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Abstract—The increasing penetration of renewables has driven
power systems to operate closer to their stability boundaries,
increasing the risk of instability. We propose a multiperiod
optimal power flow approach that uses demand responsive loads
to improve steady-state voltage stability, which is measured by
the smallest singular value (SSV) of the power flow Jacobian
matrix. In contrast to past work that employs load shedding to
improve stability, our approach improves the SSV by decreasing
and increasing individual loads while keeping the total loading
constant to avoid fluctuation of the system frequency. Addi-
tionally, an energy payback period maintains the total energy
consumption of each load at its nominal value. The objective
function balances SSV improvements against generation costs
in the energy payback period. We develop an iterative linear
programming algorithm using singular value sensitivities to
obtain an AC-feasible solution. We demonstrate its performance
on two IEEE test systems. The results show that demand
response actions can improve static voltage stability, in some cases
more cost-effectively than generation actions. We also compare
our algorithm’s performance to that of an iterative nonlinear
programming algorithm from the literature. We find that our
approach is approximately 6 times faster when applied to the
IEEE 9-bus system, allowing us to demonstrate its performance
on the IEEE 118-bus system.

Index Terms—Demand response, optimal power flow, voltage
stability, singular value, iterative linearization.

NOTATION
Functions
C(·) Total generation cost
FP
n (·) Real power injection at bus n
FQ
n (·) Reactive power injection at bus n
Hnm(·) Line flow for line (n,m)
fP
n (·) Linearization of FP

n

fQ
n (·) Linearization of FQ

n

hnm(·) Linearization of Hnm
Sets
N Set of all buses
SPV Set of all PV buses
SPQ Set of all PQ buses
SG Set of buses with generators
SDR Set of buses with responsive loads
T Set of time periods within optimization problem
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Variables & Parameters
J Jacobian matrix
Pd,n Real power demand at bus n
Pg,n Real power generation at bus n
Ploss Total power loss in the system
Qd,n Reactive power demand at bus n
Qg,n Reactive power generation at bus n
Tt Length of time period t
u Left singular vector
Vn Voltage magnitude at bus n
w Right singular vector
α Weighting factor
ε Loss management strategy parameter
θn Voltage angle at bus n
λ Eigenvalue of a matrix
µn Ratio between reactive and real demand at bus n
σ Singular value of a matrix
σ0 Smallest singular value of a matrix
Σ, U,W Singular Value Decomposition (SVD) matrices
χ Operating point

Bold symbols denote vectors including all variables of a type.
Overlines and underlines represent the upper and lower limits
for variables. Numbers in the parentheses (·) refer to the period
number. Subscript ‘ref’ denotes the slack bus. Superscript
‘*’ denotes the current value of a variable and superscript
‘T ’ denotes the transpose of a matrix. The notation X � 0
means that X is a positive semidefinite matrix. For notational
simplicity, we assume that each bus has at most one generator
and at most one load.

I. INTRODUCTION

INCREASING penetrations of renewable energy sources
can negatively impact power systems stability [1], [2].

Specifically, power-electronics-connected fluctuating renew-
able generation from wind and solar introduce more variability
in operating points, reduce system inertia, and decrease the
controllability of active power injections. A variety of methods
have been proposed to improve power system stability margins
including generation dispatch [3], locating/sizing distributed
generation [4], and use of advanced power electronic de-
vices [5]. Demand Response (DR) can also be used to improve
power system stability. For example, [6]–[8] propose methods
to coordinate loads to help balance supply and demand, im-
proving frequency stability. As we increase the controllability



2 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS

of distributed electric loads to enable their participation in
a variety of DR programs and electricity markets [9], we
also unleash their potential to provide a variety of stability-
related services not typically rewarded in existing programs
or markets. A key research question is whether loads are
effective at improving stability margins other than those related
to frequency stability, for example, voltage or rotor angle sta-
bility margins. However, harnessing loads for these purposes
requires the development of new algorithms, the design of
which influences their effectiveness.

In this paper, we propose a multiperiod optimal power flow
(OPF) approach that uses DR to improve steady-state voltage
stability. In contrast to past work that developed load shedding
approaches to improve voltage stability [10]–[12], we decrease
and increase loads while keeping the total loading constant
to avoid fluctuation of the system frequency, and we “pay
back” the changes to each load so its total energy consumption
is unchanged. We envision that such an approach would be
used only occasionally, when voltage stability margins are
below those desired, but not so small that emergency actions
are immediately necessary. DR actions could be executed
quickly while ramp-rate-limited generators begin to respond,
eventually relieving the loads. Beyond developing the problem
formulation and solution algorithm, our objective is to com-
pare the stability margin improvement and cost of load actions
to those of generator actions in order to understand both the
advantages and disadvantages of the approach. Additionally,
we compute the amount of load shedding that would be
necessary to achieve the same stability margin improvements
as load shifting.

