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Abstract— Increasing communication and control capabilities
will allow future power system operators to exploit large
quantities of responsive demand. This paper discusses ongoing
work that employs demand response to improve voltage stability
via virtual spatial shifting of loads (i.e., altering the locational
distribution of power consumption in one time period with
an energy payback in a following time period). In this paper,
we study the impact of load models on a previously proposed
iterative linearization algorithm to determine loading patterns
that maximize a voltage stability margin, namely, the smallest
singular value (SSV) of the power flow Jacobian matrix.
Specifically, we extend the algorithm to enable inclusion of
composite load models consisting of both “ZIP” components
and a steady-state squirrel-cage induction machine (IM) model.
We then investigate the impact of different load models on both
the stability margin and the loading pattern. Using the IEEE 14-
bus system as an illustrative example, the results show that the
type of load model affects the nominal system’s SSV, the optimal
SSV, and the optimal loading pattern. The maximum-achievable
percent change in SSV is larger using IM models than using ZIP
models. We also discuss the difficulty in interpreting the stability
margin when the system undergoes structural changes resulting
from the use of different voltage-dependent load models.

NOTATION

Sets
N Set of all buses
SPV Set of all PV buses
SPQ Set of all PQ buses
SDR Set of buses with demand-responsive loads
Functions
FPk (·) Real power injection at bus k
FQk (·) Reactive power injection at bus k
FZPk (·) Real power demand of ZIP load at bus k
FZQk (·) Reactive power demand of ZIP load at bus k
FIPk (·) Real power demand of IM at bus k
FIQk (·) Reactive power demand of IM at bus k
Hkl(·) Line flow for line (k, l)
Variables & Parameters
J Jacobian matrix
θk Voltage angle at bus k
Vk Voltage magnitude at bus k
θµ,k Stator voltage angle of IM at bus k
Vµ,k Stator voltage magnitude of IM at bus k
θρ,k Rotor voltage angle of IM at bus k
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Vρ,k Rotor voltage magnitude of IM at bus k
sk Slip of IM at bus k
Rs,k IM stator’s resistance at bus k
Xls,k IM stator’s leakage reactance at bus k
Rr,k IM rotor’s resistance at bus k
Xlr,k IM rotor’s leakage reactance at bus k
Xm,k IM mutual reactance at bus k
Y System admittance matrix
Pg,k Real power generation at bus k
Pd,k Real power demand at bus k
Qg,k Reactive power generation at bus k
Qd,k Reactive power demand at bus k
Sd,k Total complex power demand at bus k
SZIP,k Complex power demand of ZIP load at bus k
SIM,k Complex power demand of IM at bus k
κkl Apparent power line limit for line (k, l)
λ Eigenvalue of a matrix
u Normalized right eigenvector
w Normalized left eigenvector
εk Ratio used for the ZIP model
n Size of N
npv Size of SPV

npq Size of SPQ

ndr Size of SDR

a1, a2, a3 ZIP load model real power coefficients
b1, b2, b3 ZIP load model reactive power coefficients

Bold symbols denote vectors including all variables of a
type. Overlines and underlines represent the upper and lower
limits for a variable. Subscript “ref” denotes the slack bus.
Superscript “0” denotes the nominal value. Superscript “T ”
denotes the transpose of a matrix. Superscript “*” denotes
the conjugate of a matrix. The notation X � 0 indicates that
X is a positive semidefinite matrix.

I. INTRODUCTION

Improving communication and control capabilities within
electric power systems makes the coordination of demand-
responsive loads increasingly practical [1]. Significant re-
search efforts have focused on using demand response to
improve power system frequency stability by temporally
shifting load, e.g., [2], [3]. Demand response could also be
employed to improve static voltage stability, which describes
the distance to voltage collapse. For example, [4] and [5]
use load shedding to improve voltage stability, where the
latter uses the loading margin as the static voltage stability
margin. The smallest singular value (SSV) of the power
flow Jacobian matrix has also been used as a stability



margin in, e.g., [6]–[8]. The SSV measures the distance from
the current operating point to the boundary of the feasible
operating region, as described by the power flow equations.
References [9] and [10] formulate Optimal Power Flow
(OPF) problems that incorporate voltage stability constraints
based on the SSV, ensuring that the resulting operating point
is an adequate distance from the feasibility boundary.

