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Abstract 
Historic and recent evidence suggests that a landlocked population of Sea Lamprey (Petromyzon marinus) 

complete their life cycle in the upper Cheboygan watershed. In this watershed, the fish communities of 

Burt and Mullett lakes support the parasitic-stage for this population, while the surrounding tributaries 

provide spawning and larval rearing habitat. The Cheboygan River lock and dam system serves as a partial 

barrier between this ‘upper-river’ population and Sea Lamprey that feed in Lake Huron. Despite this 

barrier, Lake Huron Sea Lamprey still may escape into the ‘upper-river’ and utilize the same spawning 

grounds as those from Burt and Mullett lakes. The objectives of this study were to determine (1) what 

fishes Sea Lamprey feed on in Burt and Mullett lakes and (2) whether spawning-phase Sea Lamprey from 

Lake Huron can be distinguished from those from Burt and Mullett lakes through morphological 

characteristics and stable isotopes. Results indicate that ‘upper-river’ Sea Lamprey feed on ‘less desirable’ 

fishes when compared to their Lake Huron counterparts. Parasitic-phase Sea lamprey from the ‘upper 

river’ did not differ significantly in size relative to Sea Lamprey from Lake Huron as a group. However, 

when stratified by month of capture, ‘upper-river’ Sea Lamprey were significantly larger than parasites 

from Lake Huron. Spawning-phase Sea Lamprey differed significantly in size with Lake Huron Sea Lamprey 

being larger than those of unknown origins. Stable isotope data showed that ‘upper-river’ Sea Lamprey 

heads had significantly lower deuterium (δ2H) and δ18O values than those from Lake Huron. Therefore, 

measurement of total length and weight of spawning-phase Sea Lamprey and deuterium from Sea 

Lamprey heads should be a useful method for managers to distinguish between spawning-phase Sea 

Lamprey as either originating from Lake Huron or from the ‘upper-river’, allowing for more accurate 

population estimates of landlocked Sea Lamprey from Burt and Mullett lakes, aiding in their control.  
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Introduction 
The Sea Lamprey (Petromyzon marinus) is a parasitic, anadromous fish native to the Atlantic coasts of 

Europe and North America (Applegate 1950; Hansen et al. 2016). As juveniles, they feed as external 

parasites on fish for approximately 12 to 18 months (Bergstedt and Swink 1995a). They migrate up 

streams to spawn, and then die afterward (Applegate 1950). Hatched larval Sea Lamprey, or ammocoetes, 

burrow into soft substrate and spend two to seven years as sedentary filter feeders before 

metamorphosing into parasitic-phase juveniles and migrating back to the Atlantic Ocean (Applegate 1950; 

Kao et al. 1997; Morkert et al. 1998; Drevnick et al. 2006; Swink and Johnson 2014). Like many 

anadromous fish, Sea Lamprey can tolerate freshwater throughout their life cycles, which occasionally 

results in the establishment of landlocked populations when return access to the ocean becomes blocked 

or carries excessive risk of mortality, but sufficient resources are available (e.g. spawning habitat and 

hosts) (Zydlewski and Wilkie 2013; Johnson et al. 2016). This is the case in the Laurentian Great Lakes, as 

well as in some sub-basins within the Great Lakes, including Lake Champlain and the Finger lakes 

(Applegate 1950; Twohey et al. 2003; Holbrook 2015; Johnson et al. 2016). As a result, Great Lakes fishes 

have been impacted by the establishment of Sea Lamprey throughout the basin and several native fish 

species have even been extirpated (Sitar et al. 1997; Christie and Goddard 2003; Cline et al. 2013; Siefkes 

et al. 2013). 

Sea lamprey have resided in Lake Ontario longer than any of the other Laurentian Great Lakes and are 

sometimes considered native or naturalized to Lake Ontario (Applegate 1950; Waldman et al. 2004, 2009). 

Other evidence suggests that they may have entered through the Erie Canal (Mandrak and Crossman 

1992; Smith 1995; Eshenroder 2009, 2014). The first verified record of breeding occurred in 1835 in 

Duffins Creek, a Lake Ontario tributary (Lark 1973; Smith 1995; Christie and Goddard 2003). Movement 

into Lake Erie was later facilitated by improvements in the Welland Canal (Eshenroder and Burnham-Curtis 

1999); the first adult Sea Lamprey was captured in Lake Erie 1921 (Applegate 1950). From there, Sea 

Lamprey spread rapidly, occupying all five of the Great Lakes by 1938 (Hansen et al. 2016). 

Once established in the Great Lakes, Sea Lamprey dramatically impacted economically important fisheries 

through parasitism of commercially and culturally important fishes (Lawrie 1970; Smith 1972; Christi 1974; 

Smith and Tibbles 1980; Stapanian et al. 2006). Declines in Lake Trout (Salvelinus namaycush) (Lawrie 

1970), Lake Whitefish (Coregonus clupeaformis) (Smith and Tibbles 1980) and Burbot (Lota lota) 

(Stapanian et al. 2006) throughout the basin spurred the Canadian and U.S. governments to create the 

Great Lakes Fisheries Commission (GLFC), which was tasked with reducing Sea Lamprey populations 

through mechanical, chemical and biological control measures (Applegate et al. 1961; Smith and Tibbles 

1980; Bergstedt and Twohey 2007; McDonald and Kolar 2007; McLaughlin et al. 2007). This binational 

collaboration is considered one of the most intense efforts to reduce the numbers of a vertebrate pest 

(Lawrie 1970); annual costs of Sea Lamprey control totaled approximately USD $10 million (Lavis et al. 

2003), and now can surpass USD $20 million (N. Johnson, USGS Hammond Bay Biological Station, personal 

communication).  

Various control methods are utilized throughout the Great Lakes Basin. Mechanical control measures 

include dams and weirs that limit adult Sea Lamprey movement, reducing the number of stream miles 

available for spawning adults (Lavis et al. 2003). In areas where Sea Lamprey can access spawning habitat, 

Sea Lamprey control is administered after considering number of larvae present, their size, and the cost 

of treatment. Sea Lamprey production is estimated through electrofishing surveys of stream reaches, 
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which provide larval population estimates, size of larvae and probability larvae will metamorphose in the 

upcoming year. If a stream is selected for treatment, selective pesticides (lampricides) are then applied, 

targeting ammocoetes (Christie et al. 2003). Adults are also trapped to estimate population size, evaluate 

barriers, and lampricide effectiveness (Christie and Goodard 2003; Holbrook et al. 2014). However, 

control efforts can be met with diminishing returns (Christie et al. 2003), due to a variety of factors 

including larvae residual to treatment (Holmes 1990), increased survival of parasitic-phase Sea Lamprey 

due to restoration of preferred hosts (e.g. Lake Trout) (Twohey et al. 2003), and potential contributions 

from landlocked populations. 

Burt and Mullett lakes in Michigan (Figure1) are inland lakes within the Cheboygan River watershed that 

are large enough to support a population of landlocked Sea Lamprey (Applegate 1950; Holbrook 2015; 

Johnson et al. 2016). Individuals in this population (hereinafter referred to as ‘upper-river’ Sea Lamprey) 

can spend the entirety of their life cycle within Burt and Mullett lakes, but may also migrate out to Lake 

Huron to feed (Johnson et al. 2016). This ‘upper-river’ population shares spawning grounds within the 

Cheboygan River watershed with Sea Lamprey that feed as juveniles in Lake Huron (hereinafter referred 

to as ‘Lake Huron’ Sea Lamprey) (Johnson et al. 2016). This overlap of spawning habitat complicates 

control of Sea Lamprey within northern Michigan. While these two populations are separated by a dam 

and lock system approximately two kilometers from the mouth of the Cheboygan River (Figure 1), the 

upper reaches of the Cheboygan River watershed have remained infested with Sea Lamprey (Holbrook et 

al. 2014; Johnson et al. 2016).  

Holbrook et al. (2014) showed that while the existing dam and lock system, as well as Sea Lamprey traps, 

have the potential to act as an effective barrier to Sea Lamprey migration, the possibility of escapement 

into the upper Cheboygan River exists. Holbrook et al. (2014) estimates that 0-2% of adult Sea Lamprey 

in the lower Cheboygan River watershed could have passed upstream of the dam and lock. With an 

estimated population size of 21,828 – 29,300 adult Sea Lamprey in the Cheboygan River, zero to 514 

individuals could have escaped (Holbrook et al. 2014). These uncertainties present Sea Lamprey control 

agents with difficult decisions with regard to Sea Lamprey in the Cheboygan River watershed: should 

costly improvements to the dam and lock system be made to fortify this Sea Lamprey barrier? Can 100% 

blockage of Sea Lamprey migration to the ‘upper-river’ be achieved in this system?   

These questions are amplified because the Cheboygan River watershed is an important area with regard 

to Sea Lamprey control, as it is one of the largest Sea Lamprey producing streams in the Great Lakes 

(Holbrook et al. 2014; Sullivan and Adair 2014). Roughly 425,000 m2 of preferred larval habitat exists 

upstream of the Cheboygan River dam and lock (Holbrook et al. 2014). To perform efficient control 

measures and evaluate their effectiveness, accurate population estimates are necessary.  Sea Lamprey 

abundance is primarily estimated by capturing spawning-phase Sea Lamprey (Applegate 1950; Schleen 

and Klar 2000; Mullett et al. 2003; Swink 2003). Current population estimates for ‘upper-river’ spawning 

Sea Lamprey are less than 200 individuals, and therefore, they may be susceptible to control tactics that 

reduce reproduction like trapping and sterile male release (Hanson and Manion 1980). Eradication may 

also be feasible (Johnson et al. 2016) by harnessing a variety of control methods hinged on the concept 

of integrated pest management, including lampricide application, trapping and the sterile-male-release-

technique (Hanson and Manion 1980; Christie and Goddard 2003; Klassen et al. 2004;  Johnson et al. 

2016). Eradicating the ‘upper-river’ population would reduce control costs; lampricide treatments takes 

place once every four years at a cost of USD $100,000 annually (Johnson et al. 2016). Eradication efforts 

may only make sense though, if we know that Sea Lamprey are capable of escaping upstream of the 
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Cheboygan River lock and dam system. Studying this small ‘upper-river’ population to better understand 

inland lake Sea Lamprey ecology could help inform a method of eradication for application across the 

Great Lakes.  

Johnson et al. (2016) concluded that a small population of Sea Lamprey spawned in the upper Cheboygan 

watershed and some may have completed their life cycle in the ‘upper-river’. This conclusion is supported 

by the presence of Sea Lamprey wounds on fish from Burt and Mullett lakes, presence of adult Sea 

Lamprey above the Cheboygan dam and lock prior to the seasonal opening of the lock, small differences 

in statolith microchemistry when comparing adults from the ‘upper-river’ to those of Lake Huron, and 

differences in total length between populations (Johnson et al. 2016). But several questions remain, such 

as: what damage Sea Lamprey are causing to fishes in Burt and Mullett lakes and what is the primary 

source of the spawning stock of Sea Lamprey in the ‘upper-river’? Are spawning Sea Lamprey primarily 

composed of individuals that completed their life cycle in the ‘upper-river’ or from individuals that 

originated from Lake Huron and entered the ’upper-river’ by bypassing the lock and dam? Answering 

these two questions will help managers set targets for Sea Lamprey control in this system and inform 

control strategies. Therefore, utilizing the framework described in Johnson et al. (2016), this study 

explores parasitic Sea Lamprey feeding ecology in the upper Cheboygan watershed, and evaluates 

methods for distinguishing the ‘upper-river’ spawning adults from those that feed in Lake Huron, escape 

around the lock and dam, and spawn in the upper Cheboygan watershed. 

