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Abstract

Financial markets contribute to the stability of the global economy. A vivid example of

this crucial connection is the crash in 2008. Although this connection is well-established, the

underlying structure of markets is complex. Complex systems such as this tend to operate in

a nonlinear fashion, generating extreme and rare events. In the era of high-frequency trading,

we have been witnessing other unusual and extreme phenomena such as flash crashes and

technical difficulties due to glitches. Given the presence of these phenomena, a powerful

tool is needed to monitor markets’ behavior and activities. Recent research in finance has

mainly focused on analyzing individual stocks (i.e., microscopic analysis) while ignoring the

overall interactions and dynamics between them (i.e., macroscopic analysis), which is crucial

to identify abnormalities. To better represent markets’ behavior, this dissertation proposes

a novel macroscopic perspective, allowing for prediction and understanding of anomalies.

Although, the focus of this dissertation is mainly on equity (or stocks) markets, the proposed

methods are general such that it can be extended to other financial markets.

In the first part of this dissertation, we propose new sensors to monitor equity markets,

adopting a macroscopic perspective. This perspective offers new insights into the physics of

stocks. Briefly, we analyze stocks within the context of fluid dynamics in which the movement

of stocks is viewed as particles within the “fluid flow” context. For the first time, concepts

from physics are utilized and incorporated in modeling both internal and external dynamics.

Based on the physics of fluid dynamics, we develop macroscopic variables, such as density,

velocity, flux, and pressure. A model consisting of a system of stochastic nonlinear partial

differential equations is introduced. The model connects and determines the evolution of

macroscopic variables. The validation and usefulness of the new approach is discussed in the
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last part of this chapter.

The second part extends the analysis to examine the structural properties of the proposed

model. We show that the model exhibits weak solutions, such as shock and rarefaction waves.

These solutions provide a new narrative about financial shocks. We also present a theoretical

analysis of the behavior of the macroscopic variables. To solve the system of stochastic

nonlinear partial differential equations adaptively, we devise an integrative algorithm which

combines numerical methods and stochastic filtering techniques. This algorithm is tested on

abnormal and normal trading days. The results suggest that abnormalities can be identified.

In the third part, we tackle the problem of detecting medium intensity crashes, which are

macroscopic abnormalities occurring on a given trading day. These abnormalities create an

imbalance with normal market activities because they rarely occur. To address these chal-

lenges, we present a cost-sensitive classification model based on a recurrent neural-network

called Reservoir Computing (RC). We also extend the classical RC to process predictions

from the physics-based model presented in Chapter 2. This approach includes informa-

tion about the underlying mechanism of the markets, showing significant improvement in

detection accuracy.

This dissertation offers a macroscopic perspective by incorporating internal and external

dynamics. Market makers can use this perspective to detect irregularities and questionable

practices. When market makers are more aware, regular investors will no longer worry that

they are trading in a losing or rigged game.
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Chapter 1

Introduction

Financial markets, including equity 1 and derivatives markets, are experiencing serious chal-

lenges that are often characterized by a sharp decline during crisis periods. In the last 20

years, we have witnessed several financial crises with devastating consequences. The crisis in

2008 is a testimony to the complexity of the financial system. This complexity is increasing,

exponentially, with the advent and expansion of computing technology and high-frequency

trading [61]. Though the benefits of such technologies are profound, abnormal phenomena

have been observed, including the so-called flash crash on May 6th, 2010 [112] and technical

difficulties (or glitches), such as the 2012 Facebook shares listing incident. A flash crash

is defined as a sudden drop that lasts for a short period of time [52]. These crashes may

evolve in the future [38]. Another implication of the adaption of new trading practices is

the creation of unjust opportunities [84]. Thus, monitoring markets is necessary to detect

and predict abnormal activities while ensuring fairness and equal opportunities in trading.

Decision makers should adopt a perspective that appreciates the existing challenges that are

attributable to the complex interactions between internal and external influences and forces.

However, currently, decision makers lack an effective monitoring tool.

Despite the development of models in finance and economics, the behavior of financial

markets is still an open question that is considered an exciting example of a system’s com-

1In this dissertation, the terms “stocks” and “equity” are used interchangeably.
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plexity [65]. The authors of [65] assert that several impractical assumptions about market

dynamics have persisted in the literature. For instance, although the equilibrium theory is

the baseline of many economics models, financial markets are not in equilibrium. As many

other critics assert, markets remain unbalanced which means that the general assumptions of

fair play can be called into question [73]. Another example of questionable assumptions can

be seen in the finance literature. The Efficient Market Hypothesis (EMH) is a well-known

hypothesis in which rational traders are competing to maximize their profits in a market

where asset prices reflect all the available information. A wide range of papers criticize the

EMH and reject the assumption that all traders are completely rational [75, 85, 46]. In

fact, financial markets, where several participants are competing to gain the most profit, is

considered a progressive system. These markets, generally, exhibit irrationality and unusual

patterns.

Looking more broadly at the prediction literature, we can see two main streams emerge.

One assumes crises are Black Swans and thus can not be detected [94]. The other main

stream suggests that markets exhibit signals prior to a crisis (or dragon-king and tipping

point), [111], drawing heavily from physics literature. Given the powerful insights that can

emerge from physics, this dissertation is related to the latter main stream, aiming to propose

models that accurately represent markets’ behavior and possibly predict anomalies 2.

If we look at the most successful methods, concepts, and theories in finance or economics

to date, we may be surprised to observe the substantial quantity of significant works that

have been derived (partially or wholly) from or solved by the aid of physics. In a complex and

stochastic system where smaller system entities interact, it is essential that the conventional

ways of thinking be avoided, as they may lead to irrational actions. Physics can come into

play here by suggesting laws for tackling complex systems through an appreciation of the

interaction of these systems’ entities. Our approach in this dissertation is to use physics, in

particular fluid dynamics, to model the stochastic and macroscopic nature of equity markets.

2The terms “anomaly” and “abnormality ” are used interchangeably throughout this dissertation.
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Though we focus our analysis on equity markets, our approach can be extended to other

markets. Extensions and future works are highlighted in Chapter 5.

In equity markets, we can think of each stock as an entity in a larger, more complex sys-

tem, with many other entities. A plethora of research in this area concentrates on the study

and analysis of individual stock movements, and the movements of a particular portfolio of

those individual stocks [25, 122, 129, 107]. Inspired by fluid dynamics, we study the flow of

stocks in the markets by defining mass as the number of stocks at a specific time and price,

and density as the mass per unit price. We build a dynamical model to understand the flow

of all stocks among all markets, not only a single market. Unlike other models, our model

is macroscopic and constitutes a stochastic version of conservation laws from physics. These

laws are composed of a system of nonlinear partial differential equations. In this disserta-

tion, we investigate a stock as a contributor to the mass in the price-time space. We mimic

studies found in oceanography, where for example, the application of conservation principles

explains the creation of ocean waves. This contrasts with a microscopic look at the ocean,

where the movement of each water particle is considered [8].

This dissertation introduces an original perspective about equity markets. A macroscopic

model from the viewpoint of fluid dynamics and physics is proposed. This model can alert

regulators to unusual activities in the flow of stocks. In particular, the fluid flow in physics

is used to measure the irregularities. The established link between physics and finance will

bring greater clarity to those who run markets, as well as regular investors who will no longer

worry that they are trading in a losing or rigged game.

1.1 Summary of Contributions

This dissertation is presented in three separate scientific manuscripts. In Chapter 2 and

3, we incorporate material from [1] and [2], both coauthored with Romesh Saigal. The

contribution and organization of this dissertation is summarized below.

Chapter 2 builds the foundation for the adaption of fluid dynamics concepts to equity
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markets. We create new measures for the detection and prediction of unusual events, based

on ideas from the physics of fluid dynamics. We then rigorously derive and interpret the mass

and momentum conservation laws as they apply to equity markets. A new model consisting

of a system of nonlinear stochastic differential equations is proposed. Three main properties

of the proposed model are highlighted. The model is fitted to flash crash data and the results

are analyzed.

In Chapter 3, we investigate further the properties of the proposed model. The type

of solutions generated by the model are shown to be in the form of shock and rarefaction

waves. We link these solutions to financial shocks and provide conditions under which they

are formed. To solve the proposed model dynamically, we propose an efficient algorithm,

which is a novel integration of numerical methods with stochastic filtering techniques. The

results of implementing the proposed algorithm on two datasets reveal that unusual market

flows can be identified.

Chapter 4 studies the prediction and detection of medium intensity crashes (i.e, market

crashes in the trading day). Studies dealing with these crashes are scarce in the literature. By

considering medium intensity crashes as the minority class of market activities, we propose a

cost-sensitive classification approach based on a neural network structure, known as Reservoir

Computing (RC). RC is used to classify markets as normal or abnormal. We further introduce

a hybrid classification approach which combines the classical RC and the physics-based model

introduced in Chapter 2 and further investigated in Chapter 3. To test the hybrid approach,

we utilize unique datasets from the previous ten years. The proposed hybrid approach

demonstrates that it can detect abnormalities with high Precision and Recall.

The remainder of this dissertation presents the details of our research as outlined above.

Each chapter is presented in a scientific format, with its own introduction, methods, re-

sults, and conclusion sections. The dissertation concludes with chapter 5, which provides a

summary of this research and highlights future directions.
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Chapter 2

Insights into the Macroscopic

Behavior of Equity Markets: Theory

and Applications

2.1 Introduction

Equity market crashes are defined as sharp declines in the value of market securities. The

crashes are rare and hard to explain. In 1987, the US stock market dropped by about thirty

percent over the course of four trading days. We may wonder what causes financial crashes

and whether they signal market inefficiency. The research in this area is still growing, but

fundamental aspects of crashes are poorly understood, including how to predict them [74]1.

As market exchanges have become more automated, with the adoption of limit-order

systems, and as the capability of computing technology expands, high-frequency trading will

become a relatively common practice. With the advancement of methods of execution, new

abnormalities and irregularities have started to appear. These events raise questions about

the stability and structure of financial markets [72]. In the last decade, stock markets and

1The results of this chapter have been published in [2].
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economies have experienced time periods that are characterized by sudden state transition

and high unpredictability [112]

The flash crash is a poignant example of such irregularities. A flash crash is a mini-crash

that is sudden and causes a sharp drop in the market within a short period of time [52].

The authors of [112] believe that flash crashes are not new phenomena, and that they in

fact share similarities with previous crashes but exhibit different specifics. Given the aim of

realizing profits by traders, one can expect more such crashes in the future [38]. An example

of this is the recent flash crash of Amazon stock [17].

The manuscript [27] argues that a flash crash is a failure in a large-scale complex socio-

technical system. In 2007, the Large-Scale Complex Systems IT Systems Initiative was es-

tablished to address issues in science and technology related to financial-market failures. The

initiative constitutes the interactions of the following fields: complexity science, predictable

software systems, high-integrity systems engineering, socio-technical systems engineering, or-

ganizational complexity, and novel computation approaches. This program, which resulted

in some publications on system failures, was terminated in 2013, but the problem is still

relevant. Although many papers have investigated the reasons for mini-crashes, only a few

have provided a suitable model for predicting them [52, 38].

The complex-systems approach, therefore, might provide insights for policy makers, aca-

demics, and market participants since the dynamic nature of complex systems is well suited

to capture the nonlinear relationships between their inputs and outputs [112]. According to

power-law statistics, small and large events belong to the same distribution, and it’s believed

that major catastrophes started out as small events that didn’t stop growing and became

extreme events [111]. The scientific community considers extreme events to be unpredictable

and in many cases hard to forecast. This view is emphasized by Bak in [6], where the concept

of self-organized criticality was introduced. The notion blossomed when Taleb introduced the

black swan concept in 2007 [94]. However, a recent study of financial crashes [111] suggests

that markets undergo a phase transition before experiencing a crash. This hypothesis also

6



suggests that equity markets exhibit signals referred to as dragon kings, which are extreme

events that belong to the same class of certain other events but with an amplifying mech-

anism. In their article [125], Werner and his colleagues proposed examples where dragon

kings can be detected. A recent method for detecting bubbles and crashes are reported in

[123] where the authors show that a potential force is detected before a main crash in which

it is considered as a “precursor” to a potential risk in the markets.

In this chapter, we investigate the existence of market sensors, which monitor certain mar-

ket measures and send out impulses in cases of abnormal activity. These measures are based

on properties drawn from physics and modeled as a dynamical system to determine their

future evolution. Physics and finance have interacted for a long time. The one-dimensional

random walk was introduced in finance by Bachelier in 1900 after the venture of physicists

into stock markets [4]. Bachelier’s work was eventually forgotten, but it was reinvestigated

by scientists in 1950 and later to describe various aspects of financial markets. [119]. Their

works have motivated significant research in options pricing theory, portfolio theory, and

many other areas [119, 92]. In 1900 Bachelier introduced the notion of Brownian motion

in his Ph.D. dissertation, and Einstein used probabilistic models to explain the theory [39].

Brownian motion was first discovered by the biologist Robert Brown in 1827 [15] while study-

ing microscopic pollen particles floating in water. Geometric Brownian motion has become

the central mathematical model in pricing financial derivatives [39]. In the finance literature,

a stock price S(t) is assumed to be a stochastic process and follows a geometric Brownian

motion given by

dS(t) = αS(t)dt+ σS(t)dW (t), (2.1)

where α is the drift term, σ is the volatility of S(t), and W (t) is the standard Wiener process.

The properties of a Wiener process can be found in any standard textbook on option pricing

and financial mathematics.

In equation (2.1), we see an attempt to analyze a single random variable S(t) in a

dynamical system. This model is microscopic; it aims to model an individual stock and
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study its behavior. Even if this model represents the actual behavior of the underlying stock

price S(t), it does not capture the overall dynamics of the stock market. The purpose of our

study is to define a macroscopic model with sensors that are triggered by abnormal market

activity.

The increased interest in financial modeling has motivated a new line of research, in

mesoscopic models [56], which in many cases consider a portfolio of stocks. Market indexes

are a good example of these models. Other mesoscopic models in statistical physics are

used in modeling heterogeneous agents with a view to understanding their interactions.

A well-known example of a mesoscopic model is a Fokker–Plank equation [56]. Several

other methods and tools from statistical mechanics have been employed in financial markets

[14, 21, 35]. They were implemented in the first place because they are capable of dealing with

sophisticated environments where complex behavior arises from a rather simple interaction of

some components. The purpose of this trend of research is to identify the universal and non-

universal features of financial data [28]. A major area of research in the physics of finance is

concerned with power tails, especially in wealth distribution, which was predicted by Pareto.

The tools from statistical mechanics help to identify the features of tails in wealth distribution

[22, 83]. There have also been attempts to derive models with the tools of the kinetic theory

of fluids [29, 36]. Such models are based on partial differential equations (PDEs), which

makes it possible to obtain general information and derive asymptotic behavior analytically

[28]. An important application of fluid dynamics in the financial markets is introduced in

[128]. There, the authors propose a new model for financial price movements in which the

prices in the order book are described as colloidal Brownian particles.

Therefore, it is clear that the implementation of statistical mechanics and physics in

finance is not new. Each method has its novelty and importance to the field. In both

microscopic and mesoscopic models, the dynamical model, if it exists and is specified, is

concerned with only a single stock or a portfolio of stocks. This approach might be useful if

the aim is to study the stocks within the portfolio under study. An obvious drawback of such
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models is that even though the PDEs involved might provide a good prediction of the studied

state behavior, it might be hard to verify with data. Also, those models might not capture

the overall behavior of markets, as they consider a small subset of that market. Further,

research based on PDEs with agents as the central argument are lacking in information,

assuming that such information is not available to the public.

In this chapter, we advance the literature by building a system of stochastic partial

differential equations to analyze and monitor equity markets macroscopically. This model

employs physics principles borrowed from fluid dynamics, and provides new measures for

detection and prediction of unusual events. It begins by aggregating all stocks traded in

several exchanges in an economic zone. It then defines their movement in the price–time

domain through the definition of macroscopic variables such as density, average velocity, flux

and pressure, the model then connects these variables through “conservation principals” to

define a dynamical system represented by a stochastic partial differential equation (SPDE),

and the sensors then monitor several of the resulting parameters defining the SPDE.

It is important to mention that the analogy between fluid dynamics and economics was

investigated extensively in the literature (see e.g., [76, 88, 35, 29, 101]). This analogy was

approached from different angles so that new results might emerge. The introduction of the

hydraulic model in macroeconomics is a good example of such attempts. Recent research

in this direction is reported in [31] where the authors propose a hydraulic model to explain

a simple trade flow between two countries. Our model is adaptive to the conditions of the

market, suggested by the data. This is another important distinguishing feature of our work.

Our model will benefit market makers and regulators, as it is a predictive model that

can be used to monitoring equity markets. We envision that the model can be integrated

with an automation system composed of an artificial intelligence algorithm that sends out

an alarm in cases of abnormal behavior. One might ask: What is the best action to take

when an alarm is received? This is a separate research question, which we will pursue later.

In this work, we focus on building the dynamical model. The solution of our proposed model
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is challenging, and will be covered in Chapter 3. The integration of the artificial intelligence

which is capable of warning of the impending instability in the market is under investigation.

The chapter proceeds as follows. In section 2, we present the macroscopic model and

review its properties. In section 3, we examine the assumptions made in our analysis, verify

them with data, and present computational results. Section 4 outlines our future work in

this area and concludes the chapter.

2.2 The Equity Markets Macroscopic Model

Microscopic models are common because they tend to be sensitive to small perturbations,

but they fail to provide a quantitative description of macroscopic phenomena. The research

problem we consider here is: Can we build sensors that alert market makers to abnormal

activity? We investigate the existence of such sensors within a proposed novel macroscopic

dynamical model by defining new market measures which can be sensed and thus give a

different prospective on markets [1].

Observing a stock market from a monitor, one can see the movement of stock prices as

fluid. We view the movement of the stocks in the market as the flow of fluid particles. In

physics the flow of fluid particles is well understood, but considering a stock flow in this way

needs further explanation. We can think of a stock as a molecule or particle that’s flowing

in a market exchange. The flow takes place in the price–time domain, unlike the three-

dimensional space and time in physics. Each stock represents a single particle. Generally

speaking, in physics there are two ways to describe the resulting fluid flow: the Eulerian

description and the Lagrangian description. In the Lagrangian description, each fluid particle

is tracked while it is moving in time and space, while the Eulerian description focuses on a

specific sub-space and observes an aggregate particles of fluid as they flow through sub-space

as time moves forward. In analogy of equity markets to fluid flow, in this work we focus on

the Eulerian description.
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The first macroscopic variable of the model is the density ρ, whose measure in number

of stocks per unit price. For example, in traffic flow models, ρ(x, t) is the density of cars

on a highway, that is, the number of cars per kilometer at milepost x at time t [82]. In our

model, ρ(x, t) is the number of stocks per price x at time t.

Let x ∈ R+ represent the price of stocks, and let ρ(x, t) be the density of stocks at price

x and time t. The domain of space x and time t is discretized into regions [x1, x2]× [t1, t2],

where [x1, x2] is a price range (also called a price section) and [t1, t2] is a time interval (See

section 3.2 for the details.) Let N(x, t) be the total number of stocks in section [x1, x2] at

time t. It is given by the integral of the density over [x1, x2]:

N(x, t) =
x2∫
x1

ρ(x, t)dx (2.2)

Another variable, the velocity vk(t) of stock k at time t, is defined as

vk(t) = lim∆t→0
pk(t)− pk(t−∆t)

∆t , (2.3)

where pk(t) is the price of stock k at time t. The average velocity of stocks in price section

[x1, x2] at time t is denoted by v(x, t), which is constant for each x ∈ [x1, x2] and is defined

as the average change in stock price in that price section at time t. The average velocity

function is given by

v(x, t) = 1
N(x, t)

N(x,t)∑
k=1

vk(t). (2.4)

If we assume that during the period of study (say a day), stocks are neither created nor

destroyed, in the sense that initial public offerings (IPOs) and bankruptcies are rare and

usually occur when the markets are usually closed, then the change in the number of stocks

in price section [x1, x2] is due only to the flow of stocks across the endpoints x1, x2. The

stocks within that section are assumed to be compressible. Compressibility is a concept

similar to its counterpart in fluid dynamics: The density of stocks (the number of stocks in
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the domain parametrized by x and t) can change in response to external or internal forces.

