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30 The mushroom body (MB) is an area of the insect brain involved in learning, memory, and 

31 sensory integration. Here we used the sweat bee Megalopta genalis (Halictidae) to test for 

32 differences between queens and workers in the volume of the MB calyces. We used confocal 

33 microscopy to measure the volume of the whole brain, MB calyces, optic lobes and antennal 

34 lobes of queens and workers. Queens had larger brains, larger MB calyces and a larger MB 

35 calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain 

36 development. This could result from social interactions leading to smaller worker MBs, or larger 

37 queen MBs. It could also result from other factors, such as differences in age or sensory 

38 experience. To test these explanations, we next compared queens and workers to other groups. 

39 We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new 

40 observation nests, and bees initiating new natural nests collected from the field to queens and 

41 workers. Queens did not differ from these other groups. We suggest that the effects of queen 

42 dominance over workers, rather than differences in age, experience, or reproductive status, are 

43 responsible for the queen-worker differences we observed. Worker MB development may be 

44 affected by queen aggression directly and/or manipulation of larval nutrition, which is 

45 provisioned by the queen. We found no consistent differences in the size of antennal lobes or 

46 optic lobes associated with differences in age, experience, reproductive status, or social caste.

47

48 Introduction

49 Many animals, including humans, exhibit brain plasticity over the course of their lifetime 

50 (May 2011, Nava and Roeder 2011, Harris et al. 2017). Plasticity is widespread even at the adult 

51 stage in insects (Fahrbach and Van Nest 2016, Fahrbach et al. 2017, Simoes and Rhiner 2017, 

52 Suge et al. 2018). In adult insects, one brain region that exhibits plasticity is the mushroom body 

53 (MB). The mushroom bodies support cognitive processes such as sensory integration, learning 

54 and memory (Zars 2000, Fahrbach 2006). MBs may increase in volume over time due to 

55 dendritic growth (Farris et al. 2001, Seid and Wehner 2009, Muenz et al., 2015). In social 

56 insects, patterns of MB development may reflect social roles (Amador-Vargas et al. 2015, 

57 O’Donnell and Bulova 2017, O’Donnell et al. 2017). In many primitively social insects 

58 reproductives must establish dominance over subordinates and the queens or otherwise dominant 

59 individuals have larger MBs than workers or other subordinate individuals (Molina and 

60 O’Donnell 2007, 2008, O’Donnell et al. 2007, 2017, Rehan et al. 2015). This is not the case in 
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61 the honeybees and large-colony ant species, where queens use chemical communication to 

62 control worker reproduction, and have smaller MBs than workers (Ehmer and Gronenberg 2004, 

63 Julian and Gronenberg 2002, Fahrbach 2006). The queen-worker differences in primitively 

64 social species may arise from differences in age, reproductive physiology, experience, or social 

65 interactions between the two castes, as all of these factors can affect MB plasticity in the adult 

66 brain (reviewed in Fahrbach 2006). 

67 MBs may change with age or reproductive physiology. Honeybee workers exhibit 

68 expansion of MB neuropil volume with age during the first week after eclosion (termed 

69 ‘experience-expectant’ plasticity) (Withers et al. 1993, 1995, Durst et al. 1995, Fahrbach et al. 

70 1998). Similar patterns have been found in bumblebees (Jones et al. 2013), wasps (O’Donnell et 

71 al. 2007) and ants (Gronenberg et al. 1996, Seid et al. 2005, Seid and Wehner 2009). Because 

72 queens are older than workers (who are typically their daughters), queen-worker differences 

73 could be related to age. Queens are reproductive, and workers are not, because queens suppress 

74 worker ovary development leading to the reproductive division of labor characteristic of 

75 eusociality (Spradberry 1991, Michener 1990). Reproductive physiology may also underlie MB 

76 differences. In the bee Ceratina australensis and the paper wasp Polistes instabilis, ovary size 

77 correlates with MB volume (Molina and O’Donnell 2007, Rehan et al. 2015). In honeybees, 

78 juvenile hormone (JH) affects MB development (Withers et al. 1995), and JH is associated with 

79 dominance and reproduction in primitively social insects (Smith et al. 2013, West-Eberhard 

80 1996, Hamilton et al. 2017). Thus, differences in reproductive physiology between queens and 

81 workers may underlie MB differences. 

