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Abstract—Electric power systems with high penetrations of
fluctuating renewable generation may operate close to their
stability limits. Demand response can be used to improve power
system stability. For example, it is already used to provide
frequency control, improving frequency stability. This paper
presents a new demand response strategy that uses fast-acting
flexible loads to change the loading pattern while keeping the total
load constant, improving steady-state voltage stability without
affecting the system frequency. The new loading pattern is
maintained only for a short period of time until the generators
can be re-dispatched. Our goal is to find a permissible loading
pattern that maximizes the smallest singular value of the power
flow Jacobian matrix, which serves as a measure of voltage
stability. The corresponding non-convex optimization problem is
solved with an iterative linear programming approach that uses
eigenvalue sensitivities and a linearization of the AC power flow
equations. Using two IEEE test cases as illustrative examples,
we show that the loading patterns resulting from the proposed
approach give smallest singular values that are very close to those
obtained from a brute force search. The results are also compared
to another voltage stability measure given by the maximum
loading margin for uniformly varying power injections.

Index Terms—demand response, eigenvalue sensitivity, opti-
mization, power system stability margin, smallest singular value

I. INTRODUCTION

Electric power system stability refers to the ability to
operate normally after a disturbance [1]. Fluctuating renewable
generation may result in operation close to the system’s sta-
bility limits. Conventional methods to improve power system
stability include generator re-dispatch and use of Flexible
AC Transmission System and/or other power electronic de-
vices [2]–[4]. Demand Response (DR) can also be used to
improve power system stability. Most of the relevant research,
e.g., [5], [6], has focused on using flexible loads to improve
frequency stability by time shifting their aggregate energy
consumption to help balance supply and demand.

DR could also be used to improve steady-state voltage
stability margins, which estimate how far a specified operating
point is from instability due to voltage collapse. This paper
considers two types of voltage stability margins. The first is the
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smallest singular value of the power flow Jacobian matrix [7]–
[10]. The smallest singular value gives us a measure of how
close the Jacobian is to being singular, i.e., power flow infea-
sibility. Feasibility and stability are closely linked [11]. The
second, termed the loading margin, is the distance between
the current operating point and the maximum loading point,
assuming that load and generation are increased uniformly
(in a multiplicative sense) throughout the system [2]. The
loading margin is calculated using a Continuation Power Flow
to compute the distance to the instability.

Generation and load levels affect voltage stability margins.
In order to maintain reliability, control actions are required
when a system’s operating point provides insufficient stability
margins. Generator re-dispatch takes time because of generator
ramp limits. In contrast, flexible loads coordinated to provide
DR via low-latency communication systems can respond more
quickly. Rather than shifting load in time, we propose to
improve voltage stability margins by shifting load in space –
simultaneously decreasing some loads while increasing others
– such that total load is constant and the system frequency
is unaffected.1 The new loading pattern should only be main-
tained for a short period of time until the generators can be
re-dispatched. This should be followed by a period in which
the loads that decreased consumption consume more and the
loads that increased consumption consume less in order to
“pay back” the energy consumed/not consumed previously.

This paper presents a method for computing a loading
pattern that maximizes the smallest singular value of the power
flow Jacobian matrix. We formulate a non-convex optimization
problem that maximizes this quantity subject to the AC
power flow equations, line limits, voltage magnitude limits,
generator reactive power limits, and a constraint that forces
the total loading to be unchanged. To solve this problem, we
use an iterative linear programming approach that employs
eigenvalue sensitivities and a linearization of the AC power
flow equations. Eigenvalue sensitivities have also been used
to design damping controllers in power systems [12]–[14].

The main contributions of this paper are 1) the formulation

1Although, in practice, primary frequency control will manage small load
deviations, we choose to require total load to remain constant to isolate the
impact of load pattern changes from changes in the total loading.



of a non-convex optimization problem to choose loading
patterns that maximize the smallest singular value of the power
flow Jacobian, 2) a computationally tractable algorithm to
solve this problem, 3) case studies using the IEEE 9- and
30-bus test systems to assess algorithmic performance, and
4) comparison of the solutions given by the algorithm with
those of three benchmark approaches – one using a brute force
search and two that maximize the loading margin.

