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<ABH>ABSTRACT</ABH> 

<ABS>Bone is composed of a complex mixture of many dynamic cell types. Flow 

cytometry and in vivo lineage tracing have offered early progress toward deconvoluting 

this heterogeneous mixture of cells into functionally well-defined populations suitable for 

further studies. Single-cell sequencing is poised as a key complementary technique to 

better understand the cellular basis of bone metabolism and development. However, 

single-cell sequencing approaches still have important limitations, including 

transcriptional effects of cell isolation and sparse sampling of the transcriptome, that 

must be considered during experimental design and analysis to harness the power of this 

approach. Accounting for these limitations requires a deep knowledge of the tissue under 

study. Therefore, with the emergence of accessible tools for conducting and analyzing 

single-cell RNA sequencing (scRNA-seq) experiments, bone biologists will be ideal 

leaders in the application of scRNA-seq to the skeleton. Here we provide an overview of 

the steps involved with a single-cell sequencing analysis of bone, focusing on practical 

considerations needed for a successful study. © 2019 American Society for Bone and 

Mineral Research. </ABS> 

<KWD>KEY WORDS: SINGLE-CELL RNA SEQUENCING; MESENCHYMAL 

CELLS; OSTEOBLASTS</KWD> <zaq;2> 

<H1>Introduction</H1> 

How many discrete populations of mesenchymal cells exist in bone? What is the 

differentiation hierarchy among these populations, and is this linear or more complex and 

plastic? How do external stimuli shape the dynamics of these populations to impact bone 

formation? Understanding the cellular basis of bone formation requires clarity on each of 

these points and is therefore among the highest priorities for skeletal biology. However, 

for many years, progress on these issues has been hampered by limitations inherent in 

traditional methods to identify, isolate, or otherwise study skeletal cells, which produce 
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highly heterogeneous pools containing many mesenchymal cell types. For example, 

traditional bone marrow stromal or calvarial osteoblast cultures are typically composed of 

an extremely heterogeneous mixture of cells.(1) This leads to an inability to assign 

phenotypes observed in vitro to discrete cell populations, and changes in cellular 

composition either between experimental and control groups or over the course of the 

culture experiment may confound experimental interpretation. Moreover, unappreciated 

differences in the cellular composition of heterogeneous skeletal mesenchymal cultures 

are likely to be a major contributor to problems with experimental reproducibility among 

labs.(2) Some of these issues potentially extend to in vivo studies using single markers to 

identify populations of interest, as many available markers capture not one but multiple 

cell populations.(3,4) In addition to these methodological factors that confound progress in 

understanding the cellular basis of bone formation, mesenchymal biology has inherent 

features that make resolving discrete populations of mesenchymal cells and determining 

their hierarchy challenging. Mesenchymal cells are notorious for displaying a high degree 

of plasticity and phenotypic instability in culture that complicate in vitro analysis of 

skeletal populations. Examples of this include the propensity of chondrocyte cultures to 

dedifferentiate in culture, the high degree of plasticity displayed by mesenchymal cells 

relative to other tissues, and the inability of some populations to survive in vitro in the 

absence of stimulation.(5–7) 

To solve this issue of heterogeneity confounding our understanding of the cellular 

composition of bone, examination of other fields that have addressed similar questions 

can suggest successful strategies. In particular, immunology has identified an extensive 

range of discrete cell types and has assigned functions and molecular identities to each of 

these populations.(8,9) Perhaps the major factor facilitating this success has been an early 

adoption of single-cell analyses throughout the field, in this case predominantly flow 

cytometry, that allowed for identification and subsequent study of discrete cellular 

populations.(10) Thus, single-cell approaches, when used in concert with supporting in 

vivo and ex vivo functional studies, are likely to be key in facilitating skeletal biology to 

reach a similarly detailed understanding of the cellular compartment of our organ of 

interest. However, efforts to adapt these approaches to the particular challenges of bone, 

including issues related to cellular isolation of bone cells, will be needed. 
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Although flow cytometry remains an indispensable technique because of its ability to 

prospectively isolate defined cellular populations for further study, complementary 

approaches in the form of single-cell RNA sequencing (scRNA-seq) have flourished over 

approximately the past 5 years. Over this time, scRNA-seq has moved from being a 

technique restricted to a handful of technology-focused research groups to becoming a 

truly “ready for prime time” approach that is accessible to a wide range of investigators 

primarily focusing on biological questions and not methodology. The increasing 

availability of powerful single-cell technologies offers an unprecedented ability to 

deconvolute mixed populations of cells and identify new discrete cellular populations 

contributing to bone physiology. As an example of this promise, scRNA-seq studies of 

lung tissue have identified a novel cell type that is the major cell expressing the CFTR 

channel in airway epithelium, demonstrating the ability of scRNA-seq to provide 

substantial insights into the cellular basis of physiology and disease.(11,12) At the same 

time, these technologies still have important limitations as discussed below that must be 

taken into account. Here, we aim to provide a practical overview of application of this 

family of technologies to skeletal biology, including suggestions for investigators who 

are looking to add single-cell sequencing to their experimental toolbox. 

<H1>Planning a scRNA-seq Study of Bone</H1> 

Although single-cell RNA-seq technologies are constantly evolving, two classes of 

approaches to capturing single cells have become available: 1) methods that rely on index 

sorting by FACS to achieve single-cell capture, and 2) techniques that utilize 

microfluidics-based capture of cells into droplets in an emulsion (Fig. 1, {FIG. 1} Table 

1). {TBL 1} The initially emerging index-based techniques (also known as Smart-seq) 

rely on sorting single cells into individual wells of 96- or 384-well plates and processing 

their transcriptomes into RNA-seq libraries while they are physically separated.(13,14) This 

method allows the sequencing of entire transcripts; however, the per cell cost of this 

technique tends to be considerably higher than that of microfluidics-based methods and 

scaling to large total numbers of captured cells can be limited by sorting rate. Other index 

sorting methods include MARS-seq and CEL-seq/CEL-seq. 2.(15–17) Index sorting 

methods are therefore advantageous in “deep-sequencing” experiments, wherein the aim 
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is to characterize the individual transcriptomes of a small group of cells thoroughly, 

rather than interrogating the diversity of a highly heterogeneous pool of cells and 

identifying rare populations. Conversely, recently developed droplet/microfluidics-based 

methods, including Drop-seq, inDrop, and the commercial 10× Genomics platform, allow 

large numbers of cells (10,000 to 100,000) to be captured and processed in a rapid 

fashion.(18–20) Briefly, single cells are captured inside aqueous droplets emulsified in oil 

with beads ligated to cell-indexing primers. The cell membrane and nucleus are lysed to 

release the mRNA from each cell to mark each of its transcripts with a unique barcode 

(also known as unique molecular identifier, or UMI). These barcodes are later utilized in 

verifying the uniqueness of each mRNA molecule and thereby eliminate bias associated 

with repeat sampling of transcripts that are highly amplified during library preparation. 

