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S1 Ignorability under a joint model (properties 1–5)

Suppose that the data are directly modeled using a fully-specified joint model as follows:

f(D,L,R; ν) =
n∏
i=1

f(Ri|Yi, Xi, Li;φ)f(Yi|Xi, Li; θ)f(Li|Xi;ω)f(Xi;ψ) (S1.1)

where ν = (φ, θ, ω, ψ) is the set of all model parameters. We assume a flat prior for ν such
that φ, θ, ω, and ψ are all a priori independent (so they are distinct). The factorization
(S1.1) is a form of shared parameter model, where the latent variable is related both to
missingness and to the distribution for Yi (Little and Rubin, 2002).

We can impute missing values of D and L by iteratively drawing the missing val-
ues from their posterior predictive distributions, D(mis) ∼ f(D(mis)|D(obs), L,R) and
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L(mis) ∼ f(L(mis)|D,L(obs), R). This leads to draws from the joint posterior predictive dis-
tribution, f(D(mis), L(mis)|D(obs), L(obs), R) (Little and Rubin, 2002). Define ρ = (θ, ω, ψ).
We note the following properties of the (conditional) posterior predictive distributions:

Property 1: Under MAR and LMAR, we can ignore R = (RD, RL) when imputing
D.

The missingness mechanism is ignorable for imputing D(mis) if f(D(mis)|D(obs), L,R) =
f(D(mis)|D(obs), L). Using assumptions (1) and (2) and assuming φ and ρ are distinct,

f(D(mis)|D(obs), L,R) =
1

f(D(obs), L,R)

∫ ∫
f(D,L,R, ν)dρdφ

=
1

f(D(obs), L,R)

∫
f(R|D,L;φ)

[∫
f(D,L; ρ)f(ρ)dρ

]
f(φ)dφ

=
f(D(mis)|D(obs), L)f(D(obs), L)

f(D(obs), L,R)

∫
f(R|D(obs), L;φ)f(φ)dφ

=f(D(mis)|D(obs), L)

Therefore, the missingness mechanism is ignorable for imputing D. A similar result for
a related latent ignorable missingness setting was shown in Harel (2003). We note that
in practice, draws from the posterior predictive distribution are obtained by first draw-
ing the model parameter ρ from its posterior distribution and then drawing D(mis) from
f(D(mis)|D(obs), L,R; ρ). We can perform both of these draws ignoring R.

Property 2: Under MAR (but not under LMAR), we can ignore R = (RD, RL) when
imputing L.

The missingness mechanism is ignorable for imputing L(mis) if f(L(mis)|L(obs), D,R) =
f(L(mis)|L(obs), D). Again using assumptions (1) and (2) and assuming φ and ρ are dis-
tinct,

f(L(mis)|L(obs), D,R) =
1

f(L(obs), D,R)

∫ ∫
f(D,L,R, ν)dρdφ

=
1

f(L(obs), D,R)

∫
f(R|D,L;φ)

[∫
f(D,L; ρ)f(ρ)

]
dρf(φ)dφ

=
f(L(mis)|L(obs), D)f(L(obs), D)

f(L(obs), D,R)

∫
f(R|D(obs), L;φ)f(φ)dφ

Suppose first that missingness is MAR. Then, f(R|D(obs), L;φ) = f(R|D(obs), L(obs);φ)
and f(L(mis)|L(obs), D,R) = f(L(mis)|L(obs), D). Therefore, R is ignorable. Under LMAR,
however, the term

∫
f(R|D(obs), L;φ)f(φ)dφ depends on L(mis), so R is not ignorable.

Property 3: Suppose that missingness in subset S of {D,L} is MAR. We can ignore
the corresponding subset of R when imputing L provided a distinctness property holds.

Let RS denote the set of missingness indicators for S and R−S denote the missing-
ness indicators for the remaining variables in {D,L}. Note by assumption (2), L ⊂ S. Let

f(R−Si |Di, Li;φ) = f(R−Si |D
(obs)
i , Li;φ

−S) and f(RS
i |Di, Li, R

−S
i ;φ) = f(RS

i |D
(obs)
i , L

(obs)
i ;φS).

Assume also that φ−S and φS are distinct (a priori independent). Then we have

f(R|D(obs), L;φ) =f(RS|D(obs), L(obs);φS)f(R−S|D(obs), L;φ−S) =⇒

f(L(mis)|L(obs), D,R) ∝f(L(mis)|L(obs), D)

∫
f(R−S|D(obs), L;φ−S)f(φ−S)dφ−S
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The contribution of RS drops out of the posterior predictive distribution, so RS is ignor-
able. A similar result, called “ignorability for submodels”, was shown in Harel (2003).
For an example of submodel ignorability, see our data application in Section 6.

Property 4: R is ignorable for ρ in a final analysis using only imputed D under MAR
Suppose we perform our final analysis using the imputed values of D but ignoring the

imputed L and again suppose that φ and ρ are distinct. In a Bayesian analysis, we want
to make inference from the joint posterior of φ and ρ:

f(ν|D,L(obs), R) ∝f(R|L(obs), D; ν)f(L(obs), D; ρ)f(ν)

∝
[∫

f(R|L,D;φ)f(L(mis)|L(obs), D; ρ)dL(mis)

]
f(L(obs), D; ρ)f(φ)f(ρ)

∝f(R|L(obs), D(obs;φ)f(φ)f(L(obs), D; ρ)f(ρ) under MAR

The posterior distributions of φ and ρ separate, and the posterior for ρ is independent of
R. Therefore, we can ignore R for inference about ρ under MAR.

Property 5: A final analysis for making inference about ρ using imputed D (but not
imputed L) and ignoring R is valid but not fully efficient under LMAR.

Under the setting of Property 4 except assuming LMAR, we again have that

f(ν|D,L(obs), R) ∝
[∫

f(R|L,D;φ)f(L(mis)|L(obs), D; ρ)dL(mis)

]
f(φ)f(L(obs), D; ρ)f(ρ)

Under LMAR, f(R|L,D;φ) depends on L(mis), so the contribution of R and φ does not
factor out of the integral. Therefore, we cannot separate φ and ρ in the above equa-
tion. We rewrite the above equation as f(ν|D,L(obs), R) ∝ h(ν)f(ρ|D,L(obs)) where
h(ν) =

[∫
f(R|L,D;φ)f(L(mis)|L(obs), D; ρ)dL(mis)

]
f(φ). Clearly, ν and ρ are not dis-

tinct. However, L is MAR given imputed D. Under the ignorability conditions in Lit-
tle and Rubin (2002) (pg. 119–120), inference ignoring the contribution of R (using
f(ρ|D,L(obs))) will be valid from a frequency perspective but may not be fully efficient.
Intuitively, the loss of efficiency comes from a loss of information about the missing L
that comes from ignoring R under LMAR. However, analysis is still valid since missing
L is MAR given D.

S2 Motivating the algorithm and performing param-

eter draws

In this appendix, we provide more details regarding the univariate imputation steps for
imputing missing values in D and L. In particular, we discuss distributions we can use to
perform the parameter draws within the sequential imputation algorithm. Our proposed
method for drawing model parameters within a given univariate imputation step will de-
pend on whether we are performing imputation of the latent variable or a variable in D.
Here, we will suppose that L is imputed from the kernel in (2) from the main paper and
that missing X and Y are imputed from working imputation models that may or may
not correspond (3) and (4) from the main paper. Therefore, the following exploration
can be applied when outcomes and covariates are imputed using (3) and (4) or using
approximations.

First, we will review some notation. Define D(p) to be the pth variable in D and
D(−p) to be all variables in D except D(p). Parameter ν represents the parameters for the
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joint distribution, f(D,L,R; ν). We partition ν = (φ, ρ) where φ represents the missing-
ness model parameters and ρ represents all other model parameters. We assume that ρ

and φ are distinct (a priori independent). Suppose that we specify f̃(D
(p)
i |D

(−p)
i , Li; ρ̃p)

to be the working conditional distribution of D
(p)
i used for imputation. We can view

f̃(D
(p)
i |D

(−p)
i , Li; ρ̃p) as an approximation of f(D

(p)
i |D

(−p)
i , Li; ρ). If we use the form of

the full conditional distribution as in (3) and (4), ρ̃p will be a subset of ρ. If we impute
using regression models, ρ̃p may not be directly related to ρ. We suppose that we impute
L from f(Li|Di, Ri; ν) as described in (2).

S2.1 Imputing D(p)

In Section S1, we show how, when missingness is LMAR, we can impute D(mis) ignoring
the contribution of R (assuming some distinctness properties). This is a result of the as-
sumption that missingness is conditionally independent of D(mis). Rather than imputing
D(mis) directly from f(D(mis)|D(obs), L), we instead obtain a draw of D(mis) by iteratively
drawing missing values of each D(p,mis) from f(D(p,mis)|D(p,obs), D(−p), L) or from an ap-

proximated version, f̃(D(p,mis)|D(p,obs), D(−p), L), treating the most recent imputations for
the other variables as if they were observed data (including L).

At a given iteration, we want to draw missing values of D(p) under MAR and LMAR
from its posterior predictive distribution:

f̃(D(p,mis)|D(p,obs), D(−p), L) =

∫
f̃(D(p,mis)|D(p,obs), D(−p), L; ρ̃p)f̃(ρ̃p|D(p,obs), D(−p), L)dρ̃p

This integral suggests an approach for drawing from the posterior predictive distribution.

Assuming that the data D
(p)
i across subjects i are conditionally independent given L and

D
(−p)
i , we can obtain a draw from the posterior predictive distribution by performing the

following (Little and Rubin, 2002):

1) Draw ρ̃p from f̃(ρ̃p|D(p,obs), D(−p), L)

2) Draw missing D
(p)
i from f̃(D

(p,mis)
i |D(p,obs)

i , D
(−p)
i , Li; ρ̃p) = f̃(D

(p)
i |D

(−p)
i , Li; ρ̃p).

We note that step 1) involves drawing ρ̃p conditioning on D(p,obs) using only the
observed part of D(p). This is consistent with chained equations imputation in which we
draw parameter values using only the observed values of D(p) (Van Buuren et al., 2006).
The step for drawing ρ̃p conditioning only on the observed data can be accomplished

by using the data with observed values for D(p) and prior f̃(ρ̃p). If we assume the prior

distribution is proportional to 1, we can draw ρ̃p by fitting model f̃(D(p)|D(−p), L; ρ̃p) to a
bootstrap sample of the data with observed values for D(p). We note that while this step
for drawing ρ̃p does not use the most recent imputation of D(p), it does use the imputed
values for L.

An alternative to the above is to draw ρ̃p using a Gibbs-type approach. In Gibbs
sampling-type imputation algorithms, parameter values are drawn using all of the most
recent imputed data, including imputed values for D(p) from the previous iteration. This
approach is also used in SMC-FCS, a modified chained equations approach proposed
in Bartlett et al. (2014). If preferred, we can obtain valid parameter draws using this
approach as well. We note that we can write

f̃(ρ̃p|D(p,obs), D(−p), L) =

∫
f̃(ρ̃p|D(p), D(−p), L)f̃(D(p,mis)|D(p,obs), D(−p), L)dD(p,mis)

The above integral suggests that we can obtain a draw from f̃(ρ̃p|D(p,obs), D(−p), L) by

drawing ρ̃p from f̃(ρ̃p|D(p), D(−p), L) using the drawn value of D(p,mis) from the previous

4



iteration, which was drawn from f̃(D(p,mis)|D(p,obs), D(−p), L). Rather than drawing pa-
rameter values using the complete case data as is in the usual implementation of chained
equations, we can alternatively draw parameters conditioning on the imputed values of
D(p) from the last iteration. We use this approach for drawing parameters in our simu-
lations and in our presentation of the proposed method in the main paper.

Rather than approximating the distributions for each variable with missingness with
a regression model for imputation, suppose that we impute all variables using the kernel
forms in (2), (3) and (4). In this case, ρ̃p is is a subset of ρ. For simplicity, we might choose
to perform only a single set of parameter draws per iteration of the sequential imputation
algorithm and use that set of parameter draws for imputing all of the variables in that
iteration. This approach is used in Gibbs sampling-type algorithms. In this case, we
might perform a set of parameter draws for ρ in the step for imputing L, which involved
drawing ρ using methods treating L as latent as described in the following section. Then,
we can use that same drawn value for ρ for imputing the covariate/outcome values. We
note that the above derivations above suggest that we should draw ρ conditioning on the
imputed values of L when we are imputing covariates/outcomes. In our experience, how-
ever, a single draw of ρ using the above approach generally produces good results when
we perform our final analysis using only the imputed values of D. When we perform our
final analysis using the imputed values of D and L, drawing ρ before each imputation
can sometimes produce improved parameter coverage.