This paper is structured as follows: Section II describes the
problem and details our assumptions. Section III presents the
smallest singular value maximization problem formulation and
solution algorithm. Section IV shows the results of our case
studies and Section V concludes the paper.

II. PROBLEM DESCRIPTION & ASSUMPTIONS

A conceptual illustration of the problem is shown in Fig. 1.
The shaded region is the feasible space and the purple cross
is the initial stable operating point. A disturbance may cause
the operating point to move towards the feasibility boundary
(i.e., to the red diamond, step 1). Our goal is to determine a
new load pattern to move the operating point away from the
boundary (e.g., to the green square, step 2). We require the
total flexible load (from e.g., air conditioners, electric vehicles)
to remain constant, so as not to affect the system frequency. We
assume that, initially, generator real power outputs are fixed
with the exception of the slack generator which compensates
for the change in losses associated the new loading pattern.
(Note that it would also be possible to use a distributed slack.)
Generator reactive power outputs adjust to the new loading
pattern. After a short period of time, the generators are re-
dispatched so that the flexible loads can return to consuming
their nominal demands plus/minus some power to “pay back”
the energy consumed/not consumed during their DR actions.
Again, the operating point changes; for example, it could
return to the initial operating point (step 3), or another point
with an adequate stability margin. In this paper, we develop a
method to achieve step 2 in Fig. 1 – choosing a new loading
pattern to improve the stability margin (but not necessarily
reach the maximum point) – and leave step 3 for future work.

We assume flexible load exists at some or all PQ buses in
a network and, for simplicity, assume that the entire load at
the bus is flexible. Constraining the load flexibility within our
optimization problems is straightforward and does not change
the problem complexity. We model all PQ buses as constant
power factor loads. In the future, we will explore the impact
of including ZIP load and motor load models. We also model
all generation buses (except the slack bus) as PV buses, and
so assume their voltage magnitudes are fixed since automatic
voltage regulators respond in sub-second time frames.2

2Reactive power generation constraints in our formulation preclude the need
to consider PV/PQ bus switching due to reactive power limits. Future work
will investigate the potential impact from the additional flexibility afforded by
a more general generator model that allows the voltage magnitude to change
upon reaching a reactive generation limit.

Fig. 1. Conceptual illustration of the problem.

III. OPTIMIZATION APPROACH

After summarizing our notation, this section describes the
non-convex optimization problem for maximizing the smallest
singular value of the power flow Jacobian. This section then
formulates the iterative linear programming algorithm used
to solve this non-convex problem, including the derivation of
eigenvalue sensitivities. Finally, this section summarizes alter-
native voltage stability margins which serve as benchmarks.

A. Notation
Variables & Parameters
θn Voltage angle at bus n
Vn Voltage magnitude at bus n
J (θ,V) Jacobian matrix
Pg,n Real power generation at bus n
Pd,n Real power demand at bus n
Qg,n Reactive power generation at bus n
Qd,n Reactive power demand at bus n
ε0 Total flexible load
εg,n Previous real power generation at bus n
εd,n Previous real power demand at bus n
βn Previous voltage magnitude at bus n
µn Ratio between real and reactive demand at bus n
κnm Apparent power line limit for line (n,m)
λ Eigenvalue of a matrix
u Normalized right eigenvector
w Normalized left eigenvector
γ Loading factor
Functions
FPn (·) Real power injection at bus n
FQn (·) Reactive power injection at bus n
Hnm(·) Line flow for line (n,m)
fPn (·) Linearization of FPn
fQn (·) Linearization of FQn
hnm(·) Linearization of Hnm
Sets
N Set of all buses
SPV Set of all PV buses
SPQ Set of all PQ buses
SDR Set of buses with flexible loads

Bold symbols denote vectors including all variables of a
type. Overlines and underlines represent the upper and lower



limits for a variable. Subscript ‘ref’ denotes the slack bus.
Superscript ‘T ’ denotes the transpose of a matrix. The notation
X � 0 means that X is a positive semidefinite matrix.