An additional droplet-specific barcode separates the collective sequence output into cell-

specific bins. Droplet-based methods have gained tremendous popularity since they were 

pioneered in 2015,(19,20) as they allow convenient processing of tens of thousands of cells 

and can therefore quantify the cellular heterogeneity of highly complex tissues, such as 

the retina or bone marrow, while facilitating the discovery of previously unrecognized 

cell populations. However, unlike the SMART-seq method, current droplet-based single-

cell RNA-seq relies on 3ʹ biased sequencing of each mRNA molecule. Furthermore, 

while all current scRNA-seq methods are limited to largely capturing only a fraction of 

highly expressed mRNAs from each cell, Drop-seq captures fewer transcripts per cell 

than Smart-seq, which can exacerbate analytic challenges created by sparse transcriptome 

sampling. Detailed analysis of the relative strengths of specific methods is available in 

recent methodologic comparison studies.(18,21)  

The per cell sequencing depth is an important experimental design parameter largely 

determined by the scRNA-seq method utilized. Earlier single-cell RNA-seq studies in the 

field of neuroscience suggest that 50,000 or even fewer reads per cell might be sufficient 

to define distinct cell populations.(22,23) The aforementioned sequencing depth might be 

expected to lead to the detection of 1000 to 3000 genes per cell population. However, the 

definition of this minimum threshold needed for robust separation of cellular populations 

is highly dependent on the complexity of the tissue at hand, as well as the objective of the 
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experiment; much deeper sequencing may be necessary for data saturation to detect rare 

cell types. Additionally, it should be noted that estimates suggest that a mammalian cell 

expresses approximately 12,000 genes across 100,000 or more mRNA molecules, which 

suggests that most scRNA-seq methods are capable of sampling only a fraction of the 

total transcriptome, and this fraction is weighted toward genes with the highest 

expression. This poses a challenge for scRNA-seq to monitor transcriptional response or 

classify cell types in a sample, as many genes of interest, including cell type–defining 

transcription factors, show lower degrees of expression. The deeper transcriptome 

sampling offered by bulk RNA-sequencing on purified cell types can aid in overcoming 

this challenge when used in parallel. Bulk RNA sequencing can be particularly useful for 

discovery of genes of interest that can then be queried in scRNA-seq data sets. Thus, 

scRNA-seq and bulk RNA sequencing should be viewed as complementary rather than 

competing techniques.  

In addition to choosing a suitable scRNA-seq method, another key step in planning a 

scRNA-seq experiment is to consider exactly which cells will be submitted for 

sequencing, which subset of cells within this population represent the population of 

interest, and how these cells will be isolated. Consideration of these points is needed to 

ensure that the population of interest will be sufficiently represented to allow for robust 

downstream analysis. Wherever feasible, performing scRNA-seq on cells isolated 

directly from bone without intervening culture is advised, as certain stem cell and 

progenitor populations may be lost upon culture, even when “basal” culture conditions 

are utilized.(3) An important decision when planning the cell isolation is whether cells will 

be subjected to FACS before single-cell sequencing or if cells will be directly utilized 

after enzymatic digestion. FACS has the advantage of clearing doublets, dead cells, and 

debris from the sample, and FACS allows for direct assessment of population frequencies 

present in the specimen, which can provide a key reference point to guide setting 

parameters during later analysis. FACS can also facilitate restricting the cells sequenced 

to only a small group of interest, thereby increasing the relative representation of these 

groups and avoiding expense associated with sequencing large numbers of cells not 

relevant to the study. This can be critical for bone biology, as, without additional 

enrichment steps, mesenchymal cells are often outnumbered by hematopoietic cells in 
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most specimen types. Hematopoietic depletion strategies include negative selection on 

the pan-hematopoietic marker CD45 (gene symbol PTPRC), though due to the weak 

expression of CD45 on certain erythroid lineage cells additional negative selection with 

erythroid markers such as CD71 (transferrin receptor, gene symbol TFRC), glycophorin 

A (CD235a, gene symbol GYPA), or Ter119, a mouse-specific antibody clone 

recognizing Ly76, may be necessary for comprehensive removal of hematopoietic 

cells.(24) Endothelial cells can be depleted based on negative selection on the pan-

endothelial marker CD31 (gene symbol PECAM1). Notably, capture of some number of 

unwanted cell populations is inevitable even with FACS and these cells must be 

accounted for during analysis.(3,25) Additionally, use of cell type–specific fluorescent 

reporters, such as a GFP variant driven by a reporter active in osteoblasts or cre-based 

lineage tracing methods, can allow for positive selection of populations of interest. 

When an index sorting method is employed, the surface immunophenotype of each cell 

can be linked with that particular cell’s transcriptome. This linking of surface 

immunophenotype to transcriptome is a key advantage, as it offers a solution to perhaps 

the biggest drawback of scRNA-seq studies: the inability to prospectively isolate 

populations of interest identified in these studies. Without prospective isolation of 

populations discovered with scRNA-seq, this approach is largely limited to being 

descriptive, as no functional studies can be performed. This limitation stems from the 

transcripts defining a population of interest rarely being either cell surface markers 

suitable for FACS or having an associated genetic reporter. Linked flow cytometry and 

transcriptome data can identify the surface immunophenotype corresponding to a cluster 

of interest, allowing for prospective isolation of this population in subsequent 

experiments. Notably, staining cells with antibodies containing nucleic acid barcodes as 

in the CITE-seq technique or the commercial version, TotalSeq, may allow for similar 

advantages as index sorting methods in terms of linking surface immunophenotype to cell 

clusters of interest.(26) Disadvantages of adding a pre-sequencing FACS step include the 

additional time and experimental complexity added. Additionally, FACS itself can have a 

negative effect on cell viability, though optimization of nozzle sizes and flow rates can 

minimize these effects; a larger nozzle size with a slower flow rate generally offers a 

better outcome.(3) Regardless of whether FACS is used, optimization of enzymatic 
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digestion conditions for cell viability and yield is critical, as in our experience this 

represents the most common point of experimental failure in scRNA-seq studies. In 

keeping with this, comparison of in vivo transcriptional profiles on fixed cells to cells 

undergoing a typical isolation protocol in muscle suggests that enzymatic digestion is the 

major step that can disrupt the in vivo transcriptional profile.(27) This emphasizes the 

importance of minimizing the duration and harshness of enzymatic digestion, and we 

note that brief digestion protocols can provide robust yields of mesenchymal cells, 

particularly in younger mice.(3) Alternatively, there are several approaches designed to 

circumvent isolation-associated artifacts, including in vivo fixation before cell isolation, 

though fixation can negatively impact cell isolation efficiency and RNA quality.(27,28) In 

another approach, transgenic expression of Toxoplasma gondii uracil 

phosphoribosyltransferase (UPRT) only in cell types of interest allows for selective 

labeling, capture, and bulk sequencing of transcripts only from this cell type after whole-

tissue RNA extraction.(28) However, this method requires a suitably specific promoter that 

allows targeting UPRT expression only to the cell type of interest, and experience to date 

with cre lines suggests that such a promoter may be elusive in the skeletal system. Recent 

work on muscle comparing post-isolation to “in vivo” transcriptional profiles provides 

insight into the likely scope and degree of the impact of tissue digestion and isolation; 

these procedures induce an immediate early stress response and loss of quiescence that 

may occur predominantly in subpopulations of cells.(27–29) Particular care is warranted in 

assessing whether such isolation-associated activating transcriptional changes may either 

drive cell clustering or confound efforts to assess the transcriptional response to 

environmental or genetic perturbations.  

