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Abstract
Background: We sought to evaluate intratumor heterogeneity in squamous cell

carcinoma of the oral cavity (OCC) and specifically determine the effect of physi-

cal separation and histologic differentiation within the same tumor.

Methods: We performed whole exome sequencing on five biopsy sites—two from

well-differentiated, two from poorly differentiated regions, and one from normal

parenchyma—from five primary OCC specimens.

Results: We found high levels of intratumor heterogeneity and, in four primary

tumors, identified only 0 to 2 identical mutations in all subsites. We found that the het-

erogeneity inversely correlated with physical separation and that pairs of well-differen-

tiated samples were more similar to each other than analogous poorly differentiated

specimens. Only TP53 mutations, but not other purported “driver mutations” in head

and neck squamous cell carcinoma, were found in multiple biopsy sites.

Conclusion: These data highlight the challenges to characterization of the muta-

tional landscape of OCC with single site biopsy and have implications for personal-

ized medicine.

KEYWORD S

genetic, heterogeneity, SCCHN, oral cavity, squamous cell carcinoma

1 | INTRODUCTION

Squamous cell carcinoma of the oral cavity (OCC) is a
worldwide health problem with an incidence in males of
6.6/100 000 in the United States and 16.4/100 000 in India.1

Unlike human papilloma virus (HPV)-associated oropharyn-
geal carcinomas,2 which have exceptionally good outcomes
with current treatment modalities,3 survival for patients with
advanced OCC remains poor.4

Improved outcomes for patients afflicted with OCC will
likely be predicated on a detailed understanding of the genetic
changes that drive tumor proliferation/survival and the corre-
lation of these changes with routine histopathologic findings
that are the backbone of current staging systems. For instance,
understanding the variability in mutations among select OCC
subsites is an important consideration for molecular staging
systems, such as the Mutant Allele Tumor Heterogeneity
score, which are poised for integration into clinical care.5–7 In
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addition, insight into the mutational heterogeneity of OCC is
critical to the development of personalized treatment strate-
gies for patients afflicted with this disease. For example, the
National Cancer Institute's Molecular Analysis for Therapy
Choice (NCI-MATCH) trial relies upon the whole exome
and mRNA analysis of a single biopsy sample from a patient's
tumor to determine if that individual might be successfully trea-
ted with an approved drug. Similarly, based on the recent insight
that responses to PD-1:PD-L1 axis blockade are not only depen-
dent on a high mutational burden,8–11 but also, upon conserva-
tion of specific mutations throughout the tumor,12 understanding
of mutational heterogeneity may provide a useful adjunct to
prospective immunotherapy trials. Finally, knowledge of the
distinct mutations that encode for putative neoantigens shared
among all and/or the majority of tumor subsites is a prerequisite
for the development of neoantigen-specific cancer vaccines.13

Initial large collaborative whole exome sequencing
(WES) efforts of squamous cell carcinomas of the head and
neck (SCCHN) revealed extensive intertumor heterogene-
ity, with the involved genes generally conserved in less
than 10% of specimens—notable exceptions include TP53,
CDKN2A, FAT1, NOTCH1, SYNE1, and MLL2.14,15 Sub-
sequent analysis of data in The Cancer Genome Atlas vali-
dated and extended these initial observations, confirming the
transcription of these genes harboring mutations in 86% of
cases.16,17 Unfortunately, with few exceptions, the published
studies that define the somatic mutations in OCC and SCCHN
do not speak to the issues of intratumor heterogeneity nor do
they correlate mutational burden with tumor grade. Given that
other tumor types such as renal cell carcinoma and pancreatic
cancer demonstrate profound intratumor heterogeneity in both
the primary tumor and regional lymph node metastasis, this

information is likely critical to our understanding of disease
pathogenesis.18–22

In this report, we utilized WES to explore the intertumor
and intratumor mutational landscape of primary OCC. We
describe the development and validation of a method that
considers three parameters to assess the probability that a
non-synonymous mutation in an OCC exon is valid: (a) iden-
tification of a DNA sequence variant with two mutation caller
systems, (b) the extent of DNA sequence coverage for each
variant, and (c) the normalized allele frequency. Using this
approach, we mapped the exomes of four unique sites—two
from well and two from poorly differentiated regions—from
five primary OCCs.