This assumption states that the number stocks given a price section might change as time

proceeds.

As we assumed that stocks are neither created nor destroyed, the mass of stocks (number

of stocks to be more precise) can change only as a result of flow of stocks across the endpoints

x1, x2. The rate of flow (also called the flux) of stocks at point (x, t), Q(x,t), is given by

Q(x, t) = ρ(x, t)v(x, t) (2.5)

By assuming that the boundary of the domain is closed, so that no stocks leave it or enter

from outside, the rate of change in the number of stocks in [x1, x2] is given by only the

difference in flux at the endpoints x1, x2

d

dt

x2∫
x1

ρ(x, t)dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t) (2.6)

This equation is known as the law of mass conservation, and is a consequence the fact that no

stocks are created or destroyed within the exchanges, but only move between the price–time

regions. This is the integral form of the law of mass conservation. Another form is obtained

by integrating equation (2.6) from t1 to t2. This form gives an expression for the number

of stocks at time t2 in terms of the fluxes at the endpoints x1, x2 and the mass of stocks at

time t1.

x2∫
x1

ρ(x, t2)dx =
x2∫
x1

ρ(x, t1)dx+
t2∫
t1

ρ(x1, t)v(x1, t)dt−
t2∫
t1

ρ(x2, t)v(x2, t)dt (2.7)

Assuming that the density ρ(x, t) and average velocity v(x, t) are differentiable functions, we

can obtain the differential form of the law of conservation of mass:

t2∫
t1

x2∫
x1

(
∂

∂t
ρ(x, t) + ∂

∂x

(
ρ(x, t)v(x, t)

))
dxdt = 0 (2.8)
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Since (2.8) must hold for any price section [x1, x2] and over any time interval [t1, t2], the

integrand of (8) must be equal to zero:

∂

∂t
ρ(x, t) + ∂

∂x

(
ρ(x, t)v(x, t)

)
= 0 (2.9)

To get (2.9), we used the following:

ρ(x2, t)v(t, x2)− ρ(x1, t)v(t, x1) =
x2∫
x1

∂

∂x

(
ρ(x, t)v(t, x)

)
dx (2.10)

and

ρ(x, t2)− ρ(x, t1) =
t2∫
t1

∂

∂t
ρ(x, t)dt (2.11)

Equation (2.9) expresses the conservation of mass and is often called the continuity

equation. This equation gives the evolution of the density from the initial conditions. The

partial differential equation (2.9) is nonlinear in the conserved quantity ρ, and has many

solutions in the two global variables, ρ and v. In applications to transportation systems,

there is a relationship between v and ρ. When the density of cars is high, their velocity is

low. Equation (9) is solvable with this relationship [126, 127, 103]. In financial markets,

there is no relationship between the number of stocks at a given price and their average

velocity. Figure 2.1 shows scatter plots of density vs. velocity at four different times during

the day of a flash crash. The plots show no evidence of a clear correlation between the two

variables. The correlation coefficient is provided with each scatter plot. We see that the

correlation coefficient is very low in three of the four times.
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Figure 2.1: Scatter plots of density vs. velocity on the day of a flash crash

Another partial differential equation is necessary for the system of equations to have

locally unique solutions. A good candidate is the so-called a momentum equation in fluid

dynamics. Stocks don’t collide and can cross each other, so momentum conservation of fluid

dynamics in financial markets may not be exactly as in fluid flow. However, we assume that
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a version of the momentum of stocks flow captures the market forces.

In this chapter, we define density as the number of stocks per unit price in contrast to

the physical definition as the number of particles per unit space. The physical meaning of

density is well understood.

To understand the financial meaning of density, let us consider the density at (x, t), ρ(x, t),

per unit price x and time t. Then 2

xρ(x, t) = number of stocks (per unit price) at price x× price per stock

= ($/(unit price)) in stocks priced x at time t

= m(x, t) say.

Let the “flux” be Q(x, t) =
(
ρ(x, t)v(x, t)

)
, and consider:

∂

∂t
m(x, t) + ∂

∂x

(
m(x, t)v(x, t)

)
= dx

dt
ρ(x, t) + x

∂

∂t
ρ(x, t) + x

∂

∂x
Q(x, t) +Q(x, t)

= Q(x, t) + x( ∂
∂t
ρ(x, t) + ∂

∂x
Q(x, t)) +Q(x, t)

= 2Q(x, t).

The above equation follows from the mass conservation which implies

∂

∂t
ρ(x, t) + ∂

∂x
Q(x, t) = 0. (2.12)

2∫ x2
x1
xρ(x, t)dx = $ invested in stocks within [x1, x2] at time t.
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Let us consider the unit of the “flux” of stocks Q(x, t):

Q(x, t) = ρ(x, t)v(x, t) = Number of stocks (#)
unit price

Average change in stock prices ($)
unit time

= Change in money
unit price unit time

From the above, we can say that

Q(x, t) dxdt = Change in money in [x, x+ dx]× [t, t+ dt]

or

t2∫
t1

x2∫
x1

Q(x, t)dxdt = Change in money in [x1, x2]× [t1, t2] (2.13)

In the equity markets, this change has two sources, one is the change due to market forces

affecting all stocks, the other is external forces specific to the stock, which is generated by

the flow of money in/out of the stock. The sum of these two forces acting on stocks are re-

sponsible for price movements. Overall, the change in money in price–time domain, even due

to internal forces is hard to argue is conserved, but clearly the money is withdrawn/invested

due to external force destroys this conservation. This can be formally expressed as follows:

∂

∂t

x2∫
x1

Q(x, t) dx+
x2∫
x1

∂

∂x

(
Q(x, t)v(x, t)

)
dx 6= 0 (2.14)

Equation (2.14) follows from the nonconservation of the change in money, represented by

the “flux”, is not conserved. Therefore, an extra term is needed to account for these forces
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acting on stocks,

∂

∂t

x2∫
x1

Q(x, t) dx+
x2∫
x1

∂

∂x

(
Q(x, t)v(x, t)

)
dx = −

x2∫
x1

∂

∂x
θ(x, t)dx (2.15)

where θ(x, t) 3 is the external force per unit price, say “Pressure”, in price x at time t.

Integrate (15) from t1 → t2,

t2∫
t1

x2∫
x1

Q(x, t) dxdt+
x2∫
x1

t2∫
t1

∂

∂x

(
Q(x, t)v(x, t)

)
dxdt

= −
x2∫
x1

t2∫
t1

∂

∂x
θ(x, t)dxdt

(2.16)

or
t2∫
t1

x2∫
x1

[
∂

∂t
Q(x, t) + ∂

∂x

(
Q(x, t)v(x, t)

)
+ ∂

∂x
θ(x, t)

]
dxdt = 0. (2.17)

Equation (2.17) holds for any time and price intervals, we can conclude that the integrand

in (17) must be equal to zero,

∂

∂t
Q(x, t) + ∂

∂x

(
Q(x, t)v(x, t) + θ(x, t)

)
= 0 (2.18)

From the above derivations, we see that the precise definition of momentum is not needed.

However, for the sake of clarity, we will refer to Equation (12.18) as the conservation of

momentum.

Equations (2.9) and (2.18) together constitute a system of partial differential equations:

∂

∂t
ρ(x, t) + ∂

∂x

(
ρ(x, t)v(x, t)

)
= 0

∂

∂t
Q(x, t) + ∂

∂x

(
Q(x, t)v(x, t) + Pressure

)
= 0

(2.19)

3This variable is hereafter referred to as “Pressure”.
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In addition to the system of equations in (19), an initial condition must be specified:

q(x, 0) = q0(x), (2.20)

where q ∈ R2 is the vector of the conserved quantities, q = (ρ,Q)T . The problem in equations

(2.19) and (2.20) is called an initial-value problem or a Cauchy problem. Cauchy problems

are often solved by the method of characteristic. Details about solving nonlinear partial

differential equations can be found in [41, 82].

The behavior and shape of the pressure in equation (2.19) is analyzed through data. Our

experiments on different days show that the pressure is a function of flux and velocity:

Pressure(x, t) = αQ(x, t)v(x, t), (2.21)

for some α ∈ R.

Systems of partial differential equations of the form (2.19) provide an excellent description

of many models in physics, biology, and the social sciences. A PDE is said to be nonlinear

if some term in the equation is nonlinear in at least one of the dependent variables and

its partial derivatives (taken together). Nonlinear partial differential equations govern a

broad range of complex systems. First-order systems of PDEs are those in which the order

of highest-orderd of the derivative is one; they can be classified into three groups. These

classes of equations model various phenomena and behavior. The system in (2.19), together

with the pressure equation (2.21), makes that system of PDEs hyperbolic; a proof of this

is given below. Hyperbolic PDEs are well suited to the financial markets, the knowledge

and use of systems of nonlinear PDEs, like the one here, are growing. Also the numerical

methods to solve them are well developed and readily implemented.

Theorem 2.1. The system of partial differential equations in (2.19) is hyperbolic.

Proof. Setting q := (ρ,Q)T and f(q) = (q2, (1 + α) q
2
2
q1

)T , we can rewrite equation (2.19),
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together with the pressure equation (2.21), in the form

∂tq + f(q)x = 0,

or

∂tq + A(q)∂xq = 0, (2.22)

where

A(q) = ∂f(q) :=

 0 1

−(1 + α) q
2
2
q2

1
2(1 + α) q2

q1



The eigenvalues of A(q) are λ1 = (1 +α+
√
α2 + α) q2

q1
and λ2 = (1 +α−

√
α2 + α) q2

q1
, which

are real and distinct when α > 0 or α < −1, and q2
q1
6= 0.

The solution of a system of nonlinear partial differential equations involves wave prop-

agation [82]. The system of nonlinear hyperbolic partial differential equations can admit

discontinuities under smooth initial conditions. The discontinuities can take various forms,

depending on the structure of the system’s characteristics. The characteristics are the eigen-

values of A(q).

Theorem 2.2. The system of partial differential equations in (2.19) admits only shocks or

rarefaction waves.

We say that a solution ρ is a generalized solution if it satisfies (2.8) for all t1, t2, x1, x2.

Equation (2.22) might not have a unique solution, and this happens when a shock forms.

As a result, there is no classical solution to the system of PDEs, and one defines a weak

solution.

Theorem 2.3. The system of partial differential equations in (2.19) has a weak solution.
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Weak solutions are often not unique [80]. Thus an additional problem is to identify which

solution is physical. The entropy condition states that a solution is physically relevant if the

entropy increases across the shock. The properties of hyperbolic partial differential equations

can be found in [41, 82].

2.2.1 The Stochastic Macroscopic Model

The PDEs can be written in the conservation form under the assumption that mass and

momentum are conserved. The right-hand sides of both equations in (2.19) are zero, which

asserts that fact. In equity markets, external forces might exist. IPOs and bankruptcy may

occur rarely; however, a forcing term is necessary to account for the discretization error

and sources of uncertainty that disturb the conservation of the flow. When dealing with

data, there are sources of error that are inherent to the data collection, giving additional

justification for the forcing terms of the form we have suggested. We propose adding drift

and stochastic terms for that purpose. The modified model is as follows:

∂

∂t
ρ(x, t) + ∂

∂x
ρ(x, t)v(x, t) = z1(x, t) (2.23)

∂

∂t

(
ρ(x, t)v(x, t)

)
+ ∂

∂x

(
Q(x, t)v(x, t) + αQ(x, t)v(x, t)

)
= z2(x, t) (2.24)

z1(x, t) = a(x, t) + b(x, t)ρ(x, t) + σ1(x, t)dW1(x, t)
dxdt

(2.25)

z2(x, t) = c(x, t) + d(x, t)Q(x, t) + σ2(x, t)dW2(x, t)
dxdt

(2.26)

The right-hand sides of equations (2.25) and (2.26) contain deterministic functions a(x, t),

b(x, t), c(x, t), and d(x, t) and Brownian sheets W . The functions a(x, t) and c(x, t) are

included to capture the effect of the mean inflow and outflow [26]. The functions σ1(x, t)

and σ2(x, t) represent the volatility of the process and capture the amount of disturbance

to the conservation laws. The right-hand sides of equations (2.25) and (2.26) comprise

reversion processes that revert to the mean value at rates of b(x, t) and d(x, t), respectively,
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thus converging to the long-run means (as t→∞) [26].

A Brownian sheet W (x, t) is a Gaussian stochastic process indexed by x and t with mean

equal to 0 and covariance E
(
W (x1, t1)W (x2, t2)

)
= min(x1, x2) · min(t1, t2). The random

perpetuation dW (x,t)
dxdt

is white noise at (x, t) that helps in modeling the stochastic disturbance

in the macroscopic model [126, 120]. We can interpret dW (x, t) as

dW (x, t) = W (x+ dx, t+ dt)−W (x, t+ dt)−W (x+ dx, t) +W (x, t) (2.27)

Given the properties of a Brownian sheet and the interpretation in (31), dW (x, t) is a Gaus-

sian stochastic process with mean zero and Var[dW (x, t)] = dx · dt [120].

Equations (2.23) through (2.26) are a system of stochastic partial differential equations.

These equations determine the evolution of the macroscopic variables when uncertainty ex-

ists. The macroscopic variables are designed to capture the behavior of the flow of stocks,

including possibly abnormal flows. Partial differential equations of this type admit shock

waves, and we solve systems of this type numerically since analytical solutions to such sys-

tems are still being developed.

2.3 Numerical Results and Examples

The aim of this section is to verify the SPDE introduced in the previous section and,

with the aid of data from a unique trading day, to analyze the macroscopic variables and

verify the proposed SPDE. We derive the values of the macroscopic variables, density and

velocity, from the data and investigate the values of the parameters on the right-hand sides

of (2.25) and (2.26) that fit the model. From these results, we investigate which of these

parameters may be good sensors for detecting unusual activity.
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2.3.1 Data

The data used in this research are aggregated by-minute stock prices from three market

exchanges (NASDAQ, AMEX, NYSE) or a total of 1000 stocks. A stock was included in

the data only if it was actively traded at least 90 percent of the time. When data for a

particular minute were not available, we made the assumption that the stock price at that

time was the previously traded price. We analyzed data from the three markets on the day

of a flash crash, May 6, 2010. On that day, the equity markets started to crash at 14:32,

and the crash lasted about 36 minutes. The S&P Futures declined by 5% between 14:30 and

14:45. Various explanations for the flash crash were given [38], including the following:

• Technical difficulties at NYSE and ARCA

• Changes in the U.S. dollar/Japanese yen exchange rate

• Large purchase of put options

• Large sell of E-Mini contracts

• Quote stuffing (HFT)

Recently a trader from London has pleaded guilty in a US court to spoofing the US financial

markets and is awaiting sentencing [12]. To get a mesoscopic look at the financial markets

on that day, Figure 2.2 shows the relative performance of five financial indexes. The indexes

exhibit similar behavior around the time of the flash crash; they each experience a sudden

plunge followed by some instability. The flash crash phenomenon is unique, and that is

the reason we chose that day. The incident caused tremendous losses within a span of few

minutes. Many had believed that such an incident was impossible. However, we believe that

this crash started earlier that day and could have been caught sooner.
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Figure 2.2: Flash Crash Chart [Thomson Reuters]

2.3.2 Domain Discretization

The macroscopic variables such as density ρ(x, t) and velocity v(x, t) were parametrized

by price x and time t. The temporal domain t was divided into M intervals with a subinterval

length ∆t = 1 to match the data frequency (Figure 2.3). The stock market starts operating

at 9:30 am and closes at 4:00 pm. Thus, the data correspond to a time period of 391 minutes,

where t0 = 0 and tM = 390.

∆t

t0 tj−1 tj tj+1 tM

Figure 2.3: Time Discretization

The spatial domain, which is the stock price x, is divided into N intervals with a subin-

terval length ∆x (Figure 2.4).

23



∆x

x0 xi−1 xi xi+1 xN

Figure 2.4: Space Discretization

In Figure 2.4, x0 is set to a very small number, and xN is set to an arbitrarily large

number, for instance $150, as few stocks are traded above this value. Thus most stock prices

fall within the price range [x0, xN ]. We define cell (i, j) as the small region [xi, xi+1]×[tj, tj+1]

in the price–time domain, as shown in Figure 2.5. This domain construction is necessary to

compute the macroscopic variables from the raw stock data. The length of a subinterval ∆x

can be either fixed or increasing. A good spatial domain discretization candidate is ∆x = β1x

for some β1 ∈ R+. The intuition behind this choice is that we expect to have fewer stocks

as the price increases, so that having an increasing spatial domain with β1 ∈ [0, 1] would

capture the highest number of stocks within a relatively small number of cells (Figure 2.6).

A simpler discretization is ∆x = β2 for some β2 ∈ R+. To get a sense of these discretization

schemes, we computed the density of stocks for the day of the flash crash with β1 = 0.1 and

β2 = 1, and plotted their heat maps. The density in cell [xi, xi+1]× [tj, tj+1] was defined as

the number of stocks within the price section [xi, xi+1] at time tj.

xi xi+1 x($)

tj

tj+1

t (minute)

Figure 2.5: Space–Time Discretization
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Figure 2.6: Density Heat Map

In Figure 2.6, we see heat maps for the two discretization methods; the horizontal axis

shows the price x in dollars, and the vertical axis shows time t in minutes. When the mesh

size is constant, the mass of stocks (or density) is concentrated in the first 40 price sections,

while the density in the other mesh construction is greatest between $20 and $60. The heat

map for the constant mesh size shows a sharp dip around the time of the flash crash, which

isn’t at all obvious in the case of the increasing mesh size. Thus, the constant mesh size was

used.
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2.3.3 Why Do We Need Macroscopic Variables?

Figure 2.7: Movement of Stock Prices on May 6, 2010

Figure 2.7 shows a plot of the raw data, with a dip observed around the time of the flash

crash. We observe that though the figure does capture some macroscopic behavior, such

as the dip near the time of the crash, views such as the one in Figure 2.7 are helpful in

illustrating the past behavior, but by their very nature they are not predictive of future such

phenomena. Plots of the macroscopic variable velocity, for different price ranges are shown

in Figure 2.8. This figure shows considerable variability and sensitivity around the time of

the flash crash. The velocity plots suggest that equity markets were stable for a period of

time, and then there was a shock that left the market unstable. This macroscopic variable

is superior and promising, as it shows that the crash in fact started earlier.
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Figure 2.8: Velocity Plots

2.3.4 Fitting the Macroscopic Model

This section discusses in detail the process of fitting the right-hand sides of equations

(2.25) and (2.26). From that process we attempted to understand whether the parameters

exhibit unique behavior around the time of the flash crash, and analyzed them as sensors,

in addition to the macroscopic measures.

The calibration of the parameters a, b, c, d, σ1, and σ2 at price xi and time tj was done

by approximating the partial derivatives in equation (2.23) through (2.26) using a finite-
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difference approximations to compute the values of the source terms z1(xi, tj) and z2(xi, tj),

that is, the terms on the right-hand sides of equations (2.23) and (2.24), respectively (the

expression on the RHS of a conservation law is normally called a source term).The parameter

α in the pressure equation is set to 0.3 (which was found after some experimentation).

