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Abstract

Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Glo-
bal environmental changes threaten these networks, underscoring the urgency for developing a
predictive theory on how networks respond to perturbations. Here, I synthesise theoretical
advances towards predicting network structure, dynamics, interaction strengths and responses to
perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic
interactions provide better predictions of network dynamics. Those mechanisms include trait
matching, adaptive foraging, and the dynamic consumption and production of both resources and
services provided by mutualisms. Models incorporating species traits better predict the potential
structure of networks (fundamental niche), while theory based on the dynamics of species abun-
dances, rewards, foraging preferences and reproductive services can predict the extremely dynamic
realised structures of networks, and may successfully predict network responses to perturbations.
From a theoretician’s standpoint, model development must more realistically represent empirical
data on interaction strengths, population dynamics and how these vary with perturbations from
global change. From an empiricist’s standpoint, theory needs to make specific predictions that can
be tested by observation or experiments. Developing models using short-term empirical data
allows models to make longer term predictions of community dynamics. As more longer term
data become available, rigorous tests of model predictions will improve.
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INTRODUCTION

Mutualistic interactions between animal and plant species sus-
tain terrestrial biodiversity (Thompson 1994) and human food
security (Potts et al. 2016; Ollerton 2017). Unfortunately, glo-
bal environmental changes threaten these diverse systems with
species extinctions, climate change, habitat loss and species
invasions (Goulson et al. 2015; Ollerton 2017). This global
environmental crisis underscores the urgency for developing
theory capable of understanding and predicting the structure
and dynamics of mutualistic systems. Predicting the structure
of mutualistic systems is critical for understanding and pre-
dicting their dynamics, and the dynamics of these systems
underlie their important ecosystem functions and will deter-
mine their response to anthropogenic perturbations (Mem-
mott et al. 2004; Bascompte & Jordano 2014; Valdovinos
et al. 2016, 2018). Understanding how these mutualistic sys-
tems operate today, and predicting their dynamics as environ-
ments change, is critical for developing plans and policies to
manage these systems with the objective of preserving their
key ecosystem functions and services. In this review, I synthe-
sise 20 years of scientific advances towards predicting the
structure, dynamics and response of mutualistic networks to
global change.
Qualitative predictions produced by mathematical models

and tested by empirical research have been key to the progress

of Ecology as a science. Starting with Gause (1932), who
experimentally tested the prediction of competitive exclusion
produced by the Lotka–Volterra model of competition,
research producing (e.g., Rosenzweig & MacArthur 1963;
May 1973; Holt 1977) and testing (e.g., Vandermeer 1963;
Murdoch & Oaten 1975; Stearns 1977; Wooton 1997; Schmitz
1997; Morin 1999) model predictions on ecological systems
have shaped our discipline. Recent research on complex food
webs has successfully predicted interaction strengths (Berlow
et al. 2009) and relative biomasses of species (Boit et al. 2012)
in aquatic systems. Notoriously, however, most of such
research has been conducted on antagonistic interactions,
leaving our understanding of mutualistic interactions far
behind. Fortunately, the last decade has seen a blooming of
ecological research on mutualistic interactions promoted by
the study of mutualistic networks (Bascompte & Jordano
2014). Here, I organise the abundant literature focusing on
the qualitative predictions made by theoretical research and
discuss how those predictions have been or need to be tested
with empirical data (see Table 1).
Networks have helped ecologists to identify patterns in the

structure of species interactions in highly complex multispecies
systems (i.e., several tens to hundreds of species, Martinez
1991; Bascompte et al. 2003; Th�ebault & Fontaine 2010).
There are almost infinite ways in which hundreds of species
can possibly interact based only on all possible combinations
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Table 1 Summary of modelling approaches and predictions reviewed in this study

Modelling approach Prediction Empirical data needed References

First section: Predicting network structure

Interaction constraint

models

Network structure is the product of

various interaction constraints, for

example temporal/spatial uncoupling,

trait mismatches, physiological/

biochemical barriers

Already-tested*: interaction constraints

predict the absence of interactions

between specialists, heterogeneous

degree distribution and moderate

network connectance. Still research is

needed to more systematically relate

species traits with network structure

Santamar�ıa & Rodr�ıguez-

Giron�es (2007).For
example, Bartomeus et al.

(2016).

Neutral (sampling

artefact): incomplete

sampling of interactions,

skewed abundances, and

fully generalised systems

Network structure results from

incomplete sampling effort failing to

record the interactions of rare species

Network structure is independent of

species differences in traits

Already-tested*: incomplete sampling of

interactions, skewed species abundances

and fully generalised systems produce

observed structure. Still needs to be

tested with independent measures of

plant and animal abundances (i.e., not

estimated from interaction frequencies)

Bl€uthgen et al. (2007),

Bl€uthgen et al. (2008)For

example, Brosi & Briggs

(2014), Valdovinos et al.

(2016).

Niche-based:

disentangles species’

abundances and

generality level (i.e.,

number of interactions)

Sampling bias overestimates

specialisation in generalised networks

but not necessarily in more specialised

networks

Already-tested*: model distinguishes the

relative effects of species abundances

and trait differences on predicting

network structure. Still needs to be

tested with independent measures of

abundances and systematic analysis of

species traits

Fr€und et al. (2016

Second section: Predicting network dynamics

Lotka–Volterra type

models

Highly connected networks of facultative

mutualisms exhibiting the lowest

within-guild competition will be the

most stable networks. Effect of

nestedness on stability depends on the

parameter values assumed

Long-time/short-gen*. Might be tested

with time-series of plant and animal

populations across decades. Their

assumptions (e.g., functional responses,

Box 2) still need to be tested with

empirical data

Pascual-Garc�ıa & Bastolla

(2017)

Consumer–resource:
floral rewards

dynamics, adaptive

foraging, conspecific

pollen dilution

Adaptive foraging reverses the

destabilising effect of nestedness on

species persistence and the stabilising

effect of connectance by partitioning

niches among plant species (pollination

services) and among animal species

(floral rewards)

On a per-capita (plant and animal) basis,

generalist pollinator species prefer

specialist plant species

Species persistence: long-time/short-gen*

Niche partitioning (short-term): already

tested with data on foraging efforts.

Still needs to be tested with data on

pollination success, floral rewards,

functional responses and benefit

accruals

Already-tested* with empirical foraging

efforts standardised by abundance of

plants and animals

Valdovinos et al. (2013,

2016, 2018);Valdovinos

et al. (2016)

Interaction plasticity

based on adaptive

foraging

Interaction plasticity increases network

robustness against species extinctions in

comparison to the case of fixed

interactions

Nestedness emerges as a result of

adaptive foraging

Behavioural responses at short time

scales. Can be tested using manipulative

experiments in the field

Long-time/short-gen*

Kaiser-Bunbury et al.

(2010), Ramos-Jiliberto

et al. (2012), Valdovinos

et al. (2013) Zhang et al.

(2011), Suweis et al.,

(2013).

Functional responses as

net effects: benefits

minus costs experienced

by the interacting

organisms

How benefits/costs of mutualisms vary

with species density will affect their

stability. Net effects likely follow a

saturating or unimodal function with

species density

Already fitted net-benefit curves to

measures of plant reproductive success

Still need curves to be fitted to

measures of animal reproductive success

Holland et al. (2002),

Morris et al. (2010),

V�azquez et al. (2012)

Individual-based model:

adaptive foraging,

pollen transfer and

floral rewards

Adaptive foraging favours pollination of

the least abundant plant species at high

flower abundances. Least abundant

plant species will benefit more from

offering higher levels of floral rewards

than the most abundant plant species

Still needs to be tested with independent

measures of population abundances,

reproductive success and floral rewards

offered by an average plant of each

population

Benadi & Gegear (2018)

Third section: Predicting network responses to global change

Species extinctions and

topological coextinctions

Nested networks are robust to specialists’

but fragile to generalists’ extinctions.

Increasing connectance increases

network robustness to extinctions

Long-time/short-gen* Memmott et al. (2004)

(continued)
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of species interactions. This high complexity precluded for a
long time the detailed study of complex multispecies systems.
That is, the seeming intractability of those complex systems
caused ecologists to only study the dynamics of a few interact-
ing species even when communities are composed of hundreds
of interacting species. Contributions of network studies (and
computers) to ecology made the complexity of communities
more tractable by identifying clear patterns in the structure of
interactions among tens to hundreds of species (Martinez
1991; Bascompte et al. 2003; Th�ebault & Fontaine 2010) and
showing that such structure strongly influences the dynamics
of ecological systems (Brose et al. 2006; Bascompte & Jordano
2014; Valdovinos et al. 2016).
Initially, research on ecological networks was all about

descriptive metrics of the structure of food webs (Martinez
1991; Dunne 2006) and mutualistic networks (Jordano 1987;
Bascompte et al. 2003). More recent research, however, takes
a dynamic path (e.g., Brose et al. 2006; Bascompte et al. 2006;
Valdovinos et al. 2013) by using the type of mathematical
modelling that ecologists have used for decades to study the
dynamics of interacting species (e.g., Rosenzweig &
MacArthur 1963; Holt 1977; Yodzis & Innes 1992). The main
point of this review is to show that research on ecological net-
works has recently taken another step forward by producing
more testable predictions. This step forward has moved eco-
logical studies closer to predicting the structure (first section),

dynamics (second section) and responses (third section) of
ecological systems to global change, via better integrating the-
oretical and empirical research of ecological networks. Further
developing and solidifying such predictive theory (e.g., theory
that can be empirically tested with data) will be critical in
future years to manage and preserve ecological systems in the
era of global change.

