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ABSTRACT 

 

Copy number variation (CNV) is an important class of variation that contributes to 

genome evolution and disease. CNVs that become fixed in a species give rise to 

segmental duplications; and already duplicated sequence is prone to subsequent gain and 

loss leading to additional copy-number variation. Multiple methods exist for defining 

CNV based on high-throughput sequencing data, including analysis of mapped read-

depth. However, accurately assessing CNV can be computationally costly and multi-

mapping-based approaches may not specifically distinguish among paralogs or gene 

families. 

 We present two rapid CNV estimation algorithms, QuicK-mer and fastCN, for 

second generation short sequencing data. The QuicK-mer program is a paralog sensitive 

CNV detector which relies on enumerating unique k-mers from a pre-tabulated reference 

genome. The latest version of QuicK-mer 2.0 utilizes a newly constructed k-mer counting 

core based on the DJB hash function and permits multithreaded CNV counting of a large 

input file. As a result, QuicK-mer 2.0 can produce copy-number profiles form a 10X 

coverage mammalian genome in less than 5 minutes. The second CNV estimator, fastCN, 

is based on sequence mapping and has tolerance for mismatches. The pipeline is built 



 xii 

around the mrsFAST read mapper and does not use additional time compared to the 

mrsFAST mapping process. We validated the accuracy of both approaches with existing 

data on human paralogous regions from the 1000 Genomes Project. We also employed 

QuicK-mer to perform an assessment of copy number variation on chimpanzee and 

human Y chromosomes.  

 CNV has also been associated with phenotypic changes that occur also during 

animal domestication. Large scale CNVs were observed previously in cattle, pigs and 

chicken domestication. We assessed the role of CNV in dog domestication though a 

comparison of semi-feral village dogs and a global collection of wolfs. Our CNV 

selection scan uncovered many previously confirmed duplications and deletions but did 

not identify fixed variants that may have contributed to the initial domestication process. 

During this selection study, we uncovered CNVs that are errors in the existing canine 

reference assembly. We attempted to the complement the current CanFam3.1 reference 

with the de novo genome assembly of a Great Dane breed dog named Zoey. A 50x 

PacBio long reads sequencing with median insert size of 7.8kbp was conducted. The 

resulting assembly shows significant improvement with 20x increased continuity and two 

third reductions of unplaced contigs. The Zoey Great Dane assembly closes 80% of 

CanFam3.1 gaps where high GC content was the major culprit in the original assembly. 



 xiii 

Using unique k-mers assigned in these closed gaps, QuicK-mer was able to find many of 

these regions are fixed across dogs while small proportion shows variability.  
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Chapter 1: Introduction 
 

This introduction chapter will provide background on genomic polymorphism and 

especially copy number variation. The important roles of copy number variation in 

evolution and the domestication process will be discussed. I will also review the 

bioinformatic approaches necessary to analyze the massive data produced by next 

generation sequencing technology. Finally, I will cover the recent progress on de novo 

genome assembly approaches and potential improvements provided for resequencing 

projects. 

1.1. Genome variation 

At the turn of last century, the human genome project completed the first reference 

genome assembly of our species (Richards and Scott Hawley 2005). Comparative 

sequencing analysis using multiple species improved our understanding to the structure 

and variation across the species. One important discovery shows that large differences lie 

not in the conserved coding regions but in interspersed non-coding regions. Potential 

variations in these regions include DNA sequences domains responsible for promoters 

and enhancing elements, as well as repeats affecting the distances between interacting 

https://paperpile.com/c/THPLFn/MCeS
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elements. Variations between species can be quantified as distances for constructing 

phylogenetic trees and provide evolutionary history.  

Another important benefit of reference assembly is that it provides a map for looking for 

variations across populations within a species. Several techniques that rely on a reference 

exist. Oligo-microarrays utilize probe hybridization to DNA samples and require probes 

designed specifically to a target region. A binary signal can be generated whether the 

sample under query is identical to the reference in the probe region. Later, massively 

parallel sequencing enabled the discovery of novel variants when combined with a 

reference assembly. 

Generally, two types of variants exist within a sample based on their size. The smaller 

point mutations, ranging from a single base pair change to a few base pairs of insertion or 

deletion, are the predominant type of mutations. The second type, structural variations, is 

on a much larger scale. These include chromosomal inversion, translocation, duplication 

and deletion. The duplication and deletion variants change the number of occurrences of 

these sequences and are defined as copy number variation (CNV). Genes with copy 

number differences could show differences in expression level which in turn affects 

phenotypes (Geistlinger et al. 2018; Gamazon and Stranger 2015). Chromosomal 

inversion and reciprocal translocations are copy number neutral, meaning that the genes 

https://paperpile.com/c/THPLFn/GkFmh+lCeDZ
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within the inversion or on the adjacent chromosomal arm do not change in their number 

of copies. However, genes intersecting with the breakpoint will be disrupted. Such 

process can occur in somatic tissues, leading to tumorigenesis. Another example is a 

fusion between a highly active promoter of one tissue specific gene and a cell 

proliferation factor (Annala et al. 2013; Kloosterman et al. 2017). 

1.1.1 Point mutations 

Base pair substitution and small scale insertion/deletion (indels) are some forms of point 

mutation. Indels within a coding region usually generate a premature stop codon from 

coding frameshift, which may further lead to nonsense mediated decay of RNA. These 

indels are usually detrimental and generally evolve under purifying selection. Substitutes 

can be more tolerated for three reasons. First, the codons are degenerate, with 64 triplets 

coding for only 20 amino acids. Thus, many single base pair changes do not alter the 

encoded amino acid. Second, amino acids form similar groups based on their charge and 

affinity to water. Should a similar amino acid replace the original one, the effect on the 

protein might be small. Lastly, proteins contain multiple functional domains and the 

effects for each change can vary greatly. Missense hits in functional domains that are less 

important, such as linkers, would have a subtle effect. 

https://paperpile.com/c/THPLFn/DvWHp+Wc35F
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For evolutionary studies looking at time history, the distance can be drawn based on the 

number of mutation changes and a mutation rate. Thus, these studies require mutations to 

be preserved instead of being selected against. 

1.1.2 Structural Variation 

Structural changes range from short segmental duplication/deletion to much larger 

chromosomal scales like inversion, translocation or even duplication of entire 

chromosomes. Although rare compared to point mutations, these changes affect far more 

genes. Over the past ten years, various discoveries have identified diverse polymorphism 

of copy number among the ethnic groups in humans (J. Li et al. 2009; Lou et al. 2011). 

Structural changes are also a major driver in cancer. 

1.2. Role of copy number variation in evolution 

Copy number variation is a major component during evolution. Numerous methods have 

been developed to detect such genetic divergence. Before the advent of high-throughput 

sequencing, we had quantitative PCR by comparing the relative abundance of DNA to a 

standard. Later, array CGH came along. This approach comes in various shapes and 

forms. One of the most popular is a genome tiling array with probes uniformly tiling 

across a reference assembly. The signal difference reveals the copy number ratio between 

https://paperpile.com/c/THPLFn/w7oU+8ufM
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two samples, labeled with different dyes, hybridized on the array. Other indirect methods 

could also be used to identify copy number variations and larger structural variations by 

their effect on other markers, such as altered recombination rates due to inversions or 

gain or loss of genotype signal from single nucleotide variants due to duplication or 

deletion (Conrad and Hurles 2007). Various bioinformatic algorithm also utilize these 

signals to indirectly detect structural variation and breakpoints (Becker et al. 2018; 

Zöllner and Teslovich 2009). 

By employing both aCGH and qPCR as a validation approach, the human CNV map 

immediately revealed the abundance of copy number changes as a major source of 

variation across populations (Redon et al. 2006). Many of the CNVs discovered were 

adjacent to assembly gaps. Even though the tiling aCGH has limited resolution, the same 

study was able to associate a list of Mendelian diseases to copy number variation loci. 

Some genes that were deleted stood out in the CNV map as well. Apparently, large scale 

duplication has a huge effect on genes on those regions. For example, an expanded 

research effort draws a link between autism and schizophrenia to CNVs (McCarroll 

2008). In 2005, the first chimpanzee genome showed that activity of retrotransposable 

elements was a major driver for small insertions in the primate evolution (Chimpanzee 

Sequencing and Analysis Consortium 2005). Another form of CNV is due to large 

https://paperpile.com/c/THPLFn/grAwu
https://paperpile.com/c/THPLFn/hDdzE+9rNUY
https://paperpile.com/c/THPLFn/hDdzE+9rNUY
https://paperpile.com/c/THPLFn/m0TL
https://paperpile.com/c/THPLFn/0WCS
https://paperpile.com/c/THPLFn/0WCS
https://paperpile.com/c/THPLFn/oYS9
https://paperpile.com/c/THPLFn/oYS9
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segmental duplication. One mechanism for copy number variation among duplications is 

nonallelic homologous recombination (NAHR), as suggested by numerous CNV 

studies(Chimpanzee Sequencing and Analysis Consortium 2005)(Graubert et al. 2007; 

Redon et al. 2006; Lee et al. 2008)Higher resolution aCGH maps showed that these 

duplication regions clustered in “hotspots” common between the chimpanzee and human 

genome. Many of these regions are still not fixed in the species and have variable copy 

number between unrelated individuals (Graubert et al. 2007; Redon et al. 2006; Lee et al. 

2008)(Perry et al. 2008). Higher resolution achieved by sequencing further implicated 

NAHR as major mechanism of duplication and deletion between humans (Kidd et al. 

2008)The presence of these duplication across the genome creates seed for further 

structural rearrangements and leads to rapid evolution (Figure 1) (Zhou et al. 2013). 

Comparative genome analysis shows the mechanism of insertion and deletions, as well as 

their effect on the recent evolutionary history in human and other mammals. Yet on a 

longer time scale, segmental duplication gives opportunities for shaping new genes. The 

same gene in different species is called an ortholog. Orthologous genes usually share the 

same function and similar sequence content due to conservation. The process underlying 

speciation might be much more complicated than accumulating mutations. For example, 

copy number increases can give rise to additional copies of genes. Over time, mutations 

https://paperpile.com/c/THPLFn/oYS9
https://paperpile.com/c/THPLFn/oYS9
https://paperpile.com/c/THPLFn/hMGC+m0TL+0OO7
https://paperpile.com/c/THPLFn/hMGC+m0TL+0OO7
https://paperpile.com/c/THPLFn/hMGC+m0TL+0OO7
https://paperpile.com/c/THPLFn/AtVz
https://paperpile.com/c/THPLFn/YLY5
https://paperpile.com/c/THPLFn/YLY5
https://paperpile.com/c/THPLFn/mWnwk
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might randomly disable one copy (Figure 1). The functional version might be carried to a 

different chromosomal location due to inversion or translocation. This process may create 

mating incompatibility and generate species (Lynch 2002). In other cases, the additional 

copy of the gene might accumulate changes for a new function or simply the increased 

dosage of such genes can be beneficial. Other genetic mechanisms have been proposed 

for speciation, and this is an active area of much research (Shapiro, Leducq, and Mallet 

2016; Noor and Feder 2006). 

 

Figure 1 Mechanisms of duplication driven speciation 

Two important roles of CNV in evolution. Left: Genes are duplicated and randomly deactivated afterwards. 

Mating between progenies could create hybrid incompatibility and thus drive speciation. Right: Nonallelic 

homologous recombination within segmental duplications drives deletion or expansion of gene copies. 

Presence of these duplication sites seeds more complex rearrangements in the future. 

 

1.2.1 CNV and Adaptation  

In some cases, copy number expansion can be directly related to a higher transcription 

level, which in turn affects protein translation (Orozco et al. 2009). This increase in copy 

number dosage could be an advantage should the protein expressed be advantageous to 

https://paperpile.com/c/THPLFn/hpPn
https://paperpile.com/c/THPLFn/EFYe5+AxBav
https://paperpile.com/c/THPLFn/EFYe5+AxBav
https://paperpile.com/c/THPLFn/fP85
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survival. Several examples in the human genome have been shown using sequencing 

studies (Perry 2008). For example, a higher copy number of the CCL3L1 gene has been 

shown related to lower risk of HIV infection in certain African populations. Expansion of 

copy number in olfactory receptors is also observed (Nozawa, Kawahara, and Nei 2007). 

Additional copy number of P53 is associated with increased cancer resistance and 

longevity in animals (Sulak et al. 2016; Donehower 2009). 

1.2.2 Duplication and neofunctionalization 

A major evolutionary importance of gene duplication is providing an additional copy for 

new function to evolve. The red opsin gene on the X chromosome is an example (Hunt et 

al. 2009). The later accumulated mutations that altered the structure of the protein and 

shifts the peak of spectra sensitivity. The tricolor vision in primates enables easy 

distinction for fruits as a source of food (Melin et al. 2013). This process of duplication 

followed by beneficial mutation is sometimes called neofunctionalization. To a greater 

extent, changes in domain binding factors could have a cascading effect on evolution. 

Zinc-finger factor (ZNF) is a DNA binding protein. The rapid neofunctionalization of 

new copies of ZNFs give rise to diverse regulatory network (Nowick, Carneiro, and Faria 

2013). 

https://paperpile.com/c/THPLFn/x29G
https://paperpile.com/c/THPLFn/cJah
https://paperpile.com/c/THPLFn/KPdpp+GMC3N
https://paperpile.com/c/THPLFn/jg4q
https://paperpile.com/c/THPLFn/jg4q
https://paperpile.com/c/THPLFn/7J39g
https://paperpile.com/c/THPLFn/VT4o
https://paperpile.com/c/THPLFn/VT4o
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1.2.3 Examples of CNVs in domestication 

Copy number expansion and contraction is also observed during the domestication 

process (Clop, Vidal, and Amills 2012). The pea-comb phenotype in domesticated 

chicken is related to SOX5 duplications (Wright et al. 2009). CNV is also shown in pigs 

linked to certain traits (Chen et al. 2012). A complex CNV landscape has also been 

suggested in numerous studies of cattle and sheep (Chen et al. 2012; Keel, Lindholm-

Perry, and Snelling 2016) with some variants associated with particular breeds. 

Expansion of olfactory receptor and immune system related genes were a common 

observation between cattle and pigs (Chen et al. 2012; Keel, Lindholm-Perry, and 

Snelling 2016).  

1.2.4 Limitation of reliance on a good / contiguous genome assembly 

Calling structural variation requires decent reference assemblies. Collapsed duplications 

during the de novo assembly process lack the location information for additional sets of 

copies. Regions not well assembled, such as unplaced contigs, limit the continuity of 

CNVs. Segmental duplication can also alter the local linkage disequilibrium in many 

cases and lead to misidentification of single nucleotide variants. Yet CNV are often 

flanked with low complexity sequences leading to misassembled regions. These 

misplaced CNV would show incorrect linkage disequilibrium in the vicinity. Mapping 

https://paperpile.com/c/THPLFn/ELMV
https://paperpile.com/c/THPLFn/79hs
https://paperpile.com/c/THPLFn/q5B5
https://paperpile.com/c/THPLFn/q5B5+20HV
https://paperpile.com/c/THPLFn/q5B5+20HV
https://paperpile.com/c/THPLFn/q5B5+20HV
https://paperpile.com/c/THPLFn/q5B5+20HV
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tools relies on unique regions to find the best matching locations for sequencing reads. In 

doing so, these mappers will generate a mapping score based on the uniqueness of the 

query relative to the reference. For example, the MAPQ score is the log10 probability of 

observing such placement by random chance. Collapsed duplications remove the unique 

signature for each copy, further limits the mapping quality of a read. This is also the 

reason that repeat regions have limited genotype calling accuracy and are often excluded 

from use. 

 

Figure 2 Random assignment of reads in duplication 

Most sequencing read mapping algorithms will have difficulty assigning reads in repeated sequences due to 

reduced content complexity. Here is an example of read matching sequences within a pair duplicated 

paralogs. To quantify the correctness of read placement, a mapping score is devised based on the sequence 

complexity inside the reference and the number of base pairs matched. This score is calculated by most 

mapping algorithms and embedded in the alignment file. 

1.3. Advent of high throughput sequencing 

To identify these variants, determining the sequence of each base pair is a standard 

approach. Biologists are long used to probing and cloning to narrow down a region of 
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interest from whole genomic DNA. Later, this technique was greatly improved with the 

PCR approach. By designing primers in the region of interest, one can amplify the DNA 

segment without cloning steps. The amplified region can then be studied with sequencing 

approach. The invention of DNA sequencing permits direct readout of nucleotides in 

order. In this section I will briefly review the sequencing techniques as they are the 

fundamental methods in CNV detection and analysis. 