Our recent work [11] develops an algorithm to maximize
the SSV of the power flow Jacobian via virtual spatial
load shifting, which is achieved by altering the locational
distribution of power consumption for a short period of
time. The total load is kept constant (with the exception of
small changes in system losses) so that frequency stability
is unaffected. This is followed by a period during which
the increases/decreases in consumption of specific loads are
paid back so that the each load receives adequate energy over
the full interval. Using an iterative linearization technique,
the approach in [11] solves an optimization problem that
determines a loading pattern that maximizes the SSV of
the power flow Jacobian matrix. The loads are modeled as
constant power demands (i.e., the demands are independent
of the voltage magnitudes), with a fixed power factor.

Proper load models are particularly important in stability
studies [12]–[15]. This paper extends the algorithm from
[11] to enable inclusion of voltage-dependent load models,
specifically ZIP models (i.e., real and reactive demand mod-
els with constant impedance, constant current, and constant
power components) and steady-state squirrel-cage induction
machine (IM) models. Inclusion of these models changes
the power flow Jacobian, altering the nominal SSV. We
investigate the impact of these models on the optimal SSV
and optimal loading pattern. Of course, in practice, we do
not choose the load model, but rather identify it using system
data, e.g., from Phasor Measurement Units [16]–[18]. Given
this, our results are useful for two reasons: 1) they help us
understand which types of systems (as defined by the load
mix) might benefit more or less from using demand response
to improve the SSV, and 2) they help us determine the
difference in loading pattern and optimality loss we would
obtain if we were to use simple load models (e.g., constant
power load models) instead of detailed load models within
our algorithm.

The contributions of this paper are as follows: 1) we
extend the SSV maximization problem in [11] to include
voltage-dependent load models, 2) we extend the iterative
linear programming approach used in [11] to solve this
problem, 3) we compare the solutions and optimal SSVs
associated with different types of load models, and 4) we
discuss difficulties in interpreting the stability margin when
the system undergoes structural changes resulting from the
use of different load models.

This paper is organized as follows. Section II conceptually
describes our approach for improving the voltage stability
margin. Section III details the ZIP and induction machine
models. Section IV presents the SSV maximization problem
and our solution algorithm. Section V shows several case
studies and their results. Section VI concludes the paper.

Fig. 1. Conceptual description of the problem. The blue area represents
the stability region. The purple X shows the initial operating point, the red
diamond shows the operating point after a disturbance, and the green square
shows the operating point after an optimal change in loading pattern.

II. PROBLEM DESCRIPTION

Fig. 1 conceptually describes our approach for improving
the voltage stability margin. The blue shaded region repre-
sents the feasible operating region. The system is initially
operating at a stable point (at the purple X). A disturbance
causes the system to move along Path 1, resulting in opera-
tion near the feasibility boundary (at the red diamond). Our
algorithm computes a change to the locational distribution of
the demand-responsive load. Specifically, we increase some
loads and decrease others while ensuring that the total real
power consumption of the loads and real power production
of each generator (with the exception of the slack bus, which
compensates for the change in system losses) is constant so
as not to affect the system’s frequency stability. The reactive
power consumption of the demand-responsive loads changes
based on the load model. The reactive power production of
the generators adjusts to the new loading pattern in order to
keep the voltage magnitudes at generator buses constant. This
moves the operating point away from the boundary along
Path 2 (to the green square).

After a short period of time, the system is redispatched
to “pay back” the energy deficit/surplus of each demand-
responsive load. Specifically, loads that increased consump-
tion now decrease consumption, and vice versa, such that the
total energy consumed by each load over the full interval is
equivalent to its baseline consumption. The redispatch should
not only compensate for the demand response actions but
also maintain or improve the voltage stability margin. After
the energy payback period, the operating point either returns
to the initial operating point (purple X) or moves to another
point with an adequate stability margin.

