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Abstract— Temporal load shifting via demand response can
be used to improve power system frequency stability. Recent
work has shown that spatio-temporal load shifting can also be
used to improve power system static voltage stability. However,
the best static voltage stability metric is an open question. In
this paper, we propose a method to improve power system
static voltage stability by maximizing the distance to the closest
saddle-node bifurcation of the power flow. Specifically, we
formulate a nonlinear nonconvex optimization problem in which
we choose loading patterns that maximize this distance while
also constraining the total system loading to remain constant
so that the actions do not affect frequency stability. We derive
the KKT conditions and solve the resulting nonlinear system of
equations using the Newton-Raphson method and check if the
solution is a local minimum. Using a 4-bus system and the IEEE
9-bus system as our test cases, we explore the performance
of the algorithm and the accuracy of the obtained solutions.
We compare the solution to those obtained using other voltage
stability metrics including the smallest singular value of the
power flow Jacobian and the loading margin, finding that all
approaches produce different solutions. Using Kundur’s two
area system, we also explore some algorithm convergence issues.

I. NOTATION

Sets
SPV Set of all PV buses
SPQ Set of all PQ buses
SDR Set of buses with demand responsive loads

Variables & Parameters
θi Voltage angle at bus i
Vi Voltage magnitude at bus i
Pi Real power injection at bus i
Qi Reactive power injection at bus i
d Distance to the closest Saddle-Node Bifurcation
x System state vector
λ System parameter vector (power injections)
Λ Feasible set of λ
ndr Number of buses with demand responsive loads
ne Number of engineering limits
m Length of system state and parameter vectors
w Left eigenvector corresponding to zero eigenvalue
αi Ratio between real and reactive demand at bus i
β Weighting matrix
µ, γ Lagrange multipliers
ζ Constant
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Functions
F(·): Rm × Rm → Rm Standard power flow
g1(·): Rndr → R2ndr Demand response limits
g2(·): Rm → Rne Engineering limits
h(·): R2ndr → Rndr+1 Demand response assumptions

We use the superscript ‘c’ to denote states/parameters at
the closest Saddle-Node Bifurcation (SNB), the superscript
‘?’ to denote states/parameters at the solution, and the super-
script ‘0’ to denote states/parameters at the initial operating
point. For notational simplicity, we assume that each bus
has at most one generator or one load. The notation X � 0
means that X is a positive definite matrix.

II. INTRODUCTION

Demand response can be used to improve power system
economics and reliability [1]. There has been a significant
amount of recent research into the development of strategies
that enable demand response resources to provide frequency
regulation via temporal load shifting, e.g., [2], [3]. However,
demand response can also be used to improve other types of
power system stability, for example, static voltage stability
via load shedding [4] and spatio-temporal load shifting
[5], [6]. Spatio-temporal load shifting refers to increas-
ing/decreasing the load at various points in the network while
forcing the total loading to remain constant and then paying
back the load changes in future time intervals. In this way,
frequency stability is unaffected because the total loading
is unchanged in every time period. Additionally, each load
receives the same amount of energy over the entire horizon
as it would have received without demand response.

The best static voltage stability metric is an open question.
Our previous research investigated use of the loading margin
[7] and the smallest singular value (SSV) of the power
flow Jacobian [8] within the spatio-temporal load shifting
problem [5], [6]. However, the loading margin specifies the
direction of the changes to power injections precipitating an
instability and the SSV gives only indirect information about
the distance to instability [9].

In this paper, we explore the use of the distance to the
closest saddle-node bifurcation of the power flow as the
stability metric we would like to maximize by spatially
shifting load across a network within a single time step
(we leave the full spatio-temporal problem to future work).
The distance to the closest saddle-node bifurcation (SNB) is
a well-known stability metric [10]. Past work [11] showed
that the optimal control direction to move the system away
from instability is antiparallel to the normal vector at the
closest SNB. The idea is generalized in [12] for computing
the optimal design of system parameters (i.e., shunt and



series compensation) to improve this distance. The benefit of
this approach is that the resulting optimization problem can
be solved by formulating the Karush-Kuhn-Tucker (KKT)
conditions, solving the nonlinear system of equations using
the Newton-Raphson method, and checking if the solution
is a local minimum by using the iterative method proposed
in [13]. By reinitializing the nonlinear system solver and
repeating this process many times we may find the global
minimum, though we have no guarantee. We note that, in
practice, limit-induced bifurcations (LIB) may occur before
SNBs. We do not consider LIBs here; in future work we will
explore algorithmic approaches to maximize the distance to
the closest SNB or LIB.