S2.2 Imputing the latent variable

In the imputation step for L at a given iteration of the sequential algorithm, we aim to
draw missing values from the posterior predictive distribution:

f(L(mis)|L(obs), D,R) =

∫
f(L(mis)|L(obs), D,R; ν)f(ν|L(obs), D,R)dν

under LMAR and the posterior predictive distribution:

f(L(mis)|L(obs), D) =

∫
f(L(mis)|L(obs), D; ρ)f(ρ|L(obs), D)dρ

under MAR. Here, we treat the most recent imputations for D as if they were the ob-
served data. As before, this integral suggests an approach for drawing from the posterior
predictive distribution. We can obtain a draw of the posterior predictive distribution by
performing the following:
1) Under LMAR, draw ν from f(ν|L(obs), D,R).

Under MAR, draw ρ from f(ρ|L(obs), D).

2) Under LMAR, draw missing Li from f(L
(mis)
i |L(obs)

i , Di, Ri; ν) = f(Li|Di, Ri; ν).

Under MAR, draw missing Li from f(L
(mis)
i |L(obs)

i , Di; ρ) = f(Li|Di; ρ)
We note here that we are assuming that Li values are conditionally independent across
different values of i. Suppose our outcome model is a linear mixed model with a random
intercept, L. Then i here would index the clusters (rather than the units within clusters),
and a single value of L would be drawn for all units within the cluster.

Drawing ρ under MAR

When L is partially observed, we can draw ρ from f(ρ|L(obs), D) ∝ f(L(obs), D; ρ)f(ρ)
using only the observed values of L and prior f(ρ) using methods that treat L as latent
or partially latent and ignoring R. For example, suppose our outcome model is a mixture
of GLMs and we use f(ρ) ∝ 1. Then, we can draw the parameter for the outcome model
by fitting a latent class model to a bootstrap sample of the data treating L as fully latent.
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Drawing ρ and φ under LMAR

We note that

f(ν|L(obs), D,R) = f(ρ|L(obs), D,R, φ)f(φ|L(obs), D,R) (S2.2)

When L is partially latent (so it is partially observed), we can draw values of ν using only
the subjects with L observed. When L is fully latent, however, drawing from (S2.2) may
not be so simple. Therefore, we will propose an alternative approach that can be applied
for latent and partially latent L. We will consider how to draw φ and ρ separately using
the factorization in (S2.2).

We first consider how to draw values for ρ from f(ρ|L(obs), D,R, φ). We have that

f(ρ|L(obs), D,R, φ) ∝ f(L(obs), D,R; ρ, φ)f(ρ)

∝ f(R|D,L(obs); ν)f(L(obs), D; ρ)f(ρ)

This kernel separates into two factors: one that depends on φ and R and one that does
not. We note that L is treated as MCAR when L is fully latent and is assumed to be
MAR when L is partially latent, so the missingness in L is ignorable given D(obs). When
we condition on the imputed D, we can make valid inference about ρ (in a frequentist
sense) without conditioning on R and φ (Little and Rubin, 2002). However, R does
contain some information about the value of L under LMAR (ν and ρ are clearly not
distinct) and therefore would contribute some information about ρ. Ignoring R when
drawing ρ, therefore, may result in a loss of efficiency. We can validly (but with some
potential loss of efficiency) ignore the contribution of R and φ to f(ρ|L(obs), D,R, φ) and
instead draw ρ from f(ρ|L(obs), D). This is important because it may be difficult to draw
from f(ρ|L(obs), D,R, φ), but a draw from f(ρ|L(obs), D) can be obtained using standard
methods that treat L as latent or partially latent and ignoring R.

We now consider how to draw values for φ. The distribution f(φ|L(obs), D,R) may be
difficult to draw from under LMAR assumptions since this distribution does not condition
on L(mis). We instead use the integral decomposition:

f(φ|L(obs), D,R) =

∫
f(φ|L,D,R)f(L(mis)|L(obs), D,R)dL(mis)

We can obtain a valid draw from f(φ|L(obs), D,R) by instead drawing from f(φ|L,D,R)
using the most recent imputation of L, which was drawn from f(L(mis)|L(obs), D,R).
Therefore, we can draw values of φ directly using the most recent imputed values of L.
This is easier than drawing from f(φ|L(obs), D,R) because it can directly incorporate the
working LMAR model for the missingness mechanism without integrating out missing
values of L. We do not choose to use this same integral decomposition approach for
drawing ρ as our proposed approach (which does not condition on the most recent impu-
tation of L) tends to result in more stable convergence properties in our experience (for
fully latent L).
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S3 Bias of complete case analysis under LMAR

In the main paper, we claim that we may expect bias in complete case analysis when
missingness in a covariate or outcome depends on the latent variable, L. Here, we provide
some justification for this claim, which may initially seem unintuitive. In usual regression
analysis, complete case analysis is valid (but not fully efficient) when missingness in the
covariates/outcome does not depend on the outcome value conditional on X. However,
missingness can depend on other missing covariate values. The same does not apply when
missingness in covariates or the outcome depend on latent L.

Let’s consider the simple setting in which Y and X are univariate. Suppose first that
L was fully observed, so covariate and outcome missingness is then missing at random.
The two models of interest are f(L|X) and f(Y |X,L). If L is fully observed, we do
not expect bias in estimating parameters related to f(Y |X,L) unless sampling is directly
related to Y . However, we may run into bias in estimating parameters related f(L|X).
Suppose f(L|X) is a logistic regression model as it is in the Cox proportional hazards
mixture cure model. In this case, if missingness only depends on L, then would not
expect bias in estimating covariate effects, but we would expect bias in the intercept of
the logistic regression. This result comes from literature related to case-control sampling.
Suppose however that missingness depends on L and X. In this case, even with L fully
observed, complete case analysis with respect to LMAR missing X values could result in
biased inference for f(L|X).

In reality, L is fully or partially unobserved. In this case, LMAR missingness in Xi

or Yi is MNAR. For the sake of simplicity, let’s assume that L is fully latent, so L is
never observed for any subject. In this case, we define complete case analysis as analysis
of the subjects with Y and X fully observed, but all of these subjects will still have L
unobserved. The outcome distribution given RD

i can be written as

f(Yi|RD
i = 1, Xi) =

1

P (RD
i = 1|Xi)

∫
P (RD

i = 1|Li, Xi, Yi;φ
D)f(Yi|Li, Xi; θ)f(Li|Xi;ω)dLi

=
f(Yi|Xi)

P (RD
i = 1|Xi)

∫
P (RD

i = 1|Li, Xi, Yi;φ
D)f(Li|YiXi;ω)dLi

When missingness depends on Li, the missingness mechanism does not factor out of
the integral, and therefore RD

i is not ignorable. If we perform a complete case analysis
ignoring the missingness mechanism, we could have biased inference. We contrast this
with the result earlier on, which states that likelihood inference about ρ = (θ, ω) given
the full imputed D and ignoring the missingness mechanism is valid in a frequentist sense
but with a possible loss of efficiency.

Instead, we can view this problem in terms of the sampling probability given the
observed data directly. We have that:

P (RD
i = 1|Xi, Yi) =

∫
P (RD

i = 1|Li, Xi, Yi)f(Li|Xi, Yi)dL

Assuming missingness depends only on Li and possibly Xi (otherwise, we expect complete
case analysis to be biased anyway), we have

P (RD
i = 1|Xi, Yi) =

1

f(Yi|Xi)

∫
P (RD

i = 1|Li, Xi)f(Yi|Li, Xi)f(Li|Xi)dL

When missingness depends on Li, then the marginal sampling probability P (RD
i =

1|Xi, Yi) does depend on Yi. Therefore, the association between Li and sampling in-
duces an association between Yi and sampling when Li is a latent variable. Therefore, we
can have bias in the complete case analysis when complete cases are defined in terms of
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observed values in Y and X. This explains why we see bias in the complete case analysis
intercept terms and occasionally for regression coefficients when sampling depends on the
latent variable in our simulations.
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S4 Simulation study

In the main paper, we summarize overall results for a simulation study. Here, we present
details of a simulation study in five parts. In Simulation 1–3, we explore bias, coverage,
and empirical variance of outcome model parameters after imputation in the linear mixed
model, Cox proportional hazards mixture cure model, and mixture of two normals set-
tings respectively. In Simulation 4, we explore convergence of the imputation algorithm
in several missingness scenarios. In Simulation 5, we explore the impact of different types
of final analysis on efficiency. Unless otherwise specified, imputations are drawn using the
SMC imputation method in the main paper rather than the chained equations method.
Simulations denoted ‘APPROX’ correspond to the chained equations method. The ma-
jority of the simulations focus on the SMC imputation method.

Simulations 1–3 explore properties of both the SMC imputation and chained equa-
tions imputation methods. Simulations 4-5 focus on the SMC imputation setting, but
the overall results are expected to be similar for the chained equations method.

S4.1 Simulation 1: linear mixed model with random intercept

We simulate 1500 datasets with 500 subjects each under a linear mixed model with a
random intercept. Each dataset contains two binary covariates, X1 and X2. X1 takes the
value 1 with a probability of 0.5, and X2 is generated using logit(P (X2 = 1|X1)) = 0.5X1.
We draw random intercept bi ∼ N(0, 1) for each individual and then generate Y for each
individual at each of three time-points using the model

Yij = βIntercept + βX1Xi1 + βX2Xi2 + βT imeTimeij + bi + eij, j = 1, 2, 3

with independent N(0, 1) errors and with βIntercept = βX1 = βX2 = 0.5 and βT ime = 0.2.
In this simulation setting, Y = (Y1, Y2, Y3), X = (X1, X2), and L = b. We impose ∼ 50%
missingness in X2 using each of the following mechanisms:

(A) MAR with logit(P (X2 missing|X1, b, Y )) = −1.1 + Y1

(B) LMAR with logit(P (X2 missing|X1, b, Y )) = 0.5b
(C) LMAR with logit(P (X2 missing|X1, b, Y )) = 0.1 + 1.2b.
(D) LMAR logit(P (X2 missing|X1, b, Y )) = −0.5 + 1.2b+ 0.5Y1

Mechanism (A) is MAR dependent on Y1, the baseline value of Y . Mechanism (B)
is LMAR with a moderate dependence between missingness and b, mechanism (C) is
LMAR with a strong dependence on b, and mechanism (D) is LMAR with dependence
on both b and Y1. Y and X1 are fully observed.

We then impute values of X2 and b using methods discussed in the main paper under
various working models. When we impute under a LMAR working model, we model
the covariate missingness indicator RD

i using a logistic regression with different functions
of b,X1, and Y as predictors. When we assume a MAR working model, we impute L
ignoring the missingness mechanism. For each simulated dataset, we create 10 imputed
datasets. We then fit a linear mixed model to each of the imputed datasets and use Ru-
bin’s rules to obtain a single set of parameter estimates and their corresponding variances
for each simulation. We then compute the bias, empirical variance, and coverage rates
across the 1500 simulations. We note that the APPROX simulations involve chained
equations-type imputation of X2 conditional on X1, L and Y using a logistic regression
form rather than using kernel (4), so the imputation distributions for X2 and L in this
case do not correspond to a coherent joint distribution. Since we only have missingness
in a single covariate (X2), the imputation distributions for the other simulation settings
do correspond to a valid joint model, although that joint model was never specified di-
rectly. We compare the results to complete case analysis. Since X is time-invariant in
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this model, complete case analysis involves excluding all subjects with missing X.
Table S1 shows the simulation results. Complete case analysis produced biased pa-

rameter estimates in all four underlying missingness mechanisms considered. Under MAR
missingness mechanism (A), the MAR-based imputation approach produces unbiased pa-
rameter estimates. LMAR imputation under mechanism (A) produces biased parameter
estimates when an incorrect working missingness model is used. When the working model
contains the underlying missingness model, however, the LMAR method results in essen-
tially unbiased parameter estimates. Under mechanism (A), the MAR-based imputation
approach and the LMAR imputation approach with the correct working model result in
very similar coverage and relative variance. APPROX Imputation using a logistic re-
gression model for imputing X2 had similar performance to imputation using kernel (4).
This suggests that the LMAR-based imputation approach can be applied when the true
missingness model is MAR as long as the missingness model contains the true model.

