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Summary

Models that involve an outcome variable, covariates, and latent variables are frequently
the target for estimation and inference. The presence of missing covariate or outcome data
presents a challenge, particularly when missingness depends on the latent variables. This
missingness mechanism is called latent ignorable or latent missing at random and is a
generalisation of missing at random. Several authors have previously proposed approaches
for handling latent ignorable missingness, but these methods rely on prior specification of
the joint distribution for the complete data. In practice, specifying the joint distribution
can be difficult and/or restrictive. We develop a novel sequential imputation procedure for
imputing covariate and outcome data for models with latent variables under latent ignorable
missingness. The proposed method does not require a joint model; rather, we use results
under a joint model to inform imputation with less restrictive modelling assumptions. We
discuss identifiability and convergence-related issues, and simulation results are presented
in several modelling settings. The method is motivated and illustrated by a study of head
and neck cancer recurrence. Imputing missing data for models with latent variables under
latent-dependent missingness without specifying a full joint model.

Key words: chained equations; latent ignorability; latent missing at random; multiple imputation;
substantive model compatible imputation

1. Introduction

Models that involve latent or partially latent variables in addition to an outcome variable
and covariates are frequently the target for estimation and inference. For example, in the
Cox proportional hazards mixture cure model, partially latent cure status describes whether
individuals are at risk for the event of interest. Cure status is only partially latent because
subjects with observed events are known to be non-cured. Another popular model with latent
variables is the linear mixed model, where fully latent random effects account for correlation
within clusters.

Additional considerations arise when dealing with missing covariates and/or outcomes
in the presence of latent variables. Many authors have explored the issue of missing data
for models with latent variables under assumptions that missingness is independent of the
latent variable given the observed data (e.g. Beesley et al. 2016). In this paper, we explore
a generalisation of this missingness mechanism that allows covariate/outcome missingness
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to depend on the latent variable, which is a missing not at random (MNAR) mechanism
(Little & Rubin 2002). Previous examples of such mechanisms are called latent ignorable
or latent missing at random (LMAR) missingness (Frangakis & Rubin 1999; Harel 2003;
Harel & Schafer 2009). For example, suppose we model a longitudinal outcome using a
mixed model. One common LMAR scenario in the literature relates dropout to the random
effect, which can be viewed as a measure of an individual’s propensity to drop out.

In general, the underlying missingness mechanism can never be determined from the
data alone, and inference under MNAR may be sensitive to unverifiable assumptions about
the missingness mechanism. Additionally, inference under MNAR is susceptible to under-
identification or weak identification of the model parameters (Little 1995; Molenberghs,
Beunckens & Sotto 2008). In this paper, we consider a particular MNAR missingness mech-
anism (LMAR) in which missingness depends on unknown information only through the
latent variable, which by assumption has a structured relationship with the observed vari-
ables. Therefore, we may view LMAR missingness as a somewhat mild departure from
MAR. Still, we must keep these issues in mind when handling missing data under LMAR.

One approach for handling missing data is to analyze only the fully observed subset of
the data (complete case analysis). When missingness is LMAR, this approach will generally
produce biased results (Little & Rubin 2002). Several authors have discussed likelihood-
based approaches for linear mixed models with missingness dependent on the random effect
(e.g. Wu & Carroll 1988; Little 1995). These methods often involve an EM algorithm or a
likelihood that has integrated out the latent variable.

Multiple imputation is a common general approach for dealing with missing data.
One approach to multiple imputation requires one to specify a joint distribution for all the
variables and use that joint distribution for imputation, usually in a Gibbs sampling-type
algorithm. Each variable with missing values can be sequentially imputed using its conditional
distribution, which is determined by the joint distribution. The distribution of the sampled
parameters can then be used for inference. Several authors have proposed approaches for
handling latent ignorable missingness in specific joint modelling settings (Jung 2007; Yang,
Lu & Shoptaw 2008; Lu, Zhang & Lubke 2011). Harel (2003) proposes a non-iterative
imputation approach for dealing with general latent-dependent missingness under a joint
model.

Existing imputation methods under latent ignorability, however, are limited in their
applicability. The main drawback of the joint modelling approach to imputation is that
specification of the joint distribution may be difficult or too restrictive, particularly when
we have many covariates of different types. Indeed, Gelman (2004) argues that ‘having a
joint distribution in the imputation is less important than incorporating information from
other variables and unique features of the dataset (e.g. bounds, skip patterns, nonlinearity,
interactions, etc.).’As such, there is a need to consider methods for imputing variables under
latent ignorability that incorporate less restrictive assumptions about the joint model.

Chained equations imputation is an alternative to joint modelling in which variables
are imputed iteratively in a series of univariate imputation steps (Raghunathan 2001; Van
Buuren et al. 2006). These steps are usually accomplished using standard regression models
that can incorporate additional features of the data, and these regressions as a set usually
do not correspond to a valid joint distribution. This approach is simple and flexible, but it is
less coherent than joint modelling and may not incorporate assumptions about the outcome
model directly. Most literature on chained equations assumes that missingness is independent
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of all unobserved information, called missing at random (MAR) (Little & Rubin 2002), and
some authors have explored particular limited MNAR settings (e.g. Van Buuren 2007; Little
2009a; Giusti & Little 2011). An alternative approach proposed in Bartlett et al. (2014)
called substantive model compatible (SMC) imputation incorporates the outcome model
into the chained equations imputation procedure but does not require the user to specify a
valid joint distribution for the covariates, leading to improved properties over conventional
chained equations but additional flexibility over joint modelling. Similar findings are given
in White & Royston (2009) and Beesley et al. (2016). Beesley et al. (2016) explores SMC
imputation for a particular modelling setting with latent variables, but we have not found any
literature exploring chained equations or SMC imputation under latent ignorable missingness
in general.

In this paper, we develop a novel sequential imputation method that can handle MAR and
LMAR covariate and outcome missingness for models with latent or partially latent variables
and that does not require a joint model. The proposed method imputes the latent variable as
part of the missing data, allowing the latent variable to be directly used when imputing the
missing covariate/outcome values. We first consider the more restrictive setting where the
joint model is fully specified. We use results under a joint model to inform the structure of the
imputation distributions and the method for drawing parameters in the proposed algorithm
without requiring specification of the joint model. The proposed approach is very flexible
and can accommodate either a chained equations-type approach to imputation or a SMC
imputation approach that is more strongly informed by the outcome model.

Many works have explored MAR-based imputation in settings with latent variables
under a joint model (e.g. Schafer 1997; Schafer & Yucel 2002; Chung, Flaherty & Schafer
2006) or using less restrictive assumptions (Beesley et al. 2016). While the proposed method
can be applied under MAR or LMAR, the primary novelty consists of the application to the
LMAR setting. Existing methods for handling missing data in the LMAR setting assume
there is a fully-specified joint model, and this work serves as an extension of these existing
methods with less restrictive modelling assumptions. The SMC imputation approach has been
previously explored in the context of MAR covariate imputation in Bartlett et al. (2014), but a
general imputation algorithm for handling missingness in multiple variables and particularly
under MNAR assumptions has not previously been considered. Additionally, the LMAR
setting presents a range of identifiability-related difficulties that is not present in the usual
MAR setting.

This work is motivated by a study of cancer recurrence in patients treated for head
and neck cancer. In this study, many covariates of interest have substantial missingness;
in particular, HPV status (human papillomavirus) has roughly 50% missingness. Previous
work has explored imputation of these data under MAR assumptions (Beesley et al. 2016),
but there is a belief that an induced association between missingness in HPV status and an
underlying latent variable (cancer cure status) may be present. While this work is motivated
by this particular problem, the statistical methods can be applied in a wide range of modelling
settings.