The time and space derivatives are approximated by forward and central difference ap-

proximations, respectively. The discretization intervals were chosen to be ∆t = 1 and

∆x = 1. Thus the system of stochastic partial differential equations was as follows:

ρ(xi, tj+1)− ρ(xi, tj)
∆t + ρ(xi+1, tj)− ρ(xi−1, tj)

2∆x v(xi, tj)

+ v(xi+1, tj)− v(xi−1, tj)
2∆x ρ(xi, tj) = z1(xi, tj)

(2.28)

ρ(xi, tj+1)− ρ(xi, tj)
∆t v(xi, tj) + v(xi, tj+1)− v(xi, tj)

∆t ρ(xi, tj)

+ (1 + 0.3)Q(xi+1, tj)−Q(xi−1, tj)
2∆x v(xi, tj)

+ (1 + 0.3)v(xi+1, tj)− v(xi−1, tj)
2∆x Q(xi, tj) = z2(xi, tj)

(2.29)

z1(xi, tj) = a(xi, tj) + b(xi, tj)ρ(xi, tj) + σ1(xi, tj)
∆W1(xi+1 − xi−1, tj+1 − tj)

2∆x∆t
(2.30)

z2(xi, tj) = c(xi, tj) + d(xi, tj)Q(xi, tj) + σ2(xi, tj)
∆W2(xi+1 − xi−1, tj+1 − tj)

2∆x∆t (2.31)

Equations (2.28) and (2.29) were fitted separately to obtain the values of the parameters on

the RHS. Since the source terms z1(xi, tj) and z2(xi, tj) are linear functions of the density

ρ(xi, tj) and Q(xi, tj), respectively, as shown in equations (2.30) and (2.31), we were able to

apply a linear regression between z1(xi, tj) and ρ(xi, tj) to estimate the parameters a(xi, tj)

and b(xi, tj), and a linear regression between z2(xi, tj) and Q(xi, tj) to estimate c(xi, tj) and

d(xi, tj). The values of σ1(xi, tj) and σ2(xi, tj) were calculated from the equations
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σ1(xi, tj) =
√

2∆x∆t · E[ε21] (2.32)

σ2(xi, tj) =
√

2∆x∆t · E[ε22], (2.33)

where ε1 and ε2 are the residuals of the linear regressions in equations (2.30) and (2.31).

The idea behind (2.30) and (2.31) is that the RHS of equation (2.31), for instance, can be

rewritten as

z2(xi, tj) = c(xi, tj) + d(xi, tj)Q(xi, tj) + ε2, (2.34)

where ε2 is an independent and identically normally distributed random variable with mean

zero and variance σ2
2(xi,tj)
2∆x∆t . Good model-fitting requires a sufficient number of samples, so

we assumed that the parameters on the RHS of (2.31) are constant over a few cells. This is

illustrated in Figure 2.9.

xi xi+1 x($)

tj

tj+1

t (minute)

Figure 2.9: Space–Time Discretization

To calibrate the parameters for the yellow cell in Figure 2.9, we assumed that the param-

eters for all nine shaded cells in the figure are constant, and we used their cell information to

fit the regression coefficients in (2.30) and (2.31). These values were assigned to the yellow

cell. This procedure was used to estimate the parameters for each cell for the day of flash

crash. We present and analyze only a selected number of representative samples from the
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large number of results obtained.

Figures 2.10 through 2.15 show the fitted values of the parameters a, b, c, d, σ1, and σ2.

The Jarque–Bera normality test was used to verify the normality assumption of the residuals

[63]. We found that the residuals for more than 75% of the cells do not reject the normality

hypothesis. The plots provide significant information about the day of the flash crash, which

suggest that they might be useful as sensors for abnormal activity.
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Figure 2.10: Four graphs of the fitted parameter a for May 6, 2010
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Figure 2.11: Four graphs of the fitted parameter b for May 6, 2010
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Figure 2.12: Four graphs of the fitted parameter c for May 6, 2010
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Figure 2.13: Four graphs of the fitted parameter d for May 6, 2010
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Figure 2.14: Four graphs of the fitted parameter σ1 for May 6, 2010
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Figure 2.15: Four graphs of the fitted parameter σ2 for May 6, 2010

2.3.5 Which Parameters to Monitor as Sensors?

Even though information is found in the parameters a, b and d, they are not consistent

for all prices, whereas the parameters c, σ1 and σ2 showed consistency. A closer look at

Figures 2.12, 2.14 and 2.15 demonstrates this. Figures 2.14 and 2.15 show that the volatility

starts increasing prior to the announced flash crash time (302 minutes in the x-axis). We

can also see that both σ1 and σ2 are higher after the flash crash than before. The parameter

σ2 appears to be a sensitive parameter, with a sharp increase during the flash crash. This

initial study suggests that the parameters σ1 and σ2 as sensors may provide the required
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on-line information for a device that can automatically inform the market of such activity.

This finding is consistent with financial theory which states that volatility captures market

conditions [105].

2.4 Conclusion

In this chapter, we introduced a new approach for the analysis of equity markets. By

adapting the perspective of fluid dynamics, we introduced the concepts of density, velocity,

flux, and pressure to capture the variability of the stock price in a market exchange. Bor-

rowing the laws of conservation from physics, we developed the system of partial differential

equations that describe the relationship among these variables. In validating the model, we

added stochastic forcing terms to capture the noise generated by discretization of the model,

data collection, and the approximation of the PDEs. To verify this model, we collected data

from several markets and presented the results obtained from fitting and testing the model

on a particular trading day. In the numerical results section, we analyzed the macroscopic

measures with the aim of monitoring equity markets. We also showed how sensors can be

generated by observing the behavior of the model parameters.

2.5 Technical Proofs

2.5.1 Proof of Theorem 2.2

The right eigenvectors corresponding to λ1 and λ2 are

r1 =

 1

λ1

 , r2 =

 1

λ2

 . (2.35)

The eigenvalue λk is genuinely nonlinear if Oλk(q) · rk(q) 6= 0, which is the case here. The

waves associated with this system of nonlinear partial differential equations admit only shocks
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or rarefactions.

2.5.2 Proof of Theorem 2.3

Equation (2.19) can be rewritten as

∂tq + f(q)x = 0, (2.36)

where f(q) := (Q, (1 + α)Qv)T . Introduce a test function φ ∈ C1
0(R × R), where C1

0 is the

space of continuously differentiable functions with compact support. If we multiply equation

(2.36) by φ(x, t) and then integrate over time and space, we get

∞∫
0

∞∫
−∞

[
φqt + φf(q)x

]
dxdt = 0 (2.37)

Integrating (2.37) by parts yields

∞∫
0

∞∫
−∞

[
φtq + φxf(q)

]
dxdt = −

∞∫
0

φ(x, 0)q(x, 0)dx (2.38)

The boundary terms that arise from integrating by parts drop out since φ is assumed to

have compact support. Therefore, q is a weak solution, since it satisfies (2.38) for all smooth

functions φ. Note that q does not necessarily have to be differentiable to satisfy (2.38).
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Chapter 3

Macroscopic Equity Markets Model:

Towards Predicting Flash Crashes

3.1 Introduction

In the equity markets, the adaptation of new trading practices such as high frequency

trading is increasing the number of market anomalies. New regimes are emerging, making

human intervention to mitigate severe crises quite challenging [64]. One example of newly

developed and unusual crashes (or extreme events) is the flash crash that occurred on May

6th, 2010 (hereafter known as, the flash crash day). On the flash crash day, the equity

markets crashed suddenly, and the Dow Jones market exchange reported a drop of about

998 points. This drop in the index value is considered one of the most significant declines in

Dow Jones history, which caused other financial indexes to also suffer [38].

Clearly, due to their complexity, understanding the dynamics of the financial markets

is challenging. This complexity is attributable to the interactions between internal (or en-

dogenous) and external (or exogenous) forces. While the internal forces are more significant

to price changes than external ones [13] [66], the interactions between them are extremely

important and can be measured by a quantity called reflexivity [45]. Reflexivty quantifies

the ratio of stock price changes due to endogenous interactions to the overall interactions
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(exogenous and endogenous). The author of [45] showed that the equity markets reflex-

ivity increases during crashes which might provide an instrument to utilize in recognizing

criticality (i.e., the tipping point of extreme events).

A primary concern in complex system studies is the predictability of extreme events. To

be successful at this, new and innovative models are required. Attempts at modeling to pre-

dict extreme events in complex systems have lead to misleading results [110]. This deficiency

motivated us to develop a non-conventional approach, inspired by nonlinear physics. Thus,

in this research, we develop a model based on fluid flow which can predict disturbances and

crashes. The use of physics in finance has a long history that goes back to the 19th century

when Bachelier introduced the one-dimensional random walk (Brownian Motion) in finance

[4]. After the discovery of Brownian Motion, the Geometric Brownian Motion (GBM) model

became a central assumption to describe stock price movement [39]. GBM type models

analyze stock prices using drift and volatility terms. Although this analysis is critical in

microscopic studies, it ignores macroscopic information concerning stock interactions. Given

the nonlinear and complex nature of stock interactions, major market events affect most

market entities and are the product of the aggregate market disturbance and imbalance. If

the goal is to monitor equity markets for early abnormality detection, it is more intuitive

to do so macroscopically. The former approach, namely microscopic, is essential to study

specific stocks. In contrast, the later or macroscopic approach gives more insight about the

overall markets activity.

The vast majority of previous studies in physics and finance have investigated microscopic

or mesoscopic (system interactions are described in detailed level between macroscopic and

microscopic) models to detect crashes. In Chapter 2 [2], we proposed an analogy between

fluid dynamics and stocks, while also deriving a Macroscopic Equity Markets (MEM) model.

The MEM model assumes that stocks flow as fluid particles and describes macroscopic vari-

ables (i.e., density and flux) for its evaluation. In this model, stocks are aggregated and

macroscopic variables such as density, and average velocity, are defined. The dynamics of
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these macroscopic variables are described through a system of stochastic inhomogeneous

partial differential equations which provide a realistic representation of the market dynam-

ics. For more information about the model and related literature, we refer the reader to the

paper [2].

In this chapter, we build on Chapter 2 by examining the properties of the MEM model.

We show that during rapid movement of stock prices, the potential for shock wave formation

exists. We propose real time integrative algorithms to solve the model dynamically. The

proposed methods are adaptive and use numerical methods for solving a system of stochastic

partial differential equations as well as stochastic filtering techniques. These algorithms are

tested on datasets from normal and abnormal trading days, and the results suggest that

unusual market conditions can be successfully identified by MEMs. After appropriate tuning,

the proposed solution method is efficient and able to detect abnormalities.

The rest of the chapter is organized as follows. The properties of the MEM are inves-

tigated in section 2. Section 3 introduces the numerical method. Some stochastic filtering

techniques are presented in section 4. The results are discussed in section 5. Section 6

concludes the chapter.

3.2 The Macroscopic Equity Markets Model

This section discusses the properties of the Macroscopic Equity Markets (MEM) model

and reviews some background material that is necessary in our analysis. The MEM model

was introduced in Chapter 2 [2] to connect the fluid-like properties of equity markets and

external/unknown forces. The proposed model combines, in a natural way, external (exoge-

nous) influences with internal (endogenous) dynamics. For simplicity, we use the following

notations and definitions throughout this chapter. The space-time domain is discretized into

small regions (called cells hereafter) of price (x) × time (t). The price domain (in $) is

denoted by x and the time domain (in minute) is denoted by t. In each cell, we adopt a fluid

dynamics perspective to quantify stock price properties. Each stock is considered a single
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mass unit in the price-time domain. To describe a stock’s flow in the price-time domain,

macroscopic variables velocity, density, flux and pressure are defined. The average velocity

v(x, t) is defined as the average change in stocks’ prices at a given price x and time t. The

density ρ(x, t) is defined as the number of stocks per unit price x and unit time t. The flow

of stocks is denoted by flux Q(x, t) = ρ(x, t)v(x, t). The resulting MEM model is as follows:

ρ(x, t)t +Q(x, t)x = a(x, t) + b(x, t)ρ(x, t) + σ1(x, t)dW1(x, t)
dxdt

,

Q(x, t)t +
(
(1 + α)Q(x, t)v(x, t)

)
x

= c(x, t) + d(x, t)Q(x, t) + σ2(x, t)dW2(x, t)
dxdt

.

(3.1)

The model above is a system of stochastic nonlinear Partial Differential Equations (PDEs).

The right-hand side (called source or forcing term) of (3.1) represents a mean reversion pro-

cess in which, after a disturbance, over time the density ρ(x, t) and flux Q(x, t) return to

their historical average values. The Brownian sheet W (x, t) is a Gaussian stochastic process

that captures any disturbances not implicitly represented in the model. The source term is

time-varying and is adapted to and captures the market conditions.

In fact, the MEM model has a plausible financial interpretation. The left hand side (LHS)

of the equation (3.1) reflects the internal forces affecting a very small number of stocks. It

captures the idiosyncratic or diversifiable risk. Internal forces and idiosyncratic risk are the

drivers of stocks within the market, without the intervention of external forces. On the

other hand, the right hand side (RHS) of (3.1) represents external forces and the systematic

risk that is inherent in the whole market and can affect a large number of stocks. Noting

that the MEM is a stochastic system of Partial Differential Equations (PDEs), the value of

the parameter α of the LHS of equation (3.1), determines the type of PDEs. In Chapter

2, we demonstrated that there was a shock wave on the flash crash day indicating that the

homogeneous MEM model should be a hyperbolic PDE (solutions of this type of PDEs are

wave-like). Thus, the value of the parameter α should be chosen to preserve this property.

In this chapter, we extend the previous work and show through extensive numerical results
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that the the value of α is arbitrary and constant, but we pick α to be between zero and one

for convenience. The sensitivity analysis on α is discussed in Section 3.5. Now we recall

three theorems from [2]:

Theorem 3.1. The system of partial differential equations in (3.1) is hyperbolic.

Proof. Refer to [2]

Theorem 3.2. The system of partial differential equations in (3.1) admits only shocks or

rarefaction waves.

Proof. Refer to [2]

Theorem 3.3. The system of partial differential equations in (3.1) has a weak solution.

Proof. Refer to [2]

Remark 3.4. Equity markets exhibit wave motion phenomenon in which information about

stocks (particles), flow at a speed determined by the market conditions. A forward flowing

shock carries information from lower priced stocks to higher priced ones, and a backward

shock carries information from the higher priced to lower priced stocks. The phenomenon

of waves is observed in many applications, including traveling sound waves in physics and

traveling velocity waves in traffic flows [127].

Though the nonlinearity in (3.1) poses computational challenges [40], it is useful for

modeling abnormal behaviors of equity markets, especially when abrupt changes in stock

prices occur. With an appropriate choice of the parameter α, the model admits shock

or rarefaction waves (Theorem 3.2). A shock is defined as a discontinuity and/or jump in

density or velocity. In Chapter 2, we showed that shock waves are observed in equity markets,

but have relatively low speeds, and thus can be missed. On the other hand, rarefaction waves

are more apparent in physical systems. In this research, we describe rarefaction waves as

gradual increase or decrease in the macroscopic variables. Indeed, such behavior might be
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attributed to the recovery process of markets. Explicit conditions for forming shocks and

rarefaction waves are discussed in Section 3.2.2.

Definition 3.5. A financial shock is defined as a discontinuity or jump in density or velocity

of stocks at price x and time t.

Definition 3.6. A financial rarefaction wave is a gradual increase or decrease in the macro-

scopic variables (i.e., density or velocity).

In the next section, we establish some results about systems of generic nonlinear hyper-

bolic PDEs. These results are needed in the subsequent sections where we derive the general

solutions of (3.1). In Section 3.2.2, the structure of the model is analyzed with the RHS

zero. The resulting system is referred to as homogeneous. The analysis of the homogeneous

system gives insights into the behavior of the macroscopic variables during periods of abrupt

changes.

3.2.1 Preliminaries

This section reviews results about hyperbolic conservation laws (for a comprehensive

overview about PDEs and numerical methods, see [40] and [82]). These results are needed

to establish the theoretical analysis of shock and rarefaction waves in equity markets. We

view the flow of stocks as fluid, and the Eulerian framework, in which fluid properties are

represented as a function of position x and time t. A system of conservation laws is a classical

example of hyperbolic PDEs and takes the integral form for all (x, t)

d

dt

x2∫
x1

q(x, t)dx+
x2∫
x1

∂

∂x
F (q(x, t))dx =

x2∫
x1

S(x, t)dx, (3.2)

where q ∈ Rm is the vector of the conserved quantities, F ∈ Rm is the vector of the fluxes

of the conserved quantities, S ∈ Rm is the vector of source terms. The equation (3.2) states

that the rate of change of a conserved quantity q over a fixed section (x1, x2) is due to the

effects of the net flux F through the endpoints of that section and the flow of external sources
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S. When q and F are smooth functions, the system (3.2) can be written equivalently in the

differential form as for all (x, t)

qt(x, t) + F (q(x, t))x = S(x, t) (3.3)

or

qt(x, t) + F ′(q(x, t))qx(x, t) = S(x, t) (3.4)

The MEM model (3.1) is in the differential form of (3.2) when m = 2 and x ∈ R+. This

form is not valid when q is not smooth (i.e., discontinuous). In particular, these equations

become invalid when a discontinuity propagates due to the nonlinearity or jumps in the initial

conditions (i.e., Riemann Problems). In that case, the integral form should be used instead

to determine the proprieties of the discontinuity, while the differential form is confined to

smooth regions.

Definition 3.7. Many problems arise from one-dimensional Riemann Problems. When

qL 6= qR, these problems take the form

qt(x, t) + F (q(x, t))x = 0 for t > 0 and x ∈ R (3.5)

q(x, 0) =


qL, x < 0

qR, x > 0
(3.6)

Lemma 3.8. [82] The shock speed propagates with speed s and can be determined in terms

of the left qL and right qR states by satisfying the Rankine-Hugoniot jump condition which

is given by

(FR − FL) = (qR − qL)s, (3.7)

where s is the speed of the discontinuity.
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Proof. See [82].

If a shock propagates with speed s between qL and qR on each side of the shock, the

Rankine-Hugoniot jump condition must hold. This condition is, in fact, derived from the

integral form of the conservation laws. This reinforces the importance of relaying on the

integral form for determining discontinuous solutions. In order to obtain a unique solution

for q associated with propagating discontinuities, it is important to introduce the Lax Ad-

missibility Condition. This condition is applied to discontinuous solutions to determine

which jumps are allowed.

Lemma 3.9. [78] Suppose that the characteristic speeds are real and either linear or non-

linear degenerate. Assume that those characteristic speeds are distinct as well. If the charac-

teristics speeds λi are ordered from least to greatest, then a discontinuity that propagates with

speed s is a shock, if and only, if there exists an index i such that the following inequalities

hold

(λi)R < s < (λi)L (3.8)

Proof. See [78].

Shocks are discontinuous weak solutions that satisfy the entropy condition above. The

Riemann Problem in the system of nonlinear hyperbolic conservation laws admit rarefaction

waves (which are smooth and correct solutions) when (λi)L < (λi)R for any i.

3.2.2 Theoretical Analysis: Shocks and Rarefaction Waves

The purpose of this section is to introduce the conditions of which a pair of states (either

density or flux of stocks) can be connected by a shock (by determining the Hugoniot Locus)

or rarefaction wave (by determining the Integral Curves). The shock speed and direction

are determined as well. The structural properties of the MEM model are established on the

homogeneous system only since the forcing term does not affect the eigen-structure of the

system of equations.
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Consider the homogeneous MEM model

ρt +Qx = 0. (3.9)

Qt +
(
(1 + α)Qv

)
x

= 0. (3.10)

Equations (3.9) and (3.10) can be rewritten in the compact form

qt + F (q)x = 0, (3.11)

or

qt + F ′(q)qx = 0, (3.12)

where F (q) = (Q, (1 + α)Qv)>, q = (ρ,Q)> is a vector 1 with elements that correspond to

the state variables, density and flux, and

F ′(q) =

∂F1
∂q1

∂F1
∂q2

∂F2
∂q1

∂F2
∂q2

 =

 0 1

−(1 + α) q
2
2
q2

1
2(1 + α) q2

q1

 . (3.13)

The eigenvalues of F ′(q) (called information speed) are

λ1,2 = (1 + α±
√
α2 + α)q2

q1
. (3.14)

The eigenvectors associated with λ1 and λ2 are

r1 =

 1

λ1

 , r2 =

 1

λ2

 . (3.15)

The system (3.11) is strictly hyperbolic (Theorem 3.1) when the eigenvalues in (3.14)

1For simplicity, we denote q1 = ρ and q2 = Q.
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are distinct and real; that is, when α > 0 or α < −1, and q2
q1
6= 0. Hereafter, the value of α

is assumed to be constant and between zero and one. In Section 3.5, we provide more

analysis on the choice of α.