1.3.1 The Sanger approach to DNA sequencing  

The first-generation approach, called Sanger sequencing, is similar to PCR. It requires a 

concentrated DNA template from a genomic region. The sequence extension is randomly 

terminated and electrophoresis separates fragments into single base pair resolution. If 

terminal oligonucleotides are fluorescently labeled, the sequence can be read 

automatically. As sequencing reads get longer, the co-mingling of large linear molecules 

causes their migration speed to deviate from its molecular weight. This is observed as 

peaks get wider after 800 bp (Dovichi 1997). This technique also requires PCR primers 

and thus a portion of the underlying sequence has to be partially known. In genome 

projects this problem can be solved by sequencing the ends of fragments inserted into a 

vector of known sequence. 

https://paperpile.com/c/THPLFn/ZCMN
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At the inception of human genome project, Sanger sequencing was the only feasible 

technology to get actual reads. In order to assemble sequence into chromosomes, 

genomists at that time resorted to a layered hierarchical approach by constructing 

bacterial artificial chromosomes (BAC), fosmids and plasmids, as well as primer walking 

methods. A more detailed review of genome assembly will be given later in this chapter 

at section 4. 

1.3.2 Massively parallel sequencing 

Almost at the time when the human genome project was completed, we saw the first 

proliferation of cost-effective second-generation sequencing. These methods aim at 

reducing cost and increasing throughput. Instead of PCR in a bulk tube, each of the 

technologies aimed to isolate each and every single DNA molecular randomly and 

amplify them in parallel without mutual interference. This step is called library 

preparation. Two major techniques dominated the market, solid surface based and bead 

based (Goodwin, McPherson, and McCombie 2016). The first method involved using a 

bead covered by an oil droplet, which was employed by 454 pyrosequencing (Margulies 

et al. 2005) and its related technology - Ion Torrent (Rothberg et al. 2011). Also limited 

by input concentration, each bead is expected to have only one DNA molecule and hence 

the PCR amplification is on that DNA only. The beads are then loaded onto a predefined 

https://paperpile.com/c/THPLFn/jjce
https://paperpile.com/c/THPLFn/sslz
https://paperpile.com/c/THPLFn/sslz
https://paperpile.com/c/THPLFn/3WWI
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microwell array and the sequence determined, usually with sequencing-by-synthesis or 

sequencing-by-ligation. The second involves a substrate, usually transparent glass for 

imaging, that contains binding primers to allow a PCR reaction in a limited radius 

defined by the length of the DNA fragment. Solexa/Illumina and Solid sequencing 

employed this approach. As long as the input DNA concentration and length is 

constrained, the PCR products would form an isolated cluster from each other, and the 

sequence of each cluster could be obtained using labeled oligos in a stepwise fashion. 

These amplification steps achieve the necessary signal to noise ratio since at that time 

photons from a single molecule were hard to detect. 

During the actual sequencing step, base signal can be generated by a labeled dye on a 

reversible terminated nucleotide in a sequencing-by-synthesis approach, or short probe in 

sequencing-by-ligation approach. For contiguous sequencing methods, four types of 

nucleotides have to be added and washed consecutively and are prone to homopolymer 

errors. Signal can be detected by a secondary reaction giving of light or by directly 

measuring the proton generation through an ion sensitive diode (Rothberg et al. 2011). 

This step happens in parallel for each DNA molecule. Even though the entire process 

might take up to a few days and be expensive for a single run, the time and financial cost 

can quickly be offset by the large number of DNA reads obtained. 

https://paperpile.com/c/THPLFn/3WWI
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The second-generation sequencing immediately opened up numerous resequencing 

projects aimed at identifying variation across the genome. Since each DNA fragment is 

randomly selected from the genome, the second-generation sequencing will have less bias 

and enable discovery of any variants not likely covered in previous studies. However, on 

the other side, without knowing where each fragment is located on the reference 

assembly, the resequencing studies require significantly more computational analysis 

compared to targeted approaches. 

1.4. de novo genome assembly 

Genome assembly is the process of piecing together a complete sequence for each 

chromosome from basic sequencing reads. A simple analogy is like detective work by 

piecing together shredded paper. When Sanger sequencing was developed in 1970’s, 

biologist immediately tried to map the genome of various organisms. These attempts 

were focused on small DNA like vectors and plasmids from bacteria by sequencing one 

segment at a time. Segments were then further extended with a primer designed at 

previously resolved sequence. This linear iterative approach could feasibly resolve small 

genomes in the size range of kilobase to hundreds of kilobases. But it quickly became 

impossible for bacteria genomes or even vertebrate genomes.  
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1.4.1 Methods of genome assembly 

To solve this problem, cloning approaches came into view by breaking the genome into 

large fragments and cloning them into fosmids or bacterial artificial chromosomes 

(BACs). One can sequence from the common, known backbone sequence on these clones 

simultaneously without knowing the exact sequencing for the next starting point. But, 

isolation and purification of individual clones could be a tedious process. 

Another parallel process is called whole genome shotgun sequencing (Figure 3). By 

randomly shearing the DNA into small fragments, hence “shotgun”, each DNA fragment 

can be tackled by attaching a common adapter or cloning into a known vector. Individual 

reads from each are obtained which later can be pieced together bioinformatically. The 

underlying assumption is that unique sequences shared by adjacent and overlapping reads 

will provide a unique tiling path. 
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Figure 3 WGS and collapsed duplications 

Whole genome shotgun sequencing could not separate reads in repeats and duplications and could result in 

collapsed sequences in the assembly. 

 

However, for a vertebrate and especially mammalian genome harboring repetitive 

elements, this assumption is no longer true. For example, the human LINE-1 element has 

a full length of 6kb let alone the microsatellite and simple repeats and large segmental 

duplications, which easily exceed the longest sequencing read available at that time. The 

initial human genome project found 17% of our DNA content is made up by these 

elements (International Human Genome Sequencing Consortium 2001). When the whole 

genome shotgun approach is used on such an assembly, the continuity of the tiling path 

https://paperpile.com/c/THPLFn/jukv
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will be broken upon encountering repetitive regions. Highly repetitive regions and 

duplications would typically result in missing sequences or linking related DNA by a 

common shared region (Figure 3). 

To resolve these issues, the public human genome project employed a hierarchical 

approach which combines shotgun methods and BAC clones (Figure 4). Each BAC is 

first mapped using markers forming a rough order on the chromosomes. Then each BAC 

is resolved using shotgun sequencing. The chances of multiple duplications inducing mis-

assembly within a BAC are greatly reduced. Comparison between the hierarchical 

approach against the private whole genome shotgun sequencing clearly demonstrates that 

having localized information greatly increases contig length (Waterston, Lander, and 

Sulston 2002). 

https://paperpile.com/c/THPLFn/66Yh
https://paperpile.com/c/THPLFn/66Yh
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Figure 4 Hierarchical shotgun assembly 

Hierarchical shotgun assembly isolates each duplicated region into individual DNA clones through an 

overlapping tiling path. The ensuing random shearing of each clone reduces the chances of collapsed 

repeats. 

 

The second-generation short read platforms promised much lower cost for the initial 

assembly process. But the long continuity of a gold standard reference genome would 

still require long range information to link short contigs together. 
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1.4.2 Benefits of an improved reference assembly 

The second generation short-read sequencing approach provides easy access to whole 

genome SNP variant analysis as well as some structural variation calling. But to generate 

a reference assembly from this technology can have numerous limitations. Mainly due to 

the limits in sequence read length and DNA insert size, short read sequencing has 

difficulties in repeated regions and segmental duplications. Without sufficient unique 

identifiers in each repeat, the de novo assembler is unable to assign the read to its true 

location. To make this process more complicated, the flanking regions of structural 

variants and duplications are occasionally enriched with repeat sequences (Satyanarayana 

and Strominger 1992; Bacolla et al. 2016). Together, short reads and de novo assembly 

usually result in short contigs or contigs mixed with assembly errors. 

A metric to measure the quality of assembly continuity is the N50 value. Calculation of 

N50 is done by sorting the assembled contigs from the shortest to the longest. Then 

combining the total genome coverage from the shortest contigs until it reaches 50% of 

genome size. The length of the last contig added to the sum is N50. For example, the first 

draft assembly of the giant panda obtained with Illumina resulted in an N50 of 40kb even 

with the use of large insert jumping libraries (R. Li et al. 2010). Even with the whole 

genome shotgun method, the increased read length of older Sanger sequencing based 

https://paperpile.com/c/THPLFn/gf1E+P2JT
https://paperpile.com/c/THPLFn/gf1E+P2JT
https://paperpile.com/c/THPLFn/wpxu
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assembly preserves more segmental duplications compared to that from a short-read data 

(Alkan, Sajjadian, and Eichler 2010). To further improve, a scaffold backbone is 

necessary in order to reorganize these into meaningful representation on chromosomes. 

Alternatively, the method has to be improved with long read sequencing technologies. 

Moving onward from the second-generation short reads, recently the third-generation 

sequencing technology has led to a decline in cost and an increase in read length. This 

method, initially lead by PacBio single molecule real time method, was quickly followed 

by even longer reads from Oxford Nanopore. The read length in such technology can be 

quantified by L50, which is the read length at the 50% of summed length from the longest 

reads. The L50 of PacBio raw sequencing reads could easily exceed 10kb. When a long 

insert library is carefully prepared, we can expect the majority of repeat elements in a 

genome to be correctly linked to their flanking unique sequences. 

1.4.2.1 Identifying duplication by comparative genome analysis 

Copy number variation on a reference can be annotated with multiway alignment 

methods. By comparing against another reference assembly of a species sufficiently close 

on the phylogenetic tree, one could find duplication and deletion still under evolution 

between the species. Another approach is to do a self to self alignment to reveal regions 

by constructing dot-plots. Regions successfully assembled into each of their respective 

https://paperpile.com/c/THPLFn/Y6Jm
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copies will show up as diagonal match pairs across the genome. But due to the limitation 

of most de novo assembly projects illustrated before, these duplications are usually 

limited in length. 

1.4.2.2 Existing duplications interfering with unique sequence identification 

Searching for CNV across a reference with correctly assembled duplications is also 

challenging. Should duplications be represented multiple times on a reference assembly, 

the mapping software needs to determine which copy to correctly assign the sequencing 

read (Treangen and Salzberg 2011). Since the majority of base pairs are identical within 

the duplicated copies, mapping algorithms must choose a strategy to deal with the read 

placement and determine the mapping quality score accordingly. 

1.5. Summary 

Here we described the importance of copy number variations in evolution and animal 

domestication, as well as methods and difficulties to detect CNVs using high throughput 

sequencing data. In the following chapters of my dissertation, I will further dive into 

methodological development for CNV calling and its application on studies of 

domestication in dogs. I will also explore the benefits of a newly improved assembly of 

the canine genome for these CNV methodologies. 

https://paperpile.com/c/THPLFn/QLWW
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Chapter 2: Copy number estimation 

through a depth of coverage approach 
 

In this chapter, I will introduce two copy number variation (CNV) detection algorithms 

based on the depth of coverage approach using 2nd generation short read sequencing data. 

The first pipeline, QuicK-mer, is a CNV detection pipeline with unique paralog 

sensitivity that uses k-mer counting. This pipeline is later updated to a full-fledged, stand-

alone approach that does not rely on external k-mer counting programs. A second 

pipeline, called fastCN, is an efficient approach based on multi-mapping of reads. It 

achieves similar efficiency with mismatch tolerance. The described programs are 

publically available at https://github.com/KiddLab/ I have used these methods to survey 

copy-number variation in dogs, wolves, chimpanzees, and bonobos. Portions of this 

chapter appeared in these previously published manuscripts (Oetjens et al. 2016; 

Pendleton et al. 2018). 

https://github.com/KiddLab/
https://paperpile.com/c/Njd5Tc/hIct+kzw6
https://paperpile.com/c/Njd5Tc/hIct+kzw6
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2.1. Background 

2.1.1 Definition of paralog 

A paralog gene is defined as a new gene which arises due to gene duplication within a 

species. This is in contrast to an ortholog, which are genes in different species related due 

to speciation events. The duplicated paralogs can undergo neofunctionalization or 

subfunctionalization and create large gene families responsible for diverse functionality, 

or a similar function with different targets. Examples include various DNA binding 

domains, such as zinc finger DNA binding regions, which are responsible for regulating 

diverse processes. The latter includes examples olfactory receptors with each binding to a 

different chemical ligand, and duplication between red and green rhodopsin binding 

protein that gave primates tri-color vision. Together through diversification over 

evolution time scale, both processes shape the function and phenotypes we see across 

species today. 

To correctly detect copy number variation in a reference genome, we not only need to 

classify the copies for each DNA segment, but also accurately account for the mutations 

accumulated within unique paralogs. 
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2.1.2 CNV detection methodologies 

The copy number of a sequence is defined as the number of times it occurs in a sample’s 

genome. For a unique region in a diploid genome, this value is equal to two. Through 

duplication and deletion process the copy number of a region can increase or decrease. In 

the case of deletion, copy number can decrease resulting in the loss of sequence or gene. 

Other repeated regions, such as mobile elements have greatly expanded copy number 

through other biological processes and are typically analyzed using specialized tools. 

Comparative sequence analysis can be employed to identify copy number variation 

between two or more species when high quality reference assemblies are available. 

However, to detect a CNV event across population of one species, or subspecies where 

reference is lacking, we must resort to other means. With the advent of short read 

sequencing technologies in the last 20 years, CNV information could be readily extracted. 

Several bioinformatic methods had been proposed to infer copy number using short read 

data. 

2.1.2.1 CNV detection through de novo genome assembly 

One method to delineate copy number variations is de novo genome assembly. By 

constructing the sample into fully assembled sequences as accurately as possible, a 

pairwise comparison can be performed against a reference in search of duplications and 
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deletions. The apparent drawback for such an approach is usually the prohibitive cost 

required for an accurate assembly of duplicated regions. Optimistically, an ideal de novo 

assembly should yield megabase level scaffolds with preserved duplications. However, in 

reality, high depth assembly from next-generation sequencing is limited by read length. 

As a result, these assemblies are usually fragmented with regions of duplication collapsed 

into a false copy number of two (Hartasánchez et al. 2018). A good quality de novo 

assembly requires long read sequencing at high depth to overcome repeats and 

duplications within a genome. Even with long reads of current instruments (20-50kb 

length), approaches such as BAC clone sequencing remain required to accurately 

reconstruct the duplicated segments of typical mammalian genomes (Hoeppner et al. 

2014; Chaisson et al. 2015). These long-read sequencing technologies are far from being 

mature compared to short reads and often require customized software and lengthy 

parameter tuning for analysis. 

2.1.2.2 Duplication/deletion detection using pair-end or jumping libraries 

A second approach to discover copy number variation is to seek various structural 

variation signatures in data aligned to an existing reference genome. In particular, 

sequencing reads spanning a breakpoint junction, called a split-read, can be detected. 

However the chances of finding such split-reads can be low given the short read length 

https://paperpile.com/c/Njd5Tc/jqeq
https://paperpile.com/c/Njd5Tc/qQc4+PU2M
https://paperpile.com/c/Njd5Tc/qQc4+PU2M
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and low depth in many resequencing projects. To alleviate such issues, pair-end read and 

specially constructed jumping libraries can improve the physical coverage obtained with 

the same read depth. Through statistical filtration, a candidate duplication sites can be 

detected with based on reads not mapping in a concordant fashion. Duplications (or 

insertions of any sequence) smaller than the fragment size of the library can be directly 

detected via aberrant read-pair signatures. Tandem duplication of otherwise unique 

sequence can also be identified. Other types of duplications may be predicted based on 

aberrant anchoring of read-pairs. In the case of deletion, the associated signatures are 

read pairs from fragments with apparently long insert. 

Though it is possible to accurately determine the breakpoints for such an event, these 

methods will struggle to accurately survey the precise copy number of a region. Secondly, 

since many breakpoints are flanked by repeats, the mapping quality for such a read is low 

resulting in a lack of statistical power for calling a breakpoint. 

 

2.1.2.3 CNV detection with depth of coverage approach 

Lastly, copy number variation can be assessed using coverage and depth information. 

Assuming a random DNA shearing and sequencing process when short sequencing reads 
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are generated, the number of reads at each location should follow a Poisson distribution 

with a mean proportional to the copy number of that segment in the sampled genomes. If 

a segment of DNA is duplicated, we’d expect the number of read observation to increase 

and vice versa for deletion. The power of detection increases dramatically when the 

length of duplication is increased. At a megabase level, CNV can be accurately quantified 

even with less than 1x of sequencing coverage. On the other hand, this approach requires 

a good reference. Should a region be misassembled or even missing from the reference, 

there will be no chance of finding it based on sequencing depth. 

2.1.3 Summary 

All three methods of CNV detection can be used. In term of cost effectiveness, depth of 

coverage clearly stands out due to number of reads available given a region. In the 

following sections, we are going employ this method with varying degree of paralog 

sensitivity in constructing two bioinformatic algorithms. 

2.2 QuicK-mer: A paralog sensitive rapid CNV estimator 

In order to achieve paralog sensitivity, we choose an approach to consider only unique 

sequences within a reference assembly. This problem can then be simplified with a 

combination of the depth of coverage method described previously and enumeration of 
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predefined k-mers based on an existing reference assembly. In this section I will describe 

the concept and realization of the QuicK-mer CNV estimator. 