TOWARDS PREDICTING THE STRUCTURE OF

MUTUALISTIC NETWORKS

This review considers network structure consisting of both the
binary structure (i.e., who interacts with whom, Box 1) and
the strength of those interactions. The first subsection synthe-
sises the state of the art on proposed mechanisms predicting
the binary structure including species traits and abundances,
and incomplete sampling. The second subsection conceptu-
alises interaction strengths and synthesises the few works pre-
dicting them in mutualistic networks.

Predicting the binary structure

Most of the research on mutualistic networks has been
devoted to characterising, explaining, and more recently, pre-
dicting their binary structure (Box 1; Jordano 1987, 2016;
Bascompte & Jordano 2007, 2014; Ramos-Jiliberto et al.

Table 1 (continued)

Modelling approach Prediction Empirical data needed References

Species extinctions and

stochastic coextinctions

Increasing connectance decreases

network robustness to extinctions

Long-time/short-gen*. To be tested with

independent measures of total impacts

of mutualisms

Vieira et al. (2013), Vieira

& Almeida-Neto (2015)

Species extinctions and

dynamic coextinctions

Extinction of trees or hymenopterans will

make the studied pollination network

collapse

Removal of all alien plants harm native

species when the alien plants are well

integrated into the network

Long-time/short-gen*

Still needs to be tested by cutting the

flowers of alien plants and evaluating

the response of native pollinators

Ramos-Jiliberto et al.

(2009),Valdovinos et al.

(2009)

Phenological shifts

driven by climate change

17–50% of pollinator species would

exhibit temporal gaps in their food

supply due to increased temperatures

Still needs to be tested with phenological

data of plants and pollinators across

several years in a particular system

Memmott et al. (2007)

Habitat loss as patch

destruction

Nestedness decreases network resistance

to habitat loss at low patch destruction

but increases it at high patch

destruction rates

Long-time/short-gen* Fortuna & Bascompte

(2006)

Species invasions as node

introduction

Highly efficient foragers will likely

invade networks, while networks with

higher diet overlap between aliens and

natives will be highly impacted by

invaders

The impact on natives still needs to be

tested by measuring the distribution of

floral rewards and visits in systems with

and without invasive pollinators

Valdovinos et al. (2018)

Altering interaction

strengths in Lotka–
Volterra type model

with direct intraguild

competition, saturating

mutualisms and trade-

offs (eqn 7 in Box 2)

Species’ tolerance to changing in

interaction strengths not determined by

species’ degree or contribution to

nestedness. Species’ tolerance very

sensitive to the sign of the change in

interaction strength and to the trade-

offs between the number of partners

and the strength of the interactions

Highly phenomenological. Difficult to

infer what to measure in the field to test

predictions of this type of modelling

Saavedra et al. (2013)

*Includes empirical data needed or already used to test the models’ predictions. The abbreviations long-time/short-gen* and already-tested* stands for ‘re-

quires data at very long-time scales or system with very short generational time’ and ‘already tested against empirical data’, respectively.
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2010; Chacoff et al. 2012; Bartomeus et al. 2016). This subsec-
tion organises the scope and results of such research within
three main questions, which constitute sequential steps
towards predicting the binary structure. Those questions are:
(1) What is the common structure of all mutualistic networks?
(2) What are the mechanisms producing such structure? (3)
Can we predict interactions among species based on species
traits and abundances?

What is the common structure of all mutualistic networks?
If a new mutualistic network was sampled in the field, it
would likely exhibit: (1) more animal than plant species, (2)
moderate connectance, (3) highly heterogeneous degree distri-
bution, (4) high nestedness and (5) moderate modularity (see
Box 1 for definitions; Jordano 1987, 2016; Bascompte & Jor-
dano 2007, 2014; Ramos-Jiliberto et al. 2010; Chacoff et al.
2012; Bartomeus et al. (2016). These properties characterise

the binary structure of most of the empirical networks
reported worldwide.

What are the mechanisms producing such structure?
Much research has been devoted to explain the prevalence of
the above-mentioned properties (reviewed in V�azquez et al.
2009a and Bascompte & Jordano 2014). One of the key mech-
anisms proposed to explain those properties are the barriers
or constraints on interaction formation (Table 1; also called
forbidden links, Jordano 1987, 2016; V�azquez et al. 2009a).
Mechanisms constraining species interactions include temporal
or spatial uncoupling (i.e., species do not co-occur in either
time or space), constraints to the accessibility of the resources
due to trait mismatches (e.g., proboscis size very different
from corolla size) and physiological–biochemical constraints
that prevent the interactions (e.g., chemical barriers). Empiri-
cal (reviewed in V�azquez et al. 2009a and Jordano 2016) and

Box 1. Glossary of terms commonly used in the study of mutualistic networks

Mutualistic network: Ecological network in which one class of nodes represents one type of species (e.g., plants) and the other
class represents another type of species (e.g., pollinators), while links connecting nodes of the two different classes represent the
mutualistic interactions (e.g., pollination, Fig. 1a).
Binary structure (also called network topology): Set of species (represented by nodes) and the architecture of species interactions
(represented by links connecting the interacting species).
Species richness (S): Total number of species in the network, S = P + A, where P and A are the total number of plant and ani-
mal species, respectively.
Connectance (C): Fraction of potential interactions that are realised, C = L/ (P*A), where L is the number of realised interac-
tions (links connecting species).
Degree: The total number of interactions for a single species.
Heterogeneous degree distribution: Most species have one or a few interactions (specialists) and a few species have most of the
interactions in the network (hypergeneralists).
Nestedness: Tendency of the interactions of the most specialist species to be subsets of the interactions of the most generalist
species. Also defined as the tendency of species with fewer interactions (specialists) to interact with subsets of the mutualistic
partners of species with more interactions (generalists).
Interaction asymmetry: Tendency of the interaction pairs between species that contain one strong interaction strength to be
accompanied by a weak interaction strength.
Modularity: Network compartmentalisation into modules, whose species interact more among themselves than with species
belonging to other modules.
Dependence: Measure of the relative dependence of one species (i) on another (j) calculated as the fraction of i’s total interac-
tions with species j. For example, if a pollinator species only visits one plant species, the pollinator’s dependence on that plant
species is 1 (complete), but the plant species depends less on that pollinator species if the plant species is also visited by other
pollinator species.
Feasibility: All species exhibit stationary abundances that are non-zero and positive; that is, none of the species in the network
go extinct (complete species persistence).
Local equilibrium: State at which all abundances stay the same unless perturbed. Mathematically, species abundances at which
all the dynamic equations are 0 (no change in abundance).
Local stability: Measures the tendency of a system to return to equilibrium after small perturbations. Mathematically, an equi-
librium point is stable if all the eigenvalues of the corresponding Jacobian matrix evaluated at the equilibrium point have nega-
tive real parts.
Structural stability: Local stability with respect to modifications in the parameters of a dynamic model. A system is more struc-
turally stable if it can endure larger changes in parameter values without exhibiting species extinctions. Usually represented as
the volume in parameter space compatible with positive abundances at the equilibrium point.
Resilience: Return rates to an equilibrium point following a perturbation.
Robustness: Network resistance to the loss of species caused by species extinctions.
Species persistence: Fraction of initial species that persist until the end of a simulation. In systems exhibiting equilibrium, persis-
tence is the fraction of initial species surviving after the system has reached its equilibrium.
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theoretical (Santamar�ıa & Rodr�ıguez-Giron�es 2007) research
has shown that those constraining mechanisms predict the
absence of interactions among specialist species (characteristic
of nestedness), the existence of numerous specialist species
and a few highly generalist species (characteristic of heteroge-
neous degree distributions), and the observed low connectance
of networks.
Other work, however, has shown that properties of the

binary structure observed in mutualistic networks can
emerge as a sampling artefact (Table 1; Bl€uthgen 2010;
Bl€uthgen et al. 2008) developed a neutral model assuming
incomplete sampling of species interactions, skewed species
abundances and fully generalised systems (i.e., all plant spe-
cies interact with all animal species). Such a model predicts
that the often-missing interactions between rare species
(characteristic of nestedness and heterogeneous degree distri-
butions) result from low sampling efforts failing to record
the interactions of rare species. This prediction raised the
question of whether the observed structure of mutualistic
networks represents the ‘true’ architecture of interactions
(produced by evolutionary and ecological mechanisms) or
merely an artefact of incomplete sampling. This question
promoted many studies investigating sampling effects on
network structure by varying sampling effort both in the
field (Nielsen & Bascompte 2007; Petanidou et al. 2008;
Hegland et al. 2010; Chacoff et al. 2012; Rivera-Hutinel
et al. 2012) and in models generating network structures
(V�azquez et al. 2007; Bl€uthgen et al. 2008; Bartomeus 2013;
Fr€und et al. 2016). Those studies showed that incomplete
sampling strongly underestimates the number of interactions
and overestimates the degree of specialisation.
Fortunately, recent niche-based models (e.g., Fr€und et al.