Our contributions are as follows. 1) We formulate the
optimization problem and derive its KKT conditions. 2)
We conduct case studies using a 4-bus system and the
IEEE 9-bus system and explore the performance of the
algorithm and the accuracy of the solution. In particular,
we find that our algorithm is able to maximize the distance
to the globally closest SNB for the 4-bus system but does
not find the globally closest SNB for the 9-bus system,
instead maximizing the distance to a locally closest SNB.
However, the globally closest SNB of the 9-bus system is
unrealistic. 3) We compare our solution to those obtained
by formulations that use other stability metrics. We find that
all approaches produce different results and we discuss the
implications of this finding. 4) Using Kundur’s two area
system, we explore algorithm convergence issues.

The remainder of this paper is organized as follows.
Section III describes the problem. Section IV reviews the
optimization formulation used for finding the closest SNB.
Section V formulates our problem and presents our solution
approach. Section VI shows the results of our case studies
and Section VII concludes the paper.

III. PROBLEM DESCRIPTION

A conceptual illustration of the problem is shown in Fig. 1.
The power flow solvability boundary (black curve) is defined
by a set of SNBs, where λ denotes power injections. Suppose
the initial operating point with injections equal to λ0 is not
sufficiently far from its closest SNB. The system operator
would like to increase this distance, which is a measure
of static voltage stability. It could do so through generator
redisptach, load shedding, and/or spatial load shifting. Here,
we investigate the impact of spatial load shifting.

While generators take time to respond to dispatch com-
mands, demand responsive loads can respond quickly if
coordinated via low-latency communications systems. Load
shedding reduces quality of service to consumers and re-
quires an equivalent decrease in generation to maintain
system frequency. In contrast, spatial load shifting decreases
and increases loads at various points in the network while
maintaining the total loading so as not to affect system
frequency. Aggregations of loads such as residential and
commercial air conditioning systems can both decrease and
increase their power consumption for short periods of time.
So long as the energy is “paid back” within a short period of
time, quality of service can be maintained. While it would
likely be uneconomical to purpose-build demand response
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Fig. 1. Illustration of the problem. The black curve is the power flow
solvability boundary and the dashed line shows the feasible solutions. λ0
is the initial operating point; λ? is the optimal operating point with the
maximum shortest distance to the boundary and λc is the corresponding
closest SNB. (a) Conceptual illustration. (b) 4-bus system example.

capability for this application, it could be one of many
services that demand responsive loads could provide in future
power networks.

In Fig. 1a, the blue dashed line is the feasible range
of the injections, including the requirement that the total
loading is constant. Our goal is to determine injections λ?

corresponding to the optimal operating point along the blue
dashed line that maximize the distance d? to the closest SNB
λc. Figure 1b shows an example using a simple four bus
system that will be discussed in detail in Section VI-A. The
optimization problem is:

max
λ?⊂Λ?

(
min
λc⊂Λc

||λc − λ?||2
)
, (1)

where Λ defines the feasible set of λ.
In our formulation, we assume that the generator real

power outputs do not change with the exception of that of
the slack bus, which changes its output to compensate for the
change in system losses that occurs when the load is spatially
shifted. (Alternatively, we could have assumed that the total
load plus losses remain constant, i.e., that the loads manage
the change in system losses and none of the generator real
power outputs change.) Additionally, we assume that PV bus
voltages are fixed. Therefore, we choose only the real and
reactive power consumption of each demand responsive load,
which is modeled as constant power with constant power
factor. In practice, the system operator could simultaneously
redispatch generators and demand responsive loads to im-
prove the stability margin, though the generators may be
ramp limited. However, here we focus on characterizing the
response of demand responsive loads alone.

