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Summary

Models that involve an outcome variable, covariates, and latent variables are frequently the

target for estimation and inference. The presence of missing covariate or outcome data

presents a challenge, particularly when missingness depends on the latent variables. This

missingness mechanism is called latent ignorable or latent missing at random and is a

generalization of missing at random. Several authors have previously proposed approaches

for handling latent ignorable missingness, but these methods rely on prior specification of

the joint distribution for the complete data. In practice, specifying the joint distribution

can be difficult and/or restrictive. We develop a novel sequential imputation procedure for

imputing covariate and outcome data for models with latent variables under latent ignorable

missingness. The proposed method does not require a joint model; rather, we use results

under a joint model to inform imputation with less restrictive modeling assumptions. We

discuss identifiability and convergence-related issues, and simulation results are presented

in several modeling settings. The method is motivated and illustrated by a study of head and

neck cancer recurrence.

5

Key words: multiple imputation; substantive model compatible imputation; chained equations;

latent missing at random; latent ignorability
6

1. Introduction7

Models that involve latent or partially latent variables in addition to an outcome variable8

and covariates are frequently the target for estimation and inference. For example, in the9

Cox proportional hazards mixture cure model, partially latent cure status describes whether10

individuals are at risk for the event of interest. Cure status is only partially latent because11

subjects with observed events are known to be non-cured. Another popular model with latent12

variables is the linear mixed model, where fully latent random effects account for correlation13

within clusters.14

Additional considerations arise when dealing with missing covariates and/or outcomes15
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2 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

in the presence of latent variables. Many authors have explored the issue of missing data16

for models with latent variables under assumptions that missingness is independent of the17

latent variable given the observed data (e.g. Beesley et al. 2016). In this paper, we explore a18

generalization of this missingness mechanism that allows covariate/outcome missingness to19

depend on the latent variable, which is a missing not at random (MNAR) mechanism (Little20

& Rubin 2002). Previous examples of such mechanisms are called latent ignorable or latent21

missing at random (LMAR) missingness (Frangakis & Rubin 1999; Harel 2003; Harel &22

Schafer 2009). For example, suppose we model a longitudinal outcome using a mixed model.23

One common LMAR scenario in the literature relates dropout to the random effect, which24

can be viewed as a measure of an individual’s propensity to drop out.25

In general, the underlying missingness mechanism can never be determined from26

the data alone, and inference under MNAR may be sensitive to unverifiable assumptions27

about the missingness mechanism. Additionally, inference under MNAR is susceptible to28

underidentification or weak identification of the model parameters (Little 1995; Molenberghs,29

Beunckens & Sotto 2008). In this paper, we consider a particular MNAR missingness30

mechanism (LMAR) in which missingness depends on unknown information only through31

the latent variable, which by assumption has a structured relationship with the observed32

variables. Therefore, we may view LMAR missingness as a somewhat mild departure from33

MAR. Still, we must keep these issues in mind when handling missing data under LMAR.34

One approach for handling missing data is to analyze only the fully observed subset of35

the data (complete case analysis). When missingness is LMAR, this approach will generally36

produce biased results (Little & Rubin 2002). Several authors have discussed likelihood-37

based approaches for linear mixed models with missingness dependent on the random effect38

(e.g. Little 1995; Wu & Carroll 1988). These methods often involve an EM algorithm or a39

likelihood that has integrated out the latent variable.40

Multiple imputation is a common general approach for dealing with missing data.41

One approach to multiple imputation requires one to specify a joint distribution for all42

the variables and use that joint distribution for imputation, usually in a Gibbs sampling-43

type algorithm. Each variable with missing values can be sequentially imputed using its44

conditional distribution, which is determined by the joint distribution. The distribution of the45

sampled parameters can then be used for inference. Several authors have proposed approaches46

for handling latent ignorable missingness in specific joint modeling settings (Jung 2007;47

Yang, Lu & Shoptaw 2008; Lu, Zhang & Lubke 2011). Harel (2003) proposes a non-iterative48

imputation approach for dealing with general latent-dependent missingness under a joint49

model.50

Existing imputation methods under latent ignorability, however, are limited in their51

applicability. The main drawback of the joint modeling approach to imputation is that52
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 3

specification of the joint distribution may be difficult or too restrictive, particularly when53

we have many covariates of different types. Indeed, Gelman (2004) argues that ‘having a54

joint distribution in the imputation is less important than incorporating information from55

other variables and unique features of the dataset (e.g. bounds, skip patterns, nonlinearity,56

interactions, etc.).’ As such, there is a need to consider methods for imputing variables under57

latent ignorability that incorporate less restrictive assumptions about the joint model.58

Chained equations imputation is an alternative to joint modeling in which variables are59

imputed iteratively in a series of univariate imputation steps (Raghunathan 2001; Van Buuren60

et al. 2006). These steps are usually accomplished using standard regression models that61

can incorporate additional features of the data, and these regressions as a set usually do not62

correspond to a valid joint distribution. This approach is simple and flexible, but it is less63

coherent than joint modeling and may not incorporate assumptions about the outcome model64

directly. Most literature on chained equations assumes that missingness is independent of65

all unobserved information, called missing at random (MAR) (Little & Rubin 2002), and66

some authors have explored particular limited MNAR settings (e.g. Van Buuren 2007; Little67

2009a; Giusti & Little 2011). An alternative approach proposed in Bartlett et al. (2014)68

called substantive model compatible (SMC) imputation incorporates the outcome model69

into the chained equations imputation procedure but does not require the user to specify a70

valid joint distribution for the covariates, leading to improved properties over conventional71

chained equations but additional flexibility over joint modeling. Similar findings are given72

in White & Royston (2009) and Beesley et al. (2016). Beesley et al. (2016) explores SMC73

imputation for a particular modeling setting with latent variables, but we have not found any74

literature exploring chained equations or SMC imputation under latent ignorable missingness75

in general.76

In this paper, we develop a novel sequential imputation method that can handle MAR and77

LMAR covariate and outcome missingness for models with latent or partially latent variables78

and that does not require a joint model. The proposed method imputes the latent variable79

as part of the missing data, allowing the latent variable to be directly used when imputing80

the missing covariate/outcome values. We first consider the more restrictive setting where the81

joint model is fully specified. We use results under a joint model to inform the structure of the82

imputation distributions and the method for drawing parameters in the proposed algorithm83

without requiring specification of the joint model. The proposed approach is very flexible84

and can accommodate either a chained equations-type approach to imputation or a SMC85

imputation approach that is more strongly informed by the outcome model.86

Many works have explored MAR-based imputation in settings with latent variables87

under a joint model (e.g. Schafer 1997; Schafer & Yucel 2002; Chung, Flaherty & Schafer88

2006) or using less restrictive assumptions Beesley et al. (2016). While the proposed method89
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4 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

can be applied under MAR or LMAR, the primary novelty consists of the application to the90

LMAR setting. Existing methods for handling missing data in the LMAR setting assume91

there is a fully-specified joint model, and this work serves as an extension of these existing92

methods with less restrictive modeling assumptions. This work develops novel statistical93

methodology for handling latent ignorability without requiring joint modeling assumptions.94