In addition to the isolation procedure potentially influencing the transcriptome, some 

types of bone cells of high importance, such as osteocytes, can be challenging to 

dissociate into single-cell suspension, though there are examples of success.(30,31) 

Similarly, some large cell types, such as mature multinucleated osteoclasts may become 

physically disrupted or otherwise lost during FACS or microfluidics steps. Thus, all 

cellular isolation methods will necessarily introduce bias in the frequencies of cell types 

present relative to the in vivo tissue, with some cell types underrepresented or absent. 

These biases will largely be determined by the enzymatic digestion protocol employed. 
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For these cell types with challenging isolation requirements, epigenetic readouts such as 

single-cell ATAC-seq may offer a more stable method to assess cell state in the face of 

harsh isolation procedures and can be multiplexed with scRNA-seq using recent methods, 

though it is noted that epigenetic features can also be impacted by cell isolation 

protocols.(27,32,33) The field of neuroscience in particular has had to deal with challenges 

in disassociating their tissue of interest into a single-cell suspension and has found 

success in instead performing sequencing of single nuclei through a family of 

microfluidics or flow cytometry–based approaches.(34–37) Because these nuclei are 

generally easier to isolate than intact cells and many of these methods can be used on 

fixed tissue, single nuclear sequencing methods may have utility in allowing robust 

analysis of particularly hard to isolate populations such as osteocytes. We note that recent 

advances employing a combinatorial barcoding labeling of nuclei have resulted in 

methods, such as Sci-RNA-Seq. 3, displaying very high throughput and favorable per cell 

sequencing costs.(38,39) 

Before starting sequencing, a validation step is needed to ensure that single cells are 

being captured by the methodology employed. To clarify terminology relevant to this 

validation, most scRNA-seq methods have a proxy term to refer to individual cells in the 

analysis, as the occurrence of either cellular doublets or beads/wells containing only free-

floating “background” RNAs and no cells break the expectation that each data point 

represents one cell. These cell equivalent terms include “STAMPs” (single-cell 

transcriptomes attached to microparticles) for microfluidics particle capture–based 

methods such as drop-seq or just “wells” for index sorting–based methods.(20) For all 

methods, validation of the doublet rate and cell capture rate is essential. For index sorting 

methods, this is fairly straightforward and consists of a test sort where each well is 

examined visually after sorting, primarily to assess the rate of empty wells, as the use of 

doublet gates makes issues with post-sort doublets rare. For microfluidics/droplet-based 

methods, this commonly takes the form of a species mixing experiment, where typically 

human and mouse cells are mixed together at different numbers and the rate of STAMPs 

containing transcripts from both species is assessed.(20) Higher-input numbers result in 

capture of larger numbers of STAMPs but result in higher doublet rates, and these two 

factors need to be balanced in pre-experimental validation. 
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Lastly, the limitations inherent in scRNA-seq approaches suggest that this technique is 

best reserved for questions specifically requiring this approach and that robust 

consideration of alternatives is warranted. For instance, examination of gene expression 

signatures or transcriptional responses to genetic or environmental perturbations in 

known populations of defined, isolatable cell types would be best accomplished by bulk 

RNA-sequencing rather than scRNA-seq. Additionally, similar to the gene expression 

atlases built with bulk RNA-sequencing, tissue atlases utilizing single-cell sequencing of 

large numbers of cells have recently become available and often include analysis of 

skeletal mesenchyme.(40–42) As these resources continue to expand, they may offer a route 

to answer selected questions utilizing existing data, especially for questions focusing on 

basal identity and gene expression in skeletal cells in the absence of specific stimuli.  

<H1>Analysis of scRNA-seq Data From Skeletal Specimens</H1> 

Perhaps the step that requires the greatest effort in a scRNA-seq experiment is not cell 

isolation or sequencing but rather data analysis. Fortunately, scRNA-seq analysis 

approaches have been evolving at least as rapidly as the sequencing methods themselves, 

leading to a wide range of options, which notably include several very accessible tools 

that facilitate bone biologists with no prior computational training to conduct this analysis 

themselves(43–45) (Table 2). {TBL 2} Regardless of the software used, the analysis 

process typically involves four key steps: approaches to account for technical 

artifacts/data cleaning, dimensionality reduction, clustering, and post-clustering 

examination of gene expression (Fig. 2). {FIG. 2} To summarize each of these in order, 

scRNA-seq is subject to characteristic confounding by covariates that must be addressed 

during the early stages of analysis. These include batch effects, the relative content of 

mitochondrial and ribosomal RNA, the total number of transcripts collected from each 

cell equivalent, or the cell cycle stage of each cell. Often, the effects of these covariates 

can be large relative to the biologic variation of interest, necessitating understanding and 

subsequently addressing their impact. Methods to address these include filtering out 

outlier cells, downsampling of populations with higher per cell transcriptional sampling 

than the rest of the specimen, or regression to remove the portion of the signal driven by 

these covariates. However, the impact of “regressing out” these covariates should be 
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carefully and manually assessed in the final analysis, as some of these covariates may be 

unequally present in cell clusters of interest, leading to regression potentially masking the 

true biologic signal associated with these populations. It is worth emphasizing that this 

and nearly every other step of this analysis process will be ideally subject to iterative 

tweaking of analysis parameters and observing whether these tweaks help to recapitulate 

expected biology present in the sample. In this respect, scRNA-seq analysis is intensely 

informed by one’s knowledge of the relevant underlying biology and is best conducted by 

investigators with a deep familiarity with this biology, though support of institutional 

cores and consulting bioinformaticians can be critical.  