IV. CLOSEST SADDLE-NODE BIFURCATIONS

We first review the approach for computing the closest
SNB to a given operating point. The standard power flow
equations [14] can be expressed as:

F(x, λ) = f(x)− λ = 0, (2)

where x ∈ Rm is the system state vector, λ ∈ Rm is the
system parameter vector and F : Rm × Rm → Rm. In
this paper, we assume x = [θi∈SPV

; θi∈SPQ
; Vi∈SPQ

] and
λ = [Pi∈SPV

; Pi∈SPQ
; Qi∈SPQ

] (unless otherwise stated).
The SNB is reached when the power flow Jacobian becomes



singular:

∂fT

∂x
w = 0, (3)

where w ∈ Rm is a left eigenvector corresponding to the
zero eigenvalue of the power flow Jacobian matrix. To obtain
a unique solution of w, we normalized the left eigenvector
such that wTw − 1 = 0.

As discussed in [10], for a given operating point (x0, λ0),
if the distance to bifurcation is defined as Euclidean distance
d = ||λc − λ0||2, then the closest SNB can be found by
solving the following optimization problem:

min
xc,λc,w

1

2
||λc − λ0||22 (4a)

subject to F(xc, λc) = 0 (4b)
∂fT

∂x

∣∣∣
(x=xc)

w = 0 (4c)

wTw − 1 = 0. (4d)

To solve (4), we derive the KKT conditions. The Lagrange
function is:

L =
1

2
||λc − λ0||22+µT1 F(xc, λc) + µT2

∂fT

∂x

∣∣∣
(x=xc)

w

+µ3(wTw − 1), (5)

where µ1 ∈ Rm, µ2 ∈ Rm, µ3 ∈ R are Lagrange multipliers.
Therefore, the KKT conditions are:

∂L
∂xc

= µT1
∂f

∂x

∣∣∣
(x=xc)

+ µT2
∂

∂x

(
∂fT

∂x
w

) ∣∣∣
(x=xc)

= 0 (6a)

∂L
∂λc

= (λc − λ0)T + µT1
∂F
∂λ

= 0 (6b)

∂L
∂w

= µT2
∂fT

∂x

∣∣∣
(x=xc)

+ 2µ3w
T = 0 (6c)

(4b)− (4d) (6d)

From (6b) we know that µT1 ∂F/∂λ 6= 0. Also, ∂F/∂λ =
−I . Therefore, the Lagrange multiplier µ1 must be nonzero.
If we post-multiply (6c) by w, the first term becomes zero
and since w is not zero, µ3 must be zero. Then µ2 is
either zero or a right eigenvector corresponding to the zero
eigenvalue of the power flow Jacobian (making the first
term of (6c) zero). Assume µ2 is a right eigenvector. Post-
multiplying (6a) by µ2 results in the first term becoming
zero, and therefore the second term, which has quadratic
form, must also equal zero. This is only possible if µ2 lies
in the null space of the (symmetric) matrix of that second
term. Accordingly, the second term of (6a) must equal zero.
Alternatively, if µ2 = 0 then that second term in (6a) is
zero. In either case, the first term of (6a) must equal zero,
so µ1 must be a left eigenvector corresponding to the zero
eigenvalue of the power flow Jacobian. Since both µ1 and
w are left eigenvectors corresponding to the zero eigenvalue
of the power flow Jacobian, we can set µ1 = ζ1w, where
ζ1 6= 0 is a scalar.

Hence, a locally closest SNB must satisfy the following
equations:

F(xc, λc) = 0 (7a)

∂fT

∂x

∣∣∣
(x=xc)

w = 0 (7b)

wTw − 1 = 0 (7c)

(λc − λ0)− ζ1w = 0. (7d)