This is a departure from the existing literature in terms of allowing for much greater flexibility95

in model specification over joint modeling while still allowing for the incorporation of the96

outcome model structure into the imputation procedure. The SMC imputation approach to97

imputation has been previously explored in the context of MAR covariate imputation in98

Bartlett et al. (2014), but a general imputation algorithm for handling missingness in multiple99

variables and particularly under MNAR assumptions has not previously been considered.100

Additionally, the LMAR setting presents a range of identifiability-related difficulties that is101

not present in the usual MAR setting.102

This work is motivated by a study of cancer recurrence in patients treated for head103

and neck cancer. In this study, many covariates of interest have substantial missingness; in104

particular, HPV status (human papillomavirus) has roughly 50% missingness. Previous work105

has explored imputation of these data under MAR assumptions (Beesley et al. 2016), but there106

is a belief that an induced association between missingness in HPV status and an underlying107

latent variable (cancer cure status) may be present. Existing statistical methods for latent-108

dependent missingness are undesirable due to the emphasis on specification of a joint model109

for the covariates, which in this setting is too restrictive. In particular, relationships between110

the covariates may be difficult to capture in a standard joint model. As such, there is a need111

to develop statistical methodology for performing imputation of the missing covariate values112

under latent-dependent missingness without the restrictive joint modeling assumptions. While113

this work is motivated by this particular problem, the statistical methods can be applied in a114

wide range of modeling settings.115

In Section 2, we define latent ignorability. In Sections 3 and 4, we describe the proposed116

imputation approach. In Section 5, we present simulations that evaluate the performance of117

our method under a variety of scenarios. In Section 6, we apply the proposed methods to the118

motivating study of time to recurrence in patients with head and neck cancer. In Section 7,119

we present a discussion.120

2. Latent ignorability121

Suppose that the goal is to make inference about a model for outcome Y given covariates

X and a latent (or partially latent) mixing variable, L. For example, the outcome model

may be a linear mixed model with a latent random intercept. We may also be interested in
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 5

the model for L|X . We restrict our attention to situations in which, if all of the covariate

and outcome information were observed, the outcome model would be fully identified,

and estimation using likelihood-based methods would be possible and lead to consistent

parameter estimates. We consider missingness in X and/or Y , and we allow missingness

to be related to the latent variable, L.

Let vector D⊤
i = (X⊤

i ,Y
⊤

i ) represent the (possibly incomplete) data for subject i. We

assume Di and Li are independent across subjects. Let RD
i be a vector corresponding to

whether each element ofDi is observed andRL
i be an indicator for whether Li is known (can

be 0 for all subjects). Define R⊤
i = (RD⊤

i , RL
i ). For any vector Vi, let V

(obs)
i and V

(mis)
i be

the observed and missing elements of Vi. Assume we have independence of (D,L,R) across

i.

We assume that missingness in Di is independent of D
(mis)
i and RL

i such that

f(RD
i |Di, Li, R

L
i ;φD) = f(RD

i |D
(obs)
i , Li;φ

D) (1)

We assume that φD is distinct from all other model parameters. We call assumption (1)

the latent missing at random (LMAR) or latent ignorability assumption. This missingness

mechanism was first studied in Frangakis & Rubin (1999) and is a special case of latent

ignorability explored in Harel (2003) and Harel & Schafer (2009). In longitudinal data

analysis, a similar mechanism relating missingness in Y to latent random effects in a linear

mixed model has been explored by many authors including Wu & Carroll (1988), Follmann

& Wu (1995), Little (1995), and McCulloch, Neuhaus & Olin (2016). Since Li is latent or

partially latent by definition, the mechanism in (1) is a type of MNAR, and when (1) does not

depend on Li, the mechanism reduces to MAR. We can view LMAR as a generalization of

MAR with less restrictive assumptions.

We now consider assumptions regarding missingness in L, which may be latent or

partially latent. We make a subtle distinction between partially latent and partially missing

variables. Latent variable L can be viewed as a modeling construct representing unobserved

or perhaps unobservable quantities. The observed values of the partially latent L are just a

function of the observed data, D(obs), and therefore contain no additional information. For

example, known values of the partially latent cure status in a Cox proportional hazards cure

model are entirely determined by the event indicator and the event/censoring time for each

subject. In this way, partially latent variables are different from partially missing variables,

which may contain additional information in their observed values. However, we will treat

latent and partially latent variables as if they were missing data for the purposes of this

method.

When Li is fully latent, we can view missingness in Li as missing completely at random

(MCAR) with probability of missingness equal to 1. When Li is partially latent, we allow
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6 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

missingness in Li to depend on D
(obs)
i (so L is MAR) such that

f(RL
i |Di, Li,R

D
i ;φL) = f(RL

i |D
(obs)
i ;φL) (2)

Figure 1 shows the assumed relationships between variables. The arrows represent122

dependence. For example, RL may depend on X(obs) and Y (obs).123

Xobs	

Xmis	

Yobs	

Ymis	

L	

RL	 RD	

L
M

A
R

 

Figure 1. Variable relationships under latent ignorability

Example 1, linear mixed model with a random intercept: Suppose our model for124

multivariate outcome Yi is a linear mixed model with a latent random intercept, bi, and125

covariates Xi. This model is commonly used for longitudinal data, where the outcome is126

measured within individuals over time. In such a setting, outcome missingness is particularly127

common due to dropout. Many authors have described scenarios in which dropout may be128

related to the random effects (Wu & Carroll 1988; Little 1995; Yang, Lu & Shoptaw 2008,129

e.g.). In this example, bi represents an individual’s propensity to drop out. This is a LMAR130

mechanism with Li = bi. Covariate missingness may also be LMAR.131

Example 2, Cox proportional hazards mixture cure model: The Cox proportional hazards132

(CPH) mixture cure model is used in event time analysis when some (cured) subjects are133

unable to experience the event of interest (Sy & Taylor 2000). For subjects with events,134

cure status is known, and it is unknown for censored subjects. Therefore, cure status is135

partially latent. Missingness in cure status is entirely determined by observed information,136

so its missingness can be viewed as MAR. Suppose we have covariate missingness. We137

can imagine scenarios in which covariate missingness may depend on the underlying cure138

status. For example, suppose covariate information is collected through a patient survey.139

Cured subjects may be more or less likely to answer certain survey questions, resulting in140

an association between missingness and cure status. Additionally, cure status may be related141

to an unmeasured confounder that is related to missingness. This will induce a dependence142

between missingness and cure status. We consider a similar LMAR mechanism in our data143

application.144

Example 3, mixture of generalized linear models: Suppose our outcome Y is generated145
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 7

from a mixture of K generalized linear models (GLMs). Let Ci be a fully latent mixing146

variable indicating which element of the mixture distribution generated the observation for147

subject i. Missingness in Ci can be viewed as MCAR with probability 1. If covariate or148

outcome missingness is related to C, missingness is LMAR. For example, suppose our data149

are collected using K different populations. For example, we may collect data and multiple150

different locations and not record the location. The covariate/outcome missingness rates may151

vary by population, resulting in LMAR missingness.152

3. Imputation of missing data153

In this section, we develop an imputation algorithm for dealing with ignorable and latent154

ignorable covariate and outcome missingness. First, we explore imputation under a joint155

model for all the variables. We treat the latent variable as part of the missing data, and we156

use the form of the joint model to determine how each variable with missing values should157

be imputed. In particular, we determine which variables need to be included as predictors for158

each imputation model and describe the components of the joint model (e.g. outcome model,159

missingness model, covariate model) that are used for imputing each variable. We then use160

these results to guide our choice of sequential imputation models when a joint model is not161

specified.162

3.1. Imputation under a joint model163

Suppose that the data are directly modeled using a fully-specified joint model as follows:

f(D, L,R; ν) =

n∏

i=1

f(Ri|Yi,Xi, Li;φ)f(Yi|Xi, Li; θ)f(Li|Xi;ω)f(Xi;ψ) (1)

where ν = (φ, θ, ω, ψ) is the set of all model parameters. We assume a flat prior for ν such

that φ, θ, ω, and ψ are all a priori independent (so they are distinct). The factorization (1) is a

form of shared parameter model, where the latent variable is related both to missingness and

to the distribution for Yi (Little & Rubin 2002).