Steady-state voltage stability margins estimate how far an
operating point is from instability due to voltage collapse.
Various margins have been proposed, including the loading
margin, which is the distance between the current operating
point and the maximum loading point [3]. The loading margin
is calculated using continuation power flow methods, where
the load and generation are usually increased uniformly (in
a multiplicative sense) throughout the system [13], [14]. A
drawback of this method is that it assumes a single direction of
changes in power injections. In [15], we use DR to maximize
the loading margin and compare the results to those generated
with an earlier version of the approach proposed in this
paper. Another margin is the distance to the closest saddle-
node bifurcation (SNB) point. References [16], [17] derive a
system of nonlinear equations from which we can calculate the
optimal control direction, which is antiparallel to the normal
vector at the closest SNB. However, changing the loads in this
direction may change the total loading. In [18] we pose an
optimization problem that uses DR to maximize the distance
to the closest SNB. However, we cannot guarantee that we
will find the globally closest SNB and so the algorithm might
push the system away from a locally closest SNB and towards
the globally closest SNB, thus actually reducing the stability
margin. A third margin, which we use in this paper, is the
smallest singular value (SSV) of the power flow Jacobian
matrix [11], [19]–[25].

The SSV gives us a measure of how close the Jacobian is
to being singular, i.e., power flow infeasibility. Feasibility and

stability are closely linked [26]. The advantages of using the
SSV as a voltage stability margin are that 1) it captures any
direction of changes in power injections and 2) there exist
approximate mathematical formulations suitable for inclusion
in optimization problems, e.g., [11], [27], [28]. It is simpler to
work with than the distance to the closest SNB because there
is only one SSV, while there can be a large number of locally
closest SNBs. The disadvantages of using the SSV are that
1) it only provides implicit information on the distance to the
solvability boundary, 2) it does not capture the impact of all
engineering constraints (e.g., reactive power limits could be
reached prior to power flow singularity [29]), and 3) it may
not be well-behaved, specifically, [30] found that the SSV at
voltage collapse varies significantly as function of the loading
direction (see Fig. 3 of [30]). Additionally, 4) its numerical
value is system-dependent [24] and so the threshold value for
a particular system would need to be determined from operator
experience. Moreover, 5) the nonlinear programming (NLP)
algorithm for solving approximate mathematical formulation
[28] does not scale to realistically-sized system. Despite these
issues, we base our approach on the SSV in order to exploit the
approximate mathematical formulation [27], [28] and we de-
velop an improved solution algorithm that scales significantly
better. Recognizing the potential advantages of other stability
margins, our ongoing work is exploring the development of
analogous formulations based on other stability margins.

The contributions of this paper are four-fold. 1) We formu-
late a multiperiod optimal power flow problem that uses spatio-
temporal load shifting to improve voltage stability. In the first
period, we maximize the SSV of the power flow Jacobian by
changing the loading pattern subject to the AC power flow
equations, engineering limits, and a constraint that forces the
total loading to be constant. The second period minimizes
the generation cost while paying back energy to each load
and maintaining the SSV. 2) We develop a computationally-
tractable iterative linear programming (LP) solution algorithm
using singular value sensitivities [11], [12], [31] and bench-
mark it against the NLP algorithm in [28]. 3) We conduct case
studies using the IEEE 9- and 118-bus systems to determine
optimal loading patterns and assess algorithmic performance.
4) We compare the cost and performance of spatio-temporal
load shifting to that of generator actions and load shedding.

This paper builds on our preliminary work [15], which
developed a single-period formulation that uses DR to max-
imize the SSV, but does not consider energy payback. We
proposed an iterative LP solution algorithm using eigenvalue
sensitivities; however, our new algorithm in this paper is far
more computationally tractable, as we will show, allowing us
to demonstrate scalability to the IEEE 118-bus system.

The remainder of the paper is organized as follows. Sec-
tion II describes the problem and our assumptions. Section III
presents the formulation and solution algorithm. Section IV
shows the results of our case studies and Section V concludes.

II. PROBLEM DESCRIPTION & ASSUMPTIONS

A conceptual illustration of the problem is shown in Fig. 1.
The system is initially operating with an adequate stability
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Fig. 1. Conceptual illustration of the problem. The blue area (left) is the
feasibility/stability region of the power system. The operating point moves
from the star (pre-disturbance) to Operating Point 0 (post-disturbance) to
Operating Point 1 (DR action) to Operating Point 2 (energy payback) and
back to the star. The change in stability margin is shown on the right, with
two options for Operating Point 2 based on whether or not the disturbance is
still active.

margin at an operating point (star) determined via unit com-
mitment and economic dispatch. A disturbance happens (e.g., a
line goes out of service) causing the operating point to move
towards the feasibility/stability boundary (i.e., to Operating
Point 0) and the stability margin to drop to a point below
the stability threshold corresponding to the current system
topology (i.e., “threshold for system with active disturbance”
shown in the figure). Note that SSVs computed for systems
with different topologies are incomparable since the Jacobian
changes. This means we cannot compare the SSVs denoted
with black circles to those denoted with white circles. Ad-
ditionally, the system operator would need to determine a
stability threshold for each post-disturbance topology.

When the SSV is below its stability threshold, because
slight variations in power injections might cause the operating
point to leave the stable operating region. The system operator
dispatches quick-acting resources including DR to maximize
the stability margin (Operating Point 1). After a short period
of time, the system operator determines the minimum cost dis-
patch of slower-acting generators that relieves the loads, pays
back the changes made to each load at Operating Point 1, and
maintains/improves the stability margin (Operating Point 2).
The payback sets the energy consumed by each load while at
Operating Point 2 to its nominal (i.e., baseline) consumption
plus/minus the energy not consumed/consumed while at Oper-
ating Point 1. As shown in Fig. 1(b), at Operating Point 2, the
achievable stability margin and associated stability threshold
is a function of whether or not the disturbance is still active.
When it is no longer active and the energy is paid back, the
system returns to its initial operating point, or another point
with an adequate stability margin.