Like [11], this paper focuses on computing loading pat-
terns that improve the voltage stability margin and leaves the
redispatch step to future work. In contrast to [11], this paper
considers voltage-dependent load models rather than simply
constant power load models.

III. LOAD MODELS

This section describes the static ZIP and induction ma-
chine models considered in this paper.
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Fig. 2. Steady-state equivalent circuit of a squirrel-cage induction machine
at bus k [19].

A. Controllable ZIP Model

Typical static loads are represented using a “ZIP” model
which has constant impedance (“Z”), constant current (“I”),
and constant power (“P”) components. To incorporate de-
mand response capabilities into the typical ZIP model, we
introduce a scalar variable εk that represents the ratio (at
a given voltage magnitude) between the controlled and
nominal power demands:

FZPk (Vk, εk) = εkP
0
d,k

[
a1,k

(
Vk
V 0
k

)2

+ a2,k

(
Vk
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k

)
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]
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(1a)

FZQk (Vk, εk) = εkQ
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]
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where FZPk and FZQk are the functions representing the
real and reactive power consumption of the controllable ZIP
model, P 0

d,k and Q0
d,k are the nominal real and reactive

demands, and V 0
k is the nominal voltage magnitude at load

bus k. The coefficients a1,k, a2,k, and a3,k represent constant
impedance, constant current, and constant power fractions
for real power. Corresponding reactive power coefficients are
denoted b1,k, b2,k, and b3,k. These coefficients sum to one,
i.e.,

∑3
i=1 ai,k = 1 and

∑3
i=1 bi,k = 1 for all k.

B. Induction Machine Model

Fig. 2 shows the equivalent circuit of a squirrel-cage
induction machine. An induction machine at bus k is mod-
eled using two additional internal buses denoted µk and ρk
along with a “slip” variable sk indicating the normalized
difference between the electrical frequency and the induction
machine’s mechanical speed. A slip equal to 1 indicates zero
mechanical speed, while a slip equal to 0 indicates that the
machine operates at synchronous speed. For both sk = 0
and sk = 1, the induction machine delivers zero mechanical
power but may consume electrical power due to losses.
Fig. 3 shows an induction machine’s power consumption as
a function of sk.

Based on the circuit in Fig. 2, the real and reactive
demands at bus k become functions of the voltage phasors
at buses k, µk and ρk as well as the machine’s slip:

Pd,k + jQd,k = Vke
jθk

(
Vµ,ke

jθµ,k

jXm,k
+
Vρ,ke

jθρ,ksk
Rr,k

)∗
,

(2)
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Fig. 3. The electrical power consumption of an induction machine as a
function of the slip.

where j =
√
−1. Splitting (2) into real and imaginary

components yields

FIPk (θk, Vk, θµ,k, Vµ,k, θρ,k, Vρ,k, sk)

=
VkVµ,k
Xm,k

sin(θµ,k − θk) +
VkVρ,ksk
Rr,k

cos(θρ,k − θk),

(3a)

FIQk (θk, Vk, θµ,k, Vµ,k, θρ,k, Vρ,k, sk)

=
VkVµ,k
Xm,k

cos(θµ,k − θk)− VkVρ,ksk
Rr,k

sin(θρ,k − θk).

(3b)

The voltage magnitudes are related by Ohm’s law:

Vke
jθk − Vµ,kejθµ,k =

(Rs,k + jXls,k)

(
Vµ,ke

jθµ,k

jXm,k
+
Vρ,ke

jθρ,ksk
Rr,k

)
, (4a)

Vµ,ke
jθµ,k = Vρ,ke

jθρ,k

(
1 + jXlr,k

sk
Rr,k

)
. (4b)

As shown in Fig. 3, for a specific value of real power de-
mand Pd,k and terminal voltage magnitude Vk (the horizontal
dashed line), there can exist multiple possible values for the
slip sk. We choose the smallest slip, which corresponds to
stable operation (the star), by imposing the limits sk ≤ sk ≤
sk. Since the induction machine represents a load, the slip
should be greater than zero; therefore, we impose a small
nonzero value as the lower limit sk. The value of the upper
limit sk, which must be small enough to preclude unstable
solutions, depends on the machine parameters.