Under mechanism (B), all imputation approaches produce essentially unbiased or low
bias parameter estimates. The LMAR approaches, however, result in small increases in
coverage and reductions in variance and bias compared to the MAR imputation approach.
Under mechanism (C), the MAR-based imputation approach produces noticeable bias in
estimating the mixed model intercept and parameter associated with the imputed covari-
ate. We see corresponding reductions in coverage for these parameters. In contrast, the
LMAR-based imputation approaches produce unbiased parameter estimates. For mecha-
nisms (B) and (C), the working model that uses I(b > 0) instead of b in the working model
still shows good performance despite the fact that the working model does not contain
the true model. We do not see evidence of problems arising from lack of identifiability
or lack of convergence under any of the working models considered here. MAR-based
imputation using a logistic regression model for imputing X2 resulted in slightly greater
bias than MAR imputation using kernel (4).

Under mechanism (D), MAR-based imputation was substantially biased, and all im-
putation settings assuming LMAR-based imputation resulted in reduced bias. Notably,
even in imputation settings where the missingness model was mis-specified (truth depends
linearly on b and Y1), we can see a reduction in bias compared to MAR-based imputa-
tion. Taken as a whole, this set of simulations suggests that our imputation approach
can induce bias when the missingness model is far off the true model, but we can often
see good properties when the working model contains or is somewhat “close” to the true
model.
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Table S1: Linear mixed model estimates using proposed imputation methods

Parameters
Contains Intercept X1 X2 Time

Method Truth# Bias (Var) CI† Bias (Var) CI Bias (Var) CI Bias (Var) CI

Full Data - 0 (1.2) 95 0 (1.0) 95 0 (1.1) 95 0 (0.10) 95

Missingness dependent on Yi1, independent of bi (Mechanism A)

Complete Case - -78 (2.0) 0 -9 (1.8) 91 -9 (1.9) 90 19 (0.20) 1
MAR Imputation Y 0 (1.8) 94 0 (1.1) 95 0 (2.8) 94 0 (0.10) 95
LMAR Imputation: b* N 6 (1.4) 94 2 (1.1) 95 -9 (1.9) 94 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 N 6 (1.4) 93 1 (1.1) 96 -9 (2.0) 95 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.8) 94 0 (1.1) 96 0 (2.8) 94 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 Y 0 (1.9) 94 0 (1.1) 96 0 (2.8) 93 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.9) 94 0 (1.1) 95 0 (2.8) 92 0 (0.10) 95
LMAR Imputation: b, Y2 N 7 (1.4) 92 2 (1.1) 95 -11 (1.8) 93 0 (0.10) 95
MAR APPROX Imputation Y -1 (1.9) 94 0 (1.1) 96 0 (3.0) 94 0 (0.10) 95
LMAR APPROX Imputation: b N 5 (1.5) 95 1 (1.1) 95 -8 (2.1) 96 0 (0.10) 95

Missingness moderately dependent on bi (Mechanism B)

Complete Case - -24 (2.4) 66 0 (2.1) 95 0 (2.2) 94 0 (0.19) 95
MAR Imputation N -2 (1.7) 93 0 (1.1) 95 2 (2.4) 92 0 (0.10) 95
LMAR Imputation: b Y 0 (1.6) 95 0 (1.1) 95 0 (2.2) 93 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 Y 0 (1.6) 95 0 (1.1) 95 0 (2.2) 94 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.6) 95 0 (1.1) 95 0 (2.2) 94 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 N 0 (1.6) 95 0 (1.1) 95 0 (2.2) 94 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.6) 95 0 (1.1) 95 0 (2.2) 94 0 (0.10) 95
MAR APPROX Imputation N -3 (1.7) 94 0 (1.1) 95 3 (2.4) 93 0 (0.10) 95
LMAR APPROX Imputation: b Y 0 (1.6) 95 0 (1.1) 95 0 (2.2) 95 0 (0.10) 95

Missingness strongly dependent on bi (Mechanism C)

Complete Case - -48 (2.5) 11 0 (1.8) 95 0 (2.0) 94 0 (0.22) 95
MAR Imputation N -7 (2.0) 90 0 (1.1) 95 8 (2.8) 90 0 (0.10) 95
LMAR Imputation: b Y 0 (1.5) 96 0 (1.1) 96 0 (2.0) 96 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 Y 0 (1.5) 96 0 (1.1) 96 0 (2.0) 97 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.6) 95 0 (1.1) 95 0 (2.1) 95 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 N 0 (1.6) 95 0 (1.1) 96 0 (2.1) 96 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.5) 96 0 (1.1) 96 0 (2.1) 96 0 (0.10) 95
MAR APPROX Imputation N -8 (2.0) 90 0 (1.1) 95 9 (2.8) 89 0 (0.10) 95
LMAR APPROX Imputation: b Y 0 (1.5) 97 0 (1.1) 96 0 (2.1) 97 0 (0.10) 95

Missingness dependent on bi and Yi1 (Mechanism D)

Complete Case - -73 (2.0) 0 -5 (1.6) 93 -5 (1.6) 94 8 (0.21) 56
MAR Imputation N -8 (2.0) 91 -1 (1.1) 96 10 (2.8) 89 0 (0.10) 95
LMAR Imputation: b N 3 (1.4) 96 0 (1.1) 96 -5 (1.7) 98 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 N 3 (1.4) 96 0 (1.1) 96 -5 (1.6) 98 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.5) 97 0 (1.1) 96 0 (2.0) 97 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 N 0 (1.6) 96 0 (1.1) 96 0 (2.0) 97 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.6) 96 0 (1.1) 96 0 (2.0) 96 0 (0.10) 95
LMAR Imputation: b, Y2 N 3 (1.4) 96 0 (1.1) 95 -6 (1.7) 97 0 (0.10) 95
MAR APPROX Imputation N -9 (2.1) 90 -1 (1.1) 95 11 (2.9) 88 0 (0.10) 95
LMAR APPROX Imputation: b N 3 (1.4) 97 0 (1.1) 96 -4 (1.7) 98 0 (0.10) 95

*Variables after colon represent linear predictors in working model for RDi
† All values in table multiplied by 100. CI indicates coverage of 95% confidence intervals. Var indicates empirical variance.
# Indicates whether working missingness model contains true model.
APPROX: Imputation of X2 uses a logistic regression with predictors X1, b, Y1, Y2, Y3 (instead of kernel (4))
Complete Case: Analysis excluding subjects with missing X2
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S4.2 Simulation 2: Cox proportional hazards mixture cure model

We simulate 500 datasets of 500 subjects under a CPH mixture cure model. Covariates
X1 and X2 are simulated as in Simulation 1. We simulate an underlying cure status
using the relation logit(P (Not Cured|Xi1, Xi2)) = 0.5 + 0.5Xi1 + 0.5Xi2. This results
in an average cure rate of 26%. For the non-cured group (G=1), we simulate an event
time using the hazard function λ(t) = 0.0005t0.3e0.5Xi1+0.5Xi2 . For cured subjects (G=0),
the event time is taken to be infinity. We generate censoring times using the relation
λC(t) = 0.00015t0.5 for the first 400 subjects and impose administrative censoring at
3000 for the remaining 100 subjects. The observed event/censoring time Ti is taken as
the minimum of the censoring and event time, and δi represents the event indicator. In
this simulation setting, Y = (T, δ), X = (X1, X2), and L = G. For the estimation, we
assume subjects with Ti greater than a late cut-point are cured. We choose a cut-point
of 50 as the Kaplan-Meier plots demonstrate a clear plateau by that point. We impose
∼50% missingness in X2 using each of the following mechanisms:

(A) MCAR with missingness probability of 0.5
(B) LMAR with logit(P (X2 missing|X1, G, T, δ)) = −0.2 + 0.3G
(C) LMAR with logit(P (X2 missing|X1, G, T, δ)) = −0.9 + 1.2G.
(D) LMAR with logit(P (X2 missing|X1, G, T, δ)) = −1.1 + 1.2G+ 0.5X1.

Mechanism (A) is MCAR, mechanism (B) is LMAR with a moderate dependence on
cure status (G), mechanism (C) is LMAR with a strong dependence on cure status, and
mechanism (D) depends on both cure status and X1.

We assume a Weibull baseline hazard in the non-cured group for imputation. For
each imputed dataset, we fit a CPH cure model, which consists of a logistic regression
for the probability of not being cured and a Cox regression for the hazard of events in
the not cured group. We fit this model using the package smcure in R (Cai et al., 2012).
Variances were estimated using 100 bootstrap samples.

Table S2 shows the simulation results for the Cox proportional hazards mixture cure
model. As expected, complete case analysis is essentially unbiased under covariate miss-
ingness mechanism (A) (MCAR), but the imputation-based methods are more efficient
than the complete case analysis. When missingness depends on the underlying cure sta-
tus, however, complete case analysis is biased. We see comparatively little bias in the
imputation-based estimates across missingness mechanisms and imputation models us-
ing kernel (4). We note that even when we specify the correct missingness model, we
sometimes see bias in estimating the intercept parameter in the logistic regression. This
parameter is the most difficult to estimate due to identifiability issues with the CPH cure
model, and these biases will reduce with larger sample sizes (simulated sample size = 500).
As such, we should not over-interpret bias in this parameter. APPROX Imputation using
a logistic regression model for imputing X2 resulted in increased bias in all scenarios. For
missingness mechanisms (A) and (B) and using kernel (4) for imputation, we see very
little difference between the MAR and LMAR imputation approaches in terms of bias,
coverage, and relative variance. APPROX imputation under LMAR resulted in slightly
larger variances than APPROX imputation under MAR.

In mechanism (C) (when missingness depends strongly on cure status) and mecha-
nism (D) (when missingness depends on cure status and X1), we still see little difference
between MAR and LMAR imputation methods using kernel (4) in terms of bias. Larger
bias differences between MAR-based and LMAR-based imputation can be seen when co-
variate imputation uses a logistic regression instead of kernel (4) in mechanism (c). The
LMAR imputation approaches using kernel (4) (which differ only in terms of the work-
ing missingness model) produce essentially unbiased estimates for all model parameters
(except for the intercept of the logistic regression). LMAR imputation using G, X1, and
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G × X1 in the working model resulted in some numerical convergence issues for several
of the simulations (15 simulations failed), which may indicate issues with model identifi-
ability (possibly due to collinearity). We included only the converging simulations (485
of them) in Table S2.

Overall, these simulations suggest a large degree of stability in CPH cure model in-
ference when we impute assuming MAR and the true mechanism is LMAR. A greater
degree of bias is introduced in the APPROX simulations, where the covariate imputation
distribution assumed to follow a simple regression model form rather than the form in
(4).
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S4.3 Simulation 3: mixture of normals

We simulate 500 datasets of 500 subjects under a normal mixture model with two binary
covariates and two latent classes. Covariates X1 and X2 are simulated as in Simulation 1.
We generate the mixing variable Ci with P (Ci = 1) = 0.62 for each individual. We draw
N(0, 1) errors ei and then generate Y using the model Yi = 0.5 + 0.5Xi1 + 0.5Xi2 + ei if
Ci = 1 and Yi = 2 + 3Xi1 + 2Xi2 + ei if Ci = 0. In this simulation setting, X = (X1, X2)
and L = C. We then impose missingness in X2 using each of the following mechanisms:

(A) MAR with P (X2 missing|X1, C, Y ) = −0.5 + 0.2Y
(B) LMAR with P (X2 missing|X1, C, Y ) = −0.3 + 0.5C
(C) LMAR with P (X2 missing|X1, C, Y ) = −1.1 + 1.7C.

Mechanism (A) is MAR dependent on Y . Mechanism (B) is LMAR with a moderate
dependence on the latent class variable (C), and mechanism (C) is LMAR with a strong
dependence on the latent class.