In Section 2, we define latent ignorability. In Sections 3 and 4, we describe the proposed
imputation approach. In Section 5, we present simulations that evaluate the performance of
our method under a variety of scenarios. In Section 6, we apply the proposed methods to
the motivating study of time to recurrence in patients with head and neck cancer. In Section
7, we present a discussion.
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2. Latent ignorability

Suppose that the goal is to make inference about a model for outcome Y given covariates
X and a latent (or partially latent) mixing variable, L. For example, the outcome model
may be a linear mixed model with a latent random intercept. We may also be interested in
the model for L|X . We restrict our attention to situations in which, if all of the covariate
and outcome information were observed, the outcome model would be fully identified,
and estimation using likelihood-based methods would be possible and lead to consistent
parameter estimates. We consider missingness in X and/or Y, and we allow missingness to
be related to the latent variable, L.

Let vector D�
i = (X�

i ,Y�
i ) represent the (possibly incomplete) data for subject i. We

assume Di and Li are independent across subjects. Let RD
i be a vector corresponding to

whether each element of Di is observed and RL
i be an indicator for whether Li is known

(can be 0 for all subjects). Define R�
i = (RD�

i , RL
i ). For any vector Vi, let V(obs)

i and V(mis)
i

be the observed and missing elements of Vi. Assume we have independence of (D, L, R)
across i.

We assume that missingness in Di is independent of D(mis)
i and RL

i such that

f (RD
i |Di, Li, RL

i ;�D)= f (RD
i |D(obs)

i , Li;�
D) (1)

We assume that �D is distinct from all other model parameters. We call assumption (1)
the latent missing at random (LMAR) or latent ignorability assumption. This missingness
mechanism was first studied in Frangakis & Rubin (1999) and is a special case of latent
ignorability explored in Harel (2003) and Harel & Schafer (2009). In longitudinal data
analysis, a similar mechanism relating missingness in Y to latent random effects in a linear
mixed model has been explored by many authors including Wu & Carroll (1988), Follmann
& Wu (1995), Little (1995), and McCulloch, Neuhaus & Olin (2016). Since Li is latent or
partially latent by definition, the mechanism in (1) is a type of MNAR, and when (1) does
not depend on Li, the mechanism reduces to MAR. We can view LMAR as a generalisation
of MAR with less restrictive assumptions.

We now consider assumptions regarding missingness in L, which may be latent or
partially latent. We make a subtle distinction between partially latent and partially missing
variables. Latent variable L can be viewed as a modelling construct representing unobserved
or perhaps unobservable quantities. The observed values of the partially latent L are just a
function of the observed data, D(obs), and therefore contain no additional information. For
example, known values of the partially latent cure status in a Cox proportional hazards cure
model are entirely determined by the event indicator and the event/censoring time for each
subject. In this way, partially latent variables are different from partially missing variables,
which may contain additional information in their observed values. However, we will treat
latent and partially latent variables as if they were missing data for the purposes of this
method.

When Li is fully latent, we can view missingness in Li as missing completely at random
(MCAR) with probability of missingness equal to 1. When Li is partially latent, we allow
missingness in Li to depend on D(obs)

i (so L is MAR) such that

f (RL
i |Di, Li,RD

i ;�L)= f (RL
i |D(obs)

i ;�L) (2)
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Figure 1. Variable relationships under latent ignorability.

Figure 1 shows the assumed relationships between variables. The arrows represent depen-
dence. For example, RL may depend on X(obs) and Y(obs).

2.1. Example 1, linear mixed model with a random intercept:

Suppose our model for multivariate outcome Yi is a linear mixed model with a latent
random intercept, bi, and covariates Xi. This model is commonly used for longitudinal data,
where the outcome is measured within individuals over time. In such a setting, outcome
missingness is particularly common due to dropout. Many authors have described scenarios
in which dropout may be related to the random effects (Wu & Carroll 1988; Little 1995;
Yang et al. 2008, e.g.). In this example, bi represents an individual’s propensity to drop out.
This is a LMAR mechanism with Li =bi. Covariate missingness may also be LMAR.

2.2. Example 2, Cox proportional hazards mixture cure model:

The Cox proportional hazards (CPH) mixture cure model is used in event time analysis
when some (cured) subjects are unable to experience the event of interest (Sy & Taylor 2000).
For subjects with events, cure status is known, and it is unknown for censored subjects.
Therefore, cure status is partially latent. Missingness in cure status is entirely determined by
observed information, so its missingness can be viewed as MAR. Suppose we have covariate
missingness. We can imagine scenarios in which covariate missingness may depend on the
underlying cure status. For example, suppose covariate information is collected through a
patient survey. Cured subjects may be more or less likely to answer certain survey questions,
resulting in an association between missingness and cure status. Additionally, cure status
may be related to an unmeasured confounder that is related to missingness. This will induce a
dependence between missingness and cure status. We consider a similar LMAR mechanism
in our data application.
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2.3. Example 3, mixture of generalised linear models:

Suppose our outcome Y is generated from a mixture of K generalized linear models
(GLMs). Let Ci be a fully latent mixing variable indicating which element of the mixture
distribution generated the observation for subject i. Missingness in Ci can be viewed as
MCAR with probability 1. If covariate or outcome missingness is related to C , missing-
ness is LMAR. For example, suppose our data are collected using K different populations.
For example, we may collect data and multiple different locations and not record the loca-
tion. The covariate/outcome missingness rates may vary by population, resulting in LMAR
missingness.

3. Imputation of missing data

In this section, we develop an imputation algorithm for dealing with ignorable and latent
ignorable covariate and outcome missingness. First, we explore imputation under a joint
model for all the variables. We treat the latent variable as part of the missing data, and we
use the form of the joint model to determine how each variable with missing values should
be imputed. In particular, we determine which variables need to be included as predictors
for each imputation model and describe the components of the joint model (e.g. outcome
model, missingness model, covariate model) that are used for imputing each variable. We
then use these results to guide our choice of sequential imputation models when a joint
model is not specified.

3.1. Imputation under a joint model

Suppose that the data are directly modelled using a fully-specified joint model as follows:

f (D, L,R; �)=
n∏

i=1

f(Ri|Yi,Xi, Li;�) f(Yi|Xi, Li;�) f(Li|Xi;�)f (Xi;�) (3)

where �= (�, �, �, �) is the set of all model parameters. We assume a flat prior for � such
that �, �, �, and � are all a priori independent (so they are distinct). The factorisation (3) is
a form of shared parameter model, where the latent variable is related both to missingness
and to the distribution for Yi (Little & Rubin 2002).

We can impute missing values of D and L by iteratively drawing the missing val-
ues from their posterior predictive distributions, D(mis) ∼ f (D(mis)|D(obs), L,R) and L(mis) ∼
f (L(mis)|D, L(obs),R). This leads to draws from the joint posterior predictive distribution,
f (D(mis), L(mis)|D(obs), L(obs),R) (Little & Rubin 2002). Define � = (�, �, �). In the Supple-
mentary Materials, we formally show the following ignorability properties under a joint
model:

Property 1: Under MAR and LMAR, we can ignore R= (RD, RL) when imputing D
from f (D(mis)|D(obs), L,R)

Property 2: Under MAR (but not under LMAR), we can ignore R= (RD, RL) when
imputing L from f (L(mis)|D, L(obs),R)

Property 3: Suppose that missingness in subset S of {D, L} is MAR. Let RS denote
the set of missingness indicators for S and R−S denote the missingness indicators for the
remaining variables in {D, L}. We can ignore RS when imputing L from f (L(mis)|D, L(obs),R)
provided a parameter distinctness property holds.
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Rather than drawingD(mis) and L(mis) from their posterior predictive distributions directly,
we can instead impute each variable with missingness sequentially through a series of
univariate imputation steps. Each time we impute a given variable, we treat the most recent
imputations of the other variables as observed data. In practice, we specify the full conditional
distribution of missing variable V given all other variables (with parameter v ) and obtain
a draw from the posterior predictive distribution of V by (i) drawing v from its posterior
distribution and (ii) drawing missing values of V from its full conditional distribution at
the drawn v. After iteration, the imputations will approximate draws of D(mis) and L(mis)

from their posterior predictive distributions. Below, we present the form of the imputation
distribution (step 1) for imputing different types of variables using the above ignorability
properties.