We consider a composite load model, which allows for the
combination of both ZIP loads and induction machine loads:

Sd,k = (1− α)SZIP,k + αSIM,k (5)

where SZIP and SIM represent the complex power demands
of the ZIP load and the induction machine, respectively, and
α is the percentage of induction machine load (0 ≤ α ≤ 1).

IV. OPTIMIZATION FORMULATION

Our recent work [11] proposes a non-convex optimization
formulation for determining loading patterns that improve
voltage stability as measured by the SSV of the power flow



Jacobian matrix. This section introduces ZIP and induction
machine models into this formulation.

A. Jacobian Matrix

The standard AC power flow equations [20] are used to
compute the conventional power flow Jacobian matrix:

FPi (θ,V ) = Vi
∑
j∈N

Vj(Gij cos θij +Bij sin θij), (6a)

FQi (θ,V ) = Vi
∑
j∈N

Vj(Gij sin θij −Bij cos θij), (6b)

where θij = θi − θj , Gij = Re(Yij), and Bij = Im(Yij).
The conventional Jacobian matrix is an m×m matrix, where
m = npv + 2npq:

Jcnv =

 ∂FPi∂θi

∂FPi
∂Vj

∂FQj
∂θi

∂FQj
∂Vj

 , (7)

where each term represents a submatrix of partial derivatives
over the indices i ∈ {SPV,SPQ} and j ∈ SPQ.

Models of voltage-dependent loads result in modifications
to the conventional power flow Jacobian. For a system with
ZIP load models, the m×m Jacobian matrix is

JZIP = Jcnv +

0n−1×n−1
∂FZPi
∂Vj

0npq×n−1
∂FZQj
∂Vj

 , (8)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ} and j ∈ SPQ.

The real and reactive power demands of the induction
machine model are functions of the variables θk, Vk, θµ,k,
Vµ,k, θρ,k, Vρ,k, sk, ∀k ∈ SDR. The modified m×m+ 5ndr

Jacobian matrix is
JIM =

[
Jcnv 0m×5ndr

]
+

 ∂FIPi∂θi ∂FIPi
∂Vj

∂FIPi
∂θµ,k

∂FIPi
∂Vµ,k

∂FIPi
∂θρ,k

∂FIPi
∂Vρ,k

∂FIPi
∂sk

∂FIQj
∂θi

∂FIQj
∂Vj

∂FIQj
∂θµ,k

∂FIQj
∂Vµ,k

∂FIQj
∂θρ,k

∂FIQj
∂Vρ,k

∂FIQj
∂sk

 ,
(9)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. For example, the
partial derivatives ∂FIPi /∂θµ,k, ∂FIPi /∂θρ,k, ∂FIPi /∂Vµ,k,
∂FIPi /∂Vρ,k, ∂FIPi /∂sk are each of size (n− 1)× ndr.

The Jacobian matrix for the composite load model is
formed by the weighted sum of JZIP and JIM:

Jcom = (1− α)
[
JZIP 0m×5ndr

]
+ αJIM. (10)

The SSV of a matrix is closely related to the matrix’s
dimension. The SSV of the sum of two matrices, as in (8),
obeys the following inequality [21]:

σmin(A+B) ≥ σmin(A)− σmax(B) (11)

where σmin ( · ) denotes the SSV and σmax ( · ) the largest
singular value of the corresponding matrix. Therefore, we
can not say much about the relative size of the SSV of Jcnv
versus JZIP. In contrast, appending columns to a matrix, as
in (9), increases its SSV.