82 MBs may also show experience-dependent plasticity, increasing in volume in response to 

83 complex tasks like foraging or other sensory stimuli (Withers et al. 1993, 1995, 2007, 

84 Gronenberg et al. 1996, Fahrbach et al. 1998, Farris et al. 2001, Kuhn-Buhlman and Wehner 

85 2006, Ismail et al. 2006, Krofczik et al. 2008, Maleszka et al. 2009, Molina and O’Donnell 2008, 

86 Seid and Wehner 2009, Stieb et al. 2010, Jones et al. 2013, Amador-Vargas et al. 2015, Rehan et 

87 al. 2015, Montgomery and Merrill 2016, Seid and Junge 2016, Montgomery et al. 2017, van Dijk 

88 et al. 2017). Because queens must find and establish a nest, as well as forage for the first brood, 

89 they likely have more cumulative sensory experience, and thus larger MBs than workers. Social 

90 interactions, rather than sensory experience more generally, may also affect MB development. 

91 Drosophila reared in social groups had larger MBs than those reared alone (Heisenberg 1995), 
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92 and socially isolated Camponotus ants had smaller MBs than socially integrated ants of the same 

93 age (Seid and Junge 2016). If social interactions are important for MB development, then both 

94 queens and workers should have larger MBs than pre-social nest foundresses who are not living 

95 with another bee. 

96 The nature of social interactions, rather than just social interaction per se may also 

97 influence MB development. In primitively social insect societies, queens establish social 

98 dominance over workers (Michener 1990, Spradberry 1991). This dominance behavior itself, 

99 cognitive demands associated with dominance (e.g. Tibbetts et al. 2018), or physiological 

100 changes associated with dominance, including increased JH titers and brain amine expression 

101 (Hamilton et al. 2017) may also affect MB volume. Paper wasps show a correlation between 

102 dominance status and MB size (O’Donnell et al. 2007, Molina and O’Donnell 2007, 2008). In a 

103 study controlling for age, Rehan et al. (2015) showed that dominant females had larger MBs, and 

104 subordinate females smaller MBs, than solitary nest foundreses, although a study of same-

105 generation paper wasp nest co-foundresses found no difference between dominants and 

106 subordinates (Ehmer et al. 2001). Lastly, just as queens are dominant, workers are subordinate 

107 and bullied by queen aggressive behaviors which leads to suppressed ovarian development and 

108 other physiological effects, including lower levels of JH (Smith et al. 2013, Hamilton et al. 

109 2017).  Queen manipulation of worker behavior and reproductive physiology extends to the 

110 larval stages as well because it is the foundress queen who controls the larval provisions 

111 provided to the developing workers (Michener and Brothers 1974, Kapheim et al. 2011, 

112 Kapheim 2017, Lawson et al. 2017). Thus, workers may have smaller MBs as a result of 

113 maternal manipulation of nutrition and/or behavioral aggression. As mentioned above, Rehan et 

114 al. (2015) showed that subordinate foragers had smaller MBs than solitary nest foundresses; 

115 other studies did not distinguish between queens enlarging MBs through dominance versus 

116 reducing worker MBs through subordinance. Both the ‘enlarged dominant’ and ‘reduced 

117 subordinate’ hypotheses posit that these factors influence MB size in addition to the differences 

118 in ovarian development that result from queen dominance. 

119 Here we use the facultatively eusocial sweat bee Megalopta genalis (Halictidae) to test 

120 for queen-worker differences in MB size and other measures of brain volume. Next we test 

121 whether these differences arise from workers’ MBs being smaller, or queens’ being larger. We 

122 then use other treatment groups to test the alternative hypotheses outlined above for factors other 
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123 than social dominance interactions that may lead to queen-worker differences in MB size. M. 

124 genalis females initiate nests as solitary foundresses by digging tunnels into dead sticks 

125 suspended above the ground in vegetation (Wcislo et al. 2004). The first daughter(s) to emerge 

126 usually remain in their natal nest as non-reproductive worker(s) (social nests usually have one or 

127 two workers). They are smaller than the queen and their younger sisters, which emerge later 

128 before dispersing to reproduce, and they are also subject to aggressive dominance from the queen 

129 (Smith et al. 2008, 2009, submitted, Kapheim et al. 2011, 2013, 2016). Newly emerged females 

130 remain in their natal nest for ~5-7 days before either beginning work as a forager or dispersing to 

131 reproduce (Kapheim et al. 2013). 