Next, most analysis platforms engage in some kind of dimensionality reduction and 

clustering. Dimensionality reduction often takes the form of principal component analysis 

(PCA), which simplifies the complex variation present in the sample by identifying 

covariant transcripts and grouping these together in principal components (PCs). For 

instance, osteocalcin (BGLAP) and other transcripts highly expressed in osteoblasts, such 

as COL1A1 and bone sialoprotein (IBSP) and others, may be grouped together, a set of 

genes called metagenes, into a principal component reflecting osteoblast identity. Often, 

it is instructive to manually examine the genes comprising each of the PCs to see what 

aspect of mesenchymal biology is being captured. Depending on the specimen 

preparation method, early PCs will likely be dominated by the signature of erythroid cells 

or leukocytes given their broad differences in gene expression in comparison to skeletal 

mesenchyme. Some PCs may largely correspond to the covariates discussed above, and 

visualizing these covariates across the top few principal components can be a helpful 

method to understand their impact on downstream analyses. For instance, cell cycle often 

drives one or more of the early PCs, and observing disappearance of this PC can be 

helpful in ensuring that regression or other approaches have accounted for cell cycle 

effects. After PC generation, users will commonly select which of these PCs to use to 

cluster the data using k means clustering or another method. Computational methods such 

as a Jackstraw plot can help illustrate how likely each principal component is likely to 

have been observed by chance and thereby help guide selection of which PCs can aid in 

guiding a biologically meaningful clustering of the data. However, perhaps the most 

useful method is to iteratively conduct the analysis with different numbers of PCs and 
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empirically observe how these choices impact populations of interest, using populations 

that correspond to osteoblasts, chondrocytes, or other clearly delineated mesenchymal 

populations as “landmarks” to aid in evaluating how expected populations segregate as an 

internal control for the correctness of the clustering.  

The last step in scRNA-seq analysis is to display the clusters and understand which 

cellular populations are represented by analyzing both the genes defining each cluster and 

also the expression of genes of interest that classically define known populations, such as 

osteocalcin transcripts defining mature osteoblasts. Clusters are typically represented 

using t distributed stochastic neighbor embedding (t-SNE), a dimensionality reduction 

data visualization algorithm,(46) or more recently, uniform manifold approximation and 

projection (UMAP).(47) Notably, t-SNE employs several user-defined parameters that can 

have dramatic effects on the end output, meaning that caution is required to avoid 

overinterpretation of features such as cluster size or distance that may reflect these user-

defined parameters more than the underlying data (https://distill.pub/2016/misread-

tsne/).(48) 

With the ability to characterize the transcriptomes of individual cells, one intriguing 

question is whether gene expression changes in distinct cell populations can be detected 

after pharmacologic, genetic, or environmental perturbations on the skeleton. Although 

this is an exciting possibility, there are multiple important challenges to consider before 

attempting comparative gene expression profiling experiments with scRNA-seq. First, 

currently available methodologies capture only a small percentage of the transcripts 

(roughly 5% to 15%) present in each cell. As a result of this sparse and stochastic 

sampling, gene expression data may be difficult to interpret for genes with mid to low 

expression levels, as many of these genes may show apparent “dropout” of expression of 

these transcripts within each cluster due to that transcript not being sampled in that 

particular cell. As a result, the apparent absence of a gene of interest in a cluster must be 

interpreted with caution, as it may simply represent that the transcript is expressed at a 

level below the high threshold needed for detection. These issues can be further 

complicated if differences in transcript sampling among cellular populations lead to 

different detection thresholds in each cluster. Computational strategies to address this 
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issue include MAGIC (Markov affinity-based graph imputation of cells), which infers 

values for gene expression data missing due to sampling issues in each cell based on gene 

expression in similar cells.(49) Alternatively, where feasible, cellular isolation followed by 

bulk RNA-sequencing offers perhaps the most straightforward method to experimentally 

validate gene expression changes observed by scRNA-seq. Second, an equally important 

consideration is to ensure proper definition of distinct clusters that accurately represent 

the cellular diversity of skeletal tissues at hand: As they descend from similar lineages 

and exhibit functional similarities, distinct mesenchymal cell populations co-express 

several genes at high levels, and their transcriptomes in a single-cell RNA-seq data set 

can resemble each other, leading to coclustering of very distinct cell populations. 

Therefore, a thorough evaluation of each cell cluster in order to exclude methodological 

artifacts is essential during data analysis. Recently developed feature-barcoding 

techniques such as CITE-seq and TotalSeq show little dropout and can help overcome 

this issue and verify cell identity through correlation of membrane-bound protein markers 

and transcriptional output.(26) A third and perhaps more obvious challenge is to ensure 

that the transcriptomes of cells are not significantly altered by the cell isolation process. 

Although there have been concerns that FACS can perturb gene expression, published 

validation studies in non-bone tissues show minimal effects on gene expression with 

optimized protocols.(50–52) As also discussed above, cell isolation–induced biases or 

artifacts can be particularly difficult to exclude when the goal of the experiment is to 

characterize the effects of environmental changes (such as dietary intake or mechanical 

loading) in the absence of an internal control (such as a genetic mutation blocking this 

response).  

Despite the potential complexity of the scRNA-seq analysis pipeline, an increasing 

number of software tools are available, and several of these are designed to be accessible 

to investigators with no prior computational biology training. Notably, Seurat has online 

tutorials designed to get new users started with scRNA-seq analysis 

(https://satijalab.org/seurat/) and has several tools to help with regression or filtering-

based approaches to account for covariates.(53) In addition to the basic analysis pipeline 

described here, a number of analytic tools have been designed to focus on answering 

specialized questions (Table 2). One of these, RaceID, focuses on identifying outlier cells 

This article is protected by copyright. All rights reserved. 



 

A
ut

ho
r 

M
an

us
cr

ip
t 

relative to each of the clusters and thereby attempts to identify rare, sparsely sampled 

populations that may be of biologic interest.(54) Combination of RaceID approaches with 

identification of computational features of stemness, including high transcriptional 

entropy and interconnectedness of the population in an inferred differentiation trajectory, 

has been used for de novo computational identification of stem cell populations.(55) 

Another set of analysis tools focuses on inferring the relationships among the populations 

defined during the clustering step, often by defining a series of edges or lines that connect 

these populations into a tree or trajectory through additional dimensionality reduction. 

