The Impact of Load Models in an Algorithm for Improving Voltage Stability via Demand Response

MICHIGAN ENGINEERING **UNIVERSITY OF MICHIGAN** Mengqi Yao¹, Daniel K. Molzahn², Johanna L. Mathieu¹ ¹Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan. ²Energy Systems Division, Argonne National Laboratory, Lemont, Illinois

Introduction

This employs demand work voltage response improve to stability via virtual spatial shifting of loads. The total load is kept constant so that frequency stability is unaffected.

Proper load models are particularly important in stability studies. The load models we use in this work: **ZIP** and **Induction Machine**

Figure 1: Conceptual description of the problem

Results

Load Models

1. Controllable ZIP Model

$$\mathcal{F}_{k}^{ZP}(V_{k},\varepsilon_{k}) = \varepsilon_{k}P_{d,k}^{0} \left[a_{1,k} \left(\frac{V_{k}}{V_{k}^{0}} \right)^{2} + a_{2,k} \left(\frac{V_{k}}{V_{k}^{0}} \right) + a_{3,k} \right]$$
$$\mathcal{F}_{k}^{ZQ}(V_{k},\varepsilon_{k}) = \varepsilon_{k}Q_{d,k}^{0} \left[b_{1,k} \left(\frac{V_{k}}{V_{k}^{0}} \right)^{2} + b_{2,k} \left(\frac{V_{k}}{V_{k}^{0}} \right) + b_{3,k} \right]$$

2. Induction Machine Model

Figure 3: Power as a function of the slip

3. Composite Load Model
$$S_{d,k} = (1-lpha)S_{{
m ZIP},k} + lpha S_{{
m IM},k}$$

Optimization Formulation

1. Jacobian matrix

$$J_{\rm cnv} = \begin{bmatrix} \frac{\partial \mathcal{F}_i^P}{\partial \theta_i} & \frac{\partial \mathcal{F}_i^P}{\partial V_j} \\ \frac{\partial \mathcal{F}_j^Q}{\partial \theta_i} & \frac{\partial \mathcal{F}_j^Q}{\partial V_j} \end{bmatrix} \quad J_{\rm ZIP} = J_{\rm cnv} + \begin{bmatrix} \mathbf{0}_{n-1 \times n-1} & \frac{\partial \mathcal{F}_i^{ZP}}{\partial V_j} \\ \mathbf{0}_{n_{\rm pq} \times n-1} & \frac{\partial \mathcal{F}_j^{ZQ}}{\partial V_j} \end{bmatrix} \\ J_{\rm IM} = \begin{bmatrix} J_{\rm cnv} & \mathbf{0}_{m \times 5n_{\rm dr}} \end{bmatrix} \\ + \begin{bmatrix} \frac{\partial \mathcal{F}_i^{IP}}{\partial \theta_i} & \frac{\partial \mathcal{F}_i^{IP}}{\partial V_j} & \frac{\partial \mathcal{F}_i^{IP}}{\partial \theta_{\mu,k}} & \frac{\partial \mathcal{F}_i^{IP}}{\partial V_{\mu,k}} & \frac{\partial \mathcal{F}_i^{IP}}{\partial \theta_{\rho,k}} & \frac{\partial \mathcal{F}_i^{IP}}{\partial V_{\rho,k}} & \frac{\partial \mathcal{F}_i^{IP}}{\partial s_k} \end{bmatrix} \\ J_{\rm com} = (1 - \alpha) \begin{bmatrix} J_{\rm ZIP} & \mathbf{0}_{m \times 5n_{\rm dr}} \end{bmatrix} + \alpha J_{\rm IM} \end{bmatrix}$$

power flow Jacobian

Operational limits

2. Formulation

max λ_0 subject to $J_{\text{com}}J_{\text{com}}^T - \lambda_0 I \succeq 0$ smallest singular value of the $\sum_{i \in \mathcal{S}_{DR}} P_{d,i} = P_{d,total}$ Total flexible demand is constant AC power flow equations, $\mathcal{F}(x) = 0$ Generator P, V are fixed $\mathcal{G}(x) \ge 0$ $x = \{P_q, Q_q, V, \theta, V_\mu, \theta_\mu, V_\rho, \theta_\rho, s, \varepsilon\}$

Number of iterations

Figure 6: Convergence of SSV and real power demand of the DR if IM at bus 14 is disconnected at low loading

Figure 7: The nominal and optimal SSV of conventional Jacobian matrix

Table 1: Optimal loading patterns and SSV

	Nominal Constant Power J_{cnv}		Optimal for 3 DR buses										
Load Model			Constant Power J_{cnv}		ZIP	ZIP #3		ZIP #3		IM		IM	
Jacobian					$J_{ m ZIP}$		$J_{ m cnv}$		J_{IM}		$J_{ m cnv}$		
	P_d	Q_d	$ P_d$	Q_d	P_d	Q_d	P_d	Q_d	P_d	Q_d	P_d	Q_d	
Bus 4	47.80	32.62	92.20	62.90	92.20	63.99	92.20	63.99	90.99	48.90	71.28	39.94	
Bus 9	29.50	20.73	0.00	0.00	0.00	0.00	0.00	0.00	0.62	15.55	20.34	18.50	
Bus 14	14.90	16.39	0.00	0.00	0.00	0.00	0.00	0.00	0.59	15.79	0.59	15.73	
SSV	0.5341		0.5393		0.5444		0.5391		2.4533		0.5369		

Acknowledgements

This work was supported by NSF Grant EECS-1549670 and the U.S.

DOE, Office of Electricity Delivery and Energy Reliability under contract