2 | MATERIALS AND METHODS

2.1 | Pathology

Representative sections (2-3 mm in thickness; at least one sec-
tion/cm of tumor) were obtained from five randomly selected
patients who had undergone surgical resection of their OCC.
Sections were fixed in 10% formaldehyde, processed, and
embedded in paraffin blocks, from which 5 μm sections were
cut and stained with hematoxylin-eosin (H&E) satin. Selected
areas were categorized as “well-differentiated” or “poorly dif-
ferentiated” by a head and neck pathologist. We selected two
areas of well-differentiated (eg, W1 and W2) and two areas of
poorly differentiated carcinoma (eg, P1 and P2), as well as
one area of normal mucosa (N) from each primary tumor.
These areas were circled on the H&E stained slides and the
distances between all of these selected areas were recorded
(Figure 1).

FIGURE 1 Approach for individual
sample identification. A, B, D, We
harvested two areas of poorly differentiated
tumor (P) and two areas of well-
differentiated tumor along with
histologically normal tissue from the same
site (N). For every core biopsy of tumor
obtained, a 5-μm thick section was cut from
this core (biopsy of the biopsy) and the
resulting slides were stained with
hematoxylin-eosin stain to evaluate purity of
differentiation in vertical direction of the
sample. C, Distances between samples were
mapped in two dimensions for statistical
analysis [Color figure can be viewed at
wileyonlinelibrary.com]
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For each of the selected areas, a tissue core (2.0 ×
2.0 × 2.5 mm) was obtained with a metallic biopsy needle
from the corresponding paraffin block and re-embedded in a
new paraffin block. A 5 μm thick section was cut from this
new block in the vertical plane and embedded/sectioned in the
horizontal plane. The resulting slides were stained with H&E
and used to validate the assigned tumor differentiation cate-
gory, and to determine the tumor purity throughout the core
(ie, % of tumor/core tissue, “biopsy of the biopsy”) (Figure 1
and Supporting Information Table S1). The remaining tissue,
which represented most (ie, >90%) of the punched-out core,
was submitted for molecular studies. In addition to histologic
evaluation, we employed the recently described informatics tool,
Sequenza, as an additional means to evaluate tumor purity.23

2.2 | Fresh frozen and FFPE DNA extractions

Genomic DNA was extracted from Formalin-Fixed Paraffin-
Embedded (FFPE) sections and biopsy cores using Covaris
truXTRAC FFPD DNA Kit (Covaris, Woburn, Massachu-
setts). In brief, FFPE sections less than 25 μm thick or
biopsy cores smaller than 1.2 mm in diameter were loaded
into Covaris microTUBEs, supplemented with buffer and
processed in Covaris E210 instrument to dissociate the paraf-
fin and rehydrate the tissue. Tissue was then lysed with Pro-
tease K overnight at 56�C followed by a 1-hour incubation at
80�C to reverse formaldehyde crosslinks. Genomic DNA
was extracted through a spin column provided in the kit, and
further purified with AMPure XT beads (Beckman Coulter
Genomics, Danvers, Massachusetts).

2.3 | Library construction

Genomic DNA libraries were constructed for sequencing on
the Illumina platform using the KAPA Library Preparation Kit
(Kapa Biosystems, Wilmington, Massachusetts). First, DNA
was fragmented with the Covaris E210. Then, libraries were
prepared using a modified version of manufacturer's protocol.
The DNA was purified between enzymatic reactions and the
size selection of the library was performed with AMPure XT
beads (Beckman Coulter Genomics). The polymerase chain
reaction (PCR) amplification step was performed with primers
containing an index sequence 7 nt in length.

2.4 | Exome capture and sequencing

Exome capture was performed using the Agilent SureSelect
Human All Exon v4 kit (Agilent Technologies, Santa Clara,
CA) according tomanufacturer's protocol. Multiplexed sequenc-
ing was performed on the Illumina HiSeq 4000 platform using
(Illumina, San Diego, CA) 151 bp paired-end runs. An average
of 518million reads was generated for each sample.

2.5 | Data preprocessing and alignment

Illumina reads were aligned to human reference v37 with decoy
sequences using BWA24 version 0.7.12-r1039. Picard25 tools
(version 1.140) CleanSam, FixMateInformation, and MarkDu-
plicates were used to clean up any mapping artifacts and mark
duplicate read pairs. Insertion/deletion (INDEL) realignment
and base quality recalibration were performed using GATK26

version 3.3-0. All the tumor and normal samples derived from
the same patient were co-realigned. The resulting alignments
had an average on-target depth of 284 reads. The median
on-target depth was 260x with a range of 142x to 479x. On
average, >99% of the targeted bases were covered at 30x or
more with a range of 96% to 100% (Supporting Information
Table S2).

