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ABSTRACT

Multiple-Input-Multiple-Output (MIMO) technology makes use of multiple trans-

mit and receive antennas to improve the spectral efficiency and reliability by spatial

diversity and multiplexing. However, MIMO systems require complicated baseband

detector designs to cancel the Inter-Antenna Interference (IAI). This work develops

high-performance and energy efficient MIMO detectors using state-of-the-art itera-

tive detection and decoding, message-passing detection and expectation-propagation

detection approaches.

Iterative Detection and Decoding, or IDD, is an iterative receiver design that

improves the error rate performance and relaxes both the detector and decoder de-

signs by iterating the soft decisions between the detector and the decoder. Through

iterative interference cancellation and error correction, the Signal-to-Interference-and-

Noise Ratio (SINR) can be substantially improved. In this dissertation, a 2.4 mm2

4× 4 MIMO IDD ASIC incorporating Minimum Mean Squared Error (MMSE) detec-

tor and Non-Binary Low-Density Parity Check (NBLDPC) decoder is demonstrated.

The IDD chip exploits an efficient nonbinary interface between the detector and the

decoder to achieve a 1.02 Gb/s throughput, 20 pJ/b energy efficiency and superior

detector performance compared to previous detector designs.

The upcoming 5G wireless communication relies on scaling up the numbers of an-

tennas at the base station, using a new technology known as massive MIMO. Massive

MIMO often refers to a multiple-user wireless communication system, where the base

station is equipped with hundreds of antennas and serves tens of single-antenna user

xv



terminals. The large number of antennas entails a high complexity in baseband digital

signal processing. To lower the complexity, previously demonstrated massive MIMO

systems deployed linear detectors. Despite its simplicity, a linear detector requires

expensive matrix inversion operations, the cost of which can become excessive in a

massive MIMO system.

In a rich scattering environment, a massive MIMO channel can be modeled as

an independently and identically distributed (i.i.d.) Rayleigh fading channel. This

favorable property allows us to explore approximate detection algorithms to greatly

reduce the computational complexity while still maintaining close-to-optimal BER-

SNR performance. This idea is realized and demonstrated in a 0.58 mm2 128× 32 low

complexity Message-Passing Detector (MPD) for a massive MIMO base station. With

a symbol hardening technique, the complexity of the MPD is reduced by more than

60 %. The detector is implemented in a pipelined block-parallel architecture using a

layered-grouped schedule to accelerate convergence, enabling an average throughput

of 2.76 Gb/s at 221 mW. The chip incorporates adaptive precision control and clock

gating to improve energy efficiency to 80 pJ/b.

Practical massive MIMO channels for mobile applications are fast varying. From

the channel measurement in practical environments conducted by Lund University,

it is discovered that the massive MIMO channel could vary and degrade. A highly

correlated channel is observed when mobile users are closely deployed in an environ-

ment where the line-of-sight (LOS) signal propagation paths dominate. In such a

condition, a conventional linear MMSE detector is unable to satisfy the BER-SNR

requirement. To address this challenge, a 2.0 mm2 iterative expectation-propagation

detector (EPD) is presented for a 128× 16 massive MIMO system supporting up to

256-QAM modulation. Tested with measured channel data, the detector achieves

4.3 dB processing gain over state-of-the-art massive MIMO detectors, enabling 2.7

times reduction in transmit power for battery-powered mobile terminals. The EPD

xvi



chip uses link-adaptive processing to meet a variety of practical channel conditions

with scalable energy consumption. The design is realized in a condensed systolic ar-

ray architecture and an approximate moment-matching circuitry to reach 1.8 Gb/s at

70.6 pJ/b. The performance and energy efficiency can be tuned over a wide range by

the UTBB-FDSOI body bias.

This dissertation studies the NBLDPC decoder and MIMO detector designs for

both small-scale and large-scale MIMO system. The cross-domain optimizations from

system and algorithm to architecture and circuits led to a highly efficient and adaptive

detector and decoder designs to meet the demanding performance requirements of

future mobile communication systems.

xvii



CHAPTER I

Introduction

The global data traffic is predicted to have a Compounded Annual Growth-Rate

(CAGR) of 47 % with 25 billion IoE connected devices by 2021 [2, 3, 4] as shown in

Fig. 1.1. It is envisioned that the upcoming 5G wireless communication will meet

the traffic demand at a 100 times higher energy efficiency, 10 times higher spectral

efficiency and reliability compared to the current 4G standard. Small-scale MIMO

and massive MIMO, exploiting the use of multiple numbers of antennas, is a key

enabling technology.

(a) Prediction from Cisco.[2] (b) Prediction from Ericsson.[4]

Figure 1.1: Global mobile data traffic and connected devices growth trend.
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1.1 MIMO Technology

Since throughput = spectral efficiency (bits/s/Hz) × bandwidth (Hz), one way of

increasing data throughput is to increase the number of elements along the spatial

dimension by placing multiple antennas at both the transmitting and receiving side of

the communication link. This MIMO technology has many advantages: it increases

the data throughput [5] and the link reliability by exploiting the link diversity [6] in

rich scattering environments.

Based on the configurations of the number of transmit (TX) antennas and the

number of receive (RX) antennas , MIMO systems can be classified as single-input

single-output (SISO), single-input multiple-output (SIMO), multiple-input single-

output (MISO), and multiple-input multiple-output (MIMO) systems, as shown in

Fig. 1.2.

The data rates of wireless communication standards from the second generation

(2G) to the fifth generation (5G) are shown in Fig.1.3. MIMO technology has been in-

troduced starting from 3G to satisfy the ever increasing data rate requirement. Recent

Figure 1.2:
Illustration of four configurations of multiple antenna systems: SISO,
SIMO, MISO and MIMO.

2



Figure 1.3: The data rate of wireless communication standards.

wireless communication standards such as IEEE 802.11n, 802.11ac, Evoluted High

Speed Packet Access (HSPA+) [7], 3GPP Long-Term Evolution (LTE) Advanced Re-

lease 10/11 [8], mobile communication, and WiMAX all adopt MIMO communication

to increase spectral efficiency and data rate. For example, IEEE 802.11n allows for up

to a 4× 4 antenna configuration (4 transmit and 4 receive antennas); IEEE 802.11ac

calls for up to a 8× 4 antenna configuration and 3GPP LTE Advanced release 10

[8] specifies up to an 8× 8 antenna configuration. The enhancement in spectral ef-

ficiency and higher data rate comes with a significant computational cost: workload

profiling indicates that MIMO detection at the receiver can consume a large number

of computing cycles in the physical layer baseband processing [9].

The increasing data rates motivate further exploitation of a large number of an-

tennas. As pointed out in [10], the effects of the additive receive noise, the small-scale

fading, as well as the inter-user interference could be averaged out by increasing the

3



number of antennas at the base station. Scaling up MIMO provides higher degrees

of freedom in the spatial domain to increase the overall spectral efficiency and relia-

bility. A massive MIMO is a system equipped with a larger number of antennas (in

hundreds) at the base station. Such a massive MIMO system typically serves multiple

user terminals (in tens) using the same time-frequency resources.

Another important distinction of a massive MIMO system is that it exploits the

multi-path components are exploited in massive MIMO to improve the signal strength

at the receiver. This is possible due to the high spatial resolution and array gains

in massive MIMO with a large number of antennas at the base station. Moreover,

massive MIMO allows processing efforts to be concentrated at the base station side,

while battery-operated mobile terminals can have low hardware cost and power con-

sumption.

1.2 MIMO Signal Detection

One of the most complex and energy consuming blocks in a MIMO system is

the signal detection at the receiver. This is because transmitting multiple streams

simultaneously through a wireless channel would result in the crosstalk of the signals

at the receiver. Therefore, signal processing needs to be performed to separate the

data streams, which is generally termed MIMO detection.

Consider a MIMO system as shown in Fig. 1.4 whereNt transmit antennas commu-

nicate to a receiver with Nr antennas and each antenna transmits an M -Quadrature

Amplitude Modulation (QAM) symbol at each channel use. The system model is

given in (1.1), where xc = [xc1, x
c
2, ..., x

c
Nt

]T is the transmitted vector of QAM sym-

bols, xci ∈ Ã is represented by a complex value, and |Ã| = M . Hc is a Nr × Nt

complex matrix representing a memoryless flat-fading complex MIMO channel. For

an i.i.d. Rayleigh channel, each coefficient of Hc is drawn according to a complex

zero-mean unit-variance Gaussian distribution. Assume the perfect channel state in-

4



Figure 1.4: Illustration of an Nt ×Nr multi-user MIMO system.

formation (CSI) at the receiver and Hc is known at the receiver. The channel output

is yc ∈ CNr , where

yc = Hcxc + nc (1.1)

and nc ∈ CNr is an additive white circular-symmetric complex Gaussian noise vector

with independent zero-mean components and the N0-variance. According to this

model, the Signal-to-Noise Ratio (SNR) is defined as:

SNR(dB) = 10 log10(NtEs/N0) (1.2)

where Es is the constellation average energy in Joules.

The complex values in (1.1) can be written in the real domain as:

<(yc)

=(yc)

 =

<(Hc) −=(Hc)

=(Hc) <(Hc)


<(xc)

=(xc)

+

<(nc)

=(nc)


⇒ y = Hx + n, (1.3)

where <(·) and =(·) denote the real and imaginary parts, respectively. And note that

the real and imaginary part of a QAM symbol are represented by the two underlying

Pulse Amplitude Modulation (PAM) symbols from alphabet A, i.e. x ∈ A2Nt , where
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|A| =
√
M .

1.2.1 Maximum Likelihood Detection

Upon observing y, the Maximum Likelihood (ML) detection enumerates all pos-

sible combinations of the transmitted constellation symbols and find the best (most-

likely) combination as the estimate. The posterior of the estimation is:

P (x | y,H) ∝ P (y | x,H)P (x). (1.4)

Here each of the prior is uniformly and discretely distributed over the QAM constel-

lation, thus the overall prior P (x) spans a space of A2Nt . The maximum likelihood

estimates can be formulated as follows:

xML = arg max
x∈A2Nt

P (y | x,H). (1.5)

Maximum likelihood detection can achieve the optimal error rate performance, how-

ever, the complexity of such an enumeration procedure increases exponentially with

the number of transmit antennas (Nt) and the QAM order (M). Many researchers

have worked on efficient and reduced search space for MIMO detection, such as sphere

decoding [11, 12, 13, 14] and Tabu search [15, 16], to manage the implementation cost

in hardware. However, these search-based detections still scale poorly, especially in a

large-scale MIMO system using more than 8 antennas.

1.2.2 Minimum Mean Equared Error (MMSE) Detection

A low-complexity linear detection, such as Minimum Mean Squared Error (MMSE)

or Zero-Forcing (ZF), has sub-optimal performance in terms of error rate. To avoid

exhaustive enumeration, an MMSE detection approximates the prior in (1.4) by a

continuous Gaussian distribution with zero-mean and a variance equal to the symbol
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energy Es:

P (x | y,H) = N (y; Hx, N0I)
∏
N (xi; 0, Es). (1.6)

With the continuous Gaussian approximation of the prior, the estimates having the

minimum mean squared error can now be calculated as:

xMMSE = (HHH +N0/EsI)−1(HHy)

= A−1 yMF ,

(1.7)

where we define the MMSE filtering matrix A−1 and matched-filtered received signals

yMF . The result of MMSE detection are “soft” symbols, i.e. the i-th estimate is a

Gaussian distribution with a mean of xMMSE
i and a variance of A−1ii .

There is an inherent trade-off between accuracy and complexity when implement-

ing a MIMO detector. Our design goal is to achieve an acceptable accuracy with as

low complexity as possible. Different methods will be explored in this dissertation:

in Chapter II, an iterative detection and decoder (IDD) technique is investigated to

improve detection and decoding accuracy while simplifying both detector and decoder

designs; in Chapter III, a message-passing detection (MPD) is designed to take ad-

vantage of an i.i.d. Rayleigh massive MIMO channel to reduce complexity; and in

Chapter IV, a versatile expectation-propagation detection (EPD) is adopted to en-

sure detection accuracy in highly correlated massive MIMO channels with adaptive

power consumption.

1.3 Dissertation Outline

The MIMO signal detector is one of the most energy- and latency-critical parts in

the MIMO baseband digital processing. The complexity of the detector grows with

the scale of a MIMO system. This dissertation focuses on efficient MIMO detector

designs for both small-scale and large-scale MIMO systems.
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In Chapter II, an MMSE-NBLDPC IDD design for a 4× 4 MIMO system is pre-

sented. The IDD technology enables competitive BER-SNR performance with a low-

complexity MMSE detector and a nonbinary LDPC decoder.

In Chapter III, a low-complexity message-passing detector (MPD) design for a

128× 32 massive MIMO system is presented. With the i.i.d. Rayleigh channel as-

sumption in a massive MIMIO system, the proposed high-throughput MPD design

can be substantially simplified to achieve high energy efficiency and the optimal de-

tection performance.