3.1.1. Predictive distribution of the latent variable

Define RS and R−S as in Property 3 and assume the distinctness property expressed
in the Supplementary Materials holds. Then, we can ignore RS when imputing L. Using
assumptions (1)–(2) and joint model (3) and treating terms that do not depend on Li as
constants, we have

f (Li|Xi,Yi,R−S
i ; �)∝ f (R−S

i |Y(obs)
i ,X(obs)

i , Li;�
−S )

× f (Yi|Xi, Li;�) f (Li|Xi;�)
(4)

Under MAR, equation (4) simplifies to

f (Li|Xi,Yi,R−S
i ; �)∝ f (Yi|Xi, Li;�) f (Li|Xi;�)∝ f (Li|Xi,Yi;�)

When treated as a function of Li, expression (4) is proportional to the desired imputation
distribution. We will call the distribution known up to proportionality the kernel. The kernel
in (4) involves the distribution of R−S

i under LMAR but not under MAR. In order to impute
Li under LMAR using (4), we need to specify a model for R−S

i .
In some particular settings (for example, when Li is binary), we can use (4) to directly

derive the full conditional distribution. When Li is continuous, the distribution may only be
known up to a proportionality constant. In this case, we may need to use more advanced
techniques to impute Li using (4). Many methods exists in the literature for drawing from a
distribution knowing only the kernel. These include the Metropolis-Hastings algorithm and
rejection sampling. For examples of such methods applied in the context of imputation, see
Bartlett et al. (2014) and the Supplementary Materials.

3.1.2. Predictive distributions of covariates and outcome

In Property 1, we show that we can impute missing values of D ignoring the missingness
mechanism under MAR and LMAR. We can similarly impute missing values of individual
variables in D from their full conditional distributions without conditioning on R.

We first determine the distribution for imputing missing outcome values. We note that
Y may be uni- or multivariate. Suppose that we are imputing the tth element of Yi, denoted
Y (t)

i . Let Y(−t)
i represent the terms in Yi excluding Y (t)

i . Using joint model (3), we can write
the conditional distribution for imputing Y (t)

i under MAR and LMAR as

f (Y (t)
i |Y(−t)

i ,Xi, Li;�)∝ f (Yi,Xi, Li;�)∝ f (Yi|Xi, Li;�) (5)

© 2019 Australian Statistical Publishing Association Inc.



220 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

When Y (t)
i =Yi, the conditional distribution is equal to f (Yi|Xi, Li;�).

Suppose that we are imputing the tth covariate in Xi, denoted X (t)
i . Let f (X (t)

i |X(−t)
i ;�)

be the conditional distribution of X (t)
i given all other variables in Xi. Under joint model (3),

we can write the conditional distribution for imputing X (t)
i under MAR and LMAR as

f (X (t)
i |X(−t)

i ,Yi, Li;�)∝ f (Yi|Xi, Li;�) f (Li|Xi;�)f (X (t)
i |X(−t)

i ;�) (6)

Expressions in (5) and (6) provide the kernels of the distributions we can use to impute
outcomes and covariates in D. The kernels take the same form under MAR and LMAR, and
they do not involve a model R directly. As with the latent variable imputation, distributions
(5) and (6) may only be known up to proportionality, requiring more advanced statistical
methods to draw imputations.

3.2. Relaxing the modelling assumptions

The imputation distributions derived previously were developed assuming a fully-
specified joint model as in (3), but often we will not want to specify such a joint model
in practice. Specification of the joint model may be particularly difficult or restrictive in
the setting with missingness in covariates of different types. Rather than specifying an ex-
plicit joint distribution, we propose imputing missing values using (4)–(6) to inform the
distributions we use in practice either used an SMC imputation-type approach or a chained
equations-type approach. In practice, the resulting conditional distributions for either method
may not together correspond to a valid joint distribution for all the variables.

Following SMC imputation proposed in Bartlett et al. (2014), we may specify only the
modelling components needed for each imputation. Imputation of missing values of Y using
(5) requires a model for Y|X, L, and imputation of missing L using (4) further requires a model
for L|X and, under LMAR, a model for missingness. Imputation of missing covariate X (t)

i using
(6) requires us to specify f (X (t)

i |X(−t)
i ;�). This approach involves incorporating the outcome

model structure (in this case, models for Y|X, L and L|X (and possibly missingness)) to do
the imputation, but we can avoid specifying f (X|�) by instead specifying f (X (t)

i |X(−t)
i ;�) for

covariates with missingness using simple regression models. An additional appealing feature
of SMC imputation is that it has additional flexibility over joint modelling in terms of imputa-
tion model specification, and it also involves imputing with a model that is congenial with the
final analysis model. By uncongeniality, we mean that the imputation model and the final data
analysis model are incompatible (Meng 1994). Since SMC imputation directly uses the final
analysis model in the imputation procedure, it is attractive from a congeniality point of view.

Imputation using SMC imputation may be difficult when distributions are known only
up to proportionality. An alternative, simpler chained equations imputation approach involves
using (4)–(6) solely to define what predictors are needed for each imputation. Specifically,
(4) suggests that some function of Y, X, and possibly R (under LMAR) should be used as
predictors when imputing L. The expression in (5) suggests we need X, L, and Y(−t) when
imputing Y (t), and (6) suggests we need Y, L, and X(−t) when imputing X (t). We can then
perform imputation (by specifying a regression model for imputing each variable) using
standard software for chained equations imputation (Raghunathan 2001; Van Buuren et al.
2006). Such an approach would allow for increased flexibility in model specification (for
example, by including quadratic or interaction terms) while still allowing L to be used
in the imputation. We may view the working model actually used for imputation as an
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approximation to the tru conditional model as in (4)–(6). We recommend imputing L using
the kernel form in (4) if possible, and our proposed algorithm will use this method.

The imputation distributions, therefore, can be easily modified to accommodate settings
without a joint distribution. Indeed, Gelman (2004) argues that ‘having a joint distribution
in the imputation is less important than incorporating information from other variables and
unique features of the dataset (e.g. zero/nonzero features in income components, bounds, skip
patterns, nonlinearity, interactions)’. The SMC imputation and chained equations approaches
allow these unique features of the data to be directly incorporated in the imputation models.
This approach allows for greater flexibility in the specification of the imputation distributions
compared to joint modelling.

When we replace the true predictive distributions under a joint model with a working
imputation model, the corresponding parameters may no longer correspond to the parameters
under the joint model. In the next section, we will describe how we can perform imputation
using these working imputation distributions in practice.

3.3. Sequential imputation method

We propose a sequential imputation method in which each variable with missingness
is imputed one-by-one in an iterative algorithm. At each step, we obtain a single imputation
of a variable V from the working posterior predictive distribution of V (with parameter v )
by (i) drawing v from its posterior distribution and (ii) drawing missing values of V from
its full conditional distribution at the drawn v.