2.6 | Variant calling, annotation, and filtering

Somatic single-nucleotide variant (SNVs) were called using
MuTect27 version 1.1.7 and VarScan28 version 2.4.1 to obtain
a set of high confidence variants. Independent variant calling
was done for each sample analyzed. MuTect applies several
variant filters to detect any false positive SNVs generated due
to mapping and sequencing errors. A variant was identified as
a false positive if: (a) it was observed in the matched normal
sample, (b) there was a proximal gap, (c) a site exhibited poor
mapping or strand bias, (d) alternate alleles were clustered at
a consistent distance from the read ends, or (e) the site was
triallelic. The VarScan call set was also processed to obtain a
high confidence set. Default allele frequency thresholds were
applied to variants classified as somatic. If the variant allele fre-
quency was >5% in tumor and <5% in normal, it was marked
as high confidence. Furthermore, variants were filtered to iden-
tify false positives due to poor mapping, strand bias, read posi-
tion bias, etc.

The resulting somatic variants were annotated for functional
effect using ANNOVAR29 (version 2015-06-17). ANNOVAR
was also used to annotate the variants with allele frequencies in
the 1000 Genomes Project, NHLBI-ESP 6500 exomes, CLIN-
VAR, COSMIC, NCI60 and to calculate scores for prediction
algorithms including, SIFT, PolyPhen, and MutationAssessor.
The 1000 Genomes Project alternate allele frequency threshold
was set to 0.01 to filter out common variants.

To evaluate the purity of the normal samples, we calculated
the allele frequency distribution of each sample. An average of
83% of variant Allele Frequency (AF) were heterozygous
(0.4 ≤ AF ≤ 0.6) or homozygous (AF > 0.9), with a range of
77% to 86% (Supporting Information Table S3 and Figure S1).

Because FFPE data carry a risk of artifactual mutations due
to cytosine deamination, we evaluated the prevalence of C->T
and G->A mutations in each sample (Supporting Information
Figure S2). Although a number of samples showed significant
enrichment for these mutation types, after removing all C->T
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and G->A mutations from the final call set, the rate of overlap
among the samples changed by less than 1% (Supporting Infor-
mation Figure S3 and Table S4).

2.7 | Somatic variant validation

All non-synonymous stop loss and stop gain variants that
were called with high confidence by both callers were used to
pick a set of variants for validation. These were prioritized
using MutationAssessor30 predictions and cross-referenced
with genes known to be associated with cancers (specifically
head and neck cancers) using COSMIC31 and tumorportal.org,32

and a final validation set was chosen. PCR primers for each vari-
ant were selected using a combination of Primer3 and manual
primer design (Validation PCR primers synthesized by Sigma-
Aldrich, St. Louis, MO). Resulting PCRs were sequenced using
barcoded multiplexed runs on a PacBio RS II with P6-C4
chemistry (Pacific Biosciences, Menlo Park, CA). The resulting
PacBio CCS reads were aligned to the human reference with
BLASR and the alignments and consensus calls were manually
inspected using Integrated Genomics Viewer (IGV).

2.8 | Statistical analysis

The Jaccard similarity coefficient J(A,B) was used for quan-
tifying the co-occurrence of SNVs in two samples from the
same patient, A and B:

J A,Bð Þ = A \ Bj j
A [ Bj j =

A \ Bj j
Aj j + Bj j− A \ Bj j

For constructing dendrograms, the Jaccard distance or Jac-
card dissimilarity defined as 1−J(A,B) was used as the dis-
tance metric between samples. Dendrograms were produced
using Wolfram Mathematica version 11.0.0. A forest plot of
the fraction of shared SNVs in individual samples was gener-
ated using the “meta” library in the R software.33 Partial cor-
relation was used to test the significance of the association
between increasing Jaccard similarity and decreasing physical
distance between samples with the effect of parent tumor
removed. Likewise, the unidirectional hypothesis that Jaccard
similarity increases with decreasing physical distance between

paired samples in individual tumors was tested using the non-
parametric Spearman's rank correlation coefficient, Rs. The
corresponding P value is for rejecting the hypothesis Rs = 0.
These analyses were conducted using IBM SPSS Statistics
version 24.0.0.