132 In a previous study on M. genalis, Smith et al. (2010) found that newly emerged bees had 

133 smaller MBs than queens and solitary reproductives (but not workers). Queens and workers did 

134 not differ in MB volume. However, this study did not control for age (bees were of unknown age 

135 from field-collected nests), nor did it include any other stages of adult development except for 

136 newly emerged females. Here we use known-age queens and workers, newly emerged females, 

137 and three other treatment groups to test six non-exclusive hypotheses for queen-worker 

138 differences in MB development. To test these hypotheses, we measured the volumes of the MB 

139 calyces and whole brain size using unbiased stereological techniques. We also measured the 

140 volumes of two sensory neuropils: the antennal lobes (AL, olfactory input center) and optic lobes 

141 (OL, visual input center). This let us test whether plasticity in MB calyces was reflected in other 

142 brain areas as well, and also to compare whether the sensory neuropils were more responsive to 

143 changes in the sensory environment than the MBs. We used bees from six different groups that 

144 differed in age and experience: newly-emerged bees, bees kept in sensory and social isolation for 

145 10 days, observation nest foundresses of known age, natural nest foundresses (dispersers) of 

146 unknown age who were just beginning a new nest, established queens, and 10-day old workers.

147 The hypotheses and predictions that we tested are listed below. 1) Age: Queens should 

148 have larger MBs, and newly emerged bees smaller MBs, than all other groups. 2) Reproductive 

149 status: Dispersers, observation nest foundresses, and queens are all actively nesting, and thus 

150 should have larger MBs than the workers, isolated bees, and newly emerged bees. 3) Experience: 

151 The queens, which foraged to provision the first worker brood, should have larger MBs, and the 

152 newly emerged bees and isolation bees smaller MBs, than the other groups (which have some 

153 foraging experience). 4) Social interactions: Queens and workers, which are living in a social 
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154 nest, should have larger MBs than other groups. The predictions are less clear for the dispersers, 

155 as they are nesting solitarily, but had social experience with their mother at their natal nest before 

156 dispersing. 5) Enlarged dominant: Queens should have larger MBs than all other groups if social 

157 dominance leads to enlarged MBs. 6) Reduced subordinate: If queen aggressive behavior and/or 

158 nutritional manipulation of larval nutrition from the queen reduces MB size, the workers should 

159 have smaller MBs than all other groups.

160

161 Methods

162 We collected bees at Barro Colorado Island (BCI), Panama (9.1521° N, 79.8465° W), 

163 where this species has been studied in detail (Wcislo et al. 2004, Smith et al. 2003, 2008, 2009, 

164 2013, submitted, Kapheim et al. 2011, 2012, 2013, 2016).

165 Experimental groups

166 For this study, we used six experimental groups, similar to the methods of previous 

167 studies on this species (Kapheim et al. 2012, Smith et al. 2013). We reared bees from brood cells 

168 that we took from field-collected nests at ambient temperature. Developing immatures were 

169 checked daily, and newly emerged adults removed each day. Newly emerged bees (N = 4) are 

170 females collected upon emergence. Isolated bees (N = 3) were females that were moved to cages 

171 (round plastic deli containers 13 cm diameter and 10 cm height) the day of their emergence. Bees 

172 were kept in social isolation (one bee per cage) and darkness at ambient temperature with ad-lib 

173 food (honey:water:soy-protein powder, 45:45:10 by volume). Other females were placed into 

174 standardized observation nests on the day of their emergence, and these nests were then placed in 

175 the field. Observation nests consist of a piece of balsa wood with a straight tunnel cut into the 

176 middle placed between two sheets of opaque Plexiglas; see Kapheim et al. (2013) and Smith et 

177 al. (2013) for more details. Observation nest foundresses (N = 5) are females from these 

178 observation nests collected when they have completed an entrance collar for their nest (Smith et 

179 al. 2003, 2013). We use this as a proxy for beginning to nest, since the typical first step in 

180 nesting, constructing the tunnel, is not necessary in our pre-excavated observation nests. This is 

181 the first nest construction step performed by females in observation nests, and distinguishes them 

182 from other females who may wait for several days and then abandon the observation nest without 

183 nesting. The observation nest foundresses averaged 5.80 ± 4.32 SD days old (range: 2—13) 

184 when they were collected. Queen (N = 4) and worker (N = 4) bees were collected from these 
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185 observation nests 10 days after the emergence of the worker, at which point the worker was 

186 foraging to provision the nest. Workers are daughters of the queen who are subject to aggressive 