Our goal is to determine the optimal dispatches corre-
sponding to Operating Points 1 and 2. Note that we neglect
the transition; the path the system takes depends upon how
the DR actions are implemented. We pose the problem as a
multiperiod optimal power flow problem in which the objective
is to minimize a weighted combination of the negative of
the stability margin in Period 1 (corresponding to Operating
Point 1) and the generation cost in Period 2 (corresponding
to Operating Point 2). In each time period, we require the
total loading to remain unchanged, so as not to affect the
system frequency. We assume that the load at certain buses

can be decreased or increased within known limits for a short
period of time. For example, the responsive loads could be
aggregations of heating and cooling loads, such as commercial
building heating, ventilation, and air conditioning (HVAC) sys-
tems and residential thermostatically controlled loads (TCLs),
e.g., air conditioners and refrigerators that cycle on/off within
a temperature dead-band. Increases and decreases in load can
be achieved through temperature set point adjustments and/or
commands to switch TCLs on/off [9]. These types of loads
are flexible in their instantaneous power consumption, but
energy constrained (i.e., they must consume a certain amount
of energy over time), like energy storage units.

In our base case, we use loads alone to improve the stability
margin in Period 1. Generator real power injections are held
constant with the exception of that associated with the slack
bus, which compensates for the small change in system losses
resulting from the change in loading pattern. (Note we could
have alternatively assumed a distributed slack formulation.)
Generator reactive power injections adjust to maintain voltage
magnitudes at the PV buses. We model all loads as constant
real power loads with constant power factor. As shown in [32],
our approach is fully extendable to inclusion of a variety of
other load models, including ZIP load and induction motor
models.

Beyond our base case, we also investigate cases in which
we allow (ramp-rate-limited) generator real power injections
and voltage magnitudes at PV buses to change in Period 1.
We also explore an alternative loss management strategy in
which we require the total loading plus system losses to remain
unchanged so that no generator (including the slack bus) is
required to respond in Period 1. The mathematical formulation
is provided in the next section.

Since we focus on static voltage stability, we ignore power
system dynamics. Investigating the dynamic stability implica-
tions of changes in operating points is a subject for future
research.

III. OPTIMIZATION APPROACH

This section first formulates our nonconvex nonlinear mul-
tiperiod optimization problem. We then describe some ap-
proaches that have been proposed to solve similar problems in
the past. Finally, we present our iterative LP algorithm based
on singular value sensitivities.

A. Multiperiod Optimal Power Flow Problem

Let T = {1, 2} be the set of time periods within the
optimization problem, T1 be the length of Period 1, and T2 be
the length of Period 2. Lengths T1 and T2 are not necessarily
equal, as shown in Fig. 2. For notational simplicity, we assume
the real power demand at bus n, Pd,n(t), is constant within a
time period and the nominal real power demand in all periods
is equal to Pd,n(0); however, the formulation could be easily
extended to incorporate time-varying demands.

Let N be the set of all buses, SPV be the set of all PV
buses, and SPQ be the set of all PQ buses. Additionally, let
SG be the set of all buses with generators, i.e., all PV buses
in addition to the slack bus, and let SDR be the set of buses
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Fig. 2. Example dispatched demand Pd,n at bus n in Periods 1 and 2, where
Pd,n(0) is its nominal demand. The total energy consumed over both periods
is equal to its nominal consumption.

with responsive loads; the buses comprising SDR may be PV
or PQ buses. In our case studies, we assume that a portion of
the existing loads in the network are responsive.

The multiperiod optimal power flow problem determines
the operating points in each time period that balance the two
objectives: maximizing the SSV of the power flow Jacobian
matrix in Period 1 and minimizing the generation cost in
Period 2. The general formulation is as follows.

min
Pg(t),Qg(t),
Pd(t),Qd(t),
V (t),θ(t),σ0(t)

−ασ0(1) + C(Pg(2)) (1a)

s.t. (∀t ∈ T )

σ0(t) = σmin{J(θ(t),V (t))} (1b)

FP
n (θ(t),V (t)) = Pg,n(t)− Pd,n(t) ∀n ∈ N (1c)

FQ
n (θ(t),V (t)) = Qg,n(t)−Qd,n(t) ∀n ∈ N (1d)∑

n∈SDR

Pd,n(1) =
∑

n∈SDR

Pd,n(0) + ε (Ploss(0)− Ploss(1))(1e)

T1Pd,n(1) + T2Pd,n(2) = (T1 + T2)Pd,n(0) ∀n ∈ SDR (1f)
Pd,n(t) · µn = Qd,n(t) ∀n ∈ N (1g)
Pd,n(t) = Pd,n(0) ∀n ∈ N \ SDR (1h)
θref(t) = 0 (1i)
σ0(2) ≥ σ0(1) (1j)

Hnm(θ(t),V (t)) ≤ Hnm (1k)

Hmn(θ(t),V (t)) ≤ Hmn (1l)

P g,n(t) ≤ Pg,n(t) ≤ P g,n(t) ∀n ∈ SG (1m)

Q
g,n

(t) ≤ Qg,n(t) ≤ Qg,n(t) ∀n ∈ SG (1n)

P d,n(t) ≤ Pd,n(t) ≤ P d,n(t) ∀n ∈ SDR (1o)