2.9 | Study approval

All studies were conducted under the auspices of a protocol
approved by the Institutional Review Board, University of
Maryland, Baltimore. As determined by the IRB, the protocol
did not require written informed consent.

3 | RESULTS

3.1 | Tumor site and stage

Four study participants had SCC of the oral tongue (patients
5280, 1646, 6803, and 7157), whereas one tumor originated
in the lower gingiva (9464). Patient's ages ranged from 49 to
89 years. Tumors were pathologically staged by TNM classi-
fication as: T2N0, T1N2c, T3N2c, T2N0, and T1N0. None of
the patients had distant metastatic disease at time of resection.

3.2 | Validation of somatic mutations
correlates with both allele frequency and
sequence coverage

We analyzed our WES data using two widely employed caller
systems, MuTect and VarScan, and only validated mutations
called by both systems (Table 1).27,28 We performed 190 PCR
reactions for overlapping SNVs and successfully validated
139 (73%). The frequency of allele detection and sequence cov-
erage directly correlated with successful validation (Table 1,
Figure 2). With sequence coverage greater than 500, the valida-
tion rate was 79% and for allele frequency greater than 0.5, the
validation rate was 86%. Combining both of these criteria
resulted in a validation rate of 100%. Lowering the coverage to
>250 with allele frequency >0.5 still produced a 92% valida-
tion rate. Collectively, these data define the likelihood that a
mutation identified by our approach in silico is valid based on
set parameters.

TABLE 1 Validation by allele frequency and coverage

Allele frequency All validation attempts PCR+ validation attempts

>0.75 5/11 (45%) 3/5 (60%) 1/1 (100%) 5/6 (83%) 3/4 (75%) 1/1 (100%)

0.5-0.75 14/19 (74%) 9/10 (90%) 11/11 (100%) 14/18 (78%) 9/10 (90%) 11/11 (100%)

0.25-0.5 17/38 (45%) 17/32 (53%) 14/25 (56%) 17/30 (57%) 17/26 (65%) 14/21 (67%)

<0.25 11/36 (31%) 11/26 (42%) 16/24 (67%) 11/25 (44%) 11/18 (61%) 16/20 (80%)

Coverage 0-250 250-500 >500 0-250 250-500 >500

“All validation attempts” refers to all validation attempts, including polymerase chain reaction (PCR) failures. The “PCR+ validation attempts” set includes only those
validation attempts where a PCR amplicon was obtained.
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3.3 | Primary OCCs have variable mutational
burdens

In order to determine if the mutational burden of OCC was
consistent throughout primary OCCs, we evaluated high impact
SNVs—defined as non-synonymous or stop mutations—in
four samples from each primary tumor (Table 2). We identified
635 SNVs, with each primary tumor having variable tumor
wide and subsite specific mutational burdens (range 60-223 per
patient tumor) (Figure 3A). For example, in tumors 5280 and
1646, two of the subsites had high and two had low mutational
burden indices. In contrast, two tumors (9464 and 6803) dis-
played high mutational burdens with internal consistency.
Finally, the mutational burden index was approximately equal
in three of the four subsites from tumor 7157. These data

demonstrate that OCCs have variable levels of intratumor and
intertumor mutational burdens that contribute to their overall
genetic diversity.

3.4 | Primary OCCs have high level of
intratumor heterogeneity

In general, these tumors had high levels of mutation and
gene-specific intratumor heterogeneity. For example, in four
primary tumors, we identified only zero to two identical muta-
tions in all subsites—a finding that correlated with a 0.7%
median SNV overlap per patient. For the three patients that
did share at least one common SNV in all four sub sites, each
SNV corresponded to one gene (Supporting Information

FIGURE 2 Mutation validation as a
factor of coverage and allele frequency.
Selected mutations were validated by
polymerase chain reaction (PCR) and
PacBio sequencing from a range of
coverages and allele frequencies. Tumor
allele frequencies were normalized by
expected tumor purity values. Validation
attempts with strong high-coverage
support are labeled concordant or
discordant. Those with low-coverage
support are labeled inconclusive
concordant or discordant [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 2 Comparison of overlap of SNV's in tumor samples from all patients

Patient Site stagea W1 W2
Distance
(mm)b

Shared
SNVsc n(%) P1d P2

Distance
(mm)b

Shared
SNVsc n(%)