For each imputed dataset, we fit a latent class model (with two classes) using the
package ‘flexmix’ in R to estimate θ through an EM algorithm (Leisch, 2004). The pack-

age ‘flexmix’ estimates the variance for θ̂ for each dataset by fitting a GLM weighted
by estimated class membership probabilities for each individual. When parameters are
drawn using latent class modeling, we may not be able to determine which value of C
belongs to which subclass identified by the latent class modeling. In other words, we may
not be able to differentiate which subset of θ belongs to which value of C. We can cir-
cumvent this issue by placing an additional assumption to differentiate between classes.
We impose an identifying restriction that defines class Ci = 1 to be the cluster deter-
mined by the latent class modeling with a smaller intercept value. We note that the two
clusters are well-separated in this example. We predict that we may encounter greater
identifiability issues (in differentiating the clusters) when the clusters have parameters
that are very close together.

Table S3 shows the simulation results for a mixture of normal distributions. Com-
plete case analysis results in biased parameter values for mechanism (A) and mild or
no bias for mechanisms (B) and (C). For mechanism (A), the MAR-based imputation
approach produces essentially unbiased parameter estimates. The LMAR imputation
approaches with working missingness models containing the true missingness model also
produce very small bias. Mild increases in bias can be seen for the LMAR imputation
approach using an incorrect working model. Compared to the MAR approach, the LMAR
approach using the correct working model resulted in similar or slightly larger variances
for all parameter estimates.

For mechanism (B), little bias can be seen across all of the imputation approaches.
Similar coverage rates can be seen across imputation approaches. In this example, we see
slightly smaller variances for the LMAR approaches with the more complicated working
models. Under mechanism (C), we see increases in bias and small decreases in cover-
age for estimating mixture model parameters using the MAR-based imputation method
(either using kernel (4) or logistic regression for imputing X2). The LMAR-based im-
putation method using only C in the working missingness model produces essentially
unbiased parameter estimates for all parameters. Compared to the approaches using the
more complicated working model, the simpler LMAR approach using kernel (4) results
in smaller variances for estimating model parameters.
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S4.4 Simulation 4: Exploring identifiability and convergence

One criticism of the selection model factorization in (1) is that it is often difficult to de-
termine whether the parameters of the working missingness model are identifiable (Little,
2009). By “identifiable,” we mean that the observed data likelihood has a unique maxi-
mizer. Even if the model parameters are technically identifiable, one additional concern
is that the likelihood surface near the maximizer may be nearly flat. These identifiability
concerns can lead to issues with model fitting and convergence of the imputation algo-
rithm. In order to better understand possible identifiability-related convergence issues,
we perform a set of simulations evaluating convergence of the imputation algorithm under
a variety of modeling scenarios.

We simulate 500 complete datasets under a linear mixed model, cure model, and
mixture of normals as in Simulations 1-3. We impose ∼ 50% covariate or outcome miss-
ingness (but not both) under a variety of missingness models.

For covariate missingness, we generate MAR and LMAR missingness using missing-
ness mechanisms (A) and (C) from Simulations 1-3. For both the linear mixed model and
mixture of normals model, we generate outcome missingness under MCAR and LMAR
using mechanism (C) from Simulations 1 and 3 applied to the outcome instead of the
covariate. We also impose LMAR outcome missingness for the mixture of normals model
using the relation logit(P (Y missing|X,C)) = −1.1 + 0.5X1− 0.5X2 + 1.7C. This results
in ∼ 50% outcome or covariate missingness in each scenario. We note that in each case
in Simulation 4, we only have missingness in a single covariate (X2) or a single outcome
variable (Y ). Therefore, the SMC imputation distributions do correspond to a valid joint
model, although that joint model was never specified directly. The primary purpose of
this simulation is to explore identifiability-related convergence issues, which would be
similarly present in the joint modeling and SMC imputation settings.

For each outcome model parameter, we estimate the fraction of missing information as
described in (Little and Rubin, 2002). We also calculate the Gelman-Rubin convergence
statistic (the potential scale reduction factor) for the outcome and missingness model
parameter draws across imputation streams. The Gelman-Rubin statistic is a measure of
the relative between and within-chain variance, and values less than 1.1 generally indicate
satisfactory convergence (Gelman and Rubin, 1992). We also calculate a multivariate ver-
sion of the Gelman-Rubin statistic to evaluate convergence overall across different model
parameters (Brooks and Gelman, 1998).

Table S4 shows the simulation results. Under covariate missingness, the fractions
of missing information tend to be generally small, particularly for parameters related to
X1, the fully-observed covariate. We see larger estimates for the fraction of missing in-
formation when we impose similar rates of missingness in the outcome. Additionally, we
see good Gelman-Rubin convergence properties under covariate missingness and MAR
outcome missingness. Under LMAR outcome missingness, the outcome model parame-
ters appear to converge, but the parameters in the missingness model (in particular, the
parameter attached to the latent variable) show some evidence of convergence problems.
The drawn values of the outcome model parameters appear reasonable (with small or
no bias) even when the missingness model parameters do not converge, but this may
not be true in general. When we fix the value of the parameter related to the latent
variable in the missingness, we see a large improvement in the convergence properties of
the imputation algorithm.
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S4.5 Simulation 5: Comparison of final analysis with and with-
out imputed L

After imputation, we have several choices as to what combination of the imputed L and
D we want to include in the final analysis. We first suppose that we will perform our
final analysis ignoring the contribution of R. When both imputed D and L are included
in the final analysis, R is ignorable. In Property 4, we show that R is also ignorable if
only imputed D is included in the final analysis when missingness is MAR. When miss-
ingness is LMAR, we show in Property 5 that final analysis using only the imputed D
and ignoring R will be valid but not fully efficient. In this section, we want to briefly
explore the practical impact of including or excluding the imputed values of L (assuming
we are ignoring R) in the final analysis through simulation.

We generate simulated data under a linear mixed model, mixture of normals model,
and Cox proportional hazards model as described for Simulations 1-3. We impose ei-
ther MAR or LMAR (Strong Dependence) missingness in X2 as in Simulations 1-3 and
impute using a working missingness model with the correct structure (either MAR or
LMAR dependent only on the latent variable) and kernels (2)–(4). After imputation, we
perform the final analysis using the imputed values for X2 and either ignoring or using
the imputed values for the latent variable (and in both cases ignoring R). Additionally,
in the course of our simulations, we observed that some simulations under the mixture of
normals model had estimated variances that were very large when we used the imputed
latent variable in the final model fit. This may be an indicator of inadequate convergence
of the model fit. Therefore, we present the mixture of normals results 1) for all 500 sim-
ulations and 2) restricting to simulations in which the estimated variances were all less
than 0.2 (20 in the scale presented in the table). This issue did not arise for the linear
mixed model simulations. In Tables S1-S3, we perform all final analyses ignoring the
imputed latent variable and without restricting to simulations that have variance < 0.2,
and the corresponding rows in this table are the same as the results in Tables S1-S3.

Table S5 shows the simulation results. We first consider the results for the mixture
of normals model. We first notice that analyses using the imputed latent variable in the
final analysis result in substantial bias when we include all simulations in our estimation
of bias. This is the result of just a few simulations with parameter estimates far from
the true value. This suggests some instability or lack of convergence in the model fitting.
However, when we restrict our focus to simulations that appear to have convergence (rea-
sonable standard errors), we see that final analyses including and excluding the imputed
latent variable perform similarly well. For some simulation settings, the variance esti-
mates using C are slightly larger, and the reverse is true for other simulations, so there
is not a clear trend in efficiency including or excluding the latent variable in the final
analysis in these simulations.

Although not included in our results, it is worth mentioning that analysis including
and ignoring the imputed L may be associated with different fractions of missing infor-
mation, which could have implications on the number of imputations needed for good
inference. Let Ū represent the average of the variance estimators for parameter θ across
the m imputed datasets and B represent the sample variance of the estimates of θ across
the m imputed datasets. Then, we can express the relative increase in variation due to
the missing data (r) and the fraction of missing information (λ) as (Schafer, 1999):

r =
(1 + 1

m
)B

Ū
λ =

r

1 + r
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The relative efficiency of an estimate θ based on m imputations compared to the estimate
based of in infinite number of imputations is:

RE =
1

1 + λ
m

We may expect an analysis that conditions on the imputed L in the final analysis to have
larger relative between imputation variance vs. within imputation variance (r) compared
to an analysis that does not condition on L in the final analysis for some parameters.
This is because, when we include L in the final analysis, each fit treats the imputed L as
known, resulting in substantially reduced “within imputation” standard error estimates
for some parameters. This leads to larger values for the fraction of missing information,
λ, for the same value of m when we include L in the final analysis compared to an analysis
that ignores imputed L. In simulations (not shown), a final analysis using L did result
in larger fractions of missing information compared to an analysis ignoring imputed L
in the random intercept linear mixed model setting. We note that in practice this may
translate into only a very small difference in relative efficiency between the two methods
of analysis. However, several authors have noted practical issues regarding estimation
of p-values and confidence intervals when a small number of imputations are used and
the fraction of missing information is moderate to large (e.g. White and Royston, 2011;
Bodner, 2008). Therefore, we may prefer to perform our final analysis using only the
imputed D in the final analysis in an attempt to reduce the potential negative impact of
larger fractions of missing information.

Table S5: Bias and variance of parameter estimates under different final analyses

Linear mixed model

Model# Analysis Intercept X1 X2 Time SIMS
Bias (Var)† Bias (Var) Bias (Var) Bias (Var)

MAR Ignoring b 0 (1.81) 0 (1.10) -1 (2.58) 0 (0.1055) 500
MAR Using b 0 (1.84) 0 (1.11) -1 (2.59) 0 (0.1055) 500
LMAR Ignoring b 0 (1.49) 0 (1.15) -1 (2.03) 0 (0.1055) 500
LMAR Using b 0 (1.50) 0 (1.08) -1 (2.05) 0 (0.1055) 500

Mixture of normals

- - - - - - - - - - C = 1- - - - - - - - - - - - - - - - - - - C = 0 - - - - - - - - - SIMS
Model# Analysis Intercept X1 X2 Intercept X1 X2

Bias (Var) Bias (Var) Bias (Var) Bias (Var) Bias (Var) Bias (Var)

Variance Unrestricted

MAR Ignoring C 1 (1.98) 0 (4.35) 1 (4.64) -1 (6.18) -2 (7.80) 0 (5.53) 500
MAR Using C 2 (2.22) 6 (7.55) 5 (6.38) -3 (7.09) -8 (10.38) -3 (6.49) 500
LMAR Ignoring C 1 (2.89) 1 (4.63) 0 (6.42) -1 (4.56) -2 (5.91) 0 (5.29) 500
LMAR Using C 1 (3.28) 9 (9.71) 5 (7.76) -3 (5.18) -9 (10.03) -4 (7.18) 500

Variance Restricted*

MAR Ignoring C 1 (2.04) -1 (2.09) 0 (2.88) -1 (6.06) 0 (5.34) 0 (5.02) 483
MAR Using C 1 (2.07) -1 (1.95) 0 (2.94) 0 (5.73) -1 (5.14) 0 (4.25) 404
LMAR Ignoring C 0 (2.79) 0 (2.07) 0 (5.39) 0 (4.28) 0 (3.77) 1 (3.94) 477
LMAR Using C 0 (2.95) 0 (2.11) 0 (5.44) 0 (4.35) -1 (3.75) 0 (3.95) 418

† All values in table multiplied by 100
# Indicates true and working missingness model
* Ignoring simulations in which the estimated variance was greater than 0.2 (20 in the scale of this table)
for at least one parameter.
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S4.6 Simulation 6: more explorations for the CPH cure model

Suppose missingness is LMAR but that we impute incorrectly assuming MAR missing-
ness. Since missingness is MNAR, we may have bias in estimating the resulting model
parameters when we impute assuming MAR. This bias can be seen for missingness mech-
anisms strongly dependent on the latent variable in Simulations 1 (linear mixed model)
and 3 (mixture of normals). In Simulation 2, however, MAR-based imputation under
true LMAR missingness does not appear to create much bias in the resulting outcome
model parameter estimates. In this section, we provide some intuition as to why this
might be the case.