V n(t) ≤ Vn(t) ≤ V n(t) ∀n ∈ N (1p)

The cost function is a linear combination of the SSV σ0 of
the power flow Jacobian matrix J(θ,V ) in Period 1 and
the generation cost C(·) in Period 2, where α ≥ 0 is a
weighting factor. Constraint (1b) defines the SSV of J(θ,V )
where σmin is a function that takes the SSV of a matrix.
Constraints (1c) and (1d) are the nonlinear AC power flow
equations [33]. Constraint (1e) sets the total system load in
Period 1 to be equal its nominal value plus a portion of
the change in system losses, where the real power loss is
Ploss(t) =

∑
n∈N (Pg,n(t)−Pd,n(t)) and ε is a parameter that

defines the loss management strategy (i.e., 0 ≤ ε ≤ 1, where
ε = 1 allocates loss management exclusively to the loads,
while ε = 0 allocates loss management exclusively to the slack

bus). Constraint (1f) enforces energy payback, specifically,
that the energy consumed over both periods by each load is
equal to its nominal consumption. Constraint (1g) fixes the
power factor of each load, where µn is the ratio between the
reactive and real demand at bus n. Constraint (1h) fixes the
non-responsive demand to its nominal value. Constraint (1i)
sets the slack bus voltage angle. Constraint (1j) ensures that the
SSV in Period 2 is greater than or equal to that in Period 1.
Constraints (1k)–(1p) limit the line flows, real and reactive
power generation at generator buses, real power demand at
buses with responsive loads, and voltage magnitudes at all
buses. The real power generation limits

(
P g,n(t), P g,n(t)

)
de-

pend on whether or not the generator is modeled as responsive
in t, its minimum/maximum output, its ramp limits, and, for
the slack bus, the loss management strategy (i.e., when ε = 0
the slack bus real power generation will be allowed to vary,
but when ε = 1 it will be fixed). The real power demand limits(
P d,n(t), P d,n(t)

)
depend on the flexibility of the responsive

loads. The voltage limits
(
V n(t), V n(t)

)
depend on whether

or not the generator voltages are allowed to adjust in period t.
In our base case, the slack bus manages the change in

losses, (i.e., ε = 0) but the real power generation of all
other generators is fixed in Period 1. Additionally, voltage
magnitudes at all generator buses are fixed in Period 1.
Specifically,

Pg,n(1) = Pg,n(0) ∀n ∈ SPV

P g,ref(1) ≤ Pg,ref(1) ≤ P g,ref(1)

Vn(1) = Vn(0) ∀n ∈ SG

V n(1) ≤ Vn(1) ≤ V n(1) ∀n ∈ SPQ

In Period 2, generator real power generation and voltage mag-
nitudes are allowed to change within their limits, specifically,

P g,n(2) ≤ Pg,n(2) ≤ P g,n(2) ∀n ∈ SG

V n(2) ≤ Vn(2) ≤ V n(2) ∀n ∈ N

We investigate seven additional cases in which we vary the
decision variables that are allowed to change in Period 1
(specifically, Pg,ref, Pg,n ∀n ∈ SPV, Vn ∀n ∈ SG, and
Pd,n, Qd,n ∀n ∈ SDR), the loss management strategy, and, for
cases in which generator real power generation is allowed to
change in Period 1, whether or not we impose a ramp rate.
The cases and associated results, which will be discussed later,
are summarized in Table I.

The difficulty in solving (1) stems from the existence of
the implicit constraint (1b). Because the singular values of a
matrix A are the square roots of the eigenvalues of ATA, we
can replace (1b) with

J(t)TJ(t)− λ0(t)I � 0 (2)

σ0(t) =
√
λ0(t) (3)

where the semidefinite constraint (2) forces λ0 to be the
smallest eigenvalue of J(t)TJ(t), I is an identity matrix of
appropriate size, and we have simplified the expression for the
power flow Jacobian matrix for clarity. The SSV of J(t) is the
square root of λ0, as shown in (3).
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B. Existing Solution Approaches
A variety of methods have been used to solve problems

similar to (1). For example, [34] computes the Hessian of
(1b) and then applies an Interior Point Method to solve the
nonlinear optimization problem. However, computation of the
second derivatives of singular values is computationally diffi-
cult. Specifically, in [34], they are obtained through numerical
analysis by applying small perturbations to the operating
point. Alternatively, since (2) is a semidefinite constraint, we
could use semidefinite programming (SDP) by applying a
semidefinite relaxation of the AC power flow equations [35],
[36]. However, if the relaxation is not tight at the optimal
solution, the solution will not be the optimal solution of (1)
and, moreover, it will not be feasible.

In this section, we develop a new solution approach that
overcomes the drawbacks of the aforementioned approaches.
Specifically, our approach uses the first derivatives of singular
values obtained using singular value sensitivities, reducing
the necessary computation as compared to the second-order
method in [34]. We also include the full nonlinear AC power
flow equations and solve the resulting optimization problem
via an iterative LP algorithm in which 1) the objective function
and constraints are linearized such that we can compute a
step in the optimal direction using LP, 2) the AC power flow
equations are solved for the new operating point (i.e., the
original operating point plus the optimal step), and 3) the
process is repeated until convergence. Iterative LP [33, p.
371] is commonly used to solve various optimal power flow
problems, e.g., [15], [32], [33], [37].