187 dominance from the queen (Kapheim et al. 2016) that suppresses worker ovarian development 

188 and reproduction (Smith et al. 2009, 2013, Kapheim et al. 2012). Workers remain in their natal 

189 nest, where they forage to provision the queen’s offspring. Note that while the workers are 

190 similarly aged to the ‘10-day isolation’, ‘observation nest foundress’, and likely the ‘disperser’ 

191 (below) treatments, the queens are a generation older and averaged 65.25 ± 3.40 days old at 

192 collection (range: 62—70). Dispersers (N = 5) are bees collected in the field while initiating a 

193 new nest. We first collected sticks that appeared to be suitable nesting substrate, confirmed that 

194 they contained no existing nests, and placed them in the freezer (-20 C) for at least 24 hours to 

195 ensure that no undetected nests were present. We then placed these sticks in the field and 

196 checked them every three days for nesting activity. When a new nest was discovered, we 

197 collected it. Dispersers are of unknown age, but given that dispersing females typically leave 

198 observation nests ~ 5—7 days after emergence (Kapheim et al. 2013), we assume they are 

199 approximately 10 days old. Dispersers had social interactions with their mother (the queen of 

200 their natal nest). Newly emerged bees are fed by the queen or other nestmates before they 

201 disperse to initiate a new nest or begin foraging flights as a worker (Wcislo and Gonzalez 2006, 

202 Kapheim et al. 2016).  We assume that dispersers were not subject to aggressive dominance 

203 because they left the nest to initiate a new nest and reproduce rather than remain in their natal 

204 nest as workers. All bees were collected between 2—30 July, 2016.

205

206 Ovarian dissections and size measurements.

207 We preserved the abdomen of each bee in 70% ethanol at collection and dissected out the 

208 ovaries. Ovaries were photographed at 10x magnification through a dissecting microscope and 

209 the area of the entire photographed ovary measured using Image J, following methods of 

210 previous studies on this species (Smith et al. 2008, 2009). We measured thorax width 

211 (intertegular span) of each bee collected with digital calipers as a measure of body size (Cane 

212 1987). Thorax width correlates with both head width (r2 = 0.89) and whole body dry weight (r2 = 

213 0.83) in M. genalis (Kapheim et al. 2011). 

214

215 Brain measurements
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216 We preserved bee heads in 4% paraformaldehyde in phosphate buffered saline (PBS) at 

217 collection and stored them at 4°C until dissection. We dissected head capsules in PBS to remove 

218 the brain which was immediately placed in glutaraldehyde (2%) for 48 hours, bleached in a 

219 formamide solution, and dehydrated in a series of ethanol washes of increasing concentration 

220 following McKenzie et al. (2016). Because the fixative and histology methods used here differ 

221 from Smith et al. (2010), volume measures are not comparable between the two studies. Prior to 

222 imaging, brains were mounted in methyl salicylate. Brains were imaged using an Olympus 

223 Fluoview FV1000 confocal microscope using autofluorescence at 10X magnification and a step 

224 size of 10 m (Fig. 1). We calculated volumes of the brain and different neuropils (MB calyces, 

225 AL, and OL, including both the lamina and medulla) through tracing and serial reconstruction 

226 using the software program Reconstruct (Fiala 2005). We chose these neuropils because they 

227 were the ones affected by social status and changes in the sensory environment in previous 

228 studies (O’Donnell et al. 2007, 2011, 2013, Molina and O’Donnell 2008, Molina et al. 2009, 

229 Rehan et al. 2015). Brain and neuropil volumes were standardized to average body size by 

230 calculating a correction factor that was applied to each bee: mean body size of all bees in the 

231 study divided by the individual’s body size. This correction factor was then multiplied to brain 

232 and neuropil volume for each bee, which is referred to as ‘size-corrected volumes’ below. Ratios 

233 for each neuropil: whole brain were calculated for each individual.

234

235 Statistical analyses

236 For queen-worker comparisons, we used a paired t-test to account for the effect of shared 

237 nest and developmental history (Kapheim et al. 2016). We tested for differences across all 

238 treatment groups using an ANOVA followed by Tukey’s posthoc pairwise comparisions.

239

240 Results

241 Body size did not differ between groups (F5,19 = 0.53, p = 0.750). Body size did not 

242 correlate with AL:whole brain ratio (r = - 0.05, N = 25, p = 0.807) or MB:whole brain ratio (r = 

243 0.23, N = 25 p = 0.260), but body size did correlate negatively with OL:whole brain ratio (r = -

244 0.47, N = 25, p = 0.019). Large bees invested relatively less tissue in OLs.