2016) help disentangle the effect of incomplete sampling
from the effect of species’ abundances and traits in structur-
ing mutualistic networks. Moreover, complementary data
sources can reduce the incidence of missing links caused by
incomplete sampling and, therefore, reduce the impacts of
sampling effort on network data (Olesen et al. 2010; Jor-
dano 2016). For example, pollen-transport data effectively
complement pollinators’ visitation data to show the struc-
ture of plant–pollinator network (Bosch et al. 2009; Olesen
et al. 2010; Coux et al. 2016). Overall, studies evaluating
the impacts of missing links and sampling effort on net-
work structure show that low sampling effort strongly
underestimates the number of links and degree of generali-
sation but does not necessarily affect higher-order network
properties such as nestedness. This results mostly because of
the averaging of processes for higher-order function min-
imises the effects of outliers. Consequently, a robust charac-
terisation of higher-order properties of networks is still
possible even when true interactions are undersampled
(Morales-Castilla et al. 2015; Jordano 2016).

Can we predict interactions among species based on species
traits and abundances?
Building on the knowledge generated by studies analysing
properties of the binary structure, recent models are predict-
ing the occurrence of interactions based on species traits
and abundances (V�azquez et al. 2009b; Ekl€of et al. 2013;

Gravel et al. 2013; Morales-Castilla et al. 2015; Bartomeus
et al. 2016; Crea et al. 2016; Fr€und et al. 2016). For exam-
ple, Bartomeus et al. (2016) use a Bayesian block model
approach (Clauset et al. 2008) in which the probability of
an interaction between co-occurring species depends on their
traits. Such models can also account for species abundances
by making the trait distribution dependent on abundances.
Using maximum likelihood, the authors fit the model
parameters to three empirical data sets ranging from preda-
tor–prey to mutualistic interactions, and use the parame-
terised models to predict species interactions and estimate
unobserved traits for each data set. As another example,
Morales-Castilla et al. (2015) sequentially remove species
interactions based on constraining mechanisms (e.g., spatial
or temporal decoupling) and estimate the interaction proba-
bilities for the residual links. These types of models advance
the discipline of ecological networks by producing predic-
tions of specific interactions that can be tested against
empirical data, which can further describe the relative
effects of different mechanisms (i.e., species traits constrain-
ing interaction formation, species abundances and incom-
plete sampling) on the structure of mutualistic networks.
Finally, related to predicting interactions based on species

traits, phylogenetic signal has been detected in the structure
of mutualistic networks (Rezende et al. 2007; Peralta 2016).
This suggests that the evolutionary history encoded in spe-
cies phylogenies may have influenced the assembly of mutu-
alistic networks. In a seminal paper detecting phylogenetic
signal in mutualistic networks, Rezende et al. (2007) find
that phylogenetically related species tend to interact with a
similar set of species and exhibit similar numbers of interac-
tions. Explanatory mechanisms for this ‘conservatism of
interactions’ (Peralta 2016) still need to be evaluated, but
one plausible mechanism is that species may have inherited
their traits involved in mutualistic interactions from common
ancestors. Thus, related species exhibit similar traits and,
therefore, a similar set of mutualistic partners (Ekl€of et al.
2013). Other research detecting phylogenetic signal in mutu-
alistic networks (reviewed by Peralta 2016) shows that mod-
ularity might depend on the clustering of phylogenetically
related species in a network (Dupont & Olesen 2009) and
on trait convergence such as pollination syndromes (Corbet
2000). However, more research is required to evaluate causa-
tion in the correlations reported between network structure
and phylogenetic trees. For example, network assembly
models show that nested or modular structures fail to
emerge when simulating phylogenetic relatedness (Perazzo
et al. 2014; Ponisio & M’Gonigle 2017). Without such key
cause–effect connections, much of the phylogenetic signal of
networks remains speculative (but see Raimundo et al.
2018). Moreover, most studies investigating phylogenetic sig-
nal in networks use taxonomic instead of phylogenetic trees,
which represent important challenges including underestimat-
ing evolutionary differences and arbitrarily assigning branch
lengths (Peralta 2016).
In summary, research on mutualistic networks has provided

answers to the three questions examined in this subsection.
First, general properties including high nestedness, moderate
connectance and heterogeneous degree distribution are
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common to most observed networks. Second, biological mech-
anisms including trait (miss)matching and phenological (de)-
coupling together with incomplete sampling have proven to
determine those properties. In particular, incomplete sampling
strongly diminishes detection of specific interactions but less
strongly affects network-wide measures of structure. Third,
the theoretical (a priori) predictions of network structure are
improving, mainly due to iterative comparisons with empirical
data sets, but understanding the causal relationships between
empirical properties (e.g., phylogenetic similarity) and network
structure (e.g., modularity) remains a challenge.

Predicting interaction strengths

The distribution of interaction strengths among species
strongly influences the dynamics of communities (McCann
et al. 1998; Wootton & Emmerson 2005; Bascompte et al.
2006; Okuyama & Holland 2008). Therefore, predicting the
distribution of interaction strengths in mutualistic networks
provides important information for predicting their dynamics.
This subsection emphasises the need to distinguish per-capita
effects from interaction frequencies when defining interaction
strengths (e.g., standardising by species abundances). This is
to avoid predicting (e.g., Bascompte et al. 2006) that abun-
dant species (usually generalists) provide higher per-capita
benefits to their mutualistic partners than do rare species
(usually specialists), which contradicts empirical (V�azquez
et al. 2005; G�omez & Zamora 2006) and theoretical (Val-
dovinos et al. 2016; Benadi & Gegear 2018) evidence showing
that specialists tend to provide higher per-capita benefits than
generalists.
One of the most used definitions of interaction strength is

per-capita effect, defined as the direct effect of an average
individual of one species on the average individual of
another species (Wootton & Emmerson 2005; V�azquez et al.
2015). Bascompte et al. (2006) proposed to estimate per-
capita effects in mutualistic networks (aij

A and aji
P in eqns

2 and 3 of Box 2) by using the frequency of interaction
between plant and animal species (i.e., frequency of contact
or visits). More specifically, the authors proposed to esti-
mate those per-capita effects as the dependence of a species
on their mutualistic partners (Box 1), which effectively mea-
sures the relative frequency of interaction between species.
However, this approach potentially confounds per-capita
effects with species abundances. The metric of dependence
results in species depending more strongly on species with
whom they interact more often, which is highly correlated
with species abundance (see above, V�azquez et al. 2007).
That is, Bascompte et al. (2006) predict that a visit by an
average individual of an abundant species provides higher
benefits to their mutualistic partners than a visit by an
average individual of a rare species, which contradicts
empirical data (V�azquez et al. 2005; Morris et al. 2010;
Aizen et al. 2014). The meta-analysis conducted by V�azquez
et al. (2005) ‘confirms findings of previous studies suggest-
ing that the most abundant animal mutualists are not nec-
essarily the most effective ones on a per visit basis’.
Paradoxically, Bascompte et al. (2006) based their prediction
on V�azquez et al. (2005), which is reiterated in Bascompte