In Chapter IV, a link-adaptive close-to-optimal iterative expectation-propagation

detector (EPD) for practical massive MIMO systems is presented. The design is able

to adapt to different practical channel scenarios from the worst-case highly correlated

channel to the best-case i.i.d. channel.

In Chapter V, we conclude this dissertation and provide outlooks for future re-

search in massive MIMO processor design.
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CHAPTER II

MMSE-NBLDPC Iterative Detector and Decoder

The latest MIMO wireless systems have adopted iterative detection and decoding

(IDD) to reduce the signal-to-noise ratio (SNR) required for a reliable transmission.

An IDD system consists of a soft-in soft-out (SISO) detector to cancel interference,

and a SISO forward error correction (FEC) decoder to remove errors. The two blocks

exchange soft information to improve the frame error rate (FER) iteratively.

State-of-the-art IDDs based on sphere decoding (SD) and binary low-density

parity-check (LDPC) FEC have been demonstrated in [17], [18] for up to 4x4 64-

QAM MIMO system, achieving up to 396Mb/s in detection throughput [17] and

586Mb/s in decoding throughput [18]. As antenna configuration continue to scale

beyond 4×4 and modulation order increases above 64-QAM, the complexity of a

SISO SD detector is expected to grow exponentially, making it impractical. A SISO

minimum mean square error (MMSE) detector [1] features a lower complexity and a

higher throughput than a SISO SD detector. An MMSE detector can be more easily

scaled to support a large antenna configuration and a high order modulation. The

drawback of an MMSE detector is its lower detection performance (measured in error

rate). However, an IDD system potentially overcomes this weakness by iteration.

Recent IDD designs have used binary low-density parity-check (LDPC) codes for

FEC [17, 18, 19]. However, binary LDPC codes are not matched to high-order mod-
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ulation and a loss is expected. Compared to binary LDPC codes, nonbinary LDPC

(NBLDPC) codes defined over Galois field (GF) outperform binary LDPC codes of

comparable block length in coding gain [20]. Even at a moderate block length, an

NBLDPC code offers a superior coding gain, and the coding gain improves with a

larger GF size.

Despite the good coding gain, the decoding of NBLDPC codes over a large GF(q)

requires intensive computation. To reduce the decoding complexity, Declercq and

Voicila [21, 22] proposed the truncated extended min-sum (EMS) decoding algorithm,

using only nm, where nm � q, most reliable entries in a q-element log likelihood

ratio vector (LLRV) as the message being passed between check nodes (CNs) and

variable nodes (VNs) in decoding. The truncation reduces the elementary operation

of decoding from O(q2) to O(qnm), sacrificing only marginal bit error rate (BER).

Using the truncated EMS algorithm, the recent work by Park [23] demonstrated a

Gb/s NBLDPC decoder. Used in an IDD system, an NBLDPC decoder is expected

to enhance the detection-decoding performance [24].

In this work, we present the first MMSE-NBLDPC IDD implementation and the

design optimizations. We match the GF size of the NBLDPC code with the QAM

constellation size, thereby improving the performance and simplifying the detector-

decoder interface. The superb error-correcting capability provided by the NBLDPC

code allows us to apply a much simplified version of the truncated EMS decoding

using only the top dozen entries out of a 256-entry LLRV to simplify the decoder

implementation. Both the detector and the decoder designs are optimized through

algorithm, architecture, and circuit techniques to achieve higher throughput and lower

power consumption compared to prior art.

The rest of the paper is organized as follows. In Section 2.1, we present the back-

ground of MMSE detection algorithm and the truncated EMS decoding algorithm.

Our unique nonbinary interface design is described in Section 2.2. The circuit, ar-

10



Figure 2.1:
Illustration of an Nr×Nt IDD MIMO system with a soft-input-soft-output
(SISO) MMSE detector and an onbinary LDPC decoder.

chitecture, and algorithm co-optimization for the MMSE detector and the NBLDPC

decoder are described in Section 2.3 and 2.4, respectively. Section 2.5 provides silicon

measurement results and conclusions are drawn in Section 2.7.

2.1 Background

The block diagram of an IDD MIMO system is shown in Fig. 2.1. At the MIMO

transmitter, the source bits b are encoded by an FEC encoder into a codeword.

The codeword is mapped to QAM symbols s and subsequently sent over Nt parallel

transmit antennas. The signals travel through a wireless channel that introduces

fading, interference and noise. At the MIMO receiver, Nr antennas pick up the

corrupted signals that are converted to the received symbols y. Mathematically, y is

given by

y = Hs + n, (2.1)

where y ∈ CNr×1, channel matrix H ∈ CNr×Nt, transmitted QAM symbols s ∈ CNt×1,

and the noise n is modeled as an additive white circular-symmetric complex Gaussian

vector with independent zero-mean components and N0-variance
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A SISO MMSE detector performs MMSE filtering to cancel the interference on

the received data from other antennas. The detector outputs soft symbols and their

variances, which represent the estimated symbols in a signal constellation and the

likelihoods of the symbols. The soft symbols and variances are converted to a-prior

log-likelihood ratio (LLR) for each bit to be used in a SISO FEC decoder. A SISO

FEC decoder performs error correction, and it outputs a-posteriori LLRs. The pos-

terior LLRs are converted to soft symbols and variances, and fed back to the SISO

detector to start the next IDD iteration. IDD iterations improve the quality of detec-

tion and decoding. A successful convergence is indicated by the convergence of soft

symbols and narrowing of variances. In the following subsections, we provide a brief

background on MMSE detection and NBLDPC decoding.

2.1.1 MMSE-PIC Detection

In this work, we use the MMSE parallel interference cancellation (MMSE-PIC)

algorithm based on [1] as described below. In an IDD system, step 1 (pre-processing)

is only done in the first iteration.

Step 1. Pre-processing: Compute the Gram matrix G = HHH, and perform match

filtering yMF = HHy. The Gram matrix and match filtering are done once in

the first IDD iteration, and reused in subsequent iterations.

Step 2. Initialization: Compute soft symbol st and its variance σ2
t , t = 1...Nt, based on

the assumption of Gaussian distribution; Compute MMSE filter matrix A:

A = GΛ +N0I, (2.2)

where Λ = diag(σ2
1, ..., σ

2
Nt

), and N0 is the estimated channel noise variance.

Step 3. Matrix inversion: Compute A−1 by performing lower-upper decomposition (LUD)
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to get A = LU, followed by forward substitution to get L−1 and backward sub-

stitatuion to get A−1.

Step 4. Interference cancellation:

yICt = yMF −
∑
j 6=t

gjsj, t = 1...Nt, (2.3)

where gj is the j-th column of G.

Step 5. MMSE filtering:

ŝt = µ−1t aHt yICt , t = 1...Nt, (2.4)

where aHt denotes the t-th row of A−1, and the bias term:

µt = aHt gt. (2.5)

The SNR of MMSE-PIC is calculated as:

ρt =
1

σ̂2
t

=
µt

1− σ2
t × µt

, t = 1...Nt. (2.6)

The outputs of the detector are the soft symbols ŝt and their variances σ̂2
t , t =

1...Nt. In an IDD system, the detector output symbols and variances are converted

to LLRs for FEC decoding.

2.1.2 Extended Min-Sum (EMS) Nonbinary LDPC Decoding

An n×m regular-(dv, dc) NBLDPC code over GF(q) can be depicted in a bipartite

graph that consists of n VNs and m CNs. Each VN connected to dc CNs and each

CN connected to dv VNs. N (j) is the set of CNs connected to VN j, and M(i) is

the set of VNs connected to CN i. The weight of the connection between VN j and

CN i is αj,i, αj,i ∈ GF(q).
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An NBLDPC code is decoded by passing messages between VNs and CNs. A

message passed between a VN and a CN is a vector of 2q LLRs, called an LLR vector

(LLRV), containing one LLR per GF(2q) symbol. The EMS decoding algorithm keeps

only nm, nm � 2q, most reliable LLRs, and uses a GF index vector (GFIV) to keep

track of the nm symbols. The LLRs in an LLRV are sorted and normalized: the

LLR value of the most reliable GF symbol is set to 0 and the remaining LLR values

are normalized to it. The steps of EMS decoding is described below. In iterative

decoding, the first step (initialization) is done only in the first iteration.

Step 1. Initialization: each VN j withprior LLRV Lj.

Step 2. VN to CN propagation: Each VN sends a V2C message to each of the dv

connected CNs. The message from VN j to CN i is denoted uj,i, i ∈ N (j). The

GFIV of each message is GF multiplied by αj,i, a permutation operation.

Step 3. CN processing: Each CN receives dc V2C messages and computes C2V messages

using (2.7). The message from CN i to VN j is denoted vi,j.

vi,j =
∑

k∈M(i),k 6=j

uk,i, (2.7)

whereM(i) is the set of VNs connected to CN i, and Σ is performed using the

forward-backward algorithm [25].

Step 4. CN to VN propagation: Each CN sends C2V messages to the dc connected VNs.

The GFIV of each C2V message is GF divided by αj,i, an inverse permutation.

Step 5. VN processing: Each VN receives dv C2V messages and computes V2C messages
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uj,i and posterior LLRVs zj using (2.8).

uj,i = Lj +
∑

k∈N (j),k 6=i

vk,j,

zj = Lj +
∑

k∈N (j)

vk,j,

(2.8)

where N (j) is the set of CNs connected to VN j, and Σ is performed using

elementary step [22].

In an IDD system, the decoder output LLRs are converted to soft symbols s and

variances σ2 for detection.

2.2 Detector-Decoder Interface and Optimization

The MMSE detector processes soft constellation symbols, while an NBLDPC de-

coder processes LLRs of GF symbols. Translations between soft symbols and LLRVs

are required to implement an IDD system. Without loss of generality, we assume

a 2b-QAM constellation that is widely used in wireless communication systems. In

this work, We propose to map the n-bit QAM symbol to a GF(2b) symbol to en-

able the direct and simplified translations between soft symbols and LLRVs without

any information loss. Matching the constellation and GF size provides the highest

performance [26].

2.2.1 Converting Soft Symbols to LLRV

Standard Conversion. A soft symbol ŝ in a 2b-QAM constellation is first con-

verted to bit LLR one by one for i = 1, 2, ..., b , then combine them into LLRV. This

bit-by-bit conversion is performed in the following 2 steps:
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Step 1. Convert ŝ to n bit-LLRs [27] as:

Li = ln
P (bi = 1 | ŝ)
P (bi = 0 | ŝ)

=
1

σ2

(
min
a∈S1

i

|ŝ− a|2 −min
a∈S0

i

|ŝ− a|2
)
, (2.9)

where bi refers to bit i of the n-bit symbol, and S1
i and S0

i refer to the set of

constellation points with their bit i being 1 and 0, respectively. The symbol

LLRs in LLRV used in NBLDPC is calculated by adding the bit LLRs together

as in (2.10) [24].

Step 2. Assemble the bit-LLRs to symbol-LLRs [24] from nm nearest neighbors, and

construct LLRV:

LK = ln

(
b∏
i=1

P (Ki = 1 | ŝ)
P (Ki = 0 | ŝ)

)
=

b∑
i=1

(2Ki − 1)Li, Ki ∈ {0, 1}, (2.10)

where K is a GF(2b) symbol, and Ki is the i-th bit of K’s binary representation.

This bit-by-bit conversion requires searching of constellation points to find the

nearest neighbors of ŝ for each bit. In a high-order constellation, such as 256-QAM,

the search and Eucleadian distance calculation can be expensive. The search can

be done on the real and imaginary axis of a 2b-QAM constellation to narrow the

search space from 2b candidates to 2b/2 candidates, as highlighted in Fig. 2.2(a). The

computational complexity of the bit-by-bit conversion is listed in Table 2.1. Note

that the search and bit LLR computation in the table can be further simplified if a

certain mapping system is used, e.g. Gray mapping [28].

Even with all these simplifications, converting a soft symbol to b bit LLRs requires

2bmultiply-adds (MACs), and converting b bit LLRs to a symbol LLR requires n adds.

An LLRV for the truncated EMS decoding consists of nm symbol LLRs, so bnm adds

are required to assemble an LLRV. In the end, the nm symbol LLRs in the LLRV are

sorted and normalized. The computational complexity of the bit-by-bit conversion is
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Figure 2.2:
SISO Detector input soft symbols and variances in (a) binary scheme, and
(b) proposed nonbinary scheme.

Table 2.1:
Comparsion of Bit-by-Bit Conversion and Direct Conversion from Soft
Symbol to LLRV

Standard Conversion Direct Conversion
Soft symbol 2b+ 2 adds, b+ 2 mults 2d√nme adds

to LLRs bit-LLRs) (symbol-LLRs)
LLRV construct b× nm adds nm adds

Total
b+ 2 mults, 2d√nme+ nm adds

b(nm + 2) + 2 adds

summarized in Table 2.1.