Reference [10] proposed a similar set of equations, the only
difference being that instead of (7d) they use the more
general equation (λc − λ0) − (∂FT /∂λ)w = 0 since they
allow λ to be any system parameter whereas we define λ as
power injections. Equation (7) is a set of 3m+ 1 nonlinear
equations with 3m + 1 unknowns. Direct methods, for
instance, the Newton-Raphson method, or iterative methods
such as the one given in [15] can be used to compute the
numerical solutions to (7). Note that the KKT conditions
are just necessary conditions giving us minima, maxima, and
saddle points. Solutions obtained with Newton-Raphson need
to be checked to ensure they are minima. In contrast, the
iterative method in [15] guarantees that the solution is a local
minimum, i.e., a locally closest SNB. The distance to the
locally closest SNB is d = ||λc−λ0||2 = ||ζ1w||2 = |ζ1|. We
can attempt to find the globally closest SNB by computing all
of the locally closest SNBs using different initializations and
determining the minimum d. This may be computationally
intractable for large systems and we have no guarantee that
we will obtain the globally closest SNB.

V. OPTIMIZATION FORMULATION

In our problem, we need to determine both the parameters
λ? corresponding to the optimal operating point and the
parameters λc corresponding to the closest SNB. Since the
real power injections at PV buses and the real and reactive
power injections at PQ buses without demand responsive
loads are unchanged, we divide λ? into two parts. The
controlled power injections λ?1 = [Pi∈SDR

; Qi∈SDR
] are

limited by the flexibility of the demand responsive loads:

g1(λ?1) =

[
Pi − P i, ∀ i ∈ SDR

−Pi + P i, ∀ i ∈ SDR

]
≤ 0, (8)

where g1 : R2ndr → R2ndr and P i, P i are the
lower and upper limits of the range of allowed changes
to the real power consumption of the demand respon-
sive loads. The uncontrolled power injections are λ?2 =
[Pi∈SPV

; Pi∈SPQ\SDR
; Qi∈SPQ\SDR

] = λ0
2.

Our goal is to determine λ?1 that maximizes the distance
to its closest SNB. Therefore, the decision variables of the
optimization problem are the system state vectors xc, x?,
system parameter vectors λc, λ?1 and the left eigenvector w.
The optimization problem is:

min
xc,λc,x?,λ?

1 ,w
− 1

2
(λc − λ?)Tβ(λc − λ?) (9a)

subject to F(xc, λc) = 0 (9b)
F(x?, λ?) = 0 (9c)
∂fT

∂x

∣∣∣
(x=xc)

w = 0 (9d)

wTw − 1 = 0 (9e)
h(λ?1) = 0 (9f)



g1(λ?1) ≤ 0 (9g)
g2(x?) ≤ 0. (9h)

The objective (9a) maximizes a weighted distance instead
of the Euclidean distance (β � 0). Constraints (9b) and
(9c) are the standard power flow equations for the SNB
and the optimal operating point, respectively. Constraint (9d)
implies that (xc, λc) is an SNB. The left eigenvector w
is normalized in (9e). Equation (9f) ensures our demand
response assumptions are enforced at λ?1, specifically, 1)
the total loading is constant and 2) the load is modeled as
constant power with constant power factor:

h(λ?1) =

[∑
P ?i∈SDR

−
∑
P 0
i∈SDR

αiP
?
i −Q?i , ∀ i ∈ SDR

]
= 0, (10)

where h : R2ndr → Rndr+1. The inequality constraint (9g)
is defined in (8). The inequality constraint (9h) specifies the
engineering limits at (x?, λ?). They include limits on the
voltage magnitudes at PQ buses, the reactive power injections
at PV buses and the slack bus, and the line flows (g2 : Rm →
Rne ). The Lagrange function of (9) is:

L =− 1

2
(λc − λ?)Tβ(λc − λ?) + µT1 F(xc, λc)

+ µT4 F(x?, λ?) + µT2
∂fT

∂x

∣∣∣
(x=xc)

w + µ3(wTw − 1)

+ µT5 h(λ?1) + γT1 g1(λ?1) + γT2 g2(x?), (11)

where µ1, µ2, µ4 ∈ Rm, µ3 ∈ R, µ5 ∈ Rndr+1, γ1 ∈ R2ndr

and γ2 ∈ Rne are Lagrange multipliers. The KKT conditions
are:
∂L
∂xc

= µT1
∂f

∂x

∣∣∣
(x=xc)

+ µT2
∂

∂x

(
∂fT

∂x
w

) ∣∣∣
(x=xc)

= 0

(12a)
∂L
∂λc

= −(λc − λ?)TβT + µT1
∂F
∂λ

= 0 (12b)

∂L
∂x?

