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Power System Stability

• Frequency Instability
‒ Associated with an imbalance between load and generation
‒ Demand response based on temporal load shifting [Short et al. 

2007; Callaway 2009; Zhang et al. 2013; Mathieu et al. 2013]

• Static Voltage Instability
‒ Associated with operation that nears the limits of the 

network’s power transfer capability
‒ Demand response based on load shedding [Berizzi et al. 1996; 

Feng et al. 1998; Yu et al. 2016]

Our work: Demand response based on spatially
shifting load, without load shedding, in order to 

improve voltage stability after a disturbance. 2



Static Voltage Stability

• Distance to the “nose point” of the PV curve
‒ Often computed using continuation methods, which are difficult to embed 

within an optimization problem
‒ The smallest singular value (SSV) of the power flow Jacobian is often used 

as a voltage stability metric [Tiranuchit and Thomas 1988; Tiranuchit et al. 1988; 
Lof et al. 1992; Berizzi et al. 1998, Berizzi et al. 2000; Mallada and Tang 2013]
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Using Demand Response to 
Improve Voltage Stability

• Objective: maximize the smallest singular value of the power 
flow Jacobian via spatial shifting of flexible load

• Constraint: total demand held constant over time to maintain 
frequency stability
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Demand Response 
Assumptions

• Loads are faster than generators; DR used for 
noncritical disturbances

• For occasional use; DR capabilities not purpose-built 
• Demand response actions are contractual
– consumers sign a contract with an aggregator, who 

dispatches loads within the limits of the contract; loads 
respond as contracted, or pay a penalty

• Demand responsive loads modeled as virtual 
batteries at transmission buses

• Loads modeled as “constant real/reactive power and 
constant power factor” (first half of talk)
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Problem Description 
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Formulation
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The multiperiod optimal power flow problem determines
the operating points in each time period that balance the two
objectives: maximizing the SSV of the power flow Jacobian
matrix in Period 1 and minimizing the generation cost in
Period 2. The general formulation is as follows.
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In our base case, the slack bus manages the change in
losses, (i.e., " = 0) but the real power generation of all
other generators is fixed in Period 1. Additionally, voltage
magnitudes at all generator buses are fixed in Period 1.
Specifically,
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In Period 2, generator real power generation and voltage mag-
nitudes are allowed to change within their limits, specifically,
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We investigate seven additional cases in which we vary
the decision variables that are allowed to change in Period
1 (specifically, Pg,ref, Pg,n 8n 2 SPV, V

n

8n 2 S
G

, and
Pd,n, Qd,n 8n 2 SDR), the loss management strategy, and, for
cases in which generator real power generation is allowed to
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change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.

Our implicit constraint (1b) can be approximated by (??)
and so we can write our problem as a nonlinear optimization
problem

min
Pg(t),Qg(t),

Pd(t),Qd(t),

V (t),✓(t),e�0(t)
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0
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s.t (8t 2 T )
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To obtain the solution to our original problem (1), we solve
(2), recompute u

0

(t) and w

0

(t) at the new operating point, and
repeat the process until convergence. However, the symbolic
matrix multiplication in (??) is complex for large systems.
Moreover, each iteration requires solving a nonlinear opti-
mization problem. Therefore, the approach does not scale to
realistically-sized power systems, as we will show in our case
study.

The resulting linear program solved in each iteration of the
iterative LP algorithm is as follows.
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AC power flow equations (nonlinear, nonconvex) 
Generator, voltage, and line limits; etc.

-SSV in Period 1 + cost of generation in Period 2

Computes the SSV

Total loading is constant

Energy payback

Constant power load model
SSV in Period 2 greater than or equal to that in Period 1

Time

Pd,n(0)
T1 T2

P d
,n

Base case is to choose only DR load real power consumption in Period 1
Period 1: Generator real power production/voltage magnitudes fixed, except slack bus
Period 2: Generators adjust to payback loads 7



Solution Approaches

• Interior point methods [Kodsi and Canizares 2007]

– Require the Hessian
• Semidefinite programming [Lavaei and Low 2007; 

Molzahn and Hiskens 2016]

– AC power flow equations need to be relaxed; 
solution of relaxed problem may not be feasible
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We investigate seven additional cases in which we vary
the decision variables that are allowed to change in Period
1 (specifically, Pg,ref, Pg,n 8n 2 SPV, V
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cases in which generator real power generation is allowed to
change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.
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Solution Approaches

• Iterative nonlinear programming [Avalos, Canizares, 
and Anjos 2008] 

– Singular value decomposition

– Around a given operating point, the approximate 
SSV is 

– Symbolic matrix multiplication complex for large 
systems; nonlinear programming problem solved 
in each iteration
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Singular Value Sensitivities
[Tiranuchit and Thomas 1988]

• For a general problem

• For our problem
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Iterative Linear 
Programming Algorithm

1. Linearize the objective function and constraints 
at the operating point; the decision variable is 
now the change in system states.

2. Solve the linear program to obtain the best 
change in system states; compute the new 
system states.

3. Solve the AC power flow equation to compute 
the new operating point.

4. Evaluate the objective function; if it isn’t 
improving go back to step 1; otherwise end.
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The multiperiod optimal power flow problem determines
the operating points in each time period that balance the two
objectives: maximizing the SSV of the power flow Jacobian
matrix in Period 1 and minimizing the generation cost in
Period 2. The general formulation is as follows.
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In our base case, the slack bus manages the change in
losses, (i.e., " = 0) but the real power generation of all
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We investigate seven additional cases in which we vary
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change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.

Our implicit constraint (1b) can be approximated by (??)
and so we can write our problem as a nonlinear optimization
problem
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The multiperiod optimal power flow problem determines
the operating points in each time period that balance the two
objectives: maximizing the SSV of the power flow Jacobian
matrix in Period 1 and minimizing the generation cost in
Period 2. The general formulation is as follows.
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change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.

Our implicit constraint (1b) can be approximated by (??)
and so we can write our problem as a nonlinear optimization
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The multiperiod optimal power flow problem determines
the operating points in each time period that balance the two
objectives: maximizing the SSV of the power flow Jacobian
matrix in Period 1 and minimizing the generation cost in
Period 2. The general formulation is as follows.
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In our base case, the slack bus manages the change in
losses, (i.e., " = 0) but the real power generation of all
other generators is fixed in Period 1. Additionally, voltage
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change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.

Our implicit constraint (1b) can be approximated by (??)
and so we can write our problem as a nonlinear optimization
problem
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repeat the process until convergence. However, the symbolic
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Moreover, each iteration requires solving a nonlinear opti-
mization problem. Therefore, the approach does not scale to
realistically-sized power systems, as we will show in our case
study.
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the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Base Case
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the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a
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The multiperiod optimal power flow problem determines
the operating points in each time period that balance the two
objectives: maximizing the SSV of the power flow Jacobian
matrix in Period 1 and minimizing the generation cost in
Period 2. The general formulation is as follows.
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In our base case, the slack bus manages the change in
losses, (i.e., " = 0) but the real power generation of all
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We investigate seven additional cases in which we vary
the decision variables that are allowed to change in Period
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Pd,n, Qd,n 8n 2 SDR), the loss management strategy, and, for
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This work was supported by NSF Grant EECS-1549670 and the U.S. DOE,
Office of Electricity Delivery and Energy Reliability under contract DE-AC02-
06CH11357. M. Yao and J.L. Mathieu are with the Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109 USA (e-mail: mqyao@umich.edu, jlmath@umich.edu). D.K. Molzahn
is with the Argonne National Laboratory, Lemont, IL 60439 USA (email:
dmolzahn@anl.gov).

change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.

Our implicit constraint (1b) can be approximated by (??)
and so we can write our problem as a nonlinear optimization
problem
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study.
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change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table III.
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Fig. 5. Optimal SSV in Period 1 and generation cost in Period 2 as a function
of the weighting factor ↵.
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Fig. 6. SSV and generation cost per hour in each period for the 118-bus
system.

the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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Fig. 7. Visualization of the DR actions in Period 1 for the IEEE 118-bus
system. Figure created with the help of [35].

TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Loads vs. Generators
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Fig. 6. SSV and generation cost per hour in each period for the 118-bus
system.

the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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Fig. 7. Visualization of the DR actions in Period 1 for the IEEE 118-bus
system. Figure created with the help of [35].

TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Loads vs. Generators with Ramp Rates
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Fig. 6. SSV and generation cost per hour in each period for the 118-bus
system.

the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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Fig. 7. Visualization of the DR actions in Period 1 for the IEEE 118-bus
system. Figure created with the help of [35].

TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Benefit of Voltage Control
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Fig. 6. SSV and generation cost per hour in each period for the 118-bus
system.

the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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Fig. 7. Visualization of the DR actions in Period 1 for the IEEE 118-bus
system. Figure created with the help of [35].

TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Voltage Control Alone
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Fig. 6. SSV and generation cost per hour in each period for the 118-bus
system.

the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Just Loads vs. Everything (Optimistic)
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the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, " is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[36]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
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TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n8n 2 SPV X X X X X
Vn8n 2 SG X X X X
Pd,n, Qd,n8n 2 SDR X X X X
1% Ramp Rate X X
" 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
will be less expensive than generator actions in Period 1.

We also formulated and solved an optimization problem
to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). We found that the system load
would need to drop by at least 17%.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 min (as a reminder, this was chosen because it
is the shortest multiple of 5 min for which we can obtain a

Just Loads vs. Everything (Bounded)
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TABLE II
COST OVER ONE HOUR ($) OF THE MULTIPERIOD DR STRATEGY VERSUS

GENERATION REDISPATCH TO ACHIEVE THE SAME SSVS

Trestored Resource 9-bus 118-bus

5 min DR 5303 129545
Generation 5360 129905

1 hour DR 6441 132777
Generation 6043 132961

feasible solution). When Trestored = 5 min, the cost per hour
of operating the system beyond Periods 1 and 2 but within
the hour is equal to the cost per hour of Period 0. However,
when Trestored = 1 hr, this cost is equal to the cost of using the
generators to maintain the SSV achieved in Periods 1 and 2.

As shown in the table, as Trestored increases, the cost of the
strategy increases. Comparing the cost of using DR versus
generation, we see that the cheaper option is case dependent.
In three out of the four cases, DR is cheaper; however, when
Trestored = 1 hour, generation actions are cheaper than DR
actions for the 9-bus system. As described in the previous
subsection, DR is always cheaper in Period 1. However, energy
payback in Period 2 can be expensive, which is true for the 9-
bus system when the disturbance is active, as shown in Fig. 4.
Moreover, in this case, Period 2 lasts for 40 min.

Note that the generation costs reported in the table may
not be realizable in practice because real generators are ramp-
limited. Therefore, in cases in which DR is more expensive
then generation, it may still be desirable to deploy DR since
generation may not respond in time.

E. Comparison of Algorithms

In this subsection, we compare the performance of the ILP
and INLP algorithms. Table III shows the optimal loading
pattern and SSV computed using each algorithm for the IEEE
9-bus system considering only Period 1. The solutions/SSVs
produced by the algorithms are close. Figure 8 shows the
convergence of each algorithm on the 9-bus system con-
sidering the full multiperiod problem (disturbance active in
Period 2). The solid lines are the results of the ILP algorithm
and the dashed lines are the results of the INLP algorithm.
The ILP algorithm converges more quickly than the INLP
algorithm. Similarly, Fig. 9 shows the convergence of the
ILP algorithm on the 118-bus system considering the full
multiperiod problem (disturbance active in Period 2). The
INLP algorithm does not scale to the 118-bus system.

The computation times are summarized in Table IV. As
shown, the ILP algorithm requires significantly less time than
the INLP algorithm. The overall computation time is a function
of the number of iterations needed and the time required
for each iteration, where the former depends on the initial
operating point and the maximum step size ��

0

and the latter
depends on the size of Jacobian matrix. The time could be
reduced through 1) parallel computing of the SSV sensitivities,
2) approximating the SSV sensitivity (9b) to only include the
system states that most affect the SSV, and/or 3) applying an
adaptive maximum step size.

TABLE III
LOADING PATTERN & SSV COMPUTED WITH ILP AND INLP FOR THE

IEEE 9-BUS SYSTEM

Nominal Optimal
Algorithm ILP INLP

Pd,5 (MW) 90 147.93 149.58
Pd,7 (MW) 100 137.23 135.57
Pd,9 (MW) 125 29.84 29.85

SSV 0.4445 0.4715 0.4716
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Fig. 8. Convergence of the SSV in Period 1 and the generation cost in Period 2
using the ILP and INLP algorithms for the IEEE 9-bus system.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed a multiperiod optimal
power flow approach to use DR to improve static voltage
stability as measured by the smallest singular value of the
power flow Jacobian matrix. In addition to formulating the
problem, which increases/decreases loads while holding total
load constant in a first period and paying back energy to each
load in a second period, we have developed an iterative linear
programming algorithm using singular value sensitivities. We
demonstrated the performance of the approach on the IEEE
9- and 118-bus systems, compared the effectiveness and cost
of DR actions to generation actions, and benchmarked our al-
gorithm against an iterative nonlinear programming algorithm
from the literature.

Future research will develop formulations that incorporate
other stability metrics and will determine how different metrics
impact the control of resources. A primary drawback to
using the SSV as a voltage stability metric is that it is an
indicator of the distance to infeasibility of the power flow
equations; it does not contain information about the distance
to the engineering or security constraints. Future work will
explore and/or develop alternative metrics that do include this
information. Other avenues for future work include developing
an understanding of why the loading patterns change in the
way they do, and improving the computational speed of our
algorithm.

REFERENCES

[1] S. Eftekharnejad, V. Vittal, G. T. Heydt, B. Keel, and J. Loehr, “Impact
of increased penetration of photovoltaic generation on power systems,”
IEEE Trans. Power Syst., vol. 28, no. 2, pp. 893–901, 2013.

[2] A. Ulbig, T. S. Borsche, and G. Andersson, “Impact of low rotational
inertia on power system stability and operation,” Proceedings of IFAC,
vol. 47, no. 3, pp. 7290–7297, 2014.

Hourly cost of all Periods (DR, Energy Payback, 
OPF with SSV constraint) to achieve the same SSV
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Comparison to Load 
Shedding

• Formulated/solved optimization problem to 
minimize load shedding to achieve an SSV at 
least as good as the one obtained with spatial 
load shifting [similar to Berizzi et al. 1996]

• For the IEEE 9-bus system the load would 
need to drop 17% to achieve the same SSV we 
obtain by spatial load shifting without any net 
load shedding 

27



Voltage-Dependent Load 
Models

• If we explicitly model the flexible load’s 
voltage dependence, what will be the effect 
on the optimal operating point and the 
smallest singular value improvement?

• Why is this important?
– Maybe we can get away with simple load models…
– Insights into which types of systems would stand 

to benefit more…

[Yao et al. Allerton 2017] 28



Models

• ZIP model

• Induction machine model

[Molzahn 2017] 

where        is the ratio between the controlled and nominal demand  
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Fig. 2. Steady-state equivalent circuit of a squirrel-cage induction machine
at bus k [19].

A. Controllable ZIP Model

Typical static loads are represented using a “ZIP” model
which has constant impedance (“Z”), constant current (“I”),
and constant power (“P”) components. To incorporate de-
mand response capabilities into the typical ZIP model, we
introduce a scalar variable εk that represents the ratio (at
a given voltage magnitude) between the controlled and
nominal power demands:

FZP
k (Vk, εk) = εkP

0
d,k

[
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(
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V 0
k
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+ a2,k

(
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,

(1a)

FZQ
k (Vk, εk) = εkQ
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(
Vk

V 0
k

)2

+ b2,k

(
Vk

V 0
k

)
+ b3,k

]
,

(1b)

where FZP
k and FZQ

k are the functions representing the
real and reactive power consumption of the controllable ZIP
model, P 0

d,k and Q0
d,k are the nominal real and reactive

demands, and V 0
k is the nominal voltage magnitude at load

bus k. The coefficients a1,k, a2,k, and a3,k represent constant
impedance, constant current, and constant power fractions
for real power. Corresponding reactive power coefficients are
denoted b1,k, b2,k, and b3,k. These coefficients sum to one,
i.e.,

∑3
i=1 ai,k = 1 and

∑3
i=1 bi,k = 1 for all k.