Our approach is an extension of the iterative NLP approach
proposed in [28], which we will now describe. It takes
advantage of the Singular Value Decomposition (SVD) of the
Jacobian, i.e.,

J(t) = U(t)Σ(t)W (t)T , (4)

where Σ(t) is a diagonal matrix, U(t) and W (t) are orthogonal
singular vector matrices (i.e., U(t)U(t)T = I,W (t)W (t)T =
I). Around a given operating point, the approximate SSV of
J(t) is [28]

σ̃0(t) = u0(t)TJ(t)w0(t), (5)

where u0(t), w0(t) are the corresponding left and right singu-
lar vectors.

Since implicit constraint (1b) can be approximated by (5),
we can write our problem as a nonlinear optimization problem

min
Pg(t),Qg(t),
Pd(t),Qd(t),
V (t),θ(t),σ̃0(t)

−ασ̃0(1) + C(Pg(2)) (6a)

s.t (∀t ∈ T ) constraints (1c)–(1p), (5) (6b)

To obtain the solution to our original problem (1), we solve
(6), recompute u0(t) and w0(t) at the new operating point, and
repeat the process until convergence. However, the symbolic
matrix multiplication in (5) is complex for large systems.
Moreover, each iteration requires solving a nonlinear opti-
mization problem. Therefore, the approach does not scale to
realistically-sized power systems, as shown in our case study.

C. New Solution Approach: Iterative Linear Programming
using SSV Sensitivities

Our new solution approach uses iterative linear program-
ming where the power flow equations are iteratively linearized
around new operating points as in [33, p. 371] and the SSV
constraint (5) is linearized using singular value sensitivities.
Specifically, the change in the ith singular value of a generic
matrix A due to a small perturbation in the operating point χ
is [22]

∆σi ≈
∑
k

uTi
∂A

∂χk

∣∣∣∣∣
χ∗

wi∆χk, (7)

where k indexes χ and χ∗ is the current operating point.
Therefore, the sensitivity of the SSV of J(t) is

∆σ0 ≈
∑

n∈{SPV,SPQ}

[
uT0

∂J

∂θn
w0

]
∆θn +

∑
n∈SPQ

[
uT0

∂J

∂Vn
w0

]
∆Vn,

(8)

where we have suppressed the time dependence of each
variable for clarity. Note that our previous work [15], [32]
used eigenvalue sensitivities, which required computing JTJ
and therefore was less scalable.

The resulting linear program solved in each iteration of the
iterative LP algorithm is as follows.

min
∆Pg(t),∆Qg(t),
∆Pd(t),∆Qd(t),

∆V (t),∆θ(t),∆σ0(t)

−α∆σ0(1) +
∑
n∈SG

∂C(Pg(2))

∂Pg,n(2)

∣∣∣∣∣
P ∗

g (2)

∆Pg,n(2) (9a)

s.t. (∀t ∈ T )

∆σ0(t) =
∑

n∈{SPV,SPQ}

[
u0(t)T

∂J(t)

∂θn
w0(t)

]
∆θn(t)

+
∑

n∈SPQ

[
u0(t)T

∂J(t)

∂Vn
w0(t)

]
∆Vn(t) (9b)

fP
n (∆θ(t),∆V (t)) = ∆Pg,n(t)−∆Pd,n(t) ∀n ∈ N (9c)

fQ
n (∆θ(t),∆V (t)) = ∆Qg,n(t)−∆Qd,n(t) ∀n ∈ N (9d)∑
n∈SDR

∆Pd,n(1) = −ε∆Ploss(1) (9e)

T1∆Pd,n(1) + T2∆Pd,n(2) = 0 ∀n ∈ SDR (9f)
∆Pd,n(t) · µn = ∆Qd,n(t) ∀n ∈ N (9g)
∆Pd,n(t) = 0 ∀n ∈ N \ SDR (9h)
∆θref(t) = 0 (9i)
σ∗0(2) + ∆σ0(2) ≥ σ∗0(1) + ∆σ0(1) (9j)

hnm(∆θ(t),∆V (t)) ≤ hnm (9k)

hmn(∆θ(t),∆V (t)) ≤ hmn (9l)

P g,n(t) ≤ P ∗g,n(t) + ∆Pg,n(t) ≤ P g,n(t) ∀n ∈ SG (9m)

Q
g,n

(t) ≤ Q∗g,n(t) + ∆Qg,n(t) ≤ Qg,n(t) ∀n ∈ SG (9n)

P d,n(t) ≤ P ∗d,n(t) + ∆Pd,n(t) ≤ P d,n(t) ∀n ∈ SDR (9o)

V n(t) ≤ V ∗n (t) + ∆Vn(t) ≤ V n(t) ∀n ∈ N (9p)

∆σ0(t) ≤ ∆σ0, (9q)

where (9b) is the linearized SSV constraint and (9c)–(9p) cor-
respond to (1c)–(1p), where ∆Ploss(t) =

∑
n∈N (∆Pg,n(t)−
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∆Pd,n(t)) and superscript ‘*’ denotes the current value of a
variable. Constraint (9q) limits the change in ∆σ0(t) since the
linearizations are only valid near the current operating point.