= µT4
∂f

∂x

∣∣∣
(x=x?)

+ γT2
∂g2

∂x

∣∣∣
(x=x?)

= 0 (12c)

∂L
∂λ?1

= (λc1 − λ?1)TβT1 + µT4
∂F
∂λ1

+ µT5
∂h

∂λ?1
+ γT1

∂g1

∂λ?1
= 0

(12d)
∂L
∂w

= µT2
∂fT

∂x1

∣∣∣
(x=xc)

+ 2µ3w
T = 0 (12e)

equality constraints (9b)− (9f) (12f)
γ1,jg1,j(λ

?
1) = 0,∀j = 1, ..., 2ndr (12g)

γ2,kg2,k(x?) = 0,∀k = 1, ..., ne (12h)
γ1 ≥ 0, γ2 ≥ 0 (12i)
inequality constraints (9g)− (9h) (12j)

As before, µ1 equals a constant times w, i.e., µ1 = ζ2w, the
second term of (12a) is equal to zero, and µ3 = 0. Therefore,
an optimal solution should satisfy the following equations:

µT4
∂f

∂x

∣∣∣
(x=x?)

+ γT2
∂g2

∂x

∣∣∣
(x=x?)

= 0 (13a)

− β(λc − λ?)− ζ2w = 0 (13b)

β1(λc1 − λ?1) +
∂FT

∂λ1
µ4 +

∂hT

∂λ?1
µ5 +

∂gT1
∂λ?1

γ1 = 0 (13c)

equality constraints (12f)− (12h) (13d)
inequality constraints (12i)− (12j), (13e)

where β1 is the partition of β corresponding to λ1. There are
5m+ 5ndr +ne + 2 equations and unknowns in (13a)-(13d).
The solution algorithm is as follows. First, we initialize the
Newton-Raphson solver to find the solution to (13a)-(13d).
We check to see if the solution also satisfies (13e). If so, we
check whether λc is a locally closest SNB to λ? by using the
iterative method of [15]. If so, then we check whether λc is a
globally closest SNB to λ? by testing different initializations
within the iterative method to determine if there is a closer
SNB to λ? than λc. If we find that λc is the globally
closest SNB then λ? is the desired solution. Otherwise, we
reinitialize the Newton-Raphson solver in the direction of
the globally closest SNB to find a new λ? and repeat the
process.

In our cases studies, we compare the performance of our
method to that of a brute force method. Specifically, for all
possible loading patterns within a discrete mesh in which
the total loading is constant, we compute the distance to the
closest SNB via the method of [15]. The optimal loading
pattern is the pattern associated with the maximum distance.

VI. CASE STUDY

All computation is done in MATLAB and with the help of
MATPOWER [16] on an Intel(R) i7-4720HQ CPU with 16 GB
of RAM. The base MVA for all cases is 100 MVA and we
set β = I . The number of the equality constraints greatly
influences the computation time of our method, therefore,
we neglect (9h) in our case studies. In each case, our initial
operating points satisfy (9h) and we also find that the optimal
solutions we obtain also satisfy (9h).

A. Simple 4-bus system results

We first apply our method to the simple 4-bus system as
shown in Fig. 2a. Bus 1 is the slack bus at a voltage of 1
pu, bus 2 is a PV bus outputting 10 MW at a voltage of 1
pu, and buses 3 and 4 are PQ buses with demand responsive
loads of 30 MW and 70 MW, respectively. The reactance of
the lines are x13 = j0.5, x23 = x34 = j0.25 p.u.

When λ only includes the real power injections at the PQ
buses (i.e., λ = [P3; P4]), the solution is as shown in Fig. 1b.
Specifically, the black curve is the power flow solvability
boundary; the dashed blue line represents the total loading
constraint, i.e., P3 + P4 = −100 MW; and the optimal
loading pattern is λ? = [−100, 0] MW, which maximizes
the shortest distance to the boundary.