& Jordano (2014) as: ‘Once again, we assume that depen-
dence is a good surrogate for per-capita effect, which is jus-
tified both in mathematical terms and as observed in
empirical studies (V�azquez et al. 2009a; see Chap. 4)’.
Unfortunately, such justification cannot be found in the
cited reference. V�azquez et al. (2005) found the frequency
of interactions as a good surrogate for total effects on pop-
ulations but not for per-capita effects.
To my knowledge, the only way to use the frequency of

interaction to predict per-capita effects is to know the rela-
tionship among frequency of interaction, species abundance,
fitness components (e.g., seed production, survival of differ-
ent stages) and per-capita growth rates (V�azquez et al.
2015). Moreover, the frequency of mutualistic interactions
does not always estimate well the total effects of mutu-
alisms on populations. An increase in such frequency can
also negatively affect the interacting populations when the
costs of the mutualisms exceed their benefits (see below;
Morris et al. 2010). For example, alien pollinators may
increase the reproduction success of native plants when
moderately abundant but decrease the plant reproduction
when highly abundant (Aizen et al. 2014; Valdovinos et al.
2018). In addition, saturating functional responses (eqn 4 in
Box 2) and adaptive foraging (Benadi & Gegear 2018) can
make the net effects of mutualisms independent of the
interaction frequency.
Another approach to conceptualising the strength of mutu-

alistic interactions is to calculate net effects resulting from the
benefits minus costs incurred by the interacting organisms
(Bronstein 1994, 2001; Bronstein et al. 2006). As defined by
Holland et al. (2002), ‘benefits are goods and services that
organisms cannot obtain affordably, or at all, in the absence
of their partner(s)’. Benefits obtained through mutualistic
interactions include food, transportation and protection.
Costs ‘include investments in structures to attract mutualists,
substances to reward them, and the energy and time spent
obtaining those rewards’ (Holland et al. 2002). Importantly,
benefits and costs of mutualisms vary depending on the abun-
dance of the mutualistic partners as well as through time and
across space (Bronstein 1994; Bronstein et al. 2006), which
ultimately determines the net effects of a mutualism in a par-
ticular time and location. Holland et al. (2002) build on this
conceptualisation of mutualisms to develop ecological theory
that incorporates the density-dependent nature of benefits and
costs. More specifically, the authors develop functional
responses of mutualisms (i.e., per-capita benefit as a function
of the abundance of the mutualistic partner) as net effects
resulting from different density-dependent functions (linear,
unimodal, saturating) of benefits and costs. Using the resul-
tant functional responses, the authors evaluate the effects of
the different density-dependent functions of benefits and costs
on the dynamics of mutualistic systems composed by two
interacting species.
In summary, predicting interaction strengths needs to dis-

tinguish per-capita effects adjusted for species abundance
from the total effects of mutualisms on populations. In
addition, better estimations of benefits and costs are one
approach to a more clear understanding of interaction
strengths.
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Box 2. Lotka–Volterra type models of mutualistic networks

The Lotka–Volterra type models of mutualistic networks can be organised along a continuum of complexity. The first type of
model in ascending order of complexity does not simulate population dynamics but uses a ‘community matrix’ A (the Jacobian
matrix evaluated at an equilibrium point) to describe and analyse a system of n interacting species. The n x n elements of A, aij,
characterise the effect of species j on species i near an equilibrium. This approach analyses the stability of such an equilibrium
using the Taylor series in its neighbourhood (May 1973), characterised by the equation:

dN

dt
¼ AN ð1Þ

where N is the n x 1 vector of species populations. The system (eqn 1) is locally stable if all the eigenvalues of A have negative
real parts. In locally unstable systems, even infinitesimal perturbations cause the system to move away from equilibrium, poten-
tially leading to the loss of species (May 1973). Allesina & Tang (2012) extended the stability criterion proposed by May
through constructing community matrices that represent more defined interactions (e.g., predator–prey, mutualistic or competi-
tive; in contrast to interaction signs drawn completely at random) and more realistic network structures i.e., reflecting some of
the properties observed in empirical networks).
The community matrix (eqn 1) is also a linearisation of the Lotka–Volterra model at an equilibrium point (Kot 2001), such

as the model used by Bascompte et al. (2006):

dNP
i

z}|{per�capita growth of plant sp i

NP
i dt

¼ rPi � sPi N
P
i

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{intrinsic asymptotic growth

þ
Xn
j¼1

aAij N
A
j

zfflfflfflfflfflffl}|fflfflfflfflfflffl{gain from mutu alistic interactions

ð2Þ

dNA
j

zffl}|ffl{per�capita growth of animal sp j

NA
j dt

¼ rAj � sAj N
A
j

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{intrinsic asymptotic growth

þ
Xm
i¼1

aPjiN
P
i

zfflfflfflfflfflffl}|fflfflfflfflfflffl{gain from mutualistic interactions

ð3Þ

which defines the per-capita population growth rate of each plant (P) species i and animal (A) species j as a function of their
intrinsic growth rate, rPi and rAj, intraspecific competition, sPi and sAj, and gain from each mutualistic interaction, respectively.
This model assumes that the average individual of one mutualistic partner always benefits an average individual of the other
mutualistic partner (indicated by 1 in Fig. 1a) at the same magnitude, aAij or a

P
ji, regardless of the abundance of the interacting

populations. In other words, mutualistic species linearly increase their abundance with the increase in abundance of their mutu-
alistic partners (i.e., Type I functional response).
Next in model complexity, Holland et al. (2005) and Okuyama & Holland (2008) incorporated nonlinear functional responses

to the model used by Bascompte et al. (2006), in which the beneficial effects of one species on another (i.e., aAij and aPji in eqns
2 and 3 respectively) saturate with increasing population size of the mutualistic partners as:

aAij ¼
bij

1þ hijbijN
A
j

; aPji ¼
bji

1þ hijbjiN
P
i

; ð4Þ

where hij is the handling time of the Type II functional response. Modelling saturating benefits of mutualistic interactions (as
opposed to linear benefits) constitutes an advance in biological realism of the model (Holland et al., 2005; Morris et al. 2010).
Bastolla et al. (2009) added intraguild competition to the saturated mutualisms model (indicated by 3 in Fig. 1a), where each
species competes with all other species in its guild (plants or animals), as follows:
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i dt
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þ
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ð5Þ
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ð6Þ

where sPik (sAjk) is the interspecific competition coefficient that defines the negative effect of species k on species i (j) which
also defines the intraspecific competition when k = i (k = j). The last variation to this Lotka–Volterra type model was made by
Rohr et al. (2014) who modified the parameters bAij and bPji in eqns 5 and 6 to:
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TOWARDS PREDICTING THE DYNAMICS OF

MUTUALISTIC NETWORKS

Research reviewed in the past section shows that species traits
and abundances influence the structure of mutualistic networks.
This section reviews models predicting the dynamics of those
abundances and the effect of network structure on network
dynamics. The first subsection describes the assumptions and
predictions of the two general frameworks used for modelling
population dynamics in mutualistic networks. The second sub-
section reviews research modelling the plasticity of species inter-
actions determined by the ability of animals to change their
interactions in response to changes in their resource availability.

Population dynamics models and their predictions

This subsection synthesises the assumptions of Lotka–Volterra
type (Fig. 1a, Box 1) and consumer–resource (Fig. 1b, Box 1)

models and explains how different assumptions produce con-
trasting predictions on the effect of network structure on net-
work stability (Table 1).
Because of their simplicity and mathematical convenience,

Lotka–Volterra type models have been the most commonly used
models of population dynamics to study mutualistic networks
(Fig. 1a, Box 1). These comprise the Lotka–Volterra model of
mutualism and all its extensions (Boucher 1985), including
replacing the linear positive effects of mutualisms (Type I func-
tional response) by saturating positive effects (Type II functional
response, see Box 2). Those models represent mutualistic rela-
tionships as net positive effects between species using a positive
term in the growth equation of each mutualist that depends on
the population size of the partner. However, by phenomenologi-
cally assuming net positive effects between mutualistic partners,
those models (a) disregard important biological processes associ-
ated with plant–animal interactions that can result in negative
net effects on the interacting populations (Bronstein 1994;
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Figure 1 Illustration of Lotka–Volterra type (a) and Valdovinos et al.’s consumer–resource (b) models. (a) Key assumption of Lotka–Volterra type models

(Box 2) is that mutualist partners always positively affect each other (indicated by a circled 1, in a linear eqns 2 and 3 or saturating eqn 4 way), which

results in species of the same guild benefiting each other indirectly via sharing the same mutualistic partners (indicated by 2). Some models also incorporate

direct competition (independent of mutualistic interactions) among all species of the same guild (i.e., intraguild competition in plants or animals indicated

by 3, eqns 5 and 6). (b) How Valdovinos et al.’s model (Box 3) decomposes net effects of mutualisms into two key mechanisms: consumption of floral

rewards (indicated by ‘Consumption’, eqns 9 and 10) and pollination services (indicated by ‘Pollination’, eqn 8). The model separates the dynamics of the

plant vegetative biomass (eqn 8) from the dynamics of floral rewards (red rectangles, eqn 9), connecting them by the plant production of rewards (indicated

by ‘Production’, parameter b of eqn 9). Adaptive foraging (eqn 11) allows pollinators to assign higher foraging effort (thicker arrow) to plant species with

higher floral rewards (larger rectangle). (c) High niche overlap among pollinator species that share floral rewards (follow thicker lines) of the most

generalist plant species (indicated by the red arrow) in a nested network. (d) High niche overlap among plant species that share pollination services (follow

thicker lines) of the most generalist pollinator species (indicated by the red arrow) in a nested network. This model also assumes that the conspecific pollen

is diluted in the body of generalist pollinators (see function rij in eqn. 8).

bAij ¼ bPji ¼
b0yij

kdi
ð7Þ

where yij = 1 if species i and j interact and zero otherwise, ki is the number of interactions of species i, b0 represents the level of
mutualistic strength and d corresponds to the mutualistic trade-off. The mutualistic trade-off modulates the extent to which a
species that interacts with few other species does it strongly, whereas a species that interacts with many partners does it weakly.