Theorem 1: Let A ∈ Rm×n, z ∈ Rm×1, where m ≤ n.
Then σmin(

[
A z

]
) ≥ σmin(A).

Proof: See appendix.
Therefore, the SSV of JIM is larger than that of Jcnv at
the same operating point. We discuss the implication of this
result in Section V-B.

B. Smallest Singular Value Maximization Problem

The optimization problems in [9] and [10] enforce voltage
stability constraints based on the SSV of the power flow
Jacobian. In contrast, we wish to find the loading pattern
Pd that maximizes the SSV of the modified power flow
Jacobian matrix Jcom given in (10). We exploit the fact that
the singular values of a matrix A are the square roots of the
eigenvalues of AAT in order to consider the eigenvalues of
the matrix JcomJ

T
com rather than explicitly form the singular

values of Jcom. This facilitates the following mathematical
formalization of the problem description from Section II:

max
Pg,Qg,Pd,Qd,
V,θ,Vµ,θµ,
Vρ,θρ,s,ε,λ0

λ0 subject to (12a)

JcomJ
T
com − λ0I � 0 (12b)

FPi (θ,V ) = Pg,i − Pd,i ∀i ∈ N (12c)

FQi (θ,V ) = Qg,i −Qd,i ∀i ∈ N (12d)

(1− α)FZPi (·) + αFIPi (·) = Pd,i ∀i ∈ SDR (12e)

(1− α)FZQi (·) + αFIQi (·) = Qd,i ∀i ∈ SDR (12f)
Vi∠θi − Vµ,i∠θµ,i = (Rs,i + jXls,i) Is,i ∀i ∈ SDR (12g)

Is,i =
Vµ,i∠θµ,i
jXm,i

+
Vρ,i∠θρ,isi

Rr,i
∀i ∈ SDR (12h)

Vµ,i∠θµ,i = Vρ,i∠θρ,i

(
1 + j

Xlr,isi
Rr,i

)
∀i ∈ SDR (12i)∑

i∈SDR
Pd,i =

∑
i∈SDR

P 0
d,i (12j)

Pd,i = P 0
d,i ∀i ∈ SPQ \ SDR (12k)

Pg,i = P 0
g,i ∀i ∈ SPV (12l)

Vi = V 0
i ∀i ∈ SPV (12m)

Vref = V 0
ref , θref = 0 (12n)

Hij(θ,V ) ≤ κij (12o)
Hji(θ,V ) ≤ κji (12p)

P g,ref ≤ Pg,ref ≤ P g,ref (12q)

Q
g,ref
≤ Qg,ref ≤ Qg,ref (12r)

Q
g,i
≤ Qg,i ≤ Qg,i ∀i ∈ SPV (12s)

P d,i ≤ Pd,i ≤ P d,i ∀i ∈ SDR (12t)

si ≤ si ≤ si ∀i ∈ SDR (12u)

V i ≤ Vi ≤ V i ∀i ∈ SPQ (12v)

The combination of the objective (12a) and constraint (12b)
ensures that λ0 is the smallest eigenvalue of the matrix
JcomJ

T
com. Constraints (12c) and (12d) are the standard

nonlinear AC power flow equations. Constraints (12e) and
(12f) are the real and reactive power demands of the
demand-responsive loads. Constraints (12g)–(12i) are the



electrical equations for the steady-state induction machine
model. While demands at the load buses without demand-
responsive loads can be treated using any appropriate load
model, our numerical results assume a constant power load
model for simplicity. Constraint (12j) ensures that the total
demand-responsive load is constant, (12k)–(12n) fix the non-
responsive loads’ real power demands, the generators’ real
power production at PV buses, voltage magnitudes at all
generator buses, and the voltage angle at the reference bus.
Constraints (12o)–(12v) enforce the upper limits of power
flows on the branches (in terms of apparent power) as well
as upper and lower limits on real power and reactive power
production at the reference bus, reactive power production at
PV buses, real power demands of demand-responsive loads
(which is a function of demand flexibility in both the current
time period and the payback period), slips of the induction
machines, and voltage magnitudes at PQ buses.

