-particle photoluminescence spectrum

(Figure 3.5b,f). Four �uorescent dyes—BDP-FL, BDP-R6G, Cy3, and Cy3.5—each with dif-

ferent overlap between their emission spectrum and the AuNP scattering spectrum (Figure

3.2a), were excited with 488-nm light to measure spectral reshaping upon plasmonic

coupling. In each experiment, a dilute (1 – 8 nM) solution of one dye was placed over

the substrate, and single-molecule images and spectra upon stochastic adsorption of dye

molecules onto the coverslip [12]. Hyperspectral single-molecule localizations were made

by simultaneously imaging the single molecules (Figure 3.5c) and acquiring the single-

molecule �uorescence emission spectra (Figure 3.5b,d,e). Thus, in the super-localized hy-

perspectral images of each molecule, each molecule location was compared to the position

of the nearest gold nanoparticle to obtain the dye/nanoparticle separation distance (dis-

tance r from the AuNP center x position as shown in Figure 3.2b). The plasmon-coupled

dye emission enhancement was calculated in FDTD simulations of point electric dipoles

at a distribution of dye/AuNP separation distances (red stars in Figs.3.2b and 3.4). This

wavelength-dependent emission enhancement was multiplied in wavelength space by the

intrinsic dye �uorescence spectrum to simulate the separation-dependent plasmon-coupled

dye emission spectrum, according to Equations 3.1–3.2 [82].

For each of the four dyes, the intrinsic dye spectrum was measured from the average of

the emission spectra of all molecules with dye/AuNP separation distances greater than 700

nm (blue curves in Figure 3.6. The experimental and simulated coupled emission spectra

were measured for each separation distance; to increase the signal-to-noise ratio, the

experimental spectra for all dye/AuNP separation distances within 40-nm bins were aver-
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Figure 3.2: (a) Normalized aggregate experimental (grey circles) and FDTD simulated (black
line) scattering spectra of 95-nm diameter AuNPs. Normalized BDP-FL, BDP-
R6G, Cy3, and Cy3.5 emission spectra (magenta, blue, orange, and red, re-
spectively). Excitation wavelength: 488 nm. (b) Side view of the FDTD dipole
simulation geometry. A point electric dipole (red star) is simulated in water
(white; n = 1.3) 3 nm above a glass surface (blue; n = 1.5) and r nm from a gold
sphere (diameter = 95 nm). The transmitted power is measured through boxes
around the dipole source (green box) and dipole/AuNP system (purple box) to
measure Pr and Ptot , respectively, in Equation 3.3.
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Figure 3.3: Single-particle dark-�eld spectra of the 14 nanoparticles studied. The normalized
spectra were aggregated to produce the grey curve in Figure 3.2. Insets: dark-
�eld scattering images of each particle. Scale bars: 1 µm.

44



Figure 3.4: Side view of simulated dye positions relative to the positions of the AuNP
and glass surface. Point electric dipoles (red stars) were simulated at regular
positions, r, according to the sampling rate, next to a gold sphere with a diameter
of 95 nm. The read-out of these simulations is described in Figure 3.2b
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Figure 3.5: (a) Imaging channel with a representative AuNP (orange box). (b) Spectral chan-
nel with the corresponding AuNP photoluminescence spectrum. (c) Imaging
channel after a BDP-FL dye molecule (green box) adsorbs to the surface several
microns from the AuNP (orange box). (d) Spectral channel with corresponding
BDP-FL �uorescence and AuNP photoluminescence spectra. (e) Background-
subtracted single-molecule �uorescence spectrum of the BDP-FL in the green
box in (c,d). (f) Background-subtracted single-particle photoluminescence spec-
trum of the AuNP in the orange box in (c,d). (g) Single-molecule hyperspectral
microscope diagram.
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aged and the simulated spectra were similarly binned and averaged for direct comparison

(Figure 3.7a,b; Figure 3.8). Because �uorescence emission spectra typically have a peak at

the favored vibronic transition wavelength and a redder shoulder that peaks at a longer

wavelength, each spectrum was �t with a two-term Gaussian function (Equation 3.4) to

evaluate the changes in the emission spectra at each dye/AuNP separation distance.

I (λ) = I1 e
−

(
λ−λ̂1
σ1

)2

+ I2 e
−

(
λ−λ̂2
σ2

)2

(3.4)

Here, I (λ) is the intensity spectrum as a function of wavelength, λ, I1 and I2 are the

intensities of the main and secondary peaks, respectively, λ̂1 and λ̂2 are the peak centers

in nm, and σ1 and σ2 are the peak widths in nm.