If we instead define λ = [P2−4; Q3−4], the initial distance
to the closest SNB is d = 0.0879. The optimal solution
determined by our method is P ?3 = −63.74 MW and P ?4 =
−36.26 MW, and d? = 0.1264, which is consistent with the
optimal loading pattern obtained via the brute force method,
as shown in Fig. 2b.

B. IEEE 9-bus system results

We next evaluate our method using the IEEE 9-bus system
using the data available in MATPOWER [16]. The system has
1 slack bus (bus 1), 2 PV buses (buses 2 and 3), and 6 PQ



TABLE I
IEEE 9-BUS SYSTEM: INITIAL AND OPTIMAL POWER INJECTIONS (P.U.)

P2 P3 P4 P5 P6 P7 P8 P9 Q4 Q5 Q6 Q7 Q8 Q9

λ0 1.6300 0.8500 0.0000 -0.9000 0.0000 -1.0000 0.0000 -1.2500 0.0000 -0.3000 0.0000 -0.3500 0.0000 -0.5000
λc 1.0629 0.2508 -0.1248 -1.5821 -0.6003 -1.3436 -0.5726 -1.7980 -0.2961 -0.7620 -0.0638 -0.3343 -0.0741 -0.9325
λ? 1.6300 0.8500 0.0000 -1.0842 0.0000 -0.7386 0.0000 -1.3272 0.0000 -0.3614 0.0000 -0.2585 0.0000 -0.5309
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Fig. 2. (a) Single line diagram for the 4-bus system. (b) The distance to
the closest SNB as a function of P3.

Fig. 3. The distance to the closest SNB as a function of P5 and P7.

buses (buses 4-9). We model the entire load at buses 5, 7
and 9 (315 MW) as demand responsive. Hence, the system
parameter vector is λ = [P2−9;Q4−9] and the controlled
power injections are λ?1 = [P ?5 ;P ?7 ;P ?9 ;Q?5;Q?7;Q?9]. We
assume the system is initially operating at the operating point
given within MATPOWER (see Table I, λ0).

The optimal solution obtained by our method is given
in Table I. The corresponding maximum distance is d?β =
1.6263, the optimal loading pattern is P5 = −108.42 MW,
P7 = −73.86 MW, and P9 = −132.72 MW. To verify the
results, we compare the solution of our method to that of
the brute force method. We use 5000 different directions as
initializations of the iterative method of [15] to find locally
closest SNB to λ? and then determine the globally closest
SNB. Figure 3 shows the distance to the closest SNB as a
function of P5 and P7 (where P9 = −315− P5 − P7 since
the total loading must be constant). The triangle represents
the maximum distance obtained by the brute force method:
P5 = −108 MW, P7 = −74 MW, P9 = −133 MW
and d = 1.6263, which is consistent with the solution of
our method. There exist discontinuities on the surface in
Fig. 3 because the feasibility boundary is very likely a folded
hypersurface, so the distance is not continuous.

We have verified that λc is a locally closest SNB to
λ? but we cannot guarantee that this SNB is the globally

TABLE II
VOLTAGE AND REACTIVE POWER (P.U.) AT THE SNBS

V4 V5 V6 V7 V8 V9 Q1 Q2 Q3

SNB 1 0.5618 0.1593 0.5812 0.0795 0.4969 0.3571 7.8432 8.2343 7.1842
SNB 2 0.7780 0.6907 0.9071 0.8841 0.9009 0.6946 4.9147 1.6245 1.5874

closest SNB since the brute force method only explores 5000
random directions. Recently, [17] proposed a new enumer-
ation search strategy to identify multiple local minima to a
related optimization problem. Applying this strategy to (4),
we obtain a closer λc to our λ? with a distance d = 0.1718.
This solution satisfies the KKT conditions (7) and may be
the globally closest SNB to λ?. The voltage magnitudes
at the PQ buses and the reactive power injections at the
buses with generators corresponding to this SNB (SNB 1)
and the SNB that our method finds (SNB 2) are given
in Table II. For both, the voltage magnitudes are low and
the generator reactive power injections are high; however,
SNB 1 is particularly unrealistic. Our method moves the
system away from the relatively realistic locally closest SNB
(SNB 2) but unfortunately there is a closer SNB (SNB 1),
which it does not find. This example points to one of the
drawbacks of our approach: we cannot guarantee that we
will find the globally closest SNB so we might push the
system away from a locally closest SNB and end up closer
to the globally closest SNB.