These connections are typically inferred on the principle that changes in gene expression 

as cells differentiate tend to be parsimonious, involving minimal changes during each 

differentiation event. For example, a series of cells differentiating along an osteoblast 

differentiation pathway are likely to retain many elements of the transcriptional character 

of osteoblasts during this process and therefore be more transcriptionally similar to each 

other than to unrelated mesenchymal lineages. In a common form of this analysis, 

construction of a minimum spanning tree, algorithms seek to connect all of the cell 

clusters with a “tree” that minimizes total sum of the “distances” of these connections 

across a space representing gene expression. Notably these kinds analyses makes the 

assumption that all of the cell types present in the sample share a lineage relationship, and 

for some types of specimens such as those including both endosteal and periosteal 

mesenchymal cells, this assumption may be false.(3) Thus, these approaches are greatly 

enhanced when used in conjunction with positive selection for a genetically encoded 

lineage tracing marker to provide assurance that the cells under analysis do share a 

lineage relationship. In an alternative method to infer cellular differentiation trajectories, 

a recent approach measures RNA velocity, or the rate of change in the expression of a 

gene through the ratio of unspliced to mature transcripts.(56) This can in turn be used to 

infer the future expression profile of cells and predict impending transitions among cell 

types. One of the most widely used tools for this kind of analysis is Monocle.(40,57,58) 

After dimensionality reduction and clustering, Monocle performs minimum spanning tree 

analysis to connect each cell cluster, finds the longest path along this tree, and then orders 

these clusters according to an inferred timeline of differentiation. Because this timeline 

does not refer to actual measured time, it is instead termed “pseudotime.” Proof of 
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concept of this approach includes demonstrating that Monocle 2 can reconstruct known 

hematopoietic lineage trees from single-cell data. Notably, Monocle is able to accept 

sequential data drawn from multiple time points, making it particularly suitable for 

reconstructing in vitro cellular differentiation pathways from multiple sampled cultures of 

asynchronously differentiating cells or an analysis of the differentiation of cells in a 

fracture callus over time.  

In scRNA-seq studies, some tissue types appear to show robust separation by clustering, 

such as different lineages of immune cells, while other tissue types display less robust 

separation due to broadly shared gene expression programs, intermediate cell states, or 

other causes. Studies to date suggest that skeletal mesenchyme may fall more in the latter 

than the former category, so tools that focus on resolving closely related populations may 

be useful in skeletal studies.(3) One clustering algorithm, biSNE (biclustering on 

stochastic neighbor embedding), aims to enforce a more robust separation of populations 

and thereby delineate between distinct but related cell populations and may thereby be 

useful for separating distinct mesenchymal subpopulations.(35) 

<H1>Validating scRNA-seq Results </H1> 

As the technical and analytic issues described above can lead to the identification of 

spurious cellular populations, validation of populations identified by scRNA-seq with a 

complementary method should be considered a key component of any complete scRNA-

seq study. When the genes defining the cluster of interest include cell-surface markers, 

flow cytometry offers a straightforward validation path. However, clusters may lack 

defining cell surface markers, and even when putative cluster-defining cell surface 

markers are identified, suitable antibody reagents may not be available. Furthermore, the 

overall weak correlation between mRNA and protein abundance for many genes may 

frequently prevent this approach, resulting in distinct sets of genes serving as the most 

robust markers of a given cell type when using RNA versus protein-based detection 

methods.(59,60) An improved interpretation of scRNA-seq results in the context of skeletal 

biology can be achieved by revealing the spatial identity of the identified cell 

populations. This is typically done by testing identified cell type–specific markers on 

This article is protected by copyright. All rights reserved. 



 

A
ut

ho
r 

M
an

us
cr

ip
t 

histological sections. This in situ corroboration of flow cytometry–based transcriptional 

profiling is challenging because of its high technical sensitivity, and discrepancies 

between scRNA-seq and histological analyses are often encountered. It is important to 

note that some RNAs and proteins can significantly lose their integrity and antigenicity, 

respectively, during routine histological procedures. A protocol maintaining tissue 

samples as much in native conditions as possible would be ideal. However, it is 

practically impossible because of the inherent structural hardness of bone tissues 

requiring complex tissue preparations, such as extended fixation and decalcification. 

Where relevant, analysis of minimally fixed and decalcified tissue, such as embryonic or 

neonatal bones using frozen sections, can help minimize the impact of these issues. 

Major approaches validating expression of identified markers in an effort to confirm the 

presence of populations identified by scRNA-seq approaches include 

immunohistochemistry (IHC), in situ hybridization (ISH), and use of genetically 

engineered reporter lines, particularly in knock-in reporter mice if available. The success 

of IHC-based validation entirely relies on the quality of antibodies available, and 

antibodies that work in other tissues sometimes do not work well on bone sections. 

Additional steps are often required, including antigen retrieval and signal amplification, 

depending on how tissue samples have been prepared. Moreover, genes encoding 

proteins released into the milieu or the circulation, such as cytokines and hormones, may 

have staining patterns irrelevant to their cellular origin. Considering all these variables, 

ISH is often a more straightforward and indeed preferable method to validate expression 

of marker genes identified by scRNA-seq analyses. Historically, ISH was a technique 

most widely used for embryology. However, with the advent of a high-sensitivity ISH 

approach such as RNAscope technology (Advanced Cell Diagnostics [ACDBio], 

Newark, CA, USA), its application has been significantly expanded. This technology 

utilizes double Z probes (18~25 bp each, designed up to 20 probes) that increases the 

specificity and sensitivity of the hybridization, followed by explosive amplification of the 

signal. Probes for the vast majority of genes are readily available from the supplier. 

Although the applicability of ISH has been substantially expanded, detecting genes that 

are expressed only at a low level can still be challenging. It can be particularly the case 

for adult bones, due in part to the need for deep decalcification. The third option, use of 
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transgenic reporter lines widely available in mice, is indeed a reliable and reproducible 

way to validate expression of identified marker genes in situ. Fluorescent proteins that are 

stable during complex tissue preparations, including eGFP, eYFP, tdTomato, and 

mCherry, are used to visualize cells of interest by recapitulating endogenous gene 

expression. Typically, a cassette encoding a fluorescent protein is inserted into the 

endogenous locus or the transgene so that its expression is regulated by the promoter and 

enhancer of the gene of interest. This transgenic reporter-based approach is highly 

versatile and facilitates downstream analyses because tagged cells can be readily isolated 

as live cells on flow cytometry and cell sorting. A large collection of transgenic reporter 

mouse lines are available from the public repositories, including the Jackson Laboratory 

(Bar Harbor, ME, USA; www.jax.org), MMRRC (www.mmrrc.org), and the GENSAT 

(www.gensat.org). A combination of these approaches should be utilized to validate and 

reveal the anatomic distribution of cell populations identified by scRNA-seq analyses. 