 

Figure 5 QuicK-mer working principle 

QuicK-mer achieves paralog sensitivity by counting the sequencing depth only within unique regions of a 

reference genome. Here, a simplified example showing unique regions of each paralogous gene is correctly 

normalized to copy number of two. 

 

2.2.1 Paralog sensitivity through unique k-mer counting 

To achieve efficient and paralog-specific CNV estimation, we focused on counting 

specific k-mer sequences rather than aligning reads to a reference, an approach that has 

also been proposed for analysis of RNA-Seq data (Zhang and Wang 2014; Patro, Mount, 

and Kingsford 2014). The QuicK-mer pipeline was designed to utilize the existing 

Jellyfish k-mer counting application (Marçais and Kingsford 2011). Accepting both 

https://paperpile.com/c/Njd5Tc/ygQo+6dHg
https://paperpile.com/c/Njd5Tc/ygQo+6dHg
https://paperpile.com/c/Njd5Tc/ApuM
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FASTQ and BAM files as input, QuicK-mer is designed for sequences generated by the 

Illumina platform. 

To speed up copy number estimation, QuicK-mer requires two major pre-processing 

steps for each genome assembly. These two steps are essential to generate binary files for 

efficient access within the core copy number estimation pipeline. These two binary files 

are described further in the next section and are used to estimate the copy number in each 

sample. For detailed operation, refer to the QuicK-mer operation manual in the software 

package. 

2.2.2 QuicK-mer 1.0 Implementation 

2.2.2.1 Tabulate a catalog of unique k-mer 

Defining a catalog of unique k-mers requires seven individual steps. In practice, we 

utilize a size of k=30 for consistency with previous studies. (Alkan et al. 2009; Sudmant 

et al. 2010) An example of the command lines for each of the following steps can be 

found in the QuicK-mer User Manual v1.0 Section 9. 

1.  List all unique 30-mers: All 30-mers in the reference genome are enumerated with 

Jellyfish by setting k-mer size equal to 30 and using the reference genome FASTA 

https://paperpile.com/c/Njd5Tc/neD9+ChH6
https://paperpile.com/c/Njd5Tc/neD9+ChH6
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sequence as the input. A k-mer and its reverse complement are considered equal 

(Jellyfish option –C). The 30-mers with a count of 1 are exported into text format. 

2.  Determine unique 30-mer locations: Unique 30-mers are mapped to the genome 

reference using mrsFAST (Hach et al. 2010) with an edit distance setting of 0. This step 

serves to map the location of each unique 30-mer and is used in the following steps for 

region overlapping and exclusion. 

3.  Enumerate highly repetitive 15-mers: The same procedure for Step 1 is repeated for 

the reference assembly except now k is set equal to 15 and all 15-mers with counts ≥ 

1,000 are exported. 

4.  Determine repetitive 15-mer locations and filter 30-mers: Step 2 is repeated with the 

15-mers determined in Step 3. Here, each k-mer will have multiple genome locations. 

Finally, locations of the 15 and 30-mers are merged together, and all 30-mers (from Step 

2) that overlap with the high frequency 15-mer track are removed from subsequent 

analyses. 

5.  Remove highly similar 30-mers: The 30-mers that pass Step 4 are mapped onto the 

reference genome using mrsFAST with an edit distance of 2. All 30-mers with ≥ 100 

mapped positions are removed. Note that mrsFAST only considers substitutions. 

https://paperpile.com/c/Njd5Tc/k3LM
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6.  Considering indels, remove highly similar 30-mers: The k-mers that pass Step 5 are 

mapped again using mrFAST with an edit distance of 2. All 30-mers with ≥ 100 mapped 

positions are removed. The mrsFAST search is performed prior to mrFAST due to the 

speed advantage of mrsFAST only considering mismatches. Steps 5 and 6 serve to reduce 

the chances of matching k-mers with sequencing errors into unintended locations. 

 7.  Combine final k-mer catalog: The final list of highly unique 30-mers is sorted based 

on chromosome location and outputted in BED format. This output file will then be used 

by QuicK-mer and for the generation of required auxiliary files. 
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Figure 6 Reference 30-mers generation flow 

Diagram depicting QuicK-mer workflow for 30-mer generation from a genome reference assembly. The 

color for each box corresponds to each of the three software packages used. Multiple rounds of filtration 

steps guarantee sequencing errors won’t map to highly represented regions.  

 

2.2.2.2 Definition of control regions 

The resulting file is encoded in a binary format for convenient access during the GC 

correction and copy number normalization step. 
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2.2.2.3 PCR Bias and GC correction 

To counter the amplification bias during library preparation and flow cell bridge 

amplification, a moving window of local GC content is calculated for a reference genome 

assembly. For each K-mer, this window is taken by extending from the central base pair 

by half of the window length. In our study, the GC window is set to a value of 400bp, 

which is typical for a WGS library. In the same manner as the previous step, the values 

are stored in binary file for rapid access. 

2.2.2.4 Realization of pipeline 

2.2.2.4.1 Depth estimation and GC correction 

The QuicK-mer core program is written in C++ and Object Pascal and wrapped with 

Python for control flow. The control flow consists of calling Jellyfish-2 (Marçais and 

Kingsford 2011) for building the 30-mer hash library followed by the k-mer query step. 

At the beginning of the query step, two axillary binary files are preloaded and memory 

space for count values is allocated. QuicK-mer then interrogates the Jellyfish hash library 

with the sorted 30-mer list, storing each raw count value in memory. The core program 

verifies each 30-mer’s status as a normalization control and, if indicated, the 400 bp GC-

content value is fetched from the associated binary file and incorporated into the GC bias 

curve. Once the process is finished, the core program builds the GC curve based on the 

https://paperpile.com/c/Njd5Tc/ApuM
https://paperpile.com/c/Njd5Tc/ApuM
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average counts obtained from each GC percentage bin and uses the lowess smoothing 

algorithm to generate a correction curve. The targeted average depth is calculated using a 

weighted average based on GC content of 25~75%. A 0.3x minimum and 3x maximum 

correction factor is also enforced to reduce over-correcting extreme GC regions due to a 

lack of representative k-mers. The GC bias curve is output in a text format and, along 

with correction curve, is represented in a PNG image (example in Figure 7). Lastly, the 

correction factor is applied to each k-mer count value based on its GC content and the 

resulting GC-corrected k-mer counts are outputted in binary format. 
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Figure 7 GC correction curve 

GC Correction and Bias The majority of sequencing coverage bias is related to local GC content. The blue 

curve indicates the average depth for the 30-mers with the same GC content in 400bp surrounding the 

center of each k-mer location, rounded in steps of 0.25%. The red curve is the lowess smoothed correction 

factor, targeted for the average depth indicated by the dashed line. A 3x max correction value is enforced. 

The GC curve represents QuicK-mer run from WGS experiment SRX734522. 

 

Due to different GC biases within sequencing libraries and across flow cell lanes, the user 

is encouraged to apply QuicK-mer GC normalization separately for each sequencing lane. 
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Resulting GC-corrected k-mer counts can then be merged together for each sample using 

the CorDepthCombine command. 

 

2.2.2.4.2 Normalization and CNV estimation 

Another program in the QuicK-mer package (kmer2window) converts counts to copy 

number estimates. The normalization program loads the same binary control region file 

then, using the corrected depth for the control 30-mers, calculates a scaling factor based 

on an assumed copy number of two for these regions. Normalization is performed on 

windows of equal number of k-mers (default = 500 k-mers per window, but is adjustable 

by the user). The median k-mer count for each window is used for the normalization, and 

only windows where all k-mers are in the defined control intervals are used in subsequent 

steps. The resulting normalization is then applied to all windows. 

2.2.2.5 Performance 

To assess the efficiency of QuicK-mer, we randomly sampled subsets of reads from the 

human genome sequence for sample HG02799, which was sequenced to a depth of 17x. 

The selected fractions were individually analyzed using 35GB memory and 4 cores 

during library construction and 2 cores during querying on an empty compute node with 

4 Xeon E7 4850 2GHz processors and 1TB of total memory. Wall clock-time statistics 
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indicate a constant time cost for the querying step once the average sequencing depth 

exceeds 1x. The nature of counting predefined k-mers also means the memory usage is 

unlikely to be affected by the sequencing depth. The library building time is linearly 

correlated with the input read counts. 

 

Figure 8 QuicK-mer 1.0 CPU wall time 

Wall time statistics of QuicK-mer based on random read sampling of a HG02799 Illumina library. The left 

panel shows the time cost for Jellyfish 2 to construct the k-mer array from a FASTQ file with varying 

number of reads. The right panel shows constant query time for each k-mer using prebuilt k-mer list. 
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2.2.2.6 Validation with 1000 genome dataset 

For comparison, we reanalyzed the dataset from the 1000 Genome Project and other 

sources using QuicK-mer and compared the estimated copy number profiles with 

supplementary data from the (Sudmant et al. 2010) study. The dataset was downloaded 

from 1000 Genome Project Pilot, Phase 1, and Phase 3 studies (1000 Genomes Project 

Consortium et al. 2010, 2012, 2015). Sequencing files were individually run through the 

QuicK-mer pipeline and GC corrections were performed for each sequencing lane. 

Corrected data is combined and normalized into copy number estimates. Table 1 contains 

the details of samples used to assess the accuracy of QuicK-mer in known CNV regions. 

Table 1 List of samples used for QuicK-mer validation 

Samples used for QuicK-mer validation. The mean depth is calculated based on the median depth obtained 

from windows of 500 30-mers that fully overlap a defined control region. For sample NA19240, the SRA 

accession identifiers are provided. 

 

Sample 

Name 

Data Source Mean 30-mer 

Depth in Control 

NA12156 1000 Genome Phase 3 4.40 

NA12878 1000 Genome Phase 1, Pilot 1/2 7.23 

https://paperpile.com/c/Njd5Tc/ChH6
https://paperpile.com/c/Njd5Tc/YdgO+9doi+jQu2
https://paperpile.com/c/Njd5Tc/YdgO+9doi+jQu2
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NA18507 (Bentley et al. 2008) 23.05 

NA18508 (Bentley et al. 2008) 7.30 

NA18517 1000 Genome Phase 3 3.82 

NA18555 1000 Genome Phase 3 4.09 

NA18956 1000 Genome Phase 3 3.63 

NA19129 1000 Genome Phase 1, Pilot 1/2 0.87 

NA19240 SRX574476, SRX582073  

(Song et al. 2017) 

13.26 

 

We evaluated the genome regions depicted in S52 and S60 – S71 of (Sudmant et al. 

2010). QuicK-mer accurately estimated copy number for many highly paralogous gene 

families, such as the UGT2 gene family (Figure 9), for each sampled human genome. 

Other regions in which QuicK-mer CNV estimations are consistent with the original 

study, further demonstrating the accuracy of QuicK-mer in detecting copy number of 

unique paralogs. 

 

https://paperpile.com/c/Njd5Tc/vYm6
https://paperpile.com/c/Njd5Tc/vYm6
https://paperpile.com/c/Njd5Tc/FmV2
https://paperpile.com/c/Njd5Tc/ChH6
https://paperpile.com/c/Njd5Tc/ChH6
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Figure 9 Validation using 1000 Genome data 

Diverse and paralog-specific CNV detected by QuicK-mer at the UGT2 family locus for numerous gene 

models (top track) at chr4q13.2. Red boxes indicate regions of detected CNV. UGT2B17 is hemizygously 

deleted in NA19240, NA18555 and NA18517. TMPRSS11F and SYT14L are duplicated in NA18517, 

resulting in a copy number of 3. This figure corresponds to the region shown in Figure S65 in (Sudmant et 

al. 2010). The k30_merged track indicates the locations with unique 30-mers. 

 

2.2.4 Application of QuicK-mer 

2.2.4.1 Chimpanzee Y-chromosomal amplicon copy number detection 

2.2.4.1.1 Methods 

In addition to validation on the human data, we employed QuicK-mer to amplicon copy 

number on Y chromosomes on primates. Since these amplicons is already duplicated on 

chrY, we specifically isolate one copy for each family as a separate FASTA file. We then 

generated the k-mer unique to each amplicon and only kept the ones distinct from other 

https://paperpile.com/c/Njd5Tc/ChH6
https://paperpile.com/c/Njd5Tc/ChH6
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ampicon copies. This ensures paralog sensitivity. The additional k-mers were then 

appended to the ordinary k-mers generated based on PanTro4 reference. QuicK-mer is 

then ran on samples using human as a comparison. 

2.2.5 QuicK-mer 2.0: Speed improvement and user-friendly interface 

The original QuicK-mer was published with four sets of prebuilt 30-mer indexes. These 

include human HG19, mouse MM10, chimpanzee PanTro4 and dog CanFam3.1. These 

files are large and hard to distribute to end users. If users are dealing with a different 

reference version or completely distinct organism, they are required to spend four days 

and hundreds of independent tasks for processing. These processing steps uses mrsFAST 

and mrFAST for repeated mapping, merging, sorting and intersection described in section 

2.2.1. These steps require constant human intervention. We feel like a unified and user-

friendly improvement is necessary to make QuicK-mer suitable for general public. 

To further improve performance and simplify the pipeline, a new version of QuicK-mer 

V2.0 with a novel internal core was designed and released. In this new version, a single 

application contains all three functionalities. 1. Searching unique k-mer list from 

reference assembly 2. Counting k-mer from sample FASTQ files. 3. GC correction and 

copy number estimation. This results in a more user-friendly program. In addition, a 
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single sample scan combining the previous enumeration/query steps results in a massive 

run time reduction. 

2.2.5.1 K-mer encoding 

Each base pair can be represented using two bits. Based on the standard ASCII table 

encoding, bit position 1 - 2 happens to be unique across A, T, G and C. More importantly, 

A and T, or G and C happen to differ by two. Thus, reverse complement conversion can 

be realized with subtraction of value of two in a two-bit unsigned integer space. The use 

of both encoding tricks reduces CPU instruction cycles and avoids branching instruction 

execution with simple bit manipulation. 

 

Table 2 Bit encoding of QuicK-mer 2.0 

Binary representation of four nucleotides using bits 1-2 from ASCII encoding of characters. Efficient 

complementary conversion can be achieved by addition of two (2’b10) in two-bit space. Overflow will 

cause the value to flip back. 

 

A 64-bit unsigned integer can store a maximum length of 32 base pairs. This is sufficient 

in most of the applications. In QuicK-mer 2, the 3’-end base pair is encoded in the least 
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significant bit in the integer. During stream processing, previous values can be shifted to 

the left every two bit at a time. Since nucleotide ‘N’ found in sequencing data is 

ambiguous, k-mers containing ‘N’ characters are discarded. Each k-mer can be 

represented using both the forward or reverse strand. This redundancy is resolved by 

taking the smaller value after encoding for hashing process. Thus, a k-mer and its reverse 

complement are taken to be identical. 

2.2.5.2 Data structure 

A reference genome with length of N can in the worst-case scenario generate N-k+1 k-

mer should no repeats occur. With N in the range of billions, storing such an array 

efficiently while also enabling rapid access presents a challenge. To quickly access the 

depth information of each k-mer, several mapping strategies have been proposed in the 

literature. In the end, there is usually a tradeoff between computing time or memory 

space usage. Burrow wheeler transformation encoding with a suffix array is a typical 

example of trading computing time for space. For example, BWA and BOWTIE used this 

approach.(Li and Durbin 2009; Langmead et al. 2009) Hash functions on the other hand 

trades space for time and provide constant O(1) access time independent of the size of the 

array. We chose this method since the number of k-mer can be easily reduced without 

sacrificing depth estimation precision. On the other hand, with multithreading, each 

https://paperpile.com/c/Njd5Tc/STRx+QxNF
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thread on average does not use much memory. Lastly, the time cost at large datasets is 

typically more important compared to memory usage and QuicK-mer 2.0 can finish a 20x 

high depth analysis in less than 20 minutes. 

 

Figure 10 Hash array and data structure 

Hash data structure used in QuicK-mer 2.0. Encoded k-mers are transformed into a random array index 

through a hash function. This randomness is determined by the hash function. The array slots can store 

information such as the sequencing depth, the original encoded k-mer itself and next array index on 

chromosomal order. 

 

In a hash array, the index value is determined by converting the item value using a hash 

function. An ideal hash function will generate a distinct index value for each distinct 

input. However, the same value from different inputs can occur in reality. This is called a 

hash collision. A good hash function should have a low collision rate and a uniform 

distribution of index value given a fixed space. To resolve collisions, QuicK-mer 2 



 50 

employs the linear probing approach, where the value colliding is appended in the 

adjacent array cell. In QuicK-mer 2.0 the appending direction is flipped between the 

upper and lower half of the array. This way the array size will not exceed allocated 

memory. In such a collision resolving scheme, a k-mer search scan will start at the hash 

index, follow the indicated direction until the encoded k-mer value cell is found, or stop 

when an empty cell is reached where the k-mer is absent. 

Additional arrays with the same indexing strategy are allocated for other purposes. 

During k-mer enumeration from a reference genome assembly, two integer arrays are 

used to store the occurrence of each k-mer and to store the number of repeats during edit 

distance search. Additionally, a linked list stores the exact index of the next k-mer. This 

is used to reorganize the depth information into chromosomal order.  