245 Ovary size differed between groups (F5,19 = 15.21, p < 0.001, Fig 2). Queens and 

246 dispersers had enlarged, reproductive ovaries, while the other treatment groups did not (pairwise 
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247 comparison p values for both queens and dispersers vs. young bees, isolation bees, observation 

248 nest bees and workers all ≤ 0.001). Thus, observation nest foundresses were not yet reproductive. 

249 Ovary size did not correlate with size corrected MB calyx volume (r = 0.27, N = 25, p = 0.898) 

250 or the MB calyces:whole brain ratio (r = -0.14, p = 0.519, N = 25). 

251

252 Brain differences between queens and workers.

253 Each queen was larger-bodied than her worker, but only slightly so (average 

254 queen:worker thorax width ratio = 1.040 ± 0.036, range: 1.003—1.076), and this difference was 

255 not significant (paired t-test t4 = 2.15, p = 0.121). Workers had significantly smaller brains than 

256 queens (size-corrected volume paired t4 = 3.60, p = 0.037, Fig. 3a). Workers had significantly 

257 smaller MBs than queens (size-corrected volume paired t4 = 4.97, p = 0.016, Fig. 3b) and 

258 significantly smaller OLs than queens (size-corrected volume paired t4 = 5.99, p = 0.009, Fig. 

259 3c). There was not a significant queen-worker difference in AL size (size-corrected volume 

260 paired t4 = 2.37, p = 0.098, Fig. 3d).

261 Queens also had significantly larger MB calyces then workers when measured as neuropil 

262 volume:whole brain volume ratio (paired t4 = 5.06, p = 0.015, Fig. 4a). There was no difference 

263 between either queen and worker OL:whole brain ratio (paired t4 = 1.44, p = 0.238, Fig. 4b) or 

264 the AL:whole brain ratio (paired t4 = 1.44, p = 0.556, Fig. 4c).  

265

266 Comparisons across all groups.

267 Whole brain volume corrected for body size was not significantly different across 

268 treatment groups (F5,19 = 2.14, p = 0.104, Table 1), although workers were nearly significantly 

269 smaller than newly emerged bees in post-hoc pairwise tests (p = 0.053). Size-corrected MB calyx 

270 volume was significantly different across treatment groups (F5,19 = 3.29, p = 0.174, Table 1). 

271 Workers had significantly smaller mushroom bodies than newly emerged bees (p = 0.028) and 

272 isolated bees (p = 0.037). The difference between workers and observation nest foundresses was 

273 marginally non-significant, with workers again having smaller mushroom bodies (p = 0.072). 

274 There was an effect of group on size-corrected optic lobe volume (F5,19 = 3.58, p = 0.019, 

275 Table 1). Queens’ OL volume was significantly larger than observation nest foundress’ OL (p = 

276 0.031). There was no effect of group on size-corrected AL volume (F5,19 = 1.41, p = 0.265, Table 

277 1). 
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278 When measured as a ratio of neuropil to whole brain volume, rather than size-corrected 

279 volumes, there were also significant differences in MB calyces, and OLs, but not ALs, between 

280 groups. MB calyx neuropil:whole brain ratio showed a significant effect of group (F5,19 = 3.97, p 

281 = 0.012, Table 1). Worker MB:whole brain ratios were significantly smaller than isolated (p  = 

282 0.015) and observation nest foundress (p = 0.021) bees, and nearly significantly smaller than 

283 young bees (p = 0.061). There was an effect of group on OL:whole brain volume (F5,19 = 5.19, p 

284 = 0.004, Table 1). Queens had significantly higher ratios than newly emerged bees (p = 0.018) 

285 and observation nest foundresses (p = 0.016). Dispersers also had significantly higher ratios than 

286 newly emerged bees (p = 0.044) and observation nest foundresses (p = 0.040). There were not 

287 significant differences in the ratio of AL volume to whole brain volume (F5,19 = 2.196, p = 0.098, 

288 Table 1). 

289

290 Discussion

291 Here we show that workers invest less neural tissue in MB calyces than queens. 

292 Comparisons with other groups suggest that workers’ MB calyces are relatively reduced, rather 

293 than queens’ being enlarged. Comparisons with other groups also show that the queen-worker 

294 difference is not a result of differences in body size, age, ovarian development, or sensory 

295 experience. This suggests that queen dominance behavior and/or maternal manipulation of larval 

296 nutrition may affect worker brain morphology.