Total unique
SNVse

Total shared
SNVsf n(%)

5280 Tongue T2N0 29 81 2.5 22 (25) 15 59 0.5 1 (1) 149 1 (0.7)

1646 Tongue T3N2c 58 68 5 56 (80) 5 12 11 0 (0) 81 0 (0)

9464 Gingiva T1N2c 128 126 2 122 (92) 131 128 1 42 (19) 223 41 (18)

6803 Tongue T2N0 57 56 10 55 (95) 48 0 7 0 (0) 60 0 (0)

7157 Tongue T1N0 5 78 15 2 (2) 84 93 1 58 (49) 122 2 (1.6)

Variants are Non-synonymous exonic SNV's discovered by both calling systems.
aStaging represents pathologic stage.
bDistance between samples (W1-W2 or P1-P2).
cFound in both samples within a patients tumor (W1 and W2 or P1 and P2).
dW, well-differentiated sample; P, poorly differentiated sample. Numeric value represents the total number of SNVs in each sample.
eTotal number of unique SNVs in all four samples for each patient.
fFound in all four samples within a patient's tumor. Each SNV corresponds to one gene.
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Table S5). Interestingly, in two of these patients, we found a
relatively high percentage of identical mutations, in three of
the four subsites. Similarly, in tumor 9464, despite the discov-
ery of 41 identical mutations found in all four subsites, indi-
vidual regions showed high numbers of mutations that were
either unique or shared by only one other area. (Figure 3B,
Supporting Information Table S5).

To quantify the mutational variability among samples from
within a tumor, we computed dendrograms with the Jaccard
dissimilarity coefficient as the measure of mutational distance
between pairs of samples (Figure 3C). The Jaccard dissimilar-
ity coefficient is the proportion of all somatic mutations pre-
sent in one of the two samples in a pair that are present in
both samples. These data demonstrate considerable tumor-
to-tumor variation in the mutational relatedness among sam-
ples. As an example, tumor 1646 shows a relatively higher
similarity within the poorly differentiated and the well-
differentiated samples than between well vs poorly differen-
tiated samples. The independent sample Kruskal-Wallis test

showed that in this small sample, the distribution of the Jac-
card coefficient was not statistically significantly different
among the tumors (P = 0.19).

3.5 | Intratumor heterogeneity is partially
constrained by physical distance and the degree
of histologic differentiation

Within each tumor, the relationship between the distance
between samples and their mutational profiles was variable.
However, combined analysis of four tumors (6803 was not
included because P2 had no SNVs called by both calling sys-
tems) showed samples that were physically closer together
shared more common SNVs (P = 0.03). Furthermore, well-
differentiated samples within each tumor had a higher per-
centage of shared SNVs (median 80% overlap) compared
to poorly differentiated specimens (Median overlap 1.3%)
(P = 0.06) (Table 2). This trend was not explained by physi-
cal distance between samples as there was no difference in

FIGURE 3 Squamous cell carcinoma of the oral cavity (OCC) has high intratumoral and intertumoral heterogeneity. A, Mutational burden
index—the percentage of mutations in a given sample/total number of mutations for a given patient. Blue diamond, average mutational burden for
each primary tumor. W, well differentiated; P, poorly differentiated. Table shows tumor purity by Sequenza sequence-based analysis vs pathology
assessment. B, Venn diagrams showing the overlap of mutations in shared genes between individual sites. C, Dendrograms created using the Jaccard
dissimilarity coefficient between pairs of samples from within each tumor. X-axis is the value of the Jaccard coefficient. The Jaccard dissimilarity
coefficient is the measure of mutational distance between pairs of samples. The Jaccard dissimilarity coefficient is the proportion of all somatic
mutations present in one of the two samples in a pair that are present in both samples [Color figure can be viewed at wileyonlinelibrary.com]
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proximity between the well and poorly differentiated samples
(P = 0.1). Importantly, as highlighted in Figure 3C, in some
tumors (5280 [W1 and P1], 9464 [P2 and W2/W1], and 7157
[P1 and W2]), well-differentiated samples shared more SNVs
with poorly differentiated samples, and in all of these cases
tumor samples were of short distance from each other (each
3 mm) (Supporting Information Table S6).