We can impute missing values of D and L by iteratively drawing the missing values

from their posterior predictive distributions, D(mis) ∼ f(D(mis)|D(obs), L,R) and L(mis) ∼

f(L(mis)|D, L(obs),R). This leads to draws from the joint posterior predictive distribution,

f(D(mis), L(mis)|D(obs), L(obs),R) (Little & Rubin 2002). Define ρ = (θ, ω, ψ). In the

Supplementary Materials, we formally show the following ignorability properties under a

joint model:

Property 1: Under MAR and LMAR, we can ignore R = (RD, RL) when imputing D from

f(D(mis)|D(obs), L,R)

Property 2: Under MAR (but not under LMAR), we can ignore R = (RD, RL) when
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8 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

imputing L from f(L(mis)|D, L(obs),R)

Property 3: Suppose that missingness in subset S of {D, L} is MAR. Let RS denote the set

of missingness indicators for S and R−S denote the missingness indicators for the remaining

variables in {D, L}. We can ignore RS when imputing L from f(L(mis)|D, L(obs),R)

provided a parameter distinctness property holds.

Rather than drawing D(mis) and L(mis) from their posterior predictive distributions

directly, we can instead impute each variable with missingness sequentially through a series

of univariate imputation steps. Each time we impute a given variable, we treat the most

recent imputations of the other variables as observed data. In practice, we specify the full

conditional distribution of missing variable V given all other variables (with parameter v)

and obtain a draw from the posterior predictive distribution of V by 1) drawing v from its

posterior distribution and 2) drawing missing values of V from its full conditional distribution

at the drawn v. After iteration, the imputations will approximate draws of D(mis) and L(mis)

from their posterior predictive distributions. Below, we present the form of the imputation

distribution (step 1) for imputing different types of variables using the above ignorability

properties.

Predictive distribution of the latent variable

Define RS and R−S as in Property 3 and assume the distinctness property expressed

in the Supplementary Materials holds. Then, we can ignore RS when imputing L. Using

assumptions (1)–(2) and joint model (1) and treating terms that do not depend on Li as

constants, we have

f(Li|Xi,Yi,R
−S
i ; ν) ∝ f(R−S

i |Y
(obs)

i ,X
(obs)
i , Li;φ

−S) (2)

× f(Yi|Xi,Li; θ)f(Li|Xi;ω)

Under MAR, (2) simplifies to

f(Li|Xi,Yi,R
−S
i ; ν) ∝ f(Yi|Xi, Li; θ)f(Li|Xi;ω) ∝ f(Li|Xi,Yi; ρ)

When treated as a function of Li, expression (2) is proportional to the desired imputation

distribution. We will call the distribution known up to proportionality the kernel. The kernel

in (2) involves the distribution of R−S
i under LMAR but not under MAR. In order to impute

Li under LMAR using (2), we need to specify a model for R−S
i .

In some particular settings (for example, when Li is binary), we can use (2) to directly

derive the full conditional distribution. When Li is continuous, the distribution may only be

known up to a proportionality constant. In this case, we may need to use more advanced

techniques to impute Li using (2). Many methods exists in the literature for drawing from a

distribution knowing only the kernel. These include the Metropolis-Hastings algorithm and

rejection sampling. For examples of such methods applied in the context of imputation, see

Bartlett et al. (2014) and the Supplementary Materials.
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 9

Predictive distributions of covariates and outcome

In Property 1, we show that we can impute missing values of D ignoring the missingness

mechanism under MAR and LMAR. We can similarly impute missing values of individual

variables in D from their full conditional distributions without conditioning on R.

We first determine the distribution for imputing missing outcome values. We note that

Y may be uni- or multivariate. Suppose that we are imputing the tth element of Yi, denoted

Y
(t)
i . Let Y

(−t)
i represent the terms in Yi excluding Y

(t)
i . Using joint model (1), we can

write the conditional distribution for imputing Y
(t)
i under MAR and LMAR as

f(Y
(t)
i |Y

(−t)
i ,Xi, Li; ρ) ∝ f(Yi,Xi, Li; ρ) ∝ f(Yi|Xi, Li; θ) (3)

When Y
(t)
i = Yi, the conditional distribution is equal to f(Yi|Xi, Li; θ).

Suppose that we are imputing the tth covariate in Xi, denoted X
(t)
i . Let

f(X
(t)
i |X

(−t)
i ;ψ) be the conditional distribution of X

(t)
i given all other variables in Xi.

Under joint model (1), we can write the conditional distribution for imputing X
(t)
i under

MAR and LMAR as

f(X
(t)
i |X

(−t)
i ,Yi, Li; ρ) ∝ f(Yi|Xi, Li; θ)f(Li|Xi;ω)f(X

(t)
i |X

(−t)
i ;ψ) (4)

Expressions in (3) and (4) provide the kernels of the distributions we can use to impute164

outcomes and covariates in D. The kernels take the same form under MAR and LMAR, and165

they do not involve a model R directly. As with the latent variable imputation, distributions166

(3) and (4) may only be known up to proportionality, requiring more advanced statistical167

methods to draw imputations.168

3.2. Relaxing the modeling assumptions169

The imputation distributions derived previously were developed assuming a fully-170

specified joint model as in (1), but often we will not want to specify such a joint model171

in practice. Specification of the joint model may be particularly difficult or restrictive in172

the setting with missingness in covariates of different types. Rather than specifying an173

explicit joint distribution, we propose imputing missing values using (2)–(4) to inform the174

distributions we use in practice either used an SMC imputation-type approach or a chained175

equations-type approach. In practice, the resulting conditional distributions for either method176

may not together correspond to a valid joint distribution for all the variables.177

Following SMC imputation proposed in Bartlett et al. (2014), we may specify only178

the modeling components needed for each imputation. Imputation of missing values of Y179

using (3) requires a model for Y |X, L, and imputation of missing L using (2) further180

requires a model for L|X and, under LMAR, a model for missingness. Imputation of missing181

covariate X
(t)
i using (4) requires us to specify f(X

(t)
i |X

(−t)
i ;ψ). This approach involves182

incorporating the outcome model structure (in this case, models for Y |X, L and L|X183
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10 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