C. Solution Approach

We adapt the iterative linear programming algorithm pre-
sented in [11] to solve (12). This algorithm relies on lin-
earizations of the objective function and constraints in (12).

To address (12b), the linear sensitivity of the smallest
eigenvalue is derived using eigenvalue sensitivities [22]:

∂λ0

∂χ
= wT0

∂(JcomJ
T
com)

∂χ
u0, (13)

where χ represents the system states and w0 and u0 are the
normalized left and right eigenvectors corresponding to the
smallest eigenvalue λ0 of JcomJ

T
com. A change in the states

χ yields an approximate change in λ0 that is given by

∆λ0 =
∑
i

wT0
∂(JcomJ

T
com)

∂χi
u0∆χi. (14)

The relevant system states for the ZIP model are

χZIP = [θi, Vj , εk ]T (15)

and for the IM model are

χIM = [θi, Vj , θµ,k, Vµ,k, θρ,k, Vρ,k, sk]T , (16)

where i ∈ {SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. In addition
to (12b), the iterative linear programming algorithm requires
linearization of the AC power flow and load model equations,
which is accomplished via first-order Taylor expansion.

After evaluating these linearizations at the approximate
solution from the previous iteration, each iteration of the
algorithm solves the following linear optimization problem:

max
∆P g,∆Qg,∆P d,

∆Qd,∆V ,∆θ,
∆Vµ,∆θµ,Vρ,

∆θρ,∆s,∆ε,∆λ0

∆λ0 subject to (17a)

∆λ0 =
∑
i

[
wT0

∂(JcomJ
T
com)

∂θi
u0

]
∆θi

+
∑
j

[
wT0

∂(JcomJ
T
com)

∂Vj
u0

]
∆Vj

+
∑
k

[
wT0

∂(JcomJ
T
com)

∂θµ,k
u0

]
∆θµ,k

+
∑
k

[
wT0

∂(JcomJ
T
com)

∂θρ,k
u0

]
∆θρ,k

+
∑
k

[
wT0

∂(JcomJ
T
com)

∂Vµ,k
u0

]
∆Vµ,k

+
∑
k

[
wT0

∂(JcomJ
T
com)

∂Vρ,k
u0

]
∆Vρ,k

+
∑
k

[
wT0

∂(JcomJ
T
com)

∂εk
u0

]
∆εk

+
∑
k

[
wT0

∂(JcomJ
T
com)

∂sk
u0

]
∆sk

i ∈ {SPV,SPQ} ,∀j ∈ SPQ,∀k ∈ SDR (17b)
Linearizations of (12c)–(12v) (17c)

∆λ0 ≤ ∆λ0 (17d)

where (17b) is the linear eigenvalue sensitivity constraint
corresponding to the composite load model. Constraint (17d)
limits the step size of ∆λ0 to ensure the accuracy of the
linearization.

We extend the iterative sensitivity SSV algorithm presented
in [11] to include Jcom, as follows.

Algorithm 1 Extended Iterative Sensitivity SSV
Input: The nominal operating point χ0

1: iter ← 0
2: χiter = χ0

3: repeat
4: Compute (17b)–(17d) at χiter

5: Solve (17) at χiter to obtain ∆P opt
d , ∆Qopt

d , ∆λ0

6: iter ← iter + 1
7: P iter

d = P iter−1
d +∆P opt

d ,Qiter
d = Qiter−1

d +∆Qopt
d

8: Solve (6) to obtain a new χiter

9: until ∆λ0 < 10−5

Output: P iter
d , λiter0

The solution to (17) provides an approximation of the
change in decision variables that leads to the maximum
increase in λ0, within the region near the linearization point.
Each iteration of the extended algorithm refines an approx-
imate solution to (12) by linearizing around the previous
operating point, solving (17), adding the changes provided
by that solution of (17) to the previous operating point, and
solving the AC power flow equations (6) to obtain a new
operating point. The algorithm terminates when ∆λ0 is less
than a specified threshold (here, 10−5).