3.6 | Majority of SNVs identified are in genes
not typically associated with SCCHN

Previous WES studies have identified a group of mutated
genes that are conserved in a relatively small number of

SCCHN specimens.14–17 Using the two-caller approach, we
found only one gene, TP53, which was mutated in more than
one patient (Supporting Information Table S5). NOTCH1 and
NOTCH2, CASP8, and SYNE1 were detected in two to four
of the primary tumor specimens but, generally, not by both
callers. Furthermore, unlike TP53 and CDKN2A, in which
conserved tumor-specific SNVs were identified by both call-
ing systems in all four subsites throughout an individual
tumor (patient 9464), when present, NOTCH1 and NOTCH2,
CASP8, and SYNE1 were only found in one to two primary
tumor subsites, even when considering calls made by only
one calling system. Finally, even with TP53, we did not iden-
tify any common SNVs between patients.

FIGURE 3 (continued) [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

WES of four spatially separated primary tumor samples from
each of five patients with OCC demonstrated significant inter-
tumor and intratumor variability in both mutational burden
indices and specific somatic SNVs. Interestingly, the physical
distance between samples had a significant inverse correlation
with their genetic similarity. Furthermore, pairs of well-
differentiated samples trended toward sharing greater numbers
of conserved SNVs than their poorly differentiated analogues.

There is limited information on the mutational burden
and the mutational heterogeneity of OCC and SCCHN in
general. In the most comprehensive study to date, SNV het-
erogeneity of OCC was analyzed with a 202-gene “cancer
gene” panel using two to three distinct samples from each
primary tumor and zero to two samples from one lymph
node/patient. The findings from this study indicate a high
degree of intratumor concordance among the distinct areas
sampled from the four patients with oral tongue cancer, with
dramatically higher levels of heterogeneity in the one patient
with a floor of mouth malignancy.34 The differences
observed between this report and our study may be as a
result of the small sample sizes examined and/or by the use
of closed vs open data sets, respectively—the latter is a sup-
position reinforced by our observation that the majority of
SNVs found in our study occurred in genes not commonly
associated with SCCHN. Taken in concert, these data sug-
gest that while multiple subsites from individual OCCs share
common mutations in the exomes of a defined group of can-
cer relevant genes, this overlap does not reflect the profound
heterogeneity captured by WES. Similar to our study, for
example, a high level of intratumor heterogeneity was identi-
fied using the whole genome sequencing of an HPV-positive
oropharyngeal cancer patient.35

Previous WES studies have shown that certain genes are
preferentially targeted for mutations in SCCHN.14–17 Based
on these data, there is speculation that some of these genes,
for example, TP53 and NOTCH1, are integral to the patho-
physiology of these tumors in select patients. We found that
TP53 was mutated in a large number of tumor subsites in
more than one patient. These findings are consistent with
recent studies in non-small cell lung cancer, demonstrating
that TP53 driver mutations are generally clonal.21 However,
while NOTCH1 and NOTCH2, CASP8, and SYNE1 were
detected in two to four of the primary tumor specimens, they
were only identified in one to two subsites, even when we
liberalized our detection approach to the use of a single cal-
ler system. While the interpretation of these findings is
debatable, they appear to suggest that these genes may not
be required in OCC—at least in certain tumor subsites—
and, unlike in squamous cell lung cancer, might have
occurred later in the process of tumor progression.21,36

In addition to carefully characterizing the mutational het-
erogeneity of OCC, we asked whether the degree of overlap
observed correlated with either the distance between samples
and/or histologic differentiation. As anticipated, the distance
between samples was inversely correlated with the number of
shared SNVs. The fact that these findings were not absolute
suggests that OCCs may adhere to both linear as well as non-
linear genetic models of progression.37–39 In the long term, it
will be important to determine whether, the molecular path-
ways used for tumor growth and survival in these distinct
regions move toward concordance, as is observed in other
tumors.40–42

To the best of our knowledge, this is the first evaluation of
the effect of histologic differentiation on intratumor genetic
heterogeneity. Well-differentiated areas within the same
patient's tumor trended toward sharing a higher percentage of
common SNVs than poorly differentiated regions. This effect
was not explained by distance, as well-differentiated samples
were not significantly closer to each other than poorly differ-
entiated samples. Also, this observation does not appear to be
related to the absolute number of SNVs identified, as both
poor and well-differentiated samples varied in mutational bur-
den. Although the small sample size of our study mandates
that these data be interpreted with caution, they suggest that
mutational heterogeneity might correlate with the degree of
histologic differentiation in OCC. Further studies will be
required to validate or refute this finding.