B. Smallest Singular Value Maximization Problem
The goal of the optimization problem is to find the operating

point that maximizes the smallest singular value of the power
flow Jacobian matrix J(θ,V ). Because the singular values of
a matrix A are the square roots of the eigenvalues of ATA,
an equivalent problem is to maximize the smallest eigenvalue
λ0 of the matrix J(θ,V )TJ(θ,V ). Therefore, we formulate
the optimization problem as follows.

max
Pg,Qg,Pd,
Qd,V,θ,λ0

λ0 subject to (1a)

J(θ,V )TJ(θ,V )− λ0I � 0 (1b)

FPn (θ,V ) = Pg,n − Pd,n ∀n ∈ N (1c)

FQn (θ,V ) = Qg,n −Qd,n ∀n ∈ N (1d)∑
n∈SDR

Pd,n = ε0 (1e)

Pd,n · µn = Qd,n ∀n ∈ SPQ (1f)
Pd,n = εd,n ∀n ∈ SPQ \ SDR (1g)
Pg,n = εg,n ∀n ∈ SPV (1h)
Vn = βn ∀n ∈ SPV (1i)
Vref = 1, θref = 0 (1j)
Hnm(θ,V ) ≤ κnm (1k)
Hmn(θ,V ) ≤ κmn (1l)

P g,ref ≤ Pg,ref ≤ P g,ref (1m)

Q
g,ref
≤ Qg,ref ≤ Qg,ref (1n)

Q
g,n
≤ Qg,n ≤ Qg,n ∀n ∈ SPV (1o)

V n ≤ Vn ≤ V n ∀n ∈ SPQ (1p)

In this problem, we choose Pd to maximize λ0, where Qg
is also free to change. In combination with the objective
function (1a), the semidefinite constraint (1b) forces λ0 to be
the smallest eigenvalue of J(θ,V )TJ(θ,V ), where I is an
identity matrix of appropriate size. Constraints (1c) and (1d)
are the nonlinear AC power flow equations [15], (1e) ensures
that the total flexible load remains constant, (1f) models loads
as constant power factor demands, and (1g)–(1i) constrain the
inflexible loads’ real power consumption, the generators’ real
power production, and voltage magnitudes at the PV buses to
remain fixed at their previous values. Constraint (1j) sets the
slack bus voltage magnitude and angle and (1k)–(1p) limit the
line flows, real and reactive power generation at the slack bus,
reactive power generation at PV buses, and voltage magnitudes
at PQ buses.

While we could apply a semidefinite relaxation of the AC
power flow equations [16], [17] and solve the problem with
semidefinite programming (SDP), we are not guaranteed to
obtain the actual solution, only a lower bound. Therefore, we
reformulate the problem using linear eigenvalue sensitivities to
replace (1b) and linearized AC power flow equations to replace
(1c)–(1d) so that we can apply iterative linear programming.
Future work includes analyzing the SDP relaxation of (1).

C. Linear Eigenvalue Sensitivities

Let λi, ui and wi be the eigenvalues, normalized right
eigenvectors, and normalized left eigenvectors of a matrix A:

Aui = λiui (2)

ATwi = λiwi (3)

Differentiating (2) with respect to a system parameter ξ yields

∂A

∂ξ
ui +A

∂ui
∂ξ

=
∂λi
∂ξ

ui + λi
∂ui
∂ξ

(4)

Pre-multiplying (4) by wTi , applying (3), and using the fact
that wi and ui are orthogonal (wTi ui = 1), the eigenvalue
sensitivity is [18]:

∂λi
∂ξ

= wTi
∂A

∂ξ
ui (5)

Since the Jacobian depends on θ and V , let

ξ = [θ1, . . . , θi, V1, . . . , Vj ]T ∀i ∈ SPV,SPQ,∀j ∈ SPQ

(6)
and so we can approximate the change in λ0 as

∆λ0 =
∑
i

[
wT0

∂(JTJ)

∂θi
u0

]
∆θi+

∑
j

[
wT0

∂(JTJ)

∂Vj
u0

]
∆Vj

(7)
where u0 and w0 are the normalized right and left eigenvectors
corresponding to λ0.