Sea lamprey originating in the ‘upper-river’ versus Lake Huron may differ physically and physiologically 

due to differences in fish communities. Burt and Mullett lakes primarily support cool water fishes such as 

Northern Pike (Esox lucius), Smallmouth Bass (Micropterus dolomieu), Walleye (Sander vitreus), and 

Yellow Perch (Perca flavescens), which belong to a variety of feeding guilds: piscivores, pelagic 

planktivores, insectivores, and benthivores (Hanchin et al. 2005). Cold water fishes such as landlocked 

populations of Rainbow Trout (Oncorhynchus mykiss), Brown Trout (Salmo trutta), and recovering 

populations of Lake Sturgeon (Acipenser fulvescens) can also be found in Burt and Mullett lakes (Hanchin 

et al. 2005; Johnson et al. 2016). In contrast, Lake Huron is dominated by cold water salmonids, such as 

Lake Trout, Chinook Salmon (Oncorhynchus tshawytscha), Rainbow Trout, Coho Salmon (Oncorhynchus 

kisutch) and Pink Salmon (Oncorhynchus gorbuscha) (Roseman et al. 2014). While Sea Lamprey do exhibit 

feeding preferences towards large salmonids (Coutant 1977; Swink 1993; Swink 2003), they are generalist 

feeders (Silva et al. 2014; Happel et al. 2017). Therefore, I hypothesized that differences in available host 

species may lead to differences in size, condition factor and biochemical markers between the two 

populations.  

Isotopic values of Sea Lamprey tissues are influenced by diet as well as the waters that they occupy. The 

analysis of stable isotopes and trophic interactions has relied heavily on carbon (δ13C) and nitrogen (δ15N), 

which are derived solely from diet (DeNiro and Epstein 1981; Hobson et al. 1999; Ehleringer et al. 2008; 

Vander Zanden et al. 2016). Analyses of other stable isotopes, such as deuterium (δ2H) and oxygen (δ18O), 

have historically been used in climate sciences to study hydrological cycles by tracing water origin or to 

reconstruct past climates (Clark and Fritz 1997). However, these isotopes have recently been applied in 

animal studies through the linkage of spatial patterns in amount weighted precipitation and δ2H and δ18O 

values in animal tissues (Vander Zanden et al. 2016). This has made it possible to track movements and 

origin of a broad range of animals (Bowen et al. 2005). Deuterium and δ18O composition is influenced by 

diet and environmental water, resulting in the application of these isotopes as a tracer of organismal food 

and resource use (Vander Zanden et al. 2016).  
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Jasechko et al. (2014) demonstrated through the analysis of deuterium that surface water flowing into 

Lake Huron (i.e., the Cheboygan River watershed) was more negative than water analyzed from Lake 

Huron. Therefore, I hypothesized that ‘upper-river’ Sea Lamprey may have different isotopic composition 

when compared to Sea Lamprey known to originate from Lake Huron. If proven correct, the analysis of 

isotopic composition of Sea Lamprey tissue may be a more reliable and cost effective tool to determine if 

Sea Lamprey are escaping past the barrier at the Cheboygan River dam and lock. Increased knowledge of 

the effectiveness of this barrier can assist managers with developing more accurate population estimates 

of ‘upper-river’ Sea Lamprey and ultimately assist with control efforts of Sea Lamprey in the upper 

Cheboygan watershed. 

My objectives were to: (1) determine what fishes Sea Lamprey are feeding on in Burt and Mullett lakes, 

and the damage they cause within these lakes and how it compares with Lake Huron; and to (2) determine 

if physiological differences exist between the two populations, and if they can be used to distinguish Sea 

Lamprey that completed their life cycle in the ‘upper-river’ from those from Lake Huron. To accomplish 

Objective 1, fishes from Burt and Mullett lakes were inspected for lamprey inflicted wounds. Objective 2 

was accomplished through a comparison of Sea Lamprey biometrics and isotopic composition to test if 

differences in host/prey communities affect Sea Lamprey physiology. 

Methods 

Study System 
Burt and Mullett lakes are located within the northern portion of Michigan’s lower peninsula, and are part 

of the Cheboygan River watershed (Figure 1). Burt Lake has a surface area of 6,930 ha and a maximum 

depth of 22.2 m. Mullett Lake is slightly larger, with a surface area of approximately 7,025 ha, and a 

maximum depth of 36.5 m (Laarman 1976). Mullett Lake is drained by the Cheboygan River along its 

northern lobe, where it heads northeast to Lake Huron. The Indian River flows from Burt to Mullett Lake. 

This system makes up a portion of the inland waterway, which also contains Black Lake (4,092 ha), another 

substantial inland lake. Alverno Dam on the Black River (Figure 1) inhibits Sea Lamprey spawning 

migration, resulting in an absence of Sea Lamprey in Black Lake (Johnson et al. 2016).  

Burt and Mullett lakes are considered mesotrophic, and they experience moderate recreational fishing 

pressure (Schrouder 1976; Tipp of the Mitt Watershed Council 2002). The Crooked and Maple rivers feed 

into Burt Lake on its western side, and the Sturgeon River enters on the south side (Hanchin et al. 2005), 

along with several smaller streams. Mullett Lake is fed by the Indian River, the Little Pigeon and Pigeon 

rivers, and Mullett Creek.  

Many of the tributaries that feed Burt and Mullett lakes contain or have contained larval native lampreys 

(Lethenteron appendix and Ichthyomyzon spp.) as well as larval Sea Lamprey (Applegate 1950; Johnson et 

al. 2016). However, native lamprey populations are generally restricted to areas of the watershed that 

are not treated with lampricide, since lampricide will kill all lamprey species (McLaughlin et al. 2003; 

Sullivan et al. 2003). Since 2010 only the Pigeon (including Little Pigeon), Sturgeon (including Little 

Sturgeon) and Maple rivers have contained larval native and Sea lampreys (Johnson et al. 2016). Since the 

discovery of Sea Lamprey within the Cheboygan River watershed, numerous lampricide treatments have 

been applied to the infested streams (Sullivan and Adair 2014; Johnson et al. 2016). The Pigeon, Sturgeon 

and Maple rivers were most recently treated during late summer of 2016, using a combination of liquid 
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and solid 3-trifluromethyl-4-nitrophenol (TFM) as well as Bayluscide in the Sturgeon River lentic, after a 

larval population likely exceeding 100,000 was found during survey efforts (Mullet and Sullivan 2017). 

Angler Surveys 
To determine which fishes Sea Lamprey feed on in Burt and Mullett lakes (Objective 1), recreationally 

caught fish from Burt and Mullett lakes were examined for wounds and these data were used to construct 

wounding rates. Surveys were conducted by the author on Burt Lake from May through August, 2016. 

Access points along Burt Lake were targeted, specifically Burt Lake State Park, Maple Bay Boat Ramp and 

Sturgeon Bay Boat Ramp (Figure 1). In an effort to encounter as many anglers as possible, multiple sites 

were typically visited in a given day. Angler catches were inspected as they returned from outings for 

lamprey wounds, with the angler’s permission. Total lengths (mm) of all fishes observed were recorded. 

Any fish which exhibited signs of lamprey wounding, as classified by King (1980), were of special interest 

and pictures of wounding were taken. Wounds with a diameter greater than 20 mm were classified as Sea 

Lamprey wounds. Wounds smaller than 20 mm were also recorded, but were believed to be inflicted by 

native sea lamprey (e.g. Silver Lamprey) (Johnson et al. 2016). Anglers were also encouraged to self-report 

wounding utilizing a wound-identification handout which was distributed to anglers encountered at boat 

ramps and/or left on vehicles (Figure 2). Coupled with this effort, fliers designed to target anglers not 

utilizing water craft were posted at popular access points along the Maple, Pigeon and Sturgeon rivers, as 

well as Veteran’s Pier fishing access point in Indian River, Michigan (Figure 3). These fliers were modeled 

after those distributed by Applegate (1950). The author did not personally conduct surveys on Mullett 

Lake during the summer of 2016 as to not confound a Michigan Department of Natural Resources creel 

survey. Nonetheless, a Mullett Lake angler (Steven Philip) provided wounding data from fish caught. 

Angler survey data were combined with wounding information collected by U.S. Geological Survey, 

Hammond Bay Biological Station (HBBS) for Burt and Mullett lakes spanning from 2013 to 2019, as part of 

their upper Cheboygan River Sea Lamprey observation program. In this thesis, only wounding data from 

2016 are reported. 

HBBS staff conducted presentations at angler meetings and posted fliers at bait shops in the area. Fliers 

requested that resource users send pictures of wounded fish alongside a meter stick and any lampreys 

attached to fish to HBBS. Photos of wounded fish were evaluated based on the aforementioned criterion 

(greater than 20 mm vs. less than 20 mm) and classified accordingly. If a parasitic juvenile Sea Lamprey 

was captured from Mullett or Burt lakes, it was frozen and stored at HBBS for future inspection. From 

these angler survey results, Sea Lamprey wounding rates of fishes were compiled and then statistically 

analyzed between the two lakes through a test of equal or given proportions (Ho: proportions or 

probabilities within two groups are the same; RStudio Team 2016).  

Specimen collection 
Morphological characteristics from Sea Lamprey were collected to determine if significant differences in 

size and condition exist between the two populations, and if differences could aid in distinguishing the 

two populations (Objective 2). Sea Lamprey undergo dramatic physical and biological changes during 

spawning runs, which may influence total length and/or weight (Applegate 1950; Araújo et al. 2013). For 

this reason, total lengths, weights and condition factor of Sea Lamprey were compared based on life cycle 

(i.e., spawning-phase vs. parasitic-phase) and origin. All parasitic-phase lamprey were classified as either 

‘upper-river’ or Lake Huron Sea Lamprey. Origin of these Sea Lamprey is known as they were captured 

while feeding in Burt/Mullett lakes or in Lake Huron.  Adult spawning-phase Sea Lamprey captured in the 
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Pigeon, Sturgeon or Maple rivers were either classified as originating from Lake Huron or had unknown 

origins. These two groups could be distinguished in the field because spawners from Lake Huron were 

marked via fin clippings by HBBS staff, while Sea Lamprey with unknown origins did not have fin clippings. 

Sea Lamprey with unknown origins could have completed their life cycle in the upper river or escaped 

around the lock and dam and therefore originated from Lake Huron.  

For all Sea Lamprey (i.e., spawning- and parasitic-phase Sea Lamprey) total length (mm), weight (g), and 

sex was recorded. Condition factor (Wr) was derived from length and weight using the equation: 

𝑊𝑟 =  
𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)

10−4.70251+(2.63133∗𝐿𝑂𝐺10(𝐿𝑒𝑛𝑔𝑡ℎ[𝑚𝑚]))
 

from Schneider et al. (2000). Mean total length, weight and condition factor or Lake Huron and ‘upper-

river’ Sea Lamprey were analyzed for significant differences (i.e., p < 0.05) via two sample t-tests after 

testing for equal variance (RStudio Team 2016). Sea Lamprey with unknown origin were not statistically 

compared to ‘upper-river’ or Lake Huron Sea Lamprey since individuals from both groups could be 

represented in the unknowns.  