(and possibly missingness)) to do the imputation, but we can avoid specifying f(X|ψ) by184

instead specifying f(X
(t)
i |X

(−t)
i ;ψ) for covariates with missingness using simple regression185

models. An additional appealing feature of SMC imputation is that it has additional flexibility186

over joint modeling in terms of imputation model specification, and it also involves imputing187

with a model that is congenial with the final analysis model. By uncongeniality, we mean188

that the imputation model and the final data analysis model are incompatible (Meng 1994).189

Since SMC imputation directly uses the final analysis model in the imputation procedure, it190

is attractive from a congeniality point of view.191

Imputation using SMC imputation may be difficult when distributions are known only192

up to proportionality. An alternative, simpler chained equations imputation approach involves193

using (2)–(4) solely to define what predictors are needed for each imputation. Specifically,194

(2) suggests that some function of Y , X , and possibly R (under LMAR) should be used195

as predictors when imputing L. The expression in (3) suggests we need X , L, and Y (−t)
196

when imputing Y (t), and (4) suggests we need Y , L, and X(−t) when imputing X(t). We197

can then perform imputation (by specifying a regression model for imputing each variable)198

using standard software for chained equations imputation (Raghunathan 2001; Van Buuren199

et al. 2006). Such an approach would allow for increased flexibility in model specification200

(for example, by including quadratic or interaction terms) while still allowing L to be used201

in the imputation. We may view the working model actually used for imputation as an202

approximation to the tru conditional model as in (2)–(4). We recommend imputing L using203

the kernel form in (2) if possible, and our proposed algorithm will use this method.204

The imputation distributions, therefore, can be easily modified to accommodate settings205

without a joint distribution. Indeed, Gelman (2004) argues that “having a joint distribution206

in the imputation is less important than incorporating information from other variables and207

unique features of the dataset (e.g. zero/nonzero features in income components, bounds, skip208

patterns, nonlinearity, interactions).” The SMC imputation and chained equations approaches209

allow these unique features of the data to be directly incorporated in the imputation models.210

This approach allows for greater flexibility in the specification of the imputation distributions211

compared to joint modeling.212

When we replace the true predictive distributions under a joint model with a working213

imputation model, the corresponding parameters may no longer correspond to the parameters214

under the joint model. In the next section, we will describe how we can perform imputation215

using these working imputation distributions in practice.216
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 11

3.3. Sequential imputation method217

We propose a sequential imputation method in which each variable with missingness is

imputed one-by-one in an iterative algorithm. At each step, we obtain a single imputation of

a variable V from the working posterior predictive distribution of V (with parameter v) by

1) drawing v from its posterior distribution and 2) drawing missing values of V from its full

conditional distribution at the drawn v.

Just before the imputation step for each variable, we draw the parameters necessary

for the imputation from a current estimate of the parameters’ working posterior predictive

distribution. Let X(t) and Y (t) be defined as before. Let f̃ indicate a working distribution

(usually a regression model) used for imputation that may not necessarily be equal to the

distribution under a joint model. In the imputation step for each variable, we treat the most

recent imputations of the other variables as observed. At each iteration, we draw missing

data and parameters using one of the two following algorithms. An in-depth description

and motivation for our proposed parameter draw methods is included in the Supplementary

Materials. In describing how to perform the parameter draws, we assume flat priors for all

parameters.

SMC imputation algorithm:

Impute L : [θ, ω] ∼ f(θ, ω|D, L(obs)) φ−S ∼ f(φ−S |D, L,R−S) (5)

L
(mis)
i ∝ f(R−S

i |Y
(obs)

i ,X
(obs)
i ,Li;φ

−S)f(Yi|Xi, Li; θ)f(Li|Xi;ω)

Impute Y (t) : θ ∼ f(θ|D, L) Y
(t,mis)
i ∝ f(Yi|Xi, Li; θ)

Impute X(t) : [θ, ω] ∼ f(θ, ω|D, L) ψ̃t ∼ f̃(ψ̃t|X)

X
(t,mis)
i ∝ f(Yi|Xi, Li; θ)f(Li|Xi;ω)f̃(X

(t)
i |X

(−t)
i ; ψ̃t)

When imputing L, we can obtain a (approximate) draw [θ, ω] by fitting our outcome model to

a bootstrap sample of [D, L(obs)] using methods that treat L as latent. For example, suppose

our outcome model is a linear mixed model. We can obtain this draw by fitting a linear mixed

model to a bootstrap sample of the data. We can obtain a draw of φ−S by fitting a model for

R(−S) to a bootstrap sample of the most recent imputed data (including imputed L). When

imputing Y (t), we can obtain a draw of θ by fitting a model for Y |X, L using a bootstrap

sample of the most recently imputed data. When imputing X(t), we can obtain a draw of

ψ̃t by fitting the corresponding model to a bootstrap sample of X . In the Supplementary

Materials, we provide details regarding how we can perform each of the imputation steps for

the examples discussed Section 2.
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12 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

Chained equations imputation algorithm:

Impute L : [θ, ω] ∼ f(θ, ω|D, L(obs)) φ−S ∼ f(φ−S |D, L,R−S) (6)

L
(mis)
i ∝ f(R−S

i |Y
(obs)

i ,X
(obs)
i , Li;φ

−S)f(Yi|Xi, Li; θ)f(Li|Xi;ω)

Impute Y (t) : θ̃t ∼ f̃(θ̃t|D, L) Y
(t,mis)
i ∝ f̃(Yi|Xi, Li; θ̃t)

Impute X(t) : ψ̃t ∼ f̃(ψ̃t|X,Y , L) X
(t,mis)
i ∝ f̃(X

(t)
i |X

(−t)
i ,Yi, Li; ψ̃t)

We can impute L as before. When imputing Y and X , we draw the parameters of interest by218

fitting corresponding models to bootstrap versions of the most recently imputed data.219

Iteration of the above algorithms is required even if we have only one variable in D220

with missing values. We can ignore the imputation steps for each fully observed variable. We221

initialize the missing values for each variable in D by drawing from the observed values with222

equal probability. We can initialize missing L using the distribution f(L|X) obtained from a223

fit to the data with fully observed D (using methods that treat L as latent).224

For both of the above algorithms, we assume that missingness is LMAR. Suppose225

instead that we know that missingness is MAR. We can apply the above algorithms but using226

that f(Li|Xi,Yi,R
−S
i ; ν) ∝ f(Yi|Xi, Li; θ)f(Li|Xi;ω) instead to impute Li and without227

drawing values for φ−S . In this way, the above development also gives us an imputation228

algorithm for dealing with missing data for models with latent variables under MAR.229

We perform the imputation procedure m times to construct m filled-in datasets (with m230

different initializations). We then estimate ρ by fitting our model of interest to each of the231

imputed datasets ignoring R. When we perform this analysis, we may choose to use only232

imputed D, only imputed L, or both. We can then use Rubin’s combining rules to obtain a233

single set of parameter estimates and errors from which we make the desired inference (Rubin234

1987).235

It is important to consider the impact of ignoring R for each one of these final analysis236

strategies. Harel & Schafer (2009) shows that when imputed L is included in the final237

analysis, we can ignore R. This result holds true under MAR and LMAR and whether or238

not imputed D is included in the final analysis. In Properties 4–5 in the Supplementary239

Materials, we explore the ignorability of R when performing a final analysis using only the240

imputed D. We show that R is ignorable under MAR and that such an analysis ignoring241