Direct Conversion. Instead of the bit-by-bit conversion, we propose a new direct

conversion of a soft symbol to an nm-element LLRV for NBLDPC decoding. First, we
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take advantage of the fact that LLRV is sorted and normalized to the most reliable

symbol, denoted T in Fig. 2.2(b), to calculate normalized symbol LLR directly using

(2.11).

LK = ln
P (s = K | ŝ)
P (s = T | ŝ)

=
1

σ2

(
|ŝ−K|2 − |ŝ− T |2

)
, (2.11)

where T is the symbol is the most reliable symbol and it represents the constellation

point, that is closest to the soft symbol ŝ. Note that based on (2.11), LT = 0, a result

of normalization. For a QAM constellation, (2.11) can be computed by taking the

real and imaginary part independently, which are then sumed together.

As an example shown in Fig. 2.2(b), the distance between the soft symbol ŝ and

its nearest constellation point T of coordinate (x1, y1) is d. The projection of d on the

real axis (x-axis) and imaginary axis (y-axis) are dx and dy. Without loss of generality,

assume the constellation points are spaced by 2. It follows that the distance from ŝ to

its second nearest constellation point along the x-axis, x2, is 2− dx and to the second

nearest constellation point along the y-axis, y2, is 2 − dy. The real and imaginary

part of the LLR can be computed as follows.

Lx2 =
1

σ2

(
|2− dx|2 − |dx|2

)
=

4

σ2
(1− dx) (2.12)

Ly2 =
1

σ2

(
|2− dy|2 − |dy|2

)
=

4

σ2
(1− dy).

Notice that the square terms are canceled out, and the calculation requires only

L1 distance without multipliers. The technique is illustrated in Fig. 2.2(b). The

calculation of (2.12) can be further simplified using bit invert, shift and add.

In this work, we adopt the trucated EMS decoding of NBLDPC code using nm

the most reliable symbols. As such, the conversion requires the distances from the

soft symbol to approximately the d√nme nearest constellation points along x-axis

and y-axis. The nm symbol LLRs are obtained by cross-adding the distances to the

nearest neighbors along x-axis and y-axis, and no additional sorting stage is needed.
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The computational complexity of the direct conversion method is summarized in

Table 2.1 for comparison with the conventional bit-by-bit method.

For a large constellation the complexity of the direct conversion method is sig-

nificantly lower than the bit-by-bit conversion method. For example, for QAM(256)

(b = 8), GF(256) NBLDPC code, and decoding using nm = 16, the bit-by-bit conver-

sion requires 16 MACs, 128 adds, and 16 sorts; whereas the direct conversion requires

only 24 adds.

2.2.2 Converting LLRV to Soft Symbols

Standard Conversion. The LLRV from NBLDPC decoder is converted to a

soft symbol and its variance in 2 steps:

Step 1. Symbol LLR Lα is converted to the probability of constellation point P (s):

P (s) =
exp(−0.5La)∑

a∈GF(2b) exp(−0.5La)
, (2.13)

where the GF(2n) symbol α is mapped to the matching constellation symbol s,

s ∈ 2b-QAM. This is often implemented using table lookup.

Step 2. The soft symbol is computed as the weighted sum of constellation points:

ŝ =
∑

a∈2b-QAM

aP (a), (2.14)

σ2 =
∑

a∈2b-QAM

(a− ŝ)2P (a).

The standard conversion requires 2b table lookups in step 1 and 2b + 2b+1 MACs

in step 2. The complexity scales quadratically with the constellation size b, and

the conversion complexity becomes prohibitive for high-order constellation, such as

QAM(256).
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Figure 2.3:
PER comparison among three setups: (1) 16 GF elements for decoding
and 16 GF elements for soft symbol estimation, (2) 32 GF elements for
decoding and 32 GF elements soft symbol estimation, and (3) 16 GF
elements for decoding and only top 2 GF elements for soft symbol esti-
mation.

Using the EMS decoding of NBLDPC code, an LLRV consists of nm most likely

symbol-LLRs. The complexity of the conversion can be reduced by only account

for the probablities of the nm nearest constellation points using equations similar to

(2.13) and (2.14).

Approximate Conversion. To further simplify the conversion, we apply an

approximation by choosing only the top two most likely symbol-LLRs. By removing

the less likely symbols that tend to be less accurate due to numerical saturation in

NBLDPC decoding and the likely duplication of symbols in the decoder output, the

simplification can even improve the error-rate performance as shown in Fig. 2.3.

Suppose the two most likely symbols are s0 and s1. Step 1 of the conversion is
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reduced to the following.

Ps0 =
exp(0.5Ls0)

exp(0.5Ls0) + exp(−0.5Ls0)
, (2.15)

Ps1 = 1− Ps0 ≈ ¬Ps0 .

The underlying assumption of the approximation is that the top two constellation

symbols dominate. Thus the probability of the second most likely symbol s1 is Ps1 =

1 − Ps0 . Since Ps1 ≤ 0.5, Ps1 ≈ ¬Ps1 , where ¬ is the bit-wise inversion. With only

two nearest constellation points to consider, the soft symbol and variance calculation

is reduced to (2.16).

ŝ = Ps0s0 + Ps1s1, (2.16)

σ2 = Ps0(s0 − ŝ)2 + Ps1(s1 − ŝ)2,

= Ps0Ps1(s0 − s1)2.

The approximate direction conversion underestimates the variance, especially when

SNR is low. Therefore an offset term is added as correction.

σ2 = Ps0Ps1(s0 − s1)2 + Ps1q, (2.17)

where q is an offset term that depends on the size of the constellation.

Table 2.2:
Comparsion of Bit-by-Bit Conversion and Approximate Direct Conversion
from LLRV to Soft Symbol

Standard Conversion Approximate Conversion
LLR → prob. nm table lookups 1 table lookup, 1 add
Soft symbol &

variance compute
3nm mults, 2nm adds 5 mults, 2 adds

Total
nm table lookups,

3nm mults, 2nm adds
1 table lookup,
5 mults, 3 adds
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Figure 2.4:
Design of the MMSE detector in 4 task-based coarse pipeline stages. Stage
2 and 3 operate at a 2× slower clock frequency, and the remaining stages
operate at the base clock frequency.

The complexity of the approximate conversion is fixed regardless of the constella-

tion size or choice of nm as shown in Table 2.2. Using the approximate conversion, a

GF(256) LLRV to a 256-QAM soft symbol and variance conversion requires only 1 ta-

ble lookup, 5 multiplies and 3 adds, a significant simplification over the conventional

method that requires 16 table lookups (nm = 16), 48 multiplies, and 32 adds.

2.3 SISO MMSE-PIC Detector

The MMSE detector design is comprised of 4 coarse pipeline stages as depicted

in Fig. 2.4. Channel information and prior input symbol LLRs from the decoder are

processed in the first stage to generate the MMSE matrix A. The matrix is then

inverted using LU decomposition (LUD) for MMSE filtering in the second and third

stage, while interference cancellation is done in parallel. The final stage computes

SNR and symbol LLRs as the input to the NBLDPC decoder.

The LUD in the second stage contains the critical paths and requires a long
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latency, causing unbalanced pipeline stages and a throughput bottleneck. As the

Newton-Raphson reciprocal unit dictates the inner loop of the LUD, we reformulate

the reciprocal computation in a parallel structure to shorten the second stage from

18 cycles [1, 29] to 12 cycles.

To loosen the timing constraint on the long critical paths on the complex multi-

pliers in the second and third stage, we create a 2× slow clock domain for the two

stages to allow the gates to be downsized, and recoup the throughput by interleav-

ing between two copies of the datapaths without stalling the pipeline. After gate

downsizing, the duplication costs only 24 % additional area over the baseline, but the

throughput is increased by 38 %.

In the final stage, we use an algorithmic property to simplify the SNR computation

from 4 complex multiplications and additions to 2 real multiplications and 1 addition

of shorter bit widths, reducing the area of the final stage by 50 % and power by 46 %.

The final MMSE detector in 65nm CMOS achieves a throughput of 1.38 Gb/s.

2.3.1 Tandem Scheduling

Matrix inversion is done in three substeps: LUD, forward substitution (f-sub) and

backward substitution (b-sub). A Nt × Nt matrix A is first decomposed to a lower

and an upper triangular matrix, L and U, using LUD. L−1 is then found by solving

for X in LX = I using f-sub. Finally, A−1 is found by solving for Y in UY = L−1

using b-sub.

LUD follows Gaussian elimination which operates from the top row to the bottom

row of matrix A, obtaining L from the left to the right column, and U from the top

to the bottom row. In each step, LUD uses a reciprocal unit to compute the inverse

of the diagonal element of U. Assume A is 4×4 and suppose the reciprocal unit takes

nr cycles, a multiply-add (MAC) takes 1 cycle, and 16 parallel real-valued MACs are

allocated, the critical path of LUD can be packed in 4nr+6 cycles. Under this critical
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Figure 2.5: Tandem scheduling of matrix Inversion and MMSE filtering.

path, f-sub can be performed in tandem with LUD to hide its latency. As soon as the

first element of L is available, f-sub can start. In this way, f-sub and LUD complete at

the same time, as shown in Fig. 2.5. Once the last row of L−1 is found and buffered,

b-sub starts from the bottom row to the top row of L−1 to compute A−1.

MMSE filtering is done by vector inner products: aHt yICt , t = 1...Nt. Recall that

aHt denotes the t-th row of A−1 and yICt is the output of the interference cancellation

step. We propose the tandem scheduling of b-sub and MMSE filtering. As soon as an

element of A−1 is available, the corresponding product with yICt can be performed.

In this way, MMSE completes in only 1 cycle after f-sub is done.

With tandem scheduling, the matrix inversion and MMSE filtering is reduced from

3 coarse pipeline stages [1] to 2 stages, as shown in Fig. 2.5. Tandem scheduling also

cuts the number of boundary registers between stages by 85 %, as the output from

the previous step is immediately consumed by the subsequent step.

2.3.2 Dual-Lookup Reciprocal Unit

Reciprocal is in the critical path of matrix inversion and dominates the latency.

A popular reciprocal design is based on the Newton-Raphson division algorithm.
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Figure 2.6:
Reciprocal unit design: (a) baseline 3-cycle design from [1] and (b) dual-
lookup single-cycle design.

Suppose we need to find x = 1
d
, the problem can be formulated as finding the root of

f(x) = 1
x
− d = 0. Applying the Newton-Raphson method, the root can be found by

iteration with an initial estimate x0:

xi+1 = xi − f(xi)/f
′(xi) = 2xi − dx2i . (2.18)

A baseline reciprocal unit is shown in Fig. 2.6(a) [1]. The initial estimate x0 is

retrieved from a lookup table (LUT). To reduce the LUT size, only the MSB bits

are used to address the LUT. Two multiplies are needed to compute dx2i , which is

then subtracted from 2xi to compute the reciprocal. A better approximation can be

obtained by iterations. For a MMSE detector, it was shown that a 32×6b LUT and
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one iteration (x1) are sufficient [1]. The baseline design is naturally divided into 3

pipeline stages, costing 3 cycles.

In the baseline design, the latency of the reciprocal unit is dominated by the two

multiplies. To reduce latency, we design a dual-lookup reciprocal unit as shown in

Fig. 2.6(b) using two LUTs, a 32×6b LUT for retrieving x0 and a 32×12b LUT

for obtaining x20. The addition of the 32×12b LUT allows the redesigned reciprocal

unit to have only 1 cycle delay, which translates to 6-cycle latency reduction of the

matrix inversion stage. To make the best use of the limited LUT size, we apply

dynamic scaling of the matrix A based on symbol variance, such that the input to

the reciprocal unit falls in the range of [1, 2). The designed reciprocal unit provides

an average error of 0.00044 and a maximum error of 0.0017, which are sufficient for

an MMSE detector [29].

2.3.3 Interleaving Architecture

The MMSE detector is pipelined to 4 stages as shown in Fig. 2.4. Initialization

is in stage 1. The tandem scheduling of LUD and f-sub allow them to be grouped in

stage 2, and the tandem scheduling of b-sub and MMSE filtering allows them to be

grouped in stage 3. Due to the lack of data dependence, interference cancellation is

also done in stage 2. Post-processing is done in stage 4.

Despite the optimizations done in stage 2 and 3 of the pipeline, the long critical

paths in the multipliers present a tight timing constraint. To loosen the constraint,

we use a simple clock divider to create a 2× slow clock domain for stage 2 and 3 to

allow the gates to be downsized, and maintain the throughput across the two stages

by duplicating the datapaths and interleaving between the two copies as shown in

Fig. 2.4. After gate downsizing, the duplication costs only 24 % additional area over

the baseline as depicted in Fig. 2.7, but the throughput is increased by 38 % thanks

to a higher clock frequency. The downsized gates also reduce the load capacitance,
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Figure 2.7:
Comparison between single-path area optimization (middle) and dual-
path interleaving with slow clock (right).

and thus improving the energy efficiency.