Box 2. continued
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Box 3. Valdovinos et al.’s consumer–resource model and Fortuna and Bascompte’s metacommunity model

The Valdovinos et al. (2013) model recognises a common characteristic of all mutualisms: the gathering of resources by organ-
isms of one species through the interaction with organisms of another species that benefit from the interaction. The key advance
of this model is separating the dynamics of the plants’ vegetative biomass from the dynamics of the plants’ rewards (Fig. 1b).
This separation allows tracking the rewards depletion by animal consumption (indicated by ‘Consumption’ in Fig. 1b) sepa-
rately from the animal contribution to plants’ population via reproductive services (indicated by ‘Pollination’ in Fig. 1b). Focus-
ing on plant–pollinator networks, this model tracks plant population growth separate from floral-rewards dynamics as:

dpi
z}|{population growth of plant sp i

dt
¼ ci

Xn
j¼1

eijrijVij

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{reproduction rreduced by plants0 competition

� lPi pi
zffl}|ffl{mortality loss

ð8Þ

dRi

z}|{floral�rewards dynamics of plant sp i

dt
¼ bipi � uiRi

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{saturated production of rewards

�
Xn
j¼1

Vijbij
Ri

pi

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{consumption by pollinators

ð9Þ

where Vij ¼ aijsijajpi defines the frequency of visits by animal species j to plant species i, which increases the population growth
of plant i (eqn 8, ‘Pollination’ in Fig. 1b) but decreases its floral rewards (eqn 9, ‘Consumption’ in Fig. 1b). Those visits are
determined by the adaptive preference (thickness of pollinator’s arrows in Fig. 1b) of animal j for rewards of plant i (aij, see
below), the pollinator’s visitation efficiency on plant i (sij), and the population densities of animal j (aj) and plant i (pi).
In eqn 8, only a fraction rij ¼ eiVijP

k2P ekVkj
of j’s visits successfully pollinates plant i, which accounts for dilution of plant i’s pollen

when j visits other plant species (indicated by the red arrow in Fig. 1d). A fraction eij of those pollination events produces seeds.

Among those seeds, a fraction ci ¼ gi 1� P
l6¼i2P

ulpl � wipi

 !
recruit to adults, where gi is the maximum fraction of i-recruits sub-

jected to both interspecific (ul) and intraspecific (wi) competition. The population dynamics of animal species j is defined as:

daj
z}|{population growth of animal sp j

dt
¼

Xm
i¼1

cijVijbij
Ri

pi

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{recruit to adults from rewards consumption

� lAj aj
zffl}|ffl{mortality loss

ð10Þ

where cij represents the per-capita efficiency of j converting plant i’s floral resources into j’s births. bij is the efficiency of j
extracting plant i’s floral resources (Ri, eqn 9).
Another key advance of this model accounts for the widely observed adaptive foraging of pollinators (Fig. 1B) by modelling

the adaptation of animal species j’s foraging preference on i as:

daij
dt

¼ Gjaij cijsijbijRi

zfflfflfflfflffl}|fflfflfflfflffl{Rconsumption fromplant i

�
Xm
k¼1

akjckjskjbkjRk

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{averageR consumption fromall j0s plants0
BBB@

1
CCCA ð11Þ

with
Pm
i¼1

aij ¼ 1 (i.e., animal j’s total preferences sum to 1 over all plant species it visits). The preference aij increases when the

resources obtained from i exceed the resources obtained from the other plants in j’s diet (defined by the network), and decreases
when the resources obtained from i are lower than the resources obtained from the other plants (follow thicker pollinator’s
arrow in Fig. 1B). When adaptive foraging is not considered, pollinator foraging efforts are fixed to:

aij ¼ 1=mj ð12Þ
where mj is the number of plant species visited by pollinator species j.
Fortuna & Bascompte (2006) recognise that populations are not homogenously distributed but structured in space. The

authors developed a metacommunity model for mutualistic networks following the patch dynamics model for two species gener-
ated by Amarasekare (2004). In this model, pi

P and pj
A represent the fraction of patches occupied by plant and animal species i

and j, modelled as functions of colonisation and extinction rates for plants (cij
P and ei

P) and animals (cji
A and ej

A), the fraction
of patches lost by the habitat destruction rate, d, and the total number of available patches for animals Ωj, as follows:

dpPi
dt

¼
Xn
j¼1

cPij
pPi p

A
j

Xj

 !
1� d� pPi
� �� ePi p

P
i ð13Þ

dpAj
dt
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A
j Xj � pAj

� �
� eAj p

A
j ð14Þ
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Holland et al. 2002) and (b) produce very different dynamic out-
puts for populations and communities compared to models
where the net effects are described mechanistically (Holland &
DeAngelis 2010; Valdovinos et al. 2016). Key processes ignored
by these models include visitation, feeding and reproductive
mechanisms that determine how direct interactions between
mutualistic partners vary through time and across densities or
total abundances of the interacting species (Abrams 1987, Hol-
land &DeAngelis 2010; Valdovinos et al. 2013, Box 3).
Lotka–Volterra type models predict that structural proper-

ties including species richness, connectance, and nestedness,
and the asymmetry of interaction frequencies and modularity
(Box 1) affect the stability of mutualistic networks. However,
studies analysing the effects of those properties on network
stability show contrasting results on the direction of the
effects (Box 4), especially for nestedness and connectance.
Extensive analyses performed by Pascual-Garc�ıa and Bastolla
(2017) explained the contrasting results by demonstrating that
connectance always increases network stability for saturating
mutualisms, while the effect of nestedness depends on the level
of interspecific competition among plants and animals (here-
after intraguild competition), and whether mutualisms are fac-
ultative or obligate (i.e., species persist or go extinct when
their partners are absent). The authors demonstrate that: (1)
saturating mutualisms (eqn 4) are necessary for the system to
be stable (i.e., feasible, Box 1), (2) without intraguild competi-
tion, saturating mutualisms are always stable and their feasi-
bility only requires mutualisms to be facultative (i.e., ri > 0 in
eqns 2 and 3 with eqn 4) and (3) with intraguild competition,
the feasibility of saturating mutualisms requires that the
intrinsic growth rates (ri in eqns 5 and 6) negatively correlate
with the species’ number of mutualistic interactions and that
the ratio between plant and animal abundances (density, bio-
mass) is higher than 2∙105. In summary, under the assump-
tions of Lotka–Volterra type models, highly connected
networks of saturating and facultative mutualisms exhibiting
the lowest intraguild competition are the most stable.

The extensive analysis conducted by Pascual-Garc�ıa and
Bastolla (2017, see above) shows that nestedness is a weaker
predictor for network stability than connectance, intraguild
competition and whether mutualisms are facultative or obli-
gate, which resolves discrepancies among previous studies
using Lotka–Volterra type models. For example, Bastolla
et al. (2009) and Rohr et al. (2014) find that nestedness
increases structural stability (Box 1) of networks with saturat-
ing mutualisms and intraguild competition because the
authors assumed fully connected networks and low intraguild
competition (both stabilising), respectively. In contrast, James
et al. (2012) find that nestedness decreases species persistence
because the authors adopt similar intrinsic growth rates for all
species, which is destabilising for networks with intraguild
competition (see point 3) above.
A more mechanistic alternative to the Lotka–Volterra type

models is the consumer–resource approach to mutualisms
(Holland et al. 2005; Holland & DeAngelis 2010; Valdovinos
et al. 2013, 2016, 2018). This approach decomposes net effects
assumed always positive by Lotka–Volterra type models
(Fig. 1a) into the biological mechanisms producing those
effects (Fig. 1b). While this approach has been applied to study
pairwise interactions (Holland et al. 2005; Holland & DeAnge-
lis 2010) to my knowledge only Valdovinos et al. (2013, 2016,
2018) have developed a consumer–resource model for mutualis-
tic networks. The key advance of Valdovinos et al.’s model is
separating the dynamics of the plant vegetative biomass from
the dynamics of the plant rewards (Fig. 1b, Box 1). This sepa-
ration allows: (1) tracking the depletion of plant rewards, (2)
evaluating exploitative competition among animal species visit-
ing the same plant species and (3) incorporating adaptive for-
aging (i.e., behavioural responses to resource availability,
Stephens & Krebs, 1986; Valdovinos et al. 2010). Another
advance of this model is incorporating the dilution of conspeci-
fic pollen carried by animals, which tracks the competition
among plants for the animals’ pollination services. That is, pol-
linator species assigned visits to many different plant species