One reason for this result has to do with the form of the imputation distribution for
G under LMAR. Under MAR and using notation from Section S7.3, we impute G from

logit(P (Gi = 1|Xi, Ti, δi = 0; ρ)) =ω0 + ω1Xi − Λ0(Ti)e
θXi

and we impute G from the following under LMAR:

logit(P (Gi = 1|Xi, Ti, δi = 0, Ri; ν)) =ω0 + ω1Xi − Λ0(Ti)e
θXi + log

[
f(R−Si |Ti, δi = 0, X

(obs)
i , Gi = 1;φ−S)

f(R−Si |Ti, δi = 0, X
(obs)
i , Gi = 0;φ−S)

]

These two distributions differ only by the offset term, log

[
f(R−Si |Ti,δi=0,X

(obs)
i ,Gi=1;φ−S)

f(R−Si |Ti,δi=0,X
(obs)
i ,Gi=0;φ−S)

]
.

This offset term follows the familiar form of the offset term under case-control sampling
dependent on G.

Suppose first that missingness depends only on G. In this case, the two distributions
(imputation under MAR vs. LMAR) differ by a term depending only on R and φ−S.
Since R and X are independent given G in this setting, exclusion of this offset term will
impact the intercept but may not appreciably impact the estimated covariate effects, ω1.
Therefore, the imputation distributions under MAR and LMAR are really only different
in terms of the population cure rate, which is associated with the intercept in the logistic
regression part of the Cox proportional hazards cure model.

Suppose instead that missingness depends on both G and observed X. In this case,
the offset term will be correlated with X, so exclusion of the offset term by incorrectly
assuming MAR could more appreciably impact the imputation distribution for G. This
in turn may more strongly impact the resulting inference. This is loosely supported by
results from mechanism (D) in Simulation 2, but we still don’t see much difference be-
tween MAR-based and LMAR-based imputation under LMAR in this setting.

An additional reason for similarity between the MAR-based and LMAR-based impu-
tation results under true LMAR mechanisms may be the actual rate of missingness in
G (the partially latent cure status). Since the only difference between MAR-based and
LMAR-based imputation is the distribution used to impute G, we might expect the im-
putation distribution to have a bigger impact on inference when we have a larger degree
of missingness in G. Recall, subjects having an observed recurrence are known to be
non-cured (G = 1), and we assume subjects with long follow-up and no recurrence are
cured (G = 0). Therefore, it is the non-recurring subjects who are censored early that
have unknown cure status. We might expect that a heavier degree of censoring (resulting
in a greater proportion of subjects with missing G) may produce greater bias resulting
from imputing incorrectly assuming MAR. We performed an additional set of simulations
(not shown) to explore how the degree of censoring impacted the relative performance of
MAR-based and LMAR-based imputation when missingness is truly LMAR. We found
that the bias did not appreciably increase with greater degrees of censoring as we had
predicted. Indeed, large amounts of censoring (which produce greater degrees of missing-
ness in G) are associated with difficulty in estimating cure model parameters. In settings
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where we might expect a lot of bias, therefore, we couldn’t even feasibly fit the model of
interest, and settings in which the censoring mechanism was such that we did not run
into numerical issues produced little difference between MAR-based and LMAR-based
imputation.

One subtle reason for this lack-of-bias phenomenon is that LMAR-based missingness
is truly a small step from MAR missingness in the cure model setting. Intuitively, we
might expect some bias from incorrectly assuming MAR when missingness is LMAR.
However, one distinguishing feature of the cure model is that G is partially observed.
When G is observed, it is always equal to the observed event status indicator, δ. Suppose
we observed recurrences for every single non-cured subject. In this case, LMAR missing-
ness is actually MAR, since δ represents the true cure status. This will usually not be the
case, but the close relationship between G and δ may be enough to protect against bias
resulting from ignoring LMAR missingness. We might think of δ as a messy measure of
G. By conditioning on δ, we might make the MAR assumption more reasonable.

While it is possible to have induced bias due to ignoring LMAR missingness in the
Cox proportional hazards cure model setting, this bias resulting from ignoring the latent-
dependent missingness mechanism is therefore generally expected to be somewhat small.
This is demonstrated in Simulation 2 and in the analysis of the head and neck cancer
data in the main paper. Although not shown, additional simulations suggest that greater
amounts of censoring either do not produce much bias or create numerical issues with
estimating the cure model parameters (so the data themselves are not well-suited for
modeling using a cure model). We also considered different degrees of dependence be-
tween missingness and cure status and fully observed covariates. In all settings explored,
we still saw relatively little bias created by incorrectly assuming MAR under LMAR miss-
ingness. Overall, we may be less worried about the impact of ignoring latent-dependent
missingness in the Cox proportional hazards cure model setting (and possibly other set-
tings with partially observed latent variables) compared do settings in which the latent
variable is never observed.
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S5 Example 1: identifiability for joint normal models

In this paper, we restrict applications of the proposed methods to cases in which the
model parameters would be identified had the missing data been observed. Here, we
present an example in which parameters identified in the LMAR-based model would
not be identified if the missing data had been observed. In particular, we first explore
assumptions required to achieve identifiability for a measurement error model. Then, we
compare the measurement error model to linear mixed models and explain how the linear
mixed model is able to attain identifiability of all outcome model parameters.

S5.1 Example 1.1: Measurement Error Model with Covariates

Suppose we have a noisy version (Y ) of an underlying variable of interest, L. L is never
observed, and Y is observed at least for some subjects. We suppose Y and L are univariate
and related to fully measured covariates, X. Suppose we model

Yi = α0 + α1Li + α2Xi + ei, Li ∼ N(β0 + β1Xi,ΣL), ei ∼ N(0, σ2), ei ⊥ Li

This is an example of a measurement error model. This model contains 7 parameters.
This implies the following:(

Yi
Li

)
|Xi = N

((
α0 + α1 (β0 + β1Xi) + α2Xi

β0 + β1Xi

)
,

(
σ2 + α2

1ΣL α1ΣL

α1ΣL ΣL

))
Li|Yi, Xi ∼ N

(
β0 + β1Xi +

α1ΣL

σ2 + α2
1ΣL

[Y − α0 − α1 (β0 + β1Xi)− α2Xi] ,

ΣL −
α2

1Σ2
L

σ2 + α2
1ΣL

)
Suppose we have no missingness in Y . In this case, the observed data likelihood can

be expressed as follows:

Lik
(obs)
NoMissing =

n∏
i=1

f(Yi|Xi) =
n∏
i=1

N
(
Yi;α0 + β0α1 + [α2 + α1β1]Xi, σ

2 + α2
1ΣL

)
where N(a; b, c) indicates the normal density evaluated at a with mean b and variance c.
In order for the model to be identified, we must fix 4 of the 7 parameters in this
model (α0, α1, α2, σ

2, β0, β1,ΣL), so we can identify the 3 remaining parameters.
Suppose instead that we have LMAR missingness in Y is follows: Probit(P (RY

i =
1|Li, Yi, Xi)) = φ0 + φ1Li, so we assume that missingness in Y only depends on L. This
scenario is a simple case of the Heckman (1976) selection model if α1 = 0 with a mod-
ified missingness model (Little and Rubin, 2002; Heckman, 1976). The observed data
likelihood can be expressed as follows:

Lik(obs) =
n∏
i=1

[∫
Φ(φ0 + φ1Li)f(Yi, Li|Xi)dLi

]RYi[∫
(1− Φ(φ0 + φ1Li))f(Li|Xi)dLi

]1−RYi

=
n∏
i=1

[
f(Yi|Xi)

∫
Φ(φ0 + φ1Li)f(Li|Yi, Xi)dLi

]RYi[
1−
∫

Φ(φ0 + φ1Li)f(Li|Xi)dLi

]1−RYi

=
n∏
i=1

[
f(Yi|Xi)EL|Y,X (Φ(φ0 + φ1Li)) dLi

]RYi [1− EL|X (Φ(φ0 + φ1Li))
]1−RYi

We will make use of the following identity:
Let U ∼ N(µ1, σ

2
1) and V ∼ N(µ2, σ

2
2) be independent random variables. Now, U − V ∼
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N(µ1 − µ2, σ
2
1 + σ2

2).

Φ

(
−(µ1 − µ2)√

σ2
1 + σ2

2

)
= P (U ≤ V ) =

∫
Φ

(
v − µ1

σ1

)
fV (v)dv = EV

(
Φ

(
v − µ1

σ1

))
Using this identity and setting σ1 = 1/φ1 and that µ1 = −φ0/φ1, we have that

Lik(obs) =

n∏
i=1

[
1− Φ

(
φ0 + φ1(β0 + β1Xi)√

φ20 + φ21ΣL

)]1−RY

×

f(Yi|Xi)Φ

φ0 + φ1(β0 + β1Xi) + φ1α1ΣL
[
σ2 + α2

1ΣL
]−1

(Yi − α0 − α1(β0 + β1Xi)− α2Xi)√
φ20 + φ21(ΣL − α2

1Σ2
L [σ2 + α2

1ΣL]
−1

)

R
Y

This expression contains 9 parameters, but we cannot simultaneously identify all param-
eters. Suppose we set

A = φ1α1ΣL B = σ2 + α2
1ΣL C = α0 + α1β0 D = α1β1 + α2

E = φ0 + φ1β0 F = φ1β1 G = φ2
0 + φ2

1ΣL

Then we can rewrite the observed data likelihood as:

Lik(obs) =

n∏
i=1

N(Yi;C +DXi, B)Φ

E + FXi + A
B (Yi − C −DXi)√
G− A2

B

R
Y [

1− Φ

(
E + FXi√

G

)]1−RY

Therefore, we can represent the 9 parameters as 7 parameters in the expression for the
observed data likelihood, and the 7 parameters are estimable. We must fix 2 parameters
in order for the remaining parameters to be (weakly) identified.

Suppose we fix φ0 and φ1. Then we can (weakly) identify all 7 remaining parameters
under LMAR. However, suppose that we had observed Y for all subjects. In this case, we
would need fix 4 parameters out of (α0, α1, α2, σ

2, β0, β1,ΣL) in order for the remaining
3 parameters to be identified. Therefore, the model fit without any outcome missingness
requires some parameters to be fixed that do not need to be fixed in the LMAR-based
model in order to achieve (weak) identifiability. Curiously, we have more information
about the parameter set under LMAR than if we had observed Y for all subjects. It
is worth noting that when we instead fix four parameters in (α0, α1, α2, σ

2, β0, β1,ΣL),
the resulting parameters A − G will be overidentified, but this should not present any
problems.

It is important to note that we cannot verify the form of the missingness model, and
here assumed missingness model results in additional parameters becoming identifiable
under LMAR. Therefore, the identification is a direct result of unverifiable assumptions,
and an analysis that relies on the missingness model being correct such that the outcome
model parameters would not be identified if the model were incorrect seems untrustworthy.
This provides further justification for excluding situations in which the parameters would
not be identifiable if there was not covariate or outcome missingness.

While technically identified, our imputation algorithm leads to convergence problems
when imputing under this LMAR model with only two fixed parameters (simulations not
shown). If we fix additional parameters, the proposed imputation algorithm has better
performance. In general, we do not expect our imputation algorithm to perform well
in settings where the model would not be identified or would be very weakly identified
if there were no covariate/outcome missingness. In such settings, we recommend fixing
additional parameters to achieve good identification properties before performing the
proposed imputation algorithm.
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S5.2 Example 1.2: linear mixed model example

We notice that the form of the measurement error model in the previous section is similar
to the usual structure of a linear mixed model with a random intercept except that the
outcome in the linear mixed model case is multivariate. Suppose we observe K > 1 values
of Y for each subject and we assume that elements of Y within subjects are independent
conditional that subject’s covariates and the random intercept. We model:

Yi|Xi, Li ∼ NK(α0 + 1Kbi + α2Xi, σ
2IK), bi ∼ N(0,ΣL)

Here, 1K corresponds to α1 in the previous measurement error model. Additionally, this
model assumes that β0 = β1 = 0. Therefore, three parameters from the model in the
previous section are fixed by design. The modeling assumptions imply the following joint
distribution: (

Yi
Li

)
= N

((
α0 + α2Xi

0

)
,

(
σ2IK + 1KΣL1TK 1KΣL

1TKΣL ΣL

))
Suppose we have no missingness in Y . In this case, the observed data likelihood can be
expressed as follows:

Lik
(obs)
NoMissing =

n∏
i=1

MVNK

(
Yi;α0 + α2Xi, σ

2IK + 1KΣL1TK
)

We can identify all four of these model parameters. We compare this to the situation with
the measurement error model with covariates in which 4 out of the 7 parameters needed to
be fixed in order to achieve identifiability. In this case, three of the 7 parameters are fixed
by design (α2 = 1K , β0 = β1 = 0), and we can identify an additional parameter due to
the compound symmetric structure of the variance for Y |X resulting from the repeated
measures within individuals. In this case, the model under no outcome or covariate
missingness is well-identified, and the proposed imputation approach can perform well
under some MAR and LMAR missingness scenarios.
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S6 Example 2: identifiability under LMAR for a mix-

ture of GLMs

In this section, we explore issues of identifiability for another simple modeling scenario.
Unlike the measurement error example, this example demonstrates a situation in which
the model is fully identified under no covariate/outcome missingness but has issues with
identifiability under a simple LMAR missingness mechanism. We present simulations
demonstrating evidence of identifiability-related numerical issues.