As previously noted, the nonlinear system admits rarefaction and/or shock waves. A

valid shock is a solution that satisfies the Rankin-Hugoniot condition of Lemma 3.8 and the

Entropy condition of Lemma 3.9. Assume that a shock or discontinuity propagates with a

speed s and has values qm and q∗ on each side of the discontinuity. The following condition

must hold

F (qm)− F (q∗) = (qm − q∗)s, (3.16)

To determine the set of states qm that can be connected by a discontinuity through q∗,

we use the Rankin-Hugoniot jump condition with an initial state q∗ that can be qL or qR

Qm −Q∗ = s(ρm − ρ∗) (3.17)

(1 + α)
(
Q2
m

ρm

)
− (1 + α)

(
Q2
∗

ρ∗

)
= s(Qm −Q∗) (3.18)

The system in (3.17) and (3.18) leads to two different families of solutions. The system

can be solved for Qm and s in terms of ρm. From (3.17), we obtain

s = (Qm −Q∗)
(ρm − ρ∗)

. (3.19)

Replacing s in (3.18) by (3.17), and after a few steps (the full derivation is given in the

Appendix) we obtain

Qm = Q∗
1± (ρm − ρ∗)

√
α2+α
ρmρ∗

1− (ρm−ρ∗)
ρm

(1 + α)
. (3.20)

There are two families of curves that connect a left state Q∗ and a right state Qm. The
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sign in (3.20) is determined when we discuss the conditions of the physical (valid) jumps.

In order to determine the density ρR, we may simply equate the flux equation as in (3.20)

across the shock from left flux (Q∗) to right flux (Qm) and right flux (Qm) to left flux (Q∗).

That must be true since the middle state should be the same whether we jump from the

right flux or left flux.

The Riemann problem for (3.11) around x = 0 has the following jump conditions

q(x, t = 0) =


qL = (ρl, Ql), if x < 0

qR = (ρr, Qr), if x > 0
(3.21)

The previous problem states that the initial condition for the system in (3.11) has a

jump around a price x = 0 with a left state ql and right state qr. The value x = 0 is an

arbitrary price location and it could be any price x with different left and right states. The

problem in (3.21) is solved by shock and/or rarefaction waves, depending on the values of

left and right states. To begin, we analyze the shock waves by pointing out that there are

two distinct types of shock waves for (3.11); we call them 1-shock and 2-shock. The Lax

entropy condition ( 3.9) for 1-shock corresponding to the first eigenvalue λ1 states that

λ1(qR) < s < λ1(qL), (3.22)

where s is the shock speed and is given by the Rankin-Hugoniot condition (3.16). This yields

(1 + α−
√
α2 + α) QR

ρR
< s < (1 + α−

√
α2 + α) QL

ρL
, (3.23)

where s = QR−QL

ρR−ρL
.

The entropy condition is a mathematical inequality that ensures that only relevant solu-

tions are considered as shocks. This relevancy in the equity markets is outlined as follows.

The financial shock occurs when stock velocity (average price change) jumps to a lower value.

This can be interrupted as shocks originating between fast and slow stocks, moving faster
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than low velocity stocks but slower than fast velocity stocks. The velocity here coincides

with the information speed as represented by λ1,2. In the next few theorems, we highlight

insights about market shocks.

Theorem 3.10. The Lax Entropy Condition (3.23) is satisfied if QR > QL, and ρR > ρL

(when QL > 0) or ρR < ρL (when QL < 0). The curve S1 is expressed as

S1 : QR = QL

1− (ρR − ρL)
√

α2+α
ρRρL

1− (ρR−ρL)
ρR

(1 + α)
, (3.24)

the corresponding shock speed

s1 = QL

1+α
ρR
−
√

α2+α
ρRρL

1− (ρR−ρL)
ρR

(1 + α)
, (3.25)

Similarly, the Lax entropy condition for 2-shock is

(1 + α +
√
α2 + α) QR

ρR
< s < (1 + α +

√
α2 + α) QL

ρL
, (3.26)

Theorem 3.11. The Lax Entropy Condition (3.26) is satisfied if QR < QL, and ρR < ρL

(when QL > 0) or ρR > ρL (when QL < 0). The curve S2 is expressed as

S2 : QR = QL

1 + (ρR − ρL)
√

α2+α
ρRρL

1− (ρR−ρL)
ρR

(1 + α)
, (3.27)

the corresponding shock speed

s2 = QL

1+α
ρR

+
√

α2+α
ρRρL

1− (ρR−ρL)
ρR

(1 + α)
, (3.28)

It is interesting to see the jump between qL and qR in the phase plane for the system

of two equations. This means the plane of q1 − q2 (i.e., ρ − Q plane). Each point in the
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plane represents a vector q(x, t) = (ρ(x, t), Q(x, t))>. To be more specific, the left and right

states, qL and qR, are points in this plane. From the Rankin-Hugoniot condition, we see

that a jump or discontinuity between qL and qR propagates as a single jump only if qR − qL

is an eigenvector of F (q). This implies that a line connecting a jump from qL to qR must

be parallel to either r1 or r2. These lines are called Hugoniot Locus. Figure 3.1 shows the

Hugoniot Locus of the MEM model in the ρ−Q plane. This figure represents a case when

QL > 0. The other case is omitted here because it can be drawn similarly.

A right state qR is connected to a left state qL by 1-shock if it lies on the S1 curve, passing

through qL. Similarly, the right state is connected to the left state by 2-shock if it lies on

the S2 curve passing through qL. If the right state is not connected to a left state by a shock

curve, a middle state qm is determined to connect qL to qR by two types of curves.

ρ = Density

Q
=

Fl
ux

qL

ρ = Density

Q
=

Fl
ux qR

(a) (b)S2 : Shock-2S1 : Shock-1

Figure 3.1: Hugoniot Locus: Solid lines indicate the Entropy-Satisfying Jumps

Proposition 3.12. The conditions that determine the direction of the first and second

shocks are as follows:

• If ρL

ρR
< α

1+α and QL > 0, then we obtain that s1 > 0 > s2.

• If ρL

ρR
< α

1+α and QL < 0, then we obtain that s2 > 0 > s1.

• If ρL

ρR
> α

1+α and QL > 0, then we obtain that s2 > s1 > 0.
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• If ρL

ρR
> α

1+α and QL < 0, then we obtain that s2 < s1 < 0.

When a shock is formed, its direction depends on the initial right and left states (i.e.,

density and flux). In the markets, a positive shock indicates that when a shock starts it

moves from low to high price stocks, while the negative shock moves in the other direction.

This insight was validated in Chapter 2, in which a shock was observed to be positive on the

flash crash day.

The Riemann problem admits rarefaction waves. The rarefaction occurs, theoretically

speaking, when prices gradually recover. That is, when the left information speed (λi)L

is slower than the right one (λi)R for i = 1, 2, rarefaction waves, called 1-Rarefaction and

2-Rarefaction, exist. To visualize this solution, consider a smooth recovery of stocks after

a shock. Such smooth transition connects two states, qL and qR. If we consider the MEM

model in (3.12). The solution of the system (3.12) is scaling-invariant [81]. That is to say,

q(x, t) depends on (x, t) in the form ζ = x/t. Therefore, a rarefaction wave solution of the

Riemann problem (3.21) takes the form

q(x, t) =



qL = (ρl, Ql), if x ≤ ζ1t

q̃(x/t), if ζ1t < x < ζ2t

qR = (ρr, Qr), if x ≥ ζ2t.

(3.29)

where qL = q̃(ζ1), qR = q̃(ζ2), and q̃(x/t) is a smooth function. There are two curves

composed of points qR that can be connected to qL. The left state qL is connected to the

right state qR by a rarefaction wave. The two curves are a subset of the integral curves of

the vector field ri(q) [80]. More specifically, rarefaction waves lie along integral curves. To

see this, we differentiate q(x, t) = q̃(x/t) with respect to time and price x to obtain

qt(x, t) = − x
t2
q̃′(x/t) (3.30)

qx(x, t) = 1
t
q̃′(x/t) (3.31)
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substituting the derivatives in (3.12), we obtain

− x
t2
q̃′(x/t) + 1

t
F ′(x/t)q̃′(x/t) = 0 (3.32)

yielding the following relationship:

F ′(q̃(ζ))q̃′(ζ) = ζq̃′(ζ), (3.33)

where ζ = x/t. Equation (3.33) says that q̃′(ζ) is proportional to an eigenvector ri(q̃(ζ)) of

F ′(q̃(ζ)). That is to say,

q̃′(ζ) = µ(ζ)ri(q̃), (3.34)

for some i = 1, 2. Hence, the values of q̃(ζ) lie along an integral curve of ri(q̃). The

left and right states, q̃(ζ1) and q̃(ζ2), must lie on the same integral curve. This condition

is necessary for a rarefaction wave to exist between qR and qL. Another condition for the

existence of a rarefaction wave connecting qL and qR is that our parameterization ζ = x/t

should be monotonically increasing as we move from the left state qL to the right state qR.

From (3.33), we see that ζ is the eigenvalue of F ′(q̃(ζ)). In particular,

ζ = λi(q̃(ζ)). (3.35)

The phase curves and conditions in which rarefaction waves formed are outlined below in

two theorems.
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Theorem 3.13. The 1-rarefaction wave curve is described as follows:

R1 : QR = QL

(
ρR
ρL

)1+α−
√
α2+α

, (3.36)

also ρR < ρL when QL > 0 and ρR > ρL when QL < 0.

Theorem 3.14. The 2-rarefaction wave curve is described as follows:

R2 : QR = QL

(
ρR
ρL

)1+α+
√
α2+α

, (3.37)

also ρR > ρL when QL > 0 and ρR < ρL when QL < 0.

The Integral Curves for the MEM model (for the case when QL > 0) is shown in Figure

3.2. The other case is omitted here because it can be drawn similarly.

ρ = Density

Q
=

Fl
ux qL

ρ = Density

Q
=

Fl
ux qR

(a) (b)R2 : Rarefaction-2R1 : Rarefaction-1

Figure 3.2: Integral Curves: Solid lines indicate the correct rarefaction waves

A right state qR is connected to a left state qL by a 1-Rarefaction wave if it lies on the

R1 curve passing through qL. Similarly, the right state is connected to the left state by a

2-Rarefaction wave if it lies on the R2 curve passing through qL. If the right state is not

connected to a left state by a rarefaction curve, a middle state qm is determined to connect

qL to qR by two types of curves.
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In this section, we examined the properties of the model and showed that shock and

rarefaction waves can be formed, but the system is yet to be solved and show how the

density and velocity of stocks evolve over time. Indeed, that is essential for predicting

market conditions. A linear version of the system of PDEs in (3.1) is usually solved by

the method of characteristics, in which characteristic lines are established and the solutions

are constant along them. With the formation of discontinuities, computational difficulties

arise. In this case, approximation methods are preferred in many practical applications to

approximate discontinuous solutions. Difference methods, which approximate derivatives

by finite differences, are expected to break down around such solutions. To overcome this

issue, finite volume methods are employed in this chapter. This method works with the

integral form of the system of equations. The finite volume methods do not approximate

derivatives point-wise, but the domain is initially discretized into grid cells and the total

integral (average changes) of the variables are approximated over each cell. As we will see

in Section 3.3, the integrals are only modified by the flux and/or forcing term through the

edges of cells. The finite volume numerical methods obtain a conservative form. That is to

say, it provides the same property of the exact solution. The importance of the conservative

form is that the correct shock speeds are captured, while it might not be the case when a

non-conservative form is used.

Given the aforementioned challenges and nature of the problem (being nonlinear and

stochastic), we propose numerical approaches based on finite volume methods to solve the

system in real-time. To do so, we decompose the system into three parts, depending on the

type of forcing term, namely: homogeneous, deterministic inhomogeneous, and stochastic

inhomogeneous. Numerical methods are proposed for homogeneous and deterministic in-

homogeneous systems. The stochastic inhomogeneous system is tackled through stochastic

filtering techniques from estimation theory.
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3.3 Methodology

This section proposes various numerical techniques to solve the MEM model. The solution

methodology consists of two main components: numerical methods and stochastic filtering

techniques. We purpose an integrative numerical method for the homogeneous model and

the deterministic inhomogeneous one. The stochastic system is discussed in Section 4.

3.3.1 Homogeneous MEM Model

We adapt the finite volume method to solve and evaluate the model. The finite volume

method discretizes the spatial domain (i.e., the price domain) being divided into grid cells,

and approximates the integral of the vector of macroscopic variables, say q, over each of

the resulting cells. The information in each cell is updated at each time step using an

approximation to the flux. We define a grid cell Ci by an interval (xi+ 1
2
, xi− 1

2
) as shown in

Figure 3.3.

tj
U j
i U j

i+1

tj+1

Figure 3.3: Grid Cells Ci and Ci+1

where U j
i is approximately defined as the average of the integral of q over the grid cell i

at time tj

U j
i ≈

1
(xi+ 1

2
− xi− 1

2
)

x
i+ 1

2∫
x

i− 1
2

q(x, tj)dx = 1
∆x

x
i+ 1

2∫
x

i− 1
2

q(x, tj)dx. (3.38)

The finite volume method works with cell averages to ensure that the numerical method

is conservative in order to accurately capture discontinuous solutions [82]. The numerical
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form of the MEM model in (3.11) is given by

U j+1
i = U j

i −
∆t
∆x(F j

i+ 1
2
− F j

i− 1
2
), (3.39)

where equation (3.39) determines the time evolution of the cell average Ui. The value F n
i+ 1

2

approximates the average flux through the interface xi+ 1
2
, i.e.,

F j

i+ 1
2
≈ 1

∆t

tj+1∫
tj

F (q(xi+ 1
2
, t))dt. (3.40)

Denote the numerical flux by

F j

i+ 1
2

= F(U j
i , U

j
i+1). (3.41)

Equation (3.41) says that the flux value can be obtained based on the cell averages on either

side of the interface. Given (3.41), the numerical form of (3.39) becomes

U j+1
i = U j

i −
∆t
∆x(F(U j

i , U
j
i+1)− F(U j

i−1, U
j
i )). (3.42)

The finite volume method presented in (3.42) is stable and will converge to the solution

of the differential equations if the grid is refined to satisfy the CFL condition [30]. This

condition ensures that the numerical domain contains the mathematical or physical domain.

The CFL condition for hyperbolic PDEs is given by

∆x
∆t max{| λ1 |, | λ2 |} ≤ 1. (3.43)

There are various methods to approximate F(·), but one popular approach is Godunov’s

method [51]. This method attempts to solve the Riemann problem at each interface. By

employing Godunov’s method, the numerical flux at the interface xi+ 1
2

can be expressed as
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F j

i+ 1
2

= F (q(U j
i , U

j
i+1)), (3.44)

where q(U j
i , U

j
i+1) is the solution of the Riemann problem between U j

i+1 and U j
i . We adapt

the Godunov’s method to approximate the flux of stocks through the interfaces. In that

context, the Riemann problem in (3.44) can be potentially solved by using the complete

description of the solution as introduced in Section 3.2. This process is quite expensive

and requires the entire structure of the Riemann problem. However, in order to compute

q(U j
i , U

j
i+1), for instance, its value can be roughly assumed to be one of the states connecting

U j
i to U j

i+1 through a number of jumps (shock or rarefaction waves). The intermediate

state can be viewed graphically as one of the intersections of the Hugoniot Locus and/or

Integral Curves [80]. To reduce the computational effort, we use approximate Riemann

solvers to replace the full Riemann structure . Approximate Riemann solvers have, not only

shown to be as good as the exact solvers but also computationally efficient [116]. Among

the existing Riemann solvers, Harten, Lax and Leer [116] proposed the popular solver HLL

which is characterized by its simple structure. HLL is an efficient Riemann solver algorithm

to compute the flux as in (3.44). Rather than specifying the complete structure of the solution

of the Riemann problem, HLL provides an approximation for the interface numerical flux.

Let SR = max(λ1, λ2) and SL = min(λ1, λ2). The HLL Riemann solver at an interface i+ 1
2

is given by

U j

i+ 1
2

=



U j
i if SL ≥ 0,

U j
hull if SL ≤ 0 ≤ SR,

U j
i+1 if SR ≤ 0.

(3.45)

The HLL solver consists of three states separated by two waves determined by the fastest

(SR) and slowest (SL) wave speeds. The “hul” state serves as an intermediate state between

57



the right and left states. The corresponding numerical flux at the interface is given by

F j

i+ 1
2

=



F (U j
i ) if SL ≥ 0,

SRF (Uj
i )−SLF (Uj

i+1)+SLSR(Uj
i+1−U

j
i )

SR−SL
if SL ≤ 0 ≤ SR,

F (U j
i+1) if SR ≤ 0.

(3.46)

Another popular method to approximate the flux is the Lax-Wendroff. This flux approx-

imation is shown below [116]

U j

i+ 1
2

= ∆x
2∆t(F

j
i − F

j
i+1) + 1

2(U j
i + U j

i+1), (3.47)

F j

i+ 1
2

= F (U j

i+ 1
2
) (3.48)

In this chapter, we employ both approximation methods to determine the flux at the interface

of cells.

3.3.2 Deterministic Inhomogeneous MEM Model

This section considers the deterministic version of (3.1). The source term in the RHS

arises naturally in physical applications and represents a sink and/or a source. In equity

markets, the source term might represent external (either coming from outside the market

or specific to stocks) flux of stocks. In particular, the source term arises when ρ(x, t) and/or

Q(x, t) over a price range [x1, x2] change due to factors other than the flux (flow of stocks or

external forces) through the boundary of the price range.
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The system (3.1) can be expressed in a compact form as follows:

q(x, t)t + F (q(x, t))x = Ψ(q(x, t)), (3.49)

where q(x, t) = (ρ(x, t), Q(x, t))>, F (q) = (Q(x, t), (1+α)Q(x,t)2

ρ(x,t) )> = (q2,
(1+α)q2

2
q1

)>, and

Ψ(q) =

a(x, t) + b(x, t) q1

c(x, t) + d(x, t) q2

 . (3.50)

The source term Ψ(q) ensures that the system of nonlinear partial differential equations

approximately describes the equity markets various sources of disturbances. We solve the

inhomogeneous form (3.49) by the fractional step method [62], since Ψ(q) depends only on

q. This method consists of splitting the problem into a homogeneous conservation law and

a simple system of Ordinary Differential Equations (ODEs), and uses standard methods for

each. In particular, the homogeneous system (3.11) is first solved by the methods described

in Section 3.3.1. Next, the inhomogeneous system reduces to independent systems of ODEs.

qt = Ψ(q). (3.51)

The fractional step method based on (3.51) and (3.11), in which q(x, t) is evolved to a

value q(x, t+ ∆) over a time step ∆t, is summarized as follows

PDEs : qt + F (q(x, t))x = 0,

Initial conditions (ICs) : q(x, t),

⇒ q∗(x, t+ ∆t), (3.52)

ODEs : qt = Ψ(q),

ICs : q∗(x, t+ ∆t),

⇒ q(x, t+ ∆t). (3.53)
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The main advantage of using the fractional step method is that one can use the best and most

efficient existing numerical method for each sub-problem. For example, one can solve the

homogeneous sub-problem (3.52) using the Godunov’s method. To solve the sub-problem

(3.53), there are numerous numerical methods available in ODEs literature. The choice

of a solver for the second sub-problem depends on the nature of ODEs. Since the source

term Ψ(q(x, t)) varies across price-time domain, it might pose challenges such as stiffness.

Stiffness exits when the external forces or flux represented by the source term happen on a

time scale faster/shorter than the stocks dynamics. The stability and stiffness of the ODEs

are determined by its eigenvalues. The eigenvalues of the Jacobian matrix of the first-order

system of ODEs (3.53) are given by

∂Ψ(q(x, t))
∂q(x, t) =

b(x, t) 0

0 d(x, t)

 , (3.54)

where the eigenvalues of (3.54) are λODE1 = b(x, t) and λODE2 = d(x, t) 2. The behavior

of (3.53) is determined by the time-varying parameters b(x, t) and d(x, t). The stability

condition of the system of ODEs determines the specific ODEs solver, which is specified by

the time step ∆tODE. The Courant-Friedrichs-Lewy (CFL) condition (3.43) determines the

stability condition for the Godunov’s method and specifies the time step ∆t associated with

(3.52). The system of ODEs is said to be stiff if

max
i
| λODEi |� min

j
| λODEj | (3.55)

For the cases when (3.53) is not stiff, we propose to use a second-order two stage explicit

Runge-Kutta method [18, 95] to solve the system of ODEs. This method is a multi-step

ODE solver in which midpoints are generated in order to cancel out lower-order error terms.