2.2.5.3 K-mer hashing with DJB2 

In QuicK-mer 2, I chose DJB2 due to its speed and efficiency. Each 64-bit encoded k-

mer is considered a string length of eight characters. In total DJB2 goes through each 

character for hashing. The final index is calculated by taking modulo of the hashed value. 
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2.2.5.4 Edit distance search 

During the search step, each k-mer can be permuted with up to two substitutions. The 

additional time cost can be calculated in the following equation. Since this step only 

requires a shared memory for depth access, multithreading is implemented to facilitate 

the process. Compared to the 1.0 version, 256 CPU hours is sufficient. Previously the 

complex filter procedure requires hundreds of mapping jobs using external tools and 

intersecting calculations which take multiple days. 

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =  𝐶 𝑘
2 × 3 2 + 𝐶 𝑘

1 × 3 

2.2.5.5 Multithreading implementation 

QuicK-mer 2 also implemented multithreading in the count step. The multithreading is 

designed as a feeder - consumer scheme, where the feeder thread fetches sequencing 

reads and generates encoded k-mer values while each consumer thread hashes the 

encoded k-mer, search and accumulate the depth in corresponding index location using 

the lock-add CPU instruction. The process is thread safe and scales according to input 

read count and thread number. Eventually the process becomes I/O bounded at more than 

6 consumer threads. The process is able to finish for a 10x genome in well under 10 

minutes. 
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Figure 11 QuicK-mer 2.0 CPU time and multithreading 

Time cost for QuicK-mer 2 counting step with varying number of thread and input data 

2.2.5.6 K-mer sparsing and memory reduction 

QuicK-mer 2 requires 10 bytes per k-mer of memory space during the counting step. 

Thus, for a typical mammalian genome two billions of k-mers are enumerated. Since 

hash table should exceed an 80% fill rate to avoid excessive collision, 40GB of memory 

is required for index. Here I explored the reduction of control region in order to conserve 

memory space. Naturally, we do not have to count every k-mer by shifting 1bp. Instead, 

we can skip k-1 k-mers for every k as sequencing reads are contiguous. To demonstrate, 

the reference k-mer list is progressively reduced to 1/100 for k=30. We demonstrate that 

the GC correction accuracy is not affected (Figure 12). This approach drastically reduces 
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the memory consumption. In the meantime, there’s a small time reduction in CPU time as 

well, possibly due to lower chances of cache miss when smaller memory is used.  

 

Figure 12 GC correction using sparse function 

Successive reduction of k-mers in control region does not affect GC bias curve. Accurate GC 

correction can be achieved with smaller memory footprint 

 

2.2.5.7 Summary 

Here I presented a paralog specific CNV tool with high efficiency. The new version 

provides all in one k-mer search and filter along with count and estimation in a single 

user-friendly application. The new QuicK-mer 2 stores accumulated uncorrected GC 
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information as intermedia file. This method enable user to iteratively refine control 

region based a population of samples to find regions with copy number two for GC 

correction. New version of QuicK-mer 2 is available on GitHub at 

https://github.com/jackshencn/QuicK-mer2  

2.3 fastCN: A multi-mapping CNV detection pipeline 

2.3.1 Introduction 

Multiple approaches that utilize read depth to identify regions of copy number variation 

have been developed. One successful set of approaches utilize the mrFAST and 

mrsFAST aligners, tools which efficiently return all matching locations for short 

sequencing reads within a specified edit distance. These tools have been used to analyze 

CNV patterns in multiple studies of humans and non-human primates (Sudmant et al. 

2015, 2013; Alkan et al. 2009; Sudmant et al. 2010). However, this estimation required 

separate steps including mapping, BAM file sorting based on location, and read pileup 

followed by GC corrections, requiring the storage and manipulation of several large files. 

Since the total time for disk I/O and the use of multiple intermediate files is a serious 

bottleneck for large scale analyses, we developed fastCN to efficiently estimate genome 

copy number from short read data. This program utilizes the data output from the short 

https://github.com/jackshencn/QuicK-mer2
https://paperpile.com/c/Njd5Tc/T6nB+gsWI+neD9+ChH6
https://paperpile.com/c/Njd5Tc/T6nB+gsWI+neD9+ChH6
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read mapper mrsFAST (Hach et al. 2010), and reports per-bp read depth in an efficient 

compressed binary format. The fastCN software package is available on the Kidd Lab 

GitHub. 

 

Figure 13 fastCN working principle 

fastCN is implemented using a paralog insensitive approach. This example shows both paralog copies have 

the other’s reads mapping to it. Thus, the final copy number is four in a sample matching the original 

reference assembly. 

 

2.3.2 Implementation and optimization 

The fastCN core pipeline consists of two major applications responsible for generating 

reference files and depth pile up respectively. 

2.3.2.1 Reference file 

The first program, GC_control_gen, generates a control region file for the next stage of 

the pipeline based on (1) the reference genome and user supplied files indicating (2) 

https://paperpile.com/c/Njd5Tc/k3LM
https://github.com/KiddLab/fastCN/blob/master/GC_control_gen.cc
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regions of the genome assumed to not be copy number variable and (3) regions of the 

genome which have been masked prior to read mapping. To avoid excessive depth pile 

ups due to repetitive regions, we utilize a version of the genome reference where all 

elements defined by RepeatMasker, elements defined by tandem repeat finder (TRF), and 

50-mers with at least 20 genome matches within an edit distance of two are masked to ‘N’ 

prior to short read mapping. To avoid the shadow effect of mapping against a masked 

genome, the coordinates of the masked segments are extended by the length of the 

utilized reads. For compatibility with previous work, we utilize a read length of 36 bp, 

and divide longer Illumina reads into disjoint 36 bp long sequences. 

The control region file is encoded as a 32-bit float per base pair in a pure binary 

representation, and the value for each float corresponds to the local GC content at that 

base pair. The window length for GC content calculation is defined by the user (typically 

400 bp), and GC content values are assigned to the centers of each sliding window. 

Signed values are given for each base-pair with expected values between -1.0 and 1, 

where a negative bit value indicates a base pair that should not be used as a control for 

normalization. Masked genomic regions are identified by a value of negative infinity and 

are omitted from processing. This encoding scheme allows rapid access during the 
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subsequent normalization stage. For each reference assembly, the above step should be 

executed once. 

2.3.2.2 Depth pileup 

The second application, SAM_GC_correction, processes the data output from the 

mrsFAST mapper (an unsorted SAM file format). As such, a memory space proportional 

to the size of the haploid reference genome is required for this random access. Once the 

mapping input is processed, GC normalization ensues with the aid of the binary file from 

the previous step. GC normalization utilizes a multiplicative correction factor determined 

by lowess fitting, as utilized in QuicK-mer. The end result is corrected depth preserved 

with half floating-point precision, which contains sufficient dynamic range and precision 

while significantly saving disk space. Depths at regions masked out in the reference are 

assigned a fixed depth value of -1.0. The resulting binary normalized depth files are 

subsequently compressed using gzip. Mean or median depth values in predetermined 

windows can then be efficiently calculated from these files, and converted to estimates of 

genome copy number. 

 

https://github.com/KiddLab/fastCN/blob/master/SAM_GC_correction.cc
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2.3.3.3 Depth combine 

A utility application is included for the user to convert between half float and single 

precision float point. Please refer to readme file from the fastCN software package on 

GitHub for additional instructions. 

2.3.3 Performance 

The fastCN pipeline achieves excellent performance. The core pipeline consumes 

negligible additional time compared to mrsFAST mapping. The control region files can 

be constructed less than 3 minutes for a typical 3Gb mammalian genome. 
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Chapter 3: Detection of copy number 

variation associated with dog 

domestication 
 

Portions of this chapter including figures, tables and text was published and described in 

(Pendleton et al. 2018). This chapter details the application of QuicK-mer and fastCN to 

the study of canine domestication. 

 

3.1 Introduction to domestication 

Domestication of animals and plants is a complex process that accompanies human 

evolution for at least the last ten thousand years (Larson and Fuller 2014). Generally, 

domestication is defined as an evolutionary process that gradually transforms organisms 

to suit human needs with some form of human intervention. Domestication was once 

viewed as humans actively selecting traits and phenotypes. This was the core concept of 

selective breeding in recent times. Another process might be non-deliberate actions and 

subtle influences from humans that alter an organism's environment, which further leads 

to adaptation by certain organisms to human presence. As a result, some common 

https://paperpile.com/c/GeymG6/m7hl
https://paperpile.com/c/GeymG6/hA6R
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characteristics from domestic animals are consistently observed. This includes increased 

tameness and docility, changes of coat color, presence of floppy ears, changes of 

reproduction frequency and finally, body shapes across a variety of animals. This 

observation is known as the “Domestication Syndrome” noticed first by Darwin (Wilkins, 

Wrangham, and Fitch 2014; Larson and Fuller 2014). Debates on how and why similar 

morphological traits arise are still ongoing. Evidence from Belyaev’s wild fox experiment 

refuted the earlier hypothesis that the traits observed in dog domestication were the result 

of hybridization of a myriad of breeds (Trut, Plyusnina, and Oskina 2004). The result of 

this study leads to another line of thought, that some common upstream regulatory 

network governs the genes responsible for all the phenotypes observed in domestic 

syndrome. 

With multiple genome assemblies largely complete and well annotated, studies on 

regulatory pathways and gene networks suggests this might also be infeasible. The sheer 

number of pathways involved for a common regulatory factor would be too much for 

only a few traits observed. Recently, Wilkins et al proposed that initial selection of 

tameness might drive the “domestication syndrome” through affecting the neural crest 

migration during the early embryo development (Wilkins, Wrangham, and Fitch 2014). 

The implication of the neural crest pathway in the “domestication syndrome” is that 

https://paperpile.com/c/GeymG6/j2rU+hA6R
https://paperpile.com/c/GeymG6/j2rU+hA6R
https://paperpile.com/c/GeymG6/2ju0
https://paperpile.com/c/GeymG6/j2rU
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selection by tameness alone could affect multiple pathways due to common cell lineage 

during the early embryo development. 

3.1.1 CNV in animal domestication 

As a large-scale variant, CNV represents an important aspect during domestication. 

Numerous studies on farm and companion animals have revealed diverse changes of the 

genomic landscape due to CNVs. In pig domestication, a high resolution CNV map based 

on genome sequencing data revealed large expansion of olfactory receptors as the 

primary source of copy number increase (Paudel et al. 2015; C. Chen et al. 2012). Genes 

related to immune defense were identified as copy number variable across the pig 

population. Several genes related to starch digestion including amylase are variable as 

well. The same study deduced that copy number evolves at a much faster rate than SNPs. 

The sheer number of these CNV regions might contribute to rapid speciation and 

adaptation through interspecific hybridization. Other CNV surveys highlighted CNV 

regions overlapping with QTL linked to meat quality and fat deposition (C. Chen et al. 

2012). Diseases associated genes due to copy number changes are also discovered (Long 

et al. 2016; Wang et al. 2015). 

 

https://paperpile.com/c/GeymG6/N4vD+VGcn
https://paperpile.com/c/GeymG6/VGcn
https://paperpile.com/c/GeymG6/VGcn
https://paperpile.com/c/GeymG6/Uos0+1trB
https://paperpile.com/c/GeymG6/Uos0+1trB
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The CNV landscape in the cattle genome shows some similarity to that from 

domesticated pigs. CNV is enriched in the immune system related pathway and olfactory 

receptors (Jia et al. 2013; Keel, Lindholm-Perry, and Snelling 2016), with segmental 

tandem duplication as the primary cause for copy number expansion. Domestication 

related CNV is also observed in chickens. Pea-comb shape was one of the earliest 

discovered traits related to CNV in chicken (Wright et al. 2009). Feather features such as 

timing and coat color are also shown driven by CNV induced variations (Elferink et al. 

2008; Dorshorst et al. 2011). Whole genome tiling array analysis revealed pathways 

enriched with CNV expansion (Jia et al. 2013). Yet the implications of such large-scale 

change are difficult to draw because phenotypes like meat growth are usually 

polymorphic.  

In all, copy number variation represents an essential component in animal evolution and 

domestication process. To further gain insights on the regions evolved during dog 

domestication, it remains essential we also look into the copy number variations. 

3.2 Dog domestication history 

The domestication history of dog stands in a unique place among all other animals. 

Foremost, the dog is the first animal to be domesticated, which shares at least ten 

https://paperpile.com/c/GeymG6/frnJ+X7Az
https://paperpile.com/c/GeymG6/7ZaS
https://paperpile.com/c/GeymG6/J8tg+S8a8
https://paperpile.com/c/GeymG6/J8tg+S8a8
https://paperpile.com/c/GeymG6/frnJ
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thousand years alongside humans. Secondly, the recent breed formation has been 

carefully recorded, allowing breed associated genetic differences to be easily compared 

against the breed tree. Thirdly, dogs exhibit a wide range of phenotypic and 

morphological diversity within a species unlike any other species. 

Two important aspects of domestication are its timing and location. This timing is usually 

determined by two methods either archaeologically or genetically. Excavated fossils 

maintained the bone shape at that time. By comparing bone shape to the sample of living 

animals, one can determine the relative distance of ancient fossils to the modern 

domesticated animal. The age of a fossil can be determined using radioisotope dating by 

residual carbon-14. Similarly, such comparisons can also be drawn at the molecular level 

by comparing the number of mutations between the wild and domesticated samples. The 

relative time can be inferred by assuming a constant mutation rate in the genome. The 

physical evidence provided by fossils can be compelling. But early dogs would be rare 

and are also difficult to distinguish from the wolf morphology (Freedman and Wayne 

2017). Another problem would be divergence of modern wild species compared to the 

ancient individuals from where were domesticated. In the case of dog domestication, the 

ancient wolf progenitor is now extinct (Freedman et al. 2014). Thus, by combining 

molecular timing, a more accurate picture can be drawn especially when ancient dog 

https://paperpile.com/c/GeymG6/jH48
https://paperpile.com/c/GeymG6/jH48
https://paperpile.com/c/GeymG6/6jeZ
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DNA is available. Based on distance clustering, domestication location can be inferred 

based on proximity to older ancient samples. 

At present, the timing and location for dog domestication is still under debate, with each 

method drawing a different conclusion. Factors affecting the result including the region 

of DNA used (mitochondria, Y chromosome or autosomes), filtration and clustering 

algorithm and criteria, as well as the most important, the samples selected and used 

(Freedman and Wayne 2017). Yet general consensus place the domestication split time 

around 10-40 thousand years ago and a single place of origin based on shared common 

haplotype (Freedman and Wayne 2017). Recently, our research group surveyed more 

than 5,000 dogs along with two ancient dog DNA samples. The result supported single 

origin theory and narrowed the domestication time frame to 2-40,000 years ago (Botigué 

et al. 2017). After this ancient, long enduring domestication process, the modern breed 

dogs were the result of selective breeding for certain desirable traits in the last 250 years. 

This breed formation creates the second population bottleneck, where the first being the 

origin domestication event tens of thousands of years back. 

https://paperpile.com/c/GeymG6/jH48
https://paperpile.com/c/GeymG6/jH48
https://paperpile.com/c/GeymG6/zFUt
https://paperpile.com/c/GeymG6/zFUt
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3.3 Results 

To truly capture the domestication signature that distinguishes between dogs and wolves, 

we need to isolate the origin of mutations in the 40,000 years’ history. Previous studies 

on many of such selection scans focused on using breed dogs as a resource (Freedman et 

al. 2014; Marsden et al. 2016). Village dogs were the relative wild dogs detached from 

human selective breeding. Due to this property, village dogs are more pristine and 

unlikely harbors regions affected due to breeding process.  

3.3.1 Copy number estimation using Illumina sequencing data 

Copy number was estimated using Illumina whole genome sequencing data with both the 

fastCN and QuicK-mer methods described above. Input sequencing data for both 

approaches was derived from BAM files with duplicated reads removed. Non-CNV 

autosomal control regions for depth normalization were predefined for the CanFam3.1 

reference by excluding regions previously reported to be duplicated or copy number 

variable (Nicholas et al. 2009, 2011; Freedman et al. 2014; W.-K. Chen et al. 2009). 

Copy number estimates were created in windows of 3,000 unmasked bp (fastCN) or 

3,000 unique k-mers (QuicK-mer) for the autosomes and chromosome X. Unplaced 

contigs were merged into one chrUn for copy number estimation. 

https://paperpile.com/c/GeymG6/6jeZ+uVdD
https://paperpile.com/c/GeymG6/6jeZ+uVdD
https://paperpile.com/c/GeymG6/gaxoB+ClLiV+6jeZ+SdLI6
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3.3.1.1 QuicK-mer CN estimation 

The canine reference assembly was divided into consecutive windows that each have 

3,000 k-mers. Since k-mer locations are not uniform or consecutive, the actual genomic 

span (or length) of each window varies depending on the local sequence complexity. 