B. Induction Machine Model

Fig. 2 shows the equivalent circuit of a squirrel-cage
induction machine. An induction machine at bus k is mod-
eled using two additional internal buses denoted µk and ρk
along with a “slip” variable sk indicating the normalized
difference between the electrical frequency and the induction
machine’s mechanical speed. A slip equal to 1 indicates zero
mechanical speed, while a slip equal to 0 indicates that the
machine operates at synchronous speed. For both sk = 0
and sk = 1, the induction machine delivers zero mechanical
power but may consume electrical power due to losses.
Fig. 3 shows an induction machine’s power consumption as
a function of sk.

Based on the circuit in Fig. 2, the real and reactive
demands at bus k become functions of the voltage phasors
at buses k, µk and ρk as well as the machine’s slip:

Pd,k + jQd,k = Vke
jθk

(
Vµ,kejθµ,k

jXm,k
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Vρ,kejθρ,ksk
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Fig. 3. The electrical power consumption of an induction machine as a
function of the slip.

where j =
√
−1. Splitting (2) into real and imaginary

components yields

FIP
k (θk, Vk, θµ,k, Vµ,k, θρ,k, Vρ,k, sk)

=
VkVµ,k

Xm,k
sin(θµ,k − θk) +

VkVρ,ksk
Rr,k

cos(θρ,k − θk),

(3a)

FIQ
k (θk, Vk, θµ,k, Vµ,k, θρ,k, Vρ,k, sk)

=
VkVµ,k

Xm,k
cos(θµ,k − θk)−

VkVρ,ksk
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sin(θρ,k − θk).

(3b)

The voltage magnitudes are related by Ohm’s law:

Vke
jθk − Vµ,ke

jθµ,k =

(Rs,k + jXls,k)

(
Vµ,kejθµ,k

jXm,k
+

Vρ,kejθρ,ksk
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)
, (4a)

Vµ,ke
jθµ,k = Vρ,ke

jθρ,k

(
1 + jXlr,k

sk
Rr,k

)
. (4b)

As shown in Fig. 3, for a specific value of real power de-
mand Pd,k and terminal voltage magnitude Vk (the horizontal
dashed line), there can exist multiple possible values for the
slip sk. We choose the smallest slip, which corresponds to
stable operation (the star), by imposing the limits sk ≤ sk ≤
sk. Since the induction machine represents a load, the slip
should be greater than zero; therefore, we impose a small
nonzero value as the lower limit sk. The value of the upper
limit sk, which must be small enough to preclude unstable
solutions, depends on the machine parameters.

We consider a composite load model, which allows for the
combination of both ZIP loads and induction machine loads:

Sd,k = (1− α)SZIP,k + αSIM,k (5)

where SZIP and SIM represent the complex power demands
of the ZIP load and the induction machine, respectively, and
α is the percentage of induction machine load (0 ≤ α ≤ 1).

IV. OPTIMIZATION FORMULATION

Our recent work [11] proposes a non-convex optimization
formulation for determining loading patterns that improve
voltage stability as measured by the SSV of the power flow
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A. Controllable ZIP Model

Typical static loads are represented using a “ZIP” model
which has constant impedance (“Z”), constant current (“I”),
and constant power (“P”) components. To incorporate de-
mand response capabilities into the typical ZIP model, we
introduce a scalar variable εk that represents the ratio (at
a given voltage magnitude) between the controlled and
nominal power demands:
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where FZP
k and FZQ

k are the functions representing the
real and reactive power consumption of the controllable ZIP
model, P 0

d,k and Q0
d,k are the nominal real and reactive

demands, and V 0
k is the nominal voltage magnitude at load

bus k. The coefficients a1,k, a2,k, and a3,k represent constant
impedance, constant current, and constant power fractions
for real power. Corresponding reactive power coefficients are
denoted b1,k, b2,k, and b3,k. These coefficients sum to one,
i.e.,

∑3
i=1 ai,k = 1 and

∑3
i=1 bi,k = 1 for all k.

B. Induction Machine Model

Fig. 2 shows the equivalent circuit of a squirrel-cage
induction machine. An induction machine at bus k is mod-
eled using two additional internal buses denoted µk and ρk
along with a “slip” variable sk indicating the normalized
difference between the electrical frequency and the induction
machine’s mechanical speed. A slip equal to 1 indicates zero
mechanical speed, while a slip equal to 0 indicates that the
machine operates at synchronous speed. For both sk = 0
and sk = 1, the induction machine delivers zero mechanical
power but may consume electrical power due to losses.
Fig. 3 shows an induction machine’s power consumption as
a function of sk.

Based on the circuit in Fig. 2, the real and reactive
demands at bus k become functions of the voltage phasors
at buses k, µk and ρk as well as the machine’s slip:
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Vke
jθk − Vµ,ke

jθµ,k =

(Rs,k + jXls,k)

(
Vµ,kejθµ,k

jXm,k
+

Vρ,kejθρ,ksk
Rr,k

)
, (4a)

Vµ,ke
jθµ,k = Vρ,ke

jθρ,k

(
1 + jXlr,k

sk
Rr,k

)
. (4b)

As shown in Fig. 3, for a specific value of real power de-
mand Pd,k and terminal voltage magnitude Vk (the horizontal
dashed line), there can exist multiple possible values for the
slip sk. We choose the smallest slip, which corresponds to
stable operation (the star), by imposing the limits sk ≤ sk ≤
sk. Since the induction machine represents a load, the slip
should be greater than zero; therefore, we impose a small
nonzero value as the lower limit sk. The value of the upper
limit sk, which must be small enough to preclude unstable
solutions, depends on the machine parameters.

We consider a composite load model, which allows for the
combination of both ZIP loads and induction machine loads:

Sd,k = (1− α)SZIP,k + αSIM,k (5)

where SZIP and SIM represent the complex power demands
of the ZIP load and the induction machine, respectively, and
α is the percentage of induction machine load (0 ≤ α ≤ 1).

IV. OPTIMIZATION FORMULATION

Our recent work [11] proposes a non-convex optimization
formulation for determining loading patterns that improve
voltage stability as measured by the SSV of the power flow
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A. Controllable ZIP Model

Typical static loads are represented using a “ZIP” model
which has constant impedance (“Z”), constant current (“I”),
and constant power (“P”) components. To incorporate de-
mand response capabilities into the typical ZIP model, we
introduce a scalar variable εk that represents the ratio (at
a given voltage magnitude) between the controlled and
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bus k. The coefficients a1,k, a2,k, and a3,k represent constant
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i.e.,
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Fig. 2 shows the equivalent circuit of a squirrel-cage
induction machine. An induction machine at bus k is mod-
eled using two additional internal buses denoted µk and ρk
along with a “slip” variable sk indicating the normalized
difference between the electrical frequency and the induction
machine’s mechanical speed. A slip equal to 1 indicates zero
mechanical speed, while a slip equal to 0 indicates that the
machine operates at synchronous speed. For both sk = 0
and sk = 1, the induction machine delivers zero mechanical
power but may consume electrical power due to losses.
Fig. 3 shows an induction machine’s power consumption as
a function of sk.

Based on the circuit in Fig. 2, the real and reactive
demands at bus k become functions of the voltage phasors
at buses k, µk and ρk as well as the machine’s slip:
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As shown in Fig. 3, for a specific value of real power de-
mand Pd,k and terminal voltage magnitude Vk (the horizontal
dashed line), there can exist multiple possible values for the
slip sk. We choose the smallest slip, which corresponds to
stable operation (the star), by imposing the limits sk ≤ sk ≤
sk. Since the induction machine represents a load, the slip
should be greater than zero; therefore, we impose a small
nonzero value as the lower limit sk. The value of the upper
limit sk, which must be small enough to preclude unstable
solutions, depends on the machine parameters.

We consider a composite load model, which allows for the
combination of both ZIP loads and induction machine loads:

Sd,k = (1− α)SZIP,k + αSIM,k (5)

where SZIP and SIM represent the complex power demands
of the ZIP load and the induction machine, respectively, and
α is the percentage of induction machine load (0 ≤ α ≤ 1).