It is stable given a sufficiently small time step. We assume that ∆tODE = ∆t. Therefore, in

order to evolve q(x, t) at time t to a new value q(x, t + ∆t) at time t + ∆t, we follow two
2The superscript indicates that the eigenvalues are associated with the system of ODEs.
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numerical steps based on the Godunov’s and Runge-Kutta methods which are implemented

sequentially to solve (3.52) and (3.53) as follows:

Step 1 : U∗i = U j
i −

∆t
∆x

(
F
(
q(U j

i − U
j
i+1)

)
− F

(
q(U j

i−1 − U
j
i )
))
, (3.56)

Step 2 : k1 = ∆tODE Ψ(U∗i ), (3.57)

k2 = ∆tODE Ψ(U∗i + k1), (3.58)

U j+1
i = U∗i + 1

2(k1 + k2). (3.59)

Stiff ODEs are numerically unstable unless the time step is very small. Implicit methods

are commonly used for stiff ODEs so that there are not stability restrictions on the time

step. When (3.53) is stiff, we deploy a two-stage Runge-Kutta second-order implicit Method

[18, 95] of the form

Ūi = U∗i + ∆tODE
2

(
Ψ(U∗i ) + Ψ(Ūi)

)
, (3.60)

U j+1
i = 1

3
(
4Ūi − U∗i + ∆tODEΨ(U j+1

i )
)
. (3.61)

The previous procedures allow solving both (3.52) and (3.53) in one go. Our previous

discussion emphasized the importance of analyzing the stability conditions when using the

fractional step method. Careful attention should be paid to the behavior of the system of

the ODEs to decide the appropriate ODEs solver. When an implicit method is used, there is

no stability condition on the time step ∆tODE and one can assume ∆tODE = ∆t. However,

when an explicit method is used, a stability analysis must be carried out to determine the

time step ∆tODE. If ∆t > ∆tODE, the system of ODEs can be solved in d steps, each

with size ∆td = ∆t
d

, where d is determined such that ∆td is stable for the ODEs solver. If
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∆t ≤ ∆tODE, we can simply propagate (3.53) by a time step ∆t (i.e., ∆tODE = ∆t) .

Given the nature of the source term in the MEM model, one needs to switch between

ODEs solvers with caution. A final remark is that the source term is composed of time-

varying parameters (and might be stochastic) which vary with market condition. Further-

more, the equity markets data might be noisy and need to be filtered. These challenges

motivate us to devise an approach to estimate the source term adaptively. In the next

section, we cover the adaptive estimation and filtering processes.

3.4 Stochastic Inhomogeneous MEM Model

This section covers the adaptive estimation of the complete MEM model. Estimation

is the process of determining the optimal estimate of the unknown variables (i.e., density,

pressure, and parameters) given the observed noisy measurements (stock price data). This

process affects the performance of the prediction model since the future evolution of the

macroscopic variables depend on the initial condition which needs to be estimated. We

propose an algorithm to adaptively predict and update the model states and time-varying

parameters. The prediction model is useful in monitoring equity markets. Therefore, ac-

curate and adaptive estimation is required to ensure the reliability of information given to

market makers, which helps to achieve faster response to crashes and market anomalies.

In order to study the estimation problem for the MEM model, we review the state-space

model. The state-space model representation makes it easier to handle measurement errors in

the observed stock price data and provides sequential expressions for the estimation process.

In general, the state space model is presented as

xt = gt(xt−1, wt), (3.62)
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zt = ht(xt, rt). (3.63)

In equation (3.62), xt is the state variable of the system at time t, gt(·) is called the state

transition function and wt is the process noise. Equation (3.63) is called the observation or

measurement equation where zt is the observed variable, ht(·) is the observation function

and rt is the measurement noise. At every time t, the observation variable zt is observed and

the objective is to determine the best estimation on the state variable xt.

Let the functions g and h in (3.62) and (3.63), respectively, be linear. For instance,

consider the state-space model in (3.64).

xt = Gtxx−1 + vt,

zt = Htxt + rt,

(3.64)

where xt is the state variable at time t, zt is the observed variable with measurement error

rt ∼ N (0, Vt). The state transition and observation models are denoted by Gt and Ht,

respectively. The process noise is wt ∼ N (0, Rt).

The optimal estimation of the linear state space model (3.64) can be achieved by Kalman

Filtering. Kalman filtering (KF) [68] is a recursive method that determines the optimal

estimate of xt given the measurement zt. The KF algorithm works in two steps: prediction

and update. In the prediction step, the KF predicts the current state variable x̂t|t−1 and

error covariance Pt|t−1 given the previous posterior estimates of the state variable x̂t−1|t−1

and error covariance Pt−1|t−1. Once the outcome of the noisy measurement yt is observed at

time t, the KF updates the estimates to produce the posterior estimates of the state variable

x̂t|t and error covariance Pt|t. The complete KL algorithm is outlined below.

Prediction Step:

x̂t|t−1 = Gtx̂t−1|t−1, (3.65)

Pt|t−1 = GtPt−1|t−1G
>
t + Vt. (3.66)
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Update Step:

yt = zt −Htx̂t|t−1, (3.67)

Kt = Pt|t−1H
>
t (HtPt|t−1H

>
t +Rt)−1, (3.68)

x̂t|t = x̂t|t−1 +Ktyt, (3.69)

Pt|t = (I −KtRt)Pt|t−1, (3.70)

where Kt is the optimal gain and yt is the measurement residual.

3.4.1 State-Space Representation of the MEM Model

A recursive estimation method is needed to update current equity markets state and

estimation of parameters and make one-step ahead prediction in real-time when new obser-

vations are collected. To begin, we propose a discretized version of the MEM in a state-space

model. Suppose that the price domain starting at 0 and ending at xN is divided into N seg-

ments of length ∆x. Similarly, the time domain starting at time 0 and ending at time tM is

divided into M segments of length ∆t . This discretization process is similar to the domain

construction discussed in Section 3.3. The macroscopic variables density ρ(x, t) and average

velocity v(x, t) are defined at discrete time intervals ∆t and price intervals ∆x. We assume

that ∆x is one dollar and ∆t is one minute. These choices of price and time step lengths

satisfy the CFL condition (3.43) in Godunov’s scheme.

The estimation process of the MEM model includes estimating the stocks density ρ(xi, tj),

flux Q(xi, tj) and model parameters represented by the source term vector Ψ(q(xi, tj)) at time

tj ≥ t for i = 1, 2, · · · , N , j = 1, 2, · · · ,M , given the observations up to time t. Let ρji

denote the density in price i at time j∆t and

ρρρj = [ρj1, ρj2, · · · , ρjN ]>. (3.71)
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The flux QQQj is defined similarly as the flux vector at time j∆t. Let θθθj, πππj, and φφφj denote

the parameters vectors at time j∆t, as shown in equations (3.72) 3

θθθj = [aj1, bj1, aj2, bj1, · · · , ajN , a
j
N , σ

j
1,N ]>,

πππj = [cj1, dj1, cj2, dj1, · · · , cjN , d
j
N ]>,

φφφj = [σj1,1, σj1,2, · · · , σj1,N , σ
j
2,1, σ

j
2,2, · · · , σ

j
2,N ]>.

(3.72)

Given ρρρj−1, QQQj−1, θθθj, and πππj, the numerical procedure in (3.56) and (3.57) determines

the one-ahead step prediction of ρρρj and QQQj. We rewrite the numerical procedure to solve the

deterministic inhomogeneous MEM as (3.73), where qqqj = (ρρρj,QQQj)>, ηηηj = (θθθj,πππj,φφφj)>, and

vvv is the noise vector. The noise term represented by the Brownian sheet in each equation of

(3.1) consists of N i.i.d normal random variables with mean 0 and standard deviation 1/
√

2.

Therefore, vvv is a 2N -dimensional vector.

qqqj = g(qqqj−1, ηηηj, vvv), (3.73)

In the functional form (3.73), g is the state transition function. This function does not have

a closed form due to the complexity of the numerical method used in this chapter. However,

g can be obtained by numerical procedure and this is sufficient for the estimation process

to work. Since the evolution of the state variable qj depends on the parameters as shown

in (3.73), the estimation of the parameters is important. In Chapter 2, the parameters

are estimated in an off-line fashion which incurs high computational costs. The underlying

assumption there is that the parameters are constant over a number of minutes. This as-

sumption might be valid during regular trading days and for a very short period of time.

However, during flash crashes, equity markets undergo dramatic shifts in stocks dynamics.

This motivates the need for an adaptive algorithm to capture, in a short period of time, the

changes in market conditions as well as determine their influence on the model’s parameters.
3The volatility terms σ1 and σ2 have two subscripts in equations (3.72). The first subscript indicates

the volatility type (the first type belongs to the first equation in (3.1) while the second type belongs to the
section equation), whereas the second subscript indicates the price location i.
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In order to estimate the parameters, we assume that they evolve according to a random

walk model as shown below

ηηηj = ηηηj−1 +wwwj, (3.74)

where wwwj is a normally distributed random vector.

To have a complete state space model as in equations (3.62) and (3.63), we further specify

the measurement equation. Let zji denote the observed density and flux in price i at time

j∆t, and zzzj denote the observation variable vector at j∆t as shown in equation (3.75).

zzzj = [zj1, zj2, · · · , zjN ]> (3.75)

Since the measurements are usually noisy, the measurement equation for the observed

variables is assumed to be given by equation (3.76).

zzzj = h(qqqj, rrr), (3.76)

where rrr is a 2N -dimensional measurement noise vector, and h is a measurement function.

The complete state space model for the macroscopic equity market model is formulated as

follows

ηηηj = ηηηj−1 +wwwj,

qqqj = g(qqqj−1, ηηηj, vvv),

zzzj = h(qqqj, rrr).

(3.77)

Let q̂qq(j | j − 1) denote the prior estimation of the state variable qqqj at time j given the

observations up to and including time j− 1 (i.e., prior mean estimate), Pqqq(j | j − 1) denotes

the prior error covariance matrix of the state estimation up to and including time j− 1 (i.e.,
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prior covariance estimate), q̂qq(j | j) denotes the posterior estimation of the state variable

vector qqqj at time j given the observations up to and including time j (i.e., posterior mean

estimate), and Pqqq(j | j) denotes the posterior error covariance matrix of the state estimation

up to and including time j (i.e., posterior covariance estimate). Similar notions are used

for ηηηj and zzzj to denote the mean and covariance estimates. We also assume that the noise

vectors are described as follows: wwwj ∼ N (0, P j
www), vvv ∼ N (0, Pvvv), and rrr ∼ N (0, Prrr), where

Pvvv = 0.5I2N and I2N ∈ R2N×2N is an identity matrix. The error covariance matrices measure

the accuracy of the state estimation.

Throughout this chapter, we make the following assumptions. 1) The measurement

function h is linear in the observed state variable qqq. 2) The noise in both the transition

g and the measurement equations h is additive. In order to obtain the optimal estimate

q̂qq(j | j), we implement a recursive estimation method known as filtration. Inspired by KF,

the estimation process (formally known as filtering) consists of two steps: first, a time update

or prediction step is performed in which the previous observations and the state transition

function are used to estimate the state variable q̂qq(j | j − 1). Second, a measurement or

filtering update step in which the current measurements or observations are utilized to refine

(filter) the estimated state variable q̂qq(j | j). A complete treatment about the estimation

problem can be found in standard books on optimal estimation (see e.g. [49]).

In the next two subsections, we cover different filtering techniques that we implement

to solve the estimation problem (3.77). In the first subsection, we introduce two methods

for estimating the state variable given that the parameters are constant. In the second

subsection, we approach the problem differently by combining both parameters and state

estimations in a dual fashion. This dual estimation technique is an extension of the filtering

methods for state estimation but the estimated variable is not only the state of the model

but, also the parameters. Other methods exist in the optimal estimation literature for

parameters estimation. These methods are closely related to machine learning algorithms

where a training set (input and output) is available to solve for the parameters such that the
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expected square error for the machine (difference between the true and expected output) is

minimized [121]. The dual estimation approach is preferred in our case since such data is,

in fact, not observed.

3.4.1.1 Estimation of qqq

Though KF obtains the optimal estimation of the linear state-space model, the complexity

of g in (3.77) is nonlinear. The Extended Kalman Filter (EKF) is considered the standard

estimation technique for nonlinear models in which the nonlinear model is linearized so

that the classical linear KF can be implemented. In this filter, the state distribution is

approximated by a Gaussian Random Variable (GRV) and then is propagated by the first-

order linearization of the nonlinear model. However, the EKF is difficult to implement and

tune [67], mainly due to two drawbacks: the linearisation might produce instability in the

filters, and the calculation of the derivatives (while approximating the nonlinear model by a

linear one) is nontrivial in most practical applications.

The authors of [67] proposed a superior algorithm, known as the Unscented Kalman

Filter (UKF), that overcomes the drawbacks of EKF and more importantly, calculating

the derivatives is not required. The central idea of the UKF is based on the unscented

transformation. In UKF, the state variable distribution is also approximated by a number

of sample points (called sigma points hereafter). The sigma points are chosen carefully to

capture the true mean and covariance of the state distribution. These sigma points are

propagated through the true nonlinear transformation. The propagated sigma points are

used to calculate the posterior mean and covariance. The UKF is reported to approximate

the posterior mean and covariance of any nonlinear models up to the third order (compared

to a Taylor series expansion) [67] for Gaussian random variables.

Before we present the UKF algorithm, we briefly describe the Unscented Transformation

(UT) method, which is its central idea. The UT is a method for finding statistics such as

mean and covariance of a random variable which is subjected to a nonlinear transformation.
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For instance, consider a random variable yyy = f(xxx) where f(·) is a nonlinear function and

xxx ∈ RL is a random variable with mean x̄xx and covariance Pxxx. In order to approximate the

mean and covariance of yyy, a set of 2L + 1 sigma vectors Si (i = 0, 1, · · · , 2L) are generated

as follows:

S0 = x̄xx, (3.78)

Si = x̄xx+
(√

(L+ λ)Pxxx
)
i
, i = 1, · · · , L (3.79)

Si+L = x̄xx−
(√

(L+ λ)Pxxx
)
i+L

, i = 1, · · · , L (3.80)

(3.81)

where L is the dimension of the random variable xxx and λ = α2(L + κ) − L is a scaling

factor. The parameters α and κ control the spread of the sigma points, which are normally

set to 0.001 and 0 respectively. The term
(√

(L+ λ)Pxxx
)
i

is the ith column of the square

root of the matrix
(
(L + λ)Pxxx

)
. Each sigma vector Si is propagated through the nonlinear

function g(·) to obtain posterior sigma points Yi = g(Si), i = 0, · · · , 2L. The statistics of the

random variable y (mean and covariance) are approximated by the sample weighted mean

and covariance. The weights W i (associated with S i for i = 0, 1, · · · , 2L) are given by:

W0 = λ

L+ λ
, (3.82)

Wi = 1
2(L+ λ) i = i = 1, · · · , 2L. (3.83)

(3.84)

Turning to our estimation problem, the recursive estimation by UKL algorithm (prediction

and updating steps) of the random state vector qqq ∈ R2N in (3.77) is shown below. It should

be noted that the parameters in the following algorithm and subsequent one are assumed to
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be known.

Algorithm 1
1: Initialize at time j = 0

2: q̂qq(0 | 0) = E[qqq0] , Pqqq(0 | 0) = E
[(
qqq − q̂qq(0 | 0)

)(
qqq − q̂qq(0 | 0)

)>]
3: j ← j + 1

4: while j < M do

5: Compute sigma vectors: S(j) =
[
q̂qq(j | j), q̂qq(j | j) +

(√
(N + λ)Pqqq(j | j)

)
, q̂qq(j | j) −(√

(N + λ)Pqqq(j | j)
)]

6: Time update

7: S(j + 1 | j) = g(S(j), θθθ,πππ)

8: q̂qq(j + 1 | j) =
∑4N

i=0 Wi Si(j + 1 | j)

9: Pqqq(j + 1 | j) =
∑4N

i=0 Wi

[
Si(j)− q̂qq(j + 1 | j)]

[
Si(j)− q̂qq(j + 1 | j)

]> +φφφ2>
Pvvv

10: Z(j + 1 | j) = h(S(j))

11: ẑzz(j + 1 | j) =
∑4N

i=0 WiZi(j + 1 | j)

12: Measurement update

13: Pzzz(j + 1 | j) =
∑4N

i=0 Wi

[
Zi(j + 1 | j)− ẑzz(j + 1 | j)

][
Zi(j + 1 | j)− ẑzz(j + 1 | j)

]> + Prrr

14: Pqzqzqz(j + 1 | j) =
∑2N

i=0 Wi

[
Si(j)− q̂qq(j + 1 | j)

][
Zi(j + 1 | j)− ẑzz(j + 1 | j)

]>
15: K(j + 1) = Pqzqzqz(j + 1 | j)P−1

zzz (j + 1 | j)

16: q̂qq(j + 1 | j + 1) = q̂qq(j + 1 | j) +K(j + 1)(zzz(j + 1)− ẑzz(j + 1 | j))

17: Pqqq(j + 1 | j + 1) = Pqqq(j + 1 | j)−K(j + 1)Pzzz(j + 1 | j)K>(j + 1)

18: j ← j + 1

19: end while

We propose to implement another filter that has been recently introduced to the statis-

tical community. The Ensemble Kalman Filter (EnKF) was first introduced in [42] as an

alternative filtering approach to complex problems with strong nonlinearity. This method

is popular due to its flexibility and efficiency [70]. The EnKF has several extensions that

have been introduced in geophysics literature (i.e., [115] and [11]) where real-life problems

exhibit high complexity and high dimensionality. In many of the geophysics applications,

this method is reported to yield very competitive results compared to the EKF and other

filtering methods [16].
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The EnKF is a sequential filtering method that is suitable for problems involving dis-

cretization of a system of partial differential equations. This method is considered a Monte-

Carlo implementation to the Bayesian problem in which the prior estimation with new data

is used to obtain the posterior estimation. The EnKF works as follows: a number of sample

points called ensembles are generated from the prior estimation distribution. Each ensemble

point is updated using a linear rule and Kalman gain, similar to the original KF update

equation. The posterior estimation is the mean of the updated ensembles while their spread

is the posterior covariance.

There are mainly two approaches for updating the ensembles in EnFK, stochastic and de-

terministic updates. In stochastic update, the updated ensembles are adjusted by a stochas-

tic perturbation. While in deterministic update, ensembles are updated by a non-random

transformation of the forecast ensembles (see [70], for more details). In this chapter, we only

apply the stochastic update in the EKF since it produces more robust estimates [79, 77].

The stochastic EnKF algorithm for estimating qqq is shown below.

Algorithm 2
1: Initialize at time j = 0 with the ensembles q̂qq1(0 | 0), · · · , q̂qqL(0 | 0)

2: j ← j + 1

3: while j < M do

4: for l = 1, · · · , L do

5: Time update: Draw sample vvvl ∼ N (0, Pvvv)

6: q̂qql(j + 1 | j) = g
(
q̂qql(j | j), θθθ,πππ

)
+φφφ> vvvl(j)

7: end for

8: for l = 1, · · · , L do

9: Measurement update: Draw sample rrrl ∼ N (0, Prrr)

10: q̂qql(j + 1 | j + 1) = q̂qql(j + 1 | j) +K(j + 1)
(
zzz(j + 1)− h

(
q̂qql(j + 1 | j), rrrl

))
11: end for

12: j ← j + 1

13: end while
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3.4.1.2 State and Parameters (Dual) Estimations

Dual estimation problems consist of estimating the state variable qqqj and the model pa-

rameter ηηηj simultaneously from the noisy observed data zzzj. The dual problem has been

approached from different angels and many methods exist for solving it [57]. We propose

a general paradigm applicable to both filtering methods presented in the previous section.