Window definition is constructed using an utility application in the QuicK-mer pipeline 

(Chapter 2). Copy number estimates were calculated using the kmer2window program, 

which requires the 3,000 k-mer windows, as well as the normalized binary files for each 

sample (available for download at http://kiddlabshare.umms.med.umich.edu/public-

data/QuicK-mer/Ref/). 

3.3.1.2 fastCN CN estimation 

Similar to QuicK-mer CNV estimation, we divided the canine genome into consecutive 

3kb windows, with the exclusion of masked regions defined in the fastCN pipeline. The 

depth for each window is first assigned the mean normalized depth of all intersecting 

unmasked base pairs. 

This value is then scaled to copy number estimate per window by dividing the average 

depth in all control windows assumed to be copy number of two. 

http://kiddlabshare.umms.med.umich.edu/public-data/QuicK-mer/Ref/
http://kiddlabshare.umms.med.umich.edu/public-data/QuicK-mer/Ref/
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3.3.2 Comparison of noise across samples 

The signal-to-noise ratio (SNR), defined as the mean depth in autosomal control windows 

divided by the standard deviation, was calculated for the 53 dogs and wolves that were 

processed through the FST pipeline. Because the wolf samples were typically sequenced 

to a higher depth than the village dog samples, wolves display larger SNR than dogs 

(Figure 14 A and B). However, many village dogs with lower average sequence depth 

(~4-10x) exhibit comparable SNRs with wolves that have higher depths. The correlation 

of noise in control regions between both pipelines indicates a consistent noise originating 

from the sequencing data (Figure 14 C). Results from a boxer breed dog (box), which is 

used in subsequent QuicK-mer and fastCN validations, are also included in these plots. 

The SNR of this sample indicates that the boxer sequencing data is unusually noisy, an 

observation accounted for in later analysis. 
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A            B

 

C 

 

Figure 14 Sample coverage noise 

SNR values based on (A) QuicK-mer and (B) fastCN (upper right) analyses are plotted against genome 

sequence depth for all samples used in the study. The SNR values were obtained from 3kb control region 

windows. (C) Correlation of noise standard deviations between QuicK-mer and fastCN. Village dogs are in 

blue and wolves in orange, while the aCGH reference sample (box) is red. 
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3.3.3 Comparison with CGH array data 

Comparative genomic hybridization array (aCGH) data from a previous study (Ramirez 

et al. 2014) was downloaded from Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih/gov/geo/info/linking.html) under the accession number 

GSE58195. This study utilized a NimbleGen aCGH chip that contained 598,733 probes 

with average spacing of oligonucleotide probes at 157 bp, and tested the comparative 

binding of DNA to estimate CNV between dogs and wolves at sites incorporated into the 

aCGH design (Ramirez et al. 2014).  

Table 3 aCGH data used for wolf CNV validation 

Sample information for aCGH data deposited under GEO accession number GSE58195 from 

(Ramirez et al. 2014). The sample identifiers used in this study, sample descriptions, GEO 

accession for the aCGH data, SRA data accession for whole genome sequence, and sample sex is 

provided.  

Sample ID Sample Description aCGH Data 

Accession ID 

SRA Data Accession ID(s) Sex 

chw Chinese Wolf GSM1402955 SRX1137190, 

SRX1137189, SRX1137188 

Female 

glw Great Lakes Wolf GSM1402952 SRX655630, SRX655629 Male 

inw Indian Wolf GSM1402956 SRX655632, SRX655631 Male 

https://paperpile.com/c/GeymG6/ePsI
https://paperpile.com/c/GeymG6/ePsI
http://www.ncbi.nlm.nih/gov/geo/info/linking.html
https://paperpile.com/c/GeymG6/ePsI
https://paperpile.com/c/GeymG6/ePsI


 72 

irw Iranian Wolf GSM1402953 SRX655634, SRX655633 Female 

mxa Mexican Wolf GSM1402954 SRX655637, SRX655636 Female 

ptw Portuguese Wolf GSM1402949 SRX655640, SRX655639 Female 

ysa Yellowstone Wolf GSM1402951 SRX655648, 

SRX655647, 

SRX655646 

Female 

box Boxer GSM1402940 SRX655611, SRX655610 Female 

 

In (Ramirez et al. 2014), DNA from a Boxer breed dog (box) is used in the aCGH control 

channel. However, the sequencing data from the same sample shows poor quality due to 

extremely uneven coverage. To circumvent the impact of this noisy sample in our aCGH 

validation, we employed a simple log difference transformation (Equation 3.3.1). 

Assuming the hybridization for the boxer sample performs equivalently across 

experiments, this approach effectively cancels out the boxer as the aCGH reference 

sample and instead directly compares copy number between samples 1 and 2. To make 

validation based on sequencing depth comparable to relative estimates from array CGH, 

we employed a in silico transformation on the copy number estimates using Equation 

https://paperpile.com/c/GeymG6/ePsI
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3.3.2, where the numerator and denominator are the normalized copy number state in 

each 3kb window for samples 1 and 2, respectively. 

 

Equation 3.3.1   𝑙𝑜𝑔2  
𝑃𝑟𝑜𝑏𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 1

𝑃𝑟𝑜𝑏𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑜𝑥
− 𝑙𝑜𝑔2

𝑃𝑟𝑜𝑏𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 2

𝑃𝑟𝑜𝑏𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑜𝑥
 

 

Equation 3.3.2   𝑙𝑜𝑔2  
𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 1

𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 2
 

 

To compare the result between Equation 3.3.1 and 3.3.2, we lifted over the aCGH probe 

location to CanFam3.1 reference coordinate. Next, the values from Equation 3.3.1 for all 

the probes those intersect with a 3kb fastCN or QuicK-mer window were averaged and 

then assigned to the window. Figure 15 illustrates the probe count distribution for 3kb 

windows, a similar distribution was found for 3,000 k-mer windows, and we observed 

that QuicK-mer and fastCN had similar distributions. In total, 12,584 and 17,989 3kb 

windows intersect with at least one aCGH probe for fastCN and QuicK-mer, respectively. 

We further filtered these windows to only include those containing at least three aCGH 

probes, thus reducing the window counts to 11,876 and 17,774 for fastCN and QuicK-

mer, respectively. 
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Figure 15 aCGH probe count distribution 

Distribution of probe in fastCN and QuicK-mer window 

 

From the previous two steps, each QuicK-mer and fastCN window was assigned two log-

ratio values, one from the mean of log-ratios from aCGH probes overlapping the window 

(Equation 3.3.1) and another from the in silico copy number estimates (Equation 3.3.2). 

We filtered windows that contained less than three probes and whose in silico vs aCGH 

log ratio values fell within a circle around the origin on the plot, defined to be x
2
 + y

2
 < 

R
2
 (Figure 16). We set the radius R equal to 0.4 for both fastCN and QuicK-mer, which 
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corresponds to 1.4x change in probe intensity or copy number. This filtration step is 

necessary because linear regression will be skewed toward a cluster of noise which has 

no meaningful correlation near the plot origin, since most probes in the aCGH are in 

regions that are not variable between the two samples being compared. The remainder of 

the data points is used for linear regression. 

 

Figure 16 aCGH validation by correlation 

Example of scatter plot displaying correlation between our in silico copy number estimations and the actual 

aGCH CN for a Yellowstone wolf (ysa) and an Indian wolf (inw). R
2
 equals 0.55 and 0.81, respectively for 

QuicK-mer (left) and fastCN (right). 
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We calculated pairwise correlation coefficient among all seven available wolf samples 

and the resulting R
2
 values for 21 comparisons are illustrated in a heatmap in Figure 17.  

The average R
2
 value is 0.71 for fastCN and 0.55 for QuicK-mer. Based on the 

correlation coefficients, we observed that fastCN typically scores higher than QuicK-mer. 

This could reflect the probe binding chemistry acting in a paralog-insensitive fashion 

(permitting a certain number of mismatches to hybridize) or that paralog uniqueness was 

not considered during the probe design. It is also evident that sample pairs with higher 

coefficient values from QuicK-mer usually have a higher value in fastCN as well, 

indicating that data from certain samples harbor less noise. In summary, greater than 50% 

of variance can be explained by this correlation and we employed both methods in the 

following VST analysis. 

 

Figure 17 aCGH correlation heatmap 
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Heatmap showing pairwise correlation coefficients (R
2
) between the log ratio of aCGH probe intensities 

and that of the in silico methods from QuicK-mer (left) and fastCN (right) 

 

3.3.4 Detection of CN sweeps through VST analysis 

To screen for CNV regions under selection between village dogs and wolves, we 

evaluated a metric called VST. This value is similar to the fixation index used to look for 

divergence in genotype between populations, except VST can be applied to copy number. 

A CNV under selection in one population will lead to an increased VST value. Point 

mutations within CNV regions might also show increased FST. 

3.3.3.4.1 Filtration of genomic regions based on CN estimates 

To determine genomic regions with differentiated copy number states between dogs and 

wolves, we first selected a subset of 3kb windows from the canine genome that showed 

evidence of copy number variation among the studied samples (Figure 18). We selected 

windows with a copy number range greater than 1.5 (copy number estimates on the non-

PAR region of the X chromosome in males were doubled). This filtration step is 

necessary to limit the subsequent analysis to variable regions, rather than to noisy 

estimates derived from a large number of invariable windows. Window selection for 

fastCN (92,037) and QuicK-mer (37,626) were determined independently.  
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Figure 18 Copy number range distribution 

Distribution of copy number estimates of autosomes plus chrX-PAR (left) and chrX-NonPAR (right) for 

QuicK-mer (top) and fastCN (bottom) pipelines, respectively, across all samples. 

 

3.3.3.4.2 Calculation of VST values 

A VST value for each of the selected 3 kb windows (CN range > 1.5) is then calculated 

with the following equation (Equation 3.4.2) according to (Redon et al. 2006), where VT 

https://paperpile.com/c/GeymG6/4k8E
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and VS denote variance of copy number in each window across the total or sub-

population. Calculations were performed separately for QuicK-mer and fastCN estimates. 

 

Equation 3.4.2   𝑉𝑆𝑇 =
𝑉𝑇−𝑉𝑆

𝑉𝑇
 

 

The VST value is similar to a FST value where a higher VST value indicates a greater 

divergence in copy number between wolves and village dogs. However, the value alone 

will not indicate which population has increased or decreased copy number. We therefore 

calculated the average copy number in each window for wolves and village dogs 

separately. The VST value distribution for each pipeline is illustrated in Figure 19. We 

observed a narrower distribution for QuicK-mer VST values, likely because duplicated 

regions are prone to additional copy number variation and QuicK-mer only interrogates 

unique regions in the genome assembly. 
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Figure 19 VST distribution 

VST distribution of subsetted windows with copy number range greater than 1.5 for both QuicK-mer (top) 

and fastCN (bottom), in autosomes + chrX-PAR (left), and chrX-NonPAR (right). 

 

3.3.3.4.3 Z-score normalization of VST distribution 

The VST distributions from the windows with CN > 1.5 across all samples were Z-

transformed to generate ZVST scores per window. This transformation was separately 
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completed for the autosomes + chrX-PAR, and the X-nonPAR. Similar to the FST 

filtrations, autosomal and chrX-PAR windows with greater than five standard deviations 

(or ZVST > 5) were selected as significant VST outliers, while significant chrX-NonPAR 

windows included all those that achieved ZVST > 3. The numbers of windows following 

each filtration step are detailed in Table 4. 

Table 4 VST scan summary 

The number of windows at each filtration stage including total windows analyzed in the VST pipeline, the 

number of windows that had >1.5 CN across samples, and the final windows with significant ZVST scores 

(greater than 5 for autosomes and chrX-PAR, and >3 for chrX-NonPAR).  

Source Whole Genome 

Windows  

> 1.5 CN Range Significant ZVST 

Score 

QuicK-mer Autosomes + 

chrX-PAR 
614,143 34,682 182 

QuicK-mer chrX-NonPAR 28,060 2,944 11 

fastCN Autosomes + chrX-

PAR 
366,945 86,276 513 

fastCN chrX-NonPAR 13,786 5,761 6 

3.3.3.4.4 Generation of candidate domestication regions from VST results 

Windows that met significance thresholds set above were selected from the fastCN and 

QuicK-mer analysis, and within a given pipeline’s dataset, adjacent significant windows 
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were merged into larger windows. From the original 519 windows with significant ZVST 

scores from the fastCN pipeline, 120 windows were generated from merging with other 

adjacent, significant windows. Similarly, of the 120 windows remained following 

merging of the 193 significant QuicK-mer windows. 

To designate candidate domestication regions (CDRs) from the VST data, we intersected 

the significant windows determined from fastCN and QuicK-mer with one another using 

bedtools (Quinlan and Hall 2010). For all intersections, the minimum start coordinate and 

the maximum end coordinate of the intersecting window(s) were selected to define a VST 

candidate domestication region (VCDR). Any window unique to fastCN or QuicK-mer 

was automatically classified as a VCDR. For all resulting VCDRs, the maximum Z-score 

was extracted from the fastCN and QuicK-mer dataset to evaluate the level of 

significance of the region from each set or determine if the region was even evaluated in 

the opposite analysis set. Due to the stringency of requiring unique k-mer sequence in the 

QuicK-mer pipeline, it is foreseeable that a window analyzed by fastCN would not be 

present in the final QuicK-mer dataset. 

Upon intersection, we identified 202 regions of copy number deviation between dogs and 

wolves through our VST pipeline. Of these final windows, 121 regions were found to be 

significant only by fastCN while 46 windows were identified only by QuicK-mer. 35 

https://paperpile.com/c/GeymG6/LKkp
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windows had significant ZVST scores from both fastCN and QuicK-mer. Again, QuicK-

mer is a much more conservative and restrictive copy number estimator based on its 

reliance for sufficient unique k-mers in a region. For this reason, we observe considerably 

fewer windows with QuicK-mer support. However, the 35 windows with support from 

both pipelines are noteworthy, having significant CNV between village dogs and wolves.  

Due to low genome coverage of some dog samples, confident detection of small CNVs 

using read depth is difficult (Sudmant et al. 2010). Therefore, the 202 outlier windows 

from above were further filtered to require at least two adjacent CN windows from either 

fastCN or QuicK-mer, or combined. Comparable to the nomenclature of such regions 

undergoing significant sequence deviation found through FST analysis, we distinguish 

these filtered regions as VCDRs, or VST Candidate Domestication Regions. Therefore, 

the filtration step resulted in 67 VCDRs that were either supported by both pipelines 

(N=35) or fastCN only (N=32), but no region was identified by QuicK-mer alone. In total, 

four VCDRs intersected with a FST CDR. This includes VCDR20 (chr6: 46945638-

46957719), which intersects with a CDR8, a window that corresponds to previously 

published sweep loci (Cagan and Blass 2016; Axelsson et al. 2013), and harbors the copy 

number variable AMY2B gene. Next, a cluster of intersections are observed on 

chromosome 9 that include VCDRs 27 and 28 overlapping with CDR10, and VCDR31 

https://paperpile.com/c/GeymG6/QCIP
https://paperpile.com/c/GeymG6/nAVo+UnVQ
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co-localizing with CDR11. Detailed analysis of this region is provided in Supplemental 

Note 8.2.  

 

3.3.3.4.5 Chromosome unknown analysis 

In addition to the autosomes and X chromosome, we also calculated the level of copy 

number differentiation of unplaced contigs in the CanFam3.1 reference assembly. FST 

was not calculated on these contigs because the redundancy of these sequences reduces 

quality mappability, thus affecting accurate SNP calling. However, copy number changes 

through VST analysis could still be assessed with the fastCN and QuicK-mer pipelines. 

CN estimation with mrsFAST (and therefore also fastCN) is limited to a certain number 

of input chromosomes, so to facilitate this analysis, we merged all 3,228 unplaced contigs 

(chrUn’s) into a single, continuous chromosome with 200 ‘N’ bases inserted between 

each contig. Contig-specific 3kb windows were generated for both fastCN and QuicK-

mer pipelines requiring that the last window of each contig does not extend into the next 

or contain ‘N’ bases. Next, the coordinates of each 3kb window were lifted over to the 

original unplaced contig with its corresponding location in order to assign CN to a single 

unplaced contig following processing with both fastCN and QuicK-mer. Finally, the 
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combined chromosome unknown was incorporated into the genome reference during the 

copy number estimation. 