Spawning-phase Sea Lamprey  
Adult spawning-phase Sea Lamprey were captured during the summers of 2013 through 2019 during their 

upstream migration by employees of HBBS. Spawning-phase males captured below the Cheboygan River 

dam (known Lake Huron source) were marked via fin clippings, and released at the mouths of the Maple, 

Pigeon and Sturgeon rivers as part of a separate study conducted by HBBS. Pairs of trap nets were placed 

within the rivers, oriented with the trap opening facing downstream, to capture upstream migrating Sea 

Lamprey. Captured Sea Lamprey were examined for the presence of fin clippings; when fin clippings were 

absent, the Sea Lamprey origin was classified as unknown (i.e., could be from the landlocked population 

or could be from Lake Huron if it escaped through the dam/lock system). From 2013 to 2019, a total of 24 

Sea Lamprey with unknown origins were captured. Total length (mm) (measured from the beginning of 

the oral disk to the end of the caudal fin) and total mass (g) of all Sea Lamprey was recorded. Sex was 

recorded for unmarked individuals. Additional marked male Sea Lamprey (n = 9) were captured in the 

Maple River during nighttime nest surveys, conducted by the author, from June to August 2016. These 

surveys were conducted on the Maple River because the Lake Kathleen Dam (Figure 1) aggregated Sea 

Lamprey below it, allowing for relatively easy capture of Sea Lamprey when compared to the Pigeon and 

Sturgeon rivers. One marked spawning-phase Sea Lamprey was also supplied by residents along the 

Sturgeon River, who captured this in July of 2016. A total of 455 spawning-phase Sea Lamprey were 

collected, 431 of which originated from Lake Huron and 24 with unknown origins (Table 1) 

Spawning-phase Sea lamprey of unknown origins are assumed to be either from the ’upper-river’ or from 

Lake Huron, making it difficult to group them as one entity. Nevertheless, statistical analyses (two sample 

t-tests, testing for variance) comparing spawning-phase Sea Lamprey were conducted in order to 

understand trends. Lengths and weights of Sea Lamprey of unknown origins were also plotted with 

spawners from Lake Huron. Normal confidence ellipses (95%) are overlaid on top of scatterplots in an 

attempt to compare Lake Huron Sea Lamprey to those with unknown origins. This qualitative comparison 

was done to determine if any of the Sea Lamprey with unknown origin fall outside of the confidence ellipse 

associated with Lake Huron spawners, and could be spawning-phase Sea Lamprey from the ‘upper-river’. 

Combination box plots and scatterplots were also used to compare total length, weight and condition 

factor of spawning-phase Sea Lamprey of unknown origin to spawners from Lake Huron.  
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Parasitic-phase Sea Lamprey 
Parasitic-phase Sea Lamprey found attached to fishes, and in one case, to the hull of a boat, were also 

collected from Burt and Mullett lakes by anglers and turned over to HBBS (Burt Lake, n = 2; Mullett Lake, 

n = 5). Fisheries and Oceans Canada and HBBS donated Sea Lamprey that were known to feed in Lake 

Huron, in 2015 (n = 139) and 2016 (n = 14), respectively. In total, parasitic-phase Sea Lamprey accounted 

for 160 specimens, with 143 from Lake Huron, and seven from Burt and Mullett lakes (Table 1). Mean 

total length, weight, and condition factor were analyzed for significant differences between the two 

groups, to compare all parasitic-phase Sea Lamprey. However, Bergstedt and Swink (1995b) 

demonstrated that growth of parasitic-phase Sea Lamprey differs significantly throughout the year. 

Periods of rapid growth were observed in early June, and then again in early October. For this reason, a 

seasonal comparison of morphological characteristics for parasitic-phase Sea Lamprey was also 

conducted, focusing on Sea Lamprey caught in August and September. These two months were selected 

due to the fact that the majority of ‘upper-river’ Sea Lamprey were caught within this timeframe (August 

= 4, September = 2).          

Sample Preparation 
Stable isotopes (δ2H and δ18O) from Sea Lamprey were analyzed to determine if significant differences in 

isotopic composition exists between ‘upper-river’ and Lake Huron Sea Lamprey, due to differences in 

available hosts and water chemistries (Objective 2). Additionally, isotopic composition of potential Sea 

Lamprey hosts from Burt and Mullett lakes were prepared and analyzed to further understand isotopic 

composition of ‘upper-river’ organisms. 

A total of 52 Sea Lamprey individuals were utilized in stable isotope analysis (see Appendix A). We 

prioritized Burt and Mullett lakes specimens (n = 7), and unknown spawning-phase Sea Lamprey (n = 10) 

due to funding constraints. The tissue types used in stable isotope analysis included the heart, liver, 

adipose tissue, and head. Therefore, multiple samples were run (e.g., heart, liver, adipose, and head 

tissues) from each individual when possible. However, analysis of heads is presented here as heads were 

the only available tissue type for the majority of Sea Lamprey with unknown origins (see Appendix A). 

Heads were utilized because HBBS has collected and stored them (-80C) since 2013. The assumption is 

heads and/or adipose tissue can be utilized as a surrogate for other tissue types (e.g. heart, liver), which 

are commonly used in stable isotope analyses (Harvey and Kitchell 2000; Happel et al. 2016), but require 

dissection of specimens. 

Tissues were excised from carcasses, weighed, and stored in a -80o C freezer (Shaikh 1986; Käkelä et al. 

2005; Budge et al. 2006). Tissues were later lyophilized for at least 48 hours, and then reweighed to 

determine water content (Lança et al. 2014; Foley et al. 2016). Prior to analysis, tissue samples were 

ground into a fine dust under liquid nitrogen and returned to the lyophilizer for an additional 24 hours to 

remove any moisture absorbed during processing. Unfortunately, through the process of preparing tissue 

samples for analysis several samples were deemed insufficient to run as they were too small to accurately 

and effectively be analyzed for stable isotopes. The majority of these samples were heart and liver tissue 

(see Appendix A).  

Potential host species were also prepared for stable isotope analysis to further compare isotopic 

composition of organisms from Burt and Mullett lakes and their influence on Sea Lamprey isotopic values 

(see Appendix B). Whole fish were homogenized following the process outlined by Benville and Tindle 
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(1970). Samples were lyophilized for at least 48 hours, or until no changes in sample weight were 

observed. 

Stable Isotope Analysis 

Sea Lamprey 

Aliquots of approximately 0.5 mg of tissue were ‘tin-balled’ using silver caps (Drevnick et al. 2006) and run 

in triplicate through a Thermo Scientific EA Isolink. The EA system (Thermo Scientific Flash IRMS) was 

comprised of a high-temperature conversion reactor (glassy carbon with alumina sheath) maintained at 

1300 ˚C, and a molecular sieve GC column (Restek Molesieve 5A, 60/80 mesh, 2m x 2mm ID) maintained 

isothermally at 70 ˚C. A small amount of pure silver wool at the exit of the reactor sorbed any resulting 

H2S and an ascarite/magnesium perchlorate trap was placed before the GC column to sorb any cyanide 

evolved during the pyrolytic reaction. Carrier gas was ultrahigh-purity He at 80 mL min-1. The resolved CO 

and H2 gases were transferred to a Thermo Scientific Delta V gas isotope ratio mass spectrometer by 

means of a continuous flow inlet (Conflo IV) with a 90% pre-split to avoid saturating the detectors. The 

mass spectrometer was tuned daily with pure reference gases (CO and H2), H3
+ correction and instrument 

precision (‘on-off’ testing) and linearity assessments were performed daily. Prior to each analysis, peak 

centering was performed to correct for small deviations in the ion beam. Certified reference materials 

(USGS-42, CBS, and KHS) were used to calibrate raw delta values to the VSMOW (Vienna Standard Mean 

Ocean Water) scale.  

Isotopic composition of parasitic- and spawning-phase Sea Lamprey heads from Lake Huron were 

analyzed to determine if life cycle influences H and O isotopes. Deuterium and δ18O values from Lake 

Huron Sea Lamprey heads were then compared to those from the ‘upper-river’. Statistical analyses were 

conducted via two sample t-tests, accounting for variance (RStudio Team 2016). To further investigate 

differences physiological differences between ‘upper-river’ and Lake Huron Sea Lamprey, linear 

regression models comprised of deuterium values and weight (g) were constructed. These variables were 

used because they meet the assumption of homogeneity of variances. An analysis of covariance (ANCOVA) 

was then performed examining slope and y-intercepts (JMP Pro Statistical Discovery™, Version 14.0, SAS 

Institute, Inc., 2014). Size-adjusted least-squares means of deuterium from heads of Lake Huron and 

‘upper-river’ Sea Lamprey were then compared via a two sample t-tests to examine if significant 

differences (i.e. P < 0.05) exists (JMP Pro Statistical Discovery™, Version 14.0, SAS Institute, Inc., 2014)  

Significant differences in H and O isotopic composition have been observed in inter- and intra-cellular 

water (Kreuzer-Martin et al. 2005), meaning that a consumer’s body is comprised of heterogeneous local 

water body pools (Vander Zanden et al. 2016). As a result, isotopic composition of each tissue type (i.e., 

heads, hearts, livers, and adipose tissue) was compared within groups (i.e., Lake Huron, ‘upper-river’, and 

unknown) to determine if significant differences (i.e., P < 0.05) do exist within specimens; results are 

presented in  Appendix A. Isotopic composition of potential host species from Burt and Mullett lakes were 

also compared to those of ‘upper-river’ and Lake Huron Sea Lamprey via two sample t-tests, testing for 

equal variance (RStudio Team 2016) (see Appendix B).  

Host Species  

Potential host species of parasitic-phase Sea Lamprey were collected from Burt (n = 15) and Mullett (n = 

4) lakes (Table 2). Fishes either were provided from anglers encountered during angler surveys, were 

caught by the author or were provided by HBBS. All fishes provided by anglers and HBBS were filleted 

prior to collection so weights do not represent the actual weights of the fishes (Table 2). Isotope data 
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from potential hosts from Burt and Mullett lakes was combined with ‘upper-river’ Sea Lamprey isotope 

data, and published isotope data from Lake Huron groundwater (Jasechko et al. 2014) in a stable isotope 

mixing model to determine the influence prey has on isotopic composition of ‘upper-river’ Sea Lamprey. 

Apportions for the stable isotope mixing model were calculated based on the following equations: 

𝑯𝟐𝑶𝒂𝒑𝒑𝒐𝒓𝒕𝒊𝒐𝒏 =  
𝝁𝜹𝟐𝑯 𝑺𝑬𝑳𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑷𝒓𝒆𝒚𝑼𝑹

𝝁𝜹𝟐𝑯 𝑯𝟐𝑶𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑷𝒓𝒆𝒚𝑼𝑹
 

𝑷𝒓𝒆𝒚𝒂𝒑𝒑𝒐𝒓𝒕𝒊𝒐𝒏 =  𝟏 −  𝑯𝟐𝑶𝒂𝒑𝒑𝒐𝒓𝒕𝒊𝒐𝒏 

Contributions to uncertainty in the stable isotope mixing model were then calculated using the following 

equations: 

𝑯𝟐𝑶𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚 =  (
𝝁𝜹𝟐𝑯 𝑷𝒓𝒆𝒚𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑺𝑬𝑳𝑼𝑹

(𝝁𝜹𝟐𝑯 𝑯𝟐𝑶𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑷𝒓𝒆𝒚𝑼𝑹)𝟐)

𝟐

×  (𝝈𝑯𝟐𝑶𝑼𝑹
)

𝟐
 

𝑷𝒓𝒆𝒚𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚 =  (
𝝁𝜹𝟐𝑯 𝑺𝑬𝑳𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑯𝟐𝑶𝑼𝑹

(𝝁𝜹𝟐𝑯 𝑯𝟐𝑶𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑷𝒓𝒆𝒚𝑼𝑹)𝟐)

𝟐

×  (𝝈𝑯𝟐𝑶𝑼𝑹
)

𝟐
 

𝑺𝑬𝑳𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚 =  
𝟏

(𝝁𝜹𝟐𝑯 𝑯𝟐𝑶𝑼𝑹  −  𝝁𝜹𝟐𝑯 𝑷𝒓𝒆𝒚𝑼𝑹)𝟐
×  (𝝈𝑯𝟐𝑶𝑺𝑬𝑳

)
𝟐

 

where SELUR refers to values derived from ‘upper-river’ parasitic-phase Sea Lamprey, PreyUR values from 

potential ‘upper-river’ hosts and H2OUR refer to isotopic values for Lake Huron groundwater presented by 

Jasechko et al. (2014). A mixing model was not constructed for Lake Huron Sea Lamprey due to lack of 

published δ2H values on fishes from Lake Huron. 