The shift in emission maximum, ∆λmax = λ̂
′
max − λmax , was calculated from the �ts to

Equation 3.4 for experimental and simulated data (Figure 3.7c and d, respectively). Here,

λmax is the main �uorescence emission peak, λ̂1 for the uncoupled dye (separation distances

greater than 700 nm from a AuNP), and λ′max is the wavelength of whichever peak is brighter

for the dye/AuNP coupled system. Thus, λ′max = λ̂1 when I1 ≥ I2 and λ′max = λ̂2 when

I1 < I2 (Figure 3.8). In Figure 3.7c,d, ∆λmax is subtle (|∆λmax | / 5 nm) for most separation

distances but very large for BDP-FL at small separation distances (magenta curve in Figure

3.7c). The source of this large shift is apparent from the bottom-most curves in Figure

3.7a,b: at these small separation distances, the red BDP-FL emission shoulder is much

more enhanced than the blue BDP-FL emission peak, and I1 < I2, giving rise to a > 50 nm

spectral emission shift.

To examine the relative enhancement of the emission peak and the emission shoulder,

the change in the intensity ratio between the two peaks, ∆(I2/I1), was calculated for each

dye/AuNP separation distance in Figure 3.7e,f. Here, ∆(I2/I1) = I ′2/I
′
1 − I2/I1 , where I1 and

I2 are the intensities of the main and secondary peaks in the uncoupled dye and I ′1 and I ′2

are the intensities of the main and secondary peaks in the dye/AuNP coupled system. The

emission spectrum reshaping for BDP-FL (Figure 3.7) is maximal for dyes that are very close
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Figure 3.6: Emission maximum distributions (left axis, histograms) and average emission
spectra (right axis, curves) for all molecules with r>700 nm (blue curve) and
r<400 nm (orange curve) for each dye: (a) BDP-FL, (b) BDP-R6G, (c) Cy3, and
(d) Cy3.5. Here, r is the dye/AuNP separation distance (Figure 3.2b).
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Figure 3.7: (a,b) Average emission spectra for BDP-FL at di�erent dye/AuNP distances for
data (a) and simulation (b). Vertical dashed lines represent intrinsic emission
maximum. (c,d) Emission maximum change versus dye/nanoparticle separation
for (c) data and (d) simulation. (e,f) Change in relative intensity ratio for data
(e) and simulation (f). (c–f) BDP-FL, BDP-R6G, Cy3, and Cy3.5 are magenta,
blue, orange, and red respectively.
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Figure 3.8: (a) Schematic of the two-term Gaussian (Equation 3.4) �t to a single-molecule
spectrum. The full �t (yellow curve) is the sum of a Gaussian distribution with
intensity I1 (blue curve) and a Gaussian distribution with intensity I2 (red curve).
The maximum wavelength, λmax is the peak of the blue curve when I1 ≥ I2 (blue
dashed line), and the peak of the red curve is λmax when I1 < I2 (red dashed line).
(b–g) Average emission spectra for dyes at di�erent dye/AuNP distances for
data (b, d, and f) and simulation (c, e, and g). Vertical dashed lines show the
intrinsic emission maximum of each dye.
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to the AuNP. Dyes that are localized within 20 nm of the nanoparticle in experiment or 40

nm in simulation show large enhancements of the red shoulder. This asymmetry results in

an inversion of the relative intensity of the main and shoulder peaks (I2/I1 > 1 in Figure

3.7e,f) and leads to a large spectral shift (∆λmax ) of greater than 50 nm for experiment,

although complete inversions are not seen in the simulated spectra. Shifts in the emission

maximum are also seen in BDP-R6G, Cy3, and Cy3.5, but without an inversion of the peak

ratios (Figures 3.7c–f and 3.8).

For all the dyes, the changes in the emission spectrum are greatest for separation

distances less than 100 nm. The BDP-FL, BDP-R6G, and Cy3 dyes are similar to or bluer

than the AuNP LSPR (Figure 3.2a). In these cases, a red shift is observed upon coupling

to the plasmonic AuNP: the emission maximum change, ∆λmax , and peak intensity ratio

change, ∆(I2/I1), are positive, representing an enhancement of the red part of the spectrum

over the blue (Figure 3.7c–f). Conversely, Cy3.5, which is redder than the AuNP LSPR

(Figure 3.2a), experiences blue shifting: the blue side of the spectrum is more enhanced

than the red side.