The solution algorithm is given in Algorithm 1. We initialize
the operating points of Periods 1 and 2, χ∗(1), χ∗(2), at the
operating point of Period 0, χ(0). Then, we compute the
constraints of (9) at the current values of the operating points
and solve (9) to obtain the optimal change in operating point
∆χopt(t)∀t ∈ T . We use those changes to compute updated
operating point estimates χ′(t)∀t ∈ T . However, in general,
χ′(t)∀t ∈ T will not be feasible in the AC power flow
equations. Therefore, we solve the AC power flow equations
for each time period using components of χ′(t), specifically,
Pg,Pd,Qd, and Vn ∀n ∈ SG, to obtain the new values of the
operating points, χ∗(1), χ∗(2). We use these values to compute
the new values of the SSVs, σ∗0(t)∀t ∈ T , and the value of
the objective function in (9a). We repeat the process until the
absolute value of the objective function in (9a) is less than a
threshold (here, 10−5), and the outputs are the final operating
points and SSVs.

Algorithm 1 Iterative LP using SSV Sensitivities
Input: The operating point of Period 0, χ(0).

1: χ∗(1) = χ∗(2) = χ(0).
2: repeat
3: Compute (9b)–(9q) at χ∗(1), χ∗(2).
4: Solve (9) at χ∗(1), χ∗(2) to obtain ∆χopt(t)∀t ∈ T .
5: χ′(t) = χ∗(t) + ∆χopt(t)∀t ∈ T .
6: Use χ′(t)∀t ∈ T to solve AC power flows to obtain a

new χ∗(1) and χ∗(2).
7: Use χ∗(1) and χ∗(2) to calculate σ∗0(t)∀t ∈ T and the

objective function in (9a).
8: until the absolute value of the objective function in (9a)

is less than 10−5.
Output: χ∗(t)∀t ∈ T , σ∗0(t)∀t ∈ T .

IV. RESULTS

In this section, we conduct a number of case studies using
the IEEE 9- and 118-bus systems. Additionally, we compare
the SSV improvement achievable in our base case against
those of seven additional cases and compare the performance
of our iterative LP (ILP) algorithm against the iterative NLP
(INLP) algorithm from [28]. Each iteration of the nonlin-
ear optimization problem (6) is solved with fmincon in
MATLAB.

For all case studies, we use the system data from
MATPOWER [38] and set ∆σ0 = 0.01. We model the en-
tire load at a bus with responsive demand as flexible, i.e.,
0 ≤ Pd,n ≤ 2Pd,n(0) ∀n ∈ SDR in order to get a sense
for the maximum achievable change in SSV due to DR. In
practice, only a fraction of the load at a particular bus will be
responsive. We set T1 = 5 min and choose T2 as the minimum
multiple of 5 min that achieves a feasible solution, though in
practice T1 and T2 would be a function of the response time
of the generators and the flexibility of the loads.

For the IEEE 9-bus system, we assume the system is initially
operating at the optimal power flow solution at $5297/hour. A

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0

50

100

150

200

250

300

350

active inactive

Initial Period 0 Period 1 Period 2

SS
V

Lo
ad

in
g 

Pa
tt

er
n 

(M
W

)

SSV (active disturbance) SSV (inactive disturbance)Pd,5 Pd,7 Pd,9

Fig. 3. Loading pattern and SSV in each period for the IEEE 9-bus system.

disturbance takes line 4-9 out of service and the SSV drops
to 0.4445, which we assume is below the stability margin
threshold. We assume all load is responsive and set α = 10000
to prioritize SSV improvement. The effect of the choice of α
will be described in the next subsection. If the disturbance is
active, we set T2 = 8T1 = 40 min, while if the disturbance is
inactive, we set T2 = T1 = 5 min.

For the IEEE 118-bus system, we assume the system
is initially operating at the optimal power flow solution at
$129627/hour. A disturbance takes line 23-24 out of service
and the SSV drops to 0.1534, which we assume is below the
stability margin threshold. We assume all load at PQ buses is
responsive (1197 MW out a total of 4242 MW of system-wide
demand) and set α = 10000. Whether or not the disturbance
is active, T2 = T1 = 5 min.

All computations are implemented in MATLAB on an
Intel(R) i5-6600K CPU with 8 GB of RAM.

A. IEEE 9-Bus System Results

Figures 3 and 4 show the loading pattern, SSV, generation
dispatch, and generation cost per hour in each period. In
Fig. 3, we distinguish between SSVs when the disturbance is
active and inactive – SSVs denoted with white circles (active)
are comparable, SSVs denoted with black circles (inactive)
are comparable, but SSVs denoted with white circles are not
comparable to those denoted with black circles. In Period 1,
the SSV increases by 6.1% due to the DR actions. Note that
generation, with the exception of the slack bus, is constant in
Periods 0 and 1. Next, we pay back the energy in Period 2.
If the disturbance is still active, we maintain the SSV and
the generation cost per hour is relatively large, whereas if the
disturbance is inactive, the SSV increases due to the change
in system topology. The cost per hour is comparable to that
in the other periods. The actual generation cost of Period 2
is the cost per hour multiplied by the length of the period,
and since T2 with an active disturbance is much larger than
T2 without, the actual cost difference between the two cases
is more extreme than it appears in the figure.

Figure 5 shows the SSV in Period 1 and the generation cost
in Period 2 as α varies in the case with an active disturbance
in Period 2. The weighting factor trades the stability margin
improvement for generation cost reduction, and the best choice
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of α for a particular system is based on operator priorities.
For this system, the SSV in Period 1 is maximized when
α ≥ 10000. However, the impact of this parameter is system-
dependent.