Results 

Angler Survey 
To understand parasitic feeding habits of ‘upper-river’ Sea Lamprey (Objective 1), 381 fishes from Burt 

Lake were examined during summer 2016 (Table 3). Of the fish inspected, 17 exhibited lamprey inflicted 

wounds (5%) with 15 of the 17 wounds likely being caused by Sea Lamprey. Silver lamprey (Ichthyomyzon 

unicuspis) were found attached to two fish (Lake Sturgeon and White Sucker (Catostomus commersonii)), 

and a Northern Pike had three wounds, two of which were likely from Silver Lamprey, and one from Sea 

Lamprey. Walleye were the most abundant fish observed during angler surveys (n = 157), representing 

41% of all fish observed from Burt Lake. Walleye also exhibited the highest Sea Lamprey wounding rate 

(8%) of all fish observed from Burt Lake (Figure 4). The second most abundant species from Burt Lake was 

Yellow Perch (n = 132), representing 35% of all fishes inspected. No Sea Lamprey wounds were observed 

on Yellow Perch from Burt Lake. Northern Pike (n = 48) comprised 13% of fish inspected during Burt Lake 

angler surveys, and exhibited a wounding rate of 2%. All other species inspected during Burt Lake angler 

surveys represented less than 10% of fish inspected and exhibited no signs of Sea Lamprey wounding. The 

sole exception was a Brook Trout caught in the Maple River which the angler thought had a Sea Lamprey 

wound, but the observation could not be verified (Table 3).  

Self-reported wounding data from Mullett Lake in 2016 yielded a total of 530 fishes inspected, including 

29 wounded fishes. Of the wounded fishes, 20 were believed to exhibit wounds from Sea Lamprey and 9 
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from native lamprey (Table 3). Northern Pike (n = 340) represented 64% of all inspected fish from Mullett 

Lake and exhibited a Sea Lamprey wounding rate of 3%. Walleye (n = 129) were the second most common 

species inspected from Mullett Lake, representing 24% of all fish; none were observed with wounds. 

Rainbow Trout (n = 58) made up 11% of all fish observed in Mullett Lake and exhibited a wounding rate 

of 12%. Other fish observed in Mullett Lake with Sea Lamprey wounds included two Cisco and one Yellow 

Perch. For each of these species a wounding rate of 100% was observed, but the only reason individuals 

from these species were reported was because they had a wound so the wounding rate is meaningless in 

this case.  

Wounding rate of Northern Pike (Χ = 0.11, P = 0.74) and Rainbow Trout (Χ = 0.41, P = 0.52) did not differ 

significantly between Burt and Mullett lakes, whereas wounding rates on Walleye in Burt Lake was higher 

than Mullett Lake (Χ = 0.02, P < 0.001). 

Length-weight 

Spawning-phase Sea Lamprey  
Spawning-phase Sea Lamprey were categorized into two groups: those from Lake Huron (n= 431) and 

those with unknown origins (n = 24). Sea Lamprey with unknown origins are likely either from Lake Huron 

or from Burt and/or Mullett lakes. Total length (mm) of Lake Huron spawning-phase Sea Lamprey (n = 

431, mean = 491 mm, SD = 37 mm) was significantly larger than that of spawners of unknown origin (n = 

24, mean = 440 mm, SD = 58 mm) (T-statistic = 4.19, P < 0.001). Lake Huron spawners (n = 431, mean = 

249 g, SD = 49 g) also had significantly higher weights (g) than unknown spawners (n = 24, mean = 198 g, 

SD = 59 g) (T-statistic = 4.92, P < 0.001). Despite these significant differences in size, no significant 

differences in condition factor (Wr) were found between Lake Huron spawners (n = 431, mean = 1.04, SD 

= 0.20) and spawners of unknown origins (n = 24, mean = 1.04, SD = 0.29) (T-statistic = 1.08, P = 0.29). 

As a group, many of the unknown Sea Lamprey appear to fall within the 95% confidence ellipse associated 

with Lake Huron Sea Lamprey (e.g. MR2.2015, PIR2.2018, PIR4.2018, PIR1.2015, MR1.2015, MR1.2014, 

PIR1.2013, PIR1.2018, MR1.2013, MR2.2015, STR1.2018, STR1.2019, STR2.2019, STR3.2019, STR6.2019) 

(Figure 5). However, several of the unknown Sea Lamprey also fall outside of the 95% confidence ellipse 

corresponding to Lake Huron Sea Lamprey (e.g. PIR2.2017, PIR1.2017, STR1.2017, PIR3.2018, STR1.2013, 

PIR2.2013, PIR1.2019, STR4.2019, STR5.2019) (Figure 5). These individuals were smaller, with regard to 

total length and weight, when compared to Lake Huron spawners. Categorization of individuals from the 

group of unknowns as either Lake Huron or not from Lake Huron (i.e. potential ‘upper-river’ Sea Lamprey) 

based on morphological characteristics can be done to a certain degree. Sea Lamprey with unknown 

origins as a group, appear to align closely to spawners from Lake Huron. However, a few individuals fall 

below the 95% confidence intervals when analyzing total length and weight (e.g. PIR1.2017, PIR2.2017, 

STR5.2017) and two individuals (e.g. STR1.2013, STR1.2017) when only comparing weight (Figure 6a). 

Unknowns appear to be tightly grouped with spawning-phase Lake Huron Sea Lamprey when comparing 

condition factor (Wr), with all individuals falling within the confidence interval for Lake Huron spawners 

(Figure 6b).  

Parasitic-phase Sea Lamprey 
Morphology characteristics from ‘upper-river’ and Lake Huron Sea Lamprey were analyzed to determine 

if significant differences in size, possibly attributed to differences in potential hosts and abiotic conditions, 

exists between the two groups. Parasitic Sea Lamprey from Lake Huron (n = 153, mean = 325 mm, SD = 

111 mm) and the ‘upper-river’ (n = 7, mean = 324 mm, SD = 111 mm) did not differ significantly in total 
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length (T-statistic = 0.01, P = 0.99) when comparing individuals captured year-round. Parasitic-phase Sea 

Lamprey from Lake Huron (n = 153, mean = 91 g, SD = 81 g) and the ‘upper-river’ (n = 7, mean = 93, SD = 

66 g) exhibited no significant differences in weight (g) (T-statistic = 0.07, P = 0.94) when comparing Sea 

Lamprey captured year-round. Similarly, parasitic Sea Lamprey from Lake Huron (n = 153, mean = 0.82, 

SD = 0.20) and the ‘upper-river’ (n = 7, mean = 0.83, SD = 0.25), captured year-round, did not differ 

significantly when examining condition factor (Wr) (T-statistic = 0.19, P = 0.86) (Figure 7). 

Parasitic-phase Sea Lamprey from Lake Huron (n = 74) and the ‘upper-river’ (n = 5) did not differ 

significantly in total length (T-statistic = 1.29, P = 0.20), weight (T-statistic, = 1.45, P = 0.15) or condition 

factor (T-statistic = 1.45, P = 0.08) when comparing those captured in August or September (Figure 8).   

Stable Isotope Analysis 

Parasitic- vs. spawning-phase Sea Lamprey from Lake Huron 
Isotope data were compared between parasitic- and spawning-phase Sea Lamprey captured from Lake 

Huron to determine if life stage influences δ2H and δ18O values of the four different tissue types. Results 

from heads are presented here (Figure 9), because data from heads are used for comparisons among Lake 

Huron Sea Lamprey, ‘upper-river’ Sea Lamprey, and lamprey of unknown origins. Results for hearts, livers 

and adipose tissue can be found in Appendix A. For δ2H, heads from parasitic- and spawning-phase Lake 

Huron Sea Lamprey did not differ significantly (T-statistic = 0.65, P = 0.52).  For δ18O, heads from spawning-

phase Sea Lamprey had higher mean δ18O values than parasitic-phase Sea Lamprey (T-statistic = 3.78, P < 

0.001). Insignificant results for δ2H indicate that heads collected from different stages in a Sea Lamprey’s 

life can be used interchangeably, increasing sample size and therefore statistical power. 

Lake Huron vs. ‘Upper-river’ Sea Lamprey  
The above results demonstrate that deuterium values are not influenced by Sea Lamprey life stage, but 

δ18O values are significantly different based on life cycle. As a result, δ2H values from heads of parasitic- 

and spawning-phase Lake Huron Sea lamprey were combined to increase sample size and statistical 

power. Deuterium values from Lake Huron (parasitic- and spawning-phase) and ‘upper-river’ Sea 

Lamprey differed significantly (T-statistic = 4.33 P < 0.001) with ‘upper-river’ Seal Lamprey exhibiting 

more negative δ2H values (Figure 10). Due to significant differences in δ18O values when comparing life 

cycle, δ18O values from Lake Huron spawning- and parasitic-phase were not combined. Instead, a one-

way ANOVA was conducted to determine the effect that origin and life cycle have on δ18O values from 

Lake Huron spawners, Lake Huron parasites and ‘upper-river’ parasites. Oxygen isotopes differed 

significantly based on origin and life cycle (F2,45 = 9.40, P < 0.001). Post hoc comparisons using the 

Tukey HSD test indicated that δ18O values of heads from Lake Huron spawning-phase Sea Lamprey 

differed significantly from δ18O values of ‘upper-river’ Sea Lamprey as well as δ18O values from Lake 

Huron parasites, with ‘upper-river’ Sea Lamprey having lower δ18O values (Figure 10). 

Despite significant differences observed between means of δ2H and δ18O for Lake Huron and ‘upper-

river’ Sea Lamprey, ranges of δ18O values do overlap between the two groups. As a result δ18O values 

may be an unreliable parameter when comparing Lake Huron and ‘upper-river’ Sea Lamprey. As an 

alternative, deuterium values of heads and whole body weight (g) from Lake Huron (parasitic- and 

spawning-phase) and ‘upper-river’ Sea Lamprey were plotted to determine if the relationship is 

significant (Figure 11). For Sea Lamprey originating from Lake Huron a significant relationship (y = -0.12x 

– 74.94; P < 0.05, R2 = 0.15) between deuterium values of heads and whole body weight (g) was 

observed; deuterium values of heads and whole body weight (g) from ‘upper-river’ Sea Lamprey also 
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exhibited a significant relationship (y = -0.12x – 131.06; P < 0.05, R2 = 0.67) (Figure 11). Because both 

relationships are significant, an ANCOVA was performed comparing the slopes and y-intercepts of each 

linear model. Slopes of the two linear models (Figure 11) were not significantly different (ANCOVA 

part1; F3,44 < 0.001, P < 0.001). However, significant differences in y-intercepts (ANCOVA part2; F2,45 = 

30.472, P < 0.001) were observed, indicating that there may be significant differences in deuterium 

values of heads from Lake Huron and ‘upper-river’ Sea Lamprey. Heads from Lake Huron and ‘upper-

river’ Sea Lamprey differed significantly (T-statistic = 2.01, P < 0.05) when comparing least-squares 

means of deuterium values, when adjusted for weight. ‘Upper-river’ Sea Lamprey head δ2H values were 

more negative (-156.44) when compared to Lake Huron Sea Lamprey (-100.35). 

Grouping Sea Lamprey of unknown origin 
Isotopic composition of Sea Lamprey tissue can be highly variable (see Appendix A). Samples analyzed 

from Sea Lamprey with unknown origin were limited to heads (with the exception of adipose tissue from 

one individual (see Appendix A) due to low capture rates of these Sea Lamprey. As a result of these two 

constraints, heads were the only tissue type used when comparing Sea Lamprey of unknown origin to 

those from Lake Huron, and ‘upper-river’ Sea Lamprey. No statistical analyses were conducted due to the 

bi-modal distribution of these unknown lamprey (i.e., either from Lake Huron or the ‘upper-river’). Instead 

isotopic composition of heads from Sea Lamprey with unknown origin were visually compared heads from 

‘upper-river’ Sea Lamprey and Lake Huron Sea Lamprey, spawning- and parasitic-phase.  