IV. OPTIMIZATION FORMULATION

Our recent work [11] proposes a non-convex optimization
formulation for determining loading patterns that improve
voltage stability as measured by the SSV of the power flow
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k are the functions representing the
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k is the nominal voltage magnitude at load

bus k. The coefficients a1,k, a2,k, and a3,k represent constant
impedance, constant current, and constant power fractions
for real power. Corresponding reactive power coefficients are
denoted b1,k, b2,k, and b3,k. These coefficients sum to one,
i.e.,

∑3
i=1 ai,k = 1 and
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i=1 bi,k = 1 for all k.

B. Induction Machine Model

Fig. 2 shows the equivalent circuit of a squirrel-cage
induction machine. An induction machine at bus k is mod-
eled using two additional internal buses denoted µk and ρk
along with a “slip” variable sk indicating the normalized
difference between the electrical frequency and the induction
machine’s mechanical speed. A slip equal to 1 indicates zero
mechanical speed, while a slip equal to 0 indicates that the
machine operates at synchronous speed. For both sk = 0
and sk = 1, the induction machine delivers zero mechanical
power but may consume electrical power due to losses.
Fig. 3 shows an induction machine’s power consumption as
a function of sk.

Based on the circuit in Fig. 2, the real and reactive
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As shown in Fig. 3, for a specific value of real power de-
mand Pd,k and terminal voltage magnitude Vk (the horizontal
dashed line), there can exist multiple possible values for the
slip sk. We choose the smallest slip, which corresponds to
stable operation (the star), by imposing the limits sk ≤ sk ≤
sk. Since the induction machine represents a load, the slip
should be greater than zero; therefore, we impose a small
nonzero value as the lower limit sk. The value of the upper
limit sk, which must be small enough to preclude unstable
solutions, depends on the machine parameters.

We consider a composite load model, which allows for the
combination of both ZIP loads and induction machine loads:

Sd,k = (1− α)SZIP,k + αSIM,k (5)

where SZIP and SIM represent the complex power demands
of the ZIP load and the induction machine, respectively, and
α is the percentage of induction machine load (0 ≤ α ≤ 1).

IV. OPTIMIZATION FORMULATION

Our recent work [11] proposes a non-convex optimization
formulation for determining loading patterns that improve
voltage stability as measured by the SSV of the power flow
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Impact on the Formulation

• Conventional Jacobian

• Jacobian with ZIP models

• Jacobian with induction machine models

The smallest singular value sensitivity expression now contains 
partial derivatives with respect to the ZIP states and the induction 
machine states.

30

Jacobian matrix. This section introduces ZIP and induction
machine models into this formulation.

A. Jacobian Matrix
The standard AC power flow equations [20] are used to

compute the conventional power flow Jacobian matrix:

FP
i (θ,V ) = Vi

∑

j∈N
Vj(Gij cos θij +Bij sin θij), (6a)

FQ
i (θ,V ) = Vi

∑

j∈N
Vj(Gij sin θij −Bij cos θij), (6b)

where θij = θi − θj , Gij = Re(Yij), and Bij = Im(Yij).
The conventional Jacobian matrix is an m×m matrix, where
m = npv + 2npq:

Jcnv =

⎡

⎣
∂FP

i
∂θi

∂FP
i

∂Vj

∂FQ
j

∂θi

∂FQ
j

∂Vj

⎤

⎦ , (7)

where each term represents a submatrix of partial derivatives
over the indices i ∈ {SPV,SPQ} and j ∈ SPQ.

Models of voltage-dependent loads result in modifications
to the conventional power flow Jacobian. For a system with
ZIP load models, the m×m Jacobian matrix is

JZIP = Jcnv +

⎡

⎣0n−1×n−1
∂FZP

i
∂Vj

0npq×n−1
∂FZQ

j

∂Vj

⎤

⎦ , (8)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ} and j ∈ SPQ.

The real and reactive power demands of the induction
machine model are functions of the variables θk, Vk, θµ,k,
Vµ,k, θρ,k, Vρ,k, sk, ∀k ∈ SDR. The modified m×m+5ndr

Jacobian matrix is
JIM =

[
Jcnv 0m×5ndr

]

+

⎡

⎣
∂FIP

i
∂θi

∂FIP
i

∂Vj

∂FIP
i

∂θµ,k

∂FIP
i

∂Vµ,k

∂FIP
i

∂θρ,k

∂FIP
i

∂Vρ,k

∂FIP
i

∂sk
∂FIQ

j

∂θi

∂FIQ
j

∂Vj

∂FIQ
j

∂θµ,k

∂FIQ
j

∂Vµ,k

∂FIQ
j

∂θρ,k

∂FIQ
j

∂Vρ,k

∂FIQ
j

∂sk

⎤

⎦ ,

(9)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. For example, the
partial derivatives ∂FIP

i /∂θµ,k, ∂FIP
i /∂θρ,k, ∂FIP

i /∂Vµ,k,
∂FIP

i /∂Vρ,k, ∂FIP
i /∂sk are each of size (n− 1)× ndr.

The Jacobian matrix for the composite load model is
formed by the weighted sum of JZIP and JIM:

Jcom = (1− α)
[
JZIP 0m×5ndr

]
+ αJIM. (10)

The SSV of a matrix is closely related to the matrix’s
dimension. The SSV of the sum of two matrices, as in (8),
obeys the following inequality [21]:

σmin(A+B) ≥ σmin(A)− σmax(B) (11)

where σmin ( · ) denotes the SSV and σmax ( · ) the largest
singular value of the corresponding matrix. Therefore, we
can not say much about the relative size of the SSV of Jcnv
versus JZIP. In contrast, appending columns to a matrix, as
in (9), increases its SSV.

Theorem 1: Let A ∈ Rm×n, z ∈ Rm×1, where m ≤ n.
Then σmin(

[
A z

]
) ≥ σmin(A).

Proof: See appendix.
Therefore, the SSV of JIM is larger than that of Jcnv at
the same operating point. We discuss the implication of this
result in Section V-B.

B. Smallest Singular Value Maximization Problem

The optimization problems in [9] and [10] enforce voltage
stability constraints based on the SSV of the power flow
Jacobian. In contrast, we wish to find the loading pattern
Pd that maximizes the SSV of the modified power flow
Jacobian matrix Jcom given in (10). We exploit the fact that
the singular values of a matrix A are the square roots of the
eigenvalues of AAT in order to consider the eigenvalues of
the matrix JcomJT

com rather than explicitly form the singular
values of Jcom. This facilitates the following mathematical
formalization of the problem description from Section II:

max
Pg,Qg,Pd,Qd,
V,θ,Vµ,θµ,
Vρ,θρ,s,ε,λ0

λ0 subject to (12a)

JcomJ
T
com − λ0I ≽ 0 (12b)

FP
i (θ,V ) = Pg,i − Pd,i ∀i ∈ N (12c)

FQ
i (θ,V ) = Qg,i −Qd,i ∀i ∈ N (12d)

(1− α)FZP
i (·) + αFIP

i (·) = Pd,i ∀i ∈ SDR (12e)

(1− α)FZQ
i (·) + αFIQ

i (·) = Qd,i ∀i ∈ SDR (12f)
Vi∠θi − Vµ,i∠θµ,i = (Rs,i + jXls,i) Is,i ∀i ∈ SDR (12g)

Is,i =
Vµ,i∠θµ,i
jXm,i

+
Vρ,i∠θρ,isi

Rr,i
∀i ∈ SDR (12h)

Vµ,i∠θµ,i = Vρ,i∠θρ,i
(
1 + j

Xlr,isi
Rr,i

)
∀i ∈ SDR (12i)

∑
i∈SDR

Pd,i =
∑

i∈SDR
P 0
d,i (12j)

Pd,i = P 0
d,i ∀i ∈ SPQ \ SDR (12k)

Pg,i = P 0
g,i ∀i ∈ SPV (12l)

Vi = V 0
i ∀i ∈ SPV (12m)

Vref = V 0
ref , θref = 0 (12n)