Just before the imputation step for each variable, we draw the parameters necessary
for the imputation from a current estimate of the parameters’ working posterior predictive
distribution. Let X (t) and Y (t) be defined as before. Let f̃ indicate a working distribution
(usually a regression model) used for imputation that may not necessarily be equal to the
distribution under a joint model. In the imputation step for each variable, we treat the most
recent imputations of the other variables as observed. At each iteration, we draw missing data
and parameters using one of the two following algorithms. An in-depth description and moti-
vation for our proposed parameter draw methods is included in the Supplementary Materials.
In describing how to perform the parameter draws, we assume flat priors for all parameters.

SMC imputation algorithm:

Impute L : [�, �]∼ f (�, �|D, L(obs))�−S ∼ f (�−S |D, L,R−S )

L(mis)
i ∝ f (R−S

i |Y(obs)
i ,X(obs)

i , Li;�
−S )f (Yi|Xi, Li;�)f (Li|Xi;�)

(7)

Impute Y (t) :�∼ f (�|D, L)Y (t,mis)
i ∝ f (Yi|Xi, Li;�)

Impute X (t) : [�, �]∼ f (�, �|D, L)�̃t ∼ f̃ (�̃t|X)

X (t,mis)
i ∝ f (Yi|Xi, Li;�)f (Li|Xi;�)f̃ (X (t)

i |X(−t)
i ; �̃t)

When imputing L, we can obtain a (approximate) draw [�, �] by fitting our outcome model
to a bootstrap sample of [D, L(obs)] using methods that treat L as latent. For example, suppose
our outcome model is a linear mixed model. We can obtain this draw by fitting a linear mixed
model to a bootstrap sample of the data. We can obtain a draw of �−S by fitting a model for
R(−S) to a bootstrap sample of the most recent imputed data (including imputed L). When
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imputing Y (t), we can obtain a draw of � by fitting a model for Y|X, L using a bootstrap
sample of the most recently imputed data. When imputing X (t), we can obtain a draw of
�̃t by fitting the corresponding model to a bootstrap sample of X. In the Supplementary
Materials, we provide details regarding how we can perform each of the imputation steps
for the examples discussed Section 2.

Chained equations imputation algorithm:

Impute L : [�, �]∼ f (�, �|D, L(obs))�−S ∼ f (�−S |D, L,R−S )

L(mis)
i ∝ f (R−S

i |Y(obs)
i ,X(obs)

i , Li;�
−S )f (Yi|Xi, Li;�)f (Li|Xi;�)

(8)

Impute Y (t) : �̃t ∼ f̃ (�̃t|D, L)Y (t,mis)
i ∝ f̃ (Yi|Xi, Li; �̃t)

Impute X (t) :�̃t ∼ f̃ (�̃t|X,Y, L)X (t,mis)
i ∝ f̃ (X (t)

i |X(−t)
i ,Yi, Li; �̃t)

We can impute L as before. When imputing Y and X, we draw the parameters of interest
by fitting corresponding models to bootstrap versions of the most recently imputed data.

Iteration of the above algorithms is required even if we have only one variable in D
with missing values. We can ignore the imputation steps for each fully observed variable.
We initialise the missing values for each variable in D by drawing from the observed values
with equal probability. We can initialise missing L using the distribution f (L|X) obtained
from a fit to the data with fully observed D (using methods that treat L as latent).

For both of the above algorithms, we assume that missingness is LMAR. Suppose
instead that we know that missingness is MAR. We can apply the above algorithms but
using that f (Li|Xi,Yi,R−S

i ; �) ∝ f (Yi|Xi, Li;�)f (Li|Xi;�) instead to impute Li and without
drawing values for �−S . In this way, the above development also gives us an imputation
algorithm for dealing with missing data for models with latent variables under MAR.

We perform the imputation procedure m times to construct m filled-in datasets (with m
different initialisations). We then estimate � by fitting our model of interest to each of the
imputed datasets ignoring R. When we perform this analysis, we may choose to use only
imputed D, only imputed L, or both. We can then use Rubin’s combining rules to obtain
a single set of parameter estimates and errors from which we make the desired inference
(Rubin 1987).

It is important to consider the impact of ignoring R for each one of these final analysis
strategies. Harel & Schafer (2009) shows that when imputed L is included in the final
analysis, we can ignore R. This result holds true under MAR and LMAR and whether or
not imputed D is included in the final analysis. In Properties 4–5 in the Supplementary
Materials, we explore the ignorability of R when performing a final analysis using only the
imputed D. We show that R is ignorable under MAR and that such an analysis ignoring R
under LMAR is valid but not fully efficient. Even with a potential loss of efficiency, we
may still choose to perform our final analysis ignoring the imputed L as this may provide
improved numerical stability of the algorithm and more robustness to misspecification of
the imputation models, and we may have little loss of efficiency in practice.

4. Identifiability and convergence

As with all missing data methods involving MNAR assumptions, one big concern is how
to model the missingness mechanism (which will be unverifiable) (Molenberghs, Beunckens
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& Sotto 2008). Another concern is whether the resulting model parameters are identifiable
(Little 1995). Even when the parameters are technically identified, weak identifiability may
also have implications on the numerical convergence of the proposed imputation algorithm.
In this section, we briefly comment on some identifiability- and convergence-related issues
that arise in the application of the proposed imputation algorithm.

4.1. Modelling the missingness mechanism

Under LMAR, we must specify a model for RD (or some subset R−S following
Property 3). While we can conceive of many different models for RD, the model parameter
ν = (�, �) may not always be identifiable. In some specific settings (e.g. Wu & Carroll
1988; Miao, Ding & Geng 2016), identifiability has been demonstrated analytically, but
exploring identifiability can be difficult in general. Wang, Shao & Kwang Kim (2014) re-
lates identifiability to the existence of instrumental variables. We explore identifiability in
several particular modelling settings in the Supplementary Materials. In this paper, we will
not attempt to prove identifiability properties for general LMAR mechanisms. Instead, we
will provide some guidance for applying the proposed methods in the presence of possible
identifiability issues.

In order to reduce the potential for identifiability issues, many authors (e.g. Little
2009b) recommend that we avoid overburdening the missingness model with extra variables.
However, if we leave out variables that should be in the model, we may introduce bias in
estimating the parameter of interest as seen in our simulations. In our simulations, imputation
with LMAR outcome missingness tended to be more susceptible to identifiability problems
than covariate missingness. Some authors recommend performing a sensitivity analysis in
which we specify the form of the missingness model and carry out analysis using fixed
values for �D (e.g. Little 2009b). We can then perform the desired analysis many times
using different values for �D. This approach allows us to directly study the impact of �D

on inference and avoid estimating the parameters of the missingness model. Additionally,
MNAR missingness mechanisms are known to be particularly sensitive to assumptions about
the structure of the missingness mechanism, and we could perform a sensitivity analysis
using different missingness model structures (Little 1995). We take this approach in our
head and neck cancer example. These sensitivity approaches allow the proposed methods
to be applied while avoiding some of the pitfalls of MNAR settings.

4.2. A note on convergence

When the conditional models used for imputation correspond to a well-defined joint
distribution with identified parameters, our imputation algorithm is expected to converge to
draws of the joint posterior distribution for the missing data (Liu et al. 2013; Bartlett et al.
2014; Hughes et al. 2014). When the imputation models do not correspond to a valid joint
distribution (called incompatibility), our imputation method is not guaranteed to converge.
However, several works have demonstrated that we can often still obtain good inference
under incompatible imputation models (Van Buuren et al. 2006; Van Buuren 2007).

We will not attempt to prove convergence or consistency properties for the proposed
algorithm beyond what exists in the chained equations and SMC imputation literature. Instead,
we will use simulation and some minor analytical exploration to identify settings that may be
particularly susceptible to concerns about convergence. In particular, identifiability concerns

© 2019 Australian Statistical Publishing Association Inc.