R under LMAR is valid but not fully efficient. Even with a potential loss of efficiency, we242

may still choose to perform our final analysis ignoring the imputed L as this may provide243

improved numerical stability of the algorithm and more robustness to misspecification of the244

imputation models, and we may have little loss of efficiency in practice.245
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 13

4. Identifiability and convergence246

As with all missing data methods involving MNAR assumptions, one big concern is how247

to model the missingness mechanism (which will be unverifiable) (Molenberghs, Beunckens248

& Sotto 2008). Another concern is whether the resulting model parameters are identifiable249

(Little 1995). Even when the parameters are technically identified, weak identifiability may250

also have implications on the numerical convergence of the proposed imputation algorithm.251

In this section, we briefly comment on some identifiability- and convergence-related issues252

that arise in the application of the proposed imputation algorithm.253

4.1. Modeling the missingness mechanism254

Under LMAR, we must specify a model for RD (or some subset R−S following255

Property 3). While we can conceive of many different models for RD, the model parameter256

ν = (φ, ρ) may not always be identifiable. In some specific settings (e.g. Wu & Carroll257

1988; Miao, Ding & Geng 2016), identifiability has been demonstrated analytically, but258

exploring identifiability can be difficult in general. Wang, Shao & kwang Kim (2014) relates259

identifiability to the existence of instrumental variables. We explore identifiability in several260

particular modeling settings in the Supplementary Materials. In this paper, we will not attempt261

to prove identifiability properties for general LMAR mechanisms. Instead, we will provide262

some guidance for applying the proposed methods in the presence of possible identifiability263

issues.264

In order to reduce the potential for identifiability issues, many authors (e.g. Little265

2009b) recommend that we avoid overburdening the missingness model with extra variables.266

However, if we leave out variables that should be in the model, we may introduce bias in267

estimating the parameter of interest as seen in our simulations. In our simulations, imputation268

with LMAR outcome missingness tended to be more susceptible to identifiability problems269

than covariate missingness. Some authors recommend performing a sensitivity analysis in270

which we specify the form of the missingness model and carry out analysis using fixed271

values for φD (e.g. Little 2009b). We can then perform the desired analysis many times272

using different values for φD. This approach allows us to directly study the impact of φD
273

on inference and avoid estimating the parameters of the missingness model. Additionally,274

MNAR missingness mechanisms are known to be particularly sensitive to assumptions about275

the structure of the missingness mechanism, and we could perform a sensitivity analysis using276

different missingness model structures (Little 1995). We take this approach in our head and277

neck cancer example. These sensitivity approaches allow the proposed methods to be applied278

while avoiding some of the pitfalls of MNAR settings.279
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14 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

4.2. A note on convergence280

When the conditional models used for imputation correspond to a well-defined joint281

distribution with identified parameters, our imputation algorithm is expected to converge to282

draws of the joint posterior distribution for the missing data (Liu et al. 2013; Hughes et al.283

2014; Bartlett et al. 2014). When the imputation models do not correspond to a valid joint284

distribution (called incompatibility), our imputation method is not guaranteed to converge.285

However, several works have demonstrated that we can often still obtain good inference under286

incompatible imputation models (Van Buuren et al. 2006; Van Buuren 2007).287

We will not attempt to prove convergence or consistency properties for the proposed288

algorithm beyond what exists in the chained equations and SMC imputation literature.289

Instead, we will use simulation and some minor analytical exploration to identify settings that290

may be particularly susceptible to concerns about convergence. In particular, identifiability291

concerns related to the missingness model have implications on the convergence of the292

algorithm. When parameters are not identifiable (in terms of the observed data likelihood293

having a unique maximiser), we may not expect the imputation algorithm to converge294

properly. Even when the parameters are all identifiable, we may run into numerical issues295

if the observed data likelihood is nearly flat. These issues appear to be of greater concern296

for outcome missingness. We note that in our experience, even when we have numerical297

convergence issues for φ (missingness model) and ω (model for L|X), the draws for θ (model298

for Y |X, L) may still converge to reasonable values. In such cases, the identifiability-related299

numerical problems may not strongly impact the draws for the primary parameter of interest,300

θ. It is important to monitor the convergence of all model parameters, and we may still be able301

to make inference about θ in the presence of some mild identifiability-related convergence302

issues for φ. We explore identifiability-related convergence issues further in Section 5 and303

the Supplementary Materials.304

5. Simulation study305

In this section, we present a simulation study with four parts. In the first three parts,306

we evaluated how the proposed algorithm performs in terms of bias, empirical variance,307

and coverage for outcome model parameters in linear mixed models (Simulation 1), CPH308

cure models (Simulation 2), and normal mixture models (Simulation 3). In Simulation 4,309

we explored convergence under a variety of modeling scenarios. Details can be found in310

the Supplementary Materials. A fifth/sixth set of simulations included in the Supplementary311

Materials (1) explored the impact of including or ignoring the imputed L in the final analysis312

and (2) assessed the impact of ignoring latent-dependent missingness in the CPH cure model313
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 15

setting in more detail, but we will not discuss these simulations further here. Unless otherwise314

specified, imputations were drawn using the SMC imputation method rather than the chained315

equations method.316

5.1. Simulations 1–3: exploring bias, variance, and coverage317

In Simulation 1, we simulated 1500 datasets with 500 subjects each under a linear318

mixed model with a random intercept. Each dataset contained two binary covariates, X1319

and X2. We drew random intercept bi ∼ N(0, 1) for each individual and generated Y for320

each individual at each of three time-points using the model Yij = βIntercept + βX1
Xi1 +321

βX2
Xi2 + βTimeTimeij + bi + eij for j = 1, 2, 3 with independentN(0, 1) errors, βIntercept =322

βX1
= βX2

= 0.5, and βTime = 0.2. Additional simulation details are available in the323

Supplementary Materials. We imposed ∼ 50% missingness in X2 under four different324

mechanisms: (A) MAR dependent on baseline outcome value Y1, (B) LMAR with moderate325

dependence between missingness and the random intercept, (C) LMAR with strong326

dependence on the random intercept, and (D) LMAR with dependence on the random327

intercept and the baseline outcome value Y1.328

We then imputed values ofX2 and b using methods discussed in this paper under various329

working models. When we imputed under a LMAR working model, we modeled the covariate330

missingness indicator RD
i using a logistic regression with different functions of b,X1, and Y331

as predictors. When we assumed MAR, we imputed L ignoring the missingness mechanism.332

For each simulated dataset, we created 10 imputed datasets. We then fit a linear mixed model333

to each of the imputed datasets and use Rubin’s rules to obtain a single set of parameter334

estimates and their corresponding variances for each simulation. We then computed the bias,335

empirical variance, and coverage rates across the 1500 simulations. To improve readability,336

we list coverage rates in Table S1 in the Supplementary Materials. We note that the APPROX337

simulations take a chained equations imputation approach in which we imputeX2 conditional338

on X1, L and Y using a logistic regression form, so the imputation distributions for X2 and339

L in this case do not correspond to a coherent joint distribution.340

Table 1 shows the results for Simulation 1. Simulations 2–3 included in the341

Supplementary Materials are similar. Simulations 1–3 generally demonstrated that the342

proposed imputation approach can result in essentially unbiased estimates of outcome model343

parameters with nominal (or perhaps slightly conservative) coverage when the working344

missingness model contains the true model. We demonstrated that complete case analysis345

and imputation assuming MAR can sometimes result in biased parameter estimates when346

missingness is at least moderately associated with the latent variable. The bias created by347

incorrectly assuming MAR appears larger when L is a fully latent compared to partially348
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16 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

Table 1. Linear mixed model estimates using proposed imputation methods.