3.5 Conclusions

Single-molecule hyperspectral imaging allows the measurement of intrinsically hetero-

geneous distributions. Emission spectrum reshaping of single molecules coupled to single

AuNPs is a distance-dependent process, and simply binning molecules into binary near or

far groups obfuscates the more dramatic changes (Figure 3.1). Here, we �nd that molecules

localized within 100 nm of the AuNPs experience the greatest changes in their spectrum

and we measure an overall trend: dyes with emission bluer than the LSPR experience a

red-shifting of the emission spectrum and dyes with emission redder than the LSPR will

experience a blue-shifting of the emission spectrum. Plasmon-enhanced �uorescence is a

resonant process, which leads to selective enhancement of one vibronic transition over

another; this coupling produces spectral reshaping. The extent of spectral reshaping overall
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agrees with electromagnetic simulations. Here, we have not accounted for mislocalization

of the molecules, where the apparent position of a molecule is shifted from the actual

position due to coupling with the nanoparticle [32, 33, 39, 86]. Thus, we attribute the di�er-

ences between experimental results and simulation primarily to the mislocalization e�ect.

These results demonstrate the power of single-molecule hyperspectral imaging. We believe

that these results may also be used in conjunction with analytical models of plasmon/dye

coupling to recover the actual position of a �uorophore in a coupled system [86].
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CHAPTER IV

Conclusions and Future Directions

4.1 Conclusions

Single-molecule and single-particle imaging is an indispensable tool for studying

the heterogeneity of nano- and microscopic systems. In Chapter II, the single-molecule

technique, photoactivated localization microscopy (PALM) was used to evaluate the en-

hancement of �uorescent proteins in living V. cholerae cells on nanosphere lithogra-

phy (NSL)-fabricated nanotriangle arrays (NTAs), uncovering some trade-o�s between

nanoparticle (NP) size and array coverage when using NSL for array fabrication, revealing

greatest enhancement not for the best resonance overlap, but for the optimal combina-

tion of surface coverage and overlap. We also expanded on the �ndings from Chapter

II and examined a much wider parameter space for enhanced, live-cell imaging using

electron-beam lithography (EBL) fabricated nanoparticle arrays (NPAs) in Chapter II. Ad-

ditionally, in Chapter III, hyperspectral points accumulation for imaging in nanoscale

topography (PAINT) was used to study the distance- and wavelength-dependent coupling

of individual dyes with single gold nanoparticles (AuNPs). There, the emission spectrum

reshaping of four di�erent �uorophores were characterized and the distance dependent

spectral reshaping was thoroughly analyzed, revealing that dyes redder than the localized

surface plasmon resonance (LSPR) were blue-shifted, and dyes bluewer than the LSPR were

red-shifted. In addition to PALM and PAINT, dark-�eld imaging was used to measure the
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LSPR modes of the arrays and individual particles, enabling evaluation of the heterogeneity

of the particles.

4.2 Future Applications and Technologies

4.2.1 Gold nanoparticles as absolute nanothermometers

Gold nanoparticles have interested scientists for over 150 years, since Michael Faraday

�rst described optical scattering of gold nanoparticles as the cause of the ruby tint in

colloidal gold solutions [87]. Although there has been a wealth of research on the scattering

and enhancement properties of gold nanoparticles [88, 89], they also exhibit absorption

and photoluminescence [90–92]. Although the mechanism of gold photoluminescence is

hotly debated [91,92], it has nevertheless been useful in single-molecule and single-particle

imaging: plasmonic nanoparticles have been used as a �duciary for drift correction and

super-localization [28,93]. In addition to emitting, an absorbed photon can also be converted

to local heat, which is the principle behind photothermal therapy and photothermal imaging

with gold nanoparticles [94–97]. The temperature gradients produced by gold nanoparticle

photothermal conversion can be quite intense [98], but many methods for measuring

the temperature are in bulk and performed in the steady-state [99, 100]. Recently, a new

method of nanothermometry was developed that uses the intrinsic photoluminescence

of gold as a readout for the local temperature and nanoparticle temperature [101]. This

method uses the photoluminescence spectrum of a gold nanoparticle excited above the