D. Iterative Linear Programming Problem

In addition to using the linear eigenvalue sensitivity (7), we
also linearize the AC power flow equations so that we can use
iterative linear programming [15, p. 371]. Assume a previous
power flow solution: P 0

g , Q0
g , P 0

d, Q0
d, θ0, and V 0. In each

iteration, the optimization goal is to choose ∆Pd,n,∀n ∈ SDR

to maximize ∆λ0, where both are functions of our choices of
∆P g , ∆Qg , ∆P d, ∆Qd, ∆θ, and ∆V :

max
∆P g,∆Qg,∆P d,

∆Qd,∆V ,∆θ,∆λ0

∆λ0 subject to (8a)

constraint (7) (8b)

fPn (∆θ,∆V ) = ∆Pg,n −∆Pd,n ∀n ∈ N (8c)

fQn (∆θ,∆V ) = ∆Qg,n −∆Qd,n ∀n ∈ N (8d)∑
n∈SDR

∆Pd,n = 0 (8e)

∆Pd,n · µn = ∆Qd,n ∀n ∈ SPQ (8f)
∆Pd,n = 0 ∀n ∈ SPQ \ SDR (8g)
∆Pg,n = 0 ∀n ∈ SPV (8h)
∆Vn = 0 ∀n ∈ SPV (8i)
∆Vref = 0,∆θref = 0 (8j)
hnm(∆θ,∆V ) ≤ κnm (8k)
hmn(∆θ,∆V ) ≤ κmn (8l)

P g,ref ≤ ∆Pg,ref + P 0
g,ref ≤ P g,ref (8m)

Q
g,ref
≤ ∆Qg,ref +Q0

g,ref ≤ Qg,ref (8n)

Q
g,n
≤ ∆Qg,n +Q0

g,n ≤ Qg,n ∀n ∈ SPV (8o)



V n ≤ ∆Vn + V 0
n ≤ V n ∀n ∈ SPQ (8p)

∆λ0 ≤ ∆λ0 (8q)

where (8b) is the linear eigenvalue sensitivity constraint, (8c)–
(8p) correspond to (1c)–(1p), and (8q) limits the maximum
change in ∆λ0 since the linearizations are only valid near
the previous operating point. After obtaining a solution to (8)
and before the next iteration, P 0

g , Q0
g , P 0

d, Q0
d, θ0, and V 0

are updated by adding ∆P g, ∆Qg , ∆P d, ∆Qd, ∆θ, and
∆V , respectively; the AC power flow is re-solved; and the
linearizations (8b)–(8d) and (8k)–(8l) are re-computed for the
new operating point. Iterations are terminated when ∆λ0 goes
below a threshold (here, we use 10−5).

E. Benchmarks

We refer to (8) as the iterative sensitivity smallest singular
value (SSV) approach and benchmark its solution against those
of three other approaches.

1) Brute force SSV approach: We compute the smallest
singular value of the Jacobian for all possible loading patterns
within a discrete mesh where total load is constant (i.e., using
brute force search) and determine the maximum.

2) Brute force loading margin approach: We use
MATPOWER’s [19] continuation power flow runcpf to com-
pute the loading margin for all possible loading patterns within
a discrete mesh where total load is constant and determine
the maximum. This function does not enforce engineering
constraints.

3) Optimal loading margin approach: For all possible
loading patterns where total load is constant, we use an
Optimal-Power-Flow-based Direct Method [20] to maximize
the loading factor γ subject to both the power flow equa-
tions and engineering constraints. Specifically, we solve the
following problem, which increases the generation and loading
uniformly subject to the power flow equations and engineering
constraints:

max
Pg,Qg,Pd,
Qd,V,θ,γ

γ subject to (9a)

Pg,n = (1 + γ)P 0
g,n ∀n ∈ SPV (9b)

Pd,n = (1 + γ)P 0
d,n ∀n ∈ SPQ (9c)∑

n∈SDR
P 0
d,n = ε0 (9d)

P 0
d,n = εd,n ∀n ∈ SPQ \ SDR (9e)

P 0
g,n = εg,n ∀n ∈ SPV (9f)

constraints (1c), (1d), (1f), (1i)-(1p) (9g)

where P 0
g,n and P 0

d,n define the base operating point.