Comparison of ‘upper-river’ and Lake Huron Sea Lamprey isotopic composition show that δ18O values 

overlap for the two groups and may not be a reliable tool to categorize ‘unknowns’ (Figure 12). These 

inferential statistics do illustrate that there is a relationship between size and δ2H and that the difference 

δ2H values from ‘upper-river’ and Lake Huron Sea Lamprey, when adjusted for size, are real (Figure 11). 

Using this knowledge, the relationship between δ2H and weight was used to group Sea Lamprey with 

unknown origins (Figure 13). Only one individual, MR2.2015, falls within the 95% confidence ellipse 

associated with ‘upper-river’ Sea Lamprey. The remaining five individuals (PIR1.2017, MR2.2014, 

MR1.2014, MR1.2015 and PIR1.2015) fall within the 95% confidence ellipse associated with Lake Huron 

Sea Lamprey, but PIR1.2015 and MR1.2015 fall on the edge of both 95% confidence ellipses. 

An additional tool which can be utilized to help categorize Sea Lamprey of unknown origin involves looking 

at when these individuals were captured during their spawning runs and when the lock on the Cheboygan 

River opened for the season (Table 4). Several unmarked Sea Lamprey were captured either before or on 

the day the lock was opened for the season (e.g. MR1.2013, PIR1.2015, PIR1.2017) or before the first 

marked Sea Lamprey from Lake Huron was captured (e.g. PIR1.2013, MR1.2014, MR1.2015, STR1.2017, 

STR1.2019, STR2.2019, STR3.2019). For lamprey which were captured before the lock was operational, 

two of the three individuals were classified as ‘upper-river’ Sea Lamprey either based on morphological 

characteristics (PIR1.2017) or stable isotope results (PIR1.2015), but not by both methods. Stable isotope 

results are not available for the third individual (MR1.2013), but morphological characteristics indicate 

that it was closely linked to Lake Huron spawning-phase Sea Lamprey (Figure 5). Unknowns captured in 

HBBS nets before arrival of the first marked Sea Lamprey from Lake Huron were categorized as ‘upper-

river’ individuals based on morphological characteristics (STR1.2017) or stable isotope results (MR1.2015). 

MR1.2014, which arrived two days before the first marked Lake Huron Sea Lamprey, was classified as from 

Lake Huron based on morphological characteristics and stable isotope results, but when referencing the 

length-weight comparison (Figure 5) it is near the edge of the 95% confidence ellipses. Results from stable 

isotope analyses show that it is closely related to the mean isotopic composition of ‘upper-river’ Sea 
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Lamprey when examining δ2H and δ18O (Figure 12), but falls in both cases it was near or on the edge of 

the 95% confidence ellipses for length-weight and δ2H-weight well within the 85% confidence ellipse 

associated with Lake Huron spawning-phase Sea Lamprey when looking at weight adjusted δ2H values 

(Figure 13). Stable isotope results are not available for PIR1.2013, which arrived six days before the first 

marked Lake Huron Sea Lamprey was captured in HBBS nets. 

Stable Isotope composition of potential host species 
Deuterium (δ2H) and oxygen (δ18O) values from potential host species of Sea Lamprey were compared to 

those of heads from the Lake Huron and ‘upper-river’ Sea Lamprey (Figure 14). These results provide 

further information on isotopic composition of organisms living in the two study systems. Initial 

assessment of Figure 14 shows that δ18O and δ2H values of potential host species from the ‘upper-river’ 

are tightly clustered, with regard to means of ‘upper-river’ and Lake Huron Sea Lamprey. 

Significant differences in δ2H values were observed when comparing isotopic composition of Lake Huron 

Sea Lamprey to potential hosts from the ‘upper-river’ (T-statistic = 7.08, P < 0.001) (Figure 14). No 

significant differences were observed in δ2H values when comparing ‘upper-river’ Sea Lamprey to 

potential hosts from the ‘upper-river’ (T-statistic = 1.06, P = 0.30).  

Values of δ18O were significantly different when comparing ‘upper-river’ Sea Lamprey to potential hosts 

from the ‘upper-river’ (T-statistic = 3.65, P < 0.001) and Lake Huron Sea Lamprey to potential hosts from 

the ‘upper-river’ (T-statistics = 2.97, P = 0.004) (Figure 14). 

A stable isotope mixing model shows that 11.1% of δ2H composition in ‘upper-river’ Sea Lamprey comes 

from water (i.e. Burt and Mullett lakes) while 88.9% comes from potential hosts from the ‘upper-river’ 

(Table 5). The model also shows that contributions to uncertainty in the δ2H data for ‘upper-river’ Sea 

Lamprey is primarily (86.8%) due to variation in δ2H values from potential ‘upper-river’ hosts (Figure 14)   

Intra-group differences in isotopic composition of tissue types 
Isotope data of the four tissue types were compared within three groups (i.e. Lake Huron spawners, 

Lake Huron parasites and ‘upper-river’ parasites) to determine if δ2H and δ18O values differ based on 

which organ/tissue is used for analysis (see Appendix A) . These results could be useful for future work 

in determining the best tissue type or types for stable isotope analysis.  

Discussion 
An examination of wounded fishes from Burt and Mullett lakes provided insight on inland lake Sea 

Lamprey feeding habits. Though Sea Lamprey are generalist feeders (Silva et al. 2014; Happel et al. 

2017), they exhibit some preference towards large Salmonids (Coutant 1977; Swink 1993; Swink 2003). 

This ‘preference’ is linked to preferred thermal regimes of hosts and Sea Lamprey, as opposed to 

palatability. Paucity of preferred host species (e.g. Lake Trout, Coregonus spp.) in Burt and Mullett lakes 

may lead Sea Lamprey to feed on less desirable hosts such as Walleye, Northern Pike and one Yellow 

Perch in Mullett Lake (Table 3). In contrast, Lake Huron supports substantial populations of salmonids 

(Roseman et al. 2014) leading to Lake Huron Sea Lamprey parasitizing Lake Trout and other salmonids 

(Sitar et al. 1997). Laboratory experiments have shown that Sea Lamprey will feed on Walleye but that 

they are least preferred in the presence of more desirable host species (e.g. Splake (Salvelinus fontinalis 

x Salvelinus namaycush), White Suckers, Lake Whitefish, and Burbot) (Farmer and Beamish 1973; Farmer 
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et al. 1975, 1977). Sea Lamprey seldom attach and feed on Walleye in laboratory settings, instead they 

attack the Walleye and they detach quickly (Farmer and Beamish 1973).  

While this study showed that ‘upper-river’ Sea Lamprey do feed on non-preferred hosts, Rainbow Trout 

from Mullett Lake exhibited the highest wounding rate (Table 3) of any species observed (excluding 

species with fewer than 10 observations). Rainbow Trout were one of the few salmonids observed 

during these angler surveys and may serve as a primary host in Burt and Mullett lakes, as they occupy 

deeper, colder waters during summer months. Cisco were also observed in Mullett Lake and all three 

sampled fish exhibited Sea Lamprey wounds (Table 3).  

It appears that differences in fish community structure have led to different feeding strategies, when 

comparing ‘upper-river’ and Lake Huron Sea Lamprey. Kitchell and Breck’s (1980) foraging hypothesis 

postulates that in situations of low prey density Sea Lamprey may ‘choose’ to act more as a predator 

than a parasite, feeding for extended periods of time on one individual host, leading to host mortality. If 

this is the case in Burt and Mullett lakes, it would be difficult to determine which fishes Sea Lamprey are 

feeding on as they may die and sink to the bottom. This process could result in lower wounding rates, as 

observed by fisheries managers. Black Bay, Lake Superior serves as another Great Lakes example where 

Sea Lamprey have adjusted to low densities of preferred hosts by feeding on less desirable hosts such as 

suckers (Catostomus spp.) (Harvey et al. 2008). Even though ‘upper-river’ Sea Lamprey are feeding on 

non-preferred hosts, these fishes constitute top predators in Burt and Mullett lakes and are 

economically important fishes. This is consistent with findings from across the Great Lakes basin in 

which Sea Lamprey derive their energy from top predators (Bence et al. 2003; Harvey et al. 2008). 

Adaptation to low density of preferred hosts within the ’upper-river’ can have physiological 

consequences for ‘upper-river’ Sea Lamprey. If ‘upper-river’ Sea Lamprey are feeding for prolonged 

periods on singular hosts, this could slow growth rates as nutritional quality of host blood declines 

rapidly after Sea Lamprey attachment (Farmer et al. 1975). Johnson et al. (2016) found that ‘upper-river’ 

Sea Lamprey were significantly smaller than those that feed in Lake Huron in terms of total length, as 

well as several other morphometrics. However, Johnson et al. (2016) classified ‘upper-river’ Sea 

Lamprey as unmarked spawning-phase Sea Lamprey. This study defines ‘upper-river’ Sea Lamprey as 

parasitic-phase Sea Lamprey known to feed in Burt and/or Mullett lakes. Using this definition, analyses 

showed there were no significant differences between the two populations with regard to total length, 

weight, or condition factor (Figure 7). This initial comparison utilizes Sea Lamprey caught at all times of 

year, however as outlined above, Sea Lamprey growth rates differ depending on season. Utilizing season 

of capture as a filter, no significant differences were found when comparing only Sea Lamprey captured 

in the fall (Figure 8).  

Sea Lamprey feeding increases during autumn months, typically resulting in higher growth rates as 

potential hosts occupy warmer waters during the autumnal partial circulation (Ruttner 1963; Bergstedt 

and Swink 1995b). However, if Burt and Mullett lakes are cooling faster than Lake Huron, as Johnson et 

al. (2016) postulates, then ‘upper-river’ Sea Lamprey growth rates for autumn caught lamprey should be 

lower, resulting in smaller individuals. This does not appear to be the case in Burt and Mullett lakes. 

While no significant differences in size were found, ‘upper-river’ Sea Lamprey were, on average, larger 

than their Lake Huron counterparts, when comparing Sea Lamprey caught at the same time of year (e.g., 

August through September). Johnson et al. (2016) also hypothesized that availability and/or density of 

prey could influence Sea Lamprey size, resulting in smaller individuals from the ‘upper-river’. However, 
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Johnson et al. (2016) acknowledged that Burt and Mullett lakes are actually more productive than Lake 

Huron, potentially leading to higher prey density and/or availability. While ‘upper-river’ Sea Lamprey are 

feeding on less desirable hosts for prolonged periods of time, density of hosts may be higher in Burt and 

Mullett lakes, allowing ‘upper-river’ Sea Lamprey to keep pace with those from Lake Huron. However, 

Burt and Mullett lakes experience faster cooling in the fall, when compared to Lake Huron, potentially 

resulting in a quicker decline in growth rates for ‘upper-river’ Sea Lamprey leading to smaller spawning-

phase ‘upper-river’ Sea Lamprey. Here, this theory is corroborated by significant differences in size when 

comparing Lake Huron spawning-phase Sea Lamprey to spawning-phase Sea Lamprey with unknown 

origins, with those from Lake Huron being larger. As previously stated, Sea Lamprey of unknown origins 

could either be from Lake Huron or Burt/Mullett lakes, so these results may not be representative of 

true population trends for ‘upper-river’ spawning-phase Sea Lamprey. Further investigation of size 

differences is needed to determine if there are significant differences between parasitic-phase Sea 

Lamprey from Burt and Mullett lakes and those which feed in Lake Huron, as only seven ‘upper-river’ 

individuals were analyzed, and therefore may not accurately represent the ‘upper-river’ population.  