Suppose our model for outcome Y is a mixture of two GLMs and let C represent the
fully latent mixing variable. Within each latent class, we model the relationship between
Y and covariates X using a GLM. We will assume that C ⊥ X with P (Ci = 1|Xi) = ω.
We first suppose there is no covariate/outcome missingness. The observed data likelihood
takes the following form:

Lik
(obs)
NoMissing ∝

n∏
i=1

[ωf(Yi, |Xi, Ci = 1; θ) + (1− ω)f(Yi, |Xi, Ci = 2; θ)]

Assuming the distribution of Y |X,C depends on C and is an identifiable GLM in its own
right, then θ and ω are both identifiable.

Suppose now that we have latent-dependent missingness in the outcome for some
subjects. Let RY be a vector of indicators representing the response of Y . Let φ be the
parameter attached to the missingness model. We define pj(φ) = P (Ri = 1|Xi, Ci = j;φ)
for latent classes j = 1, 2. We can write the observed data likelihood as follows:

Lik(obs)(ν) ∝
n∏
i=1

∫ ∫
f(RY

i |Xi, Li;φ)f(Yi, |Xi, Ci; θ)f(Ci|Xi;ω)dY
(mis)
i dC

(mis)
i

∝
n∏
i=1

[p1(φ)f(Yi, |Xi, Ci = 1; θ)ω + p2(φ)f(Yi, |Xi, Ci = 2; θ)(1− ω)]R
Y
i

× [(1− p1(φ))ω + (1− p2(φ))(1− ω)]1−R
Y
i

S6.1 Example 2.1: RY is Independent of X (Nonidentifiable
Model)

First, we assume that RY is independent of X, so it only depends on C. Define p1(φ) =
expit(φ0 + φ1) and p2(φ) = expit(φ0). We can write the observed data likelihood as:

Lik(obs)(ν) ∝
n∏
i=1

[
eφ0+φ1

1 + eφ0+φ1
ωf(Yi, |Xi, Ci = 1; θ) +

eφ0

1 + eφ0
(1− ω)f(Yi, |Xi, Ci = 2; θ)

]RYi
[
− eφ0+φ1

1 + eφ0+φ1
ω + 1− eφ0

1 + eφ0
(1− ω)

]1−RYi

This likelihood can be reparameterized using A = eφ0+φ1

1+eφ0+φ1
ω and B = eφ0

1+eφ0
(1−ω), so we

can represent three of the model parameters using just two parameters. Therefore, we
will not be able to identify all three of φ1, φ0, and ω, but A and B can be identified. We
suppose that θ is of primary interest. In this example, we can still identify θ even though
we cannot identify φ1, φ0, and ω. We note that under MAR, φ1 = 0, and both φ0 and ω
are identified.

Under LMAR, we can identify A and B, but we cannot identify φ1, φ0, and ω. We
want to know whether A and B are enough to perform the imputation of C and Y . In
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order to impute Y , we will draw from f(Yi|Xi, Ci), which does not involve ω or φ. We
would impute C using:

P (Ci = 1|Xi, Yi) =

[
eφ0+φ1

1+eφ0+φ1
ωf(Yi|Xi, Ci = 1)

eφ0+φ1

1+eφ0+φ1
ωf(Yi|Xi, Ci = 1) + eφ0

1+eφ0
(1− ω)f(Yi|Xi, Ci = 2)

]RYi

×

[
ω(1− eφ0+φ1

1+eφ0+φ1
)f(Yi|Xi, Ci = 1)

ω(1− eφ0+φ1

1+eφ0+φ1
)f(Yi|Xi, Ci = 1) + (1− ω)(1− eφ0

1+eφ0
)f(Yi|Xi, Ci = 2)

]1−RYi

When we impute C and Y was observed, we are imputing using only functions of the
parameters that ARE identifiable. However, imputation when Y is missing requires
parameters that are not strictly identifiable. This may result in numerical issues within
the imputation algorithm.

While we cannot identify all three of φ1, φ0, and ω, we can identify the other two
parameters if we hold one parameter fixed. This provides a suggestion for imputation
under this unidentifiable model. We can fix values of one of the parameters and then
perform imputation. We can repeat this for different values of the fixed parameter and
explore the impact of the fixed parameter on model inference.

S6.2 Example 2.2: RY Depends on X (Identifiable Model)

Now, we assume that RY is not independent of X. Suppose we model p1(φ) = expit(φ0 +
φ1Xi + φ2) and p2(φ) = expit(φ0 + φ1X). We can write

Lik(ν) ∝
n∏
i=1

[
eφ0+φ1Xi+φ2

1 + eφ0+φ1Xi+φ2
ωf(Yi, |Xi, Ci = 1; θ) +

eφ0+φ1Xi

1 + eφ0+φ1Xi
(1− ω)f(Yi, |Xi, Ci = 2; θ)

]RY
i

×
[
− eφ0+φ1Xi+φ2

1 + eφ0+φ1Xi+φ2
ω + 1− eφ0+φ1Xi

1 + eφ0+φ1Xi
(1− ω)

]1−RY
i

When φ1 is nonzero, we can identify the model parameters. Therefore, additional com-
plexity in the missingness mechanism results in an identifiable model.
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S6.3 Simulation using nonidentifable model

We simulate a single dataset under a mixture of linear regressions model as in Simulation
3. We impose outcome missingness using the relation logit(P (Y is observed|X1, X2, C, Y )) =
φ0 + φ1C where φ0 = 1.1 and φ1 = −1.7. Therefore, we have that p1(φ) = expit(−0.6)
and p2(φ) = expit(1.1) (using notation from Section S6.1). This is a LMAR mechanism.
Define β to be the parameters of f(Y |X,C) and ω = P (C = 1|X).

We first perform our imputation algorithm using a correct working model structure
but without fixing values for φ0 and φ1. Previously, we showed in Section S6.1 that the
parameters φ0, φ1, and ω are not all identifiable. However, at each iteration of the impu-
tation algorithm, we can draw values of these three parameters. We perform 10 streams
of our imputation algorithm in which we impute values of Y and L. Figure S1(a) shows
the parameter draws for each iteration of the imputation algorithm. Different imputation
streams are shown with differently colored lines.

Figure S1: Drawn parameters in nonidentifiable model with no fixed parameters

(a) Parameter draws across 10 imputation streams
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(b) Gelman-Rubin diagnostics
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(c) Draws of A and B across 10 imputation streams
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Visually, we can see that we have some issues with convergence for φ1, φ0, and ω.
However, the draws for the β parameters (the parameters ultimately of interest) appear
to converge. One criterion for evaluating the convergence is the Gelman-Rubin statistic
Gelman and Rubin (1992). This statistic is calculated by comparing the variation of
the parameter draws within each stream to the variation between streams. For good
algorithms, the value of this statistic should move toward 1 as the number of iterations
increases, and values greater than 1.1 are generally considered to represent insufficient
convergence. Figure S1(b) shows the estimated Gelman-Rubin statistic for several
model parameters across iterations of the imputation algorithm. We do not include the
first 50 iterations in the calculations. The gray line represents a Gelman-Rubin statistic
of 1.1. While the draws for the β parameters are converging, we do not see convergence
for φ0, φ1, and ω. While we cannot identify φ0, φ1, and ω, we previously showed (with a
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different parameterization) that functions A and B of these parameters are identifiable.
Figure S1(c) shows the parameter draws for A and B, and we can see that these
parameters appear to converge nicely even though φ0, φ1, and ω do not.

Even though φ0, φ1, and ω are not all simultaneously identifiable, the parameter
related to the outcome model can be identified. In terms of the practical implications of
identifiability issues on inference, this hints that we may still be able to obtain reasonable
inference about the outcome model parameter in some cases. In this simulation, the β
parameters do appear to converge to values that are very close to the true values even in
the presence of convergence issues for the other parameters.

While we cannot identify φ0, φ1, and ω simultaneously, we can identify two of the
parameters if we fix values of the third. Fixing φ1, we perform imputation drawing values
for all other parameters. Figure S2 shows the resulting parameter draws across the 10
streams of imputation. When we fix φ1, we see good numerical convergence properties
for the other model parameters.

Figure S2: Parameter draws across 10 imputation streams when φ1 is fixed
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S6.4 Simulation using identifiable model

We now consider the setting where missingness in the outcome is generated using the
relation logit(P (Y is observed|X1, X2, C, Y )) = φ0 + φ1X1 + φ2X2 + φ3C where φ0 = 1.1,
φ1 = 0.5, φ2 = −0.5, and φ3 = −1.7. Again, this is a LMAR mechanism.

We first perform imputation of Y and L using the correct working model without
fixing any parameter values. Figure S3(a) shows the parameter draws for the 10 impu-
tation streams. We can see evidence of convergence issues for several model parameters.
However, we still see that the parameters of interest in θ appear to converge nicely near
their true values.

While the parameters may all be technically identifiable, we can sometimes run into
problems when the observed data log-likelihood surface is nearly flat with respect to one
or more parameters. Figure S3(b) shows the value of the observed data log-likelihood
for different values of φ0, φ3, and ω using the true values for all other parameters. The
plotted plane indicates the maximum of the observed data log-likelihood and the black
dot indicates the true values for the parameters. Fixing φ3 and φ0, we can see that the
shape of the log-likelihood with ω is fairly concave. However, the log-likelihood surface
as a whole is fairly flat across different combinations of φ0, φ3, and ω. When we fix the
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value of φ3, however, we can do a better job at estimating ω and φ0, resulting in improved
convergence performance as shown in Figure S3(c).

Figure S3: Drawn parameters in identifiable model

(a) Parameter draws with no fixed parameters
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(b) Log-Lik surface with respect to φ0, φ3, and ω
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(c) Parameter draws when φ3 is fixed
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S7 Implementation of the SMC imputation algorithm

In this section, we provide specifics for how we can implement the proposed imputation
algorithm for the three examples of latent ignorability considered in the main paper.
In each case, we will use notation defined in the main paper and use R−S as defined
in Property 3. We will assume we are using flat priors for all model parameters. This
assumption allows us to draw parameter values using maximum likelihood methods on
bootstrap samples of the data. In this section, we do not make a distinction between the
true and working models for f(X(t)|X(−t);ψ) in the notation, but it should be understood
that this may be a working version, and these covariate distributions together may not
correspond to a valid joint distribution. Imputation using the proposed chained equations
method will replace the steps for imputing the missing covariate and outcome data with
steps where we specify and impute from corresponding regression models.

S7.1 Drawing from a Distribution Known up to Proportionality

In the main paper, we present distributions we can use to impute missing values for latent
variables, but in some cases these distributions may only known up to proportionality.
We call the form of the distribution known up to proportionality the “kernel” of the dis-
tribution. Many methods exist in the literature for drawing from a distribution knowing
only the kernel. In this section, we will briefly describe two such methods.

Rejection sampling
The strategy of rejection sampling is to determine a easy-to-draw-from distribution that
dominates a hard-to-draw-from distribution. We can then draw values from the hard-
to-draw-from distribution by instead drawing from the easy-to-draw-from distribution
distribution many times and accepting the first draw that satisfies a simple inequality. In
more concrete terms, rejection sampling algorithms involve determining a simple density,
g(v), that dominates the distribution known up to proportionality, k(v), such that we
can write

k(v) ≤ Kg(v) ∀ v

where K is a constant greater than or equal to 1. Once we have specified a density g(v)
that dominates k(v), we can obtain a draw V from k(v) by performing the following:

1) Generate V from g(v) and U from U(0, 1)

2) Accept draw V if U ≤ k(V )
Kg(V )

. Otherwise, we reject draw V and return to 1) (Robert

and Casella, 2004).
If Kg(v) is much larger than k(v), the rejection sampling algorithm may require many
repetitions in order to accept a draw. Therefore, the choice of g(v) and K is important to
the efficiency of the imputation algorithm. In the following sections, we propose possible
choices for K and g(v) in specific settings, but more efficient choices may be available.