 

 

Figure 20 VST distribution for chrUs 

The copy number range distribution for chromosome unknown based on fastCN (top left) and QuicK-mer 

(top right) distincts themselves from that of autosomes or chromosome X. The histogram for VST were 

shown after filtering windows that have less than 1.5 copy number range among all samples. 
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VST selection scans were completed on the merged unknown chromosome using 

methods previously implemented for autosomal VST scans (Figure 21). Windows with 

copy number ranges greater than 1.5 were selected from each pipeline, which included 

3,370 windows from fastCN and 2,346 windows from QuicK-mer. Following Z-

transformation of these subset windows, only windows with Z-scores greater than 5 were 

selected as candidate VST sweeps. Initially, we identified 21 fastCN and 10 QuicK-mer 

windows with Z-scores greater than five. After merging adjacent significant windows, the 

reduced to 8 fastCN and 9 QuicK-mer windows (Table 5), however no overlapping 

region was called by both fastCN and QuicK-mer. Upon further filtration, five fastCN 

and one QuicK-mer windows remained that consisted of at least two adjacent significant 

windows, yielding 6 additional candidate VCDRs. The largest of these is found on 

chrUn_AAEX03020568 which contains the pancreatic alpha amylase-2b (AMY2B) gene, 

a known copy number variable gene (Botigue et al. 2017; Axelsson et al. 2013; Arendt et 

al. 2016; Ollivier et al. 2016). Most unmerged windows achieving the VST threshold 

discovered by QuicK-mer contain micro-satellites interrupted by unique sequence 

queried by QuicK-mer. However, the role of this variation in domestication is unclear. 

Table 5 chrU VST scan summary 

Regions on chromosome unknown revealed by both fastCN and QuicK-mer. Segments greater than one 

window in size would meet the criteria to be VCDRs. 

https://paperpile.com/c/GeymG6/kVO6N+UnVQ+R82qd+fNo41
https://paperpile.com/c/GeymG6/kVO6N+UnVQ+R82qd+fNo41
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fastCN 

Chromosome Start End 

No. 3kb 

window Max VST 

Mean CN 

in dogs 

Mean CN 

in wolves 

Mean CN 

range 

chrUn_AAEX03020568 433 38543 7 0.63487 10.7707 1.86921 17.5122 

chrUn_AAEX03024353 36 8845 2 0.634171 11.5489 1.91201 18.3228 

chrUn_AAEX03024600 7409 7889 1 0.623222 4.85336 12.0129 14.6209 

chrUn_AAEX03025786 95 4932 1 0.639081 8.4489 1.96336 12.1835 

chrUn_JH373575 14842 33896 4 0.66059 5.52413 16.3035 21.2698 

chrUn_JH373917 683 22389 3 0.633881 5.3227 13.4491 15.8141 

chrUn_JH374030 36 15233 2 0.648995 5.38054 13.9423 16.6026 

chrUn_JH374046 4411 11006 1 0.618721 4.34593 10.8845 13.2208 

QuicK-mer 

chrUn_AAEX03021660 560 25346 1 0.626874 0.169814 1.4167 2.463 

chrUn_AAEX03022211 1381 20389 1 0.689001 0.127372 1.391 2.236 

chrUn_AAEX03022212 25 20386 1 0.618471 2.18914 9.3152 13.311 

chrUn_AAEX03024092 132 7895 1 0.656465 0.127163 1.6749 2.692 

chrUn_AAEX03026048 678 3035 1 0.648537 0.0331163 1.2794 1.933 

chrUn_JH373233 
199637

2045139 2 0.619935 1.79078 0.42245 2.446 
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9 

chrUn_JH373337 582 77223 1 0.634374 0.419674 1.3641 2.006 

chrUn_JH373343 15 87451 1 0.608101 0.358233 1.1457 1.725 

chrUn_JH373779 15 21473 1 0.585038 0.378628 1.3411 1.974 

 

3.3.5 Chromosome 9 Regions 

Co-localization analysis indicated a clustering of VCDR and CDR windows within the 

first 25Mb of chromosome 9. Upon closer inspection of the copy-number and FST data at 

this region, we observed anomalous patterns not found elsewhere in the genome for our 

datasets. Average CN values from fastCN and QuicK-mer both indicate significantly 

higher CN in wolves within 19 VCDR windows here. Notably, boundaries of the VCDRs 

are directly adjacent to regions undergoing significant allele frequency differentiation, as 

highlighted in per site ZFST peaks in Figure 21. Such a pattern of extended divergence is 

reminiscent of inverted haplotypes which have been characterized in several species 

(Kirkpatrick and Barton 2006; Yeaman 2013; Jones et al. 2012). To further characterize 

this locus, we identified candidate inversions in the dogs and wolves separately using 

inveRsion (Cáceres et al. 2012) which relies on SNP genotypes to locally phase alleles 

and determine haplotype blocks for inversion breakpoint estimations. Although no 

https://paperpile.com/c/GeymG6/Y8Zg+1n2E+YHMu
https://paperpile.com/c/GeymG6/F9VY
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inversions were detected in the wolves on chromosome 9, five potential inversions were 

identified in village dogs clustered within this region of interest. Interestingly, predicted 

breakpoints of two inversions are situated at the transition point between the elevated 

FST region (chr9: ~9.0-16.7 Mb) and major copy-number peaks. Correlations between 

copy number states of VCDRs (per fastCN and QuicK-mer) and SNP genotypes of the 53 

samples on chromosome 9 indicates two loci 8 Mb apart in the reference genome share 

elevated R2 value, patterns consistent with genome rearrangements at this region (Figure 

22B). More specifically, the copy number states of VCDR 31 and VCDR 48 (Figure 23) 

share similar correlation even though the locations are separated by 8 Mb.  
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Figure 21 Chromosome 9 region 

Region of complex structural variation on chromosome 9.  

(A) Relative to Ensembl gene models and reference assembly gaps (top two tracks), the co-localization of 

VCDRs (dark blue) with regions of copy number expansion can be observed. Tracks 3 and 4 display the 

average copy number states of wolf (orange) and village dog (blue) populations as determined by fastCN 

and QuicK-mer, with regions of consistent CN between the populations as green. Putative inversions 

(purple bars), FST CDRs (red bars), and per site ZF ST values from the total SNP set (red = ZFST > 5), are 

also provided in tracks 5-7. (B) SNP genotypes are correlated with CNV states for each VCDR. The 

horizontal axis indicates the genome position of each VCDR and SNP site, while the vertical axis indicates 

R2 value between each SNP and the QuicK-mer based copy number state of VCDR31. The resulting 

scatterplot demonstrates the R 2 value between the individual SNP genotype and the copy number of the 

3Kb window indicated in red (chr9:10,367,629-10,370,795). VCDRs positions are shown along the top of 

the scatterplot. 
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A          B 

 
Figure 22 CNV pairwise correlation 

(A) Mutual correlation of copy number state between 3KB QuicK-mer windows reveal duplicating/deleting 

segments. Intensity indicates R
2
 values. VCDR 26 and 27 (axis index 11~23) shows good correlation in 

copy number state with VCDR 32~46 (axis index 37 - 115). Each segment is indicated as square block 

along the diagonal line. (B) Mutual correlation of copy number state in 3KB window from fastCN pipeline 

reveals individual blocks of segmental duplications and their relative correlation states. 

 

3.4 Summary 

QuicK-mer and fastCN were successfully applied to copy number related domestication 

scan of village dogs and modern wolves. Changes in copy number could be validated 

with aCGH showing valid change signal. However, the numerous VCDRs discovered 

through this approach did not achieve statistical significance of in gene enrichment 

analysis. This suggests CNV might not played a significant role in early canine 
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domestication. This conclusion should be limited to the scope of current reference 

assembly and sample sets. Another interesting discovery was the clustering of CNV in a 

8Mbp locus on chromosome 9. Correlation of CNV and genotypes far apart plus previous 

studies pointed to an error during genome assembly. 
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Chapter 4: A new canine genome 

assembly using long read sequencing 
 

4.1 Limitations of the current canine assembly 

After the successful completion of the human genome project, biologists tried to push for 

assemblies of additional species in order to gain an understanding of the evolution, 

biological diversity and phenotypical differences between many of other species. As our 

closest friend, dogs share much of their evolutionary history alongside human and 

creating a dog genome assembly became a priority. In 2004, the Broad Institute released 

the first reference assembly derived from a female boxer (Lindblad-Toh et al. 2005). This 

assembly used Sanger sequencing and was performed using the whole genome shotgun 

methodology. It utilized end-sequences from bacterial artificial chromosomes, fosmids, 

and plasmids constructed from genomic DNA. Individual clones were isolated, purified 

and end sequenced using known primer in the BAC or Fosmid backbone with Sanger 

approach. The CanFam 1.0 de novo assembly solely relied on 7.5x of read coverage. The 
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same study improved the reference into 2.0 by addressing some of the errors using FISH 

technique (Lindblad-Toh et al. 2005; Breen et al. 2001) and sequencing of some 

individually isolated BAC clones. Like many previous initial assembly projects, it lacks a 

male specific Y chromosome due to use of a female sample. In 2006 a partial assembly of 

the dog Y chromosome was released (Mustafa and Yuen 1991). This was further 

improved in 2013 with pooled BAC sequencing on a 454 platform (G. Li et al. 2013), 

although the dog Y sequence remains incomplete. The latest effort of canine reference 

improvement was facilitated with primer walking and resequencing a few hundreds of 

selected BACs (Hoeppner et al. 2014). The same study also annotated the CanFam 3.1 

with additional RNA sequencing data, providing a more thorough view of the 

transcriptome landscape. 

4.1.1 Unplaced contigs and assembly gaps 

Even after several rounds of patch and correction, the latest version dog reference 

genome assembly, CanFam 3.1, is still not without flaws. For example, 15,800 autosomal 

and chromosome X gaps dot the genomic landscape. Based on the size estimates, which 

might be completely inaccurate, the combined missing gap sequence amounts to 18.2 

million base pairs in total. In addition to gaps, there is a long catalog of 3227 contigs and 

scaffolds with their location on the chromosome unknown. These unplaced contigs have 
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a combined length of 83.3 MB including the hypothetical gap length. Compared to the 

latest human assembly GRCh38 (Guo et al. 2017) of 2,512 unplaced contigs totaling only 

10 MB, there remains huge potential for further improvement in continuity and missing 

sequences. 

4.1.2 Indication of mis-assemblies 

Besides the apparent base content of the CanFam3.1 reference, evidence from numerous 

recent studies suggests potential mis-assemblies. A notable example is the chromosome 9 

regions described in the previous chapter. A strong correlation of copy number variation 

and SNP genotype for regions placed 8M B apart is unlikely due to true linkage 

disequilibrium, suggesting a large inversion in the assembly. Further evidence is provided 

by the Rossi, et al study of the Sox9 gene, where FISH probing of the chr9 regions 

related to non-SRY sex reversal in dogs also support a missassemby (Rossi et al. 2015).  

These missing sequence and mis-assemblies also manifest as incomplete gene models. 

For example, Holden et al points out some dog genes contain gaps or are missing known 

alternative splicing variants (Holden et al. 2018). In other cases, critical mammalian gene 

models are entirely missing from the assembly. 
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The tool sets such as QuicK-mer and fastCN described in Chapter Two as well as many 

general mapping tools like BWA, Bowtie, Star and Rsam all rely on a reference. If a 

sequence is missing or mis-assembled, errors will result in CNV, SNP calling and 

expression analysis. An improved genome would well address these issues. 

4.1.3 Expectation of improvement 

Second generation sequencing has limited read length and is unlikely to improve repeat 

regions and genome continuity compared to classic BAC assembly methodologies. 

However, the sequencing technologies have been improving over time. Modifications of 

sequencing library construction can overcome the insert length limitation of 1kb in 

Illumina bridge amplification. For example, mate-pair libraries swap the insert 

sequencing direction with the help of a common backbone sequence (Vasmatzis et al. 

2012). This method extends the insert size to 10kb and greatly increases the physical 

coverage, which show promising in structural breakpoint discoveries and scaffolding in  

de novo assembly (Love et al. 2016; Williams LJ n.d.). Other technologies such as 10x 

Genomics attempt to fragment a single very long DNA insert while attaching the same 

barcode from a random pool, followed by sequencing on a regular short read platform. 

Combined with sophisticated bioinformatic analysis to assign reads from each region, this 

library construction emulates some of the benifits old BAC selection and purification in a 
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massive parallel manner, permitting the anchoring of sequences in a genomic context 

(Mostovoy et al. 2016).  

Finally, the PacBio sequencing approaching combines both PCR-free library and very 

long read length. With the fragment sizes of 15kb and greater, it’s easy to expect correct 

sequencing through LINE and ERV repeats, which are the longest common repetitive 

sequences in a mammalian genome. Resolving large segmental duplications however 

remains a challenge. Using a combination of such techniques, we would expect the 

majorities of small gaps to be completely closed and greatly improve continuity. It would 

also reduce the number of unplaced contigs by bridging the repeats between them and 

their anchoring chromosomes. 

4.2 Single Molecular Real Time Sequencing from PacBio 

Most sequencing technology uses fluorescence signal for readout. But each fluorescent 

label can only emit ~10k photons before being photobleached (Luchowski et al. 2008) 

and meanwhile the DNA extension under polymerase is rapid. This makes it impossible 

to observe in real time. To combat these problems, second generation sequencing 

methods rely on local isolation and amplification of individual DNA insert fragment by a 

variation of PCR, thus increases the optical signal for base pair calling. These existing 
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short-read methods either step the reaction one at a time, or integrate the signal by 

cycling through each of the four nucleotides one at a time. Due to incomplete reaction, 

the lagging strands inside a cluster generates mixed signal. This effect limits the 

sequencing length and usually observed as systematic errors at particular trinucleotides or 

homopolymers (Nakamura et al. 2011). In order to increase read length, the third 

generation employed a completely different approach with technological innovations. 

4.2.1 Real time single molecule sequencing 

Recently, improvements in laser and sensor technologies have been brought by research 

in nanotechnology and photonics. Electron-multiplying charge coupled devices (EMCCD) 

and scientific CMOS sensors allow single photon detection at a very high frame rate 

(Saurabh, Maji, and Bruchez 2012). This enabled the observation of a single polymerase-

DNA pair in action with just one nucleotide label. In the meantime, nano-fabricated holes 

called Zero Mode Waveguide (ZMW) limited the background fluorescence noise from 

the unincorporated free nucleotides in solution. The fluorescence light is then dissected 

into a micro spectrum with an optical prism in the microscope (Lundquist et al. 2008). 

The distribution of each spectrum indicates the dye color of the current base in the 

polymerase reaction pocket and hence the base pair. By taking a movie of thousands of 

such holes in parallel and analyze their color spectrum in real time, one could deduce the 

https://paperpile.com/c/VVrmgn/z54S
https://paperpile.com/c/VVrmgn/AaCt
https://paperpile.com/c/VVrmgn/rDXR


 104 

DNA sequence uninterrupted (Eid et al. 2009). In this manner, PacBio could enable PCR-

free sequencing of original DNA from cellular extract with very long insert. 

However, such real-time single photon detection and base calling is not without cost. 

First, the error rate is much higher due to the rapid action of polymerase and the still low 

signal-to-noise ratio. The error mode is also different than technologies such as Illumina. 

Instead of substitutions, PacBio errors are predominantly insertions and deletions, making 

sequence alignment much harder (Eid et al. 2009). The insertion is mostly due to 

transiting nucleotides that are not actually incorporated while deletion is mostly due to 

very fast extension event. Secondly, the per base pair cost is much higher due to the 

limitation of throughput by the number of pixels available on the camera. Several 

methods have been proposed to circumvent the problem and will be discussed in the 

section 2.2. 

Another recent progress on single molecular sequencing is the Oxford Nanopore 

technology (Jain et al. 2016). In this method, the underlying sequence is resolved directly 

like reading a magnetic tape. A nanoscale hole made from specifically engineered 

transmembrane protein limits the passage of a single denatured strand one nucleotide at a 

time. A voltage gradient is then applied across the membrane and the current is 

determined by the electro-chemical property of a few base pairs inside the nanopore. By 

https://paperpile.com/c/VVrmgn/DYJe
https://paperpile.com/c/VVrmgn/DYJe
https://paperpile.com/c/VVrmgn/nEq2
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measuring the current passing through the hole and deconvolute the signal, the software 

could call the base pair directly. Nanopore sequencing can achieve very long read only 

limited by DNA length during extraction. Recent improvement decreased the error rate to 

that similar in PacBio (Weirather et al. 2017) and could be a promising approach to 

achieve genome scaffolds with even better continuity. 

4.2.2  de novo assembly process using long reads 

Because the third-generation sequencing is costly and error prone, researcher has 

proposed various methods to increase the efficiency. Most such techniques, known as 

hybrid assembly, combining high depth short-read data with longer reads at a much lower 

depth. 

4.2.2.1 Hybrid assembly 

Owing to the long insert sizes, PacBio sequencing can detect structural variations using 

only a limited sequencing depth (Merker et al. 2016). By using it as a structural backbone, 

one can correct the error in short read assemblies using these reads and improve the 

reference with second generation short sequencing reads. The first hybrid assembly 

algorithms supporting PacBio long reads are ALLORA and ALLPATH-LG which 

performs correction after PacBio de novo assembly using short reads (Gnerre et al. 2011; 

Schaeffer 2012). Later, pre-assembly correction of raw PacBio reads was also realized 

https://paperpile.com/c/VVrmgn/hhB8
https://paperpile.com/c/VVrmgn/2n80
https://paperpile.com/c/VVrmgn/17xi+cRiz
https://paperpile.com/c/VVrmgn/17xi+cRiz
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(Koren et al. 2012). These studies suggest inclusion of short read data could improve the 

assembly by increasing N50 length and base pair accuracy. But both PacBio-only and 

hybrid assembly would greatly exceed the continuity of a pure short-read  de novo 

process. 