While no significant differences were found when comparing ‘upper-river’ and Lake Huron parasitic-

phase Sea Lamprey, morphological characteristics of spawners in the upper Cheboygan watershed could 

be useful for managers attempting to categorize unknown spawners. Overall, comparison of 

morphological characteristics from Lake Huron spawners and spawners with unknown origins were 

inconclusive when lumping the unknowns as one group. However certain individuals with unknown 

origin appear to be more similar in size to Lake Huron spawners. Figure 5 shows that 14 of the 24 

unknown individuals have lengths and weights more similar to Lake Huron spawners than ‘upper-river’ 

parasites, leaving nine individuals (i.e., PIR1.2017, PIR2.2017, STR5.2017, STR1.2017, STR1.2013, 

PIR2.2013, PIR3.2018, PIR1.2019 and STR4.2019) that more closely align with ‘upper-river’ parasites. 

When looking at each metric individually, categorization of unknowns is less clear (Figure 6). Three 

unknowns (i.e., PIR1.2017, PIR2.2017, and STR5.2017) fall below the first quartile of total length for Lake 

Huron spawners while five (i.e., STR1.2013, PIR1.2017, PIR2.2017, STR1.2017 and STR5.2017) are below 

the third quartile for weight of Lake Huron spawners (Figure 6a). Based on these results, three 

unknowns (i.e., PIR1.2017, PIR2.2017, and STR5.2017) could be categorized as not from Lake Huron, and 

potentially from the ‘upper-river’ population. However, comparison of condition factor between the two 

populations shows that only one unknown, PIR2.2017, falls outside of the range for Lake Huron 

spawners. Definitive conclusions from these observations are difficult to make, but it does appear that 

several of the unknowns could potentially be from the ‘upper-river’ population. Analysis of stable 

isotope composition may be more useful when attempting to group Sea Lamprey with unknown origin 

as either from Lake Huron or from Burt/Mullett lakes. 

Results of our stable isotope analyses of heads from these Sea Lamprey provide slightly different insights 

into origin than those provided by length and weights. As a group, ‘upper-river’ Sea Lamprey exhibited 

more negative δ2H values and lower δ18O values than Lake Huron parasites, with significant differences 

seen when comparing heads (Figure 10). Similarly, potential hosts form the ‘upper-river’ had 

significantly more negative δ2H values than Sea Lamprey from Lake Huron (Figure 14). These two 

comparisons demonstrate that the organisms from Burt and Mullett lakes have significantly more 

negative δ2H values than those which spend the majority of their lives in Lake Huron. Before attempting 

to group Sea Lamprey with unknown origins as either from the ‘upper-river’ or Lake Huron populations, 

it must be noted that when analyzing the four tissue types, isotopic composition of δ2H and δ18O 
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differed within each source group based on tissue type, highlighting differences in isotope composition 

throughout an individual’s body (see Appendix A). These differences could be attributed to rates of 

metabolic water production which exceed the rates of isotopic equilibration across cell membranes 

(Kreuzer-Martin et al. 2005; Vander Zanden et al. 2016).   

Results show that mean isotopic values of δ2H for parasitic-phase Sea Lamprey from Lake Huron were 

more negative when compared to spawning-phase Lake Huron lamprey, with significant differences in 

deuterium values for adipose tissue (see Appendix A). Average deuterium values increased by 44%, 18% 

and 5% for adipose, heart and head tissues, respectively, when comparing Lake Huron parasites to Lake 

Huron spawners. A similar trend is observed with regard to δ18O, with parasitic-phase lamprey from Lake 

Huron having lower average values than spawners from Lake Huron, and significant differences in δ18O 

values for heads. Trends in δ18O may be explained by differences in water temperature experienced by 

parasitic- and spawning-phase Lake Huron Sea Lamprey. Isotopic values for δ18O are influenced by 

abiotic factures such as temperature, with lower values found in warmer waters and higher values in 

cooler waters (Newsome et al. 2007). For all tissue types, parasitic-phase Sea Lamprey from Lake Huron 

had lower δ18O values than Lake Huron spawners. Water temperatures within the Maple, Pigeon, and 

Sturgeon rivers are influenced by groundwater, and could be colder than Lake Huron in the early fall, 

when many of the parasitic-phase Sea Lamprey from Lake Huron were captured. While spawners spend 

a relatively small amount of time in these tributaries, they cease feeding, resulting in the only inputs of 

δ2H and δ18O coming from the water they occupy. However, sample sizes for some of these tissue types 

were small (n = 6) so results here may not be representative of true population trends. Deuterium 

values of livers were the one exception, with more negative values for spawners. This can likely be 

attributed to physiological changes which occur as lamprey move upstream to spawn (Kott 1971; 

Beamish et al. 1979; Araújo et al. 2013; Happel et al. 2016). 

These disparities between Lake Huron spawning- and parasitic-phase individuals shows that utilizing 

‘upper-river’ parasites and Lake Huron spawners to categorize unknowns is imperfect. Utilization of δ18O 

values for this comparison is not worthwhile due to significant differences observed between Lake 

Huron spawning- and parasitic-phase Sea Lamprey. Nevertheless, certain conclusions with regard to 

origin can be drawn when utilizing δ2H and weight (g). Four of the six unknown Sea Lamprey (MR1.2014, 

MR2.2014, MR1.2015 and PIR1.2017) align more closely to the weight adjusted isotopic composition of 

Lake Huron spawners; one unknown (MR2.2015) fall within the 95% confidence interval for ‘upper-river’ 

Sea Lamprey, and one unknown (PIR1.2015) could be classified as either from Lake Huron or 

Burt/Mullett lakes (Figure 13). Predictions of origin based on weight adjusted δ2H values do not align 

precisely with interpretations of length-weight comparisons. For example, unknown individual 

MR2.2015 falls clearly within the 95% confidence interval for Lake Huron spawners when looking at 

length-weight (Figure 5), but can be categorized as an ‘upper-river’ Sea Lamprey when using weight 

adjusted δ2H values of heads (Figure 13). Conversely, unknown individual PIR1.2017 can be categorized 

as an ‘upper-river’ Sea Lamprey based on analysis of length, weight and condition factor (Figure 5, 

Figure 6) but aligns more closely with Sea Lamprey from Lake Huron when discussing stable isotopes 

(Figure 13).  

It is difficult to know what the isotopic composition of ‘upper-river’ spawners would look like, but it can 

be assumed that similar trends observed when comparing Lake Huron spawners to Lake Huron parasites 

could exist within the ‘upper-river’ population. If this is the case, isotopic values of δ2H and δ18O for 

‘upper-river’ spawners would increase in value. Similarly, weights of parasitic-phase Sea Lamprey from 
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Lake Huron were lower than those from spawning-phase Sea Lamprey from Lake Huron; this trend may 

also exist in the ‘upper-river’ population.  

Analyses of morphological characteristics and stable isotopes allows for the categorization of unknowns 

as either ‘upper-river’ or Lake Huron Sea Lamprey to an extent. Another tool that can be used to 

validate these results is date of capture (Table 4). Three unknowns (MR1.2013, PIR1.2015, PIR1.2017) 

were captured either the day the lock was opened or before the lock was operational. Assuming the 

Cheboygan River lock and dam system is impassable for Sea Lamprey before seasonal operation, these 

three Sea Lamprey likely belong to the ‘upper-river’ population. Results from analysis of morphological 

characteristics indicate that MR1.2013 and PIR1.2015 are Lake Huron lampreys while PIR1.2017 is from 

the ‘upper-river’. Stable isotope results were only available for PIR1.2015 and PIR1.2017. Deuterium and 

δ18O values indicated that PIR1.2015 was an ‘upper-river’ lamprey while analysis of deuterium and 

weight (g) showed that PIR1.2015 fell right on the edge of the 95% confidence ellipses associated with 

Lake Huron spawners and ‘upper-river’ Sea Lamprey, while both methods of stable isotope classification 

indicated that PIR1.2017 originated from Lake Huron Lamprey (Figure 13). Seven other Sea Lamprey 

(PIR1.2013, MR1.2014, MR1.2015, STR1.2017, STR1.2019, STR2.2019, STR3.2019) were captured before 

the first marked spawning-phase Sea Lamprey from Lake Huron captured in HBBS nets, indicating they 

may have originated in Burt or Mullett lakes. Analysis of morphological characteristics categorized three 

of these individuals as ‘upper-river’ Sea Lamprey: STR1.2017, STR4.2019, STR5.2019. Stable isotope 

results were only available for two of these early arrivers (MR1.2014, MR1.2015). Analysis of δ2H vs. 

δ18O grouped both MR1.2014 and MR1.2015 as potential ‘upper-river’ lampreys as they both had 

isotopic values close to mean isotopic values of ‘upper-river’ Sea Lamprey (Figure 12). However, 

deuterium vs. weight analysis grouped MR1.2014 and MR1.2015 as originating from Lake Huron, with 

the caveat that MR1.2015 is near the edge of the ‘upper-river’ 95% confidence ellipses (Figure 13). 

However, the utilization of date of capture as a means to compare stable isotope and morphological 

characteristics analyses relies on two assumptions being met: (1) Sea Lamprey can only bypass the lock 

and dam system via escapement through the lock and (2) spawning-phase Sea Lamprey captured in 

‘upper-river’ tributaries moved into the ‘upper-river’ as mature adults. While passage above the 

Cheboygan River lock and dam system most likely occurs while the lock is operational, Sea Lamprey 

could potentially move into the ‘upper-river’ during certain operating conditions, when flow through the 

spillway is suitable for upstream migration. While this scenario is possible, it has not been documented 

and Holbrook (2015) determined that the lock provided the most plausible route for upstream 

migration. Assumption two assumes that unmarked individuals captured in HBBS nets reached sexual 

maturity before escaping past the lock and dam system and continued directly to spawning grounds. It is 

possible that juveniles from Lake Huron could have moved into the ’upper-river’ and then matured 

there, meaning their date of capture is inaccurate. This scenario though seems unlikely as adult Sea 

Lamprey migration is cued by the detection of pheromones released by larvae, and other sexually 

mature adults, and juvenile Sea Lamprey would not respond to this (Teeter 1980).   

Utilizing date of capture as a means to validate the two methods tested for distinguish populations is 

valuable, but illustrates the high level of uncertainty associated with these data. Of the unknowns which 

arrived before the first lock opening and were analyzed via morphological characteristics and stable 

isotopes, two of them (PIR1.2015, MR1.2015) were categorized as possible non-Lake Huron spawners by 

stable isotopes while only one (PIR1.2017) was categorized as a spawning-phase Sea Lamprey from Lake 

Huron, based on both methods of stable isotope analyses. These results are far from conclusive, but 
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show that a combination of stable isotopes and size may be more reliable method for distinguishing Sea 

Lamprey which share spawning grounds in the upper Cheboygan River watershed, but larger sample 

sizes are needed to validate these preliminary findings.  

Moving forward, results from this study could assist fisheries managers in their attempts to eradicate 

Sea Lamprey from the upper Cheboygan River watershed. Knowledge of a Sea Lamprey population in 

the upper Cheboygan River has existed since Applegate’s (1950) seminal work on Sea Lamprey life 

history in northern Michigan. Johnson et al. (2016) provided further evidence of distinct populations 

above and below the Cheboygan River lock and dam through analysis of wounded fishes, morphological 

characteristics and statolith microchemistry. However, Johnson et al. (2016) did not provide a method 

for distinguishing individuals from these two populations when they are most readily captured: during 

their spawning migration. With ongoing efforts to eradicate Sea Lamprey from the upper Cheboygan 

River watershed, ability to construct accurate population estimates will become more important. By 

utilizing weight-adjusted δ2H values for captured Sea Lamprey, fisheries managers could determine the 

efficacy of their population control efforts. If eradication efforts are successful, and can be monitored 

and evaluated through population estimates derived from stable isotope and weight data, removal of 

many of the dams within the Cheboygan River watershed will benefit native fishes, without increasing 

the length of stream that requires treatment with lampricide (Johnson et al. 2016).   