Assume that we have a separate state-space model for the model’s parameters as shown

below

ηηηj = ηηηj−1 +wwwj,

zzzj = h(qqqj−1, rrr),
(3.85)

where the innovations wwwj and rrr are independent normally distributed random variables with

means zero and covariances P j
www and Prrr, respectively. In the dual estimation, two filtering

methods, say for instance UKF, run simultaneously for the state variable and parameters.

At every time step j, the current estimate for the state variable is used to estimate the

parameters, while the current estimate for the parameters are used to estimate the state

variable. Both estimation problems are solved by the same filtering method [121].

3.5 Results

This section analyzes the application of the proposed methods on normal trading days and

abnormal ones. On normal trading days, the equity markets are stable. Abnormal trading

days can be associated with sharp and/or sudden fluctuations which are often attributed

to unknown or external factors/forces. We implement the proposed methods to determine

the time evolution of density and flux of stocks. In addition to analyzing the macroscopic

variables, the model’s parameters are evaluated as well. To this end, this section integrates

the PDEs solvers and filtering techniques proposed in the previous section to dynamically

solve and determine the evolution of density ρ, flux Q and forcing terms (parameters).
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3.5.1 Data

The data used in this analysis is composed of three equity markets: NASDAQ, NYSE,

AMEX. The raw data comprises minute resolution stock price information over a trading

period of 9 hours per day. Close to 4000 stocks were collected. The space and time domains

were discretized according to the CFL condition. That is, space (price) is discretized into

N fixed intervals of size ∆x and time is discretized into M fixed periods of length ∆t. The

CFL stability condition requires an upper bound on the ratio ∆x/∆t, which relates to the

maximum information speed λ. The information speed is a function of stock velocity, which

is roughly bounded by one. This bound was validated by separate data. The average stocks

velocity v(xi, tj) and ρ(xi, tj) are computed at price xi and time tj where i = 0, · · · , N and

j = 0, · · · ,M .

3.5.2 Implementation

In the previous sections, we proposed several methods to solve the MEM model sequen-

tially. The evaluation of density and velocity are determined by using numerical methods to

solve the deterministic inhomogeneous MEM model. The stochastic inhomogeneous MEM

is solved using stochastic filtering methods. We proposed two approaches for both problems:

the deterministic and stochastic models. The proposed methods are HLL and Lax-Waderoff

for solving the deterministic problem, and UKL and EnKL to tackle the stochastic version

of the model. In this section, we illustrate the implantation procedure of employing HLL

and UKL to solve the complete MEM model. The procedure is similar for the case when

the other numerical solver (i.e., Lax-Waderoff) and stochastic filter method (i.e., EnKL) are

applied.

The estimation problem of the state-space model in (3.77) includes estimating, sequen-

tially, the expected value and covariance of qqq and ηηη. Initially, the data in terms of the

temporal axis, was divided into three sets: training, testing, and validation sets. The tem-
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poral split of data at time j is shown in Figure 3.4.

tj
Training Validation Testing

Figure 3.4: The Temporal Split of Data at Time j

The first part is used to compute the initial values of the states and parameters. The

initial values can be computed as line 2 of Algorithm 1. We should mention that the dual

approach is taken in this chapter. That is to say, Algorithm 1 is used for both the states and

parameters estimation. When the initial values for qqq and ηηη are computed, starting from time

j = 1 in the testing set, the time update is performed as in lines 7-11 in the Algorithm. The

parameters time update was done first and these values are used in the update of the state,

specifically in line 7. In the time update, we mentioned that the function g is complex but

we suggested to use the numerical procedure (3.56) and (3.57) to determine the predictions.

The predicted values of the parameters are used in (3.57). From the numerical procedure,

we see that the flux function approximation is needed. We proposed two methods and we

report the results of using both approximations in the next section. When the density and

flux are observed, their values are updated according to lines 13–17. A similar updating

scheme is used to update the parameters from the observed density and flux. The update

step in line 16 should be based on the observed state variables since the parameters are not

observed. This remark can be seen from the state-space model of the parameters in (3.85).

The previous implementation is repeated sequentially, in a discrete time step of size one.

Keeping the previous steps in mind, the validation dataset is used to validate the tuning

parameters, in the state-space model, which are the states and parameters measurement

errors.

The validation over multiple trading days resulted in several observations. The volatility

of predicted density increases as the density measurement error increases. We observed that

the length of training period should be about 25 minutes. We also noticed that density mea-

74



surement error should not be too high as that would result in a very wide confidence bound

for the forecasts. The parameters measurement error with value equal to zero generated

mixed results. When that parameters measurement error was between 0.001 and 0.5, the

minimum average Root Mean Square Error (RMSE) across all the price ranges was obtained.

It should be noted that, in our final implementation, we used the following setting: the flux

and density measurement errors were 0.1 and 0.8, respectively.

3.5.3 Case Study 1: The Flash Crash

We first implement the integrated algorithm on data collected from the flash crash day,

May 6th 2010. This day is considered by many researchers as unique in that we first observed

consequences of the complexity of the algorithmic trading system. On that day, several

markets experienced a sudden sharp decline followed by a correction in which losses were

recovered by the end of the trading day. This phenomenon has been the focuse of many

important studies [38]. Some explanations for the sharp decline and recovery include: the

large purchase of put options, large sell of E-Mini contracts, and quote stuffing . However,

the actual causes of the flash crash are a matter of debate. Our study does not attempt to

explain the causes of this phenomenon, but provides an early detection method.

To begin, we look more closely at the flash crash data by plotting the velocity and density

to see if there is anything noticeable. Figure 2 shows the density of stocks (i.e., the number

of stocks per price) over a period of 391 minutes, covering the trading period from 9:30

a.m. and 4:00 p.m. In the color map to the right of the figure, the greater the density, the

darker the color. As can be seen, the stocks are concentrated on the first 40 price ranges and

then the density reduces gradually. This observation is highly reasonable as we expect that

the number of stocks to gradually decrease as the price increases. The important question

now is, which price ranges will be the focus of our study? Following insights from fluid

dynamics, the fluid description is more appropriate when the number of particles is large

enough. Similarly, in order to maintain validity in equity markets, we consider only the first
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25 price ranges. In these ranges, the density appears to be high and stocks are more actively

traded (note how the density changes over time).
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Figure 3.5: Density on the Flash Crash Day

Knowing that the flash crash started at 02:32 p.m. (302 minutes in the x-axis), it can

be seen that before that time, nothing unusual is observed. Around the flash crash time, a

sharp decline is very noticeable. The plunge persists over most of the price ranges. In other

words, the disturbance propagates in a certain direction, affecting all stocks. This behavior

is well captured by our model through what we defined as shocks and rarefaction waves.
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Turning to the velocity of stocks, the velocity figures for various price ranges are illus-

trated in Figure 3. The velocity appears to offer more information and sensitivity around the

flash crash time. Although this might not be obvious from the figure, the disturbance is also

persistent across various price ranges. More specifically, shock or rarefaction waves occurred

in the velocity of stocks. From our examination of the density and velocity, we see that

the macroscopic variables are best suited for signaling abnormality. Given this information,

it is still interesting to see the performance of the proposed algorithms on predicting these

variables.
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Figure 3.6: Velocity Plots

We present and discuss the prediction results of implementing the proposed algorithms
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on only a few price points i. In particular, we select four price ranges to evaluate whether

the uncertainty exhibited by the data is well captured by the model. Also, we analyze the

prediction model using two performance measures: Root Mean Square Error (RMSE) and

Mean Square Error (MSE). The table below presents the average RMSE and MSE over the

first 25 price points. Table 3.1 shows that the Lax-Wendroff outperforms the other methods.

Model
RMSE MSE

PDEs Solver Stochastic Filtering Technique

HLL Dual UKL 1.94 1.35

HLL Dual EnKL 1.91 1.31

Lax-Wendroff Dual UKL 1.80 1.31

Lax-Wendroff Dual EnKL 1.92 1.31

Table 3.1: Average Performance of the Proposed Algorithms in Predicting the Density of

Stocks

Model
RMSE MSE

PDEs Solver Stochastic Filtering Technique

HLL Dual UKL 1.02 0.55

HLL Dual EnKL 1.38 0.59

Lax-Wendroff Dual UKL 0.96 0.53

Lax-Wendroff Dual EnKL 1.35 0.59

Table 3.2: Average Performance of the Proposed Algorithms in Predicting the Flux of Stocks

The figures below demonstrate the predicted flux and density for the period between 12:49

p.m. and 03:49 p.m. Figures 3.8–3.7 show that the model is able to predict the direction of

the crash and shows some signals prior to the crash. As shown in Figures 3.8–3.7, most of

the observations are within the uncertainty bounds even during high volatility periods.
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Figure 3.7: One-Step Ahead Prediction of Density
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Figure 3.8: One-Step Ahead Prediction of Flux

Even though the previous results are informative, we present the prediction results for

what we call the “pressure”. The pressure is defined as αQv. We believe that this mea-

sure is more sensitive to crashes and abnormalities in the market. As can be seen in the

figures below, the predicted pressure shows high sensitivity around the flash crash time and

afterwards.
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Figure 3.9: One-Step Ahead Prediction of Pressure

3.5.4 Case Study 2: Facebook’s Initial Public Offering

In this section, we consider another trading day. We implemented our proposed method-

ology on data obtained from May 18th, 2012. On that day, Facebook had its initial public

offering on the NASDAQ stock market to raise $16 billion [100]. It was considered one of the

biggest offerings ever in the U.S. This massive offering showed to be a problem for NASDAQ.

The market experienced technical difficulties, delaying the trading of the stock for about 30

minute which left traders stranded. These difficulties were reported to be caused by glitches

in the market software. The glitches created turmoil for a number of market makers for
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Facebook’s stock, resulting in a total lose of $115 million. Similar to our analysis on the

flash crash day, we show the velocity plot for several price ranges.
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Figure 3.10: Velocity Plots

Three of the plots show that there was an unusual dip (or a crash) between 11:00 a.m.

and 11:45 a.m. on May 18, 2018, which was the reported time for Facebook public offering.

Though the instability was caused by one stock, the glitches caused by that massive offering

on the NASDAQ system created chaos across the market. We can see a dip around the crash

time in different price ranges. This means that the crash propagated from one price range

to another, supporting the wave-like phenomenon of equity markets.

The prediction results for the flux and density are shown in the tables and figures below.
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Figure 3.11-3.12 show one-ahead predictions of the density and flux for four price ranges.

The figures show that the model is able to capture the fluctuations during normal and high

volatility periods (i.e., around 11:30 am). We also see that the observations are within the

predicted confidence bound.
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Figure 3.11: One-Step Ahead Prediction of Density
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Figure 3.12: One-Step Ahead Prediction of Flux

The tables below show that the implantation of the combination of Lax-Wendroff and

UKL methods results in the minimum RMSE. Note that the errors from using other methods

are comparable.
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Model
RMSE MSE

PDEs Solver Stochastic Filtering Technique

HLL Dual UKL 1.24 0.91

HLL Dual EnKL 2.68 1.98

Lax-Wendroff Dual UKL 1.22 0.91

Lax-Wendroff Dual EnKL 2.94 2.17

Table 3.3: Average Performance of the Proposed Algorithms in Predicting the Density of

Stocks

Model
RMSE MSE

PDEs Solver Stochastic Filtering Technique

HLL Dual UKL 0.29 0.22

HLL Dual EnKL 0.29 0.22

Lax-Wendroff Dual UKL 0.29 0.22

Lax-Wendroff Dual EnKL 0.29 0.22

Table 3.4: Average Performance of the Proposed Algorithms in Predicting the Flux of Stocks

Figure 3.13 illustrates the predicted pressure. It is evident that the pressure is more

informative about unusual changes in the market, as seen in the plots around 11:30 a.m.

The four figures have a common peak around that time.
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Figure 3.13: One-Step Ahead Prediction of Pressure

3.5.5 Sensitivity Analysis on α

In this section, we analyze the robustness of the MEM under different values of α. In

the theoretical and implementation sections, the value of α was assumed to be a constant

parameter and between 0 and 1. More specifically, we picked α = 0.3. To compare the

performance of the model under different values of α, we compute the difference between the

prediction results when α = 0.3 and other values between 0 and 1. Tables 3.5 and 3.6 show

that the results are almost identical for several values of α = 0.3, indicating that the MEM

is robust to changes in α in the range between 0 and 1.
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Prediction Average Difference (base case is α=0.3)

α Flash Crash Day Facebook’s IPO

0.1 4.97 ×10−6 4.7 ×10−6

0.6 -7.42 ×10−6 -5.5 ×10−6

0.8 -1.24 ×10−5 -8.17 ×10−6

Table 3.5: The Difference in the Prediction Results (RMSE) of Density between α = 0.3 and

other Values of α

Prediction Average Difference (base case is α = 0.3)

α Flash Crash Day Facebook’s IPO

0.1 2.21 ×10−6 1.42 ×10−5

0.6 -3.29 ×10−6 -2.26 ×10−5

0.8 -5.49 ×10−6 -3.84 ×10−5

Table 3.6: The Difference in the Prediction Results (RMSE) of Velocity between α = 0.3 and

other Values of α
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3.6 Conclusion

This chapter presents a new narrative to flash crashes. During normal periods, the mar-

kets are undergoing a lot of weak shocks that we believe are absorbed by market participants.

During flash crashes (or macroscopic crashes), at early stages, a strong shock builds up and

hits the market aggressively. Then, said shock, propagates to the whole market and even-

tually is dumped down. Our study of shock speed and strength establishes strong evidence

connecting shocks to crashes. The analysis is established through the access of high fre-

quency data. In this chapter, the structure of the MEM model was investigated for the first

time. The conditions in which shock or rarefaction waves occur were highlighted. In the

equity markets, shocks are formed when stock prices, captured by the velocity of stocks, ex-

perience a sharp decline. A rarefaction wave is a solution in which stocks velocity transition

smoothly (to some extent) from one state to another. We proposed a solution methodology

of the MEM model. This approach is novel, combining a PDEs solver and stochastic filtering

techniques. The solution method is adaptive and capable of updating the estimates to reflect

any changes in market conditions. The results of implementing the proposed approach on

two datasets illustrated that pressure is more sensitive to crashes. Thus, it can be used

as a predictive tool for crashes and to provide early alert for abnormalities in the market.

The prediction results of density and flux for several price ranges were within the predicted

confidence bound.
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3.7 Technical Proofs

3.7.1 Derivation of 3.20

Qm = − Q∗ρm
(αρm − (1 + α)ρ∗)

+

√√√√Q2
∗

(
ρmρ∗ + (1 + α)ρm(ρm − ρ∗)

ρ∗(αρm − (1 + α)ρ∗)
+ ρ2

m

(αρm − (1 + α)ρ∗)2

)

(3.86)

= − Q∗ρm
(αρm − (1 + α)ρ∗)

(3.87)

+

√√√√
Q2
∗

((ρmρ∗ + (1 + α)ρm(ρm − ρ∗)
)
(αρm − (1 + α)ρ∗)

ρ∗(αρm − (1 + α)ρ∗)2 + ρ2
m

(αρm − (1 + α)ρ∗)2

)
,

(3.88)

= − Q∗ρm
(αρm − (1 + α)ρ∗)

(3.89)

± Q∗
(αρm − (1 + α)ρ∗)

√√√√(ρmρ∗ + (1 + α)ρm(ρm − ρ∗)
)
(αρm − (1 + α)ρ∗)

ρ∗
+ ρ2

m, (3.90)

= − Q∗ρm
(αρm − (1 + α)ρ∗)

(3.91)

± Q∗
(αρm − (1 + α)ρ∗)

√
ρ3
m(α + α2)− 2ρ2

mρ∗ + ρ2
∗ρm(α + α2)− ρ2

mρ∗
ρ∗

+ ρ2
m, (3.92)

= − Q∗ρm
(αρm − (1 + α)ρ∗)

± Q∗
(αρm − (1 + α)ρ∗)

√
ρ4
m(α + α2)− 2ρ3

mρ∗ + ρ2
∗ρ

2
m(α + α2)

ρmρ∗
,

(3.93)

= − Q∗ρm
(αρm − (1 + α)ρ∗)

± Q∗
(αρm − (1 + α)ρ∗)

√
(ρ2
m − ρmρ∗)2 (α + α2)

ρmρ∗
, (3.94)

= Q∗
1± (ρm − ρ∗)

√
α2+α
ρmρ∗

1− (ρm−ρ∗)
ρm

(1 + α)
. (3.95)
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3.7.2 Proof of Theorem 3.10

Proof. It follows from the entropy condition that

(1 + α−
√
α2 + α) QR

ρR
<
QR −QL

ρR − ρL
< (1 + α−

√
α2 + α) QL

ρL
, (3.96)

(1 + α−
√
α2 + α) QR

ρR
− QR −QL

ρR − ρL
< 0 < (1 + α−

√
α2 + α) QL

ρL
− QR −QL

ρR − ρL
, (3.97)

after a few steps, we can see that

QLρR −QRρR
ρR − ρL

> −(α−
√
α2 + α)QL, (3.98)

QLρR −QRρR
ρR − ρL

< −(α−
√
α2 + α)QR, (3.99)

since by definition (α −
√
α2 + α) < 0, we obtain that for 1-shock QR > QL and take the

minus sign in (3.20). The first family of shock curve S1 follows easily by replacing Qm and

Q∗ in (3.20) by QR and QL, respectively, and taking the minus sign. The shock speed s1 is

obtained by substituting QR in (3.17) by ( 3.10).

To show that ρR > ρL when QL > 0, we discuss two cases

1. If the denominator in ( 3.10) is negative: 1 − (ρR−ρL)
ρR

(1 + α) < 0, hence QR > QL

if 0 > 1 − (ρR−ρL)
ρR

(1 + α) > 1 − (ρR − ρL)
√

α2+α
ρRρL

or ρR > ρL. Otherwise, we get a

contradiction.

2. If the denominator in ( 3.10) is positive: 1 − (ρR−ρL)
ρR

(1 + α) > 0, hence QR > QL

if 1 − (ρR − ρL)
√

α2+α
ρRρL

> 1 − (ρR−ρL)
ρR

(1 + α) > 0 or ρR > ρL. Otherwise, we get a

contradiction.

To show that ρR < ρL when QL < 0, we discuss two cases

1. If the denominator in ( 3.10) is negative: 1 − (ρR−ρL)
ρR

(1 + α) < 0, hence QR > QL

if 0 > 1 − (ρR − ρL)
√

α2+α
ρRρL

> 1 − (ρR−ρL)
ρR

(1 + α) or ρR < ρL. Otherwise, we get a

contradiction.
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2. If the denominator in ( 3.10) is positive: 1 − (ρR−ρL)
ρR

(1 + α) > 0, hence QR > QL

if 0 < 1 − (ρR − ρL)
√

α2+α
ρRρL

< 1 − (ρR−ρL)
ρR

(1 + α) or ρR < ρL. Otherwise, we get a

contradiction.

3.7.3 Proof of Theorem 3.11

Proof. This proof follows easily from the previous proof, but instead we use the fact that

(α +
√
α2 + α) > 0.

3.7.4 Proof of Proposition 3.12

Proof. We only show the proof the first case as the other cases follow similarly. It follows

from the proof of Theorem 3.10 that if 1 − (ρR−ρL)
ρR

(1 + α) < 0 ,which is equivalent to say

that ρL

ρR
< α

1+α , and QL > 0,then ρR > ρL and (ρR−ρL)
ρR

(1 + α) < (ρR − ρL)
√

α2+α
ρRρL

, which also

means that 1+α
ρR

<
√

α2+α
ρRρL

since ρR > ρL. Thus, we obtain from (3.25) and (3.28) that s1 > 0

and s2 < 0.

3.7.5 Proof of Theorem 3.13

Proof. We determine explicitly the function q̃(x/t) by first determining µ(ζ) in (3.33). We

differentiate (3.35) with respect to ζ to obtain

1 = ∇λi(q̃(ζ)) · q̃′(ζ) (3.100)

= µ(ζ)∇λi(q̃(ζ)) · ri(q̃) (3.101)

where the second equality follows from using (3.33), and thus

µ(ζ) = 1
∇λi(q̃(ζ)) · ri(q̃)

(3.102)
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Note that the denominator of (3.102) is not zero due to the characteristic fields being gen-

uinely nonlinear (Theorem 3.2).