<H1>Spatially Annotated scRNA-seq Approaches</H1> 

For bone biologists, the specific location of a given cell within a complex 

microenvironment provides important clues as to that cell’s identity and function. Spatial 

information also has an advantage over transcriptional data in that it is not subject to 

constant fluctuation due to cellular plasticity or phenomena such as transcriptional 

bursting.(61–63) Two cells with an identical transcriptome may perform discrete functions, 

depending on their neighboring cells or matrices in which they are embedded. This 

critical piece of information is permanently lost upon cell dissociation, an inevitable step 

to prepare cells for above discussed scRNA-seq procedures. For most investigators, the 

most straightforward method to annotate the anatomic location of cellular clusters 

emerging from scRNA-seq studies is to manually localize the expression of cluster-

defining genes using immunohistochemistry, immunofluorescence, or in situ 

hybridization as discussed above. Methods have been reported to aid in the determination 

of the minimal gene set needed to spatially resolve a given set of cell clusters.(64) 

However, this manual approach to spatial annotation is dependent on the existence of 

suitable staining reagents and can be infeasible to scale when large numbers of target 

genes need to be stained to resolve the clusters detected. Although methods have been 
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reported to allow for arbitrary scaling of RNA hybridization or in situ RNA sequencing-

based transcript detection,(65–67) another approach is to perform transcriptional profiling 

directly on histological sections. This approach has been particularly developed for 

neuroscience research, in which cell dissociation–based transcriptional profiling is 

impractical. Here, we briefly mention two particular methods introduced recently, spatial 

transcriptomics(68) and STARmap (spatially resolved amplicon mapping).(69) The former 

method, spatial transcriptomics, is the first approach to spatially resolve RNA-seq data in 

individual tissue sections. In this method, spatially barcoded oligo(dT) primers are 

attached to the surface of microscope slides, enabling a genomewide analysis. The 

resolution of the original spatial transcriptomics approaches were 30 µm; however, a 

more recently developed Slide-seq approach offers a 10 µm resolution, therefore making 

it feasible to capture single cells in brain tissue.(70) The latter method, STARmap, utilized 

an improved FISH (fluorescent in situ hybridization) approach using SNAIL (specific 

amplification of nucleic acid via intramolecular ligation) probes and hydrogels, which 

can map somewhere between 160 and 1020 genes. Another technique, MERFISH 

(multiplexed error-robust FISH) provides a similar ability to spatially measure gene 

expression for approximately 100 to 1000 genes through the use multiplexed FISH 

probes whose barcodes are read out over successive rounds of hybridization.(66) Although 

this number of genes is sufficient to discover new clusters, this approach can potentially 

hamper the discovery of new genes regulating an important biological process, 

suggesting a role for complementary approaches providing deep transcriptome coverage, 

such as bulk RNA sequencing. Another important limitation is that the resolution of 

current spatially resolved approaches is approximately 10 to 30 µm; thus, it may capture 

groups of adjoining cells, rather than single cells, especially in regions of high cellular 

density such as in bone marrow or periosteum. A scRNA-seq approach fully integrating 

spatial information of single cells could be particularly attractive to correlate with strain 

maps or other spatially resolved mechanical parameters during loading to generate an 

advanced understanding of the transcriptional response to bone loading. A challenge in 

applying these methodologies to bone is that many skeletal cells are extremely compact 

and arranged in a highly intricate manner. For example, in marrow space, mesenchymal 

cells are intertwined with hematopoietic cells and endothelial cells. Therefore, 
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applicability of such spatial transcriptional profiling approach will need to be determined 

on a case-by-case basis. Lastly, all of these approaches for spatial annotation require the 

production of high-quality tissue sections, and recently popularized methods for cutting 

and transfer of unfixed, nondecalcified sections of adult bone can help overcome hurdles 

in specimen preparation.(71) 

<H1>Sample Insights From scRNA-seq Studies in Bone</H1> 

While most of the impact of scRNA-seq studies on bone biology will doubtless come 

from future studies, early examples of scRNA-seq studies in bone provide proof of the 

utility of this approach. Chan and colleagues published key papers describing skeletal 

stem cells in young bones, first in mice termed mouse skeletal stem cells (mSSCs)(72) and, 

more recently, in humans termed human skeletal stem cells (hSSCs).(24) In the first study, 

they identified nonhematopoietic/endothelial AlphaV(CD51)+Thy1(CD90)-CD105-

CD200+ cells isolated from the perinatal growth plate as self-renewing multipotent 

skeletal stem cell populations, using extensive in vitro and transplantation assays. They 

also showed clonal cell populations within the growth plate using multicolor lineage-

tracing experiments. In this study, single-cell sequencing was used to characterize small 

numbers of these stem cells and their derivative populations. In a second study, they 

conducted a scRNA-seq analysis of the microdissected human fetal growth plate and 

found that cells in the late prehypertrophic zone and the hypertrophic zone express 

human orthologs of mSSC-specific genes, therefore suggesting that hSSCs reside in these 

layers of the growth plate.  

There is a line of evidence that prehypertrophic and hypertrophic chondrocytes represent 

transient cell types that are destined to undergo apoptosis or transdifferentiate into 

osteoblasts. In contrast, the resting zone of the growth plate has been shown to contain 

stemlike cells, originally in rabbits based on transplantation studies.(73) More recently, the 

existence of skeletal stem cells within the resting zone has been demonstrated based on 

more definitive lineage-tracing experiments in mice.(6) Cells in other layers of the growth 

plate, such as proliferating, prehypertrophic, and hypertrophic layers, do not self-renew 

and rapidly disappear from the growth plate.(6) Potential fates of these non-resting cells 
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include apoptosis in the hypertrophic layer and transdifferentiation into osteoblasts(74,75) 

or bone marrow stromal cells,(76) as indicated by a series of lineage-tracing experiments 

in mice. In light of this literature, more sophisticated approaches that can analyze and 

purify these SSCs in their native environment are desirable. A recent scRNA-seq analysis 

of mouse neonatal growth plate discovered a novel population of chondrocytes 

corresponding to borderline chondrocytes, which was previously described by 

histological analysis.(77) A follow-up lineage-tracing experiment further demonstrated 

that these chondrocytes behave as transient mesenchymal precursor cells. Thus, multiple 

groups have used scRNA-seq and other complementary techniques to uncover cellular 

heterogeneity and discrete functionality of distinct growth plate chondrocyte 

subpopulations. 

Debnath and colleagues recently reported a novel population of Cathepsin K (CTSK)-

labeled periosteal stem cells (PSCs). Unlike the mesenchymal stem cells present in the 

endosteal compartment, these PSCs do not express markers associated with mesenchymal 

cells capable of supporting hematopoiesis, such as LEPR or CD146, and can only 

mediate intramembranous ossification at baseline.(78,79) Because the identification of these 

cells was made through hypothesis-driven FACS gating and transplantation experiments, 

single-cell analysis was utilized as a parallel method to identify CTSK-labeled stem cell 

populations to see if this parallel approach converged on nominating the same population 

as stem cells. CEL-SEQ. 2 was performed on mesenchymal CTSK+ periosteal cells, 

which allowed for collecting the full surface immunophenotype for each cell during index 

sorting and subsequently linking this surface immunophenotype with that same cell’s 

RNA expression data. Analysis of CTSK-cre-labeled periosteal cells showed clustering 

into four groups: group 1 was defined by expression of Sox9 and Col2a1; group 2 

expressed osteoblast markers such as Bglap and Alpl; group 3 expressed Ly6a (Sca1); and 

a small group 4 was characterized by high expression of alpha-smooth muscle actin 

(Acta2). Almost all of the cells identified as periosteal stem cells on the basis of surface 

immunophenotype fell into this group 1 expressing Sox9 and Col2a1. Why would an 

intramembranous-specialized stem cell express transcripts classically associated with 

chondrocytes?(80) Previously, pulse-chase lineage tracing studies have identified both 

Sox9 and Col2a1 was labeling long-lived osteoblast progenitors in both the endosteal and 
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periosteal compartments.(76) Yamashiro and colleagues also reported a set of periosteal 

cells in both long bone and calvarium that display robust expression of Sox9.(81) 

Similarly, ablation of the ability of Sox9-expressing cells to give rise to osteoblasts via 

deletion of osterix with Sox9-cre resulted in severe impairments in both intramembranous 

and endochondral bone formation.(82,83) Thus, although Sox9 and Col2a1 are chondrocyte 

markers, they additionally serve as markers of mesenchymal stem cells. In particular, 

their expression in both intramembranous specialized periosteal stem cells and their 

endochondral-specialized endosteal counterparts suggests that Sox9 and Col2a1 are core 

components of the transcriptional signature shared by multiple populations of skeletal 

stem cells. 