Without adaptive foraging With adaptive foraging(a) (b)rewards rewards

Figure 2 Results of Valdovinos et al.’s consumer–resource model for nested networks. (a) Without adaptive foraging, pollinator species partition the same

foraging effort to each of their plant species (follow the width of the lines for each pollinator species, see eqn 12 in Box 3), which results in generalist plant

species (top right) receiving more visits than specialists (bottom right). This results in generalist plants having lower floral rewards than specialists do (red

bars). In this scenario, specialist plant and animal species can go extinct because specialist plants receive very few and low quality visits while specialist

pollinators have access to very low floral rewards and starve. (b) With adaptive foraging, generalist pollinator species (top left) partition higher foraging

effort on specialist plant species (bottom right, follow thick line) which releases the rewards of generalist plant species now consumed by the specialist

pollinators. In this scenario, specialist species persist because specialist plants receive more and higher quality of visits by generalist pollinators and

specialist pollinators have enough food to persist.
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carry more diluted conspecific pollen, which also works as a
proxy for quality of visits (rij of eqn 8 in Box 3, Fig. 1d). This
model predicts that highly nested but moderately connected
networks will exhibit the highest species persistence when ani-
mals are adaptive foragers (Valdovinos et al. 2016). Without
adaptive foraging, however, nestedness decreases and con-
nectance increases species persistence. This is because increas-
ing nestedness increases niche overlap among animal (Fig. 1c)
and plant (Fig. 1d) species, and increasing connectance
increases the number of food sources for animals. Introducing
adaptive foraging (eqn 11 in Box 3) allows generalist pollina-
tors to partition most of their foraging effort to specialist
plants (with high availability of rewards, compare Fig. 2a and
b). This partitioning stabilises the highly nested and moderately
connected networks by releasing the rewards of generalist
plants to specialist pollinators, and increasing the quantity and
quality of visits received by the specialist plants. The results
and equations of this model can be extended to other plant–
animal mutualisms (e.g., frugivory) by assuming that plant
rewards represent fruits instead of floral rewards and by assum-
ing dilution of seed-dispersal services instead of dilution of pol-
lination services.
In summary, Lotka–Volterra type models predict that

highly connected networks of saturating and facultative mutu-
alisms exhibiting the lowest intraguild competition are the
most stable, while a consumer–resource model predicts that
highly nested but moderately connected networks will exhibit
the highest stability when animals are adaptive foragers.

Predicting the plasticity of interactions

The previous subsection synthesised two frameworks to model
population dynamics, one assuming static interactions (i.e.,
Lotka–Volterra type models) while the other allowing plastic
interactions (i.e., consumer–resource model by Valdovinos
et al.). This subsection synthesises studies that provide further
understanding of the highly plastic nature of mutualistic inter-
actions (CaraDonna et al. 2017; Ponisio et al. 2017).
The plasticity of mutualistic interactions was first modelled

topologically as ‘interaction rewiring’, that is, by algorithmi-
cally defining which, when and how species interactions were
rewired to new species (Kaiser-Bunbury et al. 2010; Ramos-
Jiliberto et al. 2012). This modelling was first developed to
evaluate the network responses to species extinctions (see next
section). Kaiser-Bunbury et al. (2010) simulated interaction
rewiring based on all the potential interactions observed for
pollinator species during a flowering season in two representa-
tive sites on Mauritius Island. The authors analysed the
robustness to species removals (Box 1) and the subsequent
topological coextinctions of 12 consecutive snapshots (2-week
period) that depicted the plant–pollinator interactions
recorded biweekly over the flowering season. The whole-sea-
son network (i.e., 12 snapshots combined) was assumed to
record all the potential interactions of each pollinator species.
That is, if a pollinator species interacted with a particular
plant species in the whole-season network, but was not
observed visiting such species within a particular snapshot,
the pollinator species was assumed able to rewire any of its
observed interactions to that plant species. The interaction

rewiring was then simulated within each of the 12 snapshots
as the response of pollinators to the extinction of their plant
partners by reassigning those interactions to the persistent
plant species with which they can potentially interact (deter-
mined by the whole-season network). As expected, the authors
find that this rewiring algorithm increases the robustness of
the networks to species extinctions.
Ramos-Jiliberto et al. (2012) take a step forward towards

predicting the plasticity of mutualistic interactions by incor-
porating both interaction rewiring and population dynamics
into the analysis of the network responses to extinctions. To
model population dynamics, a meta-community model devel-
oped by Fortuna & Bascompte (2006, eqns 13 and 14) was
used to evaluate the effects of different rewiring algorithms
(which and how interactions rewire) on network robustness
to species removals (Box 1). They found that interaction
rewiring increases the network robustness to species extinc-
tions especially when specialist pollinators are more likely to
rewire their interactions, and when the rewired interactions
are more likely to be connected to plant species with the
highest proportion of patches occupied per animal interac-
tion. Valdovinos et al. (2013) take another step forward
towards predicting the plasticity of mutualistic interactions
by not only combining population dynamics with interaction
plasticity but also more explicitly modelling adaptive forag-
ing (see previous sub-section, eqn 11 in Box 3). Moreover,
in Valdovinos et al.’s model, the plasticity of foraging
efforts not only determines the presence or absence of inter-
actions but also their strength.
Zhang et al. (2011) also combined population dynamics and

interaction rewiring but to evaluate the emergence of nested-
ness as a consequence of adaptive foraging. The authors used
a Lotka–Volterra type model of saturating mutualisms with-
out intraguild competition (eqns 2–4), assuming facultative
mutualists (specifically with ri between 0 and 1). Interaction
rewiring was implemented in each time step by randomly
choosing a pollinator species that will rewire its interaction
with the lowest per-capita positive effect to a randomly cho-
sen species. This model starts with random networks having
the species richness and connectance of empirical networks as
initial conditions, and converges to stable nested networks
that successfully predict the nestedness levels found in empiri-
cal networks. This model also predicts the asymmetry of inter-
action frequencies, the heterogeneous degree distribution, and
the positive relationship between species’ degree and total
impacts commonly found in empirical networks (Box 1). Note
that these results are a reflection of previous results of Lotka–
Volterra type models assuming saturating facultative mutu-
alisms without intraguild competition (see previous sub-
section 3, Box 2). When those types of mutualisms are
assumed, nested, heterogeneous and asymmetric networks are
expected to emerge with adaptive foraging because those
structures are the ones providing the highest benefits per spe-
cies. Suweis et al. (2013) confirm this result using an optimisa-
tion principle that maximises species abundance. The authors
demonstrate analytically and numerically that because of the
assumed positive net effects between mutualistic species,
increasing the abundance of a particular species increases both
the networks’ nestedness and the total species abundance. In
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fact, their optimisation algorithm also predicts the emergence
of nested networks.
In summary, research modelling interaction plasticity as

responses to resource availability shows that plastic interac-
tions stabilise mutualistic networks and may predict their
structure.

TOWARDS PREDICTING THE RESPONSES OF

NETWORKS TO GLOBAL CHANGE

Global environmental changes threatening mutualistic net-
works include species extinctions, climate change, habitat loss
and species invasions (Goulson et al. 2015; Ollerton 2017).
This final section synthesises recent research that uses knowl-
edge of the network structure and dynamics reviewed in the
last two sections for predicting the response of networks to
global environmental changes.

Species extinctions and topological coextinctions

Memmott et al. (2004) simulated species extinctions by remov-
ing the respective nodes from networks and evaluated the sub-
sequent coextinctions caused by those extinctions based only
on the binary structure of the networks, but ignoring species
abundances, population dynamics and interaction plasticity.
The authors used this approach to evaluate the effect of the
structure of two empirical plant–pollinator networks on their
robustness against species extinctions (Box 1). The authors
simulated pollinator extinctions by removing the correspond-
ing nodes from the network, with the consequent loss of plant
species that only interacted with the removed pollinator spe-
cies. Such models assume that species completely depend on
their mutualistic partners to persist and that organisms of
those species do not respond to the extinction of their mutual-
istic partners by rewiring their mutualistic interactions to
other species.
This topologically determined approach to coextinctions

inevitably shows that increasing connectance increases the
robustness of mutualistic networks to species extinctions due
to an increased redundancy of interactions. In addition,
increasing nestedness consistently increases network

robustness to random extinctions and the extinction of the
most specialist (i.e., least connected) species. The former is
explained by the latter because random extinctions will more
likely draw on specialist than on generalist species given that
specialists are more frequent than generalists in the nested net-
works observed for empirical systems (Bascompte & Jordano
2007, 2014). Nested networks are robust to the extinction of
specialist species because in those networks specialist species
tend to interact with the most generalist (i.e., most connected)
species that usually will not go extinct after the extinction of
one of their specialist partners. Nested networks, however, are
very fragile to the extinction of the most connected species,
which usually produces the coextinction of many specialist
species.

Species extinctions and stochastic coextinctions

An alternative approach to the one used by Memmott et al.
relaxes the assumption that coextinctions require the loss of
all mutualistic partners (Vieira et al., 2013). Vieira and co-
workers proposed a stochastic model for determining the
probability of species i going extinct following the extinction
of species j, Pij = Ri dij, as the product between the intrinsic
dependence of species i on mutualisms to persist, Ri, and the
realised dependence of species i on species j, dij (Box 1).
Under this model, species can go extinct even when still con-
nected with persistent species. As a result, increasing con-
nectance decreases network robustness to extinctions by
increasing the pathways for the effects of primary extinctions
to propagate (Vieira et al. 2013; Vieira & Almeida-Neto
2015).