224 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

related to the missingness model have implications on the convergence of the algorithm.
When parameters are not identifiable (in terms of the observed data likelihood having a
unique maximiser), we may not expect the imputation algorithm to converge properly. Even
when the parameters are all identifiable, we may run into numerical issues if the observed
data likelihood is nearly flat. These issues appear to be of greater concern for outcome
missingness. We note that in our experience, even when we have numerical convergence
issues for � (missingness model) and � (model for L|X), the draws for � (model for Y|X, L)
may still converge to reasonable values. In such cases, the identifiability-related numerical
problems may not strongly impact the draws for the primary parameter of interest, �. It is
important to monitor the convergence of all model parameters, and we may still be able
to make inference about � in the presence of some mild identifiability-related convergence
issues for �. We explore identifiability-related convergence issues further in Section 5 and
the Supplementary Materials.

5. Simulation study

In this section, we present a simulation study with four parts. In the first three parts,
we evaluated how the proposed algorithm performs in terms of bias, empirical variance,
and coverage for outcome model parameters in linear mixed models (Simulation 1), CPH
cure models (Simulation 2), and normal mixture models (Simulation 3). In Simulation 4,
we explored convergence under a variety of modelling scenarios. Details can be found in
the Supplementary Materials. A fifth/sixth set of simulations included in the Supplementary
Materials (i) explored the impact of including or ignoring the imputed L in the final analysis
and (ii) assessed the impact of ignoring latent-dependent missingness in the CPH cure model
setting in more detail, but we will not discuss these simulations further here. Unless otherwise
specified, imputations were drawn using the SMC imputation method rather than the chained
equations method.

5.1. Simulations 1–3: exploring bias, variance, and coverage

In Simulation 1, we simulated 1,500 datasets with 500 subjects each under a linear
mixed model with a random intercept. Each dataset contained two binary covariates, X1 and
X2. We drew random intercept bi ∼ N (0, 1) for each individual and generated Y for each
individual at each of three time-points using the model Yij =�Intercept +�X1 Xi1 +�X2 Xi2 +
�TimeTimeij +bi +eij for j =1, 2, 3 with independent N (0, 1) errors, �Intercept =�X1 =�X2 =0.5,
and �Time =0.2. Additional simulation details are available in the Supplementary Materials.
We imposed ∼50% missingness in X2 under four different mechanisms: (A) MAR dependent
on baseline outcome value Y1, (B) LMAR with moderate dependence between missingness
and the random intercept, (C) LMAR with strong dependence on the random intercept,
and (D) LMAR with dependence on the random intercept and the baseline outcome value
Y1.

We then imputed values of X2 and b using methods discussed in this paper under
various working models. When we imputed under a LMAR working model, we modelled
the covariate missingness indicator RD

i using a logistic regression with different functions of
b, X1, and Y as predictors. When we assumed MAR, we imputed L ignoring the missingness
mechanism. For each simulated dataset, we created 10 imputed datasets. We then fit a
linear mixed model to each of the imputed datasets and use Rubin’s rules to obtain a single
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set of parameter estimates and their corresponding variances for each simulation. We then
computed the bias, empirical variance, and coverage rates across the 1,500 simulations. To
improve readability, we list coverage rates in Table S1 in the Supplementary Materials.
We note that the APPROX simulations take a chained equations imputation approach in
which we impute X2 conditional on X1, L and Y using a logistic regression form, so the
imputation distributions for X2 and L in this case do not correspond to a coherent joint
distribution.

Table 1 shows the results for Simulation 1. Simulations 2–3 included in the Supple-
mentary Materials are similar. Simulations 1–3 generally demonstrated that the proposed
imputation approach can result in essentially unbiased estimates of outcome model parame-
ters with nominal (or perhaps slightly conservative) coverage when the working missingness
model contains the true model. We demonstrated that complete case analysis and imputation
assuming MAR can sometimes result in biased parameter estimates when missingness is at
least moderately associated with the latent variable. The bias created by incorrectly assuming
MAR appears larger when L is a fully latent compared to partially latent. Imputation under
LMAR assumptions can correct this bias when we use a working model containing the
truth and can sometimes reduce the bias compared to imputation assuming MAR when the
working model is close to the truth. When missingness was truly MAR, simulations sug-
gested that imputation under a LMAR model that did not contain the true model can create
bias. However, simulations showed that LMAR methods with working models containing
the true MAR model can still be applied with little or no loss of efficiency (when the LMAR
model is well-identified) in this setting. Very complicated working missingness models can
sometimes result in a loss of efficiency, but this loss was generally small.

5.2. Simulation 4: exploring identifiability and convergence

Even if the model parameters are technically identifiable, one additional concern is
that the likelihood surface near the maximiser may be nearly flat, which can lead to issues
with model fitting and convergence of the imputation algorithm. In order to better under-
stand possible identifiability-related convergence issues, we performed a set of simulations
evaluating convergence of the imputation algorithm under a variety of modelling scenarios.

We simulated data under a linear mixed model, cure model, and mixture of normals
respectively as described in the Supplementary Materials. We imposed ∼50% covariate or
outcome missingness (but not both) using MAR or LMAR mechanisms. For each simulated
dataset, we performed imputation using a correct working missingness model structure. For
each outcome model parameter, we evaluated parameter convergence using the Gelman-
Rubin convergence statistic (Gelman & Rubin 1992).

Simulations demonstrated good convergence properties under LMAR/MAR covariate
and MAR outcome missingness. Under LMAR outcome missingness, the outcome model
parameters appeared to converge, but missingness model parameter (in particular, for the
latent variable) showed some evidence of convergence problems. The drawn values of
the outcome model parameters appeared reasonable (with small or no bias) even when
the missingness model parameters do not converge, but this may not be true in general.
When we fixed the value of the parameter related to the latent variable in the missing-
ness model, we saw a large improvement in the convergence properties of the imputation
algorithm.
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Table 1. Linear mixed model estimates using proposed imputation methods.

Method Parameters

Intercept X1 X2 Time

Contains truth# Bias (Var)† Bias (Var) Bias (Var) Bias (Var)

Full data – 0 (1.2) 0 (1.0) 0 (1.1) 0 (0.10)

Missingness in X2 dependent on Y1 and independent of b (Mechanism A)
Complete Case – −78 (2.0) −9 (1.8) −9 (1.9) 19 (0.20)
MAR Imputation Yes 0 (1.8) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: b* No 6 (1.4) 2 (1.1) −9 (1.9) 0 (0.10)
LMAR Imputation: b, X1, b×X1 No 6 (1.4) 1 (1.1) −9 (2.0) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.8) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 Yes 0 (1.9) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: b, X1, b×X1, Y1 Yes 0 (1.9) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: b, Y2 No 7 (1.4) 2 (1.1) −11 (1.8) 0 (0.10)
MAR APPROX Imputation Yes −1 (1.9) 0 (1.1) 0 (3.0) 0 (0.10)
LMAR APPROX Imputation: b No 5 (1.5) 1 (1.1) −8 (2.1) 0 (0.10)

Missingness in X2 moderately dependent on b (Mechanism B)
Complete Case – −24 (2.4) 0 (2.1) 0 (2.2) 0 (0.19)
MAR Imputation No −2 (1.7) 0 (1.1) 2 (2.4) 0 (0.10)
LMAR Imputation: b Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: b, X1, b×X1 Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 No 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: b, X1, b×X1, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
MAR APPROX Imputation No −3 (1.7) 0 (1.1) 3 (2.4) 0 (0.10)
LMAR APPROX Imputation: b Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)