B. IEEE 118-Bus System Results

Figure 6 shows the SSV and generation cost per hour in each
period. The SSV increases by 7.3% due to the DR actions in
Period 1. Again, we show two cases in Period 2 and, again,
the SSV is higher (due to the change in system topology) and
the generation cost is lower if the disturbance is inactive.

Figure 7 visualizes the DR actions in Period 1. Red shading
in the upper semicircle corresponding to a bus denotes an
increase in load, while blue shading in the lower semicircle
denotes a decrease in load. The lightning symbol indicates the
line removed from service by the disturbance. In this case,
the SSV is improved by decreasing the loading in Area 1 and
increasing the loading in Area 2.

C. Comparison of Cases

We compare seven cases with different decision variables
and/or parameters to the base case in Table I, which defines
each case and shows its optimal SSV, percent improvement,
and generation cost. For this comparison, we use the IEEE
9-bus system and only solve the first period problem.

Case 1 corresponds to our base case. Case 2 uses the loads
rather than the slack bus to compensate for the change in
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system losses. The total loading increases from 315 MW to
319 MW, reducing the optimal SSV slightly. In Cases 3–6,
we investigate the achievable change in SSV using generator
actions alone (in these cases, ε is irrelevant because there is no
DR). The improvement possible through changes to generator
real power generation (Case 3) is slightly greater than that of
the base case (6.5% vs. 6.1%), but at a significantly higher
generation cost. In Case 4, Generators 2 and 3 are modeled
as steam turbine plants with 3 MW/minute (1% of capacity
[40]) ramp rates, which reduces their ability to respond and
the achievable SSV. Case 5 allows real power generation and
voltage magnitudes to change. Voltage regulation alone (Case
6) does not improve the SSV very much. The greatest SSV im-
provement is achieved when we change load, generation, and
voltage magnitudes together (Case 7); however, in practice,
generators are ramp limited and so we would expect a realistic
achievable improvement between that obtained in Case 7 and
Case 8, where we have applied the conservative ramp rate used
in Case 4.

The generation costs shown in the table are the costs per
hour of Period 1 only; the next subsection describes the
cost results of the multiperiod problem. The relative costs of
the cases are system dependent; however, assuming that the
system is initially dispatched at minimum cost, DR actions
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TABLE I
DECISION VARIABLES, PARAMETERS, OPTIMAL SSV, PERCENT

IMPROVEMENT, AND GENERATION COST FOR EACH CASE

Case 1 2 3 4 5 6 7 8

Pg,ref X X X X X X
Pg,n∀n ∈ SPV X X X X X
Vn∀n ∈ SG X X X X
Pd,n, Qd,n∀n ∈ SDR X X X X

1% Ramp Rate X X
ε 0 1 N/A N/A N/A N/A 0 0

Optimal SSV 0.4715 0.4703 0.4732 0.4569 0.4783 0.4469 0.4885 0.4802
Percent improvement 6.1 5.8 6.5 2.3 7.6 0.5 9.9 8.0
Generation cost ($/hr) 5304.6 5424.5 8270.4 5501.6 8502.6 5424.5 7107.8 5428.1

will be less expensive than generator actions in Period 1.
We also formulated and solved an optimization problem

to determine the minimum load shedding needed to achieve
the same SSV improvement as obtained in Case 1 (without
system-wide load shedding). The formulation is as follows.

min
∑
i∈SDR

Pd,i(0)−
∑
i∈SDR

Pd,i(1) (10a)

σ0(1) = σmin{J(θ(1),V (1))} (10b)

FPn (θ(1),V (1)) = Pg,n(1)− Pd,n(1) ∀n ∈ N (10c)

FQn (θ(1),V (1)) = Qg,n(1)−Qd,n(1) ∀n ∈ N (10d)
Pg,n(1) = Pg,n(0) ∀n ∈ SPV (10e)
σ0(1) ≥ 0.4715 (10f)

P g,ref(1) ≤ Pg,ref(1) ≤ P g,ref(1) (10g)

Q
g,n

(1) ≤ Qg,n(1) ≤ Qg,n(1) ∀n ∈ SG (10h)

V n(1) ≤ Vn(1) ≤ V n(1) ∀n ∈ SDR (10i)

To solve this problem, we again use iterative linear program-
ming with singular value sensitivities. In [11], the authors
formulate a similar problem and also use singular value
sensitivities to formulate a linear program. However, they only
solve the linear program once and so the solution they obtain
does not necessarily satisfy the original problem’s constraints.
By solving (10), we found that the system load would need to
drop by at least 17% to achieve the same stability margin
improvement as achieved by spatio-temporal load shifting.
Load shedding has significant financial and comfort impacts
for consumers.