IV. RESULTS

We next demonstrate the performance of our iterative sensi-
tivity SSV approach on the IEEE 9- and 30-bus systems. We
use these small-scale systems to enable visualization of the
results. The approach is also expected to be applicable to large-
scale systems, which we will verify in future work. We use
the system data from MATPOWER [19] and set ∆λ0 = 0.001.

TABLE I
COMPARISON BETWEEN ORIGINAL OPTIMAL POWER FLOW SOLUTION

AND SOLUTION TO (8) FOR THE 9-BUS SYSTEM

Bus Original Generation New Generation
# Pg (MW) Qg (MVar) Pg (MW) Qg (MVar)

1 71.95 24.07 70.18 3.05
2 163 14.46 163 19.5
3 85 -3.65 85 3.13

Bus Original Load/Voltage New Load/Voltage
# Pd (MW) V (p.u.) Pd (MW) V (p.u.)

5 90 0.975 74.8 0.989
7 100 0.986 166.68 0.966
9 125 0.958 73.52 0.985

Fig. 2. Smallest singular value of the power flow Jacobian for the 9-bus
system as a function of Pd,5 and Pd,7.

A. Nine-bus System

We assume the loads at buses 5, 7 and 9 are flexible (total
loading = flexible loading = 315 MW). A comparison between
the original optimal power flow solution and the solution to (8)
is given in Table I. As specified by the constraints, the real
power generation at buses 2 and 3 does not change, while
the load pattern Pd and the slack bus generation changes
to maximize the smallest singular value of the power flow
Jacobian, which increases from 0.8942 to 0.8995.

To verify the results, we compare the solution of the iterative
sensitivity SSV approach to that of the brute force SSV
approach. Figure 2 shows the SSV as a function of Pd,5 and
Pd,7 (based on (8e), Pd,9 = 315− Pd,5 − Pd,7 MW), using a
mesh size of 1 MW. The solution of the iterative sensitivity
SSV approach is very near to that of the brute force SSV
approach, which has a maximum value that is only 0.00001%
larger than that of the iterative sensitivity SSV approach.

Figure 3 shows the loading margin as a function of Pd,5
and Pd,7. The solutions of the brute force and optimal load-
ing margin approaches are shown. Both approaches produce
similar loading patterns (the black dashed line projects the
loading pattern corresponding to the optimal loading margin
approach to the surface), but different loading margins since
the optimal approach includes engineering constraints that
reduce the margin from 566 to 257 MW.

Table II summarizes the results by listing the loading



Fig. 3. Loading margin for the 9-bus system as a function of Pd,5 and Pd,7.

TABLE II
OPTIMAL LOADING PATTERNS FOR THE 9-BUS SYSTEM

Approach Pd,5 Pd,7 Pd,9 SSV LM

Brute Force SSV 76 167 72 0.8995 516
Iterative Sensitivity SSV 75 167 73 0.8995 516
Brute Force Loading Margin 97 135 83 0.8984 566
Optimal Loading Margin 95 135 85 0.8984 257

patterns, smallest singular values (SSV), and loading margins
(LM) produced by each approach. Note that the loading
margins reported for the first two approaches are computed
without engineering constraints and so should be compared
to the loading margin associated with the brute force loading
margin approach. As shown, the loading patterns produced
by the loading margin approaches are different than those
produced by the SSV approaches. This is unsurprising since
the margins are defined differently,3 but it points to the issue
that improving one margin may come at the cost of reducing
another.

B. Thirty-bus System

We assume the loads at buses 7, 8 and 30 are flexible
(63.4 MW out of 189.2 MW total). A comparison between
the original optimal power flow solution and the solution to
(8) is given in Table III. Figure 4 shows the SSVs (again, using
a mesh size of 1 MW) and solutions of two SSV approaches,
and Fig. 5 shows the loading margins and the solutions of
two loading margin approaches. In both cases, the results are
plotted as a function of Pd,7 and Pd,8, and so, based on (8e),
Pd,30 = 63.4− Pd,7 − Pd,8. Table IV summarizes the results.

As shown in Fig. 4 and Table IV, the result from the
iterative sensitivity SSV approach is near the actual maximum.
Along the line P7 + P8 = 63, the smallest singular value
slightly increases (from 0.2171 to 0.2187) as the load at bus 7
increases. As shown in Fig. 5 and Table IV, the loading margin
associated with the solution of the optimal loading margin
approach is much smaller than that associated with the brute
force loading margin approach, again due to the engineering
constraints; however, the loading pattern is similar. Also,
again, the SSV approaches produce very different loading
patterns than the loading margin approaches.