Rejection sampling methods for imputation knowing the distribution only up to pro-
portionality were considered in Bartlett et al. (2014), which used dominating function

f(X
(t)
i |X

(−t)
i ;ψ) for covariate imputation. We can use a similar approach for covariate

imputation as discussed below.

Metropolis-Hastings
Like the rejection sampling algorithm, the goal of the Metropolis-Hastings algorithm is
to obtain a draw values of variable V from a distribution known only up to proportion-
ality, k(v). The strategy is to first specify a proposal distribution, p(v|u), from which we
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propose new values for the variable V = v given the most recent drawn value of V , u.
We can obtain a draw V from k(v) by performing the following:

1) Generate v∗ from p(v|u). Generate U ∼ U(0, 1)

2) Define acceptance probability α = min
(

1, p(u|v
∗)k(v∗)

p(v∗|u)k(u)

)
. Accept draw V = v∗ if

U ≤ α.
Otherwise, we reject draw V = v∗ and keep V = u (Robert and Casella, 2004).

One popular choice of proposal distributions is a normal distribution centered at the most
recent imputation u and with variance as a tuning parameter.
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S7.2 Linear mixed model with random intercept

Suppose our outcome model is a linear mixed model with a latent random intercept,
bi. Let outcome Yi be a vector of K > 1 normal outcomes and Xi be a K × d matrix
containing a column of 1’s and covariates for subject i. We model

Yi|Xi, bi ∼ NK(Xiθ + 1Kbi,Σ) and bi|Xi ∼ N(0, ω2)

We have the following joint distribution:(
Yi
bi

)
= N

((
Xiθ

0

)
,

(
Σ + 1Kω

21TK 1Kω
2

1TKω
2 ω2

))
In this modeling framework, random intercept bi is missing for all subjects. Suppose we
also have missingness in Y and X that may be MAR or LMAR. We also suppose that
Σ = σ2IK , so the outcomes are independent across subjects given b and X. We can use
the imputation algorithm described below to impute missing values in bi, X, and Y . We
can initialize the missing values of the covariates by drawing from the observed values
with equal probability. We can initialize the latent random intercept using the Best Lin-
ear Unbiased Predictors (BLUPs) from a complete case fit.

Imputation of latent variable

Assuming MAR
Under MAR and using (2), we want to impute missing bi from

f(bi|Xi, Yi; ν) ∝ f(Yi|Xi, bi; θ)f(bi|Xi;ω) = f(bi|Xi, Yi; ρ)

Using properties of multivariate normal random variables, we have that

f(bi|Xi, Yi; ρ) = N(1TKω
2
[
Σ + 1Kω

21TK
]−1

(Yi −Xiθ), ω
2 − 1TKω

2
[
Σ + 1Kω

21TK
]−1

1Kω
2)

We can draw values of Σ, ω2, and θ by fitting a linear mixed model to a bootstrap sample
of the most recently imputed data and then draw missing bi from f(bi|Xi, Yi; ρ).

Assuming LMAR
Under LMAR and using (2), we want to impute missing bi from

f(bi|Xi, Yi, R
−S
i ; ν) ∝ f(R−Si |Y

(obs)
i , X

(obs)
i , bi;φ

−S)f(bi|Xi, Yi; ρ) (S7.1)

This distribution depends on R−Si , the subset of Ri corresponding to variables that are

LMAR. We must specify a model for R−Si given Y
(obs)
i , X

(obs)
i , and bi. When R−Si contains

missingness indicators for multiple variables (e.g. outcome at different time-points), this
may be a challenging task. Several authors have discussed specification of this missingness
model in the context of missingness dependent on random effects, and we will not discuss
this choice further here (Wu and Carroll, 1988; Yang et al., 2008).

The distribution in (S7.1) is only known up to proportionality, but we can use one
of the two above methods for drawing from a distribution knowing only the kernel. For
example, we may use Metropolis-Hastings methods to draw values of bi with a normal
proposal distribution centered at the most recent imputed value of bi and with some small
variance, τ , which will be a tuning parameter. Given τ , the most recent imputation of
D, and draws of ρ and φ, we can use the above kernel to impute bi under LMAR.

Another option is to use rejection sampling. We note that f(R−Si |Y
(obs)
i , X

(obs)
i , bi;φ

−S)
is a probability, so it is less than or equal to 1. We define

k(bi) = f(R−Si |Y
(obs)
i , X

(obs)
i , bi;φ

−S)f(bi|Xi, Yi; ρ)
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and can define dominating function g(bi) = f(bi|Xi, Yi; ρ) with K = 1. g(bi) is a normal
distribution with mean and variance as functions of model parameters, so this distribu-
tion is easy to draw from. We can then perform the following algorithm to impute bi:

1) Generate V from g(bi) = f(bi|Xi, Yi; ρ) and U from U(0, 1)

2) Accept draw V = bi if U ≤ f(R−Si |Y
(obs)
i , X

(obs)
i , V ;φ−S).

Otherwise, we reject draw V and return to 1).
Under LMAR, we can obtain a draw of ρ using the same approach as under MAR. We can

obtain a draw of φ by fitting our specified model for the missingness given Y
(obs)
i , X

(obs)
i ,

and bi to a bootstrap sample of the data and using the most recent imputation of bi.

Imputation of missing covariates and outcomes

Covariates
We also note that Xi as defined in the above equation is a matrix. In the notation de-
veloped in Section 2, covariate set Xi represents a vector. Therefore, we have some
notation mismatch that we will need to rectify in order to apply (4) for imputation. Let

Z
(t)
i represent the vector of elements corresponding to covariate t for subject i and Z

(−t)
i

be a stacked vector containing the remaining elements of Xi that are not in Z
(t)
i . We note

that by assumption, bi|Xi does not depend on Xi. Using this notation, we can impute

missing Z
(t)
i (and therefore the missing values for the tth variable in Xi) using:

f(Z
(t)
i |Z

(−t)
i , Yi, bi; ρ) ∝ f(Yi|Xi, bi; θ)f(bi|Xi;ω)f(Z

(t)
i |Z

(−t)
i ;ψ)

∝ f(Yi|Xi, bi; θ)f(Z
(t)
i |Z

(−t)
i ;ψ)

In this case, f(Z
(t)
i |Z

(−t)
i ;ψ) is a multi-dimensional distribution. For example, f(Z

(t)
i |Z

(−t)
i ;ψ)

may be multivariate normal.

We can obtain imputations of Z
(t)
i by performing a block-wise Metropolis-Hastings

draw. In settings with where f(Z
(t)
i |Z

(−t)
i ;ψ) is not easy to draw from, we recommend this

approach. Alternatively, we could perform the following rejection sampling procedure.

Define k(Z
(t)
i ) = f(Yi|Xi, bi; θ)f(Z

(t)
i |Z

(−t)
i ;ψ) and g(Z

(t)
i )) = f(Z

(t)
i |Z

(−t)
i ;ψ). We want to

find a constant that dominates f(Yi|Xi, bi; θ) across different values of Z
(t)
i . We note that

f(Yi|Xi, bi; θ) is multivariate normal by assumption, and its maximum value across all
covariate values will occur when Yi = Xiθ+ 1Kbi, at which point f(Yi|Xi, bi; θ) = 1√

|2πΣ|
.

Define K = 1√
|2πΣ|

. We can then impute Z
(t)
i jointly using the following rejection sam-

pling algorithm:

1) Generate V from g(Z
(t)
i ) = f(Z

(t)
i |Z

(−t)
i ;ψ) and U from U(0, 1)

2) Accept draw V = Z
(t)
i if

U ≤ f(Yi|Xi, bi; θ)

K
|
Z

(t)
i =V

= e−
1
2

(Yi−Xiθ−1Kbi)
TΣ−1(Yi−Xiθ−1Kbi)|

Z
(t)
i =V

Otherwise, return to 1).

We note that the above imputation algorithm allows the elements of Z
(t)
i to take dif-

ferent values. Suppose the covariate represented by Z
(t)
i is time-independent. Then we

would want the elements of Z
(t)
i to be equal. We can impose this property by defining

f(Z
(t)
i |Z

(−t)
i ;ψ) such that it requires all of the elements of Z

(t)
i to be equal. In this case,

the rejection sampling algorithm would be simple to perform.
Imputation using the above approach requires draws of Σ, θ, and ψ. We can use the
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drawn values of Σ and θ from the step for imputing the random intercept. However, sup-
pose we want to draw new values for the parameters conditional on the imputed values
of b. Since we assumed that Σ = σ2IK (so the elements of Yi are independent given bi),
we can draw Σ and θ by fitting a linear regression model to Y treating the elements of
Yi as independent and using offset term bi for all elements in Yi (to a bootstrap sample

of the data). We can draw ψ by fitting a model for Z
(t)
i |Z

(−t)
i to a bootstrap sample.

Outcomes
We note that Yi is a vector in this case. We can impute the tth element of Yi using:

f(Y
(t)
i |Y

(−t)
i , bi; ρ) ∝ f(Yi|Xi, bi; θ)

Since the elements of Yi are multivariate normal by assumption, we can easily work out
this conditional distribution. This distribution simplifies further when we assume that

the elements of Yi are independent given bi and Xi. In this case, we can impute Y
(t)
i from

a normal distribution with mean equal to the tth element of Xiθ and variance σ2. We can
draw θ and σ2 as we do for covariate imputation.

Final analysis
We can use the above imputation method to obtain M imputed datasets. We can then
fit a model to each of the imputed datasets and use Rubin’s combining rules to obtain a
single set of parameter estimates and standard errors. As discussed in the main paper,
there are several different ways we can perform the final analysis for any given imputed
dataset. If we choose to use the imputed random intercept values, we can estimate θ by
fitting a linear regression with offset term bi. For this fit, we can either use or ignore the
imputed D. We can estimate ω2 as the sample variance of the imputed bi. Alternatively,
we can ignore the imputed random intercept values and fit linear mixed model using the
imputed values for D. This approach may be simpler and more stable in practice, but it
may not be fully efficient in the LMAR setting as shown in Property 4.

Brief comparison to some existing methods
Imputation-based approaches for dealing with missing linear mixed model outcome

data under MAR and a joint model have been explored extensively in the literature.
The proposed approach under MAR is very similar to existing Gibbs Sampler-based ap-
proaches (e.g. Schafer and Yucel, 2002). Unlike other Gibbs Sampling approaches, our
method for imputing bi involves drawing parameters from a distribution that does not
condition on the imputed values for bi and imputes missing data sequentially rather than
jointly. Additionally, in our application of the proposed methods, we assume flat priors
for all model parameters. This assumption substantially simplifies the step for drawing
model parameters in practice. However, the greatest distinction between our method and
existing methods is the SMC imputation approach to imputing the covariates, which uses
the outcome information but does not require a joint model for the covariates.

Yang et al. (2008) describes a two-stage imputation approach for linear mixed models
with intermittent MAR outcome missingness and LMAR dropout. Unlike Yang et al.
(2008), we propose performing imputation of all outcome missingness (from different
causes) in a single stage. Missing outcome values are imputed under the same model
regardless of the mechanism generating the missingness, and information about different
sources of missingness can be incorporated into the missingness model used to impute the
latent variable. Additionally, Yang et al. (2008) takes a Gibbs Sampling approach, and
the steps for drawing the parameter values can be complicated and themselves require
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methods for sampling from distributions known only up to proportionality. In the pro-
posed algorithm, parameter draws under uniform priors can be obtained my fitting models
using MLE methods to a bootstrap sample of the data. This substantially simplifies the
parameter drawing.
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S7.3 Cox proportional hazards cure model algorithm

We define indicator Gi that takes the value 1 if subject i is not cured and 0 if sub-
ject i is cured. Let Ti be the observed event or censoring time and δi be the event
indicator. We have Yi = (Ti, δi). Let Xi be a set of covariates. The CPH mixture
cure model consists of 1) a logistic regression for the probability of being “not cured”
[logit(P (Gi = 1|Xi)) = ω0 + ω1Xi] and 2) a Cox proportional hazards model for the event
hazard in the “not cured” group

[
λ(t) = λ0(t)eθXi

]
.