LSPR band, and the antistokes emission spectrum from on-resonance excitation to extract

the temperature of the nanoparticle and the surrounding medium. We build on these

principles and propose an all-�uorescence method for AuNP nanothermometry requiring

only the photoluminescence intensity of a AuNP.
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4.2.1.1 Sample preparation and gold nanoparticle characterization

Nominally 80-nm AuNPs (BBI solutions) were drop-cast onto a labeled grid coverslip

and dried under nitrogen. The AuNPs were imaged in a dark-�eld spectroscopy (DFS)

setup where an oil immersed dark-�eld condenser (1.2–1.4 numerical aperture (NA)) was

used to focus the light from a halogen lamp onto the sample. The light scattered from the

sample was collected through a 100× 0.6 NA oil immersion objective. A region of single

AuNPs was found, and each particle’s DFS spectrum was recorded (Figure 4.1).

4.2.1.2 Single-particle nanothermometry

The photoluminescence intensity of each particle was recorded at various temperatures

between 26 and 56 oC and various 561-nm laser excitation powers between 5 and 50 W·cm−1.

The microscope was �tted with an objective heater with feedback control to maintain the

temperature of an oil thermal bath, a thermocouple was placed into the thermal bath for

continuous temperature monitoring, and automated stage and focus control were used to

compensate for thermal drift (Figure 4.2). The photoluminescence was collected through a

1.4 NA objective and the elastic scatter was �ltered by a 561-nm dichroic and long-pass

�lter set (Semrock Di01-R561 and BLP01-561). The photoluminescence image was collected

on an electron multiplying charge-coupled device (EMCCD) camera (Andor iXon 897) with

100-ms exposure time. Each image sequence was taken at a particular temperature (26–56

oC nominal temperature) and nominal laser power (5–50 mW output). For each frame, the

bath temperature was recorded and the power delivered to each particle was calculated

based on the illumination pro�le in the image.

4.2.1.3 Preliminary Results

The single-particle positions and intensities were determined by subtracting the �tted

background from each image and using the SMALL-LABS program to �nd and �t each

particle in the image [85]. The particle positions were then used to determine the actual
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Figure 4.1: (a) Single-particle DFS spectra. (b) Nanoparticle locations for each spectrum in
(a).
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Figure 4.2: Single-particle nanothermometry microscope setup.
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power delivered to the particle at each temperature within the Gaussian illumination spot.

Particles with the same illumination power and temperature were averaged together to

obtain the emission intensity at that particular power and temperature combination (Figure

4.3).

As seen in Figure 4.3, the photoluminescence intensity decreases with increasing tem-

perature, and increases with increasing power. The results are qualitatively consistent with

the theory presented in [101], where the increase in temperature leads to an increase in

the phonon occupation number, n̄ (Equation 4.1).

n̄ =

(
exp
}Ω

kBT
− 1

)−1
(4.1)

where }Ω is the phonon energy and kBT is the thermal energy.

The increase in phonon occupation number leads to a decrease in Stokes photolumi-

nescence intensity, Ω, Equation 4.2.

I (ω) = ILSPR(ω)

((
exp
}(ω − ωL)

kBT
− 1

)−1
+ 1

)
(4.2)

where I (ω) is the emission intensity at frequency ω and ωL is the laser frequency.

4.2.1.4 Conclusions

Although there is a clear non-linear dependence of the photoluminescence on the

excitation power and bath temperature, the next steps for determining the temperature of

the nanoparticle are not clear, given the lack of spectral information from this particular ex-

periment. Two possible paths to proceed along are to use a particular slice of the data as the

baseline and establish a calibration curve, or to perform the experiment with hyperspectral

imaging (Chapter III to obtain the emission spectrum as well. Additionally, the theoretical

method described in [101] assumes that the photoluminescence is dominated by phonon

coupling, but other theoretical frameworks propose that carrier-carrier interactions domi-
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Figure 4.3: Contour map of the AuNP photoluminescence intensity at di�erent 561-nm
laser powers and bath temperatures.
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nate and would obey Fermi statistics [91, 102]. Thus, in addition to identifying a method to

extract the thermal information for these results, a more comprehensive understanding

of the origin of photoluminescence emission is necessary to justify that the method is

actually measuring the temperature of the particle and not the thermal distribution of hot

electron/hole pairs.