Species extinctions and population dynamics

A more mechanistic approach considers population dynamics
to evaluate the coextinctions caused by species removals. For
example, Ramos-Jiliberto et al. (2009) simulated the extinction
of different plant and animal species of an empirical plant–
pollinator network by removing the respective nodes and eval-
uated the impact of those extinctions on the dynamics of the
remaining species. In another example, Valdovinos et al.

Invader

Invader

Figure 3 Predicting the response of mutualistic networks to species invasions (results of Valdovinos et al. 2018). On the left panel, an alien pollinator

species invades a plant–pollinator network and forages on the most generalist (top right) and most specialist (bottom right) plant species. This invasion

drives extinct the native pollinator species (bottom left) that only forages on resources shared with the invasive pollinator, in this case, the most generalist

plant species. On the right panel, native pollinator species that have alternative resources (blue flower in the middle, not shared with the alien) can persist

by shifting their foraging efforts to the plant species not visited by the alien. These native pollinators, however, decrease in abundance (smaller animal size)

because they are obligated to forage on a less preferred resource (i.e., less profitable).
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(2009) simulated the removal of all alien plant species from an
empirical network, finding that such a restoration practice
could actually harm the native species when alien species are
well integrated in the network. In those two examples, as in
the ‘stochastic coextinctions’ (see previous subsection), the
coextinctions caused by the species removals could occur even
when all the mutualistic partners of a species did not go
extinct. When simulating population dynamics, coextinctions
can also happen when the benefits of the mutualisms do not
compensate for the mortality rates of the interacting
populations.

Species extinctions and plastic interactions

Overall, studies modelling the plasticity of interactions (see
previous section) predict that such plasticity increases the
robustness of networks to species extinctions in comparison to
the case of fixed interactions (Kaiser-Bunbury et al. 2010;
Ramos-Jiliberto et al. 2012; Valdovinos et al. 2013). Those
studies reached the same conclusion even when their
approaches were very different. Kaiser-Bunbury et al. (2010)
simulated interaction rewiring based on all the potential inter-
actions observed for pollinator species during a flowering

Box 4. Stability analysis of Lotka–Volterra type models of mutualistic networks

Studies using the simplest model with linear mutualisms differ in how they analyse local stability. Bascompte et al. (eqns 2 and
3) assume a fully connected network in which all plants interact with all animals and all species are equivalent. By this assump-
tion, the authors simplify the model to find four equilibrium points (i.e., species abundances at which dNP/dt = 0 and dNA/
dt = 0), among which one is feasible. This procedure shows that weak or asymmetric per-capita effects between plant and ani-
mal species increase the local stability of the feasible equilibrium. By contrast, Allesina & Tang (2012) assume the existence of a
feasible equilibrium without finding it. This strong assumption allows the authors to evaluate the local stability of different
community matrices (eqn 1) representing distinct interaction types (i.e., mutualistic, trophic, competitive) and network structures
(e.g., nestedness, modularity) without restricting their exploration to a feasible equilibrium nor to a ‘fully connected network’.
Okuyama & Holland (2008) used computer simulations to show that a model with nonlinear functional responses (eqn 4)

does not require weak or asymmetric interaction strengths for species coexistence. The authors find that strong symmetric inter-
actions stabilise network dynamics in terms of resilience. Additionally, contrary to Allesina & Tang (2012), Okuyama and Hol-
land find that mutualisms are very stable and that increasing levels of species richness, nestedness and connectance increase
resilience of the networks. Moreover, the authors used resilience as their only measure of stability because all networks they
simulated (order of thousands) were locally stable and fully persistent. Th�ebault & Fontaine (2010) computationally analysed
Okuyama and Holland’s model to evaluate the effects of species richness, connectance, nestedness and modularity on species
persistence and resilience of mutualistic and trophic networks. In accordance with Okuyama and Holland, Th�ebault and Fon-
taine found for mutualistic networks that: (1) nestedness increases resilience, (2) species richness strongly increases both resili-
ence and species persistence and (3) connectance slightly increases species persistence. But contrary to Okuyama and Holland,
Th�ebault and Fontaine found that nestedness slightly decreases species persistence and connectance decreases the resilience of
mutualistic networks (all results depicted in Th�ebault and Fontaine’s Fig. 2a and 2). Th�ebault and Fontaine did not emphasise
their result of nestedness slightly decreasing species persistence of mutualistic networks because that result strongly depended on
parameter values (E. Th�ebault personal communication). The differences between the results of Okuyama & Holland and
Th�ebault & Fontaine can be explained by the parameter values of the intrinsic growth rate, rPi and rAj (eqns 2 and 3). Okuyama
and Holland assumed positive values while Th�ebault and Fontaine assumed negative values for intrinsic growth rates, which
can be interpreted as facultative and obligate mutualism, respectively. Thus, with saturated benefits, facultative mutualisms are
more stable than obligate mutualisms.
Bastolla et al. (2009) added competition among all species in the same guild to the model of saturated mutualisms (eqns 5

and 6). By using structural stability analysis (Box 1), the authors showed that nestedness stabilises mutualistic networks by
reducing effective interspecific competition (see main text). James et al. (2012) used computer simulations to contradict Bastolla
et al.’s results by showing that nestedness does not stabilise the networks in terms of species persistence. As mentioned above,
Th�ebault & Fontaine (2010) also found that nestedness decreases species persistence but that result strongly depended on
parameter values. However, Saavedra & Stouffer (2013) argue that species persistence in the James et al. (2012) study was a
result of changes in degree distribution and not in nestedness. James et al. (2013) responded to such criticism arguing that
nested networks exhibit higher species persistence only in comparison to random networks of the same size, connectance and
degree distribution. Therefore, to the question of which network structures explain species persistence in the Bastolla et al.
(2009) model, James et al. (2013) affirms that nestedness is less important than network size, connectance, degree distribution,
intrinsic growth rates, competition coefficients and the strength of the mutualistic interaction. Rohr et al. (2014) corroborates
Bastolla et al.’s result that nestedness maximised the network structural stability, and proposed that the contradictory results on
the effect of nestedness in different studies arise if the necessary conditions for a feasible equilibrium are not met (e.g., Allesina
& Tang 2012) or because of sensitivity to model parameterisation in computer simulations (e.g., James et al. 2012). However,
Pascual-Garc�ıa & Bastolla (2017) demonstrate how the discrepancies among results are better explained by the different ways in
which each study incorporated competition among species of the same guild (main text).
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season, but disregarded species abundances and population
dynamics. Therefore, coextinctions only occurred when all the
mutualistic partners of a species went extinct, which overesti-
mates network robustness. Ramos-Jiliberto et al. (2012) incor-
porated both interaction rewiring and population dynamics
into the analysis of the network responses to extinctions,
which makes coextinctions more realistic. Finally, Valdovinos
et al. (2013) also incorporated population dynamics, but took
a consumer–resource approach (Fig. 1B, Box 3) in which the
plasticity of foraging efforts determined the weights of the
links (i.e., interaction strengths), as opposed to the binary
approach taken in modelling the rewiring of interactions.

Climate change

Memmott et al. (2007) evaluated the potential effect of pheno-
logical shifts caused by climate change on mutualistic net-
works by simulating early first flowering and onset of the
flight season of plant and pollinator species, respectively, pre-
dicted as responses to increased temperatures. The authors
evaluated the effect of those phenological shifts on the avail-
ability of flowers and pollinator activity for a highly resolved
empirical network, predicting that 17–50% of pollinator spe-
cies would exhibit temporal gaps in their food supply because
of the increased temperatures. The authors proposed that this
reduction in temporal overlap between flowers and active pol-
linators will increase the extinction risk of the species in the
network, particularly for the more specialised pollinators with
small diet breadths. It would be interesting to re-evaluate
those predictions assuming interaction plasticity.

Habitat loss

Fortuna & Bascompte (2006) evaluated the response of mutu-
alistic networks to habitat loss by developing a metacommu-
nity model that simulates habitat loss as the destruction rate
of available patches (parameter d in eqn 13 of Box 3). The
authors calculated the fraction of extinct species caused by
increasing levels of such destruction rate on nested and ran-
dom networks. Their model predicts that nested networks
would be less resistant to habitat loss (i.e., exhibit higher frac-
tions of extinct species) than random networks at lower rates
of patch destruction, but more resistant than the random net-
works at higher rates of patch destruction.