Hij(θ,V ) ≤ κij (12o)
Hji(θ,V ) ≤ κji (12p)
P g,ref ≤ Pg,ref ≤ P g,ref (12q)
Q

g,ref
≤ Qg,ref ≤ Qg,ref (12r)

Q
g,i

≤ Qg,i ≤ Qg,i ∀i ∈ SPV (12s)

P d,i ≤ Pd,i ≤ P d,i ∀i ∈ SDR (12t)
si ≤ si ≤ si ∀i ∈ SDR (12u)
V i ≤ Vi ≤ V i ∀i ∈ SPQ (12v)

The combination of the objective (12a) and constraint (12b)
ensures that λ0 is the smallest eigenvalue of the matrix
JcomJT

com. Constraints (12c) and (12d) are the standard
nonlinear AC power flow equations. Constraints (12e) and
(12f) are the real and reactive power demands of the
demand-responsive loads. Constraints (12g)–(12i) are the
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values of Jcom. This facilitates the following mathematical
formalization of the problem description from Section II:

max
Pg,Qg,Pd,Qd,
V,θ,Vµ,θµ,
Vρ,θρ,s,ε,λ0

λ0 subject to (12a)

JcomJ
T
com − λ0I ≽ 0 (12b)

FP
i (θ,V ) = Pg,i − Pd,i ∀i ∈ N (12c)

FQ
i (θ,V ) = Qg,i −Qd,i ∀i ∈ N (12d)

(1− α)FZP
i (·) + αFIP

i (·) = Pd,i ∀i ∈ SDR (12e)

(1− α)FZQ
i (·) + αFIQ

i (·) = Qd,i ∀i ∈ SDR (12f)
Vi∠θi − Vµ,i∠θµ,i = (Rs,i + jXls,i) Is,i ∀i ∈ SDR (12g)

Is,i =
Vµ,i∠θµ,i
jXm,i

+
Vρ,i∠θρ,isi

Rr,i
∀i ∈ SDR (12h)

Vµ,i∠θµ,i = Vρ,i∠θρ,i
(
1 + j

Xlr,isi
Rr,i

)
∀i ∈ SDR (12i)

∑
i∈SDR

Pd,i =
∑

i∈SDR
P 0
d,i (12j)

Pd,i = P 0
d,i ∀i ∈ SPQ \ SDR (12k)

Pg,i = P 0
g,i ∀i ∈ SPV (12l)

Vi = V 0
i ∀i ∈ SPV (12m)

Vref = V 0
ref , θref = 0 (12n)

Hij(θ,V ) ≤ κij (12o)
Hji(θ,V ) ≤ κji (12p)
P g,ref ≤ Pg,ref ≤ P g,ref (12q)
Q

g,ref
≤ Qg,ref ≤ Qg,ref (12r)

Q
g,i

≤ Qg,i ≤ Qg,i ∀i ∈ SPV (12s)

P d,i ≤ Pd,i ≤ P d,i ∀i ∈ SDR (12t)
si ≤ si ≤ si ∀i ∈ SDR (12u)
V i ≤ Vi ≤ V i ∀i ∈ SPQ (12v)

The combination of the objective (12a) and constraint (12b)
ensures that λ0 is the smallest eigenvalue of the matrix
JcomJT

com. Constraints (12c) and (12d) are the standard
nonlinear AC power flow equations. Constraints (12e) and
(12f) are the real and reactive power demands of the
demand-responsive loads. Constraints (12g)–(12i) are the

152

Jacobian matrix. This section introduces ZIP and induction
machine models into this formulation.

A. Jacobian Matrix
The standard AC power flow equations [20] are used to

compute the conventional power flow Jacobian matrix:

FP
i (θ,V ) = Vi

∑

j∈N
Vj(Gij cos θij +Bij sin θij), (6a)

FQ
i (θ,V ) = Vi

∑

j∈N
Vj(Gij sin θij −Bij cos θij), (6b)

where θij = θi − θj , Gij = Re(Yij), and Bij = Im(Yij).
The conventional Jacobian matrix is an m×m matrix, where
m = npv + 2npq:

Jcnv =

⎡

⎣
∂FP

i
∂θi

∂FP
i

∂Vj

∂FQ
j

∂θi

∂FQ
j

∂Vj

⎤

⎦ , (7)

where each term represents a submatrix of partial derivatives
over the indices i ∈ {SPV,SPQ} and j ∈ SPQ.

Models of voltage-dependent loads result in modifications
to the conventional power flow Jacobian. For a system with
ZIP load models, the m×m Jacobian matrix is

JZIP = Jcnv +

⎡

⎣0n−1×n−1
∂FZP

i
∂Vj

0npq×n−1
∂FZQ

j

∂Vj

⎤

⎦ , (8)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ} and j ∈ SPQ.

The real and reactive power demands of the induction
machine model are functions of the variables θk, Vk, θµ,k,
Vµ,k, θρ,k, Vρ,k, sk, ∀k ∈ SDR. The modified m×m+5ndr

Jacobian matrix is
JIM =

[
Jcnv 0m×5ndr

]

+

⎡

⎣
∂FIP

i
∂θi

∂FIP
i

∂Vj

∂FIP
i

∂θµ,k

∂FIP
i

∂Vµ,k

∂FIP
i

∂θρ,k

∂FIP
i

∂Vρ,k

∂FIP
i

∂sk
∂FIQ

j

∂θi

∂FIQ
j

∂Vj

∂FIQ
j

∂θµ,k

∂FIQ
j

∂Vµ,k

∂FIQ
j

∂θρ,k

∂FIQ
j

∂Vρ,k

∂FIQ
j

∂sk

⎤

⎦ ,

(9)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. For example, the
partial derivatives ∂FIP

i /∂θµ,k, ∂FIP
i /∂θρ,k, ∂FIP

i /∂Vµ,k,
∂FIP

i /∂Vρ,k, ∂FIP
i /∂sk are each of size (n− 1)× ndr.

The Jacobian matrix for the composite load model is
formed by the weighted sum of JZIP and JIM:

Jcom = (1− α)
[
JZIP 0m×5ndr

]
+ αJIM. (10)

The SSV of a matrix is closely related to the matrix’s
dimension. The SSV of the sum of two matrices, as in (8),
obeys the following inequality [21]:

σmin(A+B) ≥ σmin(A)− σmax(B) (11)

where σmin ( · ) denotes the SSV and σmax ( · ) the largest
singular value of the corresponding matrix. Therefore, we
can not say much about the relative size of the SSV of Jcnv
versus JZIP. In contrast, appending columns to a matrix, as
in (9), increases its SSV.

Theorem 1: Let A ∈ Rm×n, z ∈ Rm×1, where m ≤ n.
Then σmin(

[
A z

]
) ≥ σmin(A).

Proof: See appendix.
Therefore, the SSV of JIM is larger than that of Jcnv at
the same operating point. We discuss the implication of this
result in Section V-B.

B. Smallest Singular Value Maximization Problem

The optimization problems in [9] and [10] enforce voltage
stability constraints based on the SSV of the power flow
Jacobian. In contrast, we wish to find the loading pattern
Pd that maximizes the SSV of the modified power flow
Jacobian matrix Jcom given in (10). We exploit the fact that
the singular values of a matrix A are the square roots of the
eigenvalues of AAT in order to consider the eigenvalues of
the matrix JcomJT

com rather than explicitly form the singular
values of Jcom. This facilitates the following mathematical
formalization of the problem description from Section II:

max
Pg,Qg,Pd,Qd,
V,θ,Vµ,θµ,
Vρ,θρ,s,ε,λ0

λ0 subject to (12a)

JcomJ
T
com − λ0I ≽ 0 (12b)

FP
i (θ,V ) = Pg,i − Pd,i ∀i ∈ N (12c)

FQ
i (θ,V ) = Qg,i −Qd,i ∀i ∈ N (12d)

(1− α)FZP
i (·) + αFIP

i (·) = Pd,i ∀i ∈ SDR (12e)

(1− α)FZQ
i (·) + αFIQ

i (·) = Qd,i ∀i ∈ SDR (12f)
Vi∠θi − Vµ,i∠θµ,i = (Rs,i + jXls,i) Is,i ∀i ∈ SDR (12g)