However, many of these algorithms are benchmarked against bacteria genomes, which 

are far less complex compared to a vertebrate genome on a multitude of levels. First, 

eukaryotic genomes contain far more repeat elements. Second, most of eukaryotic genes 

are multi-exons interrupted by lengthy introns which may harbor these repeats. Third, 

mammalian genomes are diploid and regions of heterozygous deletion and duplication 

will form bubbles and forks in a de novo assembly graph. In such correction scheme, one 

might mis-align a short read to the wrong paralog and hence incorrectly introduce a true 

variant private to that specific copy. Afterall, the de novo assembly requires much more 

investments comparing to a typical resequencing project. Careful planning and weighing 

the benefits of each sequencing technique is essential to yield the maximum quality given 

limited resources. 

https://paperpile.com/c/VVrmgn/Xn03
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4.3 Library construction and sequencing 

In our interest of seeking for copy number changes and gene duplications, we appreciate 

a more contiguous genome reference. As such, we desire the sequencing reads as long as 

possible to improve the scaffold for our dog genome project.  

4.3.1 Sample origin and breed information 

The DNA was extracted from the blood of a female Great Dane breed dog named Zoey. 

We choose this sample for several reasons. A breed dog is more homozygous compared 

to a village dog which has not gone through the recent selective breeding process. This 

property makes it simpler for de novo assembly process by reducing chances bubble 

formations due to heterozygosity. Next, Great Dane is in a separate breed group than the 

boxer but also sufficiently close on breed phylogeny tree to utilize existing resources 

(Parker et al. 2017). Having a different breed dog reference would provide insight into 

regions possibly lost due to breed selection. This additional genome resource would help 

the canine research community. Finally, we had previously invested a portfolio of 

sequencing project on Zoey, which could later well serve to improve the genome with 

error correction and hybrid assembly. These resources include a 14x coverage whole 

genome shotgun sequencing using Illumina HiSeq, a mate-pair library consisting of 4kb 

insert size, and finally 96 whole genome fosmid pools all from the same blood sample. 

https://paperpile.com/c/VVrmgn/LUiS
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The mate-pair is a library preparation technique to circumvent insert size limitation on 

short-read sequencing. The DNA is circularized into a common backbone, restriction 

digested and circularized to reduce insert fragment. Besides these DNA resources, we 

also kept a low quantity stock of RNA from Zoey for potential gene models or expression 

validation. 

4.3.2 Depth, insert length and coverage 

Three PacBio libraries were constructed to satisfy the DNA quantity required for 90 

SMRT sequencing runs. The actual sequencing was done at the University of Michigan 

Sequencing Core on a PacBio RS II platform using 6th generation polymerase and 4th 

generation chemistry. For initial assessment, we mapped the PacBio raw reads using 

BLASR (Chaisson and Tesler 2012) to the original CanFam3.1 reference assembly. We 

then filter the mapping with requiring it to be primary mapping MAPQ of 20. Due to the 

presence of circular consensus reads, we looked at each mapping from the same ZMW 

and picked the longest read and assigning it as the DNA insert. In all, we achieved closed 

to 50x sequencing depth for all the reads assuming a 2.4 billion haploid genome, and a 

28x when only consider unique DNA insert. The L50 is around 10kb and median is at 

7.5kb (Figure 23). 

 

https://paperpile.com/c/VVrmgn/ek5y
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Figure 23 PacBio insert size distribution 

PacBio sequencing insert and coverage statistics. The blue curve shows the distribution of unique 

insert under filtration criteria described above. The red curve is cumulative depth by adding the 

longest reads in the pool first. 

 

In addition, we also observed around 80% of existing gaps in the CanFam3.1 has been 

spanned by at least one of above filtered reads. 
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4.3.3 de novo assembly with FALCON-unzip 

Due to limitation of computing resource, we outsourced the initial assembly project to the 

DNANexus. First, 50-fold whole-genome, single-molecule, real-time sequencing (SMRT) 

data was passed through the TANmask and REPmask modules from the Damasker suite. 

This data was then used as input to the traditional FALCON pipeline (Chin et al. 2016), 

using a length cut-off of 1,775 bp during the initial error-correcting stage. This resulted in 

15 million error corrected reads with an N50 read length equal to 8.7 kbp covering 38x of 

the dog genome. 

Second, the error-corrected reads again passed through the TANmask and REPmask 

modules, followed by the overlap portion of the FALCON pipeline. For the overlap 

portion, a length cut-off of 5,087 bp was used. The aligned reads were assembled in the 

third stage of FALCON into 2,688 primary contigs containing 2.3Gbp with an N50 

contig length of 4.4 Mbp.Finally, the assembly was polished through PacBio’s Quiver 

algorithm from SMRT Link 3.1, using the original raw-reads. This assembly approach 

yielded 2688 primary contigs with N50 at 4.4Mb and N90 at 1Mb. The largest single 

contig is 28.8Mb long. 

https://paperpile.com/c/VVrmgn/5OHR
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4.4 The Zoey reference assembly 

4.4.1 Quality control 

Two steps of initial quality assessment were done on contigs. On the small scale it’s the 

base level quality and on the large scale to eliminate the chimeric contigs. 

4.4.1.2 Base quality assessment 

To assess the base level accuracy of the Zoey assembly, we used full length sequences 

from 59 fosmids using PacBio deep sequencing data as a gold standard. The fosmid 

library from which each fosmid was isolated was generated using whole blood DNA 

from Zoey. Most of these fosmids achieved 1000x sequencing depth. To verify that these 

59 fosmids were truly gold standard, we mapped Illumina paired-end read data of seven 

fosmids onto their respective assembled full length fasta using BWA-mem 0.7.15. (H. Li 

2013) Resulting BAM files were then sorted, marked for duplicates using Picard tools 2.3, 

and processed through GATK 3.5 HaplotypeCaller SNP caller. (McKenna et al. 2010) 

All three steps were run with default parameters. In total, 50 variants were called from 

the combined length of 265,191 bp, yielding a combined accuracy of QV37 across all 

seven fosmids. However, we observed both reference and alternative alleles achieving 

significant depth. It is unclear if these variants are related to PCR or systematic bias 

https://paperpile.com/c/VVrmgn/Mf69
https://paperpile.com/c/VVrmgn/Mf69
https://paperpile.com/c/VVrmgn/zcFO
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associated with the Illumina platform, because these fosmid clones were individually 

isolated and purified, therefore only one haploid allele should be represented. 

 

Figure 24 Base level error verification 

Gold standard showing second round of polishing actually induce more deletion errors. Red 

arrow points to the second round of polishing induces deletion into contigs. Such polishing is 

abandoned. 

 

Next, we mapped the original PacBio reads used in the genome assembly onto Zoey 2.2 

reference and ran SMRTanalysis 2.3.0 pipeline VariantCaller with quiver polishing 

algorithm to generate a polished reference Zoey 2.3. The above 59 fosmids were then 

mapped to both 2.1 and 2.3 references using BWA-mem. The mapped fosmids were then 

filtered based on the following criteria: 1. the mapping should not have hard or soft 

clipping on neither end. And 2. the fosmid must be a primary mapping. This resulted in 

37 valid mapping on both references. We then extracted the reference backbone sequence 
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and performed a three-way multiple sequence alignment using Clustal-Omega 1.2.4 and 

EMBOSS Stretcher 6.6.0 with default parameters to verify the base level accuracy. We 

found that Zoey 2.1 achieved higher similarity scores and lower gap open rates overall. 

Thus, we concluded that Zoey 2.3 was over-corrected by Quiver, and we opted to 

continue with misassembly assessments with Zoey 2.2 as the draft assembly. 

4.4.1.2 Chimeric contigs and mis-assembly 

Due to existence of large-scale duplications on different chromosomes, chimeric contigs 

can form even with long PacBio reads (Figure 25). In another word, pieces of DNA from 

different chromosomes are joined together as an assembly artifact. To resolve this, we 

make the primary contigs into a reference genome and mapped three different sequencing 

libraries onto it: 1. Mate pair library with insert size of 4kb from Zoey; 2. Tasha BAC end 

sequences; 3. Zoey short Illumina library pools. To look for chimeric candidate sites, we 

require that a region lack continuous mate pair insert coverage and showed translocation 

of BAC end sequence to a different primary contig. Further, this candidate should also 

show deletion or duplication in Illumina read coverage. MUMMER plots are generated 

for each primary contigs with canFam3.1 reference. Strong chimeric candidate should 

bear hallmarks of diagonal alignment to multiple chromosomes as distinctive segments 

(Figure 26). 
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Figure 25 Formation of chimeric contig 

Formation of chimeric contigs is usually induced by large scale interchromosomal duplications. The red 

segments indicate a duplication in this example. 
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Figure 26 Chimeric contig 

Example of a chimeric contigs with two ends mapping to two chromosomes. Top two graphs show 

MUMMER plot between the same contigs and chromosome 2 and 23. Bottom panel shows the same contig 

and supporting evidence including mapping of Fosmid pools, discordant and concordant BAC end 

sequences and CNV calling based fastCN. 

 

In total, 19 of these primary contigs are split into two contigs for scaffolding. The split 

sites are selected based on inner most boundary on continuous mate pair read coverage 

and BAC end sequence alignment. 

4.4.2 Local assembly and gap filling 

To increase continuity, we supplement the contig set with local de novo assembly. Raw 

PacBio reads and primary contigs are aligned to CanFam3.1. Gaps between contigs are 

defined with actual location extended in both directions by 10kb. Raw PacBio reads 

intersect with these predefined regions are then pulled into individual FASTQ file for 

each gap region. For each of these FASTQ files, we employed Canu 1.3 (Koren et al. 

2016) to assemble the extracted PacBio reads. The best assembly contig is chosen to 

https://paperpile.com/c/VVrmgn/rqto
https://paperpile.com/c/VVrmgn/rqto


 116 

align against the flanking primary contigs using BLAT. When sufficient score (Need 

further elaboration, >90% identity, no edge effect) is achieved for both contig ends, 

contigs are kept for next stage of scaffolding. 

4.4.3 Draft assembly and scaffolds 

The collection local assembled contigs and primary contigs are used as input for 

scaffolding process. The long-range linking information was selected with Zoey mate 

pair sequencing reads and original Tasha BAC end sequences. We employed BEEST 

scaffolding algorithm (Sahlin et al. 2014) to generate chromosomal layout. 

4.4.4 Error correction with Illumina data 

To further improve base pair accuracy, we aligned the 14x Illumina pair end short reads 

to the scaffold assembly of Zoey using BWA-MEM (H. Li 2013). These reads were 

sorted and masked for duplicates using standard Picard procedure. Variants were then 

called using GATK HaplotypeCaller with the same parameter in section 4.1.2. For base 

correction, we only select sites with homozygous sites with > 90% alternative allele 

frequency and mapping quality MAPQ of at least 20. Polished assembly was then output 

as final Zoey assembly along with unplaced contigs and scaffold during the assembly 

process. 

https://paperpile.com/c/VVrmgn/zDuI
https://paperpile.com/c/VVrmgn/Mf69
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4.5 Genome improvement by Zoey de novo assembly 

We next analyzed the improvement of the final Zoey assembly relative to the existing 

CanFam3.1 reference genome. 

4.5.1 Continuity improvement and gap reduction 

The scaffolding of the Zoey final assembly was compared to CanFam3.1 assembly using 

LiftOver, which generated a list of rough coordinates for further refinement. We 

extracted 5kb of the end sequence for each contig defined in the LiftOver output and 

aligned them against the corresponding chromosome of CanFam3.1 reference using 

BLAT. The exact coordinate was then calculated with a custom script based on the best 

alignment and filtration criteria. A total of 15,800 CanFam3.1 autosome and chrX gaps 

were successfully aligned with 1bp resolution on the Zoey assembly. Based on these 

precise alignments, we hereby define two regions of interest. 1. “Assembled gaps” are 

defined as gaps in CanFam3.1 reference filled with actual sequence without “N” base in 

the Zoey assembly. 2. “Novel regions” are segments of sequence presence in the Zoey 

assembly but absent in the CanFam3.1. In summary, we found 2,489 novel regions and 

14187 assembled gaps in the Zoey assembly relative to CanFam3.1. 
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Figure 27 Zoey scaffolds 

Scaffold layout of Zoey onto CanFam3.1 reference. Large scale chromosomal scaffolds are only interrupted 

by presence of large segmental duplications. 

The mean continuity improved with assembled gaps to 2.3Mbp from a mean of 124kbp in 

CanFam3.1. 
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4.5.2 Improvement of coverage in high-GC regions 

4.5.2.1 QuicK-mer Copy Number Interrogation  

Next, we investigated the degree of polymorphism of these gap and novel regions among 

dogs. Since repetitive sequences often flank gaps, we interrogated copy number using 

QuicK-mer (Pendleton et al. 2018) which utilizes unique sequences within these regions. 

To do this, we first constructed a list of unique 30-mers using methods described in our 

previous study (Pendleton et al. 2018). To speed up the process, we next lifted over the 

previously determined CanFam3.1 control regions to our Zoey assembly and reduced the 

control 30-mers by 100 fold. These thinned control 30-mers were then merged and sorted 

with 30-mers that intersected with assembled gap regions and novel regions. We then ran 

QuicK-mer on 58 samples generated copy number estimates for each region. 

4.5.2.2 High GC Content is Primary Cause for CanFam3.1 Gaps 

We generated heat maps for the copy number of these regions (Figure 28) across all 58 

samples for the autosomal chromosomes and the X chromosome separately. One very 

apparent pattern emerged, where a major proportion of these novel and gap regions 

displayed copy numbers of zero across the samples. Further investigation of BWA read 

alignment patterns at these regions showed no sign of large discordant read pairs near 

defined gap junctions, which would be indicative of deletions or other structural variation. 

https://paperpile.com/c/VVrmgn/bS6w
https://paperpile.com/c/VVrmgn/bS6w
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Instead, the likely cause of this discrepancy points to errors in the Illumina sequencing 

process when either DNA inserts could not form clusters during bridge amplification or 

failure during library PCR. 

 

Figure 28 Artifact of false positive deletion 

Left: QuicK-mer survey of all assembled gaps and novel regions. Right: Lack of discordant reads 

inconsistent with deletion signal. 

 

We suspect local repeat or GC content might hold the answer, which could explain either 

of the two previous possible errors. To address this, we performed a permutation test by 

randomly shuffling the novel and gap regions on the autosome and X chromosome 1000 

times. Empirical p-values were calculated as the chance of observing GC percentage 
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greater in our regions of interest compared to that of the permutations. The distribution of 

p-values of these regions is shown in the Figure 29.  

We concluded that 55.2% of these regions are highly enriched in GC and thus failed the 

sequencing. This highlighted a serious limitation of previous sequencing technology 

which necessitates longer reads and a PCR free approach to improve the reference. We 

then regenerated the heat plot using only 6174 regions with empirical p-value having 

greater than 0.05 empirical p-value. 

 

Figure 29 Empirical p-value distribution 
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Distribution of empirical p-value based on number of shuffled region with GC percentage greater 

than observed 

 

4.5.2.3 Array CGH validation 

To make sure the copy number in these regions is correct, we employed an aCGH data 

for a previous dog project. The probes were designed using CanFam3.1 thus we 

remapped the probe sequence against our Zoey assembly. Gaps containing at least three 

fully bonded aCGH probes and have empirical p-value greater than 0.1 are selected for 

analysis. We compared the log-ratio of probe intensity against the in silico CNV ratio 

based on all the unique 30-mers inside the window using method described in Chapter 3. 

 

 

Figure 30 aCGH validation in novel sequences 
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Example of an aCGH validation of the copy number of gapped regions. 

 

Results in figure 30 demonstrated most of these regions showed fixed copy number with 

log ratio within +/-1, consistent with the heat plot. 
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Figure 31 Copy number heatmap of novel sequences 

Regenerated heatmap showing copy number of novel and assembled gap regions with p-value 

greater than 0.1 on autosomes. 
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4.6 Conclusion 

 

Figure 32 Zoey Scaffolds 

Scaffolds of Zoey assembly. Continuity is greatly improved by using mate-pair and BAC libraries. 

Most discontinuity only happened at large-scale segmental duplications such as chromosome 9 

regions. 
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In conclusion, we improved the CanFam3.1 reference with de novo assembly of another 

breed dog. The new assembly had superior continuity and vastly reduced number of gaps. 
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Chapter 5: Conclusions and Future 

Directions 
 

5.1. CNV detection algorithms 

The performance of QuicK-mer 2.0 greatly exceeds that of the first version. To assess the 

potential for additional improvements I looked into the time cost for the feeder thread on 

I/O. The latest build shows 80-90% CPU usage for the feeder thread. I suspect a majority 

of CPU time is still spent on encoding k-mers or looping through the FASTQ input. Two 

strategies could further improve the performance: 1) feed the working thread with raw 

reads and unload the k-mer encoding to multiple threads and 2) read the file as binary 

blocks into memory and scan through the reads directly without prior parsing. Either 

approach should accelerate the process further on a compute node that has a solid-state 

drive. However, since we had observed network drive delay in practice and 

uncompressing the gzip format had a significant impact these improvements are likely to 

have a marginal return. Thus, they were currently not implemented yet. 
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We have observed that the fastCN algorithm, which is based on read mapping, has better 

correlation with results from aCGH validation. This observation can be explained by 

similarity with the chemical process of probe hybridization. Occasionally a single 

mismatch will not necessarily yield no-signal whereas QuicK-mer is much more stringent 

where a single mismatch leads to dropout. Such mismatches could be the result of recent 

polymorphism in the population. 