Group 2 within the pool of periosteal CTSK-labeled cells was defined by high expression 

of osteoblast markers such as Bglap and Alpl, offering support for parallel 

immunohistochemical and transplantation studies identifying that PSCs give rise to 

osteoblasts. Further analysis of gene expression in this cluster also identifies robust Ifitm5 

expression, suggesting that Ifitm5 may have general utility in identifying osteoblasts in 

scRNA-seq studies.(84–86) Regarding the cluster of CTSK-positive cells expressing Acta2, 

it has been previously reported that Acta2 is a marker of pericytes and myofibroblasts that 

display osteogenic capacity.(87,88) During fracture, periosteal mesenchymal cells labeled 

with an inducible Acta2-cre undergo expansion and can differentiate into osteogenic and 

chondrogenic lineages.(88,89) Within the pool of CTSK cre-labeled periosteal 

mesenchyme, Acta2+ cells are distinct from FACS-defined PSCs, and PSCs sit at the 

apex of their differentiation hierarchy in heterotopic transplantation studies.(3) Similarly, 

this population of Acta2+ cells are distinct from the group 2 cells expressing osteoblast 

markers. Taken together with prior lineage tracing studies of Acta2+ cells, this suggests a 

model whereby the CTSK-lineage subset of Acta2+ cells are an intermediate progenitor 

linking PSCs to mature osteoblasts, and the transition of Acta2+ cells to osteoblasts may 

be dynamically regulated in response to injury. However, further direct transplantation 

studies will be needed to test this model and establish the hierarchy of PSCs relative to 

Acta2+ cells. 

This article is protected by copyright. All rights reserved. 



 

A
ut

ho
r 

M
an

us
cr

ip
t 

This CEL-SEQ. 2 study of CTSK-labeled periosteal mesenchymal cells was further 

analyzed using Monocle to observe if the cellular differentiation hierarchy 

computationally inferred from cells directly isolated from the native bone environment 

was consistent with the differentiation hierarchy experimentally determined by 

heterotopic transplantation studies.(3) Unsupervised analysis placed a vast majority of the 

CTSK-lineage cells along an unbranched linear differentiation trajectory. Consistent with 

PSCs giving rise to THY1+ cells after transplantation, FACS-identified PSCs were 

present at the root of this trajectory and the cells expressing later mesenchymal markers 

such as THY1 and SCA1 were present at the end of the trajectory. Thus, scRNA-seq 

studies can provide insights into differentiation hierarchy in minimally manipulated 

native systems that complement the limitations of heterotopic transplantation studies of 

defined populations. 

Consistent with the above, analysis of genes that were differentially expressed during this 

inferred differentiation trajectory demonstrated the early expression and subsequent 

downregulation of markers associated with early mesenchymal progenitors including 

Col2a1 and Sox9. Genes showing low early expression and subsequent upregulation 

included the later-stage mesenchymal markers such as Thy1, Postn, CD34, and Ly6a 

encoding SCA1. Interestingly, Bmp2 was noted very early in the differentiation trajectory 

and was also detected in bulk sequencing studies of PSCs. To put this into context, during 

earliest stages of skeletal development, BMP signaling is necessary to initiate Sox9 

expression and chondrogenesis in early limb bud mesenchymal condensations, suggesting 

that BMP2 is a key inducer of skeletal stem cells.(90) Consistent with this, BMP2 is able 

to expand skeletal stem cells in vitro and induce skeletal stem cells de novo in soft 

tissues,(72) and BMP2 is necessary for bone formation and to initiate fracture healing.(91–

93) Taken together with the expression of BMP2 directly in skeletal stem cell populations 

in this data set, this suggests that BMP2 may be involved in an autocrine loop to maintain 

skeletal stem cell pools and that external signals tuning BMP2 expression within skeletal 

stem cells may be critical determinants of the size of this stem cell pool. This model is 

consistent with a recent study finding that periosteal BMP2 controls functions specific to 

periosteal physiology, such as the radial expansion of bone.(94) We speculate that this 

putative autocrine model for stem cell self-regulation may be advantageous in a system 
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such as the skeleton that maintains separate pools of stem cells in distinct anatomic 

compartments,(3) as it could facilitate separate regulation of the sizes of each of these 

distinct stem cell pools in a manner not possible with an externally expressed systemic 

signal. The finding that endosteal bone formation is relatively preserved with deletion of 

BMP2 despite substantial periosteal defects suggests that these autocrine factors 

regulating stem cell pool size or function are likely to be “compartmentalized” with 

effects limited to specific subsets of skeletal stem cells and, accordingly, specific 

anatomic regions within bone. 

<H1>Conclusions</H1> 

Perhaps the key challenge in advancing our understanding of the cellular basis of bone 

metabolism is “unmixing” the many heterogeneous cell types present in bone to resolve 

discrete homogenous populations. scRNA-seq shows promise as an important part of the 

experimental toolbox needed to address this issue. However, tapping into this potential 

requires extensive pre-experimental planning to select specimens, cell isolation methods, 

scRNA-seq methods, and analysis tools tailored to the experimental question. Even after 

completing a scRNA-seq study, post-sequencing validation approaches are needed to 

exclude that any key cell populations identified represent analytic artifacts. Because each 

step along this path is heavily informed by knowledge of the underlying biology, bone 

biologists are best positioned to lead these advances, and indeed a proliferation of 

accessible sequencing and analysis tools make completion of scRNA-seq studies 

accessible even for groups with no specialized experience. 
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Fig. 1. Techniques for single-cell isolation and library generation. (A) Limiting dilution 

method to isolate single cells. (B) Laser capture microdissection (LCM) to isolate single 

cells from biological samples. (C) FACS-based isolation of specific cell types based on 

fluorescent marker proteins. (D) Microfluidic technology for capturing single cells as 

used in Drop seq and other methods. Drop-seq allows transcriptional profiling of 

thousands of single cells by encapsulating cells in nanoliter droplets along with uniquely 