2.4 SISO Nonbinary LDPC Decoder

In this work, we implement an NBLDPC decoder for a (52, 26) regular-(2, 4)

NBLDPC code over GF(256) with a binary block length of 416 bits. The NBLDPC

decoder adopts the truncated extended min-sum (EMS) algorithm using the most

nm = 12 reliable GF elements over GF(256) to reduce complexity while still main-

taining a good coding performance. In a conventional design [23], a CN has to be

idle nm clock cycles for the associated VNs to complete a GF vector and vice versa

due to the serial nature of GF processing. This results in a latency and throughput

bottleneck for the NBLDPC decoder design.

We apply a data forwarding technique to provide GF element output directly from

VN to CN to eliminate pipeline stalls, and reallocate the memory in VN to enable

the forwarding from CN to VN in a similar manner. This forwarding scheme not
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only shortens the decoding iteration from 36 cycles to 25 cycles, but also eliminates

the CN-to-VN message storage. The proposed NBLDPC decoder in 65 nm CMOS

achieves a short latency per decoding iteration of 81.4 ns, resulting a throughput of

1.02 Gb/s with 5 decoding iterations.

2.4.1 High-throughput Fully Parallel Architecture

To support a high throughput over 1 Gb/s the proposed decoder is fully paral-

lelized with 52 variable nodes (VN) and 26 check nodes (CN), as shown in Fig. 2.8.

The fully parallel architecture also simplifies the control and message scheduling.

However due to the serial nature of GF processing in both VN and CN, the data

dependencies cause inefficient pipeline stalls in the fully architecture [23]. In return,

this inefficiency imposes large area, power and long decoding latency. Therefore we

opt for optimized architecture and pipeline schedule to minimize overhead without

degrading throughput. After the MMSE detection, the sorted LLRVs with Nm = 12

elements for each one of 52 variable nodes are load into the prior memory in the

decoder. The decoder then initiates the truncated EMS decoding process for a given

number of iterations. The VNs passes the V2C message to the associated CNs through

a routing network where the GF symbols are permuted and the LLR values are nor-

malized. The GF permutation is determined by the weights on the NBLDPC Tanner

graph, therefore it can be implemented with simple logics. The LLR normalization

subtracts the smallest LLR value from the LLR values of the V2C messages to reduce

the dynamic range. The CN performs bubble-check algorithm [30] to generate C2V

messages and feed the results back to the associated VNs. The VNs calculate the

llrv of posterior and generate the extrinsic V2C messages for the next iteration. The

decoding procedure stops when the maximal iteration is reached.

28



Figure 2.8:
Fully parallel architecture of Nonbinary LDPC instantiating 52 variable
nodes and 26 check nodes.

2.4.2 Skimmed Check Node with Data Forwarding

A Check node performs GF parity check of dc = 4 input V2C messages and

generates the output C2V feeding back to the associated variable nodes. The CN

processing is done in an efficient forward-backward manner by using 6 elementary

check nodes (ECNs) to perform bubble check algorithm and 6 memories to store

the input V2C messages and the intermediate results. An ECN finds nm = 12 most

reliable GF-LLR results among all the parity combinations of two input sorted LLRVs.

The ECN contains a GF/LLR adder, a candidate selector and an insertion sorter.

For each cycle, the candidate selector picks up candidates from the memories and the

resulting combination, i.e. GF/LLR summation is inserted into the sorter pushing the

current most reliable result out of the sorter. According to the order in the sorters,

the candidate selector is able to pick the next candidates. The ECN process takes

nm = 12 cycles to generate the nm = 12 C2V messages sequentially. In conventional
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Figure 2.9:
Proposed CN design with V2C forwarding; the pipeline schedules of con-
ventional and proposed CN design.

CN design, the ECNs initialize the sorters by the data stored in the memories therefore

they cannot start until the V2C elements or intermediate (forward/backward) results

are loaded into the memories. This dependency causes nb = 6 cycles of pipeline

stalling, where nb is the sorter size. To hide this dependency, we propose an input

forwarding scheme to initialize the sorters as soon as the results are resolved as shown

in Fig. 2.9. With the observation that the first(smallest) LLR is always normalized

to zero, we are able to forward the data to eliminate the pipeline stalls without

lengthening the critical path.

Another inefficiency of conventional design is that the sorter requires large storage

to buffer the candidate combination information containing GF indexes, memory

indexes and LLR values during the CN processing. We observe that the GF indexes

are unused during sorting and candidate selection. Since the sorter is implemented

with shift registers, the redundant GF indexes not only waste the storage but also
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waste switching power shifting all the unused data. This inefficiency is prominent

when GF size or sorter size nb is large. Therefore we skim the buffers in the sorter by

eliminating its GF storage. With retiming of the ECN the output GF elements can

be retrieved. By doing this, the buffer size of the sorter is reduced by 36% resulting

20 % area reduction and 12 % power reduction of CN based on synthesis results.

2.4.3 Variable Node with Data Reallocation and Forwarding

A variable node computes dc = 2 V2C messages and the posterior (2.8) using the

prior message and dc = 2 input C2V messages. The conventional VN implementa-

tion in [23] is shown in Fig. 2.10. It requires one prior memory, two C2V Content

Addressable Memories (CAMs), two V2C Elementary Variable Nodes (EVNs) and

one posterior EVN. The prior memory is loaded with the prior LLRV generated from

MMSE detector outputs in the initialization stage. Then the VN operation is carried

out in the following three steps.

Step 1. C2V Storing:

At the beginning of VN processing, the two C2V LLRV messages are streamed

and stored into two C2V CAMs where the LLR values are indexed by their GF

symbols.

Step 2. GF Matching:

After C2V storing is completed, nm = 12 GF symbols in the prior memory are

sent to both of the C2V CAMs one by one. The C2V CAM outputs the LLR

whose GF index matches with it’s input GF symbol of prior. If there is no

match, the CAM will outputs its largest LLR value, i.e. C2V [12](LLR). The

CAM output then is added with corresponding prior LLR and buffered in the

parallel sorter in the EVNs.

Step 3. V2C Processing:
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Figure 2.10:
Data flow and operation latency of the conventional and proposed VN
designs.

In the third step, each LLR of the C2V is added with the largest LLR value

of the prior, i.e. prior[12](LLR), and the result is inserted into the sorter in

the EVN. The sorter outputs the final V2C LLRV message containing the first

Nm = 12 most reliable GF-LLR pairs. The V2C message is then fed back to

the associated CNs.

In the conventional design, the VN cannot start to process until the C2V messages

are completely loaded into the two CAMs, introducing nm = 12 cycles of pipeline

stalling. To reduce the long latency of VN processing, we reallocate the C2V and

prior storage allowing the data forwarding from CN to VN, as shown in Fig. 2.10 .

This leverages the fact that the prior is updated only at the beginning of the decoding

while the C2V is updated for every decoding iteration. Instead of using prior to look

up a match in the C2V CAMs, we use the incoming C2V to look up a match in the
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prior CAM. By doing so, only one prior CAM is required and the matching operation

can be done in the fly as C2V message streaming into the VN. Since the two C2V

CAMs are eliminated, not only the nm = 12 cycles of stalling for V2C processing are

eliminated but also the area and power associated with the C2V CAMs are saved. As

for the posterior, we are able to use a small CAM and a simplified EVN since only

the first two GF-LLR pairs are required to be fed back to the SISO MMSE detector.

2.5 Low Power Techniques–Clock Gating Exploiting Regular

Memory Access

A total of 70.9 kb registers are used for buffering data in and between stages of the

detector and the decoder. Registers are used in place of memory arrays to support

high access bandwidth and the flexibility of placing small memory blocks. Registers

are power hungry, but we recognize a power reduction opportunity as most of the

registers used in our design are infrequently updated due to the coarse pipelining,

e.g., 1 update every 12 cycles for the 7.6 kb stage boundary registers in the detector,

and 1 update every 25 cycles for the 26.2kb CN buffer registers in the decoder. We

exploit the access pattern to reduce power by enabling clock gating of the registers

when they are idling, saving the detector power and the decoder power by 53 % and

61 %, respectively.

To lower the power consumption, automatic clock gating is applied to stage bound-

ary and buffer registers to save 53 % power of the detector. A total of 9.1 kb registers

are used for buffering data in and between stages of the detector. Registers are used

in place of memory arrays to support high access bandwidth and the flexibility of

placing small memory blocks. Registers are power hungry, but we recognize a power

reduction opportunity as most of the registers used in our design are infrequently up-

dated due to the coarse pipelining, e.g., 1 update every 12 cycles for the 7.6 kb stage

33



Figure 2.11: Power breakdown and the activities of registers.

boundary registers in the detector. We exploit the access pattern to reduce power

by enabling clock gating of the registers when they are idling, saving 53 % power in

total.

2.6 Chip Measurement Results

The fabricated test chip is fully functional. The die photo is shown in Fig. 2.12.

The MMSE detector core and the NBLDPC decoder core occupy 0.7 mm2 and 1.7 mm2,

respectively. At room temperature and 1.0 V supply, the MMSE detector runs at a

maximum frequency of 517 MHz for a throughput of 1.38 Gb/s, the highest reported

throughput of a SISO MMSE detector [1]. At room temperature and 1.0 V supply, the

decoder runs at 307 MHz for a throughput of 1.02 Gb/s (5 iterations). The NBLDPC

decoder consumes 20.1 pJ/b/iteration, the lowest reported energy of an NBLDPC

decoder [23], and it matches the efficiency of the binary LDPC decoder used in IDD
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[18]. Although our NBLDPC code is about half the size of [23], the one order of

magnitude improvement in energy [23] is significant.

The energy efficiency can be further improved by voltage and frequency scaling,

as shown in Fig. 2.13. At 500 mV supply, the MMSE detector and the NBLDPC

decoder consume 9.7 pJ/b and 6.9pJ/b/iteration, respectively, for throughputs above

200 Mb/s.

Fig. 2.14 shows the bit error rate and frame error rate curves of proposed IDD

system. The testing channel model is a 4× 4 TGn Type C channel. As more IDD

iterations are done, the error rates are improved more than 3dB from open loop

(I = 0) to 3 IDD iterations (I = 3). The performance gain is traded off by the

latency of receiver processing.

Our work is compared with state-of-the-art MIMO detector and decoder designs

in Table 2.3.The MMSE detector consumes 19.2 pJ/b, an order of magnitude lower

than previous SISO detector designs [17, 18, 1], demonstrating the advantage of the

optimized MMSE detection for IDD.

Figure 2.12: Chip die photo.
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Table 2.3:
Comparison Table of State-of-the-Art MIMO Detectors and LDPC De-
coders

Detector
Noethen Borlenghi Winter Studer This work

[17] [18] [19] [1]
IDD design Yes Yes No yes yes
Algorithm SD SISO SD SISO SD SO MMSE SISO MMSE NB-SISO

MIMO system ≤4× 4 ≤4× 4 ≤4× 4 4× 4 4× 4
Modulation ≤64 ≤64 ≤64 ≤64 256

Technology [nm] 65 65 65 90 65
Core area [mm2] - 2.78 0.31 1.5 0.7

Preprocessing area [kGE]
Detection area [kGE]

383a -b

872
-b

215
410 347c

Frequency [MHz] 445 135 333 568 517
Power [mW] 87 - 38 189 26.5

Throughput [Mb/s] 396 194 296-807 757 1379
Area efficiency [Mb/s/kGE] 1.03 0.22 1.37-3.75 1.85 3.68

Energy efficiency [pJ/b] 220 920 48 250 19.2

Decoder
Noethen Borlenghi Winter Park This work

[17] [18] [19] [23]
IDD design yes yes no no yes

Code LDPC LDPC LDPC
NBLDPC
GF(64)

NBLDPC
GF(256)

Block length 768 1944 768 960 416
Technology [nm] 65 65 65 65 65
Core area [mm2] - 0.78 3.6 7.04 1.7

Decoding area [kGE] - - - 2780 935
Frequency [MHz] 500 299 267 700 307

Power [mW] - - 367 3866 103
Iterations 10 10 10 10 to 30d 5 10

Throughput [Mb/s] 155 586 235.2 1150 1024 512
Area efficiency [Mb/s/mm2] 100.92 751 65.33 163 602 301
Energy efficiency [pJ/b/iter] 232 21 170 277 20.1
a : memory for data exchange is included.
b : data pre-processing block (QRD) is not included.
c : total area is 264 kGE if no interleaving processing.
d : with early termination.
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Figure 2.13: Measured throughput and energy efficiency with voltage scaling.

Figure 2.14:
The bit error rate and frame error rate versus SNR of the proposed
MMSE-NBLDPC IDD system.
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2.7 Summary

We demonstrate an MMSE-NBLDPC iterative detector-decoder for a 4× 4 256-

QAM MIMO system to achieve an excellent error rate that improves with iterations.