297

298 Body size

299 Body size did not differ between our treatment groups. In previous studies, we have 

300 shown that workers are typically, but not always, smaller than their queens and other 

301 reproductive foundresses (Smith et al. 2008, 2009, Kapheim et al. 2012, 2013). In this study, 

302 each worker was smaller than her queen, but the differences were slight and not statistically 

303 significant. Workers were not smaller than queens in general or dispersers, which differs from 

304 previous studies of this species and may be a result of the small sample size of this study (Smith 

305 et al. 2008, 2009, Kapheim et al. 2012, 2013). Body size correlated negatively with OL:whole 

306 brain ratio, suggesting that bees invest relatively less in OL tissue at larger sizes. We do not 

307 know what the effect of increased OL tissue on vision would be, but previous studies on the 

308 optics of M. genalis suggest that they fly at the limit of their visual abilities (Warrant 2017). 
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309 Body size did not correlate with the neuropil:whole brain ratios of MB calyx or AL, suggesting 

310 that there is not size-based allometry in these brain areas.

311

312 Mushroom Bodies

313 We made six predictions about MB calyx size variation between groups. First, being 

314 dominant would enlarge queens MBs. Second, being subordinate may reduce worker MB calyx 

315 volume. Next, we tested whether age, reproductive status, sensory experience, or being part of a 

316 social group affected MB calyx size. Workers had smaller MB calyces and MB calyx:brain ratios 

317 than all other groups (although not all differences were significant; Figs 3-4, Table 1). The other 

318 groups, including quees, did not significantly differ from each other. This suggests that workers’ 

319 MBs are relatively small, but that queens’ MBs are not especially large. Our data did not fit the 

320 age prediction because newly emerged bees did not have smaller MB calyces, nor did queens 

321 have larger MB calyces than the other groups.  It did not fit the reproductive status prediction 

322 because the two groups with reproductive ovaries, queens and dispersers, did not have larger MB 

323 calyces than the non-reproductive groups, except for workers. This did not fit the sensory 

324 experience prediction because newly emerged and isolated bees did not have smaller MB 

325 calyces, nor did queens have larger MB calyces than other groups. The results also did not fit the 

326 social interactions prediction because workers and queens together did not have larger MB 

327 calyces than the other groups. 

328 Our MB data suggest that a combination of reduced nutrition during development and/or 

329 behavioral dominance after emergence lead to reduced neural investment in worker MB calyces 

330 relative to other bees of the same age and size that are either experimentally (the observation nest 

331 foundresses and isolated bees) or naturally (the dispersers) free from queen control. High 

332 dominance status, rates of aggression, and enlarged ovaries are associated with larger MB 

333 calyces in paper wasps (Molina and O’Donnell 2007, 2008, O’Donnell et al. 2007, 2017), and 

334 socially dominant females of the bee Ceratina australensis also have larger MB calyces than 

335 their subordinate sisters (Rehan et al. 2015). Rehan et al. (2015) showed that queens had larger 

336 MBs than solitary reproductives, and that workers had smaller MBs than solitary reproductives. 

337 The latter result is similar to the queen-worker differences we report here, although in our study 

338 queens did not differ from the solitary nest foundress groups. In the related sweat bee 

339 Augochlorella aurata, early season nest foundresses (collected before the emergence of the 
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340 worker brood) had larger MB calyces than workers from social nests (Pahlke et al. submitted). 

341 Previous authors interpreted these results in terms of increased cognitive demand associated with 

342 dominance and/or the older age of the queens (Molina and O’Donnell 2007, 2008, O’Donnell et 

343 al. 2007, 2017, Smith et al. 2010, Rehan et al. 2015) or the increased larval nutrition provided to 

344 future queens to survive overwintering diapause in temperate climates (Pahlke et al. submitted). 

345 However our results here suggest that workers’ MB development may be suppressed by queen 

346 dominance, rather than queen’s MBs being enlarged, since workers’ MB calyx volume, both 

347 absolutely and as a ratio of whole brain volume, was significantly smaller than all other groups 

348 except dispersers, while queens’ MB calyx volume was not significantly larger than any other 

349 group except workers.