V. RESULTS AND DISCUSSION

This section describes the results of case studies conducted
on the IEEE 14-bus system available in MATPOWER [23]. We
assume the loads at buses 4, 9, and 14 are demand-responsive
resulting in 92.2 MW of responsive demand out of 259 MW
of total demand.

We set ∆λ0 = 0.01 and list the parameters of the
induction machine models in Table I. The upper bounds
of the slips are determined based on the induction machine
parameters. For example, the relationship between the power



TABLE I
INDUCTION MACHINE PARAMETERS (P.U.) [19]

Bus # Rs Xls Rr Xlr Xm s

4 0.012 0.07 0.01 0.17 3.5 0.04
9 0.001 0.23 0.015 0.23 5.8 0.03
14 0.001 0.23 0.015 0.23 5.8 0.03

TABLE II
ZIP LOAD MODELS COEFFICIENTS [16], [17]

Types a1 a2 a3 b1 b2 b3

Air conditioner 1.17 -1.83 1.66 15.68 -27.15 12.47
Battery charger 3.51 -3.94 1.43 5.80 -7.26 2.46
Baseboard heater 1.00 0.00 0.00 0.00 0.00 0.00
Dryer 1.91 -2.24 1.33 2.51 -2.34 0.83
Refrigerator/freezer 1.19 -0.26 0.07 0.59 0.65 -0.24
Heat pump 0.84 -1.40 1.56 22.92 -40.39 18.47
Washing machine 0.05 0.32 0.63 -0.56 2.20 -0.64

consumption and slip of the machine at bus 4 is shown in
Fig. 3. Since the peak real power consumption occurs when
the slip equals 0.04 we set s4 = 0.04 to ensure the algorithm
finds the stable operating point. We set sk = 0.0001, ∀k ∈
SDR. The ZIP coefficients for a variety of loads typically
used for demand response are given in Table II.

The nominal consumption of the loads at buses 4, 9, and 14
along with the SSV of Jcnv is given in Table III (see Nominal,
Constant Power, Jcnv). Modeling the loads as constant power
loads with fixed power factors (as in [11]) and applying the
iterative sensitivity SSV algorithm, we obtain the optimal
loading pattern shown in Table III (see Optimal for 3 DR
buses, Constant Power, Jcnv). All of demand-responsive load
is shifted to bus 4, improving the SSV by 0.97%. The
remaining values in Table III will be discussed later.

A. Controllable ZIP Model

We first consider cases where all demand-responsive loads
are modeled as having only one ZIP component. Fig. 4
illustrates the results obtained by applying the iterative
sensitivity SSV algorithm to each case, where the matrix
in the figure defines the cases (e.g., ZIP case #9 corresponds
to a constant real/reactive power load model). The nominal
SSVs are different since JZIP is different in each case. The
optimal real power loading pattern is the same in all cases:
[Pd,4 Pd,9 Pd,14] = [92.2 0 0] MW. However, the reactive
power demand at bus 4 is different in each case since the
load’s power factor is a function of the voltage magnitude
in ZIP cases #1-8. Table III shows the results for case #3
(see Optimal for 3 DR buses, ZIP, JZIP), which produces
the largest SSV. However, ZIP case #9 produces the largest
percent improvement: 0.974%.

We next model the demand-responsive loads using the
ZIP coefficients in Table II. In each case, we model all
demand-responsive load as a single type of load (i.e., using
one set of ZIP coefficients). Results are shown in Fig. 5.
The baseboard heater model produces the largest SSV but
the smallest percentage improvement. Again, the constant
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Fig. 4. The nominal and optimal SSV for different ZIP cases, as shown in
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Fig. 5. The nominal and optimal SSV for common demand-responsive
loads. The values below the blue circles are the percent improvements.

power load model (corresponding to ZIP case #9) produces
the largest percent improvement.