Missingness in X2 strongly dependent on b (Mechanism C)
Complete Case – −48 (2.5) 0 (1.8) 0 (2.0) 0 (0.22)
MAR Imputation No −7 (2.0) 0 (1.1) 8 (2.8) 0 (0.10)
LMAR Imputation: b Yes 0 (1.5) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, X1, b×X1 Yes 0 (1.5) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.1) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 No 0 (1.6) 0 (1.1) 0 (2.1) 0 (0.10)
LMAR Imputation: b, X1, b×X1, Y1 Yes 0 (1.5) 0 (1.1) 0 (2.1) 0 (0.10)
MAR APPROX Imputation No −8 (2.0) 0 (1.1) 9 (2.8) 0 (0.10)
LMAR APPROX Imputation: b Yes 0 (1.5) 0 (1.1) 0 (2.1) 0 (0.10)

Missingness in X2 dependent on b and Y1 (Mechanism D)
Complete Case – −73 (2.0) −5 (1.6) −5 (1.6) 8 (0.21)
MAR Imputation No −8 (2.0) −1 (1.1) 10 (2.8) 0 (0.10)
LMAR Imputation: b No 3 (1.4) 0 (1.1) −5 (1.7) 0 (0.10)
LMAR Imputation: b, X1, b×X1 No 3 (1.4) 0 (1.1) −5 (1.6) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.5) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 No 0 (1.6) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, X1, b×X1, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, Y2 No 3 (1.4) 0 (1.1) −6 (1.7) 0 (0.10)
MAR APPROX Imputation No −9 (2.1) −1 (1.1) 11 (2.9) 0 (0.10)
LMAR APPROX Imputation: b No 3 (1.4) 0 (1.1) −4 (1.7) 0 (0.10)

Notes: *Variables after colon represent linear predictors in working model for RD
i .

†All values in table multiplied by 100. Var indicates empirical variance.
#Indicates whether working missingness model contains true model.
APPROX: Imputation of X2 uses a logistic regression with predictors X1, b, Y1, Y2, Y3 (instead of kernel
(6)).
Complete Case: Analysis excluding subjects with missing X2.
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6. Application to head and neck cancer data

We consider data from a cohort study of N = 1,226 patients treated for head and neck
squamous cell carcinoma (HNSCC). This study was conducted by the University of Michigan
Head and Neck Specialised Program of Research Excellence (SPORE) and followed patients
who were treated at the University of Michigan Cancer Center for HNSCC between Nov.
2003 and July 2013. Details about this study can be found in Duffy et al. (2008) and
Peterson et al. (2016). After treatment, patients were followed for recurrence. Covariate
information was also collected at baseline. We are interested in studying the association
between covariates and the time to HNSCC recurrence after treatment. For head and neck
cancer, it has been established that some patients can be cured by treatment, and these
patients will never experience a recurrence (Taylor 1995). We model the time to HNSCC
recurrence using a Cox proportional hazards cure model.

HPV status was unavailable for 55.8 % of the subjects, and small amounts of missingness
were present in other study variables. Beesley et al. (2016) explores imputation-based
approaches for dealing with the missing covariate data for this study. The analysis in Beesley
et al. (2016), however, assumes that covariate missingness is MAR and does not depend on
underlying cure status. An induced LMAR association between missingness in HPV status
and cure status (denoted G) could occur if HPV missingness is related to an unmeasured
variable that is also related to the cure probability. In this study, the HPV missingness rate
is related to calendar time (in a nonlinear way), and calendar time may be associated with
the cure rate. Additionally, a more experienced doctor may be more likely to recommend
HPV testing and to have cured patients. We cannot control for this effect due to a lack of
detailed information about treating doctors for each patient. Given the large rate of miss-
ingness in HPV status, we are interested to explore the robustness of model inference to
our assumptions about the missingness mechanism.

We are interested in comparing model inference assuming MAR to inference obtained
when missingness in HPV is assumed to be LMAR. We assume missingness in all other
variables is MAR. We consider three working assumptions for HPV status missingness: (A)
MAR, (B) missingness dependent only on cure status, and (C) missingness dependent on
cure status, age at diagnosis, cancer site, and (grouped) enrollment year. Assumptions (B)
and (C) are modelled using logistic regression.

We apply our proposed SMC imputation method to impute the missing data. In this
setting, G is the partially latent cure status, Y is the censored event time data (time and
indicator), and X is the set of covariates. Here, the model Y |G = 1,X is a Cox regression
and the model for G|X is a logistic regression. We impute cure status G using (4). As
suggested in Beesley et al. (2016), we impute missing values of each pth covariate X (p)

using a standard regression model with X(−p), G , G × Ĥ 0(T ), and G × Ĥ 0(T ) ×X(−p) as
predictors. Here, Ĥ 0(T ) is an estimate of the cumulative baseline hazard of having an event
in the non-cured group. As in Beesley et al. (2016), we will draw values for the regression
model’s parameter without conditioning on the imputed X (p) (as is done in usual chained
equations). Variables included in X (p) for the imputation include log-transformed number
of sexual partners, PNI, comorbidities, smoking habits, alcohol use, age, cancer site, cancer
stage, gender, and enrollment period (2003–2008, 2009–2011, 2012–2013).

Table 2 presents the cure model fit under different assumptions about the missingness
mechanism. We see that the fits are nearly identical. The largest difference between the fits
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Table 2. Cure model fits to head and neck data under different missing model assumptions.

Missingness model: MAR* LMAR1* LMAR2*

Logistic regression, odds ratio (95% CI)

Age/10 1.14 (1.00, 1.31)† 1.14 (0.99, 1.32) 1.14 (1.00, 1.30)†

Cancer stage
I/Cis (ref)
II 1.25 (0.57, 2.74) 1.25 (0.54, 2.89) 1.25 (0.57, 2.74)
III 2.36 (1.18, 4.72)† 2.32 (1.16, 4.61)† 2.33 (1.18, 4.63)†

IV 3.32 (1.74, 6.33)† 3.30 (1.74, 6.26)† 3.30 (1.80, 6.03)†

Cigarette use
Never (ref)
Current 1.46 (0.97, 2.18) 1.47 (0.96, 2.24) 1.46 (0.98, 2.16)
Former 1.27 (0.85, 1.90) 1.28 (0.85, 1.93) 1.28 (0.84, 1.95)

HPV status
Negative (ref)
Positive 0.34 (0.19, 0.58)† 0.35 (0.19, 0.64)† 0.34 (0.20, 0.56)†

Comorbidities
None (ref)
Mild 1.14 (0.77, 1.69) 1.15 (0.79, 1.68) 1.15 (0.79, 1.68)
Moderate 1.66 (1.08, 2.56)† 1.66 (1.07, 2.58)† 1.66 (1.07, 2.55)†

Severe 1.94 (1.10, 3.43)† 1.94 (1.08, 3.48)† 1.97 (1.08, 3.57)†

Cancer site
Larynx (ref)
Hypopharynx 1.93 (0.88, 4.22) 1.93 (0.86, 4.30) 1.99 (0.91, 4.33)
Oral Cavity 1.24 (0.81, 1.90) 1.24 (0.81, 1.89) 1.24 (0.81, 1.90)
Oropharynx 1.68 (0.94, 3.02) 1.64 (0.90, 2.97) 1.68 (0.95, 2.96)

Cox proportional hazards, hazard ratio (95% CI)

Age/10 1.08 (0.98, 1.19) 1.08 (0.98, 1.18) 1.08 (0.98, 1.19)
Cancer stage

I/Cis (ref)
II 1.67 (0.70, 3.95) 1.62 (0.69, 3.82) 1.61 (0.66, 3.88)
III 2.42 (1.22, 4.79)† 2.40 (1.24, 4.66)† 2.42 (1.21, 4.84)†