350 How might maternal manipulation affect MB development? We do not know whether it 

351 is behavioral dominance, maternal manipulation of nutrition or a combination of the two that 

352 leads to the reduction of worker MB calyx size. Previous work on this species shows that caste 

353 has morphological and physiological components: workers are smaller than queens (Smith et al. 

354 2008, 2009, Kapheim et al. 2013) due to reduced larval nutrition (Kapheim et al. 2011), although 

355 the queen-worker size differences were greater in those studies than we found here. Queens 

356 aggressively dominate workers (Kapheim et al. 2016, Smith et al. submitted). This results in 

357 physiological changes: workers have reduced ovaries, lower vitellogenin (the egg precursor 

358 protein, Vg) titers, and lower juvenile hormone (JH) levels than queens and both observation nest 

359 foundresses and natural dispersers (Smith et al. 2009, 2013, Kapheim et al. 2012). JH is 

360 associated with, but not required for, MB expansion in honeybees (Withers et al. 1995, Fahrbach 

361 et al. 2003). However, in the studies cited above (Kapheim et al. 2012, Smith et al. 2013), newly 

362 emerged and socially isolated bees also had reduced ovaries, Vg, and JH, yet those same groups 

363 showed greater MB development than workers in this study, which suggests that variation in MB 

364 development is not driven directly by these physiological variables. It may be the aggressive 

365 dominance behavior of queens toward their workers itself that affects MB calyx size in workers. 

366 In the ant Diacamma, aggression toward workers reduced brain dopamine levels (Shimoji et al. 

367 2017), which may influence brain volume (Taylor et al. 1992).  Larval thermal stress can affect 

368 MB development in Drosphila (Wang et al. 2007), and stress generally affects brain structure 

369 and function across animals (Lupien et al. 2009). The reduced MB investment in workers may be 
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370 a response to the behavioral stress of queen aggression, a factor to which no other group in the 

371 study was subjected. 

372 Another explanation for workers’ smaller MB calyces, and whole brains as well, is that 

373 larval nutrition may influence neural development. Larval nutrition affects brain morphology in 

374 honeybees, with queens having larger and more rapidly growing brains in the larval stage (Moda 

375 et al. 2013), and reduced larval nutrition results in smaller MB calyces at emergence in workers 

376 (Steijven et al. 2017), but this has not been studied in primitively eusocial groups. Variation in 

377 larval nutrition can affect reproductive physiology and behavior in other sweat bee species 

378 (Richards and Packer 1994, Brand and Chapuisat 2012) as well as other species of primitively 

379 eusocial insects (Judd et al. 2015, Lawson et al. 2016, 2017, Kapheim 2017). Our previous work 

380 on this species suggests that queens manipulate larval pollen resources to create small, 

381 subordinate worker daughters (Smith et al. 2008, 2009, Kapheim et al. 2011, 2013). However our 

382 study suggests that effects on worker brain morphology result from more subtle nutritional 

383 variation than just reduced quantity, as workers were not significantly smaller than the other 

384 groups. On the one hand, the lack of queen-worker body size difference is likely an artifact of the 

385 small sample size of this study, given the ubiquity of this difference in previous studies (Smith et 

386 al. 2008, 2009, Kapheim et al. 2013). But on the other hand, it allows us to see that the dramatic 

387 MB calyx differences of this study are apparently related to being a subordinate worker, rather 

388 than just a small bee. Richards and Packer (1994) showed that offspring of different castes but 

389 similar body size differed in the relative amounts of sugar and protein in their larval provisions in 

390 the sweat bee Halictus ligatus. Future studies coupling nutritional manipulation with brain 

391 measurements, and the interaction of larval nutrition and adult experience of aggression, would 

392 be productive.

393 Our study found no effect of age on MB development. The lack of difference between 

394 newly emerged bees and other groups contrasts with a previous study on this species which 

395 showed that newly emerged bees had significantly smaller MB calyces than queens, but not 

396 workers (newly emerged bees’ AL and OL volumes were also lower in the previous study) 

397 (Smith et al. 2010). Previous studies on honeybees, bumblebees, the bee C. australensis, the 

398 paper wasp Mischocyttarus mastigophorus, and multiple species of ants also showed increases in 

399 MB calyx volume during the first week after emergence (Gronenberg et al. 1996, Fahrbach et al. 

400 1998, 2003, Seid et al. 2005, Seid and Wehner 2009, O’Donnell et al. 2007, Rehan et al. 2015, 
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401 Seid and Junge 2016).  The solitary bee Osmia lignaria did not show such an increase but that is 

402 complicated by the fact that O. lignaria overwinters in their nest as an adult; MB expansion may 

403 have occurred prior to leaving the nest (Withers et al. 2007). Our contrasting results with our 

404 previous study on M. genalis may also result from the limited sample sizes in each study (Smith 

405 et al. 2010). 