Parameters
Contains Intercept X1 X2 Time

Method Truth# Bias (Var) † Bias (Var) Bias (Var) Bias (Var)

Full Data - 0 (1.2) 0 (1.0) 0 (1.1) 0 (0.10)

Missingness in X2 dependent on Y1 and independent of b (Mechanism A)

Complete Case - −78 (2.0) −9 (1.8) −9 (1.9) 19 (0.20)
MAR Imputation Yes 0 (1.8) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: b* No 6 (1.4) 2 (1.1) −9 (1.9) 0 (0.10)
LMAR Imputation: b, X1, b × X1 No 6 (1.4) 1 (1.1) −9 (2.0) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.8) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 Yes 0 (1.9) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: b, X1, b × X1, Y1 Yes 0 (1.9) 0 (1.1) 0 (2.8) 0 (0.10)
LMAR Imputation: b, Y2 No 7 (1.4) 2 (1.1) −11 (1.8) 0 (0.10)
MAR APPROX Imputation Yes −1 (1.9) 0 (1.1) 0 (3.0) 0 (0.10)
LMAR APPROX Imputation: b No 5 (1.5) 1 (1.1) −8 (2.1) 0 (0.10)

Missingness in X2 moderately dependent on b (Mechanism B)

Complete Case - −24 (2.4) 0 (2.1) 0 (2.2) 0 (0.19)
MAR Imputation No −2 (1.7) 0 (1.1) 2 (2.4) 0 (0.10)
LMAR Imputation: b Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: b, X1, b × X1 Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 No 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
LMAR Imputation: b, X1, b × X1, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)
MAR APPROX Imputation No −3 (1.7) 0 (1.1) 3 (2.4) 0 (0.10)
LMAR APPROX Imputation: b Yes 0 (1.6) 0 (1.1) 0 (2.2) 0 (0.10)

Missingness in X2 strongly dependent on b (Mechanism C)

Complete Case - −48 (2.5) 0 (1.8) 0 (2.0) 0 (0.22)
MAR Imputation No −7 (2.0) 0 (1.1) 8 (2.8) 0 (0.10)
LMAR Imputation: b Yes 0 (1.5) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, X1, b × X1 Yes 0 (1.5) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.1) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 No 0 (1.6) 0 (1.1) 0 (2.1) 0 (0.10)
LMAR Imputation: b, X1, b × X1, Y1 Yes 0 (1.5) 0 (1.1) 0 (2.1) 0 (0.10)
MAR APPROX Imputation No −8 (2.0) 0 (1.1) 9 (2.8) 0 (0.10)
LMAR APPROX Imputation: b Yes 0 (1.5) 0 (1.1) 0 (2.1) 0 (0.10)

Missingness in X2 dependent on b and Y1 (Mechanism D)

Complete Case - −73 (2.0) −5 (1.6) −5 (1.6) 8 (0.21)
MAR Imputation No −8 (2.0) −1 (1.1) 10 (2.8) 0 (0.10)
LMAR Imputation: b No 3 (1.4) 0 (1.1) −5 (1.7) 0 (0.10)
LMAR Imputation: b, X1, b × X1 No 3 (1.4) 0 (1.1) −5 (1.6) 0 (0.10)
LMAR Imputation: b, Y1 Yes 0 (1.5) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: I(b > 0), Y1 No 0 (1.6) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, X1, b × X1, Y1 Yes 0 (1.6) 0 (1.1) 0 (2.0) 0 (0.10)
LMAR Imputation: b, Y2 No 3 (1.4) 0 (1.1) −6 (1.7) 0 (0.10)
MAR APPROX Imputation No −9 (2.1) −1 (1.1) 11 (2.9) 0 (0.10)
LMAR APPROX Imputation: b No 3 (1.4) 0 (1.1) −4 (1.7) 0 (0.10)

*Variables after colon represent linear predictors in working model for RD

i

† All values in table multiplied by 100. Var indicates empirical variance.

# Indicates whether working missingness model contains true model.

APPROX: Imputation of X2 uses a logistic regression with predictors X1, b, Y1, Y2, Y3 (instead of kernel (4))

Complete Case: Analysis excluding subjects with missing X2

latent. Imputation under LMAR assumptions can correct this bias when we use a working349

model containing the truth and can sometimes reduce the bias compared to imputation350
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L J BEESLEY, JEREMY M G TAYLOR, AND RODERICK J A LITTLE 17

assuming MAR when the working model is close to the truth. When missingness was truly351

MAR, simulations suggested that imputation under a LMAR model that did not contain352

the true model can create bias. However, simulations showed that LMAR methods with353

working models containing the true MAR model can still be applied with little or no loss354

of efficiency (when the LMAR model is well-identified) in this setting. Very complicated355

working missingness models can sometimes result in a loss of efficiency, but this loss was356

generally small.357

5.2. Simulation 4: exploring identifiability and convergence358

Even if the model parameters are technically identifiable, one additional concern359

is that the likelihood surface near the maximizer may be nearly flat, which can lead360

to issues with model fitting and convergence of the imputation algorithm. In order to361

better understand possible identifiability-related convergence issues, we performed a set of362

simulations evaluating convergence of the imputation algorithm under a variety of modeling363

scenarios.364

We simulated data under a linear mixed model, cure model, and mixture of normals365

respectively as described in the Supplementary Materials. We imposed ∼ 50% covariate or366

outcome missingness (but not both) using MAR or LMAR mechanisms. For each simulated367

dataset, we performed imputation using a correct working missingness model structure. For368

each outcome model parameter, we evaluated parameter convergence using the Gelman-369

Rubin convergence statistic (Gelman & Rubin 1992).370

Simulations demonstrated good convergence properties under LMAR/MAR covariate371

and MAR outcome missingness. Under LMAR outcome missingness, the outcome model372

parameters appeared to converge, but missingness model parameter (in particular, for the373

latent variable) showed some evidence of convergence problems. The drawn values of the374

outcome model parameters appeared reasonable (with small or no bias) even when the375

missingness model parameters do not converge, but this may not be true in general. When376

we fixed the value of the parameter related to the latent variable in the missingness model,377

we saw a large improvement in the convergence properties of the imputation algorithm.378

6. Application to head and neck cancer data379

We consider data from a cohort study of N=1226 patients treated for head and neck380

squamous cell carcinoma (HNSCC). This study was conducted by the University of Michigan381

Head and Neck Specialized Program of Research Excellence (SPORE) and followed patients382

who were treated at the University of Michigan Cancer Center for HNSCC between Nov.383

2003 and July 2013. Details about this study can be found in Duffy et al. (2008) and384
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18 SEQUENTIAL IMPUTATION ASSUMING LATENT IGNORABILITY