IV 2.76 (1.48, 5.16)† 2.76 (1.47, 5.18)† 2.77 (1.45, 5.29)†

Cigarette use
Never (ref)
Current 0.98 (0.70, 1.38) 0.97 (0.70, 1.35) 0.97 (0.70, 1.33)
Former 0.94 (0.66, 1.33) 0.94 (0.67, 1.32) 0.94 (0.67, 1.32)

HPV status
Negative (ref)
Positive 0.91 (0.55, 1.48) 0.85 (0.51, 1.40) 0.81 (0.52, 1.28)

Comorbidities
None (ref)
Mild 0.89 (0.65, 1.23) 0.89 (0.65, 1.22) 0.89 (0.65, 1.22)
Moderate 1.10 (0.75, 1.61) 1.09 (0.73, 1.61) 1.09 (0.75, 1.58)
Severe 1.07 (0.63, 1.80) 1.06 (0.64, 1.74) 1.06 (0.63, 1.80)

Cancer site
Larynx (ref)
Hypopharynx 1.43 (0.77, 2.67) 1.42 (0.78, 2.60) 1.42 (0.78, 2.58)
Oral Cavity 1.33 (0.90, 1.97) 1.32 (0.92, 1.90) 1.32 (0.92, 1.89)
Oropharynx 1.02 (0.62, 1.68) 1.06 (0.66, 1.70) 1.09 (0.69, 1.72)

Notes: *Corresponds to working model for Prob(HPV missing). LMAR1 includes G only. LMAR2 includes
G and covariates includes main effects for cancer site, age, and enrollment year group.
†Significant at p=0.05.
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is in the estimate for the HPV effect on the time to recurrence in the non-cured group.
We estimate a slightly stronger effect of HPV status under LMAR assumptions than under
MAR assumptions, and the strongest effect is estimated when missingness is assumed to be
LMAR dependent on G and other covariates. However, the HPV effect is not significant in
any of the fits. We cannot make conclusions about the correct missingness mechanism, but
regardless of the true missingness model, the CPH cure model inference appears to be very
robust to different specifications of the working missingness model.

7. Discussion

We present a novel sequential imputation algorithm that can handle both missing at
random (MAR) and latent missing at random (LMAR) covariate and outcome missingness
for models with latent or partially latent variables. Unlike existing methods, the proposed
approach does not require specification of the full joint distribution of the complete data.
The proposed algorithm imputes the latent variable as part of the missing data, allowing the
latent variable to be directly used to help impute the other variables.

We first consider the more restrictive setting where the joint model is fully specified.
We use results under a joint model to inform the structure of the imputation distributions and
the method for drawing parameters in the proposed algorithm without requiring specification
of the joint model. The proposed approach is very flexible and can accommodate either a
chained equations-type approach to imputation or a substantive model compatible (SMC)
imputation approach that is more strongly informed by the outcome model.

Several authors have previously proposed approaches for handling latent ignorable
missingness in specific joint modelling settings (Jung 2007; Yang et al. 2008; Lu, Zhang &
Lubke 2011), and Harel (2003) proposes a non-iterative imputation approach for dealing with
general latent-dependent missingness under a joint model. These methods, however, all rely
on the prior specification of a joint model for the complete data. In practice, however, such a
joint model may be difficult or too restrictive. Therefore, there is a need to consider methods
for imputing variables under latent ignorability that incorporate less restrictive assumptions
about the joint model.

Therefore, we consider two departures for joint model-based imputation: SMC im-
putation and chained equations imputation. It is worth noting the distinction between the
SMC imputation method and joint modelling. The primary distinction in our setting is in
the specification (or lack thereof) of the joint distribution for X. The imputation distributions
for L and Y are similar to the distributions obtained under a joint model. However, the
ability to avoid specifying the joint distribution of the covariates provides a large advantage
in terms of modelling—the covariate distribution is the hard one to specify. We often have
many covariates of different types and with different restrictions, and specification of a valid
joint distribution can be very challenging. Therefore, replacing the need to specify the joint
distribution of X with specification of the conditional distribution for only the variables with
missingness does present a clear advantage over joint modelling in many settings, and the
statistical properties of the resulting algorithm can be quite different. This motivates a sep-
arate treatment of SMC imputation from joint modelling. The proposed chained equations
imputation method, where only the latest variable is imputed using assumptions about the
outcome model, takes an additional step away from joint modelling; the other variables are
imputed using regression models specified separately for each variable with missingness. It
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is worth noting that, while the proposed methods can be applied under MAR or under LMAR
missingness assumptions, the primary novelty lies in handling imputation under LMAR. We
are not aware of any literature developing SMC imputation or chained equations imputation
methods to handle latent ignorable missingness for a general class of latent variable models.

Simulations demonstrate that the proposed methods can result in good performance (in
terms of bias, coverage, etc) under a variety of modelling scenarios as long as the working
missingness model contains the true model. In practice, we will not know the true missingness
model. Preliminary simulations in the LMAR setting suggest that this may not always be
a problem as long as we posit a working missingness is somewhat close to the true model.
Suppose missingness is truly LMAR. We demonstrate that imputation incorrectly assuming
MAR can result in biased outcome model parameter estimates, and the proposed approach
using LMAR assumptions can correct or reduce this bias. Suppose instead that missingness
is truly MAR. Simulations demonstrate that imputation under LMAR can produce good
results as long as the working model contains the true MAR mechanism. Since associations
between missingness and fully observed variables can be directly explored using the observed
data, we can often identify observed factors related to sampling to construct a good working
model structure for LMAR-based imputation.

Additional simulations explore the numerical convergence properties of the proposed
SMC imputation algorithm. We do not see evidence of convergence issues under MAR
outcome missingness or MAR/LMAR covariate missingness except in the case where the
working missingness model contains many highly correlated predictors. In some scenarios,
we see convergence issues when we have LMAR outcome missingness, and parameters of the
missingness model were particularly susceptible. Convergence problems can be substantially
reduced by fixing parameters related to the latent variable in the missingness model.

We apply the imputation approach to a motivating study of head and neck cancer
recurrence. We impute missing values under MAR and LMAR assumptions, and the resulting
model fits are very similar. In this application, the model inference is robust to the assumptions
about missingness. We also see this phenomenon in the simulations based on the cure model,
suggesting that the cure model in particular may be fairly robust to MAR assumptions under
cure status-dependent missingness. This issue is discussed in more detail in the Supplementary
Materials (Simulation 6). We may be generally less concerned about accounting for latent-
dependent missingness in the cure model setting, where the latent variable is always partially
observed.

One criticism of methods that do not assume a fully-specified joint distribution is that
the algorithm is not guaranteed to converge to draws from a valid joint posterior predic-
tive distribution for the missing values (Van Buuren et al. 2006). Our proposed imputation
approach is similarly not guaranteed to converge to a valid joint distribution in general,
and convergence can be impacted by identifiability issues. In this paper, we do not prove
convergence properties for the proposed algorithm beyond existing properties in the SMC
imputation and chained equations literature (e.g. Bartlett et al. 2014). Instead, we use simu-
lation to identify settings that may be particularly susceptible to concerns about convergence.
We demonstrate that the convergence of the proposed algorithm can be impacted by param-
eter identifiability. Care should be taken to monitor algorithm convergence, particularly in
the setting of LMAR outcome missingness or with working missingness models containing
many predictors. We similarly do not prove identifiability properties for general LMAR
mechanisms. In some settings (e.g. Wu & Carroll 1988; Miao, Ding & Geng 2016), identi-
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fiability has been demonstrated analytically, but exploring identifiability can be difficult in
general. We view proofs of identifiability for general LMAR mechanisms to be outside the
scope of this work. Instead, we provide some guidance for applying the proposed methods
in the presence of possible identifiability issues.