To minimize latency over the iterative loop and improve throughput, the MMSE

detector is divided into 4 task-based coarse pipeline stages so that all stages can

operate in parallel. Both the number of stages and the stage latency of the detector

are minimized, and the long critical paths are interleaved and placed in a slow clock

domain to support a high data rate in a cost-effective way. The resulting MMSE

detector achieves an 82 % higher throughput, and almost 3.5 times the throughput of

the latest SD detector.

The NBLDPC decoder is implemented using 78 processing nodes to enable fully

parallel message passing. Serial Galois field (GF) processing is pipelined using a

data forwarding technique to cut the decoding latency by 30 % over the latest design

[23]. The detector and decoder exchange symbol log-likelihood ratios (LLR) that are

efficiently computed based on the L1 distance to the nearest neighbors in the QAM

constellation.

To lower the power consumption, automatic clock gating is applied to stage bound-

ary and buffer registers to save 53 % of the detector power and 61 % of the decoder

power. The results are demonstrated in a 65nm MMSE-NBLDPC iterative detector-

decoder test chip that achieves 1.38 Gb/s detection and 1.02 Gb/s decoding (5 itera-

tions), consuming 26.5 mW and 103 mW, respectively.
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CHAPTER III

Low-complexity Message-Passing Massive MIMO

Detector

The upcoming fifth generation (5G) wireless communication systems will signif-

icantly increase the network capacity and coverage, and improve the spectral and

energy efficiency. Large-scale MIMO, or massive MIMO, has been identified as a

key disruptive technology for 5G [31, 32, 33]. Large-scale MIMO is a multi-user

MIMO technique that relies on a large number, e.g., hundreds, of base station anten-

nas to serve a multiplicity of, e.g., tens, of autonomous single-antenna users in each

time-frequency resource [34]. The large number of antennas provide a high spatial

multiplexing gain for an increased capacity; and the radiated energy can be focused

to the intended receivers for an improved energy efficiency.

The optimal maximum likelihood detector searches all the possible points of user-

symbol space incurring prohibitive complexity. Even limited-search detectors, like

sphere decoder [13] and Tabu Search [16] are still considered impractical due to their

high complexities that increase exponentially with the number of antennas and the

QAM size. A lower complexity minimum mean square error (MMSE) detector has

demonstrated good performance for massive MIMO [31, 32, 33, 35], especially when

the loading ratio is large, i.e. the number of base station antennas is much greater
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than the number of users. However, the complexity of matrix inversion still grows

cubically with the number of user terminals, i.e. O(N3
t ), where large matrix inver-

sions, i.e. size of 8× 8 or greater introduce large area and latency overheads. Prior

work has shown that for a massive MIMO system of a large loading ratio with i.i.d.

Rayleigh fading channel, an approximated or implicit matrix inversion is sufficient for

achieving near-optimal BER-SNR performances. An approximated or implicit ma-

trix inversion even reduces the implementation complexity to O(N2
t ). For example,

Neumann series based detector [36], when using 3 terms of approximation, can have

low implementation complexity with a detection performance slightly worse than an

MMSE detector. Recently iterative message-passing detectors (MPD) have emerged,

such as channel hardening-exploiting message passing (CHEMP) [37]. A CHEMP

detector does not require matrix inversion, and it provides a better BER than an

MMSE detector under an independent and identically distributed (i.i.d.) Rayleigh

fading channel.

In this chapter, we present a low complexity message-passing detector for a 256-

QAM massive MIMO uplink system serving 32 users (Nt = 32). The rest of the

chapter is organized as follow. In Section 3.1, we give the background of the message-

passing detection algorithm and analyze its complexity. We then present the algorithm-

architecture co-optimization for efficient hardware implementation in Sections 3.2 and

3.3. In Section 3.4, we elaborate on the proposed low-power techniques to improve the

energy efficiency of the MPD detector. Section 3.5 provides the silicon measurement

results, and Section 3.6 concludes this work.

3.1 Message-Passing Detection Algorithm

In a massive MIMO uplink system, the base station is equipped with Nr anten-

nas serving Nt single-antenna users at the same time and frequency resources. The
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Figure 3.1:
Illustration of an uplink large-scale MIMO system of Nt single-antenna
users and Nr antennas at base station; and a top-level block diagram of
a MPD detector.

received per-tone signal vector yc can be modeled as:

yc = Hcxc + nc (3.1)

Here the received symbols are yc ∈ CNr , and the transmitted user M -QAM symbols

are xc ∈ ÃNt , where Ã is the QAM alphabet. The channel matrix Hc ∈ CNr×Nt is

assumed to be an i.i.d. Rayleigh fading channel, and nc is an additive white circular-

symmetric complex Gaussian noise vector nc = [nc1, n
c
2, .., n

c
Nr

]T with independent

zero-mean components and N0-variance. The complex values in the equation can be
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written in the real domain as:<(yc)

=(yc)

 =

<(Hc) −=(Hc)

=(Hc) <(Hc)


<(xc)

=(xc)

+

<(nc)

=(nc)


⇒ y = Hx + n, (3.2)

where <(·) and =(·) denote the real and imaginary parts, respectively. The real

and imaginary part of a QAM symbol are represented by the two underlying Pulse

Amplitude Modulation (PAM) symbols from alphabet A, i.e. x ∈ A2Nt , where |A| =
√
M .

After matched filtering (MF) on received y and normalizing by Nr, we get

HTy

Nr

=
HTHx

Nr

+
HTn

Nr

⇒ yMF = Gx + n, (3.3)

Based on (3.3), the message-passing detector estimates the mean and variance of x

by iteratively performing interference cancellation and constellation matching.

3.1.1 Interference-Plus-Noise Approximation and Cancellation

From the i-th user’s perspective, the matched-filtered channel observation yMF
i

is the intended symbol xi coupled with interference from the other users plus noise.

The equation (3.3) can be rewritten as:

yMF
i = Giixi +

2Nt∑
j=1, j 6=i

Gijxj + ni, (3.4)

where the non-bold symbols represent the elements of the vector (or matrix) indexed

by subscripts, e.g. Gij is the element in the i-th row and j-th column of G.
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Let wi represents the interference-plus-noise of user i:

wi =
2Nt∑

j=1, j 6=i

Gijxj + ni. (3.5)

We approximate wi as a Gaussian random variable due to the large number of Nt in

massive MIMO and the central limit theorem, i.e., wi ∼ N (µwi
, σ2

wi
). The mean and

variance are calculated as:

µwi
=

2Nt∑
j=1, j 6=i

GijE[xj] + 0,

σ2
wi

=
2Nt∑

j=1, j 6=i

G
2

ijVar[xj] + σ2
n (3.6)

Here E[xj] and Var[xj] are the mean and variance of the symbol estimate xj. By can-

celing this interference-plus-noise wi from the observation yMF
i , the intended symbol

xi can be estimated also as a Gaussian random variable whose mean and variance are

calculated as follows:

µxi = (yMF
i − µwi

)/Gii,

σ2
xi

= σ2
wi
/G

2

ii. (3.7)

3.1.2 Constellation Matching

The symbol estimates from interference cancellation are refined in this step by

considering the constellation information. With the Gaussian approximation in (3.7),

the posterior probability of each constellation point is calculated as:

P (xi = s | yMF
i ,G) ∝ exp(

−1

2σ2
xi

(s− µxi)2) ∀s ∈ A, (3.8)

43



where s is a symbol in the PAM constellation A. And (3.8) can be viewed as taking

|A| =
√
M discrete constellation samples from the continuous Gaussian estimation of

the symbol xi. Given the probabilities of constellation points, the mean and variance

of the symbol xi are refined as:

E[xi] =
∑
∀s∈A

sP (xi = s),

Var[xi] =
∑
∀s∈A

s2P (xi = s)− E[xi]
2. (3.9)

Here we drop the condition terms yMF
i and G of P (xi = s) for convenience. This

update process can be viewed as a re-match of the first and second moments (mean

and variance) of the symbol estimate. The updated mean and variance will be used

to calculate the interference-plus-noise (3.6) for the next message-passing detection

iteration. The iteration stops when all the symbol estimates converge or a certain

number of iterations is reached.

3.2 Complexity Reduction and Convergence Speedup

In every MPD iteration, the mean and the variance calculation in (3.6) for each

symbol requires 6(Nt − 1) multiply-accumulates (MAC); and constellation matching

requires
√
M Gaussian evaluations (which can be implemented by table lookup) in

(3.8) and 3
√
M + 1 MACs in (3.9). The hardware implementation cost grows with

the number of users Nt and the order of modulation M .

To reduce the hardware complexity, we simplify the original message-passing de-

tection by a symbol hardening technique. In addition, we adopt the layered scheduling

to roughly double the convergence speed. The proposed schemes are elaborated in

the following subsections.
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Figure 3.2:
(a) Full constellation matching (Nm =

√
M) and (b) constellation match-

ing using 2 nearest neighbors (Nm = 2).

3.2.1 Low-Complexity Symbol Hardening

The constellation matching step in the original MPD requires exhaustive com-

putation to obtain the probabilities of all constellation points, which dominates the

implementation cost, especially when the constellation size is large. We propose a

symbol hardening technique based on the nearest neighbor approximation.

3.2.1.1 Nearest-Neighbor Symbols Approximation

We first approximate constellation matching by using only Nm (out of
√
M) most

likely constellation points in A. For example, if Nm = 2, we will choose two most

likely constellation points s1 and s2 (which are also the two nearest neighbors of µxi

as shown in the Fig. 3.2(b)) to approximate the original constellation matching in

(3.9) as:

E[xi] ≈ s1P (xi = s1) + s2P (xi = s2),

Var[xi] ≈ s21P (xi = s1) + s22P (xi = s2)− E[xi]
2. (3.10)

Since s1 and s2 are two neighboring constellation points that are spaced apart by 2

(say s2 = s1 + 2), and P (xi = s1) + P (xi = s2) = 1, the equations can be further
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simplified as:

E[xi] ≈ s1 + 2P (xi = s2),

Var[xi] ≈ 4P (xi = s2)(1− P (xi = s2)). (3.11)

The simplification requires only one costly Gaussian evaluation and one MAC oper-

ation by a factor of 8 from the baseline (3.9) for the 256-QAM symbol estimation.

3.2.1.2 Symbol Hardening

When an i.i.d. channel is assumed for a massive MIMO system, the variance of the

symbol estimates converges early and at a fast pace, shown in Fig. 3.3. This allows

Figure 3.3:
Convergence of interference canceled symbol estimate variance. Here 64
lines represent the value of σ2

xi
for i = 1, ..., 64.

for the aggressive choice of Nm = 1. This nearest-neighbor approximation not only

eliminates the variance calculation but also simplifies the mean calculation further to
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Table 3.1:
Computational Complexity Comparison of Original, Two-Neighbor Ap-
proximation and Symbol-hardening MPD

Original MPD Two-neighbor approx. MPD Symbol-hardening MPD

(Nm =
√
M) (Nm = 2) (Nm = 1)

Interference
cancellation

6(Nt − 1) MACs 6(Nt − 1) MACs 2(Nt − 1) MACs

Constellation 3
√
M + 1 MACs 1 MAC

matching
√
M Gaussian lookups 1 Gaussian lookup

Total
6Nt + 3

√
M − 5 MACs 6Nt − 5 MACs

2Nt − 2 MACs√
M Gaussian lookups 1 Gaussian lookups

The complexity number is evaluated for one symbol in each iteration. The overall MPD com-
plexity is the total number ×2Nt ×Niter, where Niter is the number of iterations.

one hard decision making:

E[xi] ≈ hard(µxi) = 2 [(µxi − 1)/2] + 1,

Var[xi] ≈ 0. (3.12)

Here notation [.] represents nearest integer function which can be implemented by

bit slicing, requiring no multipliers compared to original calculations (3.8) and (3.9).

That is, the 5-bit harden symbol output for each of the real and imaginary parts of

256-QAM is obtained from the 8-bit soft symbol estimate xi truncating the 3 LSB

bits (represent 20, 2−1, 2−2). Moreover, symbol hardening eliminates all variance cal-

culations, saving half of the MACs in both interference cancellation and constellation

matching with a negligible impact on SNR.

The computational complexity of the original MPD, the two nearest-neighbor

approximated MPD, and the proposed symbol-hardening MPD are summarized in

Table 3.1. In all, the approximation cuts 11072 MACs and 1024 Gaussian lookups

while sacrificing SNR by less than 0.1 dB for a Nr = 128×Nt = 32 256-QAM MIMO

system.
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Figure 3.4:
Bit error rate (BER) performance of 128× 32 uplink MMSE, CHEMP
and proposed detections.

3.2.2 Flooding and Layered Schedules

Inspired by the message-passing architectures for LDPC decoding, we explore both

flooding and layered schedules in the proposed message-passing detection for efficient

hardware implementations.

Flooding scheduling. With a flooding scheduling, the messages containing

means and variances of all the symbol estimates are passed in parallel for each itera-

tion. This scheduling requires the most hardware resources.