D. Comparison of Costs

Table II summarizes the cost over one hour of the mul-
tiperiod DR strategy (with Period 1 decision variables cor-
responding to Case 1) for different disturbance restoration
times Trestored. It also compares the results to the minimum-cost
redispatch of generation alone (corresponding to the decision
variables in Case 5, i.e., the generators are not limited by ramp
rates) to achieve the SSV obtained using DR alone. The cost
of each period is computed as the cost per hour times the
length of the period, where all periods are 5 min except for
the 9-bus system’s Period 2 when the disturbance is active,
which is 40 minutes (As a reminder, 40 minutes was chosen
since it is the shortest multiple of 5 minutes for which we
can obtain a feasible solution.) When Trestored = 5 min, the
cost per hour of operating the system beyond Periods 1 and

TABLE II
COST OVER ONE HOUR ($) OF THE MULTIPERIOD DR STRATEGY VERSUS

GENERATION REDISPATCH TO ACHIEVE THE SAME SSVS

Trestored Resource 9-bus 118-bus

5 min DR 5303 129545
Generation 5360 129905

1 hour DR 6441 132777
Generation 6043 132961

2 but within the hour is equal to the cost per hour of Period
0. However, when Trestored = 1 hr, this cost is equal to the
cost of using the generators to maintain the SSV achieved in
Periods 1 and 2.

As shown in the table, the cost of the strategy increases
as Trestored increases. Comparing the cost of using DR versus
generation, we see that the cheaper option is case dependent.
In three out of the four cases, DR is cheaper; however, when
Trestored = 1 hour, generation actions are cheaper than DR
actions for the 9-bus system. As described in the previous
subsection, DR is always cheaper in Period 1. However, energy
payback in Period 2 can be expensive, which is true for the 9-
bus system when the disturbance is active, as shown in Fig. 4.
Moreover, in this case, Period 2 lasts for 40 min.

Note that the generation costs reported in the table may
not be realizable in practice because real generators are ramp-
limited. Therefore, in cases in which DR is more expensive
then generation, it may still be desirable to deploy DR since
generation may not respond in time.

E. Comparison of Algorithms

In this subsection, we compare the performance of the ILP
and INLP algorithms. Table III shows the optimal loading
pattern and SSV computed using each algorithm for the IEEE
9-bus system considering only Period 1. The solutions/SSVs
produced by the algorithms are close. Figure 8 shows the
convergence of each algorithm on the 9-bus system con-
sidering the full multiperiod problem (disturbance active in
Period 2). The solid lines are the results of the ILP algorithm
and the dashed lines are the results of the INLP algorithm.
The ILP algorithm converges more quickly than the INLP
algorithm. Similarly, Fig. 9 shows the convergence of the
ILP algorithm on the 118-bus system considering the full
multiperiod problem (disturbance active in Period 2). The
INLP algorithm does not scale to the 118-bus system.

The computation times are summarized in Table IV. In
addition to ILP and INLP, we also show the computation
times for the eigenvalue sensitivity approach from our previous
work [15], referred to as ILP-E. As shown, the ILP algorithm
requires significantly less time than the INLP algorithm, and
roughly half as much time as ILP-E. The overall computation
time is a function of the number of iterations needed and the
time required for each iteration, where the former depends on
the initial operating point and the maximum step size ∆σ0

and the latter depends on the size of Jacobian matrix. The
time could be reduced through 1) parallel computing of the
SSV sensitivities, 2) approximating the SSV sensitivity (9b) to
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TABLE III
LOADING PATTERN & SSV COMPUTED WITH ILP AND INLP FOR THE

IEEE 9-BUS SYSTEM

Nominal Optimal
Algorithm ILP INLP

Pd,5 (MW) 90 147.93 149.58
Pd,7 (MW) 100 137.23 135.57
Pd,9 (MW) 125 29.84 29.85

SSV 0.4445 0.4715 0.4716
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Fig. 8. Convergence of the SSV in Period 1 and the generation cost in Period 2
using the ILP and INLP algorithms for the IEEE 9-bus system.

only include the system states that most affect the SSV, and/or
3) applying an adaptive maximum step size.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed a multiperiod optimal
power flow approach to use DR to improve static voltage
stability as measured by the smallest singular value of the
power flow Jacobian matrix. In addition to formulating the
problem, which increases/decreases loads while holding total
load constant in a first period and paying back energy to each
load in a second period, we have developed an iterative linear
programming algorithm using singular value sensitivities. We
demonstrated the performance of the approach on the IEEE
9- and 118-bus systems, compared the effectiveness and cost
of DR actions to generation actions, and benchmarked our al-
gorithm against an iterative nonlinear programming algorithm
from the literature.

A primary drawback to using the SSV as a voltage stability
metric is that it is an indicator of the distance to infeasibility of
the power flow equations; it does not contain information about
the distance to the engineering or security constraints. Future
work will explore and/or develop alternative metrics that do
include this information. Other avenues for future work in-
clude developing an understanding of why the loading patterns
change in the way they do and improving the computational
speed of our algorithm. Furthermore, we would like to improve
the algorithm to explicitly consider the path between each
operating point, ensuring an adequate voltage stability margin
along the the path. For this, we could leverage ideas from
[41]–[43]. Finally, we would like to develop formulations that
incorporate other stability metrics and determine how different
metrics impact the control of resources. For example, we have

TABLE IV
COMPUTATION TIMES (S)

ILP ILP-E INLP

IEEE 9-bus system, Period 1 only 0.4 1.0 2.5
IEEE 9-bus system, Full problem 1.0 2.8 6.0
IEEE 118-bus system, Period 1 only 6.5 15 -
IEEE 118-bus system, Full problem 35 60 -
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Fig. 9. Convergence of the SSV in Period 1 and the generation cost in Period 2
using the ILP algorithm for the IEEE 118-bus systems.

conducted a preliminary exploration of the potential for spatio-
temporal load shifting to improve small signal stability [44].
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