We recall that non-cure status, Gi, is partially latent. For subjects with observed
events (δi = 1), we know that Gi = 1. We may also assume that subjects still at risk by
a certain time t are cured (Gi = 0). For all other subjects, Gi is unknown. In addition
to missingness in cure status, suppose we have ignorable or latent ignorable missingness
in covariates X. We can use the imputation algorithm proposed in the main paper to
iteratively impute values for the latent variable and the covariates. Below, we present
some details for the approach for imputing the latent variable and covariates. We can
initialize the missing values of the latent variable and the covariates from drawing from
the observed values with equal probability.

Imputation of latent variable

Assuming MAR
We will first assume that missingness in Xi is MAR. In this case, we can impute Gi using
the following relation derived from (2):

logit(P (Gi = 1|Xi, Ti, δi = 0; ρ)) =ω0 + ω1Xi − Λ0(Ti)e
θXi

This imputation distribution depends on the most recent imputed values for Xi, parame-
ters ω and θ, and the cumulative baseline hazard function, Λ0(t). An identical imputation
distribution was proposed in Beesley et al. (2016) for imputing cure status in the Cox
proportional cure model setting under MAR. In Beesley et al. (2016), Λ0(t) is estimated
using a weighted Breslow-type estimator at each iteration of the imputation algorithm,
and we can use the same estimation approach here. We can draw values for ρ by fitting
a Cox proportional cure model to a bootstrap sample of the most recent imputed data or
by fitting a cure model to the most recent imputed data and draw ρ from a multivariate
normal distribution with mean and variance from the cure model fit.

Assuming LMAR
Now, we assume missingness in Xi is LMAR. From (2), we can impute Gi using

logit(P (Gi = 1|Xi, Ti, δi = 0, Ri; ν)) =ω0 + ω1Xi − Λ0(Ti)e
θXi

+ log

[
f(R−Si |Ti, δi = 0, X

(obs)
i , Gi = 1;φ−S)

f(R−Si |Ti, δi = 0, X
(obs)
i , Gi = 0;φ−S)

]
This distribution differs from the one used under MAR by an offset term on the logit
scale. When the difference in the missingness distribution by cure status is small, the
offset term will be near zero. This distribution again depends on the cumulative baseline
hazard function, Λ0(t), which can be estimated as in the MAR case. It also depends on
ω, θ, and φ. We also must specify a model for missingness of the set of indicators that
are conditionally dependent on Li, R

−S
i .

We can draw θ and ω using the same approach as in the MAR case (ignoring the
most recent imputations of L). We can draw φ by fitting a model for R−Si to a bootstrap
sample of the data using the most recent imputation of cure status.

37



Imputation of missing covariates
By (4), we can impute missing values for covariate X(t) using:

f(X
(t)
i |X

(−t)
i , Yi, Gi; ρ) ∝ [P (Gi = 1|Xi;ω)f(Yi|Xi, Gi; θ)]

Gi P (Gi = 0|Xi;ω)1−Gif(X
(t)
i |X

(−t)
i ;ψ)

∝
[

eω0+ω1Xi

1 + eω0+ω1Xi

(
λ0(Ti)e

θXi
)δi

e−Λ0(Ti)e
θXi

]Gi [ 1

1 + eω0+ω1Xi

]1−Gi
f(X

(t)
i |X

(−t)
i ;ψ) (S7.2)

When X
(t)
i is categorical, we can easily use the above expression to derive the full form

of the distribution used for imputation. For example, imputation of a binary covariate.
Then imputation can proceed using the following relation:

P (X
(t)
i = 1|X(−t)

i , Yi, Gi; ρ) =
(S7.2)|

X
(t)
i =1

(S7.2)|
X

(t)
i =1

+ (S7.2)|
X

(t)
i =0

When X
(t)
i has continuous structure, the imputation distribution may only be known

up to proportionality. We can use Metropolis-Hastings methods to draw missing X
(t)
i

from (S7.2) using a proposal distribution centered at the most recent imputation of

X
(t)
i . Alternatively, we could use the following rejection sampling algorithm: Define

k(X
(t)
i ) =(S7.2). We note that

k(X
(t)
i ) ≤

[(
λ0(Ti)e

θXi
)δi
e−Λ0(Ti)e

θXi
]Gi

f(X
(t)
i |X

(−t)
i ;ψ)

≤ [f(Ti|Xi, Gi = 1)]δi f(X
(t)
i |X

(−t)
i ;ψ)

Suppose we define
K = (1− δi) + δi max

X
(t)
i

f(Ti|Xi, Gi = 1)

so K takes the value 1 if δi = 0 and takes the maximum of the event time distribu-
tion function across X

(t)
i if δi = 1. This maximum can usually be easily calculated

given parameter values when the baseline hazard is parametric. We further define

g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ). Then we have that k(X

(t)
i ) ≤ Kg(X

(t)
i ). Then we can obtain

a draw of X
(t)
i from k(X

(t)
i ) through the following algorithm:

1) Generate V from g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ) and U from U(0, 1)

2) Accept draw V = X
(t)
i if U ≤

[
eω0+ω1Xi

1+eω0+ω1Xi
(λ0(Ti)e

θXi)
δie−Λ0(Ti)e

θXi

]Gi[
1

1+eω0+ω1Xi

]1−Gi

K
.

Otherwise, return to 1).
Imputation by (S7.2) requires draws of ω, θ, and ψ. We can either use the draws of ω and
θ obtained in the imputation step for the latent variable or draw new values. If we draw
new values, we should use methods that use the most recent imputation of L. We can
then draw θ by fitting a Cox regression to a bootstrap sample of the subjects with im-
puted G = 1. We can draw ω by fitting a logistic regression to G for a bootstrap sample of

the entire dataset. We can draw ψ by fitting a model for X
(t)
i |X

(−t)
i to a bootstrap sample.

Final analysis
We can use the above imputation method to obtain M imputed datasets. We can then
fit a model to each of the imputed datasets and use Rubin’s combining rules to obtain a
single set of parameter estimates and standard errors. There are several different ways
we can perform the final analysis for any given imputed dataset. If we choose to use the
imputed G, we can estimate θ by fitting a Cox regression to the subjects with imputed
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G = 1, and we can estimate ω by fitting a logistic regression for G. For these fits, we can
either use or ignore the imputed D. Alternatively, we can ignore the imputed G and fit
cure model using the imputed values for D. We recommend this last approach.

Brief comparison to some existing methods
Beesley et al. (2016) explores SMC covariate imputation for the Cox proportional

hazards cure model under MAR assumptions, and our proposed algorithm under MAR
is very similar with some small differences in the methods for drawing parameters. We
believe we are the first to explore covariate imputation for the Cox proportional hazards
cure model under LMAR assumptions.
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S7.4 Mixture of GLMs

Suppose our outcome Y is generated from a mixture of K generalized linear models
(GLMs) where K is known. Let Ci be a fully latent mixing variable indicating which
element of the mixture distribution generated the observation for subject i. Missing-
ness in Ci can be viewed as MCAR with probability 1. We suppose the distribution of
Yi|Xi, Ci = j is modeled using a GLM (e.g. normal, logistic, Poisson) for j = 1, . . . , K
and that the distribution for Ci|Xi is independent of Xi.

We suppose that we have ignorable or latent ignorable missingness in Y and/or X.
We can use the proposed methods for imputation. We can initialize the missing values
of the covariates from drawing from the observed values with equal probability. We can
initialize C based on the estimated probabilities P (Ci = 1) obtained by fitting a latent
class model to the complete case data.

Imputation of latent variable

Assuming MAR
The imputation distribution for the latent mixing variable Ci under MAR can be easily
worked out based on the kernel in (2) to be multinomial with corresponding probabilities
as follows:

P (Ci = j|Xi, Yi, Ri; ν) =
f(Yi|Xi, Ci = j; θ)P (Ci = j;ω)∑K
l=1 f(Yi|Xi, Ci = l; θ)P (Ci = l;ω)

We can obtain a draw of θ and ω by fitting a latent class model to a bootstrap sample
the most recently imputed data. In R, we can perform this latent class model fit using
the package flexmix (Leisch, 2004). This package will estimate θ and ω for a specified
number of latent classes, but it cannot differentiate between the different class labels.
Therefore, we will need to impose a restriction to relate the latent classes identified by
flexmix to values of C.

Assuming LMAR
Under LMAR, we can impute missing values of Ci using:

P (Ci = j|Xi, Yi, Ri; ν) =
f(R−Si |X

(obs)
i , Ci = j, Y

(obs)
i ;φ−S)f(Yi|Xi, Ci = j; θ)P (Ci = j|Xi;ω)∑K

l=1 f(R−Si |X
(obs)
i , Ci = l, Y

(obs)
i ;φ−S)f(Yi|Xi, Ci = l; θ)P (Ci = l|Xi;ω)

This imputation distribution requires us to model R−Si . Draws of θ and ω can be ob-
tained as in the MAR case. We can obtain a draw of φ by fitting a model for R−Si to a
bootstrap sample of the data using the most recent imputation of C.

Imputation of missing covariates and outcome

Covariates
By (4) and since f(Ci|Xi;ω) = f(Ci;ω) by assumption, we can impute missing values for
covariate X(t) using:

f(X
(t)
i |X

(−t)
i , Yi, Ci; ρ) ∝ f(Yi|Xi, Ci; θ)f(X

(t)
i |X

(−t)
i ;ψ)

When X
(t)
i is categorical, we can easily use the above expression to derive the full form

of the distribution used for imputation. Otherwise, we can use methods to draw from
the above distribution known only up to proportionality. For example, we can use the
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following rejection sampling algorithm: Define k(X
(t)
i ) = f(Yi|Xi, Ci; θ)f(X

(t)
i |X

(−t)
i ;ψ)

and g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ). Define

K = max
X

(t)
i

f(Yi|Xi, Ci; θ)

Then we have that k(X
(t)
i ) ≤ Kg(X

(t)
i ). Then we can obtain a draw of X

(t)
i from k(X

(t)
i )

through the following algorithm:

1) Generate V from g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ) and U from U(0, 1)

2) Accept draw V = X
(t)
i if U ≤ f(Yi|Xi,Ci;θ)

K
.

Otherwise, return to 1).
Imputation using the above method requires draws of ω, θ, and ψ. We can draw θ by
fitting a GLM (or multiple GLMS) to a bootstrap sample of subjects using the most
recent imputation of C. We can draw ω by looking at the proportion of subjects with
C = j for each j in a bootstrap sample of the data. We can draw ψ by fitting a model

for X
(t)
i |X

(−t)
i to a bootstrap sample.

Outcome
We will assume here that Y is univariate. By (3), we can impute missing values for
outcome Y using:

f(Yi|Xi, Ci; ρ) = f(Yi|Xi, Ci; θ)

We can obtain a draw for θ as in covariate imputation and then draw missing values of
Y simply using the GLM corresponding to the most recent imputed value for Ci.

Final analysis
We can use the above imputation method to obtain M imputed datasets. We can then
fit a model to each of the imputed datasets and use Rubin’s combining rules to obtain a
single set of parameter estimates and standard errors. There are several different ways
we can perform the final analysis for any given imputed dataset. If we choose to use the
imputed C, we can estimate θ by fitting a GLM for f(Y |C,X) using the imputed C and
either using or ignoring the imputed D. Alternatively, we can ignore the imputed C and
fit a latent class model (e.g. using flexmix ) using the imputed values for D. This second
approach would require us to use an identifying assumption to determine which cluster
identified by the latent class modeling corresponds to which value of C. We recommend
this second approach.

Brief comparison to some existing methods
Many authors have explored similar imputation approaches for mixtures of GLMs

under MAR assumptions, but comparatively little work has been done exploring LMAR
missingness in this setting (e.g. Vidotto et al., 2015). Jung (2007) considers the case
of a multivariate outcome related to a categorical latent mixing variable and proposes a
MCMC imputation scheme that iteratively imputes missing values of the outcome and C.
Additionally, Jung (2007) assumes the outcome is independent of the covariates given C.
Our proposed approach can be viewed as a generalization of the approach in Jung (2007)
that can handle LMAR missingness in the outcome and covariates while also allowing
for conditional dependence between Y and X. In addition, the approach in Jung (2007)
relies on a valid joint distribution for the covariates, while our approach side-steps that
issue.
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