B. Induction Machine Model

We now model each load as an induction machine (rep-
resenting the aggregation of a large number of smaller
machines) using the parameters given in Table I. The SSV
increases from 2.3360 to 2.4533 (5% improvement). The
nominal SSV is larger than the nominal SSVs associated
with the ZIP loads as expected from Theorem 1.

The optimal loading pattern is shown in Table III (see
Optimal for 3 DR buses, IM, JIM). The limits on the
induction machines’ slips prevent the real power demand at
buses 9 and 14 from going to zero, but the optimal loading
pattern is similar to the cases with ZIP loads: almost all of the
demand-responsive load is shifted to bus 4. However, unlike
in the ZIP model cases, the reactive demands at buses 9 and
14 are much greater than zero when the real power demand
is close to zero, which is an inherent characteristic of typical
induction machines, as shown in Fig. 3.

To consider the possibility of disconnecting the induction
machines at low consumption levels, we modify the algo-
rithm with the following logical condition: if an induction
machine’s real power demand at any iteration is less than
0.01 p.u., we disconnect the induction machine by setting its
real and reactive power demand to zero prior to continuing
the algorithm. Fig. 6 illustrates the impacts of this modifi-
cation. At approximately 50 iterations, Pd at bus 14 is less



TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -

SSV 0.5341 0.5393 0.5444 0.5391 2.4533 0.5369 0.5444 2.184
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV

It is difficult, if not impossible, to compare the SSVs
associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time

All computations were implemented in MATLAB on a
computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian



0.532

0.533

0.534

0.535

0.536

0.537

0.538

0.539

0.54

0.541
S
m

al
le

st
 S

in
gu

la
r 

V
al

ue

#1 #2 #3 #4 #5 #6 #7 #8 #9 IM Composite
 model

Nominal
Optimal

ZIP Cases (70% IM 30% 
ZIP #3)
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matrix is larger requiring more time to compute the eigen-
value sensitivities, and 2) the AC power flow equations are
more complex. See [11] for further discussion on how the
computation time scales with system size.

VI. CONCLUSION

This paper incorporated two voltage-dependent load mod-
els into an algorithm for improving a static voltage stability
margin based on the SSV of the power flow Jacobian
matrix. An iterative linear programming technique was used
to determine the optimal loading pattern that maximizes
the SSV. Using the IEEE 14-bus system, we studied the
impact of the load models on the optimal SSV of the full
power flow Jacobian matrix (including terms corresponding
to the voltage-dependent load models) and the corresponding
optimal loading patterns. We found that use of different ZIP
models resulted in the same optimal loading patterns, but use
of induction machine models changed the optimal loading
pattern, pointing to the importance of properly modeling
loads when implementing such an algorithm. Comparing
SSVs across systems with different load models proved
difficult since structural changes in the power flow Jacobian
matrix affect the magnitude of the SSV. Therefore, we
also explored the impact of maximizing the SSV of the
conventional Jacobian matrix, which is the same for each
load model but does not reflect the physical system. This
work raises the question of how to compare static voltage
stability margins across systems with structural differences.

APPENDIX I
PROOF OF THE THEOREM 1

Proof: Let B =
[
A z

]
. Then, BBT =[

A z
] [
A z

]T
= AAT + zzT . Let vn be the normalized

right eigenvector (‖vn‖2 = 1) corresponding to the smallest
eigenvalue λmin of BBT , which is equal to the square of
the SSV of the matrix B, i.e., (σmin(B))2. Then,

(AAT + zzT )vn = (σmin(B))2vn,

vTn (AAT + zzT )vn = (σmin(B))2.

Since zzT is a positive semidefinite matrix, i.e., vTn zz
T vn ≥

0, then

(σmin(B))2 ≥ vTnAAT vn ≥ ‖vTnAAT vn‖2 = ‖AT vn‖22

≥ (σmin(AT ))2‖vn‖22 = (σmin(A))2,

and therefore σmin

([
A z

])
≥ σmin(A).
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