The proposed methods can be applied under MAR and LMAR outcome/covariate
missingness. Unlike usual MAR-based imputation, the proposed imputation approach requires
us to model the data missingness mechanism when missingness is assumed to be LMAR.
However, this direct dependence on the missingness model provides a convenient framework
for studying the sensitivity of outcome model inference to different assumptions about the
missingness mechanism (Little 1995; Molenberghs, Beunckens & Sotto 2008). Additionally,
we propose an imputation procedure when missingness is assumed to be MAR, but this
approach is similar to other methods existing in the literature that do not require a joint
model. Simulations suggest that the proposed LMAR-based imputation approach can be
applied even in MAR settings as long as the working missingness model contains or is
close to the true model and the LMAR-based model is well-identified. Since associations
between missingness and observed variables can be readily evaluated using observed data,
we may often be able to construct a reasonable working missingness model allowing for
additional dependence on the latent variable. The proposed method allows us to incorporate
the outcome model directly into the imputation of the latent variable (and possibly missing
covariate/outcome values), potentially resulting in improved imputations and reduced bias
in the downstream analysis compared to usual chained equations. Our proposed method,
therefore, provides a flexible and novel generalisation of the usual MAR-based imputation
that allows us to study a wider class of missingness models, of which MAR is a special case.

Supporting information

Additional supporting information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs.

Appendix S1. Ignorability under a joint model (properties 1–5).
Appendix S2. Motivating the algorithm and performing parameter draws.
Appendix S3. Bias of complete case analysis under LMAR.
Appendix S4. Simulation study.
Appendix S5. Example 1: identifiability for joint normal models.
Appendix S6. Example 2: identifiability under LMAR for a mixture of GLMs.
Appendix S7. Implementation of the SMC imputation algorithm.

References

Bartlett, J.W., Seaman, S.R., White, I.R. & Carpenter, J.R. (2014). Multiple imputation of covariates
by fully conditional specification: accomodating the substantive model. Statistical Methods in Medical
Research 24, 462–487.

Beesley, L.J., Bartlett, J.W., Wolf, G.T. & Taylor, J.M.G. (2016). Multiple imputation of missing
covariates for the Cox proportional hazards cure model. Statistics in Medicine 35, 4701–4717.

Chung, H., Flaherty, B.P. & Schafer, J.L. (2006). Latent class logistic regression: application to
marijuana use and attitudes among high school seniors. Journal of the Royal Statistical Society 169,
723–743.

© 2019 Australian Statistical Publishing Association Inc.



232 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

Duffy, S., Taylor, J.M.G., Terrell, J., et al. (2008). IL-6 predicts recurrence among head and neck
cancer patients. Cancer 113, 750–757.

Follmann, D. & Wu, M.C. (1995). An approximate generalized linear model with random effects for
informative missing data. Biometrics 51, 151–168.

Frangakis, C.E. & Rubin, D.B. (1999). Addressing complications of intention-to-treat analysis in the
combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. Biometrika
86, 365–379.

Gelman, A. (2004). Parameterization and bayesian modeling. Journal of the American Statistical Association
99, 537–545.

Gelman, A. & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical
Science 7, 457–511.

Giusti, C. & Little, R.J.A. (2011). An analysis of nonignorable nonresponse to income in a survey with
a rotating panel design. Journal of Official Statistics 27, 211–229.

Harel, O. (2003). Strategies for data analysis with two types of missing values. Ph.D. thesis, Pennsylvania
State University.

Harel, O. & Schafer, J.L. (2009). Partial and latent ignorability in missing-data problems. Biometrika
96, 37–50.

Hughes, R.A., White, I.R., Seaman, S.R., Carpenter, J.R., Tilling, K. & Sterne, J.A.C. (2014).
Joint modeling rationale for chained equations. BMC Medical Research Methodology 14, 1–10.

Jung, H. (2007). A latent-class selection model for nonignorable missing data. Ph.D. thesis, Pennsylvania
State University.

Little, R.J.A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the
American Statistical Association 90, 1112–1121.

Little, R.J. (2009a). Comments on: Missing data methods in longitudinal studies: a review. Test 18, 47–50.
Little, R.J. (2009b). Selection and pattern-mixture models. In Longitudinal Data Analysis, eds. G. Fitzmaurice,

M. Davidian, G. Verbeke & G. Molenberghs, chap. 18, pp. 409–431New York, NY: Taylor & Francis
Group.

Little, R.J.A. & Rubin, D.B. (2002). Statistical Analysis with Missing Data, 2nd edn. Hoboken, NJ: John
Wiley and Sons, Inc.

Liu, J., Gelman, A., Hill, J., Su, Y.S. & Kropko, J. (2013). On the stationary distribution of iterative
imputation. Biometrika 101, 155–173.

Lu, Z.L., Zhang, Z. & Lubke, G. (2011). Bayesian inference for growth mixture models with latent class
dependent missing data. Multivariate Behavioral Research 46, 567–597.

McCulloch, C.E., Neuhaus, J.M. & Olin, R.L. (2016). Biased and unbiased estimation in longitudinal
studies with informative visit processes. Biometrics 72, 1315–1324.

Meng, X.L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science 9,
538–573.

Miao, W., Ding, P. & Geng, Z. (2016). Identifiability of normal and normal mixture models with nonignorable
missing data. Journal of the American Statistical Association 111, 1673–1683.

Molenberghs, G., Beunckens, C. & Sotto, C. (2008). Every missing not at random model has got
a missing at random counterpart with equal fit. Journal of the Royal Statistical Society (Series B) 70,
371–388.

Peterson, L.A., Bellile, E.L., Wolf, G.T., Virani, S., Shuman, A.G. & Taylor, J.M.G. (2016).
Cigarette use, comorbidities, and prognosis in a prospective head and neck squamous cell carcinoma
population. Head and Neck 38, 1810–1820.

Raghunathan, T.E. (2001). A multivariate technique for multiply imputing missing values using a sequence
of regression models. Survey Methodology 27, 85–95.

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys, 1st edn. New York, NY: John Wiley
and Sons, Inc.

Schafer, J.L. (1997). Imputation of missing covariates under a multivariate linear mixed model. Technical
report, Pennsylvania State University.

Schafer, J.L. & Yucel, R.M. (2002). Computational strategies for multivariate linear mixed-effects models
with missing values. Journal of Computational and Graphical Statistics 11, 437–457.

Sy, J.P. & Taylor, J.M.G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56,
227–236.

Taylor, J.M.G. (1995). Semiparametric estimation in failure time mixture models. Biometrics 51, 899–907.

© 2019 Australian Statistical Publishing Association Inc.



L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 233

Van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification.
Statistical Methods in Medical Research 16, 219–242.

Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn, C.G.M. & Rubin, D.B. (2006). Fully
conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation
76, 1049–1064.

Wang, S., Shao, J. & Kwang Kim J. (2014). An instrumental variable approach for identification and
estimation with nonignorable nonresponse. Statistica Sinica 24, 1097–1116.

White, I.R. & Royston, P. (2009). Imputing missing covariate values for the Cox model. Statistics in
Medicine 28, 1982–1998.

Wu, M.C. & Carroll, R.J. (1988). Estimation and comparison of changes in the presence of informative
right censoring by modeling the censoring process. Biometrics 44, 175–188.

Yang, X., Lu, J. & Shoptaw, S. (2008). Imputation-based strategies for clinical trial longitudinal data
with nonignorable missing values. Statistics in Medicine 27, 2826–2849.

© 2019 Australian Statistical Publishing Association Inc.