Peterson et al. (2016). After treatment, patients were followed for recurrence. Covariate385

information was also collected at baseline. We are interested in studying the association386

between covariates and the time to HNSCC recurrence after treatment. For head and neck387

cancer, it has been established that some patients can be cured by treatment, and these patients388

will never experience a recurrence (Taylor 1995). We model the time to HNSCC recurrence389

using a Cox proportional hazards cure model.390

HPV status was unavailable for 55.8% of the subjects, and small amounts of missingness391

was present in other study variables. Beesley et al. (2016) explores imputation-based392

approaches for dealing with the missing covariate data for this study. The analysis in Beesley393

et al. (2016), however, assumes that covariate missingness is MAR and does not depend on394

underlying cure status. An induced LMAR association between missingness in HPV status395

and cure status (denoted G) could occur if HPV missingness is related to an unmeasured396

variable that is also related to the cure probability. In this study, the HPV missingness rate is397

related to calendar time (in a nonlinear way), and calendar time may be associated with the398

cure rate. Additionally, a more experienced doctor may be more likely to recommend HPV399

testing and to have cured patients. We cannot control for this effect due to a lack of detailed400

information about treating doctors for each patient. Given the large rate of missingness in401

HPV status, we are interested to explore the robustness of model inference to our assumptions402

about the missingness mechanism.403

We are interested in comparing model inference assuming MAR to inference obtained404

when missingness in HPV is assumed to be LMAR. We assume missingness in all other405

variables is MAR. We consider three working assumptions for HPV status missingness: (A)406

MAR, (B) missingness dependent only on cure status, and (C) missingness dependent on cure407

status, age at diagnosis, cancer site, and (grouped) enrollment year. Assumptions (B) and (C)408

are modeled using logistic regression.409

We apply our proposed SMC imputation method to impute the missing data. In this410

setting, G is the partially latent cure status, Y is the censored event time data (time and411

indicator), and X is the set of covariates. Here, the model Y |G = 1,X is a Cox regression412

and the model for G|X is a logistic regression. We impute cure status G using (2). As413

suggested in Beesley et al. (2016), we impute missing values of each pth covariate X(p)
414

using a standard regression model with X(−p), G, G× Ĥ0(T ), and G× Ĥ0(T ) × X(−p)
415

as predictors. Here, Ĥ0(T ) is an estimate of the cumulative baseline hazard of having an event416

in the non-cured group. As in Beesley et al. (2016), we will draw values for the regression417

model’s parameter without conditioning on the imputed X(p) (as is done in usual chained418

equations). Variables included in X(p) for the imputation include log-transformed number419

of sexual partners, PNI, comorbidities, smoking habits, alcohol use, age, cancer site, cancer420

stage, gender, and enrollment period (2003-2008, 2009-2011, 2012-2013).421
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Table 2 presents the cure model fit under different assumptions about the missingness422

mechanism. We see that the fits are nearly identical. The largest difference between the fits423

is in the estimate for the HPV effect on the time to recurrence in the non-cured group. We424

estimate a slightly stronger effect of HPV status under LMAR assumptions than under MAR425

assumptions, and the strongest effect is estimated when missingness is assumed to be LMAR426

dependent on G and other covariates. However, the HPV effect is not significant in any of the427

fits. We cannot make conclusions about the correct missingness mechanism, but regardless428

of the true missingness model, the CPH cure model inference appears to be very robust to429

different specifications of the working missingness model.430
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Table 2. Cure model fits to head and neck data under different missing model assumptions.

Missingness model: MAR* LMAR1* LMAR2*

Logistic regression, odds ratio (95% CI)

Age/10 1.14 (1.00, 1.31)† 1.14 (0.99, 1.32) 1.14 (1.00, 1.30)†

Cancer Stage
I/Cis (ref)
II 1.25 (0.57, 2.74) 1.25 (0.54, 2.89) 1.25 (0.57, 2.74)
III 2.36 (1.18, 4.72)† 2.32 (1.16, 4.61)† 2.33 (1.18, 4.63)†

IV 3.32 (1.74, 6.33)† 3.30 (1.74, 6.26)† 3.30 (1.80, 6.03)†

Cigarette Use
Never (ref)
Current 1.46 (0.97, 2.18) 1.47 (0.96, 2.24) 1.46 (0.98, 2.16)
Former 1.27 (0.85, 1.90) 1.28 (0.85, 1.93) 1.28 (0.84, 1.95)

HPV Status
Negative (ref)

Positive 0.34 (0.19, 0.58)† 0.35 (0.19, 0.64)† 0.34 (0.20, 0.56)†

Comorbidities
None (ref)
Mild 1.14 (0.77, 1.69) 1.15 (0.79, 1.68) 1.15 (0.79, 1.68)
Moderate 1.66 (1.08, 2.56)† 1.66 (1.07, 2.58)† 1.66 (1.07, 2.55)†

Severe 1.94 (1.10, 3.43)† 1.94 (1.08, 3.48)† 1.97 (1.08, 3.57)†

Cancer Site
Larynx (ref)
Hypopharynx 1.93 (0.88, 4.22) 1.93 (0.86, 4.30) 1.99 (0.91, 4.33)
Oral Cavity 1.24 (0.81, 1.90) 1.24 (0.81, 1.89) 1.24 (0.81, 1.90)
Oropharynx 1.68 (0.94, 3.02) 1.64 (0.90, 2.97) 1.68 (0.95, 2.96)

Cox proportional hazards, hazard ratio (95% CI)

Age/10 1.08 (0.98, 1.19) 1.08 (0.98, 1.18) 1.08 (0.98, 1.19)
Cancer Stage

I/Cis (ref)
II 1.67 (0.70, 3.95) 1.62 (0.69, 3.82) 1.61 (0.66, 3.88)
III 2.42 (1.22, 4.79)† 2.40 (1.24, 4.66)† 2.42 (1.21, 4.84)†

IV 2.76 (1.48, 5.16)† 2.76 (1.47, 5.18)† 2.77 (1.45, 5.29)†

Cigarette Use
Never (ref)
Current 0.98 (0.70, 1.38) 0.97 (0.70, 1.35) 0.97 (0.70, 1.33)
Former 0.94 (0.66, 1.33) 0.94 (0.67, 1.32) 0.94 (0.67, 1.32)

HPV Status
Negative (ref)

Positive 0.91 (0.55, 1.48) 0.85 (0.51, 1.40) 0.81 (0.52, 1.28)
Comorbidities

None (ref)
Mild 0.89 (0.65, 1.23) 0.89 (0.65, 1.22) 0.89 (0.65, 1.22)
Moderate 1.10 (0.75, 1.61) 1.09 (0.73, 1.61) 1.09 (0.75, 1.58)
Severe 1.07 (0.63, 1.80) 1.06 (0.64, 1.74) 1.06 (0.63, 1.80)

Cancer Site
Larynx (ref)
Hypopharynx 1.43 (0.77, 2.67) 1.42 (0.78, 2.60) 1.42 (0.78, 2.58)
Oral Cavity 1.33 (0.90, 1.97) 1.32 (0.92, 1.90) 1.32 (0.92, 1.89)
Oropharynx 1.02 (0.62, 1.68) 1.06 (0.66, 1.70) 1.09 (0.69, 1.72)

*Corresponds to working model for Prob(HPV missing). LMAR1 includes G only.
LMAR2 includes G and covariates includes main effects for cancer site, age, and
enrollment year group.
† Significant at p = 0.05
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7. Discussion431