We also compared this optimal solution to those obtained
using other voltage stability metrics including the smallest
singular value (SSV) of the power flow Jacobian and the
loading margin (LM). Table III summarizes the results.
The maximum SSV and LM cases are obtained from [5].
The results show that we obtain different loading patterns
when maximizing different stability metrics, which is not
surprising since the different margins capture different kinds
of “distance to instability.” The loading margin describes the
distance to voltage instability for power injection changes
in a single direction, while the SSV and the distance to the
closest SNB do not specify the direction. The SSV of the
power flow Jacobian describes the distance to the singularity
of power flow Jacobian matrix, which is an indirect measure
of distance. In contrast, the distance to the closest SNB is a
measure of distance in the parameter (power injection) space.

A disadvantage of using our method is that it relies on
good initializations, whereas the iterative linear programming
method used to maximize the SSV of the power flow Jaco-
bian does not have this issue. The computation time for the
9-bus system is comparable for both approaches; however,
it is not yet clear how the computational time/requirements
compare for realistically-sized systems. Another disadvan-
tage of our method is that we have no convergence guarantee,
as we will show next.



TABLE III
OPTIMAL LOADING PATTERNS FOR DIFFERENT STABILITY METRICS

−P5 −P7 −P9 SSV LM d
(MW) (MW) (MW) – (MW) (p.u.)

max SSV 75 167 73 0.8995 516 1.5819
max LM 97 135 83 0.8984 566 1.6033
max d 108 74 133 0.8898 408 1.6263
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Fig. 4. The power flow solvability boundary of the Kundur system. The
blue dashed line represents the total load constant constraint.

C. Convergence issues: Kundur’s two area system results

Kundur’s two area system [18] has 4 generators and 2
loads. We model the entire load at buses 7 and 9 (2134 MW)
as demand responsive and set λ = [P7;P9]. The power flow
solvability boundary is show in Fig. 4. The black dot is the
initial operating point λ0 = [P7;P9] = [−967;−1767] MW.
The shortest distance between the black dot and the boundary
(i.e., the distance from the black dot to the black triangle) is
d0 = 0.5831. Our method first finds the solution: λ?,1 (red
dot), λc,1 (red upper triangle) with d?,1 = 5.615; however,
the globally closest SNB to λ?,1 is not λc,1 but instead the
SNB denoted with the red lower triangle with d = 1.472.
Initializing the Newton-Raphson solver in the direction of the
globally closest SNB to λ?,1, we find another solution λ?,2

(green dot), λc,2 (green upper triangle) with d?,2 = 10.06.
However, λ?,2 is on the solvability boundary and so we know
that it is not the desired solution. In fact, neither solution is
the desired solution. The desired solution is λ?,opt (pink dot),
which has the maximum shortest distance to the boundary;
it can not be obtained with our method. Further research is
needed to develop approaches to cope with this problem.

VII. CONCLUSION

In this paper, we formulated a problem to spatially shift
demand responsive load to improve static voltage stability.
Specifically, we wish to increase the distance between the
operating point and the point corresponding to the closest
saddle-node bifurcation, which is a measure of static voltage
stability. The problem was posed as a noncovex nonlinear
optimization problem and solved by formulating the KKT
conditions, applying the Newton-Raphson method to solve
them, and checking that the solution is a local minimum.
Case study results using a simple 4-bus system and the IEEE
9-bus system showed that the distance to the closest SNB
is improved by demand response actions, which increase
and decrease individual loads while ensuring the total load

is constant. We also noted several issues with our method,
specifically, we cannot guarantee that we find the globally
closest SNB and, for some systems, we observe convergence
issues. In the future, we would like to develop an improved
algorithm that addresses these issues, test our method on
larger systems, and compare the magnitude of stability
margin improvement achievable with demand response to
that achievable with generator redispatch.
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