406 Many studies have shown experience-dependent plasticity of the MB calyces in 

407 Hymenoptera (Withers et al. 1993, 1995, 2007, Gronenberg et al. 1996, Fahrbach et al. 1998, 

408 Farris et al. 2001, Kuhn-Buhlman and Wehner 2006, Maleszka et al. 2009, Molina and 

409 O’Donnell 2008, Stieb et al. 2010, Jones et al. 2013, Amador-Vargas et al. 2015, Rehan et al. 

410 2015), other insects (Montgomery and Merrill 2016, Motgomery et al. 2017, van Dijk et al. 

411 2017) and even a spider (Stafstrom et al. 2017). Fahrbach et al. (2003) showed that honeybee 

412 foragers that spend the winter in the hive without foraging had similar MB development to other 

413 foragers of younger age but similar experience. Seid and Junge (2016) showed that socially 

414 isolated ants had smaller MBs than same-age ants in their natural social group. This suggests that 

415 age-MB volume associations after the first week or so of adult life result from increased 

416 experience rather than age per se. Yet in our study, the one group that was both markedly older 

417 and more experienced, the queens, did not have larger MB calyces than any of the younger, less 

418 experienced groups, except for their workers.  Future studies of known-age nests coupled with 

419 observations of foraging trips could explicitly measure experience-dependent MB plasticity. 

420

421 Optic lobes and antennal lobes

422 We predicted OLs and ALs to increase with sensory experience. Our results were mixed (Figs 3, 

423 4), and given the small sample sizes of each group, our data have little power to partition the 

424 different influences on sensory neuropil development. However, the sensory neuropils were not 

425 as dramatically reduced in workers relative to queens as were the MB calyces, especially when 

426 measured relative to whole brain size (Fig 4). This suggests that the effects of queen 

427 manipulation are stronger on the MB calyces than the sensory neuropils. 

428

429 Conclusions

430 The most dramatic result of our study was that workers had smaller MB calyces than queens, but 

431 other groups in the study did not. This suggests that the queen-worker differences were not a 
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432 result of age, sensory environment, experience, or reproductive status, because other groups in 

433 the study differed from queens in at least one of each of those variables. Workers were the only 

434 group subject to queen control. This may have taken the form of manipulation of developmental 

435 nutrition (Kapheim et al. 2011) and aggressive behavioral dominance (Kapheim et al. 2016, 

436 Smith et al. submitted). Future studies partitioning these two types of manipulation will be useful 

437 for understanding social influences on brain development. 

438

439
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    New Dispersers Obs. Nest Isolated Queens Workers 

SC Whole brain, mm3 
Mean 0.420 0.384 0.382 0.399 0.392 0.333 

SD 0.041 0.058 0.030 0.019 0.044 0.019 

SC MB calyces, mm3 
Mean 0.025 0.021 0.023 0.025 0.021 0.015 

SD 0.006 0.005 0.003 0.002 0.004 0.002 

SC Optic lobes, mm3 
Mean 0.075 0.082 0.068 0.076 0.086 0.069 

SD 0.009 0.011 0.005 0.011 0.007 0.002 

SC Antennal lobes, mm3 
Mean 0.015 0.015 0.015 0.014 0.017 0.013 

SD 0.001 0.002 0.001 0.001 0.002 0.003 

MB: Whole brain ratio 
Mean 0.059 0.055 0.060 0.063 0.053 0.045 

SD 0.008 0.006 0.007 0.006 0.007 0.005 

OL: Whole brain ratio 
Mean 0.178 0.215 0.179 0.189 0.222 0.207 

SD 0.018 0.018 0.011 0.024 0.023 0.005 

AL: Whole brain ratio 
Mean 0.035 0.039 0.039 0.034 0.043 0.040 

SD 0.004 0.003 0.003 0.002 0.003 0.007 

 

Table 1. Means and standard deviations (SD) for size corrected (SC) volumes and 

neuropil:whole brain ratios for each group of bees used in the study. See text for explanations of 

treatment groups and statistical tests of pairwise comparisons.   
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