We present a novel sequential imputation algorithm that can handle both missing at432

random (MAR) and latent missing at random (LMAR) covariate and outcome missingness433

for models with latent or partially latent variables. Unlike existing methods, the proposed434

approach does not require specification of the full joint distribution of the complete data. The435

proposed algorithm imputes the latent variable as part of the missing data, allowing the latent436

variable to be directly used to help impute the other variables.437

We first consider the more restrictive setting where the joint model is fully specified. We438

use results under a joint model to inform the structure of the imputation distributions and the439

method for drawing parameters in the proposed algorithm without requiring specification of440

the joint model. The proposed approach is very flexible and can accommodate either a chained441

equations-type approach to imputation or a substantive model compatible (SMC) imputation442

approach that is more strongly informed by the outcome model.443

Several authors have previously proposed approaches for handling latent ignorable444

missingness in specific joint modeling settings (Jung 2007; Yang, Lu & Shoptaw 2008;445

Lu, Zhang & Lubke 2011), and Harel (2003) proposes a non-iterative imputation approach446

for dealing with general latent-dependent missingness under a joint model. These methods,447

however, all rely on the prior specification of a joint model for the complete data. In practice,448

however, such a joint model may be difficult or too restrictive. Therefore, there is a need449

to consider methods for imputing variables under latent ignorability that incorporate less450

restrictive assumptions about the joint model.451

Therefore, we consider two departures for joint model-based imputation: SMC452

imputation and chained equations imputation. It is worth noting the distinction between the453

SMC imputation method and joint modeling. The primary distinction in our setting is in the454

specification (or lack thereof) of the joint distribution for X . The imputation distributions455

for L and Y are similar to the distributions obtained under a joint model. However, the456

ability to avoid specifying the joint distribution of the covariates provides a large advantage457

in terms of modeling—the covariate distribution is the hard one to specify. We often have458

many covariates of different types and with different restrictions, and specification of a valid459

joint distribution can be very challenging. Therefore, replacing the need to specify the joint460

distribution of X with specification of the conditional distribution for only the variables461

with missingness does present a clear advantage over joint modeling in many settings, and462

the statistical properties of the resulting algorithm can be quite different. This motivates a463

separate treatment of SMC imputation from joint modeling. The proposed chained equations464

imputation method, where only the latest variable is imputed using assumptions about the465

outcome model, takes an additional step away from joint modeling; the other variables are466
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imputed using regression models specified separately for each variable with missingness. It467

is worth noting that, while the proposed methods can be applied under MAR or under LMAR468

missingness assumptions, the primary novelty lies in handling imputation under LMAR. We469

are not aware of any literature developing SMC imputation or chained equations imputation470

methods to handle latent ignorable missingness for a general class of latent variable models.471

Simulations demonstrate that the proposed methods can result in good performance (in472

terms of bias, coverage, etc) under a variety of modeling scenarios as long as the working473

missingness model contains the true model. In practice, we will not know the true missingness474

model. Preliminary simulations in the LMAR setting suggest that this may not always be a475

problem as long as we posit a working missingness is somewhat close to the true model.476

Suppose missingness is truly LMAR. We demonstrate that imputation incorrectly assuming477

MAR can result in biased outcome model parameter estimates, and the proposed approach478

using LMAR assumptions can correct or reduce this bias. Suppose instead that missingness is479

truly MAR. Simulations demonstrate that imputation under LMAR can produce good results480

as long as the working model contains the true MAR mechanism. Since associations between481

missingness and fully observed variables can be directly explored using the observed data,482

we can often identify observed factors related to sampling to construct a good working model483

structure for LMAR-based imputation.484

Additional simulations explore the numerical convergence properties of the proposed485

SMC imputation algorithm. We do not see evidence of convergence issues under MAR486

outcome missingness or MAR/LMAR covariate missingness except in the case where the487

working missingness model contains many highly correlated predictors. In some scenarios,488

we see convergence issues when we have LMAR outcome missingness, and parameters of the489

missingness model were particularly susceptible. Convergence problems can be substantially490

reduced by fixing parameters related to the latent variable in the missingness model.491

We apply the imputation approach to a motivating study of head and neck cancer492

recurrence. We impute missing values under MAR and LMAR assumptions, and the493

resulting model fits are very similar. In this application, the model inference is robust to494

the assumptions about missingness. We also see this phenomenon in the simulations based495

on the cure model, suggesting that the cure model in particular may be fairly robust to496

MAR assumptions under cure status-dependent missingness. This issue is discussed in more497

detail in the Supplementary Materials (Simulation 6). We may be generally less concerned498

about accounting for latent-dependent missingness in the cure model setting, where the latent499

variable is always partially observed.500

One criticism of methods that do not assume a fully-specified joint distribution is501

that the algorithm is not guaranteed to converge to draws from a valid joint posterior502

predictive distribution for the missing values (Van Buuren et al. 2006). Our proposed503
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imputation approach is similarly not guaranteed to converge to a valid joint distribution in504

general, and convergence can be impacted by identifiability issues. In this paper, we do505

not prove convergence properties for the proposed algorithm beyond existing properties in506

the SMC imputation and chained equations literature (Bartlett et al. 2014, e.g.). Instead,507

we use simulation to identify settings that may be particularly susceptible to concerns508

about convergence. We demonstrate that the convergence of the proposed algorithm can509

be impacted by parameter identifiability. Care should be taken to monitor algorithm510

convergence, particularly in the setting of LMAR outcome missingness or with working511

missingness models containing many predictors. We similarly do not prove identifiability512

properties for general LMAR mechanisms. In some settings (e.g. Wu & Carroll 1988;513

Miao, Ding & Geng 2016), identifiability has been demonstrated analytically, but exploring514

identifiability can be difficult in general. We view proofs of identifiability for general LMAR515

mechanisms to be outside the scope of this work. Instead, we provide some guidance for516

applying the proposed methods in the presence of possible identifiability issues.517

The proposed methods can be applied under MAR and LMAR outcome/covariate518

missingness. Unlike usual MAR-based imputation, the proposed imputation approach519

requires us to model the data missingness mechanism when missingness is assumed to be520

LMAR. However, this direct dependence on the missingness model provides a convenient521

framework for studying the sensitivity of outcome model inference to different assumptions522

about the missingness mechanism (Little 1995; Molenberghs, Beunckens & Sotto 2008).523

Additionally, we propose an imputation procedure when missingness is assumed to be MAR,524

but this approach is similar to other methods existing in the literature that do not require a525

joint model. Simulations suggest that the proposed LMAR-based imputation approach can526

be applied even in MAR settings as long as the working missingness model contains or is527

close to the true model and the LMAR-based model is well-identified. Since associations528

between missingness and observed variables can be readily evaluated using observed data,529

we may often be able to construct a reasonable working missingness model allowing for530

additional dependence on the latent variable. The proposed method allows us to incorporate531

the outcome model directly into the imputation of the latent variable (and possibly missing532

covariate/outcome values), potentially resulting in improved imputations and reduced bias533

in the downstream analysis compared to usual chained equations. Our proposed method,534

therefore, provides a flexible and novel generalization of the usual MAR-based imputation535

that allows us to study a wider class of missingness models, of which MAR is a special case.536
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