Is,i =
Vµ,i∠θµ,i
jXm,i

+
Vρ,i∠θρ,isi

Rr,i
∀i ∈ SDR (12h)

Vµ,i∠θµ,i = Vρ,i∠θρ,i
(
1 + j

Xlr,isi
Rr,i

)
∀i ∈ SDR (12i)

∑
i∈SDR

Pd,i =
∑

i∈SDR
P 0
d,i (12j)

Pd,i = P 0
d,i ∀i ∈ SPQ \ SDR (12k)

Pg,i = P 0
g,i ∀i ∈ SPV (12l)

Vi = V 0
i ∀i ∈ SPV (12m)

Vref = V 0
ref , θref = 0 (12n)

Hij(θ,V ) ≤ κij (12o)
Hji(θ,V ) ≤ κji (12p)
P g,ref ≤ Pg,ref ≤ P g,ref (12q)
Q

g,ref
≤ Qg,ref ≤ Qg,ref (12r)

Q
g,i

≤ Qg,i ≤ Qg,i ∀i ∈ SPV (12s)

P d,i ≤ Pd,i ≤ P d,i ∀i ∈ SDR (12t)
si ≤ si ≤ si ∀i ∈ SDR (12u)
V i ≤ Vi ≤ V i ∀i ∈ SPQ (12v)

The combination of the objective (12a) and constraint (12b)
ensures that λ0 is the smallest eigenvalue of the matrix
JcomJT

com. Constraints (12c) and (12d) are the standard
nonlinear AC power flow equations. Constraints (12e) and
(12f) are the real and reactive power demands of the
demand-responsive loads. Constraints (12g)–(12i) are the
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Jacobian matrix. This section introduces ZIP and induction
machine models into this formulation.

A. Jacobian Matrix
The standard AC power flow equations [20] are used to

compute the conventional power flow Jacobian matrix:

FP
i (θ,V ) = Vi

∑

j∈N
Vj(Gij cos θij +Bij sin θij), (6a)

FQ
i (θ,V ) = Vi

∑

j∈N
Vj(Gij sin θij −Bij cos θij), (6b)

where θij = θi − θj , Gij = Re(Yij), and Bij = Im(Yij).
The conventional Jacobian matrix is an m×m matrix, where
m = npv + 2npq:

Jcnv =

⎡

⎣
∂FP

i
∂θi

∂FP
i

∂Vj

∂FQ
j

∂θi

∂FQ
j

∂Vj

⎤

⎦ , (7)

where each term represents a submatrix of partial derivatives
over the indices i ∈ {SPV,SPQ} and j ∈ SPQ.

Models of voltage-dependent loads result in modifications
to the conventional power flow Jacobian. For a system with
ZIP load models, the m×m Jacobian matrix is

JZIP = Jcnv +

⎡

⎣0n−1×n−1
∂FZP

i
∂Vj

0npq×n−1
∂FZQ

j

∂Vj

⎤

⎦ , (8)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ} and j ∈ SPQ.

The real and reactive power demands of the induction
machine model are functions of the variables θk, Vk, θµ,k,
Vµ,k, θρ,k, Vρ,k, sk, ∀k ∈ SDR. The modified m×m+5ndr

Jacobian matrix is
JIM =

[
Jcnv 0m×5ndr

]

+

⎡

⎣
∂FIP

i
∂θi

∂FIP
i

∂Vj

∂FIP
i

∂θµ,k

∂FIP
i

∂Vµ,k

∂FIP
i

∂θρ,k

∂FIP
i

∂Vρ,k

∂FIP
i

∂sk
∂FIQ

j

∂θi

∂FIQ
j

∂Vj

∂FIQ
j

∂θµ,k

∂FIQ
j

∂Vµ,k

∂FIQ
j

∂θρ,k

∂FIQ
j

∂Vρ,k

∂FIQ
j

∂sk

⎤

⎦ ,

(9)

where the new terms are submatrices over the indices i ∈
{SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. For example, the
partial derivatives ∂FIP

i /∂θµ,k, ∂FIP
i /∂θρ,k, ∂FIP

i /∂Vµ,k,
∂FIP

i /∂Vρ,k, ∂FIP
i /∂sk are each of size (n− 1)× ndr.

The Jacobian matrix for the composite load model is
formed by the weighted sum of JZIP and JIM:

Jcom = (1− α)
[
JZIP 0m×5ndr

]
+ αJIM. (10)

The SSV of a matrix is closely related to the matrix’s
dimension. The SSV of the sum of two matrices, as in (8),
obeys the following inequality [21]:

σmin(A+B) ≥ σmin(A)− σmax(B) (11)

where σmin ( · ) denotes the SSV and σmax ( · ) the largest
singular value of the corresponding matrix. Therefore, we
can not say much about the relative size of the SSV of Jcnv
versus JZIP. In contrast, appending columns to a matrix, as
in (9), increases its SSV.

Theorem 1: Let A ∈ Rm×n, z ∈ Rm×1, where m ≤ n.
Then σmin(

[
A z

]
) ≥ σmin(A).

Proof: See appendix.
Therefore, the SSV of JIM is larger than that of Jcnv at
the same operating point. We discuss the implication of this
result in Section V-B.

B. Smallest Singular Value Maximization Problem

The optimization problems in [9] and [10] enforce voltage
stability constraints based on the SSV of the power flow
Jacobian. In contrast, we wish to find the loading pattern
Pd that maximizes the SSV of the modified power flow
Jacobian matrix Jcom given in (10). We exploit the fact that
the singular values of a matrix A are the square roots of the
eigenvalues of AAT in order to consider the eigenvalues of
the matrix JcomJT

com rather than explicitly form the singular
values of Jcom. This facilitates the following mathematical
formalization of the problem description from Section II:

max
Pg,Qg,Pd,Qd,
V,θ,Vµ,θµ,
Vρ,θρ,s,ε,λ0

λ0 subject to (12a)

JcomJ
T
com − λ0I ≽ 0 (12b)

FP
i (θ,V ) = Pg,i − Pd,i ∀i ∈ N (12c)

FQ
i (θ,V ) = Qg,i −Qd,i ∀i ∈ N (12d)

(1− α)FZP
i (·) + αFIP

i (·) = Pd,i ∀i ∈ SDR (12e)

(1− α)FZQ
i (·) + αFIQ

i (·) = Qd,i ∀i ∈ SDR (12f)
Vi∠θi − Vµ,i∠θµ,i = (Rs,i + jXls,i) Is,i ∀i ∈ SDR (12g)

Is,i =
Vµ,i∠θµ,i
jXm,i

+
Vρ,i∠θρ,isi

Rr,i
∀i ∈ SDR (12h)

Vµ,i∠θµ,i = Vρ,i∠θρ,i
(
1 + j

Xlr,isi
Rr,i

)
∀i ∈ SDR (12i)

∑
i∈SDR

Pd,i =
∑

i∈SDR
P 0
d,i (12j)

Pd,i = P 0
d,i ∀i ∈ SPQ \ SDR (12k)

Pg,i = P 0
g,i ∀i ∈ SPV (12l)

Vi = V 0
i ∀i ∈ SPV (12m)

Vref = V 0
ref , θref = 0 (12n)

Hij(θ,V ) ≤ κij (12o)
Hji(θ,V ) ≤ κji (12p)
P g,ref ≤ Pg,ref ≤ P g,ref (12q)
Q

g,ref
≤ Qg,ref ≤ Qg,ref (12r)

Q
g,i

≤ Qg,i ≤ Qg,i ∀i ∈ SPV (12s)

P d,i ≤ Pd,i ≤ P d,i ∀i ∈ SDR (12t)
si ≤ si ≤ si ∀i ∈ SDR (12u)
V i ≤ Vi ≤ V i ∀i ∈ SPQ (12v)

The combination of the objective (12a) and constraint (12b)
ensures that λ0 is the smallest eigenvalue of the matrix
JcomJT

com. Constraints (12c) and (12d) are the standard
nonlinear AC power flow equations. Constraints (12e) and
(12f) are the real and reactive power demands of the
demand-responsive loads. Constraints (12g)–(12i) are the
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electrical equations for the steady-state induction machine
model. While demands at the load buses without demand-
responsive loads can be treated using any appropriate load
model, our numerical results assume a constant power load
model for simplicity. Constraint (12j) ensures that the total
demand-responsive load is constant, (12k)–(12n) fix the non-
responsive loads’ real power demands, the generators’ real
power production at PV buses, voltage magnitudes at all
generator buses, and the voltage angle at the reference bus.
Constraints (12o)–(12v) enforce the upper limits of power
flows on the branches (in terms of apparent power) as well
as upper and lower limits on real power and reactive power
production at the reference bus, reactive power production at
PV buses, real power demands of demand-responsive loads
(which is a function of demand flexibility in both the current
time period and the payback period), slips of the induction
machines, and voltage magnitudes at PQ buses.