Layered scheduling. The layered scheduling divides all the messages into Nlayer

layers. Each layer processing updates the partial interference contributed from the

symbols in the layer. Right after a layer is done, the updated symbol estimates are

forwarded to the next layer. As an added benefit, this intra-iteration forwarding
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speeds up convergence by nearly 2 times compared to the flooding schedule. As

shown in Fig. 3.4, the proposed message-passing detector with layered scheduling

(Nlayer = 4) requires only 7 iterations to achieve similar BER-SNR performance as

the flooding scheduling running 13 iterations. The proposed low-complexity layered

message-passing detection is summarized in Algorithm 1.

Algorithm 1 The Proposed 4-Layered Hard-Symbol Message-Passing Detection
Inputs:

1: G = HHH/Nr = [g1, ...,g2Nt
], where gi is the i-th column of G

2: yMF = HHy/Nr

Initialization:
3: All x← 0
4: Partial interference Wl ← 0 for l = 1 : 4

Iteration:
5: while iteration count iter < max iterations itermax do
6: for layer l = 1 : 4 do

// Partial interference update
7: Wl ←

∑
∀j∈L gjxj, with layer indices L = {4(l − 1) + 1 : 4l}

// Interference cancellation
8: xsofti ← (yMF

i −
∑4

k=1 Wk + gixi)/Gi,i ∀i = 1 : 2Nt

// Symbol hardening
9: x← hard(xsoft)

// Early termination
10: if all x converges then
11: Terminate the iteration.
12: iteration count iter ← iter + 1

3.3 Architectural Optimization

A message-passing detector requires two sets of processing elements (PE) that

iterate between each other, a set of Nt constellation PEs (CPE) to update the real

and imaginary parts of a user estimate by considering the
√
M constellation points,

and a set of Nt Interference PEs (IPE) to compute and cancel the interference-plus-

noise for each user. Each message passing between PEs contains 2 symbol estimates,

the real and imaginary parts of a user QAM symbol. In this section, we explore three
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Figure 3.5:
Architectural optimization from (a) fully parallel architecture using a
flooding schedule to (b) block parallel architecture using a layered sched-
ule.

architecture designs for a massive MIMO uplink detector supporting Nr = 128 base

station antennas and Nt = 32 single-antenna users.

3.3.1 Fully Parallel Architecture

The detector can be simply mapped to a fully parallel architecture with 32 Inter-

ference PEs and 32 constellation PEs (Fig. 3.5(a)) to support flooding scheduling. All

64 PEs are able to send messages to each other at the same time. This architecture

requires nearly 4K MACs and 10K interconnects between the PEs. Despite the high

throughput, the fully parallel architecture is dominated by global wiring, resulting in

a large silicon area, low clock frequency, and high power.

3.3.2 4-Layer Architecture

The 4-layer architecture is shown in Fig. 3.5(b). It divides the use of all 32 user

estimates into 4 layers (i.e. user 4(l−1)+1 to user 4l belong to layer l, for l = 1, ..., 4),

thus the 4-layer architecture uses only 1/4 as many MACs in each Interference PE.

The interference cancellation is done layer by layer. For example, in processing layer

1, all 32 Interference PEs compute the partial interference contributed from the 8
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Figure 3.6:
The proposed 4-layer 2-way interleaved architecture and the data flow of
first 4 cycles.

users in the layer 1, and combine with the other partial interference calculated and

stored in previous processing of layer 2, 3, and 4. The combined interference is used

for cancellation and the results are sent to CPEs to perform constellation matching.

After a layer is done, the updated symbol estimates are forwarded to the next layer.

As an added benefit, this intra-iteration forwarding speeds up convergence by nearly

2 times compared to the flooding schedule used in the fully parallel architecture.

3.3.3 4-Layer Architecture with 2-way Interleaving

To reduce the area and power further, we halve the number of Interference PEs

and time-multiplex their use into 2 groups with a 2-stage pipeline (shown in Fig. 3.6).

In each stage, a group of CPEs and a group of IPEs are able to active at the same
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Figure 3.7:
Detailed block diagram of the proposed message-passing detector using
16 Interference PEs and 16 constellation PEs.

time without violating data dependency between consecutive layers. The layer-group

schedule is interleaved to avoid pipeline stalls.

The detailed block diagram of the proposed 4-layer 2-way interleaved architecture

is shown in Fig. 3.7. The design is consist of 16 Interference PEs, 16 Constella-

tion PEs, a symbol estimate memory (X MEM), an input memory, and a group of

controllers. The input memory stores the preprocessed Gram matrix G and match-

filtered channel outputs yMF . The controllers are in charge of convergence detection

and early termination, dynamic precision control, and layer-group scheduling. Based

on auto-place-and-route results shown in Fig. 3.12, the overall architectural optimiza-

tion from (a) to (c) reduces area and power by 4.24 times and 2.83 times respectively

at a cost of 2.41 times lower throughput. The throughput can be further recovered by

1.5 times by enabling early termination, which will be mentioned in the next section.
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Figure 3.8:
Multiplier with full precision mode (left) and low precision mode (right).

3.4 Low-Power Techniques

We apply adaptive dynamic precision control, clock gating and early termina-

tion to our proposed 4-layer 2-way interleaved architecture for further improving the

energy efficiency. The three low-power techniques are elaborated in the following

subsections.

3.4.1 Adaptive Dynamic Precision Control

The datapath power of the MPD architecture is dominated by the multipliers. To

save significant dynamic power, we exploit the convergence behavior of the MPD to

adapt the multiplier precision dynamically.

3.4.1.1 Convergence Behavior

In early iterations, the user symbol estimates are noisy and unstable so the detector

makes coarse symbol estimates. That is, the symbol updates often result in large

jumps from between constellation points. With more iterations, the symbol estimates

tend to be more accurate and the detector fine-tunes the estimates. The symbol

updates eventuality become small movements and convergence is reached.
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Figure 3.9: Power breakdown and the activities of registers.

3.4.1.2 Multiplier Design with Full/Low-Precision Mode

Based on the convergence behavior, the MPD detector requires only low-precision

multiplications for coarse symbol estimates in the early iterations and high-precision

multiplications to fine tune the results in the late iterations. Therefore, we design

the multipliers in the Interference PEs to support two precision modes as shown

in Fig 3.8. In particular, a 12b×4b full-precision multiplier is designed to support

a 6b×2b low-precision mode with the LSBs disabled, saving 75 % of the switching

activity and reducing dynamic power. The precision mode can be dynamically tuned

to achieve lower power consumption to meet different SNR and BER requirements.

3.4.2 Clock Gating Exploiting Regular Memory Access

Registers are used on-chip as data memory to support the wide access required

by the architecture. The memory access is deterministic and regular as shown in

Fig. 3.9, e.g., the 3Kb partial interference memory (M MEM) is only updated once

every 8 cycles, and the 512b symbol estimate memory (X MEM) is updated once

every 2 cycles. Therefore we implement clock gating to turn off the clock input when

the memory is not updated to save dynamic power.
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Figure 3.10:
The proposed MPD Chip photo containing a PLL, testing block and
detector core.

3.4.3 Early Termination

In this work, we consider that the convergence is reached when the current symbol

estimate matches the estimate from the previous cycle. The MPD iteration is early

terminated when all the symbol estimates reach convergence. A convergence checker

is implemented and a global Finite State Machine (FSM) early-termination controller

monitors the convergence of each symbol.

3.5 Chip Measurement Results and Discussion

The die photo of the massive MIMO detector design is shown in Fig. 3.10. The

test chip is fabricated in a 40 nm CMOS technology including a 0.58 mm2 detector

core, a PLL to generate the clock, a test memory to store test vectors, and scan

chains for input and output. The chip is measured to run at a maximum frequency
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of 433 MHz at the nominal supply voltage of 0.9 V in room temperature, dissipating

238.7 mW.

3.5.1 Voltage Scaling

Fig. 3.11 shows the average throughput (Gb/s) and energy efficiency (pJ/b) with

voltage-frequency scaling from the nominal VDD of 0.9 V to the lowest VDD of 0.55 V.

With early termination enabled on-chip, detection converges in 5.7, 5.2, and 4.9

iterations on average at 23 dB, 25 dB, and 27 dB SNR, enabling a throughput up to

2.82 Gb/s and an energy efficiency up to 84.2 pJ/b.

Figure 3.11:
Measured average throughput (red) and energy efficiency (black) with
voltage scaling at different SNRs.
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Figure 3.12:
Measured throughput, power, and energy consumption improvement by
proposed dynamic precision control, clock gating and early termination.

3.5.2 Results of Architectural Optimizations

Fig. 3.12 shows the MPD chip area, power, throughput, and energy compared to

the architectures mentioned in Section 3.3. Compared to the baseline fully parallel

architecture (a), the proposed 4-layer 2-way architecture (c) reduces area and power

by 76 % and 65 % respectively while sacrificing 69 % of throughput loss, based on

the place-and-route results. By adopting early termination, the MPD detector chip

can recover the throughput loss to 37 % with average 4.9 detection iterations. In

addition, the clock gating and the dynamic precision control allows the chip to reduce

power dissipation by 70 % and energy per bit by 52 % over the baseline fully parallel

architecture.

3.5.3 Comparison

We compare the MPD chip with state-of-the-art MIMO detector designs in Ta-

ble 3.2. Note that all the previous approaches, including sphere decoding [18, 17, 19]

and MMSE [38], incur much higher implementation costs in a large-scale MIMO
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Table 3.2: Comparison Table of State-of-the-Art MIMO Detector Designs

Detector
Borlenghi Noethen Winter Chen This Work

[18] [17] [19] [38]
Alogorithm SDa SDa SDa MMSE MPDb

MIMO size MIMO MIMO MIMO MIMO massive MIMO
(Nr ×Nt) ≤4× 4 ≤4× 4 ≤4× 4 4× 4 128× 32

Modulation ≤64 ≤64 ≤64 256 256
Technology [nm] 65 65 65 65 40
Core area [mm2] 2.78 - 0.31 0.7 0.58

Gate counts [kGE] 872 383 215 347 1022
Frequency [MHz] 135 445 333 517 433

Power [mW] - 87 38 26.5 238.7
Throughput [Gb/s] 0.194 0.396 0.296-0.807 1.379 2.76 c

Area efficiency
[Mb/s/mm2]

0.07 - 0.96-2.6 1.97 4.76

Energy efficiency
[pJ/b]

920 220 48 19.2 79.8

Energy efficiency
[pJ/b/TX antenna ]

230 55 12 4.8 2.49

a sphere decoding.
b message-passing detection.
c early termination with average 4.92 iterations and minimal 3.25 iterations at

SNR=27dB.

system. This chip is the first silicon demonstration of a detector that supports a

large-scale multi-user MIMO configuration, with 128 base station antennas and 32

single-antenna users. Despite the large-scale MIMO processing, the throughput of

this chip still surpasses all the previous designs, and the energy efficiency remains

competitive.

3.6 Summary

We demonstrate a 0.58 mm2 128× 32 256-QAM massive MIMO uplink detector

based on message-passing detection. With the proposed symbol hardening technique,

the complexity is reduced by more than 60 %. The detector implements a pipelined

block parallel architecture using a layered-grouped schedule to accelerate convergence,

enabling a throughput of 2.76 Gb/s (running an average 4.92 iterations with early
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termination) at 221 mW. The chip incorporates adaptive precision control and clock

gating to improve energy efficiency by up to 43 %.
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CHAPTER IV

Link-adaptive Expectation-Passing Massive MIMO

Detector

In this chapter, we present a 2.0 mm2 128× 16 massive MIMO detector IC that

provides 21 dB array gain and 16 times multiplexing gain at the system level. The

detector implements iterative expectation-propagation detection (EPD) for up to 256-

QAM modulation. Tested with measured channel data [39] , the detector achieves

4.3 dB processing gain over state-of-the-art massive MIMO detectors [40, 41], enabling

2.7 times reduction in transmit power for battery-powered mobile terminals. The EPD

chip uses link-adaptive processing to meet a variety of practical channel conditions

with scalable energy consumption. The design is realized in a condensed systolic

array architecture and an approximate moment-matching circuitry to reach 1.8 Gb/s

at 70.6 pJ/b. The performance and energy efficiency can be tuned over a wide range

by UTBB-FDSOI body bias.

4.1 Channel Conditions and Link Adaptive Detection in Prac-

tical Massive MIMO Systems

Real-time detection for massive MIMO is compute-intensive and power-hungry

due to large matrix dimensions and fast varying channels. Our MPD detector and
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Figure 4.1: Illustration of a multi-user massive MIMO system.

other previous works [40, 41] demonstrated low-complexity massive MIMO detec-

tors based on independent and identically distributed (i.i.d.) channel assumption in

massive MIMO. However, the i.i.d. channel assumption does not always hold and

these simplified detectors suffer from significant performance losses when tested in

measured massive MIMO channels, especially in cases of high user load.