Species invasions

Valdovinos et al. (2018) use their consumer–resource model
(Box 3) to develop a mechanistic framework to predict the
invasion success of pollinator introductions and the networks’
responses to pollinator invasions. We introduced pollinator
species with different foraging traits (i.e., level of generality,
foraging efficiency and fixed vs adaptive foragers) into net-
works with different levels of species richness, connectance
and nestedness. Among 31 factors tested for the 43200 simu-
lated introductions, we found that aliens with high foraging
efficiency were the most successful invaders, while networks
with higher diet overlap between alien and native pollinators
were more impacted by invaders. In terms of the response of

the native pollinators exhibiting adaptive foraging, we predict
that those pollinators will persist in lower abundances by reas-
signing their visits to plants that are not visited by the inva-
der, while native pollinators without alternative resources will
go extinct (Fig. 3).

Perturbations altering interaction strengths

The studies described above explicitly modelled the type of
perturbation affecting networks. For example, node removals
and introductions modelled species extinctions and invasions,
respectively. Phenological shifts simulated the effect of climate
change, while patch destruction simulated habitat loss. In con-
trast, Saavedra et al. (2013) evaluated the general response of
mutualistic networks to any type of perturbation that alters
the interaction strength of mutualisms. Specifically, they simu-
lated changes in interaction strengths by systematically vary-
ing the values of the parameters defining those strengths (i.e.,
bij

A and bji
P of eqns 5 and 6 in Box 2) in the Lotka–Volterra

type model with direct intraguild competition and saturating
mutualisms. The networks’ response to such perturbation was
quantified as the amount of change in interaction strength
that each species was able to sustain before going extinct. The
authors also evaluated whether the tolerance of species to
such change correlated with species degree and contribution
to nestedness (Box 1), without finding any significant relation.
Species’ tolerance was very sensitive to the sign of the change
in interaction strength and to the trade-offs between the num-
ber of partners and the strength of the interactions (eqn 7 in
Box 2).

DISCUSSION

Qualitative predictions made by mathematical models have
shaped much of our understanding in Ecology. This started
with predictions made by the simple Lotka–Volterra model
on competitive exclusion (Gause 1932) and predator–prey
cycles (Solomon 1949, 1949), followed by the paradoxes of
enrichment (Rosenzweig 1971) and biological control (Luck
1990; Arditi & Berryman 1991) predicted by the Rosenzweig
& MacArthur (1963) model. Later predictions included indi-
rect effects in trophic interactions such as apparent competi-
tion (Holt 1977) and the stabilising effect of weak
interactions in food webs (McCann et al. 1998). Finally,
more recent predictions are made by the Allometric Trophic
Network model on predator–prey body size ratios (Brose
et al. 2006), interaction strengths (Berlow et al. 2009) and the
relative biomasses of species in a lake (Boit et al. 2012).
These predictions have guided much empirical research and
provided general understanding that ecologists use to explain
how ecological systems behave and would respond to pertur-
bations including global change. Notoriously, most of those
predictions concern antagonistic interactions, leaving mutual-
istic interactions understudied, which is unfortunate given the
relevance of mutualisms for terrestrial biodiversity (Thomp-
son 1994) and human food security (Potts et al. 2016; Oller-
ton 2017). In this work, I describe predictions in the
ecological literature of mutualistic interactions with a particu-
lar focus on mutualistic networks.
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Table 1 summarises the qualitative predictions reviewed in
this work together with the type of empirical data already
used (or to be collected) to test those predictions. I find that
models incorporating biological mechanisms that empirical
research has shown to determine mutualistic interactions pro-
duce predictions that can be better tested against empirical
data, compared to the more phenomenological models (e.g.,
Lotka–Voletrra type). Those mechanisms include trait match-
ing (Jordano 2016; Bartomeus et al. 2016), the consumption
of resources provided by the mutualisms (Holland & DeAnge-
lis 2010; Valdovinos et al. 2013, 2016), adaptive foraging and
the dynamics of reproductive services (Valdovinos et al. 2013;
2016; Benadi & Gegear 2018). For example, trait matching
can predict who interacts with whom given species co-
occurrence (Bartomeus et al. 2016), while adaptive foraging
can predict the effort that an average individual of a popula-
tion partitions to each of those interactions (Valdovinos et al.
2016). Moreover, modelling benefits and costs of mutualisms
can predict the functional responses of mutualistic interactions
(Holland et al. 2002; Morris et al. 2010). I also find that sev-
eral modelled mechanisms or potential biases (i.e., incomplete
sampling, species abundances and traits, Table 1) successfully
predict the observed structure of mutualistic networks. There-
fore, further empirical research (including manipulative experi-
ments) is needed to disentangle the actual mechanisms vs the
artefacts producing those structures. For example, measure-
ments of species abundances independent of visitation data
(e.g., Brosi & Briggs 2013; Valdovinos et al. 2016) can distin-
guish the relative effects of incomplete sampling, individuals’
foraging preferences and species traits. In addition, measuring
species traits more systematically and analysing their effects
on species interactions (number and identity) can distinguish
between the effects of species traits and incomplete sampling
in structuring mutualistic networks (Fr€und et al. 2016).
Producing empirical data to test model predictions on net-

work dynamics, however, is more challenging. In particular,
testing model predictions on the effect of network structure
on the stability of ecological systems (e.g., species persistence,
local stability, resilience, see Box 1) seems difficult unless
working with very long-term data-sets or systems with very
fast generation times (Table 1). In fact, this difficulty of col-
lecting empirical data to answer questions on long-term
dynamics is one of the main reasons for using mathematical
models in ecology because models can provide those answers
where most empirical data cannot. Nevertheless, there is a
way to connect short-term (hours/days/months) empirical data
with long-term (decades/centuries) model predictions. More
mechanistic models (e.g., Valdovinos et al. 2016; Benadi &
Gegear 2018) not only make predictions of long-term pro-
cesses such as stability but also of short-term processes that
can be assessed empirically. Then, the specifics of those pro-
cesses empirically tested can be linked back to network stabil-
ity using the mathematical model. For example, Valdovinos
et al. (2016) predict that generalist pollinators (per-capita)
behaviourally prefer specialist plants, which was empirically
corroborated with a plant–pollinator system in the Colorado
Rockies. Then, such preferences were shown to determine the
long-term stability of networks via partitioning niches between
generalists and specialists for both animal and plant species.

A key to this research is the use of networks to study eco-
logical systems. Networks provided tractability to the study of
complex, multispecies systems of several tens to hundreds of
interacting species. That is, the early descriptive metrics on
network structure (reviewed in Dunne 2006, Bascompte &
Jordano 2007) provided a general picture of how species inter-
actions are organised in complex communities. From that pic-
ture, we can model the population dynamics of each species
dependent on the interactions described by the network struc-
ture and further ask about the dynamic consequences of such
structure. This earned tractably in the study of complex multi-
species systems substantially advances our ability to predict
ecological dynamics. Ecology has learned much from studying
modules of a few interacting species in isolation from their
entangled bank, but we also need to understand the dynamics
of the entangled bank itself, especially if we want to predict
the response of ecological systems to global change.
One of the main limitations of ecological networks, how-

ever, is a need for large amounts of empirical data to parame-
terise models and test their predictions. Nevertheless, there are
some ways around this limitation. For example, Brose et al.
(2004) used the bioenergetic model of Yodzis & Innes (1992)
and its parameterisation based on allometric scaling to suc-
cessfully parameterise complex food webs of several tens of
species. Then, Boit et al. (2012) used such model and parame-
terisation to successfully predict the relative biomasses of 25
trophic groups in Lake Constance, leveraging 20 years of
empirical data on abiotic and biotic factors including species
biomasses. In mutualistic networks, much needs to be done to
parameterise models based on empirical data. We still need to
find those empirical patterns like the allometric scaling in
aquatic food webs to parameterise our models. As discussed
above, more mechanistic models can also help in this endeav-
our by connecting short-term processes that can be measured
in the field with long-term processes that can be investigated
using models. In addition, our discipline requires more cen-
tralised, systematic empirical data across long-enough tempo-
ral series, allowing for cross-model comparison.
Based on 20 years of theoretical advances reviewed here, I

think the most promising path to develop theory capable of
predicting (Houlahan et al. 2017) how networks respond to
global change is incorporating the key biological mechanisms
determining mutualistic interactions. In particular, I propose
that theory based on species traits can predict the potential
structure of the networks (fundamental niche) while theory
based on the dynamics of species abundances, rewards, forag-
ing preferences and reproductive services can predict the extre-
mely dynamic realised structures of networks and may
successfully predict their responses to perturbations. Recent
work proposes a similar approach for the study of restoration
ecology (Raimundo et al. 2018), where ‘adaptive network
models’ combined with ‘phylogenetically structured network
data’ could play an important role in predicting the outcome
of restoration practices based on the interplay among rapid
trait evolution, species abundances and species interactions.
Key to the development of such predictive theory is a deep
integration between empirical and theoretical research. Theo-
retically oriented empirical work should provide biological
mechanisms and parameter values to inform mathematical
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models, while the predictions of empirically informed mathe-
matical models should be tested with new empirical data.
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