C. Solution Approach
We adapt the iterative linear programming algorithm pre-

sented in [11] to solve (12). This algorithm relies on lin-
earizations of the objective function and constraints in (12).

To address (12b), the linear sensitivity of the smallest
eigenvalue is derived using eigenvalue sensitivities [22]:

∂λ0

∂χ
= wT

0
∂(JcomJT

com)

∂χ
u0, (13)

where χ represents the system states and w0 and u0 are the
normalized left and right eigenvectors corresponding to the
smallest eigenvalue λ0 of JcomJT

com. A change in the states
χ yields an approximate change in λ0 that is given by

∆λ0 =
∑

i

wT
0
∂(JcomJT

com)

∂χi
u0∆χi. (14)

The relevant system states for the ZIP model are

χZIP = [θi, Vj , εk ]T (15)

and for the IM model are

χIM = [θi, Vj , θµ,k, Vµ,k, θρ,k, Vρ,k, sk]
T , (16)

where i ∈ {SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. In addition
to (12b), the iterative linear programming algorithm requires
linearization of the AC power flow and load model equations,
which is accomplished via first-order Taylor expansion.

After evaluating these linearizations at the approximate
solution from the previous iteration, each iteration of the
algorithm solves the following linear optimization problem:

max
∆P g,∆Qg,∆P d,
∆Qd,∆V ,∆θ,
∆Vµ,∆θµ,Vρ,

∆θρ,∆s,∆ε,∆λ0

∆λ0 subject to (17a)

∆λ0 =
∑

i

[
wT

0
∂(JcomJT

com)

∂θi
u0

]
∆θi

+
∑

j

[
wT

0
∂(JcomJT

com)

∂Vj
u0

]
∆Vj

+
∑

k

[
wT

0
∂(JcomJT

com)

∂θµ,k
u0

]
∆θµ,k

+
∑

k

[
wT

0
∂(JcomJT

com)

∂θρ,k
u0

]
∆θρ,k

+
∑

k

[
wT

0
∂(JcomJT

com)

∂Vµ,k
u0

]
∆Vµ,k

+
∑

k

[
wT

0
∂(JcomJT

com)

∂Vρ,k
u0

]
∆Vρ,k

+
∑

k

[
wT

0
∂(JcomJT

com)

∂εk
u0

]
∆εk

+
∑

k

[
wT

0
∂(JcomJT

com)

∂sk
u0

]
∆sk

i ∈ {SPV,SPQ} , ∀j ∈ SPQ, ∀k ∈ SDR (17b)
Linearizations of (12c)–(12v) (17c)
∆λ0 ≤ ∆λ0 (17d)

where (17b) is the linear eigenvalue sensitivity constraint
corresponding to the composite load model. Constraint (17d)
limits the step size of ∆λ0 to ensure the accuracy of the
linearization.

We extend the iterative sensitivity SSV algorithm presented
in [11] to include Jcom, as follows.

Algorithm 1 Extended Iterative Sensitivity SSV
Input: The nominal operating point χ0

1: iter ← 0
2: χiter = χ0

3: repeat
4: Compute (17b)–(17d) at χiter

5: Solve (17) at χiter to obtain ∆P opt
d , ∆Qopt

d , ∆λ0

6: iter ← iter + 1
7: P iter

d = P iter−1
d +∆P opt

d ,Qiter
d = Qiter−1

d +∆Qopt
d

8: Solve (6) to obtain a new χiter

9: until ∆λ0 < 10−5

Output: P iter
d , λiter

0

The solution to (17) provides an approximation of the
change in decision variables that leads to the maximum
increase in λ0, within the region near the linearization point.
Each iteration of the extended algorithm refines an approx-
imate solution to (12) by linearizing around the previous
operating point, solving (17), adding the changes provided
by that solution of (17) to the previous operating point, and
solving the AC power flow equations (6) to obtain a new
operating point. The algorithm terminates when ∆λ0 is less
than a specified threshold (here, 10−5).

V. RESULTS AND DISCUSSION

This section describes the results of case studies conducted
on the IEEE 14-bus system available in MATPOWER [23]. We
assume the loads at buses 4, 9, and 14 are demand-responsive
resulting in 92.2 MW of responsive demand out of 259 MW
of total demand.

We set ∆λ0 = 0.01 and list the parameters of the
induction machine models in Table I. The upper bounds
of the slips are determined based on the induction machine
parameters. For example, the relationship between the power

153

electrical equations for the steady-state induction machine
model. While demands at the load buses without demand-
responsive loads can be treated using any appropriate load
model, our numerical results assume a constant power load
model for simplicity. Constraint (12j) ensures that the total
demand-responsive load is constant, (12k)–(12n) fix the non-
responsive loads’ real power demands, the generators’ real
power production at PV buses, voltage magnitudes at all
generator buses, and the voltage angle at the reference bus.
Constraints (12o)–(12v) enforce the upper limits of power
flows on the branches (in terms of apparent power) as well
as upper and lower limits on real power and reactive power
production at the reference bus, reactive power production at
PV buses, real power demands of demand-responsive loads
(which is a function of demand flexibility in both the current
time period and the payback period), slips of the induction
machines, and voltage magnitudes at PQ buses.

C. Solution Approach
We adapt the iterative linear programming algorithm pre-

sented in [11] to solve (12). This algorithm relies on lin-
earizations of the objective function and constraints in (12).

To address (12b), the linear sensitivity of the smallest
eigenvalue is derived using eigenvalue sensitivities [22]:

∂λ0

∂χ
= wT

0
∂(JcomJT

com)

∂χ
u0, (13)

where χ represents the system states and w0 and u0 are the
normalized left and right eigenvectors corresponding to the
smallest eigenvalue λ0 of JcomJT

com. A change in the states
χ yields an approximate change in λ0 that is given by

∆λ0 =
∑

i

wT
0
∂(JcomJT

com)

∂χi
u0∆χi. (14)

The relevant system states for the ZIP model are

χZIP = [θi, Vj , εk ]T (15)

and for the IM model are

χIM = [θi, Vj , θµ,k, Vµ,k, θρ,k, Vρ,k, sk]
T , (16)

where i ∈ {SPV,SPQ}, j ∈ SPQ, and k ∈ SDR. In addition
to (12b), the iterative linear programming algorithm requires
linearization of the AC power flow and load model equations,
which is accomplished via first-order Taylor expansion.

After evaluating these linearizations at the approximate
solution from the previous iteration, each iteration of the
algorithm solves the following linear optimization problem:

max
∆P g,∆Qg,∆P d,
∆Qd,∆V ,∆θ,
∆Vµ,∆θµ,Vρ,

∆θρ,∆s,∆ε,∆λ0

∆λ0 subject to (17a)

∆λ0 =
∑

i

[
wT

0
∂(JcomJT

com)

∂θi
u0

]
∆θi

+
∑

j
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wT

0
∂(JcomJT

com)

∂Vj
u0

]
∆Vj

+
∑

k
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0
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u0

]
∆θµ,k

+
∑

k
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0
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+
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k
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0
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u0

]
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+
∑

k
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0
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∂Vρ,k
u0

]
∆Vρ,k

+
∑

k
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wT

0
∂(JcomJT

com)

∂εk
u0

]
∆εk

+
∑
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∂sk
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]
∆sk

i ∈ {SPV,SPQ} , ∀j ∈ SPQ, ∀k ∈ SDR (17b)
Linearizations of (12c)–(12v) (17c)
∆λ0 ≤ ∆λ0 (17d)

where (17b) is the linear eigenvalue sensitivity constraint
corresponding to the composite load model. Constraint (17d)
limits the step size of ∆λ0 to ensure the accuracy of the
linearization.