Fig. 4.2 shows the condition numbers of measured LOS (blue), NLOS (red) and

ideal iid channels (green) with 100 subcarriers. The shade of each channel represents

the range, the dashed line represents the standard deviation, and the solid line rep-

resents the means of the condition numbers. In the measured LOS channels where

the correlated links are dominant, the channel matrices H are ill-conditioned with

large condition numbers around 30. This makes the linear detection algorithms un-

stable and sensitive to errors, resulting in more than 6 dB of SNR loss against the

optimal ML detection; whereas in the ideal i.i.d. channel, which assumes every link

is perfectly independent to each other, the condition numbers are relatively small. A

well-conditioned channel enables the use of linear MMSE detections to achieve nearly

optimal performance.

In designing a practical massive MIMO detector, we select EPD that performs

iterative interference cancellation [42] to offer near-optimal performance even in unfa-
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Figure 4.2:
The condition numbers of measured LOS (blue), NLOS (red) and ideal
iid channels with 100 subcarriers. The shade of each channel represent
the range, the dashed line is the standard deviations, and the solid line
is the means of the condition numbers.

vorable channel conditions. The complexity of EPD is limited to O(K3) per iteration,

where Nt is the number of users. By iterative processing, an EPD adapts the pro-

cessing effort to the channel, so as to achieve the required BER at the lowest energy.

The EPD design incorporates explicit matrix inversion, so it could be reused for both

uplink and downlink processing. Evaluated using measured massive MIMO channels,

the EPD outperforms a linear MMSE detector by 0.7 dB, 4.3 dB, and 3.5 dB in i.i.d.,
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Figure 4.3:
Top: BER of MMSE detector (black line) and EPD (read line) under
different channels. Bottom: the absolute values of Gram matrices |HHH|.

non-line-of-sight (NLOS), and line-of-sight (LOS) conditions, respectively, as shown

in Fig. 4.3.

4.2 Expectation Propagation Detection (EPD)

As mentioned in Section 3.1, a massive MIMO uplink systemwith Nr base station

antennas serving Nt single-antenna users in each channel (subcarrier) use can be

modeled in real-domain as:

y = Hx + n. (4.1)

Here the received symbols y = [y1, y2, ..., y2Nr ]
T ∈ R2Nr×1, and transmitted user

symbols x = [x1, x2, ..., x2Nt ]
T ∈ R2Nt×1. The channel matrix H ∈ R2Nr×2Nt. And n

is an additive white Gaussian noise vector n = [n1, n2, .., nNr ]
T with independent zero-

mean components and N0-variance. Note xk and x(k+Nt) are the two Pulse Amplitude
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Figure 4.4:
Block diagram of EPD. The blocks in gray shade perform dynamic di-
mension reduction and parallel interference cancellation (detailed in 4.3).

Modulation (PAM) symbols representing the real and imaginary part of an M -QAM

symbol, i.e. xk + ix(k+Nt), of the user k. The PAM alphabet is denoted by A and

|A| =
√
M .

According to the Bayes’ theorem, the posterior probability of the user symbol is:

P (x | y) ∝ P (y | x)P (x)

∝ N (y; Hx, N0I)
2Nt∏
i=1

P (xi), (4.2)

where the prior probability of the user symbol P (xi) is a discrete uniform distribution

over the PAM constellation A:

P (xi) =
1√
M

Ixi∈A =


1/
√
M xi ∈ A,

0 otherwise.

(4.3)

In practice, it is infeasible to enumerate all possible combinations of user symbols in

massive MIMO systems with a high QAM order.

Similar to an MMSE detector, an EPD detector first approximates each prior by
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a Gaussian distribution P̂ (xi) with mean µi and variance σ2
i . Then the posterior is

estimated to be:

P̂ (x | y) = N (y; Hx, N0I)
2Nt∏
i=1

P̂ (xi)

= N (y; Hx, N0I)
2Nt∏
i=1

N (xi;µi, σ
2
i ). (4.4)

This approximated posterior P̂ (x | y) in all can be modeled as a Gaussian distribu-

tion, which is tractable compared to the true posterior P (x | y). An EPD detec-

tor minimizes the divergence between the approximated posterior P̂ (x | y) and the

true posterior P (x | y) by iteratively refining the mean (µi) and variance (σ2
i ) of the

Gaussian-approximated prior. The EPD iteration is performed in 4 steps: 1) ini-

tialize the approximated prior as N (0, Es), where Es represents the symbol energy;

2) calculate the approximated posterior P̂ (x | y) using MMSE estimation; 3) refine

the mean and variance of each prior by moment-matching; 4) repeat step 2 and 3

until convergence or a certain iteration limit. The step 2 and 3 are elaborated in the

following subsections.

4.2.1 Posterior Calculation with MMSE Estimation

With Gaussian priors P̂ (xi), the approximated posteriors P̂ (x | y) in (4.4) are

calculated by MMSE estimation steps as described below.

Step 1. Pre-processing: Compute Gram matrix G = HHH, and perform match filtering

yMF = HHy. Note that, this pre-processing is only done in the first iteration of

the EPD detection and the Gram matrix G can be shared by multiple uplink

data within the channel coherence time.

Step 2. Regularization: With the mean (µi) and variance (σ2
i ) of the Gaussian prior,
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regularize G and yMF as:

A = G +N0Λ, (4.5)

yMMSE = yMF +N0λ, (4.6)

where regularization matrix Λ = diag(1/σ2
1, ..., 1/σ

2
Nt

) and regularization vector

λ = [µ1/σ
2
1, ..., µNt/σ

2
Nt

]T.

Step 3. Matrix inversion: Compute MMSE filter matrix A−1 by performing LDL de-

composition to get A = LDLT, followed by forward substitution to get L−1,

and backward substitution to get A−1.

Step 4. MMSE filtering: Apply MMSE filter matrix A−1 on yMMSE to obtain the mean

of the posterior P̂ (x | y) and extract the diagonal terms of A−1 to obtain the

variance:

E[x | y] = A−1yMMSE,

Var[x | y] = diag(A−1). (4.7)

The outputs of the MMSE estimation are the first and second moment, i.e. mean

and variance, of the approximated posterior P̂ (x | y) which will be used to refine the

mean and variance of the prior estimate for the next EPD iteration.

4.2.2 Gaussian Prior Refinement with Moment-Matching

To reduce the divergence from the true posterior P (x | y), an EPD detector per-

forms the following steps:

Step 1. Restore one of the Gaussian-approximated prior factors in (4.4) to the true
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uniformly distributed discrete prior Ixi∈A:

P̃ (xi | y) ∝ N (y; Hx, N0I)
∏
j 6=i

P̂ (xj) Ixi∈A

∝ P̂ (xi | y) / P̂ (xi)× Ixi∈A

∝ P̂\i(xi | y)× Ixi∈A for i = 1, ..., 2Nt. (4.8)

Here P̂\i(xi | y) ∼ N (ti, h
2
i ) is defined as the cavity probability [42], whose

mean ti and variance h2i are computed as:

h2i = (1/Var[xi | y]− 1/σ2
i )
−1,

ti = h2i × (E[xi | y]/Var[xi | y]− µi/σ2
i ). (4.9)

And by multiplying Ixi∈A, the posterior P̃ (xi | y) is obtained by taking discrete

samples of constellation points on the continuous cavity probability P̂\i(xi | y)

as:

P̃ (xi = s | y) ∝ exp

(
−(s− ti)2

2h2i

)
s ∈ A, (4.10)

whose mean and variance are denoted as E[xi] and Var[xi].

Step 2. Refine the Gaussian-approximated prior, as P̂ (xi)
(new), to match the first and

second moments (mean and variance) between P̃ (xi | y) and P̂ (xi | y)(new),

where

P̂ (xi | y)(new) ∝ N (y; Hx, N0I)
∏
j 6=i

P̂ (xj) P̂ (xi)
(new)

∝ P̂\i(xi | y)× P̂ (xi)
(new). (4.11)

The refined mean µ
(new)
i and variance σ

2(new)
i of the prior P̂ (xi)

(new) are calcu-
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lated as follows:

µ
(new)
i = h2i × (E[xi]/Var[xi]− ti/h2i ),

σ
2(new)
i = (1/Var[xi]− 1/h2i )

−1. (4.12)

Finally, the prior update is smoothened with an update rate β for next EPD

iteration:

µi = βµ
(new)
i + (1− β)µi,

σ2
i = βσ

2(new)
i + (1− β)σ2

i . (4.13)

In the next EPD iteration, this updated mean and variance of the prior is

used to perform MMSE estimation mentioned in subsection 4.2.1 . The EPD

iteration stops when the prior converges or a certain iteration limit is reached.

Then the EPD detector outputs the hard decisions of the last symbol estimates

µ = [µ1, ..., µ2Nt ]
T:

xEPD = hard(µ) = 2 [(µ− 1)/2] + 1. (4.14)

Here, the notation [.] represents nearest integer function which can be imple-

mented by bit slicing.

4.3 Link Adaption in EPD for Energy Efficiency

The iterative nature of the EPD algorithm offers an additional layer of link adap-

tation, in addition to modulation and code scheme, to deal with the varying channels

in the real mobile user deployment. That is, in a favorable propagation environment,

where highly independent links are dominant, EPD may need only one iteration to
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obtain reliable estimates. In this case, EPD has the same BER-SNR performance as

a simple MMSE detector can achieve. On the other hand, when the channel degrades

to a more correlated one, EPD is able to adapt to the channel by using more iter-

ations to cancel the interference at the cost of longer latency and higher processing

effort. Besides controlling of iteration number, we design within-iteration adaptations

to improve energy efficiency.

4.3.1 Dynamic Dimension Reduction

Within the EPD iteration, the computation is dominated by the matrix inversion,

whose complexity scales cubically with the matrix size 2Nt. With different user

deployments, the lightly correlated symbol estimates tend to converge much faster

than the others. Hence we set a variance threshold σ2
thres and consider a symbol

estimate to be converged if it has a small variance, i.e. σ2
i < σ2

thres. Then, we “freeze”

the set of converged symbol estimates (M = {m | σ2
m < σ2

thres, m = 1, ..., 2Nt}) and

remove them from later processing, reducing the computational workloads. We refer

to M, the set of frozen user indices, as the “frozen list”.

1. Frozen symbol removal: remove the columns and the rows associated with

the frozen symbols in the original Gram matrix as the dimension-reduced Gram

matrix GK. Where K = {1, 2, ..., 2Nt}\M is the set of unfrozen symbol indices,

referred to as “free list”.

This reduces the dimension of the matrix for later MMSE processing. Thus the

computation requirement of EPD is significantly reduced after each iteration.

In our implementation, the Gram matrix buffer is designed to be flexible to

dynamically disable multiple columns and rows.

2. Interference cancellation: cancel the interference contributed by the con-
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verged (“frozen”) symbols:

yIC = yMF −
∑
i∈M

µigi, (4.15)

where gi is the i-th column of G. The updated yIC then goes through MMSE

processing (regularization and filtering) mentioned before:

yMMSE
i = yICi +N0

(
µi
σ2
i

)
i ∈ K. (4.16)

4.3.2 Early Termination

At the end of each EPD iteration, the convergence controller checks if all the

users are frozen. If so, all the user estimates are considered to be converged and the

controller early terminates the EPD iteration to save unnecessary processing.

Figure 4.5:
The effective number of symbols and iterations reduced by dimension
reduction and early termination under different SNRs in LOS channel
(left) and NLOS channel (right).

4.3.3 Evaluation

To evaluate the gain of the dynamic dimension reduction and the early termina-

tion techniques, we perform Monte Carlo simulations using different massive MIMO
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Figure 4.6: Link-adaptive EPD architecture.

channels measured by LuMaMi testbed, as shown in Fig. 4.5. Here, the results are

averaged and we set the threshold variance σ2
thres = 0.02. On average, the effective

number of symbols, and thus the matrix size, can be reduced by more than 50 % after

the first iteration in the most challenging LOS channels and more than 70 % in the

less-correlated NLOS channels. The EPD iteration can be early terminated within

2 iterations on average. As can be seen in the figure, the EPD with the proposed

adaptation scheme employs just-enough processing efforts to meet the target BER.

4.4 EPD Architecture

The overall EPD architecture design is shown in Fig. 4.6. The Gram and yMF

memory buffer incoming channel and 16 match-filtered uplink streams. The memory

supports flexible access patterns required for reconfiguration. The MMSE-PIC filter

cancels the inter-user interference from the uplink user data. Inside the MMSE-

PIC, the Gram matrix is regularized by current estimated variance as in (4.5); then

the regularized matrix A is fed in an LDL decomposition based matrix inversion unit

constructed by condensed systolic arrays to calculate A−1. Meantime, the interference

contributed by the converged symbol estimates is canceled from the match-filtered

yMF as in (4.15) followed by the regularization as in (4.16). The resulting yMMSE is
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filtered by the MMSE filtering matrix A−1 to obtain the MMSE estimation.