Conclusions 
To further understand the feeding ecology of Sea Lamprey in Burt and Mullett lakes, fall angler surveys 

should be conducted during peak Sea Lamprey feeding (Kitchell and Breck 1980). Angler surveys may not 

be the most reliable approach as sport fish are targeted, leaving out potential preferred host (e.g. Cisco, 

Lake Sturgeon, Rainbow Trout, Catostomidae) of Sea Lamprey in Burt and Mullett lakes. To better 

understand the feeding ecology of Sea Lamprey in these inland lakes a more exhaustive study focused 

on a full assessment of Burt and Mullett lakes’ fish communities’, with an emphasis on Sea Lamprey 

wounds should be conducted. Fatty acid analysis of ‘upper-river’ Sea Lamprey tissue and potential hosts 

would also provide more quantitative insight into Sea Lamprey feeding ecology in Burt and Mullett lakes 

(e.g. Budge et al. 2006; Daly et al. 2010; Happel et al. 2015). A study of this nature could pinpoint which 

fishes are acting as the preferred hosts of Sea Lamprey in Burt and Mullett lakes. A thermal history of 

preferred hosts could then be constructed and bioenergetics models (Kitchell and Breck 1980) could be 

applied to ‘upper-river’ Sea Lamprey to better understand factors influencing their growth. 

The ability to categorize unmarked spawning-phase Sea Lamprey moving into the upper Cheboygan 

watershed proved difficult. Definitive conclusions were limited by small sample sizes, high intra-group 

isotopic value variability (see Appendix A), and imperfect comparison groups. Nevertheless, distinct 

differences between the δ2H values of heads of Sea Lamprey known to feed in Lake Huron and those 

which feed in Burt and Mullett lakes were observed (Figure 10). For this study heads were utilized out of 

necessity, but may not be the most appropriate tissue to use for analysis. Results showed that isotopic 

values of hearts and livers from parasitic- and spawning-phase Lake Huron Sea Lamprey did not differ 

significantly (see Appendix A). This indicates that either hearts or livers may be more suitable for 

building defined isotopic signatures for ‘upper-river’ and Lake Huron Sea Lamprey as comparison of 

parasitic- and spawning-phase Sea Lamprey can be conducted. Nevertheless, these results can assist 

fisheries managers in developing a defined isotopic signature range for ‘upper-river’ Sea Lamprey, and 

assist with population estimates utilized for Sea Lamprey control. While removal of Sea Lamprey heads 
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in the field may serve as an efficient method for collecting tissue for biochemical analysis, the continued 

collection of a variety of organs for analysis is recommended, or analysis of the entire organism; stored 

at -20˚C until they are ready for analysis or at -80˚C if samples need to be stored for an extended period 

of time (Harvey and Kitchell 2000). Future studies could also incorporate other stable isotopes (e.g. C, N, 

S) as well as fatty acids to further define biochemical markers of ‘upper-river’ Sea Lamprey as well as 

organisms which live in Burt/Mullett lakes and Lake Huron. More refined biochemical signatures for 

these two systems will allow for more confidence in assigning unknowns as either from the ‘upper-river’ 

or from Lake Huron.    
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Figures 

 

Figure 1. Cheboygan River watershed located in Northern Michigan’s lower peninsula. All major lakes, 

rivers and dams within the Cheboygan River watershed are labeled. The Lake Kathleen dam has 

been removed as of fall 2018. Stream segments in red indicate areas traditionally infested with 

larval Sea Lamprey. Locations of creel/angler surveys to examine recreationally caught fish for 

lamprey wounds, as well as locations of fliers posted to prompt ‘self-reporting’ of wounded fish 

are denoted by colored circles.  
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a) 

 

b) 

 

Figure 2: Handouts distributed to anglers or left on vehicles prompting anglers to self-report any 

potential lamprey wounds. The front (a) of the handout provides directions on how to report 

either a fish with a lamprey attached or a fish with suspected lamprey wounds. The back (b) 

provides examples of the various classifications of Sea Lamprey wounds according to King 

(1980). 
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Figure 3: Informational fliers were posted at various fishing locations/access points to prompt anglers to 
self-report any potential lamprey wounds. Directions on what to do if a lamprey is found 
attached to a fish or if potential wounds were observed were present. The investigators contact 
information was also provided in convenient tear-off tabs. 
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Figure 4: Example of Sea Lamprey (Petromyzon marinus) wound found on Walleye (Sander vitreus). 

 

 

 

 

 

 

 



Page | 33  
 

 

Figure 5: Total lengths (mm) and weights (g) of spawning-phase Sea Lamprey from Lake Huron and Sea 

Lamprey of unknown origins. Normal confidence ellipses (95%) are overlaid on top of scatter 

plot. Individuals of unknown origin are labeled using a code for the stream they were captured 

in (e.g. Maple River = MR; Pigeon River = PIR; Sturgeon River = STR); number indicating 

sequence of capture in a given year and the year they were captured.   
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Figure 6: (a) Box and whisker plots comparing total length (mm) and weights (g) of spawning-phase Sea 
Lamprey from Lake Huron (n = 431; mean TL = 491 mm, SD = 37 mm; mean Wt = 249 g, SD = 49 
g) and Sea Lamprey with unknown origins (n = 24; mean TL = 438 mm, SD = 59 mm; mean Wt = 
194 g, SD = 58 g). (b) Condition factor (Wr) of spawning-phase Lake Huron Sea Lamprey (n = 431, 
mean = 1.04, SD = 0.19) and Sea Lamprey with unknown origins (n = 24, mean = 1.11, SD = 0.30). 
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Figure 7: a) Total lengths (mm) and weights (g) of parasitic-phase Sea-Lamprey from Lake Huron and the 
upper Cheboygan watershed, collected any time of year. Normal confidence ellipses (95%) are 
overlaid on top of scatter plot. b) No significant differences (T-statistic = 0.01, P = 0.99) were 
observed when comparing total length (mm) of parasitic-phase Sea Lamprey known to have 
originated in Lake Huron (n = 153; mean = 325 mm; SD = 111 mm) and those known to feed in 
Burt and Mullett lakes (n = 7; mean = 324 mm; SD = 111 mm). No significant differences were 
observed when comparing weights (g) (T-statistic = 0.07, P = 0.94) of Sea Lamprey from Lake 
Huron (mean = 91 g, SD = 81) to Sea Lamprey from Burt and Mullett lakes (mean = 93 g, SD = 66) 
or condition factor (Wr) (T-statistic = 0.19, P = 0.86) with Sea Lamprey from Lake Huron having 
lower condition factors (mean = 0.82, SD = 0.20) than ‘upper-river’ Sea Lamprey (mean = 0.83, 
SD = 0.25). 
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Figure 8: (a) Total lengths (mm) and weights (g) of parasitic-phase Sea-Lamprey from Lake Huron and 

the Burt and Mullett lakes (‘upper-river’) collected during the months of August and September. 

Normal confidence ellipses (95%) are overlaid on top of scatter plot. b) No significant differences 

(T-statistic = 1.29, P = 0.20) were observed when comparing total length (mm) of parasitic-phase 

Sea Lamprey, captured in August and September and known to have originated in Lake Huron (n 

= 74; mean = 338 mm; SD = 84 mm), and those known to have fed in Burt and Mullett lakes (n = 

5; mean = 387 mm; SD = 35 mm); or when comparing weights (g) (T-statistic = 1.45, P = 0.15) of 

Sea Lamprey from Lake Huron (mean = 90 g, SD = 57) to ‘upper-river’ Sea Lamprey (mean = 123 

g, SD = 36) or condition factor (Wr) (T-statistic = 1.80, P = 0.08) with Sea Lamprey from Lake 

Huron having lower condition factors (mean = 0.08, SD = 0.17) than ‘upper-river’ Sea Lamprey 

(mean = 0.98, SD = 0.07). 
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Figure 9: (a) Isotopic values of deuterium (δ2H) and oxygen (δ18O) for heads of parasitic- and spawning- 

phase (n = 10, n = 32, respectively) Sea Lamprey known to feed in Lake Huron. Normal 

confidence ellipses (95%) are overlaid on scatter plot. (b) Box and whisker plots of deuterium 

(δ2H) and oxygen (δ18O) stable isotopes for heads of parasitic- and spawning-phase Sea Lamprey 

from Lake Huron. No significant differences (T-statistic = 0.65, P = 0.52) in δ2H values were 

observed between spawning-phase (mean = -101.13, SD = 21.93) and parasitic-phase (mean = -

106.38, SD = 23.07) Sea Lamprey from Lake Huron. Significant differences (T-statistic = 3.78, P < 

0.001) in δ18O values were observed, with parasitic-phase Sea Lamprey exhibiting lower values 

(mean = 13.60, SD = 2.51) than spawning-phase Sea Lamprey (mean = 18.12, SD = 5.07).  
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Figure 10: Isotopic values of deuterium (δ2H) (a) and oxygen (δ18O) (b) for heads of parasitic-phase Sea 
Lamprey known to feed in Burt and/or Mullett lakes (‘upper-river’) and parasitic- and spawning-
phase Sea Lamprey from Lake Huron (n = 6, n = 42, respectively). ‘Upper-river’ Sea Lamprey 
exhibited significantly lower δ2H values when compared to Lake Huron parasitic- and spawning-
phase Sea Lamprey (T-statistic = 4.33, P < 0.001). Values for δ18O from Sea Lamprey heads 
differed significantly when comparing across groups (F2,45 = 9.40, P < 0.001). 
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 Figure 11: Deuterium (δ2H) versus mass of whole body (weight (g)) for parasitic-phase Sea Lamprey 
from Burt and/or Mullett lakes (blue circles), and parasitic- and spawning-phase Sea Lamprey 
known to originate from Lake Huron (black circles). 
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Figure 12: Mean deuterium (δ2H) vs δ18O values for heads of Sea Lamprey from Lake Huron (parasitic- 
and spawning-phase), Burt and Mullett lakes(‘upper-river’) and those of unknown origins with 
error bars of 1 S.D. Individuals of unknown origin are labeled using a code for the stream they 
were captured in (e.g. Maple River = MR; Pigeon River = PIR; Sturgeon River = STR); number 
indicating sequence of capture in a given year and the year they were captured. 
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Figure 13: Deuterium (δ2H) versus mass of whole body (weight (g)) for parasitic-phase Sea Lamprey from 
Burt and/or Mullett lakes (blue circles), parasitic- and spawning-phase Sea Lamprey known to 
originate from Lake Huron (black circles) and Sea Lamprey of unknown origins (red circles). 
Individuals of unknown origin are labeled using a code for the stream they were captured in 
(e.g. Maple River = MR; Pigeon River = PIR; Sturgeon River = STR), number indicating sequence 
of capture in a given year, and the year they were captured and normal confidence intervals 
(95%) are overlaid on scatter plot. 
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Figure 14: Mean δ2H and δ18O values and 1 S.D. error bars for Lake Huron Sea Lamprey (parasitic- and 
spawning-phase) (black), parasitic-phase Sea Lamprey from Burt and/or Mullett lakes (blue) and 
potential host species from Burt and Mullett Lakes (orange). 

 

 

 

 

 

. 

  



Page | 43  
 

Tables 
Table 1: A total of 494 Sea Lamprey specimens, collected from 2013 to 2019, were analyzed for 

differences in total length (mm), weight (g) and condition factor. Parasitic juvenile Sea Lamprey 
accounted for 160 of the specimens analyzed, with 153 having originated from Lake Huron and 
seven from the upper Cheboygan River watershed (i.e., Burt and Mullett lakes). The remaining 
454 Sea Lamprey were spawning adults captured in the upper Cheboygan River watershed. 
These spawning adults either originated from Lake Huron (n = 431) or have unknown origins (n = 
24). 