Using (3.102) in (3.33), and hence

q̃′(ζ) = ri(q̃)
∇λi(q̃(ζ)) · ri(q̃)

(3.103)

which is a system of ordinary differential equations for q̃(ζ) when ζ1 ≤ ζ ≤ ζ2 with a initial

condition q̃(ζ1) = qL. For 1-rarefaction of the MEM model , the system of ODEs is given by

ρ′(ζ) = ρ2(ζ)
Q(ζ)(1 + α−

√
α2 + α)

(
(1 + α−

√
α2 + α)− 1

) , ρ(ζ1) = ρL (3.104)

Q′(ζ) = ρ(ζ)(
(1 + α−

√
α2 + α)− 1

) , Q(ζ1) = QL (3.105)

Divide the previous two equation to obtain

dQ(ζ)
dρ(ζ) = (1 + α−

√
α2 + α)Q(ζ)

ρ(ζ) (3.106)

(3.107)

rearranging the terms, which yields

dQ(ζ)
Q(ζ) = (1 + α−

√
α2 + α)dρ(ζ)

ρ(ζ) (3.108)

hence, we eliminate ζ by solving for Q as a function of ρ and obtain

ln
(
Q(ρ)
QL

)
= (1 + α−

√
α2 + α) ln

(
ρ

ρL

)
, (3.109)
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thus, for a 1-rarefaction wave connecting qL to qR, the first part of the theorem holds

QR = QL

(
ρR
ρL

)1+α−
√
α2+α

. (3.110)

Since (1 + α−
√
α2 + α) is between zero and one (by definition), and if QL ¿0,

QR = QL

(
ρR
ρL

)1+α−
√
α2+α

> QL
ρR
ρL
. (3.111)

The previous inequality follows from the existence condition of a rarefaction wave, which is

given by

λ1(qL) = (1 + α−
√
α2 + α) · QL

ρL
< λ1(qR) = (1 + α−

√
α2 + α) · QR

ρR
(3.112)

Hence,

ρα−
√
α2+α

R > ρα−
√
α2+α

L (3.113)

which means that ρR < ρL. Also, we can easily see that ρR > ρL when QL < 0. This

completes the proof.

3.7.6 Proof of Theorem 3.14

Proof. This proof follows easily from the previous proof, but instead we use the fact that

(α +
√
α2 + α) > 0.

93



Chapter 4

Abnormality Detection in Equity

Markets: A Macroscopic Hybrid

Reservoir Computing Approach

4.1 Introduction

In recent years, algorithmic trading in the financial markets has significantly increased

and replaced open outcry mechanisms [61]. Algorithm traders use computers to follow spe-

cific instructions to exploit profitable opportunities as they arise. One type of algorithmic

trading is High Frequency, which uses powerful and fast computers, and complex algorithms

to yield high returns. With the spread of these trading behaviors, we have also seen the

emergence of new market anomalies such as flash crashes. Indeed, empirical studies have

confirmed the impact of high frequency trading on stock prices, creating market imbalance

and instabilities [84]. Previous research on market anomalies has, primarily, focused only on

those that violated the market efficiency hypothesis [106]. Yet, in this era of fast computing,

anomalies can also occur in response to complex transactions and glitches. Even though

technological development in trading practices is important for the market to advance, there

remains a need for a monitoring tool that can detect abnormal activities.
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The existing research into predicting financial anomalies 1 has mainly focused on major

crisis forecasting. These forecasting methods include classical models and machine learning

techniques. One of the classical approaches is to use macroeconomics indicators to predict

financial stress. In [118], a Bayesian Model Averaging (BMA) is used to identify variables

with high predictive power for financial stress in 25 of the Organization for Economic Coop-

eration and Development (OECD ) countries. Despite the success of BMA in accounting for

model uncertainty, the authors of [118] reported that the BMA was not able to provide good

predictions for financial stress. Other studies have used traditional econometric models to

forecast economic crises. In [43], for instance, early warning indicators were identified using

a linear model known as Auto Regressing Moving Average (ARMA). A different line of re-

search in forecasting financial crises is the implementation of machine learning techniques. In

this line of research, early detection systems were developed using state of the art machine

learning techniques such as Artificial Neural Network (ANN), decision trees, and logistic

regression. Of these three methods, ANN has yielded the best performance. Tree-based ma-

chine learning techniques have also been investigated in the literature. Boosted Regression

Trees (BRT) were used in [33] to select indicators for predicting recessions, showing that

the short-term interest rate and the term spread were the leading indicators. The previous

research in forecasting tools have focused on high intensity crashes. However, little research

has investigated the medium intensity crashes that can occur during a given trading day.

We consider these crashes as anomalies that are important to identify.

Decision makers need a powerful tool to detect and discover early market anomalies in or-

der to reduce their effect. At present, abnormality detection methods using machine learning

techniques in financial applications fall into six main categories: regression, clustering, pre-

diction, outlier detection, visualization, and classification methods [93]. Clustering methods

don’t require the data to be labeled. By employing a similarity measure, clustering aims to

group similar data together. Classification methods are best suited for labeled data in which

1The terms “abnormalities” and “anomalies” are used interchangeably throughout this chapter.
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a classification model is trained to identify class boundaries. The trained model is then used

to classify future instances. In this research, we are particularly focused on the application of

classification algorithms to detect market anomalies, specifically medium intensity crashes.

Medium intensity crashes are relatively scarce compared to regular market activity, mak-

ing them a underrepresented minority. This class imbalance is a common problem in real-

world datasets and many classification techniques. The imbalance hinders the ability of

classification algorithms to learn the decision boundaries correctly [130]. Previous research

on class imbalance problems has typically focused on approaches at the data and algorithmic

levels. Approaches at the data level include re-sampling methods that adjust the data class

distribution [113]. Examples of sampling methods encompass: oversampling, undersampling,

and threshold moving methods [23]. At the algorithmic level, existing approaches involve

cost-sensitive methods [113]. These methods do not attempt to balance the distribution

of classes. Instead, cost metrics are introduced in the learning procedure to minimize mis-

classifying samples. The class imbalance problem using cost-sensitivity has been addressed

extensively in the literature [71]. Also, a plethora of literature has shown, empirically, that

cost-sensitive approaches yield satisfactory results. So far, however, there has been little

research on the class imbalance learning of Reservoir Computing (RC), which is a relatively

new classification method that processes time-dependent inputs efficiently. Furthermore, to

the best of our knowledge, this research is the first to use RC in predicting market anomalies.

This study aims to develop a method for identifying abnormalities (specifically medium

intensity crashes) in equity markets using RC. RC is a recurrent neural network in which

most of the network parameters are generated randomly, with others being optimized or

trained [87]. We propose a hybrid cost-sensitive RC model to classify medium frequency

trading into normal and abnormal activity. The proposed model utilizes a hybrid set of

inputs composed of multivariate time series of macroscopic variables, and features obtained

from the Macroscopic Equity Markets Model [2]. We find that the proposed hybrid model

is able to detect abnormalities with high accuracy, and low false positive and false negative
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rates.

This chapter is organized as follows. Section 2 reviews recent literature on classification

methods. The problem description is presented in Section 3. The model is proposed in section

4. The results of implementing the proposed model are discussed in section 5. Section 6

concludes the chapter.

4.2 Related Works

A series of local crashes can give rise to a global financial crisis due to the connectivity

of financial markets. A crash originating in one country might propagate to other countries.

For instance, the sub-prime crises in the United States propagated to a number of countries

in Europe, creating a sovereign debt crisis. This event is an example of the turbulence effect

of financial crises. The turbulence effect has been documented in the literature, warning the

need for an early crash detection method [7, 44].

The financial stress (or crash) that we study in this research is unique in that it affects

most of equity markets on a specific day, then vanishes. We tackle the problem of identify-

ing medium intensity crashes as a classification problem of multivariate time series and only

review the related works that are centered around this approach. The classification problem

of multivariate time series has been investigated in several domains, including: health appli-

cation [69, 19], action recognition [59], and civil engineering [20]. This problem consists of

classifying each time series to a specific class or label. The classification problem has been

approached from different directions, ranging from methods based on similarity measures

(e.g. Weighted Dynamic Time Wrapping) to ensemble classifiers [5]. In our research, we

focus on ANNs, in particular Recurrent Neural Networks (RNNs), to classify multivariate

time series, which are computational methods to process time series data that exhibit time

dependency [54].

RNNs are computational models with a special structure. Similar to the Feed-Forward

Network (FFN), an RNN has inputs, links to hidden layers, and an output. What makes an
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RNN different from FFN is that it includes a feedback link from the output to the network

itself. An RNN is considered a dynamical system, while FFN is a functional approximation

model. RNNs have shown highly promising results, which are attributed to being universal

approximators of dynamical systems [48]. A further advantage of RNN is that it closely

resembles the brain structure by having feedback connections. This feature, in particular,

makes RNNs more successful in solving many real-life applications when feedback information

is important.

Despite the advantages of RNNs, they suffer from major drawbacks. RNNs are challeng-

ing to train (training is usually done by gradient-decent type methods), and the convergence

of the gradient information is not guaranteed [34]. The second shortcoming is that RNN

is computationally very expensive. For instance, the training time for a single parameter

update is long. The third shortcoming is that the network usually fails to learn long-range

memory which is caused by the exploding of the gradient over time [9]. This problem has

been addressed in the literature, resulting in the introduction of the Long-Short Term mem-

ory networks [50].

Reservoir Computing (RC) is a class of RNNs whose internal connections are randomly

generated [60, 102], which offers a faster training speed. Though the architecture of RC is

simple, it provides a rich representation of the input through what is called the reservoir.

This rich representation is very helpful in solving real-life applications. The only aspect of

RC that requires training are the connections between the reservoir and the final output

(called readout weights) [87, 104]. Given its advantages, RC has been applied successfully to

many problems, spanning from time series forecasting [108, 32, 10], to speech analysis [117].

Also, a variety of research has shown that RC is an efficient classifier for multivariate time

series [114, 89].

To improve the performance of RC, the model space classification was introduced in

[24]. This method aims to use the readout weights of RC to represent the multivariate time

series. To model space classification, the authors of [3] have found that the classification
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of time series data, using only the last time step to represent the series, has yielded poor

results. Furthermore, they have highlighted that the time step wise classification (called the

reservoir space) and the classification using the trained connections (called the model space)

have resulted in good accuracy. Other efforts to improve the performance of RC resulted in

a method that ignores the training of the readout weights and applies principle components

analysis to the reservoir space [98].

The drawback of the previous methods is that the reservoir accounts only for the infor-

mation obtained by nonlinear transformation of the input. In doing so, the model based

information coming from a physics-based model is ignored. To overcome this shortcoming,

we extend RC to process information from a specific physics-based model called the Macro-

scopic Equity Markets (MEM) model [2] and allow all the information to be processed in

the reservoir and the output.

Our work contributes to the literature by proposing a cost-sensitive RC for the imbalance

classification problem. Our work offers a novel perspective on forecasting crashes. This is

a new solution to the medium crashes prediction method that has not been reported in the

literature. Another key novelty of our approach consists in the construction of a macroscopic

hybrid classification method based on RC. To this end, the contribution of our new approach

lies in the following areas. First, we use multivariate time series composed of macroscopic

variables to label instances (as normal and abnormal) during a trading day. The abnormality

instances are linked to high volatility levels. Second, a cost-sensitive RC is proposed to

tackle the imbalance classification problem. Third, the proposed RC combines macroscopic

financial variables obtained from our previous research [2] and features obtained from MEM

model. Finally, we focus on unique datasets that covers more than fifteen days from the last

ten years in which medium crashes have been reported.

Notations: Throughout the chapter, we use bold and small letters to represent vectors,

and bold and capital letters to represent matrices. For example: x is a vector while X

is a matrix. For a vector x ∈ Rn, the L2 norm is given by ‖x‖2 :=
√
x2

1 + · · ·+ x2
n. The
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vector ej denotes an all zero vector with 1 in the jth element. The symbol ⊕ denotes the

concatenation of two vectors.

4.3 Problem Description

Suppose that we have d trading days with the empirical data {x(t), ytarget(t+1)}d, where

x(t) ∈ RM is the given raw data input at time t or feature and ytarget(t) = {0, 1} is the true

class or output at time t, where 0 corresponds to a normal day and 1 to an abnormal trading

day. The empirical data is available for t = 0, · · · , T−1, indicating that the input and output

are collected in discrete time with a time step ∆t = 1. The classification task is divided into

two stages: training and testing stages. In the training stage, the classification task aims to

learn (or fit) a classifier y(t+ 1) = f(x(t),x(t− 1), · · · ,x(0); w), which is parameterized by

w, using the empirical data during 0 ≤ t ≤ T − 1, where the classifier f : RN → {0, 1}, such

that a loss function l(y, ytarget) is minimized. In the testing stage, the fitted classifier is used

to make predication about a newly encountered trading day with a new x(t).

Often, feature extraction is implemented to extract more properties of x(t) which might

be more relevant in the classification task. For an input x(t), the feature vector is represented

as u(t) = φ(x(t)), where φ is a feature extraction function . The feature vector allows the

rich representation about the input to be captured; thus improving the learning process. The

classifier can be rewritten as f
(
u(t− 1),u(t− 2), · · · ; w

)
. With the previous representation

of the classifier, the classification problem centers on learning the classifier f so that the

minimum loss is achieved.
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4.4 Methods

4.4.1 Preliminaries

In order to understand the structure of RC, it is essential to cover a few concepts in Ar-

tificial Neural Networks (ANNs) (for a comprehensive review, see [53]). Generally speaking,

an ANN is a computational model that is biologically inspired by the human brain. An ANN

consists of three main layers: input, hidden and output layers. The network receives the data

through the input layer. In the hidden layer, computational unites (called neurons) apply a

transformation to the input, which then is sent to the output layer. Different architectures

for neural networks have been proposed in the literature. We focus here on two main types:

Feed Forward Neural Network (FFN) and Recurrent Neural Network (RNN).

4.4.1.1 Feed Forward Neural Netowrk (FFN)

A FFN approximates a function ytarget = ftarget. The goal of the network is to define a

map y = f(x; W) and learn the value of the weight parameters W such that the learned

function is the best approximation applicable. In feed forward networks, the information

flows from the input being x, then through computational nodes that are used to define the

function f , and lastly to the output y. In these types of networks, there are no feedback

connections from the output to the network. Networks with feedbacks are referred to as

RNN.

A feed forward network is composed of different functions. For instance, a function f(x)

can be composed of other functions that are connected in a chain, f(x) = f3(f2(f1(x))).

In that functional structure of neural networks, f1 is called the first layer and, so on. The

number of layers defines the depth of the model. The middle layers are called hidden layers.

The last layer is the output layer. Each layer consist of many units called neurons. Each

neuron is a function that transforms a vector to a scalar. We illustrate a feed forward network

through a simple network, as shown in Figure 4.1.
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Input Layer Hidden Layer Output Layer

x1

x2

x3

y

Figure 4.1: Feed Forward Neural Network

In Figure 4.1, the first layers represent a vector of hidden units h. This layer is used to

compute a vector f1(x; W1,b1), where W1 and b1 are the weights matrix (i.e., connections

from units in the input layer to unites in the first layer) and bias vector for the first layer.

In the hidden layer, the function f1 is called an activation function and is applied to each

unit in the layer. A hidden unit can be represented as hi = g(W:,ix + b1i), where hi is the

hidden unit i, W:,i is the weights vector of the connections from the input layer to unit i,

and b1i is the bias of unit i in the first layer. There are many choices for the function g that

have been used in the literature, most notably: Rectified linear unit and tanh functions [53].

The value of the function f1 is used as the input for the second layer (i.e., the output layer).

Thus, the network’s final function is the chain of two functions: the hidden layer function

h = f1 and the output layer function y = f2(h,w2, b2), where w2 is the weight vector (i.e.,

connections from the first layer to the output) and b2 is the bias. The final form of the

model is y = f2(f1(x)). The function f2 depends on the task, which can be regression or

classification.

The training of neural networks aim to sequentially update the network weights and biases

to minimize a loss function l(y, ytarget). The loss function l penalizes the deviation of ytarget

from y. The training process is usually performed by the back-propagation algorithm [53].

This algorithm calculates the derivative of the loss function l with respect to the parameters

in the network. The parameters are updated by the gradient descent algorithm.
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4.4.1.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a particular category of ANNs for modeling

sequential and time series data. A RNN is a feed forward neural network characterized by

including information from adjacent time steps, featuring the notion of time to the network.

This feature allows the network to learn the sequential/temporal dependencies in the data.

A basic structure of RNN is illustrated in Figure 4.2

Input Layer Hidden Layer Output Layer

x(t) y(t)

Figure 4.2: Recurrent Neural Network: Blue dashed lines indicate hidden-to-hidden recurrent

connections from time t− 1 to time t

Let the input of the RNN be a vector x(t) indexed by time t, starting from 0 to T .

At time t, nodes in the hidden layer receive connections from the current input vector u(t)

and from hidden nodes from t − 1. The hidden layer at time t can be represented by a

vector h(t) = g(Wuhx(t) + Whhh(t − 1) + bh), where bh is the bias vector, Wuh is the

weight matrix for the input-to-hidden connections, and Whh is the weight matrix for the

hidden-to-hidden connections. The output y(t) = f2(h(t),w2, b2), is a function of the hidden

nodes h(t) at time t, making the input u(t) at time t − 1 influences the output y(t) at

time t by the recurrent connections, and so on. Figure 4.2 shows a simple structure of

RNNs. This network can be extended to include many layers (deep network). RNNs are

commonly trained by BackPropagation Through Time (BPTT). BPTT is an extension to

the gradient-based algorithm that is used to train FNN.

Though RNNs are a promising approach for modeling complex time series data, training

of RNNs by gradient-decent based approaches is difficult [87]. In the face of RNNs challenges,
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two new approaches, namely Liquid State Machines (LSMs) [90] and Echo State Networks

(ESNs) [60], were proposed independently to overcome these challenges. Both approaches

are referred to as RC. In this chapter, we study ESN, which is a large network with many

randomly generated interconnections between nodes in the hidden layers.

4.4.2 Classification based on Reservoir Computing

In this section, we propose an RC architecture to classify high frequency financial data.

In Figure 4.3, we show a basic structure of RC.

r(t+ 1) ∈ RL

Input

Layer

Output

Layer

u(t)

Reservoir Layer

y(t+ 1)

Physics-Based Feature

Extraction Method

u(t) = φ(x(t)) ∈ RN

x(t)

Figure 4.3: Reservoir Computing

The green block represents a feature extraction method. This is applied to the raw data

such that the detection of medium intensity crashes becomes more feasible. We explain this

further in the Results section. The first layer of RC consists of nodes to represent the time

dependent input. Let the extracted input be denoted as u(t) ∈ RN . The input is a vector

of features with N dimension at time t. The input is connected to the second layer (called

a reservoir). The connections between the input and the reservoir are represented by the

matrix Win ∈ RL×N . The input matrix elements are drawn from a uniform distribution in

[−σ, σ] [96]. The reservoir consists of L neurons as shown in Figure 4.3, where the topology of

the reservoir is cyclic. The reservoir connections are represented by the matrix Wr ∈ RL×L.

The state vector of the reservoir is denoted by r(t) ∈ RL. The vector r(t) evolves over time
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with a discrete time step. The reservoir r(t) is updated according to equation (4.1).

r(t+ 1) = (1− α) r(t) + α tanh
(
Winu(t) + Wrr(t)

)
(4.1)

The parameter α ∈ [0, 1] determines how much to rely on the previous reservoir state

and input. This parameter is called a leakage rate. That is to say, the reservoir evolves in a

slow rate as α goes to zero. The matrix Wr is the adjacency matrix of the reservoir. This

matrix is a sparse random Erdős – Rényi matrix. The elements of Wr are scaled such that

ρ(Wr) < 1, where ρ is the largest absolute eigenvalue. This is a necessary and sufficient

condition for the echo state property of RC [60]. This property states that the effect of u(t)

and r(t) on a future reservoir state r(t + τ) vanishes gradually as τ → ∞. The function

tanh(x) is defined as the hyperbolic tangent to the components of x.