3In particular, the loading margin describes the distance to voltage insta-
bility for power injection changes that are restricted to a single profile (i.e.,
uniform changes at constant power factor), whereas the smallest singular value
does not require specification of a power injection profile.

TABLE III
COMPARISON BETWEEN ORIGINAL OPTIMAL POWER FLOW SOLUTION

AND SOLUTION TO (8) FOR THE 30-BUS SYSTEM

Bus Original Generation New Generation
# Pg (MW) Qg (MVar) Pg (MW) Qg (MVar)

1 25.82 -2.46 26.40 -2.87
2 60.97 25.75 60.97 32.27
13 37 10.62 37.00 10.92
22 21.59 37.56 21.59 38.69
23 19.2 7.59 19.20 7.70
27 26.91 8.29 26.91 4.62

Bus Original Load/Voltage New Load/Voltage
# Pd (MW) V (p.u.) Pd (MW) V (p.u.)

7 22.8 0.971 57.52 0.951
8 30 0.970 5.88 0.978
30 10.6 0.971 0 0.996

Fig. 4. Smallest singular value of the power flow Jacobian for the 30-bus
system as a function of Pd,7 and Pd,7.

Figure 6 shows the convergence of the iterative sensitivity
SSV approach to the optimal point. Less than 25 iterations are
needed for convergence of the 9-bus system and 40 iterations
for the 30-bus system. Using MATLAB on an Intel(R) i7-
4720HQ CPU with 16 GB of RAM, the solution for the 30-bus
system is obtained in less than 1 seconds.

The overall computation time is a function of the number
of iterations needed and the time required for each iteration,
where the former depends on the initial operating point and the
step size ∆λ0 and the latter depends on the size of Jacobian
matrix (m×m). The time complexity to compute (7) is O(m3).
Applying the algorithm to the IEEE 118-bus system resulted in
a computation time of 15 seconds though it could be reduced,
e.g., through parallel computing. In both Fig. 2 and Fig. 4, we
can see that the smallest singular value is relatively constant
near the maximum. If this result generalizes to other systems,
we do not need to wait until the iterative sensitivity SSV
algorithm fully converges to obtain a good solution.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a method for using demand
response to improve steady-state voltage stability margins.
Specifically, we formulated an optimization problem that seeks
the loading pattern that maximizes the smallest singular value



Fig. 5. Loading margin for the 30-bus system as a function of Pd,7 and Pd,8.

TABLE IV
OPTIMAL LOADING PATTERNS FOR THE 30-BUS SYSTEM

Approach Pd,7 Pd,8 Pd,30 SSV LM

Brute Force SSV 63 0 0 0.2187 194
Iterative Sensitivity SSV 58 6 0 0.2187 209
Brute Force Loading Margin 24 28 11 0.2173 323
Optimal Loading Margin 25 25 13 0.2172 15

of the power flow Jacobian, which serves as a voltage stability
margin. To solve this optimization problem, we proposed an
iterative linear programming algorithm using eigenvalue sen-
sitivities and a linearization of the AC power flow equations.
We applied the method to two test systems and benchmarked
its performance against a brute force approach and two ap-
proaches that maximize the loading margin.

The test case results show that demand response actions
which shift load between buses, while keeping the total load
constant, can improve voltage stability margins. We also found
that our computationally tractable iterative linear programming
method produced loading patterns close to the optimum (as
determined by a brute force approach). The results further
show that we may obtain significantly different loading pat-
terns when maximizing the smallest singular value of the
Jacobian versus maximizing the loading margin. This is not
surprising since the different margins capture different notions
of “distance to instability.” However, it means that improving
one margin may worsen another, and so the system operator
should consider the trade-off between different margins.

Future work includes analyzing the convergence of the
iterative linear programming method, developing strategies for
re-dispatching the system to compensate for the DR actions
while keeping the system away from its stability boundaries,
and investigating related optimization formulations using other
stability margins, including dynamic stability margins.
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