The moment-matching unit refines the symbol estimates by incorporating constel-

lation information. The detection control unit dynamically adjusts the per-iteration

processing effort and detects early convergence. Updated symbol estimates from the

moment-matching unit are buffered in the symbol estimate memory and fed back

to the MMSE-PIC filter for iterative refinement. Note that for the downlink data

streams, our architecture can also support MIMO precoding by sharing most of the

processing and memory units.

In the following subsections, we will elaborate on the implementations of the 2

dominant processing units in the EPD architecture.

4.4.1 Matrix Inversion Architecture

One of the most compute-intensive and accuracy-critical parts of the EPD is the

matrix inversion block in the MMSE filter. The matrix inversion architecture is shown

in Fig. 4.7 with 4 blocks: First, matrix A is decomposed to a lower triangular matrix

L and diagonal matrix D by a systolic array (block 1). The elements of L and D are

calculated as follows:

Djj = Ajj −
j−1∑
k=1

LjkL
∗
jkDkk, (4.17)

Lij = D−1jj

(
Aij −

j−1∑
k=i

LikL
∗
jkDkk

)
i > j. (4.18)

Second, L−1 is computed by another systolic array (block 2); Third, the partial

products of L−1 and D−1 in (4.19) are calculated (block 3). Finally, the partial

products are accumulated and the inverted matrix A−1 is stored (block 4).

A−1ij =
2Nt∑
k=1

L−1ki D
−1
kk L

−1
kj i ≤ j. (4.19)
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Figure 4.7:
Example of a 5× 5 matrix inversion micro architecture based on systolic
arrays.

4.4.1.1 Condensed LDL and L-1 Systolic Array

A systolic array is often used to implement the LDL decomposition to realize

highly accurate matrix inversion. The systolic array architecture features a regular

architecture with an efficient routing and simple control. However, the hardware

utilization of a systolic array architecture is only 33.3 % [43] due to the need for

zero-padding inputs.

In this work, we implement a condensed LDL systolic array, which merges under-

utilized PE circuitry to improve the hardware utilization to 90 % for a 16× 16 array,

while reducing the interconnect overhead by more than 70 %. As shown in Fig. 4.8,

a PE in a regular systolic array performs division (PE0), multiplication (PE1) or

MAC (PE2 and PE3) operations and passes its output to the neighboring PEs. In

our condensed systolic array, every three PEs in a row are merged. The merging

shortens data movements in the systolic array. Rather than passing data along with

many stages of unused operations in a systolic array, our condensed array limits data

movements using holding buffers to maximize data reuse. The data reuse is especially

advantageous in our design, as it requires a relatively long 28-bit data bit width to

support a wide range of channel conditions.
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Figure 4.8:
Condensed LDL systolic array with enhanced utilization and merged PE
designs.

The condensed array architecture reduces silicon area by 62 % compared to the

regular systolic array. Moreover, the condensed array shortens data movement delay

and provides a larger fraction of a clock period to data processing. The same design

method is applied to condense the L−1 systolic array to reduce the area cost and

improve its PE utilization.

4.4.1.2 Parallel Partial Product Unit

As block 2 streams out the elements of a row of L−1 (L−1ki for i = 1...k− 1) one by

one, a parallel partial product unit (block3) consumes the data stream right away to

compute the partial product terms in (4.19). A set of partial products is represented
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by Pk:

Pk = {L−1ki D
−1
kk L

−1
kj | 1 < i ≤ j < k}. (4.20)

For the k-th data stream, i.e. {L−1ki | i = 1...k − 1}, the input data L−1ki is multiplied

by D−1kk inherently generated from the LDL systolic array and the result is pushed

into a shift register; in the meantime, the input L−1ki is multiplied by the elements

stored in the shift register in parallel to generate the partial products in Pk.

4.4.1.3 Partial Product Accumulation and Inversion Matrix Buffer

The partial products are sent to the MMSE filter matrix buffer and accumulated

to complete the summation in (4.19). The accumulation operation is designed to

be near the memory to take advantage of the regular data flow and reduced routing

overhead. The final inverted matrix A−1 of size 2Nt × 2Nt serves as the MMSE

filtering matrix in the first EPD iteration for every uplink stream within the channel

coherent time. Thus, after being calculated for the first stream, A−1 is stored and

reused for the remaining data streams within the coherence time. The remaining

uplink streams can skip the full-dimension matrix inversion in their first iteration,

saving large of energy and latency.

4.4.2 Approximate Moment-Matching (AMM)

The moment-matching unit refines current symbol estimates by matching the

moments (mean and variance) of the posteriors in (4.8) and (4.11). The computation
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Figure 4.9:
The approximations of mean and variance under input variance of 0.2 and
0.32 for example.

requires to calculate the likelihood probability of each constellation point as in (4.10):

E[xi] =
1

C

∑
s∈A

s× exp

(
−(s− ti)2

2h2i

)
, (4.21)

Var[xi] =
1

C

∑
s∈A

s2 × exp

(
−(s− ti)2

2h2i

)
− E[xi]

2, (4.22)

C =
∑
s∈A

exp

(
−(s− ti)2

2h2i

)
. (4.23)

The computational complexity is proportional to the product of the modulation size

|A| and the number of simultaneously served users. For a high order modulation and

a massive MIMO system, the complexity is prohibitive.
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We design an approximate moment-matching (AMM) to make the complexity

independent of modulation size by exploiting the symmetry of the QAM constellation

in computing the mean and variance estimates. Such an AMM approach is suitable

for a flexible detector that supports a wide range of modulation and MIMO sizes.

The complexity can be further reduced by a piecewise linear approximation to mean

and variance updates:

E[xi] ≈ hard(ti) = 2 [(ti − 1)/2] + 1,

Var[xi] ≈ P00 + P10(1− |ti − hard(ti)|) + P10hi, (4.24)

The mean update is reduced to a hard decision of the input soft symbol ti, where

the notation [.] represents nearest integer function which can be implemented by

bit slicing; and the variance update is fitted to a first-order polynomial function of

the input mean and variance with coefficients P00, P01 and P10. The choice of the

coefficient values is summarized in Table 4.1 and the corresponding approximation as

depicted in Fig. 4.9 sacrifices only 0.5 dB SNR loss based on the simulation.

As shown in Fig. 4.10, compared to a brute-force moment-matching implementa-

tion using 2 dividers, 65 MACs, and 16 exponential evaluations, the AMM circuitry

uses only 2 MACs. AMM also eliminates costly exponentiation and division, and

reduces intermediate bit width requirement. The technique cuts the silicon area of

the moment-matching unit by more than 90 %.

Table 4.1:
Coefficient Values of the Proposed Approximate Moment Matching (4.24)

Coefficient Value
P00 0.3501
P10 -1.2500
P01 2.0000
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Figure 4.10:
Circuitry implementations and complexities of the original and approx-
imated moment-matching.

4.5 Chip Measurement Results and Discussion

An EPD test chip is fabricated in ST 28nm UTBB-FDSOI technology, occupying

2.0 mm core area as shown in Fig. 4.11.

4.5.1 Voltage Scaling and Body-biasing

The measurement results at different core voltages and body biasing in room

temperature are shown in Fig. 4.12. At a nominal voltage of 1.0 V, the EPD chip runs

at 512 MHz, delivering a system throughput of 1.6 Gb/s. By applying forward body

biasing of 0.4 V, a maximum working frequency of 569 MHz is achieved, corresponding
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Figure 4.11: Chip features and microphotograph.

to an 11 % boost in detection throughput to 1.8 Gb/s. The corresponding core power

consumption is 127 mW, translating to an energy efficiency of 70.6 pJ/b. For a low-

power application, reverse body biasing of 0.2 V and voltage scaling of 0.7 V can be

applied to reduce the power consumption to 23.4 mW at a throughput of 754 Mb/s.

4.5.2 Comparison

Compared to the prior MIMO detector designs shown in Table. 4.2, our EPD chip

provides flexibility in terms of modulation and channel adaptation, supports both

uplink and downlink processing, and achieves a high processing gain while maintain-

ing competitive energy and area efficiency. Note that the MPD chip in [40] takes

advantage of the assumption of the diagonal dominance in i.i.d. channels using a

low-complexity, 13-bit implementation without explicit matrix inversion. However,

the MPD encounters an early error floor and fails to provide sufficient processing

gain in practical but unfavorable channels such as LOS. In comparison, our EPD chip

obtains 4.3 dB processing gain in highly correlated channels, equivalent to a 2.7 times

boost in link margin that can be utilized to significantly lower the TX power and
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Figure 4.12:
Measured frequency and power with different core voltages and body
biases in a 128x16 256-QAM LOS channel.

relax the frontend requirements.

4.6 Summary

This work presents a 2.0 mm2 128 × 16 massive MIMO detector IC that pro-

vides 21 dB array gain and 16× multiplexing gain at the system level. The detector

implements iterative expectation-propagation detection (EPD) for up to 256-QAM

modulation. Tested with measured channel data [39], the detector achieves 4.3dB

processing gain over state-of-the-art massive MIMO detectors [40, 41], enabling 2.7×

reduction in transmit power for battery-powered mobile terminals. The IC uses link-
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Table 4.2: Comparison Table of State-of-the-Art MIMO Detector Designs
Chen Tang Prabhu This Work
[38] [40] [41]

S
y
st

em
Algorithm MMSE MPDa MMSE EPDb

MIMO [Nr ×Nt] 4× 4 128× 32 128× 8 128× 16
Modulation 256 256 256 QPSK to 256

Channel Adaptiveness no no no yes
Support Precoding no no yes yes

Link Margin Improvement c

i.i.d. Channel [dB] 0 Error floor d 0 0.7
NLOS Channel [dB] 0 Error floor d 0 4.3
LOS Channel [dB] 0 1.0 0 3.5

Im
p
le

m
en

ta
ti

on

Technology [nm] 65 40 28 28
Core Area [mm2] 0.7 0.58 - 2.0

Power [mW] 26.5 221 18 127
Frequency [MHz] 517 425 300 569

System Throughpute[Gb/s] 1.38 2.76 0.30 1.80
Energy Efficiencyf [pJ/b] 307 20 240 70

Area Efficiencyg[Mb/s/kGE] 0.24 10 0.26 0.5
a Message-passing detection.
b Expectation-passing detection.
c Link margin improvement reflects to SNR gain over MMSE at BER=10−3.
d Error floor occurs before BER=10−3 in NLOS and LOS channels.
e System throughput assumes channel coherence within 7 OFDM symbols and Nt

subcarriers.
f Energy efficiency is (Power/Throughput)/(Nt/16)2.
g Area efficiency is (Throughput/GateCount)× (Nt/16)2.

adaptive processing to meet a variety of practical channel conditions with scalable

energy consumption. The design is realized in a condensed systolic array architecture

and an approximate moment-matching circuitry to reach 1.8 Gb/s at 70.6 pJ/b. The

performance and energy efficiency can be tuned over a wide range by UTBB-FDSOI

body bias.
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CHAPTER V

Conclusion and Outlook

This dissertation presents studies of detector and decoder designs for MIMO sys-

tems from small scale (4 × 4) to large scale (128 × 32 and 128 × 16). Table 5.1 and

the following subsections summarize the three MIMO detector designs presented in

this dissertation.

Table 5.1: Conclusion of the Three MIMO Detector Designs in This Dissertation

The MMSE-NBLDPC IDD reduces the overall SNR requirement for reliable trans-
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mission and simplifies the interface between detector and decoder to reduce the imple-

mentation overhead. The test chip is able to achieve more than 1 Gb/s of throughput

with a 20 pJ/b of energy efficiency.

The MPD ASIC is the first published massive MIMO detector that can serve up

to 32 concurrent users. Taking advantage of the favorable i.i.d. channel property in

massive MIMO, the MPD is implemented with very low complexity while achieving

near-optimal error rate performance. With the layered scheduling and interleaved

architecture, the test chip demonstrates an excellent area efficiency of 4.76 Mb/s/mm2

and an energy efficiency of 2.49 pJ/b per transmit antenna.

The EPD is able to satisfy SNR requirements in a wide range of real-world mas-

sive MIMO channel conditions (tested with measured channels from Lund Univer-

sity). The detector complexity is similar to an MMSE detector, and yet the designed

EPD chip can provide over 3 dB of SNR gain over an MMSE detector under the

measured channels. Incorporating dynamic dimension reduction, condensed systolic

array, and approximate moment-matching, the test chip can adapt to different chan-

nel conditions and achieve the lowest processing energy to meet the target error rate

requirements.

Based on the research presented by this dissertation, we briefly outline future

research topics. In this dissertation, the perfect channel estimation is assumed. To

be one step closer towards practice, analysis of the MIMO detection under a certain

amount of uncertainty on the CSI should be done in the future.

Another possible direction is to look into the joint design of uplink detection and

downlink precoding. Downlink MIMO precoding shares similar processing to the

uplink MIMO detection, thus they can share hardware as demonstrated in the EPD

work. To fully exploit the degree of freedom offered by massive MIMO, we need to

incorporate the concepts of hybrid precoding by co-optimizing precoding in digital

and analog domain in the future.
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