barcoding beads. It reveals transcriptionally distinct cell populations present in complex 
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biological tissue creating a molecular atlas of gene expression. (E) A schematic 

representation of droplet-based library preparation. Individual cells are captured into 

droplets with microparticles that contain barcoded primers (beads). The primers on all 

beads contain a common sequence (PCR handle) for PCR amplification, cell barcode, and 

different unique molecular identifiers (UMIs) that allow mRNA transcripts to be digitally 

counted. Cells are lysed and the mRNAs are reverse transcribed into cDNAs, creating a 

set of beads called single-cell transcriptomes attached to microparticles (STAMPs) 

followed by cDNA amplification. Template switching is used to introduce a PCR handle 

downstream of the synthesized cDNA. (F) Schematic representation of single-cell 

combinatorial-indexing RNA-sequencing analysis 3 (sci-RNA-seq. 3). The technique 

involves a combinatorial indexing method that labels transcriptomes of single cell or 

nuclei. Nuclei from fresh tissue sample are extracted and fixed. A molecular index is 

applied to the mRNA from each cell followed by in situ reverse transcription 

incorporating a barcode bearing a polythymidine primer with a UMI. Cells are pooled 

and redistributed. For sci-RNA-seq. 3, hairpin ligation is performed for the third level 

of indexing. PCR primers target the barcoded polythymidine primer resulting in PCR 

amplicons to capture the 3ʹ ends of transcripts and these primers introduce a second 

barcode specific to each well of the PCR plate. Amplicons are pooled and sequenced, 

creating a 3ʹ -tag digital gene expression profile. </FIG> 
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Fig. 2. Application of scRNA sequencing to decode biological complexity. (A, B) <!—

HELP: COMP: In Fig. 2A, please change the spelling of “Heterogenous” to 

“Heterogeneous”> Single-cell analysis captures transcriptional profile of individual cells 

and can deconvolute populations present in suspension of mixed cell types. Principal 

component analysis (PCA) is a linear dimensionality reduction method and can be used 

to identify different cell clusters present in heterogeneous cell populations (B). t-SNE (t-

distributed stochastic neighbor embedding) is a nonlinear dimensionality reduction 

method commonly used to display different cell clusters. (C) A violin plot is a density 

plot that can be used to determine the expression of a gene across different cell clusters. 

Dots represent individual cells. (D–G) Different types of scRNA analysis pipelines can 

infer cell commitment/hierarchy (D), cell trajectory (E), decode gene expression patterns 

(F), or stem cell differentiation (G). Dots represent the location of individual cells on the 

differentiation trajectory. scTDA (single-cell topological data analysis) is a topology-

based computational algorithm that can be used to infer cell hierarchy and differentiation. 

Asynchronized cells represent different instantaneous time points along cell trajectories. 

scTDA resolves asynchrony and reconstructs a dynamic, continuous cell trajectory 

pathway (D). Monocle is an unsupervised algorithm that infers cellular differentiation 

trajectories occurring across the time surrogate pseudotime (E). </FIG> 
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Table 1. A Comparison of scRNA Sequencing Methods 

Metho
ds 

Regio
n 

UM
I 

System 
of 

isolation 

cDNA 
amplificati

on 

Library 
construction 

No. of 
genes 

detected/c
ell 

Cost 
($)/cell 

MARS 
seq 
(2014) 

3ʹ end Yes, 
8 bp 
UM

I 

FACS IVT RNA 
fragmentati
on; adaptor 

ligation 

4763 
lowest 

sensitivity 

~1.3 

SCRB 
seq 
(2014) 

3ʹ end Yes, 
10 
bp 

UM
I 

FACS PCR Tagmentatio
n; 3ʹ 

enrichment 

7906 ~2 

Smart-
seq/C1 
(2014) 

Full 
length 

Non
e 

Fluidig
m C1 

PCR Tagmentatio
n 

7572 ~25 

Smart-
seq. 2 
(2013, 
2014) 

Full 
length 

Non
e 

FACS PCR Tagmentatio
n 

9138 
highest 

sensitivity 

~30 
(commerci

al) 

Drop 
seq 
(2015) 

3ʹ end Yes, 
8 bp 
UM

I 

Droplets PCR Tagmentatio
n; 3ʹ 

enrichment 

4811 
lowest 

sensitivity 

~0.1 

inDrop 
Seq 
(2015) 

3ʹ end Yes, 
6 bp 
UM

I 

Hydroge
l-based 
droplets 

IVT RNA 
fragmentati
on; reverse 

transcription 

— ~0.06 

CEL-
seq. 
2/C1 

3ʹ end Yes, 
5 bp 
UM

Fluidig
m C1 

IVT RNA 
fragmentati
on; reverse 

7536 ~9 
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(2016) I transcription 

UMI = unique molecular identifier; FACS = fluorescence activated cell sorting; IVT = in 

vitro transcription; PCR = polymerase chain reaction. 

Summary parameters for the listed scRNA-seq methods are provided. Date of publication 

is indicated. Cost per cell is in US dollars. Tagmentation is a library preparation reaction, 

in which a transposase cuts a double-stranded DNA and inserts the linker sequences 

required for sequencing. 

Table 2. Examples of scRNA-seq Analysis Pipelines 

Pipeline Year Programming 
language 

Dimensionality 
reduction 

Strategy 

Monocle 2014 R ICA, MST Differential 
expression 

SCUBA 2014 Matlab t-SNE Principle curve 

Waterfall 2015 R PCA, k-means, 
MST 

Cell clustering 

Wishbone 2016 Python PCA, diffusion 
maps 

Ensemble 

TSCAN 2016 R PCA MST clusters 

StemID 2016 R PCA, ICA Cell clustering 

Slingshot 2017 R Any Cluster-based 
MST 

scTDA 2017 Python Any (MDS, 
ICA, t-SNE) 

Topology-based 
differential 
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expression 

Velocyto 2018 R, Python PCA Cell clustering 

Monocle 3 2019 R t-SNE or 
UMAP 

Louvain 
clustering 

ICA = independent component analysis; MST = minimal spanning tree; t-SNE = t 

distributed stochastic neighbor embedding; PCA = principal component analysis; MDS = 

multidimensional scaling; UMAP = uniform manifold approximation and projection. 

A number of analysis pipelines focus on inferring the differentiation trajectory of 

populations present in scRNA-seq data, including Monocle,(57) SCUBA,(95) Waterfall,(96) 

Wishbone,(97) TSCAN,(98) Slingshot,(99) scTDA,(100) and Monocle 3.(40) Velocyto focuses 

on inferring future gene expression profiles of each cell via analysis of unspliced 

transcripts.(56) StemID focuses on identification of rare outlier populations.(55)  

AQ1: AU: Please provide the complete mailing address. 

AQ2: AU: Key words were not provided. Please make any necessary changes/additions 
to these. 
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