A traditional approach for interpreting the reservoir outputs for classification tasks is to

classify the input based on the reservoir state r(t) [109, 55], which is given by

y(t) = woutr(t) + b, (4.2)

where y(t) ∈ R is the output of the reservoir (being normal and abnormal), wout ∈ R1×L

is the readout weights vector, and b ∈ R is a bias term. Both of these parameters are

optimized during the training stage (i.e., for d trading ) [86]. The readout weights and bias

are determined such that l(y(t), ytarget(t)) is minimized over a time period t = [0, T − 1] and

d trading days. That is to say, if u(t) belongs to a class 1, the weight vector and bias are

computed such that woutr(t) + b ≈ 1. In the testing or prediction stage, when a new trading

day is encountered with a new u(t), the system evolves according to (4.1) and the prediction

of the class of the system at time t is obtained from (4.2) for 1 ≤ t ≤ T − 1.
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4.4.3 Proposed Cost-Sensitive RC

Let the Ξ ∈ R2×2 denote the cost or loss matrix in the classification problem. The

cost ξc1c2 represents the cost of misclassifying an instance that belongs to c1 (normal) into

c2 (abnormal). The diagonal of Ξ is usually set to zero. In the classification problem, a

classifier aims to minimize the expected risk R(cj | r), where cj is the predicted class at time

t+ 1. The expected risk is given by

R(cj | r) =
∑
k

ξckcj
P (ck | r), for k ∈ {1, 2}, (4.3)

where P (ck | r) is the posterior probability of a class ck given an instance r. The optimal

class is the one that minimizes the Bayes risk

ĉj = arg min
cj
R(cj | r) = arg min

cj
ED[Ξ], (4.4)

where D is the data in the form of input/output pairs.

The Bayes risk is usually computed empirically since the conditional distribution in

(4.4) is not trivially determined. Suppose that we have d trading days with the data

D = {R, ytarget}d, where R ∈ RL×[0,T−1] is the matrix of the reservoir evolution vector

with length L, covering a period between 0 and T − 1, and ytarget ∈ R[0,T−1] is the target

label vector for the time period [0, T − 1]. In particular, r(i)(t) denotes the reservoir vector

r at time t and trading day i and y
(i)
target(t) ∈ {0, 1} denotes the target label at time t and

trading day i.

Given the imbalance data D, the empirical risk for the training period (i.e., over a period

t ∈ [0, T − 1] and d trading days) is defined as follows:

J(wout, b) = R̂l = 1
T ∗ d

d∑
i=1

T−1∑
t=0

l
(
Ξ, y(i)

target(t), y(i)(t)
)
, (4.5)

where y(i)(t) is the output of the RC at time t for the ith trading day, and l(·) is the loss
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function, which is parameterized by Ξ . When the loss function is cost-insensitive, ξcj ,ck
= 1

when cj 6= ck, and zero otherwise. Due to the imbalance data distribution, we assume that

ξcj ,ck
∈ R+ when ci 6= cj. In this chapter, we use the Cross Entropy loss function. This can

be easily derived as follows. Let the probability of the reservoir state belongs to class=1

(abnormal) be determined by the transformation of the output y(t) such that it is between

zero and one. That is, we apply a sigmoid function to the output node.

Equation (4.2) becomes

y(t) = 1
1 + e−woutr(t)−b , (4.6)

where wout ∈ R1×L is the readout weights vector, and b ∈ R is the bias. It should be noted

that y(t) is a function of wout but that dependency is omitted in our notation.

The probabilities of a normal and abnormal instance at time t, given the reservoir state

at time t, are defined as

P (ytarget(t) = 1 | r(t); wout) = y(t), (4.7)

P (ytarget(t) = 0 | r(t); wout) = 1− y(t). (4.8)

The previous probabilities can be written in the compact form

P (ytarget(t) | r(t); wout) = (y(t))ytarget(t)(1− y(t))1−ytarget(t). (4.9)

The Cross Entropy loss function is basically -1 times the log of the previous compact form.

Thus, the empirical risk is given by
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J(wout, b) = − 1
T ∗ d

d∑
i=1

T−1∑
t=0

[(
ξc2c1y

(i)
target(t)

)
log
(
y(i)(t)

)
+ ξc1c2

(
1− y(i)

target(t)
)
log
(
1− y(i)(t)

)]
,

(4.10)

where ξc2c1 is the cost of misclassifying a class 1 (i.e., abnormal) as class 0 (i.e., normal).

If ξc2c1 > 1, the false negative is decreased, hence the Recall is increased. While, setting

ξc2c1 < 1 decreases the false positive and increases the Precision. In the previous cost

function, we assumed that ξc1c2 = 1.

If we are interested in the generalization of RC on a new data, we propose to use regu-

larization. The regularization aims to reduce overfitting by reducing the variance while the

bias is maintained. This method adds penalty to the cost function in equation (4.10) [37].

We consider adding a penalty term L2 norm to the cost function

J(wout, b) = − 1
T ∗ d

d∑
i=1

T−1∑
t=0

[(
ξc2c1y

(i)
target(t)

)
log
(
y(i)(t)

)
+
(
1− y(i)

target(t)
)
log
(
1− y(i)(t)

)]

+ λ

2 || wout ||22,

(4.11)

where λ ≥ 0 is a regularization parameter. We refer to (4.11) as Cost-Sensitive RC.

The optimal parameters wout and b can be computed by solving the optimization problem

ŵout, b̂ = arg min
wout,b

(
J(wout, b)

)
. (4.12)

The classical approach to solve the optimization problem in (4.12) is to use a stochastic,

first-order optimization algorithm such as Stochastic Gradient Decent (SGD). In this chapter,

we use SGD to optimize the proposed Cost-Sensitive RC.
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4.4.4 Establishing a Hybrid Model

In the previous section, we used only the past information about the markets to predict

if the next class is normal or abnormal. This approach (hereafter called reservoir approach)

makes little assumptions about the underlying mechanism (hereafter called physics-based

approach) of equity markets. In this section, we propose a hybrid approach that combines

the reservoir approach and the the physics-based approach to improve classification accuracy.

Our approach is similar in spirit to that in [97], but here we consider the classification problem

with a newly developed physics-based model called the MEM model.

In Chapter 3, we obtained predictions from the MEM model about the state of the

markets u(t) for t+ 1 when knowledge about the markets is available up to time t. Let the

one-step ahead prediction of the MEM model be given by

û(t+ 1) = U [u(t)], (4.13)

where û is the predicted state of the markets. The predictive model U is obtained using the

proposed integrative algorithm in Chapter 3. The structure of the proposed hybrid approach

is shown in Figure 4.4.

r(t+ 1) ∈ RL

Input

Layer

Output

Layer

u(t)

Reservoir Layer

y(t+ 1)

Physics-Based Model

û(t+ 1)

U(u(t))Physics-Based Feature

Extraction Method

u(t) = φ(x(t)) ∈ RN

x(t)

Figure 4.4: Hybrid RC
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In the hybrid approach, the reservoir and output equations are functions of û(t + 1),

which is the predicted input at t+ 1. These equations are given by

r(t+ 1) = (1− α) r(t) + α tanh
(
Win

(
u(t)⊕ û(t+ 1)

)
+ Wrr(t)

)
(4.14)

y(t+ 1) = f(û(t+ 1)⊕ r(t+ 1); wout, b), (4.15)

where Win ∈ RL×2N is the input matrix, f is the sigmoid function, and wout ∈ R1×(N+L) is

the readout weights vector.

4.5 Results and Discussion

In this section, we apply RC to detect abnormalities in dataset from normal and abnormal

trading days. We determine the accuracy of the proposed algorithm in detecting medium

intensity crashes or abnormalities. These abnormalities occur during the trading day and

have an overall affect on the markets. The data processing is detailed in the next section. In

the performance measures, we explain how to test the performance of RC. Then, we show the

implementation procedure of RC. The results section concludes with the sensitivity analysis

of the model.

4.5.1 Data

The primary information used in this research is the raw data of stock prices traded

in three major equity markets in the United States of America, namely: New York Stock

Exchange (NYSE), NASDAQ, and American Stock Exchange (AMEX). On any trading day,

approximately 4,000 shares were collected. Data frequency is one minute (i.e., the stock

movement is recorded every minute). This frequency is very important for the detection of

medium-frequency abnormalities. To begin, the data was cleaned to remove inactive stocks

(a stock is active if it is traded more than 75% of a trading day). When a stock was not

traded at a particular minute, we assumed that its price is similar to the last traded price.
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This assumption is simple and known to researchers as it does not require any interpolations,

which may affect the quality of the data.

4.5.2 Implementation

In this section, we discuss in detail the implementation of the proposed approaches. In

both approaches, the reservoir input is not the raw stock price data. Our objective in this

research is to detect medium intensity crashes. These crashes are macroscopic to most of

the markets. Therefore, we employ the feature space that we established in the previous

two chapters. During the training period, only data from 0 ≤ t ≤ T − 1 and d trading days

are available. Such data includes the macroscopic features u(t). In the hybrid approach,

additional information about the predictions is available as well, which is U [u(t)].

4.5.2.1 Establishing the Feature Space (φ(x)) for Detecting Medium Intensity

Crashes

Following the pre-processing of data, time and space were diescretized. The time t was

discretized into m equally spaced intervals. Each interval ∆t = 1 matches the data frequency.

Space, which is in $, was discretized into n price ranges. The discretization size of space ∆x

was assumed to be one as well. As detailed in an earlier section, the set of features used in

this research is a hybrid set of macroscopic variables, density and velocity, and information

obtained from the MEM model. The density ρ and velocity v at a price x and time t were

calculated as follows:

ρ(x, t) = N(x, t)
∆x , (4.16)

v(x, t) = 1
N(x, t)

N(x,t)∑
j=1

vj(t), (4.17)

where N(x, t) represents the number of stocks in price x and time t.
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After obtaining the macroscopic variables which represent the overall markets state, we

include a second set of features. These features are composed of the model’s parameters,

which we found relevant to describe equity markets during high volatility and shocks periods.

For details regarding the prediction methodology for both the parameters and state variables,

we refer the reader to Chapter 3.

The macroscopic features are processed further to obtain ytarget for each minute in the

market. The 95% confidence interval at time t is determined from the previous ten minutes

information. A feature at time t is labeled as abnormal if it is not within the confidence

interval. While, a feature vector u(t) is labeled as abnormal at time t when at least five of

its features are abnormal at that time.

4.5.2.2 Performance Measures

To have an adequate assessment of the classification results for the imbalanced data, we

use traditional and other evaluation matrices that are suitable for imbalanced data. One

of the most traditional methods is Accuracy. Consider the two-class classification problem

presented in this research. Let {True Normal, True Abnormal} be the true normal and

abnormal class labels and {Predicted Normal, Predicted Abnormal} be the predicted normal

and abnormal class labels. The classification results can be summarized by a confusion

matrix, as shown in Table 4.1. We assume that the majority class represents the negative

class and the minority class represents the positive class.

Predicted Class

Predicted Normal Predicted Abnormal

True Class
True Normal True Negative (TN) False Positive (FP)

True Abnormal False Negative(FN) True Positive (TP)

Table 4.1: Confusion Matrix

From the table, the Accuracy can be computed as
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Accuracy = TP + TN

TN + FP + FN + TP
(4.18)

The accuracy provides a simple measure to determine the performance of the classification

method on the datasets. This measure is not helpful for cases when data is imbalanced, as

it is susceptible to changes in data distribution. In our datasets, the abnormal examples

represent a small portion of the datasets so that a naive classifier might classify all examples

as normal and still provide high accuracy. However, this metric doesn’t take into the account

that all abnormal examples are misclassified. Many researchers have studied the inadequacy

of the accuracy measure for imbalanced data [124, 91, 99]. The central issue with this

measure is that in the presence of imbalanced data, it becomes challenging to conduct a

consistent analysis over different data types (i.e., balanced and imbalanced data) [58].

We complement our analysis by using other evaluation matrices to provide reliable anal-

ysis for imbalanced data including: Precision, Recall, F-measure, and Area Under the ROC

Curve (AUC).

Precision = TP

TP + FP
. (4.19)

The Precision measures how accurate the model is in labeling examples as abnormal

when they are abnormal. When the cost of false positive (i.e.,when the cost of alarming the

market about a crash, when in fact, there is not one) is high, this measure should be high.

Recall = TP

TP + FN
. (4.20)

Recall, on the other hand, measures the accuracy of the model in detecting abnormal

examples. If the cost of the false negative (i.e., when the model does not recognize a crash),

is high the Recall measure should be high. The previous two measures are more effective

when used together and correctly [58]. Another measure that combines the advantages of

Recall and Precision is F-measure, which is defined as
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F-Measure = 2 ∗ Recall*Precision
Recall+Precision . (4.21)

This measure is preferable when the goal is to balance both the Precision and Recall. In

this research, we report all the previously mentioned measures and discuss them accordingly.

4.5.2.3 Implementation Results

We should first discuss the training procedure in this research. We have 20 trading days.

Each is about 391 minutes long. The trading days are divided into S segments of length

T ∗. We assume that each segment is independent from all other segments on the same day

and other days (i.e., Markov property of equity markets). We further let each segment start

at time 0 and end at time T ∗ − 1. Thus, the cost function in (4.11) is modified slightly

such that d is replaced by d × S and T − 1 is replaced by T ∗ − 1. This way the proposed

models can learn from a wider range of examples and patterns. In this stage, we train the

reservoir and hybrid approaches on 75% of the d × S segments. 15% of the segments are

used for testing. The extra segments are used for validation. The validation set is used

to validate and tune the reservoir and regularization parameters, and misclassfiaction cost.

These parameters include: L, σ, ρ, α, λ, and ξc2c1 . In validation [47], we aim to identify the

optimal set of parameters such that the Accuracy, Recall, and Precision are maximized,

while placing more emphasis on Recall.

In this chapter, we only present the results of testing the proposed approaches on datasets

with abnormalities. The class distribution of the testing datasets is shown in Figure 4.5. As

can be seen from the figure, the class distribution is imbalanced. This is not surprising since

medium intensity crashes do not happen often during trading days. As we explained earlier,

such crashes vanish in a few minutes.
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Figure 4.5: Class Distribution of Testing Datasets

The results of testing the reservoir and hybrid approaches are shown in Table 4.3. For

the results in Table 4.3, we utilized the following set of parameters:

Parameter Value

L 500

α 0.9

σ 1

ρ 1

λ 0.001

ξc2c1 20

Table 4.2: Set of Parameters
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Hybrid Approach Reservoir Approach

Dataset # Precision Recall F-Measure Accuracy Dataset # Precision Recall F-Measure Accuracy

Aug 25, 2015 1.0 1.0 1.0 1.0 Aug 25, 2015 0.11 0.50 0.18 0.70

Aug 24, 2015 0.67 0.80 0.74 0.90 Aug 24, 2015 0.50 0.60 0.55 0.83

May 6, 2010 1.0 1.0 1.0 1.0 May 6, 2010 0.25 1.0 0.40 0.90

Table 4.3: Classification Results on the Testing Datasets

It can be clearly seen from Table 4.3 that both approaches yield reasonable results. The

hybrid approach seems to provide consistent results across different datasets. The Precision

and Recall of the hybrid approach are high, while the Recall is acceptable for the reservoir

approach. It should be noted that the reservoir parameters in both approaches were tuned

such that the Recall is high even at the expense of the Precision. But, we can easily see

that the Precision is high enough in most of the dataset. The F-measure for the hybrid

approach is much higher than the reservoir approach, indicating the superior performance

of the hybrid approach.

The classification task that we study is not trivial, as it involves making future predictions

about the class of the input; not only detecting the current class. The hybrid approach

proved to be a successful method. The reason behind this is that the hybrid approach

includes additional information about the future from a physics-based model.

4.6 Conclusion

In this chapter, we tackled a classification problem in equity markets that has received

little attention in the literature. With the spread of new trading paradigms in equity markets,

a new form of crashes (defined in this research as medium intensity crashes) emerged. This

problem is challenging and important. We presented a novel approach based on a neural

network called RC. RC is a family of Recurrent Neural Networks in which some of the

network connections are sparse, making it more efficient during training. We extended the

116



present work on RC to include a cost-sensitive parameter such that more weight can be

added to the minority class. The introduced parameter was tuned to yield a high Recall

performance measure. This is significant in the markets as undetected crashes (i.e., false

negative) are undesirable. To improve the classification performance of RC, we proposed

a hybrid model that combines the classical RC and a physics-based model. In Chapter 2

and 3, we introduced the MEM model. In this chapter, we utilized the MEM model as the

physics-based model used in our hybrid approach. The hybrid approach has advantage over

the classical approach as information about the underlying mechanisms of the markets are

considered. Also, predictions are utilized in RC to improve the class predictions.

We trained and tested the proposed approaches on high frequency data. The obtained

results indicate that the hybrid approach is promising in detecting and predicting markets

anomalies. The results show that the Recall of the predicted class is high in most of the

datasets. The results of the classical approach are considered satisfactory.
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Chapter 5

Conclusion

One of the central challenges in equity markets is how to predict market abnormalities. This

issue has been the focus of a considerable body of research and yet, efficient models for mon-

itoring equity markets have been lacking. This work constitutes a major step forward in our

understating of the markets. Other models have a major drawback in that they analyze mar-

kets microscopically while neglecting the overall interactions. To overcome this drawback,

we introduced a macroscopic model to bring more clarity about markets’ behavior under the

assumption that stocks move as fluid particles. This analogy between fluid dynamics and

stocks is original, allowing markets to be governed by physics-like principles and laws.

In the first part of this dissertation, we introduced the foundation and analogy between

physics and equity markets. This analogy considers the overall market activities. We treated

stocks as particles and macroscopic variables, such as density and velocity which were defined.

To determine the evaluation of the macroscopic variables, we proposed a system of stochastic

partial differential equations based on the conservation laws in fluid dynamics. The system

was validated with data from the flash crash day, showing that adopting the macroscopic

perspective is promising. The second part of this dissertation extended the previous part

by examining the structural proprieties of the model. We theoretically analyzed the model

and provided insights into the type of solutions it generates. Also, we proposed an efficient

algorithm to solve the macroscopic model dynamically. The proposed algorithm was tested
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on datasets with abnormalities and the results showed that abnormalities can be identified

effectively. In the final part, we tackled a problem that, to our knowledge, has not been

addressed in the literature. Specifically, this is the problem of detecting medium intensity

crashes, which are crashes that occur in a given trading day. The scarcity of these crashes

creates imbalance in the data. To overcome this challenge, we proposed a cost-sensitive model

based on RC. We also extended the classical RC to process information from a physics-based

model. The results of implementing the proposed hybrid approach showed high accuracy in

detecting medium intensity crashes.

While this research has successfully developed monitoring tools, it could be extended in

interesting ways. For instance, the model presented in Chapter 2 can be extended to include

other financial markets, such as derivatives and foreign exchange. The extended model might

offer a macroscopic look at financial markets by connecting them together and allowing the

information to flow from one market to another. Extensions to Chapter 3 include employing

higher resolution numerical methods when solving the deterministic homogeneous and inho-

mogeneous MEM models. Another potential extension is to utilize other filtering techniques,

such as particle and sigma-points, to filter and estimate the stochastic inhomogeneous MEM

model. These extensions are important for providing more accurate predictions of macro-

scopic variables. In Chapter 4, we proposed a hybrid approach based on RC. This approach

is not limited to RC, but can also be used with other machine learning techniques.
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[33] J. Döpke, U. Fritsche, and C. Pierdzioch. Predicting recessions with boosted regression
trees. International Journal of Forecasting, 33(4):745–759, 2017.

[34] K. Doya. Bifurcations in the learning of recurrent neural networks. In Circuits and
Systems, 1992. ISCAS’92. Proceedings., 1992 IEEE International Symposium on, vol-
ume 6, pages 2777–2780. IEEE, 1992.

[35] A. Dragulescu and V. M. Yakovenko. Statistical mechanics of money. The European
Physical Journal B-Condensed Matter and Complex Systems, 17(4):723–729, 2000.
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