There are several limitations to our study. First, because of
the relatively small sample size, our observations will need to
be validated in a larger patient cohort. Second, while we devel-
oped and validated a “two caller” screening algorithm for
mutant allele detection that may prove useful for estimating the
frequency of “valid calls” in cases where concomitant RNA
Seq is not planned, the requirement that both callers identify
the same mutation almost certainly decreased the sensitivity of
SNV detection and may have led to a higher false negative rate.
However, as shown in Supporting Information Figures S4 and
S5, the use of one calling system only decreased the intratumor
heterogeneity slightly or not at all when comparing all samples.
Additionally, as highlighted in Table 3, in only one patient for
one gene (TP53 in 5280 in P1 called by MuTect but not VarS-
can) was there a discrepancy in which the mutation was not
found in all samples as a result of using two calling system.
We analyzed our validation data set, and found only 10 SNV
positions where the validation PCRs detected the variant in a
tumor sample where it was not predicted (ie, the variant was
present but missed by our algorithm). Of these, four were found
by neither MuTect of VarScan, one was found by MuTect but
not VarScan, and five were found by MuTect but rejected as
poor-quality or likely contamination. Therefore, we do not feel
that the use of a two-caller screening algorithm significantly
affected our results.
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A third limitation of our study, and all genomics studies
comparing samples, is the variability in tumor purity
between samples. In order to better understand this inherent
variability, tumor purity was defined using both “2-dimen-
sional” H&E staining and analysis with the recently devel-
oped informatics tool, Sequenza.23 The fact that these
methods had variable concordance highlights the fact that
better analytic tools are required to evaluate tumor purity.

Finally, to improve the functional relevance of our study,
we only included non-synonymous SNV mutations in our
analysis. Because somatic insertion/deletion calling carries a
higher error rate, we elected to focus on SNVs to provide a
more accurate call set from which to conduct intratumor
comparisons. The exclusion of synonymous mutations and
INDELs from our analysis reduced estimates of mutational
burden, with the effects on mutational heterogeneity being
less certain. Finally, the observation in certain patients that
large numbers of unique SNVs were found in only one of
the four regions analyzed suggests that our study likely
under represents the mutational heterogeneity of OCC.

5 | CONCLUSION

To the best of our knowledge, this is the first report to char-
acterize the mutational burden and mutational heterogeneity
of OCC using a WES approach.34,35 Our findings indicate
that OCCs have variable levels of mutational burden and
high levels of intratumor heterogeneity—heterogeneity that
is inversely correlated with the physical distance between
specimens and is less variable in well vs poorly differenti-
ated regions. Our data also suggest that some of the muta-
tions, for example, NOTCH1, that were postulated to be
drivers of tumorigenesis in select patients may not be
required in all tumor subsites. Finally, from a therapeutic
perspective, our data highlight the challenges of using a sin-
gle site biopsy for “precision medicine.”
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TABLE 3 Mutations in commonly reported genes in squamous cell carcinomas of the head and neck (SCCHN) by patient and tumor sample

Mutated genea Patient 5280 Patient 1646 Patient 9464 Patient 6803 Patient 7157

TP53 W1, W2, P2,
P1 (MuTect)

W2, W1, P2 All samples None W1 (MuTect),
W2, P1, P2

NOTCH1 P2 (MuTect) P2 (VarScan),W2 None None None

NOTCH2 None W2 (MuTect) W2 (VarScan),
P2 (VarScan)

None None

NOTCH3 None None None P1, W1, W2 None

CDKN2A None P2 (MuTect) W1, W2 All samples None None

PIK3CA None None None None None

FBXW7 W2 None None None None

HRAS None P2 (VarScan) None None None

NFE2L2 None None None None None

FAT1 P2 (VarScan) None None None None

CASP8 W1 (MuTect) P1 (MuTect) None P1 (VarScan) W1 (MuTect)

FGFR3 None None None None None

CEBPA None None None None W2 (VarScan)

FES P2 (MuTect) None None None None

TGFBR2 None None None None None

SYNE1 W2 W2 (VarScan), P2 P1 (MuTect) P2 (MuTect),
W1 (MuTect)

None

TP63 None W2, W1 None None None

PTEN None P2 (VarScan) W1, W2 None None None

EGFR P2 None None None None

Commonly reported genes, as reported by The Cancer Genome Atlas data.
aMutation was called by both MuTect and VarScan unless specified.
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