4.2.2 Advances in live-cell imaging

Overall, plasmonics stands to fundamentally improve super-resolution imaging by

addressing single-molecule �uorescence limitations, such as low brightness, through

excitation con�nement, enhanced electric �eld intensities, and increased local density

of states. Looking forward, plasmonics will allow a variety of spectroscopies, including

�uorescence and Raman, to be performed on the subcellular level to obtain dynamic

chemical and structural information. Additionally, plasmonic nanoparticle arrays will

improve the resolution of �uorescence microscopy to the order of the size of the emitter

and reduce photobleaching for monitoring real-time protein dynamics [28]. For instance,

we envision combining plasmonics and nano�uidics to produce a platform for con�ned,

physiological, enhanced imaging in bacteria (Figure 4.4). Overall, as technologies improve,

all of the tools discussed here can be combined to reach higher levels of understanding

about fundamental, subcellular biology. Through innovative combinations of con�nement

approaches, imaging modalities, and nanotechnologies, we will �nally close the mismatch

between the spatial resolution of light microscopy and the nanoscale world of cellular

biophysics to enable a wealth of discoveries [45].

4.2.3 Advances in single-molecule information content

There is a wealth of information stored in each molecules emission; the �uorescence

position, polarization, and spectrum each encode information about the molecule and its

local environment. There are many methods to get at one or two of these properties (see
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Figure 4.4: Single-cell analysis on a plasmonic substrate within a micro�uidic channel will
permit active control of the cellular environment. Two intracellular �uores-
cent proteins (red and green) couple to the plasmonic substrate for plasmon-
enhanced two-color single-molecule imaging. (Inset) Electric �eld enhancement
above each plasmonic nanotriangle [45].
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references [83, 103, 104] and Chapter III), but very few to measure all three simultaneously

[105].

Here, I propose a new method for obtaining single-molecule or single-particle, hyper-

spectral, polarization images (Figure 4.5). The microscope setup involves two channels

separated by a beamsplitter and made orthogonal in the image-plane polarization by

placing a half-wave plate in one of the paths. Each channel is then split with a wavelength-

dependent, polarizing beam displacer (PBD) into relative parallel (P‖) and perpendicular

(P⊥) polarized channels imaged on an EMCCD camera. The image-space relative polariza-

tions of the molecules are obtained according to Equation 4.3, and the spectrum is acquired

from the wavelength-dependent displacement in the P⊥ channels.

θ = arctan

(√
I ‖

I ⊥

)
(4.3)

where θ is the relative angle of the molecule in the image plane, I ‖ is the intensity of the

molecule image in the P‖ channel, and I ⊥ is the intensity of the molecule image in the

P⊥ channel.

Even though the spectrum and polarization can be obtained with only one channel, if

the relative orientation of the object is aligned in either of the P‖ or P⊥ channels, either

the localization or spectrum is lost since all of the signal will be in the orthogonal channel.

If the signal is only in the displaced channel (P⊥), only a spectrum can be obtained due to

the missing correlated image in the P‖ channel. Conversely, if the signal is only in the P‖

channel, only a localization can be obtained due to the missing correlated image in the P⊥

channel. By splitting the signal into two orthogonal channels, the aligned molecule/particle

can contain both localization and spectral components as well as two measures of the

image-plane orientation. Thus the information quality and content is improved.

Applications for this hyperspectral, polarization, super-resolution imaging method

are numerous. When �uorescent molecules couple with a plasmonic nanoparticle, the

emission is no longer from the �uorophore alone, but from the coupled system, which

62



Figure 4.5: Hyperspectral polarization imaging setup. red and yellow arrows indicate same
polarization component in the imaging plane. The image in the re�ected channel
is mirror-transformed to match the transmitted channel.
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results in a point-spread function that when �t with a 2-D Gaussian function gives the

wrong position, this e�ect is known as mislocalization. Having both spectral and polar-

ization information will advance solving the mislocalization problem that occurs when

emitters couple with plasmonic nanoparticles by providing more information about the

coupling to be used with analytic models of emitter/nanoparticle coupling [32, 33, 39, 86].

Hyperspectral-anisotropy, super-resolution imaging could allow for studying biological

systems with multiple di�erent �uorophores targeted to cellular regions of di�ering vis-

cosity or organization. The �uorophores could be separated by emission spectrum and the

local viscosity or organization can be measured by the molecule orientations [106].

Super-resolution �uorescence imaging has proved an invaluable tool in studying light-

matter interactions and dynamics in live-cell imaging. Further methods and technological

advances within the �eld ensure that super-resolution �uorescence imaging will continue

to be at the forefront of uncovering the mysteries of the nanoscopic world.
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