 

5.2. de novo assembly for dogs 

Our de novo assembly has achieved vast improvement relative to CanFam3.1. The vast 

number of assembled gaps is consistent with our observation of gap spanning PacBio 

reads during initial mapping. The origin and content of these gapped regions is of great 

interest. We had already observed that they majority of such opening gaps have enriched 

GC content. In the process of reaching such a conclusion, we had also performed analysis 

of repeated elements. In previous genome improvement projects, tandem repeats were a 

primary cause for gap sequences (Chaisson et al. 2015; Pendleton et al. 2015; Seo et al. 

2016) or enriched in missing sequences such as centromere and telomeres (Alkan et al. 

2011). Using similar permutations as described in Chapter 4 Section 5.2.3, we generated 

the empirical p-value for tandem repeats as well. (Figure 33L) We found that tandem 
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repeats are also enriched but to a much lesser extent compared to GC content. The joint 

distribution shows sequences are enriched with 20% of tandem repeats, yet a majority 

failed during the classical assembly process was most likely due to GC. 

 

 

Figure 33 Empirical p-values of TRFs 

Left: Empirical p-value based on 1000 times permutation of closed gaps and novel regions with 

intersection of tandem repeats greater than actual observed. Right: Joint p-value plot between GC 

content and tandem repeats 

 

We had initially suspected the failure is probably due to bad library or sequencing in 

many of those Illumina samples. Yet the presence of these gaps in the first place 
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indicated the Sanger end sequencing of clones also failed for such regions in the original 

CanFam1/2 assembly (Lindblad-Toh et al. 2005). When we considered that the Sanger 

sequencing is a variation of primer-based PCR, it might inherit some of its drawback at 

these regions not only repetitive but also highly GC rich. The denature-annealing cycle 

could generate secondary structure in the single strand template and further produce 

sequence slippage during the extension process. Such PCR related phenomenon has been 

experimentally shown in previous studies (Hommelsheim et al. 2014) Further evidence 

supporting a failed sequencing-through than an actual discontinuity in clone is supported 

by resolved gap size in our de novo Zoey assembly (Figure 34). For the majority of 

smaller gaps, the actual resolved size in Zoey correlates well against the hypothetic gap 

size in CanFam3.1. This concludes that the size estimation from original BAC during the 

CamFam1/2 project is generally correct. GC rich and repeat elements can be resolved in 

PacBio due to use of single molecule readout, which completely eliminated PCR, and 

good processivity of improved phi29 polymerase (Korlach et al. 2008). 
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Figure 34 Correlation between estimated and true gap size 

Assembled gap size of Zoey compared to original proposed gap size in CanFam3.1 

 

The GC content of such regions is also intriguing given CpG islands usually had a 

functional role in gene expression and regulation. Due to lack of an equivalent to the 

ENCODE project on dogs, we have to rely on comparative genome analysis and gene 

annotation. We further explored this idea by annotating our genome with RNA 

sequencing data and intersect these regions against the annotated gene models. It turns 

out more than 2000 of such regions intersect with the first exon (Figure 35). This 
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indicates that our reference assembly greatly improves the dog annotation where many 

promoter regions were previously missing in CanFam3.1. 

 

 

Figure 35 Intersect between exons and novel sequences 

Large proportion of gap regions intersect with the first exons of many genes. 

 

Some of these assembled gap and Zoey novel regions shows variable copy number based 

on QuicK-mer data. Since aCGH data is sparse and still noisy within +/-1 log-ratio, it 

would be near impossible to validate with high accuracy. Identification and sequencing in 
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individual canine samples might be required for those were potentially variable. Whether 

the copy number observed in Chapter 4 Section 5.2 plays a role in expression regulation 

will be an interesting question to further explore. 

The improvement to small gaps is apparent. We then shift our focus to large scale 

structural variation and especially the mis-assembled chromosome 9 region identified in 

the selection scan. Based on the MUMMER plot, we found one of the small inversions 

was correctly resolved in our Zoey assembly. However, due to the existence of segmental 

duplication approximately one megabase in size, even long PacBio reads could not 

resolve these regions. In fact, Figure 32 clearly shows discontinuity of scaffold 

concentrates on segmental duplications. To further resolve these regions, we attempt to 

sequence the original BACs used in CanFam3.1. A tiling path near chromosome 9 for 

these BACs are chosen and selected (Figure 37). Due to presence of mobile elements, 

individual BACs were still fragmented using short-reads based assembly even though 

each BAC is barcoded. To further improve, we decide to resolve these BAC using PacBio 

sequencing. 
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Figure 36 Example of an assembled promoter 

Example of assembled CanFam3.1 gap showing extreme GC content and missing promoter region of gene 

CAMK2N1. 



 139 

 

Figure 37 Alignment of selected BACs 

Mapping of selected BACs on CanFam3.1 reference around the 8Mbp on chromosome 9. CNVs from 

fastCN of Zoey is shown. 

 

Since PacBio employed a proprietary barcode inside the dumbbell adapter, individual 

library cost is high. To reduce the cost, we choose to mix four BACs into each barcode. A 

total of 16 BACs will be allocated into four libraries. An optimal solution for such mixing 
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should minimize the pairwise alignment for the BACs within a library. The ideal solution 

should also restrict length of matching to below PacBio insert size. Such a knapsack or 

combinatorial optimization problem is NP-hard. However, since the search space is 

sufficiently small, optimal solution is found with a script less than 6 hours. More analysis 

would be done in the future to improve continuity in this region. 

5.3. Future Directions 

Our current de novo reference assembly has greatly increased the continuity and 

improved the gene annotation relative to the existing assembly. This implies that the 

existing CanFam3.1 may poses a bias towards regions which are easy to correctly 

assemble. Using the chromosome 9 regions as an example, we clearly observed an 

inversion signature induced by misrepresentation of the underlying genome structure. It is 

also unlikely that VST analysis will correctly reflect regions missing in assembly gaps or 

uncovered sequences. Another bias in these analyses was introduced by using dog as the 

genome reference. It is probable that some regions were deleted during the domestication 

process relative to the wolves. Due to absence of such sequences in the dog reference 

assembly, wolf reads would remain unmapped or uncovered by k-mers based on that 

genome reference. This is supported by evidence in our previous study. We had 

assembled the unmapped reads from a wolf Illumina library and compiled a list of wolf 



 141 

specific contigs distinct from CanFam3.1 and dog novel sequences. A wolf reference 

assembly could potentially address this bias. At present, a wolf de novo reference based 

on mate-pair and short-reads is available (Gopalakrishnan et al. 2017). However, its 

quality remains poor relative to our long read based approach.  

 

To further survey the CNVs and point mutations during the dog domestication process, 

an improved wolf assembly is highly desirable. A similar contiguous assembly using long 

reads could better capture wolf novel regions relative to the domesticated dogs. Thirdly, 

we should also focus on the genome diversity within the village dogs. Our current Zoey 

reference and the CanFam3.1 are both based on purebred dogs. The use of relatively 

homozygous breeds improves the assembly but has the potential to miss important 

variation within the village dog populations. It is evident that even at shorter DNA insert 

size we could achieve a decent N50 compared to the improved gorilla genome (Gordon et 

al. 2016) simply due to homozygosity of the breed dog sample. In the near future, low 

depth PacBio sequencing of village dogs can capture these structural variations and 

provide a supplement to the Zoey reference. Finally, we demonstrated the limitation of 

PCR-based Sanger and short-read sequencing technologies in GC rich regions. The 

proximity of such GC rich regions to the first gene exon hints at the potential regulatory 
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function from CpG islands. Since these cost-effective approaches still dominate 

resequencing studies, other methods have to be devised to overcome these biases. 

Hybridization based approaches such as array CGH can be designed to survey CG rich 

regions. But stringent requirements in the probe melting temperature and synthesis might 

also limit the outcome. Capture kits can be constructed to limit the input for a long read 

PacBio sequencing in these extreme GC regions in addition to short-reads whole genome 

data. 

Should potential CNV regions be uncovered using an improved reference and techniques, 

experiments can be designed to verify their biological impacts. Specially designed 

CRISPR cas9 mutagenesis can disable additional copies in the dog cell lines to observe 

biological outcome related to corresponding CNVs.  

 

The speed and efficiency of QuicK-mer 2.0 opens up research opportunities related to 

paralog specific sequences. One of those interesting areas is the evolution and divergence 

of gene families. Pertaining to my topic of CNVs, new copies of genes from duplication 

could lead to future neo-functions and sub-functions. One of the most important are the 

genes encoding the DNA binding domains controlling gene expression regulation. 

Previous research has surveyed such transcription factors using similar sequence 
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matching (Shen et al. 2018). Since the counting step in QuicK-mer 2.0 takes almost no 

time, a even wider survey of sequence frequency in a paralogous specific manner can be 

conducted. For example, we can first define unique k-mers inside mutated regions within 

each paralog. These k-mers can be organized into groups by ordering them using the 

QuicK-mer 2.0 linking information. Once the k-mer hash index is built, multiple samples 

can be queried efficiently for paralog abundance. This approach can also be expanded 

across different genomes and organism, or even include mutated k-mers in specific 

domains to search for variations. 

In summary, this dissertation reports the construction of two CNV detection algorithms 

and their successful application to genome diversity studies. Various comparisons 

demonstrated the precision and efficiency of these approaches. Combining these tools 

with an improved de novo canine assembly, we showed that a quality reference could 

reduce bias in genome variation studies. In the future, more genomes will be improved 

using single molecule long reads or even resort to traditional clone selection technique to 

reveal the true extent structural rearrangements.  

  

https://paperpile.com/c/nqaN3J/rvLn


 144 

5.4. References 

Alkan, Can, Maria Francesca Cardone, Claudia Rita Catacchio, Francesca Antonacci, 

Stephen J. O’Brien, Oliver A. Ryder, Stefania Purgato, et al. 2011. “Genome-Wide 

Characterization of Centromeric Satellites from Multiple Mammalian Genomes.” 

Genome Research 21 (1): 137–45. 

Chaisson, Mark J. P., John Huddleston, Megan Y. Dennis, Peter H. Sudmant, Maika 

Malig, Fereydoun Hormozdiari, Francesca Antonacci, et al. 2015. “Resolving the 

Complexity of the Human Genome Using Single-Molecule Sequencing.” Nature 517 

(7536): 608–11. 

Gopalakrishnan, Shyam, Jose A. Samaniego Castruita, Mikkel-Holger S. Sinding, 

Lukas F. K. Kuderna, Jannikke Räikkönen, Bent Petersen, Thomas Sicheritz-Ponten, 

et al. 2017. “The Wolf Reference Genome Sequence (Canis Lupus Lupus) and Its 

Implications for Canis Spp. Population Genomics.” BMC Genomics 18 (1): 495. 

Gordon, David, John Huddleston, Mark J. P. Chaisson, Christopher M. Hill, Zev N. 

Kronenberg, Katherine M. Munson, Maika Malig, et al. 2016. “Long-Read Sequence 

Assembly of the Gorilla Genome.” Science 352 (6281): aae0344. 

Hommelsheim, Carl Maximilian, Lamprinos Frantzeskakis, Mengmeng Huang, and 

Bekir Ülker. 2014. “PCR Amplification of Repetitive DNA: A Limitation to 

Genome Editing Technologies and Many Other Applications.” Scientific Reports 4 

(May): 5052. 

Korlach, Jonas, Arek Bibillo, Jeffrey Wegener, Paul Peluso, Thang T. Pham, Insil 

Park, Sonya Clark, Geoff A. Otto, and Stephen W. Turner. 2008. “Long, Processive 

Enzymatic DNA Synthesis Using 100% Dye-Labeled Terminal Phosphate-Linked 

Nucleotides.” Nucleosides, Nucleotides & Nucleic Acids 27 (9): 1072–83. 

Lindblad-Toh, Kerstin, Claire M. Wade, Tarjei S. Mikkelsen, Elinor K. Karlsson, 

David B. Jaffe, Michael Kamal, Michele Clamp, et al. 2005. “Genome Sequence, 

Comparative Analysis and Haplotype Structure of the Domestic Dog.” Nature 438 

(7069): 803–19. 

Pendleton, Matthew, Robert Sebra, Andy Wing Chun Pang, Ajay Ummat, Oscar 

http://paperpile.com/b/nqaN3J/JaQs
http://paperpile.com/b/nqaN3J/JaQs
http://paperpile.com/b/nqaN3J/JaQs
http://paperpile.com/b/nqaN3J/JaQs
http://paperpile.com/b/nqaN3J/JaQs
http://paperpile.com/b/nqaN3J/JaQs
http://paperpile.com/b/nqaN3J/AdDw
http://paperpile.com/b/nqaN3J/AdDw
http://paperpile.com/b/nqaN3J/AdDw
http://paperpile.com/b/nqaN3J/AdDw
http://paperpile.com/b/nqaN3J/AdDw
http://paperpile.com/b/nqaN3J/AdDw
http://paperpile.com/b/nqaN3J/wikU
http://paperpile.com/b/nqaN3J/wikU
http://paperpile.com/b/nqaN3J/wikU
http://paperpile.com/b/nqaN3J/wikU
http://paperpile.com/b/nqaN3J/wikU
http://paperpile.com/b/nqaN3J/wikU
http://paperpile.com/b/nqaN3J/dczu
http://paperpile.com/b/nqaN3J/dczu
http://paperpile.com/b/nqaN3J/dczu
http://paperpile.com/b/nqaN3J/dczu
http://paperpile.com/b/nqaN3J/dczu
http://paperpile.com/b/nqaN3J/OHFx
http://paperpile.com/b/nqaN3J/OHFx
http://paperpile.com/b/nqaN3J/OHFx
http://paperpile.com/b/nqaN3J/OHFx
http://paperpile.com/b/nqaN3J/OHFx
http://paperpile.com/b/nqaN3J/OHFx
http://paperpile.com/b/nqaN3J/0ZsE
http://paperpile.com/b/nqaN3J/0ZsE
http://paperpile.com/b/nqaN3J/0ZsE
http://paperpile.com/b/nqaN3J/0ZsE
http://paperpile.com/b/nqaN3J/0ZsE
http://paperpile.com/b/nqaN3J/0ZsE
http://paperpile.com/b/nqaN3J/fzJuP
http://paperpile.com/b/nqaN3J/fzJuP
http://paperpile.com/b/nqaN3J/fzJuP
http://paperpile.com/b/nqaN3J/fzJuP
http://paperpile.com/b/nqaN3J/fzJuP
http://paperpile.com/b/nqaN3J/fzJuP
http://paperpile.com/b/nqaN3J/EAht


 145 

Franzen, Tobias Rausch, Adrian M. Stütz, et al. 2015. “Assembly and Diploid 

Architecture of an Individual Human Genome via Single-Molecule Technologies.” 

Nature Methods 12 (8): 780–86. 

Seo, Jeong-Sun, Arang Rhie, Junsoo Kim, Sangjin Lee, Min-Hwan Sohn, Chang-Uk 

Kim, Alex Hastie, et al. 2016. “De novo Assembly and Phasing of a Korean Human 

Genome.” Nature 538 (7624): 243–47. 

Shen, Ning, Jingkang Zhao, Joshua L. Schipper, Yuning Zhang, Tristan Bepler, Dan 

Leehr, John Bradley, John Horton, Hilmar Lapp, and Raluca Gordan. 2018. 

“Divergence in DNA Specificity among Paralogous Transcription Factors 

Contributes to Their Differential In Vivo Binding.” Cell Systems 6 (4): 470–83.e8. 

 

 

 

http://paperpile.com/b/nqaN3J/EAht
http://paperpile.com/b/nqaN3J/EAht
http://paperpile.com/b/nqaN3J/EAht
http://paperpile.com/b/nqaN3J/EAht
http://paperpile.com/b/nqaN3J/tJMe
http://paperpile.com/b/nqaN3J/tJMe
http://paperpile.com/b/nqaN3J/tJMe
http://paperpile.com/b/nqaN3J/tJMe
http://paperpile.com/b/nqaN3J/tJMe
http://paperpile.com/b/nqaN3J/rvLn
http://paperpile.com/b/nqaN3J/rvLn
http://paperpile.com/b/nqaN3J/rvLn
http://paperpile.com/b/nqaN3J/rvLn
http://paperpile.com/b/nqaN3J/rvLn
http://paperpile.com/b/nqaN3J/rvLn