We extend the iterative sensitivity SSV algorithm presented
in [11] to include Jcom, as follows.

Algorithm 1 Extended Iterative Sensitivity SSV
Input: The nominal operating point χ0

1: iter ← 0
2: χiter = χ0

3: repeat
4: Compute (17b)–(17d) at χiter

5: Solve (17) at χiter to obtain ∆P opt
d , ∆Qopt

d , ∆λ0

6: iter ← iter + 1
7: P iter

d = P iter−1
d +∆P opt

d ,Qiter
d = Qiter−1

d +∆Qopt
d

8: Solve (6) to obtain a new χiter

9: until ∆λ0 < 10−5

Output: P iter
d , λiter

0

The solution to (17) provides an approximation of the
change in decision variables that leads to the maximum
increase in λ0, within the region near the linearization point.
Each iteration of the extended algorithm refines an approx-
imate solution to (12) by linearizing around the previous
operating point, solving (17), adding the changes provided
by that solution of (17) to the previous operating point, and
solving the AC power flow equations (6) to obtain a new
operating point. The algorithm terminates when ∆λ0 is less
than a specified threshold (here, 10−5).

V. RESULTS AND DISCUSSION

This section describes the results of case studies conducted
on the IEEE 14-bus system available in MATPOWER [23]. We
assume the loads at buses 4, 9, and 14 are demand-responsive
resulting in 92.2 MW of responsive demand out of 259 MW
of total demand.

We set ∆λ0 = 0.01 and list the parameters of the
induction machine models in Table I. The upper bounds
of the slips are determined based on the induction machine
parameters. For example, the relationship between the power
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Smallest Singular Values 
for Flexible Loads  
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian

155

TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian

155

Optimal Optimal Optimal

Though the SSVs aren’t comparable across different load models 
Pd is the same in all optimal ZIP cases!

ZIP #9



Optimal Loading Patterns

35

TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM
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Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
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responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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Smallest Singular Value 
Comparison

It is difficult, if not impossible to compare SSVs across systems with 
different load models!

TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR
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Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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Impact on the Optimal 
Loading Pattern

TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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Impact on the Optimal 
Loading Pattern

TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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TABLE III
LOADING PATTERN COMPARISON, Pd IN MW AND Qd IN MVAR

Nominal Optimal for 3 DR buses Optimal for 2 DR buses
Load Model Constant Power Constant Power ZIP #3 ZIP #3 IM IM ZIP #3 IM
Jacobian Jcnv Jcnv JZIP Jcnv JIM Jcnv JZIP JIM

Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd Pd Qd

Bus 4 47.80 32.62 92.20 62.90 92.20 63.99 92.20 63.99 90.99 48.90 71.28 39.94 92.20 63.99 80.81 43.94
Bus 9 29.50 20.73 0.00 0.00 0.00 0.00 0.00 0.00 0.62 15.55 20.34 18.50 0.00 0.00 11.39 17.51
Bus 14 14.90 16.39 0.00 0.00 0.00 0.00 0.00 0.00 0.59 15.79 0.59 15.73 - - - -
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Fig. 6. Convergence of the SSV and real power demand of the demand-
responsive loads if the induction machine at bus 14 is disconnected at low
loading.

than 0.01 p.u. (as shown by the vertical dashed lines), so the
algorithm disconnects the induction machine at bus 14. After
another 15 iterations, the algorithm reaches the optimum;
however, the optimum is not what we would expect given the
convergence trajectory before the machine was disconnected.
Instead of shifting all load to bus 4, the optimal loading
pattern keeps some load at bus 9, as shown in Fig. 6 and
Table III (see Optimal for 2 DR buses, IM, JIM), which is
different than results obtained using ZIP models within a
system with no load at bus 14 and demand-responsive loads
at buses 4 and 9 (see Optimal for 2 DR buses, ZIP, JZIP).
Disconnecting the induction machine at bus 14 reduces the
number of columns of JIM. According to Theorem 1, this
leads to a decrease in the the SSV, in this case, from 2.447
to 2.181 prior to converging to a new optimum 2.184, as
shown in Fig. 6.

C. Composite Load Model

Table IV summarizes the nominal and optimal SSV results
for several ZIP models (including ZIP case #3, which has the
largest optimal SSV), the induction machine model, and two
composite load models. In addition to the SSVs, we report
the absolute improvement (∆) and percent improvement (%).
The case using induction machine models alone has the
largest absolute and percent improvement.

TABLE IV
SSV COMPARISON

Load Model Nominal Optimal ∆ %

Constant Power (ZIP #9) 0.5341 0.5393 0.0052 0.98
ZIP #3 0.5442 0.5444 0.0002 0.04
Induction Machine 2.3360 2.4533 0.1173 5.02
70% IM + 30% ZIP #3 2.2994 2.4078 0.1084 4.71
30% IM + 70% ZIP #3 2.2402 2.3383 0.0981 4.37

D. Difficulties in Interpreting the SSV
It is difficult, if not impossible, to compare the SSVs

associated with systems that use different load models. For
example, when the SSV drops in Fig. 6, it does not neces-
sarily mean that the system is operating closer to instability.
The drop is due to structural changes in the Jacobian matrix.

Instead of maximizing the SSV of Jcom, which is struc-
turally different for each load model, we explore the idea
of maximizing the SSV of Jcnv, while still using Jcom to
compute the power flow. The benefit of this approach is
that the nominal SSVs are identical and the optimal SSVs
are comparable. The drawback is that the SSV of Jcnv does
not reflect the physical system (unless all loads are constant
power loads, in which case Jcom = Jcnv).

Fig. 7 shows the results of maximizing Jcnv for ZIP cases
#1-9, the induction machine model, and a composite load
model. The optimal loading patterns corresponding to ZIP
case #3 and the induction machine model are shown in
Table III (see Optimal for 3 DR buses, ZIP #3, Jcnv and
Optimal for 3 DR buses, IM, Jcnv). ZIP case #3 yields the
same optimal loading patterns regardless of the choice of
Jacobian matrix (Jcnv or JZIP) used for the SSV calculation;
however, the choice of Jacobian matrix (Jcnv or JIM) does
affect the optimal loading pattern obtained when using the
induction machine model. Interestingly, the SSV percent
improvement when maximizing the SSV of Jcnv is worst
with the induction machine model whereas it was the best
when maximizing the SSV of Jcom (which equals JIM for
the induction machine model).

E. Computation Time
All computations were implemented in MATLAB on a

computer with an Intel(R) i5-6600K CPU and 8 GB of RAM.
Using the ZIP model, the total time required by the iterative
algorithm is less than two seconds for each test case. Using
the induction machine model, the algorithm requires more
time (approximately 20 seconds) because 1) the Jacobian
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Main Findings

• Different load models impact the nominal and 
optimal smallest singular value

• Different ZIP models give us the same optimal 
loading pattern (in the cases explored)

• Induction machine models can produce different 
optimal loading patterns than ZIP models

• How can we measure/compare stability margins 
when a system undergoes structural changes?
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A final note on using the 
SSV as a stability metric

• Advantages
– Captures any change in power directions 
– It can (easily) be included in optimization formulations

• Disadvantages
– Only provides implicit information on the distance to 

the solvability boundary
– Does not capture the impact of engineering 

constraints, which may be encountered first
– May not be well behaved
– Its numeric value is system dependent

• Alternatives: loading margin [Greene et al. 1997; Yao 
et al. PowerTech 2017], distance to closest saddle 
node bifurcation [Dobson and Lu 1992; Dobson 2003] 42



Conclusions

• Spatiotemporal load shifting can be used to 
improve power system static voltage stability 
after a disturbance; complementing slower 
generator-based actions

• Ongoing research
– Maximizing the distance to the closest saddle node 

bifurcation [Yao, Hiskens, Mathieu, CDC 2018]

– Maximizing the smallest damping ratio of the 
generator modes [Koorehdavoudi, Yao, Mathieu, Roy IREP 2017]
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