 

 Origin  

Life Stage Lake Huron Upper 
Cheboygan River 

Unknown Total 

Parasitic 
juvenile 

153 7 - 160 

Spawning adult 431 - 24 455 

Total 584 7 24 615 
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Table 2: A total of 19 potential Sea Lamprey host species were collected from Burt and Mullett lakes for 
stable isotope analysis during the summer of 2016. One fish (Lake Herring) was collected during 
the winter of 2017 and included in this analysis. USGS Hammond Bay Biological Station (HBBS) 
also provided potential host species collected from anglers. Total length (mm) and frozen weight 
(g) were recorded when possible. 

Common Name Scientific Name Total 
Length 
(mm) 

Frozen 
Weight (g) 

Origin Source 

Brown Trout Salmo trutta 200 80 Burt Lake Author 
Rainbow Trout Oncorhynchus 

mykiss 
- 882 Mullett 

Lake 
HBBS 

Rainbow Trout Oncorhynchus 
mykiss 

- 91 Mullett 
Lake 

HBBS 

Yellow Perch Perca flavescens 235 671 Burt Lake Angler 
Lake Herring Coregonus artedi - 125 Mullett 

Lake 
HBBS 

Walleye Sander vitreus 404 424 Burt Lake Author 
Walleye Sander vitreus 492 770 Burt Lake Angler 
Yellow Perch Perca flavescens 178 75 Burt Lake Angler 
Yellow Perch Perca flavescens 189 50 Burt Lake Angler 
Walleye Sander vitreus 457 40 Burt Lake Angler 
Largemouth Bass Micropterus 

salmoides 
400 833 Burt Lake Author 

Walleye Sander vitreus 457 566 Burt Lake Author 
Northern Pike Esox lucius 445 411 Burt Lake Angler 
Yellow Perch Perca flavescens 222 92 Burt Lake Angler 
Rock Bass Ambloplites 

rupestris 
197 107 Burt Lake Angler 

Yellow Perch Perca flavescens 180 42 Burt Lake Angler 
Northern Pike Esox lucius 610 841 Burt Lake Angler 
Rainbow Trout Oncorhynchus 

mykiss 
- 1298 Mullett 

Lake 
HBBS 

Walleye Sander vitreus 464 549 Burt Lake Angler 
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Table 3: Wounding rates of fishes from Burt and Mullett lakes. Data for Burt Lake were derived from 
angler surveys conducted during the summer of 2016, and data for Mullett Lake were provided 
by USGS, Hammond Bay Biological Station. 

 

  

Species Fish 
Inspected 

SEL 
Wounds 

Native 
Wounds 

SEL 
Wounding 

Rate 

Native 
Wounding 

Rate 

M
u

lle
tt

 L
ak

e 

Northern Pike (Esox lucius) 340 10 9 2.9% 2.7% 

Rainbow Trout 
(Oncorhynchus mykiss) 

58 7 0 12.1% 0% 

Walleye (Sander vitreus) 129 0 0 0% 0% 

Cisco (Coregonus spp.) 2 2 0 100% 0% 

Yellow Perch (Perca 
flavescens) 

1 1 0 100% 0% 

Total 530 20 9 3.8% 1.7% 

B
u

rt
 L

ak
e

 

Brook Trout (Salvelinus 
fontinalis) 

1 1 0 100% 0% 

Brown Trout (Salmo trutta) 1 0 0 0% 0% 

Lake Sturgeon (Acipenser 
fulvescens) 

1 0 1 0% 100% 

Largemouth Bass 
(Micropterus salmoides) 

2 0 0 0% 0% 

Northern Pike (Esox lucius) 48 1 2 2.1% 4.2% 

Rock Bass (Ambloplites 
rupestris) 

3 0 0 0% 0% 

Smallmouth Bass 
(Micropterus dolomieu) 

32 0 0 0% 0% 

Rainbow Trout 
(Oncorhynchus mykiss) 

3 0 0 0% 0% 

Walleye (Sander vitreus) 157 13 0 8.3% 0% 

White Sucker (Catostomus 
commersonii) 

1 0 1 0% 100% 

Yellow Perch (Perca 
flavescens) 

132 0 0 0% 0% 

 Total 381 15 4 3.9% 1.1% 
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Table 4: Stream and date of capture of unmarked adult Sea lampreys in the upper Cheboygan River, 

date of the first lock opening, and the fewest days marked lampreys took to reach a tributary 

net from a release location immediately above the dam (Transit time). For a given capture date 

and transit time, earliest escapement date past the lock and dam was estimated for each 

unmarked sea lamprey (Escapement date). Bolded escapement dates are those that likely 

occurred before the first lock opening. Total length, weight, maturity and isotopic values for H 

and O from heads are also presented. 

Capture 
Location 

Specimen  
ID 

Total 
Length 
(mm) 

Weight 
(g) 

Sexually 
Mature 

δ2H δ18O 
Capture 

Date 
First Lock 
Opening 

Transit 
Days 

Escapement 
Date 

Pigeon PIR1.2013 483 230 N - - 8-May-13 3-May-13 9 30-Apr-13 

Pigeon PIR2.2013 420 142 Y - - 31-May-13 3-May-13 9 23-May-13 

Sturgeon 
STR1.2013 423 124 N - - 

30-May-13 3-May-13 19 9-May-13 

Maple MR1.2013 492 269 N - - 3-May-13 3-May-13 30 4-Apr-13 

Maple MR1.2014 450 244 Y -128.94 10.98 13-Jun-14 17-May-14 30 14-May-14 

Maple MR2.2014 455 205 Y -80.38 11.00 20-Jun-14 17-May-14 30 21-May-14 

Pigeon PIR1.2015 470 207 N -138.65 11.17 4-May-15 15-May-15 9 26-Apr-15 

Maple MR1.2015 460 215 Y -135.60 10.50 8-Jun-15 15-May-15 30 8-May-15 

Maple MR2.2015 465 260 Y -165.24 12.88 16-Jun-15 15-May-15 30 17-May-15 

Pigeon PIR1.2017 359 129 N -88.74 12.67 28-Apr-17 6-May-17 9 19-Apr-17 

Pigeon PIR2.2017 284 132 Y - - 31-May-17 6-May-17 9 22-May-17 

Sturgeon STR1.2017 390 129 N - - 18-May-17 6-May-17 19 30-Apr-17 

Pigeon PIR1.2018 510 255 N - - 7-Jun-18 1-May-18 9 29-May-18 

Pigeon PIR2.2018 420 190 Y - - 15-Jun-18 1-May-18 9 6-Jun-18 

Pigeon PIR3.2018 410 153 Y - - 18-Jun-18 1-May-18 9 9-Jun-18 

Pigeon PIR4.2018 460 198 Y - - 18-Jun-18 1-May-18 9 9-Jun-18 

Sturgeon STR1.2018 540 287 Y - - 3-Jun-18 1-May-18 19 15-May-18 

Pigeon 
PIR1.2019 390 165 Y - - 

30-May-19 16-May-19 9 
21-May-19 

Sturgeon STR1.2019 460 192 N - - 24-May-19 16-May-19 19 5-May-19 

Sturgeon STR2.2019 530 317 N - - 26-May-19 16-May-19 19 7-May-19 

Sturgeon STR3.2019 445 157 N - - 28-May-19 16-May-19 19 9-May-19 

Sturgeon STR4.2019 395 145 Y - - 13-Jun-19 16-May-19 19 25-May-19 

Sturgeon STR5.2019 366 125 Y - - 13-Jun-19 16-May-19 19 25-May-19 

Sturgeon STR6.2019 490 280 Y - - 1-Jul-19 16-May-19 19 12-Jun-19 
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Table 5: Values used for stable isotope mixing model to quantify contribution of potential hosts from 
Burt and Mullett lakes runoff to Lake Huron to isotopic composition of ‘upper-river’ Sea 
Lamprey. 

 ‘Upper-River’ 
Sea Lamprey 

‘Upper-River’ 
Hosts 

Runoff to Lake Huron 
(Jasechko et al. 2014) 

Mean δ2H  -142.21 -150.70 -74.00 
Source proportion - 0.89 0.11 
Uncertainty 0.018 0.12 0.00017 
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Appendices 

Appendix A: Tissue analyzed for stable isotope analysis 

Table 1: Four different tissue types (head, heart, liver, and adipose tissue) excised from Sea Lamprey 

were analyzed for isotopic composition of δ2H and δ18O. A total of 52 individual Sea Lamprey 

were utilized, resulting in 104 samples being run. Samples lost during preparation are 

represented in parenthesis.  
 

  Lake Huron Upper Cheboygan River Unknown 

Year Tissue type Parasitic 
juvenile 

Spawning 
adult 

Parasitic juvenile Spawning 
adult 

2013 
n = 3 (1) 

Head - - 1 - 
Heart - - - (1) - 
Liver - - 1 - 
Adipose - - 1 - 

2014 
n = 18 (2) 

Head - 10 1 (1) 2 
Heart - - 2 - 
Liver - - 1 (1) - 
Adipose - - 2 - 

2015 
n = 18 

Head - 11 1 3 
Heart - - 1 - 
Liver - - 1 - 
Adipose - - 1 - 

2016 
n = 59 (9) 

Head 9 11 3 - 
Heart 5 (1) 6 - (1) - 
Liver 5 (2) 3 (3) 1 (1) - 
Adipose 8 6 2 (1) - 

2017 
n = 6 (2) 

Head 1 - - 1 

Heart 1 - - - (1) 

Liver 1 - - - (1) 

Adipose 1 - - 1 
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Table 2: Mean deuterium (δ2H) and oxygen (δ18O) values for Sea Lamprey tissue (adipose 

tissue, heads, hearts and livers) from Sea Lamprey known to feed in Lake Huron and the 

upper Cheboygan River, as well as those with unknown origins. 
 

Origin 
 
 
 

Tissue type Mean δ2H Stand. 
Dev. 

Mean δ18O Stand. 
Dev. 

Lake Huron 
spawning-phase 

Adipose (n = 6) -98.32 34.18 11.67 1.25 

Head (n = 32) -101.13 21.93 18.12 5.07 

Heart (n = 6) -83.89 25.23 12.08 0.98 

Liver (n = 3) -146.81 6.66 12.86 0.38 

Lake Huron 
parasitic-phase 

Adipose (n = 8) -177.47 17.73 10.18 4.44 

Head (n = 10) -106.38 23.07 13.60 2.51 

Heart (n = 6) -103.38 23.52 10.83 1.67 

Liver (n = 6) -134.75 32.06 12.07 1.47 

Upper-River 

Adipose (n = 6) -185.67 14.38 14.06 4.10 

Head (n = 6) -142.21 10.30 10.71 2.15 

Heart (n = 3) -115.67 12.35 11.06 1.62 

Liver (n = 4) -144.28 18.29 11.91 1.78 

Unknown 

Adipose (n = 1) -144.78 - 9.40 - 

Head (n = 6) -122.93 32.29 11.53 0.99 

Heart - - - - 

Liver - - - - 
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Appendix B: Stable isotope composition of potential host species 

Table 1: Mean deuterium (δ2H) and oxygen (δ18O) values for heads from Sea Lamprey known to 

feed in Lake Huron, those known to feed in the upper Cheboygan River, those with 

unknown origins and whole bodies from potential hosts from Burt and Mullett lakes. 
 

Origin 
 
 
 

Tissue type Mean δ2H Stand. 
Dev. 

Mean δ18O Stand. 
Dev. 

Lake Huron 
spawning-phase 

Head (n = 32) -101.13 21.93 18.12 5.07 

Lake Huron 
parasitic-phase 

Head (n = 10) -106.38 23.07 13.60 2.51 

Upper-River Head (n = 6) -142.21 10.30 10.71 2.15 

Unknown Head (n = 6) -122.93 32.29 11.53 0.99 

Potential Hosts 
(Burt and Mullett 

lakes) 

Whole body   
(n = 19) 

-150.70 29.84